
z/OS

MVS Programming: Assembler Services
Reference, Volume 1 (ABE-HSP)
Version 2 Release 2

SA23-1369-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 699.

This edition applies to version 2, release 1, modification 0 of IBM z/OS (product number 5650-ZOS) and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures xvii

Tables xix

About this information. xxi
Who should use this information xxi
How to use this information xxi
z/OS information xxi

How to send your comments to IBM xxiii
If you have a technical problem xxiii

Summary of changes xxv
Summary of changes for z/OS Version 2 Release 2 xxv
Summary of changes for z/OS Version 2 Release 1 xxv

Chapter 1. Using the services 1
Compatibility of MVS macros. 1
Addressing mode (AMODE) 2
Address space control (ASC) mode 3

ALET qualification 4
User parameters 4

Telling the system about the execution environment 6
Specifying a macro version number. 7

How to request a macro version using PLISTVER 7
Register use 8
Handling return codes and reason codes 9

Handling program errors 9
Handling environmental and system errors . . . 10

Using X-macros 11
Macro forms 12

Conventional list form macros 12
Alternative list form macros 13

Coding the macros 13
Continuation lines 15

Coding the callable services 16
Including equate (EQU) statements 17
Link-editing linkage-assist routines 17

Service summary 17

Chapter 2. ABEND — Abnormally
terminate a task 25
Description 25

Environment 25
Programming requirements 25
Restrictions 25
Input register information 26
Output register information 26
Performance implications 26
Syntax 26
Parameters 26
ABEND codes 28
Return and reason codes 28
Example 1 28

Example 2 28
Example 3 28

Chapter 3. ALESERV — Control entries
in the access list 29
Description 29

Environment 29
Programming requirements 30
Restrictions 30
Input register information 30
Output register information 30
Performance implications 30
Syntax 30
Parameters 31
ABEND codes 33
Return and reason codes 34
Example of adding an entry to a DU-AL . . . 40

ALESERV - List form 40
Parameters 40

ALESERV - Execute form 41
Syntax 41
Parameters 42

Chapter 4. ASASYMBM and ASASYMBF
— Substitute text for symbols. 43
Description 43

Environment 43
Programming requirements 44
Restrictions 44
Input register information 44
Output register information 44
Performance implications 45
Syntax 45
Parameters 45
Return and reason codes 45
Examples of calls to ASASYMBM or ASASYMBF 46

Chapter 5. ATTACH and ATTACHX —
Create a new task 47
ATTACH and ATTACHX description 47

Environment 47
Programming requirements 48
Restrictions 48
Input register information 48
Output register information 48
Performance implications 49
Syntax 49
Parameters 50
ABEND codes 56
Return and reason codes 56
Example 1 57
Example 2 57
Example 3 57
Example 4 58

© Copyright IBM Corp. 1988, 2015 iii

|

ATTACHX—Create a new task 58
Syntax 58
Parameters 60
Example 63

ATTACH and ATTACHX—List form 63
Syntax 64
Parameters 65

ATTACH and ATTACHX—Execute form 66
Syntax 66
Parameters 68

Chapter 6. BLDMPB — Build a
message parameter block 71
Description 71

Environment 71
Programming requirements 71
Restrictions 71
Input register information 71
Output register information 71
Performance implications 72
Syntax 72
Parameters 73
Return and reason codes 73
Example 73

Chapter 7. BLSABDPL — Map dump
formatting exit data 75
Description 75

Environment 75
Programming requirements 75
Restrictions 75
Register information 75
Performance implications 75
Syntax 75
Parameters 76
Example 78

Chapter 8. BLSACBSP — Map the
control block status (CBSTAT)
parameter list 79
Description 79

Environment 79
Programming requirements 79
Restrictions 79
Register information 79
Performance implications 79
Syntax 79
Parameters 80
Example 80

Chapter 9. BLSADSY — Map the add
symptom service parameter list 81
Description 81

Environment 81
Programming requirements 81
Restrictions 81
Register information 81
Performance implications 81
Syntax 81

Parameters 82
Example 82

Chapter 10. BLSAPCQE — Map the
contention queue element (CQE) create
service parameter list 83
Description 83

Environment 83
Programming requirements 83
Restrictions 83
Register information 83
Performance implications 83
Syntax 83
Parameters 84
Example 84

Chapter 11. BLSQFXL — Map the
format exit routine list (FXL) 85
Description 85

Environment 85
Programming requirements 85
Restrictions 85
Register information 85
Performance implications 85
Syntax 85
Parameters 86
Example 86

Chapter 12. BLSQMDEF — Define a
control block format model 87
Description 87

Environment 87
Programming requirements 87
Restrictions 87
Register information 87
Performance implications 87
Syntax 88
Parameters 89

Chapter 13. BLSQMFLD — Specify a
formatting model field 93
Description 93

Environment 93
Programming requirements 93
Restrictions 93
Register information 93
Performance implications 93
Syntax 93
Parameters 96
Examples 102

Chapter 14. BLSQSHDR — Generate
model subheader. 107
Description 107

Environment 107
Programming requirements. 107
Restrictions 107
Register information 107
Performance implications 107

iv z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax. 108
Parameters 108
Examples 108

Chapter 15. BLSRDRPX — Map dump
record prefix. 109
Description 109

Environment 109
Programming requirements. 109
Restrictions 109
Register information 109
Performance implications 109
Syntax. 109
Parameters 110

Chapter 16. BLSRESSY — Map IPCS
symbol table data 111
Description 111

Environment. 111
Programming requirements 111
Restrictions 111
Register information 111
Performance implications 111
Syntax 111
Parameters 112
Example 112

Chapter 17. BLSRNAMP — Map the
name service parameter list 113
Description 113

Environment 113
Programming requirements 113
Restrictions 113
Register information 113
Performance implications 113
Syntax 113
Parameters 114
Example 114

Chapter 18. BLSRPRD — Map dump
record 115
Description 115

Environment 115
Programming requirements 115
Restrictions 115
Register information 115
Performance implications 115
Syntax 115
Parameters 116

Chapter 19. BLSRPWHS — Map the
WHERE service parameter list 117
Description 117

Environment 117
Programming requirements 117
Restrictions 117
Register information 117
Performance implications 117
Syntax 117

Parameters 118
Example 118

Chapter 20. BLSRSASY — Map IPCS
storage map data. 119
Description 119

Environment 119
Programming requirements 119
Restrictions 119
Register information 119
Performance implications 119
Syntax 119
Parameters 120
Example 120

Chapter 21. BLSRXMSP — Map the
storage map service parameter list . . 121
Description 121

Environment 121
Programming requirements. 121
Restrictions 121
Register information 121
Performance implications 121
Syntax. 121
Parameters 122
Example 122

Chapter 22. BLSRXSSP — Map the
symbol service parameter list 123
Description 123

Environment 123
Programming requirements. 123
Restrictions 123
Register information 123
Performance implications 123
Syntax. 123
Parameters 124
Example 124

Chapter 23. BLSUPPR2 — Map the
expanded print service parameter list . 125
Description 125

Environment 125
Programming requirements. 125
Restrictions 125
Register information 125
Performance implications 125
Syntax. 125
Parameters 126
Example 126

Chapter 24. CALL — Pass control to a
control section. 127
CALL description 127

Environment 127
Programming requirements. 127
Register information 128
Syntax. 128
Parameters 129

Contents v

Return and reason codes 131
Example 131

CALL - List form 131
Syntax. 131
Parameters 131

CALL - Execute form 132
Syntax. 132
Parameters 132

Chapter 25. CHAP — Change
dispatching priority 135
Description 135

Environment 135
Programming requirements. 135
Restrictions 135
Input register information 135
Output register information 135
Performance implications 136
Syntax. 136
Parameters 136
ABEND codes 137
Return and reason codes 137
Example 1 137
Example 2 137

Chapter 26. CnzConv -- Convert
console name and ID 139
Description 139

Environment 139
Programming requirements. 139
Programming considerations 140

CnzConv -- List form. 148
Syntax. 148
Parameters 148

CnzConv -- Execute form 148
Syntax. 149
Parameters 149

Chapter 27. CNZTRKR — Tracking
interface macro 151
Description 151

Environment 151
Programming requirements. 151
Restrictions 152
Input register information 152
Output register information 152
Syntax. 152
Parameters 153
ABEND codes 153
Return and reason codes 153

Chapter 28. CONVCON — Retrieve
console information 155
Description 155

Environment 155
Programming requirements. 155
Programming considerations 157

Chapter 29. CONVTOD — Convert to
time-of-day clock format 163
Description 163

Environment 163
Programming requirements. 163
Restrictions 163
Input register information 163
Output register information 163
Performance implications 164
Syntax. 164
Parameters 165
ABEND codes 166
Return and reason codes 167
Example 1 167
Example 2 167
Example 3 167

CONVTOD—List form 168
Syntax. 168
Parameters 168

CONVTOD—Execute form 168
Syntax. 169
Parameters 169

Chapter 30. CPOOL — Perform cell
pool services 171
Description 171

Environment 171
Programming requirements. 171
Restrictions 171
Input register information 171
Output register information 172
Performance implications 173
Syntax. 173
Parameters 175
ABEND codes 178
Return and reason codes 178
Example 1 179
Example 2 179
Example 3 179
Example 4 179
Example 5 179

CPOOL - List form 180
Syntax. 180
Parameters 181

CPOOL - Execute form 182
Syntax. 182
Parameters 183

Chapter 31. CPUTIMER — Provide
current CPU timer value 185
Description 185

Environment 185
Programming requirements. 185
Restrictions 185
Input register information 185
Output register information 185
Performance implications 186
Syntax. 186
Parameters 186
ABEND codes 187

vi z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Return codes 187
Example 1 187
Example 2 187
Example 3 187
Example 4 188

Chapter 32. CSRCESRV — Compress
and expand data 189
Description 189

Environment 189
Programming requirements. 189
Restrictions 189
Input register information for SERVICE=QUERY 190
Output register information for
SERVICE=QUERY 190
Input register information for
SERVICE=COMPRESS 190
Output register information for
SERVICE=COMPRESS 191
Input register information for
SERVICE=EXPAND 191
Output register information for
SERVICE=EXPAND 192
Performance implications 192
Syntax. 192
Parameters 193
ABEND codes 193
Return and reason codes 193

Chapter 33. CSRCMPSC — Compress
and expand data 197
Description 197

Environment 197
Programming requirements. 197
Restrictions 197
Input register information 198
Output register information 198
Performance implications 198
Syntax. 198
Parameters 199
Abend codes 199
Return and reason codes 200
Example 1 201
Example 2 201
Example 3 202

Chapter 34. CSRC4ACT — Activate
previously connected storage 203
Description 203

Environment 203
Programming requirements. 203
Restrictions 204
Input register information 204
Output register information 204
Performance implications 204
Syntax. 204
Parameters 205
ABEND codes 205
Return and reason codes 205

Chapter 35. CSRC4BLD — Build a cell
pool and initialize an anchor 207
Description 207

Environment 207
Programming requirements. 207
Restrictions 208
Input register information 208
Output register information 208
Performance implications 208
Syntax. 208
Parameters 209
ABEND codes 209
Return and reason codes 209

Chapter 36. CSRC4CON — Connect
cell storage to an extent. 211
Description 211

Environment 211
Programming requirements 211
Restrictions 211
Input register information 212
Output register information 212
Performance implications 212
Syntax. 212
Parameters 212
ABEND codes 213
Return and reason codes 213

Chapter 37. CSRC4DAC — Deactivate
an extent 215
Description 215

Environment 215
Programming requirements. 215
Restrictions 216
Input register information 216
Output register information 216
Performance implications 216
Syntax. 216
Parameters 217
ABEND codes 217
Return and reason codes 217

Chapter 38. CSRC4DIS — Disconnect
the cell storage for an extent 219
Description 219

Environment 219
Programming requirements. 219
Restrictions 220
Input register information 220
Output register information 220
Performance implications 220
Syntax. 220
Parameters 221
ABEND codes 221
Return and reason codes 221

Chapter 39. CSRC4EXP — Expand a
cell pool 223
Description 223

Contents vii

Environment 223
Programming requirements. 223
Restrictions 224
Input register information 224
Output register information 224
Performance implications 224
Syntax. 225
Parameters 225
ABEND codes 225
Return and reason codes 226

Chapter 40. CSRC4FRE — Return a
cell to a cell pool 229
Description 229

Environment 229
Programming requirements. 229
Restrictions 230
Input register information 230
Output register information 230
Performance implications 230
Syntax. 230
Parameters 231
ABEND codes 231
Return and reason codes 231

Chapter 41. CSRC4FR1 — Return a
cell to a cell pool 233
Description 233

Environment 233
Programming requirements. 233
Restrictions 234
Input register information 234
Output register information 234
Performance implications 234
Syntax. 234
Parameters 235
ABEND codes 235
Return and reason codes 235

Chapter 42. CSRC4FR2 — Return a
cell to a cell pool 237
Description 237

Environment 237
Programming requirements. 237
Restrictions 238
Input register information 238
Output register information 238
Performance implications 238
Syntax. 238
Parameters 239
ABEND codes 239
Return and reason codes 239

Chapter 43. CSRC4GET — Allocate a
cell from a cell pool 241
Description 241

Environment 241
Programming requirements. 241
Restrictions 242

Input register information 242
Output register information 242
Performance implications 242
Syntax. 242
Parameters 243
ABEND codes 243
Return and reason codes 243

Chapter 44. CSRC4GT1 — Allocate a
cell from a cell pool 245
Description 245

Environment 245
Programming requirements. 245
Restrictions 246
Input register information 246
Output register information 246
Performance implications 246
Syntax. 246
Parameters 247
ABEND codes 247
Return and reason codes 247

Chapter 45. CSRC4GT2 — Allocate a
cell from a cell pool 249
Description 249

Environment 249
Programming requirements. 249
Restrictions 250
Input register information 250
Output register information 250
Performance implications 250
Syntax. 250
Parameters 251
ABEND codes 251
Return and reason codes 251

Chapter 46. CSRC4QCL — Query a
cell 253
Description 253

Environment 253
Programming requirements. 253
Restrictions 254
Input register information 254
Output register information 254
Performance implications 254
Syntax. 254
Parameters 255
ABEND codes 255
Return and reason codes 255

Chapter 47. CSRC4QEX — Query a
cell pool extent 257
Description 257

Environment 257
Programming requirements. 257
Restrictions 258
Input register information 258
Output register information 258
Performance implications 258

viii z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax. 258
Parameters 259
ABEND codes 260
Return and reason codes 260

Chapter 48. CSRC4QPL — Query the
cell pool 263
Description 263

Environment 263
Programming requirements. 263
Restrictions 264
Input register information 264
Output register information 264
Performance implications 264
Syntax. 264
Parameters 265
ABEND codes 265
Return and reason codes 266

Chapter 49. CSRC4RFR — Return a
cell to a cell pool (register interface) . 267
Description 267

Environment 267
Programming requirements. 267
Restrictions 267
Input register information 268
Output register information 268
Performance implications 268
Syntax. 268
Parameters 269
ABEND codes 269
Return and reason codes 269

Chapter 50. CSRC4RF1 — Return a
cell to a cell pool (register interface) . 271
Description 271

Environment 271
Programming requirements. 271
Restrictions 272
Input register information 272
Output register information 272
Performance implications 272
Syntax. 273
Parameters 273
ABEND codes 273
Return and reason codes 273

Chapter 51. CSRC4RGT — Allocate a
cell from a cell pool (register
interface) 275
Description 275

Environment 275
Programming requirements. 275
Restrictions 275
Input register information 276
Output register information 276
Performance implications 276
Syntax. 276
Parameters 277

ABEND codes 277
Return and reason codes 277

Chapter 52. CSRC4RG1 — Allocate a
cell from a cell pool (register
interface) 279
Description 279

Environment 279
Programming requirements. 279
Restrictions 280
Input register information 280
Output register information 280
Performance implications 280
Syntax. 281
Parameters 281
ABEND codes 281
Return and reason codes 281

Chapter 53. CSREVW — View an
object and sequentially access it . . . 283
Description 283

Environment 283
Programming requirements. 283
Restrictions 283
Input register information 284
Output register information 284
Performance implications 284
Syntax. 284
Parameters 285
ABEND codes 286
Return and reason codes 286

Chapter 54. CSRIDAC — Request or
terminate access to a data object. . . 289
Description 289

Environment 289
Programming requirements. 289
Restrictions 289
Input register information 289
Output register information 289
Performance implications 290
Syntax. 290
Parameters 290
ABEND codes 292
Return and reason codes 292

Chapter 55. CSRL16J — Transfer
control with all registers intact 295
Description 295

Environment 295
Programming requirements. 295
Restrictions 295
Input register information 295
Output register information 296
Performance implications 296
Syntax. 296
Parameters 296
ABEND codes 297
Return and reason codes 297

Contents ix

Chapter 56. CSRPACT — Activate
previously connected storage 299
Description 299

Environment 299
Programming requirements. 299
Restrictions 299
Input register information 300
Output register information 300
Performance implications 300
Syntax. 300
Parameters 300
ABEND codes 301
Return and reason codes 301

Chapter 57. CSRPBLD — Build a cell
pool and initialize an anchor 303
Description 303

Environment 303
Programming requirements. 303
Restrictions 304
Input register information 304
Output register information 304
Performance implications 304
Syntax. 304
Parameters 305
ABEND codes 305
Return and reason codes 305

Chapter 58. CSRPCON — Connect cell
storage to an extent 307
Description 307

Environment 307
Programming requirements. 307
Restrictions 307
Input register information 308
Output register information 308
Performance implications 308
Syntax. 308
Parameters 308
ABEND codes 309
Return and reason codes 309

Chapter 59. CSRPDAC — Deactivate
an extent 311
Description 311

Environment 311
Programming requirements 311
Restrictions 311
Input register information 312
Output register information 312
Performance implications 312
Syntax. 312
Parameters 312
ABEND codes 313
Return and reason codes 313

Chapter 60. CSRPDIS — Disconnect
the cell storage for an extent 315
Description 315

Environment 315
Programming requirements. 315
Restrictions 316
Input register information 316
Output register information 316
Performance implications 316
Syntax. 316
Parameters 317
ABEND codes 317
Return and reason codes 317

Chapter 61. CSRPEXP — Expand a
cell pool 319
Description 319

Environment 319
Programming requirements. 319
Restrictions 320
Input register information 320
Output register information 320
Performance implications 320
Syntax. 320
Parameters 321
ABEND codes 321
Return and reason codes 321

Chapter 62. CSRPFRE — Return a cell
to a cell pool 325
Description 325

Environment 325
Programming requirements. 325
Restrictions 325
Input register information 326
Output register information 326
Performance implications 326
Syntax. 326
Parameters 326
ABEND codes 327
Return and reason codes 327

Chapter 63. CSRPFR1 — Return a cell
to a cell pool 329
Description 329

Environment 329
Programming requirements. 329
Restrictions 329
Input register information 330
Output register information 330
Performance implications 330
Syntax. 330
Parameters 330
ABEND codes 331
Return and reason codes 331

Chapter 64. CSRPFR2 — Return a cell
to a cell pool 333
Description 333

Environment 333
Programming requirements. 333
Restrictions 334

x z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Input register information 334
Output register information 334
Performance implications 334
Syntax. 334
Parameters 335
ABEND codes 335
Return and reason codes 335

Chapter 65. CSRPGET — Allocate a
cell from a cell pool 337
Description 337

Environment 337
Programming requirements. 337
Restrictions 338
Input register information 338
Output register information 338
Performance implications 338
Syntax. 338
Parameters 338
ABEND codes 339
Return and reason codes 339

Chapter 66. CSRPGT1 — Allocate a
cell from a cell pool 341
Description 341

Environment 341
Programming requirements. 341
Restrictions 342
Input register information 342
Output register information 342
Performance implications 342
Syntax. 342
Parameters 343
ABEND codes 343
Return and reason codes 343

Chapter 67. CSRPGT2 — Allocate a
cell from a cell pool 345
Description 345

Environment 345
Programming requirements. 345
Restrictions 346
Input register information 346
Output register information 346
Performance implications 346
Syntax. 346
Parameters 347
ABEND codes 347
Return and reason codes 347

Chapter 68. CSRPQCL — Query a cell 349
Description 349

Environment 349
Programming requirements. 349
Restrictions 350
Input register information 350
Output register information 350
Performance implications 350
Syntax. 350

Parameters 351
ABEND codes 351
Return and reason codes 351

Chapter 69. CSRPQEX — Query a cell
pool extent 353
Description 353

Environment 353
Programming requirements. 353
Restrictions 354
Input register information 354
Output register information 354
Performance implications 354
Syntax. 354
Parameters 355
ABEND codes 356
Return and reason codes 356

Chapter 70. CSRPQPL — Query the
cell pool 359
Description 359

Environment 359
Programming requirements. 359
Restrictions 360
Input register information 360
Output register information 360
Performance implications 360
Syntax. 360
Parameters 361
ABEND codes 361
Return and reason codes 361

Chapter 71. CSRPRFR — Return a cell
to a cell pool (register interface) . . . 363
Description 363

Environment 363
Programming requirements. 363
Restrictions 363
Input register information 363
Output register information 364
Performance implications 364
Syntax. 364
Parameters 364
ABEND codes 364
Return and reason codes 365

Chapter 72. CSRPRFR1 — Return a
cell to a cell pool (register interface) . 367
Description 367

Environment 367
Programming requirements. 367
Restrictions 367
Input register information 367
Output register information 368
Performance implications 368
Syntax. 368
Parameters 368
ABEND codes 369
Return and reason codes 369

Contents xi

Chapter 73. CSRPRGT — Allocate a
cell from a cell pool (register
interface) 371
Description 371

Environment 371
Programming requirements. 371
Restrictions 371
Input register information 372
Output register information 372
Performance implications 372
Syntax. 372
Parameters 372
ABEND codes 373
Return and reason codes 373

Chapter 74. CSRPRGT1 — Allocate a
cell from a cell pool (register
interface) 375
Description 375

Environment 375
Programming requirements. 375
Restrictions 375
Input register information 376
Output register information 376
Performance implications 376
Syntax. 376
Parameters 377
ABEND codes 377
Return and reason codes 377

Chapter 75. CSRREFR — Refresh an
object. 379
Description 379

Environment 379
Programming requirements. 379
Restrictions 379
Input register information 379
Output register information 379
Performance implications 380
Syntax. 380
Parameters 380
ABEND codes 381
Return and reason codes 381

Chapter 76. CSRSAVE — Save
changes made to a permanent object . 383
Description 383

Environment 383
Programming requirements. 383
Restrictions 383
Input register information 383
Output register information 383
Performance implications 384
Syntax. 384
Parameters 384
ABEND codes 385
Return and reason codes 385

Chapter 77. CSRSCOT — Save object
changes in a scroll area 387
Description 387

Environment 387
Programming requirements. 387
Restrictions 387
Input register information 387
Output register information 387
Performance implications 388
Syntax. 388
Parameters 388
ABEND codes 389
Return and reason codes 389

Chapter 78. CSRSI — System
information service 391
Description 391

Environment 391
Programming requirements. 391
Restrictions 391
Input register information 392
Output register information 392
Performance implications 392
Syntax. 392
Parameters 393
Return codes 394

CSRSIC C/370 header file 395

Chapter 79. CSRUNIC — Unicode
instruction services 407
Description 407

Environment 407
Programming requirements. 407
Restrictions 407
Input register information 407
Output register information 408
Performance implications 408
Syntax. 408
Parameters 409
ABEND codes 410
Return codes 411
Examples 416

Chapter 80. CSRVIEW — View an
object. 419
Description 419

Environment 419
Programming requirements. 419
Restrictions 419
Input register information 419
Output register information 419
Performance implications 420
Syntax. 420
Parameters 420
ABEND codes 422
Return and reason codes 422

xii z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 81. CSVAPF — Query the list
of APF-authorized libraries 425
Description 425

Environment 425
Programming requirements. 425
Restrictions 425
Input register information 425
Output register information 426
Performance implications 426
Syntax. 426
Parameters 427
ABEND codes 429
Return and reason codes 429
Example 1 432
Example 2 432

CSVAPF—List form 433
Parameters 433

CSVAPF—Execute form 434
Parameters 435

Chapter 82. CSVINFO — Obtain
information about loaded modules . . 437
Description 437

Environment 438
Programming requirements. 438
Restrictions 439
Input register information 439
Output register information 439
Performance implications 439
Syntax. 439
Parameters 440
ABEND codes 442
Return and reason codes 442

CSVINFO - List form 444
Syntax. 444
Parameters 444

CSVINFO - Execute form 445
Syntax. 445
Parameters 446

CSVINFO - Modify form 446
Syntax. 446
Parameters 447

Chapter 83. CSVQUERY — Contents
supervisor query service 449
Description 449

Environment 449
Input register information 449
Output register information 449
Programming requirements. 450
Restrictions 450
Performance implications 450
Syntax. 450
Parameters 452
Return and reason codes 459

CSVQUERY - List form 459
Syntax. 459
Parameters 460

CSVQUERY - Execute form. 460
Syntax. 460

Parameters 462
CSVQUERY - Modify form 463

Syntax. 463
Parameters 463

Chapter 84. DELETE — Relinquish
control of a load module 465
Description 465

Environment 465
Programming requirements. 465
Restrictions 465
Input register information 465
Output register information 466
Syntax. 466
Parameters 466
ABEND codes 467
Return and reason codes 467
Example 467

Chapter 85. DEQ — Release a serially
reusable resource 469
Description 469

Environment 469
Programming requirements. 469
Restrictions 469
Input register information 469
Output register information 470
Performance implications 470
Syntax. 470
Parameters 471
ABEND codes 473
Return and reason codes 473
Example 1 474
Example 2 475

DEQ—List form 475
Parameters 476

DEQ - Execute form 476
Parameters 477

Chapter 86. DETACH — Detach a
subtask 479
Description 479

Environment 479
Programming requirements. 479
Restrictions 479
Input register information 479
Output register information 479
Performance implications 480
Syntax. 480
Parameters 480
ABEND codes 481
Return and reason codes 481
Example 1 482
Example 2 482

Chapter 87. DIV — Data-in-virtual . . . 483
Description 483

Environment 484
Programming requirements. 484

Contents xiii

Restrictions 484
Input register information 484
Output register information 485
Performance implications 485
Syntax. 485
Parameters 487
ABEND codes 492
Return and reason codes 492
Example 1 501
Example 2 501

DIV - List form. 501
Syntax. 501
Parameters 502

DIV - Execute form 503
Syntax. 503
Parameters 504

DIV - Modify form 504
Syntax. 504
Parameters 506

Chapter 88. DOM — Delete operator
message 507
Description 507

Environment 507
Programming requirements. 507
Restrictions 507
Register information 507
Input register information 507
Output register information 507
Performance implications 508
Syntax. 508
Parameters 508
Example 1 509
Example 2 509
Example 3 509

Chapter 89. DSPSERV — Create,
delete, and control data spaces . . . 511
Description 511

Environment 512
Programming requirements. 512
Restrictions 512
Input register information 512
Output register information 512
Performance implications 513
Syntax. 513
Parameters 515
ABEND codes 521
Return and reason codes 521
Example 1 522
Example 2 523

DSPSERV—List form 523
Syntax. 523

DSPSERV—Execute form 524
Syntax. 524

Chapter 90. DSPSERV — Create,
delete, and control hiperspaces . . . 527
Description 527

Environment 527

Programming requirements. 528
Restrictions 528
Input register information 528
Output register information 528
Performance implications 529
Syntax. 529
Parameters 530
ABEND codes 535
Return and reason codes 535
Example 537

DSPSERV—List form 537
Syntax. 537
Parameters 538

DSPSERV—Execute form 538
Syntax. 538
Parameters 540

Chapter 91. EDTINFO — Obtain
eligible device table information . . . 541
Description 541

Environment 541
Programming requirements. 542
Restrictions 542
Input register information 542
Output register information 542
Performance implications 542
Syntax. 542
Parameters 546
Return and reason codes 551
Example 1 552
Example 2 552
Example 3 552
Example 4 553
Example 5 553

EDTINFO - List form. 553
Syntax. 553
Parameters 554

EDTINFO - Execute form 554
Syntax. 554
Parameters 558

EDTINFO - Modify form 558
Syntax. 558
Parameters 562

Chapter 92. ENQ — Request control
of a serially reusable resource 563
Description 563

Environment 563
Programming requirements. 564
Restrictions 564
Input register information 564
Output register information 564
Performance implications 565
Syntax. 565
Parameters 566
ABEND codes 568
Return and reason codes 569
Example 1 572
Example 2 572
Example 3 572

xiv z/OS V2R2 MVS Assembler Services Reference ABE-HSP

ENQ - List form 572
Syntax. 572
Parameters 573

ENQ - Execute form 574
Syntax. 574
Parameters 575

Chapter 93. ESPIE — Extended SPIE 577
Description 577

Environment 577
Programming requirements. 577
Restrictions 577
Performance implications 578
ABEND codes 578

SET option 578
Input register information 578
Output register information 578
Syntax. 579
Parameters 579
Return and reason codes 580
Example 581
ESPIE—List form 581
ESPIE—Execute form. 582

RESET option 583
Input register information 583
Output register information 583
Syntax. 583
Parameters 584
Return and reason codes 584
Example 584

TEST option 584
Input register information 584
Output register information 584
Syntax. 585
Parameters 585
Return and reason codes 586
Example 586

Chapter 94. ESTAE and ESTAEX —
Extended specify task abnormal exit . 587
Description 587

Environment 588
Programming requirements. 588
Restrictions 588
Input register information 588
Output register information 588
Performance implications 589
Syntax. 589
Parameters 590
ABEND codes 592
Return and reason codes 592
Example 1 594
Example 2 594

ESTAEX —Extended specify task abnormal exit 594
Environment 594
Programming requirements. 594
Restrictions 595
Syntax. 595
Parameters 596
ABEND codes 596

Return and reason codes 596
ESTAE and ESTAEX—List form 598

Syntax. 598
Parameters 599

ESTAE and ESTAEX—Execute form 599
Syntax. 599
Parameters 600

Chapter 95. EVENTS — Wait for one
or more events to complete 601
Description 601

Environment 601
Programming requirements. 601
Restrictions 601
Input register information 601
Output register information 601
Performance implications 602
Syntax. 602
Parameters 603
Using the EVENTS macro 604
ABEND codes 607
Return and reason codes 608
Example 1 608
Example 2 608

Chapter 96. FREEMAIN — Free virtual
storage 611
Description 611

Environment 611
Programming requirements 611
Restrictions 611
Input register information 612
Output register information 612
Performance implications 612
Syntax. 612
Parameters 613
ABEND codes 615
Return and reason codes 616
Example 1 617
Example 2 617
Example 3 617

FREEMAIN - List form 617
Parameters 618

FREEMAIN - Execute form 618
Parameters 619

Chapter 97. GETMAIN — Allocate
virtual storage 621
Description 621

Environment 621
Programming requirements. 622
Restrictions 622
Input register information 622
Output register information 622
Performance implications 623
Syntax. 623
Parameters 625
ABEND codes 630
Return and reason codes 631
Example 1 632

Contents xv

Example 2 632
Example 3 632

GETMAIN—List form 632
GETMAIN—Execute form 633

Chapter 98. GTZQUERY macro — GTZ
Query. 637
Description 637

Environment 637
Programming Requirements 637
Restrictions 637
Input Register Information 638
Output Register Information 638
Performance Implications 638
Syntax. 638
Parameters 641
ABEND Codes 648
Return and Reason Codes 648
Examples 653

Chapter 99. GTZTRACK macro — GTZ
Track 655
Description 655

Environment 655
Programming Requirements 656
Restrictions 656
Input Register Information 656
Output Register Information 656
Performance Implications 657
Syntax. 657
Parameters 659
ABEND Codes 663
Return and Reason Codes 664
Examples 668

Chapter 100. GQSCAN — Extract
information from global resource
serialization queue 669
Description 669

Environment 669
Programming requirements. 669
Restrictions 670
Input register information 670
Output register information 670
Performance implications 670

Syntax. 671
Parameters 672
ABEND codes 675
Return and reason codes 675

GQSCAN - List form 677
Parameters 679

GQSCAN - Execute form 679
Parameters 681

Chapter 101. HSPSERV — Read from
and write to a hiperspace 683
Description 683

Environment 683
Programming requirements. 683
Restrictions 684
Input register information 684
Output register information 684
Performance implications 684
Syntax. 685
Parameters 686
ABEND codes 688
Return and reason codes 689

HSPSERV - List form 689
Syntax. 689
Parameters 690

HSPSERV - Execute form 690
Syntax. 690
Parameters 691

HSPSERV - Modify form 692
Syntax. 692
Parameters 693

Appendix. Accessibility 695
Accessibility features 695
Consult assistive technologies 695
Keyboard navigation of the user interface 695
Dotted decimal syntax diagrams 695

Notices 699
Policy for unsupported hardware. 700
Minimum supported hardware 701
Programming interface information 701
Trademarks 701

Index 703

xvi z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Figures

1. Sample User Parameter List for Callers in AR
Mode 5

2. Sample Macro Syntax Diagram 14
3. Continuation Coding 16
4. Return Code Area Used by DEQ 474
5. Return Code Area Used by ENQ 569
6. Creating a Table 604
7. Parameter List Format 605

8. Posting the Parameter List After ECBs 1
through 5 Processed and EVENTS WAIT=
Issued 606

9. Posting the Parameter List While ECBs 1
through 5 Processed 607

10. Characteristics and Restrictions for Standard
Hiperspaces 685

© Copyright IBM Corp. 1988, 2015 xvii

xviii z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Tables

1. Passing User Parameters in AR Mode 5
2. Execution environment characteristics and

corresponding SYSSTATE parameters and global
symbols 6

3. Service Summary 18
4. Return Codes for the CONVTOD Macro 167
5. Hexadecimal Return Codes for CPOOL LIST 179
6. Return and Reason Codes for the CPUTIMER

Macro 187
7. Return Codes for SERVICE=QUERY 194
8. Return Codes for SERVICE=COMPRESS 194
9. Return Codes for SERVICE=EXPAND 194

10. Return Codes for the CSRL16J Service 297
11. Return Codes for the CSRUNIC Macro 411
12. Return and Reason Codes for the CSVAPF

Macro 430
13. Return Codes for the CSVINFO Macro 442

14. Return Codes for the DEQ Macro with the
RET=HAVE Parameter 474

15. Return Codes for the ENQ Macro with the
RET=TEST Parameter 569

16. Return Codes for the ENQ Macro with the
RET=USE Parameter 570

17. Return Codes for the ENQ Macro with the
RET=CHNG Parameter 571

18. Return Codes for the ENQ Macro with the
RET=HAVE Parameter 571

19. Return Codes for the FREEMAIN Macro 616
20. Return Codes for the GETMAIN Macro 631
21. Return and Reason Codes for the GTZQUERY

Macro 649
22. Return and Reason Codes for the

GTZTRACK Macro 664
23. Return codes for the GQSCAN macro 675

© Copyright IBM Corp. 1988, 2015 xix

xx z/OS V2R2 MVS Assembler Services Reference ABE-HSP

About this information

This information describes some of the macros (or macro instructions) that the
system provides. The macros described in this document are available to any
assembler language program.

Programmers who code in assembler language can use these macros to invoke the
system services that they need. This document includes the detailed information —
such as the function, syntax, and parameters — needed to code the macros.

Who should use this information
This information is for any programmer who is coding an assembler language
program. However, if the program runs with APF authorization, runs in supervisor
state or runs with with system key 0-7, or if it performs functions that are more
system than application-oriented, the programmer should also refer to the
following documents:
v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO

Programmers using this information should have a knowledge of the computer, as
described in Principles of Operation, as well as a knowledge of assembler language
programming.

System macros require High Level Assembler. Assembler language programming is
described in the following information:
v HLASM Programmer's Guide
v HLASM Language Reference

Using this information also requires you to be familiar with the operating system
and the services that programs running under it can invoke.

How to use this information
This information is one of the set of programming documents for MVS™. This set
describes how to write programs in assembler language or high-level languages,
such as C, FORTRAN, and COBOL. For more information about the content of this
set of documents, see z/OS V2R2 Information Roadmap.

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS V2R2 Information Roadmap.

© Copyright IBM Corp. 1988, 2015 xxi

To find the complete z/OS® library, go to IBM Knowledge Center
(http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

xxii z/OS V2R2 MVS Assembler Services Reference ABE-HSP

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the Contact z/OS.

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R2 MVS Assembler Services Reference ABE-HSP
SA23-1369-01

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at IBM support portal.

© Copyright IBM Corp. 1988, 2015 xxiii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/

xxiv z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations for the current edition
are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 2
The following information is new, changed, or deleted in z/OS MVS Programming:
Assembler Services Reference ABE-HSP in z/OS Version 2 Release 2 (V2R2).

New
v New ASASYMBF macro substituting text for system symbols added to

Chapter 4, “ASASYMBM and ASASYMBF — Substitute text for symbols,” on
page 43.

v The PAGEFRAMESIZE parameter has been added in Chapter 89, “DSPSERV —
Create, delete, and control data spaces,” on page 511.

Changed
v Updates to information for macro ASASYMBM substituting text for system

symbols added to z/OS MVS Programming: Assembler Services Reference
ABE-HSP.

v Information about the PREFIX parameter has been updated in Chapter 12,
“BLSQMDEF — Define a control block format model,” on page 87.

v Information about the syntax, parameters, and examples has been updated in
Chapter 13, “BLSQMFLD — Specify a formatting model field,” on page 93.

Summary of changes for z/OS Version 2 Release 1
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS V2R2 Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS V2R2 Introduction and Release Guide

© Copyright IBM Corp. 1988, 2015 xxv

xxvi z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 1. Using the services

Macros and callable services are programming interfaces that application programs
can use to access MVS system services. This chapter provides general information
and guidelines about how to use the macros and callable services accurately and
efficiently. For more specific and detailed information about coding a particular
macro or callable service, see the individual service description in this information.

Some of the topics covered in this chapter apply only to macros, some apply only
to callable services, and some apply to both. This chapter uses the word "services"
when referring to information that applies to both service types. When information
applies only to one type or the other, the particular service type is specified.

Note: z/OS macros do not code to restrictions that are imposed by the
COMPAT(CASE) HLASM option or its abbreviation CPAT(CASE). Therefore, you
cannot rely on using COMPAT(CASE) if you use z/OS macros.

The following table lists the topics covered in this chapter and whether the topic
applies to macros, callable services, or both:

Topic Service Type
“Compatibility of MVS macros” Macros
“Addressing mode (AMODE)” on page 2 Both
“Address space control (ASC) mode” on page 3 Both

“ALET qualification” on page 4 Both
“User parameters” on page 4 Macros

“Telling the system about the execution environment” on page 6 Macros
“Specifying a macro version number” on page 7 Macros
“Register use” on page 8 Both
“Handling return codes and reason codes” on page 9 Both

“Handling program errors” on page 9 Both
“Handling environmental and system errors” on page 10 Both

“Using X-macros” on page 11 Macros
“Macro forms” on page 12 Macros
“Coding the macros” on page 13 Macros
“Coding the callable services” on page 16 Callable Services

“Including equate (EQU) statements” on page 17 Callable Services
“Link-editing linkage-assist routines” on page 17 Callable Services

“Service summary” on page 17 Both

Compatibility of MVS macros
When IBM® introduces a new version or a new release of an existing version, the
new version or release supports all MVS macros from previous versions and
releases. Programs assembled on an earlier level of MVS that issue macros will run
on later levels of MVS.

In most cases, the reverse is also true. When you assemble programs that issue
macros on a particular version and release of MVS, those programs can run on
earlier versions and releases of MVS, provided you request only those functions

© Copyright IBM Corp. 1988, 2015 1

that are supported by the earlier version and release. This is useful for installations
that write applications that might be assembled on one level of MVS, but run on a
different level.

As MVS supports new architectures, addressability changes. To take best
advantage of the new architectures, some macros have more than one possible
expansion. You are required to have the macro expand according to the
environment in which the program runs. This topic is described in this
introductory information.

The problem of compatibility is not the same as selecting a macro version through
the PLISTVER parameter to ensure the correct parameter list size for a macro. For
selecting a parameter list version number, see “Specifying a macro version
number” on page 7.

Addressing mode (AMODE)
A program can run in 24-bit, 31-bit, or 64-bit addressing mode. A program that
executes in 24-bit or 31-bit addressing mode can invoke most of the services
described in this information. A program that executes in 64-bit addressing mode
has a smaller group of services that it can invoke.

In general,
v A program running in 24-bit addressing mode cannot pass parameters or

parameter addresses that are higher than 16 megabytes. However, there are
exceptions. For example, a program running in 24-bit addressing mode can:
– Free storage above 16 megabytes using the FREEMAIN macro
– Allocate storage above 16 megabytes using the GETMAIN macro
– Use cell pool services for cell pools located in storage above 16 megabytes

using the CPOOL macro
– Use page services for storage locations above 16 megabytes using the PGSER

macro
v A program running in 24-bit or 31-bit addressing mode cannot pass parameter

addresses that are higher than 2 gigabytes, unless stated otherwise in the
individual service description.

v If a program running in 31-bit or 64-bit addressing mode issues a service,
parameters and parameter addresses can be above or below 16 megabytes,
unless otherwise stated in the individual service description.

Some macros can generate code that is appropriate for programs in either 64-bit
addressing mode or 24-bit or 31-bit addressing mode. These macros check a global
symbol set by the SYSSTATE macro. See “Telling the system about the execution
environment” on page 6 for more information.

When you call a callable service in 24-bit or 31-bit addressing mode, you must pass
31-bit addresses to the system service regardless of what addressing mode your
program is running in. If your program is running in 24-bit mode and you use a
callable service, you must set the high-order byte of parameter addresses to zeros.

You can invoke the following services in 64-bit addressing mode, subject to the
“SVC or PC” restrictions mentioned later in this topic, but you cannot pass
parameters and parameter addresses above 2 gigabytes: ABEND, ATTACHX,
CALLDISP, CHAP, CSVQUERY, DELETE, DEQ, DETACH, DOM, DSPSERV,
DYNALLOC, ENQ, ESPIE, ESTAEX, EXCP, FREEMAIN, GETMAIN, GTRACE,

2 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

IARVSERV, IDENTIFY, IEAARR, LINKX, LOAD, MODESET, PGSER, POST,
RESERVE, SDUMPX, SETRP, STAX, STIMER, STIMERM, STORAGE, SYNCHX,
TIME, TIMEUSED, TTIMER, VRADATA, WAIT, WTO, WTOR, and XCTL.

There are many services that support 64-bit addressing mode and parameter
addresses above 2 gigabytes. Examples are IRAV64, IARST64, and ISGENQ. For
details on the supported addressing mode and parameter address ranges for any
specific service, see the following books:
v z/OS MVS Programming: Assembler Services Reference ABE-HSP

v z/OS MVS Programming: Assembler Services Reference IAR-XCT

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO

v z/OS MVS Programming: Sysplex Services Reference

Before invoking a service in 64-bit addressing mode, you must inform system
macros, by specifying SYSSTATE AMODE=64, that you are in 64-bit addressing
mode. You can invoke only those options that result in calling the system by an
SVC or PC in 64-bit addressing mode. You cannot invoke any option that results in
calling the system by a branch-entry in 64-bit addressing mode.

Unless explicitly stated otherwise, assume that a given service cannot be invoked
in 64-bit addressing mode and cannot accept parameters and parameter addresses
above 2 gigabytes.

For information about 64-bit addressing mode and the 64-bit GPR, see z/OS MVS
Programming: Assembler Services Guide.

Address space control (ASC) mode
A program can run in either primary ASC mode or access register (AR) ASC mode.
In primary mode, the processor uses the contents of general purpose registers
(GPRs) to resolve an address to a specific location. In AR mode, the processor uses
the contents of ARs as well as the contents of GPRs to resolve an address to a
specific location. See z/OS MVS Programming: Assembler Services Guidefor more
detailed information about AR mode.

Some macros can generate code that is appropriate for programs in either primary
mode or AR mode. These macros check a global symbol set by the SYSSTATE
macro. See “Telling the system about the execution environment” on page 6 for
more information. Table 3 on page 18 lists the macros that check the global symbol.

Some services can generate code that is appropriate for programs in primary mode
only. If you write a program in AR mode that invokes one or more services, check
the description in this information for each service your program issues. Unless the
description indicates that a service supports callers in AR mode, the service does
not support callers in AR mode. In this case, use the SAC instruction to change the
ASC mode of your program and issue the service in primary mode.

Whether the caller is in primary or AR ASC mode, the system uses ARs 0-1 and
14-15 as work registers across any service call.

Chapter 1. Using the services 3

ALET qualification
The address space where you can place parameters varies with the individual
service:
v You can place parameters in the primary address space in all service.
v You must place parameters in the primary address space in some services.
v You can place parameters in any address space in some services.

To identify where you can locate parameters in a service, read the individual
service description.

Programs in AR mode that pass parameters must use an access register and the
corresponding general purpose register together (for example, access register 1 and
general purpose register 1) to identify where the parameters are located. The access
register must contain an access list entry token (ALET) that identifies the address
space where the parameters reside. The general purpose register must identify the
location of the parameters within the address space.

The only ALETs that MVS services typically accept are:
v Zero (0), which specifies that the parameters are in the caller's primary address

space
v An ALET for a public entry on the caller's dispatchable unit access list (DU-AL)
v An ALET for a common area data space (CADS)

MVS services do not accept the following ALETs, and you cannot attempt to pass
them to a service:
v One (1), which signifies that the parameters are in the caller's secondary address

space
v An ALET that is on the caller's primary address space access list (PASN-AL) that

does not represent a CADS

Throughout, this information uses the term AR/GPR n to mean an access register
and its corresponding general purpose register. For example, to identify access
register 1 and general purpose register 1, this information uses AR/GPR 1.

User parameters
Some macros that you can issue in AR mode include control parameters, user
parameters, or both. Control parameters refer to the macro parameter list, and the
parameters whose addresses are in the parameter list. Control parameters control
the operation of the macro itself. User parameters are parameters that a user
provides to be passed through to a user routine. For example, the PARAM
parameter on the ATTACHX macro defines user parameters. The ATTACHX macro
passes these parameters to the routine that it attaches. All other parameters on the
ATTACHX macro are control parameters that control the operation of the
ATTACHX macro.

Note:

1. User parameters are sometimes referred to as problem program parameters.
2. Control parameters are sometimes referred to as system parameters or control

program parameters.

The macros shown in Table 1 on page 5 allow a caller in AR mode to pass
information in the form of a parameter list (or parameter lists) to another routine.

4 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

This table identifies the parameter that receives the ALET-qualified address of the
parameter list and tells you where the target routine finds the ALET-qualified
address.

Table 1. Passing User Parameters in AR Mode

Macro Parameter Location of User Parameter List Address

ATTACH/ATTACHX
CALL
LINK/LINKX
XCTL/XCTLX

PARAM,VL=1 AR/GPR 1 contains the address of a list of
addresses. When either

v a 4-bytes-per-entry parameter list or

v an 8-bytes-per-entry parameter list with
PLIST8ARALETS=YES

is being used, this list also contains the ALETs
associated with those addresses. (See Figure 1
for the format of the 4-bytes-per-entry
parameter list when it contains ALETs.)

ESTAEX PARAM SDWAPARM contains the address of an 8-byte
area, which contains the address and ALET of
the parameter list.

When an AR mode caller who is using a 4-bytes-per-entry parameter list passes
ALET-qualified addresses to the called program through PARAM,VL=1 on the
ATTACH/ATTACHX, CALL, LINK/LINKX, or XCTL/XCTLX macros, the system
builds a list formatted as shown in Figure 1. The addresses passed to the called
program are at the beginning of the list, and their associated ALETs follow the
addresses. The last address in the list has the high-order bit on to indicate the end
of the list. For example, Figure 1 shows the format of a list where an AR mode
issuer of ATTACHX who is using a 4-bytes-per-entry parameter list has coded the
PARAM parameter as follows:

PARAM=(A,B,C),VL=1

When an AR mode caller who is using an 8-bytes-per-entry parameter list specifies
PLIST8ARALETS=YES, the system builds a parameter list with the 8-byte
addresses at the beginning of the list and their associated 4-byte ALETs following
the addresses.

For information about linkage conventions, see the chapter in z/OS MVS
Programming: Assembler Services Guide.

@

ALET

@A

@B

@C

GPR1
AR1

0

0

1

ALET A

ALET B

ALET C

Figure 1. Sample User Parameter List for Callers in AR Mode

Chapter 1. Using the services 5

Telling the system about the execution environment
To generate code that is correct for the environment in which the program runs,
some macros need to know one or more of the following characteristics about that
environment:
v The addressing mode (AMODE) at the time the macro is issued
v The ASC mode of the program at the time the macro is issued
v The architectural level in which the program runs

For macros that are sensitive to their environment, use the SYSSTATE macro to
define the environment. During the assembly stage, SYSSTATE sets one or more
global symbols. Later, in your source code, the macro checks the global symbols
and generates the correct code, which might mean avoiding using a
z/Architecture® instruction or an access register. Table 3 on page 18 lists MVS
macros and identifies macros that need to know the environmental characteristics.

IBM recommends you issue the SYSSTATE macro before you issue other macros.
Once a program has issued SYSSTATE, there is no need to reissue it, unless the
program switches from one AMODE to another or one ASC mode to another or
has code paths that are isolated according to architecture level or operating system
release. If you switch AMODE or ASC mode to a different architecture code path,
issue SYSSTATE immediately after the switch to indicate the new state. In general,
specify SYSSTATE ARCHLVL=2, and switch to SYSSTATE ARCHLVL=3 before
issuing macros in sections of code that only run when z/OS 2.1 capabilities are
available. If you do not issue the SYSSTATE macro, the system assumes the macro
is issued as follows:
v In AMODE other than 64-bit
v In primary ASC mode
v Usually, in ESA/390 architectural level (but may assume z/Architecture level

since all supported z/OS releases require z/Architecture level)

Table 2 describes the relevant characteristics, the corresponding parameters on the
SYSSTATE macro, and the global symbols the macro checks.

Table 2. Execution environment characteristics and corresponding SYSSTATE parameters
and global symbols

Characteristic Parameter on SYSSTATE Global symbol

AMODE of 64-bit, or either 24-bit or 31-bit AMODE64=YES or NO &SYSAM64

Primary or AR ASC mode ASCENV=P or AR &SYSASCE

Architectural level of z/Architecture ARCHLVL=0, 1, 2, 3 or OSREL &SYSALVL

Operating system release ZOSVvRr &SYSOSREL

You can issue the SYSSTATE macro with the TEST parameter in your own
user-written macro to allow your macros to generate code appropriate for their
execution environment.

Callable services do not check the global symbols described in this topic. To
determine whether a callable service is sensitive to the AMODE, ASC mode, or the
Architecture level, see the description of the individual callable service.

In early releases of MVS, the SPLEVEL macro performs a function similar to
SYSSTATE. The SPLEVEL macro identifies the level of the operating system, so
that you can tune a macro expansion based on that level. You can use this where

6 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

|
|
|

|
|

|

|||

macro expansions change incompatibly. Because SPLEVEL applies to levels that the
system no longer supports, it is not described in this topic.

Specifying a macro version number
Often there is more than one version of a macro, differentiated by additional
parameters or new or expanded function. For example, version 1 of the IXGCONN
macro provides a connection to a log stream, while version 2 adds new parameters
in support of resource manager programs. This is different than using the
SPLEVEL macro to select a macro version level to solve problems of downward
compatibility.

You can request a specific version of a macro based on the parameters you need to
use in your application, but you should also be attuned to the storage constraints
of the program. The version of a macro might affect the length of the parameter
list generated when the macro is assembled, because when you add new
parameters to a macro, the parameter list must be large enough to fit them. The
size of the parameter list might grow from release to release of z/OS, perhaps
affecting the amount of storage your program needs.

How to request a macro version using PLISTVER
Many macros that have one or more versions supply the PLISTVER parameter. For
those that do, use the PLISTVER parameter to request a version of the macro.
PLISTVER is the only parameter allowed on the list form of a macro (MF), and it
determines which parameter list the system generates. PLISTVER is optional. If
you omit it, the system generates a parameter list for the lowest version that will
accommodate the parameters specified. This is the IMPLIED_VERSION default.
Note that on the list form, the default will cause the smallest parameter list to be
created.

You can also code a specific version number using plistver, or specify MAX:
v You can use plistver to code a decimal value corresponding to the version of the

macro you require. The decimal value you provide determines the amount of
storage allotted for the parameter list.

v You can use MAX to request that the system generate a parameter list for the
highest version number currently available. The amount of storage allotted for
the parameter list will depend on the level of the system on which the macro is
assembled.
IBM recommends, if your program can tolerate additional growth, that you
always specify PLISTVER=MAX on the list form of the macro. MAX ensures that
the list form parameter list is always long enough to hold whatever parameters
might be specified on the execute form when both forms are assembled using
the save level of the system.

Hints for using PLISTVER
There are some general considerations that you should keep in mind when
specifying the version of a macro with PLISTVER:
v If PLISTVER is omitted, the macro generates a parameter list of the lowest

version that allows all the parameters specified to be processed.
v If you code PLISTVER=n and then specify any version ‘n+1’ parameter, the

macro will not assemble.
v If you code PLISTVER=n and do not specify any version ‘n’ parameter, the

macro will generate a version ‘n’ parameter list.

Chapter 1. Using the services 7

v If you are using the standard form of the macro (MF=S), there is no reason you
need to code the PLISTVER parameter.

v Not all macros have the same version numbers. The version numbers need not
be contiguous.

The PLISTVER parameter appears in the syntax diagram and in the parameter
descriptions. Within each macro description, the PLISTVER parameter description
specifies the range of values and lists the parameters applicable for each version of
the macro.

Register use
Some services require that the caller place information in specific general purpose
registers (GPRs) or access registers (ARs) prior to issuing the service. If a service
has such a requirement, the “Input Register Information” topic for the service
provides that information. The topic lists only those registers that have a
requirement. If a register is not specified as having a requirement, then the caller
does not have to place any information in that register unless using it in register
notation for a particular parameter, or using it as a base register.

Once the caller issues the service, the system can change the contents of one or
more registers, and leave the contents of other registers unchanged. When control
returns to the caller, each register contains one of the following values or has the
following status:
v The register content is preserved and is the same as it was before the service

was issued.
v The register contains a value placed there by the system for the caller's use.

Examples of such values are return codes and tokens.
v The system used the register as a work register. Do not assume that the register

content is the same as it was before the service was issued.

Note that the system uses ARs 0, 1, 14, and 15 as work registers for every service,
regardless of whether the caller is in primary or AR address space control (ASC)
mode. The system does not use ARs 2 through 13 for any service.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Many macros require that the caller have a program base register and assembler
USING instruction in effect when issuing the macro; that is, the caller must have
program addressability. AR mode programs also require that the AR associated with
the caller's base GPR be set to zero. IBM recommends the following:
v When issuing a macro, the caller should always have program addressability in

effect.
v When establishing addressability, the caller should use only registers 2 through

12.

Many macros can take advantage of relative branching when they are used with
the IEABRC macro or with SYSSTATE ARCHLVL=1 or SYSSTATE ARCHLVL=2, if
they are running on z/OS. If relative branching is used, the caller might then need
addressability only to the static data portion of the program, and not to the
executable code.

8 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Handling return codes and reason codes
Most of the services described in this information provide return codes and reason
codes. Return and reason codes indicate the outcome of the service in one of the
following ways:
v Successful completion: you do not need to take any action.
v Successful or partially successful completion, with additional information

supplied: you should evaluate the additional information in light of your
particular program and determine if you need to take any action.

v Unsuccessful completion: some type of error has occurred, and you must take
some action to correct the error.

The errors that cause unsuccessful completion fall into three broad categories:

Program errors
Errors that your program causes: you can correct these.

Environmental errors
Errors not caused directly by your program; rather, your program's request
caused a limit to be exceeded, such as a storage limit, or the limit on the
size of a particular data set. You might or might not be able to correct
these.

System errors
Errors caused by the system: your program did nothing to cause the error,
and you probably cannot correct these.

In some cases, a return or reason code can result from some combination of these
errors.

The return and reason code descriptions for the services in this information
indicate whether the error is a program error, an environmental error, a system
error, or some combination. Whenever possible, the return and reason code
descriptions give you a specific action that you can take to fix the error.

IBM recommends that you read all the return and reason codes for each service
that your program issues. You can then design your program to handle as many
errors as possible. When designing your program, you should allow for the
possibility that future releases of MVS might add new return and reason codes to a
service that your program issues.

Handling program errors
The actions to take in the case of program errors are usually straightforward.
Typical examples of program errors are:
1. Breaking one of the rules of the service. For example:

v Passing parameters that are either in the wrong format or not valid
v Violating one of the environment requirements (addressing mode, locking

requirements, dispatchable unit mode, and so on)
v Providing insufficient storage for information to be returned by the system.

2. Causing errors related to the parameter list. For example:
v Coding an incorrect combination of parameters
v Coding one or more parameters on the service incorrectly
v Inadvertently overlaying an area of the parameter list storage
v Inadvertently destroying the pointer to the parameter list.

Chapter 1. Using the services 9

3. Requesting a service or function for which the calling program is not
authorized, or which is not available on the system on which the program is
running.

In each of the first two cases, you can correct your program. For completeness, the
return and reason code descriptions give you specific actions to perform, even
when it might seem obvious what the action should be.

In the third case, you might have to contact your system administrator or system
programmer to obtain the necessary authorization, or to request that the service or
function be made available on your system, and the return or reason code
description asks you to take that step.

Note: Generally, the system does not take dumps for errors that your program
causes when issuing a system service. If you require such a dump, then it is your
responsibility to request one in your recovery routine. See the topic on providing
recovery in z/OS MVS Programming: Assembler Services Guide for information about
writing recovery routines.

Handling environmental and system errors
With environmental errors, often your first action should be to rerun your program
or retry the request one or more times. The following are examples of
environmental errors where rerunning your program or retrying the request is
appropriate:
v The request being made through the service exceeds some internal system limit.

Sometimes, rerunning your program or retrying the request results in successful
completion. If the problem persists, it might be an indication of a larger problem
requiring you to consult your system programmer, or possibly IBM support
personnel. Your system programmer might be able to tune the system or cancel
users so that the limit is no longer exceeded.

v The request exceeds an installation-defined limit. If the problem persists, the
action might be to contact your system programmer and request that a
specification in an installation exit or parmlib member be modified.

v The system cannot obtain storage, or some other resource, for your request. If
the problem persists, the action might be to check with the operator to see if
another user in the installation is causing the problem, or to see if the entire
installation is experiencing storage constraint problems.

You might be able to design your program to anticipate certain environmental
errors and handle them dynamically.

With system errors, as with environmental errors, often your first action should be
to rerun your program or retry the request one or more times. If the problem
persists, you might have to contact IBM support personnel.

Whenever possible for environmental and system errors, the return or reason code
description gives you either a specific action you can take, or a list of
recommended actions you can try.

For some errors, providing a specific action is not possible, because the action you
should take depends on your particular application, and on what is happening in
your installation. In those cases, the return or reason code description gives you
one or more possible causes of the error to help you to determine what action to
take.

10 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Some system errors result in return and reason codes that are provided for IBM
diagnostic purposes only. In these cases, the return or reason code description asks
you to record the information and provide it to the appropriate IBM support
personnel.

Using X-macros
Some MVS services support callers in both primary and AR ASC mode. When the
caller is in AR mode, macros must generate larger parameter lists; the increased
size of the list reflects the addition of ALETs to qualify addresses, as described
under “ALET qualification” on page 4. For some MVS macros, two versions of a
particular macro are available: one for callers in primary mode and one for callers
in AR mode. The name of the macro for the AR mode caller is the same as the
name of the macro for primary mode callers, except the AR mode macro name
ends with an “X”. This information refers to these macros as X-macros.

The X-macros described in this information are:
v ATTACHX
v ESTAEX
v LINKX
v SNAPX
v SYNCHX
v XCTLX

The only way these macros know that a caller is in AR mode is by checking the
global symbol that the SYSSTATE macro sets. Each of these macros (and
corresponding non-X-macro) checks the symbol. If SYSSTATE ASCENV=AR has
been issued, the macro issues code that is valid for callers in AR mode. If it has not
been issued, the macro generates code that is not valid for callers in AR mode.
When your program returns to primary mode, use the SYSSTATE ASCENV=P
macro to reset the global symbol.

IBM recommends that you use the X-macro regardless of whether your program is
running in primary or AR mode. However, you should consider the following
before deciding which macro to use:

The rules for using all X-macros, except ESTAEX, are:
v Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary
mode. Some parameters on the non-X-macros are not valid for callers in AR
mode. Check the macro descriptions for these exceptions.

v Callers in AR mode should issue the X-macros.
If a caller in AR mode issues the non-X-macro, the system substitutes the
X-macro and sends a message describing the substitution.

IBM recommends you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, in which case, you should use
ESTAE.

Chapter 1. Using the services 11

Macro forms
You can code most macros in three forms: standard, list, and execute. Some macros
also have a modify form. When you code a macro, you use the MF parameter to
select one of the forms. The list, execute and modify forms are for reenterable
programs that need to change values in the parameter list of the macro. The
standard form is for programs that are not reenterable, or for programs that do not
change values in the parameter list.

When a program wants to change values in the parameter list of a macro, it can
make the change dynamically.

However, using the standard form and changing the parameter list dynamically
might cause errors. For example, after storing a new value into the inline, standard
form of the parameter list, a reenterable program operating under a given task
might be interrupted by the system before the program can invoke the macro. In a
multiprogramming environment, another task can use the same reenterable
program, and that task might change the inline parameter list again before the first
task regains control. When the first task regains control, it invokes the macro.
However, the inline parameter list now has the wrong values.

Through the use of the different macro forms, a program that runs in a
multiprogramming environment can avoid errors related to reenterable programs.
The techniques required for using the macro forms, however, are different for some
macros, called alternative list form macros, than for most other macros. For the
alternative list form macros, the list form description notes that different
techniques are required and refers you to the information under “Alternative list
form macros” on page 13.

Conventional list form macros
With conventional list form macros, you can use the macro forms as follows:
1. Use the list form of the macro, which expands to the parameter list. Place the

list form in the section of your program where you keep non-executable data,
such as program constants. Do not code it in the instruction stream of your
program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain
some virtual storage.

3. Code a move character instruction that moves the parameter list from its
non-executable position in your program into the virtual storage area that you
obtained.

4. For macros that have a modify form, you can code the modify form of the
macro to change the parameter list. Use the address parameter of the modify
form to reference the parameter list in the virtual storage area that you
obtained. Thus, the parameter list that you change is the one in the virtual
storage area obtained by the GETMAIN or STORAGE macro.

5. Invoke the macro by issuing the execute form of the macro. Use the address
parameter of the execute form to reference the parameter list in the virtual
storage area that you obtained.

With this technique, the parameter list is safe even if the first task is interrupted
and a second task intervenes. When the program runs under the second task, it
cannot access the parameter list in the virtual storage of the first task.

12 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Alternative list form macros
Certain macros, called alternative list form macros, require a somewhat different
technique for using the list form. With these macros, you do not move the area
defined by the list form into virtual storage that you have obtained; instead, you
place the area defined by the list form into a DSECT. Also, it is the list form, not
the execute form, that you use to specify the address parameter that identifies the
address of the storage for the parameter list. Note that no modify form is available
for these macros.

You can use the macro forms for the alternative list form macros as follows:
1. Use the list form of the macro to define an area of storage that the execute form

can use to store the parameters. As with other macros, do not code the list form
in the instruction stream of your program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain
virtual storage for the list form expansion.

3. Place the area defined by the list form into a DSECT that maps a portion of the
virtual storage you obtained.

4. Invoke the macro by issuing the execute form of the macro. The address
parameter specified on the list form references the parameter list in the virtual
storage area that you obtained.

Coding the macros
In this information, each macro description includes a syntax diagram near the
beginning of the macro description. The diagram shows how to code the macro.
The syntax diagram does not explain the meanings of the parameters; the
meanings are explained in the parameter descriptions that follow the syntax
diagram.

The syntax tables assume that the standard begin, end, and continue columns are
used. Thus, column 1 is assumed as the begin column. To change the begin, end,
and continue columns, use the ICTL instruction to establish the coding format you
want to use. If you do not use ICTL, the assembler recognizes the standard
columns. To code the ICTL instruction, see HLASM Language Reference.

Figure 2 on page 14 shows a sample macro, TEST, and summarizes all the coding
information that is available for it. The table is divided into three columns, A, B,
and C.

Chapter 1. Using the services 13

v Column A and Column B contain those parameters that are allowed for the
macro. Column A contains those parameters that are required; column B
contains those parameters which are optional.

v If a single line appears, as shown in A1 and B1, then that is the only available
choice for the particular parameter.

v If two or more lines appear together, as shown in A2 and B2, the parameters on
those lines are mutually exclusive, that is, you can code any one of those
parameters.

v A further distinction is made between mandatory and optional parameters. The
parameter descriptions that follow the syntax table clearly identify those
parameters which are optional.

v The third column, C, provides additional information about coding the macro.

When substitution of a variable is required in column C, the following
classifications are used:

Variable
Classification

Symbol Any symbol valid in the assembler language. The symbol can be as long as
the supported maximum length of a name entry in the assembler you are
using.

Decimal digit
Any decimal digit up to and including the value indicated in the
parameter description. If both symbol and decimal digit are indicated, an
absolute expression is also allowed.

A B C

A1

A2

B1

B2

name name:

TEST

b One or more blanks must precede TEST.

b One or more blanks must follow TEST.

MATH
HIST
GEOG

,DATA=

,LNG=

symbol. Begin in column 1.name

data length data length: symbol or decimal digit, with a maximum value of 256.

,FMT=HEX
,FMT=DEC
,FMT=BIN

Default: FMT=HEX

,PASS=
Default: PASS=65

,grade grade: symbol, decimal digit, or register (1) or (2) - (12).

symbol, decimal digit, or register (1) or (2) - (12).

RX-type address, or register (2) - (12)data addr data addr:

value value:

Figure 2. Sample Macro Syntax Diagram

14 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Register (2)-(12)
One of general purpose registers 2 through 12, specified within
parentheses, previously loaded with the right-adjusted value or address
indicated in the parameter description. You must set the unused high-order
bits to zero. You can designate the register symbolically or with an
absolute expression.

Register (0)
General purpose register 0, previously loaded with the right-adjusted value
or address indicated in the parameter description. You must set the unused
high-order bits to zero. Designate the register as (0) only.

Register (1)
General purpose register 1, previously loaded with the right-adjusted value
or address indicated in the parameter description. You must set the unused
high-order bits to zero. Designate the register as (1) only.

Register (15)
General purpose register 15, previously loaded with the right-adjusted
value or address indicated in the parameter description. You must set the
unused high-order bits to zero. Designate the register as (15) only.

RX-type address
Any address that is valid in an RX-type instruction (for example, LA).

RS-type address
Any address that is valid in an RS-type instruction (for example, STM).

RS-type name
Any name that is valid in an RS-type instruction (for example, STM).

A-type address
Any address that can be written in an A-type address constant.

Default
A value that is used in default of a specified value; that is, the value the
system assumes if the parameter is not coded.

Use the parameters to specify the services and options to be performed, and write
them according to the following rules:
v If the selected parameter is written in all capital letters (for example, MATH,

HIST, or FMT=HEX), code the parameter exactly as shown.
v If the selected parameter is written in italics (for example, grade), substitute the

indicated value, address, or name.
v If the selected parameter is a combination of capital letters and italics separated

by an equal sign (for example, DATA=data addr), code the capital letters and
equal sign as shown, and then make the indicated substitution for the italics.

v Read the table from top to bottom.
v Code commas and parentheses exactly as shown.
v Positional parameters (parameters without equal signs) appear first; you must

code them in the order shown. You may code keyword parameters (parameters
with equal signs) in any order.

v If you select a parameter, read the third column before proceeding to the next
parameter. The third column often contains coding restrictions for the parameter.

Continuation lines
You can continue the parameter field of a macro on one or more additional lines
according to the following rules:

Chapter 1. Using the services 15

v Enter a continuation character (not blank, and not part of the parameter coding)
in column 72 of the line.

v Continue the parameter field on the next line, starting in column 16. All columns
to the left of column 16 must be blank.

You can code the parameter field being continued in one of two ways. Code the
parameter field through column 71, with no blanks, and continue in column 16 of
the next line; or truncate the parameter field by a comma, where a comma
normally falls, with at least one blank before column 71, and then continue in
column 16 of the next line. Figure 3 shows an example of each method.

Coding the callable services
A callable service is a programming interface that uses the CALL macro to access
system services. To code a callable service, code the CALL macro followed by the
name of the callable service, and a parameter list; for example:

CALL service,(parameter list)

The syntax diagram for the sample callable service SCORE:

Syntax Description

CALL SCORE

,(test_type
,level
,data
,format_option
,return_code)

Considerations for coding callable services are:
v You must code all the parameters in the parameter list because parameters are

positional in a callable service interface. That is, the function of each parameter
is determined by its position with respect to the other parameters in the list.
Omitting a parameter, therefore, assigns the omitted parameter's function to the
next parameter in the list.

v You must place values explicitly into all input parameters, because callable
services do not set default values.

v You can use the list and execute forms of the CALL macro to preserve your
program's reentrancy.

NAME 1

NAME 2 OP2

OP1 OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERAND5,OPERAND6,OPX
ERAND7
OPERAND1,OPERAND2
OPERAND3,OPERAND4,
OPERAND5,OPERAND6,OPERAND7

THIS IS ONE WAY
THIS IS ANOTHER WAY X

X

1 1610 44 72

Figure 3. Continuation Coding

16 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Including equate (EQU) statements
IBM supplies sets of equate (EQU) statements for use with some callable services.
These statements, which you may optionally include in your source code, provide
constants for use in your program. IBM provides the statements as a programming
convenience to save you the trouble of coding the definitions yourself.

Note: Check the “Programming Requirements” section of the individual service
description to determine if the equate statements are available for the callable
service you are using. If the equate statements are available, that section will also
provide a list of the statements that are provided, along with a description of how
to include them in your program.

Link-editing linkage-assist routines
Linkage-assist routines provide the connection between your program and the
system services that your program requests. When using callable services, link-edit
the appropriate linkage-assist routines into your program module so that, during
execution, the linkage-assist routines can resolve the address of, and pass control
to, the requested system services. You can also dynamically link to linkage-assist
routines as an alternative to link-editing. For example, issue the LOAD macro for
the linkage-assist routine, then issue a CALL to the loaded addresses.

To invoke the linkage-editor or binder, code JCL as in the following example:

Note: Omitting NCAL from the linkedit parameters (as the example shows) and
specifying SYS1.CSSLIB in the //SYSLIB statement, as shown, causes the addresses
of all required linkage-assist routines to be automatically resolved. This statement
saves you the trouble of having to specify individual linkage-assist routines in
INCLUDE statements.

Service summary
Table 3 on page 18 lists services described in the following:
v z/OS MVS Programming: Assembler Services Reference ABE-HSP

v z/OS MVS Programming: Assembler Services Reference IAR-XCT

For each service, the table indicates:
v Whether a program in AR ASC mode can issue the service
v Whether a program in cross memory mode can issue the service
v Whether the macro checks the SYSSTATE global macro variables
v Whether the macro can be issued in 64-bit addressing mode

Note:

//userid JOB ’accounting-info’,’name’,CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4096K
//LINKSTEP EXEC PGM=HEWL,
// PARM=’LIST,LET,XREF,REFR,RENT’
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSN=userid.LOADLIB,DISP=OLD
//SYSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
//OBJLIB DD DSN=userid.OBJLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD *

INCLUDE OBJLIB(userpgm)
ENTRY userpgm
NAME userpgm(R)

/*

Chapter 1. Using the services 17

1. A program running in primary ASC mode when PASN=HASN=SASN can issue
any of the services listed in the table.

2. Cross memory mode means that at least one of the following conditions is true:

PASN¬=SASN
The primary address space (PASN) and the secondary address space
(SASN) are different.

PASN¬=HASN
The primary address space (PASN) and the home address space
(HASN) are different.

SASN¬=HASN
The secondary address space (SASN) and the home address space
(HASN) are different.

For more information about functions that are available to programs in cross
memory mode, see z/OS MVS Programming: Extended Addressability Guide.

3. Callable services do not check the SYSSTATE or SPLEVEL global variables.

Table 3. Service Summary

Service Can be issued
in AR ASC
mode

Can be issued
in cross memory
mode

Checks
SYSSTATE

Can be issued
in 64-bit
AMODE

ABEND Yes Yes Yes Yes

ALESERV Yes Yes No No

ASASYMBM No No Yes No

ATTACH Yes (See note 1
on page 23)

No Yes No

ATTACHX Yes No Yes Yes

BLDMPB Yes Yes No No

BLSABDPL Yes Yes N/A No

BLSACBSP Yes Yes N/A No

BLSADSY Yes Yes N/A No

BLSAPCQE Yes Yes N/A No

BLSQFXL Yes Yes N/A No

BLSQMDEF Yes Yes N/A No

BLSQMFLD Yes Yes N/A No

BLSQSHDR Yes Yes N/A No

BLSRDRPX Yes Yes N/A No

BLSRESSY Yes Yes N/A No

BLSRNAMP Yes Yes N/A No

BLSRPRD Yes Yes N/A No

BLSRPWHS Yes Yes N/A No

BLSRSASY Yes Yes N/A No

BLSRXMSP Yes Yes N/A No

BLSRXSSP Yes Yes N/A No

BLSUPPR2 Yes Yes N/A No

CALL Yes Yes Yes Yes

18 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross memory
mode

Checks
SYSSTATE

Can be issued
in 64-bit
AMODE

CHAP No No No Yes

CNZCONV Yes Yes No Yes

CNZTRKR No Yes No No

CONVCON No Yes No No

CONVTOD Yes Yes No No

CPOOL No Yes Yes No

CPUTIMER No Yes Yes No

CSRCESRV Yes Yes No No

CSRCMPSC Yes Yes Yes No

CSREVW No No N/A No

CSRIDAC No No N/A No

CSRL16J No No N/A No

CSRPACT Yes Yes N/A No

CSRPBLD Yes Yes N/A No

CSRPCON Yes Yes N/A No

CSRPDAC Yes Yes N/A No

CSRPDIS Yes Yes N/A No

CSRPEXP Yes Yes N/A No

CSRPFRE Yes Yes N/A No

CSRPFR1 Yes Yes N/A No

CSRPGET Yes Yes N/A No

CSRPGT1 Yes Yes N/A No

CSRPQCL Yes Yes N/A No

CSRPQEX Yes Yes N/A No

CSRPQPL Yes Yes N/A No

CSRPRFR Yes Yes N/A No

CSRPRFR1 Yes Yes N/A No

CSRPRGT Yes Yes N/A No

CSRPRGT1 Yes Yes N/A No

CSRREFR No No N/A No

CSRSAVE No No N/A No

CSRSCOT No No N/A No

CSRSI No Yes No No

CSRUNIC Yes Yes No No

CSRVIEW No No N/A No

CSVAPF Yes (See note 7
on page 23)

Yes Yes No

CSVINFO No No No No

CSVQUERY Yes Yes Yes Yes

Chapter 1. Using the services 19

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross memory
mode

Checks
SYSSTATE

Can be issued
in 64-bit
AMODE

DELETE No No No Yes

DEQ No No No Yes

DETACH Yes No Yes No

DIV Yes No Yes No

DOM No No No Yes

DSPSERV Yes Yes Yes Yes

EDTINFO Yes Yes Yes No

ENQ No No No Yes

ESPIE No No No Yes

ESTAE (See note
2 on page 23)

No No Yes No

ESTAEX Yes Yes Yes Yes

EVENTS No No No No

FREEMAIN No (See note 3
on page 23)

Yes Yes Yes

GETMAIN No (See note 3
on page 23)

Yes Yes Yes

GQSCAN No Yes No No

HSPSERV Yes Yes (See note 4
on page 23)

(See note 5 on
page 23)

No

IARCP64 Yes Yes Yes Yes

IARR2V Yes Yes No Yes

IARST64 Yes Yes Yes Yes

IARVSERV Yes Yes Yes No

IARV64 Yes Yes Yes Yes

IDENTIFY No No No Yes

IEAARR Yes Yes Yes No

IEABRC Yes Yes N/A No

IEAINTKN Yes Yes Yes No

IEALSQRY Yes Yes Yes No

IEAMETR Yes Yes Yes No

IEANTCR Yes Yes N/A No

IEANTDL Yes Yes N/A No

IEANTRT Yes Yes N/A No

IEATDUMP Yes No Yes No

IEATXDC Yes Yes Yes Yes

IEAVAPE No Yes No No

IEAVAPE2 No Yes No No

IEAVDPE No Yes No No

IEAVDPE2 No Yes No No

20 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross memory
mode

Checks
SYSSTATE

Can be issued
in 64-bit
AMODE

IEAVPSE No Yes No No

IEAVPSE2 No Yes No No

IEAVRLS No Yes No No

IEAVRLS2 No Yes No No

IEAVRPI No Yes No No

IEAVRPI2 No Yes No No

IEAVTPE No Yes No No

IEAVXFR No Yes No No

IEAVXFR2 No Yes No No

IEA4APE No Yes No Yes

IEA4APE2 No Yes No Yes

IEA4DPE No Yes No Yes

IEA4DPE2 No Yes No Yes

IEA4PSE No Yes No Yes

IEA4PSE2 No Yes No Yes

IEA4RLS No Yes No Yes

IEA4RLS2 No Yes No Yes

IEA4RPI No Yes No Yes

IEA4RPI2 No Yes No Yes

IEA4TPE No Yes No Yes

IEA4XFR No Yes No Yes

IEA4XFR2 No Yes No Yes

IEFDDSRV Yes Yes No No

IEFSSI Yes No No No

IOCINFO Yes Yes Yes No

IOSCHPD Yes Yes Yes No

ITZEVENT No Yes No No

ITZQUERY No Yes No No

IXGBRWSE Yes Yes Yes Yes

IXGCONN Yes Yes Yes Yes

IXGDELET Yes Yes Yes Yes

IXGIMPRT Yes Yes Yes Yes

IXGINVNT Yes Yes Yes Yes

IXGOFFLD Yes Yes Yes Yes

IXGQUERY Yes Yes Yes Yes

IXGUPDAT Yes Yes Yes Yes

IXGWRITE Yes Yes Yes Yes

LINK Yes (See note 1
on page 23)

No Yes No

Chapter 1. Using the services 21

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross memory
mode

Checks
SYSSTATE

Can be issued
in 64-bit
AMODE

LINKX Yes No Yes Yes

LOAD Yes No No Yes

LSEXPAND Yes No No No

PGLOAD No No No No

PGOUT No No No No

PGRLSE No No No No

PGSER No No No Yes

POST No Yes No Yes

QRYLANG Yes Yes No No

REFPAT Yes No Yes No

RESERVE No No No Yes

RETURN No No No No

SAVE No No No No

SETRP Yes Yes Yes Yes

SNAP Yes (See note 1
on page 23)

No Yes No

SNAPX Yes No Yes No

SPIE No No No No

SPLEVEL Yes Yes No No

STAE No No No No

STATUS Yes Yes No No

STCKCONV Yes Yes No No

STCKSYNC Yes Yes Yes No

STIMER No No No Yes

STIMERM No No No Yes

STORAGE Yes Yes No Yes

SYMRBLD Yes Yes Yes No

SYMREC No Yes Yes No

SYNCH Yes (See note 1
on page 23)

No Yes No

SYNCHX Yes No Yes Yes

SYSSTATE Yes Yes No No

TCBTOKEN Yes Yes No No

TESTART Yes Yes No No

TIME Yes (See note 6
on page 23)

Yes (See note 6
on page 23)

No Yes

TIMEUSED Yes Yes No Yes

TRANMSG Yes Yes No No

TTIMER No No No Yes

22 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 3. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross memory
mode

Checks
SYSSTATE

Can be issued
in 64-bit
AMODE

UCBDEVN No No No No

UCBINFO Yes Yes Yes No

UCBSCAN Yes Yes Yes No

UPDTMPB Yes Yes No No

VRADATA Yes Yes Yes No

WAIT No Yes No Yes

WTL No No No No

WTO No No No Yes

WTOR No No No Yes

XCTL Yes (See note 1) Yes Yes Yes

XCTLX Yes Yes Yes No

Notes:

1. Callers can use either macro in the following macro pairs:
ATTACH or ATTACHX
LINK or LINKX
SNAP or SNAPX
SYNCH or SYNCHX
XCTL or XCTLX

IBM recommends that all callers in AR mode use the X-macros (ATTACHX,
LINKX, SNAPX, SYNCHX, and XCTLX). If a program in AR mode issues
ATTACH, LINK, SNAP, SYNCH, or XCTL after issuing SYSSTATE
ASCENV=AR, the system substitutes the corresponding X-macro and issues a
message telling you that it made the substitution.

2. The only programs that can use ESTAE are programs that are in primary mode
with PASN=HASN=SASN. Callers in AR mode or in cross memory mode must
use ESTAEX instead of ESTAE.
IBM recommends you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, in which case, you should use
ESTAE.

3. Problem state AR mode callers must use the STORAGE macro instead of using
GETMAIN or FREEMAIN.

4. PASN=HASN=SASN for a non-shared standard hiperspace for which an ALET
is not used (the HSPALET parameter is omitted).

5. If you use the HSPALET parameter, the HSPSERV macro checks SYSSTATE.
6. Only TIME LINKAGE=SYSTEM can be issued in AR mode, and can be issued

in cross memory mode. TIME LINKAGE=SVC cannot be issued in AR mode or
in cross memory mode.

7. For the QUERY request, CSVAPF can be issued only in primary mode. For all
other requests, CSVAPF can be issued in primary or AR mode.

Chapter 1. Using the services 23

24 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 2. ABEND — Abnormally terminate a task

Description
The ABEND macro is used to initiate error processing for a task. ABEND can
request a full or tailored dump of virtual storage areas and control blocks
pertaining to the tasks being abnormally terminated, and can specify that the entire
job step is to be abnormally terminated. If a user-written recovery routine was
activated at the time the ABEND macro was issued, it will get control before the
task is terminated. This routine may recover the task and allow it to retry. See z/OS
MVS Programming: Assembler Services Guide for information on how to provide
user-written recovery routines.

If the job step task is abnormally terminated or if ABEND specifies job step
termination, the completion code is recorded on the system output device, and the
remaining job steps in the job are either skipped or executed as specified in their
job control statements.

If the job step is not to be terminated, the system takes the following actions:
v It terminates the task that was active when ABEND was issued and all of the

subtasks of that active task.
v It posts the completion code as indicated in the completion code parameter

description below.
v It selects the end-of-task exit routine specified in the ATTACH macro to receive

control. That end-of-task routine created the task that issued ABEND. The
system gives the exit routine control when the originating task of the task for
which ABEND was issued becomes active. It does not give control to any of the
end-of-task exit routines specified for any subtasks of the task for which ABEND
was issued.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary, secondary, or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks required
Control parameters: None.

Programming requirements
If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before
you issue the ABEND macro. SYSSTATE ASCENV=AR tells the ABEND macro to
generate code appropriate for AR mode.

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 25

Input register information
Before issuing the ABEND macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
None, because control does not return to the caller.

Performance implications
None.

Syntax
The ABEND macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ABEND.

ABEND

� One or more blanks must follow ABEND.

comp code comp code: Symbol, decimal or hexadecimal digit, or
register (1) or (2) - (12).
Value range: 0 - 4095

,REASON=reason code reason code: Symbol, decimal or hexadecimal number, or register (2) - (12).

,DUMP

,,STEP

,,,code type code type: USER or SYSTEM. Default: code type = USER.

,DUMP,STEP

,DUMP,,code type

,,STEP,code type

,DUMP,STEP,code type

,DUMP,DUMPOPT=parm
list addr

parm list addr: RX-type address, or register (2) - (12).

,DUMP,DUMPOPX=parm
list addr

Parameters
The parameters are explained as follows:

ABEND macro

26 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

comp code
Specifies the completion code associated with the abnormal termination. If the
job step is to be terminated, the decimal representation of the user completion
code or the hexadecimal representation of the system completion code is
recorded on the system output device. If the job step is not to be terminated,
the completion code is placed in the TCB of the active task, and in the ECB
specified in the ECB parameter of the ATTACH macro issued to create the
active task. If you specify a hexadecimal digit, you must use X‘dd’ format to
distinguish the hexadecimal from decimal.

,REASON=reason code
Specifies the reason code that the user wants to pass to subsequent recovery
exits. The value range for the reason code is a 32-bit hexadecimal number or a
31-bit decimal number. This reason code supplements the completion code
associated with an abnormal termination, allowing the user to uniquely
identify the cause of the abnormal termination. The reason code is propagated to
each recovery exit.

,DUMP
,,STEP
,,,code type
,DUMP,STEP
,DUMP,,code type
,,STEP,code type
,DUMP,STEP,code type
,DUMP,DUMPOPT=parm list addr
,DUMP,DUMPOPX=parm list addr

Specifies options available with the ABEND macro:

DUMP specifies that a dump is requested of virtual storage areas assigned to
the task and control blocks pertaining to the task. A separate dump is provided
for each of the tasks being terminated as a result of ABEND. If a
//SYSABEND, //SYSMDUMP, or //SYSUDUMP DD statement is not
provided, the DUMP parameter is ignored.

For z/OS UNIX System Services, the system writes a core dump, which is a
SYSMDUMP to an HFS file, for errors following an exec or fork() function
when the original address space had a SYSMDUMP DD statement. For more
information, see AD/Cycle LE/370 Debugging and Run-Time Messages Guide.

STEP specifies that the entire job step of the active task is to be abnormally
terminated.

Note: If the STEP parameter is coded in an ABEND macro under TSO, the
TSO job will be terminated.

code type specifies that the completion code is to be treated as a USER or
SYSTEM code.

DUMPOPT and DUMPOPX specify the address of a parameter list of options
for a tailored dump. To create the parameter list, use the list form of either the
SNAP or SNAPX macro, or code data constants in your program. DUMPOPT
specifies the address of a parameter list that the SNAP macro created.
DUMPOPX specifies the address of a parameter list that the SNAPX macro
created.

The TCB, DCB, ID, and STRHDR options available on SNAP will be ignored if
they appear in the parameter list; the TCB used will be that of the task being

ABEND macro

Chapter 2. ABEND — Abnormally terminate a task 27

terminated, the DCB used will be provided by the ABDUMP routine. If a
//SYSABEND, //SYSMDUMP, or //SYSUDUMP DD statement is not
provided, this parameter is ignored.

If the dump options specified include ranges of storage areas to be dumped,
only the storage areas in the first thirty ranges will be dumped. If SUBPLST is
specified in the SNAP or SNAPX parameter list passed to the ABEND macro
via DUMPOPT or DUMPOPX, the first seven subpools will be dumped.

The dump option parameter list, storage ranges, and subpools must be in the
primary address space.

ABEND codes
None.

Return and reason codes
None.

Example 1
Terminate with a user completion code of 432.
ABEND 432

Example 2
Terminate with the user completion code that is contained in register 5. The entire
job step is to be terminated.
ABEND (5),,STEP

Example 3
Terminate with a system completion code of X‘0C4’.
ABEND X’0C4’,,,SYSTEM

ABEND macro

28 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 3. ALESERV — Control entries in the access list

Description
The ALESERV macro manages the contents of access lists. An access list is a table
in which each entry identifies an address space, data space, or hiperspace to which
a program (or programs) has access. Access list entry tokens (ALETs) index the
entries in the access list. Use the ALESERV macro to:
v Add an entry to a DU-AL for an address space, data space, or nonshared

standard hiperspace (ADD parameter)
v Add an entry for the primary address space to the DU-AL (ADDPASN

parameter)
v Add an entry for a SCOPE=SINGLE data space to the PASN-AL.
v Delete an entry from a DU-AL (DELETE parameter)
v Obtain a STOKEN for a specified ALET (EXTRACT parameter)
v Locate an ALET for a specified STOKEN (SEARCH parameter)
v Obtain the STOKEN of the home address space (EXTRACTH parameter).

A problem state program can use ALESERV to create an entry associated with an
address space only if it is running with an appropriate extended authorization
index (EAX) value. To set up EAX-authorization, a program must be in supervisor
state. Information on EAX-authorization appears in the books that are available to
system programmers who write programs in supervisor state.

On the ALESERV macro, address spaces, data spaces, and hiperspaces are
identified through STOKENs, an identifier similar to an address space identifier
(ASID).

For information about access lists, ALETs, data spaces, and hiperspaces, see
appropriate chapters in z/OS MVS Programming: Assembler Services Guide. That book
contains many examples of using ALESERV.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts for ADD,

ADDPASN, and DELETE requests. Enabled or disabled for
I/O and external interrupts for requests other than ADD,
ADDPASN, and DELETE

Locks: No locks held for ADD, ADDPASN, and DELETE requests.
For requests other than ADD, ADDPASN, and DELETE, the
caller may hold locks, but is not required to hold any.

Control parameters: Can reside in any addressable area

© Copyright IBM Corp. 1988, 2015 29

Programming requirements
For ADD and DELETE requests, the caller of the ALESERV macro must be one of
the following:
v The owner or creator of the data space
v The owner of the hiperspace.

Restrictions
None.

Input register information
Before issuing the ALESERV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers contain:

Register
Contents

0 Reason code associated with the return code for SEARCH and EXTRACT
requests; otherwise, used as a work register by the system

1 Address of the ALESERV parameter list

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers contain:

Register
Contents

0 Used as a work register by the system

1 ALET for the parameter list

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the ALESERV macro is written as follows:

Syntax Description

ALESERV macro

30 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ALESERV.

ALESERV

� One or more blanks must follow ALESERV.

Valid parameters (required parameters are underlined):

ADD AL, STOKEN, ACCESS, ALET, CHKPT, RELATED

ADDPASN ALET, CHKPT, RELATED

DELETE ALET, RELATED

EXTRACT ALET, STOKEN, RELATED

SEARCH ALET, STOKEN, AL, RELATED

EXTRACTH STOKEN, RELATED

,ACCESS=PUBLIC Default: ACCESS=PUBLIC

,ACCESS=PRIVATE

,AL=WORKUNIT Default: AL=WORKUNIT

,AL=PASN

,ALET=alet-addr alet-addr: RX-type address or register (2) - (12).
Note: If you specify register notation, the register contains the ALET, rather
than the address of the ALET.

,STOKEN=stoken-addr stoken-addr: RX-type address.

,CHKPT=FAIL Default: CHKPT=FAIL

,CHKPT=IGNORE

,RELATED=any-value

Parameters
The parameters are explained as follows:

ADD
Requests that the system add an entry to the access list. You are required to
use two parameters:
v STOKEN specifies the address space, data space, or hiperspace that the entry

represents

ALESERV macro

Chapter 3. ALESERV — Control entries in the access list 31

v ALET specifies the address of the location where the system returns the
ALET.

For access list entries that represent an address space, you can also specify
whether an entry is public or private (ACCESS parameter). To add an entry for
an address space, the caller must have EAX-authority to the target address
space.

For access list entries that represent a data space or hiperspace, the entry must
be public.

A problem state program can add an entry for a SCOPE=SINGLE data space to
the PASN-AL if both of the following are true:
v The caller owns or created the data space.
v An entry for the data space is not already on the PASN-AL through the

action of another problem state program.

ADDPASN
Requests that the system add an entry for the primary address space to the
DU-AL without requiring a user to have EAX-authority to the address space.
ALET, required with ADDPASN, receives the ALET that indexes into the entry.
The entry is a public entry.

DELETE
Requests that the system delete an entry from the DU-AL. ALET, required with
DELETE, identifies the entry to be deleted.

EXTRACT
Requests that the system find the STOKEN of the specified ALET. The caller
can obtain the STOKEN for any address space, data space, or hiperspace that is
represented by a valid entry on the DU-AL or PASN-AL. ALET and STOKEN
are required parameters.

SEARCH
Requests that the system search through the DU-AL or PASN-AL for an ALET
that corresponds to a specified STOKEN. ALET and STOKEN are required
parameters. AL is an optional parameter; AL=DU-AL is the default.

EXTRACTH
Requests that the system find the STOKEN of the home address space.
STOKEN is a required parameter.

,ACCESS=PUBLIC
,ACCESS=PRIVATE

Specifies whether the access list entry you are adding is public or private. You
cannot add a private entry for a data space or hiperspace.

,AL=WORKUNIT
,AL=PASN

Specifies whether the access list is a DU-AL (WORKUNIT) or a PASN-AL
(PASN). For the ADD request, AL identifies the type of access list.

For the SEARCH request, AL specifies whether the system is to search through
the DU-AL or the PASN-AL.

,ALET=alet-addr
Specifies the 4-byte ALET that either you provide or the system returns,
depending on the other parameters you specify on ALESERV. When you use
RX-type notation, alet-addr specifies the address of the 4-byte field that contains
the ALET. When you use register notation, alet-addr specifies a register that
contains the ALET itself, rather than the address of the ALET.

ALESERV macro

32 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

For the ADD and ADDPASN requests, the system returns the ALET of the
added entry.

For the DELETE request, you provide the ALET for the access list entry to be
deleted. Do not specify an ALET of 0, 1, or 2.

For the EXTRACT request, you provide the ALET whose STOKEN you require.
The system returns the STOKEN in stoken-addr.

For the SEARCH request, you specify where in the access list the system is to
begin the search:
v If you specify minus one (-1), the system starts searching at the beginning of

the DU-AL or PASN-AL.
v If you specify a valid ALET, the system starts searching with the next ALET

in the access list.

The system then returns the searched-for ALET, if present. Otherwise, alet-addr
is unchanged and register 15 contains a return code that specifies that an ALET
for the STOKEN is not on the access list.

,STOKEN=stoken-addr
Specifies the 8-byte identifier of an address space, data space, or hiperspace.
For the ADD request, STOKEN identifies the space that the program wants to
access.

For the EXTRACT request, the system returns the STOKEN that corresponds to
the specified ALET.

For the SEARCH request, STOKEN identifies the STOKEN for which the
system is to return the corresponding ALET.

For the EXTRACTH request, the system returns the STOKEN of the home
address space.

,CHKPT=FAIL
,CHKPT=IGNORE

Specifies how the system is to process a checkpoint request made through the
CHKPT macro, in relation to the access list entry being added. If you specify
CHKPT=IGNORE, the system ignores the access list entry added (DU-AL or
PASN-AL) and processes the checkpoint operation. If you specify
CHKPT=FAIL, the system rejects the checkpoint operation. The default is
CHKPT=FAIL.

If you specify CHKPT=IGNORE, you assume full responsibility of managing
the data space or nonshared standard hiperspace storage. See z/OS MVS
Programming: Assembler Services Guide for more information on using
checkpoints with data spaces and hiperspaces.

,RELATED=any-value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

ABEND codes
None.

ALESERV macro

Chapter 3. ALESERV — Control entries in the access list 33

Return and reason codes
When control is returned from ALESERV ADD, register 15 contains one of the
following hexadecimal return codes. A return code of 8 or greater means the
system rejects the request.

Hexadecimal
Return Code

Meaning and Action

0 Meaning: ALESERV ADD has completed successfully.

Action: None.

8 Meaning: Program error. The caller was not EAX-authorized to the
specified space. The entry is not added.

Action: Verify that the intended STOKEN is specified.

0C Meaning: Environmental error. The current access list cannot be
expanded. There are no free access list entries and the maximum size
has been reached.

Action: Delete unused entries and reissue the request.

10 Meaning: Environmental error. ALESERV could not obtain storage for
an expanded access list.

Action: Retry the request.

18 Meaning: Program error. The caller in problem state with PSW key 8 -
F tried to add an entry to the PASN-AL for a space other than a
SCOPE=SINGLE data space.

Action: Change the request to add the data space as SCOPE=SINGLE
or change your program to run in supervisor state or key 0 - 7.

1C Meaning: Program error. The caller is holding a lock.

Action: Release all locks before calling ALESERV.

20 Meaning: Program error. The caller is disabled.

Action: Enable your program before it issues ALESERV.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input, or a
PASN-AL ALET.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for
the caller's DU-AL.

38 Meaning: Program error. The input STOKEN is not valid.

Action: Verify that the specified STOKEN is a valid STOKEN.

4C Meaning: Program or environmental error. The space represented by
the input STOKEN is not valid for cross memory access.

Action: None required. However, you may want to take some action
based upon your application.

50 Meaning: Program error. The ALESERV parameter list is not valid.

Action: Verify that your program is not overwriting the parameter list
and that the execute form of the macro correctly addresses the
parameter list.

54 Meaning: Program error. The caller tried to add a data space or
hiperspace to an access list as a private entry.

Action: Specify ACCESS=PUBLIC instead of ACCESS=PRIVATE.

ALESERV macro

34 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Meaning and Action

5C Meaning: Program error. The caller tried to add a data space or a
hiperspace to an access list without proper authority.

Action: Correct your program to specify STOKENs for spaces for which
your program is authorized.

60 Meaning: System error. An unexpected error occurred. The request was
not completed.

Action: Retry the request.

62 Meaning: Program error. A previous error in your program left the
access list in an unexpected format. The error might have occurred
because the SRB environment was not valid when the system
dispatched an SRB. The system did not perform the ALESERV ADD
request.

Action: Determine the cause of the error that preceded the ALESERV
ADD request. Correct the error and rerun the program.

64 Meaning: Program error. A problem-state caller with PSW key 8 - F
tried to add an entry using CHKEAX=NO.

Action: Specify CHKEAX=YES.

68 Meaning: Program error. The caller attempted to add a hiperspace that
is not a nonshared standard hiperspace owned by the caller.

Action: Verify that the options specified on your ADD request do not
violate the rules for adding entries for hiperspaces to access lists.

6C Meaning: Program error. The caller tried to add an entry for a
SCOPE=COMMON data space to a DU-AL.

Action: Change your program to request the ADD to be made to the
PASN-AL.

70 Meaning: Environmental error. The caller attempted to add a
hiperspace to an access list.

Action: Modify your program to use the HSPSERV macro to access the
data in the hiperspace.

74 Meaning: Program error. A problem state program with PSW key 8 - F
has already added an entry for the data space to the PASN-AL and the
entry still exists.

Action: Change your program's logic so that it does not request the
second ADD.

78 Meaning: Program error. A problem state program with PSW key 8 - F
tried to add an entry to the PASN-AL. The program is neither the
owner nor the creator of the data space.

Action: Change your program's logic so that it does not add a data
space it did not create or does not own.

80 Meaning: Program error. The caller attempted to add a subspace access
list entry to the PASN-AL.

Action: Change the request to add the subspace access list entry to the
DU-AL.

ALESERV macro

Chapter 3. ALESERV — Control entries in the access list 35

Hexadecimal
Return Code

Meaning and Action

84 Meaning: Program error. The caller tried to add a subspace access list
entry to the DU-AL, but the caller is not running under the task that
owns the subspace.

Action: Ensure that your program is running under the task that
created the subspace, or check that you are supplying the correct
STOKEN.

When control is returned from ALESERV ADDPASN, register 15 contains one of
the following hexadecimal return codes:

Hexadecimal
Return Code

Meaning and Action

0 Meaning: ALESERV ADDPASN has completed successfully.

Action: None.

C Meaning: Environmental error. The DU-AL cannot be expanded. There
are no free ALEs, and the maximum size has been reached.

Action: Delete unused entries and reissue the request.

10 Meaning: Environmental error. ALESERV could not obtain storage for
an expanded access list.

Action: Retry the request.

1C Meaning: Program error. The caller is holding a lock.

Action: Release all locks before calling ALESERV.

20 Meaning: Program error. The caller is disabled.

Action: Enable your program before it issues ALESERV.

24 Meaning: Environmental error. AR 1 contained an ALET of 1 on input,
or a PASN-AL ALET.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for
the caller's DU-AL.

50 Meaning: Program error. The ALESERV parameter list is not valid.

Action: Verify that your program is not overwriting the parameter list
and that the execute form of the macro correctly addresses the
parameter list.

60 Meaning: System error. An unexpected error occurred. The request was
not completed.

Action: Retry the request.

62 Meaning: Program error. A previous error in your program left the
access list in an unexpected format. The error might have occurred
because the SRB environment was not valid when the system
dispatched an SRB. The system did not perform the ALESERV
ADDPASN request.

Action: Determine the cause of the error that preceded the ALESERV
ADD request. Correct the error and rerun the program.

ALESERV macro

36 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

When control is returned from ALESERV DELETE, register 15 contains one of the
following hexadecimal return codes:

Hexadecimal
Return Code

Meaning and Action

0 Meaning: ALESERV DELETE has completed successfully.

Action: None.

8 Meaning: Program error. The caller is not EAX-authorized to the
address space specified by the ALET, or the space specified by the
ALET is not the primary address space. The entry is not deleted.

Action: Verify that the intended STOKEN is specified.

14 Meaning: Program or environmental error. The input ALET
corresponds to an ALE that is not valid.

Action: Verify that the specified ALET is valid.

1C Meaning: Program error. The caller is holding a lock.

Action: Release all locks before calling ALESERV.

20 Meaning: Program error. The caller is disabled.

Action: Enable your program before it issues ALESERV.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input, or an
ALET associated with the caller's PASN-AL.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for
the caller's DU-AL.

28 Meaning: Program error. The caller specified an ALET that is not valid.

Action: Verify that the input ALET is valid.

2C Meaning: Program error. The caller attempted to delete ALET 0, 1, or 2.

Action: Verify that the specified ALET is not ALET 0, 1, or 2.

30 Meaning: Program error. A problem state caller with PSW key 8 - F
tried to delete an entry for a space other than a SCOPE=SINGLE data
space.

Action: Verify that the ALET supplied represents the intended space.

40 Meaning: Program or environmental error. The space associated with
the input ALET is not valid for cross memory access.

Action: None required. However, you may want to take some action
based upon your application.

44 Meaning: Environmental error. The ALE associated with the input
ALET represents addressing capability to a deleted or terminated space.

Action: None required. However, you may want to discard the
specified ALET and possibly take some action based upon your
application.

60 Meaning: System error. An unexpected error occurred. The request was
not completed.

Action: Retry the request.

ALESERV macro

Chapter 3. ALESERV — Control entries in the access list 37

Hexadecimal
Return Code

Meaning and Action

78 Meaning: Program error. A problem state caller with PSW key 8 - F
tried to delete an entry from the PASN-AL. The caller is neither the
owner nor the creator of the data space, or the PSW key of the caller
did not match the storage key of the data space.

Action: Change your program's logic so that it does not have to try to
delete a data space it did not create or own.

When control is returned from ALESERV EXTRACT, register 15 contains one of the
following hexadecimal return codes:

Hexadecimal
Return Code

Meaning and Action

0 Meaning: ALESERV EXTRACT completed successfully. Register 0
contains one of the following reason codes:

v 00 - The access list entry is a public entry.

v 04 - The access list entry is a private entry.

Action: None.

14 Meaning: Program or environmental error. The input ALET
corresponds to an access list entry that is not valid.

Action: Verify that the specified ALET is valid.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input, or an
ALET associated with the caller's PASN-AL.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for
the caller's DU-AL.

28 Meaning: Program error. The caller specified an ALET that is not valid.

Action: Verify that the input ALET is valid.

3C Meaning: Program error. The caller specified an ALET value of 1.

Action: Verify that the specified ALET is other than 1.

40 Meaning: Program or environmental error. The space associated with
the input ALET is not valid for cross memory access.

Action: None required. However, you may want to take some action
based upon your application.

44 Meaning: Environmental error. The access list entry (ALE) associated
with the input ALET represents addressing capability to a deleted or
terminated space.

Action: None required. However, you may want to discard the
specified ALET and possibly take some action based upon your
application.

50 Meaning: Program error. The ALESERV parameter list is not valid.

Action: Verify that your program is not overwriting the parameter list
and that the execute form of the macro correctly addresses the
parameter list.

ALESERV macro

38 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Meaning and Action

58 Meaning: Program or environmental error. The ALET the caller
specified represents an STOKEN for a data space that is no longer
accessible.

Action: None required. However, you may want to discard the
specified ALET and possibly take some action based upon your
application.

60 Meaning: System error. An unexpected error occurred. The request was
not completed.

Action: Retry the request.

When control is returned from ALESERV SEARCH, register 15 contains one of the
following hexadecimal return codes:

Hexadecimal
Return Code

Meaning and Action

0 Meaning: ALESERV SEARCH completed successfully. Register 0
contains one of the following hexadecimal reason codes:

v 00 - The access list entry is a public entry.

v 04 - The access list entry is a private entry.

Action: None.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input or an
ALET associated with the caller's PASN-AL.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for
the caller's DU-AL.

28 Meaning: Program error. The caller specified an ALET that is not valid.

Action: Verify that the input ALET is valid.

34 Meaning: Program error. The caller specified an STOKEN that is not
represented on the specified access list.

Action: Verify that the specified STOKEN is on the referenced access
list.

48 Meaning: Program error. The caller specified AL=WORKUNIT but the
input ALET indexes into the PASN-AL, or the caller specified
AL=PASN but the ALET indexes into the DU-AL.

Action: Change the AL or the ALET parameters to specify the correct
AL and ALET combination.

60 Meaning: System error. An unexpected error occurred. The request was
not completed.

Action: Retry the request.

When control is returned from ALESERV EXTRACTH, register 15 contains one of
the following hexadecimal return codes:

ALESERV macro

Chapter 3. ALESERV — Control entries in the access list 39

Hexadecimal
Return Code

Meaning and Action

0 Meaning: ALESERV EXTRACTH has completed successfully.

Action: None.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input, or an
ALET associated with the caller's PASN-AL.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for
the caller's DU-AL.

60 Meaning: System error. An unexpected error occurred. The request was
not completed.

Action: Retry the request.

Example of adding an entry to a DU-AL
To add an entry to a DU-AL for a data space, issue the following:

ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET
*
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET

ALESERV - List form
The list form of ALESERV assigns the correct amount of storage for an ALESERV
parameter list.

The list form is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ALESERV.

ALESERV

� One or more blanks must follow ALESERV.

MF=L

,RELATED=any-value

Parameters
The parameters are explained as follows:

MF=L
Specifies the list form of the ALESERV macro.

,RELATED=any-value
Specifies information used to self document macro by ‘relating’ functions or

ALESERV macro

40 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
macro parameter expression.

ALESERV - Execute form
A remote control parameter list is used in, and can be modified by, the execute
form of the ALESERV macro. The parameter list can be generated by the list form
of the macro.

Syntax
The execute form of the macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ALESERV.

ALESERV

� One or more blanks must follow ALESERV.

Valid parameters (required parameters are underlined):

ADD AL, STOKEN, ACCESS, ALET, CHKPT, MF, RELATED

ADDPASN ALET, CHKPT, MF, RELATED

DELETE ALET, MF, RELATED

EXTRACT ALET, STOKEN, MF, RELATED

SEARCH ALET, STOKEN, AL, RELATED, MF

EXTRACTH STOKEN, MF, RELATED

,ACCESS=PUBLIC Default: ACCESS=PUBLIC

,ACCESS=PRIVATE

,AL=WORKUNIT Default: AL=WORKUNIT

,AL=PASN

,ALET=alet-addr alet-addr: RX-type address or register (2) - (12).
Note: If you specify register notation, the register contains the ALET, rather
than the address of the ALET.

,STOKEN=stoken-addr stoken-addr: RX-type address.

,MF=(E,cntl-addr) cntl-addr: RX-type address or register (2) - (12).

ALESERV macro

Chapter 3. ALESERV — Control entries in the access list 41

Syntax Description

,CHKPT=FAIL Default: CHKPT=FAIL

,CHKPT=IGNORE

,RELATED=any-value

Parameters
The parameters are explained under the standard form of the ALESERV macro,
with the following exception:

,MF=(E,cntl addr)
Specifies the execute form, which uses a remote parameter list. cntl addr
specifies the address of the remote parameter list, created by a list generated
by the list form of the macro.

ALESERV macro

42 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 4. ASASYMBM and ASASYMBF — Substitute text for
symbols

Description

Note: ASASYMBM and ASASYMBF are linkable system services.

Use the ASASYMBM and ASASYMBF services to substitute text for system
symbols. You can explicitly call these services to substitute text for system symbols
in application or vendor programs. The system calls ASASYMBM or ASASYMBF
automatically for system symbols that are specified in:
v Dynamic allocations
v Job control language (JCL)
v Parmlib members
v System commands.

The caller of ASASYMBM or ASASYMBF provides an input string to be substituted
(a pattern), an output buffer, and optionally a table of system symbols and
associated values. ASASYMBM and ASASYMBF substitute values for the system
symbols that it finds in the input string. ASASYMBM and ASASYMBF place the
results of the substitution in the specified output buffer.

The two services differ as follows:
v ASASYMBM obtains and releases dynamic storage for use by the symbol

substitution service. Input is mapped using either the SYMBP or SYMBFP
DSECT of the ASASYMBP mapping macro.

v ASASYMBF allows callers to pass in a 1024 byte work area for the symbol
substitution service to use as dynamic storage, so that there is no need to obtain
(and release) storage for that purpose. For ASASYMBF, input is mapped by the
SYMBFP DSECT of the ASASYMBP mapping macro.

Because the SYMBP and SYMBFP DSECTs are much the same, except for different
field names and one extra field (SymbfpWorkareaAddr) in SYMBFP, you can build
the SYMBFP area in advance and then decide at runtime whether to call or LINK
to ASASYMBM or ASASYMBF.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

© Copyright IBM Corp. 1988, 2015 43

|

|

|

|

|
|

|

|
|
|

|
|
|
|

|
|
|
|

Programming requirements
1. To build the parameter area required by ASASYMBM or ASASYMBF, you must

include the ASASYMBP mapping macro (see z/OS MVS Data Areas in z/OS
Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/).

2. Before calling ASASYMBM or ASASYMBF, the caller must provide the
following in the ASASYMBP mapping macro:
v An input string to be substituted (a pattern) and its length
v An output buffer and its length
v An area in which to place the return code from ASASYMBM.
The caller can optionally provide a symbol table and a timestamp.

3. To determine the return code from ASASYMBM or ASASYMBF, the caller must
examine the fullword pointed to by the SYMBPRETURNCODE@ field in the
ASASYMBP data area.

4. To determine the length of the output from ASASYMBM or ASASYMBF, the
caller must examine the fullword pointed to by SYMBPTARGETLENGTH@ in
the ASASYMBP mapping macro. The output itself is in the area provided by
the caller, which is pointed to by SYMBPTARGET@ in ASASYMBP or
ASASYMBF.

For more information about providing input to ASASYMBM or ASASYMBF in the
ASASYMBP mapping macro, see the section on using the symbol substitution
service in z/OS MVS Programming: Assembler Services Guide.

Restrictions
The caller cannot have any enabled, unlocked task (EUT) FRRs established.

Input register information
Before linking to ASASYMBM or ASASYMBF, the caller must ensure that the
following general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a standard 72-byte save area in the primary address space

Before linking to ASASYMBM or ASASYMBF, the caller does not have to place any
information into any access register (AR).

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

ASASYMBM macro

44 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

|

|

|

|

|
|

|

|

|

http://www.ibm.com/systems/z/os/zos/bkserv/

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
This service is not appropriate for use in a performance-sensitive area.

Syntax
Use the following form of the LINK macro to invoke the ASASYMBM or
ASASYMBF service:

�� label LINK EP = entrypointname , MF = (E , parmarea)
LINKX EP = entrypointname , MF = (E , parmarea)

, SF = (E , parmlist)

��

Note: As an alternative to using LINK or LINKX, callers in 31-bit AMODE can
also:
1. Issue the MVS LOAD macro to load the ASASYMBM or ASASYMBF service

and obtain its entry point address.
2. Issue the CALL macro to call the service. Specify MF=(E,your_parmlist) on the

call.

Parameters
The parameters are explained as follows:

label
The name on the macro invocation.

LINK
LINKX

Names the system service that is to be used for linkage.

EP=entrypointname
Specifies the entry point name, ASASYMBM or ASASYMBF, for the service.

,MF=(E,parmarea)
Specifies the area that you built, mapped by the ASASYMBP macro, that
contains the parameter area and optionally points to the system symbol table
ASASYMBM is to use.

,SF=(E,parmlist)
For use with LINKX when your program is reentrant. Before you call LINKX
with this parameter, define parmlist using the LIST form of LINKX.

Return and reason codes
When the ASASYMBM or ASASYMBF service returns control to your program, the
area pointed to by the SYMBPRETURNCODE@ field of the caller-provided
ASASYMBP area contains a return code.

ASASYMBM macro

Chapter 4. ASASYMBM and ASASYMBF — Substitute text for symbols 45

|
|

|||

|

|

|
|

|

|

Hexadecimal
Return Code

Meaning and Action

00 Meaning: The ASASYMBM or ASASYMBF request completed
successfully. The system performed the requested substitution.

Action: None required.

04 Meaning: Warning. The caller indicated that the system is to assign a
substring of a substitution text to a system symbol. One of the
following occurred:

v The start position in the substring is either beyond the length of the
substitution text or zero.

v The length of the substring is either beyond the length of the
substitution text or zero.

v The length of the substring exceeds the length of the substitution text
beyond the specified start position.

When the program called ASASYMBM or ASASYMBF, the
SYMBTWARNSUBSTRINGS flag in the ASASYMBP mapping macro
indicated that ASASYMBM was to return this return code.

The system continues with symbolic substitution.

Action: None required. If necessary, see the section on errors in
substringing in z/OS MVS Initialization and Tuning Reference. Ensure that
the symbols in the input pattern conform to the rules for substringing.

08 Meaning: Warning. The specified buffer is too small to contain all the
substitution text.

Action: Specify a larger target buffer, or continue processing, using the
value returned in the fullword pointed to by the
SYMBPTARGETLENGTH@ field to determine how much data was
placed into the target buffer.

0C Meaning: Warning. The length of the text to be substituted in place of a
system symbol is null. When the program called ASASYMBM, the
SYMBTCHECKNULLSUBTEXT flag in the ASASYMBP mapping macro
indicated that ASASYMBM was to return this return code.

Action: None required.

10 Meaning: Warning. The system did not find any symbols for which it
was to substitute text. The substitution process completed normally.
When the program called ASASYMBM or ASASYMBF, the
SYMBTWARNNOSUB flag in the ASASYMBP mapping macro indicated
that ASASYMBM was to return this return code.

Action: None required.

Examples of calls to ASASYMBM or ASASYMBF
For examples of calls to ASASYMBM or ASASYMBF, see the section that describes
the symbol substitution service in z/OS MVS Programming: Assembler Services Guide.

ASASYMBM macro

46 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

|

|

|

|

|

Chapter 5. ATTACH and ATTACHX — Create a new task

ATTACH and ATTACHX description

Note: IBM recommends that you use ATTACHX rather than ATTACH.

The ATTACH macro causes the system to create a new task and indicates the entry
point in the program to be given control when the new task becomes active. The
entry point name that is specified must be a member name or an alias in a
directory of a partitioned data set, or must have been specified in an IDENTIFY
macro. If the system cannot locate the specified entry point, it abnormally
terminates the new subtask.

For information about how to select an MVS/SP version other than the current
version, see “Compatibility of MVS macros” on page 1.

The descriptions of ATTACH and ATTACHX in this book are:
v The standard form of the ATTACH macro, which includes general information

about the ATTACH and ATTACHX macros, with some specific information
about the ATTACH macro. The syntax of the ATTACH macro is presented, and
all ATTACH parameters are explained.

v The standard form of the ATTACHX macro, which includes information specific
to the ATTACHX macro and to callers in AR mode.

v The list form of the ATTACH and ATTACHX macros.
v The execute form of the ATTACH and ATTACHX macros.

The new task is a subtask of the originating task; the originating task is the task
that was active when you issued the ATTACH macro. The limit and dispatching
priorities of the new task are the same as those of the originating task unless
modified in the ATTACH macro. The address space control mode (ASC) of the new
task is the same as the originating task.

The load module containing the program to be given control is brought into virtual
storage if a usable copy is not available in virtual storage. The issuing program can
provide an event control block in which termination of the new task is posted and
an exit routine to be given control when the new task is terminated.

If you code the ECB or ETXR parameter, you must issue a DETACH macro to
remove the subtask from virtual storage before the program that issued the
ATTACH macro terminates. If you do not code the ECB or ETXR parameter, the
system automatically removes the subtask from virtual storage upon completion of
the subtask's processing. If you specify the ECB parameter in the ATTACH macro,
the ECB must be in storage addressable by both the issuer of ATTACH and the
system, so that the issuer of ATTACH can wait on it (using the WAIT macro) and
the system can post it on behalf of the terminating task.

Environment
The requirements for the caller of ATTACH or ATTACHX are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key

© Copyright IBM Corp. 1988, 2015 47

Environmental factor Requirement
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: If you use the STAI parameter, 24-bit; otherwise, 24- or 31-

or 64-bit.
Note: AMODE 64 is valid only for the ATTACHX macro.

ASC mode: If you use the STAI parameter, primary; otherwise, primary
or access register (AR)

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: For both primary ASC mode callers and AR ASC mode

callers, control parameters must be in the primary address
space.

Programming requirements
If your program is in AR mode, issue SYSSTATE ASCENV=AR so the system can
generate code that is appropriate for AR mode. If you issue SYSSTATE
ASCENV=AR and then issue ATTACH, the system substitutes the ATTACHX
macro and issues a message telling you that it made the substitution.

Restrictions
v If the caller is running in 31-bit addressing mode, all input parameters can have

addresses greater than 16 megabytes, except for the address of the DCB.
v The caller cannot have an EUT FRR established.
v The parameter list specified for an ESTAI exit must be addressable using a 31-bit

address.

Input register information
If you want to pass a parameter list to the new task without coding the PARAM or
MF=E parameter, general purpose register (GPR) 1 must contain the address of the
list on entry to ATTACH or ATTACHX. Otherwise, before issuing the ATTACH or
ATTACHX macro, the caller does not have to place any information into any
register unless using it in register notation for a particular parameter, or using it as
a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Used as a work register by the system

1 If GPR 15 contains a return code other than X'00', zero; otherwise, the
address of the task control block for the new task

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

ATTACH and ATTACHX macros

48 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

0 Used as a work register by the system

1 Zero (the ALET of the task control block address)

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the ATTACH macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ATTACH.

ATTACH

� One or more blanks must follow ATTACH.

EP=entry name entry name: Symbol.

EPLOC=entry name addr entry name addr: A-type address, or register (2) - (12).

DE=list entry addr list entry addr: A-type address, or register (2) - (12).

,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

,LPMOD=limit prior nmbr limit prior nmbr: Symbol, decimal digit, or register (2) - (12).

,DPMOD=disp prior nmbr disp prior nmbr: Symbol, decimal digit, or register (2) - (12).

,PARAM=(addr) addr: A-type address

,PARAM=(addr),VL=1 Note: addr is one or more addresses, separated by commas. For example,
PARAM=(addr,addr,addr)

,ECB=ecb addr ecb addr: A-type address, or register (2) - (12).

,ETXR=exit rtn addr exit rtn addr: A-type address, or register (2) - (12).

ATTACH and ATTACHX macros

Chapter 5. ATTACH and ATTACHX — Create a new task 49

Syntax Description

,GSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,GSPL=subpool list addr subpool list addr: A-type address, or register (2) - (12).

,SHSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,SHSPL=subpool list addr subpool list addr: A-type address, or register (2) - (12).

,SZERO=YES Default: SZERO=YES

,SZERO=NO

,TASKLIB=dcb addr dcb addr: A-type address, or register (2) - (12).

,STAI=(exit addr) exit addr: A-type address, or register (2) - (12).

,STAI=(exit addr,parm addr) parm addr: A-type address, or register (2) - (12).

,ESTAI=(exit addr) Note: AR mode callers and 31-bit callers must not use STAI.

,ESTAI=(exit addr,parm addr)

,PURGE=QUIESCE Note: PURGE may be specified only if STAI or ESTAI is specified.

,PURGE=NONE Default for STAI: PURGE=QUIESCE

,PURGE=HALT Default for ESTAI: PURGE=NONE

,ASYNCH=NO Default for STAI: ASYNCH=NO

,ASYNCH=YES Default for ESTAI: ASYNCH=YES

Note: ASYNCH may be specified only if STAI or ESTAI is specified.

,TERM=NO Note: TERM may be specified only if ESTAI is specified.

,TERM=YES Default: TERM=NO

,ALCOPY=NO Default: ALCOPY=NO

,ALCOPY=YES

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

EP=entry name
EPLOC=entry name addr
DE=list entry addr

Specifies the entry name, the address of the entry name, or the address of the
name field of a 62-byte list entry for the entry name that was constructed using
the BLDL macro. If EPLOC is coded, the name must be padded to eight bytes,
if necessary.

ATTACH and ATTACHX macros

50 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

When you use the DE parameter with the ATTACH macro, DE specifies the
address of a list that was created by a BLDL macro. You must issue the BLDL
and the ATTACH from the same task; otherwise, the system abnormally
terminates the program with a completion code of X'106'. Do not issue an
ATTACH or a DETACH between issuances of the BLDL and ATTACH.

The system ignores the information you specify on the DE parameter if the
parameter does one of the following:
v Specifies an entry in an authorized library (that is, defined in IEAAPFxx

member of SYS1.PARMLIB)
v Requests access to a program or library that is controlled by the system

authorization facility (SAF).

Instead, the system uses the BLDL macro to construct a new list entry
containing the DE information.

The contents of the GPRs on entry to the subtask are:

Register
Contents

0 Used as a work register by the system.

1 Address of the user parameter list if specified on either the PARAM or
MF=E parameters; otherwise, contains whatever GPR 1 contained at
the time the ATTACH macro was issued.

2-12 Used as work registers by the system.

13 Address of a 144-byte save area.

14 Return address. Bit 0 is 0 if the subtask routine gets control in 24-bit
addressing mode; bit 0 is 1 if the subtask routine gets control in 31-bit
addressing mode.

15 When the subtask routine is to run in 24-bit or 31-bit addressing mode,
the entry point address of the subtask routine.

When the subtask routine is to run in 64-bit addressing mode, it is
expected to use relative branching and register 15 contains a value that
can be used to determine the addressing mode of the issuer of the
ATTACH or ATTACHX macro as follows:
v Issuer AMODE 24: X'FFFFF000'
v Issuer AMODE 31: X'FFFFF002'
v Issuer AMODE 64: X'FFFFF004'

Note: For assistance in converting a program to use relative branching,
refer to the IEABRC and IEABRCX macros.

The contents of the ARs on entry to the subtask are:

Register
Contents

0 Used as a work register by the system.

1 Zero if you specified a user parameter list on either the PARAM or
MF=E parameters; otherwise, contains whatever AR 1 contained at the
time the ATTACH macro was issued.

2-12 Used as work registers by the system.

13-15 Zeros.

ATTACH and ATTACHX macros

Chapter 5. ATTACH and ATTACHX — Create a new task 51

|
|

,DCB=dcb addr
Specifies the address of the data control block for the partitioned data set
containing the entry name.

Note: The DCB must be opened before the ATTACH macro is issued and must
be the DCB used in the BLDL that built the 62-byte DE list entry. The DCB
must remain open until the subtask becomes active, and it should not be
closed immediately following the ATTACH.

Note: DCB must reside in 24-bit addressable storage.

,LPMOD=limit prior nmbr
Specifies the number (0 to 255) to be subtracted from the current limit priority
of the originating task. The resulting number is the limit priority of the new
task, with a higher number representing a higher limit priority.

If you omit this parameter, the current limit priority of the originating task is
assigned as the limit priority of the new task.

,DPMOD=disp prior nmbr
Specifies the signed number (-255 to +255) to be algebraically added to the
current dispatching priority of the originating task. The resulting number is
assigned as the dispatching priority of the new task, with a higher number
representing a higher dispatching priority. If, however, the resulting number is
higher than the limit priority of the new task, the limit priority is assigned as
the dispatching priority.

If a register is designated, a negative number must be in two's complement
form in the register. If you omit this parameter, the dispatching priority
assigned is the smaller of either the new task's limit priority or the originating
task's dispatching priority.

,PARAM=(addr)
,PARAM=(addr),VL=1

Specifies an address or addresses to be passed to the attached program.
ATTACH expands each address inline to a fullword on a fullword boundary, in
the order designated, building a parameter list. When the program receives
control, register 1 contains the address of the first word of the parameter list.

Specify VL=1 only if the called program can be passed a variable number of
parameters. VL=1 causes the high-order bit of the last address to be set to 1;
the bit can be checked to find the end of the list.

,ECB=ecb addr
Specifies the address of an event control block (ECB) for the new task that the
system will use to indicate when the new task terminates. The ECB must be in
storage so that the issuer of ATTACH can wait on it (using the WAIT macro)
and the system can post it on behalf of the terminating task. The return code
(if the task is terminated normally) or the completion code (if the task is
terminated abnormally) is also placed in the event control block. If you code
this parameter, you must issue a DETACH macro to remove the subtask from
virtual storage after the subtask terminates. The system assumes that the ECB
is in the home address space.

,ETXR=exit rtn addr
Specifies the address of the end-of-task exit routine to be given control after
the new task is normally or abnormally terminated. The exit routine receives
control when the originating task becomes active after the subtask is

ATTACH and ATTACHX macros

52 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

terminated, and must be in virtual storage when required. If you code this
parameter, you must issue a DETACH macro to remove the subtask from the
system after the subtask terminates.

The exit routine runs asynchronously under the originating task. The routine
receives control in the addressing mode of the issuer of the ATTACH macro.
The system abnormally ends a task with completion code X'72A' if the task
attempts to create two subtasks with the same exit routine in different
addressing modes. Upon entry, the routine has an empty dispatchable unit
access list (DU-AL). To establish addressability to a data space created by the
originating task and shared with the terminating subtask, the routine can issue
the ALESERV macro with the ADD parameter, and specify the STOKEN of the
data space.

The exit routine receives control with the following environment:

Environmental factor Requirement
Authorization: Problem state, PSW key is the same as TCB key of the issuer

of the ATTACH macro.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24-bit when the issuer of the ATTACH macro is AMODE 24;

Otherwise, 31-bit.
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Not applicable.

The contents of the GPRs when the exit routine receives control are as follows:

Register
Contents

0 Used as a work register by the system.

1 Address of the task control block for the task that was terminated.

2-12 Used as work registers by the system.

13 Address of a 72-byte area provided by the system.

14 Return address (to the system).

15 Address of the exit routine.

The contents of the ARs when the exit routine receives control are:

Register
Contents

0 Used as a work register by the system.

1 Zero

2-12 Used as work registers by the system.

13-15 Zeros

The exit routine is responsible for saving and restoring the registers.

,GSPV=subpool nmbr
,GSPL=subpool list addr

Specifies a virtual storage subpool number less than 128 or the address of a list
of virtual storage subpool numbers each less than 128. Except for subpool zero,
ownership of each of the specified subpools is assigned to the new task.

ATTACH and ATTACHX macros

Chapter 5. ATTACH and ATTACHX — Create a new task 53

Although it can be specified, subpool zero cannot be transferred. When
ownership of a subpool is transferred, programs of the originating task can no
longer obtain or release the associated virtual storage areas.

If GSPL is specified, the first byte of the list contains the number of following
bytes in the list; each of the following bytes contains a virtual storage subpool
number.

,SHSPV=subpool nmbr
,SHSPL=subpool list addr

Specifies a virtual storage subpool number less than 128 or the address of a list
of virtual storage subpool numbers each less than 128. Programs of both
originating task and the new task can use the associated virtual storage areas.

If SHSPL is specified, the first byte of the list contains the number of remaining
bytes in the list; each of the following bytes contains a virtual storage subpool
number.

,SZERO=YES
,SZERO=NO

Specifies whether subpool 0 is to be shared with the subtask. YES specifies that
subpool 0 is to be shared; NO specifies that subpool 0 is not to be shared.

,TASKLIB=dcb addr
Specifies the address of the DCB for the library to be used as the attached
task's library. Otherwise, the task library is propagated from the originating
task. (Note: The DCB must be opened before the ATTACH macro is executed.)
SYS1.LINKLIB is the last library searched. If the DCB address specifies
SYS1.LINKLIB, the search begins with SYS1.LINKLIB, goes through other
libraries, and ends with SYS1.LINKLIB. The system abnormally terminates the
attached task with a completion code of X'806' if the requested module is not
in the task library and is not in the other libraries searched.

See “Location of the Load Module” in z/OS MVS Programming: Assembler
Services Guide for additional information on using the TASKLIB parameter.

Note: DCB must reside in 24-bit addressable storage.

,STAI=(exit addr)
,STAI=(exit addr,parm addr)
,ESTAI=(exit addr)
,ESTAI=(exit addr,parm addr)

Specifies whether a STAI or ESTAI recovery routine is to be defined; any
recovery routines defined for the originating task are propagated to the new
task.

The exit addr specifies the address of the STAI or ESTAI recovery routine that is
to receive control if the subtask encounters an error; the recovery routine must
be in virtual storage at the time of the error. The parm addr is the address of a
parameter list which may be used by the STAI or ESTAI recovery routine. The
address must be 24-bit for STAI and 31-bit for ESTAI.

ATTACHX processing passes control to an ESTAI recovery routine in the
addressing mode of the issuer of the ATTACHX macro. A STAI exit routine can
run only in 24-bit addressing mode. If a caller in the wrong addressing mode
or AR mode specifies the STAI parameter on the ATTACH macro, the caller
ends abnormally with a completion code of X'52A'.

,PURGE=QUIESCE
,PURGE=NONE

ATTACH and ATTACHX macros

54 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,PURGE=HALT
Specifies what action is to be taken with regard to I/O operations if the
subtask encounters an error. No action may be specified (NONE), a halting of
I/O operations may be requested (HALT), or a quiescing of I/O operations
may be indicated (QUIESCE).

Note: You need to understand PURGE processing before using this parameter.
For information about PURGE processing, see z/OS DFSMSdfp Advanced
Services.

,ASYNCH=NO
,ASYNCH=YES

Specifies whether asynchronous exits are to be allowed when a subtask
encounters an error.

ASYNCH=YES must be coded if:
v Any supervisor services that require asynchronous interruptions to complete

their normal processing are going to be requested by the recovery routine.
v PURGE=QUIESCE is specified for any access method that requires

asynchronous interruptions to complete normal input/output processing.
v PURGE=NONE is specified and the CHECK macro is issued in the recovery

routine for any access method that requires asynchronous interruptions to
complete normal input/output processing.

Note: If ASYNCH=YES is specified and the error was an error in
asynchronous exit handling, recursion will develop when an asynchronous exit
handling was the cause of the failure.

,TERM=NO
,TERM=YES

Specifies whether the recovery routine associated with the ESTAI request is
also to be scheduled in the following situations:
v System-initiated logoff
v Job step timer expiration
v Wait time limit for job step exceeded
v DETACH macro without the STAE=YES parameter issued from a

higher-level task (possibly by the system if the higher-level task encountered
an error)

v Operator cancel
v Error on a higher-level task
v Error in the job step task when a non-job-step task issued the ABEND macro

with the STEP parameter
v z/OS UNIX System Services is canceled and the user's task is in a wait in

the z/OS UNIX System Services kernel.

,ALCOPY=NO
,ALCOPY=YES

Determines the contents of the new task's access list and determines the
extended authorization index (EAX) value for the new task. ALCOPY=NO
gives the new task an EAX of zero and a null access list. ALCOPY=YES gives
the new task:
v The same extended authorization index (EAX) as the caller
v A copy of the caller's DU-AL.

The default is ALCOPY=NO.

ATTACH and ATTACHX macros

Chapter 5. ATTACH and ATTACHX — Create a new task 55

,RELATED=value
Specifies information used to self-document a macro by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

ABEND codes
The caller of ATTACH or ATTACHX might receive one of the following ABEND
codes:

ABEND Code Associated Reason Code

12A 0, 4

22A 0

42A None

52A 0, 4, 8

72A 0, 4, 8, C, 10, 14

82A None

92A 0, 4, 8, C, 10, 14, 18

Note: ABEND code 92A results from an error not directly caused by the caller.

Return and reason codes
When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Return Code

Meaning and Action

00 Meaning: Successful completion.

Action: None.

04 Meaning: Program error. ATTACH was issued in a STAE exit;
processing not completed.

Action: Change your program so that the ATTACH is not issued by a
STAE exit routine.

08 Meaning: Environmental error. Insufficient storage available for control
block for STAI/ESTAI request; processing not completed.

Action: Retry the request.

0C Meaning: Incorrect exit routine address or incorrect parameter list
address specified with STAI parameter; processing not completed.

Action: Ensure that the exit routine and parameter list address are
correct.

ATTACH and ATTACHX macros

56 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Meaning and Action

20 Meaning: Program error, due to one of the following reasons:

v The current task was not subspace active and the ATTACHX macro
specified ADDRENV=SUBSP.

v The current task is a subspace task that is not subspace active and
issued either ATTACH, or ATTACHX with ADDRENV=SAME
specified or defaulted.

Action:

v If the current task was not subspace active and the ATTACHX macro
specified ADDRENV=SUBSP, update your program so that it issues
ATTACHX with ADDRENV=SUBSP only if it is subspace active.

v If the current task is a subspace task that is not subspace active and
ADDRENV=SAME was specified or defaulted, update your program
so that it issues ATTACH, or ATTACHX with ADDRENV=SAME
specified or defaulted, only if it is not a subspace task or is a
subspace task that is not subspace active.

24 Meaning: Program error. ADDRENV=SAME was specified or defaulted
and the issuer was a subspace task that is subspace active, but the task
was processing with a different active subspace than that which was in
effect when it was attached.

Action: Update your program if it is a subspace task and subspace
active so that it issues ATTACH or ATTACHX with ADDRENV=SAME
only if the task was processing with the same active subspace that was
in effect when it was attached.

Note: It is possible for the originating task to obtain return code 00, and still not
have the subtask successfully created (for example, if the entry name could not be
found). In such cases, the new subtask is abnormally terminated.

Example 1
Cause the program named in the list to be attached. Establish RTN as an
end-of-task exit routine.
ATTACH DE=LISTNAME,ETXR=RTN

Example 2
Cause PROGRAM1 to be attached, share subpool 5, wait on WORD1 to
synchronize processing with that of the subtask, and establish EXIT1 as an ESTAI
exit.
ATTACH EP=PROGRAM1,SHSPV=5,ECB=WORD1,ESTAI=(EXIT1)

Example 3
Cause PROGRAM1 to be attached and share subpool zero. The subtask is to
receive control:
v With the same extended authorization index (EAX) as the caller.
v With a copy of the caller's DU-AL.
TESTCASE CSECT

.
ATTACH EP=PROGRAM1,SZERO=YES,ALCOPY=YES
.
END TESTCASE

ATTACH and ATTACHX macros

Chapter 5. ATTACH and ATTACHX — Create a new task 57

Example 4
Usage of the SF and MF parameters.

MVC ATTACH_EXEC,ATTACH_LIST Copy static plist to dynamic
*

ATTACHX
PARAM=(PARM1,PARM2,PARM3),
MF=(E,REMOTE_PLIST),
SF=(E,ATTACH_EXEC)

(in the module’s static area)

* .
ATTACH_LIST ATTACHX EP=PROGRAM1,SZERO=YES,ALCOPY=YES,SF=L

*

(in the module’s dynamic area)

REMOTE_PLIST DS 3F
PARM1 DS F
PARM2 DS F
PARM3 DS F
ATTACH_EXEC ATTACHX SF=L

ATTACHX—Create a new task
The ATTACHX macro creates a new task and indicates the entry point in the
program to be given control when the new task becomes active. The ASC mode of
the new task is the same as the ASC mode of the issuer of ATTACHX.

At entry to the attached task, if the caller specifies a user parameter list on the
PARAM parameter or by issuing the execute form of the macro with MF=E:
v GPR 1 contains the address of the user parameter list.
v If the caller of the ATTACHX macro is in AR mode, AR 1 contains an ALET of 0.

All parameters that are valid for ATTACH are also valid for ATTACHX.

Syntax
The standard form of the ATTACHX macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ATTACHX.

ATTACHX

� One or more blanks must follow ATTACHX.

EP=entry name entry name: Symbol.

EPLOC=entry name addr entry name addr: A-type address, or register (2) - (12).

DE=list entry addr list entry addr: A-type address, or register (2) - (12).

ATTACH and ATTACHX macros

58 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

,LPMOD=limit prior nmbr limit prior nmbr: Symbol, decimal digit, or register (2) - (12).

,DPMOD=disp prior nmbr disp prior nmbr: Symbol, decimal digit, or register (2) - (12).

,PARAM=(addr) addr: A-type address

,PARAM=(addr),VL=1 Note: addr is one or more addresses, separated by commas. For example,
PARAM=(addr,addr,addr)

,PLIST4=YES Default: None.

,PLIST4=NO

,PLIST8=YES Default: None.

,PLIST8=NO

,PLISTARALETS=SYSTEM Default: ,PLISTARALETS=SYSTEM

,PLISTARALETS=NO Note: ,PLISTARALETS is valid only with ATTACHX.

,PLIST8ARALETS=NO Default: PLIST8ARALETS=NO

,PLIST8ARALETS=YES

,ECB=ecb addr ecb addr: A-type address, or register (2) - (12).

,ETXR=exit rtn addr exit rtn addr: A-type address, or register (2) - (12).

,GSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,GSPL=subpool list addr subpool list addr: A-type address, or register (2) - (12).

,SHSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,SHSPL=subpool list addr subpool list addr: A-type address, or register (2) - (12).

,SZERO=YES Default: SZERO=YES

,SZERO=NO

,TASKLIB=dcb addr dcb addr: A-type address, or register (2) - (12).

,STAI=(exit addr) exit addr: A-type address, or register (2) - (12).

,STAI=(exit addr,parm addr) parm addr: A-type address, or register (2) - (12).

,ESTAI=(exit addr) Note: AR mode callers and 31-bit callers must not use STA.

ATTACH and ATTACHX macros

Chapter 5. ATTACH and ATTACHX — Create a new task 59

||

||

Syntax Description

,ESTAI=(exit addr,parm addr)

,SDWALOC31=NO Note: SDWALOC31 may be specified only when ESTAI is specified.

,SDWALOC31=YES Default: SDWALOC31=NO

,PURGE=QUIESCE Note: Specify PURGE only if you specify ESTAI.

,PURGE=NONE Default for ESTAI: PURGE=NONE

,PURGE=HALT

,ASYNCH=NO Note: Specify ASYNCH only if you specify ESTAI.

,ASYNCH=YES Default for ESTAI: ASYNCH=YES

,TERM=NO Note: Specify TERM only if you specify ESTAI.

,TERM=YES Default: TERM=NO

,ALCOPY=NO Default: ALCOPY=NO

,ALCOPY=YES

,RELATED=value value: Any valid macro keyword specification.

,KEY=PROP Default: KEY=PROP

,KEY=NINE

,PKM=SYSTEM_RULES Default: PKM=SYSTEM_RULES

,PKM=REPLACE

,ADDRENV=SAME
,ADDRENV=SUBSP

Default: ADDRENV=SAME

Parameters
The parameters are as explained under ATTACH, with the following exceptions:

,PARAM=(addr)
,PARAM=(addr),VL=1

Specifies an address or addresses to be passed to the attached task. ATTACHX
expands each address inline to a fullword boundary and builds a parameter
list with the addresses in the order specified. When the attached task receives
control, register 1 contains the address of the parameter list. When PARAM is
not specified, ATTACHX passes GPR1 and AR1 unchanged to the attached
routine.

When an AR mode caller uses either:
v a parameter list with 4 bytes per entry without specifying

PLISTARALETS=NO; or
v a parameter list with 8 bytes per entry and specifies PLIST8ARALETS=YES,

ATTACH and ATTACHX macros

60 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

|
|

the addresses passed to the subtask are in the first part of the parameter list
and their associated ALETs are in the second part. For a non-AR mode caller,
or for an AR mode caller using a parameter list with 4 bytes per entry with
PLISTARALETS=NO, or for an AR mode caller using a parameter list with 8
bytes per entry without PLIST8ARALETS=YES, ALETs are not passed in the
parameter list. When ALETs are passed in the parameter list, the ALETs occupy
consecutive 4-byte fields, whether the parameter list is 4 or 8 bytes per entry.
See the description of the PLIST4 and PLIST8 keywords below for more
information about controlling the bytes-per-entry in the parameter list. See the
description of the PLISTARALETS and PLIST8ARALETS keyword below for
more information about ALETs and 8-bytes-per-entry parameter lists. See “User
parameters” on page 4 for an example of passing a parameter list in AR mode.

When using a 4-bytes-per-entry parameter list, specify VL=1 when you pass a
variable number of parameters. VL=1 results in setting the high-order bit of the
last address to 1. The 1 in the high-order bit identifies the last address
parameter (which is not the last word in the list when the ALETs are also
saved). When using an 8-bytes-per-entry parameter list, VL=1 is not valid.

Note: If you specify only one address for PARAM= and you are not using
register notation, you do not need to enter the parentheses.

,PLIST4=YES
,PLIST4=NO

,PLIST8=YES
,PLIST8=NO

Defines the size of the parameter list entries for a parameter list to be built by
ATTACHX based on the PARAM keyword.

PLIST4 and PLIST8 cannot be specified together. If neither is specified, the
default is:
v If running AMODE 64, PLIST8=YES
v If not running AMODE 64, PLIST4=YES

If running AMODE 64 and PLIST4=YES is specified, the system builds a
4-bytes-per-entry parameter list just as it would if the program were running
AMODE 24 or AMODE 31 and did not specify PLIST4 or PLIST8.

If running AMODE 24 or AMODE 31 and PLIST8 is specified, the system
builds an 8-bytes-per-entry parameter list just as it would if the program were
running AMODE 64 and did not specify PLIST4 or PLIST8.

,PLISTARALETS=SYSTEM
,PLISTARALETS=NO

If the invoker is in AR mode, indicates whether the parameter list is also to
contain the ALETs associated with the addresses. If the invoker is not in AR
mode, this parameter is ignored.

,PLISTARALETS=SYSTEM
Indicates to follow the default system rules that for an AR mode
invoker:
v For AMODE 24/31, the parameter list is also to contain the ALETs.
v For AMODE 64 with PLIST8ARALETS=YES, the parameter list is

also to contain the ALETs.
v For other cases, the parameter list is not to contain the ALETs.

ATTACH and ATTACHX macros

Chapter 5. ATTACH and ATTACHX — Create a new task 61

|
|

|

|
|
|
|
|

|
|
|

|

|
|

|

,PLISTARALETS=NO
Indicates that the parameter list is not also to contain the ALETs. Do
not specify this parameter with PLIST8ARALETS=YES.

,PLIST8ARALETS=NO
,PLIST8ARALETS=YES

If there is to be an 8-byte-per-entry parameter list and the invoker is in AR
mode, indicates if the parameter list is also to contain the ALETs associated
with the addresses. Otherwise, this parameter is ignored.

,PLIST8ARALETS=NO
Indicates that the 8-byte-per-entry parameter list is to consist of just the
8-byte addresses.

,PLIST8ARALETS=YES
Indicates that the 8-byte-per-entry parameter list is to consist of the
following two parts:
v All the 8-byte addresses,
v All the associated ALETs in consecutive 4-byte fields.

,SDWALOC31=NO
,SDWALOC31=YES

Specifies the location of the ESTAI's SDWA.

If using ESTAI and SDWALOC31=YES, then the SDWA is in 31–bit storage.

If using ESTAI and SDWALOC31=NO, then the SDWA is in 24–bit storage.

,KEY=PROP
,KEY=NINE

PROP specifies that the protection key of the newly created task should be
propagated from the task using ATTACH. NINE specifies that the protection
key of the newly created task should be nine.

You can use KEY=NINE to help to prevent the attached task from
inadvertently modifying storage owned by the attaching task, since a program
running in with PSW key 9 cannot modify storage in any other PSW key. The
following parameters are not valid when KEY=NINE is specified: GSPL, GSPV,
SHSPL, and SHSPV. In addition, if you specify KEY=NINE, you must specify
SZERO=NO.

Within a task that was attached with the KEY=NINE parameter:
v the system-provided save area is above 16M (for a non-KEY=NINE task, the

save area is below 16M)
v the CEL anchor pointer is above 16M. For a task that is not KEY=NINE, the

CEL anchor pointer is below 16M.
v a re-entrant program, whether from an APF-authorized concatenation or not,

is placed into key 0 storage (for a non-KEY=NINE task, only re-entrant
programs from an APF-authorized concatenation are placed into key 0
storage).

,PKM=SYSTEM_RULES
,PKM=REPLACE

SYSTEM_RULES specifies that the system should determine the appropriate
PSW key mask using the following rules:
v If KEY=ZERO, the PSW key mask represents key 0 plus key 9.
v If KEY=PROP, but the mother task's initial key does not match the mother

task's current key, the PSW key mask represents the PSW key of the
daughter task plus key 9.

ATTACH and ATTACHX macros

62 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

|
|
|

v If KEY=PROP and the mother task's initial key matches the mother task's
current key, or if KEY=NINE, the PSW key mask represents the mother
task's initial key plus the mother task's initial PSW key mask plus the PSW
key of the daughter task plus key 9.

REPLACE specifies that the PSW key mask is to be replaced with a value
representing the PSW key of the daughter task plus key 9.

The default is PKM=SYSTEM_RULES.

,ADDRENV=SAME
,ADDRENV=SUBSP

Identifies processing related to the subspace environment for the new task. In
general, the program is responsible for keeping track of whether it is a
subspace task or whether it is subspace active.

A subspace task is a task that was attached either by ATTACHX with
ADDRENV=SUBSP or by a task that itself was a subspace task that was
subspace active at the time of the ATTACH or ATTACHX.

Note: It is up to the program that issues BSG to keep track of whether it is
subspace active.

,ADDRENV=SAME
If the current task is a subspace task and is active to the same active
subspace that was in effect when the current task was attached, make
the new task a subspace task that is active to that subspace. If the
current task is not a subspace task, take no action. Do not use this
option if the current task is a subspace task that either is not subspace
active or is subspace active but for a different subspace than was in
effect when the current task was attached.

,ADDRENV=SUBSP
If the current task is a subspace task and is subspace active, make the
new task a subspace task and active to that subspace. Do not specify
this option if the current task is not subspace active.

Example
With the caller in AR ASC mode, cause PROGRAM1 to be attached and share
subpool zero. The subtask is to receive control:
v With the same extended authorization index (EAX) as the caller.
v With a copy of the caller's DU-AL.
v Executing in AR ASC Mode.
TESTCASE CSECT

.
SYSSTATE ASCENV=AR
.
ATTACHX EP=PROGRAM1,SZERO=YES,ALCOPY=YES
.
END TESTCASE

ATTACH and ATTACHX—List form
Two parameter lists are used on ATTACH or ATTACHX: a control parameter list
and an optional user parameter list. You can construct only the control parameter
list in the list form. Address parameters to be passed in a parameter list to the
attached task can be provided using the list form of the CALL macro. This
parameter list can be referred to in the execute form.

ATTACH and ATTACHX macros

Chapter 5. ATTACH and ATTACHX — Create a new task 63

Syntax
The list form of the ATTACH and ATTACHX is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ATTACH or ATTACHX.

ATTACH
ATTACHX

� One or more blanks must follow ATTACH or ATTACHX.

EP=entry name entry name: Symbol.

EPLOC=entry name addr entry name addr: A-type address.

DE=list entry addr list entry addr: A-type address.

,DCB=dcb addr dcb addr: A-type address.

,LPMOD=limit prior nmbr limit prior nmbr: Symbol or decimal digit.

,DPMOD=disp prior nmbr disp prior nmbr: Symbol or decimal digit.

,PLISTARALETS=SYSTEM Default: ,PLISTARALETS=SYSTEM

,PLISTARALETS=NO Note: ,PLISTARALETS is valid only with ATTACHX.

,PLIST8ARALETS=NO Default: PLIST8ARALETS=NO

,PLIST8ARALETS=YES Note: PLIST8ARALETS is valid only with ATTACHX.

,ECB=ecb addr ecb addr: A-type address.

,ETXR=exit rtn addr exit rtn addr: A-type address.

,GSPV=subpool nmbr subpool nmbr: Symbol or decimal digit.

,GSPL=subpool list addr subpool list addr: A-type address.

,SHSPV=subpool nmbr subpool nmbr: Symbol or decimal digit.

,SHSPL=subpool list addr subpool list addr: A-type address.

,SZERO=YES Default: SZERO=YES

,SZERO=NO

ATTACH and ATTACHX macros

64 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

||

||

Syntax Description

,TASKLIB=dcb addr dcb addr: A-type address.

,STAI=(exit addr) exit addr: A-type address.

,STAI=(exit addr,parm addr) parm addr: A-type address.

,ESTAI=(exit addr) Note: AR mode callers and 31-bit callers must not use STA.

,ESTAI=(exit addr,parm addr)

,SDWALOC31=NO Note: SDWALOC31 is valid only with ATTACHX AND when ESTAI is
specified.

,SDWALOC31=YES Default: SDWALOC31=NO

,PURGE=QUIESCE Note: PURGE may be specified only if STAI or ESTAI is specified.

,PURGE=NONE Default for STAI: PURGE=QUIESCE

,PURGE=HALT Default for ESTAI: PURGE=NONE

,ASYNCH=NO
,ASYNCH=YES

Note: ASYNCH may be specified only if
STAI or ESTAI is specified.
Default for STAI: ASYNCH=NO
Default for ESTAI: ASYNCH=YES

,TERM=NO Note: TERM may be specified only if ESTAI is specified.

,TERM=YES Default: TERM=NO

,ALCOPY=NO
,ALCOPY=YES

Default: ALCOPY=NO

,RELATED=value value: Any valid macro keyword specification.

,KEY=PROP Default: KEY=PROP

,KEY=NINE Note:KEY=NINE is valid only when using ATTACHX.

,PKM=SYSTEM_RULES Default: PKM=SYSTEM_RULES

,PKM=REPLACE Note:PKM is valid only when using ATTACHX.

,ADDRENV=SAME
,ADDRENV=SUBSP

Default: ADDRENV=SAME

,SF=L

Parameters
Some parameters in the syntax diagram are only available on the ATTACHX
macro. If you are using the ATTACH macro, check the standard form to ensure
that the parameters that you want to use are supported by that macro.

ATTACH and ATTACHX macros

Chapter 5. ATTACH and ATTACHX — Create a new task 65

The parameters are explained under the standard form of the ATTACH or
ATTACHX macro, with the following exception:

,SF=L
Specifies the list form of the ATTACH and ATTACHX macros.

ATTACH and ATTACHX—Execute form
Two parameter lists are used on ATTACH and ATTACHX; a control parameter list
and an optional user parameter list to be passed to the attached task. Either or
both of these parameter lists can be remote (that is, in an area you specifically
obtained); you can use the execute form of ATTACH and ATTACHX to refer to or
modify them. If only the user parameter list is remote, parameters that require use
of the control parameter list cause that list to be constructed inline as part of the
macro expansion.

For programs in AR mode, ATTACHX builds the parameter list so that the
addresses passed to the system are in the first half of the parameter list and their
corresponding ALETs are in the last half of the list. Therefore, the parameter list for
callers in AR mode is twice as long as the parameter list for callers in primary
mode for the same number of addresses.

Syntax
The execute form of the ATTACH and ATTACHX is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ATTACH or ATTACHX.

ATTACH
ATTACHX

� One or more blanks must follow ATTACH or ATTACHX.

EP=entry name entry name: Symbol.

EPLOC=entry name addr entry name addr: RX-type address, or register (2) - (12).

DE=list entry addr list entry addr: RX-type address, or register (2) - (12).

,DCB=dcb addr dcb addr:: RX-type address, or register (2) - (12).

,LPMOD=limit prior nmbr limit prior nmbr: Symbol, decimal digit, or register (2) - (12).

,DPMOD=disp prior nmbr disp prior nmbr: Symbol, decimal digit, or register (2) - (12).

,PARAM=(addr) addr: RX-type address

,PARAM=(addr),VL=1 Note: addr is one or more addresses, separated by commas. For example,
PARAM=(addr,addr,addr)

ATTACH and ATTACHX macros

66 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,PLIST4=YES PLIST4 is valid only with ATTACHX.

,PLIST4=NO Default: None.

,PLIST8=YES PLIST8 is valid only with ATTACHX.

,PLIST8=NO Default: None.

,PLISTARALETS=SYSTEM Default: ,PLISTARALETS=SYSTEM

,PLISTARALETS=NO Note: ,PLISTARALETS is valid only with ATTACHX.

,PLIST8ARALETS=NO Default: PLIST8ARALETS=NO

,PLIST8ARALETS=YES Note: PLIST8ARALETS is valid only with ATTACHX.

,ECB=ecb addr ecb addr: RX-type address, or register (2) - (12).

,ETXR=exit rtn addr exit rtn addr: RX-type address, or register (2) - (12).

,GSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,GSPL=subpool list addr subpool list addr: RX-type address, or register (2) - (12).

,SHSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,SHSPL=subpool list addr subpool list addr: RX-type address, or register (2) - (12).

,SZERO=YES
,SZERO=NO

,TASKLIB=dcb addr dcb addr: RX-type address, or register (2) - (12).

,STAI=(exit addr) exit addr: RX-type address, or register (2) - (12).

,STAI=(exit addr,parm addr) parm addr: RX-type address, or register (2) - (12).

,ESTAI=(exit addr) Note: AR mode callers and 31-bit callers must not use STA.

,ESTAI=(exit addr,parm addr)

SDWALOC31=NO Note: SDWALOC31 is valid only when using ATTACHX AND when ESTAI
is specified.

SDWALOC31=YES Default: SDWALOC31=NO

,PURGE=QUIESCE Note: PURGE may be specified only if STAI or ESTAI is specified.

,PURGE=NONE

,PURGE=HALT

,ASYNCH=NO
,ASYNCH=YES

Note: ASYNCH may be specified only if STAI or ESTAI is specified.

ATTACH and ATTACHX macros

Chapter 5. ATTACH and ATTACHX — Create a new task 67

||

||

Syntax Description

,TERM=NO Note: TERM may be specified only if ESTAI is specified.

,TERM=YES

,ALCOPY=NO Default: ALCOPY=NO

,ALCOPY=YES

,RELATED=value value: Any valid macro keyword specification.

,KEY=PROP Default: KEY=PROP

,KEY=NINE Note:KEY=NINE is valid only when using ATTACHX

,PKM=SYSTEM_RULES Default: PKM=SYSTEM_RULES

,PKM=REPLACE Note:PKM is valid only when using ATTACHX.

,MF=(E,prob addr) prob addr: RX-type address, or register (1) or (2) - (12).

,SF=(E,ctrl addr)
,MF=(E,prob addr),SF=(E,ctrl addr)

ctrl addr: RX-type address, or register (2) - (12) or (15).

,ADDRENV=SAME
,ADDRENV=SUBSP

Default: ADDRENV=SAME

Parameters
Some parameters in the syntax diagram are only available on the ATTACHX
macro. If you are using the ATTACH macro, check the standard form to ensure
that the parameters that you want to use are supported by that macro.

The parameters are explained under the standard form of the ATTACH or
ATTACHX, with the following exceptions:

,MF=(E,prob addr)
,SF=(E,ctrl addr)
,MF=(E,prob addr),SF=(E,ctrl addr)

Specifies the execute form of ATTACH or ATTACHX using either a remote user
parameter list or a remote control parameter list.

For a caller in AR mode who specifies MF=E, the parameter list that ATTACH
or ATTACHX generates for the PARAM parameter is twice as long as the
parameter list generated for primary mode callers.

Note:

1. If STAI is specified on the execute form, the following fields are overlaid in the
control parameter list: exit addr, parm addr, PURGE, and ASYNCH. If parm addr
is not specified, zero is used; if PURGE or ASYNCH are not specified, defaults
are used.

ATTACH and ATTACHX macros

68 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

2. If ESTAI is specified on the execute form, then the following fields are overlaid
in the control parameter list: exit addr, parm addr, PURGE, ASYNCH, and
TERM. If parm addr is not specified, zero is used; if PURGE, ASYNCH, or
TERM are not specified, defaults are used.

3. If the STAI or ESTAI is to be specified, it must be completely specified on either
the list or execute form, but not on both forms.

4. If SZERO is not specified on the list or execute form, the default is
SZERO=YES. If SZERO=NO is specified on either the list form or a previous
execute form using the same SF=L, then SZERO=YES is ignored for any
following execute forms of the macro. Once SZERO=NO is specified, it is in
effect for all users of that list.

ATTACH and ATTACHX macros

Chapter 5. ATTACH and ATTACHX — Create a new task 69

ATTACH and ATTACHX macros

70 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 6. BLDMPB — Build a message parameter block

Description
The BLDMPB macro builds the fixed portion of a message parameter block (MPB).
If you are writing a new application or adding new messages to an existing
application, you can place the message text in the install message files rather than
in the application code. To translate message text that exists only in the install
message files, you need to build an MPB.

An MPB consists of a fixed section and a variable length section. The fixed section
contains control information, and the variable length section contains substitution
data. The MPB does not contain any message text. Issue TRANMSG to retrieve the
message text for this MPB. Issue BLDMPB once for each MPB that you want to
construct. Use BLDMPB together with UPDTMPB.

See z/OS MVS Programming: Assembler Services Guide for more information on using
the BLDMPB macro.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt Status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Not applicable

Programming requirements
Before invoking BLDMPB, you must obtain storage for the MPB. You must include
the mapping macro CNLMMPB. See z/OS MVS Data Areas in z/OS Internet
Library at http://www.ibm.com/systems/z/os/zos/bkserv/ for more information
on CNLMMPB.

Restrictions
None.

Input register information
Before issuing the BLDMPB macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

© Copyright IBM Corp. 1988, 2015 71

http://www.ibm.com/systems/z/os/zos/bkserv/

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The BLDMPB macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede BLDMPB.

BLDMPB

� One or more blanks must follow BLDMPB.

MPBPTR=mpb addr mpb addr: RX-type address or register (2) - (12).

,MPBLEN=mpb length addr mpb length addr: RX-type address or register (2) - (12).

,MSGID=msg id addr msg id addr: RX-type address or register (2) - (12).

,MSGIDLEN=msg id length msg id length addr: RX-type address or register (2) - (12).

addr

,MSGFMTNM=format num format num addr: RX-type address or register (2) - (12).

addr

,MSGLNNM=line num addr line num addr: RX-type address or register (2) - (12).

BLDMPB macro

72 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
The parameters are explained as follows:

MPBPTR=mpb addr
Specifies the address or a register containing the address of the area in which
BLDMPB is to build the MPB.

,MPBLEN=mpb length addr
Specifies the address or a register containing the address of the length of the
area in which BLDMPB is to build the MPB. Determine the length by adding
the length of the variable data to the length of the MPB header section.
Variable data includes entries associated with each piece of substitution data.

,MSGID=msg id addr
Specifies the address or a register containing the address of the area that
contains the message identifier.

,MSGIDLEN=msg id length addr
Specifies the address or a register containing the address of the length of the
MSGID field. The message identifier can be up to 10 characters long. If you
don't specify MSGIDLEN, BLDMPB will use, as a default, the length of the
MSGID field in the DSECT mapping. You must specify MSGIDLEN if you use
register notation for the MSGID keyword.

,MSGFMTNM=format num addr
Specifies the address or a register pointing to an area containing a 3-byte
message format number. If you do not specify MSGFMTNM, the default is a
blank.

,MSGLNNM=line num addr
Specifies the address or a register pointing to an area containing the 2-byte
message line number. If you do not specify MSGLNNM, the default is a blank.

Return and reason codes
When BLDMPB completes, register 15 contains a return code, and register 0
contains a reason code:

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 00 Successful processing.

0C 33 The MPB is too small.

0C 34 The value for MSGIDLEN is zero or negative.

Example
Build and update an MPB for a message that contains as substitution data the third
day of the week.
BLDMPBA CSECT
BLDMPBA AMODE 31
BLDMPBA RMODE ANY

STM 14,12,12(13)
BALR 12,0
USING *,12
ST 13,SAVE+4
LA 15,SAVE
ST 15,8(13)
LR 13,15

* OBTAIN WORKING STORAGE AREA FOR THE MPB *

BLDMPB macro

Chapter 6. BLDMPB — Build a message parameter block 73

GETMAIN RU,LV=STORLEN,SP=SP230
LR R4,R1 SAVE GETMAINED AREA ADDRESS

*

* CREATE MPB HEADER SECTION *

*

BLDMPB MPBPTR=(R4),MPBLEN=MPBL,MSGID=MSGID,
MSGIDLEN=MIDLEN

*

* ADD SUBSTITUTION DATA TO MPB *

*

LR R2,R4 GET ADDRESS OF GETMAINED STORAGE
A R2,MPBL ADD LENGTH OF MPB TO POINT TO C

VARIABLE AREA
USING VARS,R2

*
UPDTMPB MPBPTR=(R4),MPBLEN=MPBL,SUBOOFST=VARS, C

TOKEN=TOKN,TOKLEN=TOKL,TOKTYPE=TOKT, C
SUBSDATA=SDATA,SUBSLEN=SDATAL

*
*

* FREE STORAGE AREA *

*

FREEMAIN RU,LV=STORLEN,SP=SP230,A=(4)
*

L 13,SAVE+4
LM 14,12,12(13)
BR 14
DROP

MPBL DC A(MPBLEN) ADDRESS OF MPB LENGTH
MSGID DC CL10’MSGID2’ MSG ID OF MESSAGE REPRESENTED BY MPB
MIDLEN DC A(MIDL) ADDRESS OF MSG ID LENGTH
TOKN DC CL3’DAY’ TOKEN NAME
TOKL DC F’3’ LENGTH OF TOKEN NAME
TOKT DC CL1’3’ TOKEN TYPE (DAY)
SDATA DC CL1’3’ SUBSTITUTION DATA (3RD DAY OF WEEK)
SDATAL DC A(SDL) ADDRESS OF SUBSTITUTION DATA LENGTH
SAVE DC 18F’0’ SAVE AREA
SP230 EQU 230 SUBPOOL SPECIFICATION FOR GETMAIN
STORLEN EQU 256 LENGTH OF GETMAINED STORAGE
SDL EQU 6 SUBSTITUTION DATA LENGTH
MIDL EQU 6 MSG ID LENGTH
MPBLEN EQU (MPBVDAT-MPB)+(MPBMID-MPBMSG)+(MPBSUB-MPBSB)+MIDL+SDL C

TOTAL MPB LENGTH
R1 EQU 1 REGISTER 1
R2 EQU 2 REGISTER 2
R4 EQU 4 REGISTER 3

DSECT
CNLMMPB

VARS DSECT
VARSAREA DS CL24
VARSLEN EQU *-VARS

END BLDMPBA

BLDMPB macro

74 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 7. BLSABDPL — Map dump formatting exit data

Description
The BLSABDPL macro maps several structures that are part of the interface to
dump formatting exits. Dump formatting exits are routines that receive control
from one of the following:
v The interactive problem control system (IPCS)
v The SNAP macro or SNAPX macro
v The ABEND macro.

BLSABDPL maps the following structures:
v The processor status record
v The storage access parameter list
v The select ASID parameter list
v The control block and format model processor parameter list
v The ECT parameter list
v The format parameter list extension block.

See z/OS MVS IPCS Customization for information about IPCS exit services; see
z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/systems/
z/os/zos/bkserv/ for a mapping of the BLSABDPL data area.

Environment
Because BLSABDPL is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSABDPL is not an executable macro, there is no need to save and
restore register contents.

Performance implications
None.

Syntax
The standard form of the BLSABDPL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

© Copyright IBM Corp. 1988, 2015 75

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

� One or more blanks must precede BLSABDPL.

BLSABDPL

� One or more blanks must follow BLSABDPL.

,AMDCPST=YES

,AMDCPST=NO Default: AMDCPST=NO

,AMDEXIT=YES Default: AMDEXIT=YES

,AMDEXIT=NO

,AMDOSEL=YES Default: AMDOSEL=YES

,AMDOSEL=NO

,AMDPACC=YES Default: AMDPACC=YES

,AMDPACC=NO

,AMDPECT=YES Default: AMDPECT=YES

,AMDPECT=NO

,AMDPFMT=YES Default: AMDPFMT=YES

,AMDPFMT=NO

,AMDPSEL=YES Default: AMDPSEL=YES

,AMDPSEL=NO

,DSECT=YES Default: DSECT=YES

,DSECT=NO

Parameters
The parameters are explained as follows:

,AMDCPST=YES
,AMDCPST=NO

Specifies whether the format of the CPU status data, available through the
IPCS storage access services, is to be mapped (YES) or suppressed (NO).

When this parameter is not specified, the default is NO.

The system uses DSECT AMDCPMAP to map the format of CPU status data,
AMDCPST = YES, and ignores the DSECT = NO option when specified.

,AMDEXIT=YES

BLSABDPL macro

76 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,AMDEXIT=NO
Specifies whether the common exit parameter list, BLSABDPL, is to be mapped
(YES) or suppressed (NO).

When this parameter is not specified, the default is YES.

The common exit parameter list contains two parts: ABDPL and ADPLEXTN.
DSECT=YES causes DSECT statements to be generated for both. DSECT=NO
suppresses the DSECT statements and causes ABDPL and ADPLEXTN to be
defined as the labels associated with the first bytes described in the ABDPL
and ADPLEXTN exit parameter lists.

,AMDOSEL=YES
,AMDOSEL=NO

Specifies whether the select ASID service output data available under IPCS is
to be mapped (YES) or suppressed (NO).

When this parameter is not specified, the default is YES.

When the DSECT=NO option is specified, it is ignored. The select ASID
parameter list is mapped by DSECT ADPLPSEL.

The system uses DSECT ADPLPSEL to map the select ASID parameter list,
AMDOSEL = YES, and ignores the DSECT = NO option when specified.

,AMDPACC=YES
,AMDPACC=NO

Specifies whether the storage access service parameter list is to be mapped
(YES) or suppressed (NO).

When this parameter is not specified, the default is YES.

The storage access service parameter list is described as ADPLPACC.
DSECT=YES causes DSECT statements to be generated for ADPLPACC.
DSECT=NO suppresses the DSECT statements and causes ADPLPACC to be
defined as the label associated with the first byte described in the storage
access service parameter list.

,AMDPECT=YES
,AMDPECT=NO

Specifies whether the ECT service parameter list is to be mapped (YES) or
suppressed (NO).

When this parameter is not specified, the default is YES.

The ECT service parameter list is described as ADPLPECT. DSECT=YES causes
DSECT statements to be generated for ADPLPECT. DSECT=NO suppresses the
DSECT statements and causes ADPLPECT to be defined as the label associated
with the first byte described in the ECT service parameter list.

,AMDPFMT=YES
,AMDPFMT=NO

Specifies whether the parameter list used by both the control block formatter
and the format model processor services is to be mapped (YES) or suppressed
(NO).

When this parameter is not specified, the default is YES.

The parameter list used by both the control block formatter and the format
model processor services is described as ADPLPFMT. DSECT=YES causes
DSECT statements to be generated for ADPLPFMT. DSECT=NO suppresses the
DSECT statements and causes ADPLPFMT to be defined as the label associated
with the first byte described in the parameter list.

BLSABDPL macro

Chapter 7. BLSABDPL — Map dump formatting exit data 77

,AMDPSEL=YES
,AMDPSEL=NO

Specifies whether the select ASID service parameter list is to be mapped (YES)
or suppressed (NO).

When this parameter is not specified, the default is YES.

The ASID service parameter list is described as ADPLPSEL. DSECT=YES
causes the DSECT statements to be generated for ADPLPSEL. DSECT=NO
suppresses the DSECT statements and causes ADPLPSEL to be defined as the
label associated with the first byte described in the ASID service parameter list.

,DSECT=YES
,DSECT=NO

Specifies whether parameter lists mapped by BLSABDPL are to be mapped as
DSECTs (YES) or not (NO).

When this parameter is not specified, the default is YES.

Note: Output data from services can also be mapped by BLSABDPL. Output
data are always mapped as DSECTs. These DSECTs cannot be suppressed by
DSECT=NO. To determine whether DSECT=NO can suppress a specific
DSECT, see the above parameters.

Example
Code the macros to invoke the select ASID service routine. This routine generates a
list of selected address spaces within a dump by reserving space for an initialized
select ASID service parameter list and by defining the mapping of the ABDPL for
the user-written exit routine.
BLSABDPL DSECT=NO,AMDEXIT=NO,AMDOSEL=NO,AMDPACC=NO,

AMDPFMT=NO,AMDPECT=NO,AMDPSEL=YES

BLSABDPL macro

78 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 8. BLSACBSP — Map the control block status
(CBSTAT) parameter list

Description
BLSACBSP maps the control block status (CBSTAT) parameter list. Use this
parameter list when calling the CBSTAT service from within an installation-written
interactive problem control system (IPCS) exit routine.

The control block status (CBSTAT) service invokes all CBSTAT exit routines for a
requested control block.

See z/OS MVS IPCS Customization for information about the CBSTAT exit service.
See z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/
systems/z/os/zos/bkserv/ for a mapping of the BLSACBSP data area.

Environment
Because BLSACBSP is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSACBSP is not an executable macro, there is no need to save and
restore register contents.

Performance implications
None.

Syntax
The standard form of the BLSACBSP macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede BLSACBSP.

BLSACBSP

� One or more blanks must follow BLSACBSP.

© Copyright IBM Corp. 1988, 2015 79

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

DSECT=YES Default: DSECT=YES

DSECT=NO

ABITS=31 Default: ABITS=31

ABITS=64

Note: Users must supply a label (name), and start it in column 1 of the BLSACBSP
macro. When the BLSACBSP macro is processed, the label becomes the record
name and the prefix to the name of each field in the record.

Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

A CBSTAT parameter list is mapped with a DSECT (DSECT=YES) or a CBSTAT
parameter list is mapped, but no DSECT is generated (DSECT=NO).

ABITS=31
ABITS=64

Either a 31-bit or a 64-bit storage map is to be referenced.

Example
Code the following to map the CBSTAT service list, but not as a DSECT. All fields
will appear with the prefix CBSP.
CBSP BLSACBSP DSECT=NO

BLSACBSP macro

80 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 9. BLSADSY — Map the add symptom service
parameter list

Description
BLSADSY maps the add symptom service parameter list. Use this parameter list
when calling the add symptom service from within an installation-written
interactive problem control system (IPCS) exit routine. The add symptom service
permits exit routines to generate symptoms from stand-alone dumps, SVC dumps,
and the SYSMDUMP type of ABEND dump.

See z/OS MVS IPCS Customization for information about the add symptom service.
See z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/
systems/z/os/zos/bkserv/ for a mapping of the BLSADSY data area.

Environment
Because BLSADSY is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSADSY is not an executable macro, there is no need to save and restore
register contents.

Performance implications
None.

Syntax
The standard form of the BLSADSY macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede BLSADSY.

BLSADSY

� One or more blanks must follow BLSADSY.

DSECT=YES Default: DSECT=YES

© Copyright IBM Corp. 1988, 2015 81

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

DSECT=NO

Note: Users must supply a label (name), and start it in column 1 of the BLSADSY
macro. When the BLSADSY macro is processed, the label becomes the record name
and the prefix to the name of each field in the record.

Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

An add symptom service parameter list is mapped with a DSECT
(DSECT=YES) or an add symptom service parameter list is mapped, but no
DSECT is generated (DSECT=NO).

Example
Code the following to map the add symptom service list, but not as a DSECT. All
fields will appear with the prefix ADSY.
ADSY BLSADSY DSECT=NO

BLSADSY macro

82 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 10. BLSAPCQE — Map the contention queue element
(CQE) create service parameter list

Description
BLSAPCQE maps the contention queue element (CQE) create service parameter
list. Use this parameter list when calling the CQE create service from within an
installation-written interactive problem control system (IPCS) exit routine to create
CQE entries in the dump directory.

See z/OS MVS IPCS Customization for information about the CQE create service.
See z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/
systems/z/os/zos/bkserv/ for a mapping of the BLSAPCQE data area.

Environment
Because BLSAPCQE is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSAPCQE is not an executable macro, there is no need to save and
restore register contents.

Performance implications
None.

Syntax
The standard form of the BLSAPCQE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede BLSAPCQE.

BLSAPCQE

� One or more blanks must follow BLSAPCQE.

DSECT=YES Default: DSECT=YES

DSECT=NO

© Copyright IBM Corp. 1988, 2015 83

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

Note: Users must supply a label (name), and start it in column 1 of the BLSAPCQE
macro. When the BLSAPCQE macro is processed, the label becomes the record
name and the prefix to the name of each field in the record.

Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

A contention queue element (CQE) create parameter list (PCQE) is mapped
with a DSECT (DSECT=YES) or a PCQE is mapped, but no DSECT is
generated (DSECT=NO). IPCS initializes the PCQE as follows:
v The PCQE control block identifier is filled in.
v Pointer and length fields are set to 0.
v The OWNER/WAITER identifier field is set to “O ” to indicate an owner

CQE.
v Character fields not specifically mentioned are set to blanks.
v The data description of the control block which represents the owner or

waiter for the resource is set as follows:
– Address space type code is set to indicate a virtual address (CV). This is

the only address space type code allowed.
– The processor field is set to X'FFFFFFFF'. This is done to avoid specifying

processor 0 accidentally.
– The ASID is set to 1 for the MASTER address space. The ASID field needs

to get set to the ASID for the owner or waiter for the resource. If the
ASID is not known and the control block is in common storage, use ASID
1 as the default.

– The data type is set to “M” to indicate that the specified name is a
STRUCTURE. This is the only data type allowed for this release.

Example
Code the following to map the contention queue element (CQE) create service
parameter list, but not as a DSECT. All fields will appear with the prefix PCQE.
PCQE BLSAPCQE DSECT=NO

BLSAPCQE macro

84 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 11. BLSQFXL — Map the format exit routine list (FXL)

Description
BLSQFXL maps the format exit routine list (FXL) used by model processor
formatting exit routines. FXL contains the addresses of data of potential interest to
the model processor formatting exit routine, as well as a description of the
formatted line.

See z/OS MVS IPCS Customization for information about model processor
formatting exit routines. See z/OS MVS Data Areas in z/OS Internet Library at
http://www.ibm.com/systems/z/os/zos/bkserv/ for a mapping of the BLSQFXL
data area.

Environment
Because BLSQFXL is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSQFXL is not an executable macro, there is no need to save and restore
register contents.

Performance implications
None.

Syntax
The standard form of the BLSQFXL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede BLSQFXL.

BLSQFXL BLSQFXL must begin in column 1.

� One or more blanks must follow BLSQFXL.

DSECT=YES Default: DSECT=YES

DSECT=NO

© Copyright IBM Corp. 1988, 2015 85

http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

An FXL is mapped with a DSECT (DSECT=YES) or an FXL is mapped, but no
DSECT is generated (DSECT=NO).

Example
Code the following to map an FXL, but not as a DSECT.
BLSQFXL DSECT=NO

BLSQFXL macro

86 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 12. BLSQMDEF — Define a control block format
model

Description
The BLSQMDEF macro starts and ends the definition of a control block format
model. The end of the model is indicated by a BLSQMDEF macro with only the
END keyword specified.

The BLSQMDEF and BLSQMFLD macros work together to create a formatting
model. This is the structure of the formatting model:
v One BLSQMDEF macro to begin the model definition.
v At least one BLSQMFLD macro to define the attributes of a desired control block

field.
v One BLSQMDEF macro to end the model definition.

The order of the BLSQMFLD statements in the formatting model determines the
order of the fields in the output of the formatting process. Only the BLSQMFLD
macro can be placed between the BLSQMDEF macros that delimit the start and
end of the model definition. Use the BLSQSHDR macro, which defines text strings
to be displayed in the formatted output, to clarify the data. Place BLSQSHDR after
the second BLSQMDEF.

BLSQMDEF, BLSQMFLD, and BLSQSHDR allow interactive problem control
system (IPCS) and SNAP users to specify the presentation of data and messages
produced by user-written exit routines.

See z/OS MVS IPCS Customization for information about format models.

Environment
Because BLSQMDEF is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSQMDEF is not an executable macro, there is no need to save and
restore register contents.

Performance implications
None.

© Copyright IBM Corp. 1988, 2015 87

Syntax
The standard form of the BLSQMDEF macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1

� One or more blanks must precede BLSQMDEF.

BLSQMDEF

� One or more blanks must follow BLSQMDEF.

END END is required when the BLSQMDEF macro is terminating the current
format model definition. When END is specified, no other options are
allowed.

,BASELBL=label label: Symbol.

,CBLEN=value value: Decimal constant, hexadecimal constant, or an absolute value.

CBLEN is required unless the END parameter is specified.

,MAINTLV=name name: 1 to 8 byte character string.

,ACRONYM=name name: 1 to 8 byte character string

When ACRONYM is specified, the ACROLBL or ACROFF parameters must
also be specified. When neither ACROLBL nor ACROFF are specified, a
default zero is assumed.

,ACROLEN=value value: Decimal constant, hexadecimal constant, or absolute expression of a
number from 1 to 8.

,ACROLBL=label label: Symbol.

Use ACROLBL only when BASELBL is specified.

,ACROFF=value value: Decimal constant, hexadecimal constant, or absolute value.

Use ACROFF when ACRONYM is not at offset zero and BASELBL is not
specified, or when both ACROFF and ACROLBL are specified.

,PREFIX=value value: Integer constant 0 - 8 inclusive.

Default: PREFIX=3

,OFFSETS=PRINT Default: OFFSETS=PRINT

,OFFSETS=NOPRINT

BLSQMDEF macro

88 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,STRTCOL=value value: Decimal constant, hexadecimal constant, or an absolute expression.

Default: STRTCOL=0

,LBLSPC=value value: Decimal constant, hexadecimal constant, or an absolute expression.

Default: LBLSPC=0

,HEADER=name name: One to eight byte character string.

When HEADER is not specified, ACRONYM value is used.

When neither HEADER nor ACRONYM is specified, only the virtual
address of the block is displayed as a header.

,VIEWMATCH=VALUE Default: View matching by value.

Parameters
The parameters are explained as follows:

END
Specifies the termination of the control block model. This parameter is required
to end the control block definition. When this parameter is specified all other
parameters are ignored.

,BASELBL=label
Specifies the label of an assembler statement, used to calculate field offsets.
When specified, all field offsets calculated by the BLSQMFLD macro are
relative to this label. When not specified, all field offsets must be explicitly
specified on the BLSQMFLD macro via the OFF parameter.

,CBLEN=value
Specifies the total length of the control block. Value may be a decimal constant,
a hexadecimal constant, or an absolute expression of a number from 0 to 32767.
If a length of zero is specified, the length of the control block must be
separately specified when the model is used. This parameter is required except
when the END parameter is specified. This value is used when the format
model processor service accesses the data from the dump on behalf of the
calling exit program.

,MAINTLV=name
Specifies the maintenance level of the control block. The maintenance level
name may be a 1 to 8 byte character string that contains no blanks.

,ACRONYM=name
Specifies the contents of the control block acronym field. Name may be a one
to eight byte character string that contains no blanks. When this field is
specified, the ACROLBL or ACROFF parameter should also be specified to
define the offset of the acronym field within the control block. When neither
the ACROLBL nor the ACROFF parameter is specified, an offset of zero is
assumed. The model processor service compares the contents of the data at the
specified offset and length with this name when the calling exit program
requests the option to check acronyms. The name is also used to form the
dump header when the header keyword is not coded.

BLSQMDEF macro

Chapter 12. BLSQMDEF — Define a control block format model 89

,ACROLEN=value
Specifies the length of the acronym name, defined by the ACRONYM
parameter, when the acronym name requires blanks. When omitted, the length
is the actual length of the name specified in the ACRONYM parameter without
blanks. Value may be a decimal constant, hexadecimal constant, or absolute
expression of a number from zero to eight.

,ACROLBL=label
Specifies the label on the assembler statement that defines the acronym field.
This label is used with the label provided by BASELBL to calculate the
acronym field offset. Use this parameter only when BASELBL is specified. The
ACROLBL parameter is ignored when ACROFF is specified.

,ACROFF=value
Specifies the offset of the field containing the control block acronym within the
control block. Use this parameter when the acronym is not at offset zero and
BASELBL is not specified. Value may be a decimal constant, hexadecimal
constant, or absolute expression.

,PREFIX=value
Specifies the number of characters to be removed from the front of a field
name to produce the field label. The field name is defined by the NAME
parameter of the BLSQMFLD macro. Value must be an integer constant 0 - 8.
When PREFIX=8 is specified, the fields have no labels, and the model
processor service does not allocate print buffer space for labels. This is called
no-label mode and is used to produce denser data output. When not specified,
the default is PREFIX=3.

The PREFIX parameter on the BLSQMDEF and BLSQMFLD macros behave
differently. The PREFIX parameter on the BLSQMFLD macro allows you to
specify a prefix value of 8 or more to map fields with names that are more
than 8 characters long. The PREFIX parameter on the BLSQMDEF macro does
not allow more than 8 characters for compatibility reasons. Note that
specifying a PREFIX value of 8 on the BLSQMDEF macro does not mean that
characters 9 - 16 of a 16-character variable will be displayed; rather, a value of
8 indicates the no-label mode, as described earlier. If you want a prefix of 8 or
more, you must specify a PREFIX value less than 8 on the BLSQMDEF
invocation and then specify your desired prefix on a BLSQMFLD invocation.

,OFFSETS=PRINT
,OFFSETS=NOPRINT

Specifies whether the field offset information should be printed at the
beginning of each output line of the formatted control block. PRINT specifies
that offset information should be included on the formatted line; NOPRINT
causes the offset information to be suppressed. When this parameter is not
specified, a default of PRINT is used. Specifying OFFSETS=NOPRINT is
identical to setting bit ADPLPSOF in field ADPLPOPT to B'1'; both the
OFFSETS=NOPRINT parameter and the ADPLPSOF bit suppress offsets.
ADPLPOPT is mapped by the BLSABDPL macro.

,STRTCOL=value
Specifies a left margin for each line of the formatted control block. Value may
be a decimal constant, a hexadecimal constant, or an absolute expression.
When not specified, or specified as zero, the format model processor uses the
value specified by IPCS or SNAP in the field ADPLSCOL in ADPLEXTN,
which is mapped by the BLSABDPL macro.

,LBLSPC=value
Specifies the spacing between label fields in the formatted output. Value may

BLSQMDEF macro

90 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

|
|
|
|
|
|
|
|
|
|

be a decimal constant, hexadecimal constant, or an absolute expression. When
not specified, or specified as zero, it indicates to the format model processor
that the value specified by IPCS or SNAP should be used in field ADPLCOLS
in ADPLEXTN, which is mapped by the BLSABDPL macro. The LBLSPC value
is initially set to 20.

Note: When value is 18, the output is condensed.

,HEADER=name
Specifies the heading that precedes the formatted control block. The heading
consists of either the HEADER or ACRONYM followed by the virtual address
of the block. Name may be any one to eight byte character string that contains
no blanks. When HEADER is omitted, the ACRONYM value is used for the
heading. When neither the ACRONYM parameter nor the HEADER parameter
is specified, the formatted control block has the virtual address as a heading.

,VIEWMATCH=VALUE
Specifies that the first eight bits of the view control fields in the format
parameter and a model entry must match to process that model entry. When
not specified, any bit match in the first 12 bits is sufficient. Rules for the
component portion of the view apply in both cases.

BLSQMDEF macro

Chapter 12. BLSQMDEF — Define a control block format model 91

BLSQMDEF macro

92 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 13. BLSQMFLD — Specify a formatting model field

Description
The BLSQMFLD macro identifies fields that are to be formatted. These fields are
within a data area or a control block. A BLSQMFLD macro must be coded for each
field.

The BLSQMDEF and BLSQMFLD macros work together to create a formatting
model for a control block. This is the structure of the model:
v One BLSQMDEF macro to begin the model definition.
v At least one BLSQMFLD macro to define the attributes of a desired control block

field.
v One BLSQMDEF macro to end the model definition.

The order of the BLSQMFLD statements in the formatting model determines the
order of the fields in the output of the formatting process. Only the BLSQMFLD
macro can be placed between the BLSQMDEF statements. The BLSQSHDR macro,
which defines text strings to be displayed in the formatted output, clarifies the
data and should be placed after the second BLSQMDEF.

BLSQMDEF, BLSQMFLD, and BLSQSHDR allow interactive problem control
system (IPCS) and SNAP users to specify the presentation of data and messages
produced by user-written exit routines.

See z/OS MVS IPCS Customization for information about format models.

Environment
Because BLSQMFLD is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions

Register information
Because BLSQMFLD is not an executable macro, there is no need to save and
restore register contents.

Performance implications
None.

Syntax
This is the standard form of the BLSQMFLD macro:

Syntax Description

name name: Symbol. Begin name in column 1.

© Copyright IBM Corp. 1988, 2015 93

Syntax Description

� One or more blanks must precede BLSQMFLD.

BLSQMFLD

� One or more blanks must follow BLSQMFLD.

NAME=name

NAME=* name: Symbol.

,SHDR=addr addr: A-type address.

Note: When SHDR is specified, only CALLRTN, NEWLINE, NOSPLIT, and
VIEW are allowed.

,OFF=value value: Decimal constant, hexadecimal constant, or absolute value.

Note: OFF is required when BASELBL is not specified on the BLSQMDEF
macro or when NAME=* is specified on the BLSQMFLD macro.

,LEN=value value: Decimal constant, hexadecimal constant, or absolute expression.

Note: LEN is required when name parameter label is unresolved.

,VIEW=(list) (list): Integers between 1 and 16, inclusive.

,VIEW=value value: Decimal constant, hexadecimal constant, or absolute value.

Default: VIEW=X‘0200’.

,ARRAY=constants constants: ((DL1,DU1),(DL2,DU2))

,ARRAY=value DL1,DU1,DL2,DU2: Decimal constants, hexadecimal constants, or absolute
values.

,ARRAY=* value: Decimal constant, hexadecimal constant, or absolute value.

,ARRAY=END Note: LEN and OFF are ignored when the specification of ARRAY= is other
than ARRAY=END.

END terminates an array definition.

,DTYPE=ANY

,DTYPE=QANY

,DTYPE=HEX

,DTYPE=EBCDIC

,DTYPE=ASCII

,DECODE

,INVERT

BLSQMFLD macro

94 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

|

|

Syntax Description

,ATTACH

,IMBED

,STACK

,CALLCBF

,NEWLINE

,NOLABEL

,CALLRTN

,LABEL=label label: Symbol.

,LAST8

,PREFIX=value value: Integer 0 or greater.

Note: When omitted, value specified in the last preceding BLSQMDEF or
BLSQMFLD macro is used.

,NOSPLIT

,NUMDEC Default: Hexadecimal.

,NOCOLNM Default: Number the columns.

,NOROWNM

,STRTCOL=value value: Decimal constant, hexadecimal constant, or absolute value.

Default: Value specified by IPCS or SNAP.

,COLNUM=value value: Decimal constant, hexadecimal constant, or absolute value.

Default: A value is calculated.

,COLSEP=value value: Decimal constant, hexadecimal constant, or absolute value.

Default: A value is calculated.

,ITEMSEP=value value: Decimal constant, hexadecimal constant, or absolute value.

Default: A value is calculated.

BLSQMFLD macro

Chapter 13. BLSQMFLD — Specify a formatting model field 95

||

|

|

Syntax Description

,ORDER=(1,2) Default: ORDER=(1,2)

,ORDER=(2,1)

,HEXONLY

,MODELNAME(modelname)

,MSGID(msgid)

,SRCNDX Default: 0

Parameters
The parameters are explained as follows:

NAME=name
NAME=*

Specifies the name of the control block field described by the BLSQMFLD
macro. When BASELBL is specified on the BLSQMDEF macro, the NAME
parameter is used with the BASELBL parameter to calculate the offset of this
field from the start of the control block. When BASELBL is not specified on the
BLSQMDEF macro, OFF is required on the BLSQMFLD macro.

A single asterisk specifies an unnamed, reserved field. The use of single
asterisk for the name of a control block field requires that the OFF and LEN
parameters be specified. The format model processor service replaces the
asterisk with a "RSV....." label.

When the LABEL parameter is specified, NAME is only used to calculate
length and offset, and the LABEL text appears next to the data. When LABEL
is not specified, NAME is used to produce the field label.

,LABEL=label
Specifies up to 8 characters to be displayed as the field label. These characters
will appear before the contents of the requested field. If not specified, the
NAME field will be used to produce the field label.

,LAST8
The last 8 characters specified in the NAME field are used as the field label.
Any previous PREFIX specification is ignored. LAST8 is only valid when
NAME is more than 8 characters long. LAST8 is not valid when SHDR, LABEL
or PREFIX are specified.

,SHDR=addr
Specifies the address of a character string used as a subheading in the control
block format. The address must be valid in an assembler A-type DC
instruction. This parameter should point to a one-byte length field followed by
the heading character string. The length byte indicates the length of the
heading string and not the length of the length byte. The BLSQSHDR macro is
used to define subheaders.

BLSQMFLD macro

96 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

|

|

|
|
|

|
|
|
|

|
|
|
|
|

When this parameter is specified, only CALLRTN, NEWLINE, NOSPLIT, and
VIEW can be specified. Other parameters are ignored.

,OFF=value
Specifies the offset of the field from the beginning of the control block. The
value can be a decimal constant, a hexadecimal constant, or an absolute
expression. When this parameter is specified, the value defined overrides the
default field offset generated by the NAME parameter on this macro and the
BASELBL parameter on the BLSQMDEF macro.

OFF is ignored when the specification of ARRAY= is other than ARRAY=END.

This parameter is required when the BASELBL parameter is not specified on
the BLSQMDEF macro or when NAME=* is specified on the BLSQMFLD
macro.

,LEN=value
Specifies the length of the control block field. The value is a decimal constant,
hexadecimal constant, or absolute expression of a number from 1 to 32767. This
parameter is required when no data constants exist in the assembly program as
defined by the NAME parameter, or when use of the assembler length
attribute would not result in a correct length determination for the data
constant representing the field.

LEN is ignored when specification of ARRAY= is other than ARRAY=END.

An assembly error occurs when LEN is not specified and there is no assembler
statement with a label matching the one specified by NAME.

,VIEW=(list)
,VIEW=value

Specifies up to sixteen different views of the control block fields. Any
combination of one to sixteen view attributes can be specified for each field.
The caller of the model processor exit service provides a view pattern defining
the views to be formatted. The view field consists of a twelve-bit general view
followed by a four-bit component view. When the component view in a model
entry is zero, any matching bit causes that model entry to be processed. When
the component view in the model is not zero, there must be a matching bit in
both the general and component view fields.

When VIEWMATCH=VALUE is coded on the first BLSQMDEF macro of the
model, the model processor compares the first byte of the two view fields and
requires an exact match to process the model entry. This feature is convenient
for decoding a value-coded byte.

The list is an unordered list of attributes; each attribute can be a decimal
integer between 1 and 16, (VIEW=1,2,...,16), binary constant
(VIEW=B'0010000000000000'.), or hexadecimal constant (VIEW=X'0080'.).

The following chart illustrates the view parameter's control block field options
provided through the specification of a 4-digit hexadecimal number. Any
combination of the view fields listed can be specified.

Hexadecimal
code

User-defined fields to be displayed

X'8000'. Keyfield

X'4000'. Summary field

X'2000'. Register save area

X'1000'. Linkage field

BLSQMFLD macro

Chapter 13. BLSQMFLD — Specify a formatting model field 97

|
|

Hexadecimal
code

User-defined fields to be displayed

X'0800'. Error fields

X'0400'. Hexadecimal dump

X'0200'. Non-reserved field

X'0100'. Reserved fields

X'0080'. Static array or decode flag fields

X'0040'. Dynamic array

X'0020'. Input field

X'0010'. Output field

When this parameter is not specified, the default value of VIEW=X'0200'. is
used. See z/OS MVS IPCS User's Guide and z/OS MVS IPCS Commands for
more information about ADPLPFMT.

,ARRAY=((DL1,DU1),(DL2,DU2))
,ARRAY=value
,ARRAY=*
,ARRAY=END

Specifies that the succeeding BLSQMFLD statements define a set of fields that
are repeated in the control block.

The ARRAY parameter on the BLSQMFLD macro indicates that the
BLSQMFLD macro is the beginning or the end of an array definition.

The LEN and OFF parameters are ignored when specification of ARRAY= is
other than ARRAY=END.

The VIEW specified applies to all fields within the array. The VIEW specified
on the BLSQMFLD macro that starts an array should be the composite of the
VIEW on all fields within the array.

When ARRAY=((DL1,DU1),(DL2,DU2)) is coded, a two dimensional array is
specified. DL1 is the lower limit of the first dimension and DU1 is the upper
limit of the first dimension. DL2 is the lower limit of the second dimension
and DU2 is the upper limit of the second dimension. When a lower limit for a
dimension is not specified, the default is 1. No default exists for the upper
limit of a dimension. An asterisk (*) can be coded for either the upper limit or
lower limit of the dimension to indicate that the dimension is to be provided
by the calling program at execution time in fields ADPLPDL1, ADPLPDL2,
ADPLPDU1, ADPLPDU2 in the format parameter.

The total length of an array element must be accounted for in the total of the
LEN values of the fields within the array definition. VIEW=0 can be coded on
fields within the array that are never to be displayed.

Notes:

1. The correspondence of a dimension to a row or column is determined by
the ORDER parameter.

2. When the array is larger than 65,535 bytes, the calling program must
process the array in sections. The formatter equates the lower limit for each
dimension to the value one to address the array entries in a buffer. It uses
the specified values to number rows and columns in the formatted output.
The format parameter extension is used to define blocks of storage of
arbitrary length to eliminate this restriction.

BLSQMFLD macro

98 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

When ARRAY=value is coded, a one dimensional array (list) is specified. Value
defines the number of array entries contained in the control block.

When ARRAY=* is coded, the number of entries in the one-dimensional array
(list) are to be provided by the calling program at execution time in the
ADPLPDAC field of the format parameter.

The total length of an array element must be accounted for in the total of the
LEN values of the fields within the array definition. VIEW=0 can be coded on
fields within the array that are never to be displayed.

When ARRAY=END is coded, the array definition is terminated.

,DTYPE=HEX
,DTYPE=EBCDIC
,DTYPE=ASCII
,DTYPE=ANY
,DTYPE=QANY

Specifies the type of data contained in the area to be displayed. DTYPE=HEX
indicates that the area to be displayed contains four-bit hexadecimal digits.
DTYPE=EBCDIC indicates that the area to be dumped contains eight-bit
EBCDIC characters. DTYPE=ASCII indicates that the area to be dumped
contains ASCII characters.

DTYPE=ANY specifies that the data is either EBCDIC or hexadecimal. When
the data is EBCDIC, the model processor treats the data as EBCDIC. When any
of the data is not EBCDIC, the model processor treats all the data as four-bit
hexadecimal digits. The field must be less than 256 bytes.

DTYPE=QANY specifies that the next entry in the model is a subheader entry,
with a view field of all zero. The value of the field is only treated as EBCDIC
when it is the same as one of the values specified in the text of the subheader.
Otherwise, the field is displayed in hexadecimal format. When the subheader
is shorter than or equal to the length of the data field, a comparison is made
using the subheader length. When the subheader is longer than the data field,
the subheader length must be a multiple of the data field length, and multiple
comparisons are made.

In both cases, the EBCDIC version is presented in four-byte segments unless
NOSPLIT is also coded.

,DECODE
Specifies that the model entry describes one of these decoding operations:
v Flag field decoding
v Format imbedded block
v Format attached block
v Format stacked block

When MODELNAME is coded, the NAME field is copied into the model entry.
Otherwise, it is treated as the address of the named model. The CALLCBF
parameter also specifies whether the name is to be interpreted as a model
name or as an acronym. When acronym, the system calls the control block
formatter.

DECODE is not supported within an array.

,INVERT
Specifies that the flag field is to be inverted and that decoding is to be
performed according to a model. The flag fields are inverted to allow the
decoding of flags that are in the zero state. To specify flag fields use the offset

BLSQMFLD macro

Chapter 13. BLSQMFLD — Specify a formatting model field 99

and length parameters. The flag field can be up to four bytes long. The model
is described by the NAME parameter and the control flags. INVERT is valid
only when DECODE is specified, and decoding is performed only when the
views match.

,ATTACH
Specifies that the dump data referenced by a pointer at the offset, specified by
the offset parameter, is to be formatted according to a format model. When the
length parameter value is other than zero or four, that value is added to the
value of the pointer. The model is described by the name field and the control
flags. ATTACH is valid only when DECODE is specified, and formatting
occurs only when the views match.

,IMBED
Specifies that the data identified by the offset and length parameters is to be
formatted according to a model. The model is described by the name field and
control flags. The starting offset is the offset in the containing block, and the
header is suppressed. Data areas formatted appear to be part of the containing
block. IMBED is valid only when DECODE is specified, and formatting occurs
only when the views match. Register save areas in control blocks are examples
of embedded blocks.

,STACK
Specifies that the data identified by the offset and length parameters is to be
formatted according to a model. The model is described by the name field and
control flags. The starting offset is zero, and the header is not suppressed.
Areas formatted are recognizable as distinct entities. STACK is valid only when
DECODE is specified. The SDWA in dump header records illustrates the
function of STACK.

,CALLCBF
Specifies that the name field is an acronym. CALLCBF and MODELNAME are
valid only when DECODE is specified in conjunction with ATTACH, IMBED,
or STACK. Formatting is performed according to a model, and each
ACRONYM corresponds to a particular model. When CALLCBF is not
specified, the model processor is called directly.

,NEWLINE
Specifies that the field should be printed on the next line of output.

,NOLABEL
Specifies that the field label is not to be printed. NAME is required. LABEL
will be ignored when NOLABEL is specified.

,CALLRTN
Specifies that the model processor calls the model processor formatting exit
after the output line, containing this field, is formatted before it is printed. The
model processor formatting exit entry point address is specified by the caller in
the parameter list, ADPLPLME, when the model processor is invoked.

,PREFIX=value
Specifies the number of characters to be removed from the front of a field
name to produce the field label. The field name is defined by the NAME
parameter. Value must be an integer constant greater than or equal to zero.
When PREFIX is omitted from the current BLSQMFLD macro, the value
specified on the last preceding BLSQMFLD or BLSQMDEF macro is used. The
BLSQMDEF macro, used to start a model definition, can also be used to set the
value of PREFIX.

BLSQMFLD macro

100 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

|

|
|

When LABEL or LAST8 is specified with PREFIX, IPCS adjusts the global
prefix value but the field label produced is not determined by the PREFIX
value. LABEL causes the first 8 characters given on the LABEL parameter to be
shown as the field label. LAST8 causes the last 8 characters of the NAME
parameter to be shown as the field label. PREFIX specification affects all future
BLSQMFLD invocations unless PREFIX is specified again.

,NOSPLIT
Specifies that the model processor attempts to print all the field data on the
same output line. When the data does not fit on the current output line, but
fits on a single output line, the model processor skips to a new line prior to
printing the data field.

When NOSPLIT is coded with ANY or QANY, the character string is displayed
as is, not in four-byte segments. The display might differ when the field is
treated as hexadecimal.

,NUMDEC
Specifies that the columns and rows of a two-dimensional array be numbered
in decimal. The default is hexadecimal.

,NOCOLNM
Specifies that column numbers (headers) of a two-dimensional array be
suppressed. The default is to number the columns. The NUMDEC parameter
controls the numbering system used for numbering the columns.

,NOROWNM
Specifies that the row numbers of a two-dimensional array are to be
suppressed. The default is to specify the row numbers. NUMDEC parameter
controls the numbering system used to number the rows. NOROWNM is valid
only with ARRAY=((value,value),(value,value)).

,STRTCOL=value
Specifies the left margin of the formatted output. Value indicates the number of
blanks before the first character. STRTCOL applies only to two-dimensional
arrays. This specification overrides the value defined by the STRTCOL
parameter in the BLSQMDEF macro, or by IPCS or SNAP, for the duration of
displaying the array. When not specified, a default of zero is provided and the
formatter uses the value specified by the host.

,COLNUM=value
Specifies the number of columns of a two dimensional array that are to be
displayed in each line of output. When not specified, or when the specified
number of columns does not fit in the currently available print buffer, the
formatter calculates a value consistent with, and not exceeding, the maximum
line length specified by IPCS or SNAP.

,COLSEP=value
Specifies the number of blanks to be placed between the columns of a
two-dimensional array. The default is zero. The model processor uses a
calculated value.

,ITEMSEP=value
Specifies the number of blanks to be placed between items within an array
entry. An array entry can be a structure, and each element of the structure is
referred to as an “item”. When the array entry is a single item, value is ignored.
When ITEMSEP is not specified, a default of zero is provided, and the model
processor uses a calculated value.

,ORDER=(1,2)

BLSQMFLD macro

Chapter 13. BLSQMFLD — Specify a formatting model field 101

|
|
|
|
|
|

,ORDER=(2,1)
Specifies the order in which the data of a two-dimensional array is to be
processed. When ORDER=(1,2) is specified, the data is processed in
consecutive rows. When ORDER=(2,1) is specified, the data is processed in
consecutive columns. The default is ORDER=(1,2).

,HEXONLY
Specifies that the data is to be displayed in hex. When HEXONLY is omitted,
the data is displayed in both hex and EBCDIC, on the same line, with vertical
bars bounding the EBCDIC portion of the display. HEXONLY is valid only
when the view parameter specifies X‘0400’. This requests a hexadecimal dump.

MODELNAME(modelname)
Specifies the name of the model to be used in a decoding operation, or the
acronym of the data area when CALLCBF is coded.

MSGID(msgid)
Specifies that the subheader is a message with a message ID that may be
conditionally stripped. MSGID is only valid when SHDR is specified.

SRCNDX
Specifies which one of the 16 entries in the array of buffer and ES addresses is
to be used in processing the field. The array is zero origin, so 0 refers to the
first and 15 refers to the last. The srcndx value stays in effect for subsequent
BLSQMFLD macro invocations until it is changed. This keyword is part of the
multiple source formatting feature. The default is zero.

Examples
The following examples demonstrate the use of the BLSQMFLD macro.

Example 1

Code the macros that establish a control block formatting model to be used by the
model processor to format functional recovery routines (FRRs).
IEAVTRP3 CSECT

BLSQMDEF CBLEN=X’0320’,MAINTLV=HBB2102,PREFIX=4,OFFSETS=PRINT,X
HEADER=FRRS

BLSQMFLD NAME=FRRSEMP,OFF=X’0000’,LEN=4,VIEW=X’0202’
BLSQMFLD NAME=FRRSLAST,OFF=X’0004’,LEN=4,VIEW=X’0202’
BLSQMFLD NAME=FRRSELEN,OFF=X’0008’,LEN=4,VIEW=X’0202’
BLSQMFLD NAME=FRRSCURR,OFF=X’000C’,LEN=4,VIEW=X’0200’
BLSQMFLD NAME=FRRSRSA,OFF=X’0010’,LEN=24,VIEW=X’0200’
BLSQMFLD SHDR=RTM1WA,VIEW=X’0200’,NEWLINE
BLSQMFLD SHDR=BLANK,VIEW=X’0200’,NEWLINE
BLSQMFLD SHDR=ENTEXT,VIEW=X’0200’,NEWLINE
BLSQMFLD SHDR=BLANK,VIEW=X’0200’,NEWLINE
BLSQMFLD NAME=FRRSXSTK,VIEW=X’0200’,ARRAY=16,NOLABEL
BLSQMFLD NAME=FRRSKM,OFF=X’00A0’,LEN=2,VIEW=X’0200’,NEWLINE
BLSQMFLD NAME=FRRSSAS,OFF=X’00A2’,LEN=2,VIEW=X’0200’
BLSQMFLD NAME=FRRSAX,OFF=X’00A4’,LEN=2,VIEW=X’0200’
BLSQMFLD NAME=FRRSPAS,OFF=X’00A6’,LEN=2,VIEW=X’0200’,ARRAY=END
BLSQMFLD SHDR=BLANK,VIEW=X’0200’,NEWLINE
BLSQMFLD SHDR=ENTS,VIEW=X’0200’,NEWLINE
BLSQMFLD SHDR=BLANK,VIEW=X’0200’,NEWLINE
BLSQMFLD NAME=FRRSENTS,VIEW=X’0200’,ARRAY=16,NOLABEL
BLSQMFLD NAME=FRRSFRRA,OFF=X’0120’,LEN=4,VIEW=X’0200’,NEWLINE
BLSQMFLD NAME=FRRSFLGS,OFF=X’0124’,LEN=4,VIEW=X’0200’
BLSQMFLD NAME=FRRSPARM,OFF=X’0128’,LEN=24,VIEW=X’0200’, X

ARRAY=END
BLSQMDEF END

BLANK BLSQSHDR ’ ’

BLSQMFLD macro

102 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

ENTEXT BLSQSHDR ’FRR ENTRY EXTENSIONS’
ENTS BLSQSHDR ’FRR ENTRIES’
RTM1WA BLSQSHDR ’RTM1 WORK AREA FOLLOWS FRR ENTRIES’

END

Example 2

Code the macros that establish a control block formatting model to be used by the
model processor to format a STAE control block (SCB).
IEAVTRP4 CSECT

BLSQMDEF CBLEN=X’0018’,MAINTLV=JBB2125,PREFIX=3,OFFSETS=PRINT,X
HEADER=SCB

BLSQMFLD NAME=SCBCHAIN,OFF=X’0000’,LEN=4,VIEW=X’0200’
BLSQMFLD NAME=SCBEXIT,OFF=X’0004’,LEN=4,VIEW=X’0200’
BLSQMFLD NAME=SCBFLGS1,OFF=X’0008’,LEN=1,VIEW=X’0200’
BLSQMFLD NAME=SCBPARMA,OFF=X’0009’,LEN=3,VIEW=X’0200’
BLSQMFLD NAME=SCBFLGS2,OFF=X’000C’,LEN=1,VIEW=X’0200’
BLSQMFLD NAME=SCBOWNRA,OFF=X’000D’,LEN=3,VIEW=X’0200’
BLSQMFLD NAME=SCBFLGS3,OFF=X’0010’,LEN=1,VIEW=X’0200’
BLSQMFLD NAME=SCBPKEY,OFF=X’0011’,LEN=1,VIEW=X’0200’
BLSQMFLD NAME=SCBID,OFF=X’0012’,LEN=1,VIEW=X’0200’
BLSQMFLD NAME=SCBRSVRE,OFF=X’0013’,LEN=1,VIEW=X’0200’
BLSQMFLD NAME=SCBXPTR,OFF=X’0014’,LEN=4,VIEW=X’0200’
BLSQMFLD NAME=*,OFF=X’0000’,LEN=X’0018’,VIEW=X’0400’,NOLABEL
BLSQMDEF END

END

Example 3

Define the format of a simple control block. Note that this can be done by using a
macro-invocation.
MYBLK DSECT , My simplest control block ever
MYBLKABC DC C’ABC’ Identifier
MYBLKDEF DC X’00’ Flags
MYBLKD80 EQU X’80’ 1st flag bit
MYBLKD40 EQU X’40’ 2nd flag bit
MYBLKGHI DC V(MYENTRY) Address of my program
MYBLKEND EQU * End of my control block

Define enough storage to get the block displayed. Note that no ENTRY statement
is required for access to CBMODEL1 from other CSECTs since CBMODEL1 lies at
the origin of the CSECT.

TITLE ’CBMODEL1--Basic Control Block Model’
CBMODEL CSECT , Start definition of simple model
CBMODEL1 BLSQMDEF BASELBL=MYBLK,CBLEN=MYBLKEND-MYBLK,PREFIX=5

BLSQMFLD NAME=MYBLKABC
BLSQMFLD NAME=MYBLKDEF
BLSQMFLD NAME=MYBLKGHI
BLSQMDEF END End definition of simple model

Add acronym checking, the display of the acronym in EBCDIC, and descriptive
header for the display in the dump.

TITLE ’CBMODEL2--More Elaborate than 1st Model’
ENTRY CBMODEL2 Permit access from other CSECTs

CBMODEL2 BLSQMDEF BASELBL=MYBLK,CBLEN=MYBLKEND-MYBLK,PREFIX=5, X
ACRONYM=ABC,ACROLBL=MYBLKABC, Acronym field data
HEADER=MYBLOCK Heading for block in dump

BLSQMFLD NAME=MYBLKABC,DTYPE=EBCDIC Show it as EBCDIC data
BLSQMFLD NAME=MYBLKDEF

BLSQMFLD macro

Chapter 13. BLSQMFLD — Specify a formatting model field 103

BLSQMFLD NAME=MYBLKGHI
BLSQMDEF END End definition of alternate model
END CBMODEL1 End definition of formatting model

Example 4

Assume that the data is stored in this sequence:
00010001
00010002
00010003
00010004
00020001
00020002
00020003
00020004
00030001
00030002
00030003
00030004

.

.

.
00090001
00090002
00090003
00090004
00100001
00100002
00100003
00100004

And you want the data to be formatted like this:
---01--- ---02--- ---03--- ---04---
ARRENTRY ARRENTRY ARRENTRY ARRENTRY
-------- -------- -------- --------

001 00010001 00010002 00010003 00010004
002 00020001 00020002 00020003 00020004
003 00030001 00030002 00030003 00030004
004 00040001 00040002 00040003 00040004
005 00050001 00050002 00050003 00050004
006 00060001 00060002 00060003 00060004
007 00070001 00070002 00070003 00070004
008 00080001 00080002 00080003 00080004
009 00090001 00090002 00090003 00090004
010 00100001 00100002 00100003 00100004

Code the macro that creates a formatting model to do the following:
v Number rows 1 through 10.
v Number columns 1 through 4.
v Use the decimal numbering system for numbering rows and columns.
v Place data in to the array row by row.
v Put one blank between each column.
v Display 4 columns in each group.
v Start printing in the second column from the left margin.
v View all non-reserved fields.
v Print the field label ARRENTRY.

One way to code the macro:

BLSQMFLD macro

104 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

BLSQMFLD NAME=ARRAYX,ARRAY=((1,10),(1,4)),VIEW=X’0200’, X
STRTCOL=1,COLSEP=1,COLNUM=4,NUMDEC,NOLABEL

BLSQMFLD NAME=ARRENTRY,OFF=0,LEN=4,ARRAY=END,VIEW=X’0200’

Example 5

Assume that the data is stored in this sequence:
00010001
00010002
00010003
00010004
00020001
00020002
00020003
00020004
00030001
00030002
00030003
00030004

.

.

.
00090001
00090002
00090003
00090004
00100001
00100002
00100003
00100004

And you want the data to be formatted this way:
---05--- ---06--- ---07--- ---08--- ---09---
ARRENTRY ARRENTRY ARRENTRY ARRENTRY ARRENTRY
-------- -------- -------- -------- --------

000 00010001 00020001 00030001 00040001 00050001
001 00010002 00020002 00030002 00040002 00050002
002 00010003 00020003 00030003 00040003 00050003
003 00010004 00020004 00030004 00040004 00050004

---0A--- ---0B--- ---0C--- ---0D--- ---0E---
ARRENTRY ARRENTRY ARRENTRY ARRENTRY ARRENTRY
-------- -------- -------- -------- --------

000 00060001 00070001 00080001 00090001 00100001
001 00060002 00070002 00080002 00090002 00100002
002 00060003 00070003 00080003 00090003 00100003
003 00060004 00070004 00080004 00090004 00100004

Code the macro that creates a formatting model to do the following:
v Number rows 0 through 3.
v Number columns 5 through 14.
v Use the hexadecimal numbering system for numbering rows and columns.
v Put two blanks between each column.
v Display 5 columns in each group.
v Start printing in the fourth column from the left margin.
v View all non-reserved fields.
v Print the field label ARRENTRY.

One way to code the macro:

BLSQMFLD macro

Chapter 13. BLSQMFLD — Specify a formatting model field 105

BLSQMFLD NAME=ARRAYX,ARRAY=((5,14),(0,3)),VIEW=X’0200’, X
STRTCOL=3,COLSEP=2,COLNUM=5,NOLABEL,ORDER=(2,1)

BLSQMFLD NAME=ARRENTRY,OFF=0,LEN=4,ARRAY=END,VIEW=X’0200’

Example 6

When presented with a field with a long name, you can use the LABEL parameter
to assign the characters you want to appear next to the field contents.

For example, consider the following control block:
MYBLK DSECT , My simple control block
MYBLKABC DC C’ABC’ Identifier
MYBLKDEF DC X’00’ Flags
MYBLKD80 EQU X’80’ 1st flag bit
MYBLKD40 EQU X’40’ 2nd flag bit
MYBLKGHI DC V(MYENTRY) Address of my program
MYBLK_LONG_LABEL_FIELD DC C’xxxxxxxx’ Field with a long label
MYBLKEND EQU *

You can define a model as follows:
TITLE ’CBMODEL3- Long label tests’
ENTRY CBMODEL3

CBMODEL3 BLSQMDEF BASELBL=MYBLK,CBLEN=MYBLKLEN,PREFIX=5,HEADER=MYBLOCK
BLSQMFLD NAME=MYBLKABC,DTYPE=EBCDIC
BLSQMFLD NAME=MYBLKDEF
BLSQMFLD NAME=MYBLKGHI
BLSQMFLD NAME=MYBLK_LONG_LABEL_FIELD
BLSQMFLD NAME=MYBLK_LONG_LABEL_FIELD,LABEL=LONGLBLF
BLSQMFLD NAME=MYBLK_LONG_LABEL_FIELD,LAST8
BLSQMDEF END

The result when used in IPCS as a control block formatter will look like this:
MYBLOCK: 00000000

+0000 ABC...... ABC DEF...... 80 GHI...... 00513000 LONGLBLF. 00000000 00000000
+0008 _LONG_LA. 00000000 00000000 LONGLBLF. 00000000 00000000
+0008 EL_FIELD. 00000000 00000000

BLSQMFLD macro

106 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

|

|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

Chapter 14. BLSQSHDR — Generate model subheader

Description
The BLSQSHDR macro defines a text string, called a subheader, and makes it
appear as part of the output of the model processor. Subheaders are also used to
contain the character string or strings to be compared with the contents of a field
within the data being formatted, and to determine whether the data is to be
treated as hexadecimal or EBCDIC. See the description of the DTYPE=QANY
parameter on the BLSQMFLD macro.

BLSQSHDR, with its text string, should be placed after the end of the format
model definition. Create a format model definition by coding two BLSQMDEF
macros, one at the beginning and one at the end of the definition. The BLSQMFLD
macros define the data fields of the format model. They are included between the
two BLSQMDEF macros. The SHDR fields of the BLSQMFLD macros refer to text
strings (subheaders) that the user places after the end of the model definition. This
is the order of the macros:

BLSQMDEF
BLSQMFLD

.

.

.
BLSQMFLD
BLSQMDEF
BLSQSHDR

Each BLSQSHDR macro placed after the end of the model must have a label that
the BLSQMFLD macros within the model can reference. The text string of the
BLSQSHDR macro is enclosed in single quotation marks. L(x) can also be coded
when the length of the string is different than the length of the enclosed text string.

See z/OS MVS IPCS Customization for information about format models.

Environment
Because BLSQSHDR is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSQSHDR is not an executable macro, there is no need to save and
restore register contents.

Performance implications
None.

© Copyright IBM Corp. 1988, 2015 107

|

Syntax
This is the standard form of the BLSQSHDR macro:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede BLSQSHDR.

BLSQSHDR

� One or more blanks must follow BLSQSHDR.

L(x) x: Length of subheader - when other than

length of actual text

'text' text: Text of subheader

Parameters
The parameters are explained as follows:

L(x)
specifies the length of the subheader. Specify the length only when it is
different from the length of the enclosed text string.

Examples
SHDR01 BLSQSHDR ’This is a subheader’

SHDR02 BLSQSHDR L(6)’ ’

BLSQSHDR macro

108 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 15. BLSRDRPX — Map dump record prefix

Description
The BLSRDRPX macro creates a map of the dump record prefix. The dump record
prefix contains the title of the dump and other information needed for
interpretation of the dump.

See z/OS MVS IPCS Customization for information about formatting dump data. See
z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/systems/
z/os/zos/bkserv/ for a mapping of the BLSRDRPX data area.

Environment
Because BLSRDRPX is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSRDRPX is not an executable macro, there is no need to save and
restore register contents.

Performance implications
None.

Syntax
The standard form of the BLSRDRPX macro is written as follows:

Syntax Description

name name: Symbol. name must begin in column 1 and it cannot exceed four
characters in length.

� One or more blanks must precede BLSRDRPX.

BLSRDRPX

� One or more blanks must follow BLSRDRPX.

ABITS=31 Default: ABITS=64

ABITS=64

© Copyright IBM Corp. 1988, 2015 109

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

DSECT=YES Default: DSECT=YES

DSECT=NO

Parameters
The parameters are explained as follows:

ABITS=31
ABITS=64

Specifies whether 31-bit or 64-bit storage is to be generated.

DSECT=YES
DSECT=NO

Generates a DSECT for the dump record prefix (DSECT=YES) or generates an
initialized set of DCs for the dump record prefix (DSECT=NO).

BLSRDRPX macro

110 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 16. BLSRESSY — Map IPCS symbol table data

Description
BLSRESSY maps a structure that is part of the interface between an interactive
problem control system (IPCS) exit service and an IPCS exit routine. See z/OS MVS
IPCS Customization for information about IPCS exit services. See z/OS MVS Data
Areas in z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/
bkserv/ for a mapping of the BLSRESSY data area.

Environment
Because BLSRESSY is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSRESSY is not an executable macro, there is no need to save and restore
register contents.

Performance implications
None.

Syntax
This is the standard form of the BLSRESSY macro:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede BLSRESSY.

BLSRESSY

� One or more blanks must follow BLSRESSY.

DSECT=YES
DSECT=NO

Default: DSECT=YES

ABITS=31 Default: ABITS=31

ABITS=64

© Copyright IBM Corp. 1988, 2015 111

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

Note: Users must supply a label (name), and start it in column 1 of the BLSRESSY
macro. When the BLSRESSY macro is executed, the label becomes the record name
and the prefix to the name of each field in the record.

Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

Specifies whether the record mapped by BLSRESSY is to be mapped as a
DSECT (YES) or not (NO).

ABITS=31
ABITS=64

Specifies whether the record mapped by BLSRESSY is to be mapped as 31-bit
or 64-bit.

Example
Map the IPCS symbol table record but not as a DSECT.
ESSY BLSRESSY DSECT=NO

BLSRESSY macro

112 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 17. BLSRNAMP — Map the name service parameter
list

Description
BLSRNAMP maps the name service parameter list. Use this parameter list when
calling the name service from within an installation-written interactive problem
control system (IPCS) exit routine.

The name service is used to convert an STOKEN or real address of a data space
ASTE into:
v An ASID for an address space
v A data space or hiperspace name and owning ASID
v A common data space (CADS)

See z/OS MVS IPCS Customization for information about the name service. See z/OS
MVS Data Areas in z/OS Internet Library at http://www.ibm.com/systems/z/os/
zos/bkserv/ for a mapping of the BLSRNAMP data area.

Environment
Because BLSRNAMP is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSRNAMP is not an executable macro, there is no need to save and
restore register contents.

Performance implications
None.

Syntax
The standard form of the BLSRNAMP macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede BLSRNAMP.

BLSRNAMP

© Copyright IBM Corp. 1988, 2015 113

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

� One or more blanks must follow BLSRNAMP.

DSECT=YES Default: DSECT=YES

DSECT=NO

Note: Users must supply a label (name), and start it in column 1 of the
BLSRNAMP macro. When the BLSRNAMP macro is processed, the label becomes
the record name and the prefix to the name of each field in the record.

Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

A name service parameter list is mapped with a DSECT (DSECT=YES) or a
name service parameter list is mapped, but no DSECT is generated
(DSECT=NO).

Example
Code the following to map the name service parameter list, but not as a DSECT.
All fields will appear with the prefix NAMP.
NAMP BLSRNAMP DSECT=NO

BLSRNAMP macro

114 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 18. BLSRPRD — Map dump record

Description
The BLSRPRD macro creates a map of the dump record.

See z/OS MVS IPCS Customization for information about formatting dump data. See
z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/systems/
z/os/zos/bkserv/ for a mapping of the BLSRPRD data area.

Environment
Because BLSRPRD is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSRPRD is not an executable macro, there is no need to save and restore
register contents.

Performance implications
None.

Syntax
This is the standard form of the BLSRPRD macro:

Syntax Description

name name: Symbol. name must begin in column 1 and it cannot exceed four
characters in length.

� One or more blanks must precede BLSRPRD.

BLSRPRD

� One or more blanks must follow BLSRPRD.

DSECT=YES Default: DSECT=YES

DSECT=NO

© Copyright IBM Corp. 1988, 2015 115

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

Generates a DSECT for the dump record (DSECT=YES) or generates an
initialized set of DCs for the dump record (DSECT=NO).

BLSRPRD macro

116 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 19. BLSRPWHS — Map the WHERE service parameter
list

Description
BLSRPWHS maps the WHERE service parameter list. Use this parameter list when
calling the WHERE service from within an installation-written interactive problem
control system (IPCS) exit routine.

The WHERE service fills in the WHERE service parameter list with information
describing the system area in which the passed address resides.

See z/OS MVS IPCS Customization for information about the WHERE service. See
z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/systems/
z/os/zos/bkserv/ for a mapping of the BLSRPWHS data area.

Environment
Because BLSRPWHS is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSRPWHS is not an executable macro, there is no need to save and
restore register contents.

Performance implications
None.

Syntax
The standard form of the BLSRPWHS macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede BLSRPWHS.

BLSRPWHS

� One or more blanks must follow BLSRPWHS.

© Copyright IBM Corp. 1988, 2015 117

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

DSECT=YES Default: DSECT=YES

DSECT=NO

ABITS=31 Default: ABITS=31

ABITS=64

Note: Users must supply a label (name), and start it in column 1 of the BLSRPWHS
macro. When the BLSRPWHS macro is processed, the label becomes the record
name and the prefix to the name of each field in the record.

Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

A WHERE service parameter list is mapped with a DSECT (DSECT=YES) or a
WHERE service parameter list is mapped, but no DSECT is generated
(DSECT=NO).

ABITS=31
ABITS=64

Either a 31-bit or a 64-bit storage map is to be referenced.

Example
Code the following to map the WHERE service parameter list, but not as a DSECT.
All fields will appear with the prefix PWHS.
PWHS BLSRPWHS DSECT=NO

BLSRPWHS macro

118 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 20. BLSRSASY — Map IPCS storage map data

Description
BLSRSASY maps a structure that is part of the interface between an interactive
problem control system (IPCS) exit service and an IPCS exit routine. See z/OS MVS
IPCS Customization for information about IPCS exit services. See z/OS MVS Data
Areas in z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/
bkserv/ for a mapping of the BLSRSASY data area.

Environment
Because BLSRSASY is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSRSASY is not an executable macro, there is no need to save and restore
register contents.

Performance implications
None.

Syntax
The standard form of the BLSRSASY macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede BLSRSASY.

BLSRSASY

� One or more blanks must follow BLSRSASY.

DSECT=YES Default: DSECT=YES

DSECT=NO

ABITS=31 Default: ABITS=31

ABITS=64

© Copyright IBM Corp. 1988, 2015 119

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

Note: Users must supply a label (name), and start it in column 1 of the BLSRSASY
macro. When the BLSRSASY macro is processed, the label becomes the record
name and the prefix to the name of each field in the record.

Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

An SA record is mapped with a DSECT (DSECT=YES) or an SA record is
mapped, but no DSECT is generated (DSECT=NO).

ABITS=31
ABITS=64

A structure is returned containing either 31-bit or 64-bit fields.

Example
Code the following to map an SA record, but not as a DSECT. All fields will
appear with the prefix SASY.
SASY BLSRSASY DSECT=NO

BLSRSASY macro

120 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 21. BLSRXMSP — Map the storage map service
parameter list

Description
BLSRXMSP maps the storage map service parameter list. Use this parameter list
when calling the storage map service from within an installation-written interactive
problem control system (IPCS) exit routine.

The storage map service allows exit routines to process storage map entries and to
obtain data represented by the storage map entries.

See z/OS MVS IPCS Customization for information about the storage map service.
See z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/
systems/z/os/zos/bkserv/ for a mapping of the BLSRXMSP data area.

Environment
Because BLSRXMSP is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSRXMSP is not an executable macro, there is no need to save and
restore register contents.

Performance implications
None.

Syntax
The standard form of the BLSRXMSP macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede BLSRXMSP.

BLSRXMSP

� One or more blanks must follow BLSRXMSP.

© Copyright IBM Corp. 1988, 2015 121

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

DSECT=YES Default: DSECT=YES

DSECT=NO

Note: Users must supply a label (name), and start it in column 1 of the BLSRXMSP
macro. When the BLSRXMSP macro is processed, the label becomes the record
name and the prefix to the name of each field in the record.

Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

A storage map service parameter list is mapped with a DSECT (DSECT=YES)
or a storage map service parameter list is mapped, but no DSECT is generated
(DSECT=NO).

Example
Code the following to map the storage map service parameter list, but not as a
DSECT. All fields will appear with the prefix XMSP.
XMSP BLSRXMSP DSECT=NO

BLSRXMSP macro

122 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 22. BLSRXSSP — Map the symbol service parameter
list

Description
BLSRXSSP maps the symbol service parameter list. Use this parameter list when
calling the symbol service from within an installation-written interactive problem
control system (IPCS) exit routine.

The symbol service enables exit routines to process symbols and obtain data
represented by the symbols.

See z/OS MVS IPCS Customization for information about the symbol service. See
z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/systems/
z/os/zos/bkserv/ for a mapping of the BLSRXSSP data area.

Environment
Because BLSRXSSP is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSRXSSP is not an executable macro, there is no need to save and restore
register contents.

Performance implications
None.

Syntax
The standard form of the BLSRXSSP macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede BLSRXSSP.

BLSRXSSP

� One or more blanks must follow BLSRXSSP.

© Copyright IBM Corp. 1988, 2015 123

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

DSECT=YES Default: DSECT=YES

DSECT=NO

Note: Users must supply a label (name), and start it in column 1 of the BLSRXSSP
macro. When the BLSRXSSP macro is processed, the label becomes the record
name and the prefix to the name of each field in the record.

Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

A symbol service parameter list is mapped with a DSECT (DSECT=YES) or a
symbol service parameter list is mapped, but no DSECT is generated
(DSECT=NO).

Example
Code the following to map the symbol service parameter list, but not as a DSECT.
All fields will appear with the prefix XSSP.
XSSP BLSRXSSP DSECT=NO

BLSRXSSP macro

124 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 23. BLSUPPR2 — Map the expanded print service
parameter list

Description
BLSUPPR2 maps the expanded print service parameter list. Use this parameter list
when calling the expanded print service from within an installation-written
interactive problem control system (IPCS) exit routine.

The expanded print service provides a means for exit routines to write data to both
the terminal and the IPCS print file.

See z/OS MVS IPCS Customization for information about the expanded print
service. See z/OS MVS Data Areas in z/OS Internet Library at http://
www.ibm.com/systems/z/os/zos/bkserv/ for the mapping of the BLSUPPR2 data
area.

Environment
Because BLSUPPR2 is not an executable macro, there are no specific environment
requirements.

Programming requirements
None.

Restrictions
None.

Register information
Because BLSUPPR2 is not an executable macro, there is no need to save and restore
register contents.

Performance implications
None.

Syntax
The standard form of the BLSUPPR2 macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede BLSUPPR2.

BLSUPPR2

� One or more blanks must follow BLSUPPR2.

© Copyright IBM Corp. 1988, 2015 125

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

DSECT=YES Default: DSECT=YES

DSECT=NO

Note: Users must supply a label (name), and start it in column 1 of the BLSUPPR2
macro. When the BLSUPPR2 macro is processed, the label becomes the record
name and the prefix to the name of each field in the record.

Parameters
The parameters are explained as follows:

DSECT=YES
DSECT=NO

An expanded print parameter list is mapped with a DSECT (DSECT=YES) or
an expanded print parameter list is mapped, but no DSECT is generated
(DSECT=NO).

Example
Code the following to map the expanded print service parameter list, but not as a
DSECT. All fields will appear with the prefix PPR2.
PPR2 BLSUPPR2 DSECT=NO

BLSUPPR2 macro

126 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 24. CALL — Pass control to a control section

CALL description
The CALL macro passes control to a control section at a specified entry point as
follows:
v OVERLAY: The overlay segment containing the designated entry point is

brought into virtual storage if required, and control is passed to the segment.
Refer to z/OS MVS Program Management: User's Guide and Reference and z/OS
MVS Program Management: Advanced Facilities for details on overlay.

v NONOVERLAY: If a symbol is designated, the linkage editor includes the load
module containing that entry point in the same load module containing the
CALL instruction. When the CALL macro is executed, control is passed to the
control section at the specified entry point.

The linkage relationship established when control is passed is the same as that
created by a BAL instruction; that is, the issuing program expects control to be
returned. The control program is not involved in passing control, so the reusability
of the called program must be ensured by the user.

An address parameter list can be constructed and a calling sequence identifier can
be provided.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=SASN¬=HASN
AMODE: 24- or 31- or 64- bit
ASC mode: Primary or Access register (AR)
Interrupt status: No requirement
Locks: No requirement
Control parameters: Must be in the caller's primary address space or be in an

address or data space that is addressable through a public
entry on the caller's dispatchable unit access list (DU-AL).

Programming requirements
If your program is to execute in 31-bit addressing mode, you must use the
MVS/SP Version 2 macro expansion or a later version. You cannot use the CALL
macro to pass control to a program in a different addressing mode.

AR mode programs and primary mode programs can invoke the CALL macro.
Before an AR mode program invokes this macro, the program must issue
SYSSTATE ASCENV=AR to tell the CALL macro to generate code that is
appropriate for AR mode. Before a 64-bit Amode program invokes this macro, the
program must issue SYSSTATE AMODE64=YES to tell the CALL macro to generate
code that is appropriate for Amode 64.

© Copyright IBM Corp. 1988, 2015 127

IBM recommends that you do not use asynchronous exit routines in an overlay
program. If you choose to do so, you must ensure that:
v The overlay segment containing the asynchronous exit routine is already in

storage at the time the system invokes the routine, and this segment will not be
overlaid by another segment during the routine's execution.

v If the asynchronous exit routine calls a routine in an overlay segment, that
segment is already in storage and will not be overlaid by another segment
during the called routine's execution.

Register information
On entry to the called program, the register contents are as follows:

Register
Contents

1 Address of the parameter list, if present

14 Return address

15 Entry address of the called program

Syntax
The standard form of the CALL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CALL.

CALL

� One or more blanks must follow CALL.

entry name entry name: Symbol or register (2) - (12), (15).

,(addr) addr: A-type address, or register (2) - (12).

,(addr),VL Note: addr is one or more addresses, separated by commas. For example,
(addr,addr,addr)

,PLIST4=YES Default: None.

,PLIST4=NO

,PLIST8=YES Default: None.

,PLIST8=NO

,PLIST8ARALETS=NO Default: PLIST8ARALETS=NO

,PLIST8ARALETS=YES

CALL macro

128 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,ID=id nmbr id nmbr: Symbol or decimal digit, with a maximum value of 4095.

,LINKINST=instruction Default: LINKINST=BALR

Parameters
The parameters are explained as follows:

entry name
Specifies the entry name to be given control. When a register is specified via
(n), the contents of that register are put into register 15 prior to the linkage.
When (15) is specified, the system assumes that the user has set register 15 so
does not do so again.

,(addr)
,(addr),VL

Specifies an address or addresses to be passed to the called program. CALL
expands each address inline to a fullword boundary and builds a parameter
list with the addresses in the order specified. When the called program receives
control, register 1 contains the address of the parameter list. If this parameter is
not coded, register 1 is not altered.

When an AR mode caller uses either:
v a parameter list with 4 bytes per entry without specifying

PLISTARALETS=NO; or
v a parameter list with 8 bytes per entry and specifies PLIST8ARALETS=YES,

the addresses passed to the subtask are in the first part of the parameter list
and their associated ALETs are in the second part. For a non-AR mode caller,
or for an AR mode caller using a parameter list with 4 bytes per entry with
PLISTARALETS=NO, or for an AR mode caller using a parameter list with 8
bytes per entry without PLIST8ARALETS=YES, ALETs are not passed in the
parameter list. When ALETs are passed in the parameter list, the ALETs occupy
consecutive 4-byte fields, whether the parameter list is 4 or 8 bytes per entry.
See the description of the PLIST4 and PLIST8 keywords below for more
information about controlling the bytes-per-entry in the parameter list. See the
description of the PLISTARALETS and PLIST8ARALETS keyword below for
more information about ALETs and 8-bytes-per-entry parameter lists. See “User
parameters” on page 4 for an example of passing a parameter list in AR mode.

When using a 4-bytes-per-entry parameter list, specify VL when you pass a
variable number of parameters. VL results in setting the high-order bit of the
last address to 1. The 1 in the high-order bit identifies the last address
parameter (which is not the last word in the list when the ALETs are also
saved). When using an 8-bytes-per-entry parameter list, VL is not valid.

Note: If you specify only one address for PARAM= and you are not using
register notation, you do not need to enter the parentheses.

,PLIST4=YES
,PLIST4=NO

,PLIST8=YES

CALL macro

Chapter 24. CALL — Pass control to a control section 129

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

,PLIST8=NO
Defines the size of the parameter list entries for a parameter list to be built by
CALL based on the address or addresses to be passed to the called program.

PLIST4 and PLIST8 cannot be specified together. If neither is specified, the
default is:
v If running AMODE 64, PLIST8=YES
v If not running AMODE 64, PLIST4=YES

If running AMODE 64 and PLIST4=YES is specified, the system builds a
4-bytes-per-entry parameter list just as it would if the program were running
AMODE 24 or AMODE 31 and did not specify PLIST4 or PLIST8.

If running AMODE 24 or AMODE 31 and PLIST8 is specified, the system
builds an 8-bytes-per-entry parameter list just as it would if the program were
running AMODE 64 and did not specify PLIST4 or PLIST8.

,PLISTARALETS=SYSTEM
,PLISTARALETS=NO

If the invoker is in AR mode, indicates whether the parameter list is also to
contain the ALETs associated with the addresses. If the invoker is not in AR
mode, this parameter is ignored.

,PLISTARALETS=SYSTEM
Indicates to follow the default system rules that for an AR mode
invoker:
v For AMODE 24/31, the parameter list is also to contain the ALETs.
v For AMODE 64 with PLIST8ARALETS=YES, the parameter list is

also to contain the ALETs.
v For other cases, the parameter list is not to contain the ALETs.

,PLISTARALETS=NO
Indicates that the parameter list is not also to contain the ALETs. Do
not specify this parameter with PLIST8ARALETS=YES.

,PLIST8ARALETS=NO
,PLIST8ARALETS=YES

If there is to be an 8-byte-per-entry parameter list and the invoker is in AR
mode, indicates if the parameter list is also to contain the ALETs associated
with the addresses. Otherwise, this parameter is ignored.

,PLIST8ARALETS=NO
Indicates that the 8-byte-per-entry parameter list is to consist of just the
8-byte addresses.

,PLIST8ARALETS=YES
Indicates that the 8-byte-per-entry parameter list is to consist of the
following two parts:
v All the 8-byte addresses,
v All the associated ALETs in consecutive 4-byte fields.

,ID=id nmbr
Specifies a 2-byte identifier useful for debugging purposes only. The last
fullword of the macro expansion is a NOP instruction containing the identifier
value in bytes 3 and 4.

,LINKINST=instruction
Specifies the linkage instruction to use in this macro. The default is
LINKINST=BALR.

CALL macro

130 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

|
|
|
|
|

|
|
|

|

|
|

|

|
|
|

Return and reason codes
The CALL macro does not generate any return codes. A return code in GPR 15 or
AR 15 is placed there by the called program.

Example
Call the entry point contained in register 15, and pass three addresses to the
control program.
CALL (15),(ADDR1,ADDR2,ADDR3)

CALL - List form
Use the list form of the CALL macro to construct a nonexecutable problem
program parameter list. This list form generates only ADCONs of the address
parameters. You can refer to this problem program parameter list in the execute
form of a CALL, LINK, LINKX, ATTACH, ATTACHX, XCTL, or XCTLX macro.

Syntax
The list form of the CALL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CALL.

CALL

� One or more blanks must follow CALL.

,(addr) addr: A-type address.

,(addr),VL Note: addr is one or more addresses, separated by commas. For example,
(addr,addr,addr)

,PLISTARALETS=SYSTEM Default: ,PLISTARALETS=SYSTEM

,PLISTARALETS=NO Note: ,PLISTARALETS is valid only with ATTACHX.

,PLIST8ARALETS=NO Default: PLIST8ARALETS=NO

,PLIST8ARALETS=YES

,MF=L

Parameters
The parameters are explained under the standard form of the CALL macro, with
the following exception:

CALL macro

Chapter 24. CALL — Pass control to a control section 131

||

||

,MF=L
Specifies the list form of the CALL macro.

CALL - Execute form
The execute form of the CALL macro can refer to and modify a remote problem
program parameter list. Only executable instructions and a VCON of the entry
point are generated.

Syntax
The execute form of the CALL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CALL.

CALL

� One or more blanks must follow CALL.

entry name entry name: Symbol or register (2) - (12), (15).

,(addr) addr: RX-type address, or register (2) - (12).

,(addr),VL Note: addr is one or more addresses, separated by commas. For example,
(addr,addr,addr)

,PLISTARALETS=SYSTEM Default: ,PLISTARALETS=SYSTEM

,PLISTARALETS=NO Note: ,PLISTARALETS is valid only with ATTACHX.

,PLIST8ARALETS=NO Default: PLIST8ARALETS=NO

,PLIST8ARALETS=YES

,ID=id nmbr id nmbr: Symbol or decimal digit, with a maximum value of 4095.

,LINKINST=instruction Default: LINKINST=BALR

,MF=(E,prob addr) prob addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the CALL macro, with
the following exception:

CALL macro

132 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

||

||

,MF=(E,prob addr)
Specifies the execute form of the CALL macro. This form uses a remote
problem program parameter list. If the address parameters are also specified in
this form, the ADCONs of the parameter are placed on contiguous fullword
boundaries beginning at the address specified in the MF parameter, and
sequentially overlaying corresponding fullwords in the existing list.

CALL macro

Chapter 24. CALL — Pass control to a control section 133

CALL macro

134 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 25. CHAP — Change dispatching priority

Description
CHAP changes the dispatching priority of the task or any of its subtasks relative to
the other tasks in the address space. It does not change the priority relative to
other tasks in the system. CHAP may also change the limit priority of a subtask.
(See the topic “Priorities” in the z/OS MVS Programming: Assembler Services Guide.)
The algebraic sum of the priority value and the dispatching priority of the subject
task determine the new dispatching priority.
v If the subject task is the task executing CHAP, its dispatching priority is set

equal to the sum of the priority value and the dispatching priority. This value is
not set to less than zero or greater than the limit priority for the task. Its limit
priority is unaffected.

v If the subject task is a subtask of the task executing CHAP, its dispatching
priority is set equal to the sum of the priority value and the dispatching priority.
This value is not set to less than zero or greater than the limit priority of the
task executing CHAP. After this modification, if the subtask's dispatching
priority exceeds its limit priority, the limit priority is made equal to the
dispatching priority.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No lock held
Control parameters: Must be in the primary address space.

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the CHAP macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

© Copyright IBM Corp. 1988, 2015 135

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The CHAP macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CHAP.

CHAP

� One or more blanks must follow CHAP.

priority value priority value: Symbol, decimal digit, or register (0) or (2) - (12).

,‘S’ tcb addr: RX-type address, or register (1) or (2) - (12).

,tcb addr Default: ‘S’

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

priority value
Specifies the signed value to be added to the dispatching priority of the
specified task. If the value is negative and contained in a register, it must be in
two's complement form.

,‘S’
,tcb addr

Specifies the address of a fullword on a fullword boundary containing the

CHAP macro

136 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

address of a task control block (TCB) for a subtask of the active task. If ‘S’ is
coded or assumed, the dispatching priority of the active task is updated.

Note: TCB must reside in 24-bit addressable storage.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at your discretion and may be any valid coding
values.

The RELATED parameter is available on macros that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and
LOAD/DELETE) and on macros that relate to previous occurrences of the
same macros (for example, CHAP and ESTAE).

You may use the RELATED parameter as follows:
CHAPUP CHAP 1,’S’,RELATED=(CHAPDOWN,’UP PRIORITY’)

.

.

.
CHAPDOWN CHAP -1,’S’,RELATED=(CHAPUP ’RESUME INITIAL PRIORITY’)

ABEND codes
07F
12C
22C

See z/OS MVS System Codes for an explanation and programmer responses for
these codes.

Return and reason codes
None.

Example 1
Lower the dispatching priority of the subtask TCB by two. The subtask TCB's
address is in a fullword which register 1 addresses. The subtask TCB will be
repositioned on the dispatching queue in accordance with its new dispatching
priority.
CHAP -2,(1)

Example 2
Reposition the TCB of the task issuing CHAP at the bottom of the group of TCBs
on the dispatching queue for the address space, having the same dispatching
priority as that task.
CHAP 0

CHAP macro

Chapter 25. CHAP — Change dispatching priority 137

CHAP macro

138 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 26. CnzConv -- Convert console name and ID

Description
Application programmers can retrieve information about an input console name or
console ID using the CnzConv macro.

You can use the CnzConv service to obtain the following information:
v The console name associated with an input console ID.
v The console ID associated with an input console name.
v The console status (active or inactive).
v The console type (MCS, SMCS, Subsystem, EMCS, or Special).
v The console subtype:

– HMCS is a valid subtype for a console type of MCS.
– SYSCON is a valid subtype for a console type of EMCS.
– Internal, Instream, Unknown, and JES3 are valid subtypes for a console type

of Special.
v The system name where a console is active.
v The logic unit name of an SMCS console.
v The subsystem owner name of a subsystem console.
v The subsystem ASID of a subsystem console.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

Programming requirements
Before issuing CnzConv, take the following actions:
v If in access register ASC mode, specify SYSSTATE ASCENV=AR before invoking

this macro.
v If in access register ASC mode, the ALET associated with the CnzConv

parameter list must be zero.
v If in AMODE 64, specify SYSSTATE AMODE64=YES before invoking this macro.
v If a list and execute form of CnzConv is being used, clear the list form of the

parameter list before each use.

© Copyright IBM Corp. 1988, 2015 139

Programming considerations
Make sure you have all the information necessary to process the results of your
CnzConv query. For example, SUBSYSASID will only be returned for an active
subsystem console. As a result on your CnzConv query, you should request the
CONSOLESTATUS, CONSOLETYPE, and SUBSYSASID at a minimum. Then after
verifying the console status is active and the console type is subsystem, it can be
concluded that the SUBSYSASID has been returned.

Restrictions
There are six reserved console names. Do not use any of the following as console
names:
v HC
v LOGON
v LOGOFF
v OPERLOG
v SYSLOG
v UNKNOWN

Input register information
Before issuing the CnzConv macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

CnzConv macro

140 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax
The CnzConv macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CnzConv.

CnzConv

� One or more blanks must follow CnzConv.

InConsoleName =InConsoleName Addr InConsoleName Addr: RX-type address or register (2) - (12).

InConsoleId =InConsoleId Addr InConsoleId Addr: RX-type address or register (2) - (12).

,OutConsoleId =OutConsoleId Addr OutConsoleId Addr: RX-type address or register (2) - (12).

,OutConsoleName
=OutConsoleName Addr

OutConsoleName Addr: RX-type address or register (2) - (12).

,ConsoleStatus =ConsoleStatus Addr ConsoleStatus Addr: RX-type address or register (2) - (12).

,ConsoleType =ConsoleType Addr ConsoleType Addr: RX-type address or register (2) - (12).

,ConsoleSubType =ConsoleSubType
Addr

ConsoleSubType Addr: RX-type address or register (2) - (12).

,Sysname =Sysname Addr Sysname Addr: RX-type address or register (2) - (12).

,SMCS_LU =SMCS_LU Addr SMCS_LU Addr: RX-type address or register (2) - (12).

,SubsysOwnerName
=SubsysOwnerName Addr

SubsysOwnerName Addr: RX-type address or register (2) - (12).

,SubsysASID =SubsysASID Addr SubSysASID Addr: RX-type address or register (2) - (12).

,RtnCode =RtnCode Addr RtnCode Addr: RX-type address or register (2)-(12).

,RsnCode =RsnCode Addr RsnCode Addr: RX-type address or register (2)-(12).

Parameters
The parameters are explained as follows:

CnzConv macro

Chapter 26. CnzConv -- Convert console name and ID 141

InConsoleName
Belongs to a set of mutually exclusive keys. It is the name (RS-type), or
address in register (2)-(12), of an 8 character input that is the input console
name to query.

InConsoleId
Belongs to a set of mutually exclusive keys. It is the name (RS-type), or
address in register (2)-(12), of a fullword input that is the input console ID to
query.

OutConsoleId
Is the name (RS-type), or address in register (2)-(12), of an optional fullword
output that contains the console ID of the requested console when the query
completes successfully. When the query does not complete successfully,
OutConsoleId will contain binary zeros.

OutConsoleName
Is the name (RS-type), or address in register (2)-(12), of an optional 8 character
output that contains the console name of the requested console when the query
completes successfully. When the query does not complete successfully,
OutConsoleName will contain binary zeros.

ConsoleStatus
Is the name (RS-type), or address in register (2)-(12), of an optional byte output
that contains the status of the requested console when the query completes
successfully. When the query does not complete successfully, ConsoleStatus
will contain binary zeros which means not applicable. A console status will be
returned for a console type of MCS, SMCS, Subsys, or EMCS. A console status
of binary zeros, which means not applicable, will be returned for a console
type of Special. The console statuses are: active, inactive. The constants for the
console statuses are defined in macro IEZVG200.

ConsoleType
Is the name (RS-type), or address in register (2)-(12), of an optional byte output
that contains the type of the requested console when the query completes
successfully. When the query does not complete successfully, ConsoleType will
contain binary zeros. Any query that completes successfully will have a
console type set. The console types are: MCS, SMCS, Subsys, EMCS, Special.
The constants for the console types are defined in macro IEZVG200.

ConsoleSubType
Is the name (RS-type), or address in register (2)-(12), of an optional byte output
that contains the subtype of the requested console when the query completes
successfully. When the query does not complete successfully, or completes
successfully, but the requested console does not have a console subtype,
ConsoleSubtype will contain binary zeros which means not applicable. Console
subtypes are only returned for the console types of MCS, EMCS, and Special.
HMCS is a valid subtype for the console type of MCS. SYSCON is a valid
subtype for the console type of EMCS. Internal, Instream, Unknown, and JES3
are valid subtypes for the console type of Special. The constants for the console
subtypes are defined in macro IEZVG200.

Sysname
Is the name (RS-type), or address in register (2)-(12), of an optional 8 character
output that contains the system name where the requested console is active
when it has a console status of active, and a console type of MCS, SMCS,
Subsys, or EMCS, and the query completes successfully. When the console
status is not active, or the console type is Special, or the query does not
complete successfully, Sysname will contain binary zeros.

CnzConv macro

142 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

SMCS_LU
Is the name (RS-type), or address in register (2)-(12), of an optional 8 character
output that contains the LU name of the requested console when it has a
console type of SMCS and the query completes successfully. When the console
type is not SMCS or the query does not complete successfully, SMCS_LU will
contain binary zeros.

SubsysOwnerName
Is the name (RS-type), or address in register (2)-(12), of an optional 8 character
output that contains the subsystem owner name of the requested console when
it has a console type of Subsys, and a console status of active, and the query
completes successfully. When the console type is not Subsys, or the console
status is not active, or the query does not complete successfully,
SubsysOwnerName will contain binary zeros.

SubsysASID
Is the name (RS-type), or address in register (2)-(12), of an optional halfword
output that contains the ASID of the requested console when it has a console
type of Subsys, and a console status of active, and the query completes
successfully. When the console type is not Subsys, or the console status is not
active, or the query does not complete successfully, SubsysASID will contain
binary zeros.

RtnCode
Is the name (RS-type) of an optional fullword output variable, or register
(2)-(12), into which the return code is to be copied from GPR 15.

RsnCode
Is the name (RS-type) of an optional fullword output variable, or register
(2)-(12), into which the reason code is to be copied from GPR 0.

ABEND codes
077

Return and reason codes
When the CnzConv macro returns control to your program, if any return code is
specified, it will be copied from Register 15 into RtnCode, if any reason code is
specified, it will be copied from Register 0 into RsnCode. The following table
shows the meanings and actions for the hexadecimal return codes and reason
codes:

Return Code Reason
Code

Meaning and Action

0 N/A Name: CnzConvRc0_Ok

Meaning: The input console name or ID was found and the
applicable requested data was returned.

Action: None.

4 xxxxxxxx Name: CnzConvRc4_ConditionallyOK

Meaning: The request completed successfully with an
exception.

Action: Examine the reason code to determine how to
proceed.

CnzConv macro

Chapter 26. CnzConv -- Convert console name and ID 143

Return Code Reason
Code

Meaning and Action

4 xxxx0401 Name: CnzConvRsn401_IdNotFound

Meaning: The console ID in InConsoleId is not associated
with any console.

Action: Correct the console ID in InConsoleId to be the ID of
a defined console or take appropriate action when the console
ID in InConsoleId was not found.

4 xxxx0402 Name: CnzConvRsn402_NameNotFound

Meaning: The console name in InConsoleName is not
associated with any console.

Action: Correct the console name in InConsoleName to be the
name of a defined console or take appropriate action when
the console name in InConsoleName was not found.

4 xxxx0403 Name: CnzConvRsn403_NameIsReserved

Meaning: The input console name is a reserved console name.

Action: Correct the console name in InConsoleName to be the
name of a defined console or take appropriate action when
the console name in InConsoleName is reserved.

8 xxxxxxxx Name: CnzConvRc8_SpecificationError

Meaning: An error was detected in the CnzConv parameter
list. None of the requested data has been returned.

Action: Correct the CnzConv parameter list. Examine the
reason code to determine how to proceed.

8 xxxx0801 Name: CnzConvRsn801_BadPlistVer

Meaning: The PLISTVER in the CnzConv parameter list is
incorrect.

Action: Correct the PLISTVER in the CnzConv parameter list.

8 xxxx0802 Name: CnzConvRsn802_ExtraneousInput

Meaning: InConsoleName and InConsoleId are mutually
exclusive keywords but both were specified.

Action: Specify one and only one of the following keywords:
InConsoleName or InConsoleId.

8 xxxx0803 Name: CnzConvRsn803_IncompleteArgs

Meaning: Neither InConsoleName nor InConsoleId keyword
was specified.

Action: Specify one and only one of the following keywords:
InConsoleName or InConsoleId.

8 xxxx0804 Name: CnzConvRsn804_NameInvalidSyntax

Meaning: The console name in InConsoleName is
syntactically invalid and cannot be a console name.

Action: Correct the input console name.

CnzConv macro

144 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Return Code Reason
Code

Meaning and Action

8 xxxx0805 Name: CnzConvRsn805_RsvSpaceNotZero

Meaning: The reserved space in the CnzConv parameter list
is not binary zeros.

Action: Correct the CnzConv parameter list so that the
reserved space contains binary zeros.

C xxxxxxxx Name: CnzConvRcC_Error

Meaning: The request failed to complete successfully. None of
the requested data has been returned.

Action: Examine the reason code to determine how to
proceed.

C xxxx0C01 Name: CnzConvRsnC01_NotAvailable

Meaning: The CnzConv service is not available at this time,.
This typically would not occur after system initialization.

Action: Resubmit your request at a later time.

C xxxx0C02 Name: CnzConvRsnC02_IncorrectEnv

Meaning: The CnzConv service was invoked in an incorrect
environment.

Action: Invoke the CnzConv service in the correct
environment.

10 xxxxxxxx Name: CnzConvRc10_UnexpectedError

Meaning: Unexpected failure occurred. The outcome of the
request is unpredictable, meaning that it might have
completed successfully, or partially, or not at all. All, some, or
none of the data requested has been returned. A dump might
have been taken.

Action: Examine the reason code to determine how to
proceed.

10 xxxx1001 Name: CnzConvRsn1001_SevereError

Meaning: The CnzConv service was unable to complete your
request due to an unexpected error processing the CnzConv
request.

Action: Supply the return code, reason code, and the dump to
the appropriate IBM support personnel.

Example
A typical application of CnzConv would be in an MPF message exit. A message
exit could be built to reroute a message to an active console in your system or
sysplex. As shown in the following example, you can change the routing
information or the message destination depending on the status of the console:
v If CnzConv indicates the console is active and you want to send the message

only to that active console, add the necessary code at the CONTINUE label.
v If CnzConv indicates the console is inactive and you want to route this message

to an active console, add the necessary code to the NOTACTIVE label.

CnzConv macro

Chapter 26. CnzConv -- Convert console name and ID 145

.

This example assumes that you would have function specified at the labels
referenced as locations of branch instructions (block comments are also in the
example showing where these would be).
NZCONVEX CSECT
NZCONVEX AMODE 31
NZCONVEX RMODE ANY

* *
* REGISTER ASSIGNMENTS *
* *

REG0 EQU 0 REGISTER 0
REG1 EQU 1 REGISTER 1
REG2 EQU 2 REGISTER 2
REG3 EQU 3 REGISTER 3
REG4 EQU 4 REGISTER 4
REG5 EQU 5 REGISTER 5
REG6 EQU 6 REGISTER 6
REG7 EQU 7 REGISTER 7
REG8 EQU 8 REGISTER 8
REG9 EQU 9 REGISTER 9
REG10 EQU 10 REGISTER 10
REG11 EQU 11 REGISTER 11 - DYNAMIC DATA AREA
REG12 EQU 12 REGISTER 12
REG13 EQU 13 REGISTER 13
REG14 EQU 14 REGISTER 14
REG15 EQU 15 REGISTER 15

SPACE 1

* *
* STANDARD ENTRY LINKAGE *
* *

BAKR REG14,0 SAVE REGS
BALR REG12,0 BASE REG
USING *,REG12 ADDRESSABILITY
MODID ,

*
* OBTAIN DYNAMIC AREA STORAGE.
*

SPACE 1

LA REG0,DYNL LENGTH OF DATA AREAS
GETMAIN RU,LV=(REG0),SP=0 OBTAIN DYNAMIC STORAGE
LR REG11,REG1 ADDRESS RETURNED IN REG1
USING DYNMODEL,REG11 ADDRESSABILITY TO DYNAMIC

XC MYCNZCONV,MYCNZCONV CLEAR CNZCONV PARMLIST

*
* INVOKE CNZCONV FOR A CONSOLE NAME.
*

CNZCONV INCONSOLENAME=MYCONSOLENAME, X
OUTCONSOLEID=OUTCONSOLEID, X
OUTCONSOLENAME=OUTCONSOLENAME, X

CnzConv macro

146 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

CONSOLESTATUS=OUTCONSOLESTATUS, X
CONSOLETYPE=OUTCONSOLETYPE, X
CONSOLESUBTYPE=OUTCONSOLESUBTYPE, X
SYSNAME=OUTSYSNAME, X
SMCS_LU=OUTSMCS_LU, X
SUBSYSOWNERNAME=OUTSUBSYSOWNERNAME, X
SUBSYSASID=OUTSUBSYSASID, X
RTNCODE=CNZCONVRETURNCODE, X
RSNCODE=CNZCONVREASONCODE, X
MF=(E,MYCNZCONV)

CLI CNZCONVRETURNCODE,CNZCONVRC0_OK X
Was the query successful?

BNZ FINISHED No, free storage and return

CLI OUTCONSOLESTATUS,CNZCONV_KSTATUS_INACTIVE X
Was the console inactive?

BE NOTACTIVE Yes, handle not active
CLI OUTCONSOLESTATUS,CNZCONV_KSTATUS_ACTIVE X

Was the console active?
BE CONTINUE
B FINISHED Undefined status, free storage X

and return

CONTINUE EQU *

* HERE YOU WOULD PROVIDE SUPPORT FOR THE ACTIONS YOU WANTED *
* TO TAKE IF THE CONSOLE WAS ACTIVE. *

NOTACTIVE EQU *

* HERE YOU WOULD PROVIDE SUPPORT FOR THE ACTIONS YOU WANTED
* TO TAKE IF THE CONSOLE WAS INACTIVE.

FINISHED EQU *

FREEMAIN RU,LV=DYNL,A=(REG11),SP=0

PR

MYCONSOLENAME DC C’MCSY13E0 ’ CONSOLE NAME

- DYNAMIC AREA that contains the data returned by CnzConv macro -
- plus the CnzConv parameter list -

DYNMODEL DSECT

DS 0F
OUTCONSOLEID DS F
OUTCONSOLENAME DS CL8
OUTCONSOLESTATUS DS CL1
OUTCONSOLETYPE DS CL1
OUTCONSOLESUBTYPE DS CL1
RSV000001 DS CL1
OUTSYSNAME DS CL8
OUTSMCS_LU DS CL8
OUTSUBSYSOWNERNAME DS CL8
OUTSUBSYSASID DS H
CNZCONVRETURNCODE DS F
CNZCONVREASONCODE DS F

CNZCONV MF=(L,MYCNZCONV) CNZCONV PARAMETER LIST
ORG

DYNL EQU *-DYNMODEL DYNAMIC AREA LENGTH
EJECT
IEZVG200 CNZCONV CONSTANTS
EJECT

END

CnzConv macro

Chapter 26. CnzConv -- Convert console name and ID 147

CnzConv -- List form
Use the list form of the CnzConv macro together with the execute form of the
macro for programs that require reentrant code. The list form of the macro defines
an area of storage, which the execute form of the macro uses to store the
parameters.

Syntax
The list form of the CnzConv macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CnzConv.

CnzConv

� One or more blanks must follow CnzConv.

,MF=(L,list addr) list addr: Symbol

,MF=(L,list addr,attr) attr: 1- to 60-character input string.

,MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the CnzConv macro with
the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr, 0D)

Specifies the list form of the CnzConv macro. list addr is the name of a storage
area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

CnzConv -- Execute form
Use the execute form of the CnzConv macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

CnzConv macro

148 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax
The execute form of the CnzConv macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CnzConv.

CnzConv

� One or more blanks must follow CnzConv.

InConsoleName = InConsoleName Addr InConsoleName Addr: RX-type address or register (2) - (12) .

InConsoleId = InConsoleId Addr InConsoleId Addr: RX-type address or register (2) - (12).

[,OutConsoleId = OutConsoleId Addr] OutConsoleId Addr: RX-type address or register (2) - (12).

[,OutConsoleName = OutConsoleName
Addr]

OutConsoleName Addr: RX-type address or register (2) - (12).

[,ConsoleStatus = ConsoleStatus Addr] ConsoleStatus Addr: RX-type address or register (2) - (12).

[,ConsoleType = ConsoleType Addr] ConsoleType Addr: RX-type address or register (2) - (12).

[,ConsoleSubType = ConsoleSubType
Addr]

ConsoleSubType Addr: RX-type address or register (2) - (12).

[,Sysname = Sysname Addr] Sysname Addr: RX-type address or register (2) - (12).

[,SMCS_LU = SMCS_LU Addr] SMCS_LU Addr: RX-type address or register (2) - (12).

[,SubsysOwnerName =
SubsysOwnerName Addr]

SubsysOwnerName Addr: RX-type address or register (2) - (12).

[,SubsysASID = SubsysASID Addr] SubSysASID Addr: RX-type address or register (2) - (12).

[,RtnCode=RtnCode Addr] RtnCode Addr: RX-type address or register (2)-(12).

[,RsnCode=RsnCode Addr] RsnCode Addr: RX-type address or register (2)-(12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

,MF=(E,list addr,NOCHECK)

Parameters
The parameters are explained under the standard form of the CnzConv macro with
the following exceptions:

,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the CnzConv macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply defaults for omitted optional parameters.

CnzConv macro

Chapter 26. CnzConv -- Convert console name and ID 149

NOCHECK specifies that the system is not to check for required parameters
and is not to supply defaults for omitted optional parameters.

CnzConv macro

150 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 27. CNZTRKR — Tracking interface macro

Description
The CNZTRKR macro can be used to invoke the tracking facility. IBM recommends
to use macro GTZTRACK instead. This service allows programmers to record
events of interest. For more information about the tracking facility, see z/OS MVS
Diagnosis: Tools and Service Aids.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space.

Programming requirements
Before issuing the CNZTRKR macro, do the following:
v Include the CNZTRPL mapping macro in your program.
v Obtain storage for the CNZTRKR parameter list. TRPL_LEN in CNZTRPL

contains the length of the parameter list. The parameter list can be in any type
of storage.

v Clear the entire parameter list by setting it to zeros.
v Initialize fields in the parameter list mapped by macro CNZTRPL. You must

initialize the following fields:

Field Description
TRPL_Acro The TRPL acronym
TRPL_Version The current version level of the parameter list. The

CNZTRPL mapping macro contains the current version
level in TRPL_K_Curr_Version.

TRPL_Track_Info Text that describes the occurrence of this instance. This
text can be from 1 to 28 characters in length. Any EBCDIC
value is allowed though you should use displayable
characters because undisplayable characters may be
changed to blanks when displayed on an operator's
console or in the hardcopy log. The text cannot be all
blank or all hexadecimal zeros.

TRPL_Track_Data Four bytes of data associated with this track instance. Zero
is a valid value. The DISPLAY OPDATA operator
command will display this value as a hexadecimal
number.

© Copyright IBM Corp. 1988, 2015 151

Field Description
TRPL_Violators_Addr While optional, this field should contain the address of

where the event being tracked occurred (perhaps the
address to which the service invoking CNZTRKR will
return). If set to zero, the tracking facility will attempt to
determine the address of the event, but may not be able to
determine the exact location. This address is assumed to
be a 31-bit address. If a 24-bit address is provided, you
must ensure that the high-order byte of the address is
zero.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
Before issuing the CNZTRKR macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Syntax
The CNZTRKR macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CNZTRKR.

CNZTRKR

CNZTRKR macro

152 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

� One or more blanks must follow CNZTRKR.

register register: General purpose register (2) - (12).

or

list name list name: RX-type address.

Parameters
The parameters are explained as follows:

register
list name

Contains the address (register) or the name (list name) of the TRPL parameter
list.

ABEND codes
If the installation has requested to ABEND the program that invokes the tracking
service, the task will be ABENDed with an ABEND code of X'E77' and a user
defined reason code. See the SETGTZ DEBUG operator command for further
details.

Return and reason codes
When the CNZTRKR macro returns control to your program, register 15 contains
the return code and register 0 contains a reason code, if the return code is not zero.
Mapping macro CNZTRPL provides names for the return and reason codes. Refer
to Chapter 99, “GTZTRACK macro — GTZ Track,” on page 655 for codes that are
not listed in CNZTRPL.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 00 Meaning: The recording of an instance completed
successfully.

Action: None.

04 04 Meaning: The request was to record an instance but
the maximum number of recorded instances has
been reached.

Action: See the description of message GTZ0004E.

04 08 Meaning: The request was to record an instance but
the tracking facility is not active.

Action: See the description of reason code xxxx0401
of macro service GTZTRACK.

0C xx Meaning: There was an error with the TRPL
parameter list.

Action: None.

CNZTRKR macro

Chapter 27. CNZTRKR — Tracking interface macro 153

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

0C 04 Meaning: The acronym in the parameter list was not
valid (it must be “TRPL”) or the version level was not
supported.

Action: Correct the acronym or version level in the
parameter list and issue CNZTRKR again.

0C 08 Meaning: The track information provided in the
TRPL parameter list was all blank or all hexadecimal
zeros.

Action: Make any necessary corrections to your code
and issue CNZTRKR again.

0C 0C Meaning: There was an error attempting to access
the TRPL parameter list. The TRPL address you
provided may not have been valid or pointed to
storage that the CNZTRKR service could not access.

Action: Make any necessary corrections to your code
and issue CNZTRKR again.

10 xx Meaning: This return code is for IBM diagnostic
purposes only.

Action: Record the return and reason codes and
supply them to the appropriate IBM support
personnel.

10 04 Meaning: A recovery environment could not be
established.

Action: Record the return and reason codes and
supply them to the appropriate IBM support
personnel.

10 08 Meaning: A serialization environment could not be
established.

Action: If this instance is important to be recorded,
you can reissue the request. Serialization may now
be able to be obtained.

10 0C Meaning: An ABEND occurred in the CNZTRKR
service during the processing of your request.

Action: Notify your system programmer.

10 10 Meaning: GTZTRACK rejected the tracking request.

Action: Notify your system programmer.

CNZTRKR macro

154 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 28. CONVCON — Retrieve console information

Description
IBM suggests using the CnzConv service to retrieve console information. As of
z/OS V1R8 and later releases, the CONVCON service will no longer be enhanced.
Future enhancement will be provided only on the CnzConv service. For more
information about the CnzConv macro, see Chapter 26, “CnzConv -- Convert
console name and ID,” on page 139.

Application programmers can retrieve information about MCS, SMCS, or extended
MCS consoles by using the CONVCON macro.

You can use CONVCON to:
v Determine the name of a console when you specify the ID
v Determine the ID of a console when you specify the name
v Validate a console name or console ID
v Validate that a console area ID is syntactically correct
v Check if a console is active.

You must initialize a parameter list as input. See z/OS MVS Data Areas in z/OS
Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/ for a map of
the CONVCON parameter list, called CONV, which is mapped by IEZVG200. See
z/OS MVS Programming: Assembler Services Guide to determine which fields to
initialize.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

Programming requirements
Before issuing CONVCON, do the following:
v Include the IEZVG200 mapping macro in your program.
v Obtain storage for the CONVCON parameter list. CONVGLEN in IEZVG200

contains the length of the parameter list. The parameter list can be in any type
of storage.

v Clear the entire parameter list by setting it to zeros. If you reuse it, clear it
before each reuse.

© Copyright IBM Corp. 1988, 2015 155

http://www.ibm.com/systems/z/os/zos/bkserv/

v Initialize fields in the parameter list mapped by macro IEZVG200. Depending on
the task for which you are invoking CONVCON, you need to initialize a
combination of different fields.
You must initialize the following fields no matter what task you perform:

CONVACRO
The CONV acronym

CONVVRSN
The current version level of the parameter list. The parameter list
contains valid values in CONVRID.

The following describes the remaining parameter list fields. Depending on the
task you choose, these fields are input fields, output fields, or both input and
output fields. Use the information in the z/OS MVS Programming: Assembler
Services Guide to determine which of these fields are input fields, and which are
output fields.

CONVFLGS
A 1-byte flag field that indicates whether you are supplying the console
name in CONVFLD (flag CONVPFLD) or the console ID (flag
CONVPID) in CONVID. Set only the first bit on to indicate the console
name; set only the second bit on to indicate the console ID.

CONVFLD
A 10-byte field containing the console name or console name with the
area ID. The installation defines console names at initialization time in
the CONSOLxx member of Parmlib. You can use the DISPLAY command
to receive a list of defined names. Console area IDs can be only one
character, A through K or Z. If you specify a console with an area ID,
separate the name and area ID by a hyphen, left-justify it, and pad it to
the right with blanks. Examples of valid console names with area IDs
are:
– DATA-a
– DATADATA-a

Examples of incorrect names with area IDs and the reasons are:
– DATA-abc - has an area ID with more than one character
– DATA a - has a blank instead of a hyphen between the console name

and the area ID

CONVAREA
A one-character input field containing a console area ID. Valid IDs are
'A' - 'K' and 'Z', and are only validated for MCS or SMCS consoles.

CONVRSN
A reason code explaining return codes 0, 4, or 8.

CONVNAME
An 8-byte field containing the console name received as output when
you specify the console ID as input. The console name can be up to
eight characters. If the name has fewer than eight characters, the name is
left-justified and padded to the right with blanks.

CONVID
A 4-byte console ID. If you specified the name of the console in
CONVFLD, on return, CONVID contains the ID of the same console. If
you specify the ID of the console in CONVID, CONVCON will return
the name of the console in CONVNAME. The system assigns console
IDs.

CONVCON macro

156 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

CONVGFLG
Set flag CONVNPAR on in this field only if you want CONVCON to
omit any area ID processing. If you do set the flag on, CONVCON:
– Ignores an area ID in CONVAREA
– Assumes the entire field is a console name, and issues return code

X'08' if you included an area ID.

CONVSYSN
If the console name or ID that you specified is active, CONVCON places
the name of the system to which the console is attached in CONVSYSN.
If the console is not active, this field contains blanks.

CONVSMCS
Output flag that indicates that the console specified is an SMCS console.

Programming considerations
The CONVID 4-byte console id field can be used to determine if a console is
extended MCS or MCS/SMCS. The first byte, mapped by CONVCLAS, is non-zero
for an EMCS console. The first byte is zero for MCS and SMCS consoles. The
CONVSMCS bit can be used to determine if a console is an SMCS console. This bit
will always be on for SMCS consoles, and will be off for other types of consoles.

Restrictions
There are six reserved console names. Do not use any of the following as console
names:
v HC
v LOGON
v LOGOFF
v OPERLOG
v SYSLOG
v UNKNOWN

Input register information
Before issuing CONVCON, the caller does not have to place any information into
any register unless using it in register notation for a particular parameter, or using
it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code

1 Address of the CONV parameter list

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

CONVCON macro

Chapter 28. CONVCON — Retrieve console information 157

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CONVCON macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CONVCON.

CONVCON

� One or more blanks must follow CONVCON.

register register: General purpose register (2) - (12).

list name list name: RX-type address.

,RTNCODE=ReturnCode ReturnCode: RX-type address or register (2)-(12).

,RSNCODE=ReasonCode ReasonCode: RX-type address or register (2)-(12).

Parameters
The parameters are explained as follows:

register
list name

Contains the address (register) or the name (list name) of the CONV parameter
list.

ABEND codes
077

Return and reason codes
When the CONVCON macro returns control to your program, the following table
documents the possible return and reason codes. You can use the RTNCODE= and
the RSNCODE= parameter on the CONVCON macro to save the return code and
reason code into a variable or register. The return code is available in Register 15
and the reason code is available in Register 0 and CONVRSN when the
CONVCON macro returns. Here are the possible return and reason codes:

CONVCON macro

158 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 00 Meaning: The input console is active and the area
ID (if specified) is syntactically valid.

Action: None.

00 0C Meaning: Program error. The input console is active
and the area ID specified is not syntactically valid.

Action: Correct the area ID specification. The area ID
must be a letter between A-K or Z.

00 10 Meaning: Program error. The input console is active
and the area ID was either not specified after the
dash or additional non-blank characters were
specified after the area ID in CONVFLD.

Action: Correct the area ID specification. The area ID
must be a letter between A-K or Z.

04 00 Meaning: Environmental error. The input console is
inactive and the area ID (if specified) is syntactically
valid.

Action: Messages cannot be sent to this console. You
must direct messages elsewhere.

04 0C Meaning: Program error. The input console is
inactive and the area ID specified is not syntactically
valid.

Action: Messages cannot be sent to this console. You
must direct messages elsewhere. Correct the area ID
specification. The area ID must be a letter between
A-K or Z.

04 10 Meaning: Program error. The console is not active,
but the requested console information was obtained.
The specified area ID does not comply with syntax
requirements. The area ID must be in the range
between A-K, or Z.

Action: Messages cannot be sent to this console. You
must direct messages elsewhere. Correct the area ID
specification. The area ID must be a letter between
A-K or Z.

CONVCON macro

Chapter 28. CONVCON — Retrieve console information 159

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 00 Meaning: Program error. The console name specified
is not valid, for one of the following reasons:

v No console with the specified name exists.

v You specified an area ID with the console name,
but you also set flag CONVNPAR in the
CONVGFLG field in the CONV parameter list.

v You specified a console name with more than 8
characters.

Action: Take the action number corresponding to the
meaning number.

v Change the console name to one that is defined in
the sysplex.

v Remove the area ID after the console name, or
turn off the CONVNPAR in the CONV parameter
list.

v Correct the console name.

08 08 Meaning: Program error. The console name specified
contains invalid syntax.

Action: Correct the syntax of the console name and
resubmit the request.

08 0C Meaning: Program error. You specified a reserved
console name.

Action: Correct the problem and resubmit the
request.

0C N/A Meaning: Program error. You specified an incorrect
console ID on input.

Action: Specify a valid 4-byte console ID. Correct the
problem and resubmit the request.

10 N/A Meaning: Environmental error. The CONVCON
service is not available.

Action: Resubmit the request at a later time.

14 N/A Meaning: System error. This return code is for IBM
diagnostic purposes only.

Action: Record the return code and supply it to the
appropriate IBM support personnel.

18 N/A Meaning: Program error. CONVCON processing
completed unsuccessfully. You did not specify
whether a console name or a console ID was being
supplied as input.

Action: Ensure that exactly one of the console input
flags in field CONVFLGS is set and resubmit the
request.

CONVCON macro

160 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

1C N/A Meaning: Program error. CONVCON processing
completed unsuccessfully. You specified both the
console name and console ID values in CONVFLGS.

Action: Ensure that only one of the console input
flags in field CONVFLGS is set and resubmit the
request.

20 N/A Meaning: Program error. CONVCON processing
completed unsuccessfully. The CONV acronym was
missing in the CONV parameter list.

Action: Ensure that you are correctly referencing the
parameter list when issuing CONVCON, and that
the parameter list is correct. Resubmit the request.

24 N/A Meaning: Program error. CONVCON was called
while holding a lock.

Action: Correct the program to invoke CONVCON
while no locks are held.

28 N/A Meaning: The CONVCON service was invoked in
an incorrect environment.

Action: Invoke the CONVCON service in the correct
environment.

Example
A typical application of CONVCON would be in an MPF message exit. A message
exit could be built to reroute a message to an active console in your system or
sysplex. The example below has been coded with the following in mind:
v If CONVCON indicated the console is active and you want to send the message

only to that active console, add the necessary code at the CONTINUE label to
send the message only to the active console.

v If CONVCON indicated the console was inactive and you want to route this
message to a different console, add the necessary code to the NOTACTIVE label.

This example assumes:
v That you would have function specified at the labels referenced as locations of

branch instructions (block comments are also in the example showing where
these would be).

v That you are not reusing your CONV parameter list. If you need to issue
subsequent CONVCON request in other areas of the code, you must clear the
CONV parameter list and initialize it to perform the subsequent query.

CALLCONV CSECT
ZERO EQU 0
REG2 EQU 2
REG4 EQU 4
REG12 EQU 12
REG13 EQU 13
REG14 EQU 14
REG15 EQU 15
RCINACT EQU 4
* THIS EXAMPLE CALLS CONVCON TO DETERMINE THE STATUS OF
* A CONSOLE

STM REG14,REG12,12(REG13) SAVE REGISTERS OF CALLER
BASR REG12,0 ESTABLISH BASE REGISTER

CONVCON macro

Chapter 28. CONVCON — Retrieve console information 161

USING *,REG12 GET MODULE ADDRESSABILITY
LA REG2,CONVGLEN AMOUNT OF STORAGE TO GET
STORAGE OBTAIN,LENGTH=(REG2),ADDR=(REG4)
USING CONV,REG4 GET ADDRESSABILITY TO CONV
XC 0(CONVGLEN,REG4),0(REG4) CLEAR PARAMETER LIST
MVC CONVACRO,ACNMCONV PUT ACRONYM INTO PARAMETER LIST
MVI CONVVRSN,CONVRID PUT VERSION INTO PARAMETER LIST
OI CONVFLGS,CONVPFLD TURN ON CONSOLE NAME FLAG
MVC CONVFLD,CONSNAME PUT CONSOLE NAME IN PARAMETER X

LIST
CONVCON (REG4) CALL CONVCON
LTR REG15,REG15 IS THE CONSOLE ACTIVE?
BZ CONTINUE YES, GOTO CONTINUE
CHI REG15,RCINACT IS THE CONSOLE INACTIVE?
BE NOTACTIVE YES, GOTO NOTACTIVE
B EXIT END PROCESSING

CONTINUE EQU *

* HERE YOU WOULD PROVIDE SUPPORT FOR THE ACTIONS YOU WANTED *
* TO TAKE IF THE CONSOLE WAS ACTIVE. *

NOTACTIVE EQU *

* HERE YOU WOULD PROVIDE SUPPORT FOR THE ACTIONS YOU WANTED *
* TO TAKE IF THE CONSOLE WAS INACTIVE. *

EXIT EQU *

STORAGE RELEASE,LENGTH=CONVGLEN,ADDR=(REG4)
DROP REG4 DROP ADDRESSABILITY TO CONV
LM REG14,REG12,12(REG13) RESTORE REGISTERS OF CALLER
BR REG14 RETURN TO CALLER

ACNMCONV DC C’CONV’ CONVCON ACRONYM
CONSNAME DC C’CONSOLE1’ CONSOLE NAME WITH AN AREA

IEZVG200 CONVCON PARAMETER LIST
END

CONVCON macro

162 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 29. CONVTOD — Convert to time-of-day clock format

Description
The CONVTOD macro accepts a time and date value in several different formats
and converts it to time-of-day (TOD) clock format. The clock format can be either
the basic time-of-day (TOD) or the extended time-of-day (ETOD).
v TOD — Unsigned 64-bit binary number
v ETOD — Unsigned 128-bit binary number

See z/OS MVS Programming: Assembler Services Guide and z/Architecture Principles of
Operation for information comparing the formats of the TOD and ETOD.

The input time and date formats are compatible with those returned by the
STCKCONV and TIME macros.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in the primary address space or be in an

address/data space that is addressable through a public
entry on the caller's dispatchable unit access list (DU-AL).

Programming requirements
If the program is in AR mode, issue the SYSSTATE ASCENV=AR macro before
CONVTOD. SYSSTATE ASCENV=AR tells the system to generate code appropriate
for AR mode.

Restrictions
None.

Input register information
Before issuing the CONVTOD macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

© Copyright IBM Corp. 1988, 2015 163

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the CONVTOD macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CONVTOD.

CONVTOD

� One or more blanks must follow CONVTOD.

CONVVAL=convval convval: RX-type address or register (2) - (12).

,TODVAL=todval todval: RX-type address or register (2) - (12).

,ETODVAL=etodval etodval: RX-type address or register (2) - (12).

,TIMETYPE=DEC Default: TIMETYPE=DEC.

,TIMETYPE=BIN

,TIMETYPE=MIC

,DATETYPE=YYDDD

,DATETYPE=YYYYDDD Default: DATETYPE=YYYYDDD.

,DATETYPE=DDMMYYYY

CONVTOD Macro

164 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,DATETYPE=MMDDYYYY

,DATETYPE=YYYYMMDD

,OFFSET=offset value offset value: RX-type address or register (2) - (12).

Default: OFFSET=X'0000000F'.

Parameters
The parameters are explained as follows:

CONVVAL=convval
Specifies a 16-byte storage area in which you will enter the time and date
values to be converted. The storage area must begin on a word boundary. The
first two words contain the time of day and the third word contains the date in
the formats specified by the TIMETYPE and DATETYPE parameters. Set the
fourth word to 0 before issuing CONVTOD.

The earliest valid date is January 1, 1900, and the latest valid date is June 4,
2185, which corresponds to the end of the second epoch (the corresponding
ETOD value would have a value less than x'02' in the first byte).

,TODVAL=todval
Specifies an 8-byte storage area where the TOD-clock-formatted value is to be
returned. The storage area must begin on a word boundary.

,ETODVAL=etodval
Specifies a 16-byte storage area where the ETOD-clock-formatted value is to be
returned. The storage area must begin on a word boundary.

Only one of either TODVAL or ETODVAL can be specified.

,TIMETYPE=DEC
,TIMETYPE=BIN
,TIMETYPE=MIC

Specifies the format of the input time value:

DEC Unsigned packed decimal digits representing a time value in the form
HHMMSSthmiju0000, where

HH is hours, based on a 24-hour clock

MM is minutes

SS is seconds

t is tenths of a second

h is hundredths of a second

m is milliseconds

i is ten-thousandths of a second

j is hundred-thousandths of a second

u is microseconds.

CONVTOD Macro

Chapter 29. CONVTOD — Convert to time-of-day clock format 165

Note: HHMMSSth must be in the first word with the
remainder left-justified in the second word. Set the unused part
of the second word to zeros.

BIN Unsigned 32-bit binary number representing a time value as an
unsigned binary number in which the low-order bit represents 0.01 of
a second. Obtain but do not use the second word.

MIC Unsigned 64-bit binary number representing a time value in
microseconds. Bit 51 represents 1 microsecond.

,DATETYPE=YYDDD
,DATETYPE=YYYYDDD
,DATETYPE=DDMMYYYY
,DATETYPE=MMDDYYYY
,DATETYPE=YYYYMMDD

Specifies the format of the input date value:

Parameter
Format of input date

YYDDD
0CYYDDDF

YYYYDDD
0YYYYDDD

DDMMYYYY
DDMMYYYY

MMDDYYYY
MMDDYYYY

YYYYMMDD
YYYYMMDD

Where:

0C is the century - 00 represents 19YY, 01 represents 20YY

F is a sign to enable the date to be unpacked

YY is the last two digits of the year

YYYY is the year

DDD is the day of the year (Julian date)

DD is the day of the month

MM is the month of the year

,OFFSET=offset value
Specifies a 4-byte storage area containing a packed decimal number of the form
000HHMMX, where X is the sign (D for a negative number, F for a positive
number). The offset value is added to the input time. The offset value is
generally the difference between Greenwich Mean Time and local time but it
can be any desired value. The default value is X'0000000F'.

ABEND codes
None.

CONVTOD Macro

166 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Return and reason codes
The following table describes CONVTOD's return codes, their meanings, and any
recommended actions you should take. Return codes are listed in hexadecimal
with their decimal value shown in parentheses.

Table 4. Return Codes for the CONVTOD Macro

Return Code Meaning and Action

00 (00) Meaning: Successful completion.

Action: None.

0C (12) Meaning: Unsuccessful completion. CONVTOD encountered an
unexpected error.

Action: Record the return code and supply it to the appropriate IBM
support personnel.

10 (16) Meaning: Unsuccessful completion. The caller's parameter list was not
addressable.

Action: Verify that the pointer to the parameter list contains a valid
address and that CONVTOD is being invoked in a valid addressing
mode.

14 (20) Meaning: Unsuccessful completion. The time, date, or offset parameter
value was not valid.

Action: Verify that the input parameters have been initialized correctly.
Avoid specifying a date or time that occurs after the second epoch (the
corresponding ETOD value would have a value greater than x'01' in the
first byte).

Example 1
Convert a time expressed as microseconds and a date expressed as month-day-year
to TOD clock format using the specified offset value:

CONVTOD CONVVAL=INAREA,TODVAL=OUTAREA,TIMETYPE=MIC, *
DATETYPE=MMDDYYYY,OFFSET=PLUS1

INAREA DS 0F
DC X’00009047F3070000’ INPUT TIME IN MIC FORMAT
DC X’05171990’ INPUT DATE IN MMDDYYYY FORMAT
DS F’0’ UNUSED FOURTH WORD

PLUS1 DC X’0000100F’ +1 HOUR OFFSET VALUE
OUTAREA DS 2F AREA FOR OUTPUT TOD CLOCK VALUE

Example 2
Convert a time expressed as a decimal value and a date expressed as the Julian
date to TOD clock format using the specified offset value:

CONVTOD CONVVAL=INAREA,TODVAL=OUTAREA,TIMETYPE=DEC, *
DATETYPE=YYDDD,OFFSET=MINUSFIV

INAREA DS 0F
DC X’1045301535120000’ INPUT TIME IN DEC FORMAT
DC X’0090137F’ INPUT DATE IN YYDDD FORMAT
DS F’0’ UNUSED FOURTH WORD

MINUSFIV DC X’0000500D’ -5 HOUR OFFSET VALUE
OUTAREA DS 2F AREA FOR OUTPUT TOD CLOCK VALUE

Example 3
Convert a time expressed as a binary value and a date expressed as
year-month-day to TOD clock format using the default offset value:

CONVTOD Macro

Chapter 29. CONVTOD — Convert to time-of-day clock format 167

LA 3,INAREA STORE INPUT AREA ADDRESS
LA 11,OUTAREA STORE OUTPUT AREA ADDRESS
LA 6,PLIST STORE PARAMETER LIST ADDRESS
CONVTOD CONVVAL=(3),TODVAL=(11),TIMETYPE=BIN,DATETYPE=YYYYMMDD*

,MF=(E,(6))

PLIST CONVTOD MF=L GENERATE PARAMETER LIST STORAGE
INAREA DS 0F

DC X’003B18F700000000’ INPUT TIME IN BIN FORMAT
DC X’19900517’ INPUT DATE IN YYYYMMDD FORMAT
DS F’0’ UNUSED FOURTH WORD

OUTAREA DS 2F AREA FOR OUTPUT TOD CLOCK VALUE

CONVTOD—List form
Use the list form of the CONVTOD macro together with the execute form of the
macro for programs that require reentrant code. The list form of the macro defines
an area of storage, which the execute form of the macro uses to store the
parameters.

Syntax
The list form of the CONVTOD macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CONVTOD.

CONVTOD

� One or more blanks must follow CONVTOD.

MF=L

Parameters
The parameters are explained under the standard form of the CONVTOD macro
with the following exception:

MF=L
Specifies the list form of the CONVTOD macro. Do not specify any other
keywords with MF=L. Precede the macro invocation with a name in column 1
to label the generated parameter list so you can refer to it.

CONVTOD—Execute form
Use the execute form of the CONVTOD macro together with the list form of the
macro for programs that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

CONVTOD Macro

168 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax
The execute form of the CONVTOD macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CONVTOD.

CONVTOD

� One or more blanks must follow CONVTOD.

CONVVAL=convval convval: RX-type address or register (2) - (12).

,TODVAL=todval todval: RX-type address or register (2) - (12).

,ETODVAL=etodval etodval: RX-type address or register (2) - (12).

,TIMETYPE=DEC Default: TIMETYPE=DEC.

,TIMETYPE=BIN

,TIMETYPE=MIC

,DATETYPE=YYDDD

,DATETYPE=YYYYDDD Default: DATETYPE=YYYYDDD.

,DATETYPE=DDMMYYYY

,DATETYPE=MMDDYYYY

,DATETYPE=YYYYMMDD

,OFFSET=offset value offset value: RX-type address or register (2) - (12).

Default: OFFSET=X'0000000F'.

,MF=(E,list addr) list addr: RX-type address or register (1) - (12).

Parameters
The parameters are explained under the standard form of the CONVTOD macro
with the following exception:

,MF=(E,list addr)
Specifies the execute form of the CONVTOD macro. list addr specifies the area
that the system uses to store the parameters.

CONVTOD Macro

Chapter 29. CONVTOD — Convert to time-of-day clock format 169

CONVTOD Macro

170 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 30. CPOOL — Perform cell pool services

Description
The CPOOL macro performs the following functions:
v Creates a cell pool, where each cell is of the size you specify
v Obtains or returns a cell to the cell pool
v Deletes the previously built cell pool
v Places the starting and ending addresses of the cell pool extents in a buffer.

Problem-state programs running under PSW key 8-15 can obtain cell pools from
subpools 0-127, 131, and 132. Before obtaining storage, be sure to read the
information on subpools in “Virtual Storage Management” in z/OS MVS
Programming: Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For subpools 0-127: problem state and PSW key 8-15

v For subpools 131 and 132: APF authorization or a PSW
key mask (PKM) that allows the caller to switch into the
storage key of the storage to be obtained.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit
ASC mode: For LIST requests, primary or secondary. For all other

requests, primary.
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The following locks must be held or must be obtainable by

CPOOL:

v If the caller is not running in cross-memory mode, the
LOCAL lock of the currently addressable address space.

v If the caller is running in cross-memory mode, the CML
lock of the currently addressable address space.

Control parameters: Must reside in the primary address space and may reside in
storage above 16 megabytes if the caller is in 31-bit
addressing mode.

Programming requirements
None.

Restrictions
None.

Input register information
The CPOOL macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6
parameter

© Copyright IBM Corp. 1988, 2015 171

v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6
parameter (Version 1 Release 6 of z/OS or later) before issuing the CPOOL
macro with the BUILD, DELETE, LIST, or REGS=SAVE parameters, the caller
does not have to place any information into any general purpose register (GPR)
unless using it in register notation for a particular parameter, or using it as a
base register.

v If the caller has not issued the SYSSTATE macro with the OSREL=ZOSV1R6
parameter before issuing the CPOOL macro with the BUILD, DELETE, LIST, or
REGS=SAVE parameters, the caller must ensure that the following general
purpose register (GPR) contains the specified information:

Register
Contents

13 The address of an 72-byte save area

Before issuing the CPOOL macro with the GET, FREE, or REGS=USE parameters,
the caller is not required to place any information into any register unless using it
in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller from CPOOL BUILD, the GPRs contain:

Register
Contents

0 Contains the cell pool id.

1 Used as a work register by the system.

2-13 Unchanged

14-15 Used as work registers by the system.

When control returns to the caller from CPOOL GET, the GPRs contain:

Register
Contents

0 Used as work registers for the system.

1 For an UNCOND request or a successful COND request, contains the
address of the obtained cell. For an unsuccessful COND request, contains a
zero.

2-4 If REGS=SAVE is specified, the registers remain unchanged. Otherwise,
used as work registers by the system.

5-13 If LINKAGE=SYSTEM, REGS=SAVE, or COND REGS=USE is specified, the
registers remain unchanged. Otherwise, the registers are used as work
registers by the system.

14-15 Used as work registers by the system.

When control returns to the caller from CPOOL FREE, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system.

2-3 If REGS=SAVE is specified, the registers remain unchanged. Otherwise,
used as work registers by the system.

CPOOL macro

172 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

4-13 Unchanged

14-15 Used as work registers by the system.

When control returns to the caller from CPOOL DELETE, the GPRs contain:

Register
Contents

0-1 Used as a work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system.

When control returns to the caller from CPOOL LIST, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged

14-15 Used as work registers by the system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0 For CPOOL GET,COND, unchanged. Otherwise, used as a work register by
the system.

1 For CPOOL GET,COND, unchanged. Otherwise, used as a work register by
the system.

2-13 Unchanged

14 Used as a work register by the system.

15 For CPOOL GET,COND or CPOOL FREE, unchanged. Otherwise, used as
a work register by the system.

Performance implications
The CPOOL macro offers better performance than GETMAIN-FREEMAIN and
STORAGE for obtaining and releasing many identically sized storage areas.

Syntax
The standard form of the CPOOL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CPOOL.

CPOOL

� One or more blanks must follow CPOOL.

CPOOL macro

Chapter 30. CPOOL — Perform cell pool services 173

Syntax Description

Valid parameters (Required parameters are underlined)

BUILD PCELLCT,SCELLCT,CSIZE,SP,BNDRY,LOC,CPID,HDR

GET UNCOND,COND,CPID,CELL,REGS

FREE CPID,CELL,REGS

DELETE CPID

LIST CPID,WORKAREA

,UNCOND Default: UNCOND

,U

,COND

,C

,PCELLCT=primary cell count cell count: Symbol, decimal number, or register (0), (2) - (12).

,SCELLCT=secondary cell
count

Default: PCELLCT

,CSIZE=cell size cell size: Symbol, decimal number, or register (0), (2) - (12).

,SP=subpool number subpool number: Symbol, decimal number, or register (0), (2) - (12).

Default: SP=0

,BNDRY=DWORD Default: BNDRY=DWORD

The default value depends on the specified CSIZE value. If CSIZE is a
multiple of 8, cells reside on double boundaries (BNDRY=DWORD). If
CSIZE is multiple of 4, cells reside on word boundaries. If CSIZE is not a
multiple of 4 or 8, cells do not reside on a particular boundary.

,BNDRY=QWORD

,LOC=24 Default: LOC=RES

,LOC=31

,LOC=(31,31)

,LOC=(31,64)

,LOC=(31,PAGEFRAMESIZE1MB)

,LOC=RES

,LOC=(RES,31)

,LOC=(RES,64)

,CPID=pool id pool id: RX-type address or register (0), (2) - (12).

,CELL=cell addr cell addr: RX-type address or register (2) - (12).

CPOOL macro

174 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,KEY=key number key number: Decimal numbers 0-15 or register (0), (2) - (12).

Default: The default depends on which subpool you specify. See the
discussion of subpool handling in z/OS MVS Programming: Assembler Services
Guide for information on storage keys for specific subpools.

,HDR=hdr hdr: Character string enclosed in single quotation marks, RX-type address,
or register (0), (2) - (12).

Default: ‘CPOOL CELL POOL’

,REGS=SAVE
,REGS=USE

Default: REGS=SAVE

,WORKAREA=(workarea,length) workarea: Symbol, RX-type address, or register (0), (2) - (12).

length: Symbol or decimal number.

Parameters
The parameters are explained as follows:

BUILD
GET
FREE
DELETE
LIST

Specifies the cell pool service to be performed.

BUILD creates a cell pool in a specified subpool by allocating storage and
chaining the cells together. It returns an identifier (CPID) to be used with GET,
FREE, and DELETE requests. Therefore, specify BUILD before you specify GET,
FREE, or DELETE.

GET attempts to obtain a cell from the previously built cell pool. This request
can be conditional or unconditional as described under the UNCOND/COND
keyword.

FREE returns a cell to the cell pool. Do not try to free a cell that has not been
obtained (through the GET service) or free a cell for a second time.

DELETE deletes a previously built cell pool and frees storage for the initial
extent, all secondary extents, and all pool control blocks.

LIST places the beginning and ending addresses of the extents of a cell pool in
a work area provided by the caller.

,UNCOND
,U
,COND
,C When used with GET specifies whether the request for a cell is conditional or

unconditional.

If you specify COND or C and no more free cells are available in the cell pool,
the system returns to the caller without a cell. The system places a zero in the
field specified by the CELL parameter.

CPOOL macro

Chapter 30. CPOOL — Perform cell pool services 175

If you specify UNCOND or U and no more free cells are available in the cell
pool, the system obtains more storage for the cell pool. CPOOL then obtains a
new cell for the caller. An unconditional CPOOL GET request fails only if
enough storage is not available to extend the cell pool.

,PCELLCT=primary cell count
Specifies the number of cells expected to be needed in the initial extent of the
cell pool.

,SCELLCT=secondary cell count
Specifies the number of cells expected to be in each secondary or noninitial
extent of the cell pool.

,CSIZE=cell size
Specifies the number of bytes in each cell of the cell pool. If CSIZE is a
multiple of 8, the cell resides on doubleword boundaries. If CSIZE is a
multiple of 4, the cell resides on word boundaries. The minimum value of
CSIZE is 4 bytes.

When the specified cell size is less than 256 bytes, the number of elements
allocated to an extent may be more than what is expected and may hold more
elements than would have fit in an extent of the specified size. This occurs
because each extent is allocated to have a length that is a multiple of 256 bytes.

,SP=subpool number
Specifies the subpool from which the cell pool is to be obtained. If a register or
variable is specified, the subpool number is taken from bits 24-31. The valid
subpool numbers are 0-127, 131, and 132.

,BNDRY=DWORD
,BNDRY=QWORD

Specifies whether each cell must be on at least a doubleword boundary
(DWORD) or a quadword (16-byte) boundary (QWORD). The default depends
on the value that is specified for CSIZE.

Note:

1. When BNDRY=DWORD is explicitly specified, a CSIZE value that is
multiple of 8 must also be specified to ensure that each cell is on at least a
doubleword boundary.

2. When BNDRY=QWORD is explicitly specified, a CSIZE value that is
multiple of 16 must also be specified to ensure that each cell is on at least a
quadword boundary.

,LOC=24
,LOC=31
,LOC=(31,31)
,LOC=(31,64)
,LOC=(31,PAGEFRAMESIZE1MB)
,LOC=RES
,LOC=(RES,31)
,LOC=(RES,64)

Specifies the location of virtual storage and central storage for the cell pool.
The location of central storage using this parameter is guaranteed only after
the storage is fixed.

LOC=24 indicates that central and virtual storage are to be located below 16
megabytes. LOC=24 must not be used to allocate disabled reference (DREF)
storage.

CPOOL macro

176 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Note: Specifying LOC=BELOW is the same as specifying LOC=24.
LOC=BELOW is still supported, but IBM recommends using LOC=24 instead.

LOC=31 and LOC=(31,31) indicate that virtual and central storage can be
located anywhere below 2 gigabytes.

Note: Specifying LOC=ANY or LOC=(ANY,ANY) is the same as specifying
LOC =31 or LOC=(31,31). LOC=ANY and LOC=(ANY,ANY) are still
supported, but IBM recommends using LOC=31 or LOC=(31,31) instead.

LOC=(31,64) indicates that virtual storage is to be located below 2 gigabytes
and central storage can be located anywhere in 64-bit storage.

LOC=RES indicates that the location of virtual and central storage depends on
the location of the caller. If the caller resides below 16 megabytes, virtual and
central storage are to be allocated below 16 megabytes; if the issuer resides
above 16 megabytes, virtual and central storage can be located anywhere.

LOC=(RES,31) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is
to be located below 16 megabytes; if the caller resides above 16 megabytes,
virtual storage can be located anywhere below 2 gigabytes. In either case,
central storage can be located anywhere below 2 gigabytes.

Note: Specifying LOC=(RES,ANY) is the same as specifying LOC=(RES,31).
LOC=(RES,ANY) is still supported, but IBM recommends using LOC=(RES,31)
instead.

LOC=(RES,64) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is
to be located below 16 megabytes; if the caller resides above 16 megabytes,
virtual storage can be located anywhere in 64-bit storage. In either case, central
storage can be located anywhere in 64-bit storage.

Note: Callers executing in 24-bit addressing mode could perform BUILD
request services for cell pools located in storage above 16 megabytes but below
2 gigabytes by specifying LOC=31 or LOC=(31,31).

,CPID=pool id
Specifies the address or register containing the cell pool identifier that is
returned to the caller after the pool is created using CPOOL BUILD. The issuer
must specify CPID on all subsequent GET, FREE, DELETE, or LIST requests.

,CELL=cell addr
Specifies the address or register where the cell address is returned to the caller
on a GET or FREE request.

,KEY=key number
Specifies the storage key in which storage is to be obtained. The valid storage
keys are 0-15. If a register is specified, the storage key is taken from bits 28-31.
This parameter is valid only for subpools 131 and 132.

,HDR=hdr
Specifies a 24-byte header, which is placed in the header of each initial and
secondary extent. The header can contain user-supplied information that
would be useful in a dump.

,REGS=SAVE
,REGS=USE

Indicates whether or not registers 2-12 are to be saved for a GET or FREE

CPOOL macro

Chapter 30. CPOOL — Perform cell pool services 177

request. If REGS=SAVE is specified, the registers are saved in a 72-byte
user-supplied save area pointed to by register 13. If REGS=USE is specified, the
registers are not saved.

,WORKAREA=(workarea,length)
Specifies the address of a pointer to the work area (not the address of the
work area) and also specifies the length of that area. The length must be at
least 1024 bytes. The system places the beginning and ending addresses of the
extents of a cell pool in this work area. WORKAREA applies only to the LIST
request and is required.

CPOOL LIST might not be able to return all of the beginning address/ending
address pairs at once, depending on how many address pairs there are and
how large the work area is. Thus, in order to complete a CPOOL LIST request,
your program may have to issue CPOOL LIST more than once. If CPOOL LIST
uses up all the space in the work area, but still has more information to return,
it indicates (with a return code) that there are more address pairs. Your
program can then reissue CPOOL LIST to get more information, and keep
reissuing CPOOL LIST until all of the information is returned.

CPOOL LIST must be able to tell the difference between the beginning of a
request (that is, the first time your program issues CPOOL LIST to get some
information about a cell pool) and the continuation of a request (that is, when
your program issues CPOOL LIST to get more information). Your program tells
CPOOL LIST that it is beginning a new request by setting the first bit of word
0 in the work area to 1.

Until your program has obtained all the information about a cell pool that it
needs from CPOOL LIST, it should not change the setting of that bit, nor
should it issue a GET, FREE, or DELETE request for that cell pool. (If your
program does issue a GET or FREE request before it has obtained all of the
information it needs from CPOOL LIST, it must begin a new CPOOL LIST
request; that is, set the first bit of word 0 to 1 and start all over again. If your
program deletes the cell pool, it can no longer issue the CPOOL LIST for that
cell pool.)

CPOOL LIST uses the second through fourth words, i.e., words 1–-3, in the
work area to return information to your program:
v Word 1 contains the return code. See “Return and reason codes” for more

information.
v Word 2 contains a pointer to the first starting address/ending address pair

in the list of address pairs.
v Word 3 contains the number of address pairs in the list.

ABEND codes
The CPOOL macro issues abend code X'C78'. For detailed abend code information,
see z/OS MVS System Codes.

Return and reason codes
CPOOL BUILD, DELETE, FREE, and GET,UNCOND have no return codes. If any
of these requests fail, CPOOL issues an abend.

For CPOOL GET,COND, the cell address is returned as zero when there are no
more cells in the pool.

CPOOL LIST returns a return code in word 1 (bytes 4 through 7) of the work area
used to return information to the calling program.

CPOOL macro

178 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 5. Hexadecimal Return Codes for CPOOL LIST

Return Code Meaning and Action

0 Meaning: Successful completion.

Action: None.

1 Meaning: The work area holds all the information that fit but more
information remains to be returned.

Action: Reissue the CPOOL LIST request to receive more information.
Do not set the first bit of word 0 in the work area to 1 before reissuing
the CPOOL LIST request.

2 Meaning: Program error. At least one parameter passed in the CPOOL
LIST request was not valid.

Action: Verify that you have coded the CPOOL LIST parameters
correctly. Ensure that the work area is at least 1024 bytes.

3 Meaning: Program or system error. The system found a cell pool
control block that was either inaccessible or not valid. The work area
contains the information CPOOL LIST gathered before encountering the
problem.

Action: Verify that the affected cell pool has not been deleted. If the cell
pool still exists, inform the system programmer so that a dump can be
taken to get more information to supply to IBM support personnel.

Example 1
Create a cell pool containing 40-byte cells from subpool 2. Allow for 10 cells in the
initial extent and 20 cells in all subsequent extents of the cell pool.
CPOOL BUILD,PCELLCT=10,SCELLCT=20,CSIZE=40,SP=2

Example 2
Unconditionally obtain a cell pool, specifying the pool ID in register 2. Do not save
the registers.
CPOOL GET,U,CPID=(2),REGS=USE

Example 3
Free a cell specifying the pool ID in register 2 and the cell address in register 3.
CPOOL FREE,CPID=(2),CELL=(3)

Example 4
Delete a cell pool, specifying the pool ID in register 2.
CPOOL DELETE,CPID=(2)

Example 5
Request that the system place the starting and ending addresses of a cell pool in a
buffer. Assume that the cell pool ID has been saved in POOLID.

LA 1,WKAREA Get the address of the work area
ST 1,WKPTR And save it (to pass to CPOOL LIST)

*
* (Note that the first parameter passed with WORKAREA
* is a pointer to the work area, not the work area itself.)
*

OI FLAGBYTE,X’80’ Turn on the "first call" flag

CPOOL macro

Chapter 30. CPOOL — Perform cell pool services 179

LOOP LA 13,SAVEAREA Get address of save area in reg 13
CPOOL LIST,WORKAREA=(WKPTR,1050),CPID=POOLID
LA 15,2 Get a return code value
C 15,RCODE Check the return code
BE USRERROR Branch if there was a user error

*
* If the return code does not indicate a user error,
* some information was returned in the work area. Note
* that if CPOOL LIST found that the first extent it looked
* at was invalid, the buffer may not actually contain any
* address pairs (i.e. ENTRIES may contain 0).
*

BAL 14,PROCESS Process the information returned
* by CPOOL LIST

LA 15,1 Get a return code value
C 15,RCODE If CPOOL LIST could not return all

* the information at once,
BE LOOP Call it again to get more information

* Data declarations
*
WKAREA DS 0CL1050 Work area/buffer for CPOOL LIST
FLAGBYTE DS CL1 Byte containing first call flag

DS CL3
RCODE DS F CPOOL LIST return code
BUFPTR DS F Pointer to output buffer
ENTRIES DS F Number of address pairs in buffer

DS CL1034 Control information and address pairs
WKPTR DS F Pointer to the work area
POOLID DS F Cell pool ID
SAVEAREA DS CL72 Register save area for CPOOL LIST

CPOOL - List form
The list form of the CPOOL macro builds a nonexecutable parameter list that can
be referred to by the execute form of the CPOOL macro.

Syntax
The list form of the CPOOL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CPOOL.

CPOOL

� One or more blanks must follow CPOOL.

BUILD

,PCELLCT=primary cell count cell count: Symbol or decimal number.

Note: PCELLCT must be specified on either the list or the execute form of
the macro.

CPOOL macro

180 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,SCELLCT=secondary
cell count

Default: PCELLCT

,CSIZE=cell size cell size: Symbol or decimal number.

Note: CSIZE must be specified on either the list or the execute form of the
macro.

,SP=subpool number subpool number: Symbol, decimal number, or register (0),
(2) - (12).
Default: SP=0

,BNDRY=DWORD Default: BNDRY=DWORD

The default value depends on the specified CSIZE value. If CSIZE is a
multiple of 8, cells reside on double boundaries (BNDRY=DWORD). If
CSIZE is multiple of 4, cells reside on word boundaries. If CSIZE is not a
multiple of 4 or 8, cells do not reside on a particular boundary.

,BNDRY=QWORD

,LOC=24 Default: LOC=RES

,LOC=31

,LOC=(31,31)

,LOC=(31,64)

,LOC=(31,PAGEFRAMESIZE1MB)

,LOC=RES

,LOC=(RES,31)

,LOC=(RES,64)

,KEY=key number key number: Decimal numbers 0-15.

Default: The default depends on which subpool you specify. See the
discussion of subpool handling in z/OS MVS Programming: Assembler Services
Guide for information on storage keys for specific subpools.

,HDR=hdr hdr: Character string enclosed in single quotation marks or A-type address.

,MF=L

Parameters
The parameters are explained under the standard form of the CPOOL macro with
the following exception:

,MF=L
Specifies the list form of the CPOOL macro.

CPOOL macro

Chapter 30. CPOOL — Perform cell pool services 181

CPOOL - Execute form

Syntax
The execute form of the CPOOL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CPOOL.

CPOOL

� One or more blanks must follow CPOOL.

BUILD

,PCELLCT=primary cell count cell count: Symbol, decimal number, or register (0), (2) - (12).

Note: PCELLCT must be specified on either the list or the execute form of
the macro.

,SCELLCT=secondary cell Default: PCELLCT

count

,CSIZE=cell size cell size: Symbol, decimal number, or register (0), (2) - (12).

Note: CSIZE must be specified on either the list or the execute form of the
macro.

,SP=subpool number subpool number: Symbol, decimal number, or register (0), (2) - (12).

Default: SP=0

,BNDRY=DWORD Default: BNDRY=DWORD

The default value depends on the specified CSIZE value. If CSIZE is a
multiple of 8, cells reside on double boundaries (BNDRY=DWORD). If
CSIZE is multiple of 4, cells reside on word boundaries. If CSIZE is not a
multiple of 4 or 8, cells do not reside on a particular boundary.

,BNDRY=QWORD

,LOC=24 Default: LOC=RES

,LOC=31

,LOC=(31,31)

,LOC=(31,64)

,LOC=(31,PAGEFRAMESIZE1MB)

,LOC=RES

CPOOL macro

182 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,LOC=(RES,31)

,LOC=(RES,64)

,CPID=pool id pool id: RX-type address or register (0), (2) - (12).

,KEY=key number key number: Decimal numbers 0-15 or register (0), (2) - (12).

Default: The default depends on which subpool you specify. See the
discussion of subpool handling in z/OS MVS Programming: Assembler Services
Guide for information on storage keys for specific subpools.

,HDR=hdr hdr: Character string enclosed in single quotation marks, RX-type address,
or register (0), (2) - (12).

,MF=(E,ctrl prog) ctrl prog: RX-type address or register (0) - (12).

Parameters
The parameters are explained under the standard form of the CPOOL macro with
the following exception:

,MF=(E,ctrl prog)
Specifies the execute form of the CPOOL macro.

CPOOL macro

Chapter 30. CPOOL — Perform cell pool services 183

CPOOL macro

184 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 31. CPUTIMER — Provide current CPU timer value

Description
The CPUTIMER macro provides the current CPU timer value for this processor.
This value consists of the time remaining in a time interval established by the
STIMER macro. If there is no outstanding time interval, the value returned by the
macro is meaningless.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

Programming requirements
None.

Restrictions
None.

Input register information
The CPUTIMER macro is sensitive to the SYSSTATE macro with the OSREL
parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the CPUTIMER
macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents

13 The address of an 18-word save area

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

© Copyright IBM Corp. 1988, 2015 185

2-13 Unchanged

14 Used as a work register by the system

15 Return code

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CPUTIMER macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CPUTIMER.

CPUTIMER

� One or more blanks must follow CPUTIMER.

TU,stor addr Default: TU

MIC,stor addr stor addr: RX-type address, or register (1), (2) - (12).

,ERRET=err rtn addr err rtn addr: RX-type address, or register (2) - (12).

Parameters
The parameters are explained as follows:

TU,stor addr
MIC,stor addr

Specifies the form in which the remaining time interval is to be returned to the
caller. This value is returned as an unsigned 64-bit binary number at the
address specified by stor addr. stor addr must be the start of a doubleword area
on a doubleword boundary and it must be a 31-bit address.

If you specify TU, the timer value is returned to the caller in timer units. The
low-order bit of the timer value is approximately equal to 26.04166
microseconds (one timer unit).

If you specify MIC, the timer value is returned to the caller in microseconds.
Bit 51 of the timer value is equivalent to 1 microsecond.

The resolution of CPU timer is model dependent. See Principles of Operation for
a description of the CPU timer.

CPUTIMER macro

186 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,ERRET=err rtn addr
Specifies the 31-bit address of the routine to be given control when the
CPUTIMER function cannot be performed. If you omit this parameter, the
CPUTIMER function returns a code in general register 15 indicating why the
function could not be performed. The error routine executes in the addressing
mode of the issuer of the CPUTIMER macro and returns control to the caller's
address space it saves in register 14.

ABEND codes
None.

Return codes
When the system returns control to your program, GPR 15 contains a return code.

Table 6. Return and Reason Codes for the CPUTIMER Macro

Hexadecimal
Return Code

Meaning and Action

00 Meaning: The function was performed.

Action: None.

04 Meaning: Program error. The function was not performed because the
user-specified area was not on a doubleword boundary.

Action: Ensure that the address of the area for the return of the CPU
time is on a doubleword boundary.

08 Meaning: Program error. The function was not performed because the
user supplied an invalid address.

Action: Verify that the supplied return area address is valid.

10 Meaning: System error. The function was not performed because a
machine check occurred.

Action: Retry the request.

14 Meaning: System error. The function was not performed because a
program check occurred.

Action: Retry the request.

These return codes are passed to the error routine if it receives control.

Example 1
Place the value of the CPU timer in microseconds in location TIMELEFT.
CPUTIMER MIC,TIMELEFT

Example 2
Store the value of the CPU timer in time units in the location addressed by register
1.
CPUTIMER TU,(1)

Example 3
Store the value of the CPU timer in timer units in location TIMELEFT. If an error
occurs, transfer control to the error routine labeled ERREXIT.
CPUTIMER ,TIMELEFT,ERRET=ERREXIT

CPUTIMER macro

Chapter 31. CPUTIMER — Provide current CPU timer value 187

Example 4
Place the value of the CPU timer in microseconds in the location addressed by
register 1. If an error occurs, transfer control to the address in register 2.
CPUTIMER MIC,(1),ERRET=(2)

CPUTIMER macro

188 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 32. CSRCESRV — Compress and expand data

Description
Use the CSRCESRV macro to compress data and restore the data to its original
state when you need it. The CSRCESRV macro has three different services:
v Query (SERVICE=QUERY), to obtain the information your program needs to

invoke data compression or data expansion
v Data compression (SERVICE=COMPRESS), to achieve reduced data volume
v Data expansion (SERVICE=EXPAND), to expand data previously compressed by

the data compression service.

Before attempting to use the CSRCESRV macro, see “Using Data Compression and
Expansion Services” in z/OS MVS Programming: Assembler Services Guide for a
description of the data compression, expansion, and query services, and the
conditions under which programs can exploit these services.

To invoke the CSRCESRV macro for either data compression or data expansion,
first invoke CSRCESRV with SERVICE=QUERY. Follow these steps:
1. Load the general purpose registers (GPRs) with information required by

SERVICE=QUERY.
2. Invoke the CSRCESRV macro with SERVICE=QUERY.
3. Load the GPRs with information required by SERVICE=COMPRESS (or

SERVICE=EXPAND).
4. Invoke the CSRCESRV macro with SERVICE=COMPRESS (or

SERVICE=EXPAND).
5. If all the input data has not been processed, continue to re-invoke the service

until processing is complete.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB mode.
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

Programming requirements
None.

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 189

Input register information for SERVICE=QUERY
Before issuing the CSRCESRV macro with the SERVICE=QUERY parameter, the
caller must ensure that the following GPRs contain the specified information:

Register
Contents

0 The run length encoding algorithm. Specify either 0 or 1.

13 The 31-bit address of a standard 18-word save area. If your program is
running in AR ASC mode, set AR 13 to specify the ALET to be used to
qualify GPR 13.

Output register information for SERVICE=QUERY
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 A value of 1 to indicate that the run length encoding algorithm will be
used.

1 The length of the work area required by the algorithm. This value might be
zero if the service does not require a work area.

2-13 Unchanged.

14 Used as a work register by the system.

15 Return code.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Input register information for SERVICE=COMPRESS
Before issuing the CSRCESRV macro with the SERVICE=COMPRESS parameter,
the caller must ensure that the following GPRs contain the specified information:

Register
Contents

1 The 31-bit address of a work area, if one is needed. The value returned in
GPR 1, when you issue CSRCESRV with SERVICE=QUERY, indicates the
size of the required work area. If your program is running in AR ASC
mode, set AR 1 to specify the ALET to be used to qualify the GPR.

2 The 31-bit address of the uncompressed input data block. If your program
is running in AR ASC mode, set AR 2 to specify the ALET to be used to
qualify the GPR.

3 The length of the uncompressed input data block.

4 The 31-bit address of the output data block to hold the compressed data. If
your program is running in AR ASC mode, set AR 4 to specify the ALET
to be used to qualify the GPR.

CSRCESRV macro

190 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

5 The length of the output data block.

13 The 31-bit address of a standard 18-word save area. If your program is
running in AR ASC mode, set AR 13 to specify the ALET to be used to
qualify the GPR.

Output register information for SERVICE=COMPRESS
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Unchanged

2 The 31-bit address of the byte following the last input byte processed

3 The number of bytes of uncompressed data not processed

4 The 31-bit address of the byte following the last output byte

5 The number of bytes in the output data block into which output was not
stored

6-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Input register information for SERVICE=EXPAND
Before issuing the CSRCESRV macro with the SERVICE=EXPAND parameter, the
caller must ensure that the following GPRs contain the specified information:

Register
Contents

1 The 31-bit address of a work area, if one is needed. The value returned in
GPR 1, when you issue CSRCESRV with SERVICE=QUERY, indicates the
size of the required work area. If your program is running in AR ASC
mode, set AR 1 to specify the ALET to be used to qualify the GPR.

2 The 31-bit address of the compressed input data block. If your program is
running in AR ASC mode, set AR 2 to specify the ALET to be used to
qualify the GPR.

3 The length of the compressed input data block.

4 The 31-bit address of the output data block to hold the expanded data. If
your program is running in AR ASC mode, set AR 4 to specify the ALET
to be used to qualify the GPR.

5 The length of the output data block.

CSRCESRV macro

Chapter 32. CSRCESRV — Compress and expand data 191

13 The 31-bit address of a standard 18-word save area. If your program is
running in AR ASC mode, set AR 13 to specify the ALET to be used to
qualify the GPR.

Output register information for SERVICE=EXPAND
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Unchanged

2 The 31-bit address of the byte following the last input byte processed

3 The number of bytes of compressed data not processed

4 The 31-bit address of the byte following the last output byte

5 The number of bytes in the output data block into which output was not
stored

6-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSRCESRV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CSRCESRV.

CSRCESRV

� One or more blanks must follow CSRCESRV.

CSRCESRV macro

192 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

SERVICE=QUERY
SERVICE=COMPRESS
SERVICE=EXPAND

,VECTOR=(reg) reg: register (2) - (12).

Parameters
The parameters are explained as follows:

SERVICE=QUERY
SERVICE=COMPRESS
SERVICE=EXPAND

Specifies the requested service.

SERVICE=QUERY invokes the query service, which determines the following:
v Whether data compression is supported by the system currently installed
v The size of the work area required by the compression or expansion service.

You need the above information before you can invoke the macro with
SERVICE=COMPRESS or SERVICE=EXPAND.

SERVICE=COMPRESS invokes the data compression service, which
compresses a given block of data, and stores the compressed data in an output
area. You must obtain storage for this output area, and for a work area if
SERVICE=QUERY returns a nonzero value in GPR 1. SERVICE=COMPRESS
will compress as much of the input data as possible. It returns to the caller
when either of the following has occurred:
v It has compressed all the input data
v It has completely filled the output area with the compressed data.

SERVICE=EXPAND invokes the data expansion service, which expands data
that was previously compressed by the data compression service, and stores
that data in its original form in an output area. You must obtain storage for
this output area, and for a work area if SERVICE=QUERY returns a nonzero
value in GPR 1. SERVICE=EXPAND will expand as much of the input data as
possible. It returns to the caller when either of the following has occurred:
v It has expanded all the input data
v It has completely filled the output area with the expanded data.

,VECTOR=(reg)
reg is the GPR that your program loads with the entry point address of the
CSRCEXA load module. This load module resides in SYS1.MIGLIB.

ABEND codes
None.

Return and reason codes
When control is returned from CSRCESRV, GPR 15 (and return_code) contains one
of the following return codes:

CSRCESRV macro

Chapter 32. CSRCESRV — Compress and expand data 193

Table 7. Return Codes for SERVICE=QUERY

Hexadecimal
Return Code Meaning and Action

00 Meaning: The requested algorithm is supported. This means that both
compression and expansion are supported.

Action: None.

04 Meaning: The requested algorithm is supported only for data
expansion.

Action: None.

0C Meaning: Program error. The requested algorithm is not supported by
this level of MVS.

Action: Specify the appropriate input value and rerun the program.

10 Meaning: Program error. The algorithm number was negative.

Action: Specify the appropriate input value and rerun the program.

Table 8. Return Codes for SERVICE=COMPRESS

Hexadecimal
Return Code Meaning and Action

00 Meaning: All input data was compressed.

Action: None.

04 Meaning: Program error. Not all input data was compressed because
the output area was too small.

Action: Examine the information returned in the GPRs. Either make a
follow-up request to have the rest of the uncompressed data processed,
or issue the macro with a larger output area.

0C Meaning: Program error. Either the input or output length was
negative.

Action: Inspect the contents of the GPRs to determine which value is in
error. Specify the appropriate input values and rerun the program.

Table 9. Return Codes for SERVICE=EXPAND

Hexadecimal
Return Code Meaning and Action

00 Meaning: All input data was expanded.

Action: None.

04 Meaning: Program error. Not all input data was expanded because the
output area was too small.

Action: Examine the information returned in the GPRs. Either make a
follow-up request to have the rest of the compressed data processed or
issue the macro with a larger output area.

CSRCESRV macro

194 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 9. Return Codes for SERVICE=EXPAND (continued)

Hexadecimal
Return Code Meaning and Action

08 Meaning: Program error. The data was not expanded because it was
compressed by an up-level version of the data compression service,
using an algorithm not understood by this version of the data
expansion service.

Action: Check to see if all the input values were correct. Ensure that
the input data was compressed by the appropriate data compression
service and that the appropriate data expansion service was invoked. If
the problem persists, record the return code and supply it to the
appropriate IBM support personnel.

0C Meaning: Program error. Either the input or output length was
negative. Inspect the register contents to make this distinction.

Action: Specify the appropriate input values and rerun the program.

10 Meaning: Program error. Not all the data was expanded because the
input data was not compressed by the data compression service.

Action: Check to see if all the input values were correct. Ensure that
the input data was compressed by the appropriate data compression
service and that the appropriate data expansion service was invoked. If
the problem persists, record the return code and supply it to the
appropriate IBM support personnel.

CSRCESRV macro

Chapter 32. CSRCESRV — Compress and expand data 195

CSRCESRV macro

196 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 33. CSRCMPSC — Compress and expand data

Description
The CSRCMPSC macro performs the following functions:
v Compresses data
v Expands previously-compressed data

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
Amode: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold the local lock of the primary address

space and may additionally hold the CMS lock. The caller
may hold the CPU lock. No locks are required.

Control parameters: The CSRYCMPS area, and the dictionary, source area, and
target area pointed to by the CSRYCMPS area can all be in
the primary address space or, for AR-mode callers, in an
address/data space addressable through an ALET. The
dictionary and source areas are assumed to be in the same
space. In the CSRYCMPS area, the fields that designate the
ALETs of the dictionary, source, and target areas should be
set to zero by primary mode callers. All parameters may
reside in storage above 16 megabytes.

Programming requirements
Before running the CSRCMPSC macro, the program must provide:
v A CSRYCMPS area, using the CSRYCMPS mapping macro. The area is specified

in the CBLOCK parameter of the CSRCMPSC macro.
v Dictionaries for the compress and expand services, using the CSRYCMPD

mapping macro. The CSRYCMPS area gives the address of the dictionaries.
v A source area, which contains the data to be compressed or expanded. The

CSRYCMPS area gives the address of the source area.
v A target area, which contains the data after the service has compressed or

expanded it. The CSRYCMPS area gives the address of the target area.

See z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/
systems/z/os/zos/bkserv/ for the mapping macros.

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 197

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Input register information
Before issuing the CSRCMPSC macro, the caller must ensure that general purpose
register (GPR) 13 contains the address of a standard 72-byte save area in the
primary address space.

Before issuing the CSRCMPSC macro, the caller does not have to place any
information into any access register (AR), unless running in AR ASC mode. In this
case, the caller must ensure that the following ARs contain the specified
information:

Register
Contents

13 0 which designates the primary address space

If the caller is in AR mode and specifies CBLOCK=(n), or if the caller is in primary
mode and specifies CBLOCK=(1), the caller must ensure that the following ARs
contain the specified information:

Register
Contents

n The ALET with which the system is to access the CSRYCMPS area. For
primary mode callers, the ALET should be 0.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The standard form of CSRCMPSC is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

CSRCMPSC macro

198 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

� One or more blanks must precede CSRCMPSC.

CSRCMPSC

� One or more blanks must follow CSRCMPSC.

CBLOCK=comp block comp block: RS-type address, or register (1) - (12).

,RETCODE=rc rc: RS-type address, or register (2) - (12).

Default: No return code processing.

Parameters
The parameters are explained as follows:

CBLOCK=comp block
Specifies the address of the CSRYCMPS area. If register notation is used, the
register contains the address of the area. The CSRYCMPS area contains the
parameter information for the macro. The area is mapped by DSECT CMPSC
in mapping macro CSRYCMPS; see z/OS MVS Data Areas in z/OS Internet
Library at http://www.ibm.com/systems/z/os/zos/bkserv/ for the
CSRYCMPS macro.

RETCODE=rc
Specifies the fullword location where the system is to store the return code. If
register notation is used, the system stores the return code into the register. In
either case, the system stores the return code in GPR 15.

Abend codes
The program issuing CSRCMPSC may receive the listed abend codes. See z/OS
MVS System Codes.

0C4 The program may get this completion code if the system cannot access the
CSRYCMPS area, source area, target area, or dictionary.

0C6 The program may get this completion code if the CMPSC_SYMSIZE field
in the CSRYCMPS area does not contain 1-5.

This completion code is received only if bit CVTCMPSC in mapping macro
CVT is on.

0C7 The dictionary is built incorrectly. The program may receive this
completion code in the following circumstances:
v If the length of a string to be represented by a single compression

symbol, encountered during a compression operation, exceeds 260
characters.

v If a dictionary entry has more than 260 total child characters.
v If the child count in a dictionary entry indicates more than 6 child

characters.

CSRCMPSC macro

Chapter 33. CSRCMPSC — Compress and expand data 199

http://www.ibm.com/systems/z/os/zos/bkserv/

v If the number of extension characters for a dictionary entry with 0 or 1
child characters exceeds 4.

v If a sibling descriptor dictionary entry has a sibling count of 0.
v If expansion of a compression symbol uses more than 260 characters.
v If expansion of a compression symbol uses more than 127 dictionary

entries.

In all these cases, the programmer needs to fix the dictionary.

This completion code is received only if bit CVTCMPSC in mapping macro
CVT is on.

Return and reason codes
When the CSRCMPSC macro returns control to the program, the RETCODE
parameter fullword and GPR 15 contain one of the following hexadecimal return
codes.

Hexadecimal
Return Code

Meaning and Action

0 Meaning: Successful completion. Source operand was completely
processed.

Action: None.

4 Meaning: Source operand was not completely processed. No room is
left in the target operand.

Action: Specify a larger target operand. Or provide another area for the
target operand. Issue the macro again to resume processing of the
operation.

10 Meaning: Program error. A field in the CSRYCMPS area does not
contain a value.

Action: Provide values in the CMPSC_DICTADDR,
CMPSC_TARGETADDR, and CMPSC_SOURCEADDR fields.

14 Meaning: Program error. The symbol size in the CSRYCMPS area does
not have a value of 1 through 5.

Action: Provide a value of 1 through 5 in the CMPSC_SYMSIZE field.

18 Meaning: The target area for compression or the source area for
expansion is not large enough to hold even one compression symbol.
The length of the area is specified in the CSRYCMPS area.

Action: If this result is expected, no action is required. Otherwise,
provide a larger value in the CMPSC_TARGETLEN field for
compression or the CMPSC_SOURCELEN field for expansion.

1C Meaning: Program error. The length of the string represented by a
single compression symbol exceeds the limit of 260 bytes.

Action: Fix the dictionary.

20 Meaning: Program error. The number of child characters for a
compression dictionary entry exceeds 260.

Action: Fix the dictionary.

CSRCMPSC macro

200 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Meaning and Action

24 Meaning: Program error. A compression dictionary entry indicates that
it contains more than 6 child characters, not including sibling
characters.

Action: Fix the dictionary.

28 Meaning: Program error. The number of extension characters for a
compression dictionary entry with 0 or 1 child characters exceeds 4.

Action: Fix the dictionary.

2C Meaning: Program error. A sibling descriptor compression dictionary
entry has a count of 0.

Action: Fix the dictionary.

30 Meaning: Program error. Expansion of a compression symbol used
more than 127 dictionary entries.

Action: Fix the dictionary.

Example 1
Compress a data area. Note that the expansion dictionary must immediately follow
the compression dictionary, and both must be aligned on page boundaries.

LA 2,MYCBLOCK Get address of parm
USING CMPSC,2
XC CMPSC(CMPSC_LEN),CMPSC Clear block
OI CMPSC_FLAGS_BYTE2,CMPSC_SYMSIZE_5 Set size

* Symbol size is 5+8. Dictionary has
* 2**(5+8) entries

L 3,DICTADDR
ST 3,CMPSC_DICTADDR Set dictionary address
L 3,COMPADDR
ST 3,CMPSC_TARGETADDR Set compression area
L 3,COMPLEN
ST 3,CMPSC_TARGETLEN Set compression length
L 3,EXPADDR
ST 3,CMPSC_SOURCEADDR Set expansion area
L 3,EXPLEN
ST 3,CMPSC_SOURCELEN Set expansion length
LA 3,WORKAREA
ST 3,CMPSC_WORKAREAADDR Set work area address
CSRCMPSC CBLOCK=CMPSC
DROP 2

.

.
DS 0F Align parameter on word boundary

MYCBLOCK DS (CMPSC_LEN)CL1 CBLOCK parameter
COMPADDR DS A Output compression area
COMPLEN DS F Length of compression area
EXPADDR DS A Input expansion area
EXPLEN DS F Length of expansion area
DICTADDR DS A Address of compression dictionary

DS 0D Doubleword align work area
WORKAREA DS CL192 Work area

CSRYCMPS ,

Example 2
Expand a data area. Note that the expansion dictionary must be aligned on a page
boundary.

CSRCMPSC macro

Chapter 33. CSRCMPSC — Compress and expand data 201

LA 2,MYCBLOCK Get address of parm
USING CMPSC,2
XC CMPSC(CMPSC_LEN),CMPSC Clear block
OI CMPSC_FLAGS_BYTE2,CMPSC_SYMSIZE_5 Set size

* Symbol size is 5+8. Dictionary has
* 2**(5+8) entries

OI CMPSC_FLAGS_BYTE2,CMPSC_EXPAND Do expansion
L 3,EDICTADDR
ST 3,CMPSC_DICTADDR Set dictionary address
L 3,EXPADDR
ST 3,CMPSC_TARGETADDR Set expansion area
L 3,EXPLEN
ST 3,CMPSC_TARGETLEN Set expansion length
L 3,COMPADDR
ST 3,CMPSC_SOURCEADDR Set compression area
L 3,COMPLEN
ST 3,CMPSC_SOURCELEN Set compression length
LA 3,WORKAREA
ST 3,CMPSC_WORKAREAADDR Set work area address
CSRCMPSC CBLOCK=CMPSC
DROP 2

.

.
DS 0F Align parameter on word boundary

MYCBLOCK DS (CMPSC_LEN)CL1 CBLOCK Parameter
EXPADDR DS A Output expansion area
EXPLEN DS F Length of expansion area
COMPADDR DS A Input compression area
COMPLEN DS F Length of compression area
EDICTADDR DS A Address of expansion dictionary

DS 0D Doubleword align work area
WORKAREA DS CL192 Work area

CSRYCMPS ,

Example 3
When using register notation in the CBLOCK parameter, the program must place
both the address and ALET into a GPR/AR pair. This is true whether you are
running in AR or primary ASC mode.
.
.

LAE 2,MYCBLOCK Set address *and* ALET
CSRCMPSC CBLOCK=(2) Issue operation

.

.

CSRCMPSC macro

202 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 34. CSRC4ACT — Activate previously connected
storage

Description
Call the CSRC4ACT cell pool service to activate the extent cell storage for
allocation. You must specify which extent you want to activate.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in a single address or data space. They must be in

the primary address space or in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). All parameter areas,
including the parameter list, may reside above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRC4ACT so the CALL macro can generate the correct code for
AR mode.

As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:
*
CSRC4_POOL_NAME_LEN EQU 8
*
*

© Copyright IBM Corp. 1988, 2015 203

Restrictions
None.

Input register information
Before calling the CSRC4ACT service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRC4ACT

,(cntl_alet
,anchor_addr
,extent_num
,return_code)

CSRC4ACT macro

204 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the fullword variable containing the ALET identifying the location of
the anchor and extents. Initialize the ALET to 0 if your program is in AR mode
and the anchor and extents are in the primary address space. If your program
is running in primary ASC mode, the value is ignored, but you must code the
parameter anyway.

,anchor_addr
Identifies the doubleword variable containing the address of the 64-byte
anchor.

,extent_num
Identifies the fullword variable containing the number of the extent to be
connected. The extent number must be within the range 0 to 65536.

,return_code)
When CSRC4ACT completes, the fullword variable specified by return_code
contains the return code.

ABEND codes
None.

Return and reason codes
When the CSRC4ACT service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

30 48 Meaning: Program error. The extent number is not
valid.

Action: Make sure the extent number is within the
range 0 to 65536.

34 52 Meaning: Program error. The extent is in the
incorrect state.

Action: Check to see if your program passed the
wrong extent number. Make sure the extent is not
already in an active state (that is, it has not been
activated through CSRC4ACT or CSRC4EXP).

CSRC4ACT macro

Chapter 34. CSRC4ACT — Activate previously connected storage 205

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

64 100 Meaning: Program or system error. An extent chain
was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain
is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

6C 108 Meaning: Program or system error. An extent could
not be found.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that the anchor
address being passed is for the right cell pool.

CSRC4ACT macro

206 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 35. CSRC4BLD — Build a cell pool and initialize an
anchor

Description
Call the CSRC4BLD cell pool service to format a 64-byte area for the cell pool
anchor. You must first have acquired the storage for the anchor. You can call this
service only once for a given cell pool.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: All parameters must reside in a single address or data

space, and must be addressable by the caller. They must be
in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). All parameter areas,
including the parameter list, may reside above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call the CSRC4BLD service so the CALL macro can generate the correct
code for AR mode.

As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:

© Copyright IBM Corp. 1988, 2015 207

*
CSRC4_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

Input register information
Before calling the CSRC4BLD service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

CSRC4BLD macro

208 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

CALL CSRC4BLD

,(cntl_alet
,anchor_addr
,user_name
,cell_size
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the fullword variable containing the ALET that identifies the location
of the anchor and extents. Initialize the ALET to 0 if your program is running
in AR mode and the anchor and extents are in the primary address space. If
your program is running in primary ASC mode, the value is ignored, but you
must code the parameter anyway.

,anchor_addr
Specifies the doubleword variable containing the address of the cell pool
anchor.

,user_name
Specifies the 8-byte variable containing the name you want the service to
assign to the pool. There are no restrictions on the name.

,cell_size
Specifies the doubleword variable containing the cell size in this pool. You can
use any positive binary or hexadecimal number as the cell size.

,return_code)
When CSRC4BLD completes, the fullword variable specified by return_code
contains the return code.

ABEND codes
None.

Return and reason codes
When the CSRC4BLD service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

CSRC4BLD macro

Chapter 35. CSRC4BLD — Build a cell pool and initialize an anchor 209

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

18 24 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address. If the anchor is in a data
space, make sure the anchor address is at least 63
bytes less than the address of the last byte of the
data space.

44 68 Meaning: Program error. The cell size is not valid: it
cannot be negative or 0.

Action: Specify a positive value for the cell size.

CSRC4BLD macro

210 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 36. CSRC4CON — Connect cell storage to an extent

Description
Call the CSRC4CON cell pool service to connect cell storage to the extent that you
specify or to reuse a disconnected extent. The CSRC4EXP service returned the
extent number. The extent must be in the disconnected state, which means that you
have not called CSRC4ACT to activate this particular extent.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in a single address or data space. They must be in a

primary address space or in an address/data space that is
addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). All parameter areas,
including the parameter list, may reside above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRC4CON so the CALL macro can generate the correct code for
AR mode.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:
*
CSRC4_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 211

Input register information
Before calling the CSRC4CON service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the content of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRC4CON

,(cntl_alet
,anchor_addr
,area_addr
,area_size
,extent_num
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

CSRC4CON macro

212 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,(cntl_alet
Specifies the fullword variable containing the ALET that identifies the location
of the anchor and extents. Initialize the ALET to 0 if your program is running
in AR mode and the anchor and extents are in the primary address space. If
your program is running in primary ASC mode, you must code this parameter,
even though any value that you code is ignored.

,anchor_addr
Specifies the doubleword variable containing the address of the 64-byte anchor.

,area_addr
Specifies the doubleword variable containing the starting address of the cell
storage area. The starting address of this area must be consistent with any cell
boundary requirements that you might have.

,area_size
Specifies the doubleword variable containing the length of the cell storage area.
CSRC4CON determines the number of cells that will fit in the area.

,extent_num
Specifies the fullword variable containing the number of the extent to be
connected. The extent number must be within the range 0 to 65536.

,return_code)
When CSRC4CON completes, the fullword variable specified by return_code
contains the return code.

ABEND codes
None.

Return and reason codes
When the CSRC4CON service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

30 48 Meaning: Program error. The extent number is not
valid.

Action: Specify the extent number within the range
0 to 65536.

34 52 Meaning: Program error. You issued the services in
the wrong order, or did not issue a necessary
service.

Action: Check to see if your program passed the
wrong extent number. Make sure that the extent is in
a disconnected state (that is, it has not been
activated through CSRC4ACT or CSRC4EXP).

CSRC4CON macro

Chapter 36. CSRC4CON — Connect cell storage to an extent 213

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

48 72 Meaning: Program error. The cell area length is not
valid.

Action: Check the specified cell area length. It
should not be less than the cell size.

4C 76 Meaning: Program error. The service could not
access the cell area address.

Action: If the cell area is in a data space, make sure
the cell area is completely within the data space.

50 80 Meaning: Program error. The cell area is too large.

Action: Specify a larger extent size or a smaller cell
area size.

64 100 Meaning: Program or system error. An extent chain
was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain
is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

6C 108 Meaning: Program or system error. An extent could
not be found.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that the anchor
address being passed is for the right cell pool.

CSRC4CON macro

214 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 37. CSRC4DAC — Deactivate an extent

Description
Call the CSRC4DAC cell pool service to deactivate a specific extent. Use this
service to prepare the cell pool for contraction. You must specify which extent you
want to deactivate.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in a single address or data space. They must be in

the primary address space or in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). All parameter areas,
including the parameter list, may reside above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRC4DAC so the CALL macro can generate the correct code for
AR mode.

As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:
*
CSRC4_POOL_NAME_LEN EQU 8
*
*

© Copyright IBM Corp. 1988, 2015 215

Restrictions
After calling CSRC4DAC, you can still free (or return) cells, but you cannot get (or
allocate) any others for this extent.

Input register information
Before calling the CSRC4DAC service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRC4DAC

,(cntl_alet
,anchor_addr
,extent_num
,return_code)

CSRC4DAC macro

216 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the fullword variable containing the ALET that identifies the location
of the anchor and extents. Initialize the ALET to 0 if your program is running
in AR mode and the anchor and extents are in the primary address space. If
your program is running in primary ASC mode, the value is ignored, but you
must code the parameter anyway.

,anchor_addr
Specifies the doubleword variable containing the address of the 64-byte anchor.

,extent_num
Specifies the fullword variable containing the number of the extent that
CSRC4DAC will deactivate. The extent number must be within the range 0 to
65536.

,return_code)
When CSRC4DAC completes, the fullword variable specified for return_code
contains the return code.

ABEND codes
None.

Return and reason codes
When the CSRC4DAC service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an
inactive extent.

Action: None required. However, you might take
some action depending on your application.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

30 48 Meaning: Program error. The extent number is not
valid.

Action: Make sure the extent number is within the
range 0 to 65536.

CSRC4DAC macro

Chapter 37. CSRC4DAC — Deactivate an extent 217

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

34 52 Meaning: Program error. You issued the services in
the wrong order, or did not issue a necessary
service.

Action: Check to see if your program passed the
wrong extent number. Make sure that the extent is in
active state before calling the service.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

6C 108 Meaning: Program error or system error. An extent
could not be found.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that the anchor
address being passed is for the right cell pool.

CSRC4DAC macro

218 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 38. CSRC4DIS — Disconnect the cell storage for an
extent

Description
Call the CSRC4DIS cell pool service to disconnect cell storage for a specific extent.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit addressing mode.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). All parameter areas,
including the parameter list, may reside above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRC4DIS so the CALL macro can generate the correct code for AR
mode.

As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you call CSRC4DIS, you must have returned all cells associated with the
extent and have called CSRC4DAC to deactivate the extent.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:

© Copyright IBM Corp. 1988, 2015 219

*
CSRC4_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

Input register information
Before calling the CSRC4DIS service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on the register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

CSRC4DIS macro

220 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

CALL CSRC4DIS

,(cntl_alet
,anchor_addr
,extent_num
,area_addr
,area_size
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the fullword variable containing the ALET that identifies the location
of the anchor and extents. Initialize the ALET to 0 if your program is running
in AR mode and the anchor and extents are in the primary address space. If
your program is running in primary ASC mode, the value is ignored, but you
must code the parameter anyway.

,anchor_addr
Specifies the doubleword variable containing the address of the 64-byte anchor.

,extent_num
Specifies the fullword variable containing the number of the extent that
CSRC4DIS will disconnect. The extent number must be within the range 0 to
65536.

,area_addr
When CSRC4DIS completes, the doubleword variable specified by area_addr
contains the address of the disconnected storage area.

,area_size
When CSRC4DIS completes, the doubleword variable specified by area_size
contains the size of the disconnected area.

,return_code)
When CSRC4DIS completes, the fullword variable specified by return_code
contains the return code.

ABEND codes
None.

Return and reason codes
When the CSRC4DIS service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

CSRC4DIS macro

Chapter 38. CSRC4DIS — Disconnect the cell storage for an extent 221

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

30 48 Meaning: Program error. The extent number is not
valid.

Action: Make sure the extent number is within the
range 0 to 65536.

34 52 Meaning: Program error. You issued the services in
the wrong order, or did not issue a necessary
service.

Action: Call CSRC4DAC to deactivate the extent
before calling CSRC4DIS to disconnect the cell
storage for the extent.

38 56 Meaning: Program error. The service cannot
disconnect the extent because some cells are still
allocated.

Action: Return all the cells associated with the
extent before calling CSRC4DIS to disconnect the cell
storage for the extent.

64 100 Meaning: Program or system error. An extent chain
was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain
is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

6C 108 Meaning: Program or system error. An extent could
not be found.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that the anchor
address being passed is for the right cell pool.

CSRC4DIS macro

222 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 39. CSRC4EXP — Expand a cell pool

Description
Call the CSRC4EXP cell pool service to:
v Add an extent to the cell pool
v Assign a number to the extent
v Optionally, establish a connection between the extent and cell storage
v Optionally, make the cell storage available for allocation.

Note: If you are reusing an extent, use CSRC4CON and CSRC4ACT instead of
CSRC4EXP.

If you specify zero for the cell storage size, CSRC4EXP will add an extent to the
cell pool, but will keep it in a disconnected state. When you specify the extent size,
allow 192 bytes plus one byte per eight cells of cell storage. CSRC4EXP allocates
cells contiguously, starting at the address you specify. If you specify zero for the
area length, CSRC4EXP ignores the area address.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). All parameter areas,
including the parameter list, may reside above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRC4EXP so the CALL macro can generate the correct code for
AR mode.

As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:

© Copyright IBM Corp. 1988, 2015 223

* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:
*
CSRC4_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

Input register information
Before calling the CSRC4EXP service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

CSRC4EXP macro

224 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRC4EXP

,(cntl_alet
,anchor_addr
,extent_addr
,extent_size
,area_addr
,area_size
,extent_num
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the fullword variable containing the ALET that identifies the location
of the anchor and extents. Initialize the ALET to 0 if your program is running
in AR mode and the anchor and extents are in the primary address space. If
your program is running in primary ASC mode, the value is ignored, but you
must code the parameter anyway.

,anchor_addr
Specifies the doubleword variable containing the address of the 64-byte anchor.

,extent_addr
Specifies the doubleword variable containing the address of the extent.

,extent_size
Specifies the doubleword variable containing the size of the extent.

,area_addr
Specifies the doubleword variable containing the starting address of the cell
storage area. The starting address of this area must be consistent with any
boundary requirements that you might have.

,area_size
Specifies the doubleword variable containing the length (binary or
hexadecimal) of the storage area for the cells.

,extent_num
When CSRC4EXP completes, the fullword variable specifying extent_num
contains the number of the extent to be connected. You will use this number
on subsequent CALLs.

,return_code)
When CSRC4EXP completes, the fullword variable specifying return_code
contains the return code.

ABEND codes
None.

CSRC4EXP macro

Chapter 39. CSRC4EXP — Expand a cell pool 225

Return and reason codes
When the CSRC4EXP service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

0C 12 Meaning: Program error. There are too many extents
in the cell pool.

Action: Check to see if your program contains a
logic error that caused the limit of 65536 extents per
cell pool to be exceeded. If your program works as
expected, consider using a larger cell pool.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

28 40 Meaning: Program error. The service could not use
the extent address.

Action: If the extent is in a data space, make sure
the extent address is at least 128 bytes less than the
address of the last byte of the data space. Also make
sure the extent area does not overlap the anchor
area.

2C 44 Meaning: Program error. The extent length is not
valid.

Action: Correct the extent length. It cannot be less
than 129 bytes.

48 72 Meaning: Program error. The cell area length is not
valid.

Action: Correct the cell area length. The cell area
size cannot be less than the cell size.

4C 76 Meaning: Program error. The service could not use
the cell area address.

Action: If the cell area is in a data space, make sure
the cell area is completely within the data space.

50 80 Meaning: Program error. The cell area is too large.

Action: Specify a larger extent size or a smaller cell
area size.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRC4EXP macro

226 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

70 112 Meaning: Program error or system error. An anchor
has been overlaid.

Action: Check to see if your program inadvertently
overlaid the anchor area.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRC4EXP macro

Chapter 39. CSRC4EXP — Expand a cell pool 227

CSRC4EXP macro

228 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 40. CSRC4FRE — Return a cell to a cell pool

Description
Call the CSRC4FRE cell pool service to return an allocated cell to a cell pool. You
must specify the address of the cell that you want to return. (The CSRC4FR1 and
CSRC4FR2 service provides the same function with slightly enhanced performance.
CSRC4FR2 is preferred over CSRC4FR1 when using multiple extents.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). All parameter areas,
including the parameter list, may reside above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you CALL CSRC4FRE so the CALL macro can generate the correct code for
AR mode.

As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:

© Copyright IBM Corp. 1988, 2015 229

*
CSRC4_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

Input register information
Before calling the CSRC4FRE service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

CSRC4FRE macro

230 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

CALL CSRC4FRE

,(cntl_alet
,anchor_addr
,cell_addr
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the fullword variable containing the ALET that identifies the location
of the anchor and extents. Initialize the ALET to 0 if your program is running
in AR mode and the anchor and extents are in the primary address space. If
your program is running in primary ASC mode, the value is ignored, but you
must code the parameter anyway.

,anchor_addr
Specifies the doubleword variable containing the address of the 64-byte anchor.

,cell_addr
Specifies the doubleword variable containing the address of the cell that
CSRC4FRE is to free.

,return_code)
When CSRC4FRE completes, the fullword variable specified for return_code
contains the return code.

ABEND codes
None.

Return and reason codes
When the CSRC4FRE service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an
inactive extent.

Action: None required. However, you might take
some action depending on your application.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

CSRC4FRE macro

Chapter 40. CSRC4FRE — Return a cell to a cell pool 231

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

54 84 Meaning: Program error. The cell address is not
valid.

Action: Investigate the following possible causes:

v The input cell address does not point to the
beginning of a cell.

v The cell is not in the cell pool specified by the
anchor address.

58 88 Meaning: Program error. Either you have already
returned the cell or you never allocated it.

Action: Check to see if your program contains a
logic error that caused this situation to occur.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell.

CSRC4FRE macro

232 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 41. CSRC4FR1 — Return a cell to a cell pool

Description
Call the CSRC4FR1 cell pool service to return an allocated cell to a cell pool. You
must specify the address of the cell that you want to return. (The CSRC4FRE
service provides the same function but slightly slower performance. CSRC4FR2 is
preferred over CSRC4FR1 when using multiple extents.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). All parameter areas,
including the parameter list, may reside above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you CALL CSRC4FR1 so the CALL macro can generate the correct code for
AR mode.

As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:
*
CSRC4_POOL_NAME_LEN EQU 8
*

© Copyright IBM Corp. 1988, 2015 233

*
* Length of the user-supplied savearea:
*
CSRC4_SAVEAREA_LEN EQU 216
*
*

Restrictions
None.

Input register information
Before calling the CSRC4FR1 service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

CSRC4FR1 macro

234 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

CALL CSRC4FR1

,(cntl_alet
,anchor_addr
,cell_addr
,return_code
,save_area)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the fullword variable containing the ALET that identifies the location
of the anchor and extents. Initialize the ALET to 0 if your program is running
in AR mode and the anchor and extents are in the primary address space. If
your program is running in primary ASC mode, the value is ignored, but you
must code the parameter anyway.

,anchor_addr
Specifies the doubleword variable containing the address of the 64-byte anchor.

,cell_addr
Specifies the doubleword variable containing the address of the cell that
CSRC4FR1 is to free.

,return_code
When CSRC4FR1 completes, the fullword variable specified for return_code
contains the return code.

,save_area)
Specifies a 216-byte save area. The system does not change the first 8 bytes of
this area.

ABEND codes
None.

Return and reason codes
When the CSRC4FR1 service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an
inactive extent.

Action: None required. However, you might take
some action depending on your application.

CSRC4FR1 macro

Chapter 41. CSRC4FR1 — Return a cell to a cell pool 235

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

54 84 Meaning: Program error. The cell address is not
valid.

Action: Investigate the following possible causes:

v The input cell address does not point to the
beginning of a cell.

v The cell is not in the cell pool specified by the
anchor address.

58 88 Meaning: Program error. Either you have already
returned the cell or you never allocated it.

Action: Check to see if your program contains a
logic error that caused this situation to occur.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell.

CSRC4FR1 macro

236 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 42. CSRC4FR2 — Return a cell to a cell pool

Description
Call the CSRC4FR2 cell pool service to return an allocated cell to a cell pool. You
must specify the address of the cell that you want to return. (The CSRC4FRE
service provides the same function but slightly slower performance. CSRC4FR2 is
preferred over CSRC4FR1 when using multiple extents, as CSRC4FR2 has an
additional input parameter for the address of the extent containing the cell to be
freed.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). All parameter areas,
including the parameter list, may reside above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you CALL CSRC4FR2 so the CALL macro can generate the correct code for
AR mode.

As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:
*

© Copyright IBM Corp. 1988, 2015 237

CSRC4_POOL_NAME_LEN EQU 8
*
*
* Length of the user-supplied savearea:
*
CSRC4_SAVEAREA_LEN EQU 216
*
*

Restrictions
None.

Input register information
Before calling the CSRC4FR2 service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

CSRC4FR2 macro

238 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

CALL CSRC4FR2

,(cntl_alet
,anchor_addr
,cell_addr
,return_code
,save_area)
,extent_addr

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the fullword variable containing the ALET that identifies the location
of the anchor and extents. Initialize the ALET to 0 if your program is running
in AR mode and the anchor and extents are in the primary address space. If
your program is running in primary ASC mode, the value is ignored, but you
must code the parameter anyway.

,anchor_addr
Specifies the doubleword variable containing the address of the 64-byte anchor.

,cell_addr
Specifies the doubleword variable containing the address of the cell that
CSRC4FR2 is to free.

,return_code
When CSRC4FR2 completes, the fullword variable specified for return_code
contains the return code.

,save_area)
Specifies a 216-byte save area. The system does not change the first 8 bytes of
this area.

,extent_addr
Specifies the doubleword variable containing the address of the extent that
contains the cell that CSRC4FR2 is to free. This address was returned with the
cell address in the extent_addr parameter on a previous CSRC4GT2 call.

ABEND codes
None.

Return and reason codes
When the CSRC4FR2 service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

CSRC4FR2 macro

Chapter 42. CSRC4FR2 — Return a cell to a cell pool 239

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

04 04 Meaning: The last cell has been returned to an
inactive extent.

Action: None required. However, you might take
some action depending on your application.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

54 84 Meaning: Program error. The cell address is not
valid.

Action: Investigate the following possible causes:

v The input cell address does not point to the
beginning of a cell.

v The cell is not in the cell pool specified by the
anchor address.

58 88 Meaning: Program error. Either you have already
returned the cell or you never allocated it.

Action: Check to see if your program contains a
logic error that caused this situation to occur.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell.

CSRC4FR2 macro

240 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 43. CSRC4GET — Allocate a cell from a cell pool

Description
Call the CSRC4GET cell pool service to allocate a cell from the cell pool.
CSRC4GET allocates cells from the lowest- to highest-numbered active extents, and
within each extent, from the lowest to the highest cell address. CSRC4GET passes
back to the calling program the address of the cell it allocated but does not clear
the cell storage to binary zeros. (The CSRC4GT1 and CSRC4GT2 services provide
the same function with slightly enhanced performance. CSRC4GT2 is preferred
over CSRC4GT1 when using multiple extents.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). All parameter areas,
including the parameter list, may reside above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRC4GET so the CALL macro can generate the correct code for
AR mode.

As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*

© Copyright IBM Corp. 1988, 2015 241

* Length of the user-supplied pool name:
*
CSRC4_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

Input register information
Before calling the CSRC4GET service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

CSRC4GET macro

242 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

CALL CSRC4GET

,(cntl_alet
,anchor_addr
,cell_addr
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the fullword variable containing the ALET that identifies the location
of the anchor and extents. Initialize the ALET to 0 if your program is running
in AR mode and the anchor and extents are in the primary address space. If
your program is running in primary ASC mode, the value is ignored, but you
must code the parameter anyway.

,anchor_addr
Specifies the doubleword variable containing the address of the 64-byte anchor.

,cell_addr
When CSRC4GET completes, the doubleword variable specified by cell_addr
contains the address of the cell that CSRC4GET allocated.

,return_code)
When CSRC4GET completes, the fullword variable specified by return_code
contains the return code.

ABEND codes
None.

Return and reason codes
When the CSRC4GET service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

08 08 Meaning: Program error. There were no available
cells in the pool. More than one program could be
using the cell pool.

Action: Retry the request one or more times. If the
problem persists, consider freeing existing cells or
adding new cells to the cell pool, or both.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

CSRC4GET macro

Chapter 43. CSRC4GET — Allocate a cell from a cell pool 243

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

64 100 Meaning: Program or system error. An extent chain
was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain
is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program or system error. An extent has
been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRC4GET macro

244 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 44. CSRC4GT1 — Allocate a cell from a cell pool

Description
Call the CSRC4GT1 cell pool service to allocate a cell from the cell pool.
CSRC4GT1 allocates cells from the lowest- to highest-numbered active extents, and
within each extent, from the lowest to the highest cell address. CSRC4GT1 passes
back to the calling program the address of the cell it allocated but does not clear
the cell storage to binary zeros. (The CSRC4GET service provides the same
function but slightly slower performance. CSRC4GT2 is preferred over CSRC4GT1
when using multiple extents.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). All parameter areas,
including the parameter list, may reside above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRC4GT1 so the CALL macro can generate the correct code for
AR mode.

As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*

© Copyright IBM Corp. 1988, 2015 245

* Length of the user-supplied pool name:
*
CSRC4_POOL_NAME_LEN EQU 8
*
*
* Length of the user-supplied savearea:
*
CSRC4_SAVEAREA_LEN EQU 216
*
*

Restrictions
None.

Input register information
Before calling the CSRC4GT1 service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

CSRC4GT1 macro

246 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

CALL CSRC4GT1

,(cntl_alet
,anchor_addr
,cell_addr
,return_code
,save_area)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the fullword variable containing the ALET that identifies the location
of the anchor and extents. Initialize the ALET to 0 if your program is running
in AR mode and the anchor and extents are in the primary address space. If
your program is running in primary ASC mode, the value is ignored, but you
must code the parameter anyway.

,anchor_addr
Specifies the doubleword variable containing the address of the 64-byte anchor.

,cell_addr
When CSRC4GT1 completes, the doubleword variable specified by cell_addr
contains the address of the cell that CSRC4GT1 allocated.

,return_code
When CSRC4GT1 completes, the fullword variable specified by return_code
contains the return code.

,save_area)
Specifies a 216-byte save area. The system does not change the first 8 bytes of
this area.

ABEND codes
None.

Return and reason codes
When the CSRC4GT1 service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

08 08 Meaning: Program error. There were no available
cells in the pool. More than one program could be
using the cell pool.

Action: Retry the request one or more times. If the
problem persists, consider freeing existing cells or
adding new cells to the cell pool, or both.

CSRC4GT1 macro

Chapter 44. CSRC4GT1 — Allocate a cell from a cell pool 247

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

64 100 Meaning: Program or system error. An extent chain
was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain
is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program or system error. An extent has
been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRC4GT1 macro

248 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 45. CSRC4GT2 — Allocate a cell from a cell pool

Description
Call the CSRC4GT2 cell pool service to allocate a cell from the cell pool.
CSRC4GT2 allocates cells from the lowest- to highest-numbered active extents, and
within each extent, from the lowest to the highest cell address. CSRC4GT2 passes
back to the calling program the address of the cell it allocated but does not clear
the cell storage to binary zeros. (The CSRC4GET service provides the same
function but slightly slower performance. CSRC4GT2 is preferred over CSRC4GT1
when using multiple extents, as CSRC4GT2 has an additonal output parameter to
return the address of the extent containing the obtained cell.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). All parameter areas,
including the parameter list, may reside above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRC4GT2 so the CALL macro can generate the correct code for
AR mode.

As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*

© Copyright IBM Corp. 1988, 2015 249

*
* Length of the user-supplied pool name:
*
CSRC4_POOL_NAME_LEN EQU 8
*
*
* Length of the user-supplied savearea:
*
CSRC4_SAVEAREA_LEN EQU 216
*
*

Restrictions
None.

Input register information
Before calling the CSRC4GT2 service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

CSRC4GT2 macro

250 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

CALL CSRC4GT2

,(cntl_alet
,anchor_addr
,cell_addr
,return_code
,save_area)
,extent_addr

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the fullword variable containing the ALET that identifies the location
of the anchor and extents. Initialize the ALET to 0 if your program is running
in AR mode and the anchor and extents are in the primary address space. If
your program is running in primary ASC mode, the value is ignored, but you
must code the parameter anyway.

,anchor_addr
Specifies the doubleword variable containing the address of the 64-byte anchor.

,cell_addr
When CSRC4GT2 completes, the doubleword variable specified by cell_addr
contains the address of the cell that CSRC4GT2 allocated.

,return_code
When CSRC4GT2 completes, the fullword variable specified by return_code
contains the return code.

,save_area)
Specifies a 216-byte save area. The system does not change the first 8 bytes of
this area.

,extent_addr
Specifies the variable that is to contain the address of the extent containing the
obtained cell. This address should be provided in the extent_addr parameter
when using CSRC4FR2 to free the cell.

ABEND codes
None.

Return and reason codes
When the CSRC4GT2 service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

CSRC4GT2 macro

Chapter 45. CSRC4GT2 — Allocate a cell from a cell pool 251

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

08 08 Meaning: Program error. There were no available
cells in the pool. More than one program could be
using the cell pool.

Action: Retry the request one or more times. If the
problem persists, consider freeing existing cells or
adding new cells to the cell pool, or both.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

64 100 Meaning: Program or system error. An extent chain
was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain
is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program or system error. An extent has
been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRC4GT2 macro

252 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 46. CSRC4QCL — Query a cell

Description
Call the CSRC4QCL cell pool service to receive status information about a specified
cell in a cell pool. CSRC4QCL reports whether the cell is free or allocated, and
returns the number of the extent associated with the cell. CSRC4QCL does not
prevent other programs from changing the pool during or after a query.
CSRC4QCL returns the status as it was at the time you issued the CALL.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). All parameter areas,
including the parameter list, may reside above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRC4QCL so the CALL macro can generate the correct code for
AR mode.

As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:

© Copyright IBM Corp. 1988, 2015 253

*
CSRC4_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

Input register information
Before calling the CSRC4QCL service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

CSRC4QCL macro

254 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

CALL CSRC4QCL

,(cntl_alet
,anchor_addr
,cell_addr
,cell_avail
,extent_num
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the fullword variable containing the ALET that identifies the location
of the anchor and extents. Initialize the ALET to 0 if your program is running
in AR mode and the anchor and extents are in the primary address space. If
your program is running in primary ASC mode, the value is ignored, but you
must code the parameter anyway.

,anchor_addr
Specifies the doubleword variable containing the address of the 64-byte anchor.

,cell_addr
Specifies the doubleword variable containing the address of the cell the service
will query.

,cell_avail
When CSRC4QCL completes, the doubleword variable specified for cell_avail
contains one of the following values. These indicate the status of the specified
cell at the time you issued the CALL.

0 Cell available

1 Cell allocated

,extent_num
When CSRC4QCL completes, the fullword variable specified for extent_num
contains the number of the extent that contains the specified cell.

,return_code)
When CSRC4QCL completes, the fullword variable specified for return_code
contains the return code.

ABEND codes
None.

Return and reason codes
When the CSRC4QCL service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

CSRC4QCL macro

Chapter 46. CSRC4QCL — Query a cell 255

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if the program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

54 84 Meaning: Program error. The cell address is not
valid.

Action: Investigate the following possible causes:

v The input cell address does not point to the
beginning of a cell

v The cell is not in the cell pool specified by the
anchor address.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRC4QCL macro

256 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 47. CSRC4QEX — Query a cell pool extent

Description
Call the CSRC4QEX cell pool service to receive status information about a specified
extent.

CSRC4QEX does not prevent other programs from changing the pool during or
after a query. CSRC4QEX returns the status as it was at the time you issued the
CALL.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. Control

parameters must be in the primary address space or in an
address/data space that is addressable through a public
entry on the caller's dispatchable unit access list (DU-AL).
All parameter areas, including the parameter list, may reside
above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRC4QEX so the CALL macro can generate the correct code for
AR mode.

As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:

© Copyright IBM Corp. 1988, 2015 257

*
CSRC4_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

Input register information
Before calling the CSRC4QEX service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

CSRC4QEX macro

258 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

CALL CSRC4QEX

,(cntl_alet
,anchor_addr
,extent_num
,status
,extent_addr
,extent_len
,area_addr
,area_size
,total_cells
,avail_cells
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the fullword variable containing the ALET that identifies the location
of the anchor and extents. Initialize the ALET to 0 if your program is running
in AR mode and the anchor and extents are in the primary address space. If
your program is running in primary ASC mode, the value is ignored, but you
must code the parameter anyway.

,anchor_addr
Specifies the doubleword variable containing the address of the 64-byte anchor.

,extent_num
Specifies the fullword variable containing the number of the extent the service
will query.

,status
When CSRC4QEX completes, the doubleword variable specified for status
contains one of the following decimal numbers. These indicate the status of the
extent at the time of the CALL.

1 Disconnected and inactive

2 Connect in progress

3 Connected and inactive

4 Connected and active

5 Disconnect in progress

,extent_addr
When CSRC4QEX completes, the doubleword variable specified for extent_addr
contains the address of the extent.

,extent_len
When CSRC4QEX completes, the doubleword variable specified for extent_len
contains the length of the extent, in bytes.

,area_addr
When CSRC4QEX completes, the doubleword variable specified for area_addr
contains the address of cell storage.

CSRC4QEX macro

Chapter 47. CSRC4QEX — Query a cell pool extent 259

,area_size
When CSRC4QEX completes, the doubleword variable specified for area_size
contains the size of cell storage for the extent.

,total_cells
When CSRC4QEX completes, the doubleword variable specified for total_cells
contains the total number of cells associated with the extents.

,avail_cells
When CSRC4QEX completes, the doubleword variable specified for avail_cells
contains the total number of cells associated with the specified extent that are
available for allocation.

,return_code)
When CSRC4QEX completes, the fullword variable specified for return_code
contains the return code.

ABEND codes
None.

Return and reason codes
When the CSRC4QEX service returns control to your program , GPR 15 (and
return_code) contains one of the following return codes.

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

30 48 Meaning: Program error. The extent number is not
valid.

Action: Make sure the extent number is within the
range of 0 through 65536.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

6C 108 Meaning: Program error or system error. An extent
could not be found.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that the anchor
address for the right cell pool is being passed.

CSRC4QEX macro

260 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRC4QEX macro

Chapter 47. CSRC4QEX — Query a cell pool extent 261

CSRC4QEX macro

262 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 48. CSRC4QPL — Query the cell pool

Description
Call the CSRC4QPL cell pool service to receive status information about the cell
pool.

CSRC4QPL does not prevent other programs from changing the pool during or
after a query. CSRC4QPL returns the status as it was at the time you issued the
CALL.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL). All parameter areas,
including the parameter list, may reside above 2GB.

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRC4QPL so the CALL macro can generate the correct code for
AR mode.

As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:

© Copyright IBM Corp. 1988, 2015 263

*
CSRC4_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

Input register information
Before calling the CSRC4QPL service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

CSRC4QPL macro

264 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

CALL CSRC4QPL

,(cntl_alet
,anchor_addr
,user_name
,cell_size
,total_cells
,avail_cells
,number_extents
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the fullword variable containing the ALET that identifies the location
of the anchor and extents. Initialize the ALET to 0 if your program is running
in AR mode and the anchor and extents are in the primary address space. If
your program is running in primary ASC mode, the value is ignored, but you
must code the parameter anyway.

,anchor_addr
Specifies the doubleword variable containing the address of the 64-byte anchor.

,user_name
When CSRC4QPL completes, the variable specified by user_name contains the
name on the CSRC4BLD service that created the cell pool.

,cell_size
When CSRC4QPL completes, the doubleword variable specified by cell_size
contains the size of each cell at the time the cell pool was created.

,total_cells
When CSRC4QPL completes, the doubleword variable specified by total_cells
contains the total number of cells associated with the extents.

,avail_cells
When CSRC4QPL completes, the doubleword variable specified by avail_cells
contains the total number of cells in active extents that are available for
allocation.

,number_extents
When CSRC4QPL completes, the doubleword variable specified by
number_extents contains the total number of extents (active or inactive, and
connected or disconnected) in the cell pool.

,return_code)
When CSRC4QPL completes, the fullword variable specified by return_code
contains the return code.

ABEND codes
None.

CSRC4QPL macro

Chapter 48. CSRC4QPL — Query the cell pool 265

|

Return and reason codes
When the CSRC4QPL service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong address or inadvertently overlaid the anchor
area.

64 100 Meaning: Program error or system error. The extent
address is not valid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRC4QPL macro

266 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 49. CSRC4RFR — Return a cell to a cell pool (register
interface)

Description
Call the CSRC4RFR cell pool service to return an allocated cell to a cell pool using
the register interface, if your program cannot obtain storage for a parameter list.
(The CSRC4RF1 service provides the same function with slightly enhanced
performance.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 64-bit addressing mode.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

Programming requirements
As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:
*
CSRC4_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 267

Input register information
Before calling the CSRC4RFR service, the caller must ensure that the following
access registers (ARs) and general purpose registers (GPRs) contain the specified
information:

Register
Contents

AR 1 The ALET used to access all the cell storage areas. Specify 0 if your
program is running in AR mode and the anchor and extents are in the
primary address space. If your program is running in primary ASC mode,
CSRC4RFR ignores the value.

GPR 0 The doubleword address of the cell you want freed.

GPR 1 The doubleword anchor address.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram.

Syntax Description

CALL CSRC4RFR

CSRC4RFR macro

268 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
See “Input register information” on page 268.

ABEND codes
None.

Return and reason codes
When the CSRC4RFR service returns control to your program, GPR 15 contains
one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an
inactive extent.

Action: None required. However, you might want to
take some action depending on your application.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

54 84 Meaning: Program error. The cell address is not
valid.

Action: Investigate the following possible causes:

v The input cell address does not point to the
beginning of a cell

v The cell is not in the cell pool specified by the
anchor address.

58 88 Meaning: Program error. Either you have already
returned the cell or you never allocated it.

Action: Check to see if your program contains a
logic error that caused this situation to occur.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRC4RFR macro

Chapter 49. CSRC4RFR — Return a cell to a cell pool (register interface) 269

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRC4RFR macro

270 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 50. CSRC4RF1 — Return a cell to a cell pool (register
interface)

Description
Call the CSRC4RF1 cell pool service to return an allocated cell to a cell pool using
the register interface, if your program cannot obtain storage for a parameter list.
(The CSRC4RFR service provides the same function but slightly slower
performance.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 64-bit addressing mode.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

Programming requirements
As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:
*
CSRC4_POOL_NAME_LEN EQU 8
*
*
* Length of the user-supplied savearea:
*
CSRC4_SAVEAREA_LEN EQU 216
*
*

© Copyright IBM Corp. 1988, 2015 271

Restrictions
None.

Input register information
Before calling the CSRC4RF1 service, the caller must ensure that the following
access registers (ARs) and general purpose registers (GPRs) contain the specified
information:

Register
Contents

AR 1 The ALET used to access all the cell storage areas. Specify 0 if your
program is running in AR mode and the anchor and extents are in the
primary address space. If your program is running in primary ASC mode,
CSRC4RF1 ignores the value.

GPR 0 The doubleword address of the cell you want freed.

GPR 1 The doubleword anchor address.

GPR 13
The address of a 216-byte save area that your program provides. The
system does not change the first 8 bytes of this area.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

CSRC4RF1 macro

272 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax
Write the call as shown on the syntax diagram.

Syntax Description

CALL CSRC4RF1

Parameters
See “Input register information” on page 272.

ABEND codes
None.

Return and reason codes
When the CSRC4RF1 service returns control to your program, GPR 15 contains one
of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an
inactive extent.

Action: None required. However, you might want to
take some action depending on your application.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

54 84 Meaning: Program error. The cell address is not
valid.

Action: Investigate the following possible causes:

v The input cell address does not point to the
beginning of a cell

v The cell is not in the cell pool specified by the
anchor address.

58 88 Meaning: Program error. Either you have already
returned the cell or you never allocated it.

Action: Check to see if your program contains a
logic error that caused this situation to occur.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRC4RF1 macro

Chapter 50. CSRC4RF1 — Return a cell to a cell pool (register interface) 273

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRC4RF1 macro

274 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 51. CSRC4RGT — Allocate a cell from a cell pool
(register interface)

Description
Call the CSRC4RGT cell pool service to allocate a cell from the cell pool using the
register interface, if your program cannot obtain storage for a parameter list.
CSRC4RGT allocates cells from the lowest- to highest-numbered active extents, and
within each extent, from the lowest to highest cell address. (The CSRC4RG1 service
provides the same function with slightly enhanced performance.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

Programming requirements
As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:
*
CSRC4_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 275

Input register information
Before calling the CSRC4RGT service, the caller must ensure that the following
access registers (ARs) and general purpose registers (GPRs) contain the specified
information:

Register
Contents

AR 1 The ALET used to access all the cell storage areas. Specify 0 if your
program is running in AR mode and the anchor and extents are in the
primary address space. If your program is running in primary ASC mode,
CSRC4RGT ignores the value.

GPR 1 The doubleword anchor address.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0 Used as a work register by the system.

1 Address of the allocated cell.

2-13 Unchanged.

14 Used as a work register by the system.

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the ARs contain:

Register
Contents

0 Used as a work register by the system.

1-14 Unchanged.

15 Used as a work register by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram.

Syntax Description

CALL CSRC4RGT

CSRC4RGT macro

276 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

||

||

Parameters
See “Input register information” on page 276.

ABEND codes
None.

Return and reason codes
When the CSRC4RGT service returns control to your program, GPR 15 contains
one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

08 08 Meaning: Program error. There were no available
cells in the pool.

Action: Retry the request one or more times. If the
problem persists, consider freeing existing cells,
adding new cells to the cell pool, or both.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRC4RGT macro

Chapter 51. CSRC4RGT — Allocate a cell from a cell pool (register interface) 277

CSRC4RGT macro

278 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 52. CSRC4RG1 — Allocate a cell from a cell pool
(register interface)

Description
Call the CSRC4RG1 cell pool service to allocate a cell from the cell pool using the
register interface, if your program cannot obtain storage for a parameter list.
CSRC4RG1 allocates cells from the lowest- to highest-numbered active extents, and
within each extent, from the lowest to highest cell address. (The CSRC4RGT
service provides the same function but slightly slower performance.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 64-bit addressing mode. All input addresses must be valid

64-bit addresses.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

Programming requirements
As the program must be running in AMODE 64 to call this service, be sure to issue
SYSSTATE AMODE64=YES at the point(s) where the program begins running in
AMODE 64.

Before you use cell pool services, you can optionally include the CSRC4ASM
macro to generate cell pool services equate (EQU) statements. CSRC4ASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSRC4_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSRC4_EXTENT_BASE EQU 192
*
*
* Length of the user-supplied pool name:
*
CSRC4_POOL_NAME_LEN EQU 8
*
*
* Length of the user-supplied savearea:
*
CSRC4_SAVEAREA_LEN EQU 216
*
*

© Copyright IBM Corp. 1988, 2015 279

Restrictions
None.

Input register information
Before calling the CSRC4RG1 service, the caller must ensure that the following
access registers (ARs) and general purpose registers (GPRs) contain the specified
information:

Register
Contents

AR 1 The ALET used to access all the cell storage areas. Specify 0 if your
program is running in AR mode and the anchor and extents are in the
primary address space. If your program is running in primary ASC mode,
CSRC4RG1 ignores the value.

GPR 1 The doubleword anchor address.

GPR 13
The address of a 216-byte save area that your program provides. The
system does not change the first 8 bytes of this area.

Output register information
When control returns to the caller, the 64-bit general purpose registers (GPRs)
contain:

Register
Contents

0 Used as a work register by the system.

1 Address of the allocated cell.

2-13 Unchanged.

14 Used as a work register by the system.

15 Return code in low 32 bits. High 32 bits are used as a work area by the
system.

When control returns to the caller, the ARs contain:

Register
Contents

0 Used as a work register by the system.

1-14 Unchanged.

15 Used as a work register by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

CSRC4RG1 macro

280 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

||

||

Syntax
Write the call as shown on the syntax diagram.

Syntax Description

CALL CSRC4RG1

Parameters
See “Input register information” on page 280.

ABEND codes
None.

Return and reason codes
When the CSRC4RG1 service returns control to your program, GPR 15 contains
one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

08 08 Meaning: Program error. There were no available
cells in the pool.

Action: Retry the request one or more times. If the
problem persists, consider freeing existing cells,
adding new cells to the cell pool, or both.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRC4RG1 macro

Chapter 52. CSRC4RG1 — Allocate a cell from a cell pool (register interface) 281

CSRC4RG1 macro

282 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 53. CSREVW — View an object and sequentially
access it

Description
Call the CSREVW window service if your program references data in a sequential
manner and you want to:
v Map a window to one or more blocks (4096 bytes) of a data object. If you

specified scrolling when you called CSRIDAC to identify the object, CSREVW
maps the window to the blocks in the scroll area and maps the scroll area to the
object.

v Specify how many blocks window services is to try to transfer into the window
each time CSREVW needs more data from the object.

Mapping a data object enables your program to access the data that is viewed
through the window the same way it accesses other data in your storage.

The CSREVW and CSRVIEW services differ on how to specify sequential access:
v If you use CSRVIEW and specify sequential, when you reference data that is not

in your window, window services reads up to 16 blocks — the one that contains
the data your program requests, plus the next 15 consecutive blocks. The
number of blocks that actually come into the window depends on the size of the
window and the availability of central storage.

v If you use CSREVW, you can specify the number of additional consecutive
blocks that window services reads into the window at one time. The number
ranges from 0 through 255 blocks. The number of blocks that actually come into
the window depends on the size of the window and the availability of central
storage.

Use CSREVW if your program can benefit from having more than 16 blocks come
into a window at one time, or fewer than 16 blocks at one time.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN = SASN
AMODE: 24- or 31-bit, but all addresses must be 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
The caller must follow all the restrictions imposed by the DIV macro.

© Copyright IBM Corp. 1988, 2015 283

Input register information
Before calling the CSREVW service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 The address of a standard 18-word save area

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on the register contents remaining the same before and after
issuing a service. If the system changes the contents of the registers on which the
caller depends, the caller must save them before issuing the service, and restore
them after the system returns control.

Performance implications
None.

Syntax
Write the CALL as shown in the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

CSREVW macro

284 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

CALL CSREVW

,(operation_type
,object_id
,offset
,span
,window_name
,usage
,disposition
,pfcount
,return_code
,reason_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(operation_type
Specifies that you are to begin viewing an object.

Define operation_type as character data of length at least 5 bytes, containing the
characters “BEGIN”.

,object_id
Specifies the object identifier. Supply the object identifier that CSRIDAC
returned when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset of the view into the object. Specify the offset in blocks of
4096 bytes.

Define offset as integer data of length 4.

,span
Specifies the window size in blocks of 4096 bytes.

Define span as integer data of length 4.

,window_name
Specifies the symbolic name you assigned to the window in your address
space.

,usage
Specifies that the expected pattern of references to data in the object will be
sequential.

Define usage as character data of at least 4 bytes, containing the characters
“SEQ”. Pad the string on the right with 1 or more blanks.

,disposition
Defines how CSREVW is to handle data that is in the window when you begin
a view. You can specify CSREVW BEGIN with a disposition of REPLACE or
RETAIN. REPLACE and RETAIN cause the data in the window to be handled
as follows:

CSREVW macro

Chapter 53. CSREVW — View an object and sequentially access it 285

REPLACE
The first time you reference a block to which the window is mapped,
CSREVW replaces the data in the window with the data from the
referenced block.

RETAIN
When you reference a block to which the window is mapped, the data
in the window remains unchanged. When you call CSRSAVE to save
the mapped blocks, CSRSAVE saves all of the mapped blocks because
CSRSAVE considers them changed.

Define disposition as character data of length 7. If you specify RETAIN, pad the
string on the right with 1 blank.

,pfcount
Specifies the number of additional blocks you want window services to bring
into the window each time your program references data that is not already in
the window. The number you specify is added to the minimum of one block
that window services always brings in. That is, if you specify a value of 20,
window services brings in up to 21. The number of additional blocks ranges
from zero through 255.

Define pfcount as integer data of length 4.

,return_code
When CSREVW completes, return_code contains the return code. Define
return_code as integer data of length 4.

,reason_code)
When CSREVW completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

ABEND codes
CSREVW might abnormally terminate with abend code X'019'. See z/OS MVS
System Codes for an explanation and programmer responses.

Return and reason codes
When the CSREVW service returns control to your program, GPR 15 (and
return_code) contains a return code. GPR 0 (and reason_code) contains a reason code.
The following table identifies return code and reason code combinations and
explains their meanings. Data-in-virtual reason codes, which are returned with
CSREVW return codes X'4' and X'C', are two bytes long and right justified. They
are explained in the description of the DIV macro (Chapter 87, “DIV —
Data-in-virtual,” on page 483).

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00000000 00000000 Meaning: The operation was successful.

Action: None.

00000004 00000165 Meaning: System error. The service could not retain
all the data that was in the scroll area.

Action: Retry the request. If the problem persists,
contact the appropriate IBM support personnel.

CSREVW macro

286 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00000004 xxxxnnnn Meaning: The value nnnn is a data-in-virtual reason
code. The value xxxx is not part of the intended
programming interface.

Action: See the DIV macro description for an
explanation of reason code nnnn.

0000000C xxxxnnnn Meaning: The value nnnn is a data-in-virtual reason
code. The value xxxx is not part of the intended
programming interface.

Action: See the DIV macro description for an
explanation of reason code nnnn.

0000002C 00000004 Meaning: Program error. Window services have not
been defined to your system, or the link to the
service failed.

Action: If window services are available on your
system, rerun the program one or more times. If the
problem persists, contact the appropriate IBM
support personnel.

CSREVW macro

Chapter 53. CSREVW — View an object and sequentially access it 287

CSREVW macro

288 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 54. CSRIDAC — Request or terminate access to a
data object

Description
Use the CSRIDAC callable window service to control access to a data object. The
CSRIDAC service allows you to:
v Request access to a data object
v End access to a data object.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit, but all addresses must be 31-bit addresses
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
The caller must follow all the restrictions imposed by the DIV macro.

Input register information
Before calling the CSRIDAC service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 The address of a standard 18-word save area

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

© Copyright IBM Corp. 1988, 2015 289

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the CALL as shown in the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRIDAC

,(operation_type
,object_type
,object_name
,scroll_area
,object_state
,access_mode
,object_size
,object_id
,high_offset
,return_code
,reason_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(operation_type
Specifies the type of operation the service is to perform:
v To request access to an object, specify BEGIN.
v To terminate access to an object, specify END. If the object is temporary,

CSRIDAC deletes it.

Define operation_type as character data of length 5. If you specify END, pad the
string on the right with blanks.

,object_type
Specifies the type of object. The types are:

DDNAME
The object is an existing (OLD) VSAM linear data set allocated to the
file whose DDNAME is specified by object_name.

CSRIDAC macro

290 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

DSNAME
The object is the linear VSAM data set whose name is specified by
object_name. The data set may already exist or may be a new data set
that you want window services to create.

TEMPSPACE
The object is a temporary data object. Window services will delete the
object when your program issues CSRIDAC END.

If operation_type is BEGIN, you must supply a value.

Define this parameter as character data of length 9. If you specify either
DDNAME or DSNAME, pad the string on the right with blanks.

,object_name
Specifies the data set name of a permanent object or the DDNAME of a data
definition (DD) statement that defines a permanent object.
v If object_type is DDNAME, object_name must contain the name of a DD

statement.
v If object_type is DSNAME, object_name must contain the data set name of the

permanent object.

If operation_type is BEGIN and object_type is DDNAME or DSNAME, you must
supply a value for object_name.

Define object_name as character data of length 1 to 44. If object_name contains
fewer than 44 characters, pad the name on the right with blanks.

,scroll_area
Specifies whether window services is to create a scroll area for the data object.

YES Create a scroll area.

NO Do not create a scroll area.

If operation_type is BEGIN and object_type is TEMPSPACE, specify YES.

Define scroll_area as character data of length 3. If you specify NO, pad the
string on the right with a blank.

,object_state
Specifies the state of the object.

OLD The object exists.

NEW The object does not exist and window services must create it.

If operation_type is BEGIN and object_type is DSNAME, you must supply a
value for object_state.

Define object_state as character data of length 3.

,access_mode
Specifies the type of access required.

READ READ access.

UPDATE
UPDATE access.

If operation_type is BEGIN and object_type is DDNAME or DSNAME, you must
supply a value for access_mode. For a new or temporary data object, window
services assumes UPDATE.

Define access_mode as character data of length 6. If you specify READ, pad the
string on the right with 1 or 2 blanks.

CSRIDAC macro

Chapter 54. CSRIDAC — Request or terminate access to a data object 291

,object_size
Specifies the maximum size of the new object in units of 4096 bytes.

This parameter is required if either of the following conditions is true:
v Operation_type is BEGIN, object_type is DSNAME, and object_state is NEW
v Operation_type is BEGIN and object_type is TEMPSPACE

Define object_size as integer data of length 4.

,object_id
Specifies the object identifier.

When operation_type is BEGIN, the service returns the object identifier in this
parameter. Use the identifier to identify the object to other window services.

When operation_type is END, you must supply the object identifier in this
parameter.

Define object_id as character data of length 8.

,high_offset
When CSRIDAC completes, high_offset contains the size of the existing object
expressed in blocks of 4096 bytes

Define high_offset as integer data of length 4.

,return_code
When CSRIDAC completes, return_code contains the return code. Define
return_code as integer data of length 4.

,reason_code)
When CSRIDAC completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

ABEND codes
The CSRIDAC service might abnormally terminate with abend code X'019'. See
z/OS MVS System Codes for an explanation and programmer responses.

Return and reason codes
When the CSRIDAC service returns control to your program, return_code contains a
return code and reason_code contains a reason code. The following table identifies
return code and reason code combinations and explains their meanings.

Data-in-virtual reason codes, which are returned with CSRIDAC return codes X'4'
and X'C', are two bytes long and right justified. They are explained in the
description of the DIV macro (Chapter 87, “DIV — Data-in-virtual,” on page 483).

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00000000 00000000 Meaning: The operation was successful.

Action: None.

00000004 xxxxnnnn Meaning: Program error or environmental error. The
operation was successful; however, data-in-virtual
issued a warning. The value nnnn is a data-in-virtual
reason code. The value xxxx is not part of the
intended programming interface.

Action: See the description of the DIV macro for an
explanation of reason code nnnn.

CSRIDAC macro

292 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00000008 00000118 Meaning: Environmental error. The system could not
obtain enough storage to create a hiperspace for the
temporary object or the scroll area.

Action: Rerun the program one or more times. If the
problem persists, notify your system programmer,
who can increase the SMF limit. The SMF limit,
which is set by the installation, restricts the amount
of virtual storage that programs in each address
space can use for data spaces and hiperspaces.

00000008 00000119 Meaning: Environmental error. The system could not
delete or unidentify the temporary object or the
scroll area.

Action: Retry the request. If the problem persists,
record the return and reason code, and contact the
appropriate IBM support personnel.

00000008 0000011A Meaning: Environmental error. The system was
unable to create a new VSAM linear data set. Your
system must include SMS, and SMS must be active.

Action: Contact your system programmer to request
that SMS be made active.

0000000C xxxxnnnn Meaning: Program error or environmental error. The
value nnnn is a data-in-virtual reason code. The
value xxxx is not part of the intended programming
interface.

Action: See the description of the DIV macro for an
explanation of reason code nnnn.

00000010 rrrrnnnn Meaning: Program or environmental error. The
system was unable to allocate or unallocate the data
set specified as object_name. The value rrrr is the
return code from dynamic allocation. The value
nnnn is the two-byte reason code from dynamic
allocation.

Action: If object_state is new, make sure that a data
set of the same name does not already exist. If this is
the case, either use the existing data set or change
the name of your data set. If you are unable to
correct the problem, notify your system programmer.

0000002C 00000004 Meaning: Program error. Window services have not
been defined to your system, or the link to the
service failed.

Action: If window services are available on your
system, rerun the program one or more times. If the
problem persists, contact the appropriate IBM
support personnel.

CSRIDAC macro

Chapter 54. CSRIDAC — Request or terminate access to a data object 293

CSRIDAC macro

294 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 55. CSRL16J — Transfer control with all registers
intact

Description
Call the CSRL16J service to transfer control to another routine running under the
same request block (RB). The CSRL16J service functions much like a branch
instruction, but will transfer control with the contents of all registers intact.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
v Before calling the CSRL16J service, you must build data area CSRYL16J to form

a parameter list that defines the entry characteristics and register contents for the
target routine; include the CSRYL16J mapping macro. See z/OS MVS
Programming: Assembler Services Guide for information on how to build the
parameter list.

v You can optionally include the CSRLJASM macro to obtain assembler
declarations in the calling program for the return code from CSRL16J.
CSRLJASM provides the following constants for use in your program:
**/
* Service Return Codes *
**/
CSRL16J_OK EQU 0
CSRL16J_BAD_VERSION EQU 4
CSRL16J_BAD_AMODE EQU 8
CSRL16J_BAD_RESERVED EQU 12
CSRL16J_BAD_LENGTH EQU 16
CSRL16J_BAD_PSW EQU 24
**/

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before calling the CSRL16J service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

© Copyright IBM Corp. 1988, 2015 295

13 Address of a standard 18 word save area

Output register information
The CSRL16J service returns control to the caller only when it cannot successfully
transfer control to the target routine because of an error. Otherwise CSRL16J
transfers control to the target routine, which can return control to any program
running under the same RB, including the calling program.

When CSRL16J returns control to the caller because of an error, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When CSRL16J returns control to the caller because of an error, the access registers
(ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRL16J
,(L16J
,return_code)

Parameters
The parameters are explained as follows:

L16J
Specifies the parameter list (CSRYL16J) containing the entry characteristics and
environment for the target routine.

return_code
Specifies a fullword to contain the return code from the CSRL16J service.

CSRL16J macro

296 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

ABEND codes
None.

Return and reason codes
If the CSRL16J service returns control to the caller, CSRL16J was unable to transfer
control to the target routine. In this case, return_code contains a nonzero value.

When the CSRL16J service successfully transfers control to the target routine,
return_code contains a value of zero.

Return codes from the CSRL16J service are as follows:

Table 10. Return Codes for the CSRL16J Service

Hexadecimal
Return Code

Meaning and Action

00 Meaning: Successful completion. The calling program does not receive
this return code because it indicates that the target routine received
control.

Action: None.

04 Meaning: The value specified in the L16JVERSION field of the L16J
data area was not zero. The L16JVERSION field must contain a value of
zero.

Action: When you build CSRYL16J, first clear the entire data area and
then fill in the required fields. This process ensures that all fields that
must contain zeros are correct.

08 Meaning: The calling program was not in 31-bit addressing mode,
which is required.

Action: Make sure the calling program is in 31-bit addressing mode.

0C Meaning: One of the fields in CSRYL16J that is reserved for IBM use
contained a nonzero value. Any field reserved for IBM use must
contain a value of zero.

Action: When you build CSRYL16J, first clear the entire data area and
then fill in the required fields. This process ensures that all fields that
must contain zeros are correct.

10 Meaning: The value specified in field L16JLENGTH in CSRYL16J was
less than the actual length of the data area.

Action: Make sure that the value in the L16JLENGTH field reflects the
actual length of the data area.

18 Meaning: The PSW provided in field L16JPSW of CSRYL16J specified
an ASC mode that is not valid.

Action: In the L16JPSW field, specify either primary or AR ASC mode.

CSRL16J macro

Chapter 55. CSRL16J — Transfer control with all registers intact 297

CSRL16J macro

298 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 56. CSRPACT — Activate previously connected
storage

Description
Call the CSRPACT cell pool service to activate the extent cell storage for allocation.
You must specify which extent you want to activate.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in a single address or data space. They must be in

the primary address space or in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRPACT so the CALL macro can generate the correct code for AR
mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 299

Input register information
Before calling the CSRPACT service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRPACT

,(cntl_alet
,anchor_addr
,extent_num
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET identifying the location of the
anchor and extents. Initialize the ALET to 0 if your program is in AR mode

CSRPACT macro

300 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

and the anchor and extents are in the primary address space. If your program
is running in primary ASC mode, the value is ignored, but you must code the
parameter anyway.

,anchor_addr
Identifies the variable containing the address of the 64-byte anchor.

,extent_num
Identifies the variable containing the number of the extent to be connected. The
extent number must be within the range 0 to 65536.

,return_code)
When CSRPACT completes, the variable specified by return_code contains the
return code.

ABEND codes
None.

Return and reason codes
When the CSRPACT service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

30 48 Meaning: Program error. The extent number is not
valid.

Action: Make sure the extent number is within the
range 0 to 65536.

34 52 Meaning: Program error. The extent is in the
incorrect state.

Action: Check to see if your program passed the
wrong extent number. Make sure the extent is not
already in an active state (that is, it has not been
activated through CSRPACT or CSRPEXP).

64 100 Meaning: Program or system error. An extent chain
was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain
is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPACT macro

Chapter 56. CSRPACT — Activate previously connected storage 301

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

6C 108 Meaning: Program or system error. An extent could
not be found.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that the anchor
address being passed is for the right cell pool.

CSRPACT macro

302 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 57. CSRPBLD — Build a cell pool and initialize an
anchor

Description
Call the CSRPBLD cell pool service to format a 64-byte area for the cell pool
anchor. You must first have acquired the storage for the anchor. You can call this
service only once for a given cell pool.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: All parameters must reside in a single address or data

space, and must be addressable by the caller. They must be
in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call the CSRPBLD service so the CALL macro can generate the correct
code for AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

© Copyright IBM Corp. 1988, 2015 303

Restrictions
None.

Input register information
Before calling the CSRPBLD service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs)contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRPBLD

,(cntl_alet
,anchor_addr
,user_name
,cell_size
,return_code)

CSRPBLD macro

304 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the cell pool anchor.

,user_name
Specifies the 8-byte variable containing the name you want the service to
assign to the pool. There are no restrictions on the name.

,cell_size
Specifies the variable containing the cell size in this pool. You can use any
positive binary or hexadecimal number as the cell size.

,return_code)
When CSRPBLD completes, return_code contains the return code.

ABEND codes
None.

Return and reason codes
When the CSRPBLD service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

18 24 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address. If the anchor is in a data
space, make sure the anchor address is at least 63
bytes less than the address of the last byte of the
data space.

44 68 Meaning: Program error. The cell size is not valid: it
cannot be negative or 0.

Action: Specify a positive value for the cell size.

CSRPBLD macro

Chapter 57. CSRPBLD — Build a cell pool and initialize an anchor 305

CSRPBLD macro

306 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 58. CSRPCON — Connect cell storage to an extent

Description
Call the CSRPCON cell pool service to connect cell storage to the extent that you
specify or to reuse a disconnected extent. The CSRPEXP service returned the extent
number. The extent must be in the disconnected state, which means that you have
not called CSRPACT to activate this particular extent.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in a single address or data space. They must be in a

primary address space or in an address/data space that is
addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRPCON so the CALL macro can generate the correct code for AR
mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 307

Input register information
Before calling the CSRPCON service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the content of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRPCON

,(cntl_alet
,anchor_addr
,area_addr
,area_size
,extent_num
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

CSRPCON macro

308 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, you must code this parameter, even
though any value that you code is ignored.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,area_addr
Specifies the variable containing the starting address of the cell storage area.
The starting address of this area must be consistent with any cell boundary
requirements that you might have.

,area_size
Specifies the variable containing the length of the cell storage area. CSRPCON
determines the number of cells that will fit in the area.

,extent_num
Specifies the variable containing the number of the extent to be connected. The
extent number must be within the range 0 to 65536.

,return_code)
When CSRPCON completes, the variable specified by return_code contains the
return code.

ABEND codes
None.

Return and reason codes
When the CSRPCON service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

30 48 Meaning: Program error. The extent number is not
valid.

Action: Specify the extent number within the range
0 to 65536.

34 52 Meaning: Program error. You issued the services in
the wrong order, or did not issue a necessary
service.

Action: Check to see if your program passed the
wrong extent number. Make sure that the extent is in
a disconnected state (that is, it has not been
activated through CSRPACT or CSRPEXP).

CSRPCON macro

Chapter 58. CSRPCON — Connect cell storage to an extent 309

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

48 72 Meaning: Program error. The cell area length is not
valid.

Action: Check the specified cell area length. It
should not be less than the cell size.

4C 76 Meaning: Program error. The service could not
access the cell area address.

Action: If the cell area is in a data space, make sure
the cell area is completely within the data space.

50 80 Meaning: Program error. The cell area is too large.

Action: Specify a larger extent size or a smaller cell
area size.

64 100 Meaning: Program or system error. An extent chain
was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain
is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

6C 108 Meaning: Program or system error. An extent could
not be found.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that the anchor
address being passed is for the right cell pool.

CSRPCON macro

310 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 59. CSRPDAC — Deactivate an extent

Description
Call the CSRPDAC cell pool service to deactivate a specific extent. Use this service
to prepare the cell pool for contraction. You must specify which extent you want to
deactivate.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in a single address or data space. They must be in

the primary address space or in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRPDAC so the CALL macro can generate the correct code for AR
mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

Restrictions
After calling CSRPDAC, you can still free (or return) cells, but you cannot get (or
allocate) any others for this extent.

© Copyright IBM Corp. 1988, 2015 311

Input register information
Before calling the CSRPDAC service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRPDAC

,(cntl_alet
,anchor_addr
,extent_num
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR

CSRPDAC macro

312 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,extent_num
Specifies the variable containing the number of the extent that CSRPDAC will
deactivate. The extent number must be within the range 0 to 65536.

,return_code)
When CSRPDAC completes, the variable specified for return_code contains the
return code.

ABEND codes
None.

Return and reason codes
When the CSRPDAC service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an
inactive extent.

Action: None required. However, you might take
some action depending on your application.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

30 48 Meaning: Program error. The extent number is not
valid.

Action: Make sure the extent number is within the
range 0 to 65536.

34 52 Meaning: Program error. You issued the services in
the wrong order, or did not issue a necessary
service.

Action: Check to see if your program passed the
wrong extent number. Make sure that the extent is in
active state before calling the service.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPDAC macro

Chapter 59. CSRPDAC — Deactivate an extent 313

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

6C 108 Meaning: Program error or system error. An extent
could not be found.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that the anchor
address being passed is for the right cell pool.

CSRPDAC macro

314 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 60. CSRPDIS — Disconnect the cell storage for an
extent

Description
Call the CSRPDIS cell pool service to disconnect cell storage for a specific extent.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRPDIS so the CALL macro can generate the correct code for AR
mode.

Before you call CSRPDIS, you must have returned all cells associated with the
extent and have called CSRPDAC to deactivate the extent.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

© Copyright IBM Corp. 1988, 2015 315

Restrictions
None.

Input register information
Before calling the CSRPDIS service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

4 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on the register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRPDIS

,(cntl_alet
,anchor_addr
,extent_num
,area_addr
,area_size
,return_code)

CSRPDIS macro

316 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,extent_num
Specifies the variable containing the number of the extent that CSRPDIS will
disconnect. The extent number must be within the range 0 to 65536.

,area_addr
When CSRPDIS completes, the variable specified by area_addr contains the
address of the disconnected storage area.

,area_size
When CSRPDIS completes, the variable specified by area_size contains the size
of the disconnected area.

,return_code)
When CSRPDIS completes, the variable specified by return_code contains the
return code.

ABEND codes
None.

Return and reason codes
When the CSRPDIS service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

30 48 Meaning: Program error. The extent number is not
valid.

Action: Make sure the extent number is within the
range 0 to 65536.

CSRPDIS macro

Chapter 60. CSRPDIS — Disconnect the cell storage for an extent 317

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

34 52 Meaning: Program error. You issued the services in
the wrong order, or did not issue a necessary
service.

Action: Call CSRPDAC to deactivate the extent
before calling CSRPDIS to disconnect the cell storage
for the extent.

38 56 Meaning: Program error. The service cannot
disconnect the extent because some cells are still
allocated.

Action: Return all the cells associated with the
extent before calling CSRPDIS to disconnect the cell
storage for the extent.

64 100 Meaning: Program or system error. An extent chain
was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain
is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

6C 108 Meaning: Program or system error. An extent could
not be found.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that the anchor
address being passed is for the right cell pool.

CSRPDIS macro

318 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 61. CSRPEXP — Expand a cell pool

Description
Call the CSRPEXP cell pool service to:
v Add an extent to the cell pool
v Assign a number to the extent
v Optionally, establish a connection between the extent and cell storage
v Optionally, make the cell storage available for allocation.

Note: If you are reusing an extent, use CSRPCON and CSRPACT instead of
CSRPEXP.

If you specify zero for the cell storage size, CSRPEXP will add an extent to the cell
pool, but will keep it in a disconnected state. When you specify the extent size,
allow 128 bytes plus one byte per eight cells of cell storage. CSRPEXP allocates
cells contiguously, starting at the address you specify. If you specify zero for the
area length, CSRPEXP ignores the area address.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRPEXP so the CALL macro can generate the correct code for AR
mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:

© Copyright IBM Corp. 1988, 2015 319

*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

Input register information
Before calling the CSRPEXP service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

CSRPEXP macro

320 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

CALL CSRPEXP

,(cntl_alet
,anchor_addr
,extent_addr
,extent_size
,area_addr
,area_size
,extent_num
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,extent_addr
Specifies the variable containing the address of the extent.

,extent_size
Specifies the variable containing the size of the extent.

,area_addr
Specifies the variable containing starting address of the cell storage area. The
starting address of this area must be consistent with any boundary
requirements that you might have.

,area_size
Specifies the variable containing the length (binary or hexadecimal) of the
storage area for the cells.

,extent_num
When CSRPEXP completes, the variable specifying extent_num contains the
number of the extent to be connected. You will use this number on subsequent
CALLs.

,return_code)
When CSRPEXP completes, the variable specifying return_code contains the
return code.

ABEND codes
None.

Return and reason codes
When the CSRPEXP service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

CSRPEXP macro

Chapter 61. CSRPEXP — Expand a cell pool 321

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

0C 12 Meaning: Program error. There are too many extents
in the cell pool.

Action: Check to see if your program contains a
logic error that caused the limit of 65536 extents per
cell pool to be exceeded. If your program works as
expected, consider using a larger cell pool.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

28 40 Meaning: Program error. The service could not use
the extent address.

Action: If the extent is in a data space, make sure
the extent address is at least 128 bytes less than the
address of the last byte of the data space. Also make
sure the extent area does not overlap the anchor
area.

2C 44 Meaning: Program error. The extent length is not
valid.

Action: Correct the extent length. It cannot be less
than 129 bytes.

48 72 Meaning: Program error. The cell area length is not
valid.

Action: Correct the cell area length. The cell area
size cannot be less than the cell size.

4C 76 Meaning: Program error. The service could not use
the cell area address.

Action: If the cell area is in a data space, make sure
the cell area is completely within the data space.

50 80 Meaning: Program error. The cell area is too large.

Action: Specify a larger extent size or a smaller cell
area size.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPEXP macro

322 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

70 112 Meaning: Program error or system error. An anchor
has been overlaid.

Action: Check to see if your program inadvertently
overlaid the anchor area.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPEXP macro

Chapter 61. CSRPEXP — Expand a cell pool 323

CSRPEXP macro

324 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 62. CSRPFRE — Return a cell to a cell pool

Description
Call the CSRPFRE cell pool service to return an allocated cell to a cell pool. You
must specify the address of the cell that you want to return. (The CSRPFR1 and
CSRPFR2 services provide the same function with slightly enhanced performance.
CSRPFR2 is preferred over CSRPFR1 when using multiple extents.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you CALL CSRPFRE so the CALL macro can generate the correct code for
AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 325

Input register information
Before calling the CSRPFRE service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRPFRE

,(cntl_alet
,anchor_addr
,cell_addr
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR

CSRPFRE macro

326 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,cell_addr
Specifies the variable containing the address of the cell that CSRPFRE is to
free.

,return_code)
When CSRPFRE completes, the variable specified for return_code contains the
return code.

ABEND codes
None.

Return and reason codes
When the CSRPFRE service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an
inactive extent.

Action: None required. However, you might take
some action depending on your application.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

54 84 Meaning: Program error. The cell address is not
valid.

Action: Investigate the following possible causes:

v The input cell address does not point to the
beginning of a cell.

v The cell is not in the cell pool specified by the
anchor address.

58 88 Meaning: Program error. Either you have already
returned the cell or you never allocated it.

Action: Check to see if your program contains a
logic error that caused this situation to occur.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPFRE macro

Chapter 62. CSRPFRE — Return a cell to a cell pool 327

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell.

CSRPFRE macro

328 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 63. CSRPFR1 — Return a cell to a cell pool

Description
Call the CSRPFR1 cell pool service to return an allocated cell to a cell pool. You
must specify the address of the cell that you want to return. (The CSRPFRE service
provides the same function but slightly slower performance. CSRPFR2 is preferred
over CSRPFR1 when using multiple extents.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you CALL CSRPFR1 so the CALL macro can generate the correct code for
AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 329

Input register information
Before calling the CSRPFR1 service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRPFR1

,(cntl_alet
,anchor_addr
,cell_addr
,return_code
,save_area)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the

CSRPFR1 macro

330 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,cell_addr
Specifies the variable containing the address of the cell that CSRPFR1 is to free.

,return_code
When CSRPFR1 completes, the variable specified for return_code contains the
return code.

,save_area)
Specifies a 144-byte save area. The system does not change the first 8 bytes or
the last 8 bytes of this area.

ABEND codes
None.

Return and reason codes
When the CSRPFR1 service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an
inactive extent.

Action: None required. However, you might take
some action depending on your application.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

54 84 Meaning: Program error. The cell address is not
valid.

Action: Investigate the following possible causes:

v The input cell address does not point to the
beginning of a cell.

v The cell is not in the cell pool specified by the
anchor address.

58 88 Meaning: Program error. Either you have already
returned the cell or you never allocated it.

Action: Check to see if your program contains a
logic error that caused this situation to occur.

CSRPFR1 macro

Chapter 63. CSRPFR1 — Return a cell to a cell pool 331

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell.

CSRPFR1 macro

332 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 64. CSRPFR2 — Return a cell to a cell pool

Description
Call the CSRPFR2 cell pool service to return an allocated cell to a cell pool. You
must specify the address of the cell that you want to return. (The CSRPFRE service
provides the same function but slightly slower performance. CSRPFR2 is preferred
over CSRPFR1 when using multiple extents, as CSRPFR2 has an additonal input
parameter for the address of the extent containing the cell to be freed.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you CALL CSRPFR2 so the CALL macro can generate the correct code for
AR mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

© Copyright IBM Corp. 1988, 2015 333

Restrictions
None.

Input register information
Before calling the CSRPFR2 service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRPFR2

,(cntl_alet
,anchor_addr
,cell_addr
,return_code
,save_area)
,extent_addr

CSRPFR2 macro

334 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,cell_addr
Specifies the variable containing the address of the cell that CSRPFR2 is to free.

,return_code
When CSRPFR2 completes, the variable specified for return_code contains the
return code.

,save_area)
Specifies a 144-byte save area. The system does not change the first 8 bytes or
the last 8 bytes of this area.

,extent_addr
Specifies the variable containing the address of the extent that contains the cell
that CSRPFR2 is to free. This address was returned with the cell address in the
extent_addr parameter on a previous CSRPGT2 call.

ABEND codes
None.

Return and reason codes
When the CSRPFR2 service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an
inactive extent.

Action: None required. However, you might take
some action depending on your application.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

CSRPFR2 macro

Chapter 64. CSRPFR2 — Return a cell to a cell pool 335

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

54 84 Meaning: Program error. The cell address is not
valid.

Action: Investigate the following possible causes:

v The input cell address does not point to the
beginning of a cell.

v The cell is not in the cell pool specified by the
anchor address.

58 88 Meaning: Program error. Either you have already
returned the cell or you never allocated it.

Action: Check to see if your program contains a
logic error that caused this situation to occur.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell.

CSRPFR2 macro

336 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 65. CSRPGET — Allocate a cell from a cell pool

Description
Call the CSRPGET cell pool service to allocate a cell from the cell pool. CSRPGET
allocates cells from the lowest- to highest-numbered active extents, and within each
extent, from the lowest to the highest cell address. CSRPGET passes back to the
calling program the address of the cell it allocated but does not clear the cell
storage to binary zeros. (The CSRPGT1 and CSRPGT2 services provide the same
function with slightly enhanced performance. CSRPGT2 is preferred over CSRPGT1
when using multiple extents.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRPGET so the CALL macro can generate the correct code for AR
mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

© Copyright IBM Corp. 1988, 2015 337

Restrictions
None.

Input register information
Before calling the CSRPGET service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRPGET

,(cntl_alet
,anchor_addr
,cell_addr
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

CSRPGET macro

338 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,cell_addr
When CSRPGET completes, the variable specified by cell_addr contains the
address of the cell that CSRPGET allocated.

,return_code)
When CSRPGET completes, the variable specified by return_code contains the
return code.

ABEND codes
None.

Return and reason codes
When the CSRPGET service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

08 08 Meaning: Program error. There were no available
cells in the pool. More than one program could be
using the cell pool.

Action: Retry the request one or more times. If the
problem persists, consider freeing existing cells or
adding new cells to the cell pool, or both.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

64 100 Meaning: Program or system error. An extent chain
was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain
is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPGET macro

Chapter 65. CSRPGET — Allocate a cell from a cell pool 339

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

74 116 Meaning: Program or system error. An extent has
been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPGET macro

340 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 66. CSRPGT1 — Allocate a cell from a cell pool

Description
Call the CSRPGT1 cell pool service to allocate a cell from the cell pool. CSRPGT1
allocates cells from the lowest- to highest-numbered active extents, and within each
extent, from the lowest to the highest cell address. CSRPGT1 passes back to the
calling program the address of the cell it allocated but does not clear the cell
storage to binary zeros. (The CSRPGET service provides the same function but
slightly slower performance. CSRPGT2 is preferred over CSRPGT1 when using
multiple extents.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRPGT1 so the CALL macro can generate the correct code for AR
mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

© Copyright IBM Corp. 1988, 2015 341

Restrictions
None.

Input register information
Before calling the CSRPGT1 service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRPGT1

,(cntl_alet
,anchor_addr
,cell_addr
,return_code
,save_area)

CSRPGT1 macro

342 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,cell_addr
When CSRPGT1 completes, the variable specified by cell_addr contains the
address of the cell that CSRPGT1 allocated.

,return_code
When CSRPGT1 completes, the variable specified by return_code contains the
return code.

,save_area)
Specifies a 144-byte save area. The system does not change the first 8 bytes or
the last 8 bytes of this area.

ABEND codes
None.

Return and reason codes
When the CSRPGT1 service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

08 08 Meaning: Program error. There were no available
cells in the pool. More than one program could be
using the cell pool.

Action: Retry the request one or more times. If the
problem persists, consider freeing existing cells or
adding new cells to the cell pool, or both.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

64 100 Meaning: Program or system error. An extent chain
was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPGT1 macro

Chapter 66. CSRPGT1 — Allocate a cell from a cell pool 343

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

68 104 Meaning: Program or system error. An extent chain
is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program or system error. An extent has
been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPGT1 macro

344 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 67. CSRPGT2 — Allocate a cell from a cell pool

Description
Call the CSRPGT2 cell pool service to allocate a cell from the cell pool. CSRPGT2
allocates cells from the lowest- to highest-numbered active extents, and within each
extent, from the lowest to the highest cell address. CSRPGT2 passes back to the
calling program the address of the cell it allocated but does not clear the cell
storage to binary zeros. (The CSRPGET service provides the same function but
slightly slower performance. CSRPGT2 is preferred over CSRPGT1 when using
multiple extents, as CSRPGT2 has an additonal output parameter to return the
address of the extent containing the obtained cell.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRPGT2 so the CALL macro can generate the correct code for AR
mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:

© Copyright IBM Corp. 1988, 2015 345

*
CSR_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

Input register information
Before calling the CSRPGT2 service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRPGT2

,(cntl_alet
,anchor_addr
,cell_addr
,return_code
,save_area)
,extent_addr

CSRPGT2 macro

346 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,cell_addr
When CSRPGT2 completes, the variable specified by cell_addr contains the
address of the cell that CSRPGT2 allocated.

,return_code
When CSRPGT2 completes, the variable specified by return_code contains the
return code.

,save_area)
Specifies a 144-byte save area. The system does not change the first 8 bytes or
the last 8 bytes of this area.

,extent_addr
Specifies the variable that is to contain the address of the extent containing the
obtained cell. This address should be provided in the extent_addr parameter
when using CSRPFR2 to free the cell.

ABEND codes
None.

Return and reason codes
When the CSRPGT2 service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

08 08 Meaning: Program error. There were no available
cells in the pool. More than one program could be
using the cell pool.

Action: Retry the request one or more times. If the
problem persists, consider freeing existing cells or
adding new cells to the cell pool, or both.

CSRPGT2 macro

Chapter 67. CSRPGT2 — Allocate a cell from a cell pool 347

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

64 100 Meaning: Program or system error. An extent chain
was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program or system error. An extent chain
is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program or system error. An extent has
been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPGT2 macro

348 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 68. CSRPQCL — Query a cell

Description
Call the CSRPQCL cell pool service to receive status information about a specified
cell in a cell pool. CSRPQCL reports whether the cell is free or allocated, and
returns the number of the extent associated with the cell. CSRPQCL does not
prevent other programs from changing the pool during or after a query. CSRPQCL
returns the status as it was at the time you issued the CALL.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRPQCL so the CALL macro can generate the correct code for AR
mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

© Copyright IBM Corp. 1988, 2015 349

Restrictions
None.

Input register information
Before calling the CSRPQCL service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRPQCL

,(cntl_alet
,anchor_addr
,cell_addr
,cell_avail
,extent_num
,return_code)

CSRPQCL macro

350 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,cell_addr
Specifies the variable containing the address of the cell the service will query.

,cell_avail
When CSRPQCL completes, the variable specified for cell_avail contains one of
the following values. These indicate the status of the specified cell at the time
you issued the CALL.

0 Cell available

1 Cell allocated

,extent_num
When CSRPQCL completes, the variable specified for extent_num contains the
number of the extent that contains the specified cell.

,return_code)
When CSRPQCL completes, the variable specified for return_code contains the
return code.

ABEND codes
None.

Return and reason codes
When the CSRPQCL service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if the program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

CSRPQCL macro

Chapter 68. CSRPQCL — Query a cell 351

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

54 84 Meaning: Program error. The cell address is not
valid.

Action: Investigate the following possible causes:

v The input cell address does not point to the
beginning of a cell

v The cell is not in the cell pool specified by the
anchor address.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPQCL macro

352 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 69. CSRPQEX — Query a cell pool extent

Description
Call the CSRPQEX cell pool service to receive status information about a specified
extent.

CSRPQEX does not prevent other programs from changing the pool during or after
a query. CSRPQEX returns the status as it was at the time you issued the CALL.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. Control

parameters must be in the primary address space or in an
address/data space that is addressable through a public
entry on the caller's dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRPQEX so the CALL macro can generate the correct code for AR
mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

© Copyright IBM Corp. 1988, 2015 353

Restrictions
None.

Input register information
Before calling the CSRPQEX service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

CSRPQEX macro

354 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

CALL CSRPQEX

,(cntl_alet
,anchor_addr
,extent_num
,status
,extent_addr
,extent_len
,area_addr
,area_size
,total_cells
,avail_cells
,return_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,extent_num
Specifies the variable containing the number of the extent the service will
query.

,status
When CSRPQEX completes, the variable specified for status contains one of the
following decimal numbers. These indicate the status of the extent at the time
of the CALL.

1 Disconnected and inactive

2 Connect in progress

3 Connected and inactive

4 Connected and active

5 Disconnect in progress

,extent_addr
When CSRPQEX completes, the variable specified for extent_addr contains the
address of the extent.

,extent_len
When CSRPQEX completes, the variable specified for extent_len contains the
length of the extent, in bytes.

,area_addr
When CSRPQEX completes, the variable specified for area_addr contains the
address of cell storage.

CSRPQEX macro

Chapter 69. CSRPQEX — Query a cell pool extent 355

,area_size
When CSRPQEX completes, the variable specified for area_size contains the size
of cell storage for the extent.

,total_cells
When CSRPQEX completes, the variable specified for total_cells contains the
total number of cells associated with the extents.

,avail_cells
When CSRPQEX completes, the variable specified for avail_cells contains the
total number of cells associated with the specified extent that are available for
allocation.

,return_code)
When CSRPQEX completes, the variable specified for return_code contains the
return code.

ABEND codes
None.

Return and reason codes
When the CSRPQEX service returns control to your program , GPR 15 (and
return_code) contains one of the following return codes.

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

30 48 Meaning: Program error. The extent number is not
valid.

Action: Make sure the extent number is within the
range of 0 through 65536.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

6C 108 Meaning: Program error or system error. An extent
could not be found.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that the anchor
address for the right cell pool is being passed.

CSRPQEX macro

356 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPQEX macro

Chapter 69. CSRPQEX — Query a cell pool extent 357

CSRPQEX macro

358 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 70. CSRPQPL — Query the cell pool

Description
Call the CSRPQPL cell pool service to receive status information about the cell
pool.

CSRPQPL does not prevent other programs from changing the pool during or after
a query. CSRPQPL returns the status as it was at the time you issued the CALL.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must reside in a single address or data space. They must be

in the primary address space or in an address/data space
that is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If your program is in AR mode, issue the SYSSTATE macro with ASCENV=AR
before you call CSRPQPL so the CALL macro can generate the correct code for AR
mode.

Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

© Copyright IBM Corp. 1988, 2015 359

Restrictions
None.

Input register information
Before calling the CSRPQPL service, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRPQPL

,(cntl_alet
,anchor_addr
,user_name
,cell_size
,total_cells
,avail_cells
,number_extents
,return_code)

CSRPQPL macro

360 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(cntl_alet
Specifies the variable containing the ALET that identifies the location of the
anchor and extents. Initialize the ALET to 0 if your program is running in AR
mode and the anchor and extents are in the primary address space. If your
program is running in primary ASC mode, the value is ignored, but you must
code the parameter anyway.

,anchor_addr
Specifies the variable containing the address of the 64-byte anchor.

,user_name
When CSRPQPL completes, the variable specified by user_name contains the
name on the CSRPBLD service that created the cell pool.

,cell_size
When CSRPQPL completes, the variable specified by cell_size contains the size
of each cell at the time the cell pool was created.

,total_cells
When CSRPQPL completes, the variable specified by total_cells contains the
total number of cells associated with the extents.

,avail_cells
When CSRPQPL completes, the variable specified by avail_cells contains the
total number of cells in active extents that are available for allocation.

,number_extents
When CSRPQPL completes, the variable specified by number_extents contains
the total number of extents (active or inactive, and connected or disconnected)
in the cell pool.

,return_code)
When CSRPQPL completes, the variable specified by return_code contains the
return code.

ABEND codes
None.

Return and reason codes
When the CSRPQPL service returns control to your program, GPR 15 (and
return_code) contains one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong address or inadvertently overlaid the anchor
area.

CSRPQPL macro

Chapter 70. CSRPQPL — Query the cell pool 361

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

64 100 Meaning: Program error or system error. The extent
address is not valid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPQPL macro

362 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 71. CSRPRFR — Return a cell to a cell pool (register
interface)

Description
Call the CSRPRFR cell pool service to return an allocated cell to a cell pool using
the register interface, if your program cannot obtain storage for a parameter list.
(The CSRPRFR1 service provides the same function with slightly enhanced
performance.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

Programming requirements
Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

Input register information
Before calling the CSRPRFR service, the caller must ensure that the following
access registers (ARs) and general purpose registers (GPRs) contain the specified
information:

© Copyright IBM Corp. 1988, 2015 363

Register
Contents

AR 1 The ALET used to access all the cell storage areas. Specify 0 if your
program is running in AR mode and the anchor and extents are in the
primary address space. If your program is running in primary ASC mode,
CSRPRFR ignores the value.

GPR 0 The address of the cell you want freed.

GPR 1 The anchor address.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram.

Syntax Description

CALL CSRPRFR

Parameters
See “Input register information” on page 363.

ABEND codes
None.

CSRPRFR macro

364 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Return and reason codes
When the CSRPRFR service returns control to your program, GPR 15 contains one
of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an
inactive extent.

Action: None required. However, you might want to
take some action depending on your application.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

54 84 Meaning: Program error. The cell address is not
valid.

Action: Investigate the following possible causes:

v The input cell address does not point to the
beginning of a cell

v The cell is not in the cell pool specified by the
anchor address.

58 88 Meaning: Program error. Either you have already
returned the cell or you never allocated it.

Action: Check to see if your program contains a
logic error that caused this situation to occur.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPRFR macro

Chapter 71. CSRPRFR — Return a cell to a cell pool (register interface) 365

CSRPRFR macro

366 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 72. CSRPRFR1 — Return a cell to a cell pool (register
interface)

Description
Call the CSRPRFR1 cell pool service to return an allocated cell to a cell pool using
the register interface, if your program cannot obtain storage for a parameter list.
(The CSRPRFR service provides the same function but slightly slower
performance.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service.
ASC mode: Primary or AR mode. (If the anchor and the extents are

located in a data space, the caller must be in AR mode.)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

Programming requirements
Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

Input register information
Before calling the CSRPRFR1 service, the caller must ensure that the following
access registers (ARs) and general purpose registers (GPRs) contain the specified
information:

© Copyright IBM Corp. 1988, 2015 367

Register
Contents

AR 1 The ALET used to access all the cell storage areas. Specify 0 if your
program is running in AR mode and the anchor and extents are in the
primary address space. If your program is running in primary ASC mode,
CSRPRFR1 ignores the value.

GPR 0 The address of the cell you want freed.

GPR 1 The anchor address.

GPR 13
The address of a 144-byte save area that your program provides. The
system does not change the first 8 bytes or the last 8 bytes of this area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram.

Syntax Description

CALL CSRPRFR1

Parameters
See “Input register information” on page 367.

CSRPRFR1 macro

368 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

ABEND codes
None.

Return and reason codes
When the CSRPRFR1 service returns control to your program, GPR 15 contains one
of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

04 04 Meaning: The last cell has been returned to an
inactive extent.

Action: None required. However, you might want to
take some action depending on your application.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

54 84 Meaning: Program error. The cell address is not
valid.

Action: Investigate the following possible causes:

v The input cell address does not point to the
beginning of a cell

v The cell is not in the cell pool specified by the
anchor address.

58 88 Meaning: Program error. Either you have already
returned the cell or you never allocated it.

Action: Check to see if your program contains a
logic error that caused this situation to occur.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPRFR1 macro

Chapter 72. CSRPRFR1 — Return a cell to a cell pool (register interface) 369

CSRPRFR1 macro

370 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 73. CSRPRGT — Allocate a cell from a cell pool
(register interface)

Description
Call the CSRPRGT cell pool service to allocate a cell from the cell pool using the
register interface, if your program cannot obtain storage for a parameter list.
CSRPRGT allocates cells from the lowest- to highest-numbered active extents, and
within each extent, from the lowest to highest cell address. (The CSRPRGT1 service
provides the same function with slightly enhanced performance.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

Programming requirements
Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 371

Input register information
Before calling the CSRPRGT service, the caller must ensure that the following
access registers (ARs) and general purpose registers (GPRs) contain the specified
information:

Register
Contents

AR 1 The ALET used to access all the cell storage areas. Specify 0 if your
program is running in AR mode and the anchor and extents are in the
primary address space. If your program is running in primary ASC mode,
CSRPRGT ignores the value.

GPR 1 The anchor address

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Used as a work register by the system

1 Address of the allocated cell

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0 Used as a work register by the system

1-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram.

Syntax Description

CALL CSRPRGT

Parameters
See “Input register information.”

CSRPRGT macro

372 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

ABEND codes
None.

Return and reason codes
When the CSRPRGT service returns control to your program, GPR 15 contains one
of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

08 08 Meaning: Program error. There were no available
cells in the pool.

Action: Retry the request one or more times. If the
problem persists, consider freeing existing cells,
adding new cells to the cell pool, or both.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPRGT macro

Chapter 73. CSRPRGT — Allocate a cell from a cell pool (register interface) 373

CSRPRGT macro

374 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 74. CSRPRGT1 — Allocate a cell from a cell pool
(register interface)

Description
Call the CSRPRGT1 cell pool service to allocate a cell from the cell pool using the
register interface, if your program cannot obtain storage for a parameter list.
CSRPRGT1 allocates cells from the lowest- to highest-numbered active extents, and
within each extent, from the lowest to highest cell address. (The CSRPRGT service
provides the same function but slightly slower performance.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit addressing mode. Nucleus-resident code must

be in 31-bit addressing mode when calling the service. All
input addresses must be valid 31-bit addresses.

ASC mode: Primary or AR mode. (If the anchor and the extents are
located in a data space, the caller must be in AR mode.)

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

Programming requirements
Before you use cell pool services, you can optionally include the CSRCPASM
macro to generate cell pool services equate (EQU) statements. CSRCPASM provides
the following constants for use in your program:
* Length of the cell pool anchor data area:
*
CSR_ANCHOR_LENGTH EQU 64
*
*
* Base length of the cell pool extent data area:
*
CSR_EXTENT_BASE EQU 128
*
*
* Length of the user-supplied pool name:
*
CSR_POOL_NAME_LEN EQU 8
*
*

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 375

Input register information
Before calling the CSRPRGT1 service, the caller must ensure that the following
access registers (ARs) and general purpose registers (GPRs) contain the specified
information:

Register
Contents

AR 1 The ALET used to access all the cell storage areas. Specify 0 if your
program is running in AR mode and the anchor and extents are in the
primary address space. If your program is running in primary ASC mode,
CSRPRGT1 ignores the value.

GPR 1 The anchor address

GPR 13
The address of a 144-byte save area that your program provides. The
system does not change the first 8 bytes or the last 8 bytes of this area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Used as a work register by the system

1 Address of the allocated cell

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0 Used as a work register by the system

1-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown on the syntax diagram.

Syntax Description

CALL CSRPRGT1

CSRPRGT1 macro

376 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
See “Input register information” on page 376.

ABEND codes
None.

Return and reason codes
When the CSRPRGT1 service returns control to your program, GPR 15 contains
one of the following return codes:

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

00 00 Meaning: The operation was successful.

Action: None.

08 08 Meaning: Program error. There were no available
cells in the pool.

Action: Retry the request one or more times. If the
problem persists, consider freeing existing cells,
adding new cells to the cell pool, or both.

1C 28 Meaning: Program error. The anchor address is not
valid.

Action: Check to see if your program passed the
wrong anchor address or inadvertently overlaid the
anchor area.

64 100 Meaning: Program error or system error. An extent
chain was broken.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

68 104 Meaning: Program error or system error. An extent
chain is circular.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

74 116 Meaning: Program error or system error. An extent
has been overlaid.

Action: Check to see if your program inadvertently
overlaid an extent area. Make sure that no extent
belongs to more than one cell pool.

CSRPRGT1 macro

Chapter 74. CSRPRGT1 — Allocate a cell from a cell pool (register interface) 377

CSRPRGT1 macro

378 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 75. CSRREFR — Refresh an object

Description
To refresh changed data that is in a window, a scroll area, or a temporary object,
call the CSRREFR window service. CSRREFR refreshes changed data within
specified blocks as follows:
v If the object is permanent, CSRREFR replaces specified changed blocks in

windows or the scroll area with corresponding blocks from the object on DASD.
v For a temporary object, CSRREFR refreshes specified changed blocks in windows

and the object by setting the blocks to binary zeros.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit, but all addresses must be 31-bit addresses
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
The caller must follow all the restrictions imposed by the DIV macro.

Input register information
Before calling the CSRREFR service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 The address of a standard 18-word save area

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Contains the reason code.

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

© Copyright IBM Corp. 1988, 2015 379

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the CALL as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRREFR

,(object_id
,offset
,span
,return_code
,reason_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC
returned when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0 specifies
the first block of 4096 bytes or bytes 0 to 4095 of the object; a value of 1
specifies the second block of 4096 bytes, or bytes 4096 to 8191 of the object,
and so forth.

Define offset as integer data of length 4.

offset and span, together, determine what part of the object window services
refreshes. To refresh the entire object, specify 0 for offset and 0 for span.

,span
Specifies how many 4096-byte blocks CSRREFR is to refresh.

CSRREFR macro

380 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Define span as integer data of length 4.

,return_code
When CSRREFR completes, return_code contains the return code. Define
return_code as integer data of length 4.

,reason_code)
When CSRREFR completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

ABEND codes
CSRREFR might abnormally terminate with abend code X'019D'. See z/OS MVS
System Codes for an explanation and programmer responses.

Return and reason codes
When the CSRREFR service returns control to your program, GPR 15 (and
return_code) contains a return code and GPR 0 (and reason_code) contains a reason
code. The following table identifies return code and reason code combinations and
explains their meanings.

The data-in-virtual reason code, which is returned with CSRREFR return code X'C',
is two bytes long and right justified. It is explained in the description of the DIV
macro (Chapter 87, “DIV — Data-in-virtual,” on page 483).

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00000000 00000000 Meaning: The operation was successful.

Action: None.

00000008 00000152 Meaning: Program error. The system could not
refresh all the temporary objects within the specified
span.

Action: Investigate the following possible causes:

v The window to be refreshed contains an I/O
DEFINEd block

v The data space in which the window is located is
deleted.

0000000C xxxxnnnn Meaning: The value nnnn is a data-in-virtual reason
code. The value xxxx is not part of the intended
programming interface.

Action: See the DIV macro description for an
explanation of nnnn.

0000002C 00000004 Meaning: Program error. Window services have not
been defined to your system, or the link to the
service failed.

Action: If window services are available on your
system, rerun the program one or more times. If the
problem persists, record the return and reason code,
and contact the appropriate IBM support personnel.

CSRREFR macro

Chapter 75. CSRREFR — Refresh an object 381

CSRREFR macro

382 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 76. CSRSAVE — Save changes made to a permanent
object

Description
To update specified blocks of a permanent object with changes, call the CSRSAVE
window service. The changes can be in blocks that are mapped to the scroll area,
in blocks that are mapped to windows, or in a combination of these places.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit, but all addresses must be 31-bit addresses
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
You cannot use CSRSAVE to save changes made to a temporary object. If you call
CSRSAVE for a temporary object, CSRSAVE ignores the request and returns control
to your program with a return code of 8. To save changes made to a temporary
object, call CSRSCOT.

The caller must follow all the restrictions imposed by the DIV macro.

Input register information
Before calling the CSRSAVE service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 The address of a standard 18-word save area

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

© Copyright IBM Corp. 1988, 2015 383

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the CALL as shown in the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRSAVE

,(object_id
,offset
,span
,new_hi_offset
,return_code
,reason_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC
returned when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0 specifies
the first block of 4096 bytes or bytes 0 to 4095 of the object; a value of 1
specifies the second block of 4096 bytes, or bytes 4096 to 8191 of the object,
and so forth.

Define offset as integer data of length 4.

offset and span, together, determine what part of the object window services
saves. To save the entire object, specify 0 for offset and 0 for span.

CSRSAVE macro

384 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,span
Specifies how many 4096-byte blocks CSRSAVE is to save.

Define span as integer data of length 4.

,new_hi_offset
When CSRSAVE completes, new_hi_offset contains the new size of the object
expressed in units of 4096 bytes.

Define new_hi_offset as integer data of length 4.

,return_code
When CSRSAVE completes, return_code contains the return code. Define
return_code as integer data of length 4.

,reason_code)
When CSRSAVE completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

ABEND codes
CSRSAVE might abnormally terminate with abend code X'019'. See z/OS MVS
System Codes for an explanation and programmer responses.

Return and reason codes
When the CSRSAVE service returns control to your program, GPR 15 (and
return_code) contains a return code. GPR 0 (and reason_code) contains a reason code.
The following table identifies return code and reason code combinations, and
explains their meanings.

A return code of X'4' with a reason code of X'0807' or a return code of X'C' with
any reason code means that data-in-virtual encountered a problem or an
unexpected condition. Data-in-virtual reason codes, which are two bytes long and
right justified, are explained in the description of the DIV macro (Chapter 87, “DIV
— Data-in-virtual,” on page 483).

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00000000 00000000 Meaning: The operation was successful.

Action: None.

00000004 xxxx0807 Meaning: Environmental error. Media damage might
be present in allocated DASD space. The damage is
beyond the currently saved portion of the object. The
SAVE operation completed successfully. The value
X'0807' is a data-in-virtual reason code. The value
xxxx is not part of the intended programming
interface.

Action: See the DIV macro description for an
explanation of X'0807'.

00000008 00000143 Meaning: Program error. You cannot use the SAVE
service for a temporary object.

Action: Call CSRSCOT to save changes made to a
temporary object.

CSRSAVE macro

Chapter 76. CSRSAVE — Save changes made to a permanent object 385

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

0000000C xxxxnnnn Meaning: The value nnnn is a data-in-virtual reason
code. The value xxxx is not part of the intended
programming interface.

Action: See the DIV macro description for an
explanation of nnnn.

0000002C 00000004 Meaning: Program error. Window services have not
been defined to your system, or the link to the
service failed.

Action: If window services are available on your
system, rerun the program one or more times. If the
problem persists, contact the appropriate IBM
support personnel.

CSRSAVE macro

386 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 77. CSRSCOT — Save object changes in a scroll area

Description
Call the CSRSCOT window service to:
v Update specified blocks of a permanent object's scroll area with changes that

appear in a window you have defined for the object. CSRSCOT requires that the
permanent object have a scroll area. CSRSCOT changes only the content of the
scroll area and not the content of the permanent data object.

v Update specified blocks of a temporary data object with the changes that appear
in a window you have defined for the data object.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit, but all addresses must be 31-bit addresses
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
The caller must follow all the restrictions imposed by the DIV macro.

Input register information
Before calling the CSRSCOT service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 The address of a standard 18-word save area

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

© Copyright IBM Corp. 1988, 2015 387

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the CALL as shown in the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRSCOT

,(object_id
,offset
,span
,return_code
,reason_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC
returned when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0 specifies
the first block of 4096 bytes or bytes 0 to 4095 of the object; a value of 1
specifies the second block of 4096 bytes, or bytes 4096 to 8191 of the object,
and so forth.

Define offset as integer data of length 4.

offset and span, together, determine what part of the object CSRSCOT updates.
To update the entire object, specify 0 for offset and 0 for span.

,span
Specifies how many 4096-byte blocks CSRSCOT is to update.

CSRSCOT macro

388 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Define span as integer data of length 4.

,return_code
When CSRSCOT completes, return_code contains the return code. Define
return_code as integer data of length 4.

,reason_code)
When CSRSCOT completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

ABEND codes
CSRSCOT might abnormally terminate with abend code X'019'. See z/OS MVS
System Codes for an explanation and programmer responses.

Return and reason codes
When CSRSCOT returns control to your program, GPR 15 (and return_code)
contains a return code. GPR 0 (and reason_code) contains a reason code. The
following table identifies return code and reason code combinations and tells what
each means.

A return code of X'4' with a reason code of X'0807' or a return code of X'C' with
any reason code means that data-in-virtual encountered a problem or an
unexpected condition. Data-in-virtual reason codes, which are two bytes long and
right justified, are explained in the description of the DIV macro (Chapter 87, “DIV
— Data-in-virtual,” on page 483).

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00000000 00000000 Meaning: The operation was successful.

Action: None.

00000004 xxxx0807 Meaning: Environmental error. Media damage might
be present in allocated DASD space. The damage is
beyond the currently saved portion of the object. The
SAVE operation completed successfully. The value
X'0807' is a data-in-virtual reason code. The value
xxxx is not part of the intended programming
interface.

Action: See the DIV macro description for an
explanation of X'0807'.

0000000C xxxxnnnn Meaning: The value nnnn is a data-in-virtual reason
code. The value xxxx is not part of the intended
programming interface.

Action: See the DIV macro description for an
explanation of nnnn.

0000002C 00000004 Meaning: Program error or system error. Window
services have not been defined to your system, or
the link to the service failed.

Action: If window services are available on your
system, rerun the program one or more times. If the
problem persists, contact the appropriate IBM
support personnel.

CSRSCOT macro

Chapter 77. CSRSCOT — Save object changes in a scroll area 389

CSRSCOT macro

390 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 78. CSRSI — System information service

Description
Use the CSRSI service to retrieve system information. You can request information
about the machine itself, the logical partition (LPAR) in which the machine is
running, or the virtual machine hypervisor (VM) under which the system is
running. The returned information is mapped by DSECTs in macro CSRSIIDF (for
assembler language callers) or structures in header file CSRSIC (for C language
callers).

The information available depends upon the availability of the Store System
Information (STSI) instruction. When the STSI instruction is not available (which
would be indicated by receiving the return code 4 (equate symbol
CSRSI_STSINOTAVAILABLE), only the SI00PCCACPID, SI00PCCACPUA, and
SI00PCCACAFM fields within the returned infoarea are valid. When the STSI
instruction is available, the validity of the returned infoarea depends upon the
system:
v If the system is running neither under LPAR nor VM, then only the

CSRSI_Request_V1CPC_Machine data are valid.
v If the system is running under a logical partition (LPAR), then both the

CSRSI_Request_V1CPC_Machine data and CSRSI_Request_V2CPC_LPAR data
are valid.

v If the system is running under a virtual machine hypervisor (VM), then all of
the data (CSRSI_Request_V1CPC_Machine, CSRSI_Request_V2CPC_LPAR, and
CSRSI_Request_V3CPC_VM) are valid.

You can request any or all of the information regardless of your system, and
validity bits will indicate which returned areas are valid.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit when using the CALL CSRSI form (or csrsi in

C), 31-bit when using an alternate form
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold a LOCAL lock, the CMS lock, or the

CPU lock, but is not required to hold any locks.

Programming requirements
The caller should include the CSRSIIDF macro to map the returned information
and to provide equates for the service.

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 391

Input register information
The caller is not required to set up any registers.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax

Syntax Description

CALL CSRSI

(Request
,Infoarealen
,Infoarea
,Returncode)

In C: the syntax is similar. You can use either of the following techniques to invoke
the service:
1. CSRSI (Request,...Returncode);

v When you use this technique, you must link edit your program with a
linkage-assist routine (also called a stub) in SYS1.CSSLIB.

2. CSRSI_byaddr (Request,...Returncode);

v Both of these techniques require AMODE=31. If you use the second technique,
before you issue the CALL, you must verify that the CSRSI service is available
(in the CVT, both CVTOSEXT and CVTCSRSI bits are set on).

In Assembler: Link edit your program with a linkage-assist routine (also called a
stub) in SYS1.CSSLIB unless you use either of the following techniques as an
alternative to CALL CSRSI:
1. LOAD EP=CSRSI

Save the entry point address
...
Put the saved entry point address into R15
Issue CALL (15),...

2. L 15,X’10’ Get CVT
L 15,X’220’(,15)
L 15,X’30’(,15) Get address of CSRSI
CALL (15),(...)

v Both of these techniques require AMODE=31. If you use the second technique,
before you issue the CALL, you must verify that the CSRSI service is available
(in the CVT, both CVTOSEXT and CVTCSRSI bits are set on).

CSRSI callable service

392 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
The parameters are explained as follows:

(Request
Supplied parameter:
v Type: Integer
v Length: Full word

Request identifies the type of system information to be returned. The field
must contain a value that represents one or more of the possible request types.
You add the values to create the full word. Do not specify a request type more
than once. The possible request types, and their meanings, are:

CSRSI_Request_V1CPC_Machine
The system is to return information about the machine.

CSRSI_Request_V2CPC_LPAR
The system is to return information about the logical partition (LPAR).

CSRSI_Request_V3CPC_VM
The system is to return information about the virtual machine (VM).

,Infoarealen
Supplied parameter:
v Type: Integer
v Range: X'1040', X'2040', X'3040', X'4040'
v Length: Full word

Infoarealen specifies the length of the infoarea parameter.

,Infoarea
Returned parameter:
v Type: Character
v Length: X'1040', X'2040', X'3040', X'4040' bytes

Infoarea is to contain the retrieved system information. (Infoarealen specifies
the length of the provided area.) The infoarea must be of the proper length to
hold the requested information. This length depends on the value of the
Request parameter.
v When the Request parameter is CSRSI_Request_V1CPC_Machine, the

returned infoarea is mapped by SIV1 and the infoarealen parameter must be
X'2040'.

v When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V2CPC_LPAR, the returned infoarea is mapped by SIV1V2
and the infoarealen parameter must be X'3040'.

v When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V2CPC_LPAR plus CSRSI_Request_V3CPC_VM, the
returned infoarea is mapped by SIV1V2V3 and the infoarealen parameter
must be X'4040'.

v When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V3CPC_VM, the returned infoarea is mapped by SIV1V3
and the infoarealen parameter must be X'3040'.

v When the Request parameter is CSRSI_Request_V2CPC_LPAR, the returned
infoarea is mapped by SIV2 and the infoarealen parameter must be X'1040'.

v When the Request parameter is CSRSI_Request_V2CPC_LPAR plus
CSRSI_Request_V3CPC_VM, the returned infoarea is mapped by SIV2V3
and the infoarealen parameter must be X'2040'.

CSRSI callable service

Chapter 78. CSRSI — System information service 393

v When the Request parameter is CSRSI_Request_V3CPC_VM, the returned
infoarea is mapped by SIV3 and the infoarealen parameter must be X'1040'.

,Returncode)
Returned parameter:
v Type: Integer
v Length: Full word

Returncode contains the return code from the CSRSI service.

Return codes
When the CSRSI service returns control to the caller, Returncode contains the
return code. To obtain the equates for the return codes:
v If you are coding in assembler, include mapping macro CSRSIIDF, described in

z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/
systems/z/os/zos/bkserv/.

v If you are coding in C, use include file CSRSIC.

The following table describes the return codes, shown in decimal.

Return Code
(decimal) Equate Symbol Meaning and Action

00 Equate Symbol: CSRSI_SUCCESS

Meaning: The CSRSI service completed successfully. All information
requested was returned.

Action: Check the si00validityflags field to determine the validity of
each returned area.

04 Equate Symbol: CSRSI_STSINOTAVAILABLE

Meaning: The CSRSI service completed successfully, but since the Store
System Information (STSI) instruction was not available, only the
SI00PCCACPID, SI00PCCACPUA, and SI00PCCACAFM fields are
valid.

Action: None required.

08 Equate Symbol: CSRSI_SERVICENOTAVAILABLE

Meaning: Environmental error: The CSRSI service is not available on
this system.

Action: Avoid calling the CSRSI service unless running on a system on
which it is available.

12 Equate Symbol: CSRSI_BADREQUEST

Meaning: User error: The request parameter did not specify a word
formed from any combination of CSRSI_Request_V1CPC_Machine,
CSRSI_Request_V2CPC_LPAR, and CSRSI_Request_V3CPC_VM.

Action: Correct the parameter.

16 Equate Symbol: CSRSI_BADINFOAREALEN

Meaning: User error: The Infoarealen parameter did not match the
length of the area required to return the requested information.

Action: Correct the parameter.

CSRSI callable service

394 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Return Code
(decimal) Equate Symbol Meaning and Action

20 Equate Symbol: CSRSI_BADLOCK

Meaning: User error: The service was called while holding a system
lock other than CPU. LOCAL/CML, or CMS.

Action: Avoid calling in this environment.

CSRSIC C/370 header file
For a C programmer, include file CSRSIC provides equates for return codes and
data constants, such as Register service request types. To use CSRSIC, copy the file
from SYS1.SAMPLIB to the appropriate local C library. The contents of the file are:
#ifndef __CSRSI

#define __CSRSI

/***
* Type Definitions for User Specified Parameters *
***/

/* Type for Request operand of CSRSI */
typedef int CSRSIRequest;

/* Type for InfoAreaLen operand of CSRSI */
typedef int CSRSIInfoAreaLen;

/* Type for Return Code */
typedef int CSRSIReturnCode;

/***
* Function Prototypes for Service Routines *
***/

#ifdef __cplusplus
extern "OS" ??&>

#else
#pragma linkage(CSRSI_calltype,OS)

#endif
typedef void CSRSI_calltype(

CSRSIRequest __REQUEST, /* Input - request type */
CSRSIInfoAreaLen __INFOAREALEN, /* Input - length of infoarea */
void *__INFOAREA, /* Input - info area */
CSRSIReturnCode *__RC); /* Output - return code */

extern CSRSI_calltype csrsi;

#ifdef __cplusplus
??>

#endif

#ifndef __cplusplus
#define csrsi_byaddr(Request, Flen, Fptr, Rcptr) \
??&> \
struct CSRSI_PSA* CSRSI_pagezero = 0; \

CSRSI_pagezero->CSRSI_cvt->CSRSI_cvtcsrt->CSRSI_addr \
(Request,Flen,Fptr,Rcptr); \

??>;
#endif

CSRSI callable service

Chapter 78. CSRSI — System information service 395

??>;
struct CSRSI_CSRT ??&>

unsigned char CSRSI_csrt_filler1 ??(48??);
CSRSI_calltype* CSRSI_addr;

struct CSRSI_CVT ??&>
unsigned char CSRSI_cvt_filler1 ??(116??);
struct ??&>

int CSRSI_cvtdcb_rsvd1 : 4; /* Not needed */
int CSRSI_cvtosext : 1; /* If on, indicates that the

CVTOSLVL fields are valid */
int CSRSI_cvtdcb_rsvd2 : 3; /* Not needed */

??> CSRSI_cvtdcb;
unsigned char CSRSI_cvt_filler2 ??(427??);
struct CSRSI_CSRT * CSRSI_cvtcsrt;
unsigned char CSRSI_cvt_filler3 ??(716??);
unsigned char CSRSI_cvtoslv0;
unsigned char CSRSI_cvtoslv1;
unsigned char CSRSI_cvtoslv2;
unsigned char CSRSI_cvtoslv3;
struct ??&>

int CSRSI_cvtcsrsi : 1; /* If on, indicates that the
CSRSI service is available */

int CSRSI_cvtoslv1_rsvd1 : 7; /* Not needed */
??> CSRSI_cvtoslv4;

unsigned char CSRSI_cvt_filler4 ??(11??); /* */
??>;

struct CSRSI_PSA ??&>
char CSRSI_psa_filler??(16??);
struct CSRSI_CVT* CSRSI_cvt;

??>;

/* End of CSRSI Header */

#endif

/***/
/* si11v1 represents the output for a V1 CPC when general CPC */
/* information is requested */
/***/

typedef struct ??&>
unsigned char _filler1??(32??); /* Reserved */
unsigned char si11v1cpcmanufacturer??(16??); /*

The 16-character (0-9
or uppercase A-Z) EBCDIC name
of the manufacturer of the V1
CPC. The name is
left-justified with trailing
blank characters if necessary.

*/
unsigned char si11v1cpctype??(4??); /* The 4-character (0-9) EBCDIC

type identifier of the V1 CPC.
*/

unsigned char _filler2??(12??); /* Reserved */

unsigned char si11v1cpcmodel??(16??); /* The 16-character (0-9 or
uppercase A-Z) EBCDIC model
identifier of the V1 CPC. The
identifier is left-justified
with trailing blank characters
if necessary. */

unsigned char si11v1cpcsequencecode??(16??); /*
The 16-character (0-9
or uppercase A-Z) EBCDIC
sequence code of the V1 CPC.

CSRSI callable service

396 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

The sequence code is
right-justified with leading
EBCDIC zeroes if necessary.

*/
unsigned char si11v1cpcplantofmanufacture??(4??); /* The 4-character

(0-9 or uppercase A-Z) EBCDIC
plant code that identifies the
plant of manufacture for the
V1 CPC. The plant code is
left-justified with trailing
blank characters if necessary.

*/
unsigned char _filler3??(3996??); /* Reserved */

??> si11v1;

/***/
/* si22v1 represents the output for a V1 CPC when information */
/* is requested about the set of CPUs */
/***/

typedef struct ??&>
unsigned char _filler1??(32??); /* Reserved */
unsigned char si22v1cpucapability??(4??); /*

An unsigned binary integer
that specifies the capability
of one of the CPUs contained
in the V1 CPC. It is used as
an indication of the
capability of the CPU relative
to the capability of other CPU
models. */

unsigned int si22v1totalcpucount : 16; /* A 2-byte
unsigned integer
that specifies the
total number of CPUs contained
in the V1 CPC. This number
includes all CPUs in the
configured state, the standby
state, and the reserved state.

*/

unsigned int si22v1configuredcpucount : 16; /* A 2-byte
unsigned binary
integer that specifies
the total number of CPUs that
are in the configured state. A
CPU is in the configured state
when it is described in the
V1-CPC configuration
definition and is available to
be used to execute programs.

*/
unsigned int si22v1standbycpucount : 16; /* A 2-byte

unsigned integer
that specifies the
total number of CPUs that are
in the standby state. A CPU is
in the standby state when it
is described in the V1-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

*/
unsigned int si22v1reservedcpucount : 16; /* A 2-byte

unsigned binary

CSRSI callable service

Chapter 78. CSRSI — System information service 397

integer that specifies
the total number of CPUs that
are in the reserved state. A
CPU is in the reserved state
when it is described in the
V1-CPC configuration
definition, is not available
to be used to execute
programs, and cannot be made
available to be used to
execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually
initiated actions */

struct ??&>
unsigned char _si22v1mpcpucapaf??(2??); /* Each individual

adjustment factor. */
unsigned char _filler2??(4050??);

??> si22v1mpcpucapafs;
??> si22v1;

#define si22v1mpcpucapaf si22v1mpcpucapafs._si22v1mpcpucapaf

/***/
/* si22v2 represents the output for a V2 CPC when information */
/* is requested about the set of CPUs */
/***/

typedef struct ??&>
unsigned char _filler1??(32??); /* Reserved */
unsigned int si22v2cpcnumber : 16; /* A 2-byte

unsigned integer
which is the number of
this V2 CPC. This number
distinguishes this V2 CPC from
all other V2 CPCs provided by
the same logical-partition
hypervisor */

unsigned char _filler2; /* Reserved */
struct ??&>

unsigned int _si22v2lcpudedicated : 1; /*
When one, indicates that
one or more of the logical
CPUs for this V2 CPC are
provided using V1 CPUs that
are dedicated to this V2 CPC
and are not used to provide
logical CPUs for any other V2
CPCs. The number of logical
CPUs that are provided using
dedicated V1 CPUs is specified
by the dedicated-LCPU-count
value. When zero, bit 0
indicates that none of the
logical CPUs for this V2 CPC
are provided using V1 CPUs
that are dedicated to this V2
CPC. */

unsigned int _si22v2lcpushared : 1; /*
When one, indicates that
or more of the logical CPUs
for this V2 CPC are provided
using V1 CPUs that can be used
to provide logical CPUs for
other V2 CPCs. The number of
logical CPUs that are provided

CSRSI callable service

398 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

using shared V1 CPUs is
specified by the
shared-LCPU-count value. When
zero, it indicates that none
of the logical CPUs for this
V2 CPC are provided using
shared V1 CPUs. */

unsigned int _si22v2lcpuulimit : 1; /*
Utilization limit. When one,
indicates that the amount of
use of the V1-CPC CPUs that
are used to provide the
logical CPUs for this V2 CPC
is limited. When zero, it
indicates that the amount of
use of the V1-CPC CPUs that
are used to provide the
logical CPUs for this V2 CPC
is unlimited. */

unsigned int _filler3 : 5; /* Reserved
*/

??> si22v2lcpuc; /* Characteristics */
unsigned int si22v2totallcpucount : 16; /*

A 2-byte unsigned
integer that specifies the
total number of logical CPUs
that are provided for this V2
CPC. This number includes all
of the logical CPUs that are
in the configured state, the
standby state, and the
reserved state. */

unsigned int si22v2configuredlcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs for this V2 CPC that are
in the configured state. A
logical CPU is in the
configured state when it is
described in the V2-CPC
configuration definition and
is available to be used to
execute programs. */

unsigned int si22v2standbylcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs that are in the standby
state. A logical CPU is in the
standby state when it is
described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

*/

unsigned int si22v2reservedlcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs that are in the reserved
state. A logical CPU is in the
reserved state when it is

CSRSI callable service

Chapter 78. CSRSI — System information service 399

described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, and cannot
be made available to be used
to execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually
initiated actions */

unsigned char si22v2cpcname??(16??); /*
The 8-character EBCDIC name of
this V2 CPC. The name is
left-justified with trailing
blank characters if necessary.

*/
unsigned char si22v2cpccapabilityaf??(4??); /* Capability Adjustment

Factor (CAF). An unsigned
binary integer of 1000 or
less. The adjustment factor
specifies the amount of the
V1-CPC capability that is
allowed to be used for this V2
CPC by the logical-partition
hypervisor. The fraction of
V1-CPC capability is
determined by dividing the CAF
value by 1000. */

unsigned char _filler4??(16??); /* Reserved */
unsigned int si22v2dedicatedlcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the number of configured-state
logical CPUs for this V2 CPC
that are provided using
dedicated V1 CPUs. (See the
description of bit
si22v2lcpudedicated.) */

unsigned int si22v2sharedlcpucount : 16; /*
A 2-byte unsigned
integer that specifies the
number of configured-state
logical CPUs for this V2 CPC
that are provided using shared
V1 CPUs. (See the description
of bit si22v2lcpushared.)

*/
unsigned char _filler5??(4012??); /* Reserved */
??> si22v2;

#define si22v2lcpudedicated si22v2lcpuc._si22v2lcpudedicated
#define si22v2lcpushared si22v2lcpuc._si22v2lcpushared
#define si22v2lcpuulimit si22v2lcpuc._si22v2lcpuulimit

/***/
/* si22v3db is a description block that comprises part of the */
/* si22v3 data. */
/***/

typedef struct ??&>
unsigned char _filler1??(4??); /* Reserved */
unsigned int si22v3dbtotallcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the total number of logical

CSRSI callable service

400 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

CPUs that are provided for
this V3 CPC. This number
includes all of the logical
CPUs that are in the
configured state, the standby
state, and the reserved state.

*/
unsigned int si22v3dbconfiguredlcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
configured state. A logical
CPU is in the configured state
when it is described in the
V3-CPC configuration
definition and is available to
be used to execute programs.

*/

unsigned int si22v3dbstandbylcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
standby state. A logical CPU
is in the standby state when
it is described in the V3-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

*/
unsigned int si22v3dbreservedlcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
reserved state. A logical CPU
is in the reserved state when
it is described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, and cannot
be made available to be used
to execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually
initiated actions */

unsigned char si22v3dbcpcname??(8??); /* The 8-character EBCDIC name
of this V3 CPC. The name is
left-justified with trailing
blank characters if necessary.

*/
unsigned char si22v3dbcpccaf??(4??); /* A 4-byte unsigned binary

integer that specifies an
adjustment factor. The
adjustment factor specifies
the amount of the V1-CPC or
V2-CPC capability that is
allowed to be used for this V3

CSRSI callable service

Chapter 78. CSRSI — System information service 401

CPC by the
virtual-machine-hypervisor
program. */

unsigned char si22v3dbvmhpidentifier??(16??); /* The 16-character
EBCDIC identifier of the
virtual-machine-hypervisor
program that provides this V3
CPC. (This identifier may
include qualifiers such as
version number and release
level). The identifier is
left-justified with trailing
blank characters if necessary.

*/
unsigned char _filler2??(24??); /* Reserved */

??> si22v3db;
/***/
/* si22v3 represents the output for a V3 CPC when information */
/* is requested about the set of CPUs */
/***/

typedef struct ??&>
unsigned char _filler1??(28??); /* Reserved */
unsigned char _filler2??(3??); /* Reserved */
struct ??&>

unsigned int _filler3 : 4; /* Reserved
*/

unsigned int _si22v3dbcount : 4; /*
Description Block Count. A
4-bit unsigned binary integer
that indicates the number (up
to 8) of V3-CPC description
blocks that are stored in the
si22v3dbe array. */

??> si22v3dbcountfield; /* */
si22v3db si22v3dbe??(8??); /* Array of entries. Only the number

indicated by si22v3dbcount
are valid */

unsigned char _filler5??(3552??); /* Reserved */
??> si22v3;

#define si22v3dbcount si22v3dbcountfield._si22v3dbcount

/***/
/* SI00 represents the "starter" information. This structure is */
/* part of the information returned on every CSRSI request. */
/***/

typedef struct ??&>
char si00cpcvariety; /* SI00CPCVariety_V1CPC_MACHINE,

SI00CPCVariety_V2CPC_LPAR, or
SI00CPCVariety_V3CPC_VM */

struct ??&>
int _si00validsi11v1 : 1; /* si11v1 was requested and

the information returned is valid
*/

int _si00validsi22v1 : 1; /* si22v2 was requested and
the information returned is valid

*/
int _si00validsi22v2 : 1; /* si22v2 was requested and

the information returned is valid
*/

int _si00validsi22v3 : 1; /* si22v3 was requested and
the information returned is valid

*/
int _filler1 : 4; /* Reserved */

CSRSI callable service

402 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

??> si00validityflags;
unsigned char _filler2??(2??); /* Reserved */
unsigned char si00pccacpid??(12??); /* PCCACPID value for this CPU

*/
unsigned char si00pccacpua??(2??); /* PCCACPUA value for this CPU

*/
unsigned char si00pccacafm??(2??); /* PCCACAFM value for this CPU

*/
unsigned char _filler3??(4??); /* Reserved */
unsigned char si00lastupdatetimestamp??(8??); /* Time of last STSI

update, via STCK */
unsigned char _filler4??(32??); /* Reserved */
??> si00;

#define si00validsi11v1 si00validityflags._si00validsi11v1
#define si00validsi22v1 si00validityflags._si00validsi22v1
#define si00validsi22v2 si00validityflags._si00validsi22v2
#define si00validsi22v3 si00validityflags._si00validsi22v3

/***/
/* siv1 represents the information returned when V1CPC_MACHINE */
/* data is requested */
/***/

typedef struct ??&>
si00 siv1si00; /* Area mapped by

struct si00 */
si11v1 siv1si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1si22v1; /* Area

mapped by struct si22v1 */
??> siv1;

/***/
/* siv1v2 represents the information returned when V1CPC_MACHINE */
/* data and V2CPC_LPAR data is requested */
/***/

typedef struct ??&>
si00 siv1v2si00; /* Area mapped by

by struct si00 */
si11v1 siv1v2si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1v2si22v1; /* Area

mapped by struct si22v2 */
si22v2 siv1v2si22v2; /* Area

mapped by struct si22v2 */
??> siv1v2;

/***/
/* siv1v2v3 represents the information returned when V1CPC_MACHINE */
/* data, V2CPC_LPAR data and V3CPC_VM data is requested */
/***/

typedef struct ??&>
si00 siv1v2v3si00; /* Area

mapped by struct si00 */
si11v1 siv1v2v3si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1v2v3si22v1; /* Area

mapped by struct si22v1 */
si22v2 siv1v2v3si22v2; /* Area

mapped by struct si22v2 */
si22v3 siv1v2v3si22v3; /* Area

mapped by struct si22v3 */
??> siv1v2v3;

CSRSI callable service

Chapter 78. CSRSI — System information service 403

/***/
/* siv1v3 represents the information returned when V1CPC_MACHINE */
/* data and V3CPC_VM data is requested */
/***/

typedef struct ??&>
si00 siv1v3si00; /* Area mapped

by struct si00 */
si11v1 siv1v3si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1v3si22v1; /* Area

mapped by struct si22v1 */
si22v3 siv1v3si22v3; /* Area

mapped by struct si22v3 */
??> siv1v3;

/***/
/* siv2 represents the information returned when V2CPC_LPAR */
/* data is requested */
/***/

typedef struct ??&>
si00 siv2si00; /* Area mapped by

struct si00 */
si22v2 siv2si22v2; /* Area

mapped by struct si22v2 */
??> siv2;

/***/
/* siv2v3 represents the information returned when V2CPC_LPAR */
/* and V3CPC_VM data is requested */
/***/

typedef struct ??&>
si00 siv2v3si00; /* Area mapped

by struct si00 */
si22v2 siv2v3si22v2; /* Area

mapped by struct si22v2 */
si22v3 siv2v3si22v3; /* Area

mapped by struct si22v3 */
??> siv2v3;

/***/
/* siv3 represents the information returned when V3CPC_VM */
/* data is requested */
/***/

typedef struct ??&>
si00 siv3si00; /* Area mapped by

struct si00 */
si22v3 siv3si22v3; /* Area

mapped by struct si22v3 */
??> siv3;

/***/
/* Fixed Service Parameter and Return Code Defines */
/***/

/* SI00 Constants */

#define SI00CPCVARIETY_V1CPC_MACHINE 1
#define SI00CPCVARIETY_V2CPC_LPAR 2
#define SI00CPCVARIETY_V3CPC_VM 3

/* CSRSI Constants */

CSRSI callable service

404 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

#define CSRSI_REQUEST_V1CPC_MACHINE 1
#define CSRSI_REQUEST_V2CPC_LPAR 2
#define CSRSI_REQUEST_V3CPC_VM 4

/* CSRSI Return codes */

#define CSRSI_SUCCESS 0
#define CSRSI_STSINOTAVAILABLE 4
#define CSRSI_SERVICENOTAVAILABLE 8
#define CSRSI_BADREQUEST 12
#define CSRSI_BADINFOAREALEN 16
#define CSRSI_BADLOCK 20

CSRSI callable service

Chapter 78. CSRSI — System information service 405

CSRSI callable service

406 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 79. CSRUNIC — Unicode instruction services

Description
CSRUNIC allows you to request processing of a group of instructions related to
Unicode data. Unicode data uses the binary codes of the Unicode Worldwide
Character Standard; these codes support the characters of most of the world's
written languages. For details about the Unicode instructions, see z/Architecture
Principles of Operations, SA22-7832. The CSRUNIC macro invokes the requested
instructions by name, if the Unicode hardware is present. If the hardware is not
present, the macro simulates the requested instructions.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller is not required to hold any locks on entry. The

caller may hold the local, CMS, or CPU lock.
Control parameters: None.

Programming requirements
The caller must include the CSRYUNIC macro to get a mapping for the parameter
block for the requested function. The CSRYUNIC macro also includes symbolic
equates for the return codes from the service.

Restrictions
None.

Input register information
Before issuing the CSRUNIC macro, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of standard 72-byte save area. When not in AR-ASC mode, the
area must be in the primary address space. When in AR-ASC mode, it
must be in the space addressed via the ALET in access register 13.

Before issuing the CSRUNIC macro in AR-ASC mode, the caller must ensure that
the following access registers (ARs) contain the specified information:

Register
Contents

13 ALET of the 72-byte save area pointed to by GPR 13.

© Copyright IBM Corp. 1988, 2015 407

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSRUNIC macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSRUNIC.

CSRUNIC

� One or more blanks must follow CSRUNIC.

FUNCTION=MVCLU

FUNCTION=CLCLU

FUNCTION=TP

FUNCTION=PKA

FUNCTION=PKU

FUNCTION=UNPKA

FUNCTION=UNPKU

CSRUNIC macro

408 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

FUNCTION=TRTT

FUNCTION=TRTO

FUNCTION=TROT

FUNCTION=TROO

FUNCTION=TRE

FUNCTION=CUUTF

FUNCTION=CUTFU

,PBLOCK=pblock pblock: RX-type address or address in register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSRUNIC
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

FUNCTION=MVCLU
FUNCTION=CLCLU
FUNCTION=TP
FUNCTION=PKA
FUNCTION=PKU
FUNCTION=UNPKA
FUNCTION=UNPKU
FUNCTION=TRTT
FUNCTION=TRTO
FUNCTION=TROT
FUNCTION=TROO
FUNCTION=TRE
FUNCTION=CUUTF
FUNCTION=CUTFU

A required parameter that designates the function to be performed.

FUNCTION=MVCLU
indicates to process an MVCLU operation.

FUNCTION=CLCLU
indicates to process a CLCLU operation.

FUNCTION=TP
indicates to process a TP operation.

FUNCTION=PKA
indicates to process a PKA operation.

FUNCTION=PKU
indicates to process a PKU operation.

CSRUNIC macro

Chapter 79. CSRUNIC — Unicode instruction services 409

FUNCTION=UNPKA
indicates to process an UNPKA operation.

FUNCTION=UNPKU
indicates to process an UNPKU operation.

FUNCTION=TRTT
indicates to process a TRTT operation.

FUNCTION=TRTO
indicates to process a TRTO operation.

FUNCTION=TROT
indicates to process a TROT operation.

FUNCTION=TROO
indicates to process a TROO operation.

FUNCTION=TRE
indicates to process a TRE operation.

FUNCTION=CUUTF
indicates to process a CUUTF operation.

FUNCTION=CUTFU
indicates to process a CUTFU operation.

,PBLOCK=pblock
A required input parameter, area that is mapped by DSECTs in macro
CSRYUNIC that correlate to the function requested. The area provides the
information needed by, and provided on return by, the CSRUNIC service. It
should begin on a fullword boundary.

The name of the DSECT is "UNIC_" followed by the requested function (for
example, UNIC_MVCLU for the MVCLU function).

To code: Specify the RX-type address, or address in register (2) - (12), of a
36-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

ABEND codes
0C4 The user may get this completion code if a user-provided data area is not

accessible.

0C6 The user may get this completion code if the instruction has been executed
in the hardware and the provided data does not meet the requirements for
that instruction.
v For MVCLU, either the source length or target length was not even.
v For CLCLU, either the source length or target length was not even.
v For PKA, the source length exceeded 31.
v For PKU, the source length exceeded 64 or was not even (that is, the

LengthMinusOne was not odd).
v For UNPKA, the target length exceeded 31.
v For UNPKU, the target length exceeded 64 or was not even (that is, the

LengthMinusOne was not odd).

CSRUNIC macro

410 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

v For TRTT, the length was not even.
v For TRTO, the length was not even.
v For CUTFU, a bad UTF-8 character was encountered.

The user may get this completion code if the work area was not on a
doubleword boundary.

Return codes
When the CSRUNIC macro returns control to your program, GPR 15 (and retcode,
when you code RETCODE) contains a return code.

Return code constants are defined in macro CSRYUNIC.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code.

Table 11. Return Codes for the CSRUNIC Macro

Return Code Equate Symbol Meaning and Action

0 UNIC_MVCLU_RC_OpLengthsEqual Meaning: The operand lengths were the same.

Action: None required.

4 UNIC_MVCLU_RC_TargetLengthShorter Meaning: The target operand was shorter than
the source operand.

Action: None required.

8 UNIC_MVCLU_RC_TargetLengthLonger Meaning: The target operand was longer than
the source operand.

Action: None required.

10 UNIC_MVCLU_RC_TargetLengthNotEven Meaning: The target operand was not an even
number of bytes.

Action: Only call CSRUNIC
FUNCTION=MVCLU when the target operand
is an even number of bytes (that is, a whole
number of unicode characters).

14 UNIC_MVCLU_RC_SourceLengthNotEven Meaning: The source operand was not an even
number of bytes.

Action: Only call CSRUNIC
FUNCTION=MVCLU when the source operand
is an even number of bytes (that is, a whole
number of unicode characters).

1C UNIC_MVCLU_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_CLCLU_RC_OperandsEqual Meaning: the two operands were equal.

Action: None required.

4 UNIC_CLCLU_RC_LeftOpLessThanRight Meaning: The left operand was less than the
right operand.

Action: None required.

CSRUNIC macro

Chapter 79. CSRUNIC — Unicode instruction services 411

Table 11. Return Codes for the CSRUNIC Macro (continued)

Return Code Equate Symbol Meaning and Action

8 UNIC_CLCLU_RC_RightOpLessThanLeft Meaning: The right operand was less than the
left operand.

Action: None required.

10 UNIC_CLCLU_RC_LeftOpLengthNotEven Meaning: The left operand was not an even
number of bytes.

Action: Only call CSRUNIC
FUNCTION=CLCLU when the left operand is
an even number of bytes (that is, a whole
number of unicode characters).

14 UNIC_CLCLU_RC_RightOpLengthNotEven Meaning: The right operand was not an even
number of bytes.

Action: Only call CSRUNIC
FUNCTION=CLCLU when the right operand is
an even number of bytes (that is, a whole
number of unicode characters).

1C UNIC_CLCLU_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_TP_RC_Valid Meaning: the operand is a valid packed
number.

Action: None required.

4 UNIC_TP_RC_SignNotValid Meaning: The sign of the operand was not
valid. All the digits were valid.

Action: None required.

8 UNIC_TP_RC_DigitNotValid Meaning: One or more digits of the operand
were not valid. The sign was valid.

Action: None required.

0C UNIC_TP_RC_SignDigitNotValid Meaning: The sign and one or more digits of
the operand were not valid.

Action: None required.

1C UNIC_TP_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_PKA_RC_OK Meaning: The pack operation completed
successfully.

Action: None required.

14 UNIC_PKA_RC_SourceLengthNotValid Meaning: The length of the source operand
exceeded 32 bytes (that is, the LengthMinusOne
exceeded 31).

Action: Avoid calling CSRUNIC
REQUEST=PKA for an operand longer than 32
bytes.

CSRUNIC macro

412 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 11. Return Codes for the CSRUNIC Macro (continued)

Return Code Equate Symbol Meaning and Action

1C UNIC_PKA_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_PKU_RC_OK Meaning: The pack operation completed
successfully.

Action: None required.

14 UNIC_PKU_RC_SourceLengthNotValid Meaning: The length of the source operand
exceeded 64 bytes (that is, the LengthMinusOne
exceeded 63).

Action: Avoid calling CSRUNIC
REQUEST=PKU for an operand longer than 64
bytes.

24 UNIC_PKU_RC_SourceLengthNotEven Meaning: The source operand was not an even
number of bytes.

Action: Only call CSRUNIC FUNCTION=PKU
when the source operand is an even number of
bytes (that is, a whole number of unicode
characters).

1C UNIC_PKU_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_UNPKA_RC_Positive Meaning: The operand represented a positive
number.

Action: None required.

4 UNIC_UNPKA_RC_Negative Meaning: The operand represented a negative
number.

Action: None required.

0C UNIC_UNPKA_RC_BadSign Meaning: The operand did not have a valid
sign.

Action: None required.

14 UNIC_UNPKA_RC_TargetLengthNotValid Meaning: The length of the target operand
exceeded 32 bytes (that is, the LengthMinusOne
exceeded 31).

Action: Avoid calling CSRUNIC
REQUEST=PKA for an operand longer than 32
bytes.

1C UNIC_UNPKA_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

CSRUNIC macro

Chapter 79. CSRUNIC — Unicode instruction services 413

Table 11. Return Codes for the CSRUNIC Macro (continued)

Return Code Equate Symbol Meaning and Action

0 UNIC_UNPKU_RC_Positive Meaning: The operand represented a positive
number.

Action: None required.

4 UNIC_UNPKU_RC_Negative Meaning: The operand represented a negative
number.

Action: None required.

0C UNIC_UNPKU_RC_BadSign Meaning: The operand did not have a valid
sign.

Action: None required.

14 UNIC_UNPKU_RC_TargetLengthNotValid Meaning: The length of the target operand
exceeded 64 bytes (that is, the LengthMinusOne
exceeded 63).

Action: Avoid calling CSRUNIC
REQUEST=PKU for an operand longer than 64
bytes.

24 UNIC_UNPKU_RC_TargetLengthNotEven Meaning: The target operand was not an even
number of bytes.

Action: Only call CSRUNIC
FUNCTION=UNPKU when the target operand
is an even number of bytes (that is, a whole
number of unicode characters).

1C UNIC_UNPKU_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_TRTT_RC_TestCharNotFound Meaning: The translation completed. The test
character was not found.

Action: None required.

4 UNIC_TRTT_RC_TestCharFound Meaning: The test character was found. The
operation ended at that point.

Action: None required.

10 UNIC_TRTT_RC_LengthNotEven Meaning: The operand was not an even number
of bytes.

Action: Only call CSRUNIC FUNCTION=TRTT
when the operand is an even number of bytes
(that is, a whole number of unicode characters).

1C UNIC_TRTT_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_TRTO_RC_TestCharNotFound Meaning: The translation completed. The test
character was not found.

Action: None required.

CSRUNIC macro

414 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 11. Return Codes for the CSRUNIC Macro (continued)

Return Code Equate Symbol Meaning and Action

4 UNIC_TRTO_RC_TestCharFound Meaning: The test character was found. The
operation ended at that point.

Action: None required.

10 UNIC_TRTO_RC_LengthNotEven Meaning: The operand was not an even number
of bytes.

Action: Only call CSRUNIC FUNCTION=TRTO
when the operand is an even number of bytes
(that is, a whole number of unicode characters).

1C UNIC_TRTO_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_TROT_RC_TestCharNotFound Meaning: The translation completed. The test
character was not found.

Action: None required.

4 UNIC_TROT_RC_TestCharFound Meaning: The test character was found. The
operation ended at that point.

Action: None required.

1C UNIC_TROT_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_TROO_RC_TestCharNotFound Meaning: The translation completed. The test
character was not found.

Action: None required.

4 UNIC_TROO_RC_TestCharFound Meaning: The test character was found. The
operation ended at that point.

Action: None required.

1C UNIC_TROO_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_TRE_RC_TestCharNotFound Meaning: The translation completed. The test
character was not found.

Action: None required.

4 UNIC_TRE_RC_TestCharFound Meaning: The test character was found. The
operation ended at that point.

Action: None required.

1C UNIC_TRE_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

CSRUNIC macro

Chapter 79. CSRUNIC — Unicode instruction services 415

Table 11. Return Codes for the CSRUNIC Macro (continued)

Return Code Equate Symbol Meaning and Action

0 UNIC_CUUTF_RC_SourceExhausted Meaning: All unicode characters in the source
were converted to their UTF-8 equivalents.

Action: None required.

4 UNIC_CUUTF_RC_TargetExhausted Meaning: The target operand did not have
enough room to hold the UTF-8 equivalents of
all of the source unicode characters.

Action: Provide a larger target area.

1C UNIC_CUUTF_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_CUTFU_RC_SourceExhausted Meaning: All UTF-8 characters in the source
were converted to their unicode equivalents.

Action: None required.

4 UNIC_CUTFU_RC_TargetExhausted Meaning: The target operand did not have
enough room to hold the unicode equivalents of
all of the source UTF-8 characters.

Action: Provide a larger target area.

8 UNIC_CUTFU_RC_BadUtf8Char Meaning: A character in the source operand was
not a valid UTF-8 character.

Action: Make sure that the source operand
contains only valid UTF-8 characters.

1C UNIC_CUTFU_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

Examples

Operation:
Execute a MVCLU operation.

The code is as follows.
LA 2,MYPBLOCK Get address of parm
USING UNIC_MVCLU,2
XC UNIC_MVCLU(UNIC_MVCLU_LEN),UNIC_MVCLU Clear block

* Also includes ALETs
MVC UNIC_MVCLU_TARGETADDR,TARGADDR Set target area
MVC UNIC_MVCLU_TARGETLEN,TARGLEN Set target length
MVC UNIC_MVCLU_SOURCEADDR,SOURCEADDR Set source area
MVC UNIC_MVCLU_SOURCELEN,SOURCELEN Set source length
MVC UNIC_MVCLU_PAD,PADCHAR Set pad char
LA 3,WORKAREA
ST 3,UNIC_MVCLU_WORKAREAADDR Set workarea address
CSRUNIC FUNCTION=MVCLU,PBLOCK=UNIC_MVCLU
DROP 2

.

.
DS 0F Align parameter on word boundary

CSRUNIC macro

416 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

MYPBLOCK DS (UNIC_MVCLU_LEN)CL1 PBLOCK parameter
TARGADDR DS A Output target area
TARGLEN DS F Length of target area
SOURCEADDR DS A Input source area
SOURCELEN DS F Length of source area
PADCHAR DC XL2’4040’ Pad with X’4040’

DS 0D Doubleword align workarea
WORKAREA DS CL512 Work area

CSRUNIC macro

Chapter 79. CSRUNIC — Unicode instruction services 417

CSRUNIC macro

418 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 80. CSRVIEW — View an object

Description
Call the CSRVIEW window service to:
v Map a window to one or more blocks of a data object. If you specified scrolling

when you called CSRIDAC to identify the object, CSRVIEW maps the window
to the blocks in the scroll area and maps the scroll area to the object.

v Specify that the reference pattern you are using is either random or sequential.
v End a view that you previously created through CSRVIEW or CSREVW, and

unmap the object.

Mapping a data object enables your program to access the data that is viewed
through the window the same way it accesses other data in your storage.

The CSREVW service also maps a data object. Use that service if your program
references the data in the window in a sequential pattern and can benefit from
having more than 16 blocks come into a window at one time, or if it can benefit
from having fewer than 16 at one time.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit, but all addresses must be 31-bit addresses
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

Programming requirements
None.

Restrictions
The caller must follow all the restrictions imposed by the DIV macro.

Input register information
Before calling the CSRVIEW service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 The address of a standard 18-word save area

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2015 419

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the CALL as shown in the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Syntax Description

CALL CSRVIEW

,(operation_type
,object_id
,offset
,span
,window_name
,usage
,disposition
,return_code
,reason_code)

Parameters
All input to callable services is in the form of RX-type addresses.

The parameters are explained as follows:

,(operation_type
Specifies the type of operation CSRVIEW is to perform. To begin viewing an
object, specify BEGIN. To end a view, whether mapped by CSRVIEW or
CSREVW, specify END.

CSRVIEW macro

420 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Define operation_type as character data of length 5. If you specify END, pad the
string on the right with 1 or 2 blanks.

,object_id
Specifies the object identifier. Supply the object identifier that CSRIDAC
returned when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset of the view into the object. Specify the offset in blocks of
4096 bytes.

Define offset as integer data of length 4.

,span
Specifies the window size in blocks of 4096 bytes.

Define span as integer data of length 4.

,window_name
Specifies the symbolic name you assigned to the window in your address
space.

,usage
Specifies the expected pattern of references to pages in the object. Specify one
of the following values:

SEQ The reference pattern is expected to be sequential. If you specify SEQ,
window services brings up to 16 blocks of data into the window at a
time, depending on the size of the window and availability of
resources.

RANDOM
The reference pattern is expected to be random. If you specify
RANDOM, window services brings data into the window one block at
a time.

Define usage as character data of length 6. If you specify SEQ, pad the string
on the right with 1 to 3 blanks.

,disposition
Defines how CSRVIEW is to handle data that is in the window when you
begin or end a view.
v When you specify CSRVIEW BEGIN and a disposition of:

REPLACE
The first time you reference a block to which the window is
mapped, CSRVIEW replaces the data in the window with the data
from the referenced block.

RETAIN
When you reference a block to which the window is mapped, the
data in the window remains unchanged. When you call CSRSAVE to
save the mapped blocks, CSRSAVE saves all of the mapped blocks
because CSRSAVE considers them changed.

v When you specify CSRVIEW END and a disposition of:

REPLACE
CSRVIEW discards the data that is in the window, making the
window contents unpredictable. CSRVIEW does not update mapped
blocks of the object or scroll area.

CSRVIEW macro

Chapter 80. CSRVIEW — View an object 421

RETAIN
If the object is permanent and has no scroll area, CSRVIEW retains
the data that is in the window. CSRVIEW does not update mapped
blocks of the object.

If the object is permanent and has a scroll area, or if the object is
temporary, CSRVIEW retains the data that's in the window and
updates the mapped blocks of the object or scroll area.

Define disposition as character data of length 7. If you specify RETAIN, pad the
string on the right with a blank.

,return_code
When CSRVIEW completes, return_code contains the return code. Define
return_code as integer data of length 4.

,reason_code)
When CSRVIEW completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

ABEND codes
The CSRVIEW service might abnormally terminate with abend code X'019'. See
z/OS MVS System Codes for an explanation and programmer responses.

Return and reason codes
When the CSRVIEW service returns control to your program, GPR 15 (and
return_code) contains a return code and GPR 0 (and reason_code) contains a reason
code. The following table identifies return code and reason code combinations and
tells what each means.

A return code of X'4' or X'C' means that data-in-virtual encountered a problem or
an unexpected condition. Data-in-virtual reason codes, which are two bytes long
and right justified, are explained in the description of the DIV macro (Chapter 87,
“DIV — Data-in-virtual,” on page 483).

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00000000 00000000 Meaning: The operation was successful.

Action: None.

00000004 00000125 Meaning: System error. The service could not retain
all the data that was in the scroll area.

Action: Retry the request. If the problem persists,
contact the appropriate IBM support personnel.

00000004 xxxxnnnn Meaning: The value nnnn is a data-in-virtual reason
code. The value xxxx is not part of the intended
programming interface.

Action: See the DIV macro description for an
explanation of nnnn.

0000000C xxxxnnnn Meaning: The value nnnn is a data-in-virtual reason
code. The value xxxx is not part of the intended
programming interface.

Action: See the DIV macro description for an
explanation of nnnn.

CSRVIEW macro

422 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

0000002C 00000004 Meaning: Program error. Window services have not
been defined to your system, or the link to the
service failed.

Action: If window services are available on your
system, rerun the program one or more times. If the
problem persists, contact the appropriate IBM
support personnel.

CSRVIEW macro

Chapter 80. CSRVIEW — View an object 423

CSRVIEW macro

424 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 81. CSVAPF — Query the list of APF-authorized
libraries

Description
The CSVAPF macro allows you to determine the format and contents of the
APF-authorized library list. You can issue CSVAPF to:
v Determine whether or not a library is in the APF list
v Determine the current format (dynamic or static) of the APF list
v Obtain a list of all library entries in the APF list.

You can issue CSVAPF to perform any of the listed functions on either a dynamic
or static APF list.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: For a QUERY or QUERYFORMAT request, 31-bit. For a LIST

request, 24- or 31-bit.
ASC mode: For a QUERY request, primary. For all other requests,

primary or access register (AR).
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
If you code the LIST option on the REQUEST parameter, you must include the
CSVAPFAA mapping macro (see z/OS MVS Data Areas in z/OS Internet Library at
http://www.ibm.com/systems/z/os/zos/bkserv/. For all other requests, you can
optionally include the CSVAPFAA mapping macro to define variables and values
for:
v Return and reason codes returned by CSVAPF
v The APF list format, which is returned by CSVAPF when you specify

REQUEST=QUERYFORMAT.

Restrictions
None.

Input register information
Before issuing the CSVAPF macro, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

© Copyright IBM Corp. 1988, 2015 425

http://www.ibm.com/systems/z/os/zos/bkserv/

Register
Contents

13 For a QUERY request, the address of a standard 72-byte save area

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 If REQUEST=QUERYFORMAT is not specified, and the value in register 15
is not 0, reason code; otherwise, used as a work register by the system

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 For a QUERYFORMAT request, used as a work register by the system; for
all other requests, return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as a work register by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the CSVAPF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVAPF.

CSVAPF

� One or more blanks must follow CSVAPF.

Valid parameters (Required parameters are underlined):

CSVAPF macro

426 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

REQUEST=QUERY DSNAME, VOLTYPE, VOLUME, RETCODE, RSNCODE

REQUEST=QUERYFORMAT FORMAT

REQUEST=LIST ANSAREA, ANSLEN, RETCODE, RSNCODE

,DSNAME=libname libname: RS-type address or address in register (2) - (12).

,VOLTYPE=SMS Default: VOLTYPE=SMS

,VOLTYPE=ANY, VOLUME is required with VOLTYPE=ANY.

VOLUME=volume volume: RS-type or address in register (2) - (12).

,FORMAT=format format: RS-type address or address in register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or address in register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or address in register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S

Parameters
The parameters are explained as follows:

REQUEST=QUERY
REQUEST=QUERYFORMAT
REQUEST=LIST

Specifies the type of service to be performed on the list of APF-authorized
program libraries. Specify one of the following:

QUERY
Determine if a particular library is in the APF list.

QUERYFORMAT
Determine the current format (dynamic or static) of the APF list. The
system returns information to the one byte field specified on the
FORMAT parameter. If the output is 00, the list is static; if the output
is 01, the list is dynamic. When you specify this parameter, you cannot
specify the RETCODE, RSNCODE, and MF parameters. The system
does not provide return and reason codes for a QUERYFORMAT
request.

LIST Request a list of the libraries in the APF list. The system returns the list
to the area specified by the ANSAREA parameter. See the description
of the ANSAREA parameter for information on how to read the entries
in the list.

CSVAPF macro

Chapter 81. CSVAPF — Query the list of APF-authorized libraries 427

Note: The list will include those libraries that are defined or defaulted
to be APF-authorized. The definition could be via IEAAPFxx or
PROGxx parmlib members, the CSVAPF macro, or the SETPROG APF
system command. Note that programs that are marked as coming from
an authorized library could have come from one of these libraries or
from the link pack area.

,DSNAME=libname
Specifies a field (or a register containing the address of a field) containing a
44-character name of an APF-authorized library. If the library name is less than
44 characters, it must be left-justified in a 44-character field and padded with
blanks.

You can specify an alias of an APF authorized library instead of the actual
library name. However, the CSVAPF service considers an alias to be
APF-authorized only when it is defined in the APF list.

Note: Usually, you do not need to define the alias of an APF-authorized library
in the APF list. IBM's data management services (for example, OPEN
processing) map an alias to the actual library name, and therefore does not
require the alias to be defined in the APF list. An alias must be defined in the
APF list only when the alias is to be used as input to the CSVAPF QUERY
macro request, or on the SETPROG APF or DISPLAY PROG,APF operator
commands.

,VOLTYPE=SMS
,VOLTYPE=ANY,VOLUME=volume

Specifies the status of the library specified on the DSNAME parameter, which
is one of the following:

SMS The library is managed by the storage management subsystem (SMS).

ANY The library may or may not be SMS-managed. The library is located on
volume volume, which specifies the address of a 6-character volume
serial number; for an ADD request, you can also specify ****** (six
asterisks) to indicate the current sysres volume, or *MCAT* to indicate
the volume on which the master catalog resides. If volume is all zeros,
the system assumes that the library is SMS-managed.

Note: The return code on a Query is determined by whether the match is
exact or inexact.

A return code of 0 indicates an exact match which could be:
v You coded DSNAME=d and VOLTYPE=ANY and VOLUME=v and there is

an entry in the APF list that matches both the data set and the volser.
v You coded DSNAME=d and an indication of “SMS-managed”

(VOLTYPE=SMS) and there is an entry in the APF list that matches the data
set and indicates “SMS-managed”.

A return code of 4 with a reason code = 0401 indicates an inexact match which
is:
v You coded DSNAME=d and VOLTYPE=ANY and VOLUME=v and there is

no exact match, but there is an entry in the APF list that matches the data
set and indicates “SMS-managed”.

,FORMAT=format
Specifies a 1-byte field (or a register containing the address of a field) for
output that the system is to use to indicate the current format of the APF list.

CSVAPF macro

428 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,ANSAREA=ansarea
Specifies an area (or a register containing the address of an area) where the
system is to store the current list of APF-authorized libraries. Use the
CSVAPFAA mapping macro to map this area. Specify the length of this area on
the ANSLEN parameter.

The system returns a header that indicates the total number of libraries in the
list and the offset to the first library entry. To find the next entry, add the value
in the length field (APFELEN) to the address of the current entry.

For each library entry, the volume identifier in field APFEVOLUME is valid
only when the library is not SMS-managed (the bit APFESMS in field
APFEFLAGS is off). If the library is SMS-managed, field APFEVOLUME
contains “*SMS* ”.

,ANSLEN=anslen
Specifies a fullword (or a register containing the address of a fullword) that
contains the length of the area where the system is to return the current APF
list. This value must be equal to or greater than the length of the APFHDR
structure in the CSVAPFAA mapping macro.

If the area is not long enough to contain the entire APF list, the system returns
as many entries as it can provide. The system indicates the length that is
currently required to contain all the information in field APFHTLEN in the
CSVAPFAA mapping macro.

,RETCODE=retcode
Specifies a fullword (or a register) where the system is to store the return code.
The return code is also in general purpose register (GPR) 15. Do not specify
this parameter on a QUERYFORMAT request.

,RSNCODE=rsncode
Specifies a fullword (or a register) where the system is to store the reason code.
The reason code is also in general purpose register (GPR) 0. Do not specify this
parameter on a QUERYFORMAT request.

,MF=S
Specifies the standard form of the CSVAPF macro. Do not specify this
parameter on a QUERYFORMAT request.

ABEND codes
None.

Return and reason codes
When the CSVAPF macro returns control to your program, GPR 15 (and retcode)
contains a return code. When the value in GPR 15 is not zero, GPR 0 (and rsncode)
contains a reason code. xxxx indicates internal information. If you specified the
QUERYFORMAT option, CSVAPF does not return any return or reason code to
your program.

CSVAPF macro

Chapter 81. CSVAPF — Query the list of APF-authorized libraries 429

Table 12. Return and Reason Codes for the CSVAPF Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 — Meaning: The CSVAPF request completed
successfully. The result depends on the option:

v QUERY - The system found the library in the APF
list.

v LIST - The system returned a list of all the
libraries in the APF list.

Action: None.

04 xxxx0401 Meaning: For a QUERY request, the library is in the
list, and is SMS-managed.

Action: None.

04 xxxx0402 Meaning: For a QUERY request, the library is not in
the APF list.

Action: None.

04 xxxx0403 Meaning: Program error. For a LIST request, the
value specified on the ANSLEN parameter is not
large enough to contain the entire list of
APF-authorized libraries.

Action: Check the answer area field APFHTLEN in
the CSVAPFAA mapping macro to see how much
space is required to return the APF list. Issue the
CSVAPF macro again, specifying, on the ANSLEN
parameter, a fullword containing a value large
enough to contain the entire APF list.

08 xxxx0801 Meaning: Program error. The system could not
access the parameter list that the CSVAPFAA macro
created.

Action: Ensure that the parameter list is addressable.

08 xxxx0804 Meaning: Program error. The caller is not authorized
to issue the CSVAPF macro for the specified request.

Action: See the authorization requirements described
in the “Environment” on page 425 section for this
macro.

08 xxxx0805 Meaning: Program error. The system could not
perform the function because the home address
space is different from the primary address space.

Action: For the specified request, do not issue the
CSVAPF macro while running in cross memory
mode.

08 xxxx0806 Meaning: Program error. The ALET of the area
specified on the ANSAREA parameter is not correct.

Action: Ensure that the ALET is 0, or that the ALET
represents a valid entry on the DU-AL. If you
specified register notation “(n),” make sure that the
ALET in register n is correct.

CSVAPF macro

430 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 12. Return and Reason Codes for the CSVAPF Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 xxxx0807 Meaning: Program error. The system found an error
when accessing the answer area specified on the
ANSAREA parameter.

Action: Ensure that the answer area address
specified on the ANSAREA parameter is valid.

08 xxxx0808 Meaning: Program error. For a QUERY request, the
length of the answer area specified on the ANSLEN
parameter is not equal to or greater than the length
of the APFHDR structure in the CSVAPFAA
mapping macro.

Action: On the ANSLEN parameter, specify a
fullword containing a value that is equal to or
greater than the length of the APFHDR structure in
the CSVAPFAA mapping macro.

08 xxxx0809 Meaning: Program error. The request type is not
valid.

Action: Check for a possible overlay in the
parameter list that the CSVAPFAA mapping macro
created.

08 xxxx080A Meaning: Program error. The CSVAPF macro could
not establish an ESTAEX recovery routine. xxxx is
the return code from the ESTAEX service.

Action: See the description of the ESTAEX macro for
the action associated with the xxxx return code.

08 xxxx080B Meaning: Program error. A reserved field is not zero
in the parameter list that the CSVAPFAA macro
created.

Action: Check for a possible overlay in the
parameter list that the CSVAPFAA macro created.

08 xxxx080C Meaning: Program error. The library name specified
on the DSNAME parameter is not valid. The first
character is blank.

Action: On the DSNAME parameter, specify a
library name that does not include a blank as the
first character.

08 xxxx080D Meaning: Program error: The system found an error
in the access list entry token (ALET) for the
parameter list that the CSVAPFAA macro created.

Action: Ensure that the ALET is 0 or that the ALET
represents a valid entry on the DU-AL.

CSVAPF macro

Chapter 81. CSVAPF — Query the list of APF-authorized libraries 431

Table 12. Return and Reason Codes for the CSVAPF Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 xxxx080E Meaning: Program error. The system found an
incorrect version number in the parameter list that
the CSVAPF macro created.

Action: Verify that your program is not overwriting
the parameter list, and that the execute form of the
macro correctly addresses the parameter list. If you
are using the modify form of the macro, make sure
that you specified the COMPLETE option on at least
one invocation.

10 xxxx1001 Meaning: System error. An internal error occurred.

Action: Contact the system programmer. Provide the
return code, the reason code, and the explanation of
the error.

Example 1
Determine the current format of the APF list:

CSVAPF REQUEST=QUERYFORMAT,FORMAT=LFORMAT
CLI LFORMAT,CSVAPFFORMATDYNAMIC
BE LAB1

* Format is static
.
.

LAB1 DS 0H Format is dynamic
.
.

LFORMAT DS X Output Format
CSVAPFAA , Include CSVAPFAA mapping

Example 2
Change a program to use the CSVAPF macro to access the APF list (this program
uses the LIST function as an example of one way to access the APF list):

L 15,X’10’ Get CVT address
TM CVTDCB-CVTMAP(15),CVTOSEXT OS Extension present
BZ OLDLIST No, old (static) list
TM CVTOSLV1-CVTMAP(15),CVTDYAPF Is dynamic APF present?
BZ OLDLIST No, old (static) list
MVC APAALEN,=AL4(4096) Assume length is 4K
L 2,APAALEN Get length
GETMAIN RU,LV=(2) Get storage for answer area
ST 1,APAA@ Save answer area address

LAB1 DS 0H
L 4,APAA@ Get answer area address
CSVAPF REQUEST=LIST,ANSAREA=(4),ANSLEN=APAALEN, *

RETCODE=LRETCODE,RSNCODE=LRSNCODE
CLC LRETCODE,=AL4(CSVAPFRC_OK) Success?
BE LAB3 Yes, process data
CLC LRETCODE,=AL4(CSVAPFRC_WARN) Warning?
BNE LAB2 No, Process other return codes
NC LRSNCODE,=AL4(CSVAPFRSNCODEMASK) Clear high order bits
CLC LRSNCODE,=AL4(CSVAPFRSNNOTALLDATARETURNED) More data?
BNE LAB2 No, Process other return codes
L 3,APAALEN Get current length
L 2,APFHTLEN-APFHDR(4) Get required length
ST 2,APAALEN Save total required length
FREEMAIN RU,LV=(3),A=(4) Free previous area

CSVAPF macro

432 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

GETMAIN RU,LV=(2) Get storage for answer area
ST 1,APAA@ Save answer area address
B LAB1 Re-do LIST request

LAB2 DS 0H Process other return codes
.
.

OLDLIST DS 0H
* Current code to process static format APF list

.

.
B LAB9

LAB3 DS 0H

* New code to scan return information from CSVAPF
.
.

L 4,APAA@
L 3,APAALEN
FREEMAIN RU,LV=(3),A=(4) Release APAA

LAB9 DS 0H End of processing
.
.

APAA@ DS A Address of APF answer area
APAALEN DS F Length of APF answer area
LRETCODE DS F Return code
LRSNCODE DS F Reason code

CSVAPFAA , Include CSVAPFAA mapping

CSVAPF—List form
Use the list form of the CSVAPF macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

The list form of the CSVAPF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVAPF.

CSVAPF

� One or more blanks must follow CSVAPF.

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the CSVAPF macro with
the following exception:

CSVAPF macro

Chapter 81. CSVAPF — Query the list of APF-authorized libraries 433

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the CSVAPF macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

CSVAPF—Execute form
Use the execute form of the CSVAPF macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

The execute form of the CSVAPF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVAPF.

CSVAPF

� One or more blanks must follow CSVAPF.

Valid parameters (Required parameters are underlined):

REQUEST=QUERY DSNAME, VOLTYPE, VOLUME, RETCODE, RSNCODE

REQUEST=LIST ANSAREA, ANSLEN, RETCODE, RSNCODE

,DSNAME=dsname dsname: RS-type address or register (2) - (12).

,VOLTYPE=SMS Default: VOLTYPE=SMS

,VOLTYPE=ANY, VOLUME is required with VOLTYPE=ANY.

VOLUME=volume volume: RS-type or register (2) - (12).

,FORMAT=format format: RS-type address, or register (2) - (12).

,ANSAREA=ansarea ansarea: A-type address, or register (2) - (12).

,ANSLEN=anslen anslen: A-type address, or register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

CSVAPF macro

434 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=(E,list addr) list addr: RS-type address, or register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the CSVAPF macro with
the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the CSVAPF macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that you did not specify.

CSVAPF macro

Chapter 81. CSVAPF — Query the list of APF-authorized libraries 435

CSVAPF macro

436 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 82. CSVINFO — Obtain information about loaded
modules

Description
Use CSVINFO to obtain information about modules:
v Loaded into the link pack area (LPA): specify FUNC=LPA
v Loaded into the job pack area (JPA): specify FUNC=JPA
v Loaded by a specific task using the LOAD macro: specify FUNC=TASKLOAD
v Running under all program request blocks (PRBs) and supervisor request blocks

(SVRBs) associated with a specific task, including those that received control
through the LINK(X), ATTACH(X), or XCTL(X) macro; or through the z/OS
UNIX System Services EXEC command: specify FUNC=TASKALL

v Running under a specific PRB or SVRB: specify FUNC=RB
v Copied from the parent address space into the job pack area under the z/OS

UNIX System Services fork process: specify FUNC=JPA.

When providing information about a loaded module, CSVINFO returns
information separately for each of the following types of entry points:
v The major entry point
v Each entry point created using the IDENTIFY macro
v Each minor entry point specified on a LOAD, LINK(X), ATTACH(X), or XCTL(X)

invocation the system is processing while CSVINFO is running
v The z/OS UNIX System Services entry point (including its file name), if the

loaded module is an z/OS UNIX System Services module.

The CSVINFO macro can return information about one loaded module (such as the
module running under a specific PRB) or group of loaded modules (such as all
modules in LPA). The CSVQUERY macro, which also provides information about
loaded modules, returns information about only one particular loaded module at a
time.

CSVINFO obtains information about one loaded module at a time, stores the
information in the CSVMODI data area, and passes the data area to a user-written
module information processing routine (MIPR). The MIPR examines this data and
returns control to CSVINFO, either requesting information about an additional
loaded module or indicating that no more information is needed. For instance, if
you request information for all modules loaded by a particular task, CSVINFO
calls the MIPR multiple times, passing information about each loaded module of
interest. CSVINFO continues to pass loaded module information to the MIPR until
either of the following occurs:
v CSVINFO has returned all available information.
v The MIPR indicates that no more information is needed by returning a nonzero

return code to CSVINFO.

You can issue the CSVINFO macro from a program to obtain information about
loaded modules in system storage, or from an IPCS exit to search a dump for
information about loaded modules.

© Copyright IBM Corp. 1988, 2015 437

References

For detailed information about any of the following, see the program management
topic in z/OS MVS Programming: Assembler Services Guide:
v How the CSVINFO macro compares with the CSVQUERY macro
v How to use the CSVINFO macro
v How to code a MIPR
v Load modules and their characteristics

End of References

Typically, a pathname returned from CSVINFO is prefixed by a slash (/); however,
if that pathname was returned in response to a load (BPX1LOD), exec (BPX1EXC)
or spawn (BPX1SPN) call where the HFS program was found in the current
working directory, the pathname will not be prefixed with a "/". To determine the
full pathname of the HFS program in this case, call BPX1GCW to obtain the
current working directory name that was used to locate the program. You can then
use this directory pathname as returned from BPX1CGW to prefix the pathname
returned by CSVINFO to determine the full pathname of the HFS program.

For information about the CSVMODI data area, see z/OS MVS Data Areas in z/OS
Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/.

Environment
Requirements for the caller:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key

See additional information under “Programming
requirements.”

Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Supervisor state and PSW key 0 callers may hold the

LOCAL and the CMS locks.

Other callers may not hold any locks.
Control parameters: Must be in the primary address space

Programming requirements
If you are requesting information about loaded modules in common storage or if
multi-tasking is taking place in your address space, the module information you
request might be changing while the CSVINFO service is retrieving information
unless serialization has been obtained.

If your program runs in supervisor state and invokes the CSVINFO macro, the
CSVINFO service obtains the appropriate locks if your program does not already
hold them.

Other callers might receive incorrect data or end abnormally if the CSVINFO
service accesses a data area that is being updated.

CSVINFO macro

438 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

http://www.ibm.com/systems/z/os/zos/bkserv/

Restrictions
The TCB specified with the TCBADDR keyword must reside in the caller's primary
address space unless the CSVINFO macro is being issued from an IPCS exit.

When you issue the CSVINFO macro from an IPCS exit, CSVINFO does not:
v Provide serialization
v Establish a recovery environment before passing control to your MIPR.

Input register information
Before issuing the CSVINFO macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
If you require information about a specific loaded module, use the CSVQUERY
macro to obtain better performance.

Syntax
The standard form of the CSVINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

CSVINFO macro

Chapter 82. CSVINFO — Obtain information about loaded modules 439

Syntax Description

� One or more blanks must precede CSVINFO.

CSVINFO

� One or more blanks must follow CSVINFO.

FUNC=LPA

FUNC=JPA,TCBADDR=tcbaddr

FUNC=TASKLOAD,TCBADDR=tcbaddr

FUNC=TASKALL,TCBADDR=tcbaddr tcbaddr: RS-type address or address in register (2) - (12).

FUNC=RB,RBADDR=rbaddr rbaddr: RS-type address or address in register (2) - (12).

,ENV=MVS

,ENV=IPCS,ABDPLPTR=abdplptr,ASID=asid abdplptr: RS-type address or address in register (2) - (12).

asid: RS-type address or address in register (2) - (12).

,MIPR=mipr mipr: RS-type address or address in register (2) - (12).

,USERDATA=userdata userdata: RS-type address.

,COM=com com: Comment text enclosed in single quotation marks.

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12).

Parameters
The parameters are explained as follows:

FUNC=LPA
FUNC=JPA,TCBADDR=tcbaddr
FUNC=TASKLOAD,TCBADDR=tcbaddr
FUNC=TASKALL,TCBADDR=tcbaddr
FUNC=RB,RBADDR=rbaddr

A required parameter that specifies the function CSVINFO is to perform.

FUNC=LPA requests that CSVINFO place into the CSVMODI data area
information about link pack area (LPA) modules. The search order for LPA
modules is the active link pack area (MLPA and FLPA), followed by PLPA. If
CSVINFO encounters more than one copy of a loaded module, CSVINFO
provides information about each copy.

CSVINFO macro

440 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

FUNC=JPA,TCBADDR=tcbaddr requests that CSVINFO place into the
CSVMODI data area information for modules in the job pack area for the job
step task TCB specified by tcbaddr. When you specify FUNC=JPA, CSVINFO
retrieves information for:
v All modules in the private area known to the specified job step task
v All modules in common storage that have been loaded by an authorized

task running under the specified job step task, using the LOAD macro with
the GLOBAL parameter.

FUNC=TASKLOAD,TCBADDR=tcbaddr requests that CSVINFO place into the
CSVMODI data area information about all modules loaded by the task
specified by tcbaddr, using the LOAD macro. Only modules that have not yet
been deleted are processed.

FUNC=TASKALL,TCBADDR=tcbaddr requests that CSVINFO place into the
CSVMODI data area information about all modules running under PRBs and
SVRBs under the task specified by tcbaddr, including all modules that have
received control through the LINK(X), ATTACH(X), or XCTL(X) macro.
FUNC=TASKALL returns information on LPA modules as well as private
modules. If CSVINFO encounters more than one copy of a loaded module,
CSVINFO provides information about each copy.

TCBADDR=tcbaddr specifies the address of a required 4-byte field that contains
the address of the TCB about which you want information.

FUNC=RB,RBADDR=rbaddr requests that CSVINFO place into the CSVMODI
data area information about the module running under the PRB or SVRB
specified by rbaddr.

RBADDR=rbaddr specifies the address of a required 4-byte field that contains
the address of the PRB or SVRB about which you want information.

,ENV=MVS
,ENV=IPCS,ABDPLPTR=abdplptr,ASID=asid

A required parameter that specifies whether you are issuing CSVINFO from a
program (to search system storage) or from an IPCS exit (to examine a dump).

ENV=MVS specifies that you are issuing CSVINFO from a program and that
you want CSVINFO to examine system storage.

ENV=IPCS specifies that you are issuing CSVINFO from an IPCS exit to search
a dump. When you specify ENV=IPCS you must also specify
ABDPLPTR=abdplptr and ASID=asid.

ABDPLPTR=abdplptr specifies the address of the ABDUMP parameter list
(ABDPL) that is currently in use. When your IPCS exit routine gets control,
GPR 1 contains the address of the ABDUMP parameter list. CSVINFO passes
the address of the ABDPL to the caller's MIPR in the input parameter list
mapped by the CSVMODI mapping macro.

ASID=asid identifies the address space id (ASID) in the dump from which the
requested module information is to be obtained. asid contains the address of a
16-bit address space identifier. The specified address space identifier is stored
in the ADPLASID field of the ABDPL, and the ADPLASID field contains this
value when CSVINFO passes control to your MIPR.

,MIPR=mipr
A required parameter that contains the address of the caller's module
information processing routine (MIPR).

CSVINFO macro

Chapter 82. CSVINFO — Obtain information about loaded modules 441

,USERDATA=userdata
Specifies the address of an optional 16-byte input field that contains user data
to be passed to the MIPR. The CSVINFO macro places the user data into the
CSVMODI data area before it passes control to the MIPR.

,COM=com
Specifies an optional character input. You can use this keyword to produce a
comment in the macro expansion. The comment string must be enclosed in
single quotation marks if it contains lowercase characters.

,RETCODE=retcode
Specifies the location where the system is to store the return code. The return
code is also in GPR 15. If you specify a storage location, it must be on a
fullword boundary.

,RSNCODE=rsncode
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0. If you specify a storage location, it must be on a
fullword boundary.

ABEND codes
None.

Return and reason codes
When CSVINFO returns control to your program, GPR 15 (and retcode, if you
coded RETCODE) contains the return code.

For a return code of X'8', GPR 0 (and rsncode, if you coded RSNCODE) contains a
reason code set by the MIPR. For other return codes, the reason code is always 0.

Table 13. Return Codes for the CSVINFO Macro

Hexadecimal
Return Code

Meaning and Action

0 Meaning: Successful completion.

Action: None.

4 Meaning: Successful completion.

Action: None. There was no information for CSVINFO to return.

8 Meaning: CSVINFO processing was ended by a nonzero return code from the
caller's MIPR. GPR 0 (and rsncode, if you coded RSNCODE) contains a reason
code from the MIPR.

Action: Check the reason code from the MIPR and take appropriate action.

C Meaning: Program error. CSVINFO was unable to obtain the local lock needed
for serialization for a supervisor state caller.

Action: Release the CML lock before invoking CSVINFO.

10 Meaning: Program error. A parameter specified for CSVINFO was inaccessible
or not valid.

Action: Correct the parameters and rerun the program.

14 Meaning: Environmental error. The CSVINFO service should have been
available but wasn't.

Action: Ask the system programmer to determine why the CSVINFO service is
unavailable.

CSVINFO macro

442 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 13. Return Codes for the CSVINFO Macro (continued)

Hexadecimal
Return Code

Meaning and Action

18 Meaning: System or program error. CSVINFO processing ended because the
requested information could not be retrieved from the dump. This return code
applies only when CSVINFO is issued from an IPCS exit. The message
BLS18100I accompanies this return code. See z/OS MVS Dump Output Messages
for further information about this message.

Action: Ensure that you have not passed the CSVINFO service an incorrect
address and rerun the program. If the program receives this return code again,
either the necessary data areas are not in the dump or there might be an error in
the control blocks used to keep track of loaded modules.

1C Meaning: System error. This return code is for IBM diagnostic purposes only.

Action: Rerun the program one or more times. If the problem persists, record the
return code and message text and supply it to the appropriate IBM support
personnel.

20 Meaning: Environmental error. The CSVINFO service is not supported on this
level of the system.

Action: Check with your system programmer to determine which system your
program should run on to use the CSVINFO service.

24 Meaning: Environmental error. The CSVINFO parameter list is not valid with
the level of CSVINFO service on the system.

Action: Record the return code and supply it to the appropriate IBM support
personnel.

28 Meaning: System error. CSVINFO timed out after entering an infinite loop while
accessing information about loaded modules.

Action: If you specified ENV=MVS and your program was not in supervisor
state, rerun the program. The error might have been temporary, resulting from a
lack of serialization while accessing control blocks.

If the error persists or CSVINFO was running with serialization when the error
occurred, record the return code and supply it to the appropriate IBM support
personnel.

2C Meaning: Program error. The RB address specified using the RBADDR
parameter on a FUNC=RB request is not the address of a PRB or an SVRB.

Action: Ensure that you pass the address of a PRB or an SVRB. CSVINFO does
not process requests for other types of RBs.

30 Meaning: Program error. The MIPR failed.

Action: Ensure that the MIPR restores GPRs 2-13 before returning control to
CSVINFO. If this was not the problem and the MIPR did not have its own
recovery routine, your options depend on whether your program was running
in an authorized state.

CSVINFO's recovery routine issued an SVC dump if your program was
authorized in at least one of the following ways:

v Supervisor state

v PSW key 0-7

v APF authorization.

If a dump was taken, examine it for information about why the MIPR might
have failed.

If your program was running in an unauthorized state, the information recorded
in the job log at the time of the failure is the only information provided.

CSVINFO macro

Chapter 82. CSVINFO — Obtain information about loaded modules 443

Table 13. Return Codes for the CSVINFO Macro (continued)

Hexadecimal
Return Code

Meaning and Action

34 Meaning: System error. While processing the RB chain, CSVINFO entered an
infinite loop, signalled by reaching 1000 iterations. The RB address specified on
the RBADDR parameter for a FUNC=RB request caused a circular RB chain.

Action: Ensure that you pass the address of a PRB or an SVRB. CSVINFO does
not process requests for other types of RBs.

If you passed a valid RB address, record the return code and supply it to the
appropriate IBM support personnel.

CSVINFO - List form
Use the list form of the CSVINFO macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

Syntax
The list form of the CSVINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CSVINFO.

CSVINFO

� One or more blanks must follow CSVINFO.

MF=(L,list addr) list addr: Symbol.

MF=(L,list addr, attr) attr: 1- to 60-character input string. Default: 0D.

Parameters
The parameters are explained under the standard form of the macro with the
following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr, 0D)

Specifies the list form of the CSVINFO macro. list addr is the name of a storage
area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

CSVINFO macro

444 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

CSVINFO - Execute form
Use the execute form of the CSVINFO macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the CSVINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CSVINFO.

CSVINFO

� One or more blanks must follow CSVINFO.

FUNC=LPA

FUNC=JPA,TCBADDR=tcbaddr

FUNC=TASKLOAD,TCBADDR=tcbaddr

FUNC=TASKALL,TCBADDR=tcbaddr tcbaddr: RS-type address or address in register (2) - (12).

FUNC=RB,RBADDR=rbaddr rbaddr: RS-type address or address in register (2) - (12).

,ENV=MVS

,ENV=IPCS,ABDPLPTR=abdplptr,ASID=asid abdplptr: RS-type address or address in register (2) - (12).

asid: RS-type address or address in register (2) - (12).

,MIPR=mipr mipr: RS-type address or address in register (2) - (12).

,USERDATA=userdata userdata: RS-type address.

,USERDATA=NULL Default: NULL

,COM=com com: Comment text enclosed in single quotation marks.

,COM=NULL Default: NULL

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12).

,MF=(E,list addr) list addr: RS-type address.

,MF=(E,list addr,COMPLETE) Default: COMPLETE

,MF=(E,list addr,NOCHECK)

CSVINFO macro

Chapter 82. CSVINFO — Obtain information about loaded modules 445

Syntax Description

Parameters
The parameters are explained under the standard form of the macro with the
following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the CSVINFO macro. list addr specifies the area
that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply defaults for omitted optional parameters.

NOCHECK specifies that the system is not to check for required parameters
and is not to supply defaults for omitted optional parameters.

CSVINFO - Modify form
Use the modify form of the CSVINFO macro together with the list and execute
forms of the macro for service routines that need to provide different options
according to user-provided input. Use the list form to define the storage area; use
the modify form to set the appropriate options; then use the execute form to call
the service.

Syntax
The modify form of the CSVINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CSVINFO.

CSVINFO

� One or more blanks must follow CSVINFO.

FUNC=LPA

FUNC=JPA,TCBADDR=tcbaddr

FUNC=TASKLOAD,TCBADDR=tcbaddr

FUNC=TASKALL,TCBADDR=tcbaddr tcbaddr: RS-type address or address in register (2) - (12).

FUNC=RB,RBADDR=rbaddr rbaddr: RS-type address or address in register (2) - (12).

,ENV=MVS

,ENV=IPCS,ABDPLPTR=abdplptr,ASID=asid

CSVINFO macro

446 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

abdplptr: RS-type address or address in register (2) - (12).

asid: RS-type address or address in register (2) - (12).

,MIPR=mipr mipr: RS-type address or address in register (2) - (12).

,USERDATA=userdata userdata: RS-type address.

,USERDATA=NULL Default: NULL

,COM=com com: Comment text enclosed in single quotation marks.

,COM=NULL Default: NULL

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or address in register (2) - (12).

,MF=(M,list addr) list addr: RS-type address or register (2) - (12).

,MF=(M,list addr,COMPLETE) Default: COMPLETE

,MF=(M,list addr,NOCHECK)

Parameters
The parameters are explained under the standard form of the macro with the
following exceptions:

,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Specifies the modify form of the CSVINFO macro. list addr specifies the area
that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply defaults for omitted optional parameters.

NOCHECK specifies that the system is not to check for required parameters
and is not to supply defaults for omitted optional parameters.

CSVINFO macro

Chapter 82. CSVINFO — Obtain information about loaded modules 447

CSVINFO macro

448 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 83. CSVQUERY — Contents supervisor query service

Description
Use CSVQUERY to obtain information about the attributes of a loaded module
residing in the job pack area (JPA) of the current primary address space or the link
pack area (LPA). Specify the module you want information about, using an entry
point name, entry point token, or any address within the loaded module. See the
INEPTKN parameter description for information about obtaining an entry point
token.

CSVQUERY returns information for the following types of entry points:
v Major entry points
v Entry points created using the IDENTIFY macro
v Minor entry points specified on a LOAD, LINK(X), ATTACH(X), or XCTL(X)

invocation the system is processing while CSVQUERY is running.

For information about load modules and their characteristics, as well as a
comparison of the CSVQUERY and CSVINFO macros, see the program
management topic in z/OS MVS Programming: Assembler Services Guide.

Environment
Requirements for CSVQUERY callers are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any SASN, any HASN
AMODE: 24 or 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller may hold the LOCAL lock of the current primary

address space (if the home address space is the same as the
current primary address space, this is the LOCAL lock) and
may hold the CMS lock, but is not required to hold any
locks.

Control parameters: Must be in the primary address space or be in an
address/data space that is addressable through a public
entry on the caller's dispatchable unit access list (DU-AL).

Input register information
Before issuing the CSVQUERY macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

© Copyright IBM Corp. 1988, 2015 449

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Programming requirements
If the program is in AR mode, issue the SYSSTATE macro with the ASCENV=AR
parameter before you issue CSVQUERY. SYSSTATE ASCENV=AR tells the system
to generate code appropriate for AR mode.

Restrictions
None.

Performance implications
If you specify an address as a search argument for a module in the PLPA, the
search might take longer than if you specify a name because the PLPA is organized
by name. You can obtain the best performance on a CSVQUERY request by
specifying an entry point token.

Syntax
The standard form of the CSVQUERY macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CSVQUERY.

CSVQUERY

� One or more blanks must follow CSVQUERY.

INEPNAME=entryname entryname: RS-type address or register (2) - (12).

INEPTKN=ineptkn ineptkn: RS-type address or register (2) - (12).

INADDR=ptr name ptr name: RS-type address or register (2) - (12).

CSVQUERY macro

450 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

INADDR64=ptr name64 ptr name64: RS-type address or register (2) - (12).

,SEARCH=JPALPA Default: JPALPA

,SEARCH=JPA

,SEARCH=LPA

,SEARCHMINOR=NO
,SEARCHMINOR=YES

Default: NO

,OUTLENGTH=length length: RS-type address or register (2) - (12).

,OUTLENGTH64=length64 length64: RS-type address or register (2) - (12).

,OUTEPNM=entryname entryname: RS-type address or register (2) - (12).

,OUTEPTKN=outeptkn outeptkn: RS-type address or register (2) - (12).

,OUTEPA=entry addr entry addr: RS-type address or register (2) - (12).

,OUTEPA64=entry addr64 entry addr64: RS-type address or register (2) - (12).

,OUTMJNM=major name major name: RS-type address or register (2) - (12).

,OUTLOADPT=outloadpt outloadpt: RS-type address or register (2) - (12).

,OUTLOADPT64=outloadpt64 outloadpt64: RS-type address or register (2) - (12).

,OUTSP=subpool subpool: RS-type address or register (2) - (12).

,OUTATTR1=attr1 attr1: RS-type address or register (2) - (12).

,OUTATTR2=attr2 attr2: RS-type address or register (2) - (12).

,OUTATTR3=attr3 attr3: RS-type address or register (2) - (12).

,OUTDIAG=outdiag outdiag: RS-type address or register (2) - (12).

,OUTRTID=outrtid outrtid: RS-type address or register (2) - (12).

,OUTXATTR1=xattr xattr: RS-type address or register (2) - (12).

CSVQUERY macro

Chapter 83. CSVQUERY — Contents supervisor query service 451

Syntax Description

,OUTVALID=valid valid: RS-type address or register (2) - (12).

,OUTPDATA=outpdata outpdata: RS-type address or register (2) - (12).

,OUTPID=outpid outpid: RS-type address or register (2) - (12).

,OUTXTLST=xtlst xtlst: RS-type address or register (2) - (12).

,OUTXTLST64=xtlst64 xtlst64: RS-type address or register (2) - (12).

,OUTPATHNAME=outpathname outpathname: RS-type address or register (2) - (12).

,OUTDSKEY=outdskey outdskey: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 0 - 7

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,MF=S

Parameters
The parameters are explained as follows:

INEPNAME=entryname
INEPTKN=ineptkn
INADDR=ptr name
INADDR64=ptr name64

INEPNAME=entryname specifies an 8-character variable that contains the name
of the entry point. The entry point name must be eight characters long, padded
to the right with blanks if necessary.

INEPTKN=ineptkn specifies an 8-character variable that contains the entry
point token. An entry point token is a unique, 8-character token assigned to
each loaded module. To obtain the input token, invoke the CSVQUERY macro
with INADDR, INADDR64, or INEPNAME, specifying the OUTEPTKN
parameter. Use the output entry point token from that invocation of
CSVQUERY as the input entry point token on subsequent invocations of
CSVQUERY for the same module.

INADDR=ptr name specifies an address that CSVQUERY attempts to match to
a loaded module. The address may be anywhere within the module.

INADDR64=ptr name64 specifies an 8-byte address that CSVQUERY attempts
to match to a loaded module. The address may be anywhere within the
module.

CSVQUERY macro

452 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

You must specify one of the following mutually exclusive parameters:
INEPNAME, INEPTKN, INADDR, or INADDR64.

,SEARCH=JPALPA
,SEARCH=JPA
,SEARCH=LPA

Specifies the type of search CSVQUERY is to perform.

JPALPA (the default) causes CSVQUERY to search the caller's job pack area. If
the search fails, CSVQUERY searches the link pack area.

JPA causes CSVQUERY to search only the caller's job pack area.

LPA causes CSVQUERY to search only the link pack area.

,SEARCHMINOR=NO
,SEARCHMINOR=YES

Specifies whether to search for minor entry points. SEARCHMINOR is an
optional parameter.

SEARCHMINOR=NO specifies that CSVQUERY is not to search for minor
entry points. NO is the default.

SEARCHMINOR=YES specifies that CSVQUERY is to search for minor entry
points. CSVQUERY locates the minor entry point closest to the address
specified on the INADDR parameter. Because the search is for the closest,
CSVQUERY must check all entries.

,OUTLENGTH=length
Specifies an optional fullword variable where CSVQUERY is to return the
length of the module that it has located. The length returned is the number of
bytes used to contain the module. This size may be different depending on
whether the module was loaded from a PDS or a PDSE. If there is more than
one extent, the length is the sum of all the extents.

If you specify SEARCHMINOR=YES and CSVQUERY finds a minor entry
point, CSVQUERY returns the length of the module that contains the major
entry point associated with the minor entry point.

If the module is a program object bound with the FETCHOPT=NOPACK
option, the length value returned was rounded to the fullpage-multiple area
that is obtained with GETMAIN to hold the program object. If the program
object is bound with the FETCHOPT=PACK option, the length value returned
is the size indicated in the directory entry. For more information, see z/OS MVS
Program Management: User's Guide and Reference and z/OS MVS Program
Management: Advanced Facilities.

,OUTLENGTH64=length64
Specifies an optional doubleword variable where CSVQUERY is to return the
length of the module that it has located. The length returned is the number of
bytes used to contain the module. This size may be different depending on
whether the module was loaded from a PDS or a PDSE. If there is more than
one extent, the length is the sum of all the extents.

If you specify SEARCHMINOR=YES and CSVQUERY finds a minor entry
point, CSVQUERY returns the length of the module that contains the major
entry point associated with the minor entry point.

,OUTEPNM=entryname
Specifies an optional eight-character variable where CSVQUERY is to return

CSVQUERY macro

Chapter 83. CSVQUERY — Contents supervisor query service 453

the name of the entry point of the module. When you specify OUTEPNM with
INADDR, CSVQUERY returns the module's major entry point name in
entryname.

,OUTEPTKN=outeptkn
Specifies an optional 8-character variable where CSVQUERY returns the output
entry point token. Use this token as the input entry point token (INEPTKN) on
subsequent invocations of CSVQUERY for the same module.

,OUTEPA=entry addr
Specifies an optional fullword variable where CSVQUERY is to return the
address of the entry point of the module. When you specify OUTEPA with
INADDR, CSVQUERY returns the module's major entry point address in entry
addr.

,OUTEPA64=entry addr64
Specifies an optional doubleword variable where CSVQUERY is to return the
address of the entry point of the module. When you specify OUTEPA with
INADDR, CSVQUERY returns the module's major entry point address in entry
addr.

,OUTMJNM=major name
Specifies an optional eight-character variable where CSVQUERY returns the
major name (which is not an alias name) of the module.

,OUTLOADPT=outloadpt
Specifies an optional fullword variable where CSVQUERY is to return the
module's load address.

If you specify SEARCHMINOR=YES and CSVQUERY finds a minor entry
point, CSVQUERY returns the load address of the module that contains the
major entry point associated with the minor entry point.

,OUTLOADPT64=outloadpt64
Specifies an optional doubleword variable where CSVQUERY is to return the
module's load address.

If you specify SEARCHMINOR=YES and CSVQUERY finds a minor entry
point, CSVQUERY returns the load address of the module that contains the
major entry point associated with the minor entry point.

,OUTSP=subpool
Specifies an optional one-byte variable where CSVQUERY returns the subpool
number of the module.

If you specify SEARCHMINOR=YES and CSVQUERY finds a minor entry
point, CSVQUERY returns the subpool number of the module that contains the
major entry point associated with the minor entry point.

,OUTATTR1=attr1
Specifies an optional one-byte variable where CSVQUERY returns the
attributes of the module.

The bit settings have the following meanings:

Bit Meaning When Set
0 End-of-memory deletion
1 Loaded-to-global
2 Reentrant
3 Serially reusable
4 Not loadable only
5 Overlay format

CSVQUERY macro

454 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Bit Meaning When Set
6 Alias
7 Not part of the programming interface

,OUTATTR2=attr2
Specifies an optional one-byte variable where CSVQUERY returns the
attributes of the module.

The bit settings have the following meanings:

Bit Meaning When Set
0 Authorized library
1 Authorized program
2 AMODE ANY
3 AMODE 31
5 Dynamic LPA module
6 Page protected (only valid for dynamic LPA modules)
7 AMODE 64

,OUTATTR3=attr3
Specifies an optional one-byte variable where CSVQUERY returns the
attributes of the module.

The bit settings have the following meanings:

Bit Meaning When Set
0 Resident above 16 megabytes
1 Job pack area resident
2 PLPA resident
3 MLPA resident
4 FLPA resident
5 CSA resident
6-7 Not part of the programming interface

,OUTXATTR1=xattr
Specifies an optional eight-byte variable where CSVQUERY returns extended
attributes of the module.

The bit settings have the following meanings:

BYTE BIT Meaning When Set
0 Not part of the programming interface
1 Not part of the programming interface
2 1... A RACF basic program
2 .1.. A RACF main program
3 Not part of the programming interface
4 Not part of the programming interface
5 Not part of the programming interface
6 Not part of the programming interface
7 Not part of the programming interface

,OUTVALID=valid
Specifies an optional fullword variable that indicates whether the returned
output fields contain valid data. If the bit is set to 1, the corresponding field is
valid. Otherwise, the bit is 0. If the return code of the CSVQUERY macro is 0,
the validity bits for all requested output are on.

CSVQUERY macro

Chapter 83. CSVQUERY — Contents supervisor query service 455

Bit Valid Field When Set
0 OUTLENGTH
1 OUTEPA
2 OUTEPNM
3 OUTMJNM
4 OUTSP
5 OUTATTR1
6 OUTATTR2
7 OUTATTR3
8 OUTLOADPT
9 OUTPDATA
10 OUTPID
11 OUTEPTKN
12 OUTXTLST
13 OUTDIAG
14 OUTRTID
15 Not part of the programming interface
16 OUTEPA64
17 OUTLOADPT64
18 OUTLENGTH64
19 OUTXTLST64
20 OUTXATTR1
21 OUTPATHNAME
22 OUTDSKEY
23-31 Not part of the programming interface

,OUTPDATA=outpdata
Specifies the name, (RS-type), or address in register (2)-(12), of an optional 16
character output variable containing the provider data.

,OUTPID=outpid
Specifies an optional char(4) variable where CSVQUERY returns a string
representing the loading service (provider) that loaded the module. The values
mean the following:

Value Meaning

'UNK '
Unknown provider

'LPA' LPA

'PGMF'
Program fetch

'LLAF' LLA

'AOSL'
AOS loader

'JPA' JPA

,OUTDIAG=outdiag
Specifies the name, (RS-type), or address in register (2)-(12), of an optional 4
character output variable containing the diagnostic data.

,OUTRTID=outrtid
Specifies the name, (RS-type), or address in register (2)-(12), of an optional 2
character output variable that, as of z/OS version 1 release 12, does not
contain valid information.

CSVQUERY macro

456 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,OUTXTLST=xtlst
Specifies an optional 136–byte area where CSVQUERY is to return the length
and load point information for each segment of the module that it has located.
The first four bytes in the area should be initialized to 16 which is the total
number of entries which can be returned.

On output, the second four bytes of the area contains the number of 8–byte
entries that follow. Each 8–byte entry which follows consists of:
v the load point for that extent as a 4–byte address and
v the length, expressed in bytes, of that extent as 4–byte length.

If you specify SEARCHMINOR=YES and CSVQUERY finds a minor entry
point, CSVQUERY returns the length(s) of the module that contains the major
entry point associated with the minor entry point.

,OUTXTLST64=xtlst64
Specifies an optional 264-byte area where CSVQUERY is to return the length
and load point information for each segment of the module that it has located.
The first four bytes in the area should be initialized to 16 which is the total
number of entries which can be returned.

On output, the second four bytes of the area contains the number of 16–byte
entries that follow. Each 16–byte entry which follows consists of:
v the load point for that extent as an 8–byte address and
v the length, expressed in bytes, of that extent as 8–byte length.

If you specify SEARCHMINOR=YES and CSVQUERY finds a minor entry
point, CSVQUERY returns the length(s) of the module that contains the major
entry point associated with the minor entry point.

,OUTPATHNAME=outpathname
Specifies the name, (RS-type), or address in register (2)-(12), of an optional 1026
character output area that is to contain the path name associated with the CDE
located by CSVQUERY. Note that this output area might not contain the full
path name. The file name returned represents the name that was passed to the
file system. Frequently this name is appended to the current home directory,
but the home directory will not be returned by CSVQUERY. If the returned
name starts with a "/", then it is the full pathname. The first 2–bytes of the
area contain the path name length, followed by a path name of up to 1024
characters. A path name length of 0 in the first 2 bytes indicates that there is
no path name associated with this CDE.

,OUTDSKEY=outdskey
Specifies an optional 8-character output area to contain the key of the data set,
which is associated with the CDE that is located by CSVQUERY. Note that the
format of this key is not part of the programming interface. A value of zero
indicates that the data set key is not available. The validity bit is on whenever
the parameter is successfully processed.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

CSVQUERY macro

Chapter 83. CSVQUERY — Contents supervisor query service 457

IMPLIED_VERSION
It is the lowest version that allows all parameters specified on the request
to be processed. If you omit the PLISTVER parameter, IMPLIED_VERSION
is the default. Code or use the default IMPLIED_VERSION with caution in
the list form of the MACRO. It could result in storage overlays if
parameters are coded on the execute form of the macro which requires a
longer parameter list.

MAX
If you want the parameter list to be the largest size currently possible. This
size might grow from release to release and affect the amount of storage
that your program needs.

If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

The CSVQUERY macro supports multiple versions. The following macro
key list contains the version level in which the key was first introduced.
When specifying PLISTVER, be sure that it is at least as high as the highest
version number of all the keys being used. Explicitly coding a specific
plistver value on the list form of the macro which generates a shorter
parameter list than that required by the parameters coded on the execute
form can result in overlays of storage.

0 Version 0 introduces the following parameters:
v INADDR
v INEPNAME
v OUTATTR1
v OUTATTR2
v OUTATTR3
v OUTEPA
v OUTEPNM
v OUTLENGTH
v OUTMJNM
v OUTSP
v OUTVALID
v SEARCH
v SEARCHMINOR

1 Version 1 introduces the following parameter:
v OUTLOADPT

2 Version 2 introduces the following parameters:
v INEPTKN
v OUTEPTKN
v OUTPDATA
v OUTPID

3 Version 3 introduces the following parameters:
v OUTDIAG
v OUTRTID
v OUTXTLST

5 Version 5 introduces the following parameters:

CSVQUERY macro

458 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

v INADDR64
v OUTEPA64
v OUTLENGTH64
v OUTLOADPT64
v OUTXATTR1
v OUTXTLST64

6 Version 6 introduces the following parameter: OUTPATHNAME

7 Version 7 introduces the following parameter: OUTDSKEY

To code: Specify in this input parameter one of the following values:
v IMPLIED_VERSION
v MAX
v A decimal value in the range of 0 - 6

,RETCODE=retcode
Specifies the location where the system is to store the return code. The return
code is also in GPR 15. If you specify a storage location, it must be on a
fullword boundary.

,MF=S
Specifies the standard form of CSVQUERY. The standard form places the
parameters into an inline parameter list.

Return and reason codes
When control returns from CSVQUERY, GPR 15 (and retcode, if you coded
RETCODE) contains one of the following decimal return codes:

Decimal Return
Code

Meaning

00 CSVQUERY retrieves all the requested information.

04 CSVQUERY locates the specified module, but at least one requested
output field is not valid.

08 CSVQUERY cannot locate the specified module.

12 CSVQUERY cannot obtain the lock(s) needed to process the request.

16 CSVQUERY encounters an unexpected error.

20 The requested function is not available on the system on which
CSVQUERY is issued.

CSVQUERY - List form
Use the list form of the CSVQUERY macro to construct a nonexecutable parameter
list.

Syntax
The list form of the CSVQUERY macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

CSVQUERY macro

Chapter 83. CSVQUERY — Contents supervisor query service 459

Syntax Description

� One or more blanks must precede CSVQUERY.

CSVQUERY

� One or more blanks must follow CSVQUERY.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 0 - 6

MF=(L,list addr) list addr: Symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string. Default: 0D

Parameters
The parameters are explained under the standard form of the macro with the
following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)

Specifies the list form of the CSVQUERY macro. list addr defines the area that
the system is to use for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

CSVQUERY - Execute form
The execute form of the CSVQUERY macro can refer to and modify the parameter
list constructed by the list form of the macro.

Syntax
The execute form of the CSVQUERY macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CSVQUERY.

CSVQUERY

CSVQUERY macro

460 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

� One or more blanks must follow CSVQUERY.

Valid parameters

INEPNAME=entryname entryname: RS-type address or register (2) - (12).

INEPTKN=ineptkn ineptkn: RS-type address or register (2) - (12).

INADDR=ptr name ptr name: RS-type address or register (2) - (12).

INADDR64=ptr name64 ptr name64: RS-type address or register (2) - (12).

,SEARCH=JPALPA
,SEARCH=JPA
,SEARCH=LPA

Default: JPALPA

,SEARCHMINOR=NO Default: NO

,SEARCHMINOR=YES

,OUTLENGTH=length length: RS-type address or register (2) - (12).

,OUTLENGTH64=length64 length64: RS-type address or register (2) - (12).

,OUTEPNM=entryname entryname: RS-type address or register (2) - (12).

,OUTEPTKN=outeptkn outeptkn: RS-type address or register (2) - (12).

,OUTEPA=entry addr entry addr: RS-type address or register (2) - (12).

,OUTEPA64=entry addr64 entry addr64: RS-type address or register (2) - (12).

,OUTMJNM=major name major name: RS-type address or register (2) - (12).

,OUTLOADPT=outloadpt outloadpt: RS-type address or register (2) - (12).

,OUTLOADPT64=outloadpt64 outloadpt64: RS-type address or register (2) - (12).

,OUTSP=subpool subpool: RS-type address or register (2) - (12).

,OUTATTR1=attr1 attr1: RS-type address or register (2) - (12).

,OUTATTR2=attr2 attr2: RS-type address or register (2) - (12).

,OUTATTR3=attr3 attr3: RS-type address or register (2) - (12).

CSVQUERY macro

Chapter 83. CSVQUERY — Contents supervisor query service 461

Syntax Description

,OUTDIAG=outdiag outdiag: RS-type address or register (2) - (12).

,OUTRTID=outrtid outrtid: RS-type address or register (2) - (12).

,OUTXATTR1=xattr xattr: RS-type address or register (2) - (12).

,OUTVALID=valid valid: RS-type address or register (2) - (12).

,OUTPDATA=outpdata outpdata: RS-type address or register (2) - (12).

,OUTPID=outpid outpid: RS-type address or register (2) - (12).

,OUTXTLST=xtlst xtlst: RS-type address or register (2) - (12).

,OUTXTLST64=xtlst64 xtlst64: RS-type address or register (2) - (12).

,OUTPATHNAME=outpathname outpathname: RS-type address or register (2) - (12).

,OUTDSKEY=outdskey outdskey: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 0 - 6

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,MF=(E,list addr) list addr: RS-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

,MF=(E,list addr,NOCHECK)

Parameters
The parameters are explained under the standard form of the macro with the
following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the CSVQUERY macro. list addr defines the area
that the system uses for the parameter list.

COMPLETE specifies that the system is to check for required parameters and
supply optional parameters that are not specified. COMPLETE is the default.

CSVQUERY macro

462 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

NOCHECK specifies that the system is to check only parameters that you
specified.

CSVQUERY - Modify form
The modify form of the CSVQUERY macro can refer to and modify the parameter
list constructed by the list form of the macro.

Syntax
The modify form of the CSVQUERY macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CSVQUERY.

CSVQUERY

� One or more blanks must follow CSVQUERY.

Valid parameters

INEPNAME=entryname entryname: RS-type address or register (2) - (12).

INEPTKN=ineptkn ineptkn: RS-type address or register (2) - (12).

INADDR=ptr name ptr name: RS-type address or register (2) - (12).

INADDR64=ptr name64 ptr name64: RS-type address or register (2) - (12).

,SEARCH=JPALPA
,SEARCH=JPA
,SEARCH=LPA

Default: JPALPA

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 0 - 6

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,MF=(M,list addr) list addr: RS-type address or register (2) - (12).

,MF=(M,list addr,COMPLETE) Default: COMPLETE

,MF=(M,list addr,NOCHECK)

Parameters
The parameters are explained under the standard form of the macro with the
following exceptions:

CSVQUERY macro

Chapter 83. CSVQUERY — Contents supervisor query service 463

,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Specifies the modify form of the CSVQUERY macro. list addr defines the area
that the system uses for the parameter list.

COMPLETE specifies that the system is to check for required parameters and
supply optional parameters that are not specified. COMPLETE is the default.

NOCHECK specifies that the system is to check only parameters that you
specified.

CSVQUERY macro

464 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 84. DELETE — Relinquish control of a load module

Description
The DELETE macro cancels the effect of a previous LOAD macro. If DELETE
cancels the only outstanding LOAD request for the module, and no other
requirements exist for the module, the virtual storage occupied by the load module
is released and is available for reassignment by the control program.

In the case of nonreentrant and nonreusable modules loaded multiple times, the
order of processing occurs in last-loaded first-deleted order. For example, if
Program A loads module LOADMODA, then calls Program B, which also loads
LOADMODA, then issues a DELETE against LOADMODA, the copy of the load
module to be deleted is the one associated with Program B. At this point, a copy of
LOADMODA will still exist. The next DELETE request against LOADMODA will
delete that copy, regardless of whether Program A or Program B issues the request.

The entry name specified in the DELETE macro must be the same as that specified
in the LOAD macro that brought the load module into storage. Also, the DELETE
macro must be issued by the same task that issued the LOAD macro.

Any module loaded by a task will not be removed from virtual storage until the
DELETE macro is issued or end of task is reached. In addition, any module loaded
by a system task will not be removed from virtual storage until a DELETE macro
is issued by a system task or end of task is reached.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space.

Programming requirements
v The entry name specified in the DELETE macro must be the same as that

specified in the LOAD macro that brought the load module into storage.
v The DELETE macro must be issued by the same task that issued the LOAD

macro.

Restrictions
None.

Input register information
None.

© Copyright IBM Corp. 1988, 2015 465

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Address of the name or list entry that was supplied through the EP or DE
keyword.

1-14 Unchanged.

15 Return code.

Syntax
The DELETE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DELETE.

DELETE

� One or more blanks must follow DELETE.

EP=entry name entry name: Symbol.

EPLOC=entry name addr entry name addr: RX-type address, or register (0) or (2) - (12).

DE=list entry addr list entry addr: RX-type address, or register (0) or (2) - (12).

,RELATED=value value: any valid macro keyword specification.

Parameters
The parameters are explained as follows:

EP=entry name
EPLOC=entry name addr
DE=list entry addr

Specifies the entry name, the address of the entry name, or the address of a
62-byte list entry for the entry name that was constructed using the BLDL
macro. If you code EPLOC, pad the name to eight bytes, if necessary.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

The RELATED parameter is available on macros that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and

DELETE macro

466 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

LOAD/DELETE), and on macros that relate to previous occurrences of the
same macros (for example, CHAP and ESTAE).

ABEND codes
None.

Return and reason codes
When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Return Code

Meaning

00 Successful completion of requested function

04 Requested module was not in storage, or an attempt was made to
delete a system module by a caller not authorized to do so

Example
Remove a module (PGMTOVLY) from virtual storage.
DELETE EP=PGMTOVLY

DELETE macro

Chapter 84. DELETE — Relinquish control of a load module 467

DELETE macro

468 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 85. DEQ — Release a serially reusable resource

Description
The DEQ macro releases control of one or more serially reusable resources from
the active task. A task ends abnormally if it either requests an unconditional
release of a resource it does not control, or issues a request that contains incorrect
parameters.

When you use DEQ to release control of a resource obtained through the ENQ
macro, certain parameters on DEQ must match the parameters on the ENQ that
assigned control to that resource. Similarly, when you use DEQ to release control of
a resource obtained through the RESERVE macro, certain parameters on DEQ must
match the parameters on the RESERVE that assigned control to that resource. In
the cases where the parameters must match, the parameter descriptions note that
fact.

An explanation of how to use the DEQ macro to serialize access to resources
appears in z/OS MVS Programming: Assembler Services Guide.

Environment
The requirements for callers of DEQ are:

Environmental factor Requirement

Minimum authorization: Problem state with any PSW key.
Dispatchable unit mode: Task
Cross memory mode: For LINKAGE=SVC: PASN=HASN=SASN

For LINKAGE=SYSTEM: Any PASN, Any HASN, Any
SASN

For LINKAGE=SYSTEM with RMC=STEP: PASN=HASN,
Any SASN

AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space.

Programming requirements
None.

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before issuing the DEQ macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

© Copyright IBM Corp. 1988, 2015 469

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 One of the following:
v If you specify RET=HAVE, if all return codes for the resources named in

the DEQ macro are 0, register 15 contains 0. If any of the return codes
are not 0, register 15 contains the address of a storage area containing
the return codes.

v Otherwise: Used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the DEQ macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede DEQ.

DEQ

� One or more blanks must follow DEQ.

(

qname addr qname addr: A-type address, or register (2) - (12).

DEQ macro

470 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,

,rname addr rname addr: A-type address, or register (2) - (12).

, rname length: symbol, decimal digit, or register (2) - (12).

,rname length Note: rname length must be coded if a register is specified for rname addr.

, Default: STEP

,STEP

,SYSTEM

,SYSTEMS

)

,RET=NONE Default: RET=NONE

,RET=HAVE

,UCB=ucb addr ucb addr: A-type address, or register (2) - (12).

Note: Specify UCB only with SYSTEMS.

,LOC=BELOW DEFAULT: LOC=BELOW

,LOC=ANY

,RNL=YES Default: RNL=YES

,RNL=NO

,RELATED=value value: any valid macro keyword specification.

,LINKAGE=SVC DEFAULT: LINKAGE=SVC

,LINKAGE=SYSTEM

Parameters
The parameters are explained as follows.

(Specifies the beginning of the resource description.

qname addr
Specifies the address of an 8-character name. The name can contain any valid
hexadecimal characters. The qname must be the same name specified for the
resource in an ENQ or RESERVE macro. Authorized programs should use a
restricted qname (as described under Minimum authorization in the
Environment topic of this chapter) to prevent interference from unauthorized
programs.

DEQ macro

Chapter 85. DEQ — Release a serially reusable resource 471

Note: See z/OS MVS Diagnosis: Reference for a list of major and minor
ENQ/DEQ names and the resources that issue the ENQ/DEQ.

,
,rname addr

Specifies the address of the name used together with qname and scope to
represent the resource acquired by a previous ENQ or RESERVE macro. The
name must be from 1 to 255 bytes long, can be qualified, and can contain any
valid hexadecimal characters. The rname must be the same name specified for
the resource in an ENQ or RESERVE macro.

,
,rname length

Specifies the length of the rname. The length must have the same value as
specified in the previous ENQ or RESERVE macro. If you omit this parameter,
the system uses the assembled length of the rname. You can specify a value
between 1 and 255 to override the assembled length, or you may specify a
value of 0. If you specify 0, the length of the rname must be contained in the
first byte at the rname addr.

,
,STEP
,SYSTEM
,SYSTEMS

Specifies the scope of the resource. If you used the ENQ macro to obtain
control of the resource, the scope you specify on DEQ must match the scope
specified on that ENQ. If you used the RESERVE macro to obtain control of the
resource, you must specify SYSTEMS as the scope on DEQ.

) Specifies the end of the resource description.

Notes on specifying multiple resources on one DEQ request:
v Within a single set of parentheses, you can repeat the qname addr, rname addr,

type of control, rname length, and the scope until there is a maximum of 255
characters, including the parentheses.

v The following parameters apply to all the resources you specify on the request:
RET and RNL.

,RET=NONE
,RET=HAVE

HAVE specifies that the request for releasing the resources named in DEQ is to
be honored only if the active task has been assigned control of the resources. A
return code is set if the resource is not held. NONE specifies an unconditional
request to release all the resources. RET=NONE is the default. The active task
ends abnormally if it has not been assigned control of the resources.

,UCB=ucb addr
Specifies the address of a fullword that contains the address of a UCB for a
reserved device that is now being released. This parameter is used to release a
device reserved with the RESERVE macro and is valid only with a scope of
SYSTEMS. The UCB parameter is optional.

Note: The UCB keyword might contain a UCB address for a UCB that resides
in storage above or below 16 megabytes. If the UCB address might point to a
UCB above 16 megabytes, you must also specify LOC=ANY.

,LOC=BELOW
,LOC=ANY

Specifies the location of the input UCB address. ANY specifies that the input

DEQ macro

472 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

UCB address is to be treated as a 31-bit address. BELOW specifies that the
input UCB address is to be treated as a 24-bit address. The default is
LOC=BELOW.

,RNL=YES
,RNL=NO

Specifies whether the system is to perform RNL processing, which might
change the scope value of a resource. You must specify the same RNL option
as you used in the ENQ macro that requested the resource. The default is
RNL=YES.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and can be any valid
coding values.

,LINKAGE=SVC
,LINKAGE=SYSTEM

Specifies the type of linkage the caller is using to invoke the DEQ service.

For LINKAGE=SVC, the linkage is through an SVC instruction. This linkage is
valid only when the caller is in primary mode and the primary, home, and
secondary address spaces are the same.

For LINKAGE=SYSTEM, the linkage uses a non-SVC entry. This linkage is
valid in cross memory mode or in non-cross memory mode.
LINKAGE=SYSTEM is intended to be used by programs in cross memory
mode.

The default is LINKAGE=SVC.

ABEND codes
For only unconditional requests, the caller might encounter abend code X'130' or
X'530'. For unconditional and conditional requests, the caller might encounter one
of the following abend codes:
v X'230'
v X'330'
v X'430'
v X'730'
v X'830'
v X'930'

See z/OS MVS System Codes for explanations and responses for these codes.

Return and reason codes
Return codes are provided by the system only if RET=HAVE is designated. If all of
the return codes for the resources named in DEQ are 0, register 15 contains 0. If
any of the return codes are not 0, register 15 contains the address of a virtual
storage area containing the return codes as shown in Figure 4 on page 474.

DEQ macro

Chapter 85. DEQ — Release a serially reusable resource 473

The return codes are placed in the parameter list resulting from the macro
expansion in the same sequence as the resource names in the DEQ macro.

The return codes for the DEQ macro with the RET=HAVE parameter are described
in Table 14.

Table 14. Return Codes for the DEQ Macro with the RET=HAVE Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The system has released the resource.

Action: None.

4 Meaning: The resource has been requested for the task, but the task has not
been assigned control of it. The task continues waiting. (This return code might
result if an exit routine, which received control because of an interruption,
issued the DEQ macro on behalf of the task.)

Action: None.

8 Meaning: Control of the resource has not been requested by the active task, or
the resource has already been released.

Action: None required. However, you might take some action based on your
application.

Example 1
Release control of the resource in Example 1 of ENQ (see Chapter 92, “ENQ —
Request control of a serially reusable resource,” on page 563), if it has been
assigned to the current task.
DEQ (MAJOR1,MINOR1,,STEP),RET=HAVE

Address
Returned in
Register 15

Return
Codes

1
0

2 3 4

12

12

24

36

Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

RC1

RC2

RC3

RCN

Figure 4. Return Code Area Used by DEQ

DEQ macro

474 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Example 2
Unconditionally release control of the resources in Example 2 of ENQ. The length
of the rname for the first resource is 3 characters and the length of the rname for the
third resource is 8 characters. Allow the length of the second resource to default to
its assembled length.
DEQ (MAJOR4,MINOR4,3,STEP,MAJOR2,MINOR2,,SYSTEM, X

MAJOR3,MINOR3,8,SYSTEMS)

DEQ—List form
Use the list form of the DEQ macro to construct a control program parameter list.
The number of qname, rname, and scope combinations in the list form of DEQ must
be equal to the maximum number of qname, rname, and scope combinations in any
execute form of DEQ that refers to that list form.

The list form of the DEQ macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede DEQ.

DEQ

� One or more blanks must follow DEQ.

(

qname addr qname addr: A-type address.

, rname addr: A-type address.

,rname addr

, rname length: symbol or decimal digit.

,rname length

, Default: STEP

,STEP

,SYSTEM

,SYSTEMS

)

,RET=NONE Default: RET=NONE

,RET=HAVE

DEQ macro

Chapter 85. DEQ — Release a serially reusable resource 475

Syntax Description

,UCB=ucb addr ucb addr: A-type address.

,LOC=BELOW Default: LOC=BELOW

,LOC=ANY

,RNL=YES Default: RNL=YES

,RNL=NO

,RELATED=value value: any valid macro keyword specification.

,MF=L

Parameters
The parameters are explained under the standard form of the DEQ macro, with the
following exception:

,MF=L
Specifies the list form of the DEQ macro.

DEQ - Execute form
A remote control program parameter list is used in, and can be modified by, the
execute form of the DEQ macro. The parameter list can be generated by the list
form of either the DEQ or the ENQ macro.

The execute form of the DEQ macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede DEQ.

DEQ

� One or more blanks must follow DEQ.

(Note: (and) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired, then (,), and all parameters
between (and) should not be specified. If something in the list is desired,
then (,), and all parameters in the list should be specified as indicated at
the left.

qname addr qname addr: RX-type address, or register (2) - (12).

DEQ macro

476 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

, rname addr: RX-type address, or register (2) - (12).

,rname addr

, rname length: symbol, decimal digit, or register (2) - (12).

,rname length

,

,STEP

,SYSTEM

,SYSTEMS

) Note: See note opposite (above.

,RET=NONE

,RET=HAVE

,UCB=ucb addr ucb addr: RX-type address, or register (2) - (12).

Note: Specify UCB only with SYSTEMS.

,LOC=BELOW Default: LOC=BELOW

,LOC=ANY

,RNL=YES

,RNL=NO

,RELATED=value value: any valid macro keyword specification.

,LINKAGE=SVC DEFAULT: LINKAGE=SVC

,LINKAGE=SYSTEM

,MF=(E,list addr) list addr: RX-type address, or register (1) - (12).

Parameters
The parameters are explained under the standard form of the DEQ macro, with the
following exception:

,MF=(E,list addr)
Specifies the execute form of the DEQ macro.

list addr specifies the area that the system uses to contain the parameters.

DEQ macro

Chapter 85. DEQ — Release a serially reusable resource 477

DEQ macro

478 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 86. DETACH — Detach a subtask

Description
The DETACH macro removes from the system a subtask created using the
ATTACH (or ATTACHX) macro with the ECB or ETXR parameters. Subtasks
created using the ATTACH macro without specifying the ECB or ETXR parameters
are automatically removed by the system when they terminate. If a task attaches a
subtask with the ECB or ETXR parameters, the originating task must detach the
subtask before terminating.

You can issue a DETACH macro only for subtasks created by the active task.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, and any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller may not hold any locks.
Control parameters: Must be in the primary address space.

Programming requirements
If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before
you issue DETACH.

Restrictions
v Failure to remove subtasks created using the ATTACH macro with the ECB or

ETXR parameters causes the originating task and all of its subtasks to terminate
abnormally.

v Detaching a terminated subtask that was created without the ECB or ETXR
parameters will cause the originating task and all its subtasks to terminate
abnormally.

v Detaching a task that has not yet terminated will cause that task and all its
subtasks (but not the originating task) to terminate abnormally.

v The caller cannot have an EUT FRR established.

Input register information
Before issuing the DETACH macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2015 479

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The DETACH macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DETACH.

DETACH

� One or more blanks must follow DETACH.

tcb addr tcb addr: Symbol, RX-type address, or register (1) or (2) - (12).

,STAE=NO
,STAE=YES

Default: STAE=NO

,RELATED=value

Parameters
The parameters are explained as follows:

DETACH macro

480 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

tcb addr
Specifies the address of a fullword on a fullword boundary containing the
address of the task control block for the subtask to be removed from the
system.

,STAE=NO
,STAE=YES

Specifies whether the ESTAE-type routine (STAI, ESTAI, STAE, ESTAE)
established by the subtask is to receive control or whether previously
established ESTAE-type routines existing for the subtasks are to receive control.

If you specify STAE=YES, any ESTAE-type routines associated with the
detached task will receive control if the task is detached while active.

If you specify STAE=NO, only the ESTAE-type routines that were established
through the ATTACH, ESTAE, or ESTAEX macros, with TERM=YES, will
receive control in this event.

When an ESTAE-type routine gains control as a result of a DETACH, no retry
is allowed even if one is requested in the routine. For more information about
recovery processing, refer to z/OS MVS Programming: Assembler Services Guide.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

ABEND codes
The caller of DETACH might receive one of the following ABEND codes:

ABEND Code Associated Reason Code
X'13E' None
X'23E' 0, 4, 8
X'33E' None
X'43E' None
X'53E' None

See z/OS MVS System Codes for explanations and responses to these codes.

Return and reason codes
When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Return Code

Meaning and Action

00 Meaning: Successful completion.

Action: None.

04 Meaning: Environmental error. An incomplete subtask was detached
with STAE=YES specified; DETACH processing successfully completed.

Action: None required. However, you might take some action based
upon your application.

DETACH macro

Chapter 86. DETACH — Detach a subtask 481

Example 1
Remove the subtask from the address space. The address of the TCB is in the
fullword labeled SAVEWORD.
DETACH SAVEWORD

Example 2
In addition to removing the subtask from the address space, give control to the
most recent STAE exit established by the subtask if the subtask has not yet been
terminated.
DETACH (1),STAE=YES

DETACH macro

482 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 87. DIV — Data-in-virtual

Description
The DIV macro establishes a window in an address space, data space, or
hiperspace to reference and update data from a data-in-virtual object without
actually issuing I/O instructions. The data-in-virtual object can be a VSAM linear
data set or a nonshared standard hiperspace.

The DIV macro accesses a data object on permanent storage through paging I/O.
Data-in-virtual maps the object onto a single virtual address range so your
program can view it as beginning at a virtual location and occupying a consecutive
virtual address range.

If the window is in an address space or a data space, use assembler instructions to
access data. If the window is in a hiperspace, use the HSPSERV macro to access
data in 4K-byte blocks.

The DIV macro performs the following services:

Service
Function

IDENTIFY
Identifies you as a user of a data-in-virtual object.

ACCESS
Provides access to the data-in-virtual object.

MAP Makes the data-in-virtual object addressable through your virtual window.

RESET
Releases changes made in your window since the last SAVE operation.

SAVE Saves changed data that is in your window.

SAVELIST
Returns the addresses of the first and last changed pages in each range of
changed pages within the window.

UNMAP
Eliminates the correspondence between the data-in-virtual object and your
virtual window.

UNACCESS
Eliminates your access to the data-in-virtual object.

UNIDENTIFY
Ends your use of the data-in-virtual object.

The services of data-in-virtual execute synchronously, that is, control does not
return from the DIV macro until the service is completed. Thus, before you can
successfully invoke a service, the previous service must be complete.

For guidance information on the use of data-in-virtual, see z/OS MVS Programming:
Assembler Services Guide.

© Copyright IBM Corp. 1988, 2015 483

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

Programming requirements
Before using the DIV macro, the caller must first create either a linear data set
object or a hiperspace object. The user must also supply a standard 72-byte save
area.

Restrictions
v When you attach a new task, you cannot pass ownership of a mapped virtual

storage window to the new task. That is, you cannot use the ATTACH or
ATTACHX keywords GSPV and GSPL to pass the mapped virtual storage.

v While your program is in cross-memory mode, your program cannot invoke
data-in-virtual services; however, your program can reference and update data in
a mapped virtual storage window.

v The task that obtains the ID (through DIV IDENTIFY) is the only one that can
issue other DIV services for that ID.

v When you identify a data-in-virtual object using the IDENTIFY service, you
cannot request a checkpoint until you invoke the corresponding UNIDENTIFY
service.

v When you use DIV with the IARVSERV macro to share data in virtual storage,
you must follow several requirements; see the chapter about sharing data
through IARVSERV in z/OS MVS Programming: Assembler Services Guide. The DIV
macro does not support VSAM extended format linear data sets for use as a DIV
object for which the size is greater than 4GB.

Input register information
The DIV macro is sensitive to the SYSSTATE macro with the OSREL parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the DIV macro,
the caller does not have to place any information into any general purpose
register (GPR) unless using it in register notation for a particular parameter, or
using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents

13 The address of an 18-word save area

DIV macro

484 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR 15 contains a nonzero return code; otherwise, used as
a work register by the system

1 Used as a work register by the system

2-14 Unchanged

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0 and 1
Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
v By using the DIV macro, you might reduce the amount of I/O. The SAVELIST

service additionally improves performance of the application when it is
necessary to inspect and verify data only in pages that have changed.

v Using LOCVIEW=MAP on a DIV ACCESS request degrades performance. Use
LOCVIEW=NONE request whenever possible. You can use LOCVIEW=MAP
request for small data objects without significant performance loss.

v Using RETAIN=YES on a DIV UNMAP request can degrade performance. Using
RETAIN=YES causes the system to read more pages from the object.

Syntax
The standard form of the DIV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DIV.

DIV

� One or more blanks must follow DIV.

DIV macro

Chapter 87. DIV — Data-in-virtual 485

Syntax Description

Valid parameters:

(Underlined parameters are those that you must specify.)

IDENTIFY ID, TYPE, DDNAME or STOKEN

ACCESS ID, MODE, SIZE, LOCVIEW

MAP ID, AREA, OFFSET, SPAN, STOKEN, RETAIN, PFCOUNT

RESET ID, OFFSET, SPAN, RELEASE

SAVE ID, OFFSET, SPAN, SIZE, STOKEN, LISTADDR, LISTSIZE, MF

SAVELIST ID, LISTADDR, LISTSIZE, MF

UNMAP ID, AREA, RETAIN, STOKEN

UNACCESS ID

UNIDENTIFY ID

,ID=addr addr: RX-type address, or register (2) - (12).

,AREA=addr addr: RX-type address, or register (2) - (12).

,DDNAME=addr addr: RX-type address, or register (2) - (12).

,LISTADDR=listaddr addr: RX-type address, or register (2) - (12).

,LISTSIZE=listsize addr: RX-type address, or register (2) - (12).

,LOCVIEW=MAP Default: LOCVIEW=NONE

,LOCVIEW=NONE

,MODE=READ Default: None

,MODE=UPDATE

,OFFSET=addr addr: RX-type address, or register (2) - (12).

,OFFSET=* Default: OFFSET=0

,RETAIN=YES Default: RETAIN=NO

,RETAIN=NO

,SIZE=addr addr: RX-type address, or register (2) - (12).

,SIZE=*

,SPAN=addr addr: RX-type address, or register (2) - (12).

,SPAN=*

,STOKEN=addr addr: RX-type address.

DIV macro

486 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,TYPE=DA Default: None

,TYPE=HS

,PFCOUNT=nnn Default: 0

,RELEASE=YES Default: RELEASE=NO

,RELEASE=NO

Parameters
The IDENTIFY, ACCESS, MAP, SAVE, SAVELIST, RESET, UNMAP, UNACCESS,
and UNIDENTIFY parameters, which designate the services of the DIV macro, are
mutually exclusive. You can select only one. The parameters are explained as
follows:

IDENTIFY
Selects the data-in-virtual object (linear data set or hiperspace) that you want
to process. When you specify IDENTIFY, you must also specify ID and TYPE.
ID specifies the address of an eight-byte field into which the IDENTIFY service
returns a unique eight-byte name. When you invoke other data-in-virtual
services, you use this identifier, or token, as input. The use of the ID is
associated only with your task; that is, all services for this ID must be
requested by the same task that obtained the ID.

When the object is a data set, you must also specify TYPE=DA and DDNAME.
When the object is a nonshared standard hiperspace, you must specify
TYPE=HS and STOKEN.

ACCESS
Requests permission to access a data-in-virtual object. When you specify
ACCESS, you must also specify ID and MODE, and you may optionally
specify SIZE or LOCVIEW. ID specifies the token which identifies the object
you want to access. If your object is a hiperspace, ACCESS allows either
multiple readers or one updater. Therefore, the system does not accept a read
request if there is already an updater, and it does not accept an update request
if there is any other user currently accessing the same object. You cannot access
a hiperspace as a data object if it is, or has been on an access list.

MAP
Establishes addressability to the object in a specified range of virtual storage,
called the virtual window. When you specify MAP, you must also specify ID
and AREA, and you may optionally specify OFFSET, SPAN, STOKEN,
RETAIN, and PFCOUNT. Specify STOKEN when your window is in a data
space or a standard hiperspace. If your window is in an address space, your
object can be either a linear data set or a nonshared standard hiperspace. If
your window is in a data space or a hiperspace, your object can be only a
linear data set.

If you specified TYPE=DA, you can issue more than one MAP with different
STOKENs. You cannot mix data space and hiperspace maps with address space
maps under the same ID at any one time.

DIV macro

Chapter 87. DIV — Data-in-virtual 487

RESET
Releases changes made in the window since the last SAVE operation. When
you specify RESET, you must also specify ID, and you may optionally specify
OFFSET, SPAN, and RELEASE. If the window corresponds to blocks on the
object, the current contents of the object will replace the data that has changed
in the window when the program next references the window. RESET does not
change the object.

Do not specify RESET for a storage range that contains DREF storage.

SAVE
Writes changed pages from the window to the corresponding blocks in the
object. When you specify SAVE, you must also specify ID, and you may
optionally specify OFFSET, SPAN, SIZE, and STOKEN. The system writes
changed pages from the window into the blocks specified by OFFSET and
SPAN. SAVE cannot change the size of a hiperspace object.

Do not specify SAVE for a storage range that contains DREF storage.

Optionally, SAVE accepts a user list that the application specifies through the
LISTADDR and LISTSIZE parameters. The user list contains information
returned by the SAVELIST service. If you specify a user list as input for SAVE,
you cannot specify OFFSET and SPAN, and the system saves only those pages
specified in the user list.

SAVELIST
Returns the addresses of the first and last changed pages in each range of
changed pages within the window. The mapped ranges may be either address
spaces, data spaces, or hiperspaces. If more than one data space or hiperspace
is mapped onto a DIV object, the selected range must be contained within a
single data space or hiperspace.

UNMAP
Terminates a virtual window by removing the correspondence between virtual
pages in the window and blocks in the object. After the UNMAP is complete,
the contents of the pages depend on the value you specify for RETAIN; the
virtual pages in the former window either retain the current view of the object
or appear as if they had just been obtained.

When you specify UNMAP, you must also specify ID and AREA, and you may
specify RETAIN and STOKEN if the object is a data set and the window is in a
data space or a hiperspace. UNMAP has no effect on the object itself and does
not save data from the virtual window. If you want to save the data in the
window, invoke SAVE before you invoke UNMAP.

If you issued multiple MAPs with different STOKENs, use STOKEN on
UNMAP. If you do not specify STOKEN, the system scans the mapped ranges
and unmaps the first range that matches the virtual area regardless of the data
space it is in. Issuing UNACCESS or UNIDENTIFY automatically unmaps all
mapped ranges.

UNACCESS
Relinquishes your permission to read from or write to a data-in-virtual object.
When you specify UNACCESS, you must also specify ID, which provides the
address of the unique name that was returned by the IDENTIFY service. When
you invoke UNACCESS, any outstanding windows for the specified ID are
automatically unmapped with an implied RETAIN=NO.

UNIDENTIFY
Ends the use of a data-in-virtual object under a previously assigned ID. When
you specify UNIDENTIFY, you must also specify ID, which provides the

DIV macro

488 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

address of the unique name that was returned by the IDENTIFY service. If the
object is still accessed or mapped under the specified ID, the system will
automatically unaccess and unmap it with an implied RETAIN=NO.

,ID=addr
Specifies the address of a field in storage where the IDENTIFY service stores a
unique eight-byte name that it associates with the object. This name acts as a
token and is the output value from the IDENTIFY service. It is a required input
value for all the other services.

,AREA=addr
Specifies the address of a four-byte field in storage containing a pointer to the
start of the virtual window. You must specify the AREA parameter when you
invoke the MAP and the UNMAP services. The starting address for an
UNMAP request must be identical to the starting address of its corresponding
MAP request. Address space virtual storage that is occupied by a window
must meet the following requirements:
v The window must begin on a 4096-byte (page) boundary and must be a

multiple of 4096 bytes long.
v Virtual storage within the window must have been obtained from a single,

pageable, private area subpool owned by the task that issued the IDENTIFY.
v The window cannot contain VIO storage.
v Pages within the window cannot be page fixed.

Data space and hiperspace virtual storage that is occupied by a window must
meet the following requirements.
v The window must be on a 4096-byte boundary and must be a multiple of

4096 bytes long.
v The data space or hiperspace must be owned or created by the task

specifying the MAP service.
v The data space or hiperspace must exist until you specify the UNMAP

service for all mapped ranges.
v The specified mapped range must lie within the current bounds of the data

space or hiperspace.

,DDNAME=addr
Specifies the address of a field containing the ddname for the data set object
when you specify TYPE=DA on IDENTIFY. The first byte of the field must be
the number of characters in the ddname. The bytes following the first byte
must contain the EBCDIC characters of the ddname itself. The ddname must
conform to the standard syntax for ddnames (one through eight alphameric or
national characters). DDNAME is required when you invoke IDENTIFY with
TYPE=DA for a data set object but is not allowed when you specify TYPE=HS
for a hiperspace object. Do not specify a DDNAME that corresponds to a
VSAM extended format linear data set for which the size is greater than 4GB,
because the DIV macro does not support them for use as a DIV object.

,LISTADDR=listaddr
Specifies the address of a 4-byte field that contains a pointer to the user list
that the caller provides for the SAVELIST service.

,LISTSIZE=listsize
Specifies the address of a 4-byte field that contains the number of entries in the
user list for the SAVELIST service. The size of the list must be a minimum of
three entries and a maximum of 255 entries, where each entry contains two
words.

DIV macro

Chapter 87. DIV — Data-in-virtual 489

,LOCVIEW=MAP
,LOCVIEW=NONE

Specifies whether the system is to create a local copy of the data-in-virtual
object. For hiperspace objects, you must specify LOCVIEW=NONE or use the
default.

LOCVIEW=MAP specifies that the system is to establish a local copy of the
data set object for the specified range. Use MAP to maintain a consistent view
in the virtual storage window of data on permanent storage in environments
where there are multiple writers or at least one reader and writer at the same
time to the object.

LOCVIEW=NONE specifies that the system is not to create a local copy of the
object. NONE is the default. Use NONE in environments where there is either
a single writer, OR one or more readers, but not both at the same time.

,MODE=READ
,MODE=UPDATE

Specifies whether the object is being accessed for the purpose of reading or
updating. If you are using the SAVE service to update an object, specify
MODE=UPDATE. Otherwise, specify MODE=READ to signify read-only access
to the object. You must specify MODE whenever you specify ACCESS.

,OFFSET=addr
,OFFSET=*

Specifies the beginning of a continuous range of blocks in a data-in-virtual
object. OFFSET is used with SPAN to define a continuous range of blocks in an
object. OFFSET designates the location of the first block in the range, and
SPAN designates how many blocks are in the range. An OFFSET value of zero
designates the first block (the beginning) of an object. The system permits an
OFFSET beyond the current end of the object as long as it remains within the
maximum number of blocks allowed for the object and also within the absolute
limit of (2**20)-1 blocks. If you omit OFFSET or specify OFFSET=*, the system
uses a default OFFSET of zero. You can specify the OFFSET parameter with
MAP, RESET, and SAVE.

,RETAIN=YES
,RETAIN=NO

Determines what data appears in the window when you invoke the MAP
service, and what data is left in virtual storage when you invoke UNMAP.

When you specify RETAIN=YES with MAP, the data in the virtual range stays
the same. The system considers all pages in the range changed. When you
specify RETAIN=NO (or use the default) with MAP, data in the object replaces
the data in virtual range.

When you specify RETAIN=NO with UNMAP, the data in the virtual range
becomes freshly obtained. When you specify RETAIN=YES with UNMAP, the
virtual range retains its current view.

,SIZE=addr
,SIZE=*

Specifies the address of a field where the system stores the size of the object.
The system returns the size in this field whenever you specify SAVE or
ACCESS and also specify SIZE. When the system returns control after
executing a SAVE, the value that it returns is the minimum number of blocks
that must be mapped to ensure that the entire object is mapped. If you omit
SIZE or specify SIZE=*, the system does not return the size.

DIV macro

490 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

If you specified TYPE=DA for a linear data set object, and you specify SIZE,
the macro returns the current size of the object in the four-byte location that
SIZE designates.

If you specified TYPE=HS for a hiperspace object, and you specify SIZE,
ACCESS returns two sizes in the eight-byte location. The first is the current
size of the hiperspace (in 4K byte units), and the second is the maximum size
of the hiperspace (also in 4K byte units).

Specify SIZE only when you specify ACCESS or SAVE.

,SPAN=addr
,SPAN=*

Specifies the address of a four-byte field containing the number of blocks that
are to be processed. Use SPAN only with the MAP, RESET, or SAVE services,
which operate only on a range of contiguous blocks. SPAN indicates how
many blocks are in the range. It is used with OFFSET, which indicates the first
block of the range.

For the RESET and SAVE services, the block range can include noncontiguous
mappings of an object. This lets you reset or save several maps in a single DIV
macro invocation.

For the MAP service, the block range can extend beyond the end of the object,
but it cannot extend beyond the maximum size allowed for the object. You can
create a window that exceeds the size of the object. The maximum span
allowed is (2**20)-1 blocks.

If you omit SPAN or specify SPAN=*, or if the four-byte field contains zero, the
system uses the SPAN default value. For the SAVE and RESET services, the
default value is the number of blocks in the object from the specified or
defaulted block to the end of the last mapped range. For the MAP service, the
default is the current size of the object in blocks, minus the value specified by
OFFSET. If the offset value is beyond the end of the object, the span defaults to
one when you omit SPAN.

,STOKEN=addr
Specifies the address of an eight-byte field that identifies a hiperspace or data
space. STOKEN is valid only with the IDENTIFY, MAP, SAVE, and UNMAP
parameters. Specify STOKEN with MAP to map a linear data set object onto
data space or hiperspace virtual storage, or to unmap data space or hiperspace
storage.

With MAP, the system maps the permanent object into the data space or
hiperspace that the STOKEN represents. If you do not specify STOKEN, the
mapping applies to the primary address space. With UNMAP, STOKEN
identifies which data space or hiperspace contains the window to be
unmapped.

If you specified TYPE=HS for a hiperspace object, specify STOKEN with
IDENTIFY. The system does not verify the STOKEN until you use the
associated ID with ACCESS.

,TYPE=DA
,TYPE=HS

TYPE=DA specifies that your program is using a data definition statement to
identify a VSAM linear data set as the data object. The DIV macro does not
support VSAM extended format linear data sets for use as a DIV object for
which the size is greater than 4GB. TYPE=HS specifies that your program is
using STOKEN to identify a hiperspace as the data object. The hiperspace must
be a nonshared standard type and must be owned by the task issuing the

DIV macro

Chapter 87. DIV — Data-in-virtual 491

IDENTIFY. Only the owner of the hiperspace can issue any subsequent
ACCESS, MAP, and SAVE. You can use a nonshared standard hiperspace if no
program has ever issued ALESERV ADD for that hiperspace. You cannot issue
ALESERV ADD for a nonshared standard hiperspace while it is a data object.

,PFCOUNT=nnn
Specifies the additional pages the system is to read into real storage on a page
fault. nnn is an unsigned decimal number from 0 to 255. If you specify an
integer greater than 255, the system uses 255. Zero is the default. If you omit
PFCOUNT or specify PFCOUNT=0, the system reads blocks from the data
object one at a time. In any case, the system reads in successive pages only to
the end of the virtual range of the mapped area containing the originally
referenced page.

Use PFCOUNT if your program accesses the mapped object in a sequential
manner. Because you get a page fault the first time you reference each page,
reading into real storage multiple consecutive pages on each page fault might
decrease the number of page faults and improve your program's performance.

PFCOUNT applies to movement of pages from the object to central storage.
PFCOUNT does not apply to movement of changed or unchanged data that
the system has moved to the real storage as a direct result of system
management of the real storage.

,RELEASE=YES
,RELEASE=NO

Specify RELEASE=YES to release all virtual pages in the reset range. Specify
RELEASE=NO or use the default to release only changed pages in the reset
range. RELEASE=NO does not replace unchanged pages in the window with a
new copy of pages from the object. It replaces only changed pages. If another
ID might have changed the object itself while you viewed data in the window,
specify RELEASE=YES to reset all pages. Any subsequent reference to these
pages will cause the system to load a new copy of the data page from the
object.

ABEND codes
DIV might abnormally terminate with abend code X'08B'. See z/OS MVS System
Codes for an explanation and programmer response.

Return and reason codes
When the system returns control to the caller after the DIV macro executes, it
supplies a return code in the low-order (rightmost) byte of general register 15 and
a reason code in the two low-order bytes of register 0. After an unsuccessful
completion, the system abnormally terminates the caller and supplies an abend
code of X'08B' and a reason code in the two low-order bytes of general register 15.
See z/OS MVS System Codes for a detailed explanation of the reason codes for
abend code X'08B'.

The hexadecimal values of the reason and return codes are:

Reason Code Return Code Abend Code Meaning and Action

none 00 — Meaning: Successful completion.

Action: None.

0001 none 08B Meaning: Unknown service was requested.

Action: None.

DIV macro

492 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Reason Code Return Code Abend Code Meaning and Action

0002 none 08B Meaning: Unknown parameter list format.

Action: None.

0003 none 08B Meaning: Input parameter list cannot be
addressed.

Action: None.

0004 none 08B Meaning: Storage specified in the
parameter list cannot be addressed.

Action: None.

0005 none 08B Meaning: The parameter list contains a
reserved field that does not contain binary
zeros.

Action: None.

0006 none 08B Meaning: The caller is not running in task
mode.

Action: None.

0007 none 08B Meaning: The caller is in cross memory
mode.

Action: None.

0008 none 08B Meaning: The specified TYPE is not valid.

Action: None.

0009 none 08B Meaning: The supplied ID is not valid or
is an ID that the caller cannot use.

Action: None.

000A 08 — Meaning: Environmental error. Another
service is currently executing with the
specified ID.

Action: Retry the request one or more
times until the other service currently
executing for this ID completes.

000B none 08B Meaning: The object is already accessed
with the specified ID.

Action: None.

000C none 08B Meaning: The caller does not have proper
RACF® authorization to the requested
object.

Action: None.

000D none 08B Meaning: The requested window exceeds
the maximum allowable size for the object.

Action: None.

000E none 08B Meaning: The object is not currently
accessed for the specified ID.

Action: None.

DIV macro

Chapter 87. DIV — Data-in-virtual 493

Reason Code Return Code Abend Code Meaning and Action

000F none 08B Meaning: The specified range overlaps a
range that is already mapped for the
specified ID.

Action: None.

0010 none 08B Meaning: The specified range overlaps
another mapped range in the current
address space or in the specified data
space.

Action: None.

0011 none 08B Meaning: Undetermined user error.

Action: None.

0012 none 08B Meaning: The virtual storage specified
does not begin on a 4K boundary.

Action: None.

0013 none 08B Meaning: The virtual storage specified is
not in a pageable private area subpool.

Action: None.

0014 none 08B Meaning: The virtual range specified
cannot be used to map an object.

Action: None.

0015 none 08B Meaning: The caller did not issue
GETMAIN for at least one page in the
specified range.

Action: None.

0016 none 08B Meaning: The virtual range specified
contains at least one fixed page and you
did not specify RETAIN=YES.

Action: None.

0017 0C — Meaning: System error. Portions of virtual
storage mapping the object were not
addressable, and therefore, could not be
saved. (There was either a paging I/O
error or data occupying a bad real frame.)

Action: Retry the request. If the problem
persists, record the return and reason code
and supply it to the appropriate IBM
support personnel.

0018 none 08B Meaning: The caller does not have
UPDATE access to the object.

Action: None.

0019 none 08B Meaning: A page to be saved or reset was
in the page fixed state.

Action: None.

DIV macro

494 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Reason Code Return Code Abend Code Meaning and Action

001A 04 — Meaning: Program error. The specified
range does not encompass any mapped
area of the object.

Action: None required. However, you
might want to check that the specified
range for this operation was correct.

001B none 08B Meaning: The virtual storage area specified
to be unmapped is not currently mapped.

Action: None.

001C 08 — Meaning: Environmental error. The object
cannot be accessed at the current time.

Action: Retry the request one or more
times until the operation succeeds.

001D none 08B Meaning: The accessed object is not at the
correct control interval size.

Action: None.

001E none 08B Meaning: The length of the ddname
exceeds the maximum size allowed.

Action: None.

001F none 08B Meaning: The caller's storage protect key is
not the same as when IDENTIFY was
invoked.

Action: None.

0020 none 08B Meaning: An ACCESS was attempted by a
task that does not own the specified ID.

Action: None.

0021 0C — Meaning: System error. Portions of the
object could not be retained in virtual
storage as requested.

Action: Retry the request. If the problem
persists, record the return and reason code
and supply it to the appropriate IBM
support personnel.

0022 none 08B Meaning: The task that issued IDENTIFY
(or the task for which it is a subtask) does
not own the virtual storage it is attempting
to map.

Action: None.

0023 none 08B Meaning: Part or all of the specified
storage to be mapped is not in the user's
key.

Action: None.

0024 none 08B Meaning: The caller requested a DIV
service holding the local lock.

Action: None.

DIV macro

Chapter 87. DIV — Data-in-virtual 495

Reason Code Return Code Abend Code Meaning and Action

0025 none 08B Meaning: The caller requested a DIV
service while not in a correct calling
environment.

Action: None.

0026 none 08B Meaning: The caller requested a DIV
service, but was not in a 31-bit addressing
mode.

Action: None.

0027 none 08B Meaning: The specified offset and span
describe a range that goes beyond the
maximum supported object size.

Action: None.

0028 08 — Meaning: Program error. The caller tried to
access an empty data set with
MODE=READ specified.

Action: None required. If the data set was
not expected to be empty, check return
codes from previous DIV operations to
ensure that the data was saved as
expected.

0029 none 08B Meaning: The caller tried to map into a
disabled reference (DREF) data space.

Action: None.

002A none 08B Meaning: The caller tried to map the object
into a data space. However, the caller has
specified LOCVIEW=MAP to access the
object.

Action: None.

002B none 08B Meaning: The data space is not big enough
to contain the window.

Action: None.

002C none 08B Meaning: The caller requested a data space
or hiperspace MAP with address space
MAPs outstanding, or an address space
MAP with data space or hiperspace MAPs
outstanding under the given ID.

Action: None.

002D 04 — Meaning: The data space has been deleted.
However, the requested UNMAP has been
successful.

Action: None.

002E none 08B Meaning: The data space has been deleted.
The requested UNMAP cannot be
performed. At least one page in the
SAVELIST range was in a deleted data
space.

Action: None.

DIV macro

496 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Reason Code Return Code Abend Code Meaning and Action

0036 none 08B Meaning: STOKEN does not represent a
valid data space that the caller can use.

Action: None.

0037 04 — Meaning: Program error. The caller
invoked ACCESS. The ACCESS is
successful, but the system is issuing a
warning that the data set was not allocated
with a SHAREOPTIONS(1,3) and that
LOCVIEW=MAP was not specified with
ACCESS.

Action: None required. However, to
eliminate the possibility of potential errors,
you should allocate the data set to be used
as a DIV object with SHAREOPTIONS(1,3),
or you should specify LOCVIEW=MAP
when the DIV ACCESS is done.

0038 none 08B Meaning: The caller invoked ACCESS, but
ACCESS failed because the data set was
not allocated as a linear data set.

Action: None.

0039 none 08B Meaning: The caller specified SAVE or
RESET for a storage range that contains
DREF storage. The SAVE or RESET was
unsuccessful.

Action: None.

003A none 08B Meaning: The program attempted to map
an ESO hiperspace. You can map only to a
standard type hiperspace.

Action: None.

003B none 08B Meaning: The caller requested UNMAP
with RETAIN=YES for a hiperspace
window. You must specify RETAIN=NO or
use the default.

Action: None.

003C none 08B Meaning: The caller requested UNMAP
with RETAIN=YES for a mapped standard
hiperspace object. You must specify
RETAIN=NO or use the default.

Action: None.

003D none 08B Meaning: The STOKEN for the object
associated with the specified ID does not
represent a valid hiperspace that this
request can use.

Action: None.

DIV macro

Chapter 87. DIV — Data-in-virtual 497

Reason Code Return Code Abend Code Meaning and Action

003E 08 — Meaning: Environmental error. The
hiperspace object cannot be accessed at this
time. The number of current READs might
exceed the maximum allowed. (If
MODE=READ, the object is already
accessed under a different ID for UPDATE.
If MODE=UPDATE, the object is already
accessed under at least one other ID.)

Action: Retry the request one or more
times until the operation succeeds.

003F none 08B Meaning: The caller specified
LOCVIEW=MAP for an ID associated with
a hiperspace object.

Action: None.

0040 08 — Meaning: Environmental error. The
specified MAP range would extend the
data object beyond the installation data
space limits.

Action: Retry the MAP operation with a
smaller range specified, or map this range
onto a different DIV object.

0041 none 08B Meaning: The caller specified a STOKEN
with an ID representing a hiperspace
object. Mapping data space virtual storage
onto a hiperspace object is not allowed.

Action: None.

0042 none 08B Meaning: The hiperspace you are
specifying as a data object has been the
object of an ALESERV ADD macro, and is
therefore ineligible to be used as a DIV
object.

Action: None.

0043 04 — Meaning: Program error. The specified
range has no pages that have been altered.

Action: None required. However, you
might want to check that the specified
range for this operation was correct.

0044 04 — Meaning: Successful completion. The table
is full and there are more ranges to check.

Action: None required. However, to obtain
all of the information regarding changed
pages, you can either retry the SAVELIST
operation with a larger list, or you can
obtain a new OFFSET and SPAN from the
last entry in the returned list, and invoke
SAVELIST another time to fill in the list
with additional changed page information.

DIV macro

498 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Reason Code Return Code Abend Code Meaning and Action

0045 08 — Meaning: Environmental error. Storage for
the SAVELIST operation could not be
obtained. The DIV request is rejected.

Action: Retry the request one or more
times. If the problem persists, check with
the operator to see if another user in the
installation is causing the problem, or if the
entire installation is experiencing storage
constraint problems.

0046 none 08B Meaning: The LISTSIZE specified is not
valid.

Action: None.

0047 none 08B Meaning: SAVE and either LISTADDR or
LISTSIZE is specified.

Action: None.

0048 none 08B Meaning: All or a portion of a range
specified in the user's SAVELIST does not
intersect with a mapped region.

Action: None.

0049 none 08B Meaning: While using a user list with
SAVE, the caller specified either OFFSET or
SPAN.

Action: None.

004A none 08B Meaning: Addresses in the user list are not
valid, not on a page boundary, or the start
address is higher than the end address.

Action: None.

004B none 08B Meaning: Selected range spans across
multiple data spaces or hiperspaces.

Action: None.

004C none 08B Meaning: The caller specified SAVE for a
data space or hiperspace, but did not
supply a value for STOKEN.

Action: None.

004D none 08B Meaning: The caller is not authorized to
access the requested data.

Action: None.

0052 none 08B Meaning: The specified virtual range
contains at least one protected page.

Action: Remove the protection status from
the protected pages in the specified virtual
range. Then issue the DIV macro again. If
you want to invoke MAP or UNMAP and
want to preserve the protection status,
specify RETAIN=YES when you issue the
macro.

DIV macro

Chapter 87. DIV — Data-in-virtual 499

Reason Code Return Code Abend Code Meaning and Action

0801 08 — Meaning: Environmental error. Storage to
build the necessary data-in-virtual control
block structure could not be obtained.

Action: Retry the request one or more
times. If the problem persists, check with
the operator to see if another user in the
installation is causing the problem, or if the
entire installation is experiencing storage
constraint problems.

0802 08 — Meaning: System error. I/O driver failure.

Action: Retry the request. If the problem
persists, record the return and reason code
and supply it to the appropriate IBM
support personnel.

0803 0C — Meaning: System error. A necessary page
table could not be read into central (also
called real) storage.

Action: Retry the request. If the problem
persists, record the return and reason code
and supply it to the appropriate IBM
support personnel.

0804 0C — Meaning: System error. Catalog update
failed.

Action: Retry the request. If the problem
persists, record the return and reason code
and supply it to the appropriate IBM
support personnel.

0805 none 08B Meaning: System error. Indeterminate
origin.

Action: None.

0806 0C — Meaning: System error. I/O error.

Action: Retry the request. If the problem
persists, record the return and reason code
and supply it to the appropriate IBM
support personnel.

0807 04 — Meaning: Environmental error. Media
damage might be present in allocated
DASD space. The damage is beyond the
currently saved portion of the object. The
SAVE completed successfully.

Action: None required. However, do not
attempt to increase the size of this DIV
object.

0808 08 — Meaning: System error. I/O from a
previous request has not completed.

Action: Retry the request. If the problem
persists, record the return and reason code
and supply it to the appropriate IBM
support personnel.

DIV macro

500 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Example 1
Identify a hiperspace as a data object. The hiperspace's STOKEN is at HSSTOK.
IDENTIFY is to return the ID at DIVOBJID.
DIV IDENTIFY,TYPE=HS,STOKEN=HSSTOK,ID=DIVOBJID

Example 2
Whenever a page fault on a page in the mapped range requires that the system
read the page from the data set object, the system, if possible, preloads up to seven
additional pages, virtually successive to the fault page.
DIV MAP,ID=DIVOBJID,AREA=MAPPTR1,SPAN=SPANVAL,OFFSET=*,STOKEN=DSSTOK,PFCOUNT=7

DIV - List form

Syntax
The list form of the DIV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DIV.

DIV

� One or more blanks must follow DIV.

Valid parameters:

(Underlined parameters are those that you must specify.)

IDENTIFY ID, TYPE, DDNAME or STOKEN

ACCESS ID, MODE, SIZE, LOCVIEW

MAP ID, AREA, OFFSET, SPAN, STOKEN, RETAIN, PFCOUNT

RESET ID, OFFSET, SPAN, RELEASE

SAVE ID, OFFSET, SPAN, SIZE, STOKEN, LISTADDR, LISTSIZE, MF

SAVELIST ID, LISTADDR, LISTADDR, MF

UNMAP ID, AREA, RETAIN, STOKEN

UNACCESS ID

UNIDENTIFY ID

,ID=addr addr: A-type address

,AREA=addr addr: A-type address

,DDNAME=addr addr: A-type address

DIV macro

Chapter 87. DIV — Data-in-virtual 501

Syntax Description

,LISTADDR=addr addr: RX-type address, or register (2) - (12).

,LISTSIZE=addr addr: RX-type address, or register (2) - (12).

,LOCVIEW=MAP Default: LOCVIEW=NONE

,LOCVIEW=NONE

,MODE=READ Default: None

,MODE=UPDATE

,OFFSET=addr addr: A-type address

,OFFSET=*

,RETAIN=YES Default: RETAIN=NO

,RETAIN=NO

,SIZE=addr addr: A-type address

,SIZE=*

,SPAN=addr addr: A-type address

,SPAN=*

,STOKEN=addr addr: A-type address

,TYPE=DA Default: None

,TYPE=HS

,PFCOUNT=nnn Default: 0

,RELEASE=YES Default: RELEASE=NO

,RELEASE=NO

,MF=L See explanation of parameters if omitted.

Parameters
,MF=L

Specifies the list form of the DIV macro. The list form generates the DIV
parameter list in line without any executable code or register usage.

DIV macro

502 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

DIV - Execute form

Syntax
The execute form of the DIV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DIV.

DIV

� One or more blanks must follow DIV.

Valid parameters:

(Underlined parameters are those that you must specify.)

IDENTIFY ID, TYPE, DDNAME or STOKEN

ACCESS ID, MODE, SIZE, LOCVIEW

MAP ID, AREA, OFFSET, SPAN, STOKEN, RETAIN, PFCOUNT

RESET ID, OFFSET, SPAN, RELEASE

SAVE ID, OFFSET, SPAN, SIZE, STOKEN, LISTADDR, LISTSIZE, MF

SAVELIST ID, LISTADDR, LISTSIZE, MF

UNMAP ID, AREA, RETAIN, STOKEN

UNACCESS ID

UNIDENTIFY ID

,ID=addr addr: RX-type address, or register (2) - (12).

,AREA=addr addr: RX-type address, or register (2) - (12).

,DDNAME=addr addr: RX-type address, or register (2) - (12).

,LISTADDR=addr addr: RX-type address, or register (2) - (12).

,LISTSIZE=addr addr: RX-type address, or register (2) - (12).

,LOCVIEW=MAP Default: LOCVIEW=NONE

,LOCVIEW=NONE

,MODE=READ Default: None

,MODE=UPDATE

DIV macro

Chapter 87. DIV — Data-in-virtual 503

Syntax Description

,OFFSET=addr addr: RX-type address, or register (2) - (12).

,OFFSET=*

,RETAIN=YES Default: RETAIN=NO.

,RETAIN=NO

,SIZE=addr addr: RX-type address, or register (2) - (12).

,SIZE=*

,SPAN=addr addr: RX-type address, or register (2) - (12).

,SPAN=*

,STOKEN=addr addr: RX-type address.

,TYPE=DA Default: None

,TYPE=HS

,PFCOUNT=nnn Default: 0

,RELEASE=YES Default: RELEASE=NO

,RELEASE=NO

,MF=(E,addr)

Parameters
,MF=(E,addr)

Specifies the execute form. In the execute form, DIV will be called using the
parameter list specified by “addr”. “addr” indicates the address of the
parameter list and may be (a) any address that is valid in an RX-type
assembler language instruction or (b) one of the general registers 2 through 12
specified within parentheses. The register may be expressed either symbolically
or as a decimal integer. The specified parameter list will be updated for any
parameters that are specified. Other parameter fields will be unaffected.

DIV - Modify form

Syntax
The modify form of the DIV macro is written as follows:

Syntax Description

DIV macro

504 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DIV.

DIV

� One or more blanks must follow DIV.

Valid parameters:

(Underlined parameters are those that you must specify.)

IDENTIFY ID, TYPE, DDNAME or STOKEN

ACCESS ID, MODE, SIZE, LOCVIEW

MAP ID, AREA, OFFSET, SPAN, STOKEN, RETAIN, PFCOUNT

RESET ID, OFFSET, SPAN, RELEASE

SAVE ID, OFFSET, SPAN, SIZE, STOKEN, LISTADDR, LISTSIZE, MF

SAVELIST ID, LISTADDR, LISTSIZE, MF

UNMAP ID, AREA, RETAIN, STOKEN

UNACCESS ID

UNIDENTIFY ID

,ID=addr addr: RX-type address, or register (2) - (12).

,AREA=addr addr: RX-type address, or register (2) - (12).

,DDNAME=addr addr: RX-type address, or register (2) - (12).

,LISTADDR=addr addr: RX-type address, or register (2) - (12).

,LISTSIZE=addr addr: RX-type address, or register (2) - (12).

,LOCVIEW=MAP Default: LOCVIEW=NONE

,LOCVIEW=NONE

,MODE=READ Default: None

,MODE=UPDATE

,OFFSET=addr addr: RX-type address, or register (2) - (12).

,OFFSET=*

,RETAIN=YES Default: RETAIN=NO

,RETAIN=NO

DIV macro

Chapter 87. DIV — Data-in-virtual 505

Syntax Description

,SIZE=addr addr: RX-type address, or register (2) - (12).

,SIZE=*

,SPAN=addr addr: RX-type address, or register (2) - (12).

,SPAN=*

,STOKEN=addr addr: RX-type address

,TYPE=DA Default: None

,TYPE=HS

,PFCOUNT=nnn Default: 0

,RELEASE=YES Default: RELEASE=NO

,RELEASE=NO

,MF=(M,addr) See explanation of parameters if omitted.

Parameters
,MF=(M,addr)

Specifies the MODIFY form. The modify form of the macro is used to modify
an already defined DIV parameter list. It is exactly the same as the EXECUTE
form except that DIV is not called. The contents of registers 1 and 15 are
destroyed.

DIV macro

506 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 88. DOM — Delete operator message

Description
The DOM macro deletes an operator message or group of messages from the
display screen of the operator's console. It can also prevent messages from ever
appearing on any operator's console. When a program no longer requires that a
message be displayed, it can issue the DOM macro to delete the message.

Depending on the timing of the DOM relative to the WTO(R), the message may or
may not be displayed. If the message is being displayed, it is removed when space
is required for other messages.

When a WTO or WTOR macro is issued, the system assigns an identification
number to the message and returns this number (24 bits right-justified) to the
issuing program in general register 1. When you no longer need this message
displayed, issue the DOM macro using the identification number that was returned
in general register 1.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit F
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

Programming requirements
None.

Restrictions
If you are deleting messages by lists of DOM IDs, you cannot delete more than 60
at a time.

Register information

Input register information
Before issuing the DOM macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2015 507

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The DOM macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DOM.

DOM

� One or more blanks must follow DOM.

MSG=addr addr: Register (1) - (12), or an address.

MSGLIST=list addr list addr: Symbol, RX-type address, or register (1) - (12).

TOKEN=addr addr: Register (1) - (12), or an address.

,COUNT=addr addr: Register (2) - (12), or an address.

Parameters
The parameters are explained as follows:

MSG=addr
MSGLIST=list addr

Specifies the message numbers of messages to be deleted.

For MSG, the address or register contains the 32-bit, right-justified
identification number of the message to be deleted. Use this parameter to
delete a single message.

For MSGLIST, the address is of a list of one or more fullwords, each word
containing a 32-bit, right-justified identification number of a message to be
deleted. A maximum of 60 identification numbers may be in the message list.
If more than 60 identification numbers are in the list, only the first 60 are

508 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

processed. Begin the list on a fullword boundary. When you are not using the
COUNT parameter, indicate the end of the list by setting the high-order bit of
the last fullword entry to 1.

Attention: DOM ids should not be altered from the 32-bit value returned in
register 1 by the WTO or WTOR macro, except to turn on the high-order bit
(x'80000000') in the last entry in a list.

Note: MSGLIST identification numbers of zero (0), while counted against the
maximum allowed of sixty (60), are ignored and not processed in any way (i.e.
not presented to any exits or the SSI and not sent to other systems).

,TOKEN=addr
Specifies a field or register containing a 4-byte token that is associated with
messages to be deleted. Using the TOKEN parameter is an alternate method
for identifying messages, which is independent of the register 1 message ID.
When you issue WTO or WTOR to write a message, you can specify a token
value. To delete that WTO or WTOR message, specify the same token value by
issuing DOM with the TOKEN parameter. You cannot use the token value on
the DOM macro unless you specified that token value on the WTO or WTOR
macro that wrote the message. Issuing DOM with the TOKEN parameter
deletes all messages issued through WTO or WTOR with the same token value.
Unauthorized users may delete only those messages which were originally
issued under the same jobstep TCB, ASID and system ID. The value of the
token may not be the same as the ID that was returned in register 1 after a
WTO or WTOR. This keyword is mutually exclusive with the MSG, MSGLIST,
and COUNT keywords.

,COUNT=addr
The count field or register contains the one-byte count of messages to be
deleted (specified on the MSG or MSGLIST parameters) associated with this
request. The count value must be from 1 to 60. If this keyword is used, the
issuer must not set the high order bit on in the last entry of the DOM
parameter list. If this keyword is not specified, the DOM ids are treated as
32-bit ids. If an address is used instead of a register, the address points to a
1-byte field which contains the count. The COUNT keyword is invalid with the
TOKEN keyword.

Note: For any DOM keywords that allow a register specification, the value must be
right-justified in the register and the remaining bytes within the register must be
zero.

Example 1
Delete an operator message whose message id is in register 1.
DOM MSG=(1)

Example 2
Delete a number of operator messages. The COUNT parameter indicates how
many messages are to be deleted.
DOM MSGLIST=ID3,COUNT=COUNT4

Example 3
Delete all messages issued with a particular token.
DOM TOKEN=TOKEN1

Chapter 88. DOM — Delete operator message 509

|
|
|

510 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 89. DSPSERV — Create, delete, and control data
spaces

Description

The DSPSERV macro creates, deletes, and controls data spaces. A data space is a
range of up to two gigabytes of contiguous virtual storage addresses that a
program can directly manipulate through assembler instructions. A data space can
hold only user data and user programs stored as data; code does not execute in a
data space.

There are three kinds of data spaces: SCOPE=SINGLE, SCOPE=ALL, and
SCOPE=COMMON. A SCOPE=SINGLE data space is used in ways similar to the
use of the private area of an address space. A SCOPE=ALL or SCOPE=COMMON
data space is used in ways similar to the use of the common area of an address
space. A problem state program with PSW key 8 - F cannot create or delete a
SCOPE=ALL or SCOPE=COMMON data space. However, it can use these spaces,
providing a supervisor state program or a program with PSW key 0 - 7 created the
space and established addressability to the space on its behalf. For more
information on data spaces and how to use them, see z/OS MVS Programming:
Assembler Services Guide.

Use the DSPSERV macro to perform the following functions:
v Create a data space (CREATE parameter and TYPE=BASIC parameter).
v Delete a data space (DELETE parameter).
v Release an area of a data space (RELEASE parameter).
v Increase the current size of a data space (EXTEND parameter).
v Load an area of a data space into central storage (LOAD parameter).
v Take (that is, page out) from real storage an area of a data space (OUT

parameter).
v Back data space virtual pages with 1 M page frames, if possible

(PAGEFRAMESIZE=1M).

On the DSPSERV macro, data spaces are identified through STOKENs. A STOKEN
is a unique identifier of address spaces, data spaces, and hiperspaces.

DSPSERV for hiperspaces

To control the use of hiperspaces, use the variation of the DSPSERV macro described
under Chapter 90, “DSPSERV — Create, delete, and control hiperspaces,” on page 527.

© Copyright IBM Corp. 1988, 2015 511

|
|

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: A problem state program with PSW key 8-F can use

DSPSERV to create a SCOPE=SINGLE data space. For all
other DSPSERV services, that program must own the data
space.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

Programming requirements
If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before
you issue DSPSERV. SYSSTATE ASCENV=AR tells the system to generate code
appropriate for AR mode.

If you use the RELEASE parameter to specify a range of storage using
INLIST=YES, you must use the RANGLIST parameter to specify a range list that is
mapped by the IARDRL macro. For information on the IARDRL macro, see z/OS
MVS Data Areas in z/OS Internet Library at http://www.ibm.com/systems/z/os/
zos/bkserv/.

Restrictions
None.

Input register information
Before issuing the DSPSERV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

DSPSERV macro for data spaces

512 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the DSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DSPSERV.

DSPSERV

� One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)

CREATE STOKEN, NAME, TYPE, GENNAME, OUTNAME, BACK, BLOCKS,
TTOKEN, ORIGIN, NUMBLKS, PAGEFRAMESIZE

RELEASE STOKEN, START, BLOCKS, INLIST, RANGLIST, NUMRANGE

DELETE STOKEN

EXTEND STOKEN, BLOCKS, VAR, NUMBLKS

LOAD STOKEN, BLOCKS, START

OUT STOKEN, BLOCKS, START

,PAGEFRAMESIZE=4K Default: PAGEFRAMESIZE=4K

,PAGEFRAMESIZE=1M

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,TYPE=BASIC Default: TYPE=BASIC

,NAME=name-addr name-addr: RX-type address or register (2) - (12).

,GENNAME=NO Default: GENNAME=NO

,GENNAME=COND

DSPSERV macro for data spaces

Chapter 89. DSPSERV — Create, delete, and control data spaces 513

|

||

||

Syntax Description

,GENNAME=YES

,OUTNAME=outname-addr outname-addr: RX-type address or register (2) - (12).

,START=start-addr start-addr: RX-type address or register (2) - (12).

,BLOCKS=(max-addr,init-addr) max-addr: RX-type address or register (2) - (12).

,BLOCKS=(max,init) init-addr: RX-type address or register (2) - (12).

,BLOCKS=max max: Number up to 524288.

,BLOCKS=(0,init) init: Number up to 524288.

,BLOCKS=0 0 specifies the installation default size.

,BLOCKS=(0,init-addr) Default for CREATE: BLOCKS=0

,BLOCKS=(size-addr) size-addr: RX-type address or register (2) - (12).

,BLOCKS=(size) size: Number up to 524288.

,BACK=31 Default: BACK=31

,BACK=64

,TTOKEN=ttoken-addr ttoken-addr: RX-type address or register (2) - (12).

,ORIGIN=origin-addr origin-addr: RX-type address or register (2) - (12).

,NUMBLKS=numblks-addr numblks-addr: RX-type address or register (2) - (12).

,INLIST=NO Default: INLIST=NO

,INLIST=YES

,RANGLIST=rangelist_addr rangelist_addr: RS-type address or register (2) - (12). Required with
INLIST=YES.

,NUMRANGE=numrange_addr numrange_addr: RS-type address or register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1

,VAR=NO Default: VAR=NO

,VAR=YES

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 0

,HIDEZERO=NO Default: HIDEZERO=NO

,HIDEZERO=YES

DSPSERV macro for data spaces

514 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,MF=S

Parameters
The CREATE, RELEASE, DELETE, EXTEND, LOAD, and OUT parameters, which
designate the services of the DSPSERV macro, are mutually exclusive. You can
select only one.

The parameters are explained as follows:

CREATE
Requests that the system create a data space. Creating a data space is
somewhat like issuing a GETMAIN for storage. The entire data space is in the
same storage key. When you specify CREATE, you must specify the NAME
and STOKEN parameters.

Optional parameters when you create a data space are: TYPE, GENNAME,
OUTNAME, BLOCKS, BACK, TTOKEN, ORIGIN, and NUMBLKS.

RELEASE
Requests that the system resources used to contain the user's data be returned
to the system. Although the data contained in the virtual storage is discarded,
the user's virtual storage itself remains and is available for further use. When
you specify RELEASE, you must also specify STOKEN to identify the data
space, and the START and BLOCKS parameters to identify the beginning and
the length of the area to be returned to the system.

A problem state program with PSW key 8 - F can release any data space it
owns or created, providing its PSW key matches the storage key of the data
space. Note that no exception to the caller's PSW key being zero or equal to the
key of the storage to be released is made for a storage-protection
override.However, if the program is using the IARVSERV macro to share the
data space, the program cannot release the data space if it is a shared group
and is fixed through another view.

Use DSPSERV RELEASE instead of using the MVCL instruction for these
reasons:
v The DSPSERV RELEASE is faster than MVCL for very large areas.
v Pages that are released through DSPSERV RELEASE do not occupy space in

real storage.

DELETE
Requests that the system delete a data space. STOKEN is the only required
parameter on the DELETE request.

A problem state program with PSW key 8 - F can delete any data space it
owns or created, providing its PSW key matches the storage key of the data
space.

EXTEND
Requests that the system increase the current size of a data space. Use
EXTEND only for a data space that was created with an initial size smaller
than a maximum size. Before a caller can reference storage beyond the current
size, the caller must use EXTEND to increase the storage that is available. If a

DSPSERV macro for data spaces

Chapter 89. DSPSERV — Create, delete, and control data spaces 515

caller references hiperspace storage beyond the current size, the system rejects
the request; it terminates the caller with an 0C4 abend code.

STOKEN (identifying the data space) and BLOCKS (specifying the size of the
increase) are required on the EXTEND request. VAR (requesting a variable
extension) and NUMBLKS (requesting the size of the extension) are optional
parameters.

For a problem state and PSW key 8 - F caller, any TCB can extend a data space
that was created by any other TCB in the address space.

The system rejects the EXTEND request if you specified VAR=NO (or took the
default) and the extended size would:
v Exceed the maximum size specified when the data space was created.
v For a data space with a storage key greater than 7, extend the cumulative

data space and hiperspace space totals beyond the installation limits for the
owning address space.

LOAD
Requests that the system load some areas of a data space into central storage.
The system fills the request depending on how many central storage frames
are available. When you specify LOAD, you must also specify the STOKEN,
START, and BLOCKS parameters.

For a problem state and PSW key 8 - F caller, the TCB that represents it owns
the data space.

OUT
Tells the system that it can take some areas of a data space from central
storage. When you specify OUT, you must also specify the STOKEN, START,
and BLOCKS parameters.

For a problem state and PSW key 8 - F caller, the TCB that represents it owns
the data space.

,PAGEFRAMESIZE=4K
,PAGEFRAMESIZE=1M

Specifies the size of the page frames to back the data space virtual pages.

,PAGEFRAMESIZE=4K
Backs data space virtual pages with 4 K page frames at first reference. This
is the default value.

,PAGEFRAMESIZE=1M
Backs data space virtual pages with pageable 1 M page frames at first
reference. If pageable 1 M page frames are not available at first reference, 4
K frames will be used.

,STOKEN=stoken-addr
Specifies the address of the eight-byte STOKEN for the data space. DSPSERV
CREATE returns the STOKEN as output; STOKEN is required input for all
other DSPSERV requests.

,TYPE=BASIC
Specifies that the system should create a data space rather than a hiperspace.
TYPE=BASIC is the default.

,NAME=name-addr
Specifies the address of the eight-byte variable or constant that contains the
name of the data space. NAME is required for DSPSERV CREATE.

DSPSERV macro for data spaces

516 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

|
|
|

|
|
|

|
|
|
|

Data space names are from one to eight bytes long. They can contain letters,
numbers, and @, #, and $, but they cannot contain embedded blanks. Names
that contain fewer than eight bytes must be left-justified and padded on the
right with blanks.

Data space and hiperspace names must be unique within the home address
space of the owner. No other data space or hiperspace in the home address
may have the same name. Therefore, in choosing names for your data spaces,
you must avoid using the same names that IBM uses for data spaces. Do not
use the following names:
v Names that begin with A through I.
v Names that begin with numerals or with SYS.

How to choose names for your data spaces: Use data space names that begin
with @, #, $, or the letters J through Z, with the exception of SYS. The system
abends problem state programs that begin names with SYS. Do not specify a
data space name beginning with a numeric if you are creating the data space
name.

To ensure that the names for your data spaces are unique, use the GENNAME
parameter to generate a unique name.

,GENNAME=NO
,GENNAME=COND
,GENNAME=YES

Specifies whether or not you want the system to generate a name for the data
space to ensure that all names are unique within the address space. The system
generates a name by adding a 5-character prefix (consisting of a numeral
followed by four characters) to the first three characters of the name you
supply on the NAME parameter. For example, if you supply ‘XYZDATA’ on
the NAME parameter, the name becomes ‘nCCCCXYZ’ where ‘n’ is the
numeral, ‘CCCC’ is the 4-character string generated by the system, and XYZ
comes from the name you supplied on NAME. See the NAME parameter for
the data space and hiperspace naming conventions.

GENNAME=NO
The system does not generate a name. You must supply a name unique
within the address space. GENNAME=NO is the default.

GENNAME=COND
The system generates a unique name only if you supply a name that is
already being used. Otherwise, the system uses the name you supply.

GENNAME=YES
The system takes the name you supply on the NAME parameter and
makes it unique.

Note: The maximum number of system names is 99,999. Once this
number has been reached, DSPSERV will fail with return code 8 and
reason code xx0012xx. The counter will not be reset to zero until all
system-generated names are deleted or the job is recycled.

If you want the system to return the unique name it generates, use the
OUTNAME parameter.

,OUTNAME=outname-addr
Specifies the address of the eight-byte variable where the system returns the
name it generated if you specify GENNAME=YES or GENNAME=COND on
DSPSERV CREATE. The OUTNAME parameter is optional.

DSPSERV macro for data spaces

Chapter 89. DSPSERV — Create, delete, and control data spaces 517

|
|
|
|

,START=start-addr
Specifies the address of a four-byte variable containing the beginning address
of a block of storage in a data space. The address must be on a four-kilobyte
boundary. START is required on RELEASE requests.

,BLOCKS=(max-addr,init-addr)
,BLOCKS=(max,init)
,BLOCKS=max
,BLOCKS=(0,init)
,BLOCKS=0
,BLOCKS=(0,init-addr)
,BLOCKS=size-addr
,BLOCKS=size

Specifies the size of the data space the system is to create, or the size of an
area within a data space. BLOCKS is required for all DSPSERV requests except
DSPSERV DELETE.

For a CREATE request, specifies the maximum size (in blocks) to which the
data space can expand (max-addr or max) and the initial size of the data space
(init-addr or init.). A block is a unit of 4K bytes. You cannot extend the data
space beyond its maximum size.

max-addr specifies the address of a field that contains the maximum size of the
data space to be created. max is the number of blocks (up to 524,288) to be
used for the data space.

init-addr specifies the address of the initial size of the data space. init is the
number of blocks to be used as the initial size. If the initial size you specify
exceeds or equals the maximum size, then the initial size becomes the
maximum size.

0 specifies the default size, either the installation default or the IBM-defined
default. The IBM-defined default maximum is 239 blocks. Your installation can
use the installation exit IEFUSI to change the IBM default. The system returns
the maximum size at the location identified by NUMBLKS.

If you do not code the BLOCKS parameter on the CREATE request, the system
uses BLOCKS=0, setting the initial size and the maximum size equal to the
installation (or IBM) default.

For a RELEASE request, BLOCKS and START are required parameters that
define contiguous storage (in 4K blocks) that the system is to release. BLOCKS
specifies the size of an area to be released (size-addr or size). The minimum size
is 1 block and the maximum is 524,288 blocks (2 gigabytes).

For an EXTEND request, BLOCKS is a required parameter that defines the
amount of increase of the current size of the data space.

For LOAD and OUT requests, BLOCKS is a required parameter that defines
the amount of data space storage that the system is to load into central storage
or page out from central storage.

BLOCKS=size-addr in MVS/SP3.1.0 is incompatible with BLOCKS=(size-addr) in
MVS/SP3.1.0e and later releases in the case where size-addr is a register. If you
coded BLOCKS=(register) in MVS/SP3.1.0, and plan to recompile the program
to run on later releases of MVS, you must change the specification to
BLOCKS=((register)) before you recompile.

,BACK=31

DSPSERV macro for data spaces

518 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,BACK=64
Specifies whether the data space pages can be backed by real storage above 2
gigabytes when defined IOON (fixed).

BACK=31 specifies that the data space pages will be backed by frames below 2
gigabytes when defined IOON.

BACK=64 specifies that the data space pages will be backed by frames above
or below 2 gigabytes when defined IOON.

,TTOKEN=ttoken-addr
Specifies the address of the TTOKEN, the 16-byte variable or constant that
identifies the task that is to become the owner of the data space. The TTOKEN
must represent either the caller's task or the caller's job step task. TTOKEN is
valid only on the CREATE request.

,ORIGIN=origin-addr
Specifies the address of the four-byte variable that contains the lowest address
(either zero or 4096) of the new data space. The system returns the beginning
address of the data space at origin-addr. The system tries to start all data spaces
at origin zero; on some processors, however, the origin is 4096. ORIGIN is an
optional parameter for DSPSERV CREATE.

,NUMBLKS=numblks-addr
Specifies the address of the four-byte area where the system returns one of the
following:
v For DSPSERV CREATE, the maximum size (in blocks) of the newly-created

data space.
v For DSPSERV EXTEND, the size by which the system extended the data

space.

The NUMBLKS parameter is an optional parameter on DSPSERV CREATE and
DSPSERV EXTEND.

If, when you create a data space, you specify BLOCKS=0 or do not specify the
BLOCKS parameter, the system uses the default that your installation
established in the installation exit IEFUSI. The system returns this default value
at numblks-addr.

,INLIST=NO
,INLIST=YES

Specifies whether a range is included (YES). The default is INLIST=NO. If you
specify YES, you must also specify the RANGLIST parameter.

,RANGLIST=rangelist-addr
Specifies the name (RS-type) or address (in register 2-12) of a required input
fullword that contains the address of the range list. The range list consists of a
number of entries (specified by NUMRANGE); each entry is 8 bytes long. A
mapping of each entry is provided through the mapping macro IARDRL.

,NUMRANGE=numrange_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional
parameter that provides the number of entries in the supplied RANGLIST. The
maximum value may not exceed 16. The default is 1.

,VAR=NO
,VAR=YES

Specifies whether or not your request for the system to extend the amount of
storage available in a data space is a variable request. When you use DSPSERV

DSPSERV macro for data spaces

Chapter 89. DSPSERV — Create, delete, and control data spaces 519

EXTEND for a data space, the system might not be able to extend the data
space the amount you request because that amount might cause the system to
exceed one of the following:
v The maximum size of the data space, as specified on the BLOCKS parameter

when the data space was created.
v For a data space with storage key 8 - F, the limit of combined data space and

hiperspace storage with storage key 8 - F for an address space. (The
installation established this limit on the IEFUSI installation exit, or took the
IBM default.)

If you specify VAR=YES (the variable request) and the system cannot satisfy
your request, the system extends the data space to one of the following sizes,
depending on which is smaller:
v The maximum size specified on the BLOCKS parameter when the data space

was created.
v The largest size that would still keep the combined data space and

hiperspace storage within the limits established by the installation for an
address space.

If you specify VAR=NO (the default), the system:
v Abends the caller if the extended size would exceed the maximum size

specified when the data space was created.
v Rejects the request if the data space has storage key 8 - F and the request

would extend the combined data space and hiperspace beyond the
installation limit for an address space.

If you use the NUMBLKS parameter, the system returns the size by which the
system extends the data space.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code, specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,HIDEZERO=NO

DSPSERV macro for data spaces

520 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,HIDEZERO=YES
An optional keyword input that specifies whether the system hides page 0 of
the data space so that references to that page do not succeed. Regardless, the
data space starts at the returned origin, and the number of blocks requested, if
available, are allocated. HIDEZERO=NO is the default.
v HIDEZERO=NO indicates not to hide page 0.
v HIDEZERO=YES indicates to hide page 0. The returned origin indicates the

lowest address that may be used which will be x'1000'. When
PageFrameSize=1M is in effect:
– The first segment is backed by 4K pages.
– If performance is critical, avoid using any address below X'100000'.

,MF=S
Specifies the standard form of DSPSERV. The standard form places the
parameters into an in-line parameter list.

ABEND codes
DSPSERV might abnormally terminate with abend code X'01D'. See z/OS MVS
System Codes for an explanation and programmer response.

Return and reason codes
Hexadecimal return and reason codes from DSPSERV CREATE:

Return Code Reason Code Meaning and Action

00 — Meaning: DSPSERV CREATE completed
successfully.

Action: None.

04 xx000Cxx Meaning: Program error. DSPSERV CREATE
completed successfully. You specified a size of 2
gigabytes (524,288 blocks). However, because the
processor did not support a data space with zero
origin, a data space of one less block (524,287 blocks)
was created.

Action: None required. However, you should verify
that your program correctly accounts for the nonzero
origin of the data space.

08 xx0005xx Meaning: Program error. Creation of the data space
would violate installation criteria. See the IEFUSI
installation exit in z/OS MVS Installation Exits.

Action: Check with your system programmer for
local restrictions on the creation and use of data
spaces.

08 xx0009xx Meaning: Program error. The specified data space
name is not unique within the address space.

Action: Check that the data space name is not
already in use by another active data space. Change
the data space name or specify the GENNAME
parameter on the DSPSERV macro to get the system
to generate a unique name.

DSPSERV macro for data spaces

Chapter 89. DSPSERV — Create, delete, and control data spaces 521

Return Code Reason Code Meaning and Action

08 xx0012xx Meaning: Environmental error. The system's set of
generated names for data spaces and hiperspaces
has been temporarily depleted.

Action: Retry the job one or more times during a
period of lower system usage. If the problem
persists, consult your system programmer, who
might be able to tune the system so that more names
are available for use.

0C xx0006xx Meaning: Environmental error. The system cannot
create any additional data spaces at this time
because of a shortage of resources.

Action: Retry the job one or more times during a
period of lower system usage. If the problem
persists, consult your system programmer, who
might be able to tune the system so that resources
will not become depleted.

0C xx0007xx Meaning: System error. The system cannot obtain
addressability to its data structures.

Action: Record the return and reason code and
supply it to the appropriate IBM support personnel.

Hexadecimal return and reason codes from DSPSERV EXTEND:

Return Code Reason Code Meaning

00 — Meaning: DSPSERV EXTEND completed
successfully.

Action: None.

08 xx0502xx Meaning: Environmental error. Extending the data
space would cause the data space and hiperspace
limits for the address space to be exceeded.

Action: Check with your system programmer, who
might be able to tune the system so that the function
is made available to your program.

08 xx0503xx Meaning: Program error. You are using VAR=YES to
extend the current size of the data space; however,
the data space is already the maximum size.

Action: None required. However, if your program
requires more storage, you should consider creating
an additional data space.

The caller of DSPSERV does not receive any return codes for the RELEASE,
DELETE, LOAD, and OUT services.

Example 1
Create a data space named TEMP with a size of 10 million bytes.
DSP1 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN,

BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
* .
DSPCNAME DC CL8’TEMP ’ DATA SPACE NAME

DSPSERV macro for data spaces

522 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE

Example 2
Release a range of storage.

LA 5,RANGELST
ST 5,RNGLSTPT
LA 5,RNGLSTPT

DSP2 DSPSERV RELEASE,STOKEN=DSPCSTKN,DISABLED=NO,INLIST=YES,
NUMRANGE=NUMRANGS,RANGLIST=(5)

*
RNGLSTPT DS F RANGE LIST ADDRESS
DSPCSTKN DS CL8 DATA SPACE STOKEN
NUMRANGS DC F’9’ NUMBER OF RANGES TO PROCESS
RANGELST DS CL256 STORAGE FOR MAX NUMBER OF RANGES
DRLMAP DS 0F THIS CREATES A DSECT

IARDRL MAPPING MACRO

DSPSERV—List form
Use the list form of the DSPSERV macro to construct a nonexecutable control
program parameter list.

Syntax
The list form of the DSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DSPSERV.

DSPSERV

� One or more blanks must follow DSPSERV.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 0

,MF=(L,list addr) list addr: Symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string.
Default: 0D

The parameters are explained as follows:

,MF=(L,list addr)

DSPSERV macro for data spaces

Chapter 89. DSPSERV — Create, delete, and control data spaces 523

,MF=(L,list addr,attr)
Specifies the list form of the DSPSERV macro. list addr defines the area that the
system is to use for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

DSPSERV—Execute form
The execute form of the DSPSERV macro can refer to and modify the parameter
list constructed by the list form of the macro.

Syntax
The execute form of the DSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DSPSERV.

DSPSERV

� One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)

CREATE STOKEN, NAME, TYPE, GENNAME, OUTNAME, BACK,

BLOCKS, TTOKEN, ORIGIN, NUMBLKS

RELEASE STOKEN, START, BLOCKS, INLIST, RANGLIST, NUMRANGE

DELETE STOKEN

EXTEND STOKEN, BLOCKS, VAR, NUMBLKS

LOAD STOKEN, BLOCKS, START

OUT STOKEN, BLOCKS, START

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,TYPE=BASIC Default: TYPE=BASIC

,NAME=name-addr name-addr: RX-type address or register (2) - (12).

,GENNAME=NO Default: GENNAME=NO

,GENNAME=COND

,GENNAME=YES

DSPSERV macro for data spaces

524 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,OUTNAME=outname-addr outname-addr: RX-type address or register (2) - (12).

,PAGEFRAMESIZE=4K Default: PAGEFRAMESIZE=4K

,PAGEFRAMESIZE=1M

,START=start-addr start-addr: RX-type address or register (2) - (12).

,BLOCKS=(max-addr,init-addr) max-addr: RX-type address or register (2) - (12).

,BLOCKS=(max,init) init-addr: RX-type address or register (2) - (12).

,BLOCKS=max max: Number up to 524288.

,BLOCKS=(0,init) init: Number up to 524288.

,BLOCKS=0 0 specifies the installation default size.

,BLOCKS=(0,init-addr) Default for CREATE: BLOCKS=0

,BLOCKS=(size-addr) size-addr: RX-type address or register (2) - (12)

,BLOCKS=(size) size: Number up to 524288.

,BACK=31 Default: BACK=31

,BACK=64

,TTOKEN=ttoken-addr ttoken-addr: RX-type address or register (2) - (12).

,ORIGIN=origin-addr origin-addr: RX-type address or register (2) - (12).

,NUMBLKS=numblks-addr numblks-addr: RX-type address or register (2) - (12).

,INLIST=NO Default: INLIST=NO

,INLIST=YES

,RANGLIST=rangelist-addr rangelist-addr: RS-type address or register (2) - (12). Required with
INLIST=YES

,NUMRANGE=numrange-addr numrange-addr: RS-type address or register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1

,VAR=NO Default: VAR=NO

,VAR=YES

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 0

DSPSERV macro for data spaces

Chapter 89. DSPSERV — Create, delete, and control data spaces 525

||

||

Syntax Description

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

The parameters are explained under the standard form of the DSPSERV macro
with the following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the DSPSERV macro. list addr defines the area that
the system uses for the parameter list. The system checks for required
parameters and supplies optional parameters that are not specified.

COMPLETE specifies that the system is to check for required parameters and
supply optional parameters that are not specified.

DSPSERV macro for data spaces

526 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 90. DSPSERV — Create, delete, and control
hiperspaces

Description

The DSPSERV macro creates, deletes, and controls hiperspaces. A hiperspace is a
range of up to two gigabytes of contiguous virtual storage addresses that a
program can use as a buffer. Like a data space, a hiperspace can hold user data
and programs stored as data; it does not contain common areas or system data.
Instructions do not execute in a hiperspace. Unlike a data space, data is not
directly addressable. To manipulate data in a hiperspace, you bring the data into
the address space in 4K-byte blocks.

A nonshared standard hiperspace, available to all programs, is backed with real
storage and if necessary, with auxiliary storage. Through the buffer area in the
address space, your program can view or “scroll” through the standard hiperspace.
A shared standard hiperspace is available to problem state programs with PSW
keys of 8 through F, but only under the control of programs in supervisor state or
with PSW keys of 0 through 7. An ESO (expanded storage only) hiperspace is
available only for supervisor state or PSW key 0 through 7 programs. For more
information on hiperspaces and how to use them, see z/OS MVS Programming:
Assembler Services Guide.

Use the DSPSERV macro to:
v Create a standard hiperspace (CREATE parameter and TYPE=HIPERSPACE

parameter)
v Delete a hiperspace (DELETE parameter)
v Release an area of a hiperspace (RELEASE parameter)
v Increase the current size of a hiperspace (EXTEND parameter)

On the DSPSERV macro, hiperspaces are identified through STOKENs. The
STOKEN is a unique identifier of address spaces, data spaces, and hiperspaces.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state programs with PSW key 8-F can request these

DSPSERV services:

v Create a nonshared standard hiperspace

v Delete any hiperspace they own

v Release an area of a hiperspace

v Increase the current size of a hiperspace

DSPSERV for data spaces

To control the use of data spaces, use the variation of the DSPSERV macro described
under Chapter 89, “DSPSERV — Create, delete, and control data spaces,” on page 511.

© Copyright IBM Corp. 1988, 2015 527

Environmental factor Requirement
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

Programming requirements
If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before
you issue DSPSERV. SYSSTATE ASCENV=AR tells the system to generate code
appropriate for AR mode.

If you use the RELEASE parameter to specify a range of storage using
INLIST=YES, you must use RANGLIST to specify a range list that is mapped by
the IARDRL macro. For information on the IARDRL macro, see z/OS MVS Data
Areas in z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/
bkserv/.

Restrictions
None.

Input register information
Before issuing the DSPSERV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

DSPSERV macro for hiperspaces

528 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the DSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DSPSERV.

DSPSERV

� One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)

CREATE STOKEN, NAME, TYPE, GENNAME, OUTNAME,

BLOCKS, ORIGIN, and NUMBLKS

RELEASE STOKEN, START, BLOCKS, INLIST, RANGLIST, NUMRANGE

DELETE STOKEN

EXTEND STOKEN, BLOCKS, VAR, NUMBLKS

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,TYPE=HIPERSPACE

,NAME=name-addr name-addr: RX-type address or register (2) - (12).

,GENNAME=NO Default: GENNAME=NO

,GENNAME=COND

,GENNAME=YES

,OUTNAME=outname-addr outname-addr: RX-type address or register (2) - (12).

,START=start-addr start-addr: RX-type address or register (2) - (12).

,BLOCKS=(max-addr,init-addr) max-addr: RX-type address or register (2) - (12).

,BLOCKS=(max,init) init-addr: RX-type address or register (2) - (12).

DSPSERV macro for hiperspaces

Chapter 90. DSPSERV — Create, delete, and control hiperspaces 529

Syntax Description

,BLOCKS=max max: Number up to 524288.

,BLOCKS=(0,init) init: Number up to 524288.

,BLOCKS=0 0 specifies the installation default size.

,BLOCKS=(0,init-addr) Default for CREATE: BLOCKS=0

,BLOCKS=(size-addr) size-addr: RX-type address or register (2) - (12).

,BLOCKS=(size) size: Number up to 524288.

,ORIGIN=origin-addr origin-addr: RX-type address or register (2) - (12).

,NUMBLKS=numblks-addr numblks-addr: RX-type address or register (2) - (12).

,INLIST=NO Default: INLIST=NO

,INLIST=YES

,RANGLIST=rangelist_addr rangelist_addr: RS-type address or register (2) - (12). Required with
INLIST=YES.

,NUMRANGE=numrange_addr numrange_addr: RS-type address or register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1

,VAR=NO Default: VAR=NO

,VAR=YES

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 0

,MF=S

Parameters
The CREATE, RELEASE, DELETE, and EXTEND parameters, which designate the
services of the DSPSERV macro, are mutually exclusive. You can select only one.

The parameters are explained as follows:

CREATE
Requests that the system create a nonshared standard hiperspace. Creating a
hiperspace is somewhat like issuing a GETMAIN for storage. The entire
hiperspace is in the same storage key. When you specify CREATE, you must
also specify NAME, STOKEN, and TYPE=HIPERSPACE.

Optional parameters when you create a hiperspace are: OUTNAME,
GENNAME, BLOCKS, ORIGIN, and NUMBLKS.

RELEASE
Requests that the system resources used to contain the user's data be returned
to the system. Although the data contained in the virtual storage is discarded,
the user's virtual storage itself remains and is available for further use. When
you specify RELEASE, you must also specify STOKEN to identify the

DSPSERV macro for hiperspaces

530 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

hiperspace, and the START and BLOCKS parameters to identify the beginning
and the length of the area to be returned to the system.

The caller must own the hiperspace, and the caller's PSW key must be zero or
equal to the key of the storage the system is to release. Otherwise, the system
abends the caller.

Pages that are released through DSPSERV RELEASE do not occupy space in
central, expanded, or auxiliary storage. These pages are available for further
use and contain hexadecimal zeros.

DELETE
Requests that the system delete a hiperspace. STOKEN is the only required
parameter on the DELETE request.

A problem state or PSW key 8 - F caller must own the hiperspace, and its PSW
key must be zero or equal to the storage key of the hiperspace the system is to
release.

EXTEND
Requests that the system increase the current size of a hiperspace. Use
EXTEND only for a hiperspace that was created with an initial size smaller
than a maximum size. Before a caller can reference storage beyond the current
size, the caller must use EXTEND to increase the storage that is available. If a
caller references hiperspace storage beyond the current size, the system rejects
the request; it terminates the caller with an 0C4 abend code.

STOKEN (identifying the hiperspace) and BLOCKS (specifying the size of the
increase) are required on the EXTEND request. VAR (requesting a variable
extension) and NUMBLKS (requesting the size of the extension) are optional
parameters.

For the problem state and PSW key 8 through F caller, the TCB that represents
it must own the hiperspace.

The system rejects the EXTEND request if you specified VAR=NO (or took the
default) and the extended size would:
v Exceed the maximum size specified when the hiperspace was created.
v For a hiperspace with a storage key greater than 7, extend the cumulative

data space and hiperspace totals beyond the installation limits for the
owning address space.

,STOKEN=stoken-addr
Specifies the address of the eight-byte STOKEN for the hiperspace being
created, deleted, or released.

DSPSERV CREATE returns the STOKEN; STOKEN is required input for all
other requests.

,TYPE=HIPERSPACE
Specifies that the system is to create a standard hiperspace rather than a data
space.

,NAME=name-addr
Specifies the address of the eight-byte variable or constant that contains the
name of the hiperspace. NAME is required for DSPSERV CREATE.

Hiperspace™ names are from one to eight bytes long. They can contain letters,
numbers, and @, #, and $, but they cannot contain embedded blanks. Names
that contain fewer than eight bytes must be left-justified and padded on the
right with blanks.

DSPSERV macro for hiperspaces

Chapter 90. DSPSERV — Create, delete, and control hiperspaces 531

Hiperspace and data space names must be unique within the home address
space of the owner. No other hiperspace or data space in the home address
space can have the same name. Therefore, in choosing names for your
hiperspaces, you must avoid using the same names that IBM might use for
hiperspaces. Do not use the following names:
v Names that begin with A through I.
v Names that begin with a numeral or with SYS.

How to choose names for your hiperspaces: Use hiperspace names that begin
with @, #, $, or the letters J through Z, with the exception of SYS. The system
abends problem state programs that begin names with SYS.

To ensure that the names for your hiperspaces are unique, ask the system to
generate a unique name. See the GENNAME parameter.

,GENNAME=NO
,GENNAME=COND
,GENNAME=YES

Specifies whether or not you want the system to generate a name for the
hiperspace to ensure that all names are unique within the address space. The
system generates a name by adding a 5-character prefix (consisting of a
numeral followed by four characters) to the first three characters of the name
you supply on the NAME parameter. For example, if you supply ‘XYZDATA’
on the NAME parameter, the name becomes ‘nCCCCXYZ’ where ‘n’ is the
numeral, ‘CCCC’ is the 4-character string generated by the system, and XYZ
comes from the name you supplied on NAME. See NAME for more
information about naming conventions.

GENNAME=NO
The system does not generate a name. You must supply a name unique
within the address space. GENNAME=NO is the default.

GENNAME=COND
The system generates a unique name only if you supply a name that is
already being used. Otherwise, the system uses the name you supply.

GENNAME=YES
The system takes the name you supply on the NAME parameter and
makes it unique.

If you want the system to return the unique name it generates, use the
OUTNAME parameter.

,OUTNAME=outname-addr
Specifies the address of the eight-byte variable where the system returns the
name it generated for the hiperspace. the generated name of the hiperspace if
you specify GENNAME=YES or GENNAME=COND. The OUTNAME
parameter is optional on DSPSERV CREATE.

,START=start-addr
Specifies the address of a four-byte variable containing the beginning address
of a block of storage in a hiperspace. The address must be on a four-kilobyte
boundary. A block is a unit of 4K bytes. START is required on a RELEASE
request.

,BLOCKS=(max-addr,init-addr)
,BLOCKS=(max,init)
,BLOCKS=max
,BLOCKS=(0,init)
,BLOCKS=0

DSPSERV macro for hiperspaces

532 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,BLOCKS=(0,init-addr)
,BLOCKS=size-addr
,BLOCKS=size

Specifies the size of a hiperspace or the size of an area within a hiperspace.
BLOCKS is required for all requests except for DSPSERV DELETE.

For a CREATE request, specifies the maximum size (in blocks) to which the
hiperspace can expand (max-addr or max) and the initial size of the hiperspace
(init-addr or init.). A block is a unit of 4K bytes. You cannot extend the
hiperspace beyond its maximum size.

max-addr specifies the address of a field that contains the maximum size of the
hiperspace to be created. max is the number of blocks (up to 524,288) to be
used for the hiperspace.

init-addr specifies the address of the initial size of the hiperspace. init is the
number of blocks to be used as the initial size. If the initial size you specify
exceeds or equals the maximum size, then the initial size becomes the
maximum size.

0 specifies the default size, either the installation default or the IBM-defined
default. The IBM-defined default maximum is 239 blocks. Your installation can
use the installation exit IEFUSI to change the IBM default. The system returns
the maximum size at the location identified by NUMBLKS.

If you do not code the BLOCKS parameter on the CREATE request, the system
uses BLOCKS=0, setting the initial size and the maximum size equal to the
installation (or IBM) default.

For a RELEASE request, BLOCKS and START are required parameters that
define contiguous storage (in 4K blocks) that the system is to release. BLOCKS
specifies the size of an area to be released (size-addr or size). The minimum size
is 1 block and the maximum is 524,288 blocks (2 gigabytes).

For an EXTEND request, BLOCKS is a required parameter that defines the
amount of increase of the current size of the hiperspace.

,ORIGIN=origin-addr
Specifies the address of the four-byte variable that contains the lowest address
(either zero or 4096) of the new hiperspace. The system returns the beginning
address of the hiperspace at origin-addr. The system tries to start all hiperspaces
at origin zero; on some processors, however, the origin is 4096. ORIGIN is an
optional parameter for DSPSERV CREATE.

,NUMBLKS=numblks-addr
Specifies the address of the four-byte area where the system returns one of the
following:
v For DSPSERV CREATE, the maximum size (in blocks) of the newly created

hiperspace.
v For DSPSERV EXTEND, the size by which the system extended the

hiperspace.

The NUMBLKS parameter is an optional parameter on DSPSERV CREATE and
DSPSERV EXTEND.

If, when you create a hiperspace, you specify BLOCKS=0 or do not specify the
BLOCKS parameter, the system uses the default that your installation
established in the installation exit IEFUSI. The system returns this default value
at numblks-addr.

,INLIST=NO

DSPSERV macro for hiperspaces

Chapter 90. DSPSERV — Create, delete, and control hiperspaces 533

,INLIST=YES
Specifies whether a range is included (YES). The default is INLIST=NO. If you
specify YES, you must also specify the RANGLIST parameter.

,RANGLIST=rangelist-addr
Specifies the name (RS-type) or address (in register 2-12) of a required input
fullword that contains the address of the range list. The range list consists of a
number of entries (specified by NUMRANGE); each entry is 8 bytes long. A
mapping of each entry is provided through the mapping macro IARDRL.

,NUMRANGE=numrange_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional
parameter that provides the number of entries in the supplied RANGLIST. The
maximum value may not exceed 16. The default is 1.

,VAR=NO
,VAR=YES

Specifies whether your request for the system to extend the amount of storage
available in a hiperspace is a variable request. When you use DSPSERV
EXTEND for a hiperspace, the system might not be able to extend the
hiperspace by the amount you request, because that amount might cause the
system to exceed one of the following:
v The maximum size of the hiperspace, as specified on the BLOCKS parameter

when the hiperspace was created.
v For a hiperspace with storage key 8 - F, the limit of combined data space

and hiperspace storage with storage key 8 - F for an address space. (The
installation established this limit on the IEFUSI installation exit, or took the
IBM default.)

If you specify VAR=YES (the variable request) and the system cannot satisfy
your request, the system extends the hiperspace to one of the following sizes,
depending on which is smaller:
v The maximum size specified on the BLOCKS parameter when the hiperspace

was created.
v The largest size that would still keep the combined total of data space and

hiperspace storage within the limits established by the installation for an
address space.

If you specify VAR=NO (the default), the system:
v Abends the caller if the extended size would exceed the maximum size

specified when the hiperspace was created.
v Rejects the request if the hiperspace has storage key 8 - F and the request

would extend the cumulative data space and hiperspace totals beyond the
installation limits for an address space.

If you use the NUMBLKS parameter, the system returns the size by which the
system extends the hiperspace.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:

DSPSERV macro for hiperspaces

534 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code, specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
Specifies the standard form of DSPSERV. The standard form places the
parameters into an in-line parameter list.

ABEND codes
DSPSERV might abnormally terminate with abend code X'01D'. See z/OS MVS
System Codes for an explanation and programmer response.

Return and reason codes
Hexadecimal return and reason codes from DSPSERV CREATE:

Return Code Reason Code Meaning and Action

00 — Meaning: DSPSERV CREATE completed
successfully.

Action: None.

04 xx000Cxx Meaning: Program error. DSPSERV CREATE
completed successfully. You specified a size of 2
gigabytes (524,288 blocks). However, because the
processor did not support a hiperspace with zero
origin, a hiperspace of one less block (524,287
blocks) was created.

Action: None required. However, you should verify
that your program correctly accounts for the nonzero
origin of the hiperspace.

08 xx0005xx Meaning: Program error. Creation of the hiperspace
would violate installation criteria. See the IEFUSI
installation exit in z/OS MVS Installation Exits.

Action: Check with your system programmer for
local restrictions on the creation and use of
hiperspaces.

DSPSERV macro for hiperspaces

Chapter 90. DSPSERV — Create, delete, and control hiperspaces 535

Return Code Reason Code Meaning and Action

08 xx0009xx Meaning: Program error. The specified hiperspace
name is not unique within the address space.

Action: Check that the hiperspace name is not
already in use by another active hiperspace. Change
the hiperspace name or specify the GENNAME
parameter on the DSPSERV macro to get the system
to generate a unique name.

08 xx0012xx Meaning: Environmental error. The system's set of
generated names for data spaces and hiperspaces
has been temporarily depleted.

Action: Retry the job one or more times during a
period of lower system usage. If the problem
persists, consult your system programmer, who
might be able to tune the system so that more names
are available for use.

0C xx0006xx Meaning: Environmental error. The system cannot
create any additional data spaces at this time
because of a shortage of resources.For reason code
6C000611, an ASTE could not be obtained for the
requested data space. If the request is for a
SCOPE=COMMON data space, this may mean there
are already as many SCOPE=COMMON data spaces
in the system as are allowed by the MAXCAD
parameter.

Action: Retry the job one or more times during a
period of lower system usage. If the problem
persists, consult your system programmer, who
might be able to tune the system so that resources
will not become depleted.

0C xx0007xx Meaning: System error. The system cannot obtain
addressability to its own hiperspaces.

Action: Record the return and reason code and
supply it to the appropriate IBM support personnel.

Hexadecimal return and reason codes from DSPSERV EXTEND:

Return Code Reason Code Meaning and Action

00 — Meaning: DSPSERV EXTEND completed
successfully.

Action: None.

08 xx0502xx Meaning: Environmental error. Extending the
hiperspace size would cause the data space and
hiperspace limits for the address space to be
exceeded.

Action: Check with your system programmer, who
might be able to tune the system so that the function
is made available to your program.

DSPSERV macro for hiperspaces

536 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Return Code Reason Code Meaning and Action

08 xx0503xx Meaning: Program error. You are using VAR=YES to
extend the current size of the hiperspace; however,
the hiperspace is already the maximum size.

Action: None required. However, if your program
requires more storage, you should consider creating
an additional hiperspace.

The caller of DSPSERV does not receive any return codes for the RELEASE and
DELETE services.

Example
Create a hiperspace named TEMP with a size of 10 million bytes.

DSPSERV CREATE,NAME=HSPCNAME,STOKEN=HSPCSTKN, X
TYPE=HIPERSPACE,BLOCKS=HSPBLCKS,ORIGIN=HSPCORG

* .
HSPCNAME DC CL8’TEMP ’ HIPERSPACE NAME
HSPCSTKN DS CL8 HIPERSPACE STOKEN
HSPCORG DS F HIPERSPACE ORIGIN RETURNED
HSPCSIZE EQU 10000000
HSPBLCKS DC A((HSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE HIPERSPACE

DSPSERV—List form
Use the list form of the DSPSERV macro to construct a nonexecutable control
program parameter list.

Syntax
The list form of the DSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DSPSERV.

DSPSERV

� One or more blanks must follow DSPSERV.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 0

,MF=(L,list addr) list addr: Symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string. Default: 0D

DSPSERV macro for hiperspaces

Chapter 90. DSPSERV — Create, delete, and control hiperspaces 537

Parameters
The parameters are explained as follows:

,MF=(L,list addr)
,MF=(L,list addr,attr)

Specifies the list form of the DSPSERV macro. list addr defines the area that the
system is to use for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

DSPSERV—Execute form
The execute form of the DSPSERV macro can refer to and modify the parameter
list constructed by the list form of the macro.

Syntax
The execute form of the DSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DSPSERV.

DSPSERV

� One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)

CREATE STOKEN, NAME, TYPE, GENNAME, OUTNAME,

BLOCKS, ORIGIN, and NUMBLKS

RELEASE STOKEN, START, BLOCKS, INLIST, RANGLIST, NUMRANGE

DELETE STOKEN,

EXTEND STOKEN, BLOCKS, VAR, NUMBLKS

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,TYPE=HIPERSPACE

,NAME=name-addr name-addr: RX-type address or register (2) - (12).

,GENNAME=NO Default: GENNAME=NO

,GENNAME=COND

DSPSERV macro for hiperspaces

538 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,GENNAME=YES

,OUTNAME=outname-addr outname-addr: RX-type address or register (2) - (12).

,START=start-addr start-addr: RX-type address or register (2) - (12).

,BLOCKS=(max-addr,init-addr) max-addr: RX-type address or register (2) - (12).

,BLOCKS=(max,init) init-addr: RX-type address or register (2) - (12).

,BLOCKS=max max: Number up to 524288.

,BLOCKS=(0,init) init: Number up to 524288.

,BLOCKS=0 0 specifies the installation default size.

,BLOCKS=(0,init-addr) Default for CREATE: BLOCKS=0

,BLOCKS=(size-addr) size-addr: RX-type address or register (2) - (12).

,BLOCKS=(size) size: Number up to 524288.

,ORIGIN=origin-addr origin-addr: RX-type address or register (2) - (12).

,NUMBLKS=numblks-addr numblks-addr: RX-type address or register (2) - (12).

,INLIST=NO Default: INLIST=NO

,INLIST=YES

,RANGLIST=rangelist-addr rangelist-addr: RX-type address or register (2) - (12). Required with
INLIST=YES

,NUMRANGE=numrange-addr numrange-addr: RX-type address or register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1

,VAR=NO Default: VAR=NO

,VAR=YES

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 0

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

DSPSERV macro for hiperspaces

Chapter 90. DSPSERV — Create, delete, and control hiperspaces 539

Parameters
The parameters are explained under the standard form of the DSPSERV macro
with the following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the DSPSERV macro. list addr defines the area that
the system uses for the parameter list.

COMPLETE specifies that the system is to check for required parameters and
supply optional parameters that are not specified.

DSPSERV macro for hiperspaces

540 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 91. EDTINFO — Obtain eligible device table
information

Description
The EDTINFO macro enables you to obtain information from the eligible device
table (EDT) and to check your device specification against the information in the
EDT. See z/OS HCD Planning and z/OS MVS Programming: Assembler Services Guide
for further information on the EDT.

The EDTINFO macro performs the following functions:
v Check groups (CHKGRPS)
v Check units (CHKUNIT)
v Return unit name (RTNUNIT)
v Return unit control block (UCB) addresses for static and installation-static

devices defined below 16 megabytes with 3-digit device numbers (RTNUCBA)
v Return group ID (RTNGRID)
v Return attributes (RTNATTR)
v Return unit names for a device class (RTNNAMD)
v Return UCB device number list (RTNDEVN)
v Return maximum eligible device type (MAXELIG)
v Return default unit-affinity-ignored unit name (RTNUNAFF)

Any one of these functions, or any combination of them, may be specified on each
invocation of the EDTINFO macro.

Note:

1. If you specify both RTNUNIT and MAXELIG, the variable specified by
OUTUNIT will contain the results of the MAXELIG function.

2. If you specify both RTNUNIT and RTNUNAFF, the variable specified by
OUTUNIT will contain the results of the RTNUNIT function.

3. If you specify both MAXELIG and RTNUNAFF, the variable specified by
OUTUNIT or OUTDEV will contain the results of the MAXELIG function.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31- bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space. This includes data

areas whose address is passed to EDTINFO.

© Copyright IBM Corp. 1988, 2015 541

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the EDTINFO macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code if GPR 15 contains a return code of 04 or 08; otherwise, used
as a work register by the system

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the EDTINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede EDTINFO.

EDTINFO macro

542 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

EDTINFO

� One or more blanks must follow EDTINFO.

CHKGRPS Note: At least one of these functions is required: CHKGRPS,

CHKUNIT, RTNUNIT, RTNUCBA, RTNGRID, RTNATTR,

CHKUNIT RTNNAMD, RTNDEVN, MAXELIG, RTNUNAFF. If more than

one of these is specified, a comma must be coded between

RTNUNIT each of the keywords.

RTNUCBA Note: See the tables following this diagram for information on

parameter usage with these functions.

RTNGRID

RTNATTR

RTNNAMD

RTNDEVN

MAXELIG

RTNUNAFF

,DEVCOUNT=devcount addr devcount addr: RS-type address or register (2) - (12).

,DEVLIST=devlist addr devlist addr: RS-type address or register (2) - (12).

,DEVSTAT=devstat addr devstat addr: RS-type address or register (2) - (12).

,UNITNAME=unitname addr unitname addr: RS-type address or register (2) - (12).

,DEVTYPE=devtype addr devtype addr: RS-type address or register (2) - (12).

,SUBPOOL=subpool addr subpool addr: RS-type address or register (2) - (12).

,UCBALIST=ucbalist addr ucbalist addr: RS-type address or register (2) - (12).

,UCBLIST=ucblist addr ucblist addr: RS-type address or register (2) - (12).

,GRIDLIST=gridlist addr gridlist addr: RS-type address or register (2) - (12).

,ATTRAREA=attrarea addr attrarea addr: RX-type address or register (2) - (12).

EDTINFO macro

Chapter 91. EDTINFO — Obtain eligible device table information 543

Syntax Description

,DEVCLASS=devclass addr devclass addr: RS-type address or register (2) - (12).

,NAMELIST=namelist addr namelist addr: RS-type address or register (2) - (12).

,DYNAMIC=YES Default: DYNAMIC=NO

,DYNAMIC=NO

,LOC=BELOW Default: LOC=BELOW

,LOC=ANY

,RANGE=ALL Default: RANGE=3DIGIT

,RANGE=3DIGIT

,DEVNLIST=devnlist addr devnlist addr: RS-type address or register (2) - (12).

,RECMODE=recmode addr recmode addr: RS-type address or register (2) - (12).

,DENSITY=density addr density addr: RS-type address or register (2) - (12).

,OUTUNIT=outunit addr outunit addr: RS-type address or register (2) - (12).

,OUTDEV=outdev addr outdev addr: RS-type address or register (2) - (12).

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

The following tables show how the parameters may be specified with the
CHKGRPS, CHKUNIT, RTNUNIT, RTNUCBA, RTNGRID, RTNATTR, RTNNAMD,
RTNDEVN, MAXELIG, and RTNUNAFF functions.

The IOCTOKEN, RETCODE, and RSNCODE parameters are optional with any of
the functions.

Parameters CHKGRPS CHKUNIT RTNUNIT RTNUCBA RTNGRID

DEVCOUNT required required not valid not valid not valid

DEVLIST required required not valid not valid not valid

DEVSTAT optional optional not valid not valid not valid

EDTINFO macro

544 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters CHKGRPS CHKUNIT RTNUNIT RTNUCBA RTNGRID

UNITNAME not valid UNITNAME
or DEVTYPE
required

not valid UNITNAME
or DEVTYPE
required

not valid

DEVTYPE not valid DEVTYPE or
UNITNAME
required

required DEVTYPE or
UNITNAME
required

not valid

SUBPOOL not valid not valid not valid optional not valid

UCBALIST not valid not valid not valid required not valid

UCBLIST not valid not valid not valid not valid required

GRIDLIST not valid not valid not valid not valid required

ATTRAREA not valid not valid not valid not valid not valid

DEVCLASS not valid not valid not valid not valid not valid

NAMELIST not valid not valid not valid not valid not valid

DYNAMIC not valid not valid not valid not valid not valid

LOC not valid not valid not valid not valid not valid

RANGE not valid not valid not valid not valid not valid

DEVNLIST not valid not valid not valid not valid not valid

RECMODE not valid not valid not valid not valid not valid

DENSITY not valid not valid not valid not valid not valid

OUTUNIT not valid not valid required not valid not valid

OUTDEV not valid not valid not valid not valid not valid

Parameters RTNATTR RTNNAMD RTNDEVN MAXELIG RTNUNAFF

DEVCOUNT not valid not valid not valid not valid not valid

DEVLIST not valid not valid not valid not valid not valid

DEVSTAT not valid not valid not valid not valid not valid

UNITNAME UNITNAME
or DEVTYPE
required

not valid UNITNAME
or DEVTYPE
required

UNITNAME
or DEVTYPE
required

not valid

DEVTYPE DEVTYPE or
UNITNAME
required

not valid DEVTYPE or
UNITNAME
required

DEVTYPE or
UNITNAME
required

not valid

SUBPOOL not valid optional not valid not valid not valid

UCBALIST not valid not valid not valid not valid not valid

UCBLIST not valid not valid not valid not valid not valid

GRIDLIST not valid not valid not valid not valid not valid

ATTRAREA required not valid not valid not valid not valid

DEVCLASS not valid required not valid not valid not valid

NAMELIST not valid required not valid not valid not valid

DYNAMIC not valid not valid optional not valid not valid

LOC not valid not valid optional not valid not valid

RANGE not valid not valid optional not valid not valid

DEVNLIST not valid not valid required not valid not valid

EDTINFO macro

Chapter 91. EDTINFO — Obtain eligible device table information 545

Parameters RTNATTR RTNNAMD RTNDEVN MAXELIG RTNUNAFF

RECMODE not valid not valid not valid required not valid

DENSITY not valid not valid not valid required not valid

OUTUNIT not valid not valid not valid OUTUNIT or
OUTDEV
required

OUTUNIT or
OUTDEV
required

OUTDEV not valid not valid not valid OUTDEV or
OUTUNIT
required

OUTDEV or
OUTUNIT
required

Note: Code the parameters as indicated for each of the function keywords when
you specify multiple functions. For example, assume that you specify the
CHKGRPS and RTNATTR functions. The CHKGRPS function requires
DEVCOUNT and DEVLIST to be specified, and the RTNATTR function requires
UNITNAME or DEVTYPE to be specified. Because DEVCOUNT and DEVLIST are
required with CHKGRPS, you must code them if you specify CHKGRPS, even
though DEVCOUNT and DEVLIST are not valid with RTNATTR. Similarly,
UNITNAME or DEVTYPE is required with RTNATTR and must be coded, even
though neither one is valid with CHKGRPS.

Parameters
The parameters are explained as follows:

CHKGRPS
Specifies that the EDTINFO service should determine whether the specified
device numbers constitute a valid allocation group. The device numbers are
specified by the DEVCOUNT, DEVLIST, and, optionally, DEVSTAT parameters,
and are a valid allocation group if either of the following is true:
v For any allocation group in the EDT that contains at least one of the device

numbers specified in the input device number list, all of the device numbers
in that group in the EDT are contained in the input device number list.

v None of the allocation groups in the EDT contain any of the device numbers
specified in the input device number list.

If neither of these is the case, the device numbers are not a valid allocation
group.

Note: In addition to generating a return code and reason code, EDTINFO sets
bit 0 in the flag byte of any entry in the device number list or the device status
list, if present, if the entry corresponds to a device number that is not valid.

CHKUNIT
Specifies that the EDTINFO service should determine whether the input device
numbers correspond to the specified unit name. The input device numbers are
specified by the UNITNAME or DEVTYPE, DEVCOUNT, DEVLIST, and,
optionally, DEVSTAT parameters. The unit name is the EBCDIC representation
of the IBM generic device type (for example, 3380) or the esoteric group name
(for example, TAPE) from the EDT.

Note:

1. In addition to generating a return code and reason code, EDTINFO sets bit
0 in the flag byte of any entry in the device number list or the device status
list, if present, if the entry corresponds to a device number that is not valid.

EDTINFO macro

546 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

2. If all of the device numbers are valid but not all of them match the unit
name or the device type specified as input, EDTINFO in addition to
generating a return and reason code, sets bit 1 in the flag byte of any entry
in the device number list or the device status list, if present, if the entry
does not correspond to the input unit name or device type.

RTNUNIT
Specifies that the EDTINFO service should return the unit name associated
with the UCB device type that is provided as input in the DEVTYPE
parameter. The unit name is returned in the storage specified by the OUTUNIT
parameter.

Note: Do not use the RTNUNIT parameter to determine whether a returned
unit name is a generic CTC device or an esoteric group name that contains
CTC devices. Instead, use the RTNATTR parameter for this purpose.

RTNUCBA
Specifies that the EDTINFO service should return a list of pointers to UCBs
associated with the unit name or device type provided as input in the
UNITNAME or DEVTYPE parameter. EDTINFO returns UCB addresses only
for static and installation-static below 16 megabyte UCBs with 3-digit device
numbers. The address of the UCB pointer list is returned in the storage
specified by the UCBALIST parameter. You can specify the subpool in which to
obtain storage by using the SUBPOOL list.

Note: You can use the RTNDEVN parameter instead to obtain a list of device
numbers belonging to a specified unit name or UCB device type, including
dynamic devices, 4-digit devices and devices described by UCBs residing
above the 16-megabyte line. Then the UCBINFO macro can be used to obtain
selected UCB device information for a given device number

If your program is authorized, running in supervisor state or with a program
key mask of 0-7, you can use the UCBLOOK macro to the obtain the actual
UCB address from a given device number. See, z/OS MVS Programming:
Authorized Assembler Services Reference SET-WTO, and z/OS MVS Programming:
Authorized Assembler Services Guide for the UCBLOOK macro.

RTNGRID
Specifies that the EDTINFO service should return the allocation group ID
corresponding to each UCB address specified by the UCBLIST parameter. The
address of the group ID list is returned in the storage specified by the
GRIDLIST parameter.

RTNATTR
Specifies that the EDTINFO service should return general information about
the unit name or device type specified in the UNITNAME or DEVTYPE
parameter. The information is returned in the storage specified by the
ATTRAREA parameter.

RTNNAMD
Specifies that the EDTINFO service should return a list of IBM generic device
types (for example, 3380) or esoteric group names (for example, TAPE)
associated with the input device class specified in the DEVCLASS parameter.
The address of the unit name list is returned in the storage specified by the
NAMELIST parameter. You can specify the subpool in which to obtain storage
by using the SUBPOOL parameter.

RTNDEVN
Specifies that the EDTINFO service should return the UCB device number list

EDTINFO macro

Chapter 91. EDTINFO — Obtain eligible device table information 547

associated with the unit name or UCB device type specified by the
UNITNAME or DEVTYPE parameter. The address of the device number list is
returned at the address specified by the DEVNLIST parameter. By using the
DYNAMIC parameter, you can specify that devices defined to the system as
dynamic are to be included in the list. By using the RANGE parameter, you
can include 4-digit device numbers in the returned UCB device number list. By
using the LOC parameter, you can include devices with actual above 16
megabyte UCBs in the returned UCB device number list.

MAXELIG
Specifies that the EDTINFO service should determine the maximum eligible
device type (for the allocation and cataloging of a data set on a tape device)
associated with the unit name or device type, recording mode, and density
provided as input. The maximum eligible device type is the tape device type
that contains the greatest number of eligible devices compatible with the
specified recording mode and density. You specify the unit name or device
type in the UNITNAME or DEVTYPE parameters. The recording mode and
density are specified in the RECMODE and DENSITY parameters. EDTINFO
returns the maximum eligible device type in the OUTUNIT or OUTDEV
parameter, depending on which one you specify.

RTNUNAFF
Specifies that the EDTINFO service should return the default
unit-affinity-ignored unit name that was provided on the UNITAFF
subparameter of the UNIT parameter in the ALLOCxx parmlib member, or
defaulted by the system. The unit name is returned in the storage specified by
the OUTUNIT parameter, or the device type is returned in the storage
specified by the OUTDEV parameter, depending on which one you specify.

,DEVCOUNT=devcount addr
Specifies the fullword input field that contains the number of entries in the
input device number list and the optional output device status list.

,DEVLIST=devlist addr
Specifies the address of an input pointer that contains the address of the device
number list. This list can be in two different formats:
v The first format is used for 3-digit device numbers. The format consists of an

array of 4-byte entries. The first 3 bytes contain the EBCDIC device number
and the last byte is a flag byte containing output flags. Bit 0 in the flag byte
indicates the validity of the device number: If the bit is set to 1, the device
number is not valid. Bit 1 in the flag byte indicates whether the device
number is associated with the unit name or the device type specified as
input: If the bit is set to 1, the device number is not associated with the unit
name or device type.

v The second format is used for 4-digit device numbers; DEVSTAT must also
be specified. Each entry in the format contains a 4-byte EBCDIC device
number. The status byte is in the device status array provided by the
DEVSTAT parameter.

,DEVSTAT=devstat addr
Specifies the address of an input pointer that contains the address of the
output device status list. This optional list consists of an array of 2-byte entries
that are parallel to the input device number list. In each entry, the first byte
contains output flags and the second byte is reserved for IBM use. Bit 0 in the
flag byte indicates the validity of the device number contained in the device
number list. If the bit is set to 1, the device number is not valid. Bit 1 in the
flag byte indicates whether the device number contained in the device number

EDTINFO macro

548 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

list is associated with the unit name or the device type specified as input. If
that bit is set to 1, the device number is not associated with the input unit
name or device type.

,UNITNAME=unitname addr
,DEVTYPE=devtype addr

Specifies either the 8-character input field that contains the unit name
(UNITNAME=unitname addr) or specifies the 4-character input field that
contains the 4-byte UCB device type (DEVTYPE=devtype addr).

,SUBPOOL=subpool addr
Specifies a 1-byte input field that indicates in which subpool the storage
should be obtained. If you do not specify SUBPOOL, the default is subpool 230
if the caller is authorized, and subpool 0 if the caller is not authorized. The
caller is responsible for freeing the storage once it is no longer required.

,UCBALIST=ucbalist addr
Specifies the address of an output pointer that is to contain the address of the
UCB pointer list. The pointer list format is as follows:
v an 8 byte header containing

– a 1-byte field indicating the subpool in which the storage resides
– a 3-byte field containing the size of the pointer list (including the header)
– a 4-byte field containing the number of entries in the list.

v an array of 4-byte entries containing the actual UCB addresses (for below 16
megabyte static and installation-static UCBs with 3-digit device numbers
only).

,UCBLIST=ucblist addr
Specifies the address of an input pointer that contains the address of the UCB
pointer list. This list consists of a 4-byte header containing the number of
entries in the list followed by an array of 4-byte entries containing the actual or
captured UCB addresses.

,GRIDLIST=gridlist addr
Specifies the address of an input pointer that contains the address of the group
ID list. This list is an array of 4-byte entries that parallel the input UCB pointer
list entries and contain the group ID associated with each UCB.

,ATTRAREA=attrarea addr
Specifies the address of a 10-character output field in which general
information about the unit name or device type (specified by the UNITNAME
or DEVTYPE parameter) is returned. The contents of ATTRAREA are:

Byte Contents

0 Length of the attribute area (X'0A'). You must fill in this byte prior to
issuing EDTINFO.

1-2 Flags describing the unit name:

Bit Meaning

0 If bit is on, the unit name is an esoteric group name.

1 If bit is on, the unit name is VIO-eligible.

2 Not part of the programming interface.

3 If bit is on, the unit name contains TP class devices.

4-15 Not part of the programming interface.

3 Number of device classes in the unit name.

EDTINFO macro

Chapter 91. EDTINFO — Obtain eligible device table information 549

4-7 Number of generic device types in the unit name.

8-9 Not part of the programming interface.

,DEVCLASS=devclass addr
Specifies the address of a 1-character input field that contains the device class
in hexadecimal.

,NAMELIST=namelist addr
Specifies the address of an output pointer that is to contain the address of the
unit name list. The format of the unit name list is as follows:
v an 8-byte header containing

– a 1-byte field indicating the subpool in which the storage resides
– a 3-byte field containing the size of the unit name list (including the

header)
– a 4-byte field containing the number of entries in the list

v an array of 8-byte entries containing the actual unit names.

,DYNAMIC=YES
,DYNAMIC=NO

Specifies whether dynamic devices should (DYNAMIC=YES) or should not
(DYNAMIC=NO) be included in the device number list. If you specify
DYNAMIC=NO, only static and installation-static devices are included in the
list.

,LOC=ANY
,LOC=BELOW

Specifies whether the output device number list should be restricted to devices
with below 16 megabyte UCBs (LOC=BELOW) or should also include devices
with above 16 megabyte UCBs (LOC=ANY) when you specify the RTNDEVN
parameter.

,RANGE=ALL
,RANGE=3DIGIT

Specifies whether all devices (RANGE=ALL) or only those devices with device
numbers of 3 digits or less (RANGE=3DIGIT) should be included in the output
device number list.

,DEVNLIST=devnlist addr
Specifies the address of an output pointer that is to contain the address of the
output device number list. In other words, DEVNLIST is a pointer to a pointer
to the output device number list. The format of the device number list is as
follows:
v a 4-byte field containing the size of the list (including the header)
v a 4-byte field containing the number of entries in the list
v an array of 4-byte entries containing the actual EBCDIC device numbers.

This storage must be obtained by the caller prior to invoking the EDTINFO
macro and must reside in the caller's key. The caller must store the length of
the list into the header before invoking the macro. If there is not enough
storage to contain all of the entries, the following occurs:
v a return code of 8 and a reason code of 4 are returned
v the number of entries is filled in
v no EBCDIC device numbers are returned.

,IOCTOKEN=ioctoken addr
Specifies a 48-character area for the MVS I/O configuration token. If the

EDTINFO macro

550 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

current EDT definition is not consistent with the token specified as input by
ioctoken addr, the caller is notified through a return code.

If the input specified by ioctoken addr is set to binary zeros, EDTINFO sets
IOCTOKEN to the current MVS I/O configuration token.

,RECMODE=recmode addr
Specifies the address of an 8-bit input that indicates the recording mode.

,DENSITY=density addr
Specifies the address of an 8-bit input that indicates the density.

,OUTUNIT=outunit addr
,OUTDEV=outdev addr

Specifies the address of an 8-character field where EDTINFO returns the unit
name (OUTUNIT=outunit addr) or specifies the address of a 4-character field
where EDTINFO returns the 4-byte device type (OUTDEV=outdev addr).

,RETCODE=retcode addr
Specifies the fullword location where the system is to store the return code.
The return code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the fullword location where the system is to store the reason code.
The reason code is also in GPR 0.

Return and reason codes
When control returns from EDTINFO, GPR 15 (and retcode addr, if you coded
RETCODE) contains one of the following hexadecimal return codes:

Return Code Meaning

00 The requested function or functions were performed and no reason code
information has been returned.

04 The requested function or functions were performed and information has
been returned, as explained by the hexadecimal reason code that
accompanies this return code. The reason code is in GPR 0 (and in rsncode
addr, if you coded RSNCODE).

Reason Code
Meaning

01 The input device numbers do not belong to the same group.

02 One or more of the input device numbers does not belong to the
input unit name or device type.

03 The input unit name was valid but no units matching the
specified or defaulted selection criteria were found. No UCB
addresses or device numbers have been returned.

EDTINFO macro

Chapter 91. EDTINFO — Obtain eligible device table information 551

Return Code Meaning

08 There is data in the input parameter list that is not valid, as explained by
the hexadecimal reason code that accompanies this return code. The
reason code is in GPR 0 (and in rsncode addr, if you coded RSNCODE).

Reason Code
Meaning

01 The input unit name could not be found in the EDT.

02 The input device type could not be found in the EDT.

03 One or more of the input device numbers is invalid.

04 The caller did not provide sufficient storage for the returned
information.

05 The MAXELIG function requires a generic device type as input,
but the input specified does not represent a generic device type.

06 The caller did not request any functions.

07 The caller requested functions that are not valid.

08 For a required input, the caller specified a value that is not valid.
For example, other functions were specified with a function that
requires no other function requests.

0C A configuration change has occurred and the input I/O configuration
token does not match the current token.

10 Storage could not be obtained for the request.

18 An unexpected system error occurred.

Note: When you specify multiple functions, the system returns the return code
with the highest numerical value, and its associated reason code.

Example 1
Obtain the attributes for the device whose unit name is contained in UNIT_NAME.
Return the information in ATTRIBUTE_AREA.
EDTINFO RTNATTR,UNITNAME=UNIT_NAME,ATTRAREA=ATTRIBUTE_AREA

Example 2
Obtain the list of device numbers for the device type specified in DEVICE_TYPE.
Include dynamic devices in the list. Return the list in the area pointed to by
DEVICE_LIST_PTR.
EDTINFO RTNDEVN,DYNAMIC=YES,DEVTYPE=DEVICE_TYPE, X

DEVNLIST=DEVICE_LIST_PTR

Example 3
Determine whether the list of device numbers specified by DEVICE_LIST_PTR is a
valid allocation group. DEVICE_COUNT specifies a field containing the number of
entries in the list. Use the IOCTOKEN parameter to return the current MVS I/O
configuration token in CONFIG_TOKEN. The status of the devices is returned in
the list specified by STATUS_LIST_PTR.

Following some other processing, return the allocation group ID that corresponds
to each UCB address found in the list specified by UCB_LIST_PTR. Return the list
of group IDs in the area specified by GRID_LIST_PTR. Use the IOCTOKEN

EDTINFO macro

552 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

parameter, specifying the previously-obtained MVS I/O configuration token as
input in CONFIG_TOKEN, to determine whether the I/O configuration has
changed since EDTINFO was issued.
EDTINFO CHKGRPS,DEVCOUNT=DEVICE_COUNT, X

DEVLIST=DEVICE_LIST_PTR,IOCTOKEN=CONFIG_TOKEN, X
DEVSTAT=STATUS_LIST_PTR.

.

.

.
EDTINFO RTNGRID,UCBLIST=UCB_LIST_PTR, X

GRIDLIST=GRID_LIST_PTR,IOCTOKEN=CONFIG_TOKEN

Example 4
Determine whether the list of device numbers specified by DEVICE_LIST_PTR is a
valid allocation group, and determine if these device numbers correspond to the
unit name in the EDT. DEVICE_COUNT specifies a field containing the number of
entries in the list. DEVICE_TYPE specifies a field containing the device type. Store
the return code from register 15 in RETURN_CODE, and store the reason code
from register 0 in REASON_CODE. The status of the devices is returned in the list
specified by STATUS_LIST_PTR.
EDTINFO CHKGRPS,CHKUNIT,DEVTYPE=DEVICE_TYPE, X

DEVCOUNT=DEVICE_COUNT,DEVLIST=DEVICE_LIST_PTR, X
RETCODE=RETURN_CODE,RSNCODE=REASON_CODE, X
DEVSTAT=STATUS_LIST_PTR

Example 5
Return (in the output device number list specified by DEVICE_LIST_PTR) the UCB
device numbers associated with the device type DEVICE_TYPE. All devices should
be included in the output device number list.
EDTINFO RTNDEVN,DEVTYPE=DEVICE_TYPE,DYNAMIC=YES X

RANGE=ALL,LOC=ANY, X
DEVNLIST=DEVICE_LIST_PTR

EDTINFO - List form
Use the list form of the EDTINFO macro together with the execute form for
applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses for storing the parameters.

Syntax
This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative list form macros” on page 13 for further information.

The list form of the EDTINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede EDTINFO.

EDTINFO

EDTINFO macro

Chapter 91. EDTINFO — Obtain eligible device table information 553

Syntax Description

� One or more blanks must follow EDTINFO.

MF=(L,list addr) list addr: Symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the EDTINFO macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

EDTINFO - Execute form
Use the execute form of the EDTINFO macro together with the list form for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax
The execute form of the EDTINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede EDTINFO.

EDTINFO

� One or more blanks must follow EDTINFO.

CHKGRPS Note: At least one of these functions is required: CHKGRPS,

CHKUNIT, RTNUNIT, RTNUCBA, RTNGRID, RTNATTR,

CHKUNIT RTNNAMD, RTNDEVN, MAXELIG, RTNUNAFF. If more than

EDTINFO macro

554 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

one of these is specified, a comma must be coded between

RTNUNIT each of the keywords.

RTNUCBA Note: See the tables following this diagram for information on

parameter usage with these functions.

RTNGRID

RTNATTR

RTNNAMD

RTNDEVN

MAXELIG

RTNUNAFF

,DEVCOUNT=devcount addr devcount addr: RS-type address or register (2) - (12).

,DEVLIST=devlist addr devlist addr: RS-type address or register (2) - (12).

,DEVSTAT=devstat addr devstat addr: RS-type address or register (2) - (12).

,UNITNAME=unitname addr unitname addr: RS-type address or register (2) - (12).

,DEVTYPE=devtype addr devtype addr: RS-type address or register (2) - (12).

,SUBPOOL=subpool addr subpool addr: RS-type address or register (2) - (12).

,UCBALIST=ucbalist addr ucbalist addr: RS-type address or register (2) - (12).

,UCBLIST=ucblist addr ucblist addr: RS-type address or register (2) - (12).

,GRIDLIST=gridlist addr gridlist addr: RS-type address or register (2) - (12).

,ATTRAREA=attrarea addr attrarea addr: RX-type address or register (2) - (12).

,DEVCLASS=devclass addr devclass addr: RS-type address or register (2) - (12).

,NAMELIST=namelist addr namelist addr: RS-type address or register (2) - (12).

,DYNAMIC=YES Default: DYNAMIC=NO

EDTINFO macro

Chapter 91. EDTINFO — Obtain eligible device table information 555

Syntax Description

,DYNAMIC=NO

,LOC=BELOW Default: BELOW

,LOC=ANY

,RANGE=ALL Default: RANGE=3DIGIT

,RANGE=3DIGIT

,DEVNLIST=devnlist addr devnlist addr: RS-type address or register (2) - (12).

,RECMODE=recmode addr recmode addr: RS-type address or register (2) - (12).

,DENSITY=density addr density addr: RS-type address or register (2) - (12).

,OUTUNIT=outunit addr outunit addr: RS-type address or register (2) - (12).

,OUTDEV=outdev addr outdev addr: RS-type address or register (2) - (12).

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

,MF=(E,list addr,NOCHECK)

The following tables show how the parameters may be specified with the
CHKGRPS, CHKUNIT, RTNUNIT, RTNUCBA, RTNGRID, RTNATTR, RTNNAMD,
RTNDEVN, MAXELIG, or RTNUNAFF functions.

The IOCTOKEN, RETCODE, RSNCODE, and MF parameters are optional with any
of the functions.

Parameters CHKGRPS CHKUNIT RTNUNIT RTNUCBA RTNGRID

DEVCOUNT required required not valid not valid not valid

DEVLIST required required not valid not valid not valid

DEVSTAT optional optional not valid not valid not valid

UNITNAME not valid UNITNAME
or DEVTYPE
required

not valid UNITNAME
or DEVTYPE
required

not valid

EDTINFO macro

556 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters CHKGRPS CHKUNIT RTNUNIT RTNUCBA RTNGRID

DEVTYPE not valid DEVTYPE or
UNITNAME
required

required DEVTYPE or
UNITNAME
required

not valid

SUBPOOL not valid not valid not valid optional not valid

UCBALIST not valid not valid not valid required not valid

UCBLIST not valid not valid not valid not valid required

GRIDLIST not valid not valid not valid not valid required

ATTRAREA not valid not valid not valid not valid not valid

DEVCLASS not valid not valid not valid not valid not valid

NAMELIST not valid not valid not valid not valid not valid

DYNAMIC not valid not valid not valid not valid not valid

LOC not valid not valid not valid not valid not valid

RANGE not valid not valid not valid not valid not valid

DEVNLIST not valid not valid not valid not valid not valid

RECMODE not valid not valid not valid not valid not valid

DENSITY not valid not valid not valid not valid not valid

OUTUNITL not valid not valid required not valid not valid

OUTDEV not valid not valid not valid not valid not valid

Parameters RTNATTR RTNNAMD RTNDEVN MAXELIG RTNUNAFF

DEVCOUNT not valid not valid not valid not valid not valid

DEVLIST not valid not valid not valid not valid not valid

DEVSTAT not valid not valid not valid not valid not valid

UNITNAME UNITNAME
or DEVTYPE
required

not valid UNITNAME
or DEVTYPE
required

UNITNAME
or DEVTYPE
required

not valid

DEVTYPE DEVTYPE or
UNITNAME
required

not valid DEVTYPE or
UNITNAME
required

DEVTYPE or
UNITNAME
required

not valid

SUBPOOL not valid optional not valid not valid not valid

UCBALIST not valid not valid not valid not valid not valid

UCBLIST not valid not valid not valid not valid not valid

GRIDLIST not valid not valid not valid not valid not valid

ATTRAREA required not valid not valid not valid not valid

DEVCLASS not valid required not valid not valid not valid

NAMELIST not valid required not valid not valid not valid

DYNAMIC not valid not valid optional not valid not valid

LOC not valid not valid optional not valid not valid

RANGE not valid not valid optional not valid not valid

DEVNLIST not valid not valid required not valid not valid

RECMODE not valid not valid not valid required not valid

DENSITY not valid not valid not valid required not valid

EDTINFO macro

Chapter 91. EDTINFO — Obtain eligible device table information 557

Parameters RTNATTR RTNNAMD RTNDEVN MAXELIG RTNUNAFF

OUTUNIT not valid not valid not valid OUTUNIT or
OUTDEV
required

OUTUNIT or
OUTDEV
required

OUTDEV not valid not valid not valid OUTDEV or
OUTUNIT
required

OUTDEV or
OUTUNIT
required

Parameters
The parameters are explained under the standard form of the EDTINFO macro
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)

Specifies the execute form of the EDTINFO macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

COMPLETE specifies that the system is to check for required parameters and
supply defaults for optional parameters that were not specified. NOCHECK
specifies that the system does not check for required parameters and does not
supply defaults for optional parameters that were not specified.

Note: When using the NOCHECK option, make sure that it is preceded by an
execute or modify form invocation that specifies or defaults to the COMPLETE
option. Otherwise, the parameter list might not be completely initialized.

EDTINFO - Modify form
Use the modify form of the EDTINFO macro to change parameters in the control
parameter list that the system created through the list form of the macro.

Syntax
The modify form of the EDTINFO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede EDTINFO.

EDTINFO

� One or more blanks must follow EDTINFO.

CHKGRPS Note: At least one of these functions is required: CHKGRPS,

CHKUNIT, RTNUNIT, RTNUCBA, RTNGRID, RTNATTR,

CHKUNIT RTNNAMD, RTNDEVN, MAXELIG, RTNUNAFF. If more than

EDTINFO macro

558 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

one of these is specified, a comma must be coded between

RTNUNIT each of the keywords.

RTNUCBA Note: See the tables following this diagram for information on

parameter usage with these functions.

RTNGRID

RTNATTR

RTNNAMD

RTNDEVN

MAXELIG

RTNUNAFF

,DEVCOUNT=devcount addr devcount addr: RS-type address or register (2) - (12).

,DEVLIST=devlist addr devlist addr: RS-type address or register (2) - (12).

,DEVSTAT=devstat addr devstat addr: RS-type address or register (2) - (12).

,UNITNAME=unitname addr unitname addr: RS-type address or register (2) - (12).

,DEVTYPE=devtype addr devtype addr: RS-type address or register (2) - (12).

,SUBPOOL=subpool addr subpool addr: RS-type address or register (2) - (12).

,UCBALIST=ucbalist addr ucbalist addr: RS-type address or register (2) - (12).

,UCBLIST=ucblist addr ucblist addr: RS-type address or register (2) - (12).

,GRIDLIST=gridlist addr gridlist addr: RS-type address or register (2) - (12).

,ATTRAREA=attrarea addr attrarea addr: RX-type address or register (2) - (12).

,DEVCLASS=devclass addr devclass addr: RS-type address or register (2) - (12).

,NAMELIST=namelist addr namelist addr: RS-type address or register (2) - (12).

,DYNAMIC=YES Default: DYNAMIC=NO

EDTINFO macro

Chapter 91. EDTINFO — Obtain eligible device table information 559

Syntax Description

,DYNAMIC=NO

,LOC=BELOW Default: LOC=BELOW

,LOC=ANY

,RANGE=ALL Default: RANGE=3DIGIT

,RANGE=3DIGIT

,DEVNLIST=devnlist addr devnlist addr: RS-type address or register (2) - (12).

,RECMODE=recmode addr recmode addr: RS-type address or register (2) - (12).

,DENSITY=density addr density addr: RS-type address or register (2) - (12).

,OUTUNIT=outunit addr outunit addr: RS-type address or register (2) - (12).

,OUTDEV=outdev addr outdev addr: RS-type address or register (2) - (12).

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(M,list addr) list addr: RX-type address or register (2) - (12).

,MF=(M,list addr,COMPLETE) Default: COMPLETE

,MF=(M,list addr,NOCHECK)

The following tables show how the parameters may be specified with the
CHKGRPS, CHKUNIT, RTNUNIT, RTNUCBA, RTNGRID, RTNATTR, RTNNAMD,
RTNDEVN, MAXELIG, and RTNUNAFF functions.

The IOCTOKEN, RETCODE, RSNCODE, and MF parameters are optional with any
of the functions.

Parameters CHKGRPS CHKUNIT RTNUNIT RTNUCBA RTNGRID

DEVCOUNT required required not valid not valid not valid

DEVLIST required required not valid not valid not valid

DEVSTAT optional optional not valid not valid not valid

UNITNAME not valid UNITNAME
or DEVTYPE
required

not valid UNITNAME
or DEVTYPE
required

not valid

EDTINFO macro

560 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters CHKGRPS CHKUNIT RTNUNIT RTNUCBA RTNGRID

DEVTYPE not valid DEVTYPE or
UNITNAME
required

required DEVTYPE or
UNITNAME
required

not valid

SUBPOOL not valid not valid not valid optional not valid

UCBALIST not valid not valid not valid required not valid

UCBLIST not valid not valid not valid not valid required

GRIDLIST not valid not valid not valid not valid required

ATTRAREA not valid not valid not valid not valid not valid

DEVCLASS not valid not valid not valid not valid not valid

NAMELIST not valid not valid not valid not valid not valid

DYNAMIC not valid not valid not valid not valid not valid

LOC not valid not valid not valid not valid not valid

RANGE not valid not valid not valid not valid not valid

DEVNLIST not valid not valid not valid not valid not valid

RECMODE not valid not valid not valid not valid not valid

DENSITY not valid not valid not valid not valid not valid

OUTUNIT not valid not valid required not valid not valid

OUTDEV not valid not valid not valid not valid not valid

Parameters RTNATTR RTNNAMD RTNDEVN MAXELIG RTNUNAFF

DEVCOUNT not valid not valid not valid not valid not valid

DEVLIST not valid not valid not valid not valid not valid

DEVSTAT not valid not valid not valid not valid not valid

UNITNAME UNITNAME
or DEVTYPE
required

not valid UNITNAME
or DEVTYPE
required

UNITNAME
or DEVTYPE
required

not valid

DEVTYPE DEVTYPE or
UNITNAME
required

not valid DEVTYPE or
UNITNAME
required

DEVTYPE or
UNITNAME
required

not valid

SUBPOOL not valid optional not valid not valid not valid

UCBALIST not valid not valid not valid not valid not valid

UCBLIST not valid not valid not valid not valid not valid

GRIDLIST not valid not valid not valid not valid not valid

ATTRAREA required not valid not valid not valid not valid

DEVCLASS not valid required not valid not valid not valid

NAMELIST not valid required not valid not valid not valid

DYNAMIC not valid not valid optional not valid not valid

LOC not valid not valid optional not valid not valid

RANGE not valid not valid optional not valid not valid

DEVNLIST not valid not valid required not valid not valid

RECMODE not valid not valid not valid required not valid

DENSITY not valid not valid not valid required not valid

EDTINFO macro

Chapter 91. EDTINFO — Obtain eligible device table information 561

Parameters RTNATTR RTNNAMD RTNDEVN MAXELIG RTNUNAFF

OUTUNIT not valid not valid not valid OUTUNIT or
OUTDEV
required

OUTUNIT or
OUTDEV
required

OUTDEV not valid not valid not valid OUTDEV or
OUTUNIT
required

OUTDEV or
OUTUNIT
required

Parameters
The parameters are explained under the standard form of the EDTINFO macro
with the following exceptions:

,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

Specifies the modify form of the EDTINFO macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

COMPLETE specifies that the system is to check for required parameters and
supply defaults for optional parameters that were not specified. NOCHECK
specifies that the system does not check for required parameters and does not
supply defaults for optional parameters that were not specified.

Note: When using the NOCHECK option, make sure that it is preceded by an
execute or modify form invocation that specifies or defaults to the COMPLETE
option. Otherwise, the parameter list might not be completely initialized.

EDTINFO macro

562 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 92. ENQ — Request control of a serially reusable
resource

Description
ENQ assigns control of one or more serially reusable resources to a task. If any of
the resources are not available, the task might be placed in a wait condition until
all of the requested resources are available. Once control of a resource has been
assigned to a task, it remains with that task until one of the programs running
under that task issues a DEQ macro to release the resource or the task terminates.

You can request either shared or exclusive use of a resource. ENQ identifies the
resource by a pair of names, the qname and the rname, and a scope value. The
scope value determines what other tasks, address spaces, or systems can use the
resource. All programs that share the resource must use the qname, rname, and
scope value consistently.

Use ENQ with RET=TEST to determine the status of the resource. Return codes tell
whether the resource is immediately available or in use, and whether control has
been previously requested by the active task in another ENQ macro.

Global resource serialization counts and limits the number of concurrent resource
requests from an address space. If an unconditional ENQ (an ENQ that uses the
RET=NONE option) causes the count of concurrent resource requests to exceed the
limit, the caller ends abnormally with a system code of X'538'. For more
information, see the topic on limiting concurrent requests for resources in z/OS
MVS Programming: Assembler Services Guide.

Unless you specify otherwise, when a global resource serialization complex is
initialized, global resource serialization searches the SYSTEM inclusion resource
name list (RNL) and the SYSTEMS exclusion RNL for every resource specified with
a scope of SYSTEM or SYSTEMS. A resource whose name appears on one of these
RNLs might have its scope changed from the scope that appears on the macro. To
prevent RNL processing, use the RNL=NO parameter. See z/OS MVS Planning:
Global Resource Serialization for additional information about RNL processing.

Environment
The requirements for callers of ENQ are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key. For the SMC, ECB, TCB,

MASID, and MTCB parameters or when the specified qname
is ADRDFRAG, ADRDSN, ARCENQG, BWODSN, SYSZ*,
SYSCTLG, SYSDSN, SYSIEA01, SYSIEECT, SYSIEFSD,
SYSIGGV1, SYSIGGV2, SYSPSWRD, SYSVSAM, or
SYSVTOC, the authorization must be one of the following:
v Supervisor state
v PSW key 0-7
v APF-authorized.

Dispatchable unit mode: Task

© Copyright IBM Corp. 1988, 2015 563

Environmental factor Requirement
Cross memory mode: For LINKAGE=SVC: PASN=HASN=SASN

For LINKAGE=SYSTEM: Any PASN, Any HASN, Any
SASN

For LINKAGE=SYSTEM with SMC=STEP: PASN=HASN,
Any SASN

AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space.

Except for the TCB, all parameters can reside above 16
megabytes.

Programming requirements
None.

Restrictions
See "Avoiding Interlock" in z/OS MVS Programming: Assembler Services Guide to
ensure that you are following the protocols required to prevent the interlock.

Issuing two ENQ macros for the same resource without an intervening DEQ macro
causes the task to end abnormally, unless the second ENQ designates RET=TEST,
USE, CHNG, or HAVE. If the task ends, either normally or abnormally, while the
task still has control of any serially reusable resources, all requests made by this
task automatically have DEQ processing performed for them. If resource input
addresses are incorrect, the task abnormally ends.

The caller cannot have an EUT FRR established.

There are some considerations to be aware of when using enclaves for tasks that
serialize resources using the ENQ macro. For details, see “Using ENQ/DEQ or
Latch Manager Services With Enclaves” in z/OS MVS Programming: Workload
Management Services.

Input register information
Before issuing the ENQ macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 One of the following:

v If you specify RET=TEST, RET=USE, RET=CHNG, or RET=HAVE: If all
return codes for the resources named in the ENQ macro are 0, register

ENQ macro

564 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

15 contains 0. If any of the return codes are not 0, register 15 contains
the address of a storage area containing the return codes.

v Otherwise: Used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the ENQ macro is described as follows.

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede ENQ.

ENQ

� One or more blanks must follow ENQ.

(

qname addr qname addr: A-type address or register (2) - (12).

,

,rname addr rname addr: A-type address or register (2) - (12).

, Default: E

,E

,S

,

ENQ macro

Chapter 92. ENQ — Request control of a serially reusable resource 565

Syntax Description

,rname length rname length: symbol, decimal digit, or register (2) - (12).

Default: assembled length of rname

Note: Code rname length if rname addr is a register.

,

,STEP Default: STEP

,SYSTEM

,SYSTEMS

)

,RET=CHNG Default: RET=NONE

,RET=HAVE

,RET=TEST

,RET=USE

,RET=NONE

,RNL=YES Default: RNL=YES

,RNL=NO

,RELATED=value value: any valid macro keyword specification.

,LINKAGE=SVC DEFAULT: LINKAGE=SVC

,LINKAGE=SYSTEM

Parameters
The parameters are explained as follows:

(Specifies the beginning of the resource description.

qname addr
Specifies the address of an 8-character name. The name can contain any valid
hexadecimal character. Every program issuing a request for a serially reusable
resource must use the same qname, rname, and scope to represent the resource.
Some names, such as those beginning with certain letter combinations (SYSZ
for example), are used to protect system resources by requiring that the issuing
program be in supervisor state, or system key, or APF-authorized. Authorized
programs should use a restricted qname (as described under Minimum
authorization in the Environment topic of this chapter) to prevent interference
from unauthorized programs.

Note: See z/OS MVS Diagnosis: Reference for a list of major and minor
ENQ/DEQ names and the resources that issue the ENQ/DEQ.

,

ENQ macro

566 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,rname addr
Specifies the address of the name used together with qname to represent a
single resource. The name must be from 1 to 255 bytes long, can be qualified,
and can contain any valid hexadecimal character.

,
,E
,S Specifies whether the request is for exclusive (E) or shared (S) control of the

resource. If the resource is modified while under control of the task, the
request must be for exclusive control; if the resource is not modified, the
request should be for shared control.

,
,rname length

Specifies the length of the rname. If this parameter is omitted, the system uses
the assembled length of the rname. To override the assembled length, specify
this parameter.

You can code a value between 1 and 255. Also, you can specify 0, which means
that the length of the rname must be contained in the first byte at the rname
addr.

,
,STEP
,SYSTEM
,SYSTEMS

Specifies the scope of the resource.

STEP specifies that the resource can be used only within an address space. If
STEP is specified, a request for the same qname and rname from a program in
another address space denotes a different resource.

SYSTEM specifies that the resource can be used by programs in more than one
address space.

SYSTEMS specifies that the resource can be shared between systems.

STEP, SYSTEM, and SYSTEMS are mutually exclusive and do not refer to the
same resource. If two macros specify the same qname and rname, but one
specifies STEP and the other specifies SYSTEM or SYSTEMS, they are treated
as requests for different resources.

) Specifies the end of the resource description.

Notes on specifying multiple resources on one ENQ request:
v Within a single set of parentheses, you can repeat the qname addr, rname addr,

type of control, rname length, and the scope until there is a maximum of 255
characters, including the parentheses.

v The following parameters apply to all the resources you specify on the request:
RET and RNL.

,RET=CHNG
,RET=HAVE
,RET=TEST
,RET=USE
,RET=NONE

Specifies the type of request for the resources named on the ENQ request.

CHNG
The status of the resource specified is changed from shared to
exclusive control. When RET=CHNG is specified, the exclusive|shared

ENQ macro

Chapter 92. ENQ — Request control of a serially reusable resource 567

(E|S) parameter is overidden. This parameter ensures that the request
will be exclusive regardless of the other parameter.

HAVE Control of the resources is requested conditionally; that is, control is
requested only if a request has not been made previously for the same
task.

TEST The availability of the resources is to be tested, but control of the
resources is not requested.

USE control of the resources is to be assigned to the active task only if the
resources are immediately available. If any of the resources are not
available, the active task is not placed in a wait condition.

NONE
Control of all the resources is unconditionally requested.

See “Return and reason codes” on page 569 for an explanation of the return
codes for these requests.

,RNL=YES
,RNL=NO

Controls global resource serialization RNL processing, which can cause the
scope value of a resource to change. IBM recommends that you use the default,
RNL=YES, to allow global resource serialization to perform RNL processing.
Use RNL=NO when you are sure that you want the request to be processed
only by global resource serialization using only the specified scope. When
RNL=NO is specified the ENQ request will be ignored by alternative
serialization products. Refer to z/OS MVS Planning: Global Resource Serialization,
RNL Processing, for more information about the use of RNL=NO.

,RELATED=value
Specifies information used to self-document macros by ‘relating’ functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

,LINKAGE=SVC
,LINKAGE=SYSTEM

Specifies the type of linkage the caller is using to invoke the ENQ service.

For LINKAGE=SVC, the linkage is through an SVC instruction. This linkage is
valid only when the caller is in primary mode and the primary, home, and
secondary address spaces are the same.

For LINKAGE=SYSTEM, the linkage uses a non-SVC entry. This linkage is
valid in cross memory mode or in non-cross memory mode.
LINKAGE=SYSTEM is intended to be used by programs in cross memory
mode.

The default is LINKAGE=SVC.

ABEND codes
For only unconditional requests, the caller might encounter abend code X'138' or
X'538'. For unconditional or conditional requests, the caller might encounter one of
the following abend codes:
v X'238'
v X'338'
v X'438'
v X'738'
v X'838'

ENQ macro

568 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

v X'938'

See z/OS MVS System Codes for explanations and responses for these codes.

Return and reason codes
The system provides a return code only if you specify RET=TEST, RET=USE,
RET=CHNG, or RET=HAVE; otherwise, return of the task to the active condition
indicates that control of the resource has been assigned or was previously assigned
to the task. If all return codes for the resources named in the ENQ macro are 0,
register 15 contains 0. For nonzero return codes, register 15 contains the address of
a storage area containing the return codes, as shown in Figure 5.

The return codes are placed in the parameter list resulting from the macro
expansion in the same sequence as the resource names in the ENQ macro.

The return codes for the ENQ macro with the RET=TEST parameter are described
in Table 15.

Table 15. Return Codes for the ENQ Macro with the RET=TEST Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The resource is immediately available.

Action: None required. However, you might take some action based on your
application.

Address
Returned in
Register 15

Return
Codes

1
0

2 3 4

12

12

24

36

Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

RC1

RC2

RC3

RCN

Figure 5. Return Code Area Used by ENQ

ENQ macro

Chapter 92. ENQ — Request control of a serially reusable resource 569

Table 15. Return Codes for the ENQ Macro with the RET=TEST Parameter (continued)

Hexadecimal
Return Code

Meaning and Action

4 Meaning: The resource is not immediately available.

Action: None required. However, you might take some action based on your
application.

8 Meaning: A previous request for control of the same resource has been made for
the same task. The task has control of the resource.

Action: None required. However, you might take some action based on your
application.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of flag byte 1 in the parameter list that identifies the owned
resource. If bit 3 is off, the task has exclusive control; If bit 3 is on, the task has
shared control.

14 Meaning: A previous request for control of the same resource has been made for
the same task. The task does not have control of the resource.

Action: None required. However, you might take some action based on your
application.

The return codes for the ENQ macro with the RET=USE parameter are described
in Table 16.

Table 16. Return Codes for the ENQ Macro with the RET=USE Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The active task now has control of the resource.

Action: None.

4 Meaning: The resource is not immediately available.

Action: None required. However, you might take some action based on your
application.

8 Meaning: A previous request for control of the same resource has been made for
the same task. The task has control of the resource.

Action: None required. However, you might take some action based on your
application.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of flag byte 1 in the parameter list that identifies the owned
resource. If bit 3 is off, the task has exclusive control; If bit 3 is on, the task has
shared control.

14 Meaning: A previous request for control of the same resource has been made for
the same task. The task does not have control of the resource.

Action: None required. However, you might take some action based on your
application.

18 Meaning: Environmental error. The limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless
some previous ENQ or RESERVE request caused the task to obtain control of the
resource.

Action: Retry the request one or more times. If the problem persists, consult
your system programmer, who might be able to tune the system so that the limit
is no longer exceeded.

ENQ macro

570 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

The return codes for the ENQ macro with the RET=CHNG parameter are
described in Table 17.

Table 17. Return Codes for the ENQ Macro with the RET=CHNG Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The status of the resource has been changed to exclusive.

Action: None.

4 Meaning: The status of the resource cannot be changed to exclusive. Other tasks
share the resource.

Action: None required. However, you might take some action based on your
application.

8 Meaning: The status of the resource cannot be changed to exclusive. No tasks
have issued an ENQ request for the resource.

Action: None required. However, you might take some action based on your
application.

14 Meaning: The status of the resource cannot be changed to exclusive. A previous
request for control of the same resource has been made for the same task. The
task does not have control of the resource.

Action: None required. However, you might take some action based on your
application.

The return codes for the ENQ macro with the RET=HAVE parameter are described
in Table 18.

Table 18. Return Codes for the ENQ Macro with the RET=HAVE Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The active task now has control of the resource.

Action: None.

8 Meaning: A previous request for control of the same resource has been made for
the same task. The task has control of the resource.

Action: None required. However, you might take some action based on your
application.

To determine whether the task has exclusive control or shared control of the
resource, check bit 3 of flag byte 1 in the parameter list that identifies the owned
resource. If bit 3 is off, the task has exclusive control; If bit 3 is on, the task has
shared control.

14 Meaning: A previous request for control of the same resource has been made for
the same task but that request has not yet been satisfied (such as an ENQ with
RET=NONE which waits for the resource). The task does not have control of the
resource.

Action: None required. However, you might take some action based on your
application.

18 Meaning: Environmental error. The limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless
some previous ENQ or RESERVE request caused the task to obtain control of the
resource.

Action: Retry the request one or more times. If the problem persists, consult
your system programmer, who might be able to tune the system so that the limit
is no longer exceeded.

ENQ macro

Chapter 92. ENQ — Request control of a serially reusable resource 571

Example 1
Unconditionally request exclusive control of one resource and shared control of
another. The system will return control to the requesting program only when both
resources are available.
ENQ (MAJOR3,MINOR3,E,8,SYSTEM,MAJOR4,MINOR4,S,6,SYSTEM)

Example 2
Conditionally request shared control of a serially reusable resource that is known
only within the address space (STEP). The resource is only to be obtained if
immediately available. The resource will be used for read-only purposes. The
length of rname is allowed to default.
ENQ (MAJOR1,MINOR1,S,,STEP),RET=USE

Example 3
Unconditionally request exclusive control of three resources. The scope of each
resource differs (STEP, SYSTEM, and SYSTEMS, respectively). The rname length of
the first resource is 3 characters and the rname length of the third resource is 8
characters. Allow the rname length of the second resource to default to its
assembled length.
ENQ (MAJOR4,MINOR4,E,3,,MAJOR2,MINOR2,,,SYSTEM, X

MAJOR3,MINOR3,E,8,SYSTEMS)

ENQ - List form
Use the list form of ENQ to construct a control program parameter list. You can
specify any number of resources on ENQ, therefore, the number of qname, rname,
and scope combinations in the list form of the ENQ macro must be equal to the
maximum number of qname, rname, and scope combinations in any execute form of
the macro that refers to that list form.

Syntax
The list form of the ENQ macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede ENQ.

ENQ

� One or more blanks must follow ENQ.

(

qname addr qname addr: A-type address or register (2) - (12).

,

ENQ macro

572 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,rname addr rname addr: A-type address or register (2) - (12).

, Default: E

,E

,S

,

,rname length rname length: symbol or decimal digit.

Default: assembled length of rname

, Default: STEP

,STEP

,SYSTEM

,SYSTEMS

)

,RET=CHNG Default: RET=NONE

,RET=HAVE

,RET=TEST

,RET=USE

,RET=NONE

,RNL=YES Default: RNL=YES

,RNL=NO

,RELATED=value value: any valid macro keyword specification.

,MF=L

Parameters
The parameters are explained under the standard form of the ENQ macro, with the
following exception:

,MF=L
Specifies the list form of the ENQ macro.

ENQ macro

Chapter 92. ENQ — Request control of a serially reusable resource 573

ENQ - Execute form
A remote control program parameter list is used in and can be modified by the
execute form of the ENQ macro. The parameter list must be generated by the list
form of ENQ.

Syntax
The execute form of the ENQ macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede ENQ.

ENQ

� One or more blanks must follow ENQ.

(Note: (and) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired then (,), and all parameters
between (and) should not be specified. If something in the list is desired,
the (,), and all parameters in the list should be specified as indicated at the
left.

qname addr qname addr: RX-type address or register (2) - (12).

,

,rname addr rname addr: RX-type address or register (2) - (12).

,

,E

,S

,

,rname length rname length: symbol, decimal digit, or register (2) - (12).

,

,STEP

,SYSTEM

,SYSTEMS

) Note: See note opposite (above.

,RET=CHNG

,RET=HAVE

ENQ macro

574 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,RET=TEST

,RET=USE

,RET=NONE

,RNL=YES

,RNL=NO

,RELATED=value value: any valid macro keyword specification.

,LINKAGE=SVC DEFAULT: LINKAGE=SVC

,LINKAGE=SYSTEM

,MF=(E,list addr) list addr: RX-type address or register (1) - (12).

Parameters
The parameters are explained under the standard form of the ENQ macro, with the
following exceptions:

,MF=(E,list addr)
Specifies the execute form of the ENQ macro.

list addr specifies the area that the system uses to contain the parameters.

ENQ macro

Chapter 92. ENQ — Request control of a serially reusable resource 575

ENQ macro

576 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 93. ESPIE — Extended SPIE

Description
The ESPIE macro extends the function of the SPIE (specify program interruption
exits) macro to callers in 31-bit addressing mode. For additional information
concerning the relationship between the SPIE and the ESPIE macros, see the
section on program interruptions in z/OS MVS Programming: Assembler Services
Guide.

The ESPIE macro performs the following functions using the options specified:
v Establishes an ESPIE environment (that is, identifies the interruption types that

are to cause entry to the ESPIE exit routine) by executing the SET option of the
ESPIE macro

v Deletes an ESPIE environment (that is, cancels the current SPIE/ESPIE
environment) by executing the RESET option of the ESPIE macro

v Determines the current SPIE/ESPIE environment by executing the TEST option
of the ESPIE macro.

The information documented under the following headings applies to all three
options of the ESPIE macro (SET, RESET, and TEST):
v “Environment”
v “Programming Requirements”
v “Restrictions”
v “Performance Implications”
v “ABEND Codes”

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: To issue ESPIE without encountering an abnormal end,

callers must be in problem state, with a PSW key value that
is equal to the TCB assigned key, except when ESPIE RESET
is issued or ESPIE SET is issued with no interruption codes
specified (where key 0 supervisor state is allowed).

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

Programming requirements
None.

Restrictions
None.

© Copyright IBM Corp. 1988, 2015 577

Performance implications
Programs that need to intercept only specific hardware program check
interruptions (such as arithmetic exceptions or data conversion exceptions) will
find ESPIE to be more efficient than establishing an ESTAE environment to screen
all abends for specific OCx abends. This is because the operating system must do
significantly more processing to enter and retry from an ESTAE routine as
compared to an ESPIE routine.

ABEND codes
ESPIE might return abend code X'46D'. See z/OS MVS System Codes for an
explanation and programmer responses.

The information documented under the following headings is provided separately
for each of the three options (SET, RESET, and TEST):
v “Input Register Information”
v “Output Register Information”
v “Syntax”
v “Parameters”
v “Return and Reason Codes”
v “Examples”

SET option

Input register information
Before issuing the SET option of the ESPIE macro, the caller does not have to place
any information into any register unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain the
following information:

Register
Contents

0 Used as a work register by the system

1 Token representing the previously active SPIE/ESPIE environment

2-13 Unchanged

14 Used as a work register by the system

15 Return code of 0

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

ESPIE macro

578 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Syntax
The standard form of the ESPIE macro with the SET option is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESPIE.

ESPIE

� One or more blanks must follow ESPIE.

SET

,exit addr exit addr: A-type address, or register (2) - (12).

,(interruptions) interruptions: Decimal digits 1-15 and expressed as:

single values: (2, 3, 4, 7, 8, 9, 10)
ranges of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

,PARAM=list addr list addr: A-type address or register (2) - (12).

,PKM=SYSTEM_RULES Default: PKM=SYSTEM_RULES

,PKM=TOS

Parameters
The parameters are explained as follows:

SET
Indicates that an ESPIE environment is to be established.

,exit addr
Specifies the address of the exit routine to be given control when program
interruptions of the type specified by interruptions occur. The exit routine will
receive control in the same addressing mode as the issuer of the ESPIE macro.

,(interruptions)
Indicates the interruption types that are being trapped. The interruption types
are:

Number
Interruption Type

ESPIE macro

Chapter 93. ESPIE — Extended SPIE 579

1 Operation

2 Privileged operation

3 Execute

4 Protection

5 Addressing

6 Specification

7 Data

8 Fixed-point overflow (maskable)

9 Fixed-point divide

10 Decimal overflow (maskable)

11 Decimal divide

12 Exponent overflow

13 Exponent underflow (maskable)

14 Significance (maskable)

15 Floating-point divide

These interruption types can be designated as one or more single numbers, as
one or more pairs of numbers (designating ranges of values), or as any
combination of the two forms. For example, (4,8) indicates interruption types 4
and 8; ((4,8)) indicates interruption types 4 through 8.

If a program interruption type is maskable, the corresponding program mask
bit in the PSW is set to 1. If a maskable interruption is not specified, the
corresponding bit in the PSW is set to 0. Interruption types not specified above
are handled by the system. The system forces an abnormal end with the
program check as the completion code. If an ESTAE-type recovery routine is
also active, the SDWA indicates a system-forced abnormal end. The registers at
the time of the error are those of the system.

Note: For both ESPIE and SPIE - If you are using vector instructions and an
exception of 8, 12, 13, 14, or 15 occurs, your recovery routine can check the
exception extension code (the first byte of the two-byte interruption code in the
EPIE or PIE) to determine whether the exception was a vector or scalar type of
exception.

,PARAM=list addr
Specifies the fullword address of a parameter list that is to be passed by the
caller to the exit routine.

,PKM=SYSTEM_RULES

,PKM=TOS
SYSTEM_RULES specifies that the system should determine the appropriate
PSW key mask for the ESPIE exit and resume point. TOS specifies that the
Time Of Set PKM should be propagated to the ESPIE exit and resume point.

Return and reason codes
None.

ESPIE macro

580 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Example
Give control to an exit routine for interruption types 1 and 4. EXIT is the location
of the exit routine to be given control and PARMLIST is the location of the user
parameter list to be used by the exit routine.
ESPIE SET,EXIT,(1,4),PARAM=PARMLIST

ESPIE—List form
Use the list form of the ESPIE macro together with the execute form of the macro
for applications that require reentrant code. The list form of the macro defines an
area of storage, which the execute form of the macro uses to store the parameters.
The list form of ESPIE is valid only for ESPIE SET.

Syntax
The list form of the ESPIE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESPIE.

ESPIE

� One or more blanks must follow ESPIE.

SET

,exit addr exit addr: A-type address.

Note: This parameter must be specified on either the list or the execute form
of the macro.

,(interruptions) interruptions: Decimal digit 1-15 and expressed as:

single values: (2, 3, 4, 7, 8, 9, 10)
range of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

,PARAM=list addr list addr: A-type address.

,MF=L

Parameters
The parameters are explained under the standard form of ESPIE SET with the
following exception:

,MF=L
Specifies the list form of the ESPIE macro.

ESPIE macro

Chapter 93. ESPIE — Extended SPIE 581

Example
Build a nonexecutable problem program parameter list that will transfer control to
the exit routine, EXIT, for the interruption types specified in the execute form of
the macro. Provide the address of the user parameter list, PARMLIST.
LIST1 ESPIE SET,EXIT,PARAM=PARMLIST,MF=L

ESPIE—Execute form
Use the execute form of the ESPIE macro together with the list form of the macro
for applications that require reentrant code. The execute form of the macro stores
the parameters into the storage area defined by the list form. The execute form of
ESPIE is valid only for ESPIE SET.

Syntax
The execute form of the ESPIE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESPIE.

ESPIE

� One or more blanks must follow ESPIE.

SET

,exit addr exit addr: RX-type address or register (2) - (12).

Note: This parameter must be specified on either the list or the execute form
of the macro.

,(interruptions) interruptions: Decimal digit 1-15 and expressed as:

single values: (2, 3, 4, 7, 8, 9, 10)
range of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

,PARAM=list addr list addr: RX-type address or register (2) - (12).

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1), (2) - (12).

,PKM=SYSTEM_RULES Default: PKM=SYSTEM_RULES

,PKM=TOS

Parameters
The parameters are explained under the standard form of the ESPIE macro with
the following exception:

ESPIE macro

582 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,MF=(E,ctrl addr)
Specifies the execute form of the ESPIE macro.

Example
Give control to an installation exit routine for interruption types 1, 4, 6, 7, and 8.
The exit routine address and the address of a user parameter list for the exit
routine are provided in a remote control program parameter list at LIST1.
ESPIE SET,,(1,4,(6,8)),MF=(E,LIST1)

RESET option
The RESET option of the ESPIE macro cancels the current SPIE/ESPIE environment
and re-establishes the previously active SPIE/ESPIE environment identified by the
token specified.

Input register information
Before issuing the RESET option of the ESPIE macro, the caller does not have to
place any information into any register unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Used as a work register by the system

1 Token identifying the previously active SPIE/ESPIE environment

2-13 Unchanged

14 Used as a work register by the system

15 Return code of 0

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Syntax
The RESET option of the ESPIE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

ESPIE macro

Chapter 93. ESPIE — Extended SPIE 583

Syntax Description

� One or more blanks must precede ESPIE.

ESPIE

� One or more blanks must follow ESPIE.

RESET

,token token: RX-type address, or register (1), (2) - (12).

Parameters
The parameters are explained as follows:

RESET
Indicates that the current ESPIE environment is to be deleted and the
previously active SPIE/ESPIE environment specified by token is to be
reestablished.

,token
Specifies a fullword that contains a token representing the previously active
SPIE/ESPIE environment. This is the same token that ESPIE processing
returned to the caller when the ESPIE environment was established using the
SET option of the ESPIE macro.

If the token is zero, all SPIEs and ESPIEs are deleted.

Return and reason codes
None.

Example
Cancel the current SPIE/ESPIE environment and restore the SPIE/ESPIE
environment represented by the contents of TOKEN.
ESPIE RESET,TOKEN

TEST option
The TEST option of the ESPIE macro determines the active SPIE/ESPIE
environment and returns the information in a 4-word parameter list.

Input register information
Before issuing the TEST option of the ESPIE macro, the caller does not have to
place any information into any register unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

ESPIE macro

584 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Register
Contents

0 Used as a work register by the system

1-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Syntax
The TEST option of the ESPIE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESPIE.

ESPIE

� One or more blanks must follow ESPIE.

TEST

,parm addr parm addr: RX-type address, or register (1), (2) - (12).

Parameters
The parameters are explained as follows:

TEST
Indicates a request for information concerning the active or current
SPIE/ESPIE environment. ESPIE processing returns this information to the
caller in a 4-word parameter list located at parm addr.

ESPIE macro

Chapter 93. ESPIE — Extended SPIE 585

,parm addr
Specifies the address of a 4-word parameter list aligned on a fullword
boundary. The parameter list has the following form:

Word Content

0 Address of the exit routine (31-bit address with the high-order bit set
to 0 for 24-bit routines or 1 for 31-bit routines)

1 Address of the user-defined parameter list

2 Mask of program interruption types

3 Zero

Return and reason codes
ESPIE TEST returns status information about the current ESPIE environment in
GPR 15. When control returns from ESPIE TEST, GPR 15 contains one of the
following hexadecimal return codes.

Note: These return codes are informational; no actions are required.

Hexadecimal
Return Code

Meaning

0 Meaning: An ESPIE exit is active and the 4-word parameter list
contains the information specified in the description of the parm addr
parameter.

4 Meaning: A SPIE exit is active. Word 1 of the parameter list described
under parm addr contains the address of the current PICA. Words 0, 2,
and 3 of the parameter list contain no relevant information.

8 Meaning: No SPIE or ESPIE is active. The contents of the 4-word
parameter list contain no relevant information.

Example
Identify the active SPIE/ESPIE environment. Return the information about the exit
routine in the 4-word parameter list, PARMLIST. Also return, in register 15, an
indicator of whether a SPIE, ESPIE, or neither is active.
ESPIE TEST,PARMLIST

ESPIE macro

586 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 94. ESTAE and ESTAEX — Extended specify task
abnormal exit

Description
The ESTAE macro provides recovery capability facilities. Issuing the ESTAE macro
allows the caller to intercept errors. Control is given to a caller-specified exit
routine (called a recovery routine) in which the caller can perform various tasks,
including diagnosing the cause of the error and specifying a retry address to avoid
abnormally ending.

ESTAE type considerations: The type of ESTAE routine, that is, ESTAE or ESTAEX
affects the AMODE of the recovery routine as follows. For recovery routines
defined through the:
v ESTAE macro, at the time of entry to the recovery routine, the AMODE will be

the same as at the time of invocation of the macro.
v ESTAEX macro, the AMODE will be the same as at the time of invocation of the

macro, unless the macro was invoked in AMODE 24 in which case the recovery
routine AMODE will be 31-bit.

v The AMODE at the retry point will be the same as the AMODE on entry to the
recovery routine.

Various mode considerations: Depending on address space, cross-memory (the
primary, secondary, and home address spaces are the same), and access register
(AR) modes, you should select the proper ESTAE type as follows:
v If your program is to execute in 31-bit addressing mode, you must use the SP

Version 2 of the ESTAE macro or a later version. For information about how to
select a macro for an MVS/SP version other than the current version, see
“Compatibility of MVS macros” on page 1.

v Callers that are in primary address space control (ASC) mode and not in
cross-memory mode can issue either ESTAE or ESTAEX.

v Callers that are in access register (AR) mode or in cross-memory mode must use
ESTAEX.

v IBM recommends that all callers use the ESTAEX macro, unless your program
and your recovery routine are in 24-bit addressing mode, in which case you
should use ESTAE.

Depending on whether you code ESTAE or ESTAEX, the system passes the address
of the user-specified parameter area differently. The SDWAPARM field in the
SDWA contains either the address of the parameter area (ESTAE), or the address of
a doubleword that contains the address and ALET of the parameter area (ESTAEX).
When you run in AMODE 64 (as indicated by specifying AMODE64=YES via the
SYSSTATE macro) and invoke ESTAEX, your ESTAEX routine will get control in
AMODE 64. The 8-byte area pointed to by the SDWAPARM field will be the 8-byte
address of the parameter area. Note that no ALET information is provided to the
ESTAEX routine in this case.

See the section on providing recovery in z/OS MVS Programming: Assembler Services
Guide for information about writing recovery routines.

The descriptions of ESTAE and ESTAEX in this book are:

© Copyright IBM Corp. 1988, 2015 587

v The standard form of the ESTAE macro, which includes general information
about the ESTAE and ESTAEX macros, with some specific information about the
ESTAE macro. The syntax of the ESTAE macro is presented, and all ESTAE
parameters are explained.

v The standard form of the ESTAEX macro, which includes information specific to
the ESTAEX macro. The syntax of the ESTAEX macro is presented.

v The list form of the ESTAE and ESTAEX macros.
v The execute form of the ESTAE and ESTAEX macros.

Note: The ESTAE and ESTAEX macros have the same environment specifications,
register information, programming requirements, restrictions and performance
implications described below, except where noted in the explanation for ESTAEX.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit for ESTAE; 24- or 31- or 64-bit for ESTAEX
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

Programming requirements
If the program is in AR mode, you must use ESTAEX rather than ESTAE; issue the
SYSSTATE macro with the ASCENV=AR parameter before you issue ESTAEX.
SYSSTATE ASCENV=AR tells the system to generate code appropriate for AR
mode.

Restrictions
v For SVC-entry, you must have no EUT FRRs.
v For branch entry, IBM recommends that you have no EUT FRRs.

Input register information
Before issuing the ESTAE macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code if GPR 15 contains X'4'; otherwise, used as a work register by
the system

1 Used as a work register by the system

2-13 Unchanged

ESTAE and ESTAEX macros

588 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the ESTAE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESTAE.

ESTAE

� One or more blanks must follow ESTAE.

exit addr exit addr: A-type address, or register (2) - (12).

0

,CT Default: CT

,OV

,PARAM=list addr list addr: A-type address, or register (2) - (12).

,XCTL=NO Default: XCTL=NO

,XCTL=YES

,PURGE=NONE Default: PURGE=NONE

,PURGE=QUIESCE

,PURGE=HALT

ESTAE and ESTAEX macros

Chapter 94. ESTAE and ESTAEX — Extended specify task abnormal exit 589

Syntax Description

,ASYNCH=YES Default: ASYNCH=YES

,ASYNCH=NO

,TERM=NO Default: TERM=NO

,TERM=YES

,RELATED=value value: Any valid macro keyword specification.

,SDWALOC31=NO Default: SDWALOC31=NO

,SDWALOC31=YES

Parameters
The parameters are explained as follows:

exit addr
0 Specifies the 31-bit address of an ESTAE recovery routine to be entered if the

task issuing this macro ends abnormally. If 0 is specified, the most recent
ESTAE recovery routine is deactivated and no longer defined.

The ESTAEX exit always gets control in 31-bit mode, regardless of the mode in
which the macro was invoked.

,CT
,OV

Specifies that a new ESTAE recovery routine is to be defined and activated
(CT); or indicates that parameters passed in this ESTAE macro are to overlay
the data contained in the previous ESTAE recovery routine (OV).

,PARAM=list addr
Specifies the address of a user-defined parameter area containing data to be
used by the ESTAE recovery routine when it is scheduled for execution.

,XCTL=NO
,XCTL=YES

Specifies that the ESTAE recovery routine will be deactivated and no longer
defined (NO) or will remain activated and defined (YES) if an XCTL macro is
issued by this program.

,PURGE=NONE
,PURGE=QUIESCE
,PURGE=HALT

Specifies that all outstanding requests for I/O operations will not be saved
when the ESTAE recovery routine receives control (HALT), that I/O processing
will be allowed to continue normally when the ESTAE recovery routine
receives control (NONE), or that all outstanding requests for I/O operations
will be saved when the ESTAE recovery routine receives control (QUIESCE). If
QUIESCE is specified, the user's retry routine can restore the outstanding I/O
requests.

For PURGE=QUIESCE and PURGE=HALT, RTM requests that all I/O be
purged at the task level for the current task. Be aware that the purge request

ESTAE and ESTAEX macros

590 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

involves all I/O started by the task, not just the I/O started by the program
that created this recovery routine. PURGE=QUIESCE must thus be used
carefully, as it may wait for I/O that was not started by the program that
created this recovery routine. Likewise, PURGE=HALT must be used carefully
as it may terminate I/O that was not started by the program that created this
recovery routine.

If PURGE=NONE is specified, all data areas affected by input/output
processing may continue to change during ESTAE recovery routine processing.

If PURGE=NONE is specified and the error was an error in input/output
processing, recursion will develop when an input/output interruption occurs,
even if the recovery routine is in progress. Thus, it will appear that the
recovery routine failed when, in reality, input/output processing was the cause
of the failure.

Do not use PURGE=HALT to stop processing a data set if you expect to
continue reading the data set at a different point.

Note:

1. You need to understand PURGE processing before using this parameter. For
information about PURGE processing, see z/OS DFSMSdfp Advanced Services.

2. When using PURGE, you should consider any access-method ramifications. See
the appropriate DFP manual for the particular access method you are using to
determine these ramifications.

3. The system performs the requested I/O processing only for the first
ESTAE-type recovery routine that gets control. Subsequent routines that get
control receive an indication of the I/O processing previously done, but no
additional processing is performed.

,ASYNCH=YES
,ASYNCH=NO

Specifies that asynchronous exit processing will be allowed (YES) or prohibited
(NO) while the user's ESTAE recovery routine is running.

ASYNCH=YES must be coded if:
v Any supervisor services that require asynchronous interruptions to complete

their normal processing are going to be requested by the ESTAE recovery
routine.

v PURGE=QUIESCE is specified for any access method that requires
asynchronous interruptions to complete normal input/output processing.

v PURGE=NONE is specified and the CHECK macro is issued in the ESTAE
recovery routine for any access method that requires asynchronous
interruptions to complete normal input/output processing.

Note: If ASYNCH=YES is specified and the error was an error in
asynchronous exit handling, recursion will develop when an asynchronous exit
handling was the cause of the failure.

,TERM=NO
,TERM=YES

Specifies that the recovery routine associated with the ESTAE request will be
scheduled (YES) or will not be scheduled (NO), in addition to normal ESTAE
processing, in the following situations:
v System-initiated logoff
v Job step timer expiration
v Wait time limit for job step exceeded

ESTAE and ESTAEX macros

Chapter 94. ESTAE and ESTAEX — Extended specify task abnormal exit 591

v DETACH macro without the STAE=YES parameter issued from a
higher-level task (possibly by the system if the higher-level task encountered
an error)

v Operator cancel
v Error on a higher level task
v Error in the job step task when a non-job step task issued the ABEND macro

with the STEP parameter.
v z/OS UNIX System Services is canceled and the user's task is in a wait in

the z/OS UNIX System Services kernel.

When the recovery routine is entered because of one of the preceding reasons,
retry will not be permitted. If a dump is requested at the time the ABEND
macro is issued, it is taken prior to entry into the recovery routines.

Note: If DETACH was issued with the STAE parameter, the following will
occur for the task to be detached:
v All ESTAE recovery routines will be entered.
v The most recently activated STAE recovery routine will be entered.
v All STAI/ESTAI recovery routines will be entered unless return code 16 is

returned from one of the STAI recovery routines.

In these cases, entry to the recovery routine is prior to dumping and retry will
not be permitted.

,RELATED=value
Specifies information used to self-document macros by ‘relating’ functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

,SDWALOC31=NO
,SDWALOC31=YES

Specifies that the SDWA be in 31-bit storage (YES) or the default 24-bit storage
(NO). You must specify SDWALOC31=YES when the your program is running
in AMODE 31 and you are using 64-bit general purpose registers, because the
time-of-error 64-bit GPRs are only presented to routines with an SDWA in
31-bit storage. Only routines with an SDWA in 31-bit storage can retry while
setting those registers.

Note: The SDWALOC31= parameter applies to ESTAE only. (For ESTAEX, the
SDWA is always in 31-bit storage.)

ABEND codes
X'13C'

See z/OS MVS System Codes for an explanation and programmer response for the
abend code.

Return and reason codes
When control is returned to the instruction following the ESTAE macro, GPR 15
contains one of the following return codes and GPR 0 contains one of the
following reason codes.

ESTAE and ESTAEX macros

592 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 none Meaning: Successful completion of the ESTAE request.

Action: None.

04 00 Meaning: Program error. ESTAE OV was specified but
ESTAE CT was performed. No valid ESTAE recovery
routine existed.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

04 04 Meaning: Program error. ESTAE OV was specified but
ESTAE CT was performed. The last ESTAE recovery
routine was not owned by the user's RB.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

04 08 Meaning: Program error. ESTAE OV was specified but
ESTAE CT was performed. The last ESTAE recovery
routine was not created at the current linkage stack level.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

04 0C Meaning: Program error. ESTAE OV was specified but
ESTAE CT was performed. The last recovery routine was
not an ESTAE recovery routine.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

0C none Meaning: Program error. A recovery routine address equal
to zero was specified and either there are no recovery
routines for this task, the most recent recovery routine is
not owned by the caller, or the most recent recovery
routine is not an ESTAE recovery routine.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

10 none Meaning: System error. An unexpected error was
encountered while this request was being processed.

Action: Rerun your program one or more times. If the
problem persists, record the return and reason code and
supply it to the appropriate IBM support personnel.

14 none Meaning: System error. ESTAE was unable to obtain
storage for a system data area.

Action: Rerun your program one or more times. If the
problem persists, check with the operator to see if the
installation is experiencing a storage constraint problem.

18 none Meaning: Program error. ESTAE OV was specified without
the TOKEN parameter, but the ESTAE recovery routine was
created with the TOKEN parameter. (The TOKEN
parameter is available only to programs in supervisor state
with PSW key 0-7 or programs that are APF-authorized.)

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

1C none Meaning: Program error. ESTAE was unable to access the
input parameter area.

Action: Make sure the parameter area is in the primary
address space and reissue the ESTAE macro.

ESTAE and ESTAEX macros

Chapter 94. ESTAE and ESTAEX — Extended specify task abnormal exit 593

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

20 none Meaning: Program error. XCTL=YES was rejected because
the linkage stack was not at the same level as it was when
the RB was created.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

24 none Meaning: Program error. A recovery routine address equal
to zero was specified, but it was rejected because no ESTAE
recovery routines were active for the current linkage stack
level.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

28 none Meaning: Program error. ESTAE OV was specified, but it
was rejected because no ESTAE recovery routines were
active for the current linkage stack level.

Action: Correct the environment and either reissue the
ESTAE macro or rerun your program, as appropriate.

Example 1
Request an overlay of the existing ESTAE recovery routine (at ADDR), with the
following options: parameter area is as PLIST, I/O will be halted, no asynchronous
exits will be taken, ownership will be transferred to the new request block
resulting from any XCTL macros.
ESTAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO

Example 2
Provide the pointer to the recovery code in the register called EXITPTR, and the
address of the ESTAE recovery routine parameter area in register 9. Register 8
points to the area where the ESTAE parameter area (created with the MF=L option)
is to be modified.
ESTAE (EXITPTR),PARAM=(9),MF=(E,(8))

ESTAEX —Extended specify task abnormal exit

Note: The ESTAEX macro has the same environment, specifications, register
information, programming requirements, restrictions and performance implications
as the ESTAE macro, with the exceptions that follow.

Environment
The requirements for the caller of ESTAEX that are different from ESTAE are:

Environmental factor Requirement
Cross memory mode: Any PASN, any HASN, any SASN
ASC mode: Primary or access register (AR)

Programming requirements
If the program is in AR mode:
v Issue the SYSSTATE macro with the ASCENV=AR parameter before you issue

ESTAEX. SYSSTATE ASCENV=AR tells the system to generate code appropriate
for AR mode.

ESTAE and ESTAEX macros

594 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

v User parameters, specified on the PARAM parameter, can be located in any
address space.

Restrictions
The caller of ESTAEX cannot have an EUT FRR established.

Syntax
The parameters on the standard form of the ESTAEX macro are exactly the same as
for the standard form of the ESTAE macro, except that the SDWALOC31 parameter
is available only on the ESTAE macro. The SDWA is always placed in 31-bit
storage for an ESTAEX recovery routine, so the parameter is unnecessary for
ESTAEX. They are written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESTAEX.

ESTAEX

� One or more blanks must follow ESTAEX.

exit addr exit addr: A-type address, or register (2) - (12).

0

,CT Default: CT

,OV

,PARAM=list addr list addr: A-type address, or register (2) - (12).

,XCTL=NO Default: XCTL=NO

,XCTL=YES

,PURGE=NONE Default: PURGE=NONE

,PURGE=QUIESCE

,PURGE=HALT

,ASYNCH=YES Default: ASYNCH=YES

,ASYNCH=NO

,TERM=NO Default: TERM=NO

,TERM=YES

ESTAE and ESTAEX macros

Chapter 94. ESTAE and ESTAEX — Extended specify task abnormal exit 595

Syntax Description

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained under the syntax for the standard form of the ESTAE
macro.

ABEND codes
X'13C'

See z/OS MVS System Codes for an explanation and programmer response for the
abend code.

Return and reason codes
When control is returned to the instruction following the ESTAEX macro, the
return code in GPR 15 and the reason code in GPR 0 might be different from those
for the ESTAE macro. The return and reason codes for ESTAEX are listed below.

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 none Meaning: Successful completion of ESTAEX request.

Action: None.

04 00 Meaning: Program error. ESTAEX OV was specified
but ESTAEX CT was performed. No valid ESTAE
recovery routine existed.

Action: Correct the environment and either reissue
the ESTAEX macro or rerun your program, as
appropriate.

04 04 Meaning: Program error. ESTAEX OV was specified
but ESTAEX CT was performed. The last ESTAE
recovery routine was not owned by the user's RB.

Action: Correct the environment and either reissue
the ESTAEX macro or rerun your program, as
appropriate.

04 08 Meaning: Program error. ESTAEX OV was specified
but ESTAEX CT was performed. The last ESTAE
recovery routine was not owned by the user's
linkage stack entry.

Action: Correct the environment and either reissue
the ESTAEX macro or rerun your program, as
appropriate.

04 0C Meaning: Program error. ESTAEX OV was specified
but ESTAEX CT was performed. The last recovery
routine was not an ESTAE recovery routine.

Action: Correct the environment and either reissue
the ESTAEX macro or rerun your program, as
appropriate.

ESTAE and ESTAEX macros

596 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 none Meaning: Program error. The ESTAEX request was
not valid.

Action: Correct the request and either reissue the
ESTAEX macro or rerun your program, as
appropriate.

0C none Meaning: Program error. A recovery routine address
equal to zero was specified and either there are no
recovery routines for this TCB, the most recent
recovery routine is not owned by the caller, or the
most recent recovery routine is not an ESTAE
recovery routine.

Action: Correct the environment and either reissue
the ESTAEX macro or rerun your program, as
appropriate.

10 none Meaning: System error. An unexpected error was
encountered while the request was being processed.

Action: Rerun your program one or more times. If
the problem persists, record the return and reason
codes and supply them to the appropriate IBM
support personnel.

14 none Meaning: System error. ESTAEX was unable to
obtain storage for a system data area.

Action: Rerun your program one or more times. If
the problem persists, check with the operator to see
if the installation is experiencing a storage constraint
problem.

18 none Meaning: Program error. ESTAEX OV was specified
without the TOKEN parameter, but the ESTAE
recovery routine was created with the TOKEN
parameter. (The TOKEN parameter is available only
to programs in supervisor state with PSW key 0-7 or
programs that are APF-authorized.)

Action: Correct the environment and either reissue
the ESTAEX macro or rerun your program, as
appropriate.

1C none Meaning: Program error. ESTAEX was unable to
access the input parameter area.

Action: Make sure the parameter area is contained
in the primary address space and reissue the
ESTAEX macro or rerun your program, as
appropriate.

20 none Meaning: Program error. XCTL=YES was rejected
because the linkage stack was not at the same level
as it was when the RB was created.

Action: Correct the environment and reissue the
ESTAEX macro or rerun your program, as
appropriate.

ESTAE and ESTAEX macros

Chapter 94. ESTAE and ESTAEX — Extended specify task abnormal exit 597

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

24 none Meaning: Program error. A recovery routine address
equal to zero was specified, but it was rejected
because no ESTAE recovery routines were active for
the current linkage stack level.

Action: Correct the environment and reissue the
ESTAEX macro or rerun your program, as
appropriate.

ESTAE and ESTAEX—List form
The list form of the ESTAE and ESTAEX macros is used to construct a remote
control parameter area.

Syntax
The list form of ESTAE and ESTAEX is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESTAE or ESTAEX.

ESTAE
ESTAEX

� One or more blanks must follow ESTAE or ESTAEX.

exit addr exit addr: A-type address.

0

,PARAM=list addr list addr: A-type address.

,PURGE=NONE Default: PURGE=NONE

,PURGE=QUIESCE

,PURGE=HALT

,ASYNCH=YES Default: ASYNCH=YES

,ASYNCH=NO

,TERM=NO Default: TERM=NO

,TERM=YES

,RELATED=value value: Any valid macro keyword specification.

ESTAE and ESTAEX macros

598 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,SDWALOC31=NO Default: SDWALOC31=NO

,SDWALOC31=YES Note: SDWALOC31 is supported only by ESTAE.

,MF=L

Parameters
The parameters are explained under the standard form of the ESTAE or ESTAEX
macro, with the following exception:

,MF=L
Specifies the list form of ESTAE or ESTAEX.

ESTAE and ESTAEX—Execute form
A remote control parameter area is used in, and can be modified by, the execute
form of the ESTAE and ESTAEX macros. The control parameter area can be
generated by the list form of ESTAE or ESTAEX. A user who wants to dynamically
change the contents of the remote control parameter area can code a new recovery
routine address (exit addr) or a new parameter area address (PARAM). If exit addr
or PARAM is coded, only the associated field in the remote control parameter area
will be changed. The other fields will remain as they were before the current
ESTAE or ESTAEX request was made.

Syntax
The execute form of the ESTAE and the ESTAEX macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ESTAE or ESTAEX.

ESTAE
ESTAEX

� One or more blanks must follow ESTAE or ESTAEX.

exit addr exit addr: RX-type address, or register (2) - (12).

0

,CT

,CV

,PARAM=list addr list addr: RX-type address, or register (2) - (12).

ESTAE and ESTAEX macros

Chapter 94. ESTAE and ESTAEX — Extended specify task abnormal exit 599

Syntax Description

,XCTL=NO
,XCTL=YES

,PURGE=NONE
,PURGE=QUIESCE
,PURGE=HALT

,ASYNCH=YES
,ASYNCH=NO

,TERM=NO
,TERM=YES

,RELATED=value value: Any valid macro keyword specification.

,SDWALOC31=NO Default: SDWALOC31=NO

,SDWALOC31=YES Note: SDWALOC31 is supported only by ESTAE.

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the ESTAE or ESTAEX
macro, with the following exception:

,MF=(E,ctrl addr)
Specifies the execute form of the ESTAE and ESTAEX macro using a remote
control parameter area.

ESTAE and ESTAEX macros

600 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 95. EVENTS — Wait for one or more events to
complete

Description
The EVENTS macro is the same as the WAIT macro with the ECBLIST parameter,
with one additional function: EVENTS notifies the calling program that event
control blocks (ECBs) have completed and the order in which they completed.

The macro performs the following functions:
v Creates and deletes EVENTS tables.
v Initializes and maintains a list of completed event control blocks.
v Provides for single or multiple ECB processing.

For a detailed explanation of how to use EVENTS to perform these functions see
“Using the EVENTS macro” on page 604.

If your program is to execute in 31-bit addressing mode, you must use the SP
Version 2 expansion of this macro or a later version. For information about how to
select the macro for an MVS/SP version other than the current version, see
“Compatibility of MVS macros” on page 1.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in primary address space.

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the EVENTS macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2015 601

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The EVENTS macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede EVENTS.

EVENTS

� One or more blanks must follow EVENTS.

ENTRIES=n n: Variable or decimal digit 1-32,767.

ENTRIES=addr addr: Register (2) - (12).

ENTRIES=DEL,TABLE=table

address Note: If ENTRIES=n or ENTRIES=DEL,TABLE=table address is specified, no
other parameter should be specified.

TABLE=table address table address: Symbol, RX-type address, or register (2) - (12).

,WAIT=NO Default: None.

,WAIT=YES

,ECB=ecb address ecb address: Symbol, RX-type address, or register (2) - (12).

,LAST=last address last address: Symbol, RX-type address, or register (2) - (12).

Note: Optional parameters are only valid when TABLE=table address is the
only required parameter specified.

602 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
The parameters are explained as follows:

ENTRIES=n
ENTRIES=addr

Specifies either a register or a decimal number from 1 to 32,767 that specifies
the maximum number of completed ECB addresses that can be processed in an
EVENTS table concurrently.

Note: When this parameter is specified no other parameter should be
specified.

ENTRIES=DEL,TABLE=table address
Specifies that the EVENTS table whose address is specified by TABLE=table
address is to be deleted. The user is responsible for deleting all of the tables he
creates; however, all existing tables are automatically freed at task termination.

Note:

1. When this parameter is specified no other parameter should be specified.
2. table address specifies a storage location below 16 megabytes.

TABLE=table address
Specifies either a register number or the address of a word containing the
address of the EVENTS table associated with the request. The address specified
with the operand TABLE must be that of an EVENTS table created by this task.

Note: table address specifies a storage location below 16 megabytes.

,WAIT=NO
,WAIT=YES

Specifies whether or not to put the issuing program in a wait state when there
are no completed events in the EVENTS table (specified by the TABLE=
parameter).

,ECB=ecb address
Specifies either a register number or the address of a word containing the
address of an event control block. The EVENTS macro should be used to
initialize any event-type ECB. To avoid the accidental destruction of bit settings
by a system service such as an access method, the ECB should be initialized
after the system service that will post the ECB has been initiated (thus making
the ECB eligible for posting) and before the EVENTS macro is issued to wait
on the EVENTS table.

Note:

1. Register 1 should not be specified for the ECB address.
2. This parameter may not be specified with the LAST= parameter.
3. If only ECB initialization is being requested, neither WAIT=NO nor

WAIT=YES should be specified, to prevent any unnecessary WAIT
processing from occurring.

,LAST=last address
Specifies either a register number or the address of a word containing the
address of the last EVENT parameter list entry processed.

Note:

1. Register 1 should not be specified for the LAST address.
2. This parameter should not be specified with the ECB= parameter.

Chapter 95. EVENTS — Wait for one or more events to complete 603

3. last address specifies a storage location below 16 megabytes.

Using the EVENTS macro
The following explains the different uses of EVENTS:
v Creating EVENTS Tables — When ENTRIES=n is specified, the system creates an

EVENTS table with “n” entries for completed ECB addresses. This table is
queued on the EVENTS table queue associated with the task. (There is no limit
to the number of EVENTS tables that can be queued for a single task.) The
address of the EVENTS table is returned to the user in register 1. See Figure 6.

v Deleting EVENTS Tables — When ENTRIES=DEL,TABLE=table address is
specified, the EVENTS table whose address is specified by the TABLE=table
address parameter shall be deleted. The address specified with the TABLE
operand must be that of an EVENTS table created by this task. The user is
responsible for deleting all of the tables he creates; however, all existing tables
are automatically freed at task termination.

v Initializing ECBs — When an ECB is created, bits 0 (wait bit) and bit 1 (post bit)
must be set to zero. When an EVENTS ECB= macro is issued, bit 0 of the
associated event control block is set to 1. When a POST macro is issued, bit 1 of
the associated event control block is set to 1 and bit 0 is set to 0. If the ECB is
reused, bit 0 and bit 1 must be set to zero before either a WAIT, EVENTS ECB=,
or POST macro can be specified. If, however, the bits are set to zero before the
ECB has been posted, any task waiting for that ECB to be posted will remain in
wait state.

Register 1

EVENTS Table

ENTRY1

ENTRY2

ENTRYn-1

ENTRYn

Header Section

Variable Length
Entry Section

Figure 6. Creating a Table

604 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

v Maintaining a List of Completed EVENT Control Blocks — After the ECB has
been initialized, the POST macro sets the complete bit and puts the address of
the completed ECB in the EVENTS table.

v Providing Single or Multiple ECB Processing — When the WAIT parameter is
specified and there are completed ECBs in the EVENTS table, the address of the
parameter list is returned in register 1. The parameter list has the following
format:

The parameter list contains completed ECB addresses in post occurrence order. The
high order bit of the last word in the list is set to 1. Note that the returned list can
change dynamically if additional ECBs are posted while the user is processing the
ECBs in the returned list. For each additional ECB that is posted, the address of the
posted ECB with the high order bit set to 1 is appended after the last ECB in the
table, and the high order bit of the entry before the new entry is reset to 0. The
user may choose to process the entire list (see LAST parameter) or one event at a
time by successive EVENTS requests with the WAIT= option.

However, if WAIT=NO is specified and no ECBs are posted in the EVENTS table,
register 1 contains a zero when the user receives control.

When a user has processed more than one ECB in the parameter list returned from
the previous EVENTS WAIT= macro, the LAST= parameter should be used to
indicate the last ECB processed. The EVENTS macro removes from the parameter
list all entries from the first thru the last specified by LAST, and then completes
processing the request according to the WAIT= specification.

In the illustration that follows, ECBs 6 - 10 are posted to the parameter list after
the user processed the list containing ECBs 1 - 5 and has issued another EVENTS
WAIT= macro.

Register 1

ECB1

ECB2

ECBm-1

ECBm1

Figure 7. Parameter List Format

Chapter 95. EVENTS — Wait for one or more events to complete 605

In the illustration that follows, ECBs 6 through 10 were posted to the parameter
list, which changes dynamically while the user is processing ECBs 1 through 5.

Register 1

1

EVENTS TABLE=table address, WAIT=YES, LAST=(2)

Register 1

1

ECB1

ECB2

ECB3

ECB4

ECB5

ECB6

ECB7

ECB8

ECB9

ECB10

EVENTS TABLE=table address, WAIT=YES

(Load register 2 with address of the last entry processed.)

Figure 8. Posting the Parameter List After ECBs 1 through 5 Processed and EVENTS WAIT=
Issued

606 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

After an ECB is posted, take the following steps:
1. Call EVENTS TABLE=,LAST= to mark the ECB as processed.
2. Clear both the wait and post bits in the ECB.
3. Read the ECB to the events table through an EVENTS TABLE=,ECB= call.

ABEND codes
The caller might encounter one of the following ABEND codes:
v X'17A'
v X'17D'
v X'37A'

Register 1

1

Register 1

1

ECB1

ECB2

ECB3

ECB4

ECB5

ECB6

ECB7

ECB8

ECB9

ECB10

EVENTSTABLE=table address, WAIT=YES

(ECBs 6 through 10 added while processing initial returned list containing ECBs 1 through 5)

ECB1

ECB2

ECB3

ECB4

ECB5

Figure 9. Posting the Parameter List While ECBs 1 through 5 Processed

Chapter 95. EVENTS — Wait for one or more events to complete 607

v X'37D'
v X'47A'
v X'47D'
v X'57D'
v X'67D'
v X'77D'
v X'87D'

See z/OS MVS System Codes for explanations and responses for these codes.

Return and reason codes
None.

Example 1
The following shows total processing via EVENTS.

EVENTS and ECB Initialization:
START
EVENTS ENTRIES=1000
ST R1,TABADD
WRITE ECBA
LA R2,ECBA
EVENTS TABLE=TABADD,ECB=(R2)

Parameter List Processing:
BEGIN
EVENTS TABLE=TABADD,WAIT=YES
LR R3,R1 PARMLIST ADDR
B LOOP2 GO TO PROCESS ECB

LOOP1 EVENTS TABLE=TABADD,WAIT=YES,LAST=(R3)
LR R3,R1 SAVE POINTER

LOOP2 EQU * PROCESS COMPLETED EVENTS
TM 0(R3),X’80’ TEST FOR MORE EVENTS
BO LOOP1 IF NONE, GO WAIT
LA R3,4(,R3) GET NEXT ENTRY
B LOOP2 GO PROCESS NEXT ENTRY

Deleting EVENTS Table:
EVENTS TABLE=TABADD,ENTRIES=DEL

TABADD DS F

Example 2
Processing One ECB at a Time:

EVENTS ENTRIES=10 CREATE EVENTS TABLE
ST R1,TABLE SAVE EVENTS TABLE

* ADDRESS
NEXTREC GET TPDATA,KEY GET KEY OF NEXT RECORD
* TO PROCESS

READ DECBRW,KU,,’S’,MF=E READ THE RECORD
LA R3,DECBRW POINT TO ECB
EVENTS TABLE=TABLE,ECB=(R3),WAIT=YES ADD ECB TO

* TABLE AND WAIT UNTIL
* IT IS POSTED
* PROCESS THE RECORD

WRITE DECBRW,K,MF=E WRITE OUT THE RECORD
LA R3,DECBRW POINT TO THE ECB
EVENTS TABLE=TABLE,ECB=(R3),WAIT=NO

608 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

|
|
|
|
|
|
|
|
|
|
|
|
|
|

B CKRETEST GO SEE IF IT’S POSTED
RETEST EVENTS TABLE=TABLE,WAIT=NO CHECK TO SEE IF ECB IS
* POSTED
CKRETEST LTR R1,R1 ANY ECBS POSTED?

BNZ NEXTREC BRANCH IF YES - NEXT
* RECORD

B RETEST ELSE KEEP CHECKING
TABLE DS A ADDRESS OF EVENTS TABLE

Chapter 95. EVENTS — Wait for one or more events to complete 609

|
|
|
|
|
|
|
|

610 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 96. FREEMAIN — Free virtual storage

Description
Use the FREEMAIN macro to free one or more areas of virtual storage. You can
also use the FREEMAIN macro to free an entire virtual storage subpool if it is
owned by the task under which your program is issuing the FREEMAIN. For more
information on releasing a subpool, see the chapter about virtual storage
management in z/OS MVS Programming: Assembler Services Guide.

You can also use the STORAGE macro to free storage, even if the storage was
obtained using the GETMAIN macro. Compared to FREEMAIN, STORAGE
provides an easier-to-use interface and has no restrictions. If your program is
running in AR-mode or cross-memory mode, use the STORAGE macro to free
storage.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: For subpools 0-127: problem state and PSW key 8-15.

For subpools 131 and 132: a PSW key mask (PKM) that
allows the calling program to switch its PSW key to match
the key of the storage to be released.

Dispatchable unit mode: Task.
Cross memory mode: PASN=HASN=SASN.
AMODE: 24- or 31-bit.

v For RU, RC requests: The system treats all addresses and
values as 31-bit.

v For all other requests: If the calling program is in 31-bit
mode, the system treats all addresses and values, passed
to the FREEMAIN macro, as 31-bit. Otherwise, the system
treats addresses and values as 24-bit.

ASC mode: Primary.
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held.
Control parameters: For LC, LU, L, VC, VU, V, EC, EU, E requests: control

parameters must be in the primary address space. For other
requests: control parameters are in registers.

Programming requirements
None.

Restrictions
v Parameters passed to the FREEMAIN macro must not reside within the area

being freed. If this restriction is violated and the parameters are the last
allocated areas on a virtual page, the whole page is freed and FREEMAIN ends
abnormally with an X'0C4' abend code.

© Copyright IBM Corp. 1988, 2015 611

v The current task ends abnormally if the specified virtual storage area does not
start on a doubleword boundary or, for an unconditional request, if the specified
area or subpool is not owned by the task identified as the owner of the storage.

v For SVC entry, the caller cannot have an EUT FRR established.

Input register information
Before issuing the FREEMAIN macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 For a conditional request, contains the return code. For an unconditional

request, used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the service returns control.

Performance implications
None.

Syntax
The standard form of the FREEMAIN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede FREEMAIN.

FREEMAIN

� One or more blanks must follow FREEMAIN.

LC,LA=length addr length addr: A-type address, or register (2) - (12).

FREEMAIN macro

612 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

LU,LA=length addr

L,LA=length addr

VC

VU

V

EC,LV=length value length value: symbol, decimal number, or register (2) - (12).

EU,LV=length value

E,LV=length value

RC,LV=length value If R, RC, or RU is specified, register (0) may also be used.

RC,SP=subpool nmbr subpool nmbr: symbol, decimal number 0-127, 131, 132, or register (2) - (12).
If R is specified, register (0) may also be used.
Note: For a subpool release (RC,SP or RU,SP, or R,SP), no other parameters
except RELATED may be specified.

RU,LV=length value

RU,SP=subpool nmbr

R,LV=length value

R,SP=subpool nmbr

,A=addr addr: A-type address, or register (2) - (12). If R, RC, or RU is specified,
register (1) can also be used.

Note: If R, RC, or RU is specified, register (1) can also be specified.

,SP=subpool nmbr subpool nmbr: symbol, decimal number 0-127, 131, 132, or register (2) - (12).

Default: SP=0. If R is specified, register (0) may also be used.

,KEY=number nmbr: decimal numbers 0-15, or register (2) - (12).

Note: KEY may be specified only with RC or RU.

,RELATED=value value: any valid assembler character string.

Parameters
The parameters are explained as follows:

LC,LA=length addr
LU,LA=length addr
L,LA=length addr
VC
VU
V
EC,LV=length value
EU,LV=length value
E,LV=length value
RC,LV=length value

FREEMAIN macro

Chapter 96. FREEMAIN — Free virtual storage 613

RC,SP=subpool nmbr
RU,LV=length value
RU,SP=subpool nmbr
R,LV=length value
R,SP=subpool nmbr

Specifies the type of FREEMAIN request:

LC, LU, and L indicate conditional (LC) and unconditional (LU and L) list
requests and specify release of one or more areas of virtual storage. The length
of each virtual storage area is indicated by the values in a list beginning at the
address specified in the LA parameter. The address of each of the virtual
storage areas must be provided in a corresponding list whose address is
specified in the A parameter. All virtual storage areas must start on a
doubleword boundary.

VC, VU, and V indicate conditional (VC) and unconditional (VU and V)
variable requests and specify release of single areas of virtual storage. The
address and length of the virtual storage area are provided at the address
specified in the A parameter.

EC, EU, and E indicate conditional (EC) and unconditional (EU and E) element
requests and specify release of single areas of virtual storage. The length of the
single virtual storage area is indicated in the LV parameter. The address of the
virtual storage area is provided at the address indicated in the A parameter.

RC, RU, and R indicate conditional (RC) and unconditional (RU and R) register
requests and specify either the release of all the storage in a subpool or the
release of a certain area in a subpool. For information on how to release all the
storage in a subpool, see the description for the SP parameter. If the release is
for a certain area in a subpool, the address of the virtual storage area is
indicated in the A parameter. The length of the area is indicated in the LV
parameter. The virtual storage area must start on a doubleword boundary.

Note:

1. For a conditional request, errors detected while processing a FREEMAIN
request with incorrect or inconsistent parameters cause the FREEMAIN
service to return to the caller with a non-zero return code. For all other
errors, the system abnormally ends the active task if the FREEMAIN
request cannot be successfully completed.
For an unconditional request, the system abnormally ends the active task if
the FREEMAIN request cannot be successfully completed.

2. If the address of the area to be freed is above 16 megabytes, you must use
RC or RU.

LA specifies the virtual storage address of one or more consecutive fullwords
starting on a fullword boundary. One word is required for each virtual storage
area to be released; the high-order bit in the last word must be set to 1 to
indicate the end of the list. Each word must contain the required length in the
low-order three bytes. The fullwords in this list must correspond with the
fullwords in the associated list specified in the A parameter. The words must
not be in the area to be released. If this rule is violated and if the words are the
last allocated items on a virtual page, the whole page is returned to storage
and the FREEMAIN abends with an X'0C4' abend code.

LV specifies the length, in bytes, of the virtual storage area being released. The
value should be a multiple of 8; if it is not, the control program uses the next
high multiple of 8.

FREEMAIN macro

614 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

v If you specify R,LV=(0) you cannot specify the SP parameter. You must
specify the subpool in register 0; the high-order byte must contain the
subpool number and the low-order three bytes must contain the length
unless you are requesting a subpool release. On a subpool release, the
low-order three bytes must contain zeros.

v If you specify R,LV using a symbol, decimal number, or register 2-12, you
can specify the SP parameter using registers 0 or 2-12.

,A=addr
Specifies the virtual storage address of one or more consecutive fullwords
starting on a fullword boundary.
v If E, EC, or EU is coded, one word is required, which contains the address of

the virtual storage area to be released.
v If V, VC, or VU is coded, two words are required; the first word contains the

address of the virtual storage area to be released, and the second word
contains the length of the area to be released.

v If L, LC, or LU is coded, one word is required for each virtual storage area
to be released; each word contains the address of one virtual storage area.

v If R, RC, or RU is coded, one word is required, which contains the address
of the virtual storage area to be released. If R, RC, or RU is coded and addr
specifies a register, register 1 through 12 can be used and must contain the
address of the virtual storage area to be released.

Do not specify a storage address of 0 with a storage length of 0. This
combination causes FREEMAIN to free the subpool specified with the SP
parameter, or subpool 0 if the SP parameter is omitted.

,SP=subpool nmbr
Specifies the subpool number of the virtual area to be released. Valid subpools
numbers are 0-127, 131, and 132. The SP parameter is optional and if omitted,
subpool 0 is assumed. If you specify a register, the subpool number must be in
bits 24-31 of the register, with bits 0-23 set to zero.

A request to release all the storage in a subpool is known as a subpool release.
To issue a subpool release, specify RC,SP or RU,SP or R,SP, and do not use the
A or the KEY parameter. The following subpools are valid on the SP parameter
for a subpool release: 0-127, 131, and 132. An attempt to issue a subpool release
for any other subpool causes an abend X'478' or X'40A'. For information about
subpools, see z/OS MVS Programming: Assembler Services Guide.

,KEY=key number
Specifies the storage key in which the storage was obtained. The valid storage
keys are 0-15. If a register is specified, the storage key must be in bits 24-27 of
the register. KEY can be specified for subpools 131 and 132.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services and can be any valid assembler
character string.

ABEND codes
Abend codes FREEMAIN might issue are listed below in hexadecimal. For detailed
abend code information, see z/OS MVS System Codes.
v 105
v 10A
v 178

FREEMAIN macro

Chapter 96. FREEMAIN — Free virtual storage 615

v 205
v 20A
v 278
v 305
v 30A
v 378
v 40A
v 478
v 505
v 605
v 705
v 70A
v 778
v 805
v 80A
v 878
v 905
v 90A
v 978
v A05
v A0A
v A78
v B05
v B0A
v B78
v D05
v D0A
v D78

Return and reason codes
When the FREEMAIN macro returns control to your program and you specified a
conditional request, GPR 15 contains one of the following hexadecimal return
codes:

Table 19. Return Codes for the FREEMAIN Macro

Return Code Meaning and Action

0 Meaning: Successful completion.

Action: None.

4 Meaning: Program error. Not all requested virtual storage was freed.

Action: Check your program for the following kinds of errors:

v The address of the storage area to be freed is not correct.

v The subpool you have specified does not match the subpool of the storage to
be freed.

v The key you have specified does not match the key of the storage to be freed.

FREEMAIN macro

616 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 19. Return Codes for the FREEMAIN Macro (continued)

Return Code Meaning and Action

8 Meaning: Program error. No virtual storage was freed because part of the
storage area to be freed is fixed.

Action: Determine whether you have made one of the following errors. If so,
correct your program and rerun it:

v You passed an incorrect storage area address to the FREEMAIN macro.

v You attempted to free storage that is fixed.

Example 1
Free 400 bytes of storage from subpool 10. Register 1 contains the address of the
storage area. If the storage is not allocated to the current task, do not abnormally
terminate the caller.
FREEMAIN RC,LV=400,A=(1),SP=10

Example 2
Free all of subpool 3 (if any) that belongs to the current task. If the request is not
successful, abnormally terminate the caller.
FREEMAIN RU,SP=3

Example 3
Free from subpool 5, three areas of storage of 200, 800, and 32 bytes, previously
obtained using the list and execute forms of the GETMAIN macro. Storage area
addresses are in AREAADD. If any of the storage areas to be freed are not
allocated to the current task, abnormally terminate the caller.
FREEMAIN LU,LA=LNTHLIST,A=AREAADD,SP=5

.

.

.
LNTHLIST DC F’200’,F’800’,X’80’,FL3’32’
AREAADD DS 3F

FREEMAIN - List form
Use the list form of the FREEMAIN macro to construct a nonexecutable control
program parameter list.

The list form of the FREEMAIN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede FREEMAIN.

FREEMAIN

� One or more blanks must follow FREEMAIN.

LC

FREEMAIN macro

Chapter 96. FREEMAIN — Free virtual storage 617

Syntax Description

LU

L

VC

VU

V

EC

EU

E

,LA=length addr length addr: A-type address.

,LV=length value length value: symbol or decimal number.

Note:

1. LA may only be specified with LC, LU, or L above.

2. LV may only be specified with EC, EU, or E above.

,A=addr addr: A-type address.

,SP=subpool nmbr subpool nmbr: symbol or decimal number.

,RELATED=value value: any valid assembler character string.

,MF=L

Parameters
The parameters are explained under the standard form of the FREEMAIN macro,
with the following exceptions:

,MF=L
Specifies the list form of the FREEMAIN macro.

FREEMAIN - Execute form
A remote control program parameter list is used in, and can be modified by, the
execute form of the FREEMAIN macro. The parameter list can be generated by the
list form of either a GETMAIN or a FREEMAIN.

The execute form of the FREEMAIN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede FREEMAIN.

FREEMAIN macro

618 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

FREEMAIN

� One or more blanks must follow FREEMAIN.

LC

LU

L

VC

VU

V

EC

EU

E

,LA=length addr length addr: RX-type address or register (2) - (12).

,LV=length value length value: symbol, decimal number, or register (2) - (12).

Note:

1. LA may only be specified with LC, LU, or L above.

2. LV may only be specified with EC, EU, or E above.

,A=addr addr: RX-type address, or register (2) - (12).

,SP=subpool nmbr subpool nmbr: symbol, decimal number, or register (0) or (2) - (12).

,RELATED=value value: any valid assembler character string.

,MF=(E,list addr) list addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the FREEMAIN macro,
with the following exceptions:

,MF=(E,list addr)
Specifies the execute form of the FREEMAIN macro using a remote control
program parameter list.

FREEMAIN macro

Chapter 96. FREEMAIN — Free virtual storage 619

FREEMAIN macro

620 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 97. GETMAIN — Allocate virtual storage

Description
Use the GETMAIN macro to request one or more areas of virtual storage.

Before obtaining storage, be sure to read the information about subpools in the
virtual storage management chapter in z/OS MVS Programming: Assembler Services
Guide.

You can also use the STORAGE macro to obtain storage. Compared to GETMAIN,
STORAGE provides an easier-to-use interface and has fewer restrictions. If your
program is running in AR-mode or cross-memory mode, use the STORAGE macro
to obtain storage.

Note:

1. When you obtain storage, the system clears the requested storage to zeros if
you obtain either:
v 8192 bytes or more from a pageable, private storage subpool.
v 4096 bytes or more from a pageable, private storage subpool, with

BNDRY=PAGE specified.
In all other cases you must not assume that the storage is cleared to zeros.
The caller can specify CHECKZERO=YES to detect these and other cases
where the system clears the requested storage to zeros.

If you use GETMAIN to request real storage backing above 2 gigabytes, but your
system does not support 64-bit storage, your request will be treated as a request
for backing above 16 megabytes, even on earlier releases of z/OS that do not
support backing above 2 gigabytes. However, boundary requirements indicated by
the CONTBDY and STARTBDY parameters will be ignored by earlier releases of
z/OS.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: For subpools 0-127: problem state and PSW key 8-15.

For subpools 131 and 132: a PSW key mask (PKM) that
allows the calling program to switch its PSW key to match
the key of the storage to be obtained.

Dispatchable unit mode: Task.
Cross memory mode: PASN=HASN=SASN.
AMODE: 24- or 31-bit.

v For R, LC, LU, VC, VU, EC, or EU requests: If the calling
program is in 31-bit mode, the system treats all addresses
and values as 31-bit. Otherwise, the system treats
addresses and values as 24-bit.

v For RC, RU, VRC, and VRU requests: The system treats
all addresses and values as 31-bit.

ASC mode: Primary.
Interrupt status: Enabled for I/O and external interrupts.

© Copyright IBM Corp. 1988, 2015 621

Environmental factor Requirement
Locks: No locks held.
Control parameters: For LC, LU, VC, VU, EC, EU requests: control parameters

must be in the primary address space.

For other requests: control parameters are in registers.

Programming requirements
None.

Restrictions
v For SVC entry, the caller cannot have an EUT FRR established.

Input register information
Before issuing the GETMAIN macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
For LC, LU, VC, VU, EC, and EU requests: when control returns to the caller, the
general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system.
2-13 Unchanged.
14 Used as a work register by the system.
15 Contains the return code.

For RC, RU, and R requests: when control returns to the caller the GPRs contain:

Register
Contents

0 Used as a work register by the system.
1 The address of the allocated storage when GETMAIN is successful;

otherwise, used as a work register by the system.

Note: A successful GETMAIN will return a 64-bit pointer to the obtained
area (bits 0-32 will be zero).

2-13 Unchanged.
14 Used as a work register by the system.
15 Contains the return code.

For VRC and VRU requests: when control returns to the caller the GPRs contain:

Register
Contents

0 For a successful request, contains the length of the storage obtained.
Otherwise, used as a work register by the system.

1 The address of the allocated storage when GETMAIN is successful;
otherwise, used as a work register by the system.

Note: A successful GETMAIN will return a 64-bit pointer to the obtained
area (bits 0-32 will be zero).

2-13 Unchanged.

GETMAIN macro

622 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

14 Used as a work register by the system.
15 Contains the return code.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the service returns control.

Performance implications
Repeatedly issuing the GETMAIN macro can slow down performance. If your
program requires many identically sized storage areas, use the CPOOL macro or
callable cell pool services for better performance.

Syntax
The standard form of the GETMAIN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede GETMAIN.

GETMAIN

� One or more blanks must follow GETMAIN.

LC,LA=length addr,A=addr length addr: A-type address, or register (2) - (12).

LU,LA=length addr,A=addr length value: symbol, decimal number, or register (2) - (12).

VC,LA=length addr,A=addr If RC or RU is specified, register (0)

VU,LA=length addr,A=addr may also be specified.

EC,LV=length value,A=addr addr: A-type address or register (2) - (12).

EU,LV=length value,A=addr Note: RC, RU, VRC, or VRU must be used for address greater than 16
megabytes.

RC,LV=length value

RU,LV=length value

R,LV=length value

VRC,LV=(maximum length value,
minimum length value)

maximum length value: symbol, decimal number, or register (2) - (12).

VRU,LV=(maximum length value,
minimum length value)

minimum length value: symbol, decimal number, or register (2) - (12).

GETMAIN macro

Chapter 97. GETMAIN — Allocate virtual storage 623

Syntax Description

,SP=subpool nmbr subpool nmbr: symbol or decimal number 0-127, 131, 132; or register (2) -
(12).

Default: SP=0
Note: Specify the subpool as follows:
v Use the SP parameter for LC, LU, VC, VU, EC, EU, RC, RU, VRC, and

VRU requests, and for R requests where LV does not indicate register 0.
v Use register 0 for R requests with LV=(0); do not code the SP parameter.

The low-order three bytes of register 0 must contain the length of the
requested storage, and the high-order byte must contain the subpool
number.

,BNDRY=DBLWD Default: BNDRY=DBLWD

,BNDRY=PAGE Note: This parameter may not be specified with R above.

,CONTBDY=containing_bdy containing_bdy: Decimal number 3-31 or register (2) - (12).
Note: CONTBDY may be specified only with RC or RU.

,STARTBDY=starting_bdy starting_bdy: Decimal number 3-31 or register (2) - (12).
Note: STARTBDY may be specified only with RC or RU.

,KEY=key number key number: decimal numbers 0-15, or register (2) - (12).

Note: KEY may be specified only with RC, RU, VRC, or VRU.

,LOC=24 Note: This parameter can only be used with RC, RU, VRC, or VRU. On all
other forms, LOC=24 is used.

,LOC=(24,31)

,LOC=(24,64)

,LOC=31

,LOC=(31,31)

,LOC=(31,64)

,LOC=RES Default: LOC=RES

,LOC=(RES,31)

,LOC=(RES,64)

,LOC=EXPLICIT Note: You must specify the INADDR parameter with

,LOC=(EXPLICIT,24) EXPLICIT.

,LOC=(EXPLICIT,31)

,LOC=(EXPLICIT,64)

,INADDR=stor addr stor addr: RX-type address or register (1)-(12).
Note: This parameter can only be specified with LOC=EXPLICIT.

,CHECKZERO=YES Default: CHECKZERO=NO

,CHECKZERO=NO Note: CHECKZERO may be specified only with RC, RU, VRC, or VRU.

GETMAIN macro

624 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,RELATED=value value: Any valid assembler character string

Parameters
The parameters are explained as follows.

The first parameter of the GETMAIN macro is positional and is required. This
parameter describes the type or mode of the GETMAIN request. The first
parameter can be one of the following values:

LC,LA=length addr, A=addr
LU,LA=length addr, A=addr
VC,LA=length addr, A=addr
VU,LA=length addr, A=addr
EC,LV=length value, A=addr
EU,LV=length value, A=addr
RC,LV=length value
RU,LV=length value
R,LV=length value
VRC,LV=(maximum length value,minimum length value)
VRU,LV=(maximum length value,minimum length value)

LC and LU indicate conditional (LC) and unconditional (LU) list requests, and
specify requests for one or more areas of virtual storage. The length of each
virtual storage area is indicated by the values in a list beginning at the address
specified in the LA parameter. The address of each of the virtual storage areas
is returned in a list beginning at the address specified in the A parameter. No
virtual storage is allocated unless all of the requests in the list can be satisfied.

VC and VU indicate conditional (VC) and unconditional (VU) variable
requests, and specify requests for single areas of virtual storage. The length of
the single virtual storage area is between the two values at the address
specified in the LA parameter. The address and actual length of the allocated
virtual storage area are returned by the system at the address indicated in the
A parameter.

EC and EU indicate conditional (EC) and unconditional (EU) element requests,
and specify requests for single areas of virtual storage. The length of the single
virtual storage area is indicated by the parameter, LV=length value. The address
of the allocated virtual storage area is returned at the address indicated in the
A parameter.

RU and R indicate unconditional register requests; RC indicates a conditional
register request. RC, RU, and R specify requests for single areas of virtual
storage. The length of the single virtual area is indicated by the parameter,
LV=length value. The address of the allocated virtual storage area is returned in
register 1.

VRC and VRU indicate variable register conditional (VRC) and unconditional
(VRU) requests for a single area of virtual storage. The length returned will be
between the maximum and minimum lengths specified by the parameter
LV=(maximum length value, minimum length value). The address of the allocated
virtual storage is returned in register 1 and the length in register 0.

Note:

GETMAIN macro

Chapter 97. GETMAIN — Allocate virtual storage 625

1. A conditional request indicates that the active unit of work is not to be
abnormally terminated if there is insufficient contiguous virtual storage to
satisfy the request. A conditional request does not prevent all abnormal
terminations. For example, if the request has incorrect or inconsistent
parameters, the system abnormally terminates the active unit of work. An
unconditional request indicates that the active unit of work is to be
abnormally terminated whenever the request cannot complete successfully.

2. The LC, LU, VC, VU, EC, EU, and R requests can be used only to obtain
virtual storage with addresses below 16 megabytes. The RC, RU, VRC, and
VRU requests can be used to obtain virtual storage with addresses above 16
megabytes.

LA specifies the virtual storage address of consecutive fullwords starting on a
fullword boundary. Each fullword must contain the required length in the
low-order three bytes, with the high-order byte set to 0. The lengths should be
multiples of 8; if they are not, the system uses the next higher multiple of 8. If
VC or VU was coded, two words are required. The first word contains the
minimum length required, the second word contains the maximum length. If
LC or LU was coded, one word is required for each virtual storage area
requested; the high-order bit of the last word must be set to 1 to indicate the
end of the list. The list must not overlap the virtual storage area specified in
the A parameter.

LV=length value specifies the length, in bytes, of the requested virtual storage.
The number should be a multiple of 8; if it is not, the system uses the next
higher multiple of 8. If R is specified, LV=(0) may be coded; the low-order
three bytes of register 0 must contain the length, and the high-order byte must
contain the subpool number. LV=(maximum length value, minimum length value)
specifies the maximum and minimum values of the length of the storage
request.

The A parameter specifies the virtual storage address of consecutive fullwords,
starting on a fullword boundary. The system places the address of the virtual
storage area allocated in one or more words. If E was coded, one word is
required. If LC or LU was coded, one word is required for each entry in the
LA list. If VC or VU was coded, two words are required. The first word
contains the address of the virtual storage area, and the second word contains
the length actually allocated. The list must not overlap the virtual storage area
specified in the LA parameter.

,SP=subpool nmbr
Specifies the number of the subpool from which the virtual storage area is to
be allocated. If you specify a register, the subpool number must be in bits 24-31
of the register, with bits 0-23 set to zero. Valid subpool numbers are 0-127, 131,
and 132. See the virtual storage management chapter in z/OS MVS
Programming: Assembler Services Guide for complete information about these
subpools.

,BNDRY=DBLWD
,BNDRY=PAGE

Specifies that alignment on a doubleword boundary (DBLWD) or alignment
with the start of a virtual page on a 4K boundary (PAGE) is required for the
start of a requested area.

,CONTBDY=containing_bdy
Specifies the boundary the obtained storage must be contained within. Specify
a power of 2 that represents the containing boundary. Supported values are
3-31. For example, CONTBDY=10 means the containing boundary is 2**10, or

GETMAIN macro

626 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

1024 bytes. The containing boundary must be at least as large as the maximum
requested boundary. The obtained storage will not cross an address that is a
multiple of the requested boundary.

If a register is specified, the value must be in bits 24 - 31 of the register.
CONTBDY is valid only with RC or RU.

CONTBDY is not valid with LOC=EXPLICIT or BNDRY=PAGE.

CONTBDY applies to all subpools.

Generally, if you omit this parameter, there is no containing boundary.
However, if the GETMAIN is for SQA or LSQA, and is for less than 4 KB, and
STARTBDY is specified, the default of CONTBDY is 12, ensuring that the
GETMAIN stays within a 4 KB page boundary.

For GETMAIN macros that specify a CONTBDY parameter value that is larger
than 12, it is possible that the allocated area spans across a 4 KB page
boundary, even when the area is less than or equal to 4 KB and in an SQA or
LSQA subpool.

,STARTBDY=starting_bdy
Specifies the boundary the obtained storage must start on. Specify a power of 2
that represents the start boundary. Supported values are 3-31. For example,
STARTBDY=10 means the start boundary is 2**10, or 1024 bytes. The obtained
storage will begin on an address that is a multiple of the requested boundary.

If a register is specified, the value must be in bits 24-31 of the register.
STARTBDY is valid only with RC or RU.

STARTBDY is not valid with LOC=EXPLICIT or BNDRY=PAGE.

STARTBDY applies to all subpools.

If you omit this parameter, the start boundary is 8 bytes (equivalent to
specifying STARTBDY=3).

,KEY=key number
Specifies the storage key in which the storage is to be obtained. The valid
storage keys are 0-15. If a register is specified, the storage key must be in bits
24-27 of the register. KEY is valid with RC, RU, VRC, or VRU, and applies to
subpools 131 and 132 only. See the virtual storage management chapter in z/OS
MVS Programming: Assembler Services Guide for information about how the
system assigns the storage key for your storage request.

,LOC=24
,LOC=(24,31)
,LOC=(24,64)
,LOC=31
,LOC=(31,31)
,LOC=(31,64)
,LOC=RES
,LOC=(RES,31)
,LOC=(RES,64)
,LOC=EXPLICIT
,LOC=(EXPLICIT,24)
,LOC=(EXPLICIT,31)
,LOC=(EXPLICIT,64)

Specifies the location of virtual storage and central (also called real) storage.
This is especially helpful for callers with 24-bit dependencies. When LOC is
specified, central storage is allocated anywhere until the storage is fixed. You

GETMAIN macro

Chapter 97. GETMAIN — Allocate virtual storage 627

can specify the location of central storage (after the storage is fixed) and virtual
storage (whether or not the storage is fixed) using the following LOC
parameter values:

LOC=24 indicates that central and virtual storage are to be located below 16
megabytes.

Note:

1. Specifying LOC=BELOW is the same as specifying LOC=24. LOC=BELOW
is still supported, but IBM recommends using LOC=24 instead.

2. LOC=24 should not be used to allocate disabled reference (DREF) storage.
If issued in AMODE24, an abend B78 will result. In AMODE31, the
LOC=24 parameter will be ignored, and the caller will be given an address
above 16 megabytes.

LOC=(24,31) indicates that virtual storage is to be located below 16 megabytes
and central storage can be located anywhere below 2 gigabytes.

Note: Specifying LOC=(BELOW,ANY) is the same as specifying LOC=(24,31).
LOC=(BELOW,ANY) is still supported, but IBM recommends using
LOC=(24,31) instead.

LOC=(24,64) indicates that virtual storage is to be located below 16 megabytes
and central storage can be located anywhere in 64-bit storage.

LOC=31 and LOC=(31,31) indicate that virtual and central storage can be
located anywhere below 2 gigabytes.

Note: Specifying LOC=ANY or LOC=(ANY,ANY) is the same as specifying
LOC =31 or LOC=(31,31). LOC=ANY and LOC=(ANY,ANY) are still
supported, but IBM recommends using LOC=31 or LOC=(31,31) instead.

LOC=(31,64) indicates that virtual storage is to be located below 2 gigabytes
and central storage can be located anywhere in 64-bit storage.

Note: When you specify LOC=31, GETMAIN tries to allocate virtual storage
above 16 megabytes. If the attempt fails, GETMAIN tries to allocate virtual
storage below 16 megabytes. If this attempt also fails, GETMAIN does not
allocate any storage.

When you use LOC=RES to allocate storage that can reside either above or
below 16 megabytes, LOC=RES indicates that the location of virtual and
central storage depends on the location of the caller. If the caller resides below
16 megabytes, virtual and central storage are to be located below 16
megabytes. If the caller resides above 16 megabytes, virtual and central storage
are to be located either above or below 16 megabytes.

LOC=(RES,31) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is
to be located below 16 megabytes; if the caller resides above 16 megabytes,
virtual storage can be located anywhere below 2 gigabytes. In either case,
central storage can be located anywhere below 2 gigabytes.

Note: Specifying LOC=(RES,ANY) is the same as specifying LOC=(RES,31).
LOC=(RES,ANY) is still supported, but IBM recommends using LOC=(RES,31)
instead.

LOC=(RES,64) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is

GETMAIN macro

628 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

to be located below 16 megabytes; if the caller resides above 16 megabytes,
virtual storage can be located anywhere in 31-bit storage. In either case, central
storage can be located anywhere in 64-bit storage.

LOC=EXPLICIT, LOC=(EXPLICIT,24),LOC=(EXPLICIT,31), or
LOC=(EXPLICIT,64) specify that the requested virtual storage is to be located
at the address specified with the INADDR parameter, which is required with
EXPLICIT. EXPLICIT is valid only for subpools 0-127, 131, and 132. You can
use LOC=EXPLICIT only with RC or RU. You cannot specify the BNDRY
parameter with EXPLICIT.

Note: Specifying LOC=(EXPLICIT,BELOW) is the same as specifying
LOC=(EXPLICIT,24). Specifying LOC=(EXPLICIT,ANY is the same as
specifying LOC=(EXPLICIT,31). The older specifications are still supported, but
IBM recommends using the newer specifications instead.

LOC=(EXPLICIT,31) indicates that virtual storage is to be located at the
address specified on the INADDR parameter, and central storage can be
located anywhere below 2 gigabytes.

LOC=(EXPLICIT,24) indicates that virtual storage is to be located at the
address specified on the INADDR parameter, and central storage is to be
located below 16 megabytes. The virtual storage address specified on the
INADDR parameter must be below 16 megabytes.

LOC=EXPLICIT and LOC=(EXPLICIT,64) indicate that virtual storage is to be
located at the address specified on the INADDR parameter, and central storage
can be located anywhere in 64-bit storage.

When you specify EXPLICIT on a request for storage from the same virtual
page as previously requested storage, you must request it in the same key,
subpool, and central storage area as on the previous storage request. For
example, if you request virtual storage backed with central storage below 16
megabytes, any subsequent requests for storage from that virtual page must be
specified as LOC=(EXPLICIT,24).

,INADDR=stor addr
Specifies the desired virtual address for the storage to be obtained. When you
specify INADDR, you must specify EXPLICIT on the LOC parameter.

Note:

1. The address specified on INADDR must be on a doubleword boundary.
2. Make sure that the virtual storage address specified on INADDR and the

central storage backing specified on the LOC=EXPLICIT parameter are a
valid combination. For example, if the address specified on INADDR is for
virtual storage above 16 megabytes, specify LOC=EXPLICIT or
LOC=(EXPLICIT,ANY). Valid combinations include:
v Virtual above, central any
v Virtual any, central any
v Virtual below, central below
v Virtual below, central any

,CHECKZERO=YES
,CHECKZERO=NO

Specifies whether or not the return code for a successful completion should
indicate if the system has cleared the requested storage to zeroes. When
CHECKZERO=NO is specified or defaulted, the return code for a successful
completion is 0. When CHECKZERO=YES is specified, the return code for a

GETMAIN macro

Chapter 97. GETMAIN — Allocate virtual storage 629

successful completion is X'14' if the system has cleared the requested storage to
zeroes, and 0 if the system has not cleared the requested storage to zeroes.

There is no performance cost to specifying CHECKZERO=YES.

Programs that issue the GETMAIN macro with the CHECKZERO parameter
can run on any z/OS system. On a down-level system, CHECKZERO will be
ignored, and the return code for a successful completion (conditional or
unconditional) will be 0.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
assembler character string.

ABEND codes
Abend codes the GETMAIN macro might issue are listed below in hexadecimal.
For detailed abend code information, see z/OS MVS System Codes.
v 104
v 10A
v 178
v 204
v 20A
v 278
v 30A
v 378
v 40A
v 478
v 504
v 604
v 704
v 70A
v 778
v 804
v 80A
v 878
v 90A
v 978
v A0A
v A78
v B04
v B0A
v B78
v D04
v D0A
v D78

GETMAIN macro

630 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Return and reason codes
When the GETMAIN macro returns control to your program and you specified a
conditional request, GPR 15 contains one of the following hexadecimal return
codes:

Table 20. Return Codes for the GETMAIN Macro

Return Code Meaning and Action

0 Meaning: Successful completion. CHECKZERO=YES was not specified,
or the system has not cleared the requested storage to zeroes.

Action: None.

4 If you did not specify EXPLICIT on the LOC parameter:

v Meaning: Environmental or system error. Virtual storage was not
obtained because insufficient storage is available.

v Action: If the request was for low private (local) storage, consult the
system programmer to see if you have exceeded an
installation-determined private storage limit.

If you specified EXPLICIT on the LOC parameter:

v Meaning: Program error. Virtual storage was not obtained because
part of the requested storage area is outside the bounds of the user
region.

v Action: Determine why your program is mistakenly requesting
storage outside the user region. If the request was for low private
(local) storage, consult the system programmer to see if you have
exceeded an installation-determined private storage limit.

8 Meaning: System error. Virtual storage was not obtained because the
system has insufficient central storage to back the request.

Action: Report the problem to the system programmer so the cause of
the problem can be determined and corrected.

C Meaning: System error. Virtual storage was not obtained because the
system cannot page in the page table associated with the storage to be
allocated.

Action: Report the problem to the system programmer so the cause of
the problem can be determined and corrected.

10 Meaning: Program error. Virtual storage was not obtained for one of
the following reasons: This reason code applies only to GETMAIN
requests with LOC=EXPLICIT specified.

v Part of the requested area is allocated already.

v Virtual storage was already allocated in the same page as this
request, but one of the following characteristics of the storage was
different:
– The subpool
– The key
– Central storage backing

Action: Determine why your program is attempting to obtain allocated
storage or why your program is attempting to obtain virtual storage
with different attributes from the same page of storage. Correct the
coding error.

GETMAIN macro

Chapter 97. GETMAIN — Allocate virtual storage 631

Table 20. Return Codes for the GETMAIN Macro (continued)

Return Code Meaning and Action

14 Meaning: Successful completion. The system has cleared the requested
storage to zeroes. This return code occurs only when
CHECKZERO=YES is specified.

Action: None.

Example 1
Obtain 400 bytes of storage from subpool 10. If the storage is available, the address
will be returned in register 1 and register 15 will contain 0; if storage is not
available, register 15 will contain 4.
GETMAIN RC,LV=400,SP=10

Example 2
Obtain 48 bytes of storage from default subpool 0. If the storage is available, the
address will be stored in the word at AREAADDR; if the storage is not available,
the task will be abnormally terminated.

GETMAIN EU,LV=48,A=AREAADDR
.
.
.

AREAADDR DS F

Example 3
Obtain a minimum of 1024 bytes to a maximum of 4096 bytes of virtual storage
from default subpool 0 with virtual and central storage locations either above or
below 16 megabytes. If the storage is available, the starting address is to be
returned in register 1 and the length of the storage allocated is to be returned in
register 0; if the storage is not available, the caller is to be terminated.
GETMAIN VRU,LV=(4096,1024),LOC=ANY

GETMAIN—List form
Use the list form of the GETMAIN macro to construct a control program parameter
list. The list form of the GETMAIN macro cannot be used to allocate virtual
storage with addresses greater than 16 megabytes.

The list form of the GETMAIN macro is written as follows:

Syntax Description

name name: Begin name in column 1.

� One or more blanks must precede GETMAIN.

GETMAIN

� One or more blanks must follow GETMAIN.

GETMAIN macro

632 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

LC

LU

VC

VU

EC

EU

,LA=length addr length addr: A-type address.

,LV=length value length value: symbol or decimal number.
Note:

1. LA may not be specified with EC or EU above.

2. LV may not be specified with LC, LU, VC or VU above.

,A=addr addr: A-type address.

,SP=subpool nmbr subpool nmbr: symbol or decimal number 0-127, 131, 132.

Default: SP=0
Note: Use the SP parameter for LC, LU, VC, VU, EC, and EU requests.

,BNDRY=DBLWD Default: BNDRY=DBLWD

,BNDRY=PAGE

,RELATED=value value: any valid assembler character string.

,MF=L

The parameters are explained under the standard form of the GETMAIN macro,
with the following exception:

,MF=L
Specifies the list form of the GETMAIN macro.

GETMAIN—Execute form
A remote control program parameter list is used in, and can be modified by, the
execute form of the GETMAIN macro. The parameter list can be generated by the
list form of either a GETMAIN or a FREEMAIN. The execute form of the
GETMAIN macro cannot be used to allocate virtual storage with addresses greater
than 16 megabytes.

The execute form of the GETMAIN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

GETMAIN macro

Chapter 97. GETMAIN — Allocate virtual storage 633

Syntax Description

� One or more blanks must precede GETMAIN.

GETMAIN

� One or more blanks must follow GETMAIN.

LC

LU

VC

VU

EC

EU

,LA=length addr length addr: RX-type address or register (2) - (12).

,LV=length value length value: symbol, decimal number, or register (2) - (12).
Note:

1. LA may not be specified with EC or EU above.

2. LV may not be specified with LC, LU, VC, or VU above.

,A=addr addr: RX-type address, or register (2) - (12).

,SP=subpool nmbr subpool nmbr: symbol; decimal number 0-127, 131, 132; or register (2) - (12).

Default: SP=0
Note: Specify the subpool as follows:
v Use the SP parameter for LC, LU, VC, VU, EC, EU, RC, RU, VRC, and

VRU requests, and for R requests where LV does not indicate register 0.
v Use register 0 for R requests with LV=(0); do not code the SP parameter.

The low-order three bytes of register 0 must contain the length of the
requested storage, and the high-order byte must contain the subpool
number.

,BNDRY=DBLWD Default: BNDRY=DBLWD

,BNDRY=PAGE

,RELATED=value value: any valid assembler character string.

,MF=(E,list addr) ctrl prog: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the GETMAIN macro,
with the following exception:

GETMAIN macro

634 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,MF=(E,list addr)
Specifies the execute form of the GETMAIN macro using a remote control
program parameter list.

GETMAIN macro

Chapter 97. GETMAIN — Allocate virtual storage 635

GETMAIN macro

636 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 98. GTZQUERY macro — GTZ Query

Description
The GTZQUERY macro provides the interface to obtain various pieces of
information about the status of the Generic Tracker for z/OS, its configuration, and
any stored data.

Additional references and an overview for the tracking facility can be found in
z/OS MVS Diagnosis: Tools and Service Aids.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state. PSW key 8-15

When problem state, key 8-15 and not APF authorized, the
caller needs to be authorized for READ access to the
XFACILIT class resource GTZ.sysname.QUERY.

Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro. Use of the special
ALET value of 1 ("secondary") for addressing parameters is
not recommended and might be rejected via a "Bad ALET"
reason code since a space switch might lead to loss of
addressability of such a parameter.

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Control parameters above 2GB are allowed only for AMODE
64 callers.

Programming Requirements
For Assembler, include the GTZZQRY macro to get a mapping for the answer area
and to get equate symbols for related constants as well as return and reason codes.

For (METAL-) C use include file gtzhqry.h instead of GTZZQRY.

Restrictions
The caller must not have a functional recovery routine (FRR) established.

© Copyright IBM Corp. 1988, 2015 637

Input Register Information
Before issuing the GTZQUERY macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the GTZQUERY macro, the caller does not have to place any
information into any access register (AR) unless using it in register notation for a
particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, when register 15 is not 0.

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance Implications
None.

Syntax
The GTZQUERY macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede GTZQUERY.

GTZQUERY

� One or more blanks must follow GTZQUERY.

638 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

REQUEST=STATUS

REQUEST=EXCLUDE

REQUEST=DEBUG

REQUEST=TRACKDATA

,OWNER=owner owner: RS-type address or address in register (2) - (12)

,OWNER=* Default: OWNER=*

,SOURCETYPE=ALL Default: SOURCETYPE=ALL

,SOURCETYPE=NOPATH

,SOURCETYPE=PATH

,SOURCE=source source: RS-type address or address in register (2) - (12)

,SOURCE=* Default: SOURCE=*

,SOURCEPATHLEN=sourcepathlen sourcepathlen: RS-type address or address in register (2) - (12)

,SOURCEPATHLEN=0, Default: SOURCEPATHLEN=0,

,SOURCEPATH=sourcepath sourcepath: RS-type address or address in register (2) - (12)

,EVENTDESCLEN=eventdesclen eventdesclen: RS-type address or address in register (2) - (12)

,EVENTDESCLEN=0 Default: EVENTDESCLEN=0

,EVENTDESC=eventdesc eventdesc: RS-type address or address in register (2) - (12)

,EVENTDATA=eventdata eventdata: RS-type address or address in register (2) - (12)

,EVENTDATA=ALL Default: EVENTDATA=ALL

,EVENTASID=eventasid eventasid: RS-type address or address in register (2) - (12)

,EVENTASID=ALL Default: EVENTASID=ALL

,EVENTJOB=eventjob eventjob: RS-type address or address in register (2) - (12)

,EVENTJOB=* Default: EVENTJOB=*

,PROGRAMTYPE=ALL Default: PROGRAMTYPE=ALL

,PROGRAMTYPE=NOPATH

,PROGRAMTYPE=PATH

,PROGRAM=program program: RS-type address or address in register (2) - (12)

,PROGRAM=* Default: PROGRAM=*

,PROGRAMPATHLEN=
programpathlen

programpathlen RS-type address or address in register (2) - (12)

,PROGRAMPATHLEN=0 Default: PROGRAMPATHLEN=0,

Chapter 98. GTZQUERY macro — GTZ Query 639

Syntax Description

,PROGRAMPATH=programpath programpath: RS-type address or address in register (2) - (12)

,PROGRAMOFFSET=programoffset programoffset: RS-type address

,PROGRAMOFFSET=ALL Default: PROGRAMOFFSET=ALL

,HOMEASID=homeasid homeasid: RS-type address or address in register (2) - (12)

,HOMEASID=ALL Default: HOMEASID=ALL

,HOMEJOB=homejob homejob: RS-type address or address in register (2) - (12)

,HOMEJOB=* Default: HOMEJOB=*

,ANSAREA=ansarea ansarea: RS-type address or address in register (2) - (12)

,ANSLEN=anslen anslen: RS-type address or address in register (2) - (12)

,SECCHECK=UNAUTH Default: SECCHECK=UNAUTH

,SECCHECK=ALL

,RETCODE=retcode retcode: RS-type address or register (2) - (12) or (15), (GPR15), (REG15), or
(R15).

,RSNCODE=rsncode rsncode: RS-type address or register (0) or (2) - (12), (00), (GPR0), (GPR00),
(REG0), (REG00), or (R0).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr, COMPLETE))

,MF=(M,list addr,NOCHECK)

640 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the GTZQUERY
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=STATUS
REQUEST=EXCLUDE
REQUEST=DEBUG
REQUEST=TRACKDATA

A required parameter, which identifies the type of request.

REQUEST=STATUS
Get general status information for the tracking facility and an overview of
current configuration settings and accumulated tracking data.

REQUEST=EXCLUDE
Retrieve detail information about currently active exclusion filters.
Compare for example the SETGTZ EXCLUDE command.

REQUEST=DEBUG
Retrieve detail information about currently active debug action filters.
Compare for example the SETGTZ DEBUG command.

REQUEST=TRACKDATA
Retrieve individual unique tracked instances, as created by GTZTRACK
calls, and their associated statistics as currently stored by the tracking
facility.

,OWNER=owner
,OWNER=*

When REQUEST=TRACKDATA is specified, an optional input parameter,
which requests to return only such tracked instances which have a matching
OWNER value, as specified on the GTZTRACK invocations that recorded the
tracked instances.

If OWNER is specified, the owner value
v can contain wildcards anywhere in the string: An asterisk (*) will match any

character sequence of zero or more characters and a question mark (?) will
match a single arbitrary character.

v will be compared case-insensitive and will have trailing blanks ignored in
comparisons.

v can only contain alphabetic characters (A-Z,a-z), numerics (0-9), national
characters (@,$,#), the underscore ('_'), a period (.), a dash (-), a slash (/),
wildcards, or trailing blanks.

The default is * which indicates, as a single wildcard asterisk, to match any
tracked instance’s OWNER value.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,SOURCETYPE=ALL
,SOURCETYPE=NOPATH
,SOURCETYPE=PATH

When REQUEST=TRACKDATA is specified, an optional parameter, which
identifies what type of tracked instance source values to match. The default is
SOURCETYPE=ALL.

Chapter 98. GTZQUERY macro — GTZ Query 641

,SOURCETYPE=ALL
Match any source value, regardless if the tracked instance has a SOURCE
or SOURCEPATH asociated with it.

,SOURCETYPE=NOPATH
Match only tracked instances which have a matching SOURCE value.
Tracked instances with a SOURCEPATH value will not be matched.

,SOURCETYPE=PATH
Match only tracked instances which have a matching SOURCEPATH value.
Tracked instances with a SOURCE value will not be matched.

,SOURCE=source
,SOURCE=*

When SOURCETYPE=NOPATH and REQUEST=TRACKDATA are specified, an
optional input parameter, which requests to return only such tracked instances
which have a matching SOURCE value.

The source value here:
v can contain wildcards anywhere in the string: An asterisk (*) will match any

character sequence of zero or more characters and a question mark (?) will
match a single arbitrary character.

v can only contain alphabetic characters (A-Z,a-z), numerics (0-9), national
characters (@,$,#), wildcards, or trailing blanks.

v will be converted to upper-case for comparisons and will have trailing
blanks ignored in comparisons.

The default is * , a single wildcard asterisk, which indicates to match all
tracked instances with a SOURCE value.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,SOURCEPATHLEN=sourcepathlen
,SOURCEPATHLEN=0

When SOURCEPATH=PATH and REQUEST=TRACKDATA are specified, an
optional input parameter, which specifies the length of the SOURCEPATH to
match. SOURCEPATHLEN must be in the range of 0 through 1024.

The default is 0, which indicates to match any SOURCEPATH value.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. sourcepathlen must be in the
range 0 through 1024.

,SOURCEPATH=sourcepath
When SOURCEPATHLEN=sourcepathlen, SOURCETYPE=PATH and
REQUEST=TRACKDATA are specified, a required input parameter, which
requests to return only such tracked instances which have a matching
SOURCEPATH value with a length as specified by SOURCEPATHLEN.

The source path value here:
v can contain wildcards anywhere in the string: An asterisk (*) will match any

character sequence of zero or more characters and a question mark (?) will
match a single arbitrary character.

v can contain any EBCDIC character, but not just blanks or just binary zeroes.
IBM recommends you only use printable characters.

v will not have its alphabetic characters folded to upper-case and will be
compared case-sensitive.

v will not have its trailing blanks removed for comparisons.

642 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,EVENTDESCLEN=eventdesclen
,EVENTDESCLEN=0

When REQUEST=TRACKDATA is specified, an optional input parameter,
which specifies the length of the event description (EVENTDESC) to match.
EVENTDESCLEN must be in the range 0 through 64.

The default is 0 which indicates to match any EVENTDESC value.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. eventdesclen must be in the
range 0 through 64.

,EVENTDESC=eventdesc
When EVENTDESCLEN=eventdesclen and REQUEST=TRACKDATA are
specified, a required input parameter, which requests to return only such
tracked instances which have a matching event description (EVENTDESC)
value with a length as specified by EVENTDESCLEN.

The EVENTDESC value:
v can contain wildcards anywhere in the string: An asterisk (*) will match any

character sequence of zero or more characters and a question mark (?) will
match a single arbitrary character.

v can contain any EBCDIC character, but not just blanks or just binary zeroes.
IBM recommends to only use printable characters.

v will not have its alphabetic characters folded to upper-case and will be
compared case-sensitive.

v will not have its trailing blanks removed.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,EVENTDATA=eventdata
,EVENTDATA=ALL

When REQUEST=TRACKDATA is specified, an optional input parameter,
which requests to return only such tracking instances which have a matching
EVENTDATA value as specified on the GTZTRACK invocations that recorded
the tracked instances.

The default is ALL which indicates to match all EVENTDATA values.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,EVENTASID=eventasid
,EVENTASID=ALL

When REQUEST=TRACKDATA is specified, an optional input parameter,
which requests to return only such tracked instances which have a matching
EVENTASID value as specified on the GTZTRACK invocations that recorded
the tracked instances. (address space identifier)

The default is ALL which indicates to match all EVENTASID values.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value.

,EVENTJOB=eventjob
,EVENTJOB=*

When REQUEST=TRACKDATA is specified, an optional input parameter,

Chapter 98. GTZQUERY macro — GTZ Query 643

which requests to return only such tracking instances which were associated
with a matching job name of the address space identified by the EVENTASID
value specified on the GTZTRACK invocations that recorded the tracked
instances.

If EVENTJOB is specified, the eventjob value
v can contain wildcards anywhere in the string: An asterisk (*) will match any

character sequence of zero or more characters and a question mark (?) will
match a single arbitrary character.

v can only contain alphabetic characters (A-Z,a-z), numerics (0-9), national
characters (@,$,#), wildcards, or trailing blanks.

v will be converted to upper-case for comparisons and will have trailing
blanks ignored in comparisons.

The default is * which indicates, as a single wildcard asterisk, to match. any
tracked instance's EVENTJOB value.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

PROGRAMTYPE=ALL
PROGRAMTYPE=NOPATH
PROGRAMTYPE=PATH

When REQUEST=TRACKDATA is specified, an optional parameter, which
identifies what type of tracked instance program values, as derived from the
EVENTADDR value specified on the GTZTRACK invocations that recorded the
tracked instance, to match. A tracked instance is associated with a
PROGRAMPATH value if the derived program is a z/OS Unix program,
otherwise the tracked instance is associated with a PROGRAM value. The
default is PROGRAMTYPE=ALL.

PROGRAMTYPE=ALL
Match any program value, regardless if the tracked instance has a
PROGRAM or PROGRAMPATH associated with it.

,PROGRAMTYPE=NOPATH
Match only tracked instances which have a matching PROGRAM value.
Tracked instances with a PROGRAMPATH value will not be matched.

,PROGRAMTYPE=PATH
Match only tracked instances which have a matching PROGRAMPATH
value. Tracked instances with a PROGRAM value will not be matched.

,PROGRAM=program
,PROGRAM=*

When PROGRAMTYPE=NOPATH and REQUEST=TRACKDATA are specified,
an optional input parameter, which requests to return only such tracked
instances which have a matching PROGRAM value.

The program value here:
v can contain wildcards anywhere in the string: An asterisk (*) will match any

character sequence of zero or more characters and a question mark (?) will
match a single arbitrary character.

v can only contain alphabetic characters (A-Z,a-z), numerics (0-9), national
characters (@,$,#), wildcards, or trailing blanks.

v will be converted to upper-case for comparisons and will have trailing
blanks ignored in comparisons.

644 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

The default is * , a single wildcard asterisk, which indicates to match all
tracked instances with a PROGRAM value.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,PROGRAMPATHLEN=programpathlen
,PROGRAMPATHLEN=0

When PROGRAMTYPE=PATH and REQUEST=TRACKDATA are specified, an
optional input parameter, which specifies the length of the PROGRAMPATH to
match. PROGRAMPATHLEN must be in the range 0 through 1024.

The default is 0, which indicates to match any PROGRAMPATH value.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. programpathlen must be in the
range of 0 through 1024.

,PROGRAMPATH=programpath
When PROGRAMPATHLEN=programpathlen, PROGRAMTYPE=PATH and
REQUEST=TRACKDATA are specified, a required input parameter, which
requests to return only such tracked instances which have a matching
PROGRAMPATH value with a length as specified by PROGRAMPATHLEN.

The program path value here:
v can contain wildcards anywhere in the string: An asterisk (*) will match any

character sequence of zero or more characters and a question mark (?) will
match a single arbitrary character.

v can contain any EBCDIC character, but not just blanks or just binary zeroes.
IBM recommends to only use printable characters.

v will not have its alphabetic characters folded to upper-case and will be
compared case-sensitive.

v will not have its trailing blanks removed for comparisons.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,PROGRAMOFFSET=programoffset
,PROGRAMOFFSET=ALL

When REQUEST=TRACKDATA is specified, an optional input parameter,
which requests to return only such tracked instances which were associated
with a matching program offset as derived from the EVENTADDR value
specified on the GTZTRACK invocations that recorded the tracked instances.

The default is ALL which indicates to match all PROGRAMOFFSET values.

To code: Specify the RS-type address of a doubleword field, or specify a literal
decimal value.

,HOMEASID=homeasid
,HOMEASID=ALL

When REQUEST=TRACKDATA is specified, an optional input parameter,
which requests to return only such tracked instances which were associated
with a matching ASID of the HOME address space at the time of the
GTZTRACK invocations that recorded the tracked instances.

The default is ALL which indicates to match all HOME ASID values.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value.

,HOMEJOB=homejob

Chapter 98. GTZQUERY macro — GTZ Query 645

,HOMEJOB=*
When REQUEST=TRACKDATA is specified, an optional input parameter,
which requests to return only such tracked instances which were associated
with a matching job name of the HOME address space at the time of the
GTZTRACK invocations that recorded the tracked instances.

If HOMEJOB is specified, the homejob value:
v can contain wildcards anywhere in the string: An asterisk (*) will match any

character sequence of zero or more characters and a question mark (?) will
match a single arbitrary character.

v can only contain alphabetic characters (A-Z,a-z), numerics (0-9), national
characters (@,$,#), wildcards, or trailing blanks.

v will be converted to upper-case for comparisons and will have trailing
blanks ignored in comparisons.

The default is * which indicates, as a single wildcard asterisk, to match. any
tracked instance's HOMEJOB value.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,ANSAREA=ansarea
A required output parameter. A parameter which is to contain the returned
information. The length of ANSAREA is given via ANSLEN. The answer area
is mapped by macro GTZZQRY and has to start at a double-word boundary.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,ANSLEN=anslen
A required input parameter, which contains the length of the provided answer
area in bytes. The length must be at least of value GtzQuaaMinAnsLen, which
is defined in macro GTZZQRY.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field, or specify a literal decimal value.

,SECCHECK=UNAUTH
,SECCHECK=ALL

An optional parameter that indicates whether to do RACF security checks
based on profile(s) GTZ.sysname.QUERY. If RACF does not grant authority, the
request is rejected. The default is SECCHECK=UNAUTH.

,SECCHECK=UNAUTH
that indicates to do RACF security checks only when the caller is
unauthorized (not supervisor state, not system key, not APF-authorized).

,SECCHECK=ALL
that indicates to do RACF security checks in all cases.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

646 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Chapter 98. GTZQUERY macro — GTZ Query 647

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of GTZQUERY in
the following order:
v Use GTZQUERY ...MF=(M,list-addr,COMPLETE) specifying appropriate

parameters, including all required ones.
v Use GTZQUERY ...MF=(M,list-addr,NOCHECK), specifying the parameters

that you want to change.
v Use GTZQUERY ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register
(1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

ABEND Codes
E77 A GTZ ABEND might be issued by the system in error situations.

In the following GtzQuery abend reason codes, the two bytes designated
by "xxxx" are for the tracker component's diagnostic purposes and have no
significance to the external interface.

Reason Code

(Hex) Explanation

xxxxyyyy
Report this to the system programmer to contact IBM Service.

Return and Reason Codes
When the GTZQUERY macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro GTZZQRY provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

648 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 21. Return and Reason Codes for the GTZQUERY Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 – Equate Symbol: GtzQueryRc_OK

Meaning: Successfully returned requested information.

Action: None required

8 – Equate Symbol: GtzQueryRc_Error

Meaning: Error

Action: Refer to action under the individual reason code.

8 xxxx0880 Equate Symbol: GtzQueryRsn_BadRequest

Meaning: A bad REQUEST type has been specified.

Action: Use one of the supported request types.

8 xxxx0881 Equate Symbol: GtzQueryRsn_BadParmlistALET

Meaning: Bad parameter list ALET.

Action: Make sure the ALET associated with the parameter list is
valid. The access register might not have been set up correctly.

8 xxxx0882 Equate Symbol: GtzQueryRsn_BadParmlist

Meaning: Error accessing the parameter list.

Action: Make sure the provided parameter list is valid.

8 xxxx0883 Equate Symbol: GtzQueryRsn_BadParmlistVersion

Meaning: The specified version of the macro is not compatible
with the current version of IBM Generic Tracker for z/OS.

Action: Avoid requesting parameters that are not supported by
this version of IBM Generic Tracker for z/OS.

8 xxxx0884 Equate Symbol: GtzQueryRsn_BadAnsAreaALET

Meaning: Bad ANSAREA ALET.

Action: Make sure the ALET associated with the answer area is
valid. The access register might not have been set up correctly.

8 xxxx0885 Equate Symbol: GtzQueryRsn_BadAnsAreaAddrNull

Meaning: ANSAREA address is NULL.

Action: Check the location of your answer area. Typically address
zero is not a valid address.

8 xxxx0886 Equate Symbol: GtzQueryRsn_BadAnsAreaAddrAlign

Meaning: The ANSAREA has a bad alignment.

Action: The ANSAREA has to start at a double-word boundary.

8 xxxx0887 Equate Symbol: GtzQueryRsn_BadAnsLen

Meaning: Bad ANSLEN value.

Action: Provide an answer area which is at least
GtzQuaaMinAnsLen bytes long.

Chapter 98. GTZQUERY macro — GTZ Query 649

Table 21. Return and Reason Codes for the GTZQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0888 Equate Symbol: GtzQueryRsn_BadAnsArea

Meaning: Error accessing answer area.

Action: Make sure the provided answer area is valid.

8 xxxx0889 Equate Symbol: GtzQueryRsn_BadSecCheckValue

Meaning: Bad SECCHECK value.

Action: Specify a support SECCHECK value.

8 xxxx088A Equate Symbol: GtzQueryRsn_BadEnvNotEnabled

Meaning: Not enabled.

Action: Avoid using GTZQUERY when not enabled for I/O and
external interrupts

8 xxxx088B Equate Symbol: GtzQueryRsn_BadEnvLocked

Meaning: Locked.

Action: Avoid using GTZQUERY when a lock is held.

8 xxxx088C Equate Symbol: GtzQueryRsn_BadEnvSrbmode

Meaning: SRB mode.

Action: Avoid issuing GTZQUERY in SRB mode.

8 xxxx088D Equate Symbol: GtzQueryRsn_BadEnvFRR

Meaning: The caller had an EUT FRR established.

Action: Avoid using HZSPWRIT when an EUT FRR is established.

8 xxxx088E Equate Symbol: GtzQueryRsn_BadEnvNotInGtz

Meaning: The processing module for GTZQUERY has been
invoked outside of the GTZ address space.

Action: Use the provided GTZQUERY macro to call the
processing module.

8 xxxx088F Equate Symbol: GtzQueryRsn_NotAuthorized

Meaning: Not authorized.

Action: Ensure you are authorized to perform the requested
operation.

8 xxxx0890 Equate Symbol: GtzQueryRsn_FacilityNotAvailable

Meaning: Generic Tracker is not available.

Action: This might be a temporary situation. If this problem
persists, contact IBM Support.

8 xxxx0891 Equate Symbol: GtzQueryRsn_BadOwnerCharset

Meaning: The OWNER parameter value contains bad characters.

Action: Use only allowed characters as documented for the
OWNER parameter.

650 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 21. Return and Reason Codes for the GTZQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0892 Equate Symbol: GtzQueryRsn_BadSourcePathALET

Meaning: Bad SOURCEPATH ALET.

Action: Make sure that the ALET associated with the
SOURCEPATH parameter is valid. The access register might not
have been set up correctly.

8 xxxx0893 Equate Symbol: GtzQueryRsn_BadSourcePath

Meaning: Error accessing SOURCEPATH.

Action: Make sure that the provided SOURCEPATH is properly
addressable.

8 xxxx0894 Equate Symbol: GtzQueryRsn_BadProgramPathALET

Meaning: Bad PROGRAMPATH ALET.

Action: Make sure that the ALET associated with the
PROGRAMPATH parameter is valid. The access register might not
have been set up correctly.

8 xxxx0895 Equate Symbol: GtzQueryRsn_BadProgramPath

Meaning: Error accessing PROGRAMPATH.

Action: Make sure that the provided PROGRAMPATH is properly
addressable.

8 xxxx0896 Equate Symbol: GtzQueryRsn_BadEventDescALET

Meaning: Bad EVENTDESC ALET.

Action: Make sure that the ALET associated with the
EVENTDESC parameter is valid. The access register might not
have been set up correctly.

8 xxxx0897 Equate Symbol: GtzQueryRsn_BadEventDesc

Meaning: Error accessing EVENTDESC.

Action: Make sure that the provided EVENTDESC is properly
addressable.

8 xxxx0898 Equate Symbol: GtzQueryRsn_BadProgramCharset

Meaning: The PROGRAM parameter value contains bad
characters.

Action: Use only allowed characters as documented for the
PROGRAM parameter.

8 xxxx0899 Equate Symbol: GtzQueryRsn_BadProgramPathCharset

Meaning: The PROGRAMPATH parameter value contains bad
characters.

Action: Use only allowed characters as documented for the
PROGRAMPATH parameter.

Chapter 98. GTZQUERY macro — GTZ Query 651

Table 21. Return and Reason Codes for the GTZQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx089A Equate Symbol: GtzQueryRsn_BadSourceCharset

Meaning: The SOURCE parameter value contains bad characters.

Action: Use only allowed characters as documented for the
SOURCE parameter.

8 xxxx089B Equate Symbol: GtzQueryRsn_BadSourcePathCharset

Meaning: The SOURCEPATH parameter value contains bad
characters.

Action: Use only allowed characters as documented for the
SOURCEPATH parameter.

8 xxxx089C Equate Symbol: GtzQueryRsn_BadEventDescCharset

Meaning: The EVENTDESC parameter value contains bad
characters.

Action: Use only allowed characters as documented for the
EVENTDESC parameter.

8 xxxx089D Equate Symbol: GtzQueryRsn_BadEventDescLen

Meaning: The EVENTDESCLEN parameter value is out of range.

Action: Specify an EVENTDESCLEN in the documented allowed
range.

8 xxxx089E Equate Symbol: GtzQueryRsn_BadSourcePathLen

Meaning: The SOURCEPATHLEN parameter value is out of
range.

Action: Specify an SOURCEPATHLEN in the documented allowed
range.

8 xxxx089F Equate Symbol: GtzQueryRsn_BadProgramPathLen

Meaning: The PROGRAMPATHLEN parameter value is out of
range.

Action: Specify an PROGRAMPATHLEN in the documented
allowed range.

8 xxxx08A0 Equate Symbol: GtzQueryRsn_BadProgramType

Meaning: Invalid PROGRAMTYPE.

Action: Use only documented PROGRAMTYPE values.

8 xxxx08A1 Equate Symbol: GtzQueryRsn_BadSourceType

Meaning: Invalid SOURCETYPE.

Action: Use only documented SOURCETYPE values.

8 xxxx08A2 Equate Symbol: GtzQueryRsn_BadHomeJobCharset

Meaning: The HOMEJOB parameter value contains bad
characters.

Action: Use only allowed characters as documented for the
HOMEJOB parameter.

652 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 21. Return and Reason Codes for the GTZQUERY Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx08A3 Equate Symbol: GtzQueryRsn_BadEventJobCharset

Meaning: The EVENTJOB parameter value contains bad
characters.

Action: Use only allowed characters as documented for the
EVENTJOB parameter.

0C – Equate Symbol: GtzQueryRc_SevereError

Meaning: Severe Error / Environment Error

Action: Refer to action under the individual reason code.

0C xxxx0C90 Equate Symbol: GtzQueryRsn_FacilityNotAvailable

Meaning: Generic Tracker is not available.

Action: This might be a temporary situation. See the description
of message GTZ1000I for further information.

0D - Equate Symbol: GtzQueryRc_OutOfMemory

Meaning: Tracking facility is low on memory.

Action: See the description of message GTZ0004E. Try also to
omit any filters, for example for REQUEST(TRACKDATA).

10 – Equate Symbol: GtzQueryRc_CompError

Meaning: Component error.

Action: Report the associated reason code to the system
programmer to contact IBM Service.

Examples
See the sample health check GTZSHCK in SYS1.SAMPLIB for sample GTZQUERY
invocations.

Chapter 98. GTZQUERY macro — GTZ Query 653

654 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 99. GTZTRACK macro — GTZ Track

Description
The GTZTRACK macro provides the interface to request caller information, an
"event", to be recorded by the Generic Tracker for z/OS, as a "tracked instance".

Additional references and an overview for the tracking facility can be found in
z/OS MVS Diagnosis: Tools and Service Aids.

For GTZTRACK the caller does not have to determine first whether the tracking
facility is present or if tracking is enabled or if the tracking facility is full. The
service will handle those situations.

The following macro parameters, specified explicitly or implicitly derived at
GTZTRACK call time, will be used to uniquely identify a tracked instance. If two
GTZTRACK request have the same unique key parameters, only one tracked
instance will be recorded and only the associated occurrence count will be
incremented for the second request. These unique parameters can also be used
later to include only certain subsets of tracked instances for certain actions, like for
excluding such instances from being recorded at all, or for reporting. The unique
parameters are:
v OWNER
v SOURCE / SOURCEPATH
v EVENTDESC
v the event program (/-path) name and program offset, as derived from the

EVENTADDR
v the home address space job name and associated ASID, as derived from the

dispatchable unit (task...) in which GTZTRACK was invoked
v the event address space job name and associated ASID, as derived from the

EVENTASID
v the authorization state, as derived from the EVENTPSW8/16. "Not Authorized"

when running in problem state, key 8-15, and not APF authorized, otherwise
"Authorized".

v EVENTDATA

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state. PSW key 8-15

Callers in problem state, key 8-15, and not APF authorized:

v are limited to a maximum of eight unique tracked
instances being recorded per associated HOME address
space of the caller. Any further track requests beyond that
limit will be ignored

v are limited to use EVENTASID(HOME) and are not
allowed to use any other ASID values

Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN

© Copyright IBM Corp. 1988, 2015 655

Environmental factor Requirement
AMODE: 31- or 64-bit

If in AMODE 64, specify SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: Primary or access register (AR)

If in Access Register ASC mode, specify SYSSTATE
ASCENV=AR before invoking this macro. Use of the special
ALET value of 1 ("secondary") for addressing parameters is
not recommended and might be rejected via a "Bad ALET"
reason code since a space switch might lead to loss of
addressability of such a parameter.

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Control parameters above 2GB are allowed only for AMODE
64 callers.

Programming Requirements
The caller can include the GTZZTRK macro to get equate symbols for the return
and reason codes.

Restrictions
The caller must not have an FRR established.

Input Register Information
Before issuing the GTZTRACK macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Before issuing the GTZTRACK macro, the caller does not have to place any
information into any access register (AR) unless using it in register notation for a
particular parameter, or using it as a base register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, when register 15 is not 0.

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as work registers by the system

15 Return code

When control returns to the caller, the ARs contain:

656 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance Implications
The GTZTRACK service is designed to keep its synchronously executed code path
short. For that purpose part of the request processing is queued to be executed
asynchronously in the GTZ address space.

The macro expansion will also ensure a minimal code path and skip the call to the
synchronous backend processing, if tracking is not enabled or if the facility is full
or too busy for additional requests.

Syntax
The GTZTRACK macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede GTZTRACK.

GTZTRACK

� One or more blanks must follow GTZTRACK.

OWNER=owner owner: RS-type address or address in register (2) - (12)

,SOURCE=source source: RS-type address or address in register (2) - (12)

,SOURCEPATH=sourcepath sourcepath: RS-type address or address in register (2) - (12)

,SOURCEPATHLEN=sourcepathlen sourcepathlen: RS-type address or address in register (2) - (12)

,EVENTDESC=eventdesc eventdesc: RS-type address or address in register (2) - (12)

,EVENTDESCLEN=eventdesclen eventdesclen: RS-type address or address in register (2) - (12)

,EVENTDATA=eventdata eventdata: RS-type address or address in register (2) - (12)

,EVENTDATA=ALLZERO Default: EVENTDATA=ALLZERO

Chapter 99. GTZTRACK macro — GTZ Track 657

Syntax Description

,EVENTADDR=eventaddr eventaddr: RS-type address or address in register (2) - (12)

,EVENTPSW16=eventpsw16 eventpsw16: RS-type address or address in register (2) - (12)

,EVENTPSW8=eventpsw8 eventpsw8: RS-type address or address in register (2) - (12)

,EVENTASID=HOME

,EVENTASID=PRIMARY

,EVENTASID=SECONDARY

,EVENTASID=VALUE

,EVENTASIDVAL=eventasidval eventasidval: RS-type address

,NOABEND=NO Default: NOABEND=NO

,NOABEND=YES

,NOABEND=VALUE

,NOABENDVAL=noabendval noabendval: RS-type address

,RETCODE=retcode retcode: RS-type address or register (2) - (12) or (15), (GPR15), (REG15), or
(R15).

,RSNCODE=rsncode rsncode: RS-type address or register (0) or (2) - (12), (00), (GPR0), (GPR00),
(REG0), (REG00), or (R0).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr

,MF=(M,list addr, COMPLETE))

,MF=(M,list addr,NOCHECK)

658 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the GTZTRACK
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

OWNER=owner
A required input parameter, which specifies the owner of the code issuing
GTZTRACK. IBM recommends that you use your company name, followed by
a short component name, for example IBMGRS, as the owner.

Only alphabetic characters (A-Z,a-z), numerics (0-9), national characters (@,$,#),
an underscore ('_'), a period (.), a dash (-), a slash (/), and trailing blanks are
allowed.

The owner value will be treated case-insensitive in future filter comparisons,
but will have its case preserved in any output reports.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,SOURCE=source
,SOURCEPATH=sourcepath

A required input parameter.

,SOURCE=source
A parameter which further identifies the code which is issuing
GTZTRACK, as a sub-qualification of the OWNER in form of for example
the name of the "(detecting) module" which issued GTZTRACK.

Only alphabetic characters (A-Z,a-z), numerics (0-9), national characters
(@,$,#), and trailing blanks are allowed.

The system will convert this value to upper-case and use it this way in
future filter comparisons and any output reports.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,SOURCEPATH=sourcepath
A parameter which further identifies a z/OS Unix caller of this service, as
a sub-qualification of the OWNER. The length of the SOURCEPATH is
given via SOURCEPATHLEN.

Any character is allowed in the source path. It can not be all blanks or all
binary zeroes though. IBM recommends to only use printable characters.

Character case and trailing blanks are both preserved and are significant in
comparisons.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,SOURCEPATHLEN=sourcepathlen
When SOURCEPATH=sourcepath is specified, a required input parameter,
which specifies the length of the SOURCEPATH. SOURCEPATHLEN must be
in the range 1 through 1024.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. sourcepathlen must be in the
range 1 through 1024.

Chapter 99. GTZTRACK macro — GTZ Track 659

,EVENTDESC=eventdesc
A required input parameter, which describes the tracked instance.

Any character is allowed in the event description, but it can not contain just
blanks or just binary zeroes. IBM recommends to only use printable characters.

Character case and trailing blanks are both preserved and are significant in
comparisons.

The length of the EVENTDESC field is given via EVENTDESCLEN.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,EVENTDESCLEN=eventdesclen
A required input parameter, which specifies the length of the EVENTDESC
field. EVENTDESCLEN must be in the range 1 through 64.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field, or specify a literal decimal value. eventdesclen must be in the
range 1 through 64.

,EVENTDATA=eventdata
,EVENTDATA=ALLZERO

An optional input parameter, which specifies data associated with this tracked
instance. Callers can use it for their own purposes, for example to pass
dynamic parameters of a service being tracked. Any display output will format
this data as a 16-byte hexadecimal number.

The default is ALLZERO.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,EVENTADDR=eventaddr
,EVENTPSW16=eventpsw16

A required input parameter.

,EVENTADDR=eventaddr
A parameter that contains the address of where the event being tracked
occurred. A typical value would be the address to which the code invoking
GTZTRACK will return.

This address is assumed to be a 64-bit address. If a 24-bit or 31-bit address
is provided, you must ensure that the appropriate high-order bits and
bytes of the address are set to zero. For example you should not supply an
8-byte address that is a "pointer-defined" AMODE 31 address, such as
00000000_81234568, which in other circumstances might indicate address
1234568 with the AMODE 31 bit on.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,EVENTPSW16=eventpsw16
A parameter that contains a z/Arch 16-byte Program Status Word (PSW). It
is to provide the address of where the event being tracked occurred via the
contained instruction address and to provide information for potential
additional GTZPRMxx filtering, for example by program state and
authority.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

660 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,EVENTPSW8=eventpsw8
When EVENTADDR=eventaddr is specified, a required input parameter that
contains the 8-byte Program Status Word (PSW) to be used for potential future
use via additional GTZPRMxx filtering, for example by program state and
authority.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,EVENTASID=HOME
,EVENTASID=PRIMARY
,EVENTASID=SECONDARY
,EVENTASID=VALUE

A required parameter that specifies which address space to associate with the
tracked instance. This is mainly useful for cross-memory cases, where the event
occurred in one address space, but the GTZTRACK call in another and the
event ASID is different than HOME.

,EVENTASID=HOME
the event occurred in the home address space

,EVENTASID=PRIMARY
the event occurred in the primary address space. Only authorized callers of
GTZTRACK are allowed to specify this option.

,EVENTASID=SECONDARY
the event occurred in the secondary address space. Only authorized callers
of GTZTRACK are allowed to specify this option.

,EVENTASID=VALUE
the event occurred in the address space identified via EVENTASIDVAL.
Only authorized callers of GTZTRACK are allowed to specify this option.

,EVENTASIDVAL=eventasidval
When EVENTASID=VALUE is specified, a required input parameter that
specifies the address space id to associate with the tracked instance.

To code: Specify the RS-type address of a 16 bit field.

,NOABEND=NO
,NOABEND=YES
,NOABEND=VALUE

An optional parameter that indicates whether to disallow diagnostic ABENDs
for this track request. Some GTZTRACK callers might not be tolerant to
ABENDs at all and can specify this as an override for any GTZPRMxx
statement which might be matching this GTZTRACK call and which requests
an ABEND. The default is NOABEND=NO.

,NOABEND=NO
that indicates diagnostic ABEND E77 is allowed for this track request, if a
matching GTZPRMxx statement is found.

,NOABEND=YES
that indicates the tracking facility will never issue ABEND E77 for this
track request for diagnostic purposes, even if requested by a matching
GTZPRMxx statement.

,NOABEND=VALUE
use the NoAbendVal value.

,NOABENDVAL=noabendval
When NOABEND=VALUE is specified, a required input parameter that

Chapter 99. GTZTRACK macro — GTZ Track 661

indicates whether to disallow diagnostic ABENDs or not. A value of one (1)
means 'no abend allowed' and a zero (0) value means 'abends allowed'.

To code: Specify the RS-type address of a one-byte field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15. If you specify 15, GPR15, REG15, or R15 (within or without
parentheses), the value will be left in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12) or
(15), (GPR15), (REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0. If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or
without parentheses), the value will be left in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or
(2)-(12), (00), (GPR0), (GPR00), REG0), (REG00), or (R0).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)

662 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,MF=(M,list addr,NOCHECK)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of GTZTRACK
in the following order:
v Use GTZTRACK ...MF=(M,list-addr,COMPLETE) specifying appropriate

parameters, including all required ones.
v Use GTZTRACK ...MF=(M,list-addr,NOCHECK), specifying the parameters

that you want to change.
v Use GTZTRACK ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register
(1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

ABEND Codes
E77 A GTZ ABEND might be issued by the system in error situations, or

because it was requested via a GTZPRMxx DEBUG statement which
matched the parameters of this GTZTRACK invocation request here. The
ABEND reason codes are divided into two ranges to distinguish between
those two situations.

Chapter 99. GTZTRACK macro — GTZ Track 663

In the following GTZTRACK abend reason codes, the two bytes designated by
"xxxx" are for the tracker component's diagnostic purposes and have no
significance to the external interface.

Reason Code (Hex)
Explanation

xxxx0rrr
This ABEND was triggered by a matching DEBUG statement, compare the
GTZPRMxx parmlib member DEBUG statement or the SETGTZ DEBUG
console command. The matching statement had the user specified reason
code 0rrr (which must be in the range of 0000 through 0FFF).

xxxxyzzz
With y not equal to zero: Report this to the system programmer to contact
IBM Service.

Return and Reason Codes
When the GTZTRACK macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro GTZZTRK provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 22. Return and Reason Codes for the GTZTRACK Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: GtzTrackRc_OK

Meaning: Successful request.

Action: None required

4 — Equate Symbol: GtzTrackRc_Warn

Meaning: Warning.

Action: Refer to action under the individual reason code.

4 xxxx0401 Equate Symbol: GtzTrackRsn_NotReady

Meaning: The tracking facility is not ready. Track data has not
been recorded. This could be due the following reasons (not
necessarily a complete list):

v Tracking is not enabled. Compare command SETGTZ
TRACKING.

v The facility is in flood control mode or otherwise too busy.

v The facility has not been started yet or is still starting and
initialization is not complete yet.

Action: Consider enabling tracking via command SETGTZ
TRACKING=ON. Use command DISPLAY GTZ,STATUS to view
additional tracking facility status. This might be a temporary
condition. Compare also the description of messages GTZ1000I
and GTZ0004E for further information.

664 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 22. Return and Reason Codes for the GTZTRACK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 – Equate Symbol: GtzTrackRc_Error

Meaning: Error

Action: Refer to action under the individual reason code.

8 xxxx0801 Equate Symbol: GtzTrackRsn_BadGTZATRKP

Meaning: Invalid GTZATRKP value.

Action: Ensure that only macro GTZTRACK is used to build the
parameter list for the GTZTRACK service.

8 xxxx0803 Equate Symbol: GtzTrackRsn_BadParmlist

Meaning: Error accessing the GTZTRACK parameter list.

Action: Make sure the provided parameter list is valid.

8 xxxx0804 Equate Symbol: GtzTrackRsn_BadSourcePath

Meaning: Error accessing the SOURCEPATH parameter.

Action: Make sure the provided parameter is valid.

8 xxxx0805 Equate Symbol: GtzTrackRsn_BadEventDesc

Meaning: Error accessing the EVENTDESC parameter.

Action: Make sure the provided parameter list is valid.

8 xxxx0806 Equate Symbol: GtzTrackRsn_BadEnvNotEnabled

Meaning: Not enabled.

Action: Avoid using GTZTRACK when not enabled.

8 xxxx0807 Equate Symbol: GtzTrackRsn_BadEnvLocked

Meaning: Lock is held

Action: Avoid using GTZTRACK when a lock is held.

8 xxxx0808 Equate Symbol: GtzTrackRsn_BadEnvSrbmode

Meaning: SRB mode.

Action: Avoid using GTZTRACK when in SRB mode.

8 xxxx0809 Equate Symbol: GtzTrackRsn_BadEnvFRR

Meaning: The caller had an EUT FRR established.

Action: Avoid using GTZTRACK when an EUT FRR is
established.

8 xxxx080A Equate Symbol: GtzTrackRsn_BadParmlistVersion

Meaning: The specified version of the macro is not compatible
with the current version of IBM Generic Tracker for z/OS.

Action: Avoid requesting parameters that are not supported by
this version of IBM Generic Tracker for z/OS.

Chapter 99. GTZTRACK macro — GTZ Track 665

Table 22. Return and Reason Codes for the GTZTRACK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx080B Equate Symbol: GtzTrackRsn_BadEventAddrZero

Meaning: EVENTADDR is zero.

Action: Do not specify zero as a value for the EVENTADDR. The
Console Tracking facility and its service CNZTRKR used to allow
for a Violator address of zero, but Generic Tracker by default does
not.

8 xxxx080C Equate Symbol: GtzTrackRsn_BadSourcePathLen

Meaning: SOURCEPATHLEN is invalid.

Action: SOURCEPATHLEN has to be between 1 and 1024.

8 xxxx080D Equate Symbol: GtzTrackRsn_BadSourcePathALET

Meaning: Bad SOURCEPATH ALET.

Action: Make sure the ALET associated with the SOURCEPATH
parameter is valid. The access register might not have been set up
correctly.

8 xxxx080E Equate Symbol: GtzTrackRsn_NotAuthorized_EventASID

Meaning: Not authorized to specify this EVENASID value.

Action: Only EVENTASID(HOME) can be used when not running
authorized.

8 xxxx080F Equate Symbol: GtzTrackRsn_BadEventASIDKey

Meaning: Bad EVENTASID value.

Action: Specify one of HOME, PRIMARY, SECONDARY, or
VALUE.

8 xxxx0810 Equate Symbol: GtzTrackRsn_BadEventDescLen

Meaning: EVENTDESCLEN is invalid.

Action: EVENTDESCLEN has to be between 1 and 64.

8 xxxx0811 Equate Symbol: GtzTrackRsn_BadEventDescALET

Meaning: Bad EVENTDESC ALET.

Action: Make sure the ALET associated with the EVENTDESC
parameter is valid. The access register might not have been set up
correctly.

8 xxxx0812 Equate Symbol: GtzTrackRsn_NotAuthorized_CNZTRKR

Meaning: Not authorized to specify parameter CNZTRKR.

Action: Do not use parameter CNZTRKR and ensure that only
macro GTZTRACK is used to build the parameter list for the
GTZTRACK service.

666 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Table 22. Return and Reason Codes for the GTZTRACK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0813 Equate Symbol: GtzTrackRsn_NotAuthorized_EVENTADDR0

Meaning: Not authorized to specify parameter EVENADDR0.

Action: Do not use parameter EVENTADDR0 and ensure that
only macro GTZTRACK is used to build the parameter list for the
GTZTRACK service.

8 xxxx0814 Equate Symbol: GtzTrackRsn_BadParmlistALET

Meaning: Bad parameter list ALET.

Action: Make sure the ALET associated with the parameter list is
valid. The access register might not have been set up correctly.

8 xxxx0815 Equate Symbol: GtzTrackRsn_BadEventASIDSlot

Meaning: Bad EVENTASID value.

Action: Specify one of HOME, PRIMARY, SECONDARY for
EVENTASID, or specify VALUE with a valid EVENTASIDVAL.

8 xxxx0816 Equate Symbol: GtzTrackRsn_BadEventASID

Meaning: Bad EVENTASID value.

Action: Specify one of HOME, PRIMARY, SECONDARY, or
VALUE, with a valid EVENTASIDVAL.

8 xxxx0818 Equate Symbol: GtzTrackRsn_BadEnvNotInGtz

Meaning: The processing module for GTZTRACK has been
invoked outside of the GTZ address space.

Action: Use the provided GTZTRACK macro to call the
processing module.

8 xxxx0819 Equate Symbol: GtzTrackRsn_NotAuthorized_Caller

Meaning: A processing module for GTZTRACK has been invoked
in the wrong state.

Action: Use the provided GTZTRACK macro to call the
processing module.

8 xxxx081A Equate Symbol: GtzTrackRsn_BadProgramPathALET

Meaning: Bad PROGRAMPATHALET.

Action: Make sure the ALET associated with the PROGRAMPATH
parameter is valid. The access register might not have been set up
correctly.

8 xxxx081B Equate Symbol: GtzTrackRsn_BadProgramPathLen

Meaning: PROGRAMPATHLEN is invalid.

Action: PROGRAMPATHLEN has to be between 1 and 1024.

8 xxxx081C Equate Symbol: GtzTrackRsn_BadNoAbend

Meaning: NOABEND or NOABENDVAL is invalid.

Action: NOABEND has to be YES or NO. NOABENDVAL has to
be 1 or 0.

Chapter 99. GTZTRACK macro — GTZ Track 667

Table 22. Return and Reason Codes for the GTZTRACK Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx081D Equate Symbol: GtzTrackRsn_BadOwnerValue

Meaning: Bad OWNER text value.

Action: Ensure that the OWNER value contains only the
documented allowed characters.

8 xxxx081E Equate Symbol: GtzTrackRsn_BadEventDescValue

Meaning: Bad EVENTDESC text value.

Action: Ensure that the EVENTDESC value does not contain only
blanks or only binary zeroes.

8 xxxx081F Equate Symbol: GtzTrackRsn_BadSourceValue

Meaning: Bad SOURCE text value.

Action: Ensure that the SOURCE value contains only the
documented allowed characters.

0D – Equate Symbol: GtzTrackRc_OutOfMemory

Meaning: Tracking facility is low on memory.

Action: See the description of message GTZ0004E.

10 – Equate Symbol: GtzTrackRc_CompError

Meaning: Component error.

Action: Report the associated reason code to the system
programmer to contact IBM Service.

Examples
None.

668 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 100. GQSCAN — Extract information from global
resource serialization queue

Description
Use the GQSCAN macro to obtain the status of resources and requestors of those
resources. The GQSCAN macro allows you to obtain resource information from the
system.

ISGQUERY is the IBM recommended replacement for the GQSCAN service.

The ISGRIB macro allows you to interpret the data that the GQSCAN service
routine returns to the user-specified area. The ISGRIB macro maps the resource
information block (RIB) and the resource information block extent (RIBE) as shown
in z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/
systems/z/os/zos/bkserv/.

There are two fields in the RIB that you can use to determine whether any RIBEs
were not returned:
v RIBTRIBE contains the total number of RIBEs associated with this RIB
v RIBNRIBE contains the total number of RIBEs returned by GQSCAN with this

RIB in the user-specified area indicated by the AREA parameter.

Global resource serialization counts and limits the number of outstanding global
resource serialization requests. A global resource serialization request is any ENQ,
RESERVE, or GQSCAN that causes an element to be inserted into a queue in the
global resource serialization request queue area.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state with any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
Any PASN, any HASN, any
SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space.

Programming requirements
To interpret the data that the GQSCAN service routine returns in the user-specified
area, you must include the ISGRIB mapping macro as a DSECT in your program.

© Copyright IBM Corp. 1988, 2015 669

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Restrictions
Unauthorized callers of GQSCAN need to be authorized through System
Authorization Facility (SAF) when Multi-level security (MLS) is active. If the caller
is not authorized, the request will fail.

When multilevel security support is active on the system, unauthorized callers of
ISGQUERY who specify REQINFO=QSCAN must have at least READ
authorization to the ISG.QSCANSERVICES.AUTHORIZATION resource in the
FACILITY class. You can activate the multilevel security support through the
SETROPTS MLACTIVE option in RACF. For general information about defining
profiles in the FACILITY class, see z/OS Security Server RACF Command Language
Reference and z/OS Security Server RACF Security Administrator's Guide. For
information about multilevel security, see z/OS Planning for Multilevel Security and
the Common Criteria.

Input register information
Before issuing the GQSCAN macro, the caller does not have to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Register 0 contains a fullword reason code if the return code in register 15
is X’0A’ or X’0C’. Otherwise, register 0 contains the following two
halfword values:
v The first (high-order) halfword contains the length of the fixed portion

of each RIB returned.
v The second (low-order) halfword contains the length of each RIBE

returned or reason code.
1 Contains the number of RIBs that were copied into the area provided
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
In general, the narrower the search parameters (particularly QNAME and
RNAME), the less time it takes. Using both a specific QNAME and a specific
RNAME gives better performance than using generic prefix.

GQSCAN macro

670 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

|

The use of XSYS=YES (the default) might greatly degrade the performance of the
request. Use it only when required.

Polling for ENQ contention through GQSCAN or ISGQUERY is not recommended.
See the z/OS MVS Planning: Global Resource Serialization and z/OS MVS
Programming: Authorized Assembler Services Guide for more information about
monitoring contention through ENF 51.

None.

Syntax
The standard form of the GQSCAN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede GQSCAN.

GQSCAN

� One or more blanks must follow GQSCAN.

AREA=(area addr,area size) area addr: A-type address or register (2) - (12).

area size: symbol, decimal digit, or register (2) - (12).
Note: AREA cannot be specified with QUIT=YES.

,REQLIM=value value: symbol, decimal digit, register (2) - (12), or the word MAX.

,REQLIM=MAX Default: REQLIM=MAX

,SCOPE=ALL Default: SCOPE=STEP

,SCOPE=STEP

,SCOPE=SYSTEM

,SCOPE=SYSTEMS

,RESERVE=YES Default: All resources requested with RESERVE and all resources requested
with ENQ.

,RESERVE=NO

,RESNAME=(qname qname addr: RX-type address or register (2) - (12).

addr[,rname addr, rname addr: RX-type address or register (2) - (12).

rname length], rname length: decimal digit, or register (2) - (12).

Default: assembled length of rname.

[GENERIC|SPECIFIC],

qname length) Default: qname length of eight.

GQSCAN macro

Chapter 100. GQSCAN — Extract information from global resource serialization queue 671

Syntax Description

,SYSNAME=(sysname addr sysname addr: RX-type address or register (2) - (12).

[,asid value]) asid value: symbol, decimal digit, or register (2) - (12).
Note: Provide rname addr only when qname addr is used. Code rname length
if a register is specified for rname addr. Code an asid value only when the
sysname addr is used.

,QUIT=YES Default: QUIT=NO

,QUIT=NO Note: QUIT=YES is mutually exclusive with all parameters but TOKEN and
MF.

,REQCNT=value value: decimal digit or register (2) - (12).

Default: REQCNT=0

,OWNERCT=value,WAITCNT=

value value: decimal digit or register (2) - (12).

,OWNERCT=value value: decimal digit or register (2) - (12).

,WAITCNT=value value: decimal digit or register (2) - (12).

,TOKEN=addr addr: RX-type address or register (2) - (12).

,XSYS=YES Default: XSYS=YES

,XSYS=NO Note: XSYS=NO is mutually exclusive with TOKEN, QUIT=YES and
SYSNAME, when SYSNAME is not equal to zero or zero and the asid
value(0,asid value). In a global resource serialization ring complex,
XSYS=NO is ignored.

Parameters
The parameters are explained as follows:

AREA=(area addr,area size)
Specifies the location and size of the area where information extracted from the
global resource serialization resource queues is to be placed. The minimum size
is the amount needed to describe a single resource, which is the length of the
fixed portions of the RIB and the maximum size rname rounded up to a
fullword value. IBM recommends that you use a minimum of 1024 bytes as the
area size.

,REQLIM=value
,REQLIM=MAX

Specifies the maximum number of owners and waiters to be returned for each
individual resource within the specification of RESNAME, which can be any
value in the range 0 to 215−1. MAX specifies 215−1 (32767).

,SCOPE=ALL

GQSCAN macro

672 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

,SCOPE=STEP
,SCOPE=SYSTEM
,SCOPE=SYSTEMS

Specifies that you want information only for resources having the indicated
scope. STEP, SYSTEM, or SYSTEMS is the scope specified on the resource
request. If you specify SCOPE=ALL (meaning STEP, SYSTEM, and SYSTEMS),
the system returns information for all resources the system recognizes that
have the specified RESNAME, RESERVE, or SYSNAME characteristics.

,RESERVE=YES
,RESERVE=NO

If you specify RESERVE=YES, information is only returned for the requestors
of the resource, that requested the resource with the RESERVE macro. If, for
example, the resource also had requestors with the ENQ macro, the ENQ
requestor's information would not be returned for the resource.

RESERVE=NO information is only returned for the requestors of the resource
that requested the resource with the ENQ macro. In other words, if the
resource also had requestors with the RESERVE macro, the RESERVE
requestor's information would not be returned for the resource.

,RESNAME=(qname addr[,rname addr,rname
length],[GENERIC|SPECIFIC],qname length)

RESNAME identifies an individual resource or group of resources that
GQSCAN will examine.

RESNAME with (rname) indicates the name of one resource.

The qname addr specifies the address of the 8-character major name of the
requested resource.

The rname addr specifies the virtual storage address of a 1 to 255-byte minor
name used with the major name to represent a single resource. Information
returned is for a single resource unless you specify SCOPE=ALL, in which case
it could be for three resources (STEP, SYSTEM, and SYSTEMS). If the name
specified by rname is defined by an EQU assembler instruction, the rname
length must be specified.

The rname length specifies the length of the minor name. If you use the register
form, specify length in the low-order (rightmost) byte. The length must match
the rname length specified on ENQ or RESERVE.

GENERIC specifies that the rname of the requested resource must match but
only for the length specified. For example, an ENQ for SYS1.PROCLIB would
match the GQSCAN rname specified as SYS1 for an rname length of 4.

SPECIFIC specifies that the rname of the requested resource must exactly match
the GQSCAN rname.

Note: GENERIC and SPECIFIC are mutually exclusive.

The qname length specifies the number of characters in a resource qname that
must match the GQSCAN qname specified by RESNAME. You must specify a
qname length to request a GQSCAN for a generic qname. For example, an ENQ
with a qname of SYSDSN would match a GQSCAN specifying GENERIC with
a qname of SYSD and qname length of 4. Specify zero for the qname length (with
any qname) to request a generic GQSCAN matching any resource qname. If you
do not specify a qname length, GQSCAN uses the default of 8.

,SYSNAME=(sysname addr[,asid value])
Specify SYSNAME to tell GQSCAN to return information for resources

GQSCAN macro

Chapter 100. GQSCAN — Extract information from global resource serialization queue 673

requested by tasks running on the MVS system specified in an 8-byte field
pointed to by the address in sysname address and the asid value, a 4-byte address
space identifier, right justified. Valid SYSNAMEs are specified in the IEASYSxx
parmlib member.

Information returned includes only those resources whose sysname addr and
asid value match the ones specified. SYSNAME=0 or SYSNAME=(0,asid value),
specifies that the system name is that of the system on which GQSCAN is
issued. The system issues return code X’0A’ with a reason code of X’0C’, if
SYSNAME≠0 or SYSNAME≠(0,asid value) is specified with XSYS=NO.

,QUIT=YES
,QUIT=NO

QUIT=NO indicates that you do not want to end the current global resource
serialization queue scan. QUIT=YES tells GQSCAN to stop processing the
current global resource serialization queue scan and release the storage
allocated to accumulate the information specified in the token.

If you specify QUIT=YES, you must specify the TOKEN parameter. If you
specify QUIT=YES without the TOKEN parameter, the system issues abend
X’09A’.

,REQCNT=rcount
Specifies that you want GQSCAN to return resource information only when
the total number of requesters (owners plus waiters) for an individual resource
is greater than or equal to rcount, which can be any value in the range 0 to
231−1.

,OWNERCT=ocount
Specifies that you want GQSCAN to return resource information only when
the total number of owners for an individual resource is greater than or equal
to ocount, which can be any value in the range 0 to 231−1.

,WAITCNT=wcount
Specifies that you want GQSCAN to return resource information only when
the total number of waiters for an individual resource is greater than or equal
to wcount, which can be any value in the range 0 to 231−1.

OWNERCT=ocount,WAITCNT=wcount
Specifies that you want GQSCAN to return resource information only when
the total number of owners for an individual resource is greater than or equal
to ocount or when the total number of waiters for an individual resource is
greater than or equal to wcount.

,TOKEN=addr
Specifies the address of a fullword of storage that the GQSCAN service routine
can use to provide you with any remaining information in subsequent
invocations. If the token value is zero, the scan starts at the beginning of the
resource queue. If the token value is not zero, the scan resumes at the point
specified on TOKEN. Specify the same token value that GQSCAN returned on
its previous invocation to continue where processing left off on the previous
invocation.

When providing a non-zero token value, you must specify the same scope that
you specified on the GQSCAN request that returned the token.

,XSYS=YES
,XSYS=NO

Specifies whether GQSCAN should be propagated across systems in the global

GQSCAN macro

674 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

resource serialization complex, to gather complex-wide information. This
parameter is ignored in a global resource serialization ring complex, and for
requests that only gather local data.

Specify XSYS=YES if the program requires complex-wide global resource
serialization information. The caller might be suspended while the information
is being gathered. Do not specify or default to XSYS=YES if this condition
cannot be tolerated.

Specify XSYS=NO if the program will accept global resource serialization
information from this system only. The RIBE data will contain information
about requestors from other other systems in the complex only if that
information is already available on the GQSCAN caller's system. Otherwise,
RIBE data will be provided only for requests from the GQSCAN caller's
system, and the counts in the RIB will reflect only those requests. This request
is always handled without placing the caller's dispatchable unit into a wait.

ABEND codes
See z/OS MVS System Codes for more information about the abend codes.

Return and reason codes
When GQSCAN returns control, register 15 contains one of the following return
codes:

Table 23. Return codes for the GQSCAN macro
Hexadecimal return
code

Meaning and action

00 Meaning: Queue scan processing is complete. Data is now in the area you specified. There
is no more data to return.
Action: Process the data.

04 Meaning:
Action: Meaning: Queue scan processing is complete. No resources matched your request.

Action: Do not try to process any data; none exists.

08 Meaning: The area you specified was filled before queue scan processing completed.
Action: If you specified TOKEN, process the information in the area and issue GQSCAN
again, specifying the TOKEN returned to you. If you did not specify TOKEN, specify a
larger area or specify a TOKEN.

GQSCAN macro

Chapter 100. GQSCAN — Extract information from global resource serialization queue 675

Table 23. Return codes for the GQSCAN macro (continued)
Hexadecimal return
code

Meaning and action

0A Meaning: The information you specified to GQSCAN is not valid.
Action: Take the action indicated by the following hexadecimal reason code found in
register 0.

Reason code
Meaning

04 The caller attempted to use GQSCAN before the global resource serialization
(GRS) address space was active.

08 The size of the reply area, specified by the AREA parameter, is too small to
contain a resource information block (RIB) of maximum size.

0C You specified mutually exclusive arguments (RESERVE=YES, RESERVE=NO,
RESNAME=, SYSNAME=, or XSYS=NO) to GQSCAN.

10 The caller was holding a local lock other than the GRS local lock when GQSCAN
was invoked.

14 One of the following conditions, in reference to the RESNAME parameter, was
detected by GQSCAN:
v The qname length was specified with a value greater than eight.
v The qname length value was specified without the qname addr value.
v The SPECIFIC parameter was specified with a rname length value of zero.
v The rname or rname length was specified without the qname addr value.

18 The asid value, for the SYSNAME parameter was specified without the sysname
addr value.

1C The REQCNT parameter was specified with either the OWNERCNT or
WAITCNT parameters.

20 The combination of values specified on the SCOPE parameter is not valid.

28 An element in GQSCAN's input parameter list was not in the caller's storage
protect key.

2C An invalid token was specified to GQSCAN.

30 The GQSCAN caller is not authorized to use the restricted interface
(SCOPE=LOCAL or GLOBAL).

34 QUIT=YES was specified without the TOKEN parameter.

38 The caller held a CMS lock other than CMSEQDQ when GQSCAN was invoked.

3C The caller held a lock that violated the environmental restrictions of a service
required by GQSCAN.

40 The caller invoked GQSCAN in the service request block (SRB) mode.

44 The value specified for the REQLIM parameter was not valid.

48 The value specified for the REQCNT parameter was not valid.

4C The value specified for the OWNERCT parameter was not valid.

50 The value specified for the WAITCNT parameter was not valid.

54 The GQSCAN token (TOKEN) is expired.

58 SETROPTS MLACTIVE is in effect, and the program is not authorized to issue
GQSCAN. Ensure the program is running authorized, or is associated with a
userid with at least READ access to the best fit FACILITY class resource profile
of the form ISG.QSCANSERVICES.AUTHORIZATION and that the FACILITY
class is SETROPTS RACLISTed.

GQSCAN macro

676 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

||

Table 23. Return codes for the GQSCAN macro (continued)
Hexadecimal return
code

Meaning and action

0C Meaning: System error. Queue scan encountered an abnormal situation while processing.
The information in your area is not meaningful. The reason code in register 0 contains one
of the following:

Reason code
Meaning

00 GQSCAN has sustained an unrecoverable error.

04 The GQSCAN caller attempted to resume a scan that was started when the
global resource serialization complex, which is now in star mode, was in ring
mode.

08 The GQSCAN service is not able to obtain storage to satisfy the request.

0C Sysplex processing of a SYSTEMS or GLOBAL request failed.

10 The GQSCAN service failed because the complex was migrating from a ring to a
star configuration.

14 The GQSCAN service failed because inconsistent data was returned from one or
more systems.

Action: Do not try to process any data; none exists. Retry the request one or more times.

10 Meaning: Program error. An incorrect SYSNAME was specified as input to queue scan. The
information in your area is not meaningful.
Action: Specify a valid SYSNAME on the call to GQSCAN.

14 Meaning: Environmental error. The area you specified was filled before queue scan
processing completed. Your request specified TOKEN, but the limit for the number of
concurrent resource requests (ENQ, RESERVE, or GQSCAN) has been reached. The
information in your area is valid but incomplete. The scan cannot be resumed.
Action: Retry the request one or more times. If the problem persists, consult your system
programmer, who might be able to tune the system so that the limit is no longer exceeded.

GQSCAN - List form
The list form of the GQSCAN macro is used to construct a non-executable
parameter list. This parameter list, or a copy of it for reentrant programs, can be
referred to by the execute form of the GQSCAN macro.

The list form of the GQSCAN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede GQSCAN.

GQSCAN

� One or more blanks must follow GQSCAN.

AREA=(area addr, area size) area addr: A-type address.

area size: symbol, decimal digit.

Note:

1. This parameter cannot be specified with QUIT=YES.

2. AREA is required on either the list or the execute form of the macro.

GQSCAN macro

Chapter 100. GQSCAN — Extract information from global resource serialization queue 677

Syntax Description

,REQLIM=value value: symbol, decimal digit or the word MAX.

,REQLIM=MAX Default: REQLIM=MAX

,SCOPE=ALL Default: SCOPE=STEP

,SCOPE=STEP

,SCOPE=SYSTEM

,SCOPE=SYSTEMS

,RESERVE=YES Default: All resources requested with RESERVE and all

,RESERVE=NO resources requested with ENQ.

,RESNAME=(qname qname addr: A-type address.

addr [,rname addr, rname addr: A-type address.

rname length], rname length: decimal digit.

[GENERIC|SPECIFIC], Default: assembled length of rname.

qname length) Default: qname length of eight.

,SYSNAME=(sysname addr sysname addr: A-type address.

[,asid value]) asid value: symbol, decimal digit.

Note: rname addr can be provided only when qname addr is used. rname
length must be provided if a register is specified for rname addr. An asid value
can be coded only when the sysname addr is used.

,QUIT=YES Default: QUIT=NO

,QUIT=NO Note: Only TOKEN and MF=L can be specified with QUIT=YES.

,REQCNT=value value: decimal digit.

Default: REQCNT=0

,OWNERCT=value,WAITCNT=

value value: decimal digit.

,OWNERCT=value value: decimal digit.

,WAITCNT=value value: decimal digit.

,TOKEN=addr addr: RX-type address.

,XSYS=YES Default: XSYS=YES

GQSCAN macro

678 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

,XSYS=NO Note: XSYS=NO is mutually exclusive with TOKEN, QUIT=YES and
SYSNAME, when SYSNAME is not equal to zero or zero and the asid
value(0,asid value). In a global resource serialization ring complex,
XSYS=NO is ignored.

,MF=L

Parameters
The parameters are explained under the standard form of the GQSCAN macro
with the following exception:

,MF=L
Specifies the list form of the GQSCAN macro.

GQSCAN - Execute form
The execute form of the GQSCAN macro can refer to and modify a remote
parameter list built by the list form of the macro. There are no defaults for any of
the parameters in the execute form of the macro.

The execute form of the GQSCAN macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede GQSCAN.

GQSCAN

� One or more blanks must follow GQSCAN.

AREA=(area addr,area size) area addr: RX-type address or register (2) - (12).

area size: symbol, decimal digit, or register (2) - (12).

Note:

1. AREA cannot be specified with QUIT=YES.

2. AREA is required on either the list or the execute form of the macro.

,REQLIM=value value: symbol, decimal digit, register (2) - (12), or the word MAX.

,REQLIM=MAX

,SCOPE=STEP Note: SCOPE=LOCAL and SCOPE=GLOBAL cannot be coded on the list
form of this macro.

,SCOPE=ALL

,SCOPE=SYSTEM

GQSCAN macro

Chapter 100. GQSCAN — Extract information from global resource serialization queue 679

Syntax Description

,SCOPE=SYSTEMS

,RESERVE=YES

,RESERVE=NO

,RESNAME=(qname qname addr: RX-type address or register (2) - (12).

addr[,rname addr, rname addr: RX-type address or register (2) - (12).

rname length], rname length: decimal digit, register (2) - (12). Default: assembled length of
rname.

[GENERIC|SPECIFIC],

qname length)

,SYSNAME=(sysname addr sysname addr: RX-type address or register (2) - (12).

[,asid value] asid value: symbol, decimal digit, or register (2) - (12).

Note: rname addr can be provided only when qname addr is used. rname
length must be provided if a register is specified for rname addr. An asid value
can be coded only when the sysname addr is used.

,QUIT=YES Default: QUIT=NO

,QUIT=NO Note: Only TOKEN and MF=(E, parm list addr) can be specified with
QUIT=YES.

,REQCNT=value value: decimal digit or register (2) - (12).

Default: REQCNT=0

,OWNERCT=value,WAITCNT=
value

value: decimal digit.

,OWNERCT=value value: decimal digit.

,WAITCNT=value value: decimal digit.

,TOKEN=addr addr: RX-type address of register (2) - (12).

,XSYS=YES Default: XSYS=YES

,XSYS=NO Note: XSYS=NO is mutually exclusive with TOKEN, QUIT=YES and
SYSNAME, when SYSNAME is not equal to zero or zero and the asid
value(0,asid value). In a global resource serialization ring complex,
XSYS=NO is ignored.

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

GQSCAN macro

680 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
The parameters are explained under the standard form of the GQSCAN macro
with the following exception:

,MF=(E,list addr)
Specifies the execute form of the GQSCAN macro.

list addr specifies the area that the system uses to contain the parameters.

GQSCAN macro

Chapter 100. GQSCAN — Extract information from global resource serialization queue 681

GQSCAN macro

682 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Chapter 101. HSPSERV — Read from and write to a
hiperspace

Description
HSPSERV transfers data between virtual storage areas in address spaces and
hiperspaces. It reads data from a hiperspace to an address space and it writes data
to a hiperspace from an address space.

A hiperspace can be either a standard hiperspace, of which there are two types,
shared and nonshared, or an ESO (expanded storage only) hiperspace. The
nonshared standard hiperspace and the shared standard hiperspace are backed
with real storage, and if necessary, with auxiliary storage. Through the buffer area
in the address space, your program can view or scroll through the hiperspace.
HSPSERV SWRITE and HSPSERV SREAD transfer data to and from a standard
hiperspace. For more information about hiperspaces, see z/OS MVS Programming:
Assembler Services Guide.

The STOKEN parameter identifies the specific hiperspace to be read from or
written to. The HSPALET parameter specifies an optional ALET for the hiperspace.
The RANGLIST parameter identifies the storage range in the address space and the
storage range in the hiperspace. A storage range consists of contiguous 4K byte
blocks starting on a 4K byte boundary.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN

Note: PASN=HASN=SASN is required for a nonshared
standard hiperspace for which an ALET is not used (the
HSPALET parameter is omitted).

AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the caller's primary address space. If the caller's

PSW key is not zero, the PSW key must match the storage
key associated with the control parameters.

Programming requirements
v If you code the HSPALET parameter on the HSPSERV macro, you must first

issue the SYSSTATE macro to indicate the ASC mode of your program.
v If you code the HSPALET parameter on the HSPSERV macro, you must provide

a 144-byte save area in the caller's primary address space.
v The range list must be addressable in the caller's primary address space.

© Copyright IBM Corp. 1988, 2015 683

Restrictions
None.

Input register information
Before issuing the HSPSERV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

However, if the caller specifies the HSPALET parameter:
v General purpose register (GPR) 13 must contain the address of a 144-byte save

area. The save area must be in the caller's primary address space.
v Access register (AR) 13 must contain 0, regardless of whether the caller is in

primary or AR address space control (ASC) mode.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

The following figure describes the characteristics and restrictions for the use of
standard hiperspaces, the hiperspaces that allow your program to scroll through
large areas of data.

HSPSERV macro

684 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax
The standard form of the HSPSERV macro for standard hiperspaces is written as
follows:

Syntax Description

name name: Symbol. Begin name in column 1.

Address Space
Standard
Hiperspace

SWRITE

SREAD

HSPSERV SWRITE

HSPSERV SREAD

...

...

...

...

Non-shared standard hiperspace:

If an ALET is not used, the caller's TCB must own the hiperspace.
If an ALET is used, any TCB in the caller's home address space can own the hiperspace.
ALET is used:
- The ALET must be used for a hiperspace on the caller's current DU-AL or PASN-AL.
- The cross memory mode can be any.
If an ALET is not used, the cross memory mode must be PASN=HASN.
For PSW key 1-F callers requesting SWRITE or SREAD RELEASE=YES, must have matching storage key.
For PSW key 1-F callers requesting SREAD RELEASE=NO, can have non-matching storage key only if
hiperspace is not fetch-protected.

Area in addres space:

Must be in private subpool.
Must be within the home address space.
Must e in a 4K-byte boundary.
Can't be part of a VIO window.
For PSW key 1-F callers, must have a matching storage key with
one exception: for SWRITE callers, if the area is not
fetch-protected, it can have any storage key.

Area of standard hiperspace:

For SWRITE requests, cannot have a DIV SAVE current for
the area of hte hiperspace.
If an ALET is used, cannot have a DIV SAVE current for any

Shared standard hiperspace:

Callers must use an ALET.
Any task in the system can own the hiperspace. If the owning task is not in the caller's home or
primary address space, the owner's home address space must be non-swappable.
The ALET must be for a hiperspace on the caller's current DU-AL or PASN-AL.
The cross memory mode can be any.
For PSW keys 1-F callers requesting SWRITE or SREAD RELEASE=YES, must have matching
storage key.
For PSW key 1-F callers requesting SPREAD RELEASE=NO, can have non-matching storage key
only if hiperspace is not fetch-protected.

Figure 10. Characteristics and Restrictions for Standard Hiperspaces

HSPSERV macro

Chapter 101. HSPSERV — Read from and write to a hiperspace 685

Syntax Description

� One or more blanks must precede HSPSERV.

HSPSERV

� One or more blanks must follow HSPSERV.

SREAD
SWRITE

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,HSPALET=alet-addr alet-addr: RX-type address or register (2) - (12).

,NUMRANGE=n n: Number from 1 to 50.

,NUMRANGE=num-addr num-addr: RX-type address or register (2) - (12).

Default: NUMRANGE=1.

,RANGLIST=list-addr list-addr: RX-type address or register (2) - 12).

,RELEASE=NO Default: RELEASE=NO.

,RELEASE=YES

,RETCODE=ret-addr ret-addr: RX-type address or register (2) - (12).

,RSNCODE=rsn-addr rsn-addr: RX-type address or register (2) - (12).

,MF=S

Parameters
The parameters are explained as follows:

SREAD
Requests that the system read data from a standard hiperspace to an address
space.

STOKEN and RANGLIST are required parameters on the SREAD request.
NUMRANGE, RELEASE, HSPALET, RSNCODE, and RETCODE are optional
parameters.

SWRITE
Requests that the system write data to a standard hiperspace from an address
space.

Notes:

HSPSERV macro

686 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

v When HSPSERV returns to the caller after the SWRITE operation, the
contents of the address space storage range are not preserved. You can use
the address space area again.

v If the hiperspace maps a data-in-virtual object, do not issue an SWRITE
request while a DIV SAVE request is current.

STOKEN and RANGLIST are required parameters on the SWRITE request.
NUMRANGE, HSPALET, RETCODE, and RSNCODE are optional parameters.

,STOKEN=stoken-addr
Specifies the address of the eight-character variable that contains the STOKEN
for the standard hiperspace from which the data is to be read or into which the
data is to be written. Restrictions on standard hiperspaces are described in
Figure 10 on page 685.

,HSPALET=alet-addr
Specifies either the address of a fullword or a register that contains the ALET
for the hiperspace that is to be accessed. The ALET must be for a hiperspace
that is on the caller's DU-AL or PASN-AL.

The HSPALET parameter is optional except for the following case: If the calling
program accesses a shared hiperspace, is in problem state, and uses PSW key 8
- F, HSPALET is required.

If you code HSPALET, do not code RELEASE=YES.

If you code HSPALET, your recovery routine cannot attempt retry at the time
of error.

,NUMRANGE=n
,NUMRANGE=num-addr

Specifies the number of entries, from 1 to 50, or specifies a fullword that
identifies the number of entries in the range list (that the RANGLIST
parameter points to), or specifies a register containing the address of a
fullword containing the number of entries. The default is NUMRANGE=1.

If you omit NUMRANGE, HSPSERV reads or writes one entry in the range
list.

,RANGLIST=list-addr
Specifies a fullword that contains an address of a list of ranges that the system
is to read or write, or specifies a register that contains the address of the
fullword pointer to the range list. The range list consists of a number of entries
(specified by NUMRANGE) where each entry specifies (1) a storage location in
an address space, (2) a storage location in a hiperspace, and (3) the number of
blocks of data the system is to read or write.

Each entry in the range list consists of three words as follows:

First Word
The starting virtual address in the address space into which the data is
to be read or from which the data is to be written

Second Word
The starting virtual address in the hiperspace from which the system is
to read or into which the system is to write

Third Word
The number of blocks the system is to read or write

Note that the address is the block number followed by 12 binary zeros.

HSPSERV macro

Chapter 101. HSPSERV — Read from and write to a hiperspace 687

An example of how to code the RANGLIST parameter when NUMRANGE=3
is as follows:

Restrictions on the areas in the address space and the hiperspace are described
in Figure 10 on page 685.

On return, only if the caller issued the HSPSERV macro with the HSPALET
parameter, the range list values might be different from the input values if the
system could not at first successfully complete the read or write operation. In
that case, the system changes the range list values, but does not restore the
input values when it finally returns control to the caller.

,RELEASE=NO
,RELEASE=YES

Specifies whether or not the system is to release the hiperspace pages after it
completes the SREAD operation. RELEASE is valid only with SREAD.

RELEASE=NO specifies that the system does not release the hiperspace pages
after it completes the SREAD operation. (Unless a subsequent SWRITE request
changes the data, the same data will be available again on the next SREAD
request.) RELEASE=NO is the default.

RELEASE=YES specifies that, after the SREAD request, the system is to release
the storage that backed the data in the hiperspace.

If you code RELEASE=YES, do not code HSPALET.

,RSNCODE=rsn-addr
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0.

,RETCODE=ret-addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15.

,MF=S
Specifies the standard form of the macro. This form generates code to place the
parameters into an inline parameter list and invoke the service.

ABEND codes
HSPSERV might abnormally terminate with abend code X'01D'. See z/OS MVS
System Codes for an explanation of abend code X'01D'.

AddrSp Loc Hiper Loc Blocks

AddrSp Loc Hiper Loc Blocks

AddrSp Loc Hiper Loc Blocks

Register 5

or

12 Bytes

RANGADDR
(fullword)

NUMRANGE=3, RANGLIST=(5)

NUMRANGE=3, RANGLIST=RANGADDR

HSPSERV macro

688 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Return and reason codes
When control returns from HSPSERV SREAD or HSPSERV SWRITE, GPR 15 (and
ret-addr, if you coded RETCODE) contains one of the following hexadecimal return
codes. GPR 0 (and rsn-addr, if you coded RSNCODE) contains one of the following
hexadecimal reason codes.

Return Code Reason Code Meaning and Action

00 00 Meaning: HSPSERV completed successfully.

Action: None.

08 xxyy05xx Meaning: System error. The system rejects the
request. A hiperspace page is unavailable.

Action: Record the return and reason code and
supply it to the appropriate IBM support personnel.

08 xxyy06xx Meaning: System error. The system rejects the
request. An address space page is unavailable.

Action: Record the return and reason code and
supply it to the appropriate IBM support personnel.

0C xx006xx Meaning: System error. System failure due to
environmental problems.

Action: Record the return and reason code and
supply it to the appropriate IBM support personnel.

Note: yy is X'09' for SREAD and X'0A' for SWRITE.

HSPSERV - List form
Use the list form of the HSPSERV macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

Syntax
The list form of the HSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede HSPSERV.

HSPSERV

� One or more blanks must follow HSPSERV.

PLISTVER=vernum vernum: Parameter list version 0 or 1.
Default: Version that allows all specified parameters.

HSPSERV macro

Chapter 101. HSPSERV — Read from and write to a hiperspace 689

Syntax Description

,MF=(L,list addr) list addr: Symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string. Default: 0D

Parameters
Parameters for the list form of HSPSERV are as follows:

PLISTVER=vernum
Specifies the macro version associated with HSPSERV. PLISTVER is an optional
parameter that determines which parameter list the system generates. Specify
zero if you use parameters only from this group:
v MF
v NUMRANGE
v PLISTVER
v RANGLIST
v RELEASE
v RETCODE
v RSNCODE
v SREAD
v STOKEN
v SWRITE

If you use the HSPALET parameter, specify 1.

If you do not specify PLISTVER, the default is to allow all of the parameters
you specify on the invocation to be processed.

,MF=(L,list addr)
,MF=(L,list addr,attr)

Specifies the list form of HSPSERV.

list-addr is the address of the storage area for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

HSPSERV - Execute form
The execute form of the HSPSERV macro changes parameters in the control
parameter list that the system created through the list form of the macro and
performs the specified operation.

Syntax
The execute form of the HSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

HSPSERV macro

690 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Syntax Description

� One or more blanks must precede HSPSERV.

HSPSERV

� One or more blanks must follow HSPSERV.

SREAD
SWRITE

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,HSPALET=alet-addr alet-addr: RX-type address or register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1.

,NUMRANGE=num-addr num-addr: RX-type address or register (2) - (12).

,RANGLIST=list-addr list-addr: RX-type address or register (2) - (12).

,RELEASE=NO Default: RELEASE=NO.

,RELEASE=YES

,RETCODE=ret-addr ret-addr: RX-type address or register (2) - (12).

,RSNCODE=rsn-addr rsn-addr: RX-type address or register (2) - (12).

,MF=(E,list-addr,COMPLETE) list-addr: RX-type address or register (2) - (12).

,MF=(E,list-addr,NOCHECK) Default: COMPLETE.

Parameters
The parameters are explained under the standard form of the HSPSERV macro
with the following exceptions:

,MF=(E,list-addr,COMPLETE)
,MF=(E,list-addr,NOCHECK)

Specifies the execute form of the HSPSERV macro.

list-addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system checks for required
parameters and supplies the optional parameters that you did not specify.

NOCHECK specifies that the system does not check for required parameters
and does not supply the optional parameters that you did not specify.

HSPSERV macro

Chapter 101. HSPSERV — Read from and write to a hiperspace 691

HSPSERV - Modify form
Use the modify form of the HSPSERV macro together with the list and execute
forms of the macro for service routines that need to provide different options
according to user-provided input. Use the list form to define a storage area; use the
modify form to set the appropriate options; then use the execute form to call the
service.

Syntax
The modify form of the HSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede HSPSERV.

HSPSERV

� One or more blanks must follow HSPSERV.

SREAD
SWRITE

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,HSPALET=alet-addr alet-addr: RX-type address or register (2) - (12).

,NUMRANGE=1 Default: NUMRANGE=1.

,NUMRANGE=num-addr num-addr: RX-type address or register (2) - (12).

,RANGLIST=list-addr list-addr: RX-type address or register (2) - (12).

,RELEASE=NO Default: RELEASE=NO.

,RELEASE=YES

,RETCODE=ret-addr ret-addr: RX-type address or register (2) - (12).

,RSNCODE=rsn-addr rsn-addr: RX-type address or register (2) - (12).

,MF=(M,list-addr,COMPLETE) list-addr: RX-type address or register (2) - (12).

,MF=(M,list-addr,NOCHECK) Default: COMPLETE.

HSPSERV macro

692 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Parameters
Parameters for the modify form of HSPSERV are described under the standard
form of the macro with the following exceptions:

,MF=(M,list-addr,COMPLETE)
,MF=(M,list-addr,NOCHECK)

Specifies the modify form of the macro.

list-addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply the optional parameters that you did not
specify. NOCHECK specifies that the system does not check for required
parameters and does not supply the optional parameters that you did not
specify.

HSPSERV macro

Chapter 101. HSPSERV — Read from and write to a hiperspace 693

694 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Appendix. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the Contact z/OS or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number

© Copyright IBM Corp. 1988, 2015 695

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html

(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In the example, if you include the FILE

696 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix. Accessibility 697

698 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1988, 2015 699

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

700 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: http://www.ibm.com/

software/support/systemsz/lifecycle/
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This information is intended to help the customer to code macros that are available
to all assembler language programs. This information documents intended
programming interfaces that allow the customer to write programs to obtain
services of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
Trademark information (http://www.ibm.com/legal/copytrade.shtml).

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 701

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

702 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

Index

Numerics
31-bit addressing mode

macros requiring expansion
CALL 127
ESTAE macro 587
EVENTS 601

A
abend

interrupting scheduled 587
ABEND macro 25
abnormal termination

caused by failure to remove a
subtask 479

of a task 25
accessibility 695

contact IBM 695
features 695

addressing mode and the services 2
ALESERV macro 29
ALET qualification

of parameters 4
AR () mode

description 3
ASASYMBF service 43
ASASYMBM service 43
ASC (address space control) mode

defining 3
assistive technologies 695
ATTACH and ATTACHX macros 47

B
BLDMPB macro 71
BLSABDPL macro 75
BLSACBSP macro 79
BLSADSY macro 81
BLSAPCQE macro 83
BLSQFXL macro 85
BLSQMDEF macro 87
BLSQMFLD macro 93
BLSQSHDR macro 107
BLSRDRPX macro 109
BLSRESSY macro 111
BLSRNAMP macro 113
BLSRPRD macro 115
BLSRPWHS macro 117
BLSRSASY macro 119
BLSRXMSP macro 121
BLSRXSSP macro 123
BLSUPPR2 macro 125

C
CALL macro 127
callable service

coding 16

cell pool
creating 171
deleting 171
obtaining 171
placing start/end addresses of cell

pool extents in a buffer 171
returning 171
services 171

CHAP macro 135
CnzConv macro 139
CNZTRKR macro 151
coding the callable services 16
coding the macros 13
completed ECB

list 605
compression

services 197
contact

z/OS 695
contention queue element create service

parameter list
initialization 84

continuation line 15
control

passing between control sections 127
control block

specifying a formatting model
field 93

control block format model
defining 87

CONVCON macro 155
CONVTOD macro 163
CPOOL macro 171
CPU ID

retrieving 391
CPU timer

obtaining value 185
CPUTIMER macro 185

relationship to STIMER macro 185
CSRC4ACT callable service 203
CSRC4BLD callable service 207
CSRC4CON callable service 211
CSRC4DAC callable service 215
CSRC4DIS callable service 219
CSRC4EXP callable service 223
CSRC4FR1 callable service 233
CSRC4FR2 callable service 237
CSRC4FRE callable service 229
CSRC4GET callable service 241
CSRC4GT1 callable service 245
CSRC4GT2 callable service 249
CSRC4QCL callable service 253
CSRC4QEX callable service 257
CSRC4QPL callable service 263
CSRC4RF1 callable service 271
CSRC4RFR callable service 267
CSRC4RG1 callable service 279
CSRC4RGT callable service 275
CSRCESRV macro 189
CSREVW callable service 283
CSRIDAC callable service 289

CSRL16J callable service 295
CSRPACT callable service 299
CSRPBLD callable service 303
CSRPCON callable service 307
CSRPDAC callable service 311
CSRPDIS callable service 315
CSRPEXP callable service 319
CSRPFR1 callable service 329
CSRPFR2 callable service 333
CSRPFRE callable service 325
CSRPGET callable service 337
CSRPGT1 callable service 341
CSRPGT2 callable service 345
CSRPQCL callable service 349
CSRPQEX callable service 353
CSRPQPL callable service 359
CSRPRFR callable service 363
CSRPRFR1 callable service 367
CSRPRGT callable service 371
CSRPRGT1 callable service 375
CSRREFR callable service 379
CSRSAVE callable service 383
CSRSCOT callable service 387
CSRSI 391
CSRUNIC macro 407
CSRVIEW callable service 419
CSVAPF macro 425
CSVINFO macro 437
CSVQUERY macro 449

D
data

compressing 197
expanding 197

delete macro
relationship to LOAD macro 465

DELETE macro 465
DEQ macro 469
DETACH macro 479
dispatching priority

changing 135
DIV macro 483

use with IARVSERV macro 484
DOM macro 507
DSPSERV macro

for data spaces 511
for hiperspaces 527
limitation with IARVSERV

macro 515
dumping service

defining a control block format
model 87

formatting routine parameters 75,
111

specifying a formatting model
field 93

© Copyright IBM Corp. 1988, 2015 703

E
ECB (event control block)

initializing 604
list of completed 605

EDT (eligible device table)
obtaining information 541

EDTINFO macro 541
ENQ macro 563
ESPIE environment

deleting 577
determining 577
establishing 577

ESPIE macro 577
ESTAE and ESTAEX macros 587
EVENTS macro 601
events table

creating 601, 604
deleting 601, 604
format 604

exit routine
end-of-task 25

F
FREEMAIN macro 611

G
GETMAIN macro 621
global serialization queue

extracting information 669
GQSCAN macro 669
GTZQUERY macro 637
GTZTRACK macro 655

H
hiperspace

reading 683
writing 683

HSPSERV macro 683

K
keyboard

navigation 695
PF keys 695
shortcut keys 695

L
list

of completed ECBs 605
LOAD macro

relationship to DELETE macro 465
load module

deleting 465
releasing control 465

M
macro

coding 13
forms 12

macro (continued)
level

selecting 1
sample 14
selecting level 1
user parameter, passing 4
X-macros

using 11
message

deleting 507

N
navigation

keyboard 695
Notices 699

O
operator message

deleting 507

P
parameter list

used in EVENTS processing 605
processor ID

retrieving 391

R
recovery routine

establishing an ESTAE-type 587
requesting processing

group of instructions 407

S
sending comments to IBM xxiii
serially reusable resource

releasing 469
requesting control 563

service
ALET qualification 4
summary 17

services
addressing mode 2
ASC mode

defining 3
using 1

shortcut keys 695
STIMER macro

relationship to CPUTIMER
macro 185

subtask
detaching 479

Summary of changes xxv
system information service

retrieve system information 391

T
task

creating 47

TOD (time-of-day) clock
converting value 163

U
user interface

ISPF 695
TSO/E 695

user parameter
passing 4

V
virtual storage

allocating 611, 621
releasing 465

X
X-macros

using 11

704 z/OS V2R2 MVS Assembler Services Reference ABE-HSP

����

Product Number: 5650-ZOS

Printed in USA

SA23-1369-01

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 2
	Summary of changes for z/OS Version 2 Release 1

	Chapter 1. Using the services
	Compatibility of MVS macros
	Addressing mode (AMODE)
	Address space control (ASC) mode
	ALET qualification
	User parameters

	Telling the system about the execution environment
	Specifying a macro version number
	How to request a macro version using PLISTVER
	Hints for using PLISTVER

	Register use
	Handling return codes and reason codes
	Handling program errors
	Handling environmental and system errors

	Using X-macros
	Macro forms
	Conventional list form macros
	Alternative list form macros

	Coding the macros
	Continuation lines

	Coding the callable services
	Including equate (EQU) statements
	Link-editing linkage-assist routines

	Service summary

	Chapter 2. ABEND — Abnormally terminate a task
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3

	Chapter 3. ALESERV — Control entries in the access list
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example of adding an entry to a DU-AL

	ALESERV - List form
	Parameters

	ALESERV - Execute form
	Syntax
	Parameters

	Chapter 4. ASASYMBM and ASASYMBF — Substitute text for symbols
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Examples of calls to ASASYMBM or ASASYMBF

	Chapter 5. ATTACH and ATTACHX — Create a new task
	ATTACH and ATTACHX description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4

	ATTACHX—Create a new task
	Syntax
	Parameters
	Example

	ATTACH and ATTACHX—List form
	Syntax
	Parameters

	ATTACH and ATTACHX—Execute form
	Syntax
	Parameters

	Chapter 6. BLDMPB — Build a message parameter block
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Example

	Chapter 7. BLSABDPL — Map dump formatting exit data
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Example

	Chapter 8. BLSACBSP — Map the control block status (CBSTAT) parameter list
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Example

	Chapter 9. BLSADSY — Map the add symptom service parameter list
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Example

	Chapter 10. BLSAPCQE — Map the contention queue element (CQE) create service parameter list
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Example

	Chapter 11. BLSQFXL — Map the format exit routine list (FXL)
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Example

	Chapter 12. BLSQMDEF — Define a control block format model
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters

	Chapter 13. BLSQMFLD — Specify a formatting model field
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Examples

	Chapter 14. BLSQSHDR — Generate model subheader
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Examples

	Chapter 15. BLSRDRPX — Map dump record prefix
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters

	Chapter 16. BLSRESSY — Map IPCS symbol table data
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Example

	Chapter 17. BLSRNAMP — Map the name service parameter list
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Example

	Chapter 18. BLSRPRD — Map dump record
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters

	Chapter 19. BLSRPWHS — Map the WHERE service parameter list
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Example

	Chapter 20. BLSRSASY — Map IPCS storage map data
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Example

	Chapter 21. BLSRXMSP — Map the storage map service parameter list
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Example

	Chapter 22. BLSRXSSP — Map the symbol service parameter list
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Example

	Chapter 23. BLSUPPR2 — Map the expanded print service parameter list
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Example

	Chapter 24. CALL — Pass control to a control section
	CALL description
	Environment
	Programming requirements
	Register information
	Syntax
	Parameters
	Return and reason codes
	Example

	CALL - List form
	Syntax
	Parameters

	CALL - Execute form
	Syntax
	Parameters

	Chapter 25. CHAP — Change dispatching priority
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	Chapter 26. CnzConv -- Convert console name and ID
	Description
	Environment
	Programming requirements
	Programming considerations
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	CnzConv -- List form
	Syntax
	Parameters

	CnzConv -- Execute form
	Syntax
	Parameters

	Chapter 27. CNZTRKR — Tracking interface macro
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 28. CONVCON — Retrieve console information
	Description
	Environment
	Programming requirements
	Programming considerations
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 29. CONVTOD — Convert to time-of-day clock format
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3

	CONVTOD—List form
	Syntax
	Parameters

	CONVTOD—Execute form
	Syntax
	Parameters

	Chapter 30. CPOOL — Perform cell pool services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	CPOOL - List form
	Syntax
	Parameters

	CPOOL - Execute form
	Syntax
	Parameters

	Chapter 31. CPUTIMER — Provide current CPU timer value
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2
	Example 3
	Example 4

	Chapter 32. CSRCESRV — Compress and expand data
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information for SERVICE=QUERY
	Output register information for SERVICE=QUERY
	Input register information for SERVICE=COMPRESS
	Output register information for SERVICE=COMPRESS
	Input register information for SERVICE=EXPAND
	Output register information for SERVICE=EXPAND
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 33. CSRCMPSC — Compress and expand data
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Abend codes
	Return and reason codes
	Example 1
	Example 2
	Example 3

	Chapter 34. CSRC4ACT — Activate previously connected storage
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 35. CSRC4BLD — Build a cell pool and initialize an anchor
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 36. CSRC4CON — Connect cell storage to an extent
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 37. CSRC4DAC — Deactivate an extent
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 38. CSRC4DIS — Disconnect the cell storage for an extent
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 39. CSRC4EXP — Expand a cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 40. CSRC4FRE — Return a cell to a cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 41. CSRC4FR1 — Return a cell to a cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 42. CSRC4FR2 — Return a cell to a cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 43. CSRC4GET — Allocate a cell from a cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 44. CSRC4GT1 — Allocate a cell from a cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 45. CSRC4GT2 — Allocate a cell from a cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 46. CSRC4QCL — Query a cell
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 47. CSRC4QEX — Query a cell pool extent
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 48. CSRC4QPL — Query the cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 49. CSRC4RFR — Return a cell to a cell pool (register interface)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 50. CSRC4RF1 — Return a cell to a cell pool (register interface)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 51. CSRC4RGT — Allocate a cell from a cell pool (register interface)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 52. CSRC4RG1 — Allocate a cell from a cell pool (register interface)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 53. CSREVW — View an object and sequentially access it
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 54. CSRIDAC — Request or terminate access to a data object
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 55. CSRL16J — Transfer control with all registers intact
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 56. CSRPACT — Activate previously connected storage
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 57. CSRPBLD — Build a cell pool and initialize an anchor
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 58. CSRPCON — Connect cell storage to an extent
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 59. CSRPDAC — Deactivate an extent
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 60. CSRPDIS — Disconnect the cell storage for an extent
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 61. CSRPEXP — Expand a cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 62. CSRPFRE — Return a cell to a cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 63. CSRPFR1 — Return a cell to a cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 64. CSRPFR2 — Return a cell to a cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 65. CSRPGET — Allocate a cell from a cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 66. CSRPGT1 — Allocate a cell from a cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 67. CSRPGT2 — Allocate a cell from a cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 68. CSRPQCL — Query a cell
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 69. CSRPQEX — Query a cell pool extent
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 70. CSRPQPL — Query the cell pool
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 71. CSRPRFR — Return a cell to a cell pool (register interface)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 72. CSRPRFR1 — Return a cell to a cell pool (register interface)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 73. CSRPRGT — Allocate a cell from a cell pool (register interface)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 74. CSRPRGT1 — Allocate a cell from a cell pool (register interface)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 75. CSRREFR — Refresh an object
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 76. CSRSAVE — Save changes made to a permanent object
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 77. CSRSCOT — Save object changes in a scroll area
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 78. CSRSI — System information service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return codes

	CSRSIC C/370 header file

	Chapter 79. CSRUNIC — Unicode instruction services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples
	Operation:

	Chapter 80. CSRVIEW — View an object
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 81. CSVAPF — Query the list of APF-authorized libraries
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	CSVAPF—List form
	Parameters

	CSVAPF—Execute form
	Parameters

	Chapter 82. CSVINFO — Obtain information about loaded modules
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	CSVINFO - List form
	Syntax
	Parameters

	CSVINFO - Execute form
	Syntax
	Parameters

	CSVINFO - Modify form
	Syntax
	Parameters

	Chapter 83. CSVQUERY — Contents supervisor query service
	Description
	Environment
	Input register information
	Output register information
	Programming requirements
	Restrictions
	Performance implications
	Syntax
	Parameters
	Return and reason codes

	CSVQUERY - List form
	Syntax
	Parameters

	CSVQUERY - Execute form
	Syntax
	Parameters

	CSVQUERY - Modify form
	Syntax
	Parameters

	Chapter 84. DELETE — Relinquish control of a load module
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 85. DEQ — Release a serially reusable resource
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	DEQ—List form
	Parameters

	DEQ - Execute form
	Parameters

	Chapter 86. DETACH — Detach a subtask
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	Chapter 87. DIV — Data-in-virtual
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	DIV - List form
	Syntax
	Parameters

	DIV - Execute form
	Syntax
	Parameters

	DIV - Modify form
	Syntax
	Parameters

	Chapter 88. DOM — Delete operator message
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Example 1
	Example 2
	Example 3

	Chapter 89. DSPSERV — Create, delete, and control data spaces
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	DSPSERV—List form
	Syntax

	DSPSERV—Execute form
	Syntax

	Chapter 90. DSPSERV — Create, delete, and control hiperspaces
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	DSPSERV—List form
	Syntax
	Parameters

	DSPSERV—Execute form
	Syntax
	Parameters

	Chapter 91. EDTINFO — Obtain eligible device table information
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	EDTINFO - List form
	Syntax
	Parameters

	EDTINFO - Execute form
	Syntax
	Parameters

	EDTINFO - Modify form
	Syntax
	Parameters

	Chapter 92. ENQ — Request control of a serially reusable resource
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3

	ENQ - List form
	Syntax
	Parameters

	ENQ - Execute form
	Syntax
	Parameters

	Chapter 93. ESPIE — Extended SPIE
	Description
	Environment
	Programming requirements
	Restrictions
	Performance implications
	ABEND codes

	SET option
	Input register information
	Output register information
	Syntax
	Parameters
	Return and reason codes
	Example
	ESPIE—List form
	Syntax
	Parameters
	Example

	ESPIE—Execute form
	Syntax
	Parameters
	Example

	RESET option
	Input register information
	Output register information
	Syntax
	Parameters
	Return and reason codes
	Example

	TEST option
	Input register information
	Output register information
	Syntax
	Parameters
	Return and reason codes
	Example

	Chapter 94. ESTAE and ESTAEX — Extended specify task abnormal exit
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	ESTAEX —Extended specify task abnormal exit
	Environment
	Programming requirements
	Restrictions
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	ESTAE and ESTAEX—List form
	Syntax
	Parameters

	ESTAE and ESTAEX—Execute form
	Syntax
	Parameters

	Chapter 95. EVENTS — Wait for one or more events to complete
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Using the EVENTS macro
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	Chapter 96. FREEMAIN — Free virtual storage
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3

	FREEMAIN - List form
	Parameters

	FREEMAIN - Execute form
	Parameters

	Chapter 97. GETMAIN — Allocate virtual storage
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3

	GETMAIN—List form
	GETMAIN—Execute form

	Chapter 98. GTZQUERY macro — GTZ Query
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	Chapter 99. GTZTRACK macro — GTZ Track
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return and Reason Codes
	Examples

	Chapter 100. GQSCAN — Extract information from global resource serialization queue
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	GQSCAN - List form
	Parameters

	GQSCAN - Execute form
	Parameters

	Chapter 101. HSPSERV — Read from and write to a hiperspace
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	HSPSERV - List form
	Syntax
	Parameters

	HSPSERV - Execute form
	Syntax
	Parameters

	HSPSERV - Modify form
	Syntax
	Parameters

	Appendix. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X

