
z/OS

UNIX System Services
User's Guide
Version 2 Release 2

SA23-2279-01

���



Note
Before using this information and the product it supports, read the information in “Notices” on page 337.

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1996, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Figures . . . . . . . . . . . . . . . xi

Tables . . . . . . . . . . . . . . . xiii

About this document . . . . . . . . xv
Who should use z/OS UNIX System Services User's
Guide? . . . . . . . . . . . . . . . . xv

What is in z/OS UNIX System Services User's
Guide? . . . . . . . . . . . . . . . xv
Tasks that can be performed in more than one
environment . . . . . . . . . . . . . xv
z/OS information . . . . . . . . . . . xvi

How to send your comments to IBM xix
If you have a technical problem . . . . . . . xix

Summary of changes . . . . . . . . xxi
Summary of changes for z/OS Version 2 Release 2
(V2R2) . . . . . . . . . . . . . . . . xxi
Summary of changes for z/OS Version 2 Release 1 xxi

Part 1. The z/OS shells . . . . . . . 1

Chapter 1. An introduction to the z/OS
shells . . . . . . . . . . . . . . . . 3
About shells . . . . . . . . . . . . . . 3

Shell commands and utilities . . . . . . . . 4
The locale in the shells . . . . . . . . . . 4
Daemon support . . . . . . . . . . . . 4
Running an X-Window application . . . . . . 4
The shell user . . . . . . . . . . . . . 4
Security . . . . . . . . . . . . . . . 4

Accessing the shells — the choices . . . . . . . 5
Terminal emulators . . . . . . . . . . . 5

Interoperability between the shells and MVS. . . . 7
Parallels between the MVS environment and the shell
environment . . . . . . . . . . . . . . 8

Programming for everyday tasks . . . . . . 9
Editing . . . . . . . . . . . . . . . 10
Job control. . . . . . . . . . . . . . 10
Background jobs . . . . . . . . . . . . 10
Programming. . . . . . . . . . . . . 10
Debugging . . . . . . . . . . . . . 10
Data management . . . . . . . . . . . 11

Chapter 2. OMVS, a 3270 terminal
interface to the z/OS shell . . . . . . 13
Differences from a UNIX or AIX environment . . . 13
Invoking the shell . . . . . . . . . . . . 14

Changing options on the OMVS command. . . 14
Understanding the shell screen . . . . . . . . 14

Working in line mode . . . . . . . . . . 16
Why isn't your output displayed on the screen? 16

Determining function key settings and the escape
character . . . . . . . . . . . . . . . 17

The function key functions . . . . . . . . 17
The escape character . . . . . . . . . . 20

Entering a shell command . . . . . . . . . 21
Customizing the variant characters on your
keyboard . . . . . . . . . . . . . . 21
Entering a long shell command. . . . . . . 21
Entering a shell command from TSO/E . . . . 22

Interrupting a shell command . . . . . . . . 22
Typing escape sequences in the shell . . . . . . 22

Suppressing the newline character . . . . . . 22
Keyboard remapping . . . . . . . . . . 23

Determining your session status . . . . . . . 23
Scrolling through output . . . . . . . . . . 24

Using function keys or subcommands . . . . 24
Using cursor scrolling . . . . . . . . . . 25

Running a subcommand . . . . . . . . . . 25
Switching to subcommand mode . . . . . . 25

Using multiple sessions . . . . . . . . . . 26
Starting sessions . . . . . . . . . . . . 26
Switching between sessions . . . . . . . . 26

Customizing the OMVS interface . . . . . . . 26
An example of customizing the OMVS command 26
The alarm setting (ALARM | NOALARM) . . . 27
Autoscrolling (AUTOSCROLL |
NOAUTOSCROLL) . . . . . . . . . . . 27
The character conversion table (CONVERT) . . 27
Double-byte character set support (DBCS |
NODBCS) . . . . . . . . . . . . . . 28
Debugging for the OMVS command (DEBUG). . 28
Giving an application control of the command
line (ECHO | NOECHO) . . . . . . . . . 28
Ending 3270 pass-through mode
(ENDPASSTHROUGH) . . . . . . . . . 28
The escape character (ESCAPE). . . . . . . 28
Controlling the size of the output scroll buffer
(LINES). . . . . . . . . . . . . . . 29
Function key settings (PFn) . . . . . . . . 29
Displaying the function key settings (PFSHOW |
NOPFSHOW) . . . . . . . . . . . . 29
Specifying Language Environment runtime
options (RUNOPTS) . . . . . . . . . . 29
Multiple sessions (SESSIONS) . . . . . . . 29
The shared TSO/E address space (SHAREAS |
NOSHAREAS) . . . . . . . . . . . . 30
Controlling data recorded in the debug data set
(WRAPDEBUG) . . . . . . . . . . . . 30

Performing TSO/E work or ISPF work after
invoking the shell . . . . . . . . . . . . 30

Entering a TSO/E command from the z/OS shell 30
Switching to TSO/E command mode . . . . . 31

ftp or telnet from TSO . . . . . . . . . . . 31
Exiting the shell . . . . . . . . . . . . . 31
Getting rid of a hung application . . . . . . . 32
Using a double-byte character set (DBCS) . . . . 32

© Copyright IBM Corp. 1996, 2015 iii



Single-byte restrictions. . . . . . . . . . 33

Chapter 3. The asynchronous terminal
interface to the shells . . . . . . . . 35
ASCII-EBCDIC translation . . . . . . . . . 35
Using rlogin to access the shell . . . . . . . . 35
Using telnet to access the shell . . . . . . . . 35
Using Communications Server login to access the
shell . . . . . . . . . . . . . . . . . 35
The shell session. . . . . . . . . . . . . 36
Entering a shell command . . . . . . . . . 36
Interrupting a shell command . . . . . . . . 36
Using multiple sessions . . . . . . . . . . 36
Using a double-byte character set (DBCS) . . . . 36
Standard shell escape characters . . . . . . . 37

Chapter 4. Customizing the z/OS shell 39
Customizing your .profile . . . . . . . . . 39

Quoting variable values . . . . . . . . . 41
Changing variable values dynamically . . . . 41

Understanding shell variables . . . . . . . . 41
Customizing your shell environment: The ENV
variable. . . . . . . . . . . . . . . . 42
Customizing the search path for commands: The
PATH variable . . . . . . . . . . . . . 43

Adding your working directory to the search
path . . . . . . . . . . . . . . . . 43
Checking the search path used for a command 44
Customizing the FPATH search path: The FPATH
variable. . . . . . . . . . . . . . . 44

Customizing the DLL search path: The LIBPATH
variable. . . . . . . . . . . . . . . . 44
Improving the performance of shell scripts . . . . 45
Changing the locale in the shell . . . . . . . 45

Advantages of a locale compatible with the MVS
code page . . . . . . . . . . . . . . 45
Advantages of a locale generated with code page
IBM-1047 . . . . . . . . . . . . . . 46
Changing the locale setting in your profile . . . 46
The LC_SYNTAX environment variable . . . . 47
The LOCPATH environment variable . . . . . 49

Customizing the language of your messages . . . 49
Setting your local time zone . . . . . . . . . 49
Building a STEPLIB environment: The STEPLIB
environment variable . . . . . . . . . . . 50

Restrictions on STEPLIB data sets . . . . . . 51
Setting options for a shell session . . . . . . . 51

Exporting variables . . . . . . . . . . . 51
Controlling redirection. . . . . . . . . . 52
Preventing wildcard character expansion . . . 52
Displaying input from a file . . . . . . . . 52
Running a command in the current environment 52
Displaying current option settings . . . . . . 52

Chapter 5. Customizing the tcsh shell 53
Understanding the startup files . . . . . . . . 53

Quoting variable values . . . . . . . . . 54
Changing variable values dynamically . . . . 55

Understanding shell variables . . . . . . . . 55
Customizing your shell environment: The .tcshrc file 56

Customizing the search path for commands: The
PATH variable . . . . . . . . . . . . . 57

Adding your working directory to the search
path . . . . . . . . . . . . . . . . 58
Checking the search path used for a command 59

Customizing the DLL search path: The LIBPATH
variable. . . . . . . . . . . . . . . . 59
Changing the locale in the shell . . . . . . . 59

Advantages of a locale compatible with the MVS
code page . . . . . . . . . . . . . . 59
Advantages of a locale generated with code page
IBM-1047 . . . . . . . . . . . . . . 60
Changing the locale setting in your profile . . . 60
The LC_SYNTAX environment variable . . . . 61
The LOCPATH environment variable . . . . . 63

Customizing the language of your messages . . . 63
Setting your local time zone . . . . . . . . . 63
Building a STEPLIB environment: The STEPLIB
environment variable . . . . . . . . . . . 64

Restrictions on STEPLIB data sets . . . . . . 64
Setting variables for a shell session . . . . . . 64

Displaying current option settings . . . . . . 65
Controlling redirection. . . . . . . . . . 65
Preventing wildcard character expansion . . . 65
Displaying input from a file . . . . . . . . 65
Displaying deletion verification. . . . . . . 65

Files accessed at termination. . . . . . . . . 66

Chapter 6. Working with z/OS shell
commands . . . . . . . . . . . . . 67
Specifying shell command options. . . . . . . 67
Specifying options with accompanying arguments 68

Help for shell command usage . . . . . . . 68
Understanding standard input, standard output,
and standard error . . . . . . . . . . . . 68
Redirecting command output to a file . . . . . 69
Redirecting input from a file. . . . . . . . . 70
Redirecting error output to a file . . . . . . . 70
Closing a file . . . . . . . . . . . . . . 71
Dumping nontext files to standard output . . . . 71
Setting up an alias for a command . . . . . . 71

Defining an alias . . . . . . . . . . . 72
Redefining an alias for a session . . . . . . 72
Setting up an alias for a particular version of a
command . . . . . . . . . . . . . . 73
Using alias tracking . . . . . . . . . . 73
Turning off an alias . . . . . . . . . . . 74

Combining commands. . . . . . . . . . . 75
Using a semicolon (;) . . . . . . . . . . 75
Using && and || . . . . . . . . . . . 75
Using a pipe . . . . . . . . . . . . . 75

Using substitution in commands . . . . . . . 76
Using the find command in command
substitution constructs . . . . . . . . . . 76

Characters that have special meaning to the shell. . 77
Characters used with commands . . . . . . 77
Characters used in file names . . . . . . . 78
Redirecting input and output . . . . . . . 79

Using a special character without its special
meaning . . . . . . . . . . . . . . . 79

The backslash . . . . . . . . . . . . 79

iv z/OS V2R2 UNIX System Services User's Guide



A pair of single quotation marks (' ') . . . . . 80
A pair of double quotation marks (" ") . . . . 80

Using a wildcard character to specify file names . . 80
The * character . . . . . . . . . . . . 80
The ? character . . . . . . . . . . . . 81
The square brackets . . . . . . . . . . 81

Retrieving previously entered commands . . . . 82
Retrieving commands from the history file . . . 82
Editing commands from the history file . . . . 83
Using the retrieve function keys . . . . . . 84
Command-line editing. . . . . . . . . . 84

Using record-keeping commands . . . . . . . 85
Finding elements in a file and presenting them in a
specific format . . . . . . . . . . . . . 86
Timing programs . . . . . . . . . . . . 86
Using the passwd command. . . . . . . . . 87
Switching to superuser or another ID. . . . . . 87
Using the whoami command . . . . . . . . 88
Running a TSO/E command . . . . . . . . 88

Using the tso command . . . . . . . . . 88
Using the tsocmd command . . . . . . . . 89

Using the man command to get online help . . . 89
Shell messages . . . . . . . . . . . . . 90

Chapter 7. Working with tcsh shell
commands . . . . . . . . . . . . . 91
Specifying shell command options. . . . . . . 91
Specifying options with accompanying arguments 92

Help for shell command usage . . . . . . . 92
Understanding standard input, standard output,
and standard error . . . . . . . . . . . . 92
Redirecting command output to a file . . . . . 93
Redirecting input from a file. . . . . . . . . 94
Redirecting error output to a file . . . . . . . 94
Dumping nontext files to standard output . . . . 95
Setting up an alias for a command . . . . . . 95

Defining an alias . . . . . . . . . . . 95
Redefining an alias for a session . . . . . . 96
Setting up an alias for a particular version of a
command . . . . . . . . . . . . . . 96
Turning off an alias . . . . . . . . . . . 97

Combining commands. . . . . . . . . . . 97
Using a semicolon (;) . . . . . . . . . . 98
Using && and || . . . . . . . . . . . 98
Using a pipe . . . . . . . . . . . . . 98

Using substitution in commands . . . . . . . 99
Using the find command in command
substitution constructs . . . . . . . . . . 99

Characters that have special meaning to the shell 100
Characters used with commands . . . . . . 100
Characters used in file names . . . . . . . 101
Redirecting input and output . . . . . . . 101

Using a special character without its special
meaning . . . . . . . . . . . . . . . 102

The backslash . . . . . . . . . . . . 102
A pair of single quotation marks (' ') . . . . 102
A pair of double quotation marks (" ") . . . . 103

Using a wildcard character to specify file names 103
The * character . . . . . . . . . . . . 103
The ? character . . . . . . . . . . . . 103
The square brackets . . . . . . . . . . 104

Retrieving previously entered commands . . . . 104
Retrieving commands from the history file . . 105
Editing commands from the history file . . . 105
Using the retrieve function keys . . . . . . 106
Command-line editing . . . . . . . . . 106

Using file name completion . . . . . . . . 108
Using record-keeping commands . . . . . . . 109
Finding elements in a file and presenting them in a
specific format . . . . . . . . . . . . . 110
Timing programs . . . . . . . . . . . . 110
Using the passwd command . . . . . . . . 110
Switching to superuser or another ID . . . . . 111
Using the whoami command . . . . . . . . 111
Running a TSO/E command . . . . . . . . 112

Using the tso command . . . . . . . . . 112
Using the tsocmd command . . . . . . . 112

Online help . . . . . . . . . . . . . . 113
Using the man command . . . . . . . . 113

Shell messages . . . . . . . . . . . . . 113

Chapter 8. Writing z/OS shell scripts 115
Running a shell script . . . . . . . . . . 115
Using the magic number . . . . . . . . . 116
Using TSO/E commands in shell scripts . . . . 116
Using variables . . . . . . . . . . . . . 116

Creating a variable . . . . . . . . . . 116
Calculating with variables . . . . . . . . 117
Exporting variables . . . . . . . . . . 118
Associating attributes with variables. . . . . 119
Displaying currently defined variables . . . . 120

Using positional parameters — the $N construct 120
Using quotation marks to enclose a construct in
a shell script. . . . . . . . . . . . . 122

Using parameter and variable expansion . . . . 122
Using special parameters in commands and shell
scripts . . . . . . . . . . . . . . . . 125
Using control structures . . . . . . . . . . 125

Using test to test conditions . . . . . . . 126
The if conditional . . . . . . . . . . . 127
The while loop . . . . . . . . . . . . 128
The for loop . . . . . . . . . . . . . 129
Combining control structures . . . . . . . 130

Using functions . . . . . . . . . . . . 131
Autoloading functions . . . . . . . . . 131

Chapter 9. Writing tcsh shell scripts 133
Running a shell script . . . . . . . . . . 133
Using the magic number . . . . . . . . . 134
Using TSO/E commands in shell scripts . . . . 134
Using variables . . . . . . . . . . . . . 134

Creating a shell variable . . . . . . . . . 135
Calculating with variables . . . . . . . . 135
Setting environment variables . . . . . . . 136

Using positional parameters — the $N construct 137
Using quotes to enclose a construct in a shell
script . . . . . . . . . . . . . . . 139

Using parameter and variable expansion . . . . 139
Using special parameters in commands and shell
scripts . . . . . . . . . . . . . . . . 140
Using control structures . . . . . . . . . . 140

Contents v



The if conditional . . . . . . . . . . . 140
The while loop . . . . . . . . . . . . 142
The foreach loop . . . . . . . . . . . 143
Combining control structures . . . . . . . 143

Chapter 10. Using job control in the
shells . . . . . . . . . . . . . . . 145
Running several jobs at once (foreground and
background). . . . . . . . . . . . . . 145

Starting a job in the background with an
ampersand (&) . . . . . . . . . . . . 146
Moving a job to the background . . . . . . 147
Moving a job to the foreground . . . . . . 147

Setting up job tracing. . . . . . . . . . . 147
Checking the status of jobs . . . . . . . . . 147

Using the jobs command . . . . . . . . 147
Using the ps command . . . . . . . . . 148

Canceling a job . . . . . . . . . . . . . 148
Canceling a foreground job . . . . . . . . 148
Canceling a background job . . . . . . . 148

Stopping and resuming a job . . . . . . . . 149
Stopping a foreground job . . . . . . . . 149
Stopping a background job . . . . . . . . 149
Resuming a stopped job . . . . . . . . . 149

Delaying a command. . . . . . . . . . . 150
Exiting the shell with background jobs running . . 150

Changing the default in the z/OS shell . . . . 151
Comparison of shell background jobs and MVS
batch jobs . . . . . . . . . . . . . . 151

Chapter 11. Using z/OS UNIX from
batch, TSO/E, and ISPF . . . . . . . 153
JCL support for z/OS UNIX . . . . . . . . 153

The PATH keyword . . . . . . . . . . 154
The DSNTYPE keyword . . . . . . . . . 154
Using the ddname in an application . . . . . 154
Specifying a ddname in the JCL . . . . . . 155

Using the submit command . . . . . . . . 155
The BPXBATCH utility . . . . . . . . . . 156

Aliases for BPXBATCH . . . . . . . . . 156
Defining standard input, output, and error
streams for BPXBATCH . . . . . . . . . 157
Passing environment variables to BPXBATCH 158
Passing parameter data to BPXBATCH . . . . 160
Invoking BPXBATCH in a batch job . . . . . 162
Invoking BPXBATCH from the TSO/E
environment. . . . . . . . . . . . . 166

Using TSO/E REXX for z/OS UNIX processing 168
Using the ISPF shell . . . . . . . . . . . 169

Invoking the ISPF shell . . . . . . . . . 169
Working in the ISPF shell . . . . . . . . 170
Using the online help facility . . . . . . . 171

Chapter 12. Performance: Running
executable files . . . . . . . . . . 173
Improving shell script performance . . . . . . 174

Chapter 13. Communicating with other
users . . . . . . . . . . . . . . . 175
Using mailx to send and receive mail . . . . . 175

Steps for sending mail to another user . . . . 176
Sending mail to a distribution list . . . . . 176
Sending a message to an MVS operator . . . 177
Receiving mail from other users . . . . . . 177
Replying to mail . . . . . . . . . . . 178
Saving and deleting mail . . . . . . . . 178
Ending the mailx program . . . . . . . . 178

Using write to send a message or a file. . . . . 179
Sending a message: An example . . . . . . 179
Ending a message . . . . . . . . . . . 179
Sending a file . . . . . . . . . . . . 179

Using talk for an online conversation . . . . . 180
Beginning a conversation: An example . . . . 180
Viewing the conversation . . . . . . . . 180

Using wall to broadcast messages . . . . . . 180
Controlling messages and online conversations . . 181
Using the UUCP network . . . . . . . . . 181

Transferring a file to a remote site . . . . . 182
Transferring multiple files to a remote site. . . 182
Transferring a file to the local public directory 183
Notification of transfer . . . . . . . . . 183
Permissions . . . . . . . . . . . . . 183
Transferring a file from a remote site . . . . 184
Checking a file's transfer status . . . . . . 184
Working with your files in the public directory 184
Running a command on a remote site . . . . 185

Using TSO/E to send or receive mail . . . . . 185
Sending a message . . . . . . . . . . 185
Sending a message to a distribution list . . . 186
Sending a message to an MVS operator . . . 186
Receiving mail from other users . . . . . . 186
Receiving messages from other systems . . . 186

Part 2. The z/OS UNIX file system 187

Chapter 14. An introduction to the
z/OS UNIX file system. . . . . . . . 189
The root file system and mountable file systems 189
Directories . . . . . . . . . . . . . . 191
Files . . . . . . . . . . . . . . . . 191

Files not in the file system . . . . . . . . 192
Comparison between MVS data sets and the
z/OS UNIX file system . . . . . . . . . 192
Sharing files between LPARs . . . . . . . 193
Executable modules in the file system . . . . 193

Path and path name . . . . . . . . . . . 194
Requirement for an absolute path name . . . 195
Resolving a symbolic link in a path name . . . 195

Command differences with symbolic links. . . . 196
Using commands to work with directories and files 197

Entering a TSO/E command . . . . . . . 198
Using a relative path name on TSO/E
commands . . . . . . . . . . . . . 199
Finding the data set that contains a file. . . . 199

Using the ISPF shell to work with directories and
files . . . . . . . . . . . . . . . . 199
Using the Network File System feature . . . . . 199

vi z/OS V2R2 UNIX System Services User's Guide



External links . . . . . . . . . . . . 200
Security for the file system . . . . . . . . . 200
Power failures and the file system . . . . . . 200

Chapter 15. Converting files between
code pages . . . . . . . . . . . . 201
Enhanced ASCII . . . . . . . . . . . . 201

File tagging in Enhanced ASCII . . . . . . 201
Unicode Services . . . . . . . . . . . . 202

File tagging in Unicode Services . . . . . . 202
Automatic code set conversion . . . . . . . 202
Porting considerations . . . . . . . . . . 202

Chapter 16. Working with directories 203
The working directory . . . . . . . . . . 203
Displaying the name of your working directory 203
Changing directories . . . . . . . . . . . 204

Using notations for relative path names . . . 204
Creating a directory . . . . . . . . . . . 205
Removing a directory . . . . . . . . . . 207
Listing directory contents . . . . . . . . . 207
Comparing directory contents . . . . . . . . 208
Finding a directory or file . . . . . . . . . 209

Chapter 17. Working with files . . . . 211
Using an editor to create a file. . . . . . . . 211
Naming files. . . . . . . . . . . . . . 211

Processing in uppercase and lowercase . . . . 212
Deleting a file . . . . . . . . . . . . . 213

Deleting files over a certain age . . . . . . 213
Identifying a file by its inode number . . . . . 214
Creating links . . . . . . . . . . . . . 214

Creating a hard link . . . . . . . . . . 215
Creating a symbolic link. . . . . . . . . 215
Creating an external link . . . . . . . . 216

Deleting links . . . . . . . . . . . . . 217
Renaming or moving a file or directory . . . . 218
Comparing files . . . . . . . . . . . . 218
Sorting file contents . . . . . . . . . . . 219

Using sorting keys — an example . . . . . 220
Counting lines, words, and bytes in a file . . . . 221
Searching files by using pattern matching . . . . 221

Patterns . . . . . . . . . . . . . . 222
Regular expressions . . . . . . . . . . 223

Browsing files . . . . . . . . . . . . . 223
Browsing files without formatting . . . . . 223
Browsing files with formatting . . . . . . 224

Simultaneous access to a file . . . . . . . . 224
Backing up and restoring files: options . . . . . 224

Backing up and restoring files from the shell 225
Backing up a complete directory into an MVS
data set . . . . . . . . . . . . . . 226
Restoring a complete directory from an MVS
data set . . . . . . . . . . . . . . 226
Viewing the contents of an archive . . . . . 227
Converting between code pages . . . . . . 227
Appending to an existing archive. . . . . . 229
Backing up selected files by date . . . . . . 229

Listing process IDs of processes with open files 229

Chapter 18. Handling security for your
files . . . . . . . . . . . . . . . 231
Default permissions set by the system . . . . . 231
Changing permissions for files and directories . . 233

Using a symbolic mode to specify permissions 233
Using octal numbers to specify permissions . . 234

Using the sticky bit on a directory to control file
access . . . . . . . . . . . . . . . . 235
Auditing file access . . . . . . . . . . . 236
Displaying file and directory permissions . . . . 236
Setting the file mode creation mask . . . . . . 237
Changing the owner ID or group ID associated
with a file . . . . . . . . . . . . . . 238
Temporarily changing the user ID or group ID
during execution . . . . . . . . . . . . 238
Displaying extended attributes . . . . . . . 239
Using access control lists (ACLs) to control access
to files and directories . . . . . . . . . . 239

Setting up ACL support . . . . . . . . . 239

Chapter 19. Editing files . . . . . . . 241
Using ISPF to edit a z/OS UNIX file . . . . . 241
Using the vi screen editor . . . . . . . . . 242

Basic principles. . . . . . . . . . . . 243
A simple vi session . . . . . . . . . . 243
Adding text . . . . . . . . . . . . . 244
Moving the cursor up and down the screen . . 245
Moving up and down through a file. . . . . 245
Moving the cursor on the line . . . . . . . 246
Moving to sentences and paragraphs . . . . 247
Deleting text . . . . . . . . . . . . 247
Changing text . . . . . . . . . . . . 248
Undoing a command . . . . . . . . . . 248
Saving a file . . . . . . . . . . . . . 248
Searching for strings . . . . . . . . . . 249
Moving text . . . . . . . . . . . . . 251
Copying text . . . . . . . . . . . . 251
Other vi features . . . . . . . . . . . 252
Message: vi/ex edited file recovered. . . . . 252

Using the ed editor . . . . . . . . . . . 254
Creating and saving a text file . . . . . . . 254
Editing an existing file . . . . . . . . . 255
Identifying line numbers and changing your
position in the buffer . . . . . . . . . . 255
Appending one file to another. . . . . . . 256
Displaying the current line in the edit buffer 256
Changing a character string . . . . . . . 256
Inserting text at the beginning or end of a line 257
Deleting lines of text . . . . . . . . . . 257
Changing lines of text . . . . . . . . . 258
Inserting lines of text . . . . . . . . . . 258
Copying lines of text . . . . . . . . . . 258
Moving lines of text . . . . . . . . . . 259
Undoing a change . . . . . . . . . . . 259
Entering a shell command while using ed . . . 259
Ending an ed edit session . . . . . . . . 259
Default permissions . . . . . . . . . . 259

Using sed to edit a z/OS UNIX file . . . . . . 260

Contents vii



Chapter 20. Printing files . . . . . . 261
Formatting files for online browsing or printing 261

Printing requests in shell scripts . . . . . . 262
Printing with the lp command. . . . . . . . 262
Printing with TSO/E commands . . . . . . . 262
Checking the status of print jobs . . . . . . . 263

Chapter 21. Copying data between the
z/OS UNIX file system and MVS data
sets . . . . . . . . . . . . . . . 265
Copying data using z/OS shell commands . . . 265
Copying data using TSO/E commands . . . . . 266
Copying a sequential data set or PDS member into
a z/OS UNIX file . . . . . . . . . . . . 267

Using cp to copy a sequential data or PDS
member into a z/OS UNIX file . . . . . . 267
Using OPUT and OCOPY to copy a PDS
member, a PDSE member, or a sequential data
set . . . . . . . . . . . . . . . . 267

Copying a PDS or PDSE to a z/OS UNIX directory 271
Using cp to copy a PDS to a z/OS UNIX
directory . . . . . . . . . . . . . . 271
Using OPUTX to copy a sequential data set or
members of a PDS or PDSE . . . . . . . 271

Copying an MVS VSAM data set to a z/OS UNIX
file . . . . . . . . . . . . . . . . . 272
Copying a z/OS UNIX file into a sequential data
set or PDS member . . . . . . . . . . . 272

Using cp to copy a z/OS UNIX file into a
sequential data set or PDS member . . . . . 272
Using OGET and OCOPY to copy a file into a
sequential data set or a PDS member . . . . 273
OGET . . . . . . . . . . . . . . . 273
OCOPY . . . . . . . . . . . . . . 274

Copying z/OS UNIX files into a PDS or PDSE . . 276
Using cp to copy z/OS UNIX files into a PDS or
PDSE . . . . . . . . . . . . . . . 276
Using OGETX to copy files into a PDS or PDSE 276

Copying files within the z/OS UNIX file system 277
Copying an MVS data set into another MVS data
set . . . . . . . . . . . . . . . . . 278

Example: Using ALLOCATE and OCOPY . . . 279
Example: Using JCL and OCOPY . . . . . . 279

Copying executable modules between MVS data
sets and the z/OS UNIX file system . . . . . . 280

Using cp to copy executables between MVS and
z/OS UNIX . . . . . . . . . . . . . 280
Using TSO/E commands and JCL to copy
executables . . . . . . . . . . . . . 280

Copying data: Code page conversion . . . . . 282
Single-byte data . . . . . . . . . . . 282
Double-byte data . . . . . . . . . . . 283

Chapter 22. Transferring files between
systems. . . . . . . . . . . . . . 285
File transfer directly to or from z/OS UNIX . . . 285

Transferring files using File Transfer Protocol
(FTP) . . . . . . . . . . . . . . . 285
Transferring files using the Network File System
feature . . . . . . . . . . . . . . 285

Transferring files using the SEND and RECEIVE
programs . . . . . . . . . . . . . . 286
Transferring files using the File Transfer, Access,
and Management Function . . . . . . . . 286

File transfer using MVS data sets . . . . . . . 286
Transferring files into the z/OS UNIX file
system . . . . . . . . . . . . . . 286
Transferring files to the workstation . . . . . 287

Transporting an archive file on tape or diskette . . 287
Putting an archive file into the file system . . . 287
Sending an archive file to others . . . . . . 288

Part 3. Appendixes . . . . . . . . 291

Appendix A. Advanced vi topics . . . 293
Editing options . . . . . . . . . . . . . 293

Setting tab stops . . . . . . . . . . . 293
Using abbreviations . . . . . . . . . . 293
Other editing options. . . . . . . . . . 294
Setting up an editing options command file . . 294

Editing several files . . . . . . . . . . . 294
Combining files . . . . . . . . . . . . 295
Editing program source code . . . . . . . . 295

Controlling indention. . . . . . . . . . 295
Searching for opening and closing brackets . . 296
Making substitutions . . . . . . . . . . 297

Appendix B. Using awk . . . . . . . 299
Data files . . . . . . . . . . . . . . . 299

Records . . . . . . . . . . . . . . 300
Fields . . . . . . . . . . . . . . . 300

The shape of a program . . . . . . . . . . 300
Simple patterns. . . . . . . . . . . . 300
Using blanks and horizontal tabs . . . . . . 301
Applying more than one instruction . . . . . 301
Assigning values to variables . . . . . . . 302
String values . . . . . . . . . . . . 302
Numeric values . . . . . . . . . . . 303
Using the print action for output . . . . . . 303

Running awk programs . . . . . . . . . . 304
The awk command line . . . . . . . . . 304
Program files . . . . . . . . . . . . 304
Sources of data . . . . . . . . . . . . 305

Operators . . . . . . . . . . . . . . 305
Comparison operators . . . . . . . . . 305
Arithmetic operators . . . . . . . . . . 305
Compound assignments . . . . . . . . . 307
Increment and decrement operators . . . . . 307
Matching operators . . . . . . . . . . 307
Multiple-condition operators . . . . . . . 308

Regular expressions . . . . . . . . . . . 308
Pattern ranges . . . . . . . . . . . . . 310
Using special patterns . . . . . . . . . . 311
Built-in variables . . . . . . . . . . . . 312

Built-in numeric variables . . . . . . . . 312
Built-in string variables . . . . . . . . . 313

Statements and loops . . . . . . . . . . . 314
The if statement . . . . . . . . . . . 314
The while loop . . . . . . . . . . . . 314
The for loop . . . . . . . . . . . . . 314

viii z/OS V2R2 UNIX System Services User's Guide



The next statement . . . . . . . . . . 315
The exit statement . . . . . . . . . . . 315

Functions. . . . . . . . . . . . . . . 315
Arithmetic functions . . . . . . . . . . 315
String manipulation functions . . . . . . . 316
User-defined functions . . . . . . . . . 317
Passing an array to a function . . . . . . . 318
The Getline function . . . . . . . . . . 318

Running system commands . . . . . . . . 318
Controlling awk output . . . . . . . . . . 318

Formatting the output . . . . . . . . . 319
Placeholders . . . . . . . . . . . . . 319
Escape sequences . . . . . . . . . . . 321

Appendix C. Code page conversion
when the shell and MVS have
different locales . . . . . . . . . . 323
Customizing the variant characters on your
keyboard . . . . . . . . . . . . . . . 323
Using the CONVERT option on the OMVS
command . . . . . . . . . . . . . . 323
When do you need to convert between code
pages?. . . . . . . . . . . . . . . . 324
Methods for converting data . . . . . . . . 324
The POSIX portable file name character set . . . 324
The POSIX portable character set . . . . . . . 324

Appendix D. Escape sequences for a
3270 keyboard . . . . . . . . . . . 327
Escape sequences for portable characters not on
your keyboard . . . . . . . . . . . . . 327

Escape sequences for control characters. . . . . 328
Escape sequences unique to a conversion table . . 329

BPXFX100 conversion table . . . . . . . . 329
BPXFX111 and BPXFX211 conversion tables . . 329
BPXFX437, BPXFX450, BPXFX471, BPXFX473,
BPXFX477, BPXFX478, BPXFX480, BPXFX484,
BPXFX485, BPXFX497 conversion tables . . . 329

Appendix E. Locale objects, source
files, and charmaps. . . . . . . . . 331

Appendix F. Accessibility . . . . . . 333
Accessibility features . . . . . . . . . . . 333
Consult assistive technologies . . . . . . . . 333
Keyboard navigation of the user interface . . . . 333
Dotted decimal syntax diagrams . . . . . . . 333

Notices . . . . . . . . . . . . . . 337
Policy for unsupported hardware. . . . . . . 338
Minimum supported hardware . . . . . . . 339
Programming interfaces . . . . . . . . . . 339
Trademarks . . . . . . . . . . . . . . 339

Acknowledgments . . . . . . . . . 341

Index . . . . . . . . . . . . . . . 343

Contents ix



x z/OS V2R2 UNIX System Services User's Guide



Figures

1. How the shells fit into z/OS . . . . . . . 3
2. The OMVS interface to the shell . . . . . . 6
3. The asynchronous terminal interface to the shell 7
4. z/OS UNIX System Services provides the user

interfaces of both MVS and UNIX . . . . . 7
5. Working interactively in the MVS and shell

environments . . . . . . . . . . . . 9
6. Switching temporarily to TSO/E command

mode or subcommand mode . . . . . . . 14
7. The z/OS shell's display screen when the shell

is first invoked . . . . . . . . . . . 15
8. The z/OS shell's display screen after input has

been entered . . . . . . . . . . . . 16
9. Default function key settings . . . . . . . 17

10. Typing an escape sequence . . . . . . . 23
11. A sample .profile. . . . . . . . . . . 39

12. A sample .login . . . . . . . . . . . 54
13. A sample .tcshrc . . . . . . . . . . . 57
14. The OSHELL REXX exec . . . . . . . . 168
15. ISPF shell: The main panel . . . . . . . 170
16. End user's logical view of the file system 189
17. Organization of the file system. . . . . . 190
18. Comparison of MVS data sets and the z/OS

UNIX file system . . . . . . . . . . 193
19. Creating a new directory. . . . . . . . 206
20. Hard link: a new name for an existing file 215
21. Symbolic link: a new file . . . . . . . . 216
22. External link: A new file . . . . . . . . 217
23. A sample file: comics.lst . . . . . . . . 219
24. Copying data between z/OS UNIX and MVS 265
25. The hobbies file . . . . . . . . . . . 299

© Copyright IBM Corp. 1996, 2015 xi



xii z/OS V2R2 UNIX System Services User's Guide



Tables

1. Function key settings available in the z/OS
shell . . . . . . . . . . . . . . . 17

2. Three ways to set the STEPLIB environment
variable (z/OS shell) . . . . . . . . . 50

3. Three ways to set the STEPLIB environment
variable (tcsh shell) . . . . . . . . . . 64

4. Uses for the test command . . . . . . . 126
5. Comparison of running a background job

from the shell and from MVS . . . . . . 151
6. Absolute path name requirements . . . . 195

7. Three-digit permissions specified in octal 235
8. vi editor: Positioning the cursor . . . . . 244
9. Portable characters: Escape sequences 327

10. Control characters: Escape sequences 328
11. Translation of selected escaped characters

(BPXFX100) . . . . . . . . . . . . 329
12. Translation of selected escaped characters

(BPXFX111 and BPXFX211) . . . . . . . 329
13. Translation of selected escaped characters 330

© Copyright IBM Corp. 1996, 2015 xiii



xiv z/OS V2R2 UNIX System Services User's Guide



About this document

This document offers an introduction to the two shells available on z/OS UNIX
System Services (z/OS UNIX) — the z/OS shell and the tcsh shell.

This document provides the information you need to use the z/OS Shells and
Utilities on an IBM® z/OS® system. The Shells and Utilities and TSO/E (Time
Sharing Option Extensions) provide commands for using z/OS UNIX.

This document helps you use the functions specified in the POSIX.2 standard (IEEE
Std 1003.2-1992 and ISO/IEC 9945-1992 International Standard; Portable Operating
System Interface [POSIX] Part 2: Shell and Utilities). For convenience, it also
describes other z/OS UNIX support services.

Who should use z/OS UNIX System Services User's Guide?
This document is for application programmers, systems programmers, and users
working on a z/OS system and using z/OS UNIX services or the z/OS shells.

This document assumes that readers are familiar with the z/OS system and with
the information for z/OS and its accompanying products.

For information about the features and concepts of z/OS UNIX, and for answers to
many questions you might have, see our website at
http://www.ibm.com/systems/z/os/zos/features/unix/

What is in z/OS UNIX System Services User's Guide?
This document describes how to use the shells, the file system, and communication
services. Using the document, you can:
v Enter shell commands that request services from the system.
v Write shell scripts using the shell programming language; a shell script can be as

powerful as a C-language program.
v Run shell scripts and C language programs interactively (in the foreground), in

the background, or in batch.
v Switch easily between the shells and TSO/E.
v Move MVS™ data sets into the file system, or move files from the file system

into MVS data sets.
v Enter shell commands or TSO/E commands from the shell command line.
v Create or edit a file in the file system.
v Manage your file system.

For a discussion of the z/OS UNIX shell commands, utilities, TSO/E commands,
and file formats, see z/OS UNIX System Services Command Reference.

Tasks that can be performed in more than one environment
There are some tasks that can be performed in more than one environment: in the
shells, in TSO/E, or perhaps in ISPF. If the same task can be performed in more
than one environment, that is noted.

© Copyright IBM Corp. 1996, 2015 xv



z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap.

To find the complete z/OS library, go to IBM Knowledge Center
(http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

IBM Systems Center publications
IBM Systems Centers produce IBM Redbooks® publications that can be helpful in
setting up and using z/OS UNIX. See the IBM Redbooks site at IBM Redbooks
(http://www.ibm.com/redbooks).

These documents have not been subjected to any formal review nor have they been
checked for technical accuracy, but they represent current product understanding at
the time of their publication and provide information on a wide range of topics.
You must order them separately. A selected list of these documents is on the z/OS
UNIX website at http://www.ibm.com/systems/z/os/zos/features/unix/library/.

Porting information for z/OS UNIX
A Porting Guide is available at z/OS UNIX System Services Porting Guide
(http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1por.html). It covers
a range of useful topics, including sizing a port, setting up a porting environment,
ASCII-EBCDIC issues, performance, and much more.

The porting page also features a variety of porting tips and lists porting resources
that will help you in your port.

z/OS UNIX courses
For a current list of courses that you can take, go to IBM Education home page
(http://www.ibm.com/services/learning/).

z/OS UNIX home page
Visit the z/OS UNIX home page at z/OS UNIX home page (http://
www.ibm.com/systems/z/os/zos/features/unix/).

Some of the tools available from the website are ported tools, and some are
unsupported tools designed for z/OS UNIX. The code works in our environment
at the time we make it available, but is not officially supported. Each tool has a
readme file that describes the tool and lists any restrictions.

The simplest way to reach these tools is through the z/OS UNIX home page. From
the home page, click on Tools and Toys.

The code is also available from ftp://ftp.software.ibm.com/s390/zos/unix/ through
anonymous FTP.

Because the tools are not officially supported, APARs cannot be accepted.

Discussion list
Customers and IBM participants also discuss z/OS UNIX on the mvs-oe
discussion list. This list is not operated or sponsored by IBM.

xvi z/OS V2R2 UNIX System Services User's Guide

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/redbooks
http://www.ibm.com/redbooks
http://www.ibm.com/systems/z/os/zos/features/unix/library/
http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1por.html
http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1por.html
http://www.ibm.com/services/learning/
http://www.ibm.com/services/learning/
http://www.ibm.com/systems/z/os/zos/features/unix/
http://www.ibm.com/systems/z/os/zos/features/unix/


To subscribe to the mvs-oe discussion, send a note to:
listserv@vm.marist.edu

Include the following line in the body of the note, substituting your given name
and family name as indicated:
subscribe mvs-oe given_name family_name

After you have been subscribed, you will receive further instructions on how to
use the mailing list.

About this document xvii



xviii z/OS V2R2 UNIX System Services User's Guide



How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R2 UNIX System Services User's Guide
SA23-2279-01

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS Support Portal (http://www-947.ibm.com/

systems/support/z/zos/).

© Copyright IBM Corp. 1996, 2015 xix

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www-947.ibm.com/systems/support/z/zos/
http://www-947.ibm.com/systems/support/z/zos/


xx z/OS V2R2 UNIX System Services User's Guide



Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations for the current edition
are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 2 (V2R2)
The following changes are made in z/OS Version 2 Release 2 (V2R2).

New
v No content was added to this information.

Changed
v Additional information was added to “Naming files” on page 211.

Deleted
v No content was removed from this information.

Summary of changes for z/OS Version 2 Release 1
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1996, 2015 xxi



xxii z/OS V2R2 UNIX System Services User's Guide



Part 1. The z/OS shells

These topics provide an overview of the information relating to the z/OS shells.

© Copyright IBM Corp. 1996, 2015 1



2 z/OS V2R2 UNIX System Services User's Guide



Chapter 1. An introduction to the z/OS shells

There are two shells available for use on z/OS UNIX System Services:
v The z/OS shell
v The tcsh shell

The z/OS shell is modeled after the UNIX System V shell with some of the
features found in the Korn shell. As implemented for z/OS UNIX System Services,
this shell conforms to POSIX standard 1003.2, which has been adopted as ISO/IEC
International Standard 9945-2: 1992.

The tcsh shell is an enhanced but compatible version of csh, the Berkeley UNIX C
shell. It is a command language interpreter usable as a login shell and as a shell
script command processor.

Figure 1 shows how these shells fit into z/OS.

About shells
A shell is a command interpreter that you use to:
v Invoke shell commands or utilities that request services from the system.
v Write shell scripts using the shell programming language.
v Run shell scripts and C-language programs interactively (in the foreground), in

the background, or in batch.

POSIX-conforming
applications
POSIX-conforming
applications

z/OS
Shells and Utilities
z/OS
Shells and Utilities

XL C/C++
Compiler
XL C/C++
Compiler

Debugger

Runtime library with
POSIX.1 support and extensions

Runtime library with
POSIX.1 support and extensions

POSIX.1 z/OS UNIX System Services Support

z/OS Basic Control Program

Process Management
File System Communication

Figure 1. How the shells fit into z/OS

© Copyright IBM Corp. 1996, 2015 3



Shell commands and utilities
Both the z/OS shell and the tcsh shell provide commands and utilities that give
the user an efficient way to request a range of services. In this topic, the term
command is used to include both a command (a directive to a shell to perform a
specific task) and a utility (the name of a program callable by name from a shell).

Shell commands often have options (also known as flags) that you can specify, and
they usually take an argument—such as the name of a file or directory. The format
for specifying the command begins with the command name, then the option or
options, and finally the argument, if any. For example:
ls -a myfiles

ls is the command name, -a is the option, and myfiles is the argument.

This information describes various commands you can use to perform certain
tasks; most of these are shell commands, and some are TSO/E commands. This
discussion highlights only certain functions of the command. For complete
information about each command and all its options, see z/OS UNIX System
Services Command Reference

The locale in the shells
A locale specifies cultural and language characteristics of the z/OS UNIX
environment for an application program. Locale affects collation, date and time
conventions, numeric and monetary formats, program messages, yes and no
prompts, and the hexadecimal encoding for the 13 variant characters whose
encoding varies on different EBCDIC code pages.

The shells and utilities support a variety of locales. See “Changing the locale in the
shell” on page 45 for information about changing the locale in the shells.

Daemon support
z/OS UNIX System Services provides daemons, such as cron, a batch scheduler,
and inetd, which handles rlogin requests.
v For information about each daemon that z/OS UNIX System Services provides,

see z/OS UNIX System Services Command Reference.

Running an X-Window application
If you are accessing the shell from a workstation or X-terminal running an
X-Window server, you can run an X-Window application from the shell. An
X-Window application needs the TCP/IP address and display identifier for your
workstation.

The shell user
There are two categories of shell user: superuser and user. The superuser can do
anything a user can, but has special authority to perform certain additional tasks,
such as mounting and unmounting a file system. The superuser can access all
z/OS UNIX services and all the files in the hierarchical file system.

Security
This information assumes that your system includes the RACF® security product.
Instead of RACF, your system could have an equivalent security product.

4 z/OS V2R2 UNIX System Services User's Guide



The systems programmer defines a shell user by assigning the user an OMVS user
ID (UID) and group ID (GID). These are numeric values associated with a TSO/E
user ID; they are set in the RACF user profile and group profile when a user is
authorized to use z/OS UNIX services. The system uses the UID and GID to
identify the files that a user owns and the processes that a user runs. The UID
identifies a user of z/OS UNIX services. The GID is a unique number assigned to a
group of related users.

As a user, you can control read, write, and execute access to your files by other
users in your group or outside of your group, by setting the permission bits
associated with the files.

Accessing the shells — the choices
User's settings are initially configured with the z/OS shell as the default login
shell. To display these settings from TSO type:
LISTUSER USERNAME OMVS

The RACF settings for that user are displayed:

UID= 0000000012
HOME= /shut/home/billyjc
PROGRAM= /bin/sh
CPUTIMEMAX= NONE
ASSIZEMAX= NONE
FILEPROCMAX= NONE
PROCUSERMAX= NONE
THREADSMAX= NONE
MMAPAREAMAX= NONE
READY

The PROGRAM line refers to the user's login shell. If it is /bin/sh, the login shell is
set to the z/OS shell. If it is /bin/tcsh, the login shell is the tcsh shell. To change a
user's default login shell from the z/OS shell to the tcsh shell, issue this command:
ALTUSER USERNAME OMVS(PROGRAM(’/bin/tcsh’))

To change a user's default login shell from the tcsh shell to the z/OS shell, type:
ALTUSER USERNAME OMVS(PROGRAM(’/bin/sh’))

Terminal emulators
z/OS provides several terminal emulators that you can use to access the shells:
v The TSO/E OMVS command, a 3270 terminal interface
v The rlogin command, an asynchronous terminal interface
v The telnet command, an asynchronous terminal interface

When selecting a terminal emulator, there are several key points to consider:
v Code page conversion: By default, z/OS UNIX System Services operates in the

POSIX locale (also known as the C locale) using code page IBM-1047, but it can
operate in other locales, including double-byte locales. Unless you change the
locale in the shell so that the code page used by the shell matches the code page
used by the workstation for the z/OS UNIX session, a terminal emulator must
perform some code page conversion. Mechanisms are provided to specify the
conversion required for your situation:

Chapter 1. An introduction to the z/OS shells 5



– The OMVS command has the CONVERT parameter to specify the conversion
between the code page used at your workstation and the code page used in
the shell.

– rlogin and telnet convert from ASCII ISO8859-1 to EBCDIC IBM-1047 by
default. Once you are logged in to the shell, you can use the chcp to select
other code pages to convert between for the session.

v Number of sessions: Some terminal emulators allow multiple interactive
sessions for the same user. This can be accomplished by multiple logins or by
using an emulator that allows multiple sessions with one login.

v File editing: With the OMVS emulator, you can use the ISPF editor. For the
other terminal emulators, vi is the editor of choice.

v Shell mode: rlogin and telnet provide both line mode (also known as canonical
mode) and raw mode, while OMVS operates in line mode only. Line mode is
sufficient for most shell utilities. However, the full function of certain useful
utilities, such as vi and the command line editing feature of the shell, are
available only in raw mode.
When you first login to the shell, you are in line mode. Depending on your
means of access, you may then be able to use utilities that require raw mode or
run an X-Window application.

line mode
Your input is processed after you press <Enter>.

raw mode
Each character is processed as you type it.

graphical mode
A graphical user interface for X-Window applications

OMVS
command

Terminal Interface

Shell

�

�

�

One login for an ID, with multiple sessions.

Line mode only

Code page conversion between the terminal
and the shell: CONVERT keyword on OMVS
command controls this.

� TSO/E:You can switch to TSO/E from the shell.
You can run TSO/E commands from the shell.

�

�

�

ISPF:You can use the ISPF shell to perform
z/OS UNIX System tasks

Editors: ISPF, ed, or sed

DBCS support

Figure 2. The OMVS interface to the shell

6 z/OS V2R2 UNIX System Services User's Guide



Interoperability between the shells and MVS

There is a high degree of interoperability between MVS and the z/OS shells:
v You can move data between MVS data sets and the z/OS UNIX file system. You

can copy or move MVS data sets into z/OS UNIX files; likewise, you can copy
or move z/OS UNIX files into MVS data sets.

v To work with z/OS UNIX files, you can use TSO/E commands or shell
commands. If you have access to ISPF, you can use the panel interface of the

rlogin
command

telnet
command

Terminal Interface

Shell

�

�

�

Multiple logins for an ID, with one session
for each login

Line mode and raw mode

� TSO/E:You cannot switch to TSO/E from
the shell.You can run TSO/E commands
from the shell.

�

�

�

ISPF:You cannot use the ISPF shell.

Editors: vi, ed, or sed

DBCS support

Code page conversion between the terminal
and the shell : automatic conversion between
code pages ISO8859-1 and IBM-1047.
In the shell, you can use the chcp shell
command to set the code pages.

Figure 3. The asynchronous terminal interface to the shell

TSO/E
panels

MVS-like
interface

UNIX-like
interface

Shell

Services

Figure 4. z/OS UNIX System Services provides the user interfaces of both MVS and UNIX

Chapter 1. An introduction to the z/OS shells 7



ISPF shell. For example, you can create a directory with the TSO/E MKDIR
command, or the shell mkdir command, or the ISPF shell.

v You can issue TSO/E commands from the shell command line, from a shell
script, or from a program. See “Using commands to work with directories and
files” on page 197 for a list of TSO/E commands you can use to work with the
file system.

v You can write job control language (JCL) that includes shell commands.
v To edit z/OS UNIX files, you can use the ISPF/PDF full-screen editor or one of

the editors available in the shell.
v REXX programs can access kernel callable services by using z/OS UNIX

extensions to the REstructured eXtended eXecutor (REXX) language. You can run
REXX programs using these extensions from TSO/E, batch, the shell, or a C
program.

v Use the OSHELL REXX exec to run a non-interactive shell command or shell
script from the TSO/E READY prompt and display the output to your terminal.
This exec is shipped with z/OS UNIX System Services.

Parallels between the MVS environment and the shell environment
Figure 5 on page 9 indicates how basic programming tasks are performed in the
MVS environment and in the shell environment.

An interactive user who uses the OMVS command to access the shell can switch
back and forth between the shell and TSO/E, the interactive interface to MVS.
v Programmers whose primary interactive computing environment is a UNIX or

AIX® workstation find the shell programming environment familiar.
v Programmers whose primary interactive computing environment is TSO/E and

ISPF can do much of their work in that environment.

8 z/OS V2R2 UNIX System Services User's Guide



Programming for everyday tasks
The shell programming environment with its shell scripts provides function similar
to the TSO/E environment with its command lists (CLISTs) and the REstructured
eXtended eXecutor (REXX) execs.

The CLIST language is a high-level interpreter language that lets you work
efficiently with TSO/E. A CLIST is a program, or command procedure, that
performs a given task or group of tasks. CLISTs can handle any number of tasks,
from running multiple TSO/E commands to running programs written in other
languages. CLISTs can run only in a TSO/E environment. For a discussion of
CLISTs, see z/OS TSO/E CLISTs.

The REXX language is a high-level interpreter language that enables you to write
programs in a clear and structured way. You can use the REXX language to write
programs called REXX programs, or REXX execs, that perform given tasks or groups
of tasks. REXX programs can run in any MVS address space. You can run REXX
programs that call z/OS UNIX services in TSO/E, batch, in the shell environment,
or from a C program. For more information about writing REXX programs, see
z/OS TSO/E REXX User's Guide, z/OS TSO/E REXX Reference, and z/OS Using REXX
and z/OS UNIX System Services.

DFSMShsm
ISPF

Debugging

Shell Scripts & REXX

ActivityMVS Environment Shell Environment

TSO Test
Inspect

Compilers,
LINK

Submit Job (TSO)

SDSF

ISPF

CLIST & REXX (TSO) Programming for
Everyday Tasks

Background
Job

Job Control

Editing

Programming

Data
Management

ed, vi

ps,
jobs,
kill

c89,
make,
ar

dbx

tar,
cpio,
pax

Command &

Figure 5. Working interactively in the MVS and shell environments

Chapter 1. An introduction to the z/OS shells 9



In the shells, command processing is similar to command processing for CLISTs.
You can write executable shell scripts (a sequence of shell commands stored in a
text file) to perform many programming tasks. They can run in any dubbed MVS
address space. They can be run interactively, using cron, or using BPXBATCH.
With its commands and utilities, the shell provides a rich programming
environment.

Editing
In MVS, you can edit z/OS UNIX files by using the TSO/E OEDIT command to
invoke ISPF File Edit or by selecting File Edit on the ISPF menu, if it is installed.

In a shell, you can use the ed and sed editors for editing z/OS UNIX files. You can
use the oedit shell command to invoke ISPF File Edit. If you use rlogin or telnet to
login to the shell, you can also use the vi editor.

Job control
In MVS, you can use the System Display and Search Facility (SDSF) to monitor
and control a job. You can also use the TSO/E CANCEL, STATUS, and OUTPUT
commands.

In the shell, you use the ps command or the jobs command to check the status of
a job, and the kill command to end a job before it completes.

Additionally, in the shell you can stop, or suspend, a foreground job, and then
enter the bg command to run it in the background or the fg command to start it
back up in the foreground.

Background jobs
In MVS, you write a background job in job control language (JCL) and start it with
the TSO/E SUBMIT command.

In the shell, you start a background job by typing an ampersand (&) at the end of
the command line.

Programming
In MVS, you use the z/OS XL C/C++ compiler and the linkage editor to create a
traditional z/OS XL C/C++ application program as a load module or to create a
z/OS XL C/C++ application program as an executable file or a load module.

In the shell, you can use the c89 or cc or c++ command to compile and link-edit a
z/OS UNIX program, creating an executable file. The make command is available
for building applications, and lex and yacc are available for developing
applications.

Debugging
Under TSO/E, for traditional z/OS XL C/C++ application programs, TSO/E Test
and Inspect facilities are available for debugging. You can use TSO/E TEST for
z/OS UNIX application programs that do not use fork() or exec().

In the shell, dbx is the debugging facility for z/OS XL C/C++ programs. With dbx,
you can debug multithreaded applications at the C-source level or at the machine
level. Support for multithreaded applications gives you the ability to:

10 z/OS V2R2 UNIX System Services User's Guide



v Debug or display information about the following objects related to
multithreaded applications: threads, mutexes, and condition variables.

v Control program execution by holding and releasing individual threads

The dbx debugger provides support for recognizing, displaying, and modifying
program variables and constants that include double-byte character set (DBCS)
characters.

The dbx debugger also provides core dump analysis when run in dump processing
mode.

Data management
In MVS, the storage administrator uses Data Facility System-Managed Storage
Hierarchical Storage Manager (DFSMShsm) to automatically back up and archive
hierarchical file systems.

In the shell, you can use tar, cpio, and pax to read or write an archive file in the
file system.

You can copy archive files to an MVS data set, and then to tape. You can retrieve
archive files from a tape into an MVS data set and then copy them into the file
system.

Chapter 1. An introduction to the z/OS shells 11



12 z/OS V2R2 UNIX System Services User's Guide



Chapter 2. OMVS, a 3270 terminal interface to the z/OS shell

The explanations and examples in this topic assume that the z/OS shell has been
set up in your profile. The information presented here is primarily directed
towards users of the z/OS shell.

The TSO/E OMVS command is one method of accessing the z/OS shell. It
provides a 3270 terminal interface to the shell. To use the OMVS interface to the
shell, you must be working at a 3270 terminal or a computer with 3270 emulation.

You issue the OMVS command from TSO/E:
v In an SNA network, remote users access TSO/E through VTAM®.
v In a TCP/IP network, remote users that have the Telnet 3270 client function

access TSO/E by entering the TN3270 command. See the TCP/IP documentation
for your system or the documentation for your computer's 3270 emulation.

For information about using an asynchronous terminal interface to the shell, see
Chapter 3, “The asynchronous terminal interface to the shells,” on page 35.

Differences from a UNIX or AIX environment
If you come from a UNIX or AIX background, you will encounter some differences
when you begin to use the OMVS interface to the shell. The 3270-type terminal
interface may surprise you! For example:

OMVS interface For more information

The 3270 interface operates in line mode (also known
as canonical mode). You type data on a command line
and no data is transmitted until you press the <Enter>
key.

“Working in line mode” on page 16

The 3270 interface has function keys for various tasks
such as scrolling through output, running TSO/E
commands, and so on.

“Determining function key settings
and the escape character” on page
17

The OMVS interface does not have a control key.
Instead of using a <Ctrl> key to type control
sequences (for example, <Ctrl-D>), you use the
Control function key or a multicharacter escape-key
sequence.

“Typing escape sequences in the
shell” on page 22

With the OMVS interface, you can edit z/OS UNIX
files using the ISPF editor or the ed editor. Because
this interface runs in line mode, you cannot use the vi
editor.

Chapter 19, “Editing files,” on page
241

Delayed display of output: If a command you are
running does not produce output for more than a few
seconds, you will need to repeatedly press the Refresh
key to display the output as it is produced.

“Why isn't your output displayed
on the screen?” on page 16

© Copyright IBM Corp. 1996, 2015 13



Invoking the shell
To invoke the z/OS shell, log on to TSO/E and enter the TSO/E OMVS command.
Once you are working in a shell session, you can switch to TSO/E command mode
or you can switch to subcommand mode.

To invoke the shell:
1. Log on to TSO/E with your TSO/E user ID and password.
2. At the TSO/E READY prompt, enter the OMVS command. You do not need to

supply a password when invoking the shell.

The systems programmer might have set up your TSO/E user's logon to invoke
the shell automatically. In that case, you do not need to perform step 2.

You can start multiple shell sessions simultaneously when you log into the shell,
and you can start an additional shell session at any time during a shell session by
using the OPEN subcommand. You can switch from session to session, using a
function key or a subcommand.

Changing options on the OMVS command
The OMVS command provides an interface to the shell; for example, the layout of
the screen and the processing of the function keys.

You can create a customized version of the OMVS command for your own use, by
writing a simple REXX program or CLIST that specifies certain keywords on the
command. For information about how to do this, see “Customizing the OMVS
interface” on page 26 and “An example of customizing the OMVS command” on
page 26.

Understanding the shell screen
When you start the shell, you see the panel in Figure 7 on page 15.

S h e l l

$ - - - - - -
- - - -
$

= = = >
- - - - - - - - - - - -
- - - - - - - - - - - -

$ - - - - - -
- - - -
$

= = = >
- - - - - - - - - - - -
- - - - - - - - - - - -

E n t e r a T S O / E c o m m a n d

S u b c o m m a n d = = = >
- - - - - - - - -
- - - - - - - - -

S u b c o m m a n d

T S O / E

Figure 6. Switching temporarily to TSO/E command mode or subcommand mode

14 z/OS V2R2 UNIX System Services User's Guide



The $ prompt is an indication from the shell that it is ready to accept input, which
you type at the command line (===>). For a superuser, the default prompt is a #.

You can define a different prompt in your $HOME/.profile file, if you want to. (See
Chapter 4, “Customizing the z/OS shell,” on page 39 for more information about
your $HOME/.profile file.)

You see:
v The command line (===>), used for input.
v The current function key settings and the current escape character assignments.

You can turn off the function key display by typing the NOPF subcommand and
turn on the display by typing the PF subcommand; alternatively, you can
customize a function key to control the display of the function key settings. See
“Customizing the OMVS interface” on page 26 for details on customizing
function keys.

Note: The figures in this topic show the default function key settings.
v The status indicator in the right-hand corner, just above the function key lines.

When you first enter the shell, the status indicator is RUNNING. This indicator lets
you know the status of your session; for example, if an application is running or
if the shell session is ready for input.

v The session number, in angle brackets, following the status indicator. The session
number is displayed if there is more than one session active.

Figure 8 on page 16 shows how a screen would look after some input had been
entered.

IBM
Licensed Material - Property of IBM
5647-A01 (C) Copyright IBM Corp. 1993, 2013
(C) Copyright Mortice Kern Systems, Inc., 1985, 1996.
(C) Copyright Software Development Group, University of Waterloo, 1989.

U.S. Government users - Restricted Rights
Use, duplication, or disclosure restricted by
GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

$

===>
RUNNING

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Figure 7. The z/OS shell's display screen when the shell is first invoked. The bottom two
lines show the default function key settings.

Chapter 2. OMVS, a 3270 terminal interface to the z/OS shell 15



At the top of the screen, $ is the prompt and ls -l is the command that was
entered. Beneath that is the output from the command. When a command
completes, a $ prompt is displayed, indicating that you can enter another
command on the command line.

If you make an error entering a command or you are running a shell script or
program that ends in error, the error message is displayed in the output area. Some
error messages are displayed after the last output line. Others—for example, error
messages issued in subcommand mode—appear at the very top of the panel
followed by a separator line. To clear an error message displayed at the top of the
panel above a separator line, press <Enter> without typing any input.

Working in line mode
Because you are working in 3270 mode, what you type on the command line is
processed in line mode (also known as canonical mode). This means your input is not
processed until you press <Enter>.
v To enter input, type it at the command line (===>) and press <Enter>.
v To see your echoed input data or any output written by an application, look at

the screen. The first line of output is displayed, and then each subsequent line of
output is displayed under it.
After the screen fills up with output lines, the older output lines scroll upward,
out of view, as new output lines are displayed . You can, however, use function
keys to scroll the output backward and forward.

Why isn't your output displayed on the screen?
After you type a command and press <Enter>, the status of your session is
displayed in the lower right-hand corner of your screen as RUNNING. After a short
time, the status indicator automatically changes to INPUT; this means the shell
session is ready for input and will not send any more output or messages to the
display screen.

At times you may find that the status indicator changes to INPUT before you have
received any or all of your output. Don't worry—the shell is producing output and

$ ls -l
total 7
drwxr-xr-x 2 SMITHA 0 0 Dec 3 04:25 bin
drwxr-xr-x 2 SMITHA 0 0 Nov 19 15:16 doc
-rw-rwxrwx 2 SMITHA 0 250 Nov 17 23:07 etc
-rw-r--r-- 2 SMITHA 0 17 Nov 17 23:07 fora
-rw-r--r-- 5 SMITHA 0 1605 Dec 3 16:38 port
-rw-r--r-- 2 SMITHA 0 472 Nov 17 23:15 script
drwxr-xr-x 2 SMITHA 0 0 Nov 17 23:07 src
drwxr-xr-x 15 SMITHA 0 0 Dec 3 20:37 projecta
$

===>
INPUT

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Figure 8. The z/OS shell's display screen after input has been entered

16 z/OS V2R2 UNIX System Services User's Guide



storing it in a buffer. Just press the Refresh function key and the shell will display
more output on your screen. (If you don't have a Refresh function key, you can
press a <Clear> key, <PA2>, or <PA3>.)

The reason for this behavior is that TSO/VTAM provides no way to wait for
keyboard input and TTY output at the same time under TSO.

On the z/OS UNIX System Services Web site, there is some code (poll.c) that lets
an OMVS user remain in RUNNING mode indefinitely. This improves usability,
but it can have a significant performance impact if many people use it. You can
download the code by going to the Tips section:
http://www-03.ibm.com/systems/z/os/zos/features/unix/

Determining function key settings and the escape character
The shell has function keys that you can use for certain tasks, instead of typing
commands. To determine your function key settings and escape character
assignments, look ( Figure 9).

The function key functions
Table 1 describes all the functions available for function keys, and shows which of
those functions are assigned by default to keys. Function keys 13 to 24 are set to
the same values as function keys 1 to 12. You can change the default function key
settings. For example, you may want a Control function key for typing escape
sequences.

You can perform the same actions with either a function key or a subcommand;
the term you see under the column Function/Subcommand can be entered as a
subcommand also. See “Running a subcommand” on page 25 for more information
about subcommands.

In the first column, you see the default key assignment for a function. If a function
is not assigned to a key by default, there is no entry in the first column. You can
assign a function to a key by customizing your invocation of the OMVS command;
see “Function key settings (PFn)” on page 29 for more information.

Table 1. Function key settings available in the z/OS shell

Default setting
Function/
Subcommand Description

<F1> <F13> HELP Displays a help panel that explains the TSO/E OMVS
command and the three modes you can work in: shell,
subcommand, and TSO/E.

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Figure 9. Default function key settings

Chapter 2. OMVS, a 3270 terminal interface to the z/OS shell 17



Table 1. Function key settings available in the z/OS shell (continued)

Default setting
Function/
Subcommand Description

<F2> <F14> SUBCMD Processes an OMVS subcommand. A subcommand is a
command that is passed to the OMVS command
processor (instead of the shell). Most subcommands are
used to control, or temporarily change, the OMVS
interface. You can either enter a subcommand from the
shell command line or switch to subcommand mode to
do it.

To run a subcommand from the shell command line,
type the subcommand and press this function key.

To leave the shell session and enter subcommand
mode, press this function key when the shell command
line is empty. You can type the OMVS subcommands at
the command line in subcommand mode. To resume
working in the shell, press the Return function key.

<F3> <F15> HLPRETRN or
RETURN

If you are viewing help information, pressing this key
removes the help information from the screen. If you
are in subcommand mode, pressing this key returns
you to the shell session. (Refer to “Switching to
subcommand mode” on page 25 for a discussion of
subcommand mode.)

<F4> <F16> TOP Scrolls displayed data back to a screen of the oldest
available output, or, in help, back to the first panel.

<F5> <F17> BOTTOM Scrolls displayed data to a screen of the most recent
output, or, in help, to the final panel.

<F6> <F18> TSO You have the choice of switching to TSO/E command
mode to enter a TSO/E command or running the
TSO/E command from the shell command line.

To switch to TSO/E command mode, press <F6>. To
resume working in the shell, press <PA1>.

To run a TSO/E command from the shell command
line, select one of these options:
v Type the command and press the TSO function key.
v Use the tso shell command to run the TSO/E

command

Note: If you entered the OMVS command from ISPF,
you cannot enter ISPF as a TSO/E command from the
shell command line. You can, however, enter the
ISHELL command.

When the TSO/E command completes, typically *** is
displayed on the screen. Press <Enter> or <Clear> to
return to the shell.

<F7> <F19> BACKSCR Scrolls the displayed output backward, a screen at a
time. The scrolling ends when you reach the oldest
available saved line in a stack of saved output lines.

<F8> <F20> SCROLL Scrolls the output display a full screen forward.

18 z/OS V2R2 UNIX System Services User's Guide



Table 1. Function key settings available in the z/OS shell (continued)

Default setting
Function/
Subcommand Description

<F9> <F21> NEXTSESS Displays the next session whose session number is
higher than that of the session currently displayed.
However, if the highest-numbered session is currently
displayed, the lowest-numbered session will be
displayed.

<F10> <F22> REFRESH Updates the screen with new data from the shell
session. Use this function key if the display of output
(for example, output from a command you issued) is
incomplete , but the session is now displaying INPUT
status.

<F11> <F23> FWDRETR Used with <F12> to retrieve commands from the stack
of saved input lines. If you press <F12> one too many
times and go past the line you want, you can press
<F11> to display the line that was previously retrieved
by <F12>.

<F12> <F24> RETRIEVE Retrieves the most recently entered input line from a
stack of saved input lines. This key starts retrieving
with the most recent in the stack of saved lines and
works down to the oldest available.

ALARM Toggles the setting for the 3270 alarm to sound when
the shell writes a <BEL> character. Some applications
use an alarm to alert the user to particular events. The
default setting is to sound the alarm. You can select a
key to switch it off and on.

AUTOSCR Toggles the setting for autoscrolling of input and
output written to the screen. The default setting is to
autoscroll; you can select a key to switch it off and on.

CLOSE Ends the shell session currently displayed. Close
provides the same function as the Quit function key.

CONTROL Treats a character on the command line as part of an
escape sequence, and does not append a <newline>
character to the sequence. For example, if you type d on
the command line and press the Control function key,
the system processes the d as the EBCDIC equivalent of
the ASCII control sequence <Ctrl-D>.

ECHO Toggles the automatic hiding and display of input. If
pressed while an application has control over the
display of input, the application no longer controls it. If
pressed while the application does not control the
display of input, the application is given control.

See the description of the Hide function key.

HALFSCR Scrolls forward half of the currently displayed output.

HIDE Toggles the hiding and display of input.

If you are using OMVS in ECHO mode, pressing this
key overrides the visibility asked for by an application,
for the next input only. In NOECHO mode, if the input
area is not hidden, pressing this key hides the input
area for the next input only. If the input area is already
hidden, pressing this key makes the input area visible.

Chapter 2. OMVS, a 3270 terminal interface to the z/OS shell 19



Table 1. Function key settings available in the z/OS shell (continued)

Default setting
Function/
Subcommand Description

NO Deactivates a function key so that it performs no
function.

NOALARM Performs the same function as Alarm.

NOAUTO Performs the same function as Auto.

NOECHO Performs the same function as Echo.

NOHIDE Performs the same function as Hide.

NOPFSHOW Toggles the display of function key settings. The default
setting is to display the settings; you can select a key to
switch the display off and on.

PFSHOW Performs the same function as NoPFShow.

OPEN Starts another shell session and automatically switches
to it. The session is assigned the next unused session
number.

PREVSESS Displays the next-lower-numbered session. However, if
the lowest-numbered session is currently displayed, the
highest-numbered session will be displayed.

QUIT Ends the current session, and displays the
next-lower-numbered session. However, if the
lowest-numbered session is currently displayed, the
next-higher-numbered session is displayed.

If only one session is active, Quit causes the OMVS
command to quit. The workstation returns to TSO/E,
and the shell stops processing.

QUITALL Ends all active shell sessions. QuitAll causes the OMVS
command to quit. The workstation returns to TSO/E.
Note: If the OMVS interface is running in SHAREAS
mode (shared address space) and you quit all sessions
(QuitAll or Quit if there is just one session), the shell
process ends immediately.

The escape character
ESC=¢

An escape sequence produces an EBCDIC version of the ASCII control
sequence. (For example, the z/OS UNIX <EscChar-D> corresponds to the
ASCII <Ctrl-D>.) If you do not use a Control function key to enter escape
sequences, you will need to use an escape character. When you type an
escape character followed by a second character and press Enter, the
second character is converted into a different character before it is passed
to the shell.

The default escape character depends on the character conversion table
specified with the CONVERT keyword. For more information, see the
OMVS command description in z/OS UNIX System Services Command
Reference.

There can be up to eight escape characters defined and displayed on the
screen; you can use any one of them as an escape character. For example,
three are displayed here:

20 z/OS V2R2 UNIX System Services User's Guide



ESC=¢`%

In this topic, the notation EscChar coupled with another letter (for example,
<EscChar-D>) indicates an escape sequence.

For more information about escape sequences, see “Typing escape
sequences in the shell” on page 22, which follows.

Entering a shell command
You type shell commands on the shell command line (===>) and press <Enter> to
pass them to the shell.

Customizing the variant characters on your keyboard
If the shell is using a locale generated with code pages IBM-104 IBM-1027, or
IBM-939, an application programmer needs to be concerned about variant
characters in the POSIX portable character set whose encoding may vary from
other EBCDIC code pages. For example, the encodings for the square brackets do
not match on code pages IBM-037 and IBM-1047:

Left square bracket: [ (X'AD' on IBM-1047)
Right square bracket: ] (X'BD' on IBM-1047)

You may want to customize the encodings for those keys on your keyboard. See
Appendix C, “Code page conversion when the shell and MVS have different
locales,” on page 323 for more information on this topic.

Entering a long shell command
If you are typing a long command that will not fit on the command line, you can
use the \ (backslash) continuation character at the end of the first line. When you
then press <Enter>, the command line is cleared so that you can continue typing.
The line you typed prior to the backslash is displayed in the output area, and
beneath it the shell prompt changes to > to indicate that you are continuing a
command. For example:

$ cat /usr/macneil/uts/mydir/mydata\
>

===> /applprog/dbprog/dbget.c
RUNNING

While the shell is processing your command, it displays the RUNNING status
indicator.

Chapter 2. OMVS, a 3270 terminal interface to the z/OS shell 21



Where's the command output? If your output has not yet been displayed when
the status changes to INPUT, press the Refresh function key to see the output.

Entering a shell command from TSO/E
You can use the OSHELL REXX exec to run a z/OS shell command from the
TSO/E READY prompt and display the output to your terminal. The syntax is:
oshell shell_command

With this exec, do not use an & to run a shell command in the background. See
“OSHELL: Running a shell command from the TSO/E READY prompt” on page
166 for more information.

Interrupting a shell command
If you want to interrupt a command and stop it from completing, type
<EscChar-C> or type c and press the Control function key (if you have a function
key customized to perform the Control function; see “Determining function key
settings and the escape character” on page 17).

Typing escape sequences in the shell
An escape sequence produces an EBCDIC version of the ASCII control sequence.
(For example, the z/OS UNIX <EscChar-D> corresponds to the ASCII <Ctrl-D>.)
You can use escape sequences to type:
v Portable characters not included on your keyboard; see Appendix D, “Escape

sequences for a 3270 keyboard,” on page 327 for these sequences.
v Control characters that are normally available on ASCII workstations, but not

EBCDIC ones; see Appendix D, “Escape sequences for a 3270 keyboard,” on
page 327 for these sequences.

In this topic, the notation EscChar coupled with another letter (for example,
<EscChar-D>) indicates an escape sequence, corresponding to an ASCII control
sequence. You can type an escape sequence in either of these ways:
v Type a letter on the command line and press the Control function key if you

have one defined. The Control function key treats the character on the command
line as if it were preceded by an escape character, and it does not append a
<newline> character.
For example, to exit the shell, you type d on the command line and press the
Control function key.
To use a Control function key, you must customize the OMVS command with a
key setting for that function.

v Type an escape character sequence, beginning with one of the escape characters.
After you type the two characters in sequence and press <Enter>, the system
translates the two characters into a third character. For information on how to
customize your keyboard for typing an escape sequence, see “Keyboard
remapping” on page 23.

Suppressing the newline character
Whenever you press <Enter>, a <newline> character is automatically appended to
the characters you typed. For certain UNIX applications, you may want to
suppress the automatic <newline> character appended when you press <Enter>.

22 z/OS V2R2 UNIX System Services User's Guide



If you use the Control function key to input an escape sequence, no <newline>
character is appended. However, if you use an escape character to input an escape
sequence, a <newline> character is appended to the sequence. To suppress the
<newline> character, add an escape character at the end of the input and press
<Enter>.

For example, in the shell, the two-character EBCDIC sequence <EscChar-D> is the
equivalent of the ASCII control sequence <Ctrl-D>. To enter only an <EscChar-D>
with no final <newline>, type the string <EscChar-D-EscChar> on the command
line, and press <Enter>; an example is shown in Figure 10.

Keyboard remapping
With most terminal emulators, you can use the keyboard remapping function to
define one key to generate a multikey sequence. For example, you could define the
<D> key so that it generates <EscChar-D-EscChar-Enter> when the <Ctrl> key is
pressed in sequence with it. Thus, the sequence <Ctrl-D> acts like the ASCII
sequence <Ctrl-D>.

Determining your session status
To find out the status of your session, look in the lower right-hand corner of the
screen. A status indicator and shell session number (if more than one session has
been started) are displayed. The session number identifies the session displayed on
your screen.

INPUT <1>
5=Bottom 6=TSO
11=FwdRetr 12=Retrieve

The status indicators are:

INPUT
Indicates that the shell is ready for input and will not send any more
output to the display screen. If your output has not yet been displayed
when the status changes to INPUT, press the Refresh function key to see
more output.

RUNNING
Indicates that the workstation and shell are being polled, or that an
application program is running. After the polling completes, the indicator
changes.

MORE...
Indicates that the screen is full of output and there is more output waiting
to be displayed. To scroll the screen, do one of the following:
v Press the <Clear> key (or combination of keys, depending on your

keyboard)

===> ¢d¢
INPUT <3>

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Figure 10. Typing an escape sequence

Chapter 2. OMVS, a 3270 terminal interface to the z/OS shell 23



v Press the Scroll, HalfScr, or Bottom function key.

INPUT HIDDEN
Indicates that you have pressed a function key that will turn off the
display of any input that you type. Typically, this function is used for
typing in secure data. Once you press <Enter>, any further input is
displayed.

HIDDEN is a short form of INPUT HIDDEN, used when it is combined
with other status indicators, such as:
v HIDDEN/MORE
v HIDDEN/INPUT
v HIDDEN/NOT ACCEPTED
v HIDDEN/NOTACC/MORE
v HIDDEN/NOTACC/INPUT

NOT ACCEPTED
Indicates that the application or shell is hung and not accepting any input
you enter. Try using a subcommand to interrupt the application.

NOTACC is a short form of NOT ACCEPTED, used when it is combined
with other status indicators, such as:
v HIDDEN/NOTACC/MORE
v HIDDEN/NOTACC/INPUT

NOT ACCEPTED/MORE...
Indicates that the application is not accepting any input you enter and that
there is more output waiting to be displayed. Scroll the screen to clear it
before trying to reenter the input. To scroll the screen, do one of the
following:
v Press the <Clear> key (or combination of keys, depending on your

keyboard)
v Press the Scroll, HalfScr, or Bottom function key.

SUBCOMMAND
Indicates that you are working in subcommand mode.

Scrolling through output
You can scroll output forward and backward using:
v Function keys
v Cursor scrolling
v Scrolling subcommands

Using function keys or subcommands
There are five scrolling function keys that you can use during a shell session and
in subcommand mode:
v BackScr
v Bottom
v HalfScr
v Scroll
v Top

These are discussed in Table 1 on page 17.

24 z/OS V2R2 UNIX System Services User's Guide



You can use the TOP, BOTTOM, SCROLL, BACKSCR, and HALFSCR
subcommands to scroll output. They produce the same results as their
corresponding function keys (see Table 1 on page 17).

Using cursor scrolling
Cursor scrolling gives you better control over the scrolling action. You place your
cursor on a line in the output and then press one of these function keys or type the
corresponding subcommand:

BackScr
Positions the output line containing the cursor at the bottom of the output
displayed on the screen.

If the output partially fills the screen and the cursor is positioned below
the last line of output, the empty line with the cursor is displayed .

HalfScr
Positions the output line containing the cursor near the center of the
output displayed on the screen. This is similar to a partial scroll forward or
backward.

If the output partially fills the screen and the cursor is positioned below
the last line of output, the empty line with the cursor is displayed near the
center of the screen.

Scroll Positions the output line containing the cursor at the top of the output
displayed on the screen.

If the output partially fills the screen and the cursor is positioned below
the last line of output, the last line of output is displayed at the top of the
screen.

Running a subcommand
A subcommand is a command that is passed to the OMVS command processor
(instead of to the shell). Most subcommands are used to control, or temporarily
change, the OMVS interface. You can issue a subcommand in two ways:
v Type the subcommand on the shell command line and press the Subcommand

function key, if you have one defined.
v Switch to subcommand mode and enter the subcommand.

The names of the subcommands match the names of the functions listed in Table 1
on page 17. Some subcommands have aliases; for information on the
subcommands and their aliases, see the OMVS command description in z/OS
UNIX System Services Command Reference.

You can enter the subcommands in uppercase, lowercase, or mixed-case letters.

Switching to subcommand mode
Instead of using the Subcommand function key to run a subcommand, you can
switch to subcommand mode to enter it. To switch to subcommand mode, press
the SubCmd function key when the shell command line is empty. In subcommand
mode, the screen appears as it did in the shell, except that in the lower right-hand
corner the status displayed is SUBCOMMAND. Existing output from the shell is
displayed at the top of the screen, and any new output is displayed as it is
available.

Chapter 2. OMVS, a 3270 terminal interface to the z/OS shell 25



When you switch to subcommand mode, the command prompt changes to OMVS
Subcommand ==>.

Using multiple sessions
You can run more than one shell session concurrently. When you have more than
one session active, the sessions are numbered and the identifying number for a
session is displayed next to the status indicator.

Starting sessions
To start additional sessions, you can:
v Use the SESSIONS keyword on the OMVS command to specify the number of

sessions you want started automatically when you log into the shell. By writing
a small REXX program or CLIST, you can customize your invocation of the
OMVS command so that every time you log into the shell multiple sessions are
started.

v Use the OPEN subcommand during a session. This starts another shell session
and automatically switches to it. The session is automatically assigned the next
unused session number.

Switching between sessions
You can use function keys or subcommands to switch between sessions:
v NextSess is the default setting for <F9>. If you wish, you can customize an

additional key for the PrevSess setting. See Table 1 on page 17 for a discussion of
these functions.

v The NEXTSESS and PREVSESS subcommands perform the same as the function
keys.

Customizing the OMVS interface
You can select the keywords you want to use when you enter the TSO/E OMVS
command:
ALARM | NOALARM
AUTOSCROLL | NOAUTOSCROLL
CONVERT()
DBCS | NODBCS
DEBUG()
ECHO | NOECHO
ENDPASSTHROUGH(ATTN | CLEAR | CLEARPARTITION | ENTER | NO | PA1 | PA3 | PF1
... PF24 | SEL)
ESCAPE()
HIDE | NOHIDE
LINES()
PF()
PFSHOW | NOPFSHOW
RUNOPTS()
SESSIONS()
SHAREAS | NOSHAREAS
WRAPDEBUG()

An example of customizing the OMVS command
To invoke the OMVS command to:
v Set function key 1 as the Control function key
v Start three sessions
v Not use a shared address space

26 z/OS V2R2 UNIX System Services User's Guide



Enter:
omvs pf1(control) sessions(3) noshareas

By writing a small REXX program or CLIST, you can customize your selection of
keywords on the TSO/E OMVS command. If you intend to use these settings
every time you enter the command, you could:
1. Write a REXX program that runs the OMVS command with the customized

keywords. For example, here is a REXX program called MYOMVS:
/* REXX */
P = PROMPT("ON"); /* Don’t suppress prompting */
"omvs pf1(control) sessions(3) NOSHAREAS";
X = PROMPT(P); /* Restore original prompting state */
Return;

The use of the REXX function PROMPT() is required to prevent prompts from
being suppressed. Otherwise, TSO/E commands cannot prompt you for
additional information when the commands are issued during a shell session.

2. Install the exec in a data set that is part of either the SYSPROC or SYSEXEC
concatenation.

3. When you log on to TSO/E, at the READY prompt you enter MYOMVS and the exec
calls MYOMVS, your customized OMVS command. Your changes override the
default settings.

For more discussion of the syntax of the OMVS command and its customizable
keywords, see the OMVS command description in z/OS UNIX System Services
Command Reference.

The alarm setting (ALARM | NOALARM)
Some applications sound an alarm to alert the user to particular events. To change
the default alarm setting (which allows it to sound), use the NOALARM keyword.

Autoscrolling (AUTOSCROLL | NOAUTOSCROLL)
Automatic scrolling of input and output written to the screen is the default.
Specify NOAUTOSCROLL to prevent the automatic scrolling.

If an application writes a <form-feed> character with no following data to a
terminal and OMVS is in AUTOSCROLL mode, the screen is cleared.

The character conversion table (CONVERT)
There are both APL and non-APL character conversion tables. The IBM-supplied
default is a null conversion table, but the systems programmer can select a
different default for the OMVS command to use. If you do not want to use the
default table, you can specify a table name with the CONVERT keyword. See the
OMVS command description in z/OS UNIX System Services Command Reference for
more details.

To access data in the z/OS UNIX file system, use a terminal that is operating in
the same code page as the file system. In other words, if you have a 3270 terminal
using a French code page, you cannot access z/OS UNIX file system data encoded
in a German code page when you are using the OMVS-provided character
conversion tables. However, you could provide your own OMVS conversion tables
to convert between the French and German code pages.

Chapter 2. OMVS, a 3270 terminal interface to the z/OS shell 27



Double-byte character set support (DBCS | NODBCS)
By default, the OMVS command supports the use of a double-byte character set
(DBCS). If your terminal does not support DBCS, this default has no effect. To
prevent DBCS processing on a DBCS terminal, specify the NODBCS keyword.

Use the NODBCS option if you have a DBCS terminal but do not want the
overhead associated with using the OMVS command with DBCS support.

Debugging for the OMVS command (DEBUG)
Change this default setting from NO only if IBM asks you to do so. To control the
collection and output of debugging information, change the DEBUG keyword as
directed.

Giving an application control of the command line (ECHO |
NOECHO)

You can use the ECHO option to allow an application to control the visibility of
the input area. When ECHO is specified, OMVS hides or displays the input area
based on the application's setting of the ECHO bit in the termios structure. If the
bit is off, the command line is hidden, except in subcommand mode. If the bit is
on, the command line is visible. The default is NOECHO, which does not allow
the application to control the visibility of the input area.

Ending 3270 pass-through mode (ENDPASSTHROUGH)
Applications running from the shell can switch to TSO/3270 pass-through mode,
which lets an application invoke TSO/E functions. For application development
purposes, you can specify a key that ends TSO/3270 pass-through mode and forces
OMVS to return to the shell session.

Because this key is used only during application development, the default is
ENDPASSTHROUGH(NO).

For more information about TSO/3270 pass-through mode, see Appendix A.
TSO/3270 pass-through Mode in z/OS UNIX System Services Programming Tools.

The escape character (ESCAPE)
If you do not use a Control function key to escape a character, you can type a
two-character escape sequence instead. (For an explanation of escape characters,
see “Typing escape sequences in the shell” on page 22.)

To change the default escape character, or have more than one escape character,
type escape characters after the ESCAPE keyword. You can type up to eight
characters, enclosed in single quotation marks with no space between them. For
example:
OMVS ESCAPE(’`¢’)

When specifying escape characters:
v Select characters that are not in the POSIX portable character set. See “The

POSIX portable character set” on page 324 to see the contents of the POSIX
portable character set.

v Select single-byte characters, even if you are using a double-byte character set.

28 z/OS V2R2 UNIX System Services User's Guide



The escape characters specified with the OMVS command completely override
those in the character conversion table being used. However, if no escape
characters are specified with the OMVS command, the system uses those in the
conversion table.

Controlling the size of the output scroll buffer (LINES)
You can override the default size of the output scroll buffer; the default is roughly
four screens. With the LINES keyword, you can specify the size of the buffer; the
range is 25 to 3000 lines.

Note: Using a large output scroll buffer increases the amount of storage that the
OMVS command requires; it also causes additional overhead, impacting
performance.

Function key settings (PFn)
To customize any of the default function key settings, type your selection in the
parentheses after the function key name. For example:
OMVS PF1(CONTROL)

makes function key 1 the Control key, which you use to type an escape sequence
such as <Ctrl-D> (first you type d on the command line, and then you press the
function key).

Displaying the function key settings (PFSHOW | NOPFSHOW)
To turn off the display of function key settings, specify the NOPFSHOW keyword
on the OMVS command.

Specifying Language Environment runtime options
(RUNOPTS)

To run the TSO/E OMVS command with Language Environment® runtime
options, specify the RUNOPTS keyword.

Example: To run the OMVS command and print out an options report, issue:
OMVS RUNOPTS(’RPTOPTS(ON)’)

See z/OS Language Environment Programming Reference for a list of runtime options.

Note: The use of inappropriate Language Environment runtime options, such as
TRAP(OFF) or POSIX(OFF), may cause the OMVS command to fail.

Any valid runtime options specified by RUNOPTS normally get passed along to
the shell.

Multiple sessions (SESSIONS)
If you want more than one session started when you invoke the OMVS command,
use the SESSIONS keyword. The suggested maximum number of sessions is three
or four. If you try to start too many sessions (the limit depends on the size of your
TSO/E address space), your TSO/E user ID runs out of storage and various
unpredictable errors might occur. You might have to log off your TSO/E user ID
before you can continue.

Chapter 2. OMVS, a 3270 terminal interface to the z/OS shell 29



The shared TSO/E address space (SHAREAS | NOSHAREAS)
Having the OMVS command and the shell run in the same (shared) TSO/E
address space saves one address space per user and simplifies transaction
accounting, as managed by the operating system. The shell shares the address
space (SHAREAS) by default, unless the shell is a SETUID or SETGID program
and the owning UID or GID is not the same as the current owner.

If you specify NOSHAREAS, the shell might keep running even after the QUIT
subcommand was entered; in most cases, it will not.

For more information about shared address space, see Chapter 12, “Performance:
Running executable files,” on page 173.

Controlling data recorded in the debug data set
(WRAPDEBUG)

Use the WRAPDEBUG keyword to specify how many lines of debug data that
OMVS writes out before wrapping around to the top of the debug data set.

Performing TSO/E work or ISPF work after invoking the shell
After you invoke the shell, you can:
v Enter a TSO/E command from the command line
v Switch temporarily to TSO/E command mode
v Return to ISPF or the TSO/E READY prompt

Entering a TSO/E command from the z/OS shell
You can enter a TSO/E command from the shell in either of these ways:
v Type the tso shell command before the TSO/E command. For example:

tso "oput source.c(hello) ’/u/ehk/source/hello.c’"

The oput command is quoted so that the shell does not process it. If you are
copying a file, specify the -t option to copy a file to your current directory. For
more information about the tso command and its options, see z/OS UNIX System
Services Command Reference.

v Type the command on the shell command line and press the TSO function key.
When the TSO/E command completes, typically *** is displayed on the screen.
To return to the shell and resume working at the shell command line, press
<Enter> or <Clear>.

Use the man command to view descriptions of TSO/E commands by prefixing the
command with tso. For example, to view a description of the MOUNT command,
you would enter:
man tsomount

For complete information about the man command, see the man command
description in z/OS UNIX System Services Command Reference.

Command not found? If you type a TSO/E command from the shell and press
<Enter> instead of the TSO function key, you may receive a message that the
command is not found. Because you did not press the TSO function key, the shell
attempted to process the command as a shell command. (You can use the Retrieve
function key to redisplay the command.)

30 z/OS V2R2 UNIX System Services User's Guide



Switching to TSO/E command mode
There are two contexts for switching to TSO/E command mode:
v You are in the z/OS shell. You want to run TSO/E commands without shutting

down any processes that might be running and without exiting the shell
completely.

v You are in subcommand mode and want to run TSO/E commands.

You can switch to TSO/E command mode to run TSO/E commands (such as
OPUT or OGET). When the command line is empty, press the TSO function key.
Any shell scripts or processes that were running when you pressed the function
key continue to run.

Once you are in TSO/E command mode, the screen is in line mode and no
function keys are active or displayed. A special prompt (not the typical TSO/E
READY prompt) is issued:
OMVS - Enter a TSO/E command, or press PA1 to return to the shell.

When you complete your work in TSO/E command mode, press <PA1> to return
to wherever you were before you entered TSO/E. You can resume your work in
the shell or return to subcommand mode.

ftp or telnet from TSO
There is an ftp command available in the shell, but no telnet command. However,
when you use the OMVS command to login to the shell, you can switch to TSO
and issue the telnet command from there, with the following restriction: When you
telnet to a remote MVS host and then access a shell, you can work in line mode
only (for example, you cannot use vi).

See z/OS V2R2.0 Communications Server: IP User's Guide and Commands for detailed
information about using the telnet command from TSO.

Exiting the shell
There are four situations when you might want to exit the shell:
v To leave the shell temporarily and switch to TSO/E command mode: Press the

TSO function key. You can do this any time during a session, regardless of
whether you are currently running a command or script. See “Performing
TSO/E work or ISPF work after invoking the shell” on page 30 for details.
If you switch to TSO/E command mode, the shell and any shell commands
continue running until they attempt to read from the terminal or until the
terminal output buffer is full; if either of these situations occurs, the commands
are suspended until you return to the shell.

v To exit the shell when a foreground process has completed: Type exit or
<EscChar-D>. Scroll past all the output data (or use an autoscroll function key if
you have customized a function key to do that), and exit.

Note: The <EscChar-D> sequence does not work if you have entered set -o
ignoreeof in the shell. See the set command description in z/OS UNIX System
Services Command Reference.
If you are using the shell option set +m or its equivalent set +o monitor to have
background jobs run in the same process group as the shell, use the nohup
command to run a script or program that will continue running after you log
out.

Chapter 2. OMVS, a 3270 terminal interface to the z/OS shell 31



If you were in ISPF when you entered the shell, you are returned to ISPF; if you
were in TSO READY mode, you are returned to TSO/E READY.

v To exit the shell when a background job is running: Press the SubCmd
function key and then enter the QUIT subcommand.

Note: If your OMVS interface is running in SHAREAS mode (shared address
space) and you quit all sessions (QUITALL subcommand or QUIT for the only
session), the shell process ends immediately.
If you were in ISPF when you entered the shell, you are returned to ISPF; if you
were in TSO/E READY mode, you are returned to TSO READY.
By default in the shell (the set -m option), a background job runs in a different
process group from the shell, and the job keeps running after you exit the shell.
To have background jobs run in the same process group as the shell, use the set
+m command or its equivalent, set +o monitor.

v If your application is in a loop: Try using <EscChar-C> or <EscChar-V> to
interrupt it. If this does not work, press the SubCmd function key to leave the
shell. Then type quit and press <Enter>. This causes the OMVS command to
quit abruptly. The workstation returns to TSO/E and the shell stops processing.
For more information on using escape sequences such as <EscChar-C>, see
“Typing escape sequences in the shell” on page 22.

Getting rid of a hung application
If your application hangs, try the following procedure to kill it:
1. On the command line, enter <EscChar-V> (or <EscChar-C>). When this is

successful, the shell prompt is displayed.
2. If step 1 does not work, enter the OPEN or NEXTSESS subcommand to start or

switch to a second shell session. In the second shell session, determine the
process identifier (PID) of the hung application by entering ps -ef.
Then enter kill -s KILL nnnnnn, where nnnnnn is the PID obtained from the
ps -ef command. After the kill command completes, you can return to the first
session using the NEXTSESS or PREVSESS subcommand.

3. If step 2 does not work, enter the QUIT subcommand, or QUITALL if more
than one session is active. This should free your TSO/E terminal, and you can
then enter the OMVS command to start another session. The application may
still be hung; if so, you need to use the kill command.

4. If step 3 does not work, ask the operator to cancel your TSO/E user ID, using
the CANCEL command. The operator may also need to use the FORCE
command.

5. If step 4 does not work, try a VTAM logoff (using the <SYSREQ> key), and
wait long enough for MVS to end your session before you try to log on again.

Using a double-byte character set (DBCS)
If you want to display or enter double-byte data, you must:
v Work at a terminal that is configured to generate data in code page IBM-939 and

follow the procedures for the terminal emulator being used, if any.
v Specify special LOGMODEs to access TSO/E and VTAM support for DBCS.

Typically the systems programmer sets them up and provides you with
instructions.

v Run the TSO/E PROFILE PLANGUAGE(JPN) command, if required, to receive
Japanese-language messages from the OMVS interface to the shell. Do not
change your PROFILE PLANGUAGE when temporarily switched to TSO/E

32 z/OS V2R2 UNIX System Services User's Guide



from the shell. After you invoke the shell, OMVS will not change the language
of the messages it issues until you exit the shell and return to TSO/E, change
your PROFILE PLANGUAGE, and reinvoke OMVS.

v Use the null translate table (the default) for character conversion. You do not
need to specify the CONVERT keyword on the OCOPY, OGET, OGETX, OPUT,
and OPUTX commands.

v Access the shell using the OMVS command with the DBCS keyword, the
default setting.

v Define a single-byte escape character for typing an escape sequence, if you do
not use the default ¢.

The shell utilities (for example, grep and ed) work with DBCS data in the file
system and can be used to create DBCS data in the file system.

Single-byte restrictions
When working with a double-byte character set, you must use single-byte
characters in these situations:
v Single-byte characters for file names. DBCS characters in file names are treated

as SBCS characters.
v Single-byte characters for command-line options
v Single-byte characters for command-line arguments
v Single-byte characters for delimiters, such as a slash, braces, parentheses, and so

on
v For user-defined environment variables, only SBCS for the names, and SBCS or

DBCS for the values
v For the shell environment variables, only IFS, PS1, and PS2 support DBCS

values
v For user IDs, passwords, and password phrases
v For device, group, and terminal names.

Chapter 2. OMVS, a 3270 terminal interface to the z/OS shell 33



34 z/OS V2R2 UNIX System Services User's Guide



Chapter 3. The asynchronous terminal interface to the shells

For people who work with UNIX systems, the asynchronous terminal interface is
familiar. You use the asynchronous terminal interface if you access the z/OS shells
with one of these methods:
v rlogin
v telnet
v rlogin or telnet via the Communications Server
v Communications Server login from a serially attached terminal

ASCII-EBCDIC translation
When you use rlogin, telnet, or Communications Server to access the shell, the
data you enter is translated from ASCII (ISO8859-1) to EBCDIC (IBM-1047) before
the shell processes it. To change code pages for the current session, use the chcp
command. To automatically change code pages after you login, see “Changing the
locale in the shell” on page 45 for the z/OS shell, or “Changing the locale in the
shell” on page 59 for the tcsh shell.

For a complete list of the single-byte and double-byte ASCII and EBCDIC code
pages that you can specify, see z/OS XL C/C++ Programming Guide.

Using rlogin to access the shell
When the inetddaemon is set up and active, you can rlogin to a shell from a
workstation that has rlogin client support and is connected via TCP/IP or
Communications Server to the MVS system. To login, use the rlogin command
syntax supported at your site.

To improve performance when you rlogin into a shell, you can use shared address
space; for more information, see Chapter 12, “Performance: Running executable
files,” on page 173.

Note: If you are writing or porting an rlogin command to rlogin into a shell, the
shell interface to rlogin consists of the FOMTLINP and FOMTLOUT modules,
documented in z/OS UNIX System Services Planning.

Using telnet to access the shell
You can telnet to the shell from a workstation that is connected via TCP/IP or
Communications Server to the MVS system. Use the telnet command syntax
supported at your site.

Using Communications Server login to access the shell
If you are working at a terminal that is serially attached to the Communications
Server, you can login directly to the shell.
1. Specify the host you want to login to. You receive a message confirming that

you are connecting to the host.
2. At the prompts, enter your user ID and password or password phrase.

© Copyright IBM Corp. 1996, 2015 35



The shell session
Once your login completes, you see your normal shell prompt (for example, $ or
>). This is a UNIX interface, not the 3270-type interface that is displayed by the
OMVS command. By default, the terminal interface is in line mode (also known as
canonical mode), which means that each time you type a command at the prompt,
you need to press Enter to process the command. Some utilities switch the terminal
interface to raw mode. When you use a raw mode utility (such as vi or talk), or
when command line editing is enabled in the shell, each keystroke is transmitted;
you do not need to press <Enter>.

When you are in a shell session, you can:
v Run all shell commands and utilities.
v Run any application from the z/OS UNIX file system.
v Use the vi editor and other full-screen applications such as talk and more.

In the z/OS UNIX environment, the asynchronous terminal interface session has
some differences from an OMVS session:
1. You cannot switch to TSO/E. However, you can use the tso shell command to

run a TSO/E command from your session.
2. You cannot use the ISPF editor. (This includes the oedit and TSO/E OEDIT

commands, which invoke ISPF File Edit.)

Entering a shell command
You type shell commands and press <Enter> to pass them to the shell.

If you are typing a long command that will not fit on one line, you can use the \
(backslash) continuation character at the end of the first line. When you then press
<Enter>, the line is cleared so that you can continue typing. The line you typed
prior to the backslash is displayed in the output area, and beneath it the shell
prompt changes to > (? in tcsh) to indicate that you are continuing a command.

Interrupting a shell command
If you want to interrupt a command and stop it from completing, type <Ctrl-C>.
The command stops executing and the system displays the shell prompt. You can
now enter another command.

Using multiple sessions
With rlogin, telnet, or Communications Server, you can login to a shell more than
once, using the same user ID and password or password phrase. You can also be
logged in to a shell using the OMVS 3270 interface and the asynchronous terminal
interface at the same time, using the same user ID and password or password
phrase.

Using a double-byte character set (DBCS)
If you want to display or enter double-byte data:
v You must work at a terminal that is configured to generate data in code page

IBM-939 and follow the procedures for the terminal emulator being used, if any.
v Customize your locale and use the chcp command to specify the ASCII and

EBCDIC code pages you are using.

36 z/OS V2R2 UNIX System Services User's Guide



– For information on how to customize your locale and configure your setup
files, see “Changing the locale in the shell” on page 45 for the z/OS shell, or
“Changing the locale in the shell” on page 59 for the tcsh shell.

When you are working with a double-byte character set, there are some
restrictions. See “Single-byte restrictions” on page 33 for more information.

Standard shell escape characters
The following are some of the standard shell escape characters:
v <Ctrl-C> — Program interruption
v <Ctrl-D> — End of file
v <Ctrl-V> — Quit Program
v <Ctrl-Z> — Suspend Program

Chapter 3. The asynchronous terminal interface to the shells 37



38 z/OS V2R2 UNIX System Services User's Guide



Chapter 4. Customizing the z/OS shell

If you are interested in working with the z/OS shell, read this information as well
as:
v Chapter 6, “Working with z/OS shell commands,” on page 67
v Chapter 8, “Writing z/OS shell scripts,” on page 115

You can personalize your use of the z/OS shell. This topic covers this information:
v Creating or modifying your .profile file
v Understanding shell variables
v Customizing your shell environment with the ENV variable
v Customizing the search path for commands with the PATH variable
v Improving the performance of shell scripts
v Changing the locale
v Customizing the language of messages
v Setting the time zone
v Building a STEPLIB environment
v Setting options for a shell session

Customizing your .profile
When you start the z/OS shell, it uses information in three files to determine your
particular needs or preferences as a user. The files are accessed in this order:
1. /etc/profile
2. $HOME/.profile
3. The file that the ENV variable specifies

Settings established in a file accessed earlier can be overwritten by the settings in a
file accessed later.

The /etc/profile file provides a default system-wide user environment. The systems
programmer can modify the variables in this file to reflect local needs (for
example, the time zone or the language). If you do not have an individual user
profile, the values in the /etc/profile are used during your shell session.

The $HOME/.profile file (where $HOME is a variable for the home directory for
your individual user ID) is an individual user profile. Any values in the .profile
file in your home directory that differ with those in the /etc/profile file override
them during your shell session. z/OS provides a sample individual user profile.
Your administrator may set up such a file for you, or you may create your own.

Typically, your .profile might contain the following:

export ENV=$HOME/.setup #set and export ENV variable
export PATH=$PATH:$HOME: #set and export PATH variable
export EDITOR=ed #set and export EDITOR variable
export PS1=’$LOGNAME’:’$PWD’:’ >’

Figure 11. A sample .profile

© Copyright IBM Corp. 1996, 2015 39



If the value on the right-hand side of the = sign does not contain spaces, tab
characters, or other special characters, you can leave out the single quotation
marks.

Each of the lines begins with an export command. For the z/OS shell, this sets the
variable and also specifies that whenever a subshell is created, these variables
should be exported to it. You can also set a variable on one line and export it on
another, as shown here:
ENV=$HOME/.setup
export ENV

If portability to a Bourne shell is a consideration, use the two-line syntax. See
“Exporting variables” on page 118 for more information about exporting variables.

export ENV=$HOME/.setup
Identifies the .setup file in your home directory as your login script (also
known as a setup script or environment file) and specifies that whenever a
shell is created, the ENV variable should be exported to it. See
“Customizing your shell environment: The ENV variable” on page 42 for
more information about a login script.

export PATH=$PATH:$HOME:
Identifies the search path to be used when locating a file or directory, and
specifies that whenever a subshell is created, the PATH variable should be
exported to it. Here, the system first searches the path identified in the
PATH variable in /etc/profile, the system profile; then the system searches
your home directory; finally, the system searches your current working
directory. A leading or trailing colon, or two colons in a row, represents the
current working directory. To avoid confusion, this is often expressed as:
export PATH=$PATH:$HOME:.

This PATH setting and the one in the example are equivalent. See
“Customizing the search path for commands: The PATH variable” on page
43 for more information.

export PS1='$LOGNAME:$PWD: >'
Identifies the shell prompt that indicates when the shell is ready for input,
and specifies that whenever a subshell is created, the PS1 variable should
be exported to it. Here the prompt (default is $) has been customized to
show your login name and working directory. For example, for user ID
TURBO working in the home directory, the prompt would display as:
turbo:/u/turbo: >

When TURBO changes directories, the prompt changes to indicate the
working directory.

export EDITOR=ed
Identifies ed as the default editor used by some of the utilities, such as
mailx, and specifies that whenever a subshell is created, the EDITOR
variable should be exported to it.

Tip: If you create a subshell with the command sh –L, the shell starts and reads
and executes your profile file. Note that the letter L must be in uppercase. The
shell looks for .profile in the $HOME directory. If it is not found, the shell looks in
the working directory; therefore, make sure that you are working in the right
directory when you enter this command.

40 z/OS V2R2 UNIX System Services User's Guide



Quoting variable values
When you have blanks in a variable value, you need to enclose it in quotation
marks. The quotation marks tell the shell to treat blanks as literals and not
delimiters. Single quotation marks are more serious about this than are double
quotation marks:
v Single quotation marks preserve the meaning of (that is, treat literally) all

characters.
v Double quotation marks still allow certain characters ($, ` (backquote), and \

(backslash)) to be expanded. This is important if you want variable expansion.
For example, see how the $ is handled here:
export HOMEMSG="Using $HOME as Home Directory"

If your home directory were set to /u/user, the following:
echo $HOMEMSG

would display:
Using /u/user as home directory

If, instead, you enclosed the variable value in single quotation marks, like this:
export HOMEMSG=’Using $HOME as home directory’

the following:
echo $HOMEMSG

would display:
Using $HOME as home directory

As you can see, the $ is not expanded.

Changing variable values dynamically
You can also change any of these values for the duration of your session (or until
you change them again). You enter the name of the environment variable and
equate it to a new value.

Example: To change the command prompt string to +>, issue:
PS1=’+>’

Understanding shell variables
You can display the shell's variables and their values by entering this command:
set

You may see many variables that you don't recognize. These are built-in, or
predefined, variables that are set up with default values when you start the shell.

You can customize the built-in variables by setting their value in your .profile.
Only the variables IFS, PS1, and PS2 support double-byte characters for the
values.

Only the shell variables that are exported are available to shell scripts and
commands invoked from the shell. Environment variables are a subset of shell
variables that have been exported.

Chapter 4. Customizing the z/OS shell 41



You can display the environment variables and their values by entering either of
these commands:
env
printenv

You can display the value of a single variable with the echo command, the print
command, or the printenv command. For example, any of these commands
echo $HOME

print $HOME

printenv $HOME

displays the current value of the HOME variable.

In general, echo displays the current values of all its arguments, after any shell
processing has taken place. For example, consider:
echo *.doc

The shell first expands the wildcard character *. This produces the names of every
file in the working directory that has the suffix .doc. So the output of echo is a list
of all such files. And if there are no file names ending in .doc, the command
output is just *.doc.

For more information about shell variables,
v Built-in variables are listed in a table in the sh command description in z/OS

UNIX System Services Command Reference.
v There is an appendix that lists shell variables in z/OS UNIX System Services

Command Reference.

Customizing your shell environment: The ENV variable
So far, we have discussed customization that is set up inside your .profile file.
However, the shell reads your profile file only when you log into the shell or when
you enter the sh command –L option.

To always have a customized shell session, you need to have a special shell script
that sets up the environment started each time you start the shell; this is called a
login script (also known as an environment file, or startup script). You specify the
name of this script in the ENV variable in your .profile file.

When you start the shell, the shell looks for an environment variable named ENV.
You can use the ENV variable to point to a login script that sets things up in the
same way that the profile file does.

Example: For example, you might put all your alias definitions and other setup
instructions into a file called .setup in your home directory. You want these
instructions run when your shell starts after you login and whenever you explicitly
create the shell during a session (for example, as a child shell to run a shell script).
To make sure ENV is set up when you login or when you execute a shell, specify
export ENV in your .profile file.
export ENV=$HOME/.setup

You might find it useful to put all your aliases in the login script that ENV points
to, instead of in your .profile file. However, you should keep exported variable
assignments in your profile, so that they are run only once.

42 z/OS V2R2 UNIX System Services User's Guide



Customizing the search path for commands: The PATH variable
Command interpreters usually have to search for a file that contains the command
you want to run. When you are using the shell, you tell the shell where to search
for a command. Essentially, the shell uses a list of directories in which commands
may be found. This list is specified in your PATH variable in your .profile file. The
list could be called your search path, because it tells the shell where you want to
search.

You can set up a search path with a command of the form:
PATH=’dir:dir:...’

For example, you might enter:
PATH=’/bin:/usr/bin:/usr/etc:/usr/macneil/bin:/usr/games:/usr’

The shell then searches the directories in the following order, when looking for
commands or shell scripts:
1. /bin
2. /usr/bin
3. /usr/etc
4. /usr/macneil/bin
5. /usr/games
6. /usr

As soon as the shell finds a file with an appropriate name, it runs that file.

Because the shell runs a command as soon as it finds a file with an appropriate
name, pay close attention to the order in which you list directory names in your
search path. For example, the previous search path specifies the /bin directory
(where z/OS shell commands are stored) before the /etc directory.

If you set up your PATH incorrectly, you could get the wrong command. Always
search the shell commands directory first: /bin. Some z/OS shell commands run
other shell commands and utilities by name; they expect to get the z/OS UNIX
version of that command and might not work correctly if a program that has the
same name is found first in another directory.

Tip: To ensure that the z/OS shell properly identifies a shell built-in command,
specify the shell commands directory /bin exactly as /bin (not as /bin/ or any
other variation) in addition to making the shell commands directory /bin part of
your PATH. Some commands located in /bin are implemented as shell built-in
commands in order to improve performance of shell scripts. The directories
specified in PATH influence how the shell locates commands, including the built-in
commands, which also influence how the shell handles tracked aliases. See “Using
alias tracking” on page 73 for more information about tracked aliases.

Adding your working directory to the search path
You can have the shell search your working directory for commands (in addition
to the standard directories that contain commands). As an example, suppose you
have different directories containing the source code for different programs. In
each directory, you create a shell script named compile that compiles all the source
modules of the program in that directory. To compile a particular program, enter
cd to change to the appropriate directory and then enter:
compile

Chapter 4. Customizing the z/OS shell 43



The shell searches the working directory, finds the compile shell script, and runs it.

You can add your working directory to your search path by one of these methods:
v Putting in an entry without a name
v Using a period (.) for the working directory.

For example, both of these specify that the working directory should be searched
after /bin but before /usr/local:
PATH=’/bin::/usr/local’ #no name
PATH=’/bin:.:/usr/local’ #using a period

Both of these say that your working directory should be searched before anything
else:
PATH=’:/bin:/usr/local’ #no name
PATH=’.:/bin:/usr/local’ #using a period

Both of these say that your working directory should be searched after everything
else:
PATH=’/bin:/usr/local:’ #no name, ends in a colon
PATH=’/bin:/usr/local:.’ #using a period

The best way to specify search paths is to put them into your .profile file. That
way, they are set up every time you log into the shell.

Checking the search path used for a command
With aliases and search paths, it can be easy to lose track of what is executed when
you enter a command. The type command can tell you which file is executed if
you enter a command line that begins with a specific command. For example:
type date

tells you:
date is /bin/date

and the command:
type jobs

tells you:
jobs is a built-in command

You can figure out how the search path works and what effect aliases have.

Customizing the FPATH search path: The FPATH variable
The FPATH variable contains a list of directories that the z/OS shell searches to
find executable functions. Directories in this list are separated by colons. sh
searches each directory in the order specified in the list until it finds a matching
function. FPATH should specify only directories where the only executable files are
function definitions.

Customizing the DLL search path: The LIBPATH variable
If you use a utility that uses a dynamic link library (DLL) —for example, dbx—
you can set up the search path for the DLL with the LIBPATH variable. If this
variable is not set, your working directory is searched for the DLL. The default
setting shipped in /samples/profile is:
LIBPATH=/lib:/usr/lib:.

44 z/OS V2R2 UNIX System Services User's Guide



Improving the performance of shell scripts
To improve the performance of shell scripts, set the _BPX_SPAWN_SCRIPT
environment variable to a value of YES.

If _BPX_SPAWN_SCRIPT=YES is not already placed in /etc/profile, you can put it
in your $HOME/.profile.

Here is what the variable does: if the spawn callable service determines that a file
is not a z/OS UNIX executable or a REXX exec, this setting causes spawn to run
the file as a shell script directly. In the default processing, however, if the spawn
callable service determines that a file is not a z/OS UNIX executable or a REXX
exec, the spawn fails with ENOEXEC, and the shell then forks another process to
run the input shell script. Setting this variable to YES eliminates the additional
overhead of the fork.

You may want to set the variable to NO when you are running a non-shell
application. For example, if an application does not support shell script
invocations, set the variable to NO. Likewise, if an application is in test mode and
the returning of ENOEXEC would be a useful indication of an error in the format
of the target executable file, set the variable to NO.

Changing the locale in the shell
The default locale for the shell and utilities is C. If you want to change the locale,
read these topics:
v “Advantages of a locale compatible with the MVS code page”
v “Advantages of a locale generated with code page IBM-1047” on page 46
v “Changing the locale setting in your profile” on page 46
v “The LC_SYNTAX environment variable” on page 47
v “The LOCPATH environment variable” on page 49

For additional information about locale and LC_SYNTAX, see z/OS Language
Environment Programming Guide.

Advantages of a locale compatible with the MVS code page
Running the shell and utilities in a locale whose code page matches the code page
you are using in MVS (which may not be compatible with code page IBM-1047
with respect to the EBCDIC variant characters) has several advantages.
v Converting data from a country or region's native code page to IBM-1047 is no

longer required. This may enhance interoperability with other non-z/OS UNIX
components of MVS.

v Remapping your keyboard is unnecessary.

Customizing for a locale not based on code page IBM-1047
If you select a locale that is not based on code page IBM-1047 and you use the
utilities lex, mailx, make, and yacc, there is a further customizing step. These
utilities expect all their input files, both system files and user-created files, to be in
the same code page. So, for example, if you select the German locale
De_DE.IBM-273, these utilities expect the files they process to be in code page
IBM-273. Because system files are in code page IBM-1047, you need to use iconv to
convert the following system files to the code page used by your selected locale:

Utility File

Chapter 4. Customizing the z/OS shell 45



lex /etc/yylex.c

mailx /etc/mailx.rc

make /etc/startup.mk

yacc /etc/yyparse.c

Advantages of a locale generated with code page IBM-1047
You might prefer using one of the locales that is compatible with IBM-1047, but not
compatible with the MVS code page if:
v You already use one of the IBM-1047 locales and have made an investment in

data conversion and keyboard remapping.
v You have a requirement to run, in your shell environment, strictly

standards-compliant applications or other applications that do not use
LC_SYNTAX. If you want to use a single compiled and link-edited instance of a
program in multiple locales, such a program is guaranteed to work in multiple
locales only if IBM-1047 locales are used.

v You have shell scripts that are used in multiple locales. Having different users
operating in various locales that are not generated from code page IBM-1047
requires multiple copies of a shell script, one for each different locale's code
page.

There are other important code page conversion considerations when the shell uses
code page IBM-1047 and MVS does not; see Appendix C, “Code page conversion
when the shell and MVS have different locales,” on page 323 for that information.

Changing the locale setting in your profile
To change the locale, you set the value for the LC_ALL variable and export it. This
variable overrides any values for locale specified for the LC_ variables such as
LC_COLLATE, LC_MESSAGES, and LC_SYNTAX, but it does not override
LC_CTYPE.

If you change LC_ALL to a new locale, and z/OS UNIX messages are provided in
that language, change the LANG variable setting to match the LC_ALL setting.
Currently, z/OS UNIX messages are shipped in English, Kanji, and Simplified
Chinese. If you do not change LANG, the messages will be in English.

If z/OS UNIX messages are not provided in your language, changing LANG by
itself will have no effect. However, although messages are not supplied in your
language, the z/OS UNIX messages that are displayed in English will use your
national language characters and should display correctly on your terminals.

When you change the locale, the shell and utilities run in the new locale, but the
shell locale category LC_CTYPE stays in the POSIX locale. This can affect parsing
and shell expansion, and cause unpredictable behavior. In order to avoid this
problem, after you change locale you must overwrite the current shell by issuing
the exec sh -L command. The new shell will correctly interpret the proper
character set for the new locale.

If you place an export LC_ALL=localename statement in your login profile, or if one
has been placed in /etc/profile, make sure it is followed with exec sh -L and
protect that with tty -s, as shown in “Examples: Changing locale” on page 47. If
you don't protect it with the tty -s test, BPXBATCH SH command will not run the
command.

46 z/OS V2R2 UNIX System Services User's Guide



If you use exec sh -L, there are two situations that you must take into account:
1. Loop control; you only want the exec sh -L to be executed the first time.
2. If you plan to use BPXBATCH or OSHELL (which calls BPXBATCH) with

national language support, you need to define the LANG and LC_ALL
variables in a file for BPXBATCH to use. See “Passing environment variables to
BPXBATCH” on page 158 for more information.

If your /etc/profile has been set up for the proper locale, you only need to change
your .profile if you want a different locale than already set up as the default. For
more information on setting up locale and messages, see the section on
customizing for your national code page in the shell in z/OS UNIX System Services
Planning.

Examples: Changing locale
If you are using OMVS, the 3270 terminal interface. If your /etc/profile is not set
up for your locale and LANG, then in order to work in a locale such as Danish,
then add this code to the .profile file:
if test -z "$LOCALE_SWITCH" && tty -s
then

echo " - - - - - - - - - - - - - - - - - - - - - - - - - - - "
echo " - Logon shell will now be invoked to reflect - "
echo " - code page IBM-277 - "
echo " - - - - - - - - - - - - - - - - - - - - - - - - - - - "
LOCALE_SWITCH=EXECUTED
LANG=C
LC_ALL=Da_DK.IBM-277
export LANG LC_ALL LOCALE_SWITCH
#Issue chcp if not using OMVS command
if test "$_BPX_TERMPATH" ! "OMVS"
then
chcp -a ISO8859-1 -e IBM-277
fi

exec sh -L
else

echo " - - - - - - - - - - - - - - - - - - - - - - - - - - - "
echo " - Welcome to OS/390 UNIX System Services - "
echo " - - - - - - - - - - - - - - - - - - - - - - - - - - - "

fi

If you want your messages displayed in a different language than that specified in
the system-wide /etc/profile, you must modify your .profile accordingly. For more
information, see “Customizing the language of your messages” on page 49.

For a list of the z/OS UNIX locales (and their locale object names) and locale
source files, see Appendix E, “Locale objects, source files, and charmaps,” on page
331.

The LC_SYNTAX environment variable
There are 13 variant characters in the POSIX portable character set whose encoding
might vary on different EBCDIC code pages:

Right brace (})
Left brace ({)
Backslash (\)
Right square bracket (])
Left square bracket ([)
Circumflex (^)
Tilde (~)
Exclamation point (!)

Chapter 4. Customizing the z/OS shell 47



Pound sign (#)
Vertical bar (|)
Dollar sign ($)
Commercial at-sign (@)
Accent grave (`)

Before MVS SP Release 5.2.2, the z/OS shell and utilities required that all data in
the z/OS UNIX file system be encoded in one of three code pages: IBM-1047,
IBM-1027, or IBM-939. Any data moved into the z/OS UNIX file system from a
workstation or from an MVS data set often had to be converted to one of code
pages IBM-1047, IBM-1027, or IBM-939 before it could be processed by the shell.
Similarly, to ensure that any variant characters keyed in at the terminal had the
correct encoding, you had to either use the conversion option of the OMVS
command or customize your keyboard.

Now, however, the shell can process data in additional EBCDIC code pages, not
just the three code pages previously supported. When you specify a locale with the
LC_ALL variable, the LC_SYNTAX environment variable is set. The shell uses the
LC_SYNTAX environment variable to determine the code points to use for the 13
variant characters. This means that the shell can adapt dynamically to the code
page of the current locale.

Applications that use LC_SYNTAX will work in multiple locales using multiple
code pages. To be sensitive to the 13 variant characters, an application must be
enabled to use LC_SYNTAX. For information about how to do this, see z/OS XL
C/C++ Programming Guide.

LC_SYNTAX—an example

For example, consider the echo command and its use of the backslash (\) character.
The backslash is one of the 13 variant characters. The following command:
echo ’this is\nreal handy’

produces the following output at the terminal:
this is
real handy

echo finds and converts the \n in the input to a <newline> character in the output.
To do this, echo must know the encoding for the backslash character in the current
user's environment—in this case, the character generated by the user's terminal
when the backslash key is pressed.

A 3270 terminal operating in the USA locale En_US.IBM-037 (code page IBM-037)
generates X'E0' for the backslash, while a 3270 terminal operating in the German
locale De_DE.IBM-273 (code page IBM-273) generates X'EC'. The LC_SYNTAX
locale category provides this locale-specific hexadecimal encoding information to
echo and the other utilities.

When the USA user runs in locale En_US.IBM-037, echo determines from the
LC_SYNTAX information in this locale that the expected encoding for backslash is
X'E0'. Likewise, when the German user runs in locale De_DE.IBM-273, echo
determines from the LC_SYNTAX information in this locale that the expected
encoding for backslash is X'EC'.

48 z/OS V2R2 UNIX System Services User's Guide



Limitations
The LC_SYNTAX setting does not affect:
v REXX execs.
v The ISPF shell (ISHELL). ISHELL runs in the locale that MVS is using, and

therefore this could be different from the shell locale.
v Shell scripts. The code page in which a shell script is encoded must match the

code page of the locale in which it is run. For a shell script to be shared by
multiple users, they must all be in a locale that uses the same code page as the
code page in which the shell script is encoded.
If you have different users operating in various locales, you need multiple copies
of a shell script, one for each different locale code page. You can use the iconv
command to convert a shell script from one code page to another.
If shell scripts are tagged and automatic conversion is not enabled, then the code
page in which a shell script is encoded must match the code page of the locale
in which it is run.
If shell scripts are tagged and automatic conversion is enabled, then the locale
must indicate a SBCS code page and the scripts must be SBCS.

The LOCPATH environment variable
LOCPATH is an environment variable that tells the setlocale() function the name of
the directory from which to load locale object files. If LOCPATH is not defined, the
default directory /usr/lib/nls/locale is searched. LOCPATH is similar to the PATH
environment variable; it contains a list of z/OS UNIX directories separated by
colons. For detailed information on how setlocale() searches for locale object files,
see the description of setlocale() in z/OS XL C/C++ Runtime Library Reference.

Customizing the language of your messages
If you want your messages displayed in a different language than that specified in
the system-wide /etc/profile, add this line to your .profile:
export LANG=your_language

your_language is the first part of the locale name listed in Appendix E, “Locale
objects, source files, and charmaps,” on page 331—for example, Ja_JP in the locale
name JA_JP.IBM-939. Currently, z/OS UNIX ships messages in English, Kanji, and
Simplified Chinese.

Setting your local time zone
The shell and utilities assume that the times stored in the file system and returned
by the operating system are stored using the Greenwich mean time (GMT) or
Universal Time Coordinated (UTC) as a universal reference. In the system-wide
/etc/profile, the TZ environment variable maps that reference time to the local time
specified with the variable. You can use a different time zone by setting the TZ
variable in your .profile.

The three primary fields in the time zone specification are:
1. The local standard time, abbreviated—for example, EST or MSEZ.
2. The time offset west from the universal reference time, typically specified in

hours (minutes and seconds are optional). A minus sign (-) indicates an offset
east of the universal reference time.

Chapter 4. Customizing the z/OS shell 49



3. The daylight saving time zone, abbreviated—for example, EDT. If this and the
first field are identical or this value is missing, daylight saving time conversion
is disabled. Optionally, you can specify an additional rule that indicates when
daylight saving time starts and ends.

Example: If you want to set your time zone to Eastern Standard Time (EST) and
export it, specify:
export TZ="EST5EDT"
v EST is Eastern Standard Time, the local time zone.
v The standard time zone is 5 hours west of the universal reference time.
v EDT is Eastern Daylight Saving time zone.

For complete information about how to specify the local time zone, see Appendix
I. Setting the Local Time Zone with the TZ Environment Variable in z/OS UNIX
System Services Command Reference.

Building a STEPLIB environment: The STEPLIB environment variable
Traditionally, some MVS users have preferred to alter the search order for MVS
executable files when they are running a new or test version of an application
program, such as a runtime library. To do this, they code a STEPLIB DD statement
on the JCL used to run the application. Accessed ahead of LINKLIB or LPALIB, a
STEPLIB is a set of private libraries where the new or test version of the
application is stored.

The STEPLIB environment variable provides the ability to use a STEPLIB when
running a z/OS UNIX executable file. This variable is used to determine how to
set up the STEPLIB environment for an executable file. The STEPLIB environment
variable should always be exported.

You can set the variable in one of three ways:

Table 2. Three ways to set the STEPLIB environment variable (z/OS shell)

Statement Action

STEPLIB=CURRENT Passes on any currently active TASKLIB, STEPLIB, or
JOBLIB allocations from the invoker's MVS program
search order environment to the environment created
for the executable file to run in. Any STEPLIB
environment in the invoker's process image is
recreated in the new process image for the executable
file when the file is invoked. This is the default value
that is set if no STEPLIB variable is specified.

If an application uses fork(), spawn(), or exec(), the
STEPLIB data sets must be cataloged.

STEPLIB=NONE Specifies that no STEPLIB environment should be set
up for executable files.

50 z/OS V2R2 UNIX System Services User's Guide



Table 2. Three ways to set the STEPLIB environment variable (z/OS shell) (continued)

Statement Action

STEPLIB=DSN1:DSN2:DSN3 Sets up a library search order for the STEPLIB, in the
order that the data sets are specified. You can specify
up to 255 fully qualified data set names, separated by
colons. For example:

export STEPLIB=SMITH.C.LOADLIB:SMITH.PL1.LOADLIB

The specified data sets must be cataloged MVS load
libraries that you have security access to. The data sets
specified here are built into a STEPLIB environment
for the executable file.

Restrictions on STEPLIB data sets
For executable files that have the set-user-ID or set-group-ID bit set, there are
restrictions on the data sets that can be built into the STEPLIB environment for the
file to run in. The systems programmer maintains a STEPLIB sanction list of data
sets that can be included in the STEPLIB environment for such executable files.
Only data sets on that list are built into the STEPLIB environment for such files. If
you need a data set added to the list, contact your systems programmer.

Setting options for a shell session
The set command lets you set options, or flags, for your shell session. These flags
control the way the shell handles certain situations.
1. To display the shell flags that are currently set, enter:

set –o

2. To turn on an option, enter:
set –o name

where name is the name of the option you want to turn on. If you want an
option turned on for every shell session, put the set command in your login
script (the script specified on the ENV variable).

3. To turn off an option, enter:
set +o name

Contrary to what you might expect, - means on, and + means off.

The following discussion highlights some of the options you may find useful. For
all the options, see the set command description in z/OS UNIX System Services
Command Reference.

Exporting variables
The command:
set -o allexport

indicates that you want to export—that is, pass to a child process or subsequent
command—every variable that is assigned a value. This command exports all
variables that currently have values, plus all variables assigned a value in the
future.

Chapter 4. Customizing the z/OS shell 51



Controlling redirection
The command:
set -o noclobber

indicates that you do not want the > redirection operator to overwrite existing
files. When this option is on and you specify the construct >file, the redirection
works only if file does not exist. If you have this option on and you really do want
to redirect output into an existing file, you must use >|file (with an "or" bar after
the >) to indicate output redirection. See "“Using a wildcard character to specify
file names” on page 80" for more information.

Preventing wildcard character expansion
The command:
set -o noglob

tells the shell not to expand wildcard characters in file names. This command is
occasionally useful if you are entering command lines that contain a number of
characters that would normally be expanded. See “Using a wildcard character to
specify file names” on page 80 for a discussion of wildcard characters.

Displaying input from a file
The command:
set -o verbose

tells the shell to display its input on the screen as the input is read. This command
lets you keep track of material that comes from a file.

Running a command in the current environment
The command:
set -o pipecurrent

causes the shell to run the last command of a pipeline in the current environment.

Displaying current option settings
The command:
set -o

displays all current option settings. The display of each option is preceded by one
of these:

-o to indicate that the option is enabled
+o to indicate that the option is disabled

52 z/OS V2R2 UNIX System Services User's Guide



Chapter 5. Customizing the tcsh shell

If you are interested in using the tcsh shell, read this information as well as:
v Chapter 7, “Working with tcsh shell commands,” on page 91
v Chapter 9, “Writing tcsh shell scripts,” on page 133

You can personalize your use of the tcsh shell. This topic covers these tasks:
v Understanding and modifying your startup files
v Understanding shell variables
v Customizing the search path for commands with the PATH variable
v Improving the performance of shell scripts
v Changing the locale
v Customizing the language of messages
v Setting the time zone
v Building a STEPLIB environment
v Setting options for a shell session

Understanding the startup files
When you start the tcsh shell, it uses information in several files to determine your
particular needs or preferences as a user. The files are accessed in the following
order:
1. /etc/csh.cshrc
2. /etc/csh.login
3. $HOME/.tcshrc
4. $HOME/.cshrc
5. $HOME/.history
6. $HOME/.login
7. $HOME/.cshdirs

Settings established in a file accessed earlier can be overwritten by the settings in a
file accessed later.

The /etc/csh.cshrc file contains system-wide settings that are common to all shell
users. It is used for setting shell variables and defining command aliases. Usually,
it will set environment variables such as PATH.

The /etc/csh.login file is a system-wide file that is only executed by tcsh login
shells, and is used for setting environment variables such as TERM. Opening
messages are typically placed here.

The /$HOME/.tcshrc file contains settings that may be customized for an
individual shell user. It is used for setting shell variables and defining command
aliases. Here, users can set variables that are different from the system defaults set
in the system-wide profiles.

The /$HOME/.cshrc file is included for compatibility with C-Shell users, and is
read only if /$HOME/.tcshrc does not exist. It contains the same types of settings
as /$HOME/.tcshrc.

The /$HOME/.history file is read by login shells to initialize the history list. It is
created by the shell, based on the setting of certain shell variables.

© Copyright IBM Corp. 1996, 2015 53



The /$HOME/.login file is only executed by tcsh login shells, and is used for
setting environment variables that have been customized for an individual user. It
usually contains commands that affect a user's terminal settings.

Typically, your .login file might contain the following:

The $HOME/.cshdirs file is read by login shells to initialize the directory stack. It
is created by the shell, based on the setting of certain shell variables.

The system-wide startup files (located in /etc) are modified by system
administrators to contain settings that should pertain to all users. The startup files
in a user's home directory ($HOME/. . .) can be altered to suit specific user
preferences, with the exception of $HOME/.history and $HOME/.cshdirs, which
are created by the shell. A user can "unset" or "unalias" anything that was defined
in a system-wide startup file.

Quoting variable values
When you have blanks in a variable value, you need to enclose it in quotation
marks. The quotation marks tell the shell to treat blanks as literals and not
delimiters. Single quotation marks are more serious about this than are double
quotation marks:
v Single quotation marks preserve the meaning of (that is, treat literally) all

characters.
v Double quotation marks still allow certain characters ($, ` (backquote), and \

(backslash)) to be expanded. This is important if you want variable expansion.
For example, see how the $ is handled here:
setenv HOMEMSG "Using $HOME as Home Directory"

If your home directory were set to /u/user, the following:
echo $HOMEMSG

would display:
Using /u/user as home directory

If, instead, you enclosed the variable value in single quotation marks, like this:
setenv HOMEMSG ’Using $HOME as home directory’

the following:
echo $HOMEMSG

would display:
Using $HOME as home directory

As you can see, the $ is not expanded.

# set TERM environment variable
setenv TERM vt220

# set DISPLAY environment variable
setenv DISPLAY mymachine.mydomain.com:0

Figure 12. A sample .login

54 z/OS V2R2 UNIX System Services User's Guide



Changing variable values dynamically
You can also change any of these values for the duration of your session (or until
you change them again). You enter the name of the environment or shell variable
and equate it to a new value.

Example: To change the command prompt string to +>, issue:
set prompt=’+>’

Understanding shell variables
You can display the shell's variables and their values by entering this command:
set

or
set -r

set -r displays readonly shell variables.

You may see many variables that you don't recognize. These are built-in, or
predefined, variables that are set up with default values when you start the shell.

You can customize the built-in variables by setting their value in your .tcshrc file.

Only the shell variables that are defined in the .tcshrc file are available to shell
scripts and commands invoked from the shell. Environment variables are inherited
by subshells, and can be displayed by entering either of these commands:
setenv
printenv

You can display the value of a single variable with the echo command or the
printenv command. For example, either of these commands
echo $HOME

printenv $HOME

displays the current value of the HOME variable.

In general, echo displays the current values of all its arguments, after any shell
processing has taken place. The shell first expands the wildcard character *.

Example: Consider:
echo *.doc

Result: This produces the names of every file in the working directory that has the
suffix .doc. So the output of echo is a list of all such files. And if there are no file
names ending in .doc, the command output is just *.doc.

For more information about shell variables,
v Built-in variables are listed in a table in the tcsh command description in z/OS

UNIX System Services Command Reference.
v There is an appendix that lists shell variables in z/OS UNIX System Services

Command Reference.

Chapter 5. Customizing the tcsh shell 55



Customizing your shell environment: The .tcshrc file
So far, we have discussed customization that is set up inside your .login file.
However, the shell reads this file only when you log into the shell or when you
enter the tcsh command with the –l option. Note that the option is a lowercase "L".

To always have a customized shell session, you need to have a special shell script
that customizes your shell variables each time you start the shell; this is the
purpose of the .tcshrc file (also known as a startup script).

For example, you might put all your alias definitions and other setup instructions
into this file. You want these instructions run when your shell starts after you login
and whenever you explicitly create the shell during a session (for example, as a
child shell to run a shell script).

Figure 13 on page 57 is a sample .tcshrc file:

56 z/OS V2R2 UNIX System Services User's Guide



Customizing the search path for commands: The PATH variable
Command interpreters usually have to search for a file that contains the command
you want to run. When you are using the shell, you tell the shell where to search
for a command. Essentially, the shell uses a list of directories in which commands
may be found. This list is specified in your PATH variable in your etc/csh.cshrc
file. The list could be called your search path, because it tells the shell where you
want to search.

You can set up a search path with a command of the form:
setenv path ’dir:dir:...’

or,

# ==================================================================
# path shell variable
# -------------------
# Lists directories in which to look for executable commands.
# ==================================================================
#set path = ( /bin /usr/local/bin /usr/bin )

# test if we are an interactive shell
if ($?prompt) then
# ==================================================================
# prompt shell variable
# ---------------------
# The string which is printed before reading each command from the
# terminal. Currently set to display hostname, and current working
# directory.
# ==================================================================
set prompt = "%m:%~> "

# ==================================================================
# rmstar shell variable
# ---------------------
# If set, the user is prompted before ’rm *’ is executed.
# ==================================================================
set rmstar

# ==================================================================
# noclobber shell variable
# ------------------------
# If set, output redirection will not overwrite existing files.
# ==================================================================
#set noclobber

# ==================================================================
# source complete.tcsh
# ==================================================================
if (`filetest -e /etc/complete.tcsh`) then

source /etc/complete.tcsh
endif
endif # interactive shell

# ==================================================================
# set up useful aliases
# ==================================================================
alias m more

Figure 13. A sample .tcshrc

Chapter 5. Customizing the tcsh shell 57



set path=(dir1 dir2)

For example, you might enter:
setenv path ’/bin:/usr/bin:/usr/macneil/bin:/usr/games:/usr’

The shell then searches the directories in the following order, when looking for
commands or shell scripts:
1. /bin
2. /usr/bin
3. /usr/macneil/bin
4. /usr/games
5. /usr

As soon as the shell finds a file with an appropriate name, it runs that file.

Because the shell runs a command as soon as it finds a file with an appropriate
name, pay close attention to the order in which you list directory names in your
search path. For example, the previous search path specifies the /bin directory
(where shell commands are stored) before the /usr/bin directory.

If you set up your PATH incorrectly, you could get the wrong command. You
should generally search the shell commands directory first: /bin.

Adding your working directory to the search path
You can have the shell search your working directory for commands (in addition
to the standard directories that contain commands). As an example, suppose you
have different directories containing the source code for different programs. In
each directory, you create a shell script named compile that compiles all the source
modules of the program in that directory. To compile a particular program, enter
cd to change to the appropriate directory and then enter:
compile

The shell searches the working directory, finds the compile shell script, and runs it.

You can add your working directory to your search path by one of these methods:
v Putting in an entry without a name
v Using a period (.) for the working directory.

For example, both of these specify that the working directory should be searched
after /bin but before /usr/local:
setenv path ’/bin::/usr/local’ #no name
setenv path ’/bin:.:/usr/local’ #using a period

Both of these say that your working directory should be searched before anything
else:
setenv path ’:/bin:/usr/local’ #no name
setenv path ’.:/bin:/usr/local’ #using a period

Both of these say that your working directory should be searched after everything
else:
setenv path ’/bin:/usr/local:’ #no name, ends in a colon
setenv path ’/bin:/usr/local:.’ #using a period

The best way to specify search paths is to put them into your .tcshrc file. That way,
they are set up every time you log into the shell.

58 z/OS V2R2 UNIX System Services User's Guide



Checking the search path used for a command
With aliases and search paths, it can be easy to lose track of what is executed when
you enter a command. The which command can tell you which file is executed if
you enter a command line that begins with a specific command. The where
command can tell you where versions of the command are located. For example:
which kill

tells you:
kill: shell built-in command.

and the command:
where kill

tells you:
kill is a shell built-in
/bin/kill

Customizing the DLL search path: The LIBPATH variable
If you use a utility that uses a dynamic link library (DLL) —for example, dbx—
you can set up the search path for the DLL with the LIBPATH variable. If this
variable is not set, your working directory is searched for the DLL. The default
setting shipped in /samples/login is:
setenv LIBPATH "/lib:/usr/lib:."

Changing the locale in the shell
The default locale for the shell and utilities is C. If you want to change the locale,
read the information presented here.

For additional information on locale and LC_SYNTAX, see z/OS Language
Environment Programming Guide.

Advantages of a locale compatible with the MVS code page
Running the shell and utilities in a locale whose code page matches the code page
you are using in MVS (which may not be compatible with code page IBM-1047
with respect to the EBCDIC variant characters) has several advantages:
v Converting data from a given country or region's native code page to IBM-1047

is no longer required. This may enhance interoperability with other non-z/OS
UNIX components of MVS.

v Remapping your keyboard is unnecessary.

Customizing for a locale not based on code page IBM-1047
If you select a locale that is not based on code page IBM-1047 and you use the
utilities lex, mailx, make, and yacc, there is a further customizing step. These
utilities expect all their input files, both system files and user-created files, to be in
the same code page. So, for example, if you select the German locale
De_DE.IBM-273, these utilities expect the files they process to be in code page
IBM-273. Because system files are in code page IBM-1047, you need to use iconv to
convert the following system files to the code page used by your selected locale:

Utility File

lex /etc/yylex.c

Chapter 5. Customizing the tcsh shell 59



mailx /etc/mailx.rc

make /etc/startup.mk

yacc /etc/yyparse.c

Advantages of a locale generated with code page IBM-1047
On the other hand, you may prefer using one of the locales that is compatible with
IBM-1047, but not compatible with the MVS code page if:
v You already use one of the IBM-1047 locales and have made an investment in

data conversion and keyboard remapping.
v You have a requirement to run, in your shell environment, strictly

standards-compliant applications or other applications that do not use
LC_SYNTAX. If you want to use a single compiled and link-edited instance of a
program in multiple locales, such a program is guaranteed to work in multiple
locales only if IBM-1047 locales are used.

v You have shell scripts that are used in multiple locales. Having different users
operating in various locales that are not generated from code page IBM-1047
requires multiple copies of a shell script, one for each different locale's code
page.

There are other important code page conversion considerations when the shell uses
code page IBM-1047 and MVS does not; see Appendix C, “Code page conversion
when the shell and MVS have different locales,” on page 323 for that information.

Changing the locale setting in your profile
To change the locale, you set the value for the LC_ALL variable. This variable
overrides any values for locale specified for the LC_ variables such as
LC_COLLATE, LC_MESSAGES, and LC_SYNTAX, but it does not override
LC_CTYPE.

If you change LC_ALL to a new locale, and z/OS UNIX messages are provided in
that language, change the LANG variable setting to match the LC_ALL setting.
Currently, z/OS UNIX messages are shipped in English, Kanji, and Simplified
Chinese. If you do not change LANG, the messages will be in English.

If z/OS UNIX messages are not provided in your language, changing LANG by
itself has no effect. However, although messages are not supplied in your
language, the z/OS UNIX messages that are displayed in English will use your
national language characters and should display correctly on your terminals.

When you change the locale, the shell and utilities run in the new locale, but the
shell locale category LC_CTYPE stays in the POSIX locale. This can affect parsing
and shell expansion, and cause unpredictable behavior. In order to avoid this
problem, after you change locale you must overwrite the current shell by issuing
the exec tcsh -l command. The new shell will correctly interpret the proper
character set for the new locale.

If you place a setenv LC_ALL localename statement in your login profile, or if one
has been placed in /etc/csh.login, make sure it is followed with exec tcsh -l and
protect that with tty -s, as shown in “Examples: Changing locale” on page 61. If
you don't protect it with the tty -s test, BPXBATCH SH command will not run the
command.

If you use exec tcsh -l, there are two situations that you must take into account:

60 z/OS V2R2 UNIX System Services User's Guide



1. Loop control; you only want the exec tcsh -l to be executed the first time.
2. If you plan to use BPXBATCH or OSHELL (which calls BPXBATCH) with

national language support, you need to define the LANG and LC_ALL
variables in a file for BPXBATCH to use. See “Passing environment variables to
BPXBATCH” on page 158 for more information.

If your /etc/csh.login was set up for the proper locale, you only need to change
your .login if you want a different locale than already set up as the default. For
more information on setting up locale and messages, see the section on
customizing for your national code page in the shell in z/OS UNIX System Services
Planning.

Examples: Changing locale
For example, say that you are using OMVS, the 3270 terminal interface. If your
/etc/csh.login is not set up for your locale and LANG, then in order to work in a
locale such as Danish, you should add this to your .login file:
tty -s
set tty_rc=$status
if (($?LOCALE_SWITCH == 0 ) && ($tty_rc == 0)) then

echo "------------------------------------------------"
echo "- Logon shell will now be invoked to reflect -"
echo "- code page IBM-277 -"
echo "------------------------------------------------"
setenv LOCALE_SWITCH EXECUTED
setenv LANG C
setenv LC_ALL Da_DK.IBM-277
# Issue chcp if not using OMVS command
if ($?_BPX_TERMPATH != "OMVS" ) then

chcp -a ISO8859-1 -e IBM-277
endif
exec tcsh -l

endif
unset tty_rc

If you want your messages displayed in a different language than that specified in
the system-wide /etc/csh.login, you have to modify your .login accordingly.

For a list of the z/OS UNIX locales (and their locale object names) and locale
source files, see Appendix E, “Locale objects, source files, and charmaps,” on page
331.

The LC_SYNTAX environment variable
There are 13 variant characters in the POSIX portable character set whose encoding
may vary on different EBCDIC code pages:

Right brace (})
Left brace ({)
Backslash (\)
Right square bracket (])
Left square bracket ([)
Circumflex (^)
Tilde (~)
Exclamation point (!)
Pound sign (#)
Vertical bar (|)
Dollar sign ($)
Commercial at-sign (@)
Accent grave (`)

Chapter 5. Customizing the tcsh shell 61



When you specify a locale with the LC_ALL variable, the LC_SYNTAX
environment variable is set. The shell uses the LC_SYNTAX environment variable
to determine the code points to use for the 13 variant characters. This means that
the shell can dynamically adapt to the code page of the current locale.

Applications that use LC_SYNTAX will work in multiple locales using multiple
code pages. To be sensitive to the 13 variant characters, an application must be
enabled to use LC_SYNTAX. For information on how to do this, see z/OS XL
C/C++ Programming Guide.

LC_SYNTAX—an example

For example, consider the echo command and its use of the backslash (\)
character. The backslash is one of the 13 variant characters. When the echo style is
all or sysv, the following command:
echo ’this is\nreal handy’

produces the following output at the terminal:
this is
real handy

echo finds and converts the \n in the input to a <newline> character in the output.
To do this, echo must know the encoding for the backslash character in the current
user's environment—in this case, the character generated by the user's terminal
when the backslash key is pressed.

A 3270 terminal operating in the USA locale En_US.IBM-037 (code page IBM-037)
generates X'E0' for the backslash, while a 3270 terminal operating in the German
locale De_DE.IBM-273 (code page IBM-273) generates X'EC'. The LC_SYNTAX
locale category provides this locale-specific hexadecimal encoding information to
echo and the other utilities.

When the USA user runs in locale En_US.IBM-037, echo determines from the
LC_SYNTAX information in this locale that the expected encoding for backslash is
X'E0'. Likewise, when the German user runs in locale De_DE.IBM-273, echo
determines from the LC_SYNTAX information in this locale that the expected
encoding for backslash is X'EC'.

Limitations
The LC_SYNTAX setting does not affect:
v REXX execs.
v The ISPF shell (ISHELL). ISHELL runs in the locale that MVS is using, and

therefore this could be different from the shell locale.
v Shell scripts. The code page in which a shell script is encoded must match the

code page of the locale in which it is run. For a shell script to be shared by
multiple users, they must all be in a locale that uses the same code page as the
code page in which the shell script is encoded.
If you have different users operating in various locales, you need multiple copies
of a shell script, one for each different locale code page. You can use the iconv
command to convert a shell script from one code page to another.
If shell scripts are tagged and automatic conversion is not enabled, then the code
page in which a shell script is encoded must match the code page of the locale
in which it is run.

62 z/OS V2R2 UNIX System Services User's Guide



If shell scripts are tagged and automatic conversion is enabled, then the locale
must indicate a SBCS code page.

The LOCPATH environment variable
LOCPATH is an environment variable that tells the setlocale() function the name of
the directory from which to load locale object files. If LOCPATH is not defined, the
default directory /usr/lib/nls/locale is searched. LOCPATH is similar to the PATH
environment variable; it contains a list of z/OS UNIX directories separated by
colons. For detailed information on how setlocale() searches for locale object files,
see the description of setlocale() in z/OS XL C/C++ Runtime Library Reference.

Customizing the language of your messages
If you want your messages displayed in a different language than that specified in
the system-wide /etc/.login, add this line to your .login:
setenv LANG your_language

your_language is the first part of the locale name listed in Appendix E, “Locale
objects, source files, and charmaps,” on page 331—for example, Ja_JP in the locale
name JA_JP.IBM-939. Currently, z/OS UNIX ships messages in English, Kanji and
Simplified Chinese.

Setting your local time zone
The shell and utilities assume that the times stored in the file system and returned
by the operating system are stored using the Greenwich Mean Time (GMT) or
Universal Time Coordinated (UTC) as a universal reference. In the system-wide
/etc/csh.login, the TZ environment variable maps that reference time to the local
time specified with the variable. You can use a different time zone by setting the
TZ variable in your .login.

The three primary fields in the time zone specification are:
1. The local standard time, abbreviated—for example, EST or MSEZ.
2. The time offset west from the universal reference time, typically specified in

hours (minutes and seconds are optional). A minus sign (-) indicates an offset
east of the universal reference time.

3. The daylight saving time zone, abbreviated—for example, EDT. If this and the
first field are identical or this value is missing, daylight saving time conversion
is disabled. Optionally, you can specify an additional rule that indicates when
daylight saving time starts and ends.

Example: If you want to set your time zone to Eastern Standard Time (EST) and
export it, specify:
setenv TZ "EST5EDT"
v EST is Eastern Standard Time, the local time zone.
v The standard time zone is 5 hours west of the universal reference time.
v EDT is Eastern Daylight Saving time zone.

For complete information about how to specify the local time zone, see Appendix
I. Setting the Local Time Zone with the TZ Environment Variable in z/OS UNIX
System Services Command Reference.

Chapter 5. Customizing the tcsh shell 63



Building a STEPLIB environment: The STEPLIB environment variable
Traditionally, some MVS users have preferred to alter the search order for MVS
executable files when they are running a new or test version of an application
program, such as a runtime library. To do this, they code a STEPLIB DD statement
on the JCL used to run the application. Accessed ahead of LINKLIB or LPALIB, a
STEPLIB is a set of private libraries where the new or test version of the
application is stored.

The STEPLIB environment variable provides the ability to use a STEPLIB when
running a z/OS UNIX executable file. This variable is used to determine how to
set up the STEPLIB environment for an executable file.

You can set the variable in one of three ways:

Table 3. Three ways to set the STEPLIB environment variable (tcsh shell)

Statement Action

setenv STEPLIB CURRENT Passes on any currently active TASKLIB, STEPLIB, or
JOBLIB allocations from the invoker's MVS program
search order environment to the environment created
for the executable file to run in. Any STEPLIB
environment in the invoker's process image is
re-created in the new process image for the executable
file when the file is invoked. This is the default value
that is set if no STEPLIB variable is specified.

If an application uses fork(), spawn(), or exec(), the
STEPLIB data sets must be cataloged.

setenv STEPLIB NONE Specifies that no STEPLIB environment should be set
up for executable files.

setenv STEPLIB DSN1:DSN2:DSN3 Sets up a library search order for the STEPLIB, in the
order that the data sets are specified. You can specify
up to 255 fully qualified data set names, separated by
colons. For example:

setenv STEPLIB SMITH.C.LOADLIB:SMITH.PL1.LOADLIB

The specified data sets must be cataloged MVS load
libraries that you have security access to. The data sets
specified here are built into a STEPLIB environment
for the executable file.

Restrictions on STEPLIB data sets
For executable files that have the set-user-ID or set-group-ID bit set, there are
restrictions on the data sets that can be built into the STEPLIB environment for the
file to run in. The systems programmer maintains a STEPLIB sanction list of data
sets that can be included in the STEPLIB environment for such executable files.
Only data sets on that list are built into the STEPLIB environment for such files. If
you need a data set added to the list, contact your systems programmer.

Setting variables for a shell session
The set and unset commands let you set and unset variables for your shell session.
These variables control the way the shell handles certain situations. To display the
shell variables that are currently set, type set . To turn on an option, enter:
set name

64 z/OS V2R2 UNIX System Services User's Guide



where name is the name of the option you want to turn on. If you want an option
turned on for every shell session, put the set command in your .tschrc file.

To turn off an option, enter:
unset name

The following discussion highlights some of the options you may find useful. For
all the options, see set in the tcsh shell under the set command description in z/OS
UNIX System Services Command Reference.

Displaying current option settings
The command:
set

displays all current option settings.

Controlling redirection
The command:
set noclobber

indicates that you do not want the > redirection operator to overwrite existing
files. When this option is on and you specify the construct >file, the redirection
works only if file does not exist. If you have this option on and you really do want
to redirect output into an existing file, you must use >|file (with an "or" bar after
the >) to indicate output redirection.

Preventing wildcard character expansion
The command:
set noglob

tells the shell not to expand wildcard characters in file names. This command is
occasionally useful if you are entering command lines that contain a number of
characters that would normally be expanded.

Displaying input from a file
The command:
set xtrace

tells the shell to display its input on the screen as the input is read. This command
lets you keep track of material that comes from a file.

Displaying deletion verification
The command:
set rmstar

prompts you for deletion verification when you enter the rm command in
conjunction with the * character.

Chapter 5. Customizing the tcsh shell 65



Files accessed at termination
When you terminate the tcsh shell, the following files are read at logout in this
order:
1. /etc/csh.logout
2. $HOME/.logout

66 z/OS V2R2 UNIX System Services User's Guide



Chapter 6. Working with z/OS shell commands

The shell is, above all, a programmer's interface. As a result, the shell commands are
strongly slanted towards the needs of a programmer. The z/OS shell has many
general tools that can help any programmer. In addition, there are a number of
commands designed especially for the C programmer.

Specifying shell command options
Most of the commands discussed in this topic accept options. Shell command
options are usually specified by a minus sign (–) followed by a single character.
For example, the ls command simply lists a directory's contents in multiple
columns on your screen. However:
ls –F

distinguishes between various file types when listing the contents of a directory.
(See “Listing directory contents” on page 207 for an example.)
ls –1

lists directory names in a single column.

Options consisting of a minus sign followed by a character are called simple options.
You specify simple options after the name of the command and before any other
arguments for the command (that is, arguments that are not options). For example,
you would enter:
ls –1 dir1

to list the contents of dir1 in a single column.

Command options and arguments must be typed as single-byte characters.
Additionally, delimiters such as a slash, braces, and parentheses must be typed as
single-byte characters.

The order of options and arguments is important. If you enter:
ls dir1 –F

ls lists the contents of dir1 and then tries to list the contents of the directory, or
attributes of the file, called –F.

As a special notation, most z/OS shell commands let you specify a double minus
sign (--) to separate the options from the nonoption arguments; -- means that there
are no more options. Thus, if you really have a directory named –F, you could
enter:
ls -- –F

to list the contents of that directory or the file attributes.

The z/OS shell gives you a shorthand way to specify more than one simple option
to a command. For example, –t and –v are both simple options that you can
specify with the cat command. (To find out what these options do, read the cat
command description in z/OS UNIX System Services Command Reference.) You could
enter:

© Copyright IBM Corp. 1996, 2015 67



cat –t –v file

or you could combine the two options into:
cat –tv file

The order of the options is not important:
cat –vt file

is equivalent to the previous version of the command.

Specifying options with accompanying arguments
In addition to simple options, some commands accept options that have
accompanying arguments. Such options look like simple options followed by
additional information. The argument may be a number, a string, the name of a
file, or something else.

For example, if you read the ps command description in z/OS UNIX System Services
Command Reference, you will see that ps accepts an argument of the form:
–u userlist

When z/OS UNIX System Services Command Reference shows part of a command line
in italics, the italicized material is just a placeholder; when you actually use the
command, you should fill in something else in its place. In this case, the userlist
should be a string of one or more UID numbers or login names separated by
commas and enclosed in single quotation marks. In the command:
ps –u ’macneil,wellie1’

the userlist string is macneil,wellie1. (If the string does not contain spaces, tabs, or
other special characters, you can actually omit the enclosing single quotation
marks, but the command is often easier to read if you use quotes anyway.) When
executed, ps displays information for the specified users.

Help for shell command usage
If you incorrectly specify a command, a usage note for the command is displayed.
The usage note displays the proper format for the command. Often you can
display a usage note deliberately if you specify the command with a -? option.

For online help information about a command, see “Using the man command to
get online help” on page 89.

Understanding standard input, standard output, and standard error
Once a command begins running, it has access to three files:
1. It reads from its standard input file. By default, standard input is the keyboard.
2. It writes to its standard output file.

v If you invoke a shell command from the shell, a C program, or a REXX
program invoked from TSO READY, standard output is directed to your
terminal screen by default.

v If you invoke a shell command, REXX program, or C program from the ISPF
shell, standard output cannot be directed to your terminal screen. You can
specify a z/OS UNIX file or use the default, a temporary file.

3. It writes error messages to its standard error file.

68 z/OS V2R2 UNIX System Services User's Guide



v If you invoke a shell command from the shell or from a C program or from a
REXX program invoked from TSO READY, standard error is directed to your
terminal screen by default.

v If you invoke a shell command, REXX program, or C program from the ISPF
shell, standard error cannot be directed to your terminal screen. You can
specify a z/OS UNIX file or use the default, a temporary file.
If the standard output or standard error file contains any data when the
command completes, the file is displayed for you to browse.

Using the shell: In the shell, the names for these files are:
v stdin for the standard input file.
v stdout for the standard output file.
v stderr for the standard error file.

The shell sometimes refers to these files by their file descriptors, or identifiers:
v 0 for stdin
v 1 for stdout
v 2 for stderr

For more information about the file descriptors that the shell supports, see the sh
command description in z/OS UNIX System Services Command Reference.

Using TSO/E: When you are invoking the BPXBATCH utility, you can specify
these standard files in MVS DD statements, TSO/E ALLOCATE commands, or
DYNALLOC macros using the ddnames:
v STDIN for standard input
v STDOUT for standard output
v STDERR for standard error

For more information about BPXBATCH, see “The BPXBATCH utility” on page
156.

Using ISPF: When you run shell commands, REXX programs, and C programs
from the ISPF shell, stdout, and stderr cannot be directed to your terminal. You
can specify a z/OS UNIX file, or use the default—a temporary file. If it has any
contents, the file is displayed for you to browse when the command or program
completes.

Redirecting command output to a file
Commands entered at the command line typically use the three standard files
described previously, but you can redirect the output for a command to a file you
name. If you redirect output to a file that does not already exist, the system creates
the file automatically.

Most z/OS shell commands display information on your workstation screen,
standard output. If you redirect the output, you can save the output from a
command in a file instead. The output is sent to the file rather than to the screen.
At the end of any command, enter:
>filename

For example:
cat file1 file2 file3 >outfile

writes the contents of the three files into another file called outfile. All the
information in the original three files is concatenated into a single file, outfile.

Chapter 6. Working with z/OS shell commands 69



When you redirect output with >filename and it is an existing file, the output writes
over any information that the file already contains. To append command output at
the end of the file, use:
>>file name

instead. For example:
sort -u file1 >output 2>>outerr

redirects the result of the sort to the file named output (instead of standard output)
and appends any error messages to the file outerr, which is a record of errors
encountered during various sorts.

Suppose you entered:
sort -u filea 2>&1 >output

In this command, you see two redirections:
v Error output from the sort is redirected to standard output (&1), the display

screen.
v The result of the sort is redirected to the file named output.

Here is another example with two redirections, sending both standard error and
standard output to a file. This command produces the program hello and a listing
with error messages in a file called hello.list:
c89 -o hello -V hello.c >hello.list 2>&1;

Redirecting input from a file
You can redirect input in much the same way that you redirect output. A
command that normally takes input from standard input can be redirected to take
input from a file instead.

Example: To send the file power to another user, issue:
mailx DEEJ <power

Result: The file power becomes input to mailx, rather than your input from the
keyboard.

Redirecting error output to a file
You can redirect error output from the workstation screen to a file, using 2>. (As
you remember, 2 is the file descriptor for stderr.) For example:
sort -u filea 2>errfile

sorts filea, checking for unique output records. Any messages regarding duplicate
records are redirected to a file named errfile.

If you want to append error output to an existing file, use 2>>.

If you do not care about seeing the error output, you can redirect it to /dev/null
(also known as the bit bucket). This is equivalent to discarding the error messages.
sort -u filea 2>/dev/null

70 z/OS V2R2 UNIX System Services User's Guide



Closing a file
The operating system has a limit on the number of streams to a file that a process
can open. The shell closes a stream for you when a shell script ends. However, to
conserve on the number of active file streams, you can close regular files when you
are finished working with them in a shell script. To close a regular file, use either
of the following:
exec n<&-
exec n>&-

where n can be file descriptors 3 through 9.

Similarly, you can close standard output, standard input, and standard error when
you do not need them. For example, for an application that does not display
anything, you may want to close standard output. Here is the command syntax for
those files:

exec 0<&- (close standard input)
exec 1>&- (close standard output)
exec 2>&- (close standard error)

Dumping nontext files to standard output
The od command can dump the contents of a file to standard output, your
workstation screen, in several different formats.
od file

dumps a file in octal.
od -h file

dumps the file in hexadecimal. Either of these may be useful if you want to check
the actual contents of a nontext file. Other dump formats are available.

Setting up an alias for a command
After you have used the shell for a while, you will probably find that there are
some commands that you use frequently. Rather than typing them over and over,
you can set up an alias for these commands. An alias is a personalized name that
stands for all or part of a command. You can create an alias by entering:
alias name="string"

in response to the shell's usual prompt for input. This is not a normal command; it
is an instruction to the shell itself.

For example, suppose you have a hard time remembering that the mv command
actually renames files. To make life easier for yourself, you could set up a simple
alias by entering this on your command line:
alias renam="mv"

From this point onward in your session, whenever the shell sees the command
renam, the renam is replaced with mv. The alias facility lets you create more
usable commands.

Clearly, you could use an alias to save yourself some typing too. You could define
c as an alias for cat. Then you would enter:
c file

Chapter 6. Working with z/OS shell commands 71



to get the effect of:
cat file

Tip: If you issue an exec sh, alias names are not exported. For information about
how to put alias definitions in your login script pointed to by the ENV variable,
see “Customizing your shell environment: The ENV variable” on page 42.

DBCS recommendation: We recommend that you use single-byte characters when
specifying an alias name, because the POSIX standard states that alias names must
contain only characters in the POSIX portable character set.

Defining an alias
If you will be using an alias frequently, put the alias command in your profile file
($HOME/.profile). When you issue the OMVS command or start a shell with sh
–L, the shell reads the aliases from the file and sets them up immediately. That
way, you do not have to type them in every time you start using the shell. See
“Customizing your .profile” on page 39 for more information about customizing
your profile file.

To display all the currently defined aliases, you just enter:
alias

and the shell displays them. You will see a number of aliases that you did not set
up. These are predefined aliases that the shell always creates.

When the shell replaces an alias, it checks to see if the result is another alias. The
shell continues to check for and replace aliases until no aliases remain or the
replacement would result in an infinite loop of alias expansion. For example, the
shell defines the alias functions as follows:
alias functions="typeset -f"

Now, you might say to yourself, “Why do I need to type functions when I could
just set up the alias f?” You could therefore enter:
alias f=functions

Then you enter:
f abc

the shell replaces f with functions, which the shell in turn replaces with:
"typeset -f"

Redefining an alias for a session
You can redefine an alias during a session, even if it is defined in your profile file.
If you enter the command:
alias name="string"

during a session and name is already an alias, the shell forgets the old meaning
and uses the new meaning from then on.

72 z/OS V2R2 UNIX System Services User's Guide



Setting up an alias for a particular version of a command
If you tend to use a command with the same options every time, you may want to
set up an alias for the command with those particular options. Let's take an
example. The grep command searches through files and prints out lines that
contain a requested string. For example:
grep hello file

displays all the lines of file that contain the string hello. Normally, grep
distinguishes between uppercase and lowercase letters; this means, for example,
that the search in the previous example does not display lines that contain HELLO,
Hello, and so forth. If you want grep to ignore the case of letters as it searches,
you must specify the –i option, as in:
grep -i hello file

This finds hello, HELLO, Hello, and so on.

If you think you prefer to use the –i version of grep most of the time, you can
define the alias:
alias grep="grep -i"

From this point on, if you use the command:
grep string file

it is automatically converted to:
grep -i string file

and you get the case-insensitive version of the command grep.

As another example, the rm command to delete (remove) a file has an –i option
that prompts you to confirm the deletion. The file name and a question mark are
displayed. For example, if you entered rm -i file1 and file1 is in your working
directory, you would see the prompt:
file1: ?

before the system actually removes the file. You then enter y (yes) or n (no) in
response. If you like this extra bit of safety, you might define:
alias rm="rm -i"

After this, when you call rm, it automatically checks with you before deleting a
file, just to make sure that you really want to delete it.

It may seem odd to define an alias that has the same name as a command that is
used in the alias, but this is so common that the z/OS shell checks specifically for
an alias of the same name, and does the correct thing.

If you find yourself using the same option every time you call a command, you
might consider creating an appropriate alias so that the shell automatically adds
the option. Of course, the best place to define this alias is in your .profile file; then
the alias is set up every time you invoke the shell.

Using alias tracking
Alias tracking can reduce the time the shell spends searching your search path
(specified with the PATH variable) for a command; it helps shell scripts run faster.
A tracked alias is a shell-created alias that is the full pathname for a command. The

Chapter 6. Working with z/OS shell commands 73



shell automatically tracks everything it finds in the default path for executables
(/bin). For example, if you enter the ps command, the shell creates the alias:
ps="/bin/ps"

To use alias tracking for commands in other locations, enter the command:
set -o trackall

The first time you enter a command, the shell creates an alias that is the full
pathname of the command. For example, if the user marcw entered the hello
command and the shell tracked the command, it would create the alias:
hello="/u/marcw/bin"

Each time you enter a command, the shell uses its tracked alias, instead of
searching the PATH for the command.

To list your tracked aliases, enter the command:
alias -t

To turn off alias tracking of all commands, enter the command:
set +o trackall

Then commands found in directories other than /bin are not tracked. When the
PATH search finds a command in /bin, the pathname will always be tracked.

To remove tracked aliases, use:
alias -r

Turning off an alias
If you have set up an alias like the one previously described for rm, you may find
that you do not want the alias to apply in some situations. For example, when you
delete a huge number of files, you probably do not want rm to ask if it is okay to
delete each one. In this situation, you have several options:
v Get rid of the alias entirely. The command:

unalias rm

gets rid of the rm alias for the session. After this, when you enter rm, you get
the real rm command.

v Escape the alias. If you put a backslash in front of an alias, the shell uses the real
command rather than the alias. For example:
\rm file

v Specify the full pathname. For example:
/bin/rm file

tells the shell to run the program in /bin/rm. The shell does not perform alias
substitution when you specify a command as a pathname.

These alternatives should help you get around options that you have automatically
associated with a command.

74 z/OS V2R2 UNIX System Services User's Guide



Combining commands
There are several simple ways you can combine several commands on a single
command line:
v You can run a series of commands, one after the other:

– Using a semicolon (;)
– Using && and ||

v You can run more than one command concurrently:
Using a pipe (|) or a filter with a pipe

The output from the first command is piped to the next command as the first
command is running.

Using a semicolon (;)
The shell lets you enter several commands on the same command line. To do this,
just use the semicolon character to separate the commands; for example:
cd mydir ; ls

Also, if you have defined the alias:
alias l="ls –l"

you can enter:
cd mydir ; l

because you can use aliases such as l after a semicolon.

Using && and ||
When stringing together more than two commands, you may want to control the
running of the second command based on the outcome of the first command. You
can use:

&& If the command that precedes && completes successfully, the command
following && is run. Leave a space on either side of the && operator:
command && command.

|| If the command that precedes || fails, the command following || is run.
Leave a space on either side of the || operator: command || command.

Using a pipe
The output from one command can be piped in as input to the next command. Two
or more commands linked by a pipe (|) are called a pipeline. A pipeline is written
as:
command | command | ...

You enter the commands on the same line and separate them by the "or-bar"
character |.

Many z/OS shell commands are well suited to being used in a pipeline. For
example, the grep command searches for a particular string in input from a file or
standard input (the keyboard). A command such as:
history | grep "cp"

displays all the cp commands recorded among the 16 most recently recorded
commands in your history file. The command:

Chapter 6. Working with z/OS shell commands 75



ls –l | grep "Jan"

uses ls to obtain information about the contents of the working directory and uses
grep to search through this information and display only the lines that contain the
string Jan. The pipeline displays the files that were last changed in January.

A filter is a command that can read from standard input and write to standard
output. A filter is often used within a pipeline. In the following example, grep is
the filter:
ps -e | grep cc | wc -l

lists all of your processes that are currently active in the system and pipes the
output to grep, which searches for every instance of the string cc. The output from
grep is then piped to wc, which counts every line in which the string cc occurs and
sends the number of lines to standard output.

Using substitution in commands
Another shell feature that is useful for programmers is command substitution. When
it encounters a construct of the form:
$(command)

or:
`command `

in an input command line, the shell runs the given command. It then puts the
output of the command, after converting newlines into spaces, back into the
command line, replacing command, and runs the new command line. This is called
command substitution.

You may find the $( ) syntax easier to use for long command lines. However, the
` ` (backward apostrophes) syntax is more traditional and accepted on older

UNIX shells.

As an example of how a programmer could use command substitution, consider a
file called srclist, containing the following list of source code file names: alpha.c,
beta.c, and gamma.c. If you enter the command:
grep printf $(cat srclist)

the shell runs cat against the contents of srclist, and rewrites the original command
line, so that this line appears as:
grep printf alpha.c beta.c gamma.c

This line is then run, with grep searching through the given files, displaying lines
that contain the string printf. This type of construct quickly locates all references
to a particular variable or function in the source code for a program.

Using the find command in command substitution constructs
The find command is useful in command substitution constructs. find displays the
names of files that have specified characteristics. For example:
find dir1 –name "*.c"

finds all files in the directory dir1 whose names match the wildcard pattern *.c. In
other words, it finds all files in that directory with names having the .c suffix.

76 z/OS V2R2 UNIX System Services User's Guide



The command:
ls -l $(find dir1 –name "*.c")

finds all the .c files and then uses ls to display information about these files.

Complicating things further, you could enter
ls -l $(find dir1 –name "*.c") | grep -F "Nov"

This sets up a pipeline that displays ls information only for files that were last
changed in November. (To be perfectly accurate, it also displays information about
files that have the string Nov in their names, too.)

Another useful find option has the form:
find path –ctime number

This says that you want to find files that have changed in the last number of days.
For example:
ls -l $(find dir –ctime 1)

displays ls information about all files that changed either yesterday or today.

On many UNIX and AIX systems, the find command prints out the file names
only if you specify the –print option. Thus, you would have to enter:
find dir –name "*.c" –print

to get the results just described. The z/OS UNIX find command automatically
prints its results without –print. However, if you have an existing shell script or
compatibility with UNIX systems is important to you, you can use –print.

For more information about the find command, see the find command description
in z/OS UNIX System Services Command Reference.

Characters that have special meaning to the shell

Certain characters have special meaning to the shell; these are often called
metacharacters. If you enter a command that contains any of these characters, the
shell often assumes that you are using the character in its special sense.

Characters used with commands
Character

Usage

| Pipes the output from one command to a second command; separates
commands in a pipeline.

|| Separates two commands. If the command preceding || fails, it runs the
following command (Boolean OR operator).

& Runs a command in the background, if placed at the end of a command
line.

Used in redirection, &0 represents standard input, &1 represents standard
output, and &2 represents standard error.

&& Separates two commands. If the command preceding && succeeds, it runs
the following command (Boolean AND operator).

Chapter 6. Working with z/OS shell commands 77



; Separates sequential commands; allows you to enter more than one
command on the same line.

( ) Around a sequence of commands, groups those commands that are to run
as a separate process in a subshell environment. The commands run in a
separate execution environment: changes to variables, the working
directory, open files, and so on, will not remain in effect after the last
command finishes.

( ) is also used to group mathematical operations.

{ } Around a sequence of commands, groups those commands that are run in
the current shell environment. Changes to variables, etc., will affect the
current shell.

Both { and } are reserved words to the shell. To make it possible for the
shell to recognize these symbols, you must enter a blank or <newline>
after the {, and a semicolon or <newline> before the }.

# Following a command in a shell script, indicates the beginning of a
comment.

$ At the beginning of a string, indicates that it is a variable name.

\ The backslash character turns off the special meaning of the character that
follows it. For more information, see “Using a special character without its
special meaning” on page 79.

' ' A pair of single quotation marks turns off the special meaning of all
characters within the quotes. For more information, see “Using a special
character without its special meaning” on page 79.

" " A pair of double quotation marks turns off the special meaning of the
characters within the quotes, except for $, `, ", and \. See “Using a special
character without its special meaning” on page 79 for more information.

Characters used in file names
Character

Usage

/ Separates the components of a file's pathname.

~ (Tilde) symbolizes your home directory when used by itself. When used
together with a user ID, ~ symbolizes that user's home directory. For
example:
~susanb/.profile

refers to user SUSANB's .profile file.

You can also use the ~ to refer to your previous working directory; for
example, the command
cd ~-

returns you to the directory you were previously working in.

. When used as a component of a pathname, indicates the working directory.

.. When used as a component of a pathname, indicates the parent directory.

? Used as a wildcard character that can match any one character, except a
leading dot (.).

78 z/OS V2R2 UNIX System Services User's Guide



* Used as a wildcard character that can match a sequence of zero or more
characters, except a leading dot (.).

Redirecting input and output

Character Usage Example

< Redirects input to a specified
file.

“Redirecting input from a file” on page 70.

> Redirects output to a
specified file.

“Redirecting command output to a file” on
page 69.

>> Redirects output to be
appended to the end of the
specified file.

“Redirecting command output to a file” on
page 69.

2> Redirects error output to a
specified file.

“Redirecting error output to a file” on page
70.

<<text Reads standard input until it
encounters text.

This is used in what is called a
“here-document.” Input is usually typed on
the screen or in a shell script. For example,
this script creates a file called hello.c,
compiles it into hello, and then executes it:

echo "Creating program source..."
if cat > hello.c <<End_Of_File
main() {

puts("Hello, world!");
}
End_Of_File
then

echo "Compiling program..."
if make hello
then

echo "Executing program..."
exec ./hello

else
exit $? # make failed

fi
else

exit $? # cat failed
fi

When you run the shell script, it runs the
cat > hello.c command using the input
between the two End_of_File strings.

Using a special character without its special meaning
If you do not want to use the special sense of the metacharacters, instruct the shell
to ignore them by escaping them or quoting them. To do this, you use:

\
' '
" "

The backslash
The backslash character (\) turns off the special meaning of the character that
follows it. For example:
echo it\’s me

Chapter 6. Working with z/OS shell commands 79



prints:
it’s me

If you just try:
echo it’s me

without the backslash, the shell prints a > prompt after you press <Enter>instead
of the usual $. The > prompt is a continuation prompt. An apostrophe ’ without a
backslash is taken to be the start of a string and the shell assumes that the string
keeps going until you type another apostrophe, even if that goes on for several
lines. The shell does not process the string until you type the closing apostrophe.

So remember to put a backslash in front of any special character, unless you know
its special meaning and you want that meaning. Because a backslash itself is a
special character, you must type two of them whenever you want a single
backslash.

A pair of single quotation marks (' ')
A pair of single quotation marks (' ') turns off the special meaning of all characters
within the quotes.

A pair of double quotation marks (" ")
A pair of double quotation marks (" ") turns off the special meaning of the
characters within the quotes, except for $, `, ", and \.

Using a wildcard character to specify file names
If you have used other operating systems, you are probably familiar with the
concept of wildcard characters. (In an MVS context, the wildcard character is
referred to as a global character, or pattern-matching character.) A wildcard character
is a special character that may be used to save typing in file names in shell
commands. The z/OS shell recognizes several different wildcard characters:

*
?
[ ]

The * character
The asterisk (*) stands for any sequence of zero or more characters, except a
leading dot. You can use the asterisk in file names. For example:
ls aa*

lists all files in the working directory with names that begin with aa.

The command:
mv *.c dir1/dir2

moves every file with the .c suffix from your working directory to the directory
dir1/dir2.

You can use the * wildcard character in directory names as well as in file names.
For example:
cat */*.c

80 z/OS V2R2 UNIX System Services User's Guide



displays the contents of all files that have the .c suffix, in directories under your
working directory.

The ? character
In a pathname, the question mark ? can stand for any single character, except a
leading dot. For example:
file.?

refers to any and all files with names that consist of file. followed by any single
character. This can mean file.a, file.b, file.c, and so on ... whichever of the files
currently exist.

You can combine * and ?.
ls *.?

displays the names of all files under the working directory that have one-character
file name suffixes.

Again, you can use the ? in directory names as well as file names. For example:
ls ???/*

shows all files in every directory under your working directory that have a
three-character name.

The square brackets
Square brackets containing one or more characters stand for any one of the
contained characters. For example:
[bch]at

matches bat, cat, or hat.
ls [abc]*

lists all files in the working directory the names of which start with a, b, or c,
followed by any other sequence of zero or more characters. In other words, it lists
all files whose names start with a, b, or c.

You can specify ranges of characters inside the square brackets by specifying the
first character in the sequence, a hyphen (-), and the last character. For example:
[a–m]

This matches any character from a through m.

Suppose, for example, that you want to copy the contents of the working directory
into two separate directories. You might enter:
cp [a–m]* dira

to copy all files with names beginning with the letters a through m to the directory
dira, and then issue the second command:
cp [n–z]* dirb

to copy the rest of the files to the directory dirb. A command such as:
rm *.[a-z]

Chapter 6. Working with z/OS shell commands 81



removes every file with a suffix consisting of a single lowercase letter.

If the first character inside a bracket construct is an exclamation mark !, the
construct matches any character that is not inside the brackets. For example:
ls [!a–m]*

lists any file that does not begin with one of the letters in the range a through m.

In the same way:
rm [!0-9]*

removes any file with a name that does not start with a digit.

Retrieving previously entered commands

In the shell, you can retrieve previously issued commands using:
v The history command, combined with the r command
v The two retrieve function keys that are part of the TSO/E OMVS command

interface to the shell
v Command-line editing, when you are using an asynchronous terminal interface

Retrieving commands from the history file
The shell records each command that you enter in a file under your home directory.
This file is called the history file; its name is .sh_history.If you enter the command:
history

the shell displays the current contents of your history file. Each command is
numbered.

You can rerun any of the commands in your history file by typing r, followed by a
space, followed by the number of the command you want to use. Think of r as the
redo command.

For example, suppose that you are a programmer and you enter a complicated
command to compile part of a program. The program contains a syntax error, so
you call a text editor to edit the source code and correct the problem. Now you
want to run the same compile command on the corrected program. You may save
yourself a good deal of typing by using:
history

to find out the number of the previous compile command; you can then run the
command with r.

Another time-saver is to specify your shell prompt as:
PS1=’(!)$’

in your .profile. The shell prompt is then preceded by the number assigned to the
command in the command history file.

This is how you use the command numbers to enter a command. To repeat
command number 14, enter:
r 14

82 z/OS V2R2 UNIX System Services User's Guide



The shell displays the original command 14 in the output area of the screen and
then runs it. If you get another error, you can correct it, and then compile again
with another r 14. You can perform the operation many times, but you have to
type the original only once.

If you type r followed by a space, followed by a string of characters (not beginning
with a digit), the shell checks backward through the history file and runs the most
recent command that begins with the given string. For example, let's look at the
compilation example. Suppose you are using the c++ command to compile your
program. Then:
r c++

looks back through the history and runs the most recent c++ command. You do not
even have to check on the number of the command you want to enter. The shell
displays the selected command in the output area of the screen and then runs it.

This backward-search feature of r can search for aliases as well as normal
commands. r searches for the beginning of the command line as you typed it, not
the way that the line looked after the alias was replaced.

If you enter r without a number after it, the shell repeats the most recent
command.

Editing commands from the history file
Suppose that you have a sequence of source files named file1.c, file2.c, file3.c, and
so on that you want to compile with similar c89 commands. This situation is a
little different from the one discussed in the previous topic. You do not want to
rerun the same command for each file; the command has the same form each time,
but you have to specify in a new file name each time.

You can still do this using the history file. The command:
r old_string=new_string command

runs a previous command but replaces the first occurrence of the old string with the
new string. For example, suppose you compile file1.c with:
c89 options file1.c

Then the command:
r file1=file2 c89

tells the shell to search back for the most recent c89 command and change file1 to
file2. The shell makes this change, and then displays and runs the modified
command.
r file2=file3 c89

performs the same kind of operation, changing file2 in the previous command to
file3 and then going ahead with the compilation. This saves you the trouble of
retyping all the options for the command.

Entering alias displays all the currently defined aliases. You will see a number of
aliases that you didn't set up; for example:
history="fc –l"

Chapter 6. Working with z/OS shell commands 83



The history command is actually a predefined alias for the fc command with the –l
option. The fc command is used to display and edit commands in the history file.
Generally, it is easier to remember to type history, so the shell predefines this alias.

If you have displayed the predefined aliases, you probably noticed that r is also a
predefined alias. It also stands for a version of the fc command. As with history,
the r alias was created because it's easier to use and read than the straight fc
command. For full details about fc, see the fc command description in z/OS UNIX
System Services Command Reference.

Using the retrieve function keys
When you are using the OMVS interface, there are two function key settings for
retrieving commands:

Retrieve
This key performs a "backward retrieve" function. It retrieves a saved
command from a stack of saved input lines, starting with the most recent
and moving down to the oldest available line.

FwdRetr
This key is used with the Retrieve key to retrieve commands from the
stack of saved input lines. If you press the Retrieve key one too many
times and go past the line you want, you can press the FwdRetr key to
display the line that was previously retrieved by the Retrieve key.

Press the Retrieve key repeatedly until the command you want to use is displayed
on the command line. Once the command is displayed, you can modify the
command or use it as it is displayed. Press <Enter> to run the command.

Command-line editing
When you use rlogin or telnet to login to the shell, you can use command-line
editing. Command-line editing lets you access commands from your history file,
edit them, and run the result. You have already seen this process before, when
reading about some of the features of the r command.

Command editing is useful at those times when you are running the same
sequence of commands, or slight variations on the same sequence of commands.
The point of command editing is to save yourself the trouble of typing the same
thing over and over again—look especially for long commands that normally
require a lot of typing. Command editing is also useful when you have made a
mistake in typing a command line and wish to correct it.

Using the vi command editor
If you run the command:
set -o vi

or
export EDITOR=vi

it tells the shell that you want the ability to edit commands the way that you
normally edit text with vi; you are set up for vi command editing. Whenever the
shell prompts you for input, it is as if the shell puts you into vi insert mode on a
new line at the end of the history file. You can type in a new command just as you
normally would.

84 z/OS V2R2 UNIX System Services User's Guide



You can also press <Esc> to enter a vi-like command mode. When you enter
command mode, you can use the usual cursor movement commands to move
around on the command line, or to move up and down in the history file. For
example:
v Press the k key to move back to the previous line in the history file (the last

command line you entered). Press the k key again, and you move to the line
before that.

v Press j and you move forward in the history file.

In this way it is simple to retrieve recent commands from the history file. You can
then edit them using standard vi commands. For example, you can use $ to move
to the end of the line, and A to begin appending text to the end of the line. When
you have edited the line to produce the command that you want to run, simply
press <Enter> to run that line.

As you might expect, you can use these search commands:
/string
?string

to search backwards and forwards through the history file. You can edit the
command line with these vi commands:
w Move to next word
b Move to previous word
d delete
c change
a append
i insert
u undo

and many of the other vi commands. For a complete list of available commands,
see the shedit command description in z/OS UNIX System Services Command
Reference.

Using the emacs command editor
To set up for emacs command editing, enter:
set -o emacs

This lets you use commands identical to emacs commands to edit your shell
command line. For more information, see the description of shedit in z/OS UNIX
System Services Command Reference.

Using record-keeping commands
Record-keeping commands can be very helpful for programmers. For example,
suppose you have a program that is split into several source files. For the sake of
simplicity, assume that the source files all have the extension .c and are all stored
in a subdirectory called src. (To read about extensions, see “Naming files” on page
211.)

It is often the case that you want to find out which source files in the subdirectory
refer to a particular variable or function. You can do this very simply with the
command:
grep ’name’ src/*.c

Chapter 6. Working with z/OS shell commands 85



The command checks all the appropriate files in the subdirectory src and displays
the lines that contain the given name. Each line is labeled with the name of the file
that contains the line. You can quickly find the use of a function or data object in
source files.

As another example of using record-keeping commands, suppose that you are
working on a large program and every few days you back up the source code for
the program by copying it to a directory in a different file system (as a precaution).
You would like to compare the current version of your source files with one of the
saved versions, to find out what changes have been made between the two. The
command:
diff oldfile newfile

prints out all the differences between two versions of a file, making comparisons
possible.

The cksum command gives a checksum for each file. If applied to two versions of
what was at one time the same file, cksum gives a convenient way to tell if the
files are still the same. It does not, however, indicate what the differences are.

The find command also has applications to programming. For example, suppose
you are looking for a particular C source program but cannot remember where it is
stored.
find / –name ’*.c’

searches all the files and file systems, starting at the root, and displays the names
of all files with the .c extension.

Finding elements in a file and presenting them in a specific format
awk is a powerful command that can perform many different operations on files.
The general purpose of awk is to read the contents of one or more files, obtain
selected pieces of information from the files, and present the information in a
specified format.

One simple way to use awk is with a command line with the form:
awk ’/regexp/ {action}’ file

This asks awk to obtain information from the specified file. awk obtains the
information by performing the specified action on every line in the file that
contains a string matching the given regular expression, regexp. (For further
information, see Appendix C. Regular Expressions (regexp) in z/OS UNIX System
Services Command Reference.) For example:
awk ’/abc/ {print}’ file

displays every record in the file that contains the string abc.

For more discussion on using awk, see Appendix B, “Using awk,” on page 299.

Timing programs
The time command lets you time programs to find out how much processor time
they actually require. You might use this to compare two versions of a program to
see if one runs faster than the other. You can run a program with:
time command-line

86 z/OS V2R2 UNIX System Services User's Guide



where command-line is a command line that invokes the program you want to time.
time runs the program and displays:
v The total time the program took to execute, labeled real

v The total time spent in the user program, labeled user

v The central processor time spent performing system services for the user, labeled
sys

For more information, see the time command description in z/OS UNIX System
Services Command Reference.

Using the passwd command
You can change a user's password or password phrase by using the passwd
command:
passwd [-u userid]

The passwd command changes the login password or password phrase for the
user ID specified. If userid is omitted, the login name associated with the current
terminal is used. You are prompted for the new password or password phrase.

For example:
passwd

changes the password or password phrase for the invoker. The invoker is
prompted for the old password or password phrase and then for the new value.

Non-superusers can change the password or password phrase for another user if
they know the user ID and the current password or password phrase. This
example changes the password or password phrase for user ID steve:
passwd -u steve

For more information about the passwd command, see the passwd command
description in z/OS UNIX System Services Command Reference For information on
setting up RACF to enable password phrase support, see z/OS Security Server RACF
Security Administrator's Guide.

Switching to superuser or another ID
With the su command, you can switch to any user ID, including the superuser. A
user can switch to superuser authority (with an effective UID of 0), if the user is
permitted to the BPX.SUPERUSER resource in the FACILITY class within the
Resource Access Control Facility (RACF). Either the ISPF shell or the su shell
command can be used for switching to superuser authority.

If you do not specify a user ID, the su command changes your authorization to
that of the superuser. If you specify a user ID, su changes your authorization to
that of the specified user ID.

When you switch to superuser (UID 0) without specifying a user ID, you keep
your MVS identity (TSO/E ID). You keep your access authority to MVS data sets,
while gaining authority to access any files.

When you change user ID by specifying a user ID and password or password
phrase, you assume the MVS identity of the new user ID even if the user ID has
UID 0.

Chapter 6. Working with z/OS shell commands 87



If you use the –s option on the su command you will not be prompted for a
password. Use this option if you have access to the BPX.SRV.userid SURROGAT
class profile. The userid is the MVS user ID associated with the target UID.

To return to your own user ID, type:
exit

This returns you to the shell in which you entered the su command.

For more information, see the su command description in z/OS UNIX System
Services Command Reference.

Using the whoami command
The whoami command displays a username associated with the effective user ID,
unlike the who am i command which displays the login name.

For example, if you login as 'user1' but then you use the su command to change to
'user2':
command returned
who am I user1
whoami user2

For more information about the whoami command, see the whoami command
description in z/OS UNIX System Services Command Reference.

Running a TSO/E command
To run a TSO/E command from the shell or in a shell script, simply preface the
TSO/E command with either the tso or tsocmd shell command.

Using the tso command
To run a TSO/E command from the shell or in a shell script, you can preface the
TSO/E command with the tso shell command; for example:
tso -t tso_command

There are two options you can use:
v Specify the -t option to run a command through the TSO/E service routine. The

command output is written to stdout. If you specify a relative path name, the
command looks for the file in your current directory.

Restriction: TSO/E has some restrictions on the type of commands that can be
run using the TSO/E service routine (mini-TSO environment). In summary, you
cannot run the following commands in this environment:
– Commands that run authorized
– FIB (foreground initiated background) commands
– Other commands that require the TSO/E task structure; for example,

interactive commands such as oedit, where interactive means that the user
can interact with the command processing while issuing additional terminal
input (subcommands, function keys). For example, once the oedit command
is entered, the user can enter more subcommands to add more lines and then
quit or exit the command.

For a full description of the restrictions, see the information on IKJTSOEV in
z/OS TSO/E Programming Guide.

88 z/OS V2R2 UNIX System Services User's Guide



v Specify the -o option to run a TSO command as if it had been entered on the
OMVS command line and run using the TSO subcommand or function key. If
you use a relative path name, the command looks for the file in the working
directory of your TSO/E session, which is typically your home directory.

If no option is specified, the following rules are applied in this order:
1. If stdout is not a tty, the TSO service routine is used since it is possible that the

command output is redirected to a file or piped to another command.
Otherwise,

2. If the controlling tty supports 3270 pass-through mode, OMVS is used.
Otherwise,

3. The TSO service routine is used.

See “Understanding standard input, standard output, and standard error” on page
68 for more information about stdin, stdout, and stderr.

The tso command supports several environment variables. For more information
about the tso command and the environment variables that are associated with it,
see z/OS UNIX System Services Command Reference.

Using the tsocmd command
You may also use the tsocmd shell command to run a TSO/E command from the
shell or in a shell script.

Unlike the tso shell command, the tsocmd shell command can be used to issue
authorized TSO commands. For more information about the tsocmd shell
command and the environment variables associated with it, see z/OS UNIX System
Services Command Reference..

Using the man command to get online help
Use the man command to get help information about a shell command. The man
page is displayed in your shell session, and you can work in the shell while
viewing the command. The man syntax is:
man command_name

v To scroll the information in a man page, press <Enter>.
v To end the display of a man page, type q and press <Enter>.

To search for a particular string in a system that has a list of one-line command
descriptions, use the -k option:
man -k string

For example, to produce a list of all the shell commands for editing, you could
type:
man -k edit

You can use the man command to view descriptions of TSO/E commands. To do
this, you must prefix all commands with tso.

To view a description of the MOUNT command, enter:
man tsomount

Chapter 6. Working with z/OS shell commands 89



You can also use the man command to view descriptions of dbx subcommands. To
do this, you must prefix all subcommands with dbx. For example, to view a
description of the dbx alias subcommand, enter:
man dbxalias

For complete information about the man command, see the man command
description in z/OS UNIX System Services Command Reference.

Shell messages
Messages issued by the z/OS shell and utilities are prefixed with the letters FSUM.
The shell messages are documented in z/OS UNIX System Services Messages and
Codes.

90 z/OS V2R2 UNIX System Services User's Guide



Chapter 7. Working with tcsh shell commands

The shell is, above all, a programmer's interface. As a result, the shell commands are
strongly slanted towards the needs of a programmer. The tcsh shell has many
general tools that can help any programmer, and is specifically designed to have
syntax similar to the C programming language. In addition, there are a number of
commands designed especially for the C programmer.

Specifying shell command options
Most of the commands discussed in this topic accept options. Shell command
options are usually specified by a minus sign (–) followed by a single character.
For example, the ls command simply lists a directory's contents in multiple
columns on your screen. However:
ls –F

distinguishes between various file types when listing the contents of a directory.
(See “Listing directory contents” on page 207 for an example.)
ls –1

lists directory names in a single column.

Options consisting of a minus sign followed by a character are called simple options.
You specify simple options after the name of the command and before any other
arguments for the command (that is, arguments that are not options). For example,
you would enter:
ls –1 dir1

to list the contents of dir1 in a single column.

Command options and arguments must be typed as single-byte characters.
Additionally, delimiters such as a slash, braces, and parentheses must be typed as
single-byte characters.

The order of options and arguments is important. If you enter:
ls dir1 –F

ls lists the contents of dir1 and then tries to list the contents of the directory, or
attributes of the file, called –F.

As a special notation, most tcsh shell commands let you specify a double minus
sign (--) to separate the options from the nonoption arguments; -- means that there
are no more options. Thus, if you really have a directory named –F, you could
enter:
ls -- –F

to list the contents of that directory or the file attributes.

The tcsh shell gives you a shorthand way to specify more than one simple option
to a command. For example, –t and –v are both simple options that you can

© Copyright IBM Corp. 1996, 2015 91



specify with the cat command. (To find out what these options do, read the cat
command description in z/OS UNIX System Services Command Reference.) You could
enter:
cat –t –v file

or you could combine the two options into:
cat –tv file

The order of the options is not important:
cat –vt file

is equivalent to the previous version of the command.

Specifying options with accompanying arguments
In addition to simple options, some commands accept options that have
accompanying arguments. Such options look like simple options followed by
additional information. The argument may be a number, a string, the name of a
file, or something else.

For example, if you read the ps command description in z/OS UNIX System Services
Command Reference, you will see that ps accepts an argument of the form:
–u userlist

When z/OS UNIX System Services Command Reference shows part of a command line
in italics, the italicized material is just a placeholder; when you actually use the
command, you should fill in something else in its place. In this case, the userlist
should be a string of one or more UID numbers or login names separated by
commas and enclosed in single quotation marks. In the command:
ps –u ’macneil,wellie1’

the userlist string is macneil,wellie1. (If the string does not contain spaces, tabs, or
other special characters, you can actually omit the enclosing single quotation
marks, but the command is often easier to read if you use quotes anyway.) When
executed, ps displays information for the specified users.

Help for shell command usage
If you incorrectly specify a command, a usage note for the command is displayed.
The usage note displays the proper format for the command. Often you can
display a usage note deliberately if you specify the command with a -? option.

For online help information about a command, see “Using the man command to
get online help” on page 89.

Understanding standard input, standard output, and standard error
Once a command begins running, it has access to three files:
1. It reads from its standard input file. By default, standard input is the keyboard.
2. It writes to its standard output file.

v If you invoke a shell command from the shell, a C program, or a REXX
program invoked from TSO READY, standard output is directed to your
terminal screen by default.

92 z/OS V2R2 UNIX System Services User's Guide



v If you invoke a shell command, REXX program, or C program from the ISPF
shell, standard output cannot be directed to your terminal screen. You can
specify a z/OS UNIX file or use the default, a temporary file.

3. It writes error messages to its standard error file.
v If you invoke a shell command from the shell or from a C program or from a

REXX program invoked from TSO READY, standard error is directed to your
terminal screen by default.

v If you invoke a shell command, REXX program, or C program from the ISPF
shell, standard error cannot be directed to your terminal screen. You can
specify a z/OS UNIX file or use the default, a temporary file.
If the standard output or standard error file contains any data when the
command completes, the file is displayed for you to browse.

Using the shell: In the shell, the names for these files are:
v stdin for the standard input file.
v stdout for the standard output file.
v stderr for the standard error file.

Using TSO/E: When you are invoking the BPXBATCH utility, you can specify
these standard files in MVS DD statements, TSO/E ALLOCATE commands, or
DYNALLOC macros using the ddnames:
v STDIN for standard input
v STDOUT for standard output
v STDERR for standard error

For more information about BPXBATCH, see “The BPXBATCH utility” on page
156.

Using ISPF: When you run shell commands, REXX programs, and C programs
from the ISPF shell, stdout, and stderr cannot be directed to your terminal. You
can specify a z/OS UNIX file, or use the default—a temporary file. If it has any
contents, the file is displayed for you to browse when the command or program
completes.

Redirecting command output to a file
Commands entered at the command line typically use the three standard files
described previously, but you can redirect the output for a command to a file you
name. If you redirect output to a file that does not already exist, the system creates
the file automatically.

Most shell commands display information about your workstation screen, standard
output. If you redirect the output, you can save the output from a command in a
file instead. The output is sent to the file rather than to the screen. At the end of
any command, enter:
>filename

For example:
cat file1 file2 file3 >outfile

writes the contents of the three files into another file called outfile. All the
information in the original three files is concatenated into a single file, outfile.

Chapter 7. Working with tcsh shell commands 93



When you redirect output with >filename and it is an existing file, the output writes
over any information that the file already contains. To append command output at
the end of the file, use:
>>filename

instead.

Another example:
(sort -u file1 >output) >&outerr

redirects the result of the sort to the file named output (instead of standard output)
and redirects any error messages to the file outerr, which is a record of errors
encountered during various sorts.

Suppose you entered:
sort -u filea >output

In this command, you see two redirections:
v Error output from the sort is redirected to standard output, the display screen.
v The result of the sort is redirected to the file named output.

Here is another example of redirection, sending both standard error and standard
output to a file. This command produces the program hello and a listing with
error messages in a file called hello.list:
c89 -o hello -V hello.c >&hello.list

Redirecting input from a file
You can redirect input in much the same way that you redirect output. A
command that normally takes input from standard input can be redirected to take
input from a file instead. For example, with this mailx command, you can send the
file lessons to another user.
mailx JAYD <lessons

The file lessons becomes input to mailx, rather than your input from the keyboard.

Redirecting error output to a file
You can redirect error output from the workstation screen to a file. For example:
(sort -u filea >dev/tty) >& outerr

sorts filea, checking for unique output records. Any messages regarding duplicate
records are redirected to a file named outerr.

And if you do not care about seeing the error output, you can just redirect it to
/dev/null, also known as the bit bucket. This is equivalent to discarding the error
messages.
(sort -u filea >/dev/tty) >& /dev/null

94 z/OS V2R2 UNIX System Services User's Guide



Dumping nontext files to standard output
The od command can dump the contents of a file to standard output, your
workstation screen, in several different formats.
od file

dumps a file in octal.
od -h file

dumps the file in hexadecimal. Either of these may be useful if you want to check
the actual contents of a nontext file. Other dump formats are available.

Setting up an alias for a command
After you have used the shell for a while, you will probably find that there are
some commands that you use frequently. Rather than typing them over and over,
you can set up an alias for these commands. An alias is a personalized name that
stands for all or part of a command. You can create an alias by entering:
alias name "string"

in response to the shell's usual prompt for input. This is not a normal command; it
is an instruction to the shell itself.

For example, suppose you have a hard time remembering that the mv command
actually renames files. To make life easier for yourself, you could set up a simple
alias by entering this on your command line:
alias renam "mv"

From this point onward in your session, whenever the shell sees the command
renam, the renam is replaced with mv. The alias facility lets you create more
usable commands.

Clearly, you could use an alias to save yourself some typing too. You could define
c as an alias for cat. Then you would enter:
c file

to get the effect of:
cat file

Defining an alias
If you will be using an alias frequently, put the alias command in your profile file
($HOME/.tcshrc). That way, you do not have to type them in every time you start
using the shell. See “Understanding the startup files” on page 53 for more
information about customizing your startup files.

To display all the currently defined aliases, you just enter:
alias

and the shell displays them.

Arguments in aliases
Any arguments that follow an alias are treated just as if they had been following
the command that the alias stands for. For example, if you define the alias f as
follows:

Chapter 7. Working with tcsh shell commands 95



alias f "ls"

the shell replaces f with ls, which is the command to list files in a directory.

You can refer to arguments in an alias by simply adding them at the end of the
alias as you would with a command. For example:
f -la

would perform the ls command with the arguments la, which will list all the files
in the directory in a long directory listing format. And,
f /bin

will list the contents of the /bin directory.

Redefining an alias for a session
You can redefine an alias during a session, even if it is defined in your profile file.
If you enter the command:
alias name "string"

during a session and name is already an alias, the shell forgets the old meaning
and uses the new meaning from then on.

Setting up an alias for a particular version of a command
If you tend to use a command with the same options every time, you may want to
set up an alias for the command with those particular options. Let's take an
example. The grep command searches through files and prints out lines that
contain a requested string. For example:
grep hello file

displays all the lines of file that contain the string hello. Normally, grep
distinguishes between uppercase and lowercase letters; this means, for example,
that the search in the previous example does not display lines that contained HELLO,
Hello, and so forth. If you want grep to ignore the case of letters as it searches,
you must specify the –i option, as in:
grep -i hello file

This finds hello, HELLO, Hello, and so on.

If you think you prefer to use the –i version of grep most of the time, you can
define the alias:
alias grep "grep -i"

From this point on, if you use the command:
grep string file

it is automatically converted to:
grep -i string file

and you get the case-insensitive version of the command grep.

As another example, the rm command to delete (remove) a file has an –i option
that prompts you to confirm the deletion. The file name and a question mark are
displayed. For example, if you entered rm -i file1 and file1 is in your working
directory, you would see the prompt:

96 z/OS V2R2 UNIX System Services User's Guide



file1: ?

before the system actually removes the file. You then enter y (yes) or n (no) in
response. If you like this extra bit of safety, you might define:
alias rm "rm -i"

After this, when you call rm, it automatically checks with you before deleting a
file, just to make sure that you really want to delete it.

It may seem odd to define an alias that has the same name as a command that is
used in the alias, but this is so common that the shell checks specially for an alias
of the same name, and does the correct thing.

If you find yourself using the same option every time you call a command, you
might consider creating an appropriate alias so that the shell automatically adds
the option. Of course, the best place to define this alias is in your .tcshrc file; then
the alias is set up every time you invoke the shell.

Turning off an alias
If you have set up an alias like the one previously described for rm, you may find
that you do not want the alias to apply in some situations. For example, when you
delete a huge number of files, you probably do not want rm to ask if it is okay to
delete each one. In this situation, you have several options:
v Get rid of the alias entirely. The command:

unalias rm

gets rid of the rm alias for the session. After this, when you enter rm, you get
the real rm command.

v Escape the alias. If you put a backslash in front of an alias, the shell uses the real
command rather than the alias. For example:
\rm file

v Specify the full pathname. For example:
/bin/rm file

tells the shell to run the program in /bin/rm. The shell does not perform alias
substitution when you specify a command as a pathname.

These alternatives should help you get around options that you have automatically
associated with a command.

Combining commands
There are several simple ways you can combine several commands on a single
command line:
v You can run a series of commands, one after the other:

Using a semicolon (;)
Using && and ||

v You can run more than one command concurrently:
Using a pipe (|) or a filter with a pipe

The output from the first command is piped to the next command as the first
command is running.

Chapter 7. Working with tcsh shell commands 97



Using a semicolon (;)
The shell lets you enter several commands on the same command line. To do this,
just use the semicolon character to separate the commands; for example:
cd mydir ; ls

Also, if you have defined the alias:
alias l "ls –l"

you can enter:
cd mydir ; l

because you can use aliases such as l after a semicolon.

Using && and ||
When stringing together more than two commands, you may want to control the
running of the second command based on the outcome of the first command. You
can use:

&& If the command that precedes && completes successfully, the command
following && is run. Leave a space on either side of the && operator:
command && command.

|| If the command that precedes || fails, the command following || is run.
Leave a space on either side of the || operator: command || command.

Using a pipe
The output from one command can be piped in as input to the next command. Two
or more commands linked by a pipe (|) are called a pipeline. A pipeline is written
as:
command | command | ...

You enter the commands on the same line and separate them by the "or-bar"
character |.

Many commands are well suited to being used in a pipeline. For example, the grep
command searches for a particular string in input from a file or standard input
(the keyboard). A command such as:
history | grep "cp"

displays all the cp commands recorded among the 16 most recently recorded
commands in your history file. The command:
ls –l | grep "Jan"

uses ls to obtain information about the contents of the working directory and uses
grep to search through this information and display only the lines that contain the
string Jan. The pipeline displays the files that were last changed in January.

A filter is a command that can read from standard input and write to standard
output. A filter is often used within a pipeline. In the following example, grep is
the filter:
ps -e | grep cc | wc -l

98 z/OS V2R2 UNIX System Services User's Guide



lists all your processes that are currently active in the system and pipes the output
to grep, which searches for every instance of the string cc. The output from grep is
then piped to wc, which counts every line in which the string cc occurs and sends
the number of lines to standard output.

Using substitution in commands
Another shell feature that is useful for programmers is command substitution. When
encountering a construct of the form:
`command `

in an input command line, the shell runs the given command. It then puts the
output of the command, after converting newlines into spaces, back into the
command line, replacing command, and runs the new command line. This is called
command substitution.

As an example of how a programmer could use command substitution, consider a
file called srclist, containing the following list of source code file names: alpha.c,
beta.c, and gamma.c. If you enter the command:
grep printf `cat srclist`

the shell runs cat against the contents of srclist, and rewrites the original command
line, so that this line appears as:
grep printf alpha.c beta.c gamma.c

This line is then run, with grep searching through the given files, displaying lines
that contain the string printf. This type of construct quickly locates all references
to a particular variable or function in the source code for a program.

Using the find command in command substitution constructs
The find command is useful in command substitution constructs. find displays the
names of files that have specified characteristics. For example:
find dir1 –name "*.c"

finds all files in the directory dir1 whose names match the wildcard pattern *.c. In
other words, it finds all files in that directory with names having the .c suffix.

The command:
ls -l `find dir1 –name "*.c"`

finds all the .c files and then uses ls to display information about these files.

Complicating things further, you could enter
ls -l `find dir1 –name "*.c"` | grep -F "Nov"

This sets up a pipeline that displays ls information only for files that were last
changed in November. (To be perfectly accurate, it also displays information about
files that have the string Nov in their names, too.)

Another useful find option has the form:
find path –ctime number

This says that you want to find files that have changed in the last number of days.
For example:

Chapter 7. Working with tcsh shell commands 99



ls -l `find dir –ctime 1`

displays ls information about all files that changed either yesterday or today.

On many UNIX and AIX systems, the find command prints out the file names
only if you specify the –print option. Thus, you would have to enter:
find dir –name "*.c" –print

to get the results just described. The z/OS UNIX find command automatically
prints its results without –print. However, if you have an existing shell script or
compatibility with UNIX systems is important to you, you can use –print.

For more information about the find command, see the find command description
in z/OS UNIX System Services Command Reference.

Characters that have special meaning to the shell

Certain characters have special meaning to the shell; these are often called
metacharacters. If you enter a command that contains any of these characters, the
shell often assumes that you are using the character in its special sense.

Characters used with commands
Character

Usage

| Pipes the output from one command to a second command; separates
commands in a pipeline.

|| Separates two commands. If the command preceding || fails, it runs the
following command (Boolean OR operator).

> Redirects stdout.

< Redirects stdin.

& Runs a command in the background, if placed at the end of a command
line.

>& Used for redirecting stdout and stderr.

&& Separates two commands. If the command preceding && succeeds, it runs
the following command (Boolean AND operator).

; Separates sequential commands; allows you to enter more than one
command on the same line.

( ) Around a sequence of commands, groups those commands that are to run
as a separate process in a subshell environment. The commands run in a
separate execution environment: changes to variables, the working
directory, open files, and so on, will not remain in effect after the last
command finishes.

( ) is also used to group mathematical operations.

{ } Around a sequence of commands, groups those commands that are run in
the current shell environment. Changes to variables will affect the current
shell.

100 z/OS V2R2 UNIX System Services User's Guide



Both { and } are reserved words to the shell. To make it possible for the
shell to recognize these symbols, you must enter a blank or <newline>
after the {, and a semicolon or <newline> before the }.

# Following a command in a shell script, indicates the beginning of a
comment.

$ At the beginning of a string, indicates that it is a variable name.

\ In general, the backslash character turns off the special meaning of the
character that follows it. For more information, see “Using a special
character without its special meaning” on page 102.

' ' A pair of single quotation marks turns off the special meaning of all
characters within the quotation marks. For more information, see “Using a
special character without its special meaning” on page 102.

" " A pair of double quotation marks turns off the special meaning of the
characters within the quotation marks, except that !event, $var, and `cmd`
will show history, variable, and command substitution. See “Using a
special character without its special meaning” on page 102 for more
information.

Characters used in file names
Character

Usage

/ Separates the components of a file's pathname.

~ (Tilde) symbolizes your home directory when used by itself. When used
together with a user ID, ~ symbolizes that user's home directory. For
example:
~valerie/.tcshrc

refers to user VALERIE's .tcshrc file.

. When used as a component of a pathname, indicates the working directory.

.. When used as a component of a pathname, indicates the parent directory.

? Used as a wildcard character that can match any one character, except a
leading dot (.).

* Used as a wildcard character that can match a sequence of zero or more
characters, except a leading dot (.).

Redirecting input and output

Character Usage Example

< Redirects input to a specified
file.

“Redirecting input from a file” on page 94.

> Redirects output to a
specified file.

“Redirecting command output to a file” on
page 93.

>> Redirects output to be
appended to the end of the
specified file.

“Redirecting command output to a file” on
page 93.

>& Redirects stdout and stderr. “Redirecting error output to a file” on page
94.

Chapter 7. Working with tcsh shell commands 101



Character Usage Example

<<text Reads standard input until it
encounters text.

This is used in what is called a
“here-document.” Input is usually typed on
the screen or in a shell script. For example,
this script creates a file called hello.c,
compiles it into hello, and then executes it:

# create program
cat > hello.c << EOF
main() {

puts("Hello, World!\n");
}
EOF
# compile program
c89 -o hello hello.c
#execute program
hello

When you run the shell script, it runs the
cat > hello.c command using the input
between the two End_of_File strings.

Using a special character without its special meaning
If you do not want to use the special sense of the metacharacters, instruct the shell
to ignore them by escaping them or quoting them. To do this, you use:

\
' '
" "

The backslash
The backslash character (\) turns off the special meaning of the character that
follows it. For example:
echo it\’s me

prints:
it’s me

If you just try:
echo it’s me

without the backslash, the shell prints a > prompt after you press <Enter>instead
of the usual $. The > prompt is a continuation prompt. An apostrophe ’ without a
backslash is taken to be the start of a string and the shell assumes that the string
keeps going until you type another apostrophe, even if that goes on for several
lines. The shell does not process the string until you type the closing apostrophe.

So remember to put a backslash in front of any special character, unless you know
its special meaning and you want that meaning. Because a backslash itself is a
special character, you must type two of them whenever you want a single
backslash.

A pair of single quotation marks (' ')
A pair of single quotation marks (' ') turns off the special meaning of all characters
within the quotation marks.

102 z/OS V2R2 UNIX System Services User's Guide



A pair of double quotation marks (" ")
A pair of double quotation marks turns off the special meaning of the characters
within the quotation marks, except that !event, $var, and `cmd` will show history,
variable, and command substitution.

Using a wildcard character to specify file names
If you have used other operating systems, you are probably familiar with the
concept of wildcard characters. (In an MVS context, the wildcard character is
referred to as a global character, or pattern-matching character.) A wildcard character
is a special character that may be used to save typing in file names in shell
commands. The tcsh shell recognizes several different wildcard characters:

*
?
[ ]

The * character
The asterisk (*) stands for any sequence of zero or more characters, except a
leading dot. You can use the asterisk in file names. For example:
ls aa*

lists all files in the working directory with names that begin with aa.

The command:
mv *.c dir1/dir2

moves every file with the .c suffix from your working directory to the directory
dir1/dir2.

You can use the * wildcard character in directory names as well as in file names.
For example:
cat */*.c

displays the contents of all files that have the .c suffix, in directories under your
working directory.

The ? character
In a pathname, the question mark ? can stand for any single character, except a
leading dot. For example:
file.?

refers to any and all files with names that consist of file. followed by any single
character. This can mean file.a, file.b, file.c, and so on ... whichever of the files
currently exist.

You can combine * and ?.
ls *.?

displays the names of all files under the working directory that have one-character
file name suffixes.

Again, you can use the ? in directory names as well as file names. For example:
ls ???/*

Chapter 7. Working with tcsh shell commands 103



shows all files in every directory under your working directory that have a
three-character name.

The square brackets
Square brackets containing one or more characters stand for any one of the
contained characters. For example:
[bch]at

matches bat, cat, or hat.
ls [abc]*

lists all files in the working directory the names of which start with a, b, or c,
followed by any other sequence of zero or more characters. In other words, it lists
all files whose names start with a, b, or c.

You can specify ranges of characters inside the square brackets by specifying the
first character in the sequence, a hyphen (-), and the last character. For example:
[a–m]

This matches any character from a through m.

Suppose, for example, that you want to copy the contents of the working directory
into two separate directories. You might enter:
cp [a–m]* dira

to copy all files with names beginning with the letters a through m to the directory
dira, and then issue the second command:
cp [n–z]* dirb

to copy the rest of the files to the directory dirb. A command such as:
rm *.[a-z]

removes every file with a suffix consisting of a single lowercase letter.

If the first character inside a bracket construct is an exclamation mark !, the
construct matches any character that is not inside the brackets. For example:
ls [!a–m]*

lists any file that does not begin with one of the letters in the range a through m.

In the same way:
rm [!0-9]*

removes any file with a name that does not start with a digit.

Retrieving previously entered commands

In the tcsh shell, you can retrieve previously issued commands using:
v The history command, combined with the ! command
v The two retrieve function keys that are part of the TSO/E OMVS command

interface to the shell
v Command-line editing, when you are using an asynchronous terminal interface

104 z/OS V2R2 UNIX System Services User's Guide



Retrieving commands from the history file
The shell records each command that you enter in a file under your home directory.
This file is called the history file; its name is .history. If you enter the command:
history

the shell displays the current contents of your history file. Each command is
numbered.

You can rerun any of the commands in your history file by typing !, followed by a
space, followed by the number of the command you want to use.

For example, suppose that you are a programmer and you enter a complicated
command to compile part of a program. The program contains a syntax error, so
you call a text editor to edit the source code and correct the problem. Now you
want to run the same compile command on the corrected program. You may save
yourself a good deal of typing by using:
history

to find out the number of the previous compile command and then running the
command with !. For example, if the history file shows you that the command you
want to run is number 44, you would type:
! 44

to run the previous compile command.

Another time-saver is to specify your shell prompt as:
set prompt="\!>

in your .tcshrc file. The shell prompt is then preceded by the number assigned to
the command in the command history file.

If you type ! followed by a space, followed by a string of characters (not beginning
with a digit), the shell checks backward through the history file and runs the most
recent command that begins with the given string. For instance, look at the
compilation example. Suppose you are using the c++ command to compile your
program. Then:
! c++

looks back through the history and runs the most recent c++ command. You do not
even have to check on the number of the command you want to enter. The shell
displays the selected command in the output area of the screen and then runs it.

This backward-search feature of ! can search for aliases as well as normal commands.
! searches for the beginning of the command line as you typed it, not the way that
the line looked after the alias was replaced.

If you enter !! without a number after it, the shell repeats the most recent
command.

Editing commands from the history file
Suppose that you have a sequence of source files named file1.c, file2.c, file3.c, and
so on that you want to compile with similar c89 commands. This situation is a
little different from the one discussed in the previous topic. You do not want to

Chapter 7. Working with tcsh shell commands 105



rerun the same command for each file; the command has the same form each time,
but you have to specify in a new file name each time.

You can still do this using the history file. The command:
^old_string^new_string

runs a previous command but replaces the first occurrence of the old string with the
new string. For example, suppose you compile file1.c with:
c89 options file1.c

Then the command:
^file1^file2

tells the shell to look at the previous command and change file1 to file2. The shell
makes this change, and then displays and runs the modified command.
^file2^file3

performs the same kind of operation, changing file2 in the previous command to
file3 and then going ahead with the compilation. This saves you the trouble of
retyping all the options for the command.

Using the retrieve function keys
If you are using the OMVS interface, there are two function key settings for
retrieving commands:

Retrieve
This key performs a "backward retrieve" function. It retrieves a saved
command from a stack of saved input lines, starting with the most recent
and moving down to the oldest available line.

FwdRetr
This key is used with the Retrieve key to retrieve commands from the
stack of saved input lines. If you press the Retrieve key one too many
times and go past the line you want, you can press the FwdRetr key to
display the line that was previously retrieved by the Retrieve key.

Press the Retrieve key repeatedly until the command you want to use is displayed
on the command line. Once the command is displayed, you can modify the
command or use it as it is displayed. Press <Enter> to run the command.

Command-line editing
When you use rlogin or telnet to login to the shell, you can use command-line
editing. Command-line editing lets you access commands from your history file,
edit them, and run the result. You have already seen this process before, when
reading about some of the features of the ! command.

Command editing is useful at those times when you are running the same
sequence of commands, or slight variations on the same sequence of commands.
The point of command editing is to save yourself the trouble of typing the same
thing over and over again—look especially for long commands that normally
require a lot of typing. Command editing is also useful when you have made a
mistake in typing a command line and wish to correct it.

106 z/OS V2R2 UNIX System Services User's Guide



Using the vi command editor
If you run the command:
bindkey -v

it tells the shell that you want the ability to edit commands the way that you
normally edit text with vi; you are set up for vi command editing. Whenever the
shell prompts you for input, it is as if the shell puts you into vi insert mode on a
new line at the end of the history file. You can type in a new command just as you
normally would.

You can also press <Esc> to enter a vi-like command mode. When you enter
command mode, you can use the usual cursor movement commands to move
around on the command line, or to move up and down in the history file. For
example:
v Press the k key to move back to the previous line in the history file (the last

command line you entered). Press the k key again, and you move to the line
before that.

v Press j and you move forward in the history file.

In this way it is simple to retrieve recent commands from the history file. You can
then edit them using standard vi commands. For example, you can use $ to move
to the end of the line, and A to begin appending text to the end of the line. When
you have edited the line to produce the command that you want to run, simply
press <Enter> to run that line.

As you might expect, you can use these search commands:
/string
?string

to search backwards and forwards through the history file. You can edit the
command line with these vi commands:
w Move to next word
b Move to previous word
d delete
c change
a append
i insert
u undo

and many of the other vi commands. For a complete list of available commands,
see the tcsh command description in z/OS UNIX System Services Command Reference.

Using the emacs command editor
To set up for emacs command editing, enter:
bindkey -e

This lets you use commands identical to emacs commands to edit your shell
command line. For more information, see the tcsh command description in z/OS
UNIX System Services Command Reference.

Chapter 7. Working with tcsh shell commands 107



Using file name completion
Tip: File name completion requires the use of the TAB key. This key must be
mapped correctly for the feature to work. Most connections through telnet and
rlogin will transmit the TAB information correctly. If you are connected in any
other manner, this feature may not work correctly.

The tcsh shell provides a time saving feature for completing file names. Rather
than having to type out the entire string to access a file or execute a program, you
can type just the first letter or letters and let the shell help you with the rest.

For example, if you have a file called phonebook, and you want to list the contents
of this file on the screen with the more command, you can do so by typing the
command, the first letter or letters of the file, and then pressing the TAB key. For
example, if you type:
more ph

and then press the TAB key, the shell will provide you with:
more phonebook

you can then press ENTER and execute the command.

If you have more than one file name that matches the letter or letters you have
typed, the shell will alert you with a beep. For example, if you have three files,
called list1, list2, and list3, and you type:
more li

and press TAB, the beep will sound, and the shell will complete the file name as
far as it can:
more list

you must then type 1, 2, or 3 and press ENTER.

If you are unsure of how many files there are, or which one you want, you can
type <CRTL-D> when the shell beeps, and you will be provided with matching
names. For example:
> more list
list1 list2 list3
> more list

Underneath the matching names the command prompt is displayed again. Now
you can enter the number that you wish and then press ENTER.

If there are no matches for the letter or letters you have typed, the shell will beep,
but when you press <CRTL-D>, nothing will be displayed.

You can also use file name completion to aid in changing between directories with
long paths. If you keep files in the directory stuff/data/graphics, it is easier to use file
name completion to access the directory than to type the entire path by hand. For
example, if you are in your home directory, and stuff is a subdirectory containing
data/graphics, and you want to change into that directory, you can do the following:

108 z/OS V2R2 UNIX System Services User's Guide



cd s [TAB]
cd stuff/.
cd stuff/d [TAB]
cd stuff/data
cd stuff/data/g [TAB]
cd stuff/data/graphics

then press ENTER, and the directory change command will execute.

You can find more information about file name completion in z/OS UNIX System
Services Command Reference.

Using record-keeping commands
Record-keeping commands can be very helpful for programmers. For example,
suppose you have a program that is split into several source files. For the sake of
simplicity, assume that the source files all have the extension .c and are all stored
in a subdirectory called src. (To read about extensions, see “Naming files” on page
211.)

It is often the case that you want to find out which source files in the subdirectory
refer to a particular variable or function. You can do this very simply with the
command:
grep ’name’ src/*.c

The command checks all the appropriate files in the subdirectory src and displays
the lines that contain the given name. Each line is labeled with the name of the file
that contains the line. You can quickly find the use of a function or data object in
source files.

As another example of using record-keeping commands, suppose that you are
working on a large program and every few days you back up the source code for
the program by copying it to a directory in a different file system (as a precaution).
You would like to compare the current versions of your source files with one of the
saved versions, to find out what changes have been made between the two. The
command:
diff oldfile newfile

prints out all the differences between two versions of a file, making comparisons
possible.

The cksum command gives a checksum for each file. If applied to two versions of
what was at one time the same file, cksum gives a convenient way to tell if the
files are still the same. It does not, however, indicate what the differences are.

The find command also has applications to programming. For example, suppose
you are looking for a particular C source program but cannot remember where it is
stored.
find / –name ’*.c’

searches all the files and file systems, starting at the root, and displays the names
of all files with the .c extension.

Chapter 7. Working with tcsh shell commands 109



Finding elements in a file and presenting them in a specific format
awk is a powerful command that can perform many different operations on files.
The general purpose of awk is to read the contents of one or more files, obtain
selected pieces of information from the files, and present the information in a
specified format.

One simple way to use awk is with a command line with the form:
awk ’/regexp/ {action}’ file

This asks awk to obtain information from the specified file. awk obtains the
information by performing the specified action on every line in the file that
contains a string matching the given regular expression, regexp. (For further
information, see Appendix C. Regular Expressions (regexp) in z/OS UNIX System
Services Command Reference.) For example:
awk ’/abc/ {print}’ file

displays every record in the file that contains the string abc.

For more discussion on using awk, see Appendix B, “Using awk,” on page 299.

Timing programs
The time command lets you time programs to find out how much processor time
they actually require. You might use this to compare two versions of a program to
see if one runs faster than the other. You can run a program with:
time command-line

where command-line is a command line that invokes the program you want to time.
time runs the program and displays:
v The total time the program took to execute, labeled real

v The total time spent in the user program, labeled user

v The central processor time spent performing system services for the user, labeled
sys

For more information, see the time command description in z/OS UNIX System
Services Command Reference.

Using the passwd command
You can change a user's password or password phrase with the passwd command:
passwd [-u userid]

The passwd command changes the login password or password phrase for the
user ID specified. If userid is omitted, the login name associated with the current
terminal is used. You are prompted for the new password or password phrase.

For example:
passwd

changes the password or password phrase for the invoker. The invoker is
prompted for the old password or password phrase and then for the new value.

110 z/OS V2R2 UNIX System Services User's Guide



Non-superusers can change the password or password phrase for another user if
they know the user ID and the current password or password phrase. This
example changes the password or password phrase for user ID bonnie:
passwd -u bonnie

For more information about the passwd command, see the password command
description in z/OS UNIX System Services Command Reference For information on
setting up RACF to enable password phrase support, see z/OS Security Server RACF
Security Administrator's Guide.

Switching to superuser or another ID
With the su command, you can switch to any user ID, including the superuser. A
user can switch to superuser authority (with an effective UID of 0), if the user is
permitted to the BPX.SUPERUSER resource in the FACILITY class within the
Resource Access Control Facility (RACF). Either the ISPF shell or the su shell
command can be used for switching to superuser authority.

If you do not specify a user ID, the su command changes your authorization to
that of the superuser. If you specify a user ID, su changes your authorization to
that of the specified user ID.

When you switch to superuser (UID 0) without specifying a user ID, you keep
your MVS identity (TSO/E ID). You keep your access authority to MVS data sets,
while gaining authority to access any z/OS UNIX files.

When you change user ID by specifying a user ID and password, you assume the
MVS identity of the new user ID, even if the user ID has UID 0.

If you use the –s option on the su command, you will not be prompted for a
password. Use this option if you have access to the BPX.SRV.userid SURROGAT
class profile. The userid is the MVS user ID associated with the target UID.

To return to your own user ID, type:
exit

This returns you to the shell in which you entered the su command.

For more information, see the su command description in z/OS UNIX System
Services Command Reference.

Using the whoami command
The whoami command displays a username associated with the effective user ID,
unlike the who am i command, which displays the login name.

For example, if you login as user1 and then use the su command to change to
'user2':
command returned
who am I user1
whoami user2

For more information about the whoami command, see the whoami command
description in z/OS UNIX System Services Command Reference.

Chapter 7. Working with tcsh shell commands 111



Running a TSO/E command
To run a TSO/E command from the shell or in a shell script, simply preface the
TSO/E command with either the tso or tsocmd shell command.

Using the tso command
To run a TSO/E command from the shell or in a shell script, you may preface the
TSO/E command with the tso shell command; for example:
tso -t tso_command

There are two options you can use:
v Specify the -t option to run a command through the TSO/E service routine. The

command output is written to stdout. If you specify a relative pathname, the
command looks for the file in your current directory.
Restrictions: TSO/E has some restrictions on the type of commands that can be
run using the TSO/E service routine (mini-TSO environment). In summary, you
cannot run the following commands in this environment:
– Commands that run authorized
– FIB (foreground initiated background) commands
– Other commands that require the TSO/E task structure, i.e., interactive

commands such as oedit, where interactive means that the user can interact
with the command processing while issuing additional terminal input
(subcommands, function keys). For example, once the oedit command is
entered, the user can enter additional subcommands to add more lines and
then quit or exit the command.

For a full description of the restrictions, see the information on IKJTSOEV in
z/OS TSO/E Programming Guide.

v Specify the -o option to run a TSO command as if it had been entered on the
OMVS command line and run using the TSO subcommand or function key. If
you use a relative pathname, the command looks for the file in the working
directory of your TSO/E session, which is typically your home directory.

If no option is specified, the following rules are applied in this order:
1. If stdout is not a tty, the TSO service routine is used since it is possible that the

command output is redirected to a file or piped to another command.
Otherwise,

2. If the controlling tty supports 3270 passthrough mode, OMVS is used.
Otherwise,

3. The TSO service routine is used.

See “Understanding standard input, standard output, and standard error” on page
68 for more information about stdin, stdout, and stderr.

The tso command supports several environment variables. For more information
about the tso command and the environment variables associated with it, see z/OS
UNIX System Services Command Reference.

Using the tsocmd command
You can also use the tsocmd shell command to run a TSO/E command from the
shell or in a shell script.

112 z/OS V2R2 UNIX System Services User's Guide



Unlike the tso shell command, the tsocmd shell command can be used to issue
authorized TSO commands. For more information about the tsocmd shell
command and the environment variables associated with it, see z/OS UNIX System
Services Command Reference.

Online help
Two help facilities are available with the shell:
v The man command, which displays help information about a shell command.

The man page is displayed in your shell session, and you can work in the shell
while viewing the help information.

Using the man command
You can use the man command to get help information about a shell command.
The man syntax is:
man command_name

v To scroll the information in a man page, press <Enter>.
v To end the display of a man page, type q and press <Enter>.

To search for a particular string in a system that has a list of one-line command
descriptions, use the -k option:
man -k string

For example, to produce a list of all the shell commands for editing, you could
type:
man -k edit

You can use the man command to view descriptions of TSO/E commands. To do
this, you must prefix all commands with tso. For example, to view a description of
the MOUNT command, you would enter:
man tsomount

You can also use the man command to view descriptions of dbx subcommands. To
do this, you must prefix all subcommands with dbx. For example, to view a
description of the dbx alias subcommand, you would enter:
man dbxalias

For complete information about the man command, see the man command
description in z/OS UNIX System Services Command Reference.

Shell messages
Messages issued by the tcsh shell and utilities are prefixed with the letters FSUC.
See z/OS UNIX System Services Messages and Codes.

Chapter 7. Working with tcsh shell commands 113



114 z/OS V2R2 UNIX System Services User's Guide



Chapter 8. Writing z/OS shell scripts

Programming interface information

Most people find themselves using some sequences of commands over and over
again.
v A programmer might always use the same commands to compile source code,

and link the resulting object code.
v A bookkeeper can have to go through the same sequence of shell commands

each week to update the books and produce a report.

To simplify such jobs, the shell lets you run a sequence of commands that have
been stored in a text file. For example, the programmer could store all the
appropriate compiling and linking commands in a file. A file containing commands
in this way is called a shell script. After such a file is completed and it is made
executable, the programmer can run all the commands in the file by entering the
file name on the command line.

Putting commands in a shell script has several advantages over typing the
commands individually. Using a shell script:
v Reduces the amount of typing you have to do. You have to type in the shell

script only once. Then you can run all the commands in the script by entering
the name of the file as a single shell command. A shell script can save you a lot
of time and effort if you are working with many files, or if some command lines
have several options.

v Reduces the number of errors. If you are typing in ten commands, you have ten
chances to make a mistake. With a shell script, however, you can take your time,
edit the file carefully and be sure that it is correct before you try to run it.

v Makes it easy for other people to do what you do. For example, consider the
bookkeeper example. When the bookkeeper goes on vacation, someone else has
to fill in. It is much easier for the substitute bookkeeper to type a single
command that does everything correctly than to try to type in the full sequence
of commands.

For all these reasons, you will probably find that the use of shell scripts makes
your work easier and more productive. This topic provides only a brief overview,
but it should give you an idea of how to write and use shell scripts.

Running a shell script
You can run a shell script by typing the name of the file that contains the script.
For example, suppose you have a script named totals.scp that has three shell
commands in it. If you enter:
totals.scp

the shell runs the three commands.

Before you can run a shell script, you must have read and execute permission to
the file. Use the chmod and umask commands to set the permissions. See the
discussion of permissions in Chapter 18, “Handling security for your files,” on
page 231.

© Copyright IBM Corp. 1996, 2015 115



For another example, suppose you want to compile a collection of files written in
the C programming language. You could use the c89, cc, or c++ command. The c89
command, for example, compiles any file file.c, link-edits the object module, and
produces an executable file. The shell script:
c89 -c file1.c file2.c # compile only
c89 -o outfile file1.o file2.o file3.c # outfile for executable

compiles and link-edits the files and produces an executable file, outfile. Notice
that in a shell script you precede a comment with a #.

If you store this script in an executable file named compile, it could be run with
the single command compile. A new process is created for the script to run in.

To run a shell script in your current environment, without creating a new process,
use the . (dot) command. You could run the compile shell script this way:
. compile

If you want to use a shell script that updates a variable in the current environment,
run it with the . command.

Tip: You can improve shell script performance by setting the
_BPX_SPAWN_SCRIPT environment variable to a value of YES. See “Improving
the performance of shell scripts” on page 45 for more information.

Using the magic number
When a script file starts with #!, the kernel's spawn and exec services recognize the
file name after the #! as the program to be run. For example, the z/OS UNIX file
/u/userid/util1 contains the following in the start of the file:
#! /u/userid/othershell

The kernel recognizes the magic number (#!) and runs /u/userid/othershell.

Using TSO/E commands in shell scripts
A shell script can include TSO/E commands as well as shell commands, and it can
process TSO/E command output. You use the tso shell command to run the
TSO/E command. For a discussion of the tso command, see “Using the tso
command” on page 88.

Using variables
You can think of shell scripts as programs made up of shell commands. To allow
more versatile shell scripts, the shell supports many of the features of normal
programming languages.

In a conventional programming language, a variable is a name that has an
associated value. When you want to use the value, you can use the name instead.

Note: A shell script does not inherit any variables from your current shell session.
To pass on a variable, you must export it.

Creating a variable
The shell also lets you create variables. A shell variable name can consist of
uppercase or lowercase letters, plus digits and the underscore character _. The

116 z/OS V2R2 UNIX System Services User's Guide



name can have any length, but the first character cannot be a digit. Uppercase
letters are distinguished from lowercase ones, so NAME, name, and Name are all
different names.

To create a shell variable, just enter:
name=’string’

as a command to the shell. No spaces are allowed around the =. For example:
HOME=’/usr/macneil’

sets up a variable with the name HOME and the value /usr/macneil.

After you set a variable, you refer to it by prefixing its name with a dollar sign ($).
Any command can use the value of a variable by referring to it this way. For
example, if HOME is set to /usr/macneil:
cd $HOME

is equivalent to:
cd /usr/macneil

Similarly:
cp $HOME/* /newdir

is equivalent to:
cp /usr/macneil/* /newdir

To change the value of an existing variable, you use a command with the same
form as the existing variable. For example:
HOME=’/usr/benjk’

changes the value of HOME from /usr/macneil to /usr/benjk.

If the value on the right-hand side of the = sign does not contain spaces, tab
characters, or other special characters, you can leave out the single quotation
marks. For example, you can enter:
HOME=/usr/benjk

Calculating with variables
Suppose you run the following commands either in a shell script or by typing in
one command after another:
i=1
j=$i+1
echo $j

The output of echo is 1+1, because a normal variable assignment assigns a string to
a variable. Thus j gets the string 1+1.

To evaluate an arithmetic expression, you can enter:
let "variable=expression"

This command line assigns the value of an expression to the given variable. For
example:

Chapter 8. Writing z/OS shell scripts 117



i=1
let "j=$i+1"
echo $j

Here j is assigned the value of the expression and the echo command displays the
value 2.

You can also use let to change the value of a variable. If you enter:
i=1
let "i=$i+1"
echo $i

the let command changes the value of i. The new value of i is the old value plus 1.

A let command can have any of the standard arithmetic expressions:

-A Negative A

A*B A times B

A/B A divided by B

A%B Remainder of A divided by B

A+B A plus B

A-B A minus B

The standard mathematical order of operations is used, as shown in the way that
operations are grouped:
v All unary minus operations are carried out;
v Then any *, /, or % operations (from left to right in the order they appear);
v Then any additions or subtractions (from left to right in the order they appear).

Many operators use special shell characters, so you usually need to put double
quotation marks around the expression. Thus:
let "i=5+2*3"

assigns 11 to i, because the multiplication is done first. You can use parentheses in
the usual way to change the order of operations. For example:
let "i=(5+2)*3"

assigns 21 to i.

Note: let does not work with numbers that have fractional parts. It works only
with integers.

Exporting variables
Up to this point, we have talked about defining shell variables and then using
them in later command lines. You can also define a shell variable and then call a
shell script that makes use of that variable. But you have to do a certain amount of
preparation first.

A shell script is run like a separate shell session. By default, it does not share any
variables with your current shell session. If you define a variable VAR in the
current session, it is local to the current session; any shell script that you call will
not know about VAR.

118 z/OS V2R2 UNIX System Services User's Guide



To deal with this situation, you can export the command; enter:
export VAR

The export command says that you want the variable VAR passed on to all the
commands and shell scripts that you execute in this session. After you do this,
VAR becomes global and the variable is known to all the commands and shell
scripts that you use.

As an example, suppose you enter the commands:
MYNAME="Robin Hood"
export MYNAME

Now all your commands can use the MYNAME variable to obtain the associated
name. You may, for example, have shell scripts that write form letters that contain
your name, Robin Hood, obtained from the MYNAME variable.

Note: You could use single or double quotation marks to enclose the variable
value. See “Quoting variable values” on page 41 for more information.

When a script begins running, it automatically inherits all the variables currently
being exported. However, if the script changes the value of one of those variables,
that change is not reflected to the calling shell—unless you run the script with the
dot ( .) utility.

By default, any variables created within a shell script are local to that script. This
means that when another program is run, those variables do not apply in its
environment. However, the script can use the export command to turn local
variables into global ones. Inside a shell script:
export name

indicates that the variable with the given name should be exported. When other
programs are run from that script, they inherit the value of all exported variables.
However, when the script ends, all its exported variables are lost to the calling
shell.

Some variables are automatically marked for export by the software that creates
them. For example, if you invoke the shell, the initialization procedure
automatically marks the HOME variables for export so that other commands and
shell scripts can use it. In Chapter 4, “Customizing the z/OS shell,” on page 39,
you saw that in a typical .profile file for an individual user, the PATH variable is
exported. Exporting PATH ensures that search rules and changes to search rules
are automatically shared by all shell sessions and scripts.

You must export other variables explicitly, using the export command.

Associating attributes with variables
The typeset command lets you associate attributes with shell variables. This
process is analogous to declaring the type of a variable in a conventional
programming language. For example:
typeset –i8 y

says that y is an octal integer. In this way, you can make sure that arithmetic with
y is always performed in base 8 rather than the usual base 10.

Chapter 8. Writing z/OS shell scripts 119



Other attributes may specify how the variable's value is displayed when the
variable is expanded. Attributes of this kind are:

–Ln The value should always be displayed with n characters, left-justified
within that space.

–Rn The value should always be displayed with n characters, right-justified
within that space.

–RZn The value should always be displayed with n characters, right-justified and
with enough leading zeros to fill out the rest of the space.

–Zn The same as -RZn.

–LZn The value should always be displayed with n characters, left-justified and
with leading zeros stripped off.

All of these options may lead to truncation of a value that is longer than the
specified length.

You can use the –u attribute of typeset for variables with string values. Then
whenever such a variable is assigned a new value, all lowercase letters in the value
are automatically converted to uppercase. Similarly, the –l attribute specifies that
whenever a variable is assigned a new value, all uppercase letters in the value are
automatically converted to lowercase.

The read-only attribute –r is useful when a variable is marked for export. The
command:
typeset –r name

says that the variable name cannot be changed from its present value. Then
subsequent commands cannot change this value. You can also use the format:
typeset –r name=value

which sets the variable to the given value and marks it read-only so that the value
cannot be changed.

Displaying currently defined variables
The command typeset without any arguments displays the currently defined
variables and their attributes. The variation:
typeset -x

displays all the variables currently defined for export.

Using positional parameters — the $N construct
The sample shell script discussed previously in this topic compiled and link-edited
a program stored in a collection of source modules. This information discusses a
shell script that can compile and link-edit a C program stored in any file.

To create such a script, you need to be familiar with the idea of positional
parameters. When the shell encounters a $N construct formed by a $ followed by a
single digit, it replaces the construct with a value taken from the command line
that started the shell script.
v $1 refers to the first string after the name of the script file on the command line
v $2 refers to the second string, and so on.

120 z/OS V2R2 UNIX System Services User's Guide



As a simple example, consider a shell script named echoit consisting only of the
command:
echo $1

Suppose we run the command:
echoit hello

The shell reads the shell script from echoit and tries to run the command it
contains. When the shell sees the $1 construct in the echo command, it goes back
to the command line and obtains the first string following the name of the shell
script on the command line. The shell replaces the $1 with this string, so the echo
command becomes:
echo hello

The shell then runs this command.

A construct like $1 is called a positional parameter. Parameters in a shell script are
replaced with strings from the command line when the script is run. The strings on
the command line are called positional parameter values or command-line arguments.

If you enter:
echoit Hello there

the string Hello is considered parameter value $1 and the string there is $2. Of
course, the shell script is only:
echo $1

so the echo command displays only the Hello.

Positional parameters that include a blank can be enclosed in quotation marks
(single or double). For example:
echoit "Hello there"

echoes the two words instead of just one, because the two words are handled as
one parameter.

Returning to a compile and link example, a programmer could write a more
general shell script as:
c89 -c $1.c
c89 -o $1 $1.o

If this shell script were named clink, the command:
clink prog

would compile and link prog.c, producing an executable file named prog in the
working directory. In the same way, the command:
clink dir/prog2

would compile and link dir/prog2.c. The shell script compiles and links a C
program stored in a single file.

As another example of a shell script containing a positional parameter, suppose
that the file lookup contains:
grep $1 address

Chapter 8. Writing z/OS shell scripts 121



(where address is a file containing names, addresses, and other useful
information). The command:
lookup Smith

displays address information about anyone in the file named Smith.

Using quotation marks to enclose a construct in a shell script
A $N construct in a shell script can be enclosed in double or single quotation
marks.
v When double quotation marks are used, the parameter is replaced by the

appropriate value from the command line. For example, suppose that the file
search contains:
grep "$1" *

If you enter the command:
search ’two words’

the parameter value ’two words’ replaces the construct $1 in the grep command:
grep "two words" *

If the grep command does not contain the double quotation marks, the
parameter replacement would result in:
grep two words *

which has an entirely different meaning.
v When you use single quotation marks to enclose a $N construct in a shell script,

the $N is not replaced by the corresponding parameter value. For example, if the
file search contains:
grep ’$1’ *

grep searches for the string $1. The $1 is not replaced by a value from the
command line. In general, single quotation marks are “stronger” than double
quotation marks.

Using parameter and variable expansion
A $ followed by a number stands for a positional parameter passed to the script or
function. A positional parameter is represented with either a single digit (except 0)
or two or more digits in braces; for example, 7 and {15} are both valid
representations of positional parameters. For example, if the command:
echo $1

appeared in a shell script, it would echo the first positional parameter.

Similarly, a $ followed by the name of a shell variable (such as $HOME) stands for
the value of the variable.

These constructs are called parameter expansions. In this sense, the term parameter
can mean either a positional parameter or a shell variable.

The z/OS shell also supports more complicated forms of parameter expansions,
letting you obtain only part of a parameter value or a modified form of the value.

122 z/OS V2R2 UNIX System Services User's Guide



Parameter expansion Usage

${parameter:-value} You can use ${parameter:-value} in any input to the shell.
If parameter currently has a value and the value is not null
(for example, a string without characters), the foregoing
construct stands for the parameter's value. If the value of
the parameter is null, the construct is replaced with the
value shown in the brace brackets. For example, a shell
script might contain:

SHELL=${SHELL:-/bin/sh}

If the SHELL variable currently has a value, this simply
assigns SHELL its own current value. However, if the value
of SHELL is null, the given assignment will have the value
of /bin/sh. The value after :– can be thought of as a backup
value in case the parameter itself does not have a value. As
another example, consider:

cp $1 ${2:-$HOME}

(This might occur in a shell script.) If both positional
parameters are present and have a nonnull value, the copy
command is just:

cp $1 $2

However, if you call the shell script without specifying a
second positional parameter, it uses the backup value of
$HOME. The result is equivalent to:

cp $1 $HOME

${parameter:=value} The expansion form ${parameter:=value} is similar to the
previous form; the difference is that if the given parameter
does not currently have a value, the given value is assigned
to parameter, and then the new value of parameter is used.
Thus the := form actually assigns a value if the parameter
does not already have one. In this case, parameter must be a
variable; it cannot be a positional parameter.

${parameter:?message} The expansion ${parameter:?message} is related to the
previous two forms. If the value of the given parameter is
null, the given message is displayed. If the construct is being
used inside a shell script, the script ends with an error
status. For example, you might have:

cp $1 ${2:?"Must specify a directory name"}

In this case, the message following the ? is displayed if
there is no second positional parameter. If you omit the
message, the shell prints a standard message. For example,
you could just enter:

cp $1 ${2:?}

to get the standard error message.

Chapter 8. Writing z/OS shell scripts 123



Parameter expansion Usage

${parameter:+replacement} The construct ${parameter:+replacement} might be thought
of as the opposite of the preceding expansions. If parameter
has not been assigned a value, or has a null value, this
construct is just the null string. If parameter does have a
value, the value is ignored and the replacement value is used
in its place. Thus, if a shell script contains:

echo ${1:+"There was a parameter"}

the echo command displays:

There was a parameter

if the script was invoked with a parameter. If no parameter
was specified, the echo command has nothing to echo.

${parameter#pattern} The construct ${parameter#pattern} is evaluated by
expanding the value of parameter and then deleting the
smallest leftmost part of the expansion that matches the
given pattern of pathname wildcard characters. For
example, suppose that the variable NAME stands for a file
name. You might use:

${NAME#*/}

to remove the highest-level directory from the pathname. If:

NAME="user/dir/subdir/file.c"

then:

${NAME#*/}

expands to:

dir/subdir/file.c

${parameter##pattern} The construct ${parameter##pattern} removes the largest
leftmost part that matches the pattern. For example, if:

NAME="user/dir/subdir/file.c"

then:

${NAME##*/}

yields:

file.c

The wildcard character * stands for any sequence of
characters. In this situation, it stands for everything up to
the final slash.

${parameter%pattern} The construct ${parameter%pattern} removes the smallest
rightmost part of the parameter expansion that matches
pattern. Thus if:

NAME="user/dir/subdir/file.c"

then:

${NAME%.?}

stands for:

user/dir/subdir/file

124 z/OS V2R2 UNIX System Services User's Guide



Parameter expansion Usage

${parameter%%pattern} Similarly, ${parameter%%pattern} stands for the expansion
of parameter without the longest rightmost string that
matches pattern. Using the previous example of NAME,

${NAME%%/*}

stands for:

user

Using special parameters in commands and shell scripts
The z/OS shell has a variety of special parameters that may be used in command
lines and shell scripts.

Parameter Expands to

$@ The complete list of positional parameters, each separated by a single
space. If $@ is quoted, the separate arguments are each quoted; for
example:

echo "$@"

is equivalent to:

"$1" "$2" "$3"

If the positional parameters are all file names:

cp $@ dir

copies all the files to the given directory dir.

$* The complete list of positional parameters. If $* is quoted, the result is
concatenated into a single argument, with parameters separated by the
first character of the value of the shell variable IFS. For example, if the
first character of IFS is a comma, then:

echo "$*"

displays the parameters with separating commas:

"$1,$2,$3"

$# The number of positional parameters passed to this shell script. This
number can be changed by several shell commands (for example, set or
shift); see z/OS UNIX System Services Command Reference.

$? The exit status value returned by the most recently run command. The
command echo $? prints out the status from the most recently run
operation or command.

$– The set of options that have been specified for this shell session. This
includes options that were specified on the command line that started
the shell, plus other options that have been set with the set command.

Using control structures
The shell provides facilities similar to those found in programming languages. It
offers these control structures, which are related to programming control structures:
v The if conditional
v The while loop
v The for loop

Chapter 8. Writing z/OS shell scripts 125



Using test to test conditions
Before discussing the various control structures, it is useful to talk about ways to
test for various conditions.

The test command tests to see if something is true. Here are some ways it can be
used:

Table 4. Uses for the test command

Examine the nature of a file

test -d pathname Is pathname a directory?

test -f pathname Is pathname a file?

test -r pathname Is pathname readable?

test -w pathname Is pathname writable?

Compare the age of two files

test file1 -ot file2 Is file1 older than file2?

test file1 -nt file2 Is file1 newer than file2?

Compare the values of numbers A and B

test A -eq B Is A equal to B?

test A -ne B Is A not equal to B?

test A -gt B Is A greater than B?

test A -lt B Is A less than B?

test A -ge B Is A greater than or equal to B?

test A -le B Is A less than or equal to B?

Compare two strings str1 and str2

test str1 = str2 Is str1 equal to str2?

test str1 != str2 Is str1 not equal to str2?

Test whether strings are empty

test -z string Is string empty?

test -n string Is string not empty?

Any of these tests will also work if you put square brackets ([ ]) around the
condition instead of using the test command. For example, test 1 -eq 1 is the
equivalent of [ 1 -eq 1 ].

The double square bracket [[test_expr]] syntax is also supported. The double
square bracket ([[ ]]) also supports additional tests over the test command, and
there are some subtle differences between the tests (for example, string equal vs.
pattern matching).

The result of test is either true or false. test returns a status of 0 if the test turns
out to be true and a status of 1 if the test turns out to be false.

You can use –n to check if a variable has been defined. For example:
test -n "$HOME"

is true if HOME exists, and false if you have not created a HOME variable.

You can use ! to indicate logical negation;

126 z/OS V2R2 UNIX System Services User's Guide



test ! expression

returns false if expression is true, and returns true if expression is false. For example:
test ! -d pathname

is true if pathname is not a directory, and false otherwise.

The if conditional
An if conditional runs a sequence of commands if a particular condition is met. It
has the form:
if condition
then commands
fi

The end of the commands is indicated by fi (which is "if" backward). For example,
you could have:
if test -d $1
then ls $1
fi

This tests to see if the string associated with the first positional parameter, $1, is
the name of a directory. If so, it runs an ls command to display the contents of the
directory.

Any number of commands may come between the then and the fi that ends the
control structure. For example, you might have written:
if

test -d $1
then

echo "$1 is a directory"
ls $1

fi

This example also shows that the commands do not have to begin on the same line
as then, and the condition being tested does not have to begin on the same line as
if. The condition and the commands are indented to make them stand out more
clearly. This is a good way to make your shell scripts easier to read.

Another form of the if conditional is:
if condition
then commands
else commands
fi

If the condition is true, the commands after the then are run; otherwise, the
commands after the else are run. For example, suppose you know that the string
associated with the variable pathname is the name of either a directory or a file.
Then you could write:
if

test -d $pathname
then

echo "$pathname is a directory"
ls $pathname

else
echo "$pathname is a file"
cat $pathname

fi

Chapter 8. Writing z/OS shell scripts 127



If the value of pathname is the name of a file, this shell script uses echo to display
an appropriate message, and then uses cat to display the contents of the file.

The final form of the if control structure is:
if condition1
then commands1
elif condition2
then commands2
elif condition3
then commands3

...
else commands
fi

elif is short for "else if" In this example, if condition1 is true, commands1 are run;
otherwise, the shell goes on to check condition2. If that is true, commands2 are run;
otherwise, the shell goes on to check condition3 and so on. If none of the test
conditions are true, the commands after the else are run. Here is an example of how
this can be used:
if test ! "$1"
then

echo "no positional parameters"
elif test -d $1
then

echo "$1 is a directory"
ls $1

elif test -f $1
then

echo "$1 is a file"
cat $1

else
echo "$1 is just a string"

fi

The test after the if determines if the value of the first positional parameter, $1, is
an empty string. If so, there are no positional parameters, and the shell script uses
echo to display an appropriate message; otherwise, the script checks to see if the
parameter is a directory name; if so, the contents of the directory are listed with ls
(after an appropriate message). If that does not work, the script checks to see if the
parameter is a file name; if so, the contents of the file are listed with cat (after an
appropriate message). Finally, if none of the previous tests work, the parameter is
assumed to be an arbitrary string, and the script displays a message to this effect.

You could put that script into a file named listit and run commands of the form:
listit name

to list the contents of name in a useful form.

The while loop
The while loop repeats one or more commands while a particular condition is true.
The loop has the form:
while condition
do commands
done

The shell first tests to see if condition is true. If it is, the shell runs the commands.
The shell then goes back to check the condition. If it is still true, the shell runs the
commands again, and so on, until the condition is found to be false.

128 z/OS V2R2 UNIX System Services User's Guide



As an example of how this can be used, suppose you want to run a program
named prog 100 times to get an idea of the program's average running speed. The
following shell script does the job:
i=100
date
while test $i -gt 0
do

prog
let i=$i-1

done
date

The script begins by setting a variable i to 100. It then uses the date command to
get the current date and time.

Next the script runs a while loop. The test condition says that the loop should
keep on going as long as the value of i is greater than zero. The commands of the
loop run prog and then subtract 1 from the i variable. In this way, i goes down by
1 each time through the loop, until it is no longer greater than 0. At this point, the
loop stops and the final instruction of the script prints out the date and time at the
end of the loop. The difference between the starting time and the ending time
should give some idea of how long it took to run the program 100 times.

(Of course, the shell itself takes some time to perform the test and to do the
calculations with i. If prog takes a long time to run, the time spent by the shell is
relatively unimportant; if prog is a quick program, the extra time that the shell
takes may be large enough to make the timing incorrect.)

You can rewrite this shell script to make it a little more efficient:
i=100
date
while let "(i=$i-1) >= 0"
do

prog
done
date

In this example, the let command is the condition of the while loop. It gives i a
new value and then compares this value to zero. The advantage of this way of
writing the program is that it does not have to call test to make the comparison;
this speeds up the loop and makes the time more accurate.

The for loop
The final control structure to be examined is the for loop. It has the form:
for name in list
do commands
done

The parameter name should be a variable name; if this variable doesn't exist, it is
created. The parameter list is a list of strings separated by spaces. The shell begins
by assigning the first string in list to the variable name. It then runs the commands
once. Then the shell assigns the next string in list to name, and repeats the
commands. The shell runs the commands once for each string in list.

As a simple example of a shell script that uses for, consider:

Chapter 8. Writing z/OS shell scripts 129



for file in *.c
do

c89 $file
done

When the shell looks at the for line, it expands the expression *.c to produce a list
containing the names of all files (in the working directory) that have the suffix .c.
The variable file is assigned each of the names in this list, in turn. The result of the
for loop is to use the c89 command to compile all .c files in the working directory.
You could also write:
for file in *.c
do

echo $file
c89 $file

done

so that the shell script displayed each file name before compiling it. This would let
you keep track of what the script was doing.

As you can see, the for loop is a powerful control structure. The list can also be
created with command substitution, as in:
for file in $(find . -name "*.c" -print)
do

echo $file
c89 $file

done

Here the find command finds all .c files in the working directory, and then
compiles these files. This is similar to the previous shell script, but it also looks at
subdirectories of the working directory.

Combining control structures
You can combine control structures by nesting (that is, putting one inside another).
For example:
for file in $(find . -name "*.c" -print)
do

if test $file -ot $1
then

echo $file
c89 -c $file

fi
done

This shell script takes one positional parameter, giving the name of a file. The
script looks in the working directory and finds the names of all .c files. The if
control structure inside the for loop tests each file to see if it is older than the file
named on the command line. If the .c file is older, echo displays the name, and the
file is compiled. You can think of this as making a set of files up to date with the
file name specified on the command line.

For more information about thetest command, see z/OS UNIX System Services
Command Reference. The section that discusses reserved words in z/OS UNIX System
Services Command Reference contains information about the [[ ... ]] form.

130 z/OS V2R2 UNIX System Services User's Guide



Using functions
A shell function is similar to a function in C: It is a sequence of commands that do a
single job. Typically, a function is used for an operation that you tend to do
frequently in a shell script. Before you can call a function in a shell script, you
must define it in the script. After the function is defined, you can call it as many
times as you want in the script.

As an example, consider the following piece of a shell script, showing the function
definition and how the function is called in the shell script:
function td
{

if test -d "$1" # test if first argument is directory
then

curdir=$(pwd) # set curdir to working directory
cd $1 # change to specified directory
$2 # run specified command
cd $curdir # change back to working directory
return 0 # return 0 if successful

else
echo $1 "is not a directory"
return 1 # return 1 if not successful

fi
}
td /u/turbo/src.c ls # invoking the function

The purpose of td is to go to a specified directory, run a single command, and then
return to the directory from which the function was called.

To run a function, specify the function's name followed by whatever arguments it
expects. To run the function td, specify the function name followed by a directory
name and a command name, as shown in the last line of the foregoing example.

As you see in the td example, a function can also return a value. If the statement:
return expression

appears inside a function, the function ends and the value of expression is returned
as the status, or result, of the function. In general, the returned value:
v 0 means that the function has succeeded in its task.
v 1 means that the function has failed.

Anytime you need to repeatedly perform the same sequence of commands in a
shell script, consider defining a function to do the sequence of commands. This lets
you organize a large script into smaller blocks of subroutines.

In order to make a shell function available as a shell command, the function
definition must be processed by the shell that will execute the command. Typically,
the user sets up a shell script (such as $HOME/.setup) that contains all of the
function definitions, and sets the ENV variable to the pathname of that shell script.
As the number of functions in this script grows, the time to process the function
definitions causes shell initialization time to increase.

Autoloading functions
Autoloading improves the performance of shell initialization by delaying function
definition processing until the first use. Functions that are not used by a particular

Chapter 8. Writing z/OS shell scripts 131



user are never read by the shell, thus avoiding the processing of unused functions.
The FPATH variable allows flexibility in accessing directories with systemwide,
group, or personal function definitions.

FPATH is defined with the same format as the PATH variable. FPATH is a list of
directories separated by colons. These directories contain only function definitions
and should not contain the current working directory.

To use autoloading, place frequently used and shared functions in a directory
pointed to by the FPATH variable and specify the function name on an autoload
or typeset –f command in the user's ENV setup script.

The autoload command identifies functions that are not yet defined. The first time
that an autoload function is called within the shell, the shell searches FPATH
directories for a file with the same name as the function definition. If a matching
file with the same name as the function is found, it is processed and stored in the
shell's memory for subsequent execution. The matching file contains the function
definition for the autoload function. Other function definitions may be found in
this matching file, and if so, they will be defined to the shell when the file is
processed. For information about how to set up the FPATH search path, see
“Customizing the FPATH search path: The FPATH variable” on page 44.

End of Programming interface information

132 z/OS V2R2 UNIX System Services User's Guide



Chapter 9. Writing tcsh shell scripts

Programming interface information

Most people find themselves using some sequences of commands over and over
again.
v A programmer may always use the same commands to compile source code,

and link the resulting object code.
v A bookkeeper may have to go through the same sequence of shell commands

each week to update the books and produce a report.

To simplify such jobs, the shell lets you run a sequence of commands that have
been stored in a text file. For example, the programmer could store all the
appropriate compiling and linking commands in a file. A file containing commands
in this way is called a shell script. After such a file is completed and it is made
“executable,” the programmer can run all the commands in the file by entering the
file name on the command line.

Putting commands in a shell script has several advantages over typing the
commands individually. Using a shell script:
v Reduces the amount of typing you have to do. You have to type in the shell

script only once. Then you can run all the commands in the script by entering
the name of the file as a single shell command. A shell script can save you a lot
of time and effort if you are working with many files, or if some command lines
have several options.

v Reduces the number of errors. If you are typing in ten commands, you have ten
chances to make a mistake. With a shell script, however, you can take your time,
edit the file carefully, and get it right before you try to run it.

v Makes it easy for other people to do what you do. For example, consider the
bookkeeper example. When the bookkeeper goes on vacation, someone else has
to fill in. It is much easier for the substitute bookkeeper to type a single
command that does everything correctly than to try to type in the full sequence
of commands.

For all these reasons, you will probably find that the use of shell scripts makes
your work easier and more productive. This topic provides only a brief overview,
but it should give you an idea of how to write and use shell scripts.

Running a shell script
You can run a shell script by typing the name of the file that contains the script.
For example, suppose you have a script named totals.scp that has three shell
commands in it. If you enter:
totals.scp

the shell runs the three commands.

Before you can run a shell script, you must have read and execute permission to
the file. Use the chmod and umask commands to set the permissions. See the
discussion of permissions in Chapter 18, “Handling security for your files,” on
page 231. See the descriptions of chmod and umask in z/OS UNIX System Services
Command Reference.

© Copyright IBM Corp. 1996, 2015 133



For another example, suppose you want to compile a collection of files written in
the C programming language. You could use the c89, cc, or c++ command. The c89
command, for example, compiles any file file.c, link-edits the object module, and
produces an executable file. The shell script:
c89 -c file1.c file2.c # compile only
c89 -o outfile file1.o file2.o file3.c # outfile for executable

compiles and link-edits the files and produces an executable file, outfile. Notice
that in a shell script you precede a comment with a #.

If you store this script in an executable file named compile, it could be run with
the single command compile. A new process is created for the script to run in.

To run a shell script in your current environment, without creating a new process,
use the source command. You could run the calculate shell script this way:
source calculate

Should you want to use a shell script that updates a variable in the current
environment, run it with the source command.

Tip: To improve shell script performance, set the _BPX_SPAWN_SCRIPT
environment variable to NO when using the tcsh shell. This variable is intended
only for use with the z/OS shell. If this variable is inherited from a z/OS shell
session, put
#!/bin/tcsh

as the first line in your tcsh shell scripts to avoid any errors. If tcsh is your login
shell, you should unset _BPX_SPAWN_SCRIPT, because it is only used for
increasing performance of z/OS shell scripts.

Using the magic number
All tcsh scripts must have # as the first character of the script. When a script file
starts with #!, the kernel's spawn and exec services recognize the file name after
the #! as the program to be run. It is recommended that the first line of all tcsh
scripts look like:
#!/bin/tcsh

with /bin/tcsh being the location of tcsh on the z/OS system. The kernel recognizes
the magic value (#!) and runs /bin/tcsh.

Using TSO/E commands in shell scripts
A shell script can include TSO/E commands as well as shell commands, and it can
process TSO/E command output. You use the tso shell command to run the
TSO/E command. For a discussion of the tso command, see “Using the tso
command” on page 88.

Using variables
You can think of shell scripts as programs made up of shell commands. To allow
more versatile shell scripts, the shell supports many of the features of normal
programming languages.

134 z/OS V2R2 UNIX System Services User's Guide



In a conventional programming language, a variable is a name that has an
associated value. When you want to use the value, you can use the name instead.

Creating a shell variable
The shell also lets you create variables. A shell variable name can consist of
uppercase or lowercase letters, plus digits and the underscore character _. The
name can have any length, but the first character cannot be a digit. Uppercase
letters are distinguished from lowercase ones, so NAME, name, and Name are all
different names.

To create a shell variable, just enter:
set name=’string’

as a command to the shell. For example:
set home=’/usr/adams’

sets up a variable with the name home and the value /usr/adams.

After you set a variable, you refer to it by prefixing its name with a dollar sign ($).
Any command can use the value of a variable by referring to it this way. For
example, if home is set to /usr/adams:
cd $home

is equivalent to:
cd /usr/adams

Similarly:
cp $home/* /newdir

is equivalent to:
cp /usr/adams/* /newdir

To change the value of an existing variable, you use a command with the same
form as the existing variable. For example:
set home=’/usr/benjk’

changes the value of home from /usr/adams to /usr/benjk.

If the value on the right-hand side of the = sign does not contain spaces, tab
characters, or other special characters, you can leave out the single quotation
marks. For example, you can enter:
home=/usr/benjk

Calculating with variables
Suppose you run the following commands either in a shell script or by typing in
one command after another:
set i=1
set j=$i+1
echo $j

The output of echo is 1+1, because a normal variable assignment assigns a string to
a variable. Thus j gets the string 1+1.

To evaluate an arithmetic expression, you can enter:

Chapter 9. Writing tcsh shell scripts 135



@ variable=expression

This command line assigns the value of an expression to the given variable. For
example:
i=1
@ j=$i + 1
echo $j

Here j is assigned the value of the expression and the echo command displays the
value 2.

You can also use @ to change the value of a variable. If you enter:
i=1
@ i=$i + 1
echo $i

the @ command changes the value of i. The new value of i is the old value plus 1.

An @ command can have any of the standard arithmetic expressions:

-A Negative A

A * B A times B

A / B A divided by B

A % B Remainder of A divided by B

A + B A plus B

A - B A minus B

The standard mathematical order of operations is used, as shown in the way that
operations are grouped:
v All unary minus operations are carried out;
v Then any *, /, or % operations (from left to right in the order they appear);
v Then any additions or subtractions (from left to right in the order they appear).

Many operators use special shell characters, so you usually need to put double
quotation marks around the expression. Thus:
@ i = 5 + 2 * 3

assigns 11 to i, because the multiplication is done first. You can use parentheses in
the usual way to change the order of operations. For example:
@ i = ((5 + 2) * 3 )

assigns 21 to i.

Note: @ does not work with numbers that have fractional parts. It works only
with integers.

Setting environment variables
Up to this point, we have talked about defining shell variables and then using
them in later command lines. You can also define a shell variable and then call a
shell script that makes use of that variable. But you have to do a certain amount of
preparation first.

136 z/OS V2R2 UNIX System Services User's Guide



A shell script is run as a child process to the parent shell. By default, the child
process does not share any variables with the parent. If you define a variable var
in the parent shell, it is local to the current session; any shell script, or child
process, that you call will not inherit var.

To deal with this situation, you can enter the following:
setenv var [value]

The setenv command says that you want the variable var passed on to all the child
processes that you execute in this session. After you do this, var becomes inherited
and the variable is known to all the commands and shell scripts that you use.

As an example, suppose you enter the commands:
setenv myname "Friar Tuck"

Now all your child processes can use the myname variable to obtain the associated
name. You may, for example, have shell scripts that write form letters that contain
your name, Friar Tuck, obtained from the myname variable.

Note: You could use single or double quotation marks to enclose the variable
value. See “Quoting variable values” on page 54 for more information.

When a script or child process begins running, it automatically inherits all the
environment variables passed on to it. However, if the script changes the value of
one of those variables, that change is not passed back to the parent process
—unless you run the script with the source utility.

By default, any variables created within a shell script are local to that script. This
means that when another program is run, those variables do not apply in its
environment. However, the script can use the setenv command to turn shell
variables into global environment ones. Inside a shell script:
setenv name [value]

indicates that the variable with the given name should be defined as an
environment variable. When other programs are run from that script, they inherit
the value of all environment variables. However, when the script ends, all its
environment variables are lost to the calling shell.

Some variables are automatically inherited by the software that creates them. For
example, if you invoke the shell, the initialization procedure automatically marks
the HOME variables for environment variables so that other commands and shell
scripts can use it. In Chapter 5, “Customizing the tcsh shell,” on page 53, you saw
that in a typical .tcshrc file for an individual user, the PATH variable is an
environmental variable. Making the PATH variable an environmental variable
ensures that search rules and changes to search rules are automatically shared by
all shell sessions and scripts.

Using positional parameters — the $N construct
The sample shell script discussed previously compiled and link-edited a program
stored in a collection of source modules. This topic discusses a shell script that can
compile and link-edit a C program stored in any file.

Chapter 9. Writing tcsh shell scripts 137



To create such a script, you need to be familiar with the idea of positional
parameters. When the shell encounters a $N construct formed by a $ followed by a
single digit, it replaces the construct with a value taken from the command line
that started the shell script.
v $1 refers to the first string after the name of the script file on the command line
v $2 refers to the second string, and so on.

As a simple example, consider a shell script named echoit consisting only of these
commands:
#!/bin/tcsh #
echo $1

Suppose we run the command:
echoit hello

The shell reads the shell script from echoit and tries to run the command it
contains. When the shell sees the $1 construct in the echo command, it goes back
to the command line and obtains the first string following the name of the shell
script on the command line. The shell replaces the $1 with this string, so the echo
command becomes:
echo hello

The shell then runs this command.

A construct like $1 is called a positional parameter. Parameters in a shell script are
replaced with strings from the command line when the script is run. The strings on
the command line are called positional parameter values or command-line arguments.

If you enter:
echoit Hello there

the string Hello is considered parameter value $1 and the string there is $2. Of
course, the shell script is only:
echo $1

so the echo command displays only the Hello.

Positional parameters that include a blank can be enclosed in quotes (single or
double). For example:
echoit "Hello there"

echoes the two words instead of just one, because the two words are handled as
one parameter.

Returning to a compile and link example, a programmer could write a more
general shell script as:
c89 -c $1.c
c89 -o $1 $1.o

If this shell script were named clink, the command:
clink prog

would compile and link prog.c, producing an executable file named prog in the
working directory. In the same way, the command:

138 z/OS V2R2 UNIX System Services User's Guide



clink dir/prog2

would compile and link dir/prog2.c. The shell script compiles and links a C
program stored in a single file.

As another example of a shell script containing a positional parameter, suppose
that the file lookup contains:
grep $1 address

where address is a file containing names, addresses, and other useful information.
The command:
lookup Smith

displays address information on anyone in the file named Smith.

Using quotes to enclose a construct in a shell script
A $N construct in a shell script can be enclosed in double or single quotation
marks.
v When double quotation marks are used, the parameter is replaced by the

appropriate value from the command line. For example, suppose the file search
contains:
grep "$1" *

If you enter the command:
search ’two words’

the parameter value ’two words’ replaces the construct $1 in the grep command:
grep "two words" *

If the grep command does not contain the double quotation marks, the
parameter replacement results in:
grep two words *

which has an entirely different meaning.
v When you use single quotation marks to enclose a $N construct in a shell script,

the $N is not replaced by the corresponding parameter value. For example, if the
file search contains:
grep ’$1’ *

grep searches for the string $1. The $1 is not replaced by a value from the
command line. In general, single quotation marks are “stronger” than double
quotation marks. Less is more!

Using parameter and variable expansion
A $ followed by a number stands for a positional parameter passed to the script or
function. A positional parameter is represented with either a single digit (except 0)
or two or more digits in braces; for example, 7 and {15} are both valid
representations of positional parameters. For example, if the command:
echo $1

appeared in a shell script, it would echo the first positional parameter.

Chapter 9. Writing tcsh shell scripts 139



Similarly, a $ followed by the name of a shell variable (such as $HOME) stands for
the value of the variable.

These constructs are called parameter expansions. In this sense, the term parameter
can mean either a positional parameter or a shell variable.

The tcsh shell also supports more complicated forms of parameter expansions,
letting you obtain only part of a parameter value or a modified form of the value.

Modifier Description

r Root of value

e Extension of value

h Head of value

t Tail of value

For example, to extract only part of a file name, you can add one of these
modifiers as follows:

File name r e h t

/usr/bin/vi.txt /usr/bin/vi txt /usr/bin vi.txt

/u/bobby/mail /u/bobby/mail empty /u/bobby mail

storybook.pdf storybook pdf empty storybook.pdf

INSTALL INSTALL empty empty INSTALL

Using special parameters in commands and shell scripts
The tcsh shell has a variety of special parameters that can be used in command
lines and shell scripts. These parameters are listed in the Variable Substitution
topic of the tcsh command description in z/OS UNIX System Services Command
Reference.

Using control structures
The shell provides facilities similar to those found in programming languages. It
offers these control structures, which are related to programming control structures:
v The if conditional
v The while loop
v The for loop

The if conditional
An if conditional runs a sequence of commands if a particular condition is met. It
has the form:
if (expr) command

The end of the commands is indicated by endif. For example, you could have:
if ( -d $1 ) then
ls $1
endif

140 z/OS V2R2 UNIX System Services User's Guide



This tests to see if the string associated with the first positional parameter, $1, is
the name of a directory. If so, it runs an ls command to display the contents of the
directory.

Any number of commands can come between the then and the endif that ends the
control structure. For example, you might have written:
if ( -d $1 ) then

echo "$1 is a directory"
ls $1

endif

This example also shows that the commands do not have to begin on the same line
as then, and the condition being tested does not have to begin on the same line as
if. The condition and the commands are indented to make them stand out more
clearly. This is a good way to make your shell scripts easier to read.

Another form of the if conditional is:
if (expr) then
commands
else
commands
endif

If the condition is true, the commands after the then are run; otherwise, the
commands after the else are run. For example, suppose you know that the string
associated with the variable pathname is the name of either a directory or a file.
Then you could write:
if ( -d $pathname ) then

echo "$pathname is a directory"
ls $pathname

else
echo "$pathname is a file"
cat $pathname

endif

If the value of pathname is the name of a file, this shell script uses echo to display
an appropriate message, and then uses cat to display the contents of the file.

The final form of the if control structure is:
if (expr1) then
commands1
else if (expr2) then
commands2
else if (expr3) then
commands3
else
commands
endif

In this example, if expr1 is true, commands1 are run; otherwise, the shell goes on to
check expr2. If that is true, commands2 are run; otherwise, the shell goes on to check
expr3 and so on. If none of the test conditions are true, the commands after the else
are run. Here is an example of how this can be used:
if ( ! $?argv ) then

echo "no positional parameters"
else if ( -d $1 ) then

echo "$1 is a directory"
ls $1

else if ( -f $1 ) then
echo "$1 is a file"

Chapter 9. Writing tcsh shell scripts 141



cat $1
else

echo "$1 is just a string"
endif

The test after the if determines if the value of the first positional parameter, $1, is
an empty string. If so, there are no positional parameters, and the shell script uses
echo to display an appropriate message; otherwise, the script checks to see if the
parameter is a directory name; if so, the contents of the directory are listed with ls
(after an appropriate message). If that does not work, the script checks to see if the
parameter is a file name; if so, the contents of the file are listed with cat (after an
appropriate message). Finally, if none of the previous tests work, the parameter is
assumed to be an arbitrary string, and the script displays a message to this effect.

You could put that script into a file named listit and run commands of the form:
listit name

to list the contents of name in a useful form.

The while loop
The while loop repeats one or more commands while a particular condition is true.
The loop has the form:
while (expr)
commands
end

The shell first tests to see if condition (expr) is true. If it is, the shell runs the
commands. The shell then goes back to check the condition. If it is still true, the shell
runs the commands again, and so on, until the condition is found to be false.

As an example of how this can be used, suppose you want to run a program
named prog 100 times to get an idea of the program's average running speed. The
following shell script does the job:
@ i=100
date
while ( $i > 0)

prog
@ i--

end
date

The script begins by setting a variable i to 100. It then uses the date command to
get the current date and time.

Next the script runs a while loop. The condition says that the loop should keep on
going as long as the value of i is greater than zero. The commands of the loop run
prog and then subtract 1 from the i variable, similar to C programming language
syntax. In this way, i goes down by 1 each time through the loop, until it is no
longer greater than 0. At this point, the loop stops and the final instruction of the
script prints out the date and time at the end of the loop. The difference between
the starting time and the ending time should give some idea of how long it took to
run the program 100 times.

(Of course, the shell itself takes some time to perform the condition and to do the
calculations with i. If prog takes a long time to run, the time spent by the shell is
relatively unimportant; if prog is a quick program, the extra time that the shell
takes may be large enough to make the timing incorrect.)

142 z/OS V2R2 UNIX System Services User's Guide



The foreach loop
The final control structure to be examined is the foreach loop. It has the form:
foreach name (wordlist)
commands
end

The parameter name must be a variable name; if this variable does not exist, it is
created. The parameter list is a list of strings separated by spaces. The shell begins
by assigning the first string in list to the variable name. It then runs the commands
once. Then the shell assigns the next string in list to name, and repeats the
commands. The shell runs the commands once for each string in list.

As a simple example of a shell script that uses foreach, consider:
foreach file ( *.c )

c89 $file
end

When the shell looks at the foreach line, it expands the expression *.c to produce
a list containing the names of all files (in the working directory) that have the
suffix .c. The variable file is assigned each of the names in this list, in turn. The
result of the foreach loop is to use the c89 command to compile all .c files in the
working directory. You could also write:
foreach file ( *.c )

echo $file
c89 $file

end

so that the shell script displayed each file name before compiling it. This would let
you keep track of what the script was doing.

As you can see, the foreach loop is a powerful control structure. The list can also
be created with command substitution, as in:
foreach file ( `find . -name "*.c" -print` )

echo $file
c89 $file

end

Here the find command finds all .c files in the working directory, and then
compiles these files. This is similar to the previous shell script, but it also looks at
subdirectories of the working directory.

Combining control structures
You can combine control structures by nesting (that is, putting one inside another).
For example:
foreach file ( `find . -name "*.c" -print` )

if ( -M $file > -M $1 ) then
echo $file
c89 -c $file

endif
end

This shell script takes one positional parameter, giving the name of a file. The
script looks in the working directory and finds the names of all .c files. The if
control structure inside the foreach loop tests each file to see if it is older than the
file named on the command line. If the .c file is older, echo displays the name, and
the file is compiled. You can think of this as making a set of files up to date with

Chapter 9. Writing tcsh shell scripts 143



the file name specified on the command line.

End of Programming interface information

144 z/OS V2R2 UNIX System Services User's Guide



Chapter 10. Using job control in the shells

When you enter a shell command, you start a process, the execution of a function.
When you enter that command, the shell runs it in its own process group. As such,
it is considered a separate job and the shell assigns it a job identifier, which is a
small number known only to the shell. (A shell job identifier identifies a shell job,
not an MVS job.) When the process completes, the system displays the shell
prompt.

The system also assigns a process group identifier (PGID) and a process identifier
(PID). When only one command is entered, the PGID is the same as the PID. The
PGID can be thought of as a systemwide identifier. If you enter more than one
command at a time using a pipe, several processes, each with its own PID, are
started. However, these processes all have the same PGID and shell job identifier.
The PGID is the same as the PID of the first process in the pipe.

To sum it up, there are several types of process identifiers associated with a
process:

PID A process ID (PID) is a unique identifier assigned to a process while it
runs. When the process ends, its PID is returned to the system. Each time
you run a process, it has a different PID (it takes a long time for a PID to
be reused by the system). You can use the PID to track the status of a
process with the ps command or the jobs command, or to end a process
with the kill command.

PGID Each process in a process group shares a process group ID (PGID), which
is the same as the PID of the first process in the process group. This ID is
used for signaling related processes.

If a command starts just one process, its PID and PGID are the same.

PPID A process that creates a new process is called a parent process; the new
process is called a child process. The parent process ID (PPID) becomes
associated with the new child process when it is created. The PPID is not
used for job control.

Several job control commands can either take as input or return the job identifier,
process identifier, or process group identifier: bg, fg, jobs, kill, and wait.

The nice and renice commands can be used to change the priority of processes.
Their use is dependent on the way performance groups have been prioritized at
your installation; check with your system administrator for information about
using nice and renice to change job priority.

Running several jobs at once (foreground and background)
The shell can run more than one job at a time. While one is running in the
foreground, one or more can be running in the background.

After you enter a command, you see the output from the command displayed on
your screen. You cannot enter any other commands until the shell prompt ($ or >)
appears. This command has run as a foreground job. Commands that take a few
seconds to complete are convenient to run in the foreground.

© Copyright IBM Corp. 1996, 2015 145



You may prefer to run as background jobs those shell commands that take longer to
run, because they prevent you from running any other commands while they are
running in the foreground. The shell does not wait for the completion of a
background command before returning a prompt to you. Instead, while the
command runs in the background, you can continue entering other commands on
the command line.

In TSO/E, a background job is one that is typically entered at a workstation by a
SUBMIT command. Like a TSO/E background job or a batch job, a z/OS UNIX
background job runs without user interaction.

You can use any of these methods to run a shell background job:
v Start the job in the background when you first enter it.
v Move a job from the foreground to the background.
v Use JCL with BPXBATCH. This utility is discussed in “The BPXBATCH utility”

on page 156.

Starting a job in the background with an ampersand (&)
To start a command as a background job, end the command line with an
ampersand (&). For example:
sort myfile >myout &

When the background job starts to run, the system:
1. Assigns it a job identifier, a process group ID (PGID), and a process ID (PID).
2. Displays the job identifier (in brackets) and one or more PIDs (more than one if

there is a pipe).
3. Issues the shell prompt so that you can enter another command.

The first (or only) PID is also the PGID. This is an example of the output when
you enter a background command:
$sort myfile >myout &
[3] 717046
$

3 is the job identifier and 717046 is the PID and PGID.

Tip: Note the PID numbers and the job number when you create a background job;
you can use them to check the status of the job or to end it.

Unlike a batch job, a shell job running in the background directs its output to
standard output, your workstation screen. If you do not want to have this output
interfering with your work in the foreground, remember to redirect the output to a
file when you start a background command. After the output is redirected, you can
look at it whenever it is convenient.

A background job can be suspended. A background job that attempts to read from
stdin is suspended until it is made the foreground process. Therefore, if a program
reads from stdin, you may want to redirect stdin from a file. Also, if the tostop
setting of the terminal is enabled (you can set or query this by using the stty
command), output from a background job causes the job to be suspended.

146 z/OS V2R2 UNIX System Services User's Guide



Moving a job to the background
Suppose you want to move the foreground job to the background, where it can run
while you enter other commands in the foreground. To put the job in the
background:
1. Stop the job by entering <EscChar-Z>. A message displays the job identifier.
2. Enter the bg command. You may need to specify the job identifier with bg if

there is more than one stopped job. If you do not specify a job identifier, bg
uses the most recently stopped job.

A message displays the job identifier and the command that is running in the
background.

Moving a job to the foreground
When you want to move a job from the background to the foreground, use the fg
command. If there are multiple background jobs, you need to supply the job
identifier preceded by a % sign. For example:
fg %7

Setting up job tracing
The bpxtrace command provides details on job activity. It enables you to start a job
with tracing activated, or enables you to dynamically activate tracing for a job that
is already running. For example, to activate job tracing for the echo command,
enter:
bpxtrace -c -f format "echo hello"

This command produces tracing output (to stdout) and formats the output in one
line per trace record format. For more information about the bpxtrace command,
see z/OS UNIX System Services Command Reference.

Checking the status of jobs
You can use the jobs command or the ps command to check on the status of jobs.

Using the jobs command
The jobs command reports the status of background processes that are currently
running, based on the job identifier; it also reports on the status of stopped
processes and completed processes. If you use the -l option, you can display both
the job identifier and the PID for the process.

Say you entered a command that involves more than one process, for example:
myprog | grep write

If you want to check the status of that command, use the jobs -l command. The
status message displays the job identifier, the PID number for each process in the
job, the status of the command, and the command that is being run. In this case
the status message shown in the z/OS shell is:
[1] 720902 + Stopped (SIGTSTP) myprog|grep write

720902 alive -sh
458759 alive -sh

In this case:
v The job identifier is 1 (from [1]).

Chapter 10. Using job control in the shells 147



v The PIDs of the processes are 720902 and 458759.
v The PGID is 720902 (the PID of the first process in the process group).

The status message for the tcsh shell is similar to that in the previous example.

Using the ps command
You can use the ps command to display a list of your processes that are currently
running and obtain additional information about those processes. (Only a
superuser or a user with appropriate permissions can obtain information about all
processes.)

For example, here the ps command displays the status of started processes:
PID TTY TIME COMMAND

262148 ttyp0000 2:46 /bin/sh
196614 ttyp0000 0:22 ./myprog
65543 ttyp0000 0:13 /bin/grep
196616 ttyp0000 2:07 /bin/ps

PID This is a PID displayed as a decimal value.

TTY The name of the controlling terminal, if any. The controlling terminal is the
workstation that started the process. On a system with more than one
workstation, the names of the workstations that have started processes are
listed here.

TIME The amount of central processor time the process has used since it began
running.

COMMAND
The name of the command or program that started the process. The
display indicates which directory the command or program is found in.
For example, the ps command is in /bin.

Usually, just issuing ps will tell you all you need to know about your current
processes. However, there are a number of options you can use to tailor the
displayed information. For example, you can use the –a option to display only
processes associated with a terminal, not the system processes. Read the ps
command description in z/OS UNIX System Services Command Reference.

Canceling a job
Often you will start a job and then decide to interrupt it before it completes. You
can do this regardless of whether the job is running in the foreground or
background.

Canceling a foreground job
To cancel a foreground job, enter <EscChar-C>. The command stops and the shell
displays the shell prompt.

Canceling a background job
To cancel a background job, use the kill command. To be able to kill a process, you
must own it. (The superuser, however, can kill any process except init.)

Before you can cancel a background job, you need to know either a PID, job
identifier, or PGID. You can use the jobs command to determine any of these.

The format of the kill command in the z/OS shell is:

148 z/OS V2R2 UNIX System Services User's Guide



kill [-s signal name] [pid] [job-identifier]

The format of the kill command in the tcsh shell is:
kill [-signal name] [pid] [job-identifier]

To kill one process, use its PID.

Example: To kill a process with the PID 717, issue:
kill 717

Any other processes in the job—from a pipe—would not be killed.

To kill a particular process group, you can use a job identifier or a negative PGID.
v You can use the job identifier for one process in the group preceded with a % to

kill every process in the group. In the z/OS shell, use:
kill -s KILL %7

In the tcsh shell, use:
kill -KILL %7

v You can use a negative PGID to kill every process in a process group. (The PGID
is the PID for the first process in the process group.) For example, in the z/OS
shell:
kill -s KILL -- -123456

will kill every process in the process group with PGID 123456.
In the tcsh shell:
kill -KILL -123456

will kill every process in the process group with PGID 123456.

Stopping and resuming a job
Occasionally, you may want to stop a job that is running in the foreground or
background, perform a different task, and then later resume the stopped job.

Stopping a foreground job
To stop a foreground job, enter <EscChar-Z>. A message displays the job identifier,
the status Stopped, and the command that is stopped.

Stopping a background job
To stop a background job, use the kill command with the STOP signal and the job
identifier preceded with a %.

Examples::
1. In the z/OS shell, to stop a background job with the job identifier 3, issue:

kill -s -STOP %3

2. In the tcsh shell, to stop a background job with the job identifier 3, issue:
kill -STOP %3

Resuming a stopped job
When you are ready to resume a stopped job, you can resume it in the foreground
using the job identifier. Enter:

Chapter 10. Using job control in the shells 149



fg %n

where n is the job identifier for the stopped job.

To resume a stopped job in the background, enter:
bg %n

where n is the job identifier for the stopped job. The %n is unnecessary if there is
only one job.

Delaying a command
If you want to delay a command from running until a previous background job
has completed, you can use the wait command. You need to know the job
identifier of the job you want to wait for; you can use the jobs command to get
that.

Example: To have Time for tea display on your screen when the command whose
job identifier is 7 finishes running, issue:
wait %7; print "Time for tea"

Exiting the shell with background jobs running
When you exit the shell, any stopped background jobs are terminated. But if you
have a background job in the running state, you can exit the shell without
terminating it.

In the z/OS shell, the default setting set -m runs background jobs in a separate
process group. Jobs in a separate process group are not sent a SIGHUP signal
when you exit the shell. With the default -m setting, background jobs continue to
run after you exit the shell.

In the tcsh shell, use NOHUP to exit the shell with background jobs running.

For the OMVS interface:

To exit with a background job running, use the quit subcommand. (Type quit and
press the Subcommand function key or switch to subcommand mode and enter the
quit command.) A background job that is running will continue running.

If you are using the OMVS interface and you use the exit command to exit the
shell while you have a shell background job running, OMVS may send this
message:
The shell process ended, but the session did not end automatically.
You may need to run the QUIT subcommand to end the session.

For the Asynchronous terminal interface:

To exit when a background job is running, type <Ctrl-D> or use the exit command.
A background job that is running will continue running. You do not get any
indication that a background job is running.

150 z/OS V2R2 UNIX System Services User's Guide



Changing the default in the z/OS shell
If you change the setting to +m, background jobs end when you exit the shell. If
you have changed the setting to +m and you want to start a long-running
command and have it continue running after you exit the shell, use the nohup
command and an ampersand (&):
nohup ’command-line’ &

For example:
nohup sort -u file1 >output 2>>outerr &

Ending the nohup command with an & makes the command run in the
background, even after you exit the shell.

Comparison of shell background jobs and MVS batch jobs
Table 5 compares two methods for submitting a background job:
v Typing an & (ampersand) after the shell command
v Using JCL with BPXBATCH. This utility is discussed in “The BPXBATCH

utility” on page 156.

Table 5. Comparison of running a background job from the shell and from MVS

Topic Shell (command &) JCL with BPXBATCH

Starting the job Background jobs start running immediately. Background jobs are put in a queue; there
may be a wait until the job starts running.

Interactive access You can see output from the job displayed
on the terminal. You can move the job to the
foreground if you need to give it input, and
then move it to the background again.

Background jobs run separately; you cannot
interact with them.

However, if you redirect output to a file in
the file system, from your interactive shell
session you could periodically browse the
output file to see what is in it. You could do
this with any of these commands: cat, pg,
more, obrowse, or the TSO/E OBROWSE
command.

System limits Due to system limits on the number of
processes per user, multiple background jobs
run by the same user could fail at some
point.

Due to system limits on the number of
processes per user, multiple background jobs
run by the same user could fail at some
point.

Managing the job You can use ps, kill, bg, fg and jobs on the
background job.

You can use ps and kill on the background
job.

Impact on system Creates an immediate demand on the system
to support another address space. This could
degrade performance for all users.

The system determines when it is a
reasonable time to run batch jobs. Batch
work can be suspended during periods of
heavy interactive workload.

Chapter 10. Using job control in the shells 151



152 z/OS V2R2 UNIX System Services User's Guide



Chapter 11. Using z/OS UNIX from batch, TSO/E, and ISPF

Note: This information is directed towards users of the z/OS shell. Most examples
pertain to the z/OS shell and not the tcsh shell.

You can access z/OS UNIX services from batch, TSO/E, or ISPF, using:
v MVS job control language (JCL) to run shell scripts or z/OS UNIX application

programs as batch (background) jobs. This information describes the JCL that
supports the z/OS UNIX file system. For more general information about JCL,
see z/OS MVS JCL User's Guide. and z/OS MVS JCL Reference.

v Executable files in batch. An executable file is any file that can be run as a
program. An executable file can be a load module (which is a member of a
PDS), a program object (which is either a member of a PDSE or a file in the
z/OS UNIX file system), or an interpreted file (such as a REXX EXEC). For a file
to be treated as an executable file, it must have execute permission allowed for
the invoker.

v BPXBATCH, a utility that can do the following:
– Run executable files in batch.
– Run shell commands and executable files from the TSO/E READY prompt.

v TSO/E commands designed to work with MVS data sets. See the section on
using commands to work with directories and files and also the section on
copying data between the z/OS UNIX file system and MVS data sets for more
information. For the complete command descriptions, see the section on TSO/E
commands in z/OS UNIX System Services Command Reference.

v REXX programs written using z/OS UNIX extensions called syscall commands.
v The ISPF shell.

JCL support for z/OS UNIX
JCL data definition (DD) statements use a data definition name (ddname) to specify
the data to be used by the program that you are submitting as a batch job. The
ddname is used in two places:
1. In your application program. Here the ddname refers to nonspecific data, rather

than a specific data set name or path name.
2. In the JCL used to submit the application program as a background job. Here it

binds the nonspecific reference in the program to a specific data set name or
path name.

You can specify a z/OS UNIX file in the JCL for user-written applications or for
IBM-supplied services, such as:
v DFSMS, Program Management Binder, a prelinker, or a linkage editor
v BPXBATCH
v The TSO/E OCOPY command

Note: In this discussion, references to JCL also apply to the equivalent dynamic
allocation functions.

© Copyright IBM Corp. 1996, 2015 153



The PATH keyword
You can use the PATH keyword on a JCL DD statement to specify the path name
for a z/OS UNIX file. When you use the PATH keyword, you can also use these
keywords:
v PATHOPTS to indicate the access for the file (for example, read or read-write)

and to set the status for the file (for example, append, create, or truncate). This is
analogous to the option arguments on the C open() function.

Note: If you specify either OCREAT or OCREAT together with OEXCL on the
PATHOPTS parameter and the file does not exist, z/OS UNIX performs an
open() function. The options from PATHOPTS, the path name from the PATH
parameter, and the options on PATHMODE (if specified) are specified in the
open(). z/OS UNIX uses the close() function to close the file before the
application program receives control.

v PATHMODE to indicate the permissions, or file access attributes, to be set when
a file is being created. This is analogous to the mode arguments of the open()
function.

v PATHDISP to indicate how MVS should handle the file when the job step ends
normally or abnormally. This performs the same function as the DISP parameter
for a data set.

If PATHOPTS and PATHMODE are absent from the DD statement, an application
needs to supply defaults for the options and mode, or issue an error message and
fail.

The DSNTYPE keyword
There are two related subparameters on the DSNTYPE keyword of the DD
statement:
v HFS (hierarchical file system)
v PIPE (named pipe)

For more information about the JCL keywords, see z/OS MVS JCL Reference.

Using the ddname in an application
Instead of using data set names or path names in an application, you can use a
ddname; then in the JCL, you associate a specific data set or file with that ddname.

Note: The parent process's allocations, for both data sets and files, are not
propagated by fork() and are lost on exec(), except for STEPLIB.

You have a choice of two methods for accessing data sets and files in an
application:
v The ANSI C function fopen()
v The OPEN macro

The fopen() function
The fopen() function recognizes and handles the difference between a ddname
associated with a data set (DSN keyword) or with a path name (PATH keyword).

Example: Issue:
fopen("dd:FRED", "r+")

Result: The fopen() function takes the ddname FRED, determines if FRED refers to
a ddname for a file or a data set, and opens it. Once a file is opened, fread() and
fwrite() can access the data

154 z/OS V2R2 UNIX System Services User's Guide



The OPEN macro
The OPEN macro can open a z/OS UNIX file specified with the PATH keyword or
an MVS data set specified with the DSN keyword. The macro supports DD
statements that specify the PATH parameter only for data control blocks that
specify DSORG=PS (EXCP is not allowed). DFSMSdfp supports BSAM and QSAM
interfaces to these types of files:
v Regular files
v Character special files (null files only)
v FIFO special files
v Symbolic links

You cannot open directories or external links.

For more information about BSAM and QSAM interface support for access to z/OS
UNIX files, see z/OS DFSMS Macro Instructions for Data Sets.

Specifying a ddname in the JCL
In the JCL for a job, you use a DD statement to associate a ddname with the name
of a specific MVS data set or z/OS UNIX file.

To specify a file, use the PATH keyword.

Example: To associate the path name for the file /u/fred/list/wilma with the
ddname FRED, specify:
//FRED DD PATH=’/u/fred/list/wilma’

At another time, you might specify a different file to be associated with the
ddname FRED.

To specify a data set, use the DSN keyword.

Example: To associate the data set FRED.LIST.WILMA with the ddname FRED,
specify:
//FRED DD DSN=FRED.LIST.WILMA,DISP=SHR

At another time, you might specify a different data set to be associated with the
ddname FRED.

Using the submit command
The submit command submits JCL from the shell. By using this command you do
not need to open a TSO session to submit JCL. This command accepts the
following as input:
v One or more pathnames
v One or more sequential data set or partitioned data set member names
v Standard input.

For example, to submit a job that resides in the z/OS UNIX file buildjcl.jcl,
enter the following:
submit buildjcl.jcl

For more information about the submit command, see z/OS UNIX System Services
Command Reference.

Chapter 11. Using z/OS UNIX from batch, TSO/E, and ISPF 155



The BPXBATCH utility
BPXBATCH is a utility that you can use to run shell commands or executable files
through the batch facility. You can invoke BPXBATCH from a batch job or from the
TSO/E environment (as a command, through a CALL command, or from a CLIST
or REXX EXEC).

Note: This document provides some examples of how you can use BPXBATCH.
For more detailed information about BPXBATCH, see the description of the
BPXBATCH utility and the detailed discussion on using BPXBATCH to run
executable files under MVS environments in z/OS UNIX System Services Command
Reference.

BPXBATCH has logic in it to detect when it is running from a batch job. By
default, BPXBATCH sets up the stdin, stdout, and stderr standard streams (files)
and then calls the exec callable service to run the requested program. The exec
service ends the current job step and creates a new job step to run the target
program. Therefore, the target program does not run in the same job step as the
BPXBATCH program; it runs in the new job step created by the exec service. In
order for BPXBATCH to use the exec service to run the target program, all of the
following must be true:
v BPXBATCH is the only program running on the job step task level.
v The _BPX_BATCH_SPAWN=YES environment variable is not specified.
v The STDOUT and STDERR ddnames are not allocated as MVS data sets.

If any of the these conditions is not true, then the target program runs either in the
same job step as the BPXBATCH program or in a WLM initiator in the OMVS
subsys category. The determination of where to run the target program depends on
the environment variable settings specified in the STDENV file and on the
attributes of the target program.

Restriction: File and data set allocation considerations vary when a BPXBATCH or
BPXBATSL request is processed in the same address space via local spawn or
forked to another address space. Allocations for any files and data sets other than
stdin, stdout, stderr, or stdenv and STEPLIB are not available to a program when
BPXBATCH uses fork() or exec (STEPLIB EXCLUDED) to run a program in
another address space. Data sets that are allocated in JCL, TSO, or an application
may conflict with data sets used by BPXBATCH.

Aliases for BPXBATCH
BPXBATSL, BPXBATA2, and BPXBATA8 are provided as aliases for BPXBATCH
that use a local spawn to run in the same address space.

BPXBATSL
BPXBATSL performs a local spawn, but does not require resetting of environment
variables. BPXBATSL behaves exactly like BPXBATCH and allows local spawning
whether the current environment is set up or not. For more information, see the
BPXBATCH command in z/OS UNIX System Services Command Reference.

BPXBATA2 and BPXBATA8
BPXBATA2 and BPXBATA8 are provided as APF-authorized alternatives to
BPXBATSL. BPXBATA2 and BPXBATA8 provide the capability for a target
APF-authorized z/OS UNIX program to run in the same address space as the
originating job, allowing it to share the same resources, such as allocations and the

156 z/OS V2R2 UNIX System Services User's Guide



job log. See the BPXBATCH utility in z/OS UNIX System Services Command Reference
for details and restrictions on using these interfaces.

Defining standard input, output, and error streams for
BPXBATCH

z/OS XL C/C++ programs require that the standard streams, stdin, stdout, and
stderr, be defined as either a file or a terminal. Many C functions use stdin, stdout,
and stderr. For example:
v getchar() obtains a character from stdin.
v printf() writes output to stdout.
v perror() writes output to stderr.

(For more information about stdin, stdout, and stderr, see “Understanding
standard input, standard output, and standard error” on page 68.)

Guidelines for defining stdin, stdout, and stderr
For BPXBATCH, the default for stdin and stdout is /dev/null.

The default for stderr is the same as what is defined for stdout. For instance, if you
define stdout to be /tmp/output1 and you do not define stderr, then both printf()
and perror() direct their output to /tmp/output1.

Rule: If you define stdin, it must be a z/OS UNIX file.

If you define stdout or stderr, it can be a z/OS UNIX file or an MVS data set.

If you use an MVS data set for stdout or stderr:
v It can be a sequential data set, a partitioned data set (PDS) member, a

partitioned data set extended (PDSE) member, or SYSOUT.
v It must have a nonzero logical record length (LRECL) and a defined record

format (RECFM). Otherwise, BPXBATCH will redirect the DD to/dev/null and
issue message BPXM081I, indicating the redirection of the effected ddname.

Ways to define stdin, stdout, and stderr
You can define stdin, stdout, and stderr in the following ways:
v With the The TSO/E ALLOCATE command, using the ddnames STDIN,

STDOUT, and STDERR. For example, the following command allocates the z/OS
UNIX file /u/turbo/myinput to the STDIN ddname:
ALLOCATE DDNAME(STDIN) PATH(’/u/turbo/myinput’) PATHOPTS(ORDONLY)

v

The following command allocates the MVS sequential data set
TURBO.MYOUTPUT to the STDOUT ddname:
ALLOCATE DDNAME(STDOUT) DSNAME(’TURBO.MYOUTPUT’) VOLUME(volser) DSORG(PS)

SPACE(10) TRACKS RECFM(F,B) LRECL(512) NEW KEEP

v A JCL DD statement, using the ddnames STDIN, STDOUT, and STDERR
The following JCL allocates the z/OS UNIX file /u/turbo/myinput to the
STDIN ddname:
//STDIN DD PATH=’/u/turbo/myinput’,PATHOPTS=(ORDONLY)

The following JCL allocates member M1 of a new PDSE
TURBO.MYOUTPUT.LIBRARY to the STDOUT ddname and directs STDERR
output to SYSOUT:

Chapter 11. Using z/OS UNIX from batch, TSO/E, and ISPF 157



//STDOUT DD DSNAME=TURBO.MYOUTPUT.LIBRARY(M1),DISP=(NEW,KEEP),DSNTYPE=LIBRARY,
// SPACE=(TRK,(5,1,1)),UNIT=3390,VOL=SER=volser,RECFM=FB,LRECL=80
//STDERR DD SYSOUT=*

v Redirection, using <, >, and >>

Even if stdout currently defaults to /dev/null, entering the following command
from the TSO/E command prompt redirects the output of the ps -el command
to be appended to the file /tmp/ps.out:
BPXBATCH SH ps -el >>/tmp/ps.out

For more information about defining the standard streams for BPXBATCH, see the
detailed discussion on using BPXBATCH in the appendix of z/OS UNIX System
Services Command Reference.

Passing environment variables to BPXBATCH
When you are using BPXBATCH to run a program, you typically pass the program
a file that sets the environment variables. If you do not pass an environment
variable file when running a program with BPXBATCH, or if the HOME and
LOGNAME variables are not set in the environment variable file, those two
variables are set from your logon RACF profile. LOGNAME is set to the user
name, and HOME is set to the initial working directory from the RACF profile.

Note: When using BPXBATCH with the SH option (SH is the default),
environment variables specified in the STDENV DD are overridden by those
specified in /etc/profile and .profile (which overrides /etc/profile). This is because
SH causes BPXBATCH to execute a login shell that runs the /etc/profile script and
runs the user's .profile.

To pass environment variables to BPXBATCH, you define a file containing the
variable definitions and allocate it to the STDENV ddname. The file can be one of
the following:
v A z/OS UNIX file identified with the ddname STDENV
v An MVS data set identified with the ddname STDENV

Guidelines for defining STDENV
The default for STDENV is /dev/null.

The following guidelines apply when you specify a z/OS UNIX file for STDENV:
v It must be a text file defined with read-only access.
v Specify one variable per line, in the format variable=value. Environment

variable names must begin in column 1.
v The file cannot have sequence numbers in it.

Tip: If you use the ISPF editor to create the file, set the sequence numbers off by
typing NUMBER OFF on the command line before you begin typing the data. If
sequence numbers already exist, type UNNUM to remove them and then type
NUMBER OFF.

The following guidelines apply when you specify an MVS data set for STDENV:
v It must be a sequential data set, a PDS member, a PDSE member, or an JCL

in-stream data set.
v The record format can be fixed or variable (unspanned).
v Specify one environment variable per record, in the format variable=value.

Environment variable names must begin in column 1. Do not use terminating
nulls.

158 z/OS V2R2 UNIX System Services User's Guide



v The data set cannot have sequence numbers in it.
Tip: If you use the ISPF editor to create the file, set the sequence numbers off by
typing NUMBER OFF on the command line before you begin typing the data. If
sequence numbers already exist, type UNNUM to remove them and then type
NUMBER OFF.

v Trailing blanks are truncated for in-stream data sets, but not for other data sets.

Ways to define STDENV
You can define the STDENV environment variable file in the following ways:
v The TSO/E ALLOCATE command

Example: The environment variable definitions reside in the MVS sequential
data set TURBO.ENV.FILE.
ALLOCATE DDN(STDENV) DSN(’TURBO.ENV.FILE’) SHR

v A JCL DD statement. To identify a z/OS UNIX file, use the PATH operand and
specify PATHOPTS=ORDONLY.
Example: The environment variable definitions reside in the z/OS UNIX file
u/turbo/env.file.
//STDENV DD PATH=’u/turbo/env.file’,PATHOPTS=ORDONLY

v An JCL in-stream data set
Example: The environment variable definitions immediately follow the STDENV
DD statement.
//STDENV DD *
variable1=aaaaaaa
variable2=bbbbbbbb...
variable5=ffffffff
/*

Trailing blanks are truncated for in-stream data sets, but not for other data sets.
v SVC 99 dynamic allocation, if you are running BPXBATCH from a program

For more information about defining STDENV, see the detailed discussion about
using BPXBATCH inz/OS UNIX System Services Command Reference.

Example: Setting up code page support in a STDENV file
To enable national language support for BPXBATCH, set the locale environment
variables to your desired locale in the STDENV file. For example, to use the
Danish locale, you could put these lines in the file:
LANG=Da_DK.IBM-277
LC_ALL=Da_DK.IBM-277

After you allocate this file to STDENV, you can test it by typing:
OSHELL echo $HOME

The path name of your home directory should be displayed, instead of just
$HOME.

_BPX_BATCH_SPAWN and _BPX_BATCH_UMASK environment
variables

BPXBATCH uses two environment variables for execution that are specified by
STDENV:

Chapter 11. Using z/OS UNIX from batch, TSO/E, and ISPF 159



v _BPX_BATCH_UMASK=0755

v _BPX_BATCH_SPAWN=YES|NO

_BPX_BATCH_UMASK allows the user the flexibility of modifying the permission
bits on newly created files instead of using the default mask (when PGM is
specified).

Valid characters for the mask value are the octal digits 0 to 7, inclusive. If an
invalid character is found, that character and all subsequent characters to the right
are ignored. For example, 0348 is interpreted as 0034 and 0586 is interpreted as
0005.

Note: This variable will be overridden by umask (usually set from within
/etc/profile) if BPXBATCH is invoked with the SH option (SH is the default). SH
causes BPXBATCH to execute a login shell which runs the /etc/profile script (and
runs the user's .profile) and which may set the umask before execution of the
intended program.

_BPX_BATCH_SPAWN causes BPXBATCH to use spawn instead of fork/exec and
allows data definitions to be carried over into the spawned process. When
_BPX_BATCH_SPAWN is set to YES, spawn will be used. If it is set to NO, which
is equivalent to the default behavior, fork/exec will be used to execute the
program.

If _BPX_BATCH_SPAWN is set to YES, you must consider two other environment
variables that affect spawn (BPX1SPN):
v _BPX_SHAREAS=YES|NO|REUSE

When _BPX_SHAREAS is YES or REUSE, the child process created by spawn
will run in the same address space as the parent's under these conditions:
– The child process is not setuid or setgid to a value different from the parent
– The spawned file name is not an external link or a sticky bit file
– The parent has enough resources to allow the child process to reside in the

same address space
– The NOSHAREAS extended attribute is not set
When _BPX_SHAREAS is NO, the child and parent run in separate address
spaces.

v _BPX_SPAWN_SCRIPT=YES

When _BPX_SPAWN_SCRIPT is YES, the spawn will treat the specified file as a
shell script and will invoke the shell to run the shell script.

Setting _BPX_SPAWN_SCRIPT=YES improves shell script performance. See
“Improving the performance of shell scripts” on page 45 for more information. For
more information about spawn, see spawn (BPX1SPN, BPX4SPN) — Spawn a
process in z/OS UNIX System Services Programming: Assembler Callable Services
Reference.

Passing parameter data to BPXBATCH
Normally, you pass parameters to BPXBATCH using the parameter string—either
in a batch job by using the PARM= parameter on the JCL EXEC statement (see
“Invoking BPXBATCH in a batch job” on page 162) or in TSO by typing them on
the command line (see “Invoking BPXBATCH from the TSO/E environment” on
page 166). The format of the BPXBATCH parameter string is:
SH|PGM shell_command|shell_script|program_name [arg1...argN]

160 z/OS V2R2 UNIX System Services User's Guide



In a batch job, BPXBATCH only allows up to 100 bytes for the parameter string
due to JCL limitations. In a TSO command environment, the maximum length of a
parameter string is 32,754 bytes. However, BPXBATCH supports the use of a
parameter file to pass much longer parameter data—up to 65,536 (64K) bytes.

To pass parameters to BPXBATCH using a parameter file, you define a file
containing the parameter data and allocate it to the ddname STDPARM. The
parameter file can be one of the following:
v A z/OS UNIX text file
v An MVS data set

The default is to use the parameter string specified on the TSO command line or in
the PARM= parameter of the JCL EXEC statement. If the STDPARM ddname is
defined, BPXBATCH uses the data found in the specified file rather than what is
found in the parameter string or in the STDIN ddname.

Guidelines for defining STDPARM
The contents of the STDPARM file must follow the same format as the BPXBATCH
parameter string.

The following guidelines apply when you specify a z/OS UNIX or an MVS data
set for STDPARM:
v A z/OS UNIX file must be a text file that the user has read access to. An MVS

data set must be a sequential data set, a PDS member, a PDSE member, or a JCL
in-stream data set.

v The record format can be fixed or variable (unspanned).
v For in-stream data sets: with the SH option, trailing blanks are not truncated.

Records in in-stream data sets are concatenated with blanks as separator
characters, and the string remaining after the SH token is passed as a single
argument to a /bin/sh -c command. For the PGM option, the string is divided
not only at line boundaries but also at blanks within a line.

v The file or data set should not have sequence numbers in it.

Tip: If you use the ISPF editor to create the file, set the sequence numbers off
by typing NUMBER OFF on the command line before you begin typing the data. If
sequence numbers already exist, type UNNUM to remove them and then type
NUMBER OFF.

Ways to define STDPARM
You can define the STDPARM parameter file by using one of the following:
v The TSO/E ALLOCATE command

Example: The parameter data to be passed to BPXBATCH resides in the MVS
sequential data set TURBO.ABC.PARMS.
ALLOCATE DDNAME(STDPARM) DSN(’TURBO.ABC.PARMS’) SHR

v A JCL DD statement. To identify a z/OS UNIX file, use the PATH operand and
specify PATHOPTS=ORDONLY.
Example: The parameter data resides in the z/OS UNIX file
/u/turbo/abc.parms.
//STDPARM DD PATH=’/u/turbo/abc.parms’,PATHOPTS=ORDONLY

Example: The BPXBATCH parameter data resides in member P1 of the MVS
PDSE TURBO.PARM.LIBRARY.
//STDPARM DD DSN=TURBO.PARM.LIBRARY(P1),DISP=SHR

Chapter 11. Using z/OS UNIX from batch, TSO/E, and ISPF 161



v An JCL in-stream data set
The BPXBATCH parameter data immediately follows the STDPARM DD
statement. Trailing blanks are truncated for in-stream data sets, but not for other
data sets.
Example: The following invokes the echo shell command.
//STDPARM DD *
SH echo "Hello, world!"
/*

Example: Consider the following shell script called myscript.sh. This shell script
writes to stdout the first three arguments that are passed to it.
#!/bin/sh
#Write arguments 1 through 3 to stdout
echo $1
echo $2
echo $3

The following is one way to define STDPARM to run the script:
//STDPARM DD *
SH /myscript.sh AAAA BBBB CCCC
/*

Here is another way, placing the arguments on separate lines:
//STDPARM DD *
SH /myscript.sh AAAA
BBBB
CCCC
/*

Result: Both of these STDPARM definitions produce the following output:
AAAA
BBBB
CCCC

v SVC 99 dynamic allocation, if you are running BPXBATCH from a program

For more information about defining STDPARM for BPXBATCH, see the detailed
discussion about using BPXBATCH z/OS UNIX System Services Command Reference.

Invoking BPXBATCH in a batch job
You can create a batch job that invokes BPXBATCH to run a z/OS UNIX shell
command or executable file.

The JCL to invoke BPXBATCH looks like this:
//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,PARM=’SH|PGM program_name [arg1...argN]’

where:
v When SH is specified, program_name is the name of a shell command or a file

containing a shell script. SH is the default; therefore, you can omit the PARM= and
use STDIN to define the name of the shell script to be invoked. BPXBATCH
invokes the login program to run the shell as a login shell. BPXBATCH always
runs the shell found in the user's RACF OMVS Segment.

v When PGM is specified, program_name is the name of an executable file that is
stored in a z/OS UNIX file. Inadvertent use of a shell script with PGM may result
in a process that will not end as expected, and will require use of the kill -9 pid
command to force termination.

162 z/OS V2R2 UNIX System Services User's Guide



v You can supply optional arguments, arg1...argN, to program_name. For SH, the
entire string after the SH is passed to the login shell without further parsing. For
PGM, the arguments are broken at blanks and passed separately. You cannot use
quotes in the parameter to pass arguments that contain blanks.

v You can omit the PARM= and, instead, place the parameter data in a file or data
set defined by STDPARM.

In the job, you can supply DD statements to define any of the resources discussed
previously using the following ddnames:

DDname
Description

STDIN
Standard input (see “Defining standard input, output, and error streams
for BPXBATCH” on page 157)

STDOUT
Standard output (see “Defining standard input, output, and error streams
for BPXBATCH” on page 157)

STDERR
Standard error (see “Defining standard input, output, and error streams for
BPXBATCH” on page 157)

STDENV
Environment variable definitions (see “Passing environment variables to
BPXBATCH” on page 158)

STDPARM
BPXBATCH parameter data (see “Passing parameter data to BPXBATCH”
on page 160)

Note:

1. If you specify data sets in a STEPLIB DD statement, all the data sets should be
cataloged.

2. UNIT= and VOL=SER= parameters are not propagated to the process that is being
executed by BPXBATCH unless the process is run locally by BPXBATCH via
the setting of the _BPX_SHAREAS and _BPX_BATCH_SPAWN environment
variables: _BPX_SHAREAS=YES and _BPX_BATCH_SPAWN=YES.

3. If the job needs to run with a group other than your default group, you need to
code GROUP=grpname on the job card to specify the group your job needs to run
under. For BPXBATCH, the group needs to have an OMVS segment and a GID
defined for it.

4. If your job requires a REGION size greater than the default on your system,
you may receive this abend code:
ABEND 4093 reason code 0000001c

To fix this, use a larger REGION size.
Example: The following invokes BPXBATCH with a region size of 8M:
//SHELLCMD EXEC PGM=BPXBATCH,REGION=8M,PARM=’SH shell_command’

Example: Running a shell script in batch
You can use BPXBATCH to run a shell script through batch and redirect the output
and error messages to z/OS UNIX files or MVS data sets. Because the default is
PARM=’SH’, the PARM= is not specified in the following example. The shell script
associated with the STDIN ddname is invoked. You can allocate STDIN, STDOUT,

Chapter 11. Using z/OS UNIX from batch, TSO/E, and ISPF 163



and STDERR as z/OS UNIX files, using the PATH operand on the DD statements.
You can also allocate STDOUT and STDERR as MVS data sets.

Example: User TURBO runs a shell script in batch, as follows:
v The STDIN ddname defines a shell script to be invoked, /u/turbo/bin/

myscript.sh.
v STDOUT defines a file to which to write the standard output,

/u/turbo/bin/mystd.out.
v STDERR defines a file to which to write standard error messages,

/u/turbo/bin/mystd.err.
//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,REGION=8M
//STDIN DD PATH=’/u/turbo/bin/myscript.sh’,PATHOPTS=(ORDONLY)
//STDOUT DD PATH=’/u/turbo/bin/mystd.out’,PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU
//STDERR DD PATH=’/u/turbo/bin/mystd.err’,PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU

Example: The following JCL is similar to the previous example and produces
equivalent results but uses the PARM= string to specify the shell script to be run:
//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,REGION=8M,
// PARM=’SH /u/turbo/bin/myscript.sh’
//STDOUT DD PATH=’/u/turbo/bin/mystd.out’,PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU
//STDERR DD PATH=’/u/turbo/bin/mystd.err’,PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU

Example: Running a shell command in batch
In the following example, BPXBATCH runs the shell command compress to
compress the file /usr/lib/junk. To start the next JCL job step before the compress
command completes, the parameter string is specified as:
SH nohup compress /usr/lib/junk & sleep 1

If, instead, the parameter string is specified as:
SH compress /usr/lib/junk

the job step waits for the compress shell command to end. For short-running
commands, this is fine.

For long-running commands, however, where you want to use BPXBATCH to start
a shell command in the background and not wait for completion, you must specify
the parameter string like this:
SH nohup command args & sleep 1

SH starts a login shell to parse and run the command. The login shell parses the &,
signifying that the command is to run asynchronously (in the background), and
forks a child process to run the nohup command. In the child process, the nohup
shell command (which takes another command as an argument) prevents the
process from being terminated when the login shell returns to BPXBATCH.

In parallel with the nohup processing, the login shell runs the sleep command.
Running the sleep command delays the login shell from returning to BPXBATCH
until the child process has had enough time (1 second) to protect itself from being
terminated. The login shell returns to BPXBATCH, while the child process
continues to run the compress command.

164 z/OS V2R2 UNIX System Services User's Guide



Example: User TURBO runs the compress shell command in batch, as follows:
v STDPARM defines an in-stream data set containing the parameter string.
v STDERR defines a file to which to write error messages, /u/turbo/bin/

mystd.err.
v The STDIN and STDOUT files default to /dev/null.
v The STEPLIB is propagated for the execution of the shell and for any processes

created by the shell.
//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,REGION=8M
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
//STDERR DD PATH=’/u/turbo/bin/mystd.err’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU
//STDPARM DD *
SH nohup compress /usr/lib/junk & sleep 1
/*

Example: The following JCL is similar to the previous example and produces
equivalent results but uses PARM= to specify the parameter string:
//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,REGION=8M,
// PARM=’SH nohup compress /usr/lib/junk & sleep 1’
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
//STDERR DD PATH=’/u/turbo/bin/mystd.err’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

Example: Running a z/OS UNIX executable file or REXX exec in
batch
You can also use BPXBATCH to run a z/OS UNIX executable file or REXX exec
through MVS batch and redirect the output and error messages to z/OS UNIX files
or MVS data sets.

Example: User JAYMC runs an executable file in batch, as follows:
v The program name to be run is /u/jaymc/bin/xparse1.
v STDOUT is to be written to the file /u/jaymc/bin/mystd.out.
v STDERR is to be written to the file /u/jaymc/bin/mystd.err.
v STDIN defaults to /dev/null.
//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,REGION=100M,
// PARM=’PGM /u/jaymc/bin/xparse1’
//STEPLIB DD DSN=ISFSHR.JAYMC.ISFLOAD,DISP=SHR
//STDOUT DD PATH=’/u/jaymc/bin/mystd.out’,PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU
//STDERR DD PATH=’/u/jaymc/bin/mystd.err’,PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU

Example: This example is very similar to the previous one, except that STDOUT
and STDERR are directed to members of an existing PDSE. If you wish to use two
members of the same partitioned data set for STDOUT and STDERR output, then
you must use a PDSE (not a PDS).
v The program name to be run is /u/jaymc/bin/xparse1.
v STDOUT is to be written to the PDSE member JAYMC.MYSTDLIB(XP1OUT).
v STDERR is to be written to the PDSE member JAYMC.MYSTDLIB(XP1ERR).
v STDIN defaults to /dev/null.
//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,REGION=100M,
// PARM=’PGM /u/jaymc/bin/xparse1’
//STEPLIB DD DSN=ISFSHR.JAYMC.ISFLOAD,DISP=SHR
//STDOUT DD DSN=JAYMC.MYSTDLIB(XP1OUT),DISP=MOD
//STDERR DD DSN=JAYMC.MYSTDLIB(XP1ERR),DISP=MOD

Chapter 11. Using z/OS UNIX from batch, TSO/E, and ISPF 165



Invoking BPXBATCH from the TSO/E environment
You can use BPXBATCH to run a z/OS UNIX shell command, shell script, or
executable file from the TSO/E environment. (For shell commands, however, it
may be even easier to use the OSHELL exec, which invokes BPXBATCH. See
“OSHELL: Running a shell command from the TSO/E READY prompt.”)

You can invoke BPXBATCH under TSO/E like this:
BPXBATCH SH|PGM program_name [arg1...argN]

where:
v When SH is specified, program_name is the name of a shell command or a file

containing a shell script. SH starts a login shell which processes your .profile
before running a shell command or shell script. SH is the default; therefore, you
can allocate a file containing a shell script to the STDIN ddname, invoke
BPXBATCH without any parameters, and the shell script will be invoked.

v When PGM is specified, program_name is the name of an executable file that is
stored in a z/OS UNIX file. Inadvertent use of a shell script with PGM may result
in a process that will not end as expected, and will require use of the kill -9 pid
command to force termination.

v You can supply optional arguments, arg1...argN, to program_name.
v You can invoke BPXBATCH without any parameters on the command line and,

instead, place the parameter data in a file or data set defined by STDPARM.

Prior to invoking BPXBATCH, you can allocate any of the resources discussed
previously, using the TSO/E ALLOCATE command with the following ddnames:

DDname
Description

STDIN
Standard input (see “Defining standard input, output, and error streams
for BPXBATCH” on page 157)

STDOUT
Standard output (see “Defining standard input, output, and error streams
for BPXBATCH” on page 157)

STDERR
Standard error (see “Defining standard input, output, and error streams for
BPXBATCH” on page 157)

STDENV
Environment variable definitions (see “Passing environment variables to
BPXBATCH” on page 158)

STDPARM
BPXBATCH parameter data (see “Passing parameter data to BPXBATCH”
on page 160)

OSHELL: Running a shell command from the TSO/E READY
prompt
The OSHELL REXX exec, shipped in SYS1.SBPXEXEC, invokes BPXBATCH to run
non-interactive shell commands from the TSO/E READY prompt. The output is
displayed in your TSO/E session.

OSHELL usage notes: Note that:

166 z/OS V2R2 UNIX System Services User's Guide



1. With OSHELL, you cannot use a shell command with an & (ampersand) to run
it in the background.

2. OSHELL cannot be used to invoke an interactive shell command.
3. OSHELL creates a temporary file in the /tmp directory. The name of the

temporary file includes the time, to avoid naming conflicts (for example,
/tmp/userid1.12:33:32.461279.IBM). The file is deleted when OSHELL
completes.

OSHELL examples: For example:

To delete the file dbtest.c, user TURBO would enter at the TSO/E READY prompt:
oshell rm -r /u/turbo/testdir/dbtest.c

To display the amount of free space in your file system, you could enter:
oshell df -P

To display information on all accessible processes, you could enter:
oshell ps -ej

Figure 14 on page 168 shows how OSHELL is coded.

Chapter 11. Using z/OS UNIX from batch, TSO/E, and ISPF 167



Using TSO/E REXX for z/OS UNIX processing
You can use a set of z/OS UNIX extensions to TSO/E REXX—host commands and
functions—to access kernel callable services. The z/OS UNIX extensions, called
syscall commands, have names that correspond to the names of the callable services
that they invoke—for example, access, chmod, and chown.

You can run a REXX program with z/OS UNIX extensions from MVS, TSO/E, the
shell, or a C program. The exec is not portable to an operating system that does
not have z/OS UNIX installed.

/* REXX */
parse arg shellcmd
username =,
TRANSLATE(userid(),’abcdefghijklmnopqrstuvwxyz’,’ABCDEFGHIJKLMNOPQRSTUVWXYZ’)
/********************************************************************/
/* Free STDERR just in case it was left allocated */
/********************************************************************/
/* */
msgs = msg(’OFF’)
"FREE DDNAME(STDERR)"
/********************************************************************/
"ALLOCATE FILE(STDOUT) PATH(’/tmp/"username"."time(’L’)".IBM’) ",
"PATHOPTS(OWRONLY,OCREAT,OEXCL,OTRUNC) PATHMODE(SIRWXU)",
"PATHDISP(DELETE,DELETE)"
IF RC ¬= 0 Then

DO
"FREE DDNAME(STDOUT)"
"ALLOCATE FILE(STDOUT) PATH(’/tmp/"username"."time(’L’)".IBM’) ",
"PATHOPTS(OWRONLY,OCREAT,OEXCL,OTRUNC) PATHMODE(SIRWXU)",
"PATHDISP(DELETE,DELETE)"
IF RC ¬= 0 Then

DO
msgs = msg(msgs)
/* Allocate must have failed */
Say ’ This REXX exec failed to allocate STDOUT.’
Say ’ This REXX exec did not run shell command ’ shellcmd
RETURN

END
END

msgs = msg(msgs)

"BPXBATCH SH "shellcmd

IF RC ¬= 0 Then
DO

Say ’ RC = ’ RC
Say ’ ’

END
IF RC > 255 Then

DO
Say ’ Exit Status = ’ RC/256
Say ’ ’

END
IF (RC ¬= 254) & (RC ¬= 255) THEN

DO
"ALLOCATE FILE(out1) DA(*) LRECL(255) RECFM(F) REUSE"
"OCOPY indd(STDOUT) outdd(out1) TEXT PATHOPTS(OVERRIDE)"
"FREE DDNAME(out1)"

END
"FREE DDNAME(STDOUT)"

Figure 14. The OSHELL REXX exec

168 z/OS V2R2 UNIX System Services User's Guide



For more information about the REXX extensions that call z/OS UNIX services, see
z/OS Using REXX and z/OS UNIX System Services.

Using the ISPF shell
With the ISPF shell (ISHELL), a user or systems programmer can use ISPF dialogs
instead of shell commands to perform many tasks, especially those related to file
systems and files. An ordinary user can use the ISPF shell to work with:
v Directories
v Regular files
v FIFO special files
v Symbolic links, including external links

You can also run shell commands, REXX programs, and C programs from the ISPF
shell. The ISPF shell can only direct stdout and stderr to a file in your file system,
not to your terminal. If it has any contents, the file is displayed when the
command or program completes.

Invoking the ISPF shell
You can invoke the ISPF shell in one of the following ways:
v Type the TSO/E command: ISHELL [-d] [pathname]

See “Entering a TSO/E command” on page 198 for information about entering
TSO/E commands in TSO/E, the shell, and ISPF.

v Select the ISPF shell from the ISPF menu, if a menu option is installed.

The optional pathname parameter specifies the initial path name that you want to
appear on the ISHELL main panel.

Example: The following command invokes the ISPF shell and supplies the path
name /tmp/ on the ISHELL main panel:
ishell /tmp/

Guidelines: When invoking the ISPF shell, follow these guidelines:
1. ISHELL can be invoked with the option –d, which prevents ISHELL from

suppressing ISPF severe dialog errors. This will cause ISHELL to terminate on
errors. This option should only be used at the direction of an IBM technical
support representative.

2. The environment variable BPXWISHTZ can be set to a time zone value to have
ISHELL use a local time zone that is different than your TZ setting.
BPXWISHTZ must be specified in /etc/profile or in .profile. For example, if the
TZ setting does not specify GMT, to allow ISHELL users to return to GMT add
the following line to etc/profile or .profile:
export BPXWISHTZ=GMT

For more information about using the SMFPRMxx parmlib member to specify
timeouts, see z/OS UNIX System Services Planning.

3. Since ISHELL contains code to run the TSO commands OGET and OPUT, these
commands should not be included in the PLATCMD area of any IKTSOxx
member in effect. Doing so will result in a delay in exiting ISHELL, especially
if a copy operation has been performed in the ISHELL session. In general, none
of the z/OS UNIX TSO commands should be listed as PLATCMD entries. For
more information, see z/OS UNIX System Services Planning.

Chapter 11. Using z/OS UNIX from batch, TSO/E, and ISPF 169



Working in the ISPF shell
Figure 15 is the main panel, which you see when you invoke the ISPF shell. At the
top of the panel is the action bar, with the following choices:
v File
v Directory
v Special file
v Tools
v File systems
v Options
v Setup
v Help

When you select one of these choices, a pulldown panel displays a list of actions.

In the center of the panel, you see four lines. Here you can type the path name of
a file (a directory is a type of file) that you want to work with. It can be the name
of an existing file or a new file that you are creating.

In the lower part of the panel, you see a command line. Here you can type an
action code, a one-character code that specifies an action that you want to perform
on the path name you are working with. For example, D is the action code for
"delete" (To familiarize yourself with the action codes, press <F1> on the main
panel. On the help panel that is displayed, position your cursor under the
highlighted words action code and press <F1>.)

Work in the ISPF shell is a two-step sequence:
1. Select an object—the path name of a new or existing file.
2. Select an action for that object.

File Directory Special_file Tools File_systems Options Setup Help
--------------------------------------------------------------------------

UNIX System Services ISPF Shell

Enter a pathname and do one of these:

- Press Enter.
- Select an action bar choice.
- Specify an action code or command on the command line.

Return to this panel to work with a different pathname.
More: +

/________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________

EUID=nnnn

Command ===> ____________________________________________________________
F1=Help F3=Exit F5=Retrieve F6=Keyshelp F7=Backward F8=Forward
F10=Actions F11=Command F12=Cancel

Figure 15. ISPF shell: The main panel

170 z/OS V2R2 UNIX System Services User's Guide



For more about ISPF

The discussion in this topic is an introduction to ISPF. For detailed information, see
z/OS V2R2 ISPF User's Guide Vol I.

Using the online help facility
In the ISPF shell, you can get help information for:
v Panels
v Fields on panels
v Highlighted words on panels

Position your cursor on one of those locations and press <F1>.

For more information on the online help facility when you begin working in the
ISPF shell, select the Help choice on the action bar and read the information there.

Chapter 11. Using z/OS UNIX from batch, TSO/E, and ISPF 171



172 z/OS V2R2 UNIX System Services User's Guide



Chapter 12. Performance: Running executable files

Note: This information is directed toward users of the z/OS shell. Most examples
pertain to the z/OS shell and not to the tcsh shell.

A process is a collection of threads that execute within an address space, along
with the required system resources. A user's login shell is one example of a
process.
v The OMVS command creates two processes per login: a process to control the

terminal and a process for the login shell.
v rlogin and telnet logins each create two processes: one to control the socket

connection to the user, another for the login shell.
v Communications Server logins require only one process per login. Consequently,

there is no method for requesting a shared address space for the
Communications Server login shell.

Most utilities invoked from the shell command line run in new processes that the
shell creates.

There is a system-wide limit on:
v The number of z/OS UNIX processes across the system
v The number of z/OS UNIX processes per user

For a discussion of these limits, see the section on defining system limits in z/OS
UNIX System Services Planning.

The shell, and other z/OS UNIX commands and daemons, can assign multiple
processes to the same MVS address space; this is called a shared address space. Using
a shared address space offers these advantages:
v A new process in the same address space can be started more quickly than a

new process in another address space.
v A new process in the same address space requires fewer system resources

(storage, for example) than a new process in another address space.

For rlogin, the system administrator must update /usr/sbin/inetd.conf by adding
-m to the rlogind entry to enabled shared address space. When -m is added, the
socket connection process and the login shell process share the same address space.

For the OMVS command, use the SHAREAS keyword to enable shared address
space. When the SHAREAS keyword is used, the login shell process is nested in
the user's TSO address space. Any other login shells started with the OMVS OPEN
subcommand are also nested in the user's TSO address space. (With NOSHAREAS,
other login shells started with the OMVS OPEN subcommand will each consume
another address space.)

To enable shared address space for the shell, issue the command
export _BPX_SHAREAS=YES

interactively, or place it in your $HOME/.profile. All simple commands
(commands that are run in the foreground and not in a pipeline) will then run in
processes nested in the shell's address space. If the _BPX_SHAREAS variable is not
set, or if it is not set to the value YES, the shell creates all processes in separate
address spaces. No matter how the shell is started (with or without shared address

© Copyright IBM Corp. 1996, 2015 173



space enabled), you must set _BPX_SHAREAS=YES if processes started by the
shell itself are to run in processes nested in the shell's address space.

User applications can also use shared address spaces. See spawn (BPX1SPN,
BPX4SPN) — Spawn a process and attach_exec (BPX1ATX, BPX4ATX) — Attach a
z/OS UNIX program in z/OS UNIX System Services Programming: Assembler Callable
Services Reference for details.

Some processes cannot execute correctly in a shared address space. For example, if
a process needs to reserve MVS system resources that are common to all processes
in an MVS address space, it must run by itself. If two processes using the same
MVS resource attempt to execute concurrently in the same address space, they will
compete for these resources, causing at least one of them to fail. When a potential
storage shortage is detected, the new processes are created in their own address
spaces, even if _BPX_SHAREAS=YES is present in the invoker's environment. For
more details about these restrictions, see the descriptions of the spawn() function
and the BPX1SPN callable service.

Improving shell script performance
You may be able to improve shell script performance by setting the
_BPX_SPAWN_SCRIPT environment variable to a value of YES. However, when
_BPX_SPAWN_SCRIPT=YES, the behavior will not conform completely to the
XPG4 Commands & Utilities specification.

See “Improving the performance of shell scripts” on page 45 for more information.

174 z/OS V2R2 UNIX System Services User's Guide



Chapter 13. Communicating with other users

You can communicate only with users in the same environment you are working
in. For example, if you are working in the TSO/E environment, you cannot use
MVS facilities to send a message to a user working in the shell.

Shell users who want to exchange messages with other shell users at the same
system can use shell commands. Other users may prefer to use TSO/E facilities, in
order to be able to exchange messages with all TSO/E users, not just those using
the shell.

Within the shell, you can send and receive messages using these shell commands:
v mailx
v mail
v write
v talk
v wall

Alternatively, you can switch into your TSO/E session and send messages to any
TSO/E user by using TSO/E facilities, through the OFFICE option of the
Information Center Facility (ICF), if it is installed on your system, or through
TSO/E commands. You can also receive messages using TSO/E.

If your system has Transmission Control Protocol/Internet Protocol (TCP/IP) or
other network management facilities installed, you can log in to the TCP/IP
network and send messages to users at other systems.

If your system has UUCP (UNIX-to-UNIX Copy Program) installed and set up, you
can use this facility to send files to, or run commands or custom applications at,
other sites in the UUCP network.

Using mailx to send and receive mail
You can use the mailx command to send a message to a system-specified mail file.
When the shell user receiving the message is ready to read messages, he or she can
use mailx to see what messages have arrived and read them.

Administrators and users can customize the behavior of mailx in a number of
ways, by selecting variables and setting them in files named /etc/mailx.rc and
$HOME/mail.rc. Some variables apply for the duration of any session; others can
be set or reset within a session.

The systems programmer can set up a list of variables (using the set command) in
the /etc/mailx.rc file. You can use these values as a default, or you can set up a
$HOME/mail.rc file that sets these variables for your personal use. These variables
are described in the mailx command description in z/OS UNIX System Services
Command Reference.

You can reset certain variables during a session, or, when entering mailx, specify
that the variables in the /etc/mailx.rc file are not to be used.

© Copyright IBM Corp. 1996, 2015 175



Steps for sending mail to another user
Before you begin: You need to know that you can send a message to one or more
users at a time. The following example is a message sent to several users. The
word in italics is output by mailx itself.

mailx macneil
Subject: Reminder

Our work group meets today at 10:30.
Let’s get together in the library.
~c smitha emilig fabish
~.

On the first line, the message is addressed just to macneil. The ~c line adds
people who will receive copies of the message.

The ~. line identifies the end of the message and indicates to mailx that you are
ready to send it. After you type that line and press <Enter>, the message is sent.

Perform the following steps to send mail to another user
1. Type mailx name, where name is a login name.

_________________________________________________________________
2. The system prompts you for a Subject. You can type a word or phrase and

press <Enter>.
_________________________________________________________________

3. Start typing the message. At the end of each line, press <Enter>. In the
example used above, you would press <Enter> after Reminder, 10:30.,
library., and fabish.
_________________________________________________________________

4. To copy other people on the note, type ~c before their login names.
_________________________________________________________________

5. To end the message and transmit it, type ~. and press <Enter>.
_________________________________________________________________

You know you are done when the system displays an EOT message.

Sending mail to a distribution list
You can send the same message to multiple users at the same time by using a
distribution list.

If you use mailx to send a message, you can specify the address of each z/OS
UNIX user you want to receive the message. The simplest address is the TSO/E
user ID.

Example: To send a message to pfeif, lowell, eliza, and fabish, issue:
mailx pfeif lowell eliza fabish

To send a message to a list of people, you can specify an address alias that contains
a list of login names.

Example: To set up an alias for the test team, issue:
alias test pfunt lulu detsch naga

Result: When you send a message to the address alias test, it will go to all the
login names you specified on the alias command.

176 z/OS V2R2 UNIX System Services User's Guide



Aliases that are entered interactively remain in effect only for the current session. If
you want to make the address alias permanent, put the alias command in your
.mailrc startup file.

Sending a message to an MVS operator
You can use the logger shell command to send a message to an MVS operator.

Example: To send a message to an MVS operator:
logger -d1 Is the tape I requested here yet?

Result: A message is sent to a console with the route code 1.

Receiving mail from other users
The simplest way to read incoming messages is to enter the command mailx. This
starts an interactive session that lets you read your mail and perform other actions,
such as display new messages and delete old ones. If you do not have any mail,
you will get a message telling you so.

When you have mail, the mail program shows you a list of messages similar to
this one:

mailx xxxxxxx Type ? for Help.
"/usr/mail/SMITHA/...": 3 messages 3 new
>N 1 CLIFLWR Thu Jul 15 14:28 6/93 testing
>N 2 HOMEBRW Thu Jul 15 15:03 5/81 lunch plans
>N 3 ELVIS Thu Jul 15 16:17 6/95 softball
?

The first line is the mailx program banner; xxxxxxx is information about the
version of mailx. As indicated, you can type ? to see a help panel. The second line
displays the name of the mailbox being used, /usr/mail/SMITHA/, followed by the
number of messages in the mailbox, and their status. Then you see a list of three
messages:
v Number 1 was sent by CLIFLWR and has the subject "testing". It was sent on

July 15 at 2:28 p.m., and contains 6 lines and 93 characters.
v Number 2 was sent by HOMEBRW and has the subject "lunch plans". It was

sent on July 15 at 3:03 p.m., and contains 5 lines and 81 characters.
v Number 3 was sent by ELVIS and has the subject "softball". It was sent on July

15 at 4:17 p.m., and contains 6 lines and 95 characters.

The user names are all displayed in uppercase.

The question mark (?) is the mail program prompt; it indicates that you can enter
mailx subcommands now. Try the subcommand n (next message) to read the
messages in sequence:
? n
Message 1:
From CLIFLWR Thu Jul 15 14:28
To: SMITHA
Subject: testing

I’m setting up a meeting to test the toolkit
on Monday the 19th at 10AM.
Let me know if you can make it.
?

Chapter 13. Communicating with other users 177



The question mark (?) prompt appears after the displayed message. You can also
enter the n subcommand with a number to specify a particular message; for
example, n 3 displays the message about softball. Now you can choose what to do
with the message: reply to it, save it, or delete it.

Replying to mail
At the question mark (?) prompt, you can use the R (reply to sender) subcommand
to reply to a particular message. This is an uppercase R: it differs from the r
subcommand, which sends the reply to everyone who sent and received the
message. When you give the R subcommand, follow it with the message number.
For example:
? R 1
To: cliflwr
Subject: Re: testing

Yes, I can make the meeting. where ?
~.
EOT

The EOT indicates that your reply has been sent.

Saving and deleting mail
If you exit mail without specifically deleting or saving your messages, the system
saves those messages.

To save a message, use the s subcommand and give the name of the file you want
to save the message in.

Example: To save the file named climail:
s climail

Result: If this is an existing file, the message is appended to it. If the file does not
exist, it is created.

To delete a message, use the d subcommand and give the number of the message
you want to delete:
? d 1
?

The mail program deletes message number 1 and returns another ? prompt.

Ending the mailx program
To exit from mailx, use the q (quit) subcommand:
? q
$

The shell prompt indicates that you have left mail and can enter shell commands
again.

For more information on mailx, see the mailx command description in z/OS UNIX
System Services Command Reference.

178 z/OS V2R2 UNIX System Services User's Guide



Using write to send a message or a file
The write command lets you send a message directly to someone else who is
logged on to the system. To determine who is logged on, use the who command.
The who command displays information about who is logged on in this form:

BUBBA ttyp0002 Feb 8 09:49

where BUBBA is a login name, ttyp0002 is the terminal, and Feb 8 09:49 is the login
time.

The typical format of the write command is:
write user_name

However, if a user is logged in more than once, you can specify terminal (in the
ttyp form that who returns) rather than user_name.

Sending a message: An example
Here is an example of how to send a message, using max as the sender and bubba
as the recipient:
write bubba

When max sends a message to bubba, bubba receives a message like this:
Message from max (ttyp002) [Feb 8 15:04 ] ...

After the system establishes the connection to bubba, it sends two alert characters
(usually a beeping sound) to max's terminal to indicate that it is ready to send a
message. max can then type a message, which appears on bubba's terminal. If a
message is more than one line, each time you press <Enter> a line is sent to
bubba's terminal.

Ending a message
To end a message, enter <EscChar-D> for end-of-file or <EscChar-C> for an
interrupt. When write receives an end-of-message indicator, it displays an EOF
message on the other user's screen and breaks the connection.

When your message is completed, the other user can reply to your message with
write your_user_name

However, if both of you are trying to write on each other's terminal at the same
time, the messages may get interleaved on your screens, making them difficult to
read. For two-way conversations, use talk instead of write. For more information
about talk, see “Using talk for an online conversation” on page 180.

Sending a file
You can add the output of a command to a message that you are writing. To do
this, start a line with an exclamation mark (!) and put a standard shell command
on the rest of that line. write calls your shell to execute the command, and sends
the standard output (stdout) from the command to the other user. The other user
does not see the command itself or any input to the command. For example, you
might write:
Here is what my file contains:
!cat file1

Chapter 13. Communicating with other users 179



The contents of file1 are displayed on the other user's screen.

Using talk for an online conversation
talk lets you start up a two-way conversation with someone else logged in to the
system. However, talk is available only if you access the shell with rlogin or telnet
or the Communications Server, because it requires raw mode.

The typical format of the talk command is:
talk user_name

However, if a user is logged in more than once, you can specify terminal (in the
form ttyp that who returns) rather than user_name.

Beginning a conversation: An example
Here is an example of how to begin a conversation with talk, using max as the
person starting a conversation with bubba. Here max begins by typing:
talk bubba

bubba receives a message like this:
Message from max.
talk: connection requested by max
talk: respond with: talk max

To set up the two-way connection, bubba must enter:
talk max

After this connection has been established, the two can type simultaneously.

Viewing the conversation
talk displays incoming messages from the other person in one part of the screen
and your outgoing messages in another part of the screen.

Some terminals may not be able to split the screen into parts in this way.
Depending on the terminal type, talk may try to simulate this effect. However, it
may not be possible for both users to enter messages simultaneously.

Using wall to broadcast messages
A superuser can use the wall command to send a message to all logged in shell
users:
wall [message]

If the message is omitted from the command line, the user will receive two beeps
as a prompt to enter the message. You input the message, pressing enter after each
line, and when done inputting the entire message, enter end-of-file or an interrupt
(typically, <EscChar-D> for end-of-file or <EscChar-C> for an interrupt).

The user of wall should be a superuser. This ensures that the user is permitted to
write to all the users that are logged on. If a user who is not a superuser attempts
to use wall to broadcast a message, some writes will fail and those users will not
receive the message.

180 z/OS V2R2 UNIX System Services User's Guide



Users who are sent a broadcast message will receive a beep announcing the
message, and a message in the form:
Broadcast Message from SWER@AQFT (ttyp0006) at 10:43:54 (EDT5EST) ...

This is the text of the message line1
This is line2

For more information on the wall command, see the wall command description in
z/OS UNIX System Services Command Reference.

Controlling messages and online conversations
You can use the mesg command to control whether other users can send messages
to your terminal with talk, write, or similar commands.

To let other people send you messages, issue:
mesg y

To tell the system not to let other people send you messages, issue:
mesg n

To display the current setting without changing it, issue:
mesg

Using the UUCP network
If your system administrator has UUCP (UNIX-to-UNIX Copy Program) set up to
communicate with remote sites, you can use this facility to send or retrieve files, or
to run commands or custom applications at other sites in the UUCP network. To
send or retrieve files from remote sites, use the uucp command; this causes a file
transfer request to be queued. Depending on how your system is set up, a file
transfer request may be processed immediately or later at a scheduled time.

UUCP provides the uucp command, which schedules files to be exchanged with
other UUCP systems, and the uux command, which schedules commands to be
executed by other UUCP systems. However, the uucp and uux commands do not
cause any files to be exchanged or commands to be executed. For this, UUCP
provides two daemons called uucico and uuxqt, which establish communication
sessions, transfer data, and execute commands according to the requests scheduled
by uucp and uux.

The commands that you use with UUCP are:
uucp Copy files between remote systems
uuname

Display a list of UUCP systems
uupick

Manage files sent to you via uuto
uustat Display the status of pending UUCP transfers
uuto Copy files to users on remote systems
uux Request command execution on remote systems

Tip: uucp, uuto, and uupick do not convert file data to or from EBCDIC. The
sending and/or receiving user must convert file data if two systems have different
codesets. You can use the iconv command to do this.

Chapter 13. Communicating with other users 181



Transferring a file to a remote site
To transfer a file to a remote site, use the uucp command or the uuto command.

Using uucp to transfer files
uucp automatically handles text and binary files. When a file is transferred by
uucp to another site, it is put in the public UUCP directory—by default, this is
/usr/spool/uucppublic.
1. You need to know the name of the remote site. To list the remote sites that

have been configured, type:
uuname

The sites are listed, one per line.
2. Copy the file to the other site.

To make file transfers easier, you can use a special character in pathnames for
the public UUCP directory. When tilde ( ~) is written as the first directory in a
destination path name, the ~/ stands for the public UUCP directory. You can
specify the public UUCP directory with the pathname ~/.
For example, to copy the file memo1.pay in your current directory to the public
directory on the site named north, type:
uucp memo1.pay north!~/memo1.pay

File transfers may not get processed immediately. If there is any chance that the
file that is to be sent will not be available later, use the -C option on the uucp
command to immediately copy the file to the uucp spool directory. This ensures
that the file is available later when the file transfer occurs.

Using uuto to transfer files
uuto is a simplified method of invoking uucp, and it also handles text and binary
files automatically. When a file is transferred by uuto to another site, it is put in
the receive/usr subdirectory of the public UUCP directory. Within the receive
subdirectory, each user on the local system has a subdirectory. For example, a file
for user stiert would be transferred to /usr/spool/uucppublic/receive/stiert.
1. You need to know the name of the remote site. To list the remote sites that

have been configured, type:
uuname

The sites are listed, one per line.
2. Copy the file to the other site. For example, to copy the file memo1.pay in your

current directory to the public directory on the site named north, type:
uuto memo1.pay north!nuucp

The recipient is notified by mail when the file arrives. To get the file, the
recipient should use the uupick command. See “Working with your files in the
public directory” on page 184 for information on how to use the uupick
command.

Transferring multiple files to a remote site
You can use uucp to transfer more than one file, specifying the files by name or by
using wildcards. To send more than one file, you must specify a directory as the
destination, not a file name. To do this, end the destination pathname with a slash
(/).

For example, to send the files jan.wks, feb.wks, mar.wks, and memo1.txt, to the
directory receive at the north site, type:

182 z/OS V2R2 UNIX System Services User's Guide



uucp *.wks memo1.txt north!~/receive/

The trailing slash (/) shows that receive is a directory.

You can send an entire directory, by specifying the contents of the directory with a
wildcard.

Transferring a file to the local public directory
You may want to put a file in your local public directory so that others can access
it there. To specify the public directory in a local pathname, put single quotation
marks around the pathname so that the shell does not treat the tilde as your home
directory. (For more information on how the shell interprets a tilde in file names,
see “Characters used in file names” on page 78.)

Example: To copy that file to your own UUCP public directory, issue:
uucp memo1.pay ’~/memo1.pay’

Notification of transfer
If you want to be certain that a file has been transferred, or if you want someone
at the remote site to know that the file has arrived, you can use the -m and -n
options on the uucp command, or the -m option on the uuto command.
v With uucp -m or uuto -m, as soon as the file is successfully transferred, you

receive a mail message. You can use mailx to read the message. The first line
describes the file transfer request, and the second line describes the result. For
example, it might look like this:

REQUEST: home!/usr/spool/uucppublic/memo1.txt north!/usr/spool/uucppublic/memo1.txt
(SYSTEM north) copy successful

v With uucp -n name, if you are transferring a file to a remote site, you can specify
the login name of the person at the remote site to be notified when the file is
transferred. That person can read the notification message using mailx.

Permissions
Each site in a UUCP network has a Permissions file that is used to control the
access that remote systems have to data and programs on the local system. This
file is used to specify, among other options, the areas in the file system that a
remote system can read or write from, the commands that the remote system can
run on the local system, and a different public directory than the default. Those
options are specified as:

READ Indicates which directories can be read. By default, this is the home
directory of user uucp (/usr/spool/uucppublic).

WRITE
Indicates which directories uucico can write to. By default, this is
/usr/spool/uucppublic, the home directory of user uucp.

NOREAD
Indicates that files in the specified directories cannot be read. If a directory
is specified by both READ and NOREAD, files in that directory cannot be read.
The public directory can always be read (even if specified on NOREAD).

NOWRITE
Indicates that files in the specified directories cannot be written to. If a

Chapter 13. Communicating with other users 183



directory is specified by both WRITE and NOWRITE, files in that directory
cannot be written to. The public directory can always be written to (even if
specified on NOWRITE).

PUBDIR
Indicates the public directory. By default, this is the home directory of user
uucp (/usr/spool/uucppublic).

COMMANDS
Indicates the commands that the remote system can execute on your
system. If more than one command is specified, the command names are
separated with a colon (:). For example, COMMANDS=uucp:ls. If all commands
are prohibited, the COMMANDS option is not used.

For a full description of all the Permissions file options, see The Permissions File
in z/OS UNIX System Services Planning.

Transferring a file from a remote site
To copy a file from a remote site, your site must have read permissions on the file.
Normally your site would have read permissions only on the public UUCP
directory and its subdirectories.

For example, say you want to copy the program pages from programs, a
subdirectory of the remote site's public UUCP directory, to your public UUCP
directory.

To retrieve the file, you would enter this command:
uucp south!~/programs/pages ’~/pages’

where south is the remote site.

For more information about the uucp command, see z/OS UNIX System Services
Command Reference.

Checking a file's transfer status
To check the status of pending transfer requests, use the uustat command. You can
specify options to display the status of transfers for a particular job ID or user ID.

To display completed file transfer attempts, use the uulog command. To see the
record of completed file transfer attempts and connections by site, type:
uulog -s site

where site is the name of the remote site.

Working with your files in the public directory
All users have read access to the UUCP public directory. When you have a file in
the public directory, you can use the cp command to copy the file or the mv
command to move the file. If the sender uses the -n option on uucp, you are
notified when the file is placed in the public directory.

Files sent to you with the uuto command are automatically placed in the receive
subdirectory. You can use uupick to manage files in the receive subdirectory of the
UUCP public directory. If receive is specified as the target directory on the uucp
command, you can use uupick to manage the files.

184 z/OS V2R2 UNIX System Services User's Guide



Within the receive subdirectory, each user on the local system has a subdirectory.

To check your public UUCP directory for files sent to you by the uuto command,
type uupick. For each file or directory found, uupick prompts you with a message
and then you specify how that entry should be handled. For example, for a file, it
might display:
from south: file memo2.txt ?

In response, you could type d to delete the file, or m to move the file into your
current working directory, or m /mydir/tmp to put it in the directory /mydir/tmp.

For more information about the uupick command, see z/OS UNIX System Services
Command Reference.

Running a command on a remote site
You can use the uux command to run commands on remote sites, but they cannot
be interactive commands such as vi. You must have a working UUCP connection
and permission to execute commands on the remote site.

Using a remote file as an argument
To ask south to print the file south!/schedule/january using the lp command, you
would type:
uux ’south!lp’ ’/schedule/january’

where /schedule/january is the name of the file on south to be printed. In general,
if no site is specified on the arguments for the remote command, uux assumes the
command is on the site running the command. You must specify full pathnames
for files in uux commands. As a general rule, enclose all arguments to uux in
single quotation marks to prevent the shell from interpreting them.

Using a local file as an argument
To ask south to print the local file /schedule/january using the lp command, you
would type:
uux south!lp !/schedule/january

uux sends a copy of the file for printing; after the remote command has run, the
copy is removed.

Using TSO/E to send or receive mail
You can use the TSO/E panel facilities or TRANSMIT and RECEIVE commands to
communicate with any TSO/E user (including z/OS UNIX users). If you use
TSO/E to send a message, your correspondent must use TSO/E to receive it.

Sending a message
You can use the TSO/E Information Center Facility (ICF), if installed, or TSO/E
commands to send a message. For example, to send a short message (with no more
than 115 characters), you can switch to TSO/E command mode and enter:
SEND ’Have to go home to take my cat to the vet’ USER(alice)

You use SEND for messages to people on the same system as you.

For a longer message, or a message to someone on a different system, you could
use:

Chapter 13. Communicating with other users 185



TRANSMIT dallas.alice

where dallas.alice identifies the person to receive the message: dallas is the ID
of the MVS system (known as a node in the network) where the person works, and
alice is the person's user ID. The system then prompts you to enter the message.

Sending a message to a distribution list
You can use the TSO/E ICF, if installed, or the TSO/E TRANSMIT command to
send a message to a distribution list. You set up a distribution list by specifying a
nickname entry in the NAMES data set that contains a list of names or nicknames
you want the message sent to.

Example: If you have set up the nickname test for a distribution list, issue:
transmit test

Result: The system displays a screen for input. Type your message and press <F3>
to send it.

Sending a message to an MVS operator
To send a message to a specific MVS operator, you must know the operator's route
code and specify it in the OPERATOR operand.

Example: Issue:
SEND ’Are the tapes I wanted from the library here yet?’ OPERATOR(7)

You can also send a message to a specific operator console by using the CN
operand. A console name or ID is defined at your enterprise.

Example: To send a message to the operator console named TAPELIB, issue:
send ’please send the tapes to the floor.’ CN(TAPELIB)

Receiving mail from other users
How and whether you are notified when TSO/E messages are received by the
system depends on how your TSO/E system is set up:
v You may be notified when you log on or as messages arrive.
v You may have to enter a RECEIVE command periodically to see if a message

has arrived.

Unless the messages are automatically displayed when you log on, you enter a
RECEIVE command to see your currently unread messages. For more information
on TSO/E mail and messaging, see z/OS TSO/E User's Guide.

Receiving messages from other systems
TSO/E users can receive messages from other systems through the TSO/E message
interface. Receiving a message from a user on another system is the same as
receiving one from a user on the same system.

186 z/OS V2R2 UNIX System Services User's Guide



Part 2. The z/OS UNIX file system

These topics discuss tasks involved with the z/OS UNIX file system.

© Copyright IBM Corp. 1996, 2015 187



188 z/OS V2R2 UNIX System Services User's Guide



Chapter 14. An introduction to the z/OS UNIX file system

z/OS UNIX files are organized in a hierarchy, as in a UNIX system. All files are
members of a directory, and each directory is in turn a member of another directory
at a higher level in the hierarchy. The highest level of the hierarchy is the root
directory.

The root file system and mountable file systems
Taken as a whole, the file system is the entire set of directories and files, consisting
of all files shipped with the product and all those created by the systems
programmer and users. The systems programmer (superuser) defines the root file
system; subsequently, a user with mount authority can mount other mountable file
systems on directories within the file hierarchy. (See the section on mount
authority in z/OS UNIX System Services Planning.) Altogether, the root file system
and mountable file systems comprise the file hierarchy used by shell users and
applications.

After installation of z/OS, the end user's logical view of the file system is as
shown in Figure 16.

System programmers need to know that the illustration of directories in Figure 16
is not a true representation of file systems. The file system, as installed through
ServerPac or CBPDO, consists of /dev, /tmp, /var, and /etc symbolic links that
point to the /dev, /tmp, /var, and /etc directories, as demonstrated in Figure 17 on
page 190.

SYSTEM dev tmp var etcusrbinu lib opt samples

lpp

booksrv tcpip
. . .

Figure 16. End user's logical view of the file system

© Copyright IBM Corp. 1996, 2015 189



Here SYSTEM is a data set that contains directories which are used as mount
points, specifically for the /etc, /var, /tmp, and /dev file systems. IBM requires
that you mount /etc, /var, /dev, and /tmp in separate data sets.

The z/OS shells and utilities typically impose a line orientation on the byte-oriented
files. A line is a stream of bytes terminated with a <newline> character. A line
terminated by a <newline> character is sometimes referred to as a record. So, there
is a single <newline> character between every pair of adjacent records. Text files
use the <newline> character to delimit lines; binary files do not.

Several types of file systems can be mounted within the file hierarchy:
v z/OS File System (zFS): zFS is the strategic file system for z/OS UNIX and

continues to be enhanced to provide superior performance, reliability, and data
integrity. zFS file systems can be mounted into the z/OS UNIX hierarchy along
with other local (or remote) file system types (for example, HFS, TFS,
AUTOMNT and NFS). Also, zFS can support access control lists (ACLs). For
more information, see z/OS Distributed File Service zFS Administrationand z/OS
Migration.

v Hierarchical File System (HFS): In HFS, the entire file hierarchy is a collection of
hierarchical file system data sets (HFS data sets). Each HFS data set is a
mountable file system. DFSMS facilities are used to manage an HFS data set,
and DFSMS Hierarchical Storage Manager (DFSMShsm) is used to back up and
restore an HFS data set.

v Network File System (NFS): Using NFS client on z/OS UNIX System Services,
you can mount a file system, directory, or file from any system with an NFS
server within your user directory. You can edit or browse the files. For more
information, see “Using the Network File System feature” on page 199 and z/OS
Network File System Guide and Reference.

v Distributed File System (DFS): DFS joins the local file systems of several file
server machines, making the files equally available to all DFS client machines.
DFS allows users to access and share files stored on a file server anywhere in the
network, without having to consider the physical location of the file. For more
information, see z/OS DFSMS Using Data Sets.

v Temporary File System (TFS): The TFS is an in-memory physical file system that
delivers high-speed I/O. To take advantage of that, the systems programmer
(superuser) can mount a TFS over the /tmp directory so it can be used as a

bin samples SYSTEM dev tmp var etcusru lib opt

dev tmp var etclib opt samplesusrbin

Symbolic linkDirectory

Key:

Figure 17. Organization of the file system

190 z/OS V2R2 UNIX System Services User's Guide



high-speed file system for temporary files. (Normally, the TFS is the file system
that is mounted instead of the HFS if the kernel is started in minimum setup
mode.)

Directories
Files are grouped in a directory, which is a special kind of file consisting of the
names of a set of files and other information about them. Usually, the files in a
directory are related to each other in some way. The files listed can be thought of
as being contained in that directory (although their actual locations in physical
storage are managed by the operating system).

A directory can include a file that is itself a directory (sometimes referred to as a
subdirectory) and so on, through a number of levels in a hierarchical arrangement.
For example, in Figure 16 on page 189, the slash (/) symbol at the top represents
the root directory, which all other directories are descended from. There are ten
directories branching from the root. Each of these directories, in turn, has its own
system of subdirectories and files. For example, localedef is a subdirectory in the
directory /usr/lib/nls.

When you first enter the z/OS shell, you are automatically placed in your home
directory, which is defined when your user ID is defined.

Files
In addition to directories, there are four other types of files that can exist in the file
system:
v A regular file is an identifiable (named) unit of text or binary data information.

A file can be C source code, a list of names or places, a printer-formatted
document, a string of numbers organized in a certain way, an employee record
containing smaller information units in fields, a memo, and many other possible
things. A user or an application program must understand how to access and
use the individual increments of information (such as employee record fields)
within a file.

v A character special file defines one of the following:
– A terminal (/dev/ptypnnnn and /dev/ttypnnnn).
– The default controlling terminal for a process (/dev/tty).
– A null file (/dev/null). Data written to this file is discarded; hence, it is known

as the bit bucket. This file is always empty for reading.
– A zero file (/dev/zero). Data written to this file is discarded and binary zeros

are supplied for any amount read from it.
– The random number files (/dev/random and /dev/urandom). These files

provide random numbers for cryptographic purposes.
– A file descriptor file (/dev/fdn or /dev/fd/n).
– A system console file (/dev/console). Data written to this file is sent to the

console using a write-to-operator (WTO) that displays the data on the system
console.

– A UNIX domain socket name file. This is a path name that specifies the
socket address for a UNIX domain socket. The path name is assigned by the
application programmer; there is no convention for the name. The operating
system creates the file.

Chapter 14. An introduction to the z/OS UNIX file system 191



– A Communications Server remote tty file (for example, rtynnnn) that
corresponds to the requesting terminal on the originating Communications
Server node. The name is assigned by the Communications Server
administrator.

– The Communications Server character special file (/dev/ocsadmin) that
supports ioctl functions for Communications Server administrative functions.

Character special files are dynamically created by the operating system when
they are first referenced. However, they can also be explicitly created by a
superuser (for instance, in order to assign different permissions).

v A FIFO special file is a file that is typically used to send data from one process
to another so that the receiving process reads the data first-in-first-out (FIFO). A
FIFO special file is also known as a named pipe.

v A symbolic link is a file that contains the path name for another file, in essence
a reference to the original file. Only the original path name is the real name of
the original file. You can create a symbolic link to a file or a directory. In
OS/390® V2R9 and later, /etc, /tmp, /dev, and /var are symbolic links.
An external link is a type of symbolic link, a link to an object outside of the HFS.
Typically, it contains the name of an MVS data set.

Users and programs create regular files, FIFO special files, symbolic links, and
external links.

Files not in the file system
There are two types of unnamed files that you might be aware of, but that do not
exist in the file system:
v unnamed pipe

A program creates a pipe with the pipe() function. A pipe typically sends data
from one process to another; the two ends of a pipe can be used in a single
program task. A pipe does not have a name in the file system, and it vanishes
when the last process that is using it closes it.

v socket

A program creates a socket with the socket() function. A socket is a method of
communication between two processes that allows communication in two
directions, in contrast to a pipe, which allows communication in only one
direction. The processes using a socket can be on the same system or on
different systems in the same network.

Comparison between MVS data sets and the z/OS UNIX file
system

In Figure 18 on page 193, you see that:
v The MVS master catalog is analogous to the root directory in a z/OS UNIX file

system.
v The user prefix assigned to MVS data sets is an organizer analogous to a user

directory (/u/smitha) in the file system. Typically, one user owns all the data sets
whose names begin with his user prefix. For example, the data sets belonging to
the TSO/E user ID SMITHA all begin with the prefix SMITHA. There could be
data sets named SMITHA.TEST1.C, SMITHA.TEST2.C, SMITHA.TEST1.LIST, and
SMITHA.TEST2.LIST.
In the file system, SMITHA would have a user directory named /u/smitha;
under that directory there could be subdirectories named /u/smitha/test1 and
/u/smitha/test2.

192 z/OS V2R2 UNIX System Services User's Guide



v Of the various types of MVS data sets, a partitioned data set (PDS) is most akin
to a user directory in the file system. In a partitioned data set such as
SMITHA.TEST1.C, you could have members PGMA, PGMB, and so on—for
example, SMITHA.TEST1.C(PGMA) and SMITHA.TEST1.C(PGMB). Likewise, a
subdirectory such as /u/smitha/test1 can hold many files, such as pgma.c,
pgmb.c, and so on.

Sharing files between LPARs
z/OS UNIX files cannot reside on a DASD that is shared in read/write mode
between LPARs. However, you can share z/OS UNIX files (both zFS files and HFS
files) between LPARs when you use the shared file system capability provided by
z/OS UNIX. To share only zFS files, you can use the sysplex support found in zFS.

Executable modules in the file system
You can have an executable module in the z/OS UNIX file system. To run a shell
script or executable, a user must have read and execute permissions to the file. Use
chmod to set the permissions.
v For frequently used programs in the file system, you can use the chmod

command to set the sticky bit. This reduces I/O and improves performance.
When the bit is set on, z/OS UNIX searches for the program in the user's
STEPLIB, the link pack area, or the link list concatenation. For further
information, see “Using a symbolic mode to specify permissions” on page 233.

z/OS UNIX

File System
MVS

Data Sets

Master
Catalog

User Prefix
SMITHA

Partit ioned Data Set
SMITHA.TEST1.C

Sequential Data Set

VSAM Data Set

Member
SMITHA.TEST1.C

PGMA PGMB

File
/u/smitha/test1

pgma.c pgmb.c

Subdirectory

/u/smitha

/u/smitha/test1

User Directory

Root/

Figure 18. Comparison of MVS data sets and the z/OS UNIX file system

Chapter 14. An introduction to the z/OS UNIX file system 193



v The extattr command is used to set, reset and display extended attributes for
files to allow executable files to be marked so they run APF authorized, as a
program controlled executable, or not in a shared address space.
The ls shell command has an option that displays these attributes:

-E Displays extended attributes for regular files:

a Program runs APF authorized if linked AC=1

p Program is considered program controlled

s Program runs in a shared address space

- Attribute not set
When the extattr attribute l is set (+l) on an executable program file, it will be
loaded from the shared library region.

v You can copy executable modules between z/OS UNIX and the file system. For
more information about how to do this, see “Copying executable modules
between MVS data sets and the z/OS UNIX file system” on page 280.

v For information about how to set up a STEPLIB environment for an executable
file, see “Building a STEPLIB environment: The STEPLIB environment variable”
on page 50.

For more information about the ls and extattr shell commands, see z/OS UNIX
System Services Command Reference.

Path and path name
The set of names required to specify a particular file in a hierarchy of directories is
called the path to the file, which you specify as a pathname. Path names are used as
arguments for commands.

An absolute path name is a sequence that begins with a slash for the root, followed
by one or more directory names separated with slashes, and ends with a directory
name or a file name. The search for the file begins at the root and continues
through the elements in the path name until it gets to the final name. For example:
/u/smitha/projectb/plans/1dft

is the absolute path name for 1dft, the first draft of the plans for a particular
project that a user named Alice Smith (smitha) is working on.

Instead of using the absolute path name with shell commands, you can specify a
path name as relative to the working directory; this is called the relative path name.
In most cases, a user can specify a particular file without having to use its absolute
path name. A relative path name does not have a / at the beginning, and the
search for the file begins in the working directory. For example, if Alice Smith is
working in the directory projectb, she can specify the relative path name for the
file /u/smitha/projectb/plans/1dft as:
plans/1dft

A path name can be up to 1023 characters long, including all directory names, file
names, and separating slashes. For path names and file names, use characters from
the POSIX portable character set. Using DBCS data in these names is not
recommended; it may cause unpredictable results.

194 z/OS V2R2 UNIX System Services User's Guide



The system performs path name resolution to resolve a path name to a particular file
in a file hierarchy. The system searches from element to element in a path name in
order to find the file.

Requirement for an absolute path name
In some situations, an absolute path name is required. Table 6 shows that job
control language (JCL) and some TSO/E commands require an absolute path name
and that they require an MVS data set name to be specified in a certain way. In
these situations, the maximum length of the absolute path name is 255 characters.

Table 6. Absolute path name requirements

Path name Dataset name

JCL Absolute, in single
quotation marks

Fully qualified (no quotation marks needed).

ALLOCATE
command

Absolute, in single
quotation marks

Fully qualified in single quotation marks. If
specified without quotation marks, the
TSO/E prefix is added to the data set name.
Normally the TSO/E prefix is the TSO/E
user ID (this can be changed with the
PROFILE PREFIX( ) command).

OEDIT and
OBROWSE
commands

Absolute, unless you
are working in your
current directory

Not applicable

OPUT, OGET
commands

Absolute (unless you
are working in your
home directory), in
single quotation
marks

Fully qualified in single quotation marks. If
specified without quotation marks, the
TSO/E prefix is added to the data set name.
Normally the TSO/E prefix is the TSO/E
user ID (this can be changed with the
PROFILE PREFIX( ) command).

OPUTX, OGETX
commands

Absolute (unless you
are working in your
home directory)

Fully qualified in single quotation marks. If
specified without quotation marks, the
TSO/E prefix is added to the data set name.
Normally the TSO/E prefix is the TSO/E
user ID (this can be changed with the
PROFILE PREFIX( ) command).

Resolving a symbolic link in a path name
A symbolic link is a file that contains the path name for another file; that path
name can be relative or absolute. If a symbolic link contains a relative path name,
the path name is relative to the directory containing the symbolic link.

If you use a symbolic link as a component of a path name, during path name
resolution the original path name is changed. How it changes depends on whether
the symbolic link contains a relative or absolute path name. For example, consider
the path name /u/turbo/dlg/lev1:
v If dlg is a symbolic link containing the relative path name dbopt/pgma/src, dlg

is replaced by the relative path name. This is how it resolves:
/u/turbo/dlg/lev1 → /u/turbo/dbopt/pgma/src/lev1

v If dlg is a symbolic link containing the absolute path name /usr/bin/dbopt/
pgma/src, then the components in the original path name that preceded dlg are
replaced by the absolute path name in the symbolic link. This is how it resolves:
/u/turbo/dlg/lev1 → /usr/bin/dbopt/pgma/src/lev1

Up to eight symbolic links can be resolved in a path name.

Chapter 14. An introduction to the z/OS UNIX file system 195



Note: An external link is a type of symbolic link that refers to an object outside of
the hierarchical file system. As used by the Network File System feature, an
external link refers to an MVS data set name.

Symbolic and external links with a sticky bit
The following behavior applies to DLLs and all forms of spawn() and exec(). What
applies for exec() also applies for all forms of module loading.
v External links

exec() does a stat() on the passed file name. stat() does the search, not exec(). If
the file name is an external link, then stat() fails with a unique reason code
which causes exec() to read the external link. If the external link name is a valid
PDS member name (that is, 1 - 8 alphanumeric or special characters), then exec()
attempts to locate the module in the MVS search order. If it cannot find the
module, exec() fails.
The external link is normally used when you want to set the sticky bit on for a
file name which is longer than eight characters or contains characters that are
unacceptable for a PDS member name.

v Symbolic links
If the file name you specify is a symbolic link and exec() sees the sticky bit on,
then it truncates any dot qualifiers. As long as the base file name is an
acceptable PDS member name, the need to set up links in order to get exec() to
go to the MVS search order should not be an issue.
For example, if you have a file named java.jll, when you set the sticky bit on,
exec() attempts to load a member named JAVA. If exec() cannot find JAVA, it
reverts to using the java.jll file in the file system.
The important thing to understand is that exec() never sees the name that the
symbolic link resolves to, even though it can see the stat() data for the final file.

Example: If you define /u/user1/name1 as a symbolic link to /u/user1/name2 and
then invoke name1, the following occurs:
1. The shell will spawn name1.
2. spawn() will access the file for name1, unaware that there is a symbolic link

already established. It will access the name2 file by its underlying vnode, not by
the name2 handle.

3. If the sticky bit is on for the name2 file, spawn() will do the MVS search for
name1 (the only name it has to work with).

Command differences with symbolic links
Certain directories like /etc, /dev, /tmp, and /var are converted to symbolic links.
Some shell commands have minor technical differences when they refer to
symbolic links instead of regular files or directories. For example, ls does not
follow symbolic links by default.

In order to follow symbolic links, you must specify ls -L or provide a trailing
slash. For example, ls -L /etc and ls /etc/ both display the files in the directory
that the /etc symbolic link points to.

Other shell commands that have differences due to symbolic links are du, find,
pax, rm and tar.

196 z/OS V2R2 UNIX System Services User's Guide



While these behavioral changes should be minor, users can tailor command
defaults by creating aliases for the shell command. For example, if you want ls to
follow symbolic links, you could issue the command alias ls="ls -L". Aliases are
typically defined in the users' ENV file.

Note: After this alias has been established, ls will follow all symbolic links.

An administrator can put alias commands in /etc/profile that could affect all users'
login shells. IBM does not recommend this, because changing the default behavior
in /etc/profile may produce unexpected results in shell scripts or by shell users.

Using commands to work with directories and files
There are numerous shell commands you can use to create and work with
directories and files. See the z/OS shell summary section in z/OS UNIX System
Services Command Reference for a list of them.

To get online help for using the shell commands, you can use the man command.

You can also use TSO/E commands to do certain tasks with the file system. Some
of these are tasks that UNIX users traditionally perform while in the shell.

Command
Task

ISHELL
Invoke the ISPF shell. This is a panel interface for performing many user
and administrator tasks. For more information, see “Using the ISPF shell”
on page 169.

MKDIR
Create a directory. Unlike the mkdir shell command, this command does
not create intermediate directories in a path name if they do not exist.

MKNOD
Make a character special file. To use this command, you must be a
superuser.

MOUNT
Add a mountable file system to the file hierarchy. To use this command,
you must have mount authority. (See the section on mount authority in
z/OS UNIX System Services Planning.)

OBROWSE
Browse (read but not update) a z/OS UNIX file using the ISPF full-screen
browse facility.

OCOPY
Copy data between sequential data sets, or PDS and PDSE members, and
z/OS UNIX files.

OEDIT
Create or edit text using the ISPF editor.

OGET Copy a z/OS UNIX file to an MVS sequential data set or partitioned data
set member. You can specify text or binary data, and select code page
conversion.

OGETX
Copy one or many files from a directory to a partitioned data set, a
PDS/E, or a sequential data set. You can specify text or binary data, select

Chapter 14. An introduction to the z/OS UNIX file system 197



code page conversion, allow a copy from lowercase file names, and delete
one or all suffixes from the file names when they become PDS member
names.

OPUT Copy an MVS sequential data set or partitioned data set member to a
z/OS UNIX file. You can specify text or binary data, and select code page
conversion.

OPUTX
Copy one or many members from a partitioned data set, PDS/E, or a
sequential data set to a directory. You can specify text or binary data, select
code page conversion, specify a copy to lowercase file names, and append
a suffix to the member names when they become file names.

OSTEPLIB
Build a list of files that are sanctioned as valid step libraries for programs
that have the set-user-ID or set-group-ID bit set. To use this command, you
must be a superuser.

UNMOUNT (or UMOUNT)
Remove a file system from the file hierarchy. To use this command, you
must have mount authority. (See the section on mount authority in z/OS
UNIX System Services Planning.)

For information about existing TSO/E commands that you might commonly use,
see z/OS TSO/E Command Reference.

To get online help for TSO/E commands, you can use either the TSO/E HELP
command. See “Entering a TSO/E command” for information about entering
TSO/E commands in TSO/E, the shell, and ISPF.

Entering a TSO/E command
How you can enter a TSO/E command depends on whether you are using the
OMVS terminal interface or the asynchronous terminal interface you get with
rlogin, telnet, or the Communications Server.

OMVS terminal interface: You can enter a TSO/E command:
v At the TSO/E READY prompt.
v In the shell, using the tso shell command. For more information on this

command, see z/OS UNIX System Services Command Reference.
v In the shell, by typing a TSO/E command at the shell prompt and pressing the

TSO function key to run it.
v On an ISPF panel.

198 z/OS V2R2 UNIX System Services User's Guide



CAUTION:
You need to be aware of two things about entering TSO/E commands in ISPF:

1. On most ISPF panels, you must type TSO before the name of the TSO/E
command; for example,
TSO OBROWSE 3 fopen

However, on the TSO Command Processor panel (ISPF option 6), you can
just enter the name of the TSO/E command, unless the command exists in
both ISPF and TSO (for example, HELP or PRINT).

2. On most ISPF panels, ISPF folds what you type to uppercase. ISPF folds
lowercase or mixed-case file names to uppercase, even if they are enclosed in
single quotation marks. However, the TSO Command Processor panel (ISPF
option 6) processes what you enter exactly as it is typed—mixed case,
uppercase, or lowercase.

Asynchronous terminal interface: You can enter TSO/E commands in the shell,
using the tso shell command. For more information on this command, see the tso
command in z/OS UNIX System Services Command Reference.

Using a relative path name on TSO/E commands
If you run a TSO/E command by using the OMVS TSO subcommand or function
key or the tso -o command, the TSO/E command runs in your TSO/E address
space. The working directory of your TSO/E address space is typically your home
directory. Therefore, if you specify a relative path name on a TSO/E command, the
system searches for it in your home directory—even if you are working in a
different directory.

If you run a TSO/E command by using the tso -t command, it runs in its own
process. If you run the command using a relative path name, the system searches
for it in your working directory.

Finding the data set that contains a file
To determine which data set (file system) contains a file, use the df shell command.
You can use df to find the data set (file system) that contains your current working
directory, or df file name to find the data set of another file.

Using the ISPF shell to work with directories and files
If you are a user with an MVS background, you may prefer to use the ISPF shell
panel interface instead of shell commands or TSO/E commands to work with the
file system. The ISPF shell also provides the administrator with a panel interface
for setting up users for z/OS UNIX access, for setting up the root file system, and
for mounting and unmounting a file system. For more information about the ISPF
shell, see “Using the ISPF shell” on page 169.

Using the Network File System feature
Using the Network File System feature, you can mount z/OS UNIX files on an
empty directory at your workstation.

To access the z/OS UNIX files, you first enter the mvslogin command, which gives
you permission to use NFS.

Chapter 14. An introduction to the z/OS UNIX file system 199



Then you enter the mount command to make a connection between a mount point
on your local file system and a directory or file in the z/OS UNIX file system.
After a directory is mounted, you can create, delete, read, or write to a file in or
below that directory in the file hierarchy; generally, you can treat a file in or below
that directory as a member of your own workstation file system.
v For text files, the Network File System feature handles conversion between the

EBCDIC code page used in the z/OS shell and the ASCII code page used at
your workstation.

v RACF checks the authority of a workstation user to access z/OS UNIX files on
the host. This is based on the authority of the MVS user ID specified on the
mvslogin command.

For more information, consult the appropriate Network File System
documentation.

External links
An external link is a type of symbolic link that you can use to associate an MVS
data set or PDS member with a z/OS UNIX path name. The external link lets the
NFS client user transparently access an MVS data set using a path name. A
program using the exec() family of functions or the BPX1EXC (exec), BPX1LOD
(loadhfs), or BPX1SPN (spawn) callable services can also access an MVS data set
using an external link.

The data set appears in a mounted z/OS UNIX directory with z/OS UNIX files. If
you are working with both MVS data sets and z/OS UNIX files on the
workstation, with an external link you can have one directory for both the data
sets and the files—for example, /host, instead of /host/ds for the data sets and
/host/hfs for the files.

For information about how to create an external link when working at the host, see
“Creating an external link” on page 216.

Security for the file system
The security facility is assumed to be the Resource Access Control Facility (RACF).
You could use an equivalent security product.

Power® failures and the file system
Should there be a power failure, you might lose recent data that is still buffered,
but the file system structures, directories, inodes and such, will not be damaged. A
shadow writing technique is used to ensure that structural changes are always
committed automatically. The z/OS UNIX file system does its own repair, as
needed, on each mount of a file system. This is based on records it keeps of
changes in progress.

There is no fsck command and the z/OS UNIX file system was designed so that
this is not needed. The fsck utility generally ensures structural integrity, not data
integrity.

Of course, there is always a possibility that user data, critical file system data, or
the media can be damaged, so prudent backup procedures are always warranted.

200 z/OS V2R2 UNIX System Services User's Guide



Chapter 15. Converting files between code pages

Enhanced ASCII and Unicode Services make porting applications to z/OS UNIX
easier by providing conversion from ASCII to EBCDIC.

Enhanced ASCII
Enhanced ASCII enables users to deal with files that are in both ASCII and
EBCDIC format. z/OS is an EBCDIC platform. The z/OS UNIX shells and utilities
are configured as EBCDIC programs. That is, characters are coded in the EBCDIC
code set. Before z/OS Version 1 Release 2, applications that ran on z/OS UNIX
had to exist in EBCDIC form, and expected text data to be stored in EBCDIC form.
If you wanted to convert files from EBCDIC to ASCII or ASCII to EBCDIC, you
needed to use iconv. With Enhanced ASCII, you can deal with applications and
their data in your choice of ASCII or EBCDIC code sets. z/OS UNIX still operates
as an EBCDIC system, but it can automatically convert the data from ASCII to
EBCDIC and back as necessary to complete commands and tasks.

File tagging in Enhanced ASCII
Enhanced ASCII provides support for file tagging. File tags are used to identify the
code set of text data within files. When Enhanced ASCII functionality is enabled,
z/OS UNIX needs to know whether files are encoded as ASCII or EBCDIC. The
file tag provides this data. If no file tag exists on a particular file, that file is treated
as an EBCDIC file. Setting a file tag does not force automatic code set conversion
but allows it to take place when automatic code set conversion is enabled. For
additional information on automatic code set conversion, see “Automatic code set
conversion” on page 202.

Note: An entire file system can be mounted such that untagged files and new files
created within the file system are treated as tagged while the mount option is in
effect.

z/OS utilities provide options to manage tags on UNIX files. The chtag command
allows you to set, modify, remove, or display information in a file tag. In this
example:
chtag -t -c ISO8859-1 christmas.songs

the file christmas.songs is tagged as an ASCII file. ISO8859–1 is the code set for
ASCII. In this example:
chtag -t -c IBM-1047 christmas.recipes

the file christmas.recipes is tagged as an EBCDIC file. IBM-1047 is the code set for
EBCDIC.

The ls command with option -T and the command chtag -p display information
about the file text and codeset tags. For more information about the chtag and ls
commands, see z/OS UNIX System Services Command Reference.

© Copyright IBM Corp. 1996, 2015 201



Unicode Services
z/OS UNIX exploitation of Unicode Services is functionally similar to that
provided for Enhanced ASCII. The basic EBCDIC nature of the z/OS platform
remains. Likewise, programs cannot alter their EBCDIC nature as compiled units,
except for C programs, which can be compiled as ASCII. Locale restrictions that
apply to Enhanced ASCII functions apply to Unicode Services functions as well.

For more information about Unicode Services, see z/OS Unicode Services User's
Guide and Reference.

File tagging in Unicode Services
Files that are tagged can be converted between any CCSID of the program or user
and the CCSID of the file, if Unicode Services supports that conversion. Unlike
Enhanced ASCII, which affects conversion of regular file, pipes, and character
special files, an environment enabled for Unicode Services environment affects
regular files and pipes only. No character special support beyond that provided for
Enhanced ASCII is included.

Automatic code set conversion
Automatic conversion of files from one code set to another is controlled globally
by the AUTOCVT(ON|OFF) parameter in the BPXPRMxx parmlib member.
AUTOCVT can be overridden by individual programs at a thread level, and
therefore is a controlling switch only for programs that do not explicitly establish
their own conversion options. The default setting for AUTOCVT is OFF.

Although the value of AUTOCVT can be changed using the SETOMVS
command, changing the conversion mode does not affect conversion of opened
files for which I/O has already started.

Guideline: When AUTOCVT(ON) is set, every read or write operation for a file is
checked to see if conversion is necessary. A performance penalty is therefore
involved, even if no conversion occurs. It is recommended that AUTOCVT be left
off and each program be enabled for conversion.

For information on commands that allow or disallow automatic code set
conversion by default, see Appendix L. Automatic Codeset Conversion: Default
Status for Specific Commands in z/OS UNIX System Services Command Reference.

Porting considerations
If your system administrator enabled Enhanced ASCII or Unicode Services, you
can able to tell z/OS UNIX which files are ASCII (code set ISO8859-1) files and
which files are EBCDIC (code set IBM-1047) files. This enhanced functionality is
useful when working with portable XPG 4.2 applications that are written in ASCII.
You can port an application to z/OS UNIX, compile it in ASCII, and also tag text
files as ASCII. z/OS UNIX performs conversion when an ASCII program reads or
writes an EBCDIC tagged file or when an EBCDIC program reads or writes an
ASCII tagged file.

For more information about enabling Enhanced ASCII or Unicode Services at the
system level, see Using Enhanced ASCII and Using Unicode Services in z/OS UNIX
System Services Planning. For information about porting applications to z/OS UNIX,
see z/OS UNIX System Services Porting Guide.

202 z/OS V2R2 UNIX System Services User's Guide



Chapter 16. Working with directories

This information covers these topics:
v The working directory
v Displaying the name of your working directory
v Changing directories
v Creating a directory
v Removing a directory
v Listing directory contents
v Comparing directory contents
v Finding a directory or file

The working directory
The shell always identifies a particular directory within which you are assumed to
be working. This directory is known as the working directory (also known as the
current working directory). To work with a file within your working directory, you
need specify only the file name with a command. If you want to work with a file
in another directory, you can change your working directory, using the cd shell
command and naming the new directory.

Tip: Instead of changing directories, you could use relative notation to access a file
in a different directory; see “Using notations for relative path names” on page 204
for more information.

When you type the OMVS command and begin working in the shell environment,
you are placed in your home directory as your working directory.

Displaying the name of your working directory
To check on the name of the directory you are currently working in, just enter the
pwd command (print working directory).

If Alice Smith is working in her home directory, for example, the system displays
the name of her working directory in this form:
/u/smitha

/u/smitha is the pathname of her working directory.

If Alice Smith enters the command cd projecta, the projecta subdirectory of her
home directory becomes her working directory. If she issues the pwd command, it
displays:
/u/smitha/projecta

Note: A directory name can be specified in two ways, with or without a trailing
slash; for example:

/u/smitha/projecta
/u/smitha/projecta/

In this topic, a trailing slash is not used.

© Copyright IBM Corp. 1996, 2015 203



Changing directories
Use the cd command to change from one working directory to another. If you have
permission to access the directory, you can move to any directory in the file system
by using cd and the path name for the directory:
cd pathname

See Chapter 18, “Handling security for your files,” on page 231 for more
information on directory permissions.

When you want to go to your home directory, just enter the cd command with no
arguments:
cd

To change to a directory other than your home directory, you must supply the path
name. For example, if Alice Smith is working in her home directory (smitha) and
she wants to switch to her projectb directory, she types the relative path name:
cd projectb

To check that she has changed directories, Alice types pwd and the system
displays:
/u/smitha/projectb

Using notations for relative path names
To change directories quickly or to work with a file name in another directory, use
these relative path name notations:

dot notation (. and ..)
tilde notation ( ~)

Dot notation
If you use the ls -a command to list the contents of a directory, you see that every
directory contains the entries . (dot) and .. (dot dot):

. (dot) This refers to the working directory.

.. (dot dot)
This refers to the parent directory of your working directory, immediately
above your working directory in the file system structure.

If one of these is used as the first element in a relative path name, it refers to your
working directory. If .. is used alone, it refers to the parent of your working
directory.

For example, if you are working in /bin/util/src, you can go to /bin/util by
entering:
cd ..

204 z/OS V2R2 UNIX System Services User's Guide



Tilde notation
A ~ (tilde) can be used from the z/OS shell in several forms:

Notation Meaning

~ Your home directory (that is, the directory given by your HOME
environment variable). The command:

cp ~/file1 file2

copies file1 in your home directory into file2 in your working directory.
This works regardless of what your working directory is.

cp file1 ~/dir

copies file1 from the working directory into dir in your home directory.

~ + The variable $PWD (which contains the name of your working
directory).

~ – The variable $OLDPWD (which gives the name of the working directory
you were in immediately before the last cd command).

~login name That user's home directory.

Example: To display the profile file of allane, from that user's home
directory, issue:

cat ~allane/.profile

This is useful if there are a group of you working on a project and you
have read-write access to some of each other's files.
Note: In the z/OS shell, your login name is your TSO/E user ID.

Example
Suppose that your home directory is /u/turbo and you are working in
/u/turbo/prog/src, and you want to display the file limits in the directory
/u/turbo/appl/hdr. You could refer to the file in several different ways:
cat ../../appl/hdr/limits
cat ~/appl/hdr/limits
cat /u/turbo/appl/hdr/limits

Creating a directory

Using the shell: To create a new directory, enter:
mkdir pathname

For example, if Alice Smith is working in her home directory, smitha, and she
wants to create a new directory, projecta, under her working directory, she would
enter:
mkdir projecta

The default mode (read-write-execute permissions) for a directory created with
mkdir is:

owner=rwx
group=rwx
other=rwx

For directories, execute permission means permission to search the directory. The
octal representation of these permissions is 777 (7 for the owner permission bits,
the group permission bits, and the other permission bits).

Chapter 16. Working with directories 205



The new directory, projecta, is one level below her working directory. Figure 19
shows this relationship. If you do not specify an absolute path name for the
directory to be created, the shell creates the new directory as a subdirectory of
whatever your working directory is at the time you enter the command.

If you want to create a new directory that is not under your working directory,
specify an absolute path name. Both directory names and file names can be up to
255 characters long. You may want to adopt some naming convention that allows
you to distinguish between directory names and file names.

Your business may have adopted naming conventions for directories. For example,
a typical convention is for each user to be assigned a directory based uniquely on
the TSO/E user ID to make the name unique. Only that user would have write
access to the directory. For information on how to change access permissions for a
directory or file so that other users can read or write to it, see Chapter 18,
“Handling security for your files,” on page 231.

Using TSO/E: To create a new directory, enter:
MKDIR ’directory_name’ MODE(directory_permission_bits)

where directory_name specifies the path name of the directory to be created. The
path name can be a full path name or a relative path name. Specify the name,
which can be up to 1023 characters long, in single quotation marks. Specify MODE,
the directory permission bits, in 3 octal characters; they can be separated by
commas or blanks. The default mode (read-write-execute permission) is:

owner = rwx
group = r-x
other = r-x

mkdir pro jecta
smitha

Working in

directory

smitha

Working in

directory

appldb

appldb

smitha

mkdi r /u /smi tha/pro jecta

projecta

projecta

Figure 19. Creating a new directory

206 z/OS V2R2 UNIX System Services User's Guide



The octal representation of these permissions is 755. (When MKDIR is used to
create a directory, the default permission bits are different from when mkdir is
used.) Here execute permission means permission to search the directory.

Example: To specify a directory with a full path name and mode 700, enter:
MKDIR ’/u/smitha/umods’ MODE(7,0,0)

It is best to use a full path name with the MKDIR command. When a relative path
name is specified, MKDIR defines the directory in the user's home directory,
regardless of the working directory. If user Alice Smith is in her home directory
smitha and wants to create a directory with a relative path name and the default
mode, she can enter:
MKDIR ’umods’

The directory umods is one level below her home directory, smitha. Its full path
name is /u/smitha/umods.

Removing a directory
You can remove an empty directory (one with no files or subdirectories) from the
file system with the rmdir command. The format of the command is:
rmdir directory

To remove your working directory, you must first move into another working
directory.

To delete the files in a directory and the directory itself in one step, use the rm
command with the -r option. The format of the command is:
rm -r file

where file is the name of the directory. Be careful! You may want to use the -i
option so that you will be prompted to confirm the deletions:
rm -ri file

Listing directory contents
The ls command lists the contents of a directory. To see the contents of your
working directory, enter:
ls

To list the contents of a different directory, add the relative or absolute name of the
directory you want to look at, as in:
ls dira/dirb
ls abc/def/ghi

ls displays directory contents in alphabetic order. Typical ls output looks like:

bin csrb.cpy fifotest makefl temp.t
cc etc helplist phones.com totals

ls does not normally distinguish between directories, regular files, and special files.
If you want a list of directory contents that distinguishes between file types, use
the -F option. Entering:
ls –F

Chapter 16. Working with directories 207



gives you output in the form:

bin/ csrb.cpy fifotest| makefl/ temp.t
cc/ etc/ helplist phones.com* totals/

The symbols following the file names indicate the type of file:
/ Directory
* Executable file
| FIFO special file
@ Symbolic link
&; External link

If there is no character following the file name, the file is none of these types.

ls can list the contents of more than one directory at a time. For example:
ls dir1 dir2

lists the contents of the two given directories, one after the other. Try this
command on a pair of directories to see what format ls uses.

The ls command with the -E option displays a character indicating whether or not
the program is loaded from the shared library region. If the program is from the
shared library region, an 'l' will appear as the fourth character in the second
column. If the program is not from the shared library region, a '-' will appear. For
example:

total 11
-rwxr-xr-x -ps- 1 FRED SYS1 101 Oct 02 16:30 james
-rwxrwxrwx a-s- 1 FRED SYS1 654 Oct 02 16:30 backup
-rwxr-xr-x a--- 1 FRED SYS1 40 Oct 02 16:30 temp
-rwxr--r-- ap-l 1 FRED SYS1 562 Oct 02 16:34 diag
-rwxr--r-- --sl 1 FRED SYS1 106 Oct 02 16:53 bird

In this example, the files james, backup, and temp are not loaded from the shared
library region, but the files diag and bird are.

Comparing directory contents
You can use the command:
diff -r dir1 dir2

to check whole directories for changes. With the -r option, diff compares the files
in dir1 with the files in dir2 that have the same names.

This command can be useful if you have two directories that hold different
versions of the same files and subdirectories.

You can use the -r option with other commands. For example:
cp -r dir1 dir2

copies all the files and subdirectories from dir1 to dir2.
rm -r dir

removes all the files and subdirectories under dir and then removes dir itself.

208 z/OS V2R2 UNIX System Services User's Guide



Finding a directory or file
The find command lists the names of all the files under a directory with a given
characteristic or set of characteristics. The simplest version of the command is:
find dirname

It displays the names of all files under the given directory, including files in
subdirectories under the directory.

To display the names of all files whose names have the form specified in pattern,
issue:
find dirname –name pattern

Example: To list the names of all files under the directory abc with the file name
extension .lst,issue: (
find abc –name ’*.lst’

The asterisk (*) is a wildcard character that stands for any sequence of zero or
more characters.l Using find, you can locate files quickly, even when you have a
complicated file system structure, with many directories and subdirectories. See the
find command description in z/OS UNIX System Services Command Reference.

Chapter 16. Working with directories 209



210 z/OS V2R2 UNIX System Services User's Guide



Chapter 17. Working with files

This information covers these topics:
v Using an editor to create a file
v Naming files
v Deleting a file
v Deleting files over a certain age
v Identifying a file by its inode number
v Creating links
v Deleting links
v Renaming or moving a file or directory
v Comparing files
v Sorting file contents
v Counting lines, words, and bytes in a file
v Searching files by using pattern matching
v Browsing files
v Simultaneous access to a file
v Backing up and restoring files
v Listing process IDs of processes with open files

Using an editor to create a file
When you are logged into the shell, you have a choice of editors to use to create
and change files, depending on which terminal interface you are using, OMVS or
the asynchronous terminal interface. For details about the editors, see Chapter 19,
“Editing files,” on page 241.

If you are using NFS from your workstation, you can edit z/OS UNIX files directly
with your editor of choice.

When you create directories and files, you can control access to them. Whenever
you want, you can change the access permissions that are set when you first create a
directory or file. See Chapter 18, “Handling security for your files,” on page 231 for
more information about access permissions.

Naming files
A file name can be up to 255 characters long. To be portable, the file name should
use only the characters in the POSIX portable file name character set:
v Uppercase or lowercase A to Z
v Numbers 0 to 9
v Period (.)
v Underscore (_)
v Hyphen (-)

Do not include any nulls or slash characters in a file name.

The POSIX portable file name character set (see “The POSIX portable file name
character set” on page 324) is a subset of the POSIX portable character set, which is
listed in “The POSIX portable character set” on page 324.

The POSIX portable character set (see “The POSIX portable character set” on page
324) is a complete list of all valid characters for a file name.

© Copyright IBM Corp. 1996, 2015 211

|
|
|

|
|



Restriction: Double-byte characters are not supported in a file name and are
treated as single-byte data. Using double-byte characters in a file name might
cause problems. For instance, if you use a double-byte character in which one of
the bytes is a . (dot) or / (slash), the file system treats this as a special delimiter in
the path name.

The shells are case-sensitive, and distinguish characters as either uppercase or
lowercase. Therefore, FILE1 is not the same as file1.

A file name can include a suffix, or extension, that indicates its file type. An
extension consists of a period (.) and several characters. For example, files that are
C code could have the extension .c, as in the file name dbmod3.c. Having groups
of files with identical suffixes makes it easier to run commands against many files
at once.

Processing in uppercase and lowercase
Case-sensitive processing means that an environment distinguishes and handles
characters as either uppercase or lowercase: FILE1 is not the same file as file1. The
availability of case-sensitive processing depends on the environment:

Shell Case-sensitive. In the file system, you can use mixed-case path names.

ISPF To issue a TSO/E command with a z/OS UNIX path name and get
case-sensitive processing of the path name, enter the command on a
command line that supports mixed-case processing, for example the
Command Processor panel (usually ISPF option 6). Some ISPF option
panels convert the command and file name to uppercase before they are
processed.

The default ISPF edit profile usually folds to uppercase the data you enter
in a file. To prevent this, type caps off on the command line before you
begin working in the file. After you enter caps off, it remains in your
profile.

If you are working on a file and realize that you have been typing in
uppercase when you really wanted lowercase, you can change the contents
of the file to all lowercase. Type this on the command line:
c all p’>’ p’<’

TSO/E Case-sensitive. Follow the syntax rules of the command you are using. For
instance, make sure to enclose a path name in single quotation marks
when using commands such as ALLOCATE, OPUT, and so on.

JCL Case-sensitive. You can specify z/OS UNIX files in DD statements by
giving the absolute path name (no relative path names) and enclosing the
names in single quotation marks. Be careful to keep JCL keywords such as
DD, PATH, and so on, in uppercase.

Note: Traditional MVS utilities may define their own requirements for allowing
mixed-case file names to be specified as input (as compared with the rules for
specifying mixed-case file names on DD statements in JCL). For example, you need
to use the binder's CASE=MIXED option if you want to bind a load module into
the file system and give the load module a lowercase name.

212 z/OS V2R2 UNIX System Services User's Guide



Deleting a file
The command rm can delete, or remove, several files at once. For example:
rm file1 file2 file3

removes all the specified files.

Suppose Alice Smith's directory projectb had several old meeting notices in it that
she wanted to delete: 0607.mtg, 0615.mtg, 0623.mtg, and 0628.mtg. She could
remove all four with just a single command:
rm 06*.mtg

Tip: Be careful when using the wildcard asterisk (*) for removing files; you may
want to use the -i option, which prompts you to verify the deletion.

For the tcsh shell, see “Displaying deletion verification” on page 65 for more
information on how to control the wildcard asterisk.

Deleting files over a certain age
The skulker shell script provides a way to delete files in a directory based on
comparing the file's access time to a specified age. This can be useful for removing
temporary files created by utilities, or files that were intended to be temporary but
were forgotten about.

The skulker script is a z/OS shell script, and can be easily modified to fit any
particular system or user need. The script is located in /samples, but the system
administrator should have relocated it somewhere else. Check with the system
administrator for the location of the script. You should copy the script into your
home directory or subdirectory, where you can modify it if you desire different
removal criteria.

It is also possible to invoke the skulker script with the cron daemon so that it may
be run on a regular basis.

The format for running the skulker script is as follows:
skulker [-iw] [-r|-R] [-l logfile] directory days_old

The -i option displays the files that are candidates for deletion, and then prompts
the user to terminate the script or continue with the deletion.

The -w option does not delete the files, but sends a warning to the owner of each
file (via mailx) that the file is a candidate for deletion.

The -r option moves recursively through subdirectories, finding non-directory files
that are equal to or older than the specified number of days. The -r option is
mutually exclusive with the -R option.

The -R option moves recursively through subdirectories, finding both non-directory
files and subdirectories that are equal to or older than the specified number of
days. Any subdirectories that are found as candidates for deletion are only deleted
if they are empty after all their contents (files, subdirectories and files in
subdirectories) that are candidates for deletion have been deleted. The -R option is
mutually exclusive with the -r option.

Chapter 17. Working with files 213



The -l logfile specifies a logfile to store a list of files that have been deleted, are
candidates for deletion, or for which warnings have been mailed; and any errors
that might have occurred.

directory specifies the directory in which to look for files that are candidates for
deletion.

days_old specifies the age of files you want to remove, based on when the file was
last accessed.

For more information about the skulker script, including restrictions, see skulker
in z/OS UNIX System Services Command Reference.

Identifying a file by its inode number

In addition to its file name, each file in a file system has an identification number,
called an inode number, that is unique in its file system. The inode number refers to
the physical file, the data stored in a particular location. A file also has a device
number, and the combination of its inode number and device number is unique
throughout all the file systems in the hierarchical file system.

A directory entry joins a file name with the inode number that represents the
physical file.

To display the inode numbers of the files in your working directory, enter:
ls -i

If Alice Smith issues that command for her proja directory, she sees the following
display:
1077 inspproc 1077 isoproc 1492 kgnproc 1500 mcrproc

Because the files inspproc and isoproc are hard-linked, they have the same inode
number.

Creating links
A link is a new path name, or directory entry, for an existing file. The new
directory entry can be in the same directory that holds the file or in a different
directory. You can access the file under the old path name or the new one. After
you have a link to a file, any changes you make to the file are evident when it is
accessed under any other name.

You might want to create a link:
v If a file is moved and you want users to be able to access the file under the old

name.
v As an alias: You can create a link with a short path name for a file that has a

long path name.

You can use the ln command to create a hard link or a symbolic link. A file can
have an unlimited number of links to it.

214 z/OS V2R2 UNIX System Services User's Guide



Creating a hard link
A hard link is a new name for an existing file. You cannot create a hard link to a
directory, and you cannot create a hard link to a file on a different mounted file
system.

All the hard link names for a file are of equal importance with its original name.
They are all real names for the one original file. To create a hard link to a file, use
this command format:
ln old new

Thus, new is the new path name for the existing file old. In Figure 20,
/u/benson/proja is the new path name for the existing file /u/smitha/proja.

When you create a hard link to a file, the new file name shares the inode number
of the original physical file, as shown in Figure 20. Because an inode number
represents a physical file in a specific file system, you cannot make hard links to
other mounted file systems.

Creating a symbolic link
You can create a symbolic link to a file or a directory. Additionally, you can create
a symbolic link across mounted file systems, which you cannot do with a hard
link. A symbolic link is another file that contains the path name for the original
file—in essence, a reference to the file. A symbolic link can refer to a path name for
a file that does not exist.

To create a symbolic link to a file, use this command format:
ln -s old new

Thus, new is the name of the new file containing the reference to the file named
old. In Figure 21 on page 216, /u/benson/proja is the name of the new file that
contains the reference to /u/smitha/proja.

/

U

smitha benson

file1
inode 0333

pgm1
inode 1121

proja
inode 1077

test
inode 2323

file1
inode 1456

Figure 20. Hard link: a new name for an existing file. The hard link has an identical inode number.

Chapter 17. Working with files 215



When you create a symbolic link, you create a new physical file with its own inode
number, as shown in Figure 21. Because a symbolic link refers to a file by its path
name rather than by its inode number, a symbolic link can refer to files in other
mounted file systems.

To understand how a symbolic link that is a component of a path name is handled
during path name resolution, see “Resolving a symbolic link in a path name” on
page 195.

Creating an external link

An external link is a special type of symbolic link, a file that contains the name of
an object outside of the z/OS UNIX file system. Using an external link, you
associate that object with a path name. For example, setlocale() searches for locale
object files in the z/OS UNIX file system, but if you want to keep your locale
object files in a partitioned data set, you can create an external link in the file
system that points to the PDS. This will improve performance by shortening the
search made by setlocale().

A file can be an external link to a sequential data set, a PDS, or a PDS member.
When a file is an external link to an MVS data set, an NFS client user can use the
path name to access the data set. To use the path name to edit, browse, or display
the attributes of the data set that is the target of an external link, you must be
using the Network File System feature. Working in a shell, you can create (ln) an
external link, display information (ls) about the link (not the target of the link), or
delete (rm) the link.

These services support external links:
v NFS client: You can create external links as files within the z/OS UNIX file

system and then access these files as an NFS client user to access the MVS data
sets that they point to.

v A program using the exec() family of functions, the BPX1EXC (exec) callable
service, the BPX1LOD (loadhfs) callable service, or the BPX1SPN (spawn)

\

u

smitha benson

proja
proja

inode 1077
inode 1946

/u/smitha/proja

Figure 21. Symbolic link: a new file. A symbolic link has its own inode number.

216 z/OS V2R2 UNIX System Services User's Guide



callable service can access an MVS data set using an external link. This
capability includes external link programs that are invoked as commands in the
shell.

v Dynamic link libraries: The external link name used on a DLL load is a member
name. For example, you would code a link as:

ln -e IMWYWWS /usr/lpp/internet/bin/wwwss.so

where IMWYWWS is the member name that is linked to the file wwwss.so.

To create an external link to a data set, use this command format:
ln -e old new

In Figure 22, /u/brooks/plib/pgm1 is the name of the new file that contains the
reference to the partitioned data set BROOKS.PLIB.PGM1.

Limitations of an external link: z/OS UNIX C programs running cannot fopen()
or fread() an external link. For more information, see the ln command description
in z/OS UNIX System Services Command Reference.

Due to NFS protocol limitations, -e does not create an external link on NFS. For
more information on creating an external link on NFS, see Creating an external link
in z/OS Network File System Guide and Reference.

Deleting links
To delete a file that has hard links, you must enter rm against all the link names,
including the original file name. If you try to delete a file that is hard-linked, its
contents do not disappear until you remove every link to it.

To delete a file that is a symbolic link, you enter rm against the symbolic link
name. This removes the link, not the file it refers to. When you delete a file that is
symbolically linked, any remaining symbolic links refer to a file that no longer
exists. If you know the names of the symbolic link files, you may want to delete
them.

/

u

brooks

plib

Pgm1 inode1995

BROOKS.PLIB.PGM1

BROOKS.PLIB.PGM1

Figure 22. External link: A new file. An external link has an inode number. The MVS data set
does not.

Chapter 17. Working with files 217



To delete a file that is an external link, run rm against the external link name. If
you delete a data set that is externally linked, the remaining external link refers to
a data set that no longer exists.

Renaming or moving a file or directory
You can use the mv command to move or rename files. For example:
mv file1 file2

moves the contents of file1 to file2 and deletes file1. This is similar to:
cp file1 file2
rm file1

except that, when the files are in the same mountable file system, mv renames the
file rather than copying it. file1 and file2 do not have to be in the same directory.

The mv command can move several files from one place to another.

For example:
mv file1 file2 file3 directoryb

moves all three files to directoryb.

Using the -R or -r option, you can move a directory and all its contents (files,
subdirectories, and files in subdirectories) into another directory. For example:
mv -R directorya directoryb

Comparing files
Consider the following situation: A warehouse has an active file that keeps track of
current inventory. As goods are brought in, appropriate records are added to the
file. As orders are shipped out, the records are deleted. At the end of the day, the
warehouse makes a copy of the active file to keep as a permanent journal.

It would be useful for such a business to be able to compare one day's journal to
another day's to see what has changed. This can be done with the diff command:
diff oldfile newfile

compares the two files. The output of diff shows lines that are in one file but not
in the other. The lines in oldfile but not in newfile are displayed with a < in front of
them. Lines in newfile but not in oldfile are displayed with > in front.

For example, say you have a file wmnhist.text with one line in it:
Susan B. Anthony awoke one morning

Then you created a copy of the file with the command:
cp wmnhist.txt newhist.txt

You use an editor—either the ISPF editor or the ed text editor—to change the first
line in newhist.text to:
Sojourner Truth awoke one morning

You save the file. Now you enter the command:
diff wmnhist.txt newhist.txt

218 z/OS V2R2 UNIX System Services User's Guide



diff displays:
1c1
< Susan B. Anthony awoke one morning
--->
Sojourner Truth awoke one morning

The 1c1 at the beginning of the diff output indicates that line 1 in the old file has
changed (c) when compared with line 1 in the new file. diff shows what must be
changed in the first file to make it look like the second file. Remember this
sequence when you look at the output of diff. Here the first file, wmnhist.txt,
contained the line Susan B. Anthony awoke one morning where the second file,
newhist.txt, has Sojourner Truth awoke one morning.

New lines are indicated with an a (add lines), and lines that should be deleted are
indicated with a d (delete). See the diff command description in z/OS UNIX System
Services Command Reference for more details.

diff helps you determine what has changed in the time that elapsed between
saving the two files. The same sort of operation is useful in many record-keeping
situations, any time you have two different versions of the same file and you want
to check the differences.

Sorting file contents
When you create a file of records, you usually do not type the information in any
particular order. However, you may want to keep lists in some useful order after
you have entered the information. To sort the records in a file, use the sort
command. sort assumes two things:
v Your file contains one record per line. To put it another way, there is a single

<newline> character between a record and the next record.
v The fields in a record are separated by recognizable characters. In the sample file

comics.lst in /samples (shown in Figure 23), we use colons.

To sort a file such as our comic book file, enter:
sort /samples/comics.lst

This command sorts the list and displays it. To save the sorted list in a file, enter:
sort /samples/comics.lst >filename

where filename is the name of the file where you want to store the sorted list. For
example:

Detective Comics:572:Mar:1987:$1.75
Demon:2:Feb:1987:$1.00
Ex-Mutants:1:Sep:1986:$2.60
Justice League of America:259:Feb:1987:$1.00
Boris the Bear:1:Sep:1986:$1.50
Flaming Carrot:14:Oct:1986:$2.75
Demon:4:Apr:1987:$1.00
The Question:1:Jan:1987:$2.10
Elektra:7:Feb:1987:$2.00
Howard the Duck:29:Jan:1979:$0.35
Wonder Woman:3:Apr:1987:$1.00
Justice League of America:261:Apr:1987:$1.00

Figure 23. A sample file: comics.lst

Chapter 17. Working with files 219



sort /samples/comics.lst >sorted.lst

sorts the file and stores the result in sorted.lst without changing the input file.

When you use >filename to redirect sorted output into a file, you may want to
make the output file name different from the (unsorted) input file name. If you
want to overwrite a file with its sorted contents, see the description of the –o flag
in the sort command description in z/OS UNIX System Services Command Reference.

Using sorting keys — an example
By default, sort sorts according to all the information in the record, in the order
given in the record. Since the name of the comic book is the first thing on the line,
the output is sorted according to comic book name. But suppose that you want to
sort according to some different piece of information. For example, suppose you
want to sort by date of publication. You can do this by specifying sorting keys.

A sorting key tells sort to look at specific fields in a record, instead of looking at
each record as a whole. A sorting key also tells what kind of information is stored
in a particular field (for example, an ordinary word, a number, or a month) and
how that information should be sorted (in ascending or descending order).

A sorting key can refer to one or more fields. Fields are specified by number. The
first field in a record is field number 1, the field after the first separator character is
field number 2, and so on. In the comic book list, the month is field number 3, and
the year is field number 4.

A single sort command can have several sorting keys. The most important sorting
key is given first; less important sorting keys follow. Let us look at an example that
sorts by year and then by month within a year. Therefore, the first sorting key
refers to the year field, and the second to the month field. To specify a sorting key,
use the -k option. This option has the following format:
-k start_field[.char1] [opts] [,end_field[.char2] [opts]]

where start_field, end_field, char1, and char2 are all integers.
v start_field indicates which field in the input record contains the start of the

sorting key.
v char1 indicates which character in that field is the first character of the key.

Omitting char1 means the key begins with the first character of the starting field.

In our example, the first sorting key (referring to the year) has a start_field value of
4 (since the year is field 4). We do not need to specify char1, since we want to start
the key with the first character of the year field.

The options, opts, are specified with letters; they identify the type of data in the
specified field and tell how to sort it. Some of the possible options and their
meanings are:

d Indicates that the field contains uppercase, lowercase, or mixed-case letters,
letters and digits, or digits. sort sorts the field in dictionary order, ignoring
all other characters.

M Indicates that the field contains the name of a month. sort looks only at the
first three characters of the name, so January, JAN, and jan are all equal.

n Indicates that the field contains an integer (positive or negative).

220 z/OS V2R2 UNIX System Services User's Guide



Putting an r after any of these letters tells sort to sort in reverse order (from
highest to lowest rather than lowest to highest). For example, Mr means to sort in
the order December, November, October, and so on.

In our example the sorting key based on the year uses n. Thus, the sorting key for
the year field (4) in the file comics.lst is:
-k 4n

The second sorting key in the example refers to the month field (3). This key has
the form:
-k 3M

A sort command that uses sorting keys needs to know which character separates
the record fields. You can specify this with the option -t followed by the separator
character. The example uses -t:. Therefore, the full sort command is:
sort -t: -k4n -k3M comics.lst >sorted.lst

The file to be sorted comes after the various options. This is the order that you
must use. The redirection construct can come anywhere on the line, but is usually
put at the end.

Counting lines, words, and bytes in a file
The wc command tells you how big a text document is.
wc file file ...

tells you the number of lines, words, and bytes in each file.

If you want to find out how many files are in a directory, enter:
ls | wc

This pipes the output of ls through wc. Because ls prints one name per line when
its output is being piped or redirected, the number of lines is the number of files
and directories under your working directory.

Searching files by using pattern matching
One of the most common record-keeping operations is obtaining a sublist of a list.
For example, you might want to list all the Watchmen comics that appear in the
main comics list. The command to do this is grep.

The simplest form of the grep command is:
grep word file

where word is a particular sequence of characters that you want to find, and file is
your list of records. grep lists every line in the file that contains the given word.
For example:
grep Watchmen comics.lst

lists every line in comics.lst that contains the word Watchmen. As another example:
grep 1986 comics.lst

lists every line in comics.lst that contains the sequence of characters 1986.
Presumably, this lists all the comics that were published in 1986.

Chapter 17. Working with files 221



grep Jul:1986 comics.lst

lists all the comics published in July 1986.

If the string of characters you want to search for contains a blank, put single
quotation marks (apostrophes) around the string; for example:
grep ’Dark Knight’ comics.lst

You can save a sublist created by grep in a file using redirection:
grep Elektra comics.lst >el.lst

Patterns
The examples of grep, so far, have displayed the records in a file that contain the
desired string anywhere in the line. If you want to be more specific—say to find
records that begin with a certain string of characters (instead of having that string
anywhere in the line)—use grep with patterns instead of strings.

To understand patterns, it helps to think about the special wildcard characters
discussed in “Using a wildcard character to specify file names” on page 80.
Remember that you can use patterns in commands; for example:
rm *.txt

removes all files in the working directory that have the .txt extension. Instead of
specifying a single file name, this example uses the special character * to represent
any file name of the appropriate form.

In the same way, a grep pattern uses special characters so that one pattern can
represent many different strings.

Note: The special characters for grep patterns are not the same as the characters
used on command lines, and the mechanisms involved are also different: however,
patterns and wildcard characters are conceptually similar.

Special characters used in a pattern are called pattern characters, or metacharacters.
Some pattern characters are:

^ (caret)
Stands for the beginning of a line. For example, ^abc is a pattern that
represents abc at the beginning of a line.

$ (dollar sign)
Stands for the end of a line. For example, xyz$ is a pattern that represents
xyz at the end of a line.

. (dot or period)
Stands for any (single) character. For example, a.c is a pattern that
represents a, followed by any character, followed by c.

* (asterisk)
Indicates zero or more repetitions of part of a pattern. For example, .*
indicates zero or more repetitions of . (period). Since the . stands for any
character, .* stands for any number of characters. For example, ^a.*z$ is a
pattern that represents a at the beginning of a line, z at the end, and any
number of characters in between.

A typical grep command has the form:
grep ’pattern’ file

222 z/OS V2R2 UNIX System Services User's Guide



This displays all the records in the file that match the given pattern. For example:
grep ’^Superman’ comics.lst

displays all the records that begin with the word Superman.
grep ’00$’ comics.lst

displays all the records that end in 00.

If you want to use the literal meaning of a pattern character instead of its special
meaning, put a backslash (\) in front of the character.

Example: To find all the lines that end in $1.00, issue:
grep ’\$1\.00$’ comics.lst

Without a backslash in front of the $ and . (period), these characters would have
their special pattern meanings.

Regular expressions
More complex patterns than the ones discussed here are accepted. The formal
name for a pattern is a regular expression. For further information, see Appendix C.
Regular Expressions (regexp) in z/OS UNIX System Services Command Reference.

Browsing files
When you display, or browse, a file, you cannot make any changes to the file while
you are viewing it. You can browse a z/OS UNIX file using ISPF or using shell
commands. With shell commands, you have the choice of browsing the file in an
unformatted or formatted display.

Browsing files without formatting
Using the shell: The z/OS shell has a quick way to find out what is in a given file:
the head command and the tail command.

head filename
Displays the first 10 lines of the given file or files.

tail filename
Displays the last 10 lines of the given file or files.

Suppose you have a file that contains records sorted according to date. tail tells
you the date of the last records in the file, giving you an idea of how current the
file's contents are. In a sorted comic book list, for example, tail could show the
most recent comics that had been recorded in the file.

To display the contents of an entire file, you can use any of these commands: cat,
pg, more, or obrowse.

Using ISPF: To use ISPF to browse a z/OS UNIX file, you can take one of the
following actions:
v Enter the TSO/E OBROWSE command followed by the path name for the file.

This command displays the file, which you can begin browsing.
v Select an option for browse on the ISPF menu, if such an option is available.

After the file is displayed, you can use function keys to scroll forward and
backward in the file.

Chapter 17. Working with files 223



For complete information about browsing, see z/OS V2R2 ISPF User's Guide Vol II.

Browsing files with formatting
Using the shell: The term formatting refers to controlling the appearance of the file
contents when you browse or print them. You can use the pr command to browse
(or print to standard output) a formatted file:
pr file

You can specify more than one file name, each separated from the other by a
space.

If you do not specify any options, pr formats the file into single-column, 66-line
pages, each with a 5-line header. The first 2 lines are blank. On the 3rd line appear
the file's path name, the date of its last modification, and the current page number.
The next 2 lines are blank, and the text of the file begins on the 6th line. At the end
of each page, there are 5 blank lines. There are numerous options for the pr
command; for example, you can specify the page number where the display is to
begin, specify output in columns, or change the width of the displayed page.

Simultaneous access to a file
It is possible that two or more utilities or programs could be accessing the same
file at the same time, making changes. For example, two people could be using ed
to edit the same file at the same time. When a file has been accessed by more than
one user simultaneously, the last changes saved overwrite any previous changes.

In a program, you can use byte-range locking to avoid this problem. For more
information about byte-range locking in a program, see z/OS XL C/C++
Programming Guide.

You can use the Network File System feature to coordinate locking of remote files
and directories. See “Using the Network File System feature” on page 199 for an
overview of this feature. For more detailed information, consult the appropriate
Network File System documentation.

Backing up and restoring files: options
There are several options for backing up and restoring files:
v Data Facility System-Managed Storage Hierarchical Storage Manager

(DFSMShsm) provides automatic backup facilities for data sets. The systems
programmer uses DFSMShsm facilities to back up mountable file systems by
backing up the data sets that contain them on a regular basis; the data sets can
be restored when necessary. DFSMShsm is also used for migrating (archiving)
and restoring unmounted file systems.

v Tivoli® Storage Manager (TSM), formerly known as ADSTAR Distributed Storage
Manager (ADSM), provides a backup function for z/OS UNIX clients. There are
two types of backup: incremental, in which all new or changed files are backed
up; and selective, in which the user backs up specific files.
Backup can be performed automatically or when the user requests it. The user
can initiate a specific type of backup or start the scheduler, which will run
whatever action the administrator has scheduled for the user's machine.

v From the shells, you can manually back up data by using the TSO/E OGET
command to copy files into an MVS sequential data set, partitioned data set, or
partitioned data set extended (PDSE) that you know is backed up. To simplify

224 z/OS V2R2 UNIX System Services User's Guide



archiving multiple files, the pax or tar utilities can be used to consolidate
individual component files into a single archive file that can then be copied to
an MVS data set. pax and tar can write the archive directly to an MVS data set,
eliminating the need to copy the archive manually with OGET. For more
information about using pax or tar and OGET to backup and restore file from
the shell, see “Backing up and restoring files from the shell.”

You can use the cron utility to automatically start running pax or tar commands at
a specified time.

After the files are in an MVS data set, you can load the data set to a tape.
Conversely, you can load files from a tape into an MVS data set and then copy
them into the file system. For more information, refer to “Transporting an archive
file on tape or diskette” on page 287.

Backing up and restoring files from the shell
This information describes how to use the pax or tar utilities to back up and
restore files. The purpose of both utilities is to store the data and attributes of one
or more component files into a single file, referred to as the archive file. pax is
considered to be the standard utility for managing archive files, replacing tar;
therefore, pax is used as the default utility in the examples that follow. However,
tar is still widely used, and in the z/OS environment provides practically
equivalent function. Therefore, the corresponding tar commands are also shown.

Both pax and tar support multiple archive formats and options that allow a greater
or lesser degree of file characteristics to be preserved. The USTAR format allows
the most information to be saved, therefore it is used as the default format in the
examples that follow. For more information about the USTAR and other archive
formats, refer to z/OS UNIX System Services Command Reference. Because both pax
and tar can read and write archives in USTAR format, either utility can be used to
restore an archive that was created by the other. The significant difference between
the two utilities is that only pax can perform code page conversion on files during
creation of, or extraction from, an archive. Users of tar can use the iconv utility to
perform the same conversion on files as a separate step.

Both pax and tar support inline compression and decompression of files. Because
compressed archives occupy an average of 50-60% percent of the uncompressed
archive, many of the examples shown here use compression. Note that compressed
archives are not guaranteed to be portable to other UNIX systems.

Archives can be copied to an MVS data set using the TSO/E OGET command and
later copied back to the file system using the TSO/E OPUT command. For OS/390
Release 8 and later, pax and tar can read and write archives that reside in an MVS
data set, making it unnecessary to first manually move files between the file
system and MVS using OGET or OPUT.

pax and tar support file names and link names that exceed 100 characters in
length. The utilities remain compatible with other UNIX systems and with
previous versions of OS/390.

The remainder of this topic describes the following specific steps for backing up
and restoring files to and from an MVS data set and performing other related
archive management tasks.
v Backing up a complete directory into an MVS data set
v Restoring a complete directory from an MVS data set

Chapter 17. Working with files 225



v Viewing the contents of an archive
v Converting between code pages
v Appending to an existing archive
v Storing selected files into an archive
v Restoring selected files from an archive
v Appending to an existing archive
v Backing up selected files by date

These examples demonstrate the most common tasks related to backing up and
restoring files, and do not attempt to describe all of the options of the pax and tar
utilities. See z/OS UNIX System Services Command Reference for a complete
description of pax and tar.

Backing up a complete directory into an MVS data set
To back up the complete directory /u/project, including the subdirectories and their
contents, into a compressed archive stored in the MVS data set ’PROJECT.ARCHIVE’,
enter the following commands:
cd /u/project
pax -wzvf /tmp/project.pax.Z ./
tso "oget ’/tmp/project.pax.Z’ ’PROJECT.ARCHIVE’ binary"

Note:

1. The pax command can write directly to the MVS data set; you can skip the
OGET command by specifying the MVS data set on the pax command:
pax -wzvf "//’PROJECT.ARCHIVE’" ./

2. The equivalent tar commands are:
tar -cUzvf /tmp/project.pax.Z ./

To write directly to MVS (OS/390 Release 8 or later):
tar -cUzvf "//’PROJECT.ARCHIVE’" ./

3. You change to the current directory first in order to simplify the pax/tar
command, and so that the files are stored in the archive using a path name that
is relative to the current directory. This simplifies the task of restoring the
archive later to a different directory. The "./" is used rather than an asterisk to
collect any component files that begin with "." in the current directory.

4. The archive is written to a directory that is not in the source path that is being
archived, in order to prevent pax/tar from trying to store the archive within
itself. Doing so can cause pax/tar to loop infinitely during creation, and can
result in corrupted files during restore.

5. Naming archives with a suffix of "pax.Z" (or "tar.Z") is not required by pax/tar,
but is done as a convention to identify them as pax or tar archive files. The ".Z"
is used to identify a compressed file.

6. The -z option is used to turn on compression, and is not required.
7. The -v option is used to display the names of files as they are being stored, and

is not required.

Restoring a complete directory from an MVS data set
To restore the directory backed up in the previous example to /u/project_old, enter
the following commands:
tso "oput ’PROJECT.ARCHIVE’ ’/tmp/project.pax.Z binary"
cd /u/project_old
pax -pe -rvf /tmp/project.pax.Z

226 z/OS V2R2 UNIX System Services User's Guide



Note:

1. The pax command can read an archive directly from an MVS data set; you can
skip the OPUT command by specifying the MVS data set on the pax command:
pax -pe -rvf "//’PROJECT.ARCHIVE’"

2. The equivalent tar command is:
tar -p -xvf /tmp/project.pax.Z

To read directly from MVS (OS/390 Release 8 or later):
tar -p -xvf "//’PROJECT.ARCHIVE’"

3. The -pe option for pax and the -p option for tar are used to restore the original
owner, group, modes, and extended attributes. If you do not have the
appropriate privileges to restore these, warning messages are generated. These
options are not required to restore the component files and can be omitted. For
tar, the -o option is also used to disable restoring the owner and group.

4. pax and tar automatically detect the archive format and whether the archive is
compressed, so the -z option for pax and, for tar, the -U option is not required.
If these options are used, pax/tar fails if the archive is not compressed or not in
USTAR format.

5. The -v (verbose) option is used to display the names of files as they are being
restored, and is not required.

6. Component files can be renamed during extraction by pax using the -i or -s
option.

Viewing the contents of an archive
To view the contents of the /tmp/project.pax.Z archive created in the previous step,
enter one of the following commands:

To list only the names of component files:
pax -f /tmp/project.pax.Z

To list the contents in a verbose format similar to "ls -l":
pax -vf /tmp/project.pax.Z

For OS/390 Release 7 and later, to list the extended attributes in a verbose format
similar to "ls -E":
pax -Ef /tmp/project.pax

Note: The equivalent tar commands are:
v To list only component files: tar -tf /tmp/project.pax.Z

v For a verbose list: tar -tvf /tmp/project.pax.Z

v For extended attributes (OS/390 Release 7 or later):
tar -tEf /tmp/project.pax.Z

Converting between code pages
Archives are often used to move files between UNIX systems. When an archive
contains text files, it is frequently the case that the file must be converted from the
source system's default code page to the target system's code page. You can do this
by using the iconv utility on each file before storing it in an archive or after
restoring it from an archive. The pax utility, however, provides an inline code page
translation option, -o that can simplify this task. For example:

Chapter 17. Working with files 227



v To convert component files from EBCDIC (IBM-1047) to ASCII (ISO8859-1) when
storing them in an archive:
pax -o to=iso8859-1 -wzvf /tmp/project.pax.Z ./

v To convert component files from ASCII (ISO8859-1) to EBCDIC (IBM-1047) when
extracting them from an archive:
pax -o from=iso8859-1 -pe -rzvf /tmp/project.pax.Z

Note:

1. The -o option allows both a "from" and a "to" code page to be specified on the
same command. If a "from" or "to" codepage is not specified, pax assumes it to
be EBCDIC (IBM-1047).

2. For more information about the code sets supported for this command, see the
Coded Character Set Conversion Table in z/OS C/C++ Programming Guide.

Converting archives that contain text and non-text component files. Archives
often contain both text and non-text files. Examples of non-text files are image files,
such as JPGs and GIFs, and other pax/tar archives. When the -o option is specified,
pax converts all files, regardless of type. This corrupts non-text files. The general
approach for overcoming this limitation is to run pax two or more times against
the same archive, extracting component files in groups of text and non-text types.
Whether it is easier to identify (by file name) text files or non-text files will
determine how you approach this.

For example, suppose you wish to restore the archive mywebsite.pax, which
consists of HTML files (text files) and JPG files (JPEGS, non-text image files) and
was created on a system whose default code page is ASCII (ISO8859-1), into the
directory /u/website. Assume that the majority of the files are HTML files and that
the archived files represent several levels of subdirectories.

First, restore the entire archive using the -o option:
pax -rvf mywebsite.pax -o to=IBM-1047

This extracts and converts all component files. The extracted non-text JPEG files
would be corrupted because they were also converted. The next step would be to
re-extract the JPG files without the -o option. The pax option allows you to specify
a "pattern" that will be used to extract only those files that match the pattern.
However, because of the multiple subdirectories, there is no way to create a pattern
that would match every JPG in each subdirectory. Instead, a list of file names to be
extracted must first be created and then used as the pattern for the pax command
to extract the files. Issuing the following command in the z/OS shell would
accomplish this:
pax -rvf mywebsite $( pax -f mywebsite.pax | grep -i JPG$ )

This command consists of two parts:
pax -rvf mywebsite $( )

and
pax -f mywebsite.pax | grep -i JPG$

The first part is simply the regular pax command for extracting files from an
archive. The $( ) expression says to first run the command between the
parentheses and substitute the results in place. The second part is the command
that generates a list of file names in the archive that end in "JPG" (or any
mixed-case variation).

228 z/OS V2R2 UNIX System Services User's Guide



The previous example shows one approach. In general, for any archive, the
breakdown of text to non-text files and the uniqueness of the names that identify
each type dictate the manner and order in which the files are extracted. For
example, we could have reversed the process by first extracting all files without
using the -o option, and then re-extracting the HTML files on the second command
using the -o option to convert the files

Appending to an existing archive
To add additional files and directories to a previously created uncompressed archive,
use the -a (append) option.

Example: To add the file oops.forgot to the existing archive allfiles.pax, issue: :
pax -awvf allfiles.pax oops.forgot

Result: The file oops.forgot is added to the end of the archive. If a file with the
same name already exists in the archive, it will not be overwritten or replaced.

Note:

1. You can append directly to archives in sequential MVS data sets only. pax and
tar do not support appending to archives that reside in partitioned MVS data
sets.

2. The equivalent tar command is:
tar -rvf allfiles.pax oops.forgot

Backing up selected files by date
The following examples pertain to the z/OS shell only, and demonstrate how to
back up selected files that may have been modified within a specified number of
days. To do this you create a "find" command that returns the list of files that meet
the specified criteria, and then use the output from this command as the list of
files input to pax.

Example: To back up all files in the directory /u/source that have been modified in
the last week, issue:
pax -wzvf backup.pax.Z $( find /u/source -type f -mtime -8 )

Example: To back up all files in the directory /u/usrtools/ that have not been
accessed in the last 100 days, issue:
pax -wzvf backup.pax.Z $( find /u/usrtools -type f -atime +100 )

Note: The tar equivalent for the pax portion of the previous commands is:
tar -czUvf backup.pax.Z

Listing process IDs of processes with open files
It is often helpful to know which processes have open files. This information can
be provided with the fuser utility.

The fuser utility lists the process IDs of all processes on the local system that have
one or more named files open.

The syntax of the command is as follows:
fuser [-cfku] file

Chapter 17. Working with files 229



file is the path name of the file for which information is to be returned, or, if the-c
option is used, the path name of a file on the file system for which information is
to be reported.

Option Description

-c Reports on all open files within the file system of which the specified file is
a member.

-f Reports on only the named files. This is the default for this command.

-k Sends the SIGKILL signal to each local process. Note that only a superuser
can terminate a process that belongs to another user.

-u The user name associated with each process ID is written to standard error.

230 z/OS V2R2 UNIX System Services User's Guide



Chapter 18. Handling security for your files

Each user has user ID (UID) and group ID (GID) numbers that are set when the
user is defined to the system. A user always belongs to at least one group—for
example, a department—and each group that uses the system is assigned a GID.
The system uses the UID and GID to identify the files and processes that a user
may use. When you create a directory or a file, it is automatically associated with
your UID, and its GID is set to the owning GID for the parent directory (the
directory it is in).

There are three classes of users whose access you can control with the permission
bits (ACLs allow access control for any user or group):
v Owner (the owner of the file or directory whose UID matches the UID for the

file)
v Group (a member of the group whose GID matches the GID for the file)
v Other (anyone else)

You control access to a file and directory that you own through its permission bits.
(Taken together, the permission bits are often called the mode.)

In this topic, we discuss:
v Default permissions set by the system
v Changing permissions for files and directories
v Using the sticky bit on a directory to control file access
v Auditing file access
v Displaying file and directory permissions
v Setting the file mode creation mask for programs
v Changing the owner ID or group ID associated with a file
v Temporarily changing the user ID or group ID during execution
v Displaying extended attributes
v Using access control lists (ACLs) to control access to files and directories

Default permissions set by the system
When you first create a file or directory, the system sets default read, write, and
execute (rwx) permissions. The meanings of the three permissions differ somewhat
for a file and a directory:

Permission Notation Meaning

read r Directory: Permission to read, but not search,
contents.

File: Permission to read or print contents. To run a
shell script, you need both read and execute
permission.

write w Directory: Permission to change the directory, adding
or deleting members.

File: Permission to change the file, adding or deleting
data

© Copyright IBM Corp. 1996, 2015 231



Permission Notation Meaning

execute x Directory: Permission to search a directory. Usually r
and x are used together.

File: Permission to run a file—that is, enter it as a
command. Typically this permission is used for shell
scripts and for files containing executable programs.
(To run a shell script, you need read and execute
permission.)

The following table shows the default permissions set by the system:

Using To create a Default permissions

mkdir shell command Directory owner=rwx
group=rwx
other=rwx

In octal form: 777

MKDIR TSO
command

Directory owner=rwx
group=r-x
other=r-x

In octal form: 755

JCL with no
PATHMODE specified

Directory or file owner=---
group=---
other=---

In octal form: 000

ISPF editor, OEDIT
command, oedit
command

File owner=rwx
group=---
other=---

In octal form: 700

vi editor File owner=rw-
group=rw-
other=rw-

In octal form: 666

ed editor File owner=rw-
group=rw-
other=rw-

In octal form: 666

Redirection (>) File owner=rw-
group=rw-
other=rw-

In octal form: 666

cp command File Sets the output file permissions to the input
file permissions.

232 z/OS V2R2 UNIX System Services User's Guide



Using To create a Default permissions

OCOPY command File Permission bits for a new file are specified
with the ALLOCATE command, using the
PATHMODE keyword, prior to entering the
OCOPY command. If the PATHMODE
keyword is omitted, the default is:

owner=---
group=---
other=---

In octal form: 000

OPUT or OPUTX
command

File For a text file:
owner=rw-
group=---
other=---

In octal form: 600

For a binary file:
owner=rwx
group=---
other=---

In octal form: 700

For more information on octal numbers, see “Using octal numbers to specify
permissions” on page 234.

Changing permissions for files and directories
You can use the chmod command to set or change permissions for your files and
directories. To change permissions, you must be the owner or a superuser. (If you
are uncertain about ownership, use the ls -l command and look for your TSO/E
user ID.)

You can specify the chmod command like this:
chmod mode pathname

You can specify the mode in symbolic form or as an octal value. For more
information on the chmod command, see the chmod command description in z/OS
UNIX System Services Command Reference.

Using a symbolic mode to specify permissions
A symbolic mode has the form:
[who] op permission [op permission ...]

The who value is optional; it can be any combination of the following:
u Sets owner (user) permissions.
g Sets group permissions.
o Sets other permissions.
a Sets all permissions; this is the default.

The op part of a symbolic mode is an operator that tells chmod to turn the
permissions on or off. The possible values are:
+ Turns on a permission.
– Turns off a permission.
= Turns on the specified permissions and turns off all others.

Chapter 18. Handling security for your files 233



To set the permission part of a symbolic mode, you can specify any combination of
the following permissions in any order:
r Read permission.
s This stands for set-user-ID-on-execution or set-group-ID-on-execution

permission. See “Temporarily changing the user ID or group ID during
execution” on page 238 for more information.

t This sets the sticky bit on, for a file or directory.

Directory: The sticky bit is set on for a directory so that a user cannot
remove or rename a file in the directory unless one or more of these
conditions is true:
v The user owns the file.
v The user owns the directory.
v The user has superuser authority.

File: The sticky bit is set for frequently used programs in the file system, to
reduce I/O and improve performance. When the bit is set on, z/OS UNIX
searches for the program in the user's STEPLIB, the link pack area, or the
link list concatenation. For information on copying a load module from the
file system into a data set, see “Copying an executable module from the
file system” on page 281. See Verifying that the sticky bit is on in z/OS
UNIX System Services Planning for information on using the sticky bit with
daemons.

w Write permission. If this is off, you cannot write to the file.
x Execute permission. If this is off, you cannot execute the file.
X Search permission for a directory; or execute permission for a file only

when the current mode has at least one of the execute bits set.

For example, to turn on read, write, and execute permissions, and turn off the
set-user-ID and sticky bit attributes for a file, enter the command:
chmod a=rwx file

You can specify multiple symbolic modes if you separate them with commas.

Using octal numbers to specify permissions
Typically, octal permissions are specified with three or four numbers, in these
positions:
1234

Each position indicates a different type of access:
v In position 1 are the bits that set permission for set-user-ID on access,

set-group-ID on access, or the sticky bit. Specifying this position is optional.
v In position 2 are the bits that set permissions for the owner of the file. Specifying

this position is required.
v In position 3 are the bits that set permissions for the group that the owner

belongs to. Specifying this position is required.
v In position 4 are the bits that set permissions for others. Specifying this position

is required.

Position 1
Specifying the bits in position 1 is optional. For position 1, you can specify these
octal numbers:
0 Off
1 Sticky bit on
2 Set-group-ID-on execution

234 z/OS V2R2 UNIX System Services User's Guide



3 Set-group-ID-on execution and set the sticky bit on
4 Set-user-ID on execution
5 Set-user-ID on execution and set the sticky bit on
6 Set-user-ID and set-group-ID on execution
7 Set-user-ID and set-group-ID on execution and set the sticky bit on

Positions 2, 3, and 4
Specifying these bits is required. For each type of access—owner, group, and
other—there is a corresponding octal number:
0 No access (---)
1 Execute-only access (--x)
2 Write-only access (-w-)
3 Write and execute access (-wx)
4 Read-only access (r--)
5 Read and execute access (r-x)
6 Read and write access (rw-)
7 Read, write, and execute access (rwx)

To specify permissions for a file or directory, you use at least a three-digit octal
number, omitting the digit in the first position. When you specify three digits
instead of four, the first digit describes owner permissions, the second digit
describes group permissions, and the third digit describes permissions for all
others.

If you are not setting the first octal digit, you can just specify 3 digits instead of 4.
When the first digit is not set, some typical 3-digit permissions are specified in
octal this way:

Table 7. Three-digit permissions specified in octal

Octal number Meaning

666 6 6 6
/ | \

rw- rw- rw-

owner (rw-)
group (rw-)
other (rw-)

700 7 0 0
/ | \

rwx --- ---

owner (rwx)
group (---)
other (---)

755 7 5 5
/ | \

rwx r-x r-x

owner (rwx)
group (r-x)
other (r-x)

777 7 7 7
/ | \

rwx rwx rwx

owner (rwx)
group (rwx)
other (rwx)

Using the sticky bit on a directory to control file access
Using the mkdir, MKDIR, or chmod command, you can set the sticky bit on a
directory to control permission to remove or rename files or subdirectories in the
directory. When the bit is set, a user can remove or rename a file or remove a
subdirectory only if one of these is true:
v The user owns the file or subdirectory.
v The user owns the directory.
v The user has superuser authority.

Chapter 18. Handling security for your files 235



If you use the rmdir, rename, rm, or mv utility to work with a file, and you
receive a message that you are attempting an operation not permitted, check to see
if the sticky bit is set for the directory the file resides in.

Auditing file access
Using the chaudit command, you can specify which types of file access are audited
by RACF. RACF writes the audit information to system management facilities
(SMF) record 80.

Only a file owner or a security auditor can specify if auditing is turned on or off,
and when audit records should be written for a directory or a file: for successful
accesses, failed accesses, or for all accesses.

You can specify audits for read, write, and search or execute attempts. For each of
these, you can specify audits for successful access, failed access, or both. You can
also set the audit flags off, so that audits are not performed.

The default audit bits are set at file creation:
v The user-requested-audit flags are set to audit failed attempts to read, write, or

execute. Only the file owner or a superuser can specify user audit options.
v The auditor-requested-audit flags are set off (no auditing). To specify auditor

audit options, you must have security auditor authority.

See the chaudit command description in z/OS UNIX System Services Command
Reference for a description of the chaudit command. See the topic about specifying
file audit options in z/OS UNIX System Services Planning for a description of how a
superuser or security auditor would use the chaudit command.

Displaying file and directory permissions
To display the permissions for the files and directories in your working directory,
use ls -W. (The ls -l command displays all the access permissions but does not
display the audit permissions.) The display format is:
drwxr-x--- fff--- 2 ELVIS 64MB 96 Jun 15 10:34 statrp
-rwx------ fff--- 1 ELVIS 64MB 107 Jul 10 07:45 jun93
-rwx------ fff--- 1 ELVIS 64MB 80 Aug 09 13:15 jul93
-rwx------ fff--- 1 ELVIS 64MB 150 Sep 15 10:45 aug93
drwxr-xr-x fff--- 2 ELVIS 64MB 96 Jun 17 09:05 dbappl
-rwxr-x--- fff--- 1 ELVIS 64MB 150 Jun 17 10:15 txn1
v First field: A string of 10 characters. The first character indicates the file type.

The next 9 characters are the permissions. For example:
-rwxr-xr-x

View them this way:
- rwx r-x r-x
– The first character indicates whether this is a file or directory.

- for a regular file (binary or text)
c for a character special file
d for a directory
e for an external link
l for a symbolic link
p for a named pipe (FIFO special file)

In the example, - indicates a regular file.

236 z/OS V2R2 UNIX System Services User's Guide



– The first set of 3 characters show the owner's permissions. In this example,
the owner has read, write, and execute permission (rwx).

– The second set of 3 characters show the group permissions. In this example,
the group to which the user belongs has read and execute permission (r-x).

– The third set of 3 characters show the other permissions. In this example, any
other user can read the file and execute it (r-x). If the sticky bit is on, you see
a T or t in the final field (--T or --t).

v Second field: The audit settings. These 6 characters are actually two groups of 3
characters. The first group of 3 describes the audit settings requested by a user;
the second group describes audit settings requested by a security auditor. The
characters can be:

s to audit successful access attempts
f to audit failed access attempts
a to audit all accesses
- for no audit

In the example, fff---,
fff means failed read, write, and execute or search attempts to access the file
are audited by the user.
--- means read, write, and execute or search attempts to access the file are not
audited by the security auditor.

v Third field: The number of links to the file or directory.
v Fourth field: The owner's login name (TSO/E user ID).

Note: When files owned by user ID 0 (UID=0) are transferred from any
UNIX-type system across an NFS connection to another UNIX-type system, the
user ID changes to -2 (UID=-2). On a z/OS UNIX system, -2 is not a valid user
ID; therefore, ls displays UID 4294967294 (the unsigned equivalent of -2).

v Fifth field: The name of the group associated with the file or directory.
v Sixth field: The size of the file, expressed in bytes.
v Seventh field: A date and time. For a file, this is the time the file was last

changed; for a directory, it is the last time a file was created or deleted in the
directory.

v Eighth field: The name of the file or directory. If the file is a symbolic link, that
also is indicated. See the additional information for the filename lnk in this
example:
l--------- 1 ELVIS SYS1 8 May 21 15:30 lnk -> /tmp/ehk
$

Setting the file mode creation mask
When a file is created, it is assigned initial access permissions. If you want to
control the permissions that a program can set when it creates a file or directory,
you can set a file mode creation mask using the umask command.

You can set this file mode creation mask for one shell session by entering the
umask command interactively, or you can make the umask command part of your
login. When you set the mask, you are setting limits on allowable permissions: You
are implicitly specifying which permissions are not to be set, even though the
calling program may allow those permissions. When a file or directory is created,
the permissions set by the program are adjusted by the umask value: The final
permissions set are the program's permissions minus what the umask values
restrict.

To use the umask command for a single session, enter:
umask mode

Chapter 18. Handling security for your files 237



and specify the mode in either of the formats used by chmod: symbolic (rwx) or
octal values. The symbolic form expresses what can be set, what is allowed, while
octal values express what cannot be set, what is disallowed. For example, both of
these commands set the same umask:
umask a=rx
umask 222

To display the mask,
v If you just enter umask, you see the mode displayed in octal values, indicating

what cannot be set.
v If you enter umask -S, you see the mode displayed in symbolic form, indicating

what can be set.

The shell's initial setting of the mask is 000, which means that read, write, and
execute permission can be set on for everyone. But the system-wide profiles
provided with the product set the mask to 022.

Changing the owner ID or group ID associated with a file
The user might need to change the UID or GID for a file. To protect the data in a
file from unauthorized users, the system controls who can change the file access:
v To change the owner (UID) of a file, the superuser can enter a chown command.
v To change the group (GID) of a file, the superuser or the file owner can enter a

chgrp command, specifying either a RACF group name or a GID. The file owner
must have the new group as his group or one of his supplementary groups.

Superuser tasks are discussed in Using the BPX.SUPERUSER resource in the
FACILITY class in z/OS UNIX System Services Planning.

Temporarily changing the user ID or group ID during execution
An executable file can have an additional attribute, which is displayed in the
execute position (x) when you issue ls -l. This permission setting is used to allow a
program temporary access to files that are not normally accessible to other users.
An s or S can appear in the execute permission position; this permission bit sets
the effective user ID or group ID of the user process that is executing a program to
that of the file whenever the file is run. The setuid and setgid bits are only
honored for executable files that contain load modules.
s In the owner permissions section, s indicates that the set-user-ID (S_ISUID)

bit is set and execute (search) permission is set.

In the group permissions section, s indicates that the set-group-ID
(S_ISGID) bit is set and execute (search) permission is set.

S In the owner permissions section, S indicates that the set-user-ID (S_ISUID)
bit is set, but the execute (search) bit is not.

In the group permissions section, S indicates that the set-group-ID
(S_ISGID) bit is set, but the execute (search) bit is not.

A good example of this behavior is the mailx utility. A user who is sending mail to
another user on the same system is actually appending the mail to the recipient's
mail file, even though the sender does not have the appropriate permissions to do
this action. The mail program does.

238 z/OS V2R2 UNIX System Services User's Guide



Displaying extended attributes
The -E option on the ls shell command displays extended attributes. For more
information about this option, refer to “Executable modules in the file system” on
page 193.

Using access control lists (ACLs) to control access to files and
directories

Using access control lists (ACLs), you can control access to UNIX files and
directories by individual users (UIDs) and groups (GIDs). ACLs are used in
conjunction with permission bits.

There are three kinds of ACLs:
v Access ACLs are ACLs that are used to provide protection for a file system object.
v File default ACLs are model ACLs that are inherited by files created within the

parent directory. The file inherits the model ACL as its access ACL. Directories
also inherit the file default ACL as their file default ACL.

v Directory default ACLs are model ACLs that are inherited by subdirectories
created within the parent directory. The directory inherits the model ACL as its
directory default ACL and as its access ACL.

There are two kinds of ACL entries:
v Base ACL entries are permission bits (owner, group, other). You can change the

permissions using chmod or setfacl.
v Extended ACL entries are ACL entries for individual users or groups. Like the

permission bits, they are stored with the file, not in RACF profiles.

Additional access control mechanisms are allowed to further restrict the access
permissions that are defined by the file permission bits. Because ACLs can grant
and restrict access, the use of ACLs is not UNIX 95-compliant.

ACLs are supported by HFS, zFS, and TFS. It is possible that other physical file
systems will eventually support z/OS ACLs. Consult your file system
documentation to see if ACLs are supported.

Setting up ACL support
Using access control lists (ACLs) in z/OS UNIX System Services Planningprovides
detailed information on setting up and managing ACLs. It also explains the
considerations involved when you are using ACLs in a sysplex and how ACLs are
used in file access checks. To add, delete, or update an ACL, or update the
permission bits, use the setfacl shell command. The getfacl shell command
displays the contents of an ACL. The ls with –l output will also indicate if
extended ACL entries exist.

See ACL tasks and their associated commands in z/OS UNIX System Services
Planning for a chart that shows how various shell commands are used when
working with ACLs. For complete information on the commands involved, see
z/OS UNIX System Services Command Reference.

Chapter 18. Handling security for your files 239



240 z/OS V2R2 UNIX System Services User's Guide



Chapter 19. Editing files

When you are logged into the shell, you have a choice of editors to use to create
and change files, depending on which interface you are using:
v OMVS terminal interface:

– The full-screen ISPF editor, which you can invoke using the OEDIT or oedit
command.

– The ed editor, a line editor
– The sed stream editor, a noninteractive editor. It is intended for systematic

editing; you invoke the editor with a file of editing commands and a target
data file and it produces an edited target file, with no user interaction.

v Asynchronous terminal interface:
– The vi editor, an interactive editor

If you are using NFS from your workstation, you can directly edit z/OS UNIX files
with your workstation editor of choice.

Using ISPF to edit a z/OS UNIX file
ISPF Edit provides a full-screen editor you can use to create and edit z/OS UNIX
files. You can access ISPF Edit in several ways:
v Using the oedit shell command
v Using the TSO/E OEDIT command at the TSO/E READY prompt or from the

shell command line
v From the ISPF menu (if a menu option is installed)
v From the ISPF shell (accessed using the TSO/E ISHELL command)

Tip: If you know you will be using OEDIT or OBROWSE during a shell session,
make your initial invocation of the shell from ISPF. If you enter the OMVS
command from ISPF, you can subsequently access OEDIT and OBROWSE more
quickly than if you had entered the OMVS command from TSO/E.

Using ISPF Edit, you can edit only regular files (not special files). You need read
and write permission for the file and search permission for any intermediate
directories.

When you are working in MVS (TSO/E or ISPF), your home directory is the
default working directory.

When you create a new file, you must have the appropriate permissions to add a
new file to the parent directory. When a file is created using ISPF Edit, its default
permissions are:

owner = rwx
group = ---
other = ---

The octal number is 700.

ISPF Edit allows only one edit session at a time per file. It reads the entire file
when the edit session begins. At the end of the session, it replaces the original file
with the edited file.

© Copyright IBM Corp. 1996, 2015 241



During an ISPF Edit session, you can use these types of commands:

Type of commands Usage notes
Scrolling commands You can use commands to scroll the data up, down, left, or right.

Line commands You perform line editing by entering a line command directly on the
line number of the affected line. For example, to delete a line, you
enter D on the line number; to repeat a line, you enter R on the line
number. You can enter line commands for several lines at the same
time.

Primary commands To perform general editing tasks, you enter primary commands at the
command line on the panel. For example, you can use the FIND
command to scan data for a specific character string. If you entered:

FIND printf(

on the command line, your cursor moves to the next occurrence of
printf(. Likewise, you can enter the CHANGE command to make
global changes within a file.

Example: To change all instances of CRTL to C-RTL, issue:

CHANGE CRTL C-RTL ALL

External data
commands

While you are editing one file, you can use external data commands
to work with another file, a sequential data set, or a member of a
partitioned data set or PDSE—moving data to or from the file you
are editing. ISPF Edit provides five external data commands: COPY,
MOVE, REPLACE, CREATE, and EDIT.

To end an edit session:
v Saving all changes, enter the END command or press <F3>.
v Without saving any changes, enter the CANCEL command.

When you end the edit session, you go back to where you were when you began
it: on the entry panel, on an ISPF command line, at the TSO/E READY prompt, or at
the shell prompt.

All you ever wanted to know about ISPF Edit

The discussion in this topic is an introduction to ISPF Edit. For detailed
information about ISPF Edit, use the online help facility or refer to z/OS V2R2 ISPF
Edit and Edit Macros.

Using the vi screen editor
The vi editor is available if you login to the shell using rlogin or telnet. It is not
available if you login using the OMVS command. The vi editor is a full-featured
text editor with the following major features:
v Full-screen editing and scrolling capability
v Separate text entry and edit modes
v Global substitution and complex editing commands using the underlying ex

commands.

242 z/OS V2R2 UNIX System Services User's Guide



This overview just introduces some fundamentals to help you get started. For more
information, see Appendix A, “Advanced vi topics,” on page 293 and the vi
command description in z/OS UNIX System Services Command Reference.

Basic principles
To begin using vi, you type the command:
vi filename

where filename is the name of a file you want to edit. This can be an existing file,
or it can be a new file that you want to create.

The vi command begins a vi session. In a vi session, you enter input that creates
or changes the contents of the file specified on the command line. vi reads and
uses the input you type until you quit your vi session.

In a vi session, you are always in one of two modes:
v Insert Mode, in which everything you type is taken as text input. vi displays

text on the screen as you enter it. Eventually, vi stores this text in a file.
v Command Mode, in which vi interprets everything you type as a command to

change the text in some way. Usually, commands do not appear on the
screen—you just see the effects of the command. For example, if you enter the
command to delete a line of text, you see the line disappear, but you never see
the delete line instruction that you actually typed.

To switch from Insert Mode to Command Mode, simply press the key marked
<Esc>. If you are not sure which mode you are in, press <Esc> several times. This
always brings you back to Command Mode.

To delete a character, you must be in Insert Mode. Pressing <Backspace> deletes
the last character you typed; pressing <Backspace> twice deletes the last two
characters, and so on. vi usually does not immediately delete these characters on
the screen—it just backs up the cursor so that anything you enter is typed over the
characters that were there. When you leave Insert Mode, vi adjusts the screen to
remove any characters that were deleted by <Backspace> and not over-typed.

To quit a vi session, do one of these:
v :wq to save your changes and quit vi
v :q! to quit without saving your work

A simple vi session
This information shows you how to edit a simple text file. Try it to get the feel of
using vi. You can edit the text file:
vi1.txt

which is supplied as part of the z/OS shell. It is in the directory /samples. To do
this, copy this file to current working directory:
cp /samples/vi1.txt vitest

Now, begin your vi session by typing:
vi vitest

vi clears the screen, then displays the contents of the file. , vi also displays:
"vitest" 30 lines, 668 characters

Chapter 19. Editing files 243



This tells the name of the file being edited and how big it is.

The cursor is positioned at the beginning of the file. These keys let you position
the cursor anywhere on any line in the file:

Table 8. vi editor: Positioning the cursor

To move the cursor: Press

Down a line j or ↓ (the Down arrow key)

Up a line k or ↑ (the Up arrow key)

Left along a line h or ← (the Left arrow key)

Right along a line l or → (the Right arrow key)

Note: The arrow keys do not work on all terminals.

To experiment a bit more, move the cursor to the beginning of the first line in the
file, then press 5 followed by →. You do not see the 5 displayed anywhere—but
when you press →, you see the cursor move five characters to the right. As a
general rule, when you type a number followed by an action, vi repeats the action
that number of times.

By the way, ask yourself if you are in Insert Mode or Command Mode. You must
be in Command Mode because the characters you type (for example, the 5) do not
appear on the screen. When you start a vi session, you always begin in Command
Mode.

Adding text
The simplest action you can perform is adding text to what is already on the
screen. Move the cursor to the blank line following:
And frightened Miss Muffet away.

The cursor should be at the first position in the blank line. Now type a. Because
you are in Command Mode, this is taken to be a command, not text. The a
command tells vi to begin adding to the text that is already on the screen. If you
now type:
Little Boy Blue

you can see the characters appear on the line. The a command switches from
Command Mode to Insert Mode. You can now see what you are typing.

Press <Enter> at the end of the line. The bottom part of the screen moves down to
make a new blank line after the line you were typing. Keep typing more lines:
Come blow your horn
The sheep’s in the meadow,
The cow’s in the corn.

You see that the bottom part of the screen keeps moving down to make more room
for what you are typing. After the a command, the text that you type is added into
the middle of existing text.

When you have typed the last line, press <Enter> to make a new blank line, then
press <Esc>. <Esc>switches from Insert Mode back to Command Mode. Now, vi
interprets what you type as commands again. If you type 4 followed by ↑, the

244 z/OS V2R2 UNIX System Services User's Guide



cursor moves up four lines to the beginning of the text you just typed in. The 4
does not appear on the screen when you type it, because command input is not
usually displayed.

Move the cursor to the B at the beginning of the word Blue in the text you have
just typed. Press a to add more text, then type the letter l. The l is added after the
B and the rest of the text on the line moves over to make room for the new
character. This shows that a adds text after the current cursor position.

Press <Backspace>. The cursor backs up one space. Press <Esc>to return to
Command Mode. The l disappears when you leave Insert Mode, and vi adjusts
the screen to get rid of characters deleted by backspacing.

The Little Boy Blue rhyme that you have just added to the file follows the previous
nursery rhyme immediately. The file would look better with a blank line separating
the two rhymes. Figure out how to put in this blank line, and do it.

Moving the cursor up and down the screen
You already know how to move the cursor up and down; however, this can be a
slow process if you have a large file that you want to move through quickly. To
speed this process up, vi offers several commands that can jump the cursor up or
down many lines at a time.

In Command Mode, use the following commands:

Command
Moves the cursor:

H To the upper left hand corner of the screen. H stands for High and it
moves the cursor as high on the screen as it can go.

L To the bottom of the screen. L (uppercase) stands for Low.

M To the middle of the screen. M stands for Middle. Experiment with these
commands to see how they move the cursor.

Moving up and down through a file
While you are editing a file, you can move through it one line at a time, several
lines at a time, or screens at a time. You can use these commands to move up and
down through a file:

Command
Moves the cursor:

<Ctrl-D>
Down (or forward) half a screen. The cursor stays where it is -- the text
moves underneath it.

<Ctrl-F>
Down (or forward) almost a full screen. This lets you move forward
through the file very rapidly.

<Ctrl-U>
Up (or backwards) half a screen.

<Ctrl-B>
Up (or backwards) almost a full screen.

Chapter 19. Editing files 245



If you move forward far enough through vitest, you will see a number of lines that
are blank except for a tilde (~) as the first character. These lines are actually beyond
the end of the file -- the file ends with the line:
And the mome raths outgrabe.

vi could just show an empty screen after this last line, but then you would not
know if the screen was empty because you had reached the end of the file or if the
file just contained a lot of blank lines; therefore, vi uses ~ to mark lines that are
past the end of the file.

Moving the cursor on the line
You can also move the cursor by whole word boundaries, using word-motion
commands. Make sure that you are in Command Mode (press <Esc>). 0 and $ let
you move back and forth on a line quickly.

Command
Moves the cursor:

^ or 0 To the beginning of the current line (to the first nonblank space). The
command 0 is short for 0|, which moves the cursor to column number 0.

$ To the end of the current line

$ stands for the end of the line in a number of vi commands.

Go to the beginning of a line, and press w. The cursor jumps forward to the
beginning of the next word on the line. w stands for word and it moves the cursor
forward one word. If you keep pressing w, the cursor keeps jumping forward.
When you jump forward from the last word in the line, you go to the first word in
the next line. If you precede w with a number (as in 5w), the cursor jumps forward
that many words.

Typing b is like typing w, except that you go back a word instead of forward. If
you go back from the first word on a line, you get to the last word on the previous
line. If you precede b with a number (as in 3b), the cursor jumps backward that
many words.

If the cursor is in the middle of a word, typing e moves the cursor to the end of
the word. For example, if the cursor is in the middle of the word slithy, typing e
moves the cursor to the last letter in the word. If the cursor is already on the last
letter of a word, typing e moves the cursor to the end of the next word.

To move the cursor between words including punctuation (that is, punctuation is
considered to be a word), use the following commands:

Command
Moves the cursor:

e To the end of the current word

w To the beginning of the next word

b To the beginning of the previous word

To move the cursor between words ignoring punctuation (that is, punctuation is
skipped), use the following commands:

Command
Moves the cursor:

246 z/OS V2R2 UNIX System Services User's Guide



E To the end of the current word

W To the beginning of the next word

B To the beginning of the previous word

Moving to sentences and paragraphs
To move between sentences and paragraphs, use the following commands:

Command
Moves the cursor:

) To the beginning of the next sentence

( To the beginning of the preceding sentence

} To the beginning of the next paragraph

{ To the beginning of the preceding paragraph

These commands can also be preceded by a number to change the effect of the
command. For example, 3) moves the cursor forward 3 sentences.

Deleting text
There are several commands that delete text from the screen. All of these begin
with the letter d. After the d comes a letter indicating what you want to delete.
Usually this letter is based on one of the cursor movement commands. For
example:

Command
Action

d$ Deletes text from the cursor's current position to the end of the line.

dd Deletes the entire line containing the cursor.

dL Deletes text from the cursor's current position to the bottom of the screen.

dw Deletes text from the cursor's current position to the beginning of the next
word.

de Deletes text from the cursor's current position to the end of a word. If the
cursor is in the middle of a word, de deletes to the end of the same word;
if the cursor is at the end of a word, de deletes to the end of the next
word.

In the same way, d followed by → or ← (l or h) can delete a single character. Try
both instructions and see which character gets deleted.

If you delete something by accident, you can undo the deletion by typing u
(lowercase). Try this now. Type dH. What happens? Now type u and see the
deleted text return.

A number followed by a delete command repeats the command that number of
times. For example:
v 5dw deletes five words
v 10dd deletes ten lines

Chapter 19. Editing files 247



Changing text
To change existing text, use the c command the same way you use d. c is a
combination of d and a—it deletes text, then begins to append text to replace what
was deleted.

Command
Action

c$ Lets you change everything from the cursor's current position to the end of
the line.

cL Lets you change everything to the end of the page.

cc Lets you change all of the current line, regardless of the cursor position.

Go to the beginning of the first line of vitest and type c$. vi puts a $ at the end of
the line. The $ marks the end of the block of text that vi intends to change. If you
now begin typing something like The rain in Spain, you type over the text that
was previously on the line. If you keep typing, you eventually type over the $. The
$ was never there -- it was just a marker to show the block of text to be replaced.

After a c command, the text you type shows up on the screen. This means that c
puts you in Insert Mode. When you finish typing replacement text, you must press
<Esc> to return to Command Mode.

You can enter any amount of text to replace existing text. For example, c$ only gets
rid of part of a line, but you can enter many lines of replacement text.

Undoing a command
If you make a change and then realize it was in error, you may still be able to
correct it.

Command
Action

u Undoes the last command entered

U Undoes all changes made to the current line

Saving a file
When you finish editing text, you must save your work in a file. Until you save
your work, your text is on the screen but it is not recorded in any usable way.
When you quit vi, your work disappears unless it is saved.

If you started your vi session with vi filename, it is easy to write the edited text
back into the same file. In Command Mode, just type:
:w

and press <Enter>. When you type the colon, it appears at the very bottom of the
screen. The w also appears . When you press <Enter>, there is a short pause and
then vi displays some statistics about the saved text: the name of the file, and the
number of lines and characters saved.

If you want to save your changes and quit vi, enter:
:wq

If you want to save your text in a different file, type:

248 z/OS V2R2 UNIX System Services User's Guide



:w newfilename

and press <Enter>. Again, this appears . After you save your work, you can quit vi
by typing:
:q

Normally, vi does not let you quit before saving; if you do, you lose everything
you have done since the last time you saved. If you really want to quit vi without
saving your work, type:
:q!

If the file system that you are attempting to save your file to is full, you will see
the following message:
FSUM7971 Write error (out of space?)

At this point, you should issue a command to save your file to a new file system
where space is available. This can be done by typing:
:w newfilesystem/newfilename

where newfilesystem is the name of another file system that has space available, and
newfilename is the name you wish to call the file.

Once the original file system has space available, you can safely copy the file back
to that location.

Searching for strings
In a large document, searching for a particular text string can be very time
consuming. The / command prompts for a string to search for in the file. When
you press <Enter>, vi searches the file for the next occurrence of the string you
entered.

To try searching for a string, first move to the top of vitest. Then type:
/Blu

and press <Enter>.

As soon as you enter /, it is displayed on the bottom of the screen. As you type the
string Blu, it is echoed . You can use <Backspace> to fix mistakes as you type the
search string. After you press <Enter>, the cursor moves to the first occurrence of
the string.

The n command searches for the next occurrence of the last string you searched
for. Try it now by entering:
n

The cursor should move to the next occurrence of the string, which is the th in the
word with. You can also use N like n to search the other direction through the file.

If you just type a slash without anything after it, vi looks for the most recent word
or phrase you searched for.

Searching backwards through a file
To specify a search string for a backward search through the file, use the ?
command in the same way as /. If you just type a ? without anything after it, vi
searches backwards for the most recent word or phrase you searched for. When

Chapter 19. Editing files 249



you search backwards, the n command moves the cursor backward to the next
occurrence of the string, and the N command moves the cursor forward.

Case-sensitive searching
When you type in characters after a slash or question mark, make sure you enter
them in the correct case. For example, ask vi to search for IN, and type the word in
uppercase. You will see that vi prints the message Pattern not found . As it turns
out, this file does not contain the word IN in uppercase, although it has the word
several times in lowercase.

Notice that the message used the word Pattern. In a vi command, anything after a
slash or question mark is called a pattern.

Special search characters
In order to make searching more useful, vi gives special meanings to several
characters when they are used in patterns. For example, the circumflex or caret
character (^) stands for the beginning of a line. Move the cursor to the next line
and type:
/^All

vi will look for the word All occurring at the beginning of a line.

The end of a line is represented by the dollar sign ($). Move the cursor to the next
line and type:
/plum$

You will see that vi searches forward for a line that ends in the word plum.

Inside patterns, the dot (.) stands for any character. For example, move the cursor
to the top of the file and type:
/t.e

You will see that the cursor moves to the word the. Type / over and over, and you
will see the cursor keep jumping forward to any sequence of three letters that
starts with t and ends in e. Were you surprised that the cursor jumped into the
middle of the word slithey? vi finds character strings, even when they are in the
middle of larger words.

Inside patterns, a dot followed by an asterisk (.*) stands for any sequence of zero
or more characters. For example, type:
/^A.*g$

You will find the next line that begins with the letter A, ends with the letter g and
has any number of characters in between.

Character
Stands for:

^ Beginning of the line

$ End of the line

. Any character

.* Any sequence of zero or more characters

vi gives special meanings to several other characters inside patterns. For complete
details, see Appendix C. Regular Expressions (regexp) in z/OS UNIX System

250 z/OS V2R2 UNIX System Services User's Guide



Services Command Reference. A regular expression is the POSIX name for a pattern;
here we use the word pattern because it is more descriptive.

What happens if you want to search for a character that has a special meaning in
patterns? For example, suppose you want to search for the string 2.3*25
somewhere in a file. If you just type:
/2.3*25

vi will think the 3* stands for zero or more occurrences of the digit 3, not the *
character. In such cases, put a backslash (\) in front of any characters with special
meanings, as in the example:
/2\.3\*25

Notice that we had to put a backslash in front of the dot as well as the asterisk;
both have a special meaning in patterns.

By default, all searches in vi wrap around from the bottom of the file to the top.
Similarly, if you use question marks to search backward through a file, the search
will wrap around from the top of the file to the bottom, if necessary.

Moving text
The first step in moving a block of text is to select text for moving. In fact, you
already know how to do this. The d command not only deletes a block of text, but
also copies it to a paste buffer. Once in the paste buffer, the text can be moved by
repositioning the cursor and then using the p command to place the text after the
current cursor position.

To delete the first line of the file, move there and type:
dd

The line is deleted and copied into the paste buffer, and the cursor is moved to the
next line in the file. To paste the line following the current line, type:
p

To paste text before the cursor rather than after it, use the P (uppercase) command.

If you delete a letter or word size block, it will be pasted into the new position
within the current line. For example, to move the word came after the word
spider, you could use the following command sequence:
/came <Enter>
dw
/spider <Enter>
p

Copying text
You copy text in the same manner as you move it, except that instead of using the
delete text command d, you use the yank text command, y. The y command copies
the specified text into the paste buffer without deleting it from the text. It follows
the same syntax as the d command. You can also use the shortcut yy to copy an
entire text line into the paste buffer, in the same way as dd.

For example, you can copy the first two lines of the file to a position immediately
underneath them. To do so, enter the following command sequence from the first
line of the file:

Chapter 19. Editing files 251



2yy
j
p

Note that you must move down one line using j, or the two lines will be pasted
after the first line rather than after the second.

Other vi features
Here are a few more helpful vi subcommands:

J Joins the following line to the current line

. Repeats the last command

s Substitutes the current character with the following entered text

x Deletes the current character

Message: vi/ex edited file recovered
Have you received mail with this subject: "vi/ex edited file recovered" ? This is
what the mail messages look like:
From OMVS Mon Apr 29 13:58:50 1996
To: 1234567
Status: R
Subject: vi/ex edited file recovered.

Mon Apr 22 13:47:45 1996, the file

NoFilename

that you were editing has been recovered.
You can retrieve most of your changes to this file
using the "-r" option or the ":recover" command of the
vi or ex editors. An easy way to do this is with the command

vi -r NoFilename

This message is being sent to you because the exrecover command recovered text
files from working files created by ex or vi. When ex or vi is invoked, it first
creates these working files in a temporary directory so that it can recover the file
being edited if any system errors occur or if the editor is otherwise terminated
abnormally.

When vi is invoked, it first creates files in /tmp so that it can recover the file being
edited if any system errors occur. When vi is invoked from OMVS, it creates its
recovery files in /tmp but cannot continue.

The current default directory for temporary vi files (usually /tmp) may be
implemented as a TFS. In this case, all vi's temporary files that the exrecover
daemon uses for recovery would be gone after a system crash. The environment
variable TMP_VI can contain a directory path name that can be specified by an
administrator as an alternative location for these temporary files. See “Using the
TMP_VI environment variable” on page 253 for more information.

The exrecover command automatically recovers these files. By default, this
command is started from the /etc/rc file. In /etc/rc you will see these lines:
# Invoke vi recovery
mkdir -m 777 /etc/recover
/usr/lib/exrecover

252 z/OS V2R2 UNIX System Services User's Guide



Every IPL, the /etc/rc script is run and the exrecover command is also run.
exrecover goes through all the recovery files that were left by the ex or vi editors.
These files have names that begin with VI; three of them are created for each vi
command. exrecover creates directories in /etc/recover for each userid, puts the
recovered files there, and sends the user mail telling what it did.

Using the TMP_VI environment variable
An administrator can set the TMP_VI environment variable to the path name of an
alternate location where vi is to create its recovery files.

Guideline: This environment variable should be set by a system administrator
rather than a user. If a user sets the TMP_VI directory to something other than the
name that exrecover recognizes as TMP_VI, the user must manually run the
exrecover daemon to allow the directory files to be converted to the recoverable
files that are used by vi (located in /etc/recover/$LOGNAME).

Restriction: A system administrator should not set TMP_VI to
/etc/recover/$LOGNAME or to any directory where a path name component is an
environment variable with a user's value that is different from the value of the init
process—for example, $HOME.

The temporary vi files are converted into a form that is recoverable by vi when
exrecover is run during IPL. Because exrecover is issued during IPL, it is owned
by the init process and, therefore, contains different values for certain environment
variables if those environment variables have been set. Throughout the file system,
there may be some temporary files that can only be converted by exrecover. This
conversion can be done manually by a system administrator to recover files owned
by all users or by individual users to recover their own files.

Stopping the mail messages
If no one at your installation intends to use vi, a superuser can get rid of the
exrecover mail messages as follows:
1. Edit /etc/rc

2. Comment out the line that says /usr/lib/exrecover. This stops the exrecover
command from running, so no new mail messages will be sent.

3. cd /tmp

4. rm VI*

If your installation has some users who will be editing with vi, then it's a little
trickier. In this case, your vi users will want the recovery capabilities of vi, so you
do not want to remove the exrecover command from /etc/rc.

Anyone can remove those /tmp/VI* files that were generated when users on dumb
terminals tried vi. To stop exrecover from sending new mail messages about those
files:
1. Broadcast a message to make sure no one is using vi at the moment
2. cd /tmp

3. rm VI*

Deleting the old mail messages
If you want to delete only the mail messages sent by exrecover:
1. Enter

mailx

Chapter 19. Editing files 253



2. Use the mailx commands to read each message: Enter the number of the
message

3. Enter
d

to delete that message.

To delete all your mail messages, issue:
1. rm /usr/mail/$LOGNAME

But be careful because this will delete all your mail messages.

Using the ed editor
Using the shell: The ed editor is a line editing program available in the shell for
editing text files. When you edit a file with ed, the file is copied into the edit buffer,
a temporary storage area. You use various subcommands to edit the text in the
buffer. When you end your edit session, the contents of the buffer are written to
the file system, overwriting the previous contents of the file.

With ed, you work with one line in the buffer at a time. In this discussion, that
position in the buffer is called the current working line.

For more details about ed, see z/OS UNIX System Services Command Reference.

Creating and saving a text file
1. To begin editing a new file, enter:

ed filename

where filename is the name of a new file.
2. After you see the ?filename message, enter:

a

This indicates that you want to append lines.
3. Type your text. At the end of each line, press <Enter>. You can then enter more

text.
4. When you have finished entering text, enter:

.

(a period) at the start of a new line.
5. To write the contents of the edit buffer to the file filename, enter:

w

After writing to the file, the shell displays the number of characters that were
copied—for example, 746. This number includes blanks and newline characters
appended to each line of text, which you cannot see on the screen.
If you want to write to a file different from the original filename, specify a
different filename when you enter the w subcommand; for example:
w diffname

Entering the w subcommand does not change the contents of the buffer.
6. To exit the ed program, enter:

q

254 z/OS V2R2 UNIX System Services User's Guide



This deletes the contents of the buffer.

Editing an existing file
To begin editing an existing file, enter:
ed filename

Your current working line is the last line in the file. If you want to change your
position in the file before you begin editing, see “Identifying line numbers and
changing your position in the buffer.”

If you are already using ed, have finished editing one file and saved it with the w
subcommand, and you now want to edit another file, enter:
e filename

This erases the previous contents of the buffer and loads in the new file.

Identifying line numbers and changing your position in the
buffer

To find out how many lines there are in a file, enter:
$=

To identify the line number of your current working line, enter:
.=

You can make a different line in the file your current working line and then
identify its number.

To move the current working line forward a line at a time, press <Enter>. The text
of the line is displayed.

To move the current working line backward a line at a time, enter:
–

(hyphen). The text of the line is displayed.

Changing position using numbers
To change the current working line to a different line in the file, enter:
n

where n is the number of the line you want to work with. The text of the line is
displayed.

To move the current working line n lines forward, enter:
.+n

To move the current working line n lines backward, enter:
.–n

Changing position using a search string (regular expression)
If you don't know the number or position of the line you want to make your
current working line, you can locate a string (or regular expression) in the line. To
search forward for one or more words or a string of characters, enter:
/regexp/

Chapter 19. Editing files 255



where regexp is one or more words or a string of characters. The line containing the
search string is displayed and it is now your current working line.

To search backward for one or more words or a string of characters, enter:
?regexp?

where regexp is one or more words or a string of characters. The line containing the
search string is displayed and it is now your current working line.

Appending one file to another
If you want to append a file at the end of the file you are working on in the buffer,
enter:
r filename

Or, if you want to read a file in after a specific line in the buffer, enter:
nr filename

where n is the number of the line in the file.

To display the contents of a file in the edit buffer, enter:
,p,

On your screen, each line of the file is displayed, for example:

,p,
Oh, you better watch out
You better not shout
You better not cry
I’m telling you why

Once you know the line numbers, you could insert the file scrooge after the line
You better not cry. Thus, you would enter:
3r scrooge

Displaying the current line in the edit buffer
When you enter subcommands, you identify the current working line with the
symbol . (dot).

To display the current working line, enter:
p

To display the line number of the current working line, enter:
.=

Changing a character string
For changing text or correcting spelling errors, use the s (substitute) subcommand.
When you enter the subcommand, the line you are changing becomes your current
working line. To display the line after you make the change, enter the p (print)
subcommand.
v To substitute text for the first matching string on the current working line, enter:

s/oldtext/newtext/

v To substitute text for the first matching string on a specified line, enter:
ns/oldtext/newtext/

256 z/OS V2R2 UNIX System Services User's Guide



where n is the number of the line.
v To substitute text for the first matching string on more than one line, enter:

a1,a2s/oldtext/newtext/

where a1 is the number (or address) of the first line to be changed and a2 is the
number of the last line to be changed.

v To change every occurrence of a string on more than one line, enter:
a1,a2s/oldtext/newtext/g

where a1 is the number of the first line to be changed and a2 is the number of
the last line to be changed. g is the global operator.
To change every occurrence of a string on one line, enter:
ns/oldtext/newtext/g

g is the global operator.
v To delete a word or string, enter:

s/oldtext//

Inserting text at the beginning or end of a line
Use the s (substitute) subcommand and these two special substitution characters to
insert text at the beginning or end of a line:

^ (circumflex)
Inserts text at the beginning of a line

$ (dollar sign)
Inserts text at the end of a line

v To insert text at the beginning of the current working line, enter:
s/^/newtext

v To insert text at the beginning of a specified line, enter:
ns/^/newtext

where n is the number of the line. This line becomes the current working line.
v To insert text at the end of the current working line, enter:

s/$/newtext

v To insert text at the end of a specified line, enter:
ns/$/newtext

where n is the number of the line. This line becomes the current working line.

Deleting lines of text
Use the d (delete) subcommand to delete one or more lines of text. After you
delete a line, the first line following the deleted line (or lines) becomes the current
working line. After a line is deleted, the remaining lines in the buffer are
renumbered.
v To delete the current working line, enter:

d

v To delete a specific line number, enter:
nd

where n is the line number.
v To delete more than one line, enter:

Chapter 19. Editing files 257



a1,a2d

where a1 is the number of the first line and a2 is the number of the last line.

Changing lines of text
To replace one or more lines with one or more new lines, use the c (change)
subcommand. This actually deletes the lines you want to replace and inserts the
new lines.
1. Enter:

a1,a2c

where:
a1 is the number of the first line to be deleted.
a2 is the number of the last line to be deleted.

2. Type the new lines, pressing <Enter> at the end of each line.
3. End the insert by typing a . (period) on a line by itself.

Inserting lines of text
To insert one or more lines of new text into the edit buffer, use the i subcommand.
1. You can specify the subcommand in one of two ways, depending on how you

want to identify the line that the new lines are to be inserted before:
v If you know the number of the line that you want to insert the new lines

before, enter:
ni

where n is the number of that line.
v To identify the line that the new lines are to be inserted before by words or a

string of characters in the line (known as a regular expression), enter:
/regexp/i

where regexp is one or more words or a string of characters.
2. Enter the new lines.
3. End the insert by typing a . (period) on a line by itself.

Copying lines of text
Use the t (transfer) subcommand to copy one or more lines within the edit buffer.

To copy one line, enter:
a1tn

where:
a1 is the number of the line to be copied.
n is the number of the line that the line is to be copied after.

To copy a block of lines, enter:
a1,a2tn

where:
a1 is the number of the first line in the block of lines to be copied.
a2 is the number of the last line in the block of lines to be copied.
n is the number of the line that the lines are to be copied after.

258 z/OS V2R2 UNIX System Services User's Guide



To copy lines to the top of the edit buffer, use 0 as the line number for the lines to
be copied after.

To copy lines to the bottom of the edit buffer, use $ as the line number for the lines
to be copied after.

Moving lines of text
Use the m (move) subcommand to move a block of lines to a different position in
the edit buffer. After the text is moved, the last line in the block of lines becomes
the current working line. Enter:
a1,a2mn

where a1 is the number of the first line in the block, a2 is the number of the last
line in the block, and n is the number of the line that the block of lines are to be
moved after.

To move text to the top of the buffer, use 0 as the line number for the lines to be
moved after.

To move text to the end of the buffer, use $ as the line number for the lines to be
moved after.

Undoing a change
To undo a change, use the u subcommand. This subcommand undoes the changes
made by the last subcommand that changed the buffer. For the purposes of u,
subcommands that change the buffer are: a, c, d, g, G, i, j, m, r, s, t, v, V, and n.

Entering a shell command while using ed
To temporarily switch out of the ed program and run a shell command, enter:
!command name

Ending an ed edit session
When you have finished working with a file, you save the changes by entering:
w

To end the edit session, enter:
q

If you enter q without entering w to first save the buffer, the changes you have
made are not saved.

Default permissions
When you create a file using the ed editor, its default permissions are:

owner=rw-
group=rw-
other=rw-

The octal number is 666.

Chapter 19. Editing files 259



Using sed to edit a z/OS UNIX file
Using the shell: Because sed is a noninteractive editor, you do not use it in an
interactive session. Instead, enter the sed command specifying a file that contains
editing commands and a data file, and it produces an edited target file with no
user interaction. sed is intended for systematic editing, as opposed to the usual
editing-on-the-fly performed by interactive users.

sed subcommands are similar to those used with ed, except that sed commands
view the input text as a stream rather than as a directly addressable file. Each line
of the file that contains editing commands has up to two addresses, a single-letter
command, possible command modifiers, and an ending newline character.

For more details on sed, see the sed command description in z/OS UNIX System
Services Command Reference.

260 z/OS V2R2 UNIX System Services User's Guide



Chapter 20. Printing files

If you are a workstation user, you are probably accustomed to having a printer
close by, if not on, your desk. In contrast, the MVS system intentionally screens the
user from printer knowledge and uses a printer resource pool. One facility
provided to manage this pool is the System Display and Search Facility (SDSF).

You can, of course, download z/OS UNIX files and print them at your
workstation. However, it may be more convenient to have print jobs sent to
accessible Job Entry Subsystem (JES) printers directly by the shell. In addition, you
may want to use the large-volume printing facilities offered by MVS.

Formatting files for online browsing or printing
Using the shell: You can use shell commands to format a file for browsing or
printing, and then later use the lp command to send the formatted file to a printer.

If you want to format and print a file immediately, you can request this printing as
a single piped command.

To format a z/OS UNIX file, use the pr command; for example:
pr -2 report1

This command requests the shell to format for printing in two columns a file
named report1, and send the output to standard output (your workstation screen).
The file appears on your screen in the format you selected. There are many format
options for the pr command; see the pr command description in z/OS UNIX System
Services Command Reference.

If, instead, you redirect standard output to a file named report2, you can later
print the file by entering:
lp report2

This requests the printing of the formatted file in report2; because the dest option is
not specified, the file is sent to the default printer destination.

If you want to format a file and print it right away, you can join the requests using
a pipe. (See “Using a pipe” on page 75 for more information on using a pipe.) For
example:
pr -2 report1 | lp

formats and prints the file report1.

To save the formatted output as well as print it, try:
pr -2 report1 | tee report2 | lp

This command formats report1 and pipes the formatted output to tee. tee writes
the formatted output to report2 and at the same time pipes report2 to the next
command, lp, which sends the input to the printer queue. The formatted output is
saved in report2.

© Copyright IBM Corp. 1996, 2015 261



Printing requests in shell scripts
Including print requests in a shell script may limit the portability of the shell
script, because printer configuration options in other operating systems may differ.
To minimize the work involved in porting the shell script to another system, be
sure to identify environment assumptions and aliases that may have been used.

Printing with the lp command
Using the shell: You can use the lp command to send a previously formatted file
to a JES printer:
lp filename

You can specify more than one file name with the command. The lp command
uses existing JES printer facilities. Because a default printer destination is assigned
to you, you do not need to specify a destination (with the -d dest option) when
entering the lp command. However, you can specify a destination other than the
default by using the -d dest option. For -d dest, you can specify LOCAL for any
printer or any of the symbolic destination names your systems programmer
defined for JES printers. These symbolic names are defined locally.

Class is a frequently used option, and at your site there might be several different
classes defined. For instance, C may be designated the class for confidential
information. Suppose that you want to print the file temp.prt using the default
printer destination and specifying class C; you would enter it in either of these
ways:
lp -d ,c temp.prt

lp -d,c temp.prt

The parameters on the -d option are positional, so if you omit a destination, you
must still include the comma.

To specify the number of copies you want printed, use the -n option. For example,
lp -n 2 report2

requests the printing of two copies of the formatted file in report2 to the default
printer destination.

If you have z/OS Print Server installed on your system, you will use the Print
Server version of the lp command.

Printing with TSO/E commands
Using TSO/E: Some printer services, such as printing a single file to multiple
destinations, are not available through the lp command. To print in TSO/E, you
need to know:
v The TSO/E commands you can use to submit print jobs
v The printing options (class) you want to specify

Here are the steps:
1. If you are working in the shell, switch to TSO/E command mode by pressing

the TSO function key.
2. If you want to print an MVS data set, skip to the next step. If you want to print

a z/OS UNIX file, you must first copy it into an MVS data set using the TSO/E

262 z/OS V2R2 UNIX System Services User's Guide



OGET or OCOPY command. (See “Copying a z/OS UNIX file into a sequential
data set or PDS member” on page 272 for more information on copying.)
Tip: Someone at your installation may have written an MVS command list
(CLIST) or a REXX program that you can enter as a TSO/E command for
printing. The command list could include the OGET or OCOPY command, and
would let you specify such things as multiple destinations, special character
sets, and notification for a set of people.

3. You can format an MVS data set for printing using TSO/E commands. Possibly
you will be using ISPF panels.

4. Print the data set:
v To enter the request to print the formatted data set, for example, you might

enter:
printds da(project1.list) class(c)

v To submit a print request to the MVS job queue, for example, you might
enter:
submit jcl.cntl(print1)

For a print batch job request, the system returns a message confirming that the job
request has been received.

Checking the status of print jobs
If you submit a print job with a shell command, there is no way to check on the
status of the job. (The lpstat and cancel commands are not supported.) All output
looks the same on the queue in terms of job number. Print jobs could have
different setups such as destination or class, but normally the only difference is the
number of lines, bytes, or pages and the time of day the output was available to
print.

Note: The Print Server is included with z/OS. The Print Server, if enabled,
replaces the lp command and provides other commands, including lpstat and
cancel.

If your operating system includes SDSF, you can use the SDSF panels to monitor
and control a TSO/E or batch print job, look at its output as it is running, check its
completion, and release it to print.

For a batch job, the STATUS command can provide status if you specify the job
name as your user ID followed by one character (for example, MACNEILA). You
cannot use the STATUS command for print jobs that you ran using lp or PRINTDS.
STATUS takes either no operands or one or more job names as operands. If you
use no operands, the system looks for jobs with names that start with your user ID
followed by one character. If you list a job name, it looks for that job name.

Requirement: If you use SDSF to view the output from a job where the job name
was assigned using the _BPX_JOBNAME environment variable, you must set the
SDSF group function APPC to ON. If APPC is set OFF, the assigned job name will
not be displayed, and the jobs will differ only by job number. For more
information, see z/OS SDSF Operation and Customization.

Chapter 20. Printing files 263



264 z/OS V2R2 UNIX System Services User's Guide



Chapter 21. Copying data between the z/OS UNIX file system
and MVS data sets

As shown in Figure 24, you can copy data between the z/OS UNIX file system and
MVS data sets using z/OS UNIX shell commands cp and mv or the TSO/E
commands OPUT, OPUTX, OGET, OGETX, and OCOPY.

Copying data using z/OS shell commands
You can use the z/OS shell commands cp (copy) and mv (move) to copy or move
files:
v Between the z/OS UNIX file system and MVS data sets
v Within the z/OS UNIX file system.

With the cp and mv commands you can specify whether the file or data set is to be
copied or moved as text, binary, or as an executable. You can also append or
truncate suffixes. For examples of using these commands, see:
v “Using cp to copy a sequential data or PDS member into a z/OS UNIX file” on

page 267
v “Using cp to copy a PDS to a z/OS UNIX directory” on page 271
v “Using cp to copy a z/OS UNIX file into a sequential data set or PDS member”

on page 272
v “Using cp to copy z/OS UNIX files into a PDS or PDSE” on page 276
v “Copying files within the z/OS UNIX file system” on page 277
v “Using cp to copy executables between MVS and z/OS UNIX” on page 280

For more information about the cp and mv shell commands, see z/OS UNIX System
Services Command Reference.

OPUTX

OGETX

z/OS UNIX FilesMVS Data SetsTSO/E
command...

OPUT

cp
mv

OCOPY

OGET

Figure 24. Copying data between z/OS UNIX and MVS

© Copyright IBM Corp. 1996, 2015 265



Copying data using TSO/E commands
You use TSO/E commands to copy data:
v Between the z/OS UNIX file system and MVS data sets
v Within MVS data sets.

The TSO/E commands that enable you to do this are:

OPUT Puts (copies) an MVS sequential data set or partitioned data set (PDS or
PDSE) member into the file system. You can specify text or binary data,
and select code page conversion for single-byte data.

OPUTX
Puts (copies) a sequential data set, a data set member, an MVS partitioned
data set, or a PDSE into a z/OS UNIX directory. You can specify text or
binary data, select code page conversion for single-byte data, specify a
copy to lowercase file names, and append a suffix to the member names
when they become file names.

OGET Gets a z/OS UNIX file and copies it into an MVS sequential data set or
partitioned data set member. You can specify text or binary data, and select
code page conversion for single-byte data.

OGETX
Gets a z/OS UNIX file or directory and copies it into an MVS partitioned
data set, PDSE, or sequential data set. You can specify text or binary data,
select code page conversion for single-byte data, allow a copy from
lowercase file names, and delete one or all suffixes from the file names
when they become PDS member names.

OCOPY
Copies data in either direction between an MVS data set and a z/OS UNIX
file, using ddnames. OCOPY can also copy within MVS (one data set to
another data set) or within the shell (one file to another file). OCOPY has a
CONVERT operand for converting single-byte data from one code page to
another.

For examples of using these commands, see:
v “Using OPUT and OCOPY to copy a PDS member, a PDSE member, or a

sequential data set” on page 267
v “Using OPUTX to copy a sequential data set or members of a PDS or PDSE” on

page 271
v “Copying an MVS VSAM data set to a z/OS UNIX file” on page 272
v “Using OGET and OCOPY to copy a file into a sequential data set or a PDS

member” on page 273
v “Copying z/OS UNIX files into a PDS or PDSE” on page 276
v “Copying an MVS data set into another MVS data set” on page 278
v “Using TSO/E commands and JCL to copy executables” on page 280

You can also invoke BPXCOPY as a TSO/E command as described in the
BPXCOPY command description in z/OS UNIX System Services Command Reference,
but the OPUT interface is generally more appropriate.

For information about the TSO/E OPUT, OPUTX, OGET, OGETX, and OCOPY
commands, see z/OS UNIX System Services Command Reference.

266 z/OS V2R2 UNIX System Services User's Guide



For information about the TSO/E ALLOCATE and FREE commands, see z/OS
TSO/E Command Reference. These commands have z/OS UNIX keyword
parameters. It is a good idea to use the TSO/E FREE command to free the
allocated data set when you have finished copying to or from a data set.

Copying a sequential data set or PDS member into a z/OS UNIX file
You might want to copy an MVS sequential data set or a member of a partitioned
data set or PDSE to a z/OS UNIX file, so that:
v The data can be used by a program running under the shell.
v If it is a C program source file developed at your workstation, you can compile,

link-edit, and debug it in the shell using the c89/cc/c++ and dbx commands.

The data set can be text or binary.

Using cp to copy a sequential data or PDS member into a
z/OS UNIX file

The following examples use the cp command to copy a sequential data set or PDS
member into a z/OS UNIX file. You use the same syntax for the mv command.

To copy an MVS sequential dataset to a z/OS UNIX file (in the current working
directory):
cp "//’posix.mylogfile’" mylogfile

To copy an MVS PDS member to a z/OS UNIX file (in the current working
directory):
cp "//’posix.cpmvtest(myfile)’" myunixfile

If there is an existing z/OS UNIX file with the path name that you specify on the
command, it is automatically replaced and the mode of the file is not changed. The
directories specified in the path name must already exist. This command creates a
new file, but it does not create a new directory.

Using OPUT and OCOPY to copy a PDS member, a PDSE
member, or a sequential data set

You can use the TSO/E OPUT command or OCOPY commands to do the copy.
You can enter either command:
v In TSO/E, in the shell, or in ISPF. See “Entering a TSO/E command” on page

198 for information about entering TSO/E commands in TSO/E, the shell, and
ISPF.

v In batch, using a Terminal Monitor Program (TMP) job.

Using OPUT
To specify data set names and file names, use the OPUT command. To specify
ddnames, use the ALLOCATE command and the OCOPY command together.
Because you can specify permissions on the ALLOCATE command first, the
OCOPY command lets you set the permission bits for a newly created file.

If you are moving the data set permanently to the file system, use the TSO/E
DELETE command to delete the data set after copying it.

Chapter 21. Copying data between the z/OS UNIX file system and MVS data sets 267



You can use the CONVERT option for single-byte data, but not for double-byte
data. See “Double-byte data” on page 283 for information about code page
conversion for double-byte data.

Example: Using OPUT with a PDSE member

If the user ID TURBO wants to copy a member of a PDSE into a file, TURBO
enters the following TSO/E OPUT command:
OPUT WORKLOAD.TOTALS(OCT17) ’/u/turbo/wkld/totals/oct17’ TEXT CONVERT(YES)

This command:
v Copies the MVS partitioned data set member OCT17 from the data set

TURBO.WORKLOAD.TOTALS to a text file with the pathname
/u/turbo/wkld/totals/oct17.

v Converts the data using the default conversion table (from MVS code page
IBM-037 to code page IBM-1047), because YES was specified. To use a different
conversion table, specify its name—for example, BPXFX311—for conversion to
and from the ASCII conversion table. If you do not want conversion, omit the
CONVERT operand or specify CONVERT(NO).
For more information, see “Copying data: Code page conversion” on page 282.

v Sets a default mode (read-write-execute permission) if oct17 is a new file. For a
new text (non-U-format data set) file, the default is octal 600:

owner=rw-
group=---
other=---

The default mode for a binary load module (U-format data set) is octal 700:
owner=rwx
group=---
other=---

After the file is created, you can change the permissions with the chmod
command.

If there is an existing z/OS UNIX file with the path name that you specify on the
command, it is automatically replaced and the mode of the file is not changed.

The directories specified in the path name must already exist. This command
creates a new file, but it does not create a new directory.

Example: Using OPUT with a sequential data set
If the user ID TURBO wants to copy a sequential data set into a file, TURBO enters
the following TSO/E OPUT command:
OPUT WORKLOAD.PROJA.NOV ’/u/turbo/wkld/proja/nov’ TEXT CONVERT(YES)

OPUT

OPUT
command...

TURBO.WORKLOAD.TOTALS /u/turbo/wkld/totals

OCT17 oct17

268 z/OS V2R2 UNIX System Services User's Guide



This command:
v Copies the MVS sequential data set TURBO.WORKLOAD.PROJA.NOV to a text

file with the path name /u/turbo/wkld/proja/nov.
v Converts the data from the MVS code page IBM-037 to code page IBM-1047,

using the default conversion table because YES was specified.
v Because nov is a new text file, this command sets a default mode

(read-write-execute permission) of octal 600, representing:
– owner=rw-
– group=---
– other=---

Using OCOPY
To copy a data set into a file and use data definition names (ddnames) instead of a
data set name and path name, use the OCOPY command.
1. If the data set and file are not yet allocated, allocate them and specify ddnames,

using either the ALLOCATE command or the DD statement in JCL.
The ALLOCATE command has these operands for allocating a z/OS UNIX file:
PATH
PATHDISP
PATHMODE
PATHOPTS

They are explained in z/OS TSO/E Command Reference.
2. Enter the OCOPY command, making sure that the ddnames used match the

ddnames that were specified when the data set and file were allocated.
3. You can use the CONVERT option for single-byte data, but not for double-byte

data. See “Double-byte data” on page 283 for information about code page
conversion for double-byte data.

4. If you are moving the data set or partitioned data set member permanently to
the file system: After the copy is completed, delete the original using the
TSO/E DELETE command.

Example: Using ALLOCATE and OCOPY

1. Using the ALLOCATE command to associate the PDSE member with the
ddname specified in the DDNAME keyword, user TURBO could enter:
ALLOCATE DDNAME(MVSWORK) DSNAME(’TURBO.WORKLOAD.TOTALS(OCT17)’)

Tip: For an ALLOCATE that begins with your TSO/E prefix as the high-level
qualifier, you can enter the data set name more simply as
DSNAME(WORKLOAD.TOTALS(OCT17))— without the user ID. (The TSO/E prefix
defaults to your user ID, but it can be set with the PREFIX command.) If you
do not enclose the data set name in quotes, TSO/E automatically prefixes the
name with your TSO/E prefix. For JCL, you need the user ID.

OCOPY
command...

INDD(MVSWORK) OUTDD(OPNWORK)

OCOPY
OCT17 oct17

Chapter 21. Copying data between the z/OS UNIX file system and MVS data sets 269



2. Using the ALLOCATE command to create a new z/OS UNIX file and associate
it with the ddname specified in the DDNAME keyword, TURBO could enter:
ALLOCATE DDNAME(OPNWORK) PATH(’/u/turbo/wkld/totals/oct17’)

PATHDISP(KEEP,DELETE) PATHOPTS(ORDWR,OCREAT)
PATHMODE(SIRUSR,SIWUSR)

In this example:
v PATHDISP(KEEP,DELETE) indicates that the file should be saved if the

session ends normally, but that it should be deleted if the session ends
abnormally.

v The PATHOPTS operand is required only when you are creating a new file.
PATHOPTS(ORDWR,OCREAT) indicates that the owner has read/write
access and this is a new file being created.

v Specifying PATHMODE is required only when you are creating a new file
(OCREAT). PATHMODE(SIRUSR,SIWUSR) indicates that the owner has read
and write permission. If you do not specify a PATHMODE, the default
permissions set when the file is allocated are:

owner=---
group=---
other=---

3. After the data set and file have been allocated, TURBO would enter the
OCOPY command, using the ddnames, to copy the MVS partitioned data set
member to a z/OS UNIX file using the default conversion table:
OCOPY INDD(MVSWORK) OUTDD(OPNWORK) TEXT CONVERT(YES) PATHOPTS(USE)

PATHOPTS(USE) indicates that TURBO wants to use the PATHOPTS specified
on the ALLOCATE command.

Example: Using JCL and OCOPY
Alternatively, TURBO could specify the ddnames in the DD statements and
perform the OCOPY in the JCL for a batch job. A DD statement allocates a data set
or file and sets up a ddname. In the following example, the //INMVS statement
refers to the input data set, and the //OUTHFS statement refers to the output file:
//TEST JOB MSGLEVEL=(1,1)
//COPYSTEP EXEC PGM=IKJEFT01
//INMVS DD DSN=TURBO.WORKLOAD.TOTALS(OCT17),DISP=SHR
//OUTHFS DD PATH=’/u/turbo/wkld/totals/oct17’,
// PATHDISP=(KEEP,DELETE),
// PATHOPTS=(OWRONLY,OCREAT,OEXCL),PATHMODE=(SIRUSR,SIWUSR)
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
OCOPY INDD(INMVS) OUTDD(OUTHFS) TEXT CONVERT(YES) PATHOPTS(USE)
/*

In this example:
v IKJEFT01 is the name of the Terminal Monitor Program (TMP), which needs to

be started to process the TSO/E OCOPY command.
v For CONVERT(YES), the default is TO1047 when you are copying from an MVS

data set to a file.
v PATHOPTS(USE) indicates that TURBO wants to use the PATHOPTS specified

on the ALLOCATE command.

For more information about:
v The OPUT and OCOPY commands, see z/OS UNIX System Services Command

Reference.
v The ALLOCATE command, see z/OS TSO/E Command Reference.

270 z/OS V2R2 UNIX System Services User's Guide



v The FREE command, see z/OS TSO/E Command Reference.
v The JCL, see z/OS MVS JCL Reference.

Copying a PDS or PDSE to a z/OS UNIX directory
This topic tells you how to copy a PDS or PDSE into a z/OS UNIX directory.

Using cp to copy a PDS to a z/OS UNIX directory
The following example uses the cp command to copy a sequential data set or PDS
member into a z/OS UNIX file. You use the same syntax for the mv command.

To copy all members from the fully-qualified PDS ’turbo.gammalib’ to the existing
z/OS UNIX directory dir1, enter the following:
cp "//’turbo.gammalib’" dir1

Note that dir1 is in the current working directory.

Using OPUTX to copy a sequential data set or members of a
PDS or PDSE

The OPUTX command is actually an exec that calls OPUT. You can use the OPUTX
command to copy either of these:
v Members of an MVS partitioned data set or PDSE to a z/OS UNIX directory
v A sequential data set or a single member of a partitioned data set to a file

For the copy, you can specify whether this is text or binary data, or select code
page conversion. When copying a partitioned data set or PDSE, you can specify a
copy to lowercase file names and append a suffix to the member names when they
become file names.

You can use the CONVERT option for single-byte data, but not for double-byte
data. See “Double-byte data” on page 283 for information on code page conversion
for double-byte data.

The single quotation marks around the directory name and file name are optional.
Avoid using OPUTX with pathnames that contain quotes and spaces. For details
on the OPUTX command, see z/OS UNIX System Services Command Reference.

Example: Using OPUTX with a PDSE

User TURBO wants to copy the members from the data set TURBO.PCALCLIB
into the directory /u/turbo/pcalclib. He issues the command:
OPUTX PCALCLIB /u/turbo/pcalclib LC CONVERT(YES) SUFFIX(c)

OPUTX

OPUTX

command...

TURBO.PCALCLIB /u/turbo/pcalclib

PGM1

PGM2

LIST

pgm1.c

pgm2.c

list.c

Chapter 21. Copying data between the z/OS UNIX file system and MVS data sets 271



This command:
v Copies the partitioned data set to a directory. Because the data set name is not

enclosed in single quotation marks, the system automatically uses the data set
whose high-level qualifier is the user's user ID.

v Converts data set member names to lowercase file names.
v Converts the file to code page IBM-1047.
v Appends the suffix .c to each file name.

The members of the partitioned data set become files in the directory:

Member name File name
TURBO.PCALCLIB(PGM1) /u/turbo/pcalclib/pgm1.c
TURBO.PCALCLIB(PGM2) /u/turbo/pcalclib/pgm2.c
TURBO.PCALCLIB(LIST) /u/turbo/pcalclib/list.c

Copying an MVS VSAM data set to a z/OS UNIX file
To copy a VSAM data set:
1. Use the access method services (AMS) utility to move the VSAM data set to a

sequential data set.
2. Copy the MVS sequential data set to a z/OS UNIX file. See “Copying a

sequential data set or PDS member into a z/OS UNIX file” on page 267 for
instructions.

To move the VSAM data set to a z/OS UNIX file permanently, delete the data set
from MVS with the TSO/E DELETE command.

Copying a z/OS UNIX file into a sequential data set or PDS member
You might want to copy a z/OS UNIX file to a sequential data set or to a member
of a partitioned data set or PDSE. After it is moved, the file:
v Can be data for an existing MVS application program.
v Can be sent to another system, including a workstation.

You can copy text files or binary files. See “Copying an executable module from
the file system” on page 281 for more information about copying an executable.

Using cp to copy a z/OS UNIX file into a sequential data set or
PDS member

The following examples use the cp command to copy a z/OS UNIX file into a
sequential data set or PDS member. You use the same syntax for the mv command.

To copy the z/OS UNIX file myunixfile (from the current working directory) to the
MVS PDS member myfile within the PDS called ’posix.cpmvtest’:
cp myunixfile "//’posix.cpmvtest(myfile)’"

To copy the z/OS UNIX file file1 to a new, fully-qualified sequential data set
’turbo.gammalib’ to be created with specific attributes:
cp -P "RECFM=U,space=(500,100)" file1 "//’turbo.gammalib’"

To copy the z/OS UNIX file f1 to a fully-qualified sequential data set
’turbo.gammalib’ and treat it as binary:
cp -F bin f1 "//’turbo.gammalib’"

272 z/OS V2R2 UNIX System Services User's Guide



Using OGET and OCOPY to copy a file into a sequential data
set or a PDS member

You can use the TSO/E OGET command or the TSO/E OCOPY command to copy
a z/OS UNIX file into a sequential data set or PDS member. You can enter either
of these commands:
v In TSO/E, in the shell, or in ISPF. See “Entering a TSO/E command” on page

198 for information about entering TSO/E commands in TSO/E, the shell, and
ISPF.

v In batch, using a Terminal Monitor Program (TMP) job.

To work with data set names and file names, use the OGET command. To work
with ddnames, use the OCOPY command.

OGET
You can use the CONVERT option for single-byte data, but not for double-byte
data. See “Double-byte data” on page 283 for information about code page
conversion for double-byte data.

Example: Using OGET with a PDSE member

If a person with the user ID TURBO enters the following command:
OGET ’/u/turbo/wkld/totals/oct17’ WORKLOAD.TOTALS(OCT17) CONVERT(YES)

the system:
v Copies the text file /u/turbo/wkld/totals/oct17 into the member OCT17 of the

PDSE TURBO.WORKLOAD.TOTALS. (The default file type is a text file.)
v Converts the data from code page IBM-1047 to the MVS code page IBM-037,

using the default conversion table. You can specify a table name if you do not
want to use the default table. If you do not want conversion, omit the
CONVERT operand.
For more information, see “Copying data: Code page conversion” on page 282.

If a member by this name already exists in the data set, it is replaced. If the
member does not exist, a new member is created. However, if a partitioned data
set or PDSE does not exist, it is not allocated.

If you are moving the z/OS UNIX file permanently to an MVS data set, remove it
from the file system with the rm shell command.

OGET

OGET

command...

TURBO.WORKLOAD.TOTALS /u/turbo/wkld/totals

OCT17 oct17

Chapter 21. Copying data between the z/OS UNIX file system and MVS data sets 273



Example: Using OGET with a sequential data set
If a person with the user ID TURBO enters the following command:
OGET ’/u/turbo/wkld/proja/nov’ WORKLOAD.PROJA.NOV CONVERT(YES)

the system:
v Copies the text file /u/turbo/wkld/proja/nov into the sequential data set

TURBO.WORKLOAD.PROJA.NOV. (The default file type is a text file.)
v Converts the data from code page IBM-1047 to the MVS code page IBM-037,

using the default conversion table. You can specify a table name if you do not
want to use the default table. If you do not want conversion, omit the
CONVERT operand.
For more information, see “Copying data: Code page conversion” on page 282.

If a data set with this name already exists, it is replaced. If the sequential data set
does not exist, it is automatically allocated. For details on the format and size of
the data set that is allocated, see the OGET command description in z/OS UNIX
System Services Command Reference.

If you are moving the z/OS UNIX file permanently to an MVS data set, remove it
from the file system with the rm shell command.

OCOPY
To copy a z/OS UNIX file into an MVS data set using data definition names
(ddname) instead of a data set name or path name, use the OCOPY command.
1. If the file and data set are not yet allocated, allocate them and specify ddnames,

using either the TSO/E ALLOCATE command or the DD statement for JCL.
The ALLOCATE command has these keywords for allocating a z/OS UNIX file:
PATH
PATHDISP
PATHMODE
PATHOPTS

They are explained in z/OS TSO/E Command Reference.
2. Enter the OCOPY command, making sure that the ddnames used match the

ddnames that were specified when the data set and file were allocated.
3. You can use the CONVERT option for single-byte data, but not for double-byte

data. See “Double-byte data” on page 283 for information on code page
conversion for double-byte data.

4. After the copy is completed, you can delete the file using the rm shell
command.

Example: Using ALLOCATE and OCOPY

OCOPY

OCOPY

command...

OUTDD(MVSWORK) INDD(OPNWORK)

OCT17 oct17

274 z/OS V2R2 UNIX System Services User's Guide



1. Using the ALLOCATE command to associate an existing z/OS UNIX file with
the ddname specified in the DDNAME keyword, user TURBO could enter:
ALLOCATE DDNAME(OPNWORK) PATH(’/u/turbo/wkld/totals/oct17’)

PATHOPTS(ORDWR,OAPPEND) PATHDISP(KEEP,KEEP)

In this example:
v The file already exists, and PATHOPTS(ORDWR,OAPPEND) indicates that

the file owner has read/write access to the file and the owner's data should
be written at the end of the file.

v PATHDISP(KEEP,KEEP) indicates that the file will be saved in case of normal
or abnormal termination.

2. Using the ALLOCATE command to associate the output data set with the
ddname specified in the DDNAME keyword, user TURBO could enter:
ALLOCATE DDNAME(MVSWORK) DSNAME(’TURBO.WORKLOAD.TOTALS(OCT17)’) OLD

where the DDNAME keyword specifies the ddname. OLD indicates that this is
an existing data set and others cannot access the data set while the system is
writing to it.
Tip: For an ALLOCATE, you can enter the data set name more simply as
DSNAME(WORKLOAD.TOTALS(OCT17))—without the user ID. (TSO/E automatically
prefixes the data set name with your user ID if you do not enclose the name in
quotes.) For JCL, you need the user ID.

3. TURBO then enters the OCOPY command, using ddnames, to copy the z/OS
UNIX file to an MVS data set:
OCOPY INDD(OPNWORK) OUTDD(MVSWORK) TEXT CONVERT(YES) PATHOPTS(USE)

PATHOPTS(USE) indicates that TURBO wants to use the PATHOPTS specified
on the ALLOCATE command.

Example: Using JCL and OCOPY
Alternatively, TURBO could specify the ddnames in the //IN DD and //OUT DD
statements in the JCL for a batch job. A DD statement allocates a data set or file
and sets up a ddname. For example:
//TEST JOB MSGLEVEL=(1,1)
//COPYSTEP EXEC PGM=IKJEFT01
//INHFS DD PATH=’/u/turbo/wkld/totals/oct17’,PATHOPTS=(ORDONLY)
//OUTMVS DD DSN=TURBO.WORKLOAD.TOTALS(OCT17),DISP=OLD
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
OCOPY INDD(INHFS) OUTDD(OUTMVS) TEXT CONVERT(YES) PATHOPTS(USE)
/*

In this example:
v IKJEFT01 is the name of the Terminal Monitor Program (TMP), which needs to

be started to process the TSO/E OCOPY command.
v PATHOPTS(USE) indicates that TURBO wants to use the PATHOPTS specified

on the ALLOCATE command.

For further information about:
v The OGET and OCOPY commands, see z/OS UNIX System Services Command

Reference.
v The ALLOCATE command, see z/OS TSO/E Command Reference.
v The JCL, see z/OS MVS JCL Reference.

Chapter 21. Copying data between the z/OS UNIX file system and MVS data sets 275



Copying z/OS UNIX files into a PDS or PDSE
You might want to copy z/OS UNIX files int a partitioned data set or a PDSE.
After they are moved, the files:
v Can be data for an existing MVS application program.
v Can be sent to another system, including a workstation.

Using cp to copy z/OS UNIX files into a PDS or PDSE
The following example uses the cp command to copy z/OS UNIX files (in the
current working directory) into a PDS or a PDSE. You use the same syntax for the
mv command. This example assumes the z/OS UNIX directory does not contain
subdirectories.

To drop .c suffixes before copying the files file1.c, file2.c, and file3.c in the
directory dir1 into the existing PDS ’turbo.gammalib’, enter the following:
cp -S d=.c file1.c file2.c file3.c "//’turbo.gammalib’"

Using OGETX to copy files into a PDS or PDSE
The OGETX command is actually an exec that calls OGET. You can use the OGETX
command to copy either of these:
v Files from a z/OS UNIX directory to an MVS partitioned data set or PDSE
v An individual file to a sequential data set or member of a partitioned data set

For the copy, you can specify text or binary data and select code page conversion.
When copying a directory, you can specify a copy from lowercase file names and
delete one or all suffixes from the file names when they become PDS member
names. For a file to be copied, its name must conform to partitioned data set
member name conventions after any suffix and LC processing is done. Member
names can be 1–8-character uppercase alphanumeric or national characters (A–Z,
0–9, $, #, @). They cannot start with a numeric.

If you specify a particular suffix, only files with that suffix are copied—with the
suffix deleted. If you use the SUFFIX operand without specifying a particular
suffix, any file names with suffixes have the suffix deleted, and all files are copied.
(After the suffix is deleted, if more than one file has the same name, each
subsequent file that is copied overlays a file with the same name that was copied
previously.)

The single quotation marks around the directory name and file name are optional.
Avoid using OGETX with pathnames that contain quotes and spaces.

You can use the CONVERT option for single-byte data, but not for double-byte
data. See “Double-byte data” on page 283 for information on code page conversion
for double-byte data.

If the OGETX command creates a new data set, it has the same format and size as
a data set created by the OGET command. For details on the OGETX command,
see z/OS UNIX System Services Command Reference.

276 z/OS V2R2 UNIX System Services User's Guide



Example: Using OGETX with a PDSE

User TURBO wants to copy the directory /u/turbo/gammalib into the partitioned
data set TURBO.GAMMALIB. He issues the command:
OGETX /u/turbo/gammalib GAMMALIB LC SUFFIX

This command:
v Copies into the partitioned data set all the files in the directory that meet MVS

member name requirements. Because the data set name is not enclosed in single
quotation marks, the system automatically supplies the user's user ID (TURBO)
as a high-level qualifier.

v Copies from files with lowercase, uppercase, or mixed-case names.
v Removes any suffixes to the file names. (After the suffix is deleted, if more than

one file has the same name, each subsequent file that is copied overlays a file
with the same name that was copied previously.)

The files in the directory become partitioned data set members:

File name Member name
/u/turbo/gammalib/pgm1.c TURBO.GAMMALIB(PGM1)
/u/turbo/gammalib/pgm2.c TURBO.GAMMALIB(PGM2)
/u/turbo/gammalib/list.prg TURBO.GAMMALIB(LIST)

Copying files within the z/OS UNIX file system
You can use the shell commands cp or pax or the TSO/E command OCOPY to
copy files within the z/OS UNIX file system.

Using the shell: Use the cp shell command to copy:
v One file to another file in the working directory, or to a new file in another

directory.
v A file, a set of files, or a set of directories to another location in your file system.

To copy one file to another file in the working directory, enter:
cp file1 file2

This command copies the contents of file1 into file2.

To copy a list of files into another directory, enter:
cp file1 file2 file3 dir1

OGETX
command...

OGETX

TURBO.GAMMALIB /u/turbo/gammalib

PGM1

PGM2

LIST

pgm1.c

pgm2.c

list.prg

Chapter 21. Copying data between the z/OS UNIX file system and MVS data sets 277



This command copies the files file1, file2, file3 into the directory dir1.

For further information about the cp command, see z/OS UNIX System Services
Command Reference.

You can use the pax shell command in copy mode to copy a set of directories and
files to another place in your file system.

To use pax in copy mode, specify the -r and -w (or -rw) options, as follows:
pax -rw pathname directory

pax reads the specified path name and copies it to the target directory. The target
directory must already exist and you must have write access to it. If a path name
is a directory, pax copies all the files and subdirectories in that directory, as well as
the directory itself, to the target directory.

Using pax in copy mode with additional options such as -C and -M can be useful
for migrating data from one file system type to another (for instance, from HFS to
zFS). For further information about the pax command, see the pax command
description in z/OS UNIX System Services Command Reference.

Using TSO/E: You can use the TSO/E OCOPY command to copy a z/OS UNIX
file to another z/OS UNIX file and, in the process, convert the data from one code
page to another.

Example: To copy a z/OS UNIX file to another z/OS UNIX file in a different
directory, converting the data:
ALLOCATE DDNAME(KPAYR) PATH(’/u/kinn/bin/payroll’)
ALLOCATE DDNAME(MPAYR) PATH(’/u/mills/bin/payroll’)
OCOPY INDD(KPAYR) OUTDD(mpayr) TEXT CONVERT((BPXFX311)) TO1047

The combination of CONVERT((BPXFX311)) and TO1047 indicates that you want to
use the ASCII conversion table to convert from ASCII to code page IBM-1047.
TO1047 or FROM1047 is required if CONVERT is specified.

With the CONVERT parameter, you can specify a data set name, a member name,
or both. In this example, the use of (( )) with no data set name indicates that you
are specifying a member that is a module in the standard search order for MVS.

If the files that are being allocated are new files, the PATHOPTS and PATHMODE
operands are required.

Copying an MVS data set into another MVS data set
You can use the TSO/E OCOPY command to copy an MVS data set into another
data set. It has a CONVERT option that lets you convert between these code pages:
v IBM-037 and IBM-1047
v IBM-037 and ISO8859-1
v Code pages in a user-defined conversion table

With the TSO/E OCOPY command, you can copy:
v A sequential data set to a sequential data set
v A sequential data set to a partitioned data set or PDSE member

278 z/OS V2R2 UNIX System Services User's Guide



v A partitioned data set or PDSE member to a partitioned data set or PDSE
member

v A partitioned data set or PDSE member to a sequential data set

You can enter the command:
v In TSO/E, in the shell, or in ISPF. See “Entering a TSO/E command” on page

198 for information about entering TSO/E commands in TSO/E, the shell, and
ISPF.

v In batch, using a Terminal Monitor Program (TMP) job.

The OCOPY command uses ddnames instead of data set names:
OCOPY INDD(ddname1) OUTDD(ddname2)

{TEXT | BINARY}
{CONVERT(convert_table_name | YES | NO)}
{TO1047 | FROM1047}

You do not need the PATHOPTS operand when copying from one data set to
another.

There are two ways to specify ddnames, using either the ALLOCATE command or
JCL for a batch job.

Example: Using ALLOCATE and OCOPY
Using the ALLOCATE command to associate each data set with a ddname, user
TURBO could enter:
ALLOCATE DDNAME(TMP1) DSNAME(TEMP1) SHR
ALLOCATE DDNAME(TMP1OC) DSNAME(TEMP1OC) OLD

where the DDNAME keyword specifies the ddname. SHR indicates that this is an
existing data set and others can access it while the system is reading from it. OLD
indicates that this is an existing data set and others cannot access the data set
while the system is writing to it.

TURBO could then enter the OCOPY command, using the ddnames from the
ALLOCATE command, to convert the data in TEMP1 from the MVS
country-extended code page to code page IBM-1047, and copy it to the data set
TEMP1OC:
OCOPY INDD(TMP1) OUTDD(TMP1OC) TEXT CONVERT(YES) TO1047

If CONVERT is specified, you must also specify TO1047 or FROM1047.

Example: Using JCL and OCOPY
Alternatively, TURBO could specify the ddnames in the //IN DD and //OUT DD
statements in the JCL for a batch job. A DD statement allocates a data set or file
and sets up a ddname. For example:
//TEST JOB MSGLEVEL=(1,1)
//COPYSTEP EXEC PGM=IKJEFT01
//IN DD DSN=TURBO.TEMP1,DISP=SHR
//OUT DD DSN=TURBO.TEMP1OC,DISP=OLD
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
OCOPY INDD(IN) OUTDD(OUT) TEXT CONVERT(YES) TO1047
/*

In this example,

Chapter 21. Copying data between the z/OS UNIX file system and MVS data sets 279



v IKJEFT01 is the name of the Terminal Monitor Program (TMP), which needs to
be started to process the TSO/E OCOPY command.

v TO1047 is required, because you are copying from one data set to another data
set.

Copying executable modules between MVS data sets and the z/OS
UNIX file system

Using cp to copy executables between MVS and z/OS UNIX
The following example uses the cp command to copy an MVS executable module
to a z/OS UNIX executable file in the current working directory. You use the same
syntax for the mv command.
cp -X "//’posix.my.loadlib(myexec)’" myexec

The following example uses the cp command to copy a z/OS UNIX executable file
in the current working directory to an MVS executable module. You use the same
syntax for the mv command.
cp -X myexec "//’posix.my.loadlib(myexec)’"

Using TSO/E commands and JCL to copy executables

Copying an executable module from a PDSE
If the load module is in a PDSE, you can copy it to the file system using one of
these commands:
v The OPUT or OPUTX command. For a new text (non-U-format data set) file, the

default permission is octal 600; you can use the chmod command or the MODE
keyword on the OPUTX command to make it executable. If you replace an
existing file, the existing permissions are unchanged.

v The OCOPY command. Specify PATHMODE(SIRWXU) to make the file
executable for the owner.

Copying an executable module from a PDS
If the load module is in a partitioned data set (PDS), you can do one of these:
v Use OPUTX. If the source data set is a PDS with an undefined record format,

OPUTX treats the members as load modules. In order for the program to be able
to run from the file hierarchy, the entry point must be at the beginning of the
load module.
In order for OPUTX to treat the file as a load module, do not specify BINARY or
TEXT. Once the module is in the file system, use chmod to make it executable. If
you replace an existing file, the permissions are unchanged.

v Use JCL that invokes the binder before you copy the module into the file system.
See the following example for sample JCL.

Example: Using JCL to copy from a PDS to the file system: To copy a load
module out of a partitioned data set and into the file system, you have to use the
binder to flatten the load module. Here is an example of JCL our friend TURBO
wrote for copying a z/OS XL C/C++ load module into the file system:
//TURBO JOB (XX,YY,ZZ),MSGCLASS=H,CLASS=A,
// MSGLEVEL=(1,1)
//*
//LKED EXEC PGM=IEWBLINK,REGION=500K,
// PARM=’LIST,REUS,RENT,NCAL,LET,MAP,CASE=MIXED’
//SYSPRINT DD SYSOUT=*

280 z/OS V2R2 UNIX System Services User's Guide



//INLIB DD DSN=TURBO.POSIX.LOADLIB,DISP=SHR
//*
//SYSLMOD DD PATH=’/u/turbo/llib/payrll’
//*
//SYSLIN DD *

INCLUDE INLIB(PAYRLL)
ENTRY CEESTART

/*

This job relinks, or rebinds, the load module PAYRLL from
TURBO.POSIX.LOADLIB(PAYRLL), and puts the output into the file system as
/u/turbo/llib/payrll. Be sure you specify the correct entry point—in this case,
CEESTART—for a z/OS XL C/C++ program. If you do not specify the entry point,
the entry point is assumed to be at the beginning of the load module.

If the file does not exist you must specify the PATHOPTS and PATHMODE
parameters on the DD statement in order to create the file with the appropriate
permissions. If the file already exists but you do not have the appropriate file
permissions, either the permissions or your access privileges will have to be
changed.

Copying an executable module from the file system: There are two methods for
copying an executable module from the file system into a data set. These methods
are not exactly copy operations; instead, they bind the executables over to the data
set. As a result, certain attributes are not preserved, but rather, re-established:
v Use OGETX without the TEXT or BINARY option. If you are copying into a

target data set that is a PDS or PDSE with an undefined record format, OGETX
treats the files as executables. Because the entry point is re-established, this
option only works if the original entry point is at the beginning of the
executable.
Along with the entry point, other attributes are re-established, such as the
authorization (AC) value, which is reset to AC=1 (the AUTH option allows it to
be set to AC=1).
Be aware that most executables will not copy successfully into a PDS. When you
attempt to execute this kind of operation, you'll receive the following type of
error:
IEW2606S 4B39 MODULE INCORPORATES PROGRAM MANAGEMENT 3
FEATURES AND CANNOT BE SAVED IN LOAD MODULE FORMAT.

Instead of copying into a PDS, executables created with OS/390 V2R4 or later
can be copied into a PDSE.
Another exception is DLL-enabled executables created with OS/390 V2R4 or
later. These executables will not copy successfully into both PDSs and PDSEs.
This occurs because the information that is provided by the IMPORT control
statements is not preserved, and must be specified again during the rebind.

v Use JCL that invokes the binder before you copy the executable into the data set.
See the following example for sample JCL.

Example: Using JCL to copy from the file system to a PDS: To copy an executable out
of the file system and into a data set, you need to use the binder to reprocess the
executable. Here is an example of JCL our friend TURBO wrote for copying a
z/OS XL C/C++ load module into a data set:
//TURBO JOB (XX,YY,ZZ),MSGCLASS=H,CLASS=A,
// MSGLEVEL=(1,1)
//*
//LKED EXEC PGM=IEWBLINK,REGION=500K,
// PARM=’LIST,REUS,RENT,NCAL,LET,MAP’

Chapter 21. Copying data between the z/OS UNIX file system and MVS data sets 281



//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=TURBO.POSIX.LOADLIB,DISP=SHR
//*
//INLIB DD PATH=’/u/turbo/llib/payrll’,
// PATHOPTS=(ORDONLY)
//*
//SYSLIN DD *

INCLUDE INLIB
ENTRY CEESTART
NAME PAYRLL(R)

/*

This job relinks, or rebinds, the XL C/C++ executable /u/turbo/llib/payrll, and
puts the output into TURBO.POSIX.LOADLIB(PAYRLL). Be sure you specify the
correct entry point—in this case, CEESTART—for a XL C/C++ program. If you do
not specify the entry point, the entry point is assumed to be at the beginning of the
executable. Also, if required, you must specify AC=1.

If this is a DLL created using V2R4 or later and without the use of the prelinker,
any definition side-decks of IMPORT control statements will need to be
re-specified as input to the binder. In general, any control statements and options
that were used when the original /u/turbo/llib/payrll was created will need to
be specified again.

Copying data: Code page conversion
The method you use to convert data from one code page to another depends on
whether it is single-byte or double-byte data.

Single-byte data
If you are copying single-byte data into or out of the z/OS UNIX file system, you
can use one of these:
v Working in MVS, you can use the z/OS XL C/C++ iconv utility to convert MVS

data from one code page to another. For information about the z/OS XL C/C++
iconv utility, see the iconv command description in z/OS XL C/C++ Programming
Guide.

v Working in the shell, you can use the iconv shell command to convert z/OS
UNIX data from one code page to another. For information about the iconv shell
command, see the iconv command description in z/OS UNIX System Services
Command Reference.

v The CONVERT operand on the OCOPY, OGET, OGETX, OPUT, and OPUTX
commands provides these code page conversion choices for the data as you are
copying:

CONVERT((BPXFX111))
Specifies a conversion table to convert between code pages IBM-037 and
IBM-1047.

CONVERT((BPXFX311))
Specifies an ASCII-EBCDIC conversion table to convert between code
pages ISO8859-1 and IBM-1047.

CONVERT(YES)
Specifies the default conversion table BPXFX000, which is an alias that
points to BPXFX111, to convert the data.

CONVERT(user-defined table)
Specifies the name of a user-defined conversion table.

282 z/OS V2R2 UNIX System Services User's Guide



In this list, the use of (( )) with no data set name indicates that you are
specifying a member that is a module in the standard search order for MVS.

Double-byte data
If you are moving double-byte data into or out of the z/OS UNIX file system, you
can convert the data to or from the shell-supported DBCS code page IBM-939
using one of two utilities:
v Working in MVS, you can use the z/OS XL C/C++ iconv utility. For information

about the z/OS XL C/C++ iconv utility, see z/OS XL C/C++ Programming Guide.
v Working in the shell, you can use the iconv shell utility. For information about

the iconv shell utility, see the iconv command description in z/OS UNIX System
Services Command Reference.

Example: Using the iconv shell utility with MBCS data
In this example, the PDSE member MBCSDATA is moved into the file system and
then converted to code page IBM-939 from code page IBM-932 (a multibyte ASCII
code page):
1. Run the OPUT command from the shell, using the double quotation marks to

prevent the shell from processing it:
tso oput "’usr3.data(mbcsdata)’ ’/tmp/usr3/mbcsdata’ bin"

2. Change to the directory that the file mbcsdata is in:
cd /tmp/usr3

3. Use iconv to convert the data and put it into the output file dbcsdata:
iconv -f IBM-932 -t IBM-939 mbcsdata > dbcsdata

Chapter 21. Copying data between the z/OS UNIX file system and MVS data sets 283



284 z/OS V2R2 UNIX System Services User's Guide



Chapter 22. Transferring files between systems

You can create applications and files at your workstation and then move the
resulting files to the z/OS UNIX file system for further application development,
such as compiling and debugging, or to share the files. There may also be times
when you want to send z/OS UNIX files to your workstation. This information
discusses several methods for moving files directly between your workstation and
z/OS UNIX. Note that most of the examples show z/OS UNIX files being
transferred to or from the workstation.

File transfer directly to or from z/OS UNIX
To move a file or file system between your workstation and z/OS UNIX, you can
use one of the following methods.

Transferring files using File Transfer Protocol (FTP)
If both the workstation and z/OS UNIX have TCP/IP installed, you can use the
File Transfer Protocol (FTP) facility of TCP/IP.

With the z/OS Communications Server installed on a remote z/OS system, you
can ftp files into or from that system's file system.

An FTP client is not available for the shell and utilities. However, we have ported
ncftp, an FTP client, and it is available for downloading at z/OS UNIX System
Services Tools and Toys Web page (http://www.ibm.com/systems/z/os/zos/
features/unix/bpxa1toy.html). You can use it to ftp files into or from a local z/OS
UNIX file system.

Transferring files using the Network File System feature
Using the Network File System feature, you can edit or browse a z/OS UNIX file
directly from your workstation. For example, if you want to copy a file to a
workstation file, you do not need to move it to an MVS data set first. Here is an
example showing the steps involved:
1. Log on to the host using mvslogin.
2. Mount the directory /u/usr1/a/b at the workstation with the command:

mount mvshost:"/u/usr1/a/b" /x/y

3. Copy the file /u/usr1/a/b/c to the workstation file /mycopy/c with the command:
cp /x/y/c /mycopy/c

Using the Network File System feature from your workstation, you can copy a
workstation file to z/OS UNIXfile without having to move it to an MVS data set
first. This example assumes that you have run your mvslogin and mounted the
directory /u/usr1/pgma/b at the workstation under the pathname /mypgma/b. You
copy the workstation file /proj2/modc to the file /u/usr1/pgma/b/modc with the
command:
cp /proj2/modc /mypgma/b/modc

Suppose you have an executable that you compiled and linked ont a workstation,
and you want to store it in an MVS data set but run it from the workstation. You
copy the executable to the mounted z/OS UNIX file in binary format. Later, when

© Copyright IBM Corp. 1996, 2015 285

http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1toy.html
http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1toy.html
http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1toy.html


you want to run the program from the workstation, you use NFS to mount the
directory in binary format, and then run the program from the mounted z/OS
UNIX file system.

For more information about working with NFS files on your workstation, see
DFSMS: Network File System User's Guide.

Transferring files using the SEND and RECEIVE programs
You can transfer files using the SEND and RECEIVE programs that are available
with PC 3270 emulation programs and with OS/2 Extended Edition Version 1.2 or
later.

Requirement: Before you use the SEND and RECEIVE programs, you must be
working in TSO/E. If you are using the OMVS interface to work in the shell, use
the TSO function key to switch to TSO/E command mode before using the
programs.

Transferring files using the File Transfer, Access, and
Management Function

You can also transfer files between your workstation and the z/OS UNIX file
system using the File Transfer, Access, and Management (FTAM) function of
OSI/File Services.

File transfer using MVS data sets
Transferring files between systems can also take place without the Network File
System feature.

Transferring files into the z/OS UNIX file system
If the z/OS Communications Server is installed on a remote system, you can ftp
files directly into that file system.

Tip: If you are ftp-ing to a remote z/OS UNIX file system, be aware that the z/OS
UNIX server often listens to a port other than the well-known port. Make sure you
know the address and port to use.

If you are not using the Network File System feature and the z/OS
Communications Server is not installed, perform these steps:
1. Transfer the data to the host, using your preferred method (for example, FTP).
2. While logged on to TSO/E, copy the data from an MVS data set into the file

system, using the TSO/E OPUT command.
Single-byte data: If you need to convert to a shell-supported code page, use
the CONVERT option on the OPUT command. See “Using OPUT” on page 267.
Double-byte data or multibyte ASCII-based data: If you need to convert to a
shell-supported code page, use the z/OS C/C++iconv utility (while working in
MVS) or the iconv shell utility (while working in the shell). For more
information, see “Copying data: Code page conversion” on page 282.

3. If you want, you can delete the MVS data set after the copy with the TSO/E
DELETE command.

286 z/OS V2R2 UNIX System Services User's Guide



Transferring files to the workstation
If you are working without the Network File System feature, perform these steps
while logged on to TSO/E:
1. Copy the file to an MVS data set (sequential or partitioned) using the TSO/E

OGET command. See “OGET” on page 273.
Single-byte data: If you need to convert to a different code page, you can use
the CONVERT option on the OGET command.
Double-byte data: If you need to convert the data, you can use the iconv shell
utility while working in the shell. For more information, see “Copying data:
Code page conversion” on page 282.

2. If you want, you can delete the file after the copy with the rm shell command.
3. Send the data set to the workstation, using your preferred method (for

example, FTP).

Transporting an archive file on tape or diskette
A directory or file system that is going to be transported on tape or diskette is put
into an archive file, as discussed in “Backing up and restoring files: options” on
page 224. This information discusses the steps involved in
v Installing an archive file from tape or diskette into a z/OS UNIX file system
v Putting an archive file on tape or diskette to send to another site

Putting an archive file into the file system
You may receive an archive file on tape or diskette. There are two main steps
involved in installing the archive file into a z/OS UNIX file system:
1. Transferring the archive file to an MVS data set, from either a workstation or a

tape drive at your MVS system.:
2. Copying the archive file from the data set into the file system

Step 1. Transferring the archive file to a data set
From a workstation: If you have TCP/IP on your workstation, you can use the ftp
command to transfer an archive file to MVS or to the z/OS shell (if you have the
z/OS Communications Server installed).

a. Copy the archive file into a file.

b. Enter the FTP command.

Tip: If you are ftp-ing to a remote z/OS UNIX file system, be aware that
the z/OS UNIX server often listens to a port other than the well-known
port. Make sure you know the address and port to use.

c. Enter the binary subcommand.

d. Enter the put subcommand, specifying a z/OS UNIX directory or a
sequential or partitioned data set as the destination.

If you are specifying a data set, you may prefer to use one partitioned data
set for all your archive files, with each archive file a member in the
partitioned data set. Here is an example of the partitioned data set
attributes you might want:

Chapter 22. Transferring files between systems 287



DATA SET NAME: TURBO.CMPL.ARCHIVE

GENERAL DATA: CURRENT ALLOCATION:
Volume serial: TRBLK1 Allocated Cylinders: 26
Device type: 3380 Allocated extents: 5
Organization: PO
Record format: VB
Record length: 255
Block size: 23476 CURRENT UTILIZATION:
1st extent Cylinders: 12 Used Cylinders: 0
Secondary Cylinders: 0 Used extents: 0

Creation date: 1994/12/18
Expiration date: ***NONE***

e. Go to “Step 2. Copying the file from a data set into a file system.”

From a tape drive at your MVS system: If you have an archive file on tape and
the necessary tape drive at your MVS system, you can copy the file directly from
the tape into a data set.

a. Copy the archive file from the tape into a data set. Here is some sample
JCL for copying an archive file (TURBO.TARTAPE) from a tape into a data
set (TURBO.TAR):
//TAPE2DS JOB ,’,MSGLEVEL=(1,1)
//*
//STEP1 EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSNAME=TURBO.TARTAPE,UNIT=TAPE,LABEL=(1,NL),DISP=OLD,
// VOL=SER=123456,DCB=(RECFM=U,BLKSIZE=5120)
//SYSUT2 DD DSNAME=TURBO.TAR,DISP=(NEW,CATLG),UNIT=SYSDA,
// SPACE=(5120,(100,100),RLSE)

Note: For LABEL=, NL indicates that there is no label. Use NL when
transferring a tape between an MVS and a UNIX system; use SL when
transferring a tape between two MVS systems.

b. Go to “Step 2. Copying the file from a data set into a file system,” which
follows.

Step 2. Copying the file from a data set into a file system
Working in MVS: Use the pax or the tar shell command to restore the directory or
file system from the archive file; all the component files are restored from the
archive file. If you need to convert the source to the code page IBM-1047 used in
the z/OS shell, use the pax command with the -o option. See “Backing up and
restoring files: options” on page 224 for more information.

Sending an archive file to others
The following are the steps for sending an archive file that contains multiple files
on tape or diskette. In the example, the pax command creates an archive file for a
directory or file system. The TSO/E OGET command, with the BINARY option,
then copies the archive file into a partitioned data set or a sequential data set. Step
2 is not necessary with OS/390 Release 8 and later.

Step 1. Create an archive file for multiple files
You can use either the pax or the tar shell command to create the archive file. All
the component files are stored in one archive file. For more information, see

288 z/OS V2R2 UNIX System Services User's Guide



“Backing up and restoring files from the shell” on page 225, and also see z/OS
UNIX System Services Command Reference for a complete description of the pax and
tar commands.

If you need to convert to a different code page than the one used in the shell, use
the pax command with the -o option. See “Backing up and restoring files: options”
on page 224 for more information.

Step 2. Copy the file from the file system to a data set
Use the TSO/E OGET command with the BINARY option to copy the archive file
into a sequential data set. See “OGET” on page 273 for more information.
tso "OGET ’/tmp/testpgm.pax’ ’POSIX.TESTPGM.PAX’ BINARY"

The OGET command copies the archive file into the specified MVS data set:
v '/tmp/posix/testpgm.pax' is the absolute pathname for the archive file.
v 'POSIX.TESTPGM.PAX' is the fully qualified data set name for the data set.
v BINARY indicates that the data is binary.

The final step is to use ftp (or some other method) to send the file to the intended
destination.

Step 3. Transfer the archive file to a tape or diskette
To a tape or diskette at the workstation: While working in MVS:

a. For information about how to copy an archive file from the file system into
a data set, see “Step 2. Copy the file from the file system to a data set.”

b. Enter the FTP command.

c. Enter the binary subcommand.

d. Enter the put subcommand, specifying a pathname at your workstation as
a destination.

e. At the workstation, copy the archive file into a file.

To a tape at the host: While working in MVS:

a. For information about how to copy an archive file from the file system into
a data set, see “Step 2. Copy the file from the file system to a data set.”

b. Copy the archive file from the data set to tape. Here is some sample JCL
for copying a data set containing an archive file (TURBO.TAR) to a tape
(TURBO.TARTAPE):
//DS2TAPE JOB ,’,MSGLEVEL=(1,1)
//*
//STEP1 EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSNAME=TURBO.TAR,DISP=OLD
//SYSUT2 DD DSNAME=TURBO.TARTAPE,UNIT=TAPE,LABEL=(1,NL),
// DISP=(NEW,KEEP)

Guideline: For LABEL=, NL indicates that there is no label. Use NL when
transferring a tape between an MVS and a UNIX system; use SL when
transferring a tape between two MVS systems.

Chapter 22. Transferring files between systems 289



290 z/OS V2R2 UNIX System Services User's Guide



Part 3. Appendixes

© Copyright IBM Corp. 1996, 2015 291



292 z/OS V2R2 UNIX System Services User's Guide



Appendix A. Advanced vi topics

After you have mastered basic usage of vi, as described in “Using the vi screen
editor” on page 242, you may want to explore some of the editor's other
capabilities.

Editing options
vi has many options that change the way the editor behaves during an editing
session. We will discuss a few that may be immediately useful. For a complete list
of these options, see the vi command description in z/OS UNIX System Services
Command Reference.

You must be in Command Mode to set options. To set an option, begin by typing a
colon (:). You will see the cursor move to the bottom of the screen. Then type the
word set, a space, and the name of the option you want to set—we will talk about
option names in a moment. You can correct typing mistakes by backspacing. When
you have typed everything correctly, press <Enter>.

One commonly used option is "ignorecase". If you type:
:set ignorecase

vi does not pay attention to the case of letters when searching. Many people prefer
caseless searches over case-sensitive ones. If you want to go back to case-sensitive
searches, type
:set noignorecase

Setting tab stops
By default, vi sets tab stops every 8 spaces. For example, if you begin a paragraph
by typing a tab, the tab moves the cursor over 8 spaces. Many people feel 8 spaces
are too many for a tab stop. You can set tab stops of 5 spaces with:
:set tabstop=5

Similar commands can set tab stops to any number of spaces.

Using abbreviations
You can define an abbreviation for commonly used words or phrases. For example,
if you type:
:ab www World Wide Web

and then press <Enter>, this sets the abbreviation. As soon as you type the
abbreviation in text and move the cursor to the next space after www, the
abbreviation is expanded into the associated phrase. The abbreviation function is
case-sensitive. An abbreviation lasts for the duration of a vi session. For
information about how to set up a file with frequently used editing options, see
“Setting up an editing options command file” on page 294.

If you want to get rid of an abbreviation that has been set, use the :una
(unabbreviate) command. For example, type:
:una www

© Copyright IBM Corp. 1996, 2015 293



to get rid of the abbreviation.

Other editing options
For a complete list of the editing options, see the vi command description in z/OS
UNIX System Services Command Reference.

Setting up an editing options command file
A command file contains a number of commands that can be executed as if they
were typed in a vi session. For example, you might use vi to create a file with the
contents:
set wrapmargin=8
set tabstop=5
set shiftwidth=5
ab www World Wide Web

This sets all the options you want to use and all the abbreviations you need. The
file can only contain instructions that normally start with a colon (:) in vi, but you
omit the colons in the command file. During a vi session, you can execute all the
instructions in the command file with the instruction:
:so cmdfile

where cmdfile is the name of your command file. so stands for source, and it tells
vi that the given file should be taken as the source of a number of commands.

You can execute the commands in a command file when you first start vi. Start vi
with the command:
vi -c ’so cmdfile’ filename

where cmdfile is the name of your command file and filename is the name of the file
you want to edit. You might want to set up an alias for vi -c ’so cmdfile’; for
example:
alias vic="vi -c ’so cmdfile’"

You can also set up a $HOME/.exrc file that contains all the commands you may
want to run whenever you enter vi.

Editing several files
In a typical vi session, you may want to edit several files. When you have finished
editing one file, you must first save your text in that file. Once you have saved
your changes, you can start editing a different file by typing:
:edit newfilename

and then press <Enter>. This will clear out the text you have been editing and set
things up so you can edit the new file. If the file already exists, its current contents
will be read in.

Here's a trick to remember when you want to edit a number of files. If you start vi
with a command line of the form
vi file1 file2 file3 ...

you can edit several files one after the other. After you have finished editing a file
and saved it, you can move among files using the following commands:

294 z/OS V2R2 UNIX System Services User's Guide



Command
Action

:n Edits the next file in the list of files.

:n! Edits the next file in the list of files and discards the changes made to the
current file.

:n filenames
Specifies a new list of files to be edited.

It may be particularly useful to use wildcard characters on the vi command line, as
in
vi *.c

This is expanded to a list of all the files under the current catalog that have the .c
extension.

Combining files
Occasionally, you may want to combine a number of files into a single document.
For example, you may have a table of data stored in one file and want to add the
table to another file. You can read in the contents of a file after the line that holds
the cursor. The r stands for Read; it reads the contents of a file to be added to the
current file after the line indicated by the cursor.

The same sort of command can be used to combine the chapters of a document
into a single file. For example,
:r chapter1
G
:r chapter2
G
:r chapter3

will read in chapters that are stored in separate files. Notice that we had to use G
commands to go to the end of the file after each read operation, so that the next
input file would be added to the end of the text.

Editing program source code
Because vi originated on a UNIX system, the editor has a number of features
aimed primarily at programming in the C language. However, these same features
are applicable to many other languages.

Controlling indention
The source code for a program differs from ordinary text in a number of ways.
One of the most important of these is the way in which source code uses
indention. Indention shows the logical structure of the program: the way in which
statements are grouped into blocks.

Issue the command:
:set autoindent

(Don't forget to press<Enter>after you have typed this.) This command turns on an
option supplied primarily to control indention when entering source code. Each
line is automatically indented the same distance as the previous one. As a

Appendix A. Advanced vi topics 295



programmer, you will find this saves you quite a bit of work getting the indention
right, especially when you have several levels of indention.

When you are entering code with autoindent enabled, typing <EscChar-T> gives
you another level of indention, and typing <EscChar-D>takes one away. While you
are in Insert Mode (not Command Mode):
v Type <EscChar-T> at the start of a line to indent it in one level.
v Type <EscChar-D> at the start of a line to indent it out one level.

The amount of indention provided by <EscChar-T> is one tab character; the space
depends on the setting of tabstop.

Try using the autoindent option when you are entering source code. It simplifies
the job of getting indention correct. It can even sometimes help you avoid bugs; for
example, in C source code, you usually need one closing } for every level of
indention you go backwards.

The << and >> commands are also helpful when indenting source code:

>> Shifts a line right 8 spaces (that is, adds 8 spaces of indention)

<< Shifts a line left 8 spaces (that is, removes 8 spaces of indention)

You can shift a number of lines by typing the number followed by >> or <<. For
example, typing 5>> will indent five lines, including the line the cursor is on.

The default shift is 8 spaces (right or left). You can change this default with this
command:
:set shiftwidth=4

Tip: It is convenient to have a shiftwidth that is the same size as the width
between tab stops.

Searching for opening and closing brackets
The characters (, [, {, and < can all be called opening brackets. When the cursor is
resting on one of these characters, pressing the % key moves the cursor from the
opening bracket to the corresponding closing bracket character ), ], }, and >,
keeping in mind the usual rules for nesting brackets. For example, if you move the
cursor to the first ( in:
if ( cos(a i ) > sin(b i +c i ) )

{
printf("cos and sin equal!");

}

and press %, you will see the cursor jump to the parenthesis at the end of the line.
This is the closing parenthesis that matches the opening one.

Similarly, if the cursor is on one of the closing bracket characters, pressing % will
move the cursor backwards to the corresponding opening bracket character.

Not only does this search character help you move forward and backward through
a program in long jumps, but it also lets you check the nesting of parentheses in
source code. For example, if you put the cursor on the first { at the beginning of a
C function, pressing % should move you to the } that (you think) ends the
function. If it doesn't, something has gone wrong somewhere.

296 z/OS V2R2 UNIX System Services User's Guide



Making substitutions
If the name of a data object or function has to be changed in a program (for
whatever reason), it becomes necessary to change every occurrence of that name.
This would be a tedious process using the vi features we have discussed up to this
point, because you would have to search through each source file for the name and
then type in the new name wherever the old one was found. To avoid much of this
work, vi offers the substitute command.

The usual form of the substitute command is
:s/pattern/replacement/

where pattern is any of the patterns used in searches, and replacement is any string.

As soon as you type the colon (:), you see the cursor move to the bottom of the
screen. Then type the rest of the command and press <Enter>. The command puts
the given replacement string in the place of the first string that matches the given
pattern.

What happens if a line has more than one string that matches the pattern? The s
command replaces only the first occurrence of a given string on a line. The
position of the cursor in the line does not matter.

If you want to change every occurrence of a string on a line, type a g (for global)
after the last slash.

Specifying a range of lines to change
You can also apply s to a range of lines. For example, let's examine the command:
:1,200s/^/!/

What happens? The 1,200 in front of the s indicates that the command should be
applied to the lines from 1 through 200 (everything up to the 200th line in the file).
The s command itself says to replace the beginning of the line (^) with an
exclamation point. So an exclamation point would be put at the beginning of every
line up to number 200. To get rid of the exclamation points, you would type:
:1,200s/^!//

which says change every ! at the beginning of a line to nothing.

Determining line numbers
In these instructions, we made use of line numbers to refer to lines. How do you
know what number a line has? If you just want to know the number of one line,
move the cursor to that line and type
:.=

For another approach, type:
:set number

and press <Enter>. As you can see, this displays the number of every line in the
file. If you want to turn off the display of line numbers, type:
:set nonumber

A number of special symbols can be used when specifying a range of lines. The .
(period) stands for the line where the cursor is currently positioned. For example,
move the cursor to this line and type:

Appendix A. Advanced vi topics 297



:1,.s/$/???/

This adds ??? to the end of every line from the start of the file to the line
containing the cursor.

When you issue a substitute command with a range, it is all right if some of the
lines in the range do not contain the pattern you are replacing. When specifying a
range of lines, $ stands for the last line in the file. For example, the command:
:1,$s/the/THE/g

changes every the in the file to uppercase (including words like there, where the
is part of another word).

Checking as you substitute
What would you do now if you want to change the variable i into a k? You can't
just use an instruction like
:254,267s/i/k/g

because that will change the letter i into k even in other words like int and list.

The solution to this is to add a c (for check) after the s command. For example,
:s/pattern/replacement/gc

When you do this, vi checks with you before making every substitution. Before
each possible change, vi prints the line at the bottom of your screen and puts a ^
under the string that might be changed. If you want the change to happen, press
the <Y> key followed by <Enter>. If you do not want the change to happen, press
the <N> key followed by <Enter>.

298 z/OS V2R2 UNIX System Services User's Guide



Appendix B. Using awk

awk is a programming language that lets you work with information stored in
files. With awk programs, you can:
v Display all the information in a file, or selected pieces of information
v Perform calculations with numeric information from a file
v Prepare reports based on information from a file
v Analyze text for spelling, frequency of words or letters, and so on

You can combine these operations to perform quite complicated tasks.

awk allows most of the logical constructs of modern computing languages: if-else
statements, while and for loops, function calls, and so on.

This appendix introduces some of the principles and concepts of awk. The z/OS
version of awk is based on the POSIX definition of awk, and also supports the
functionality of nawk, the new awk. Experienced programmers may prefer to turn
directly to the awk command description in z/OS UNIX System Services Command
Reference. For an excellent reference for awk, see The AWK Programming Language
by Alfred V. Aho, Peter J. Weinberger, and Brian W. Kernighan (Addison-Wesley,
1988). Aho, Weinberger, and Kernighan are the people who created awk at AT&T
Laboratories, and the name awk comes from their last names.

Data files
awk programs work with data. Programs can obtain data typed in from the
workstation or from the output of other commands (for example, through pipes),
but usually data is obtained from data files.

awk's data files are always text files (not binary files). The files contain readable
text—for example, words, numbers, and punctuation characters.

As an example, consider a data file named hobbies, which contains information on
the hobbies of a group of people. Each line in this file gives a person's name, one
of that person's hobbies, how many hours a week he or she spends on the hobby,
and how much money the hobby costs per year. One hobby per person appears on
each separate line. The file might look like this:

This file is included with the z/OS UNIX shell as /samples/hobbies.

Jim reading 15 100.00
Jim bridge 4 10.00
Jim role playing 5 70.00
Linda bridge 12 30.00
Linda cartooning 5 75.00
Katie jogging 14 120.00
Katie reading 10 60.00
John role playing 8 100.00
John jogging 8 30.00
Andrew wind surfing 20 1000.00
Lori jogging 5 30.00
Lori weight lifting 12 200.00
Lori bridge 2 0.00

Figure 25. The hobbies file

© Copyright IBM Corp. 1996, 2015 299



Records
An awk data file is a collection of records. A record contains a number of pieces of
information about a single item; these pieces are called fields.

Records are separated by a record separator character, which, for awk, is usually the
newline character. The newline character shows where one line of text ends and
another begins. By using the newline as a record separator, each line of the file
becomes a separate record. This is convenient and easy to understand; newline is
used as a record separator in all of the examples.

In the hobbies file, each line is a separate record, giving a set of information about
one person's hobby.

Fields
A record consists of a number of fields. A field is a single piece of information. For
example, the hobby record:
Jim reading 15 100.00

contains four fields:
Jim
reading
15
100.00

Fields should be provided in the same order in each record. That way awk and
other programs can easily access a particular piece of information in any record.

The fields of a record are separated by one or more field separator characters. The
hobbies file uses strings of blank characters (spaces) to separate fields. By default,
awk uses blanks or horizontal tab characters to separate fields. You can change the
default.

The shape of a program
An awk program looks like this:
pattern {actions}
pattern {actions}
pattern {actions}

...

Each line is a separate instruction. awk looks through the data files record by
record and executes the instructions, in the given order, on each record.

Simple patterns
An instruction of the form:
pattern {actions}

indicates that awk is to perform the given set of actions on every record that meets
a certain set of conditions. The conditions are given by the pattern part of the
instruction.

The pattern of an instruction often looks for records that have a particular value in
some field. The notation $1 stands for the first field of a record, $2 stands for the
second field, and so on. For example, here's a simple awk instruction:
$2 == "jogging" { print }

300 z/OS V2R2 UNIX System Services User's Guide



The notation == stands for "is equal to". Therefore, the instruction means: If the
second field in a record is jogging, print the entire record.

This instruction is a complete awk program. If you ran this program on the
hobbies file, awk would look through the file record by record (line by line).
Whenever a line had jogging as its second field, awk would print the complete
record. The printout from the program would be:
Katie jogging 14 120.00
John jogging 8 30.00
Lori jogging 5 30.00

Let's take another example. Ask yourself what the following awk program does.
$1 == "John" { print }

As you probably guessed, it prints every record that has John as its first field. The
printout from the program would be:
John role playing 8 100.00
John jogging 8 30.00

You could perform the same sort of search on any text database. The only
difference is that databases tend to contain a great deal more data than this
example.

If an awk instruction does not contain an action, print is assumed. The preceding
examples use the print action; however, this action does not need to be written
explicitly. You could write the programs as:
$2 == "jogging"

and:
$1 == "John"

and they would have exactly the same effect.

On the other hand, you can specify an action and leave out the pattern part of an
instruction. In this case, awk applies the action part of the instruction to every
record in the file. For example:
{ print }

is a complete awk program that displays every record in the data file.

Using blanks and horizontal tabs
You can put any number of extra blanks or horizontal tabs into awk patterns and
actions. For example, you can enter:
{ print $1 , $2 , $3 }

Applying more than one instruction
When an awk program contains several instructions, awk applies every
appropriate instruction to the first record, then every appropriate instruction to the
second record, and so on. Instructions are applied in order. For example, consider
the following awk program, which has two instructions:
$1 == "Linda"
$2 == "bridge" { print $1 }

The output of this program is:

Appendix B. Using awk 301



Jim
Linda bridge 12 30.00
Linda
Linda cartooning 5 75.00
Lori

awk looks through the file record by record. The first record to satisfy one of the
patterns is:
Jim bridge 4 10.00

so awk prints the first field of the record (as dictated by the second instruction).
The next record of interest is:
Linda bridge 12 30.00

This satisfies the first instruction's pattern, so the whole record is printed. It also
satisfies the second instruction's pattern, so the first field is printed. awk continues
through the file, record by record, executing the appropriate actions when a record
satisfies the pattern.

Assigning values to variables
Suppose you want to find out how many people have jogging as a hobby. To do
this, you have to look through the hobbies file, record by record, and keep a count
of the number of records that have jogging in their second field. This means that
you have to remember the count from one record to the next.

awk programs remember information by using variables. A variable is a storage
place for information. Every variable has a name and a value. An awk action of
the form:
name = value

assigns the specified value to the variable that has the given name. For example:
count = 0

assigns the value 0 to the variable count.

You can use variables in expressions. For example, the value of the expression:
count + 1

is the current value of count, plus 1.

String values
A string value is just a sequence of characters, like "abc". A string value is always
enclosed in quotes. All types of characters are allowed (even digits, as in "abc123").
Strings can contain any number of characters. A string with zero characters is
called the null string, and is written "".

When awk compares strings, it makes comparisons in accordance with the
collating order set by the locale that is defined on the system. This is a little like
alphabetic order; for example, the program:
$1 >= "Katie"

prints the Katie, Linda, and Lori lines, which is what you would expect from
alphabetic order. However, collating orders differ. ASCII collating order, for
example, differs from alphabetic order in a number of respects; for example,
lowercase letters are greater than uppercase ones, so that a is greater than Z.

302 z/OS V2R2 UNIX System Services User's Guide



Numeric values
A numeric value consists of digits with an optional sign and decimal point. A
numeric value is not enclosed in quotes. For example:
10 0.34 –78 +2.56 –.92

are all valid in awk. awk does not let you put commas inside numbers. For
example, you must write 1000 instead of 1,000.

Note: awk lets you use exponential or scientific notation. Exponents are given as e
or E, followed by an optionally signed exponent. Thus:
1E3 1.0e3 10E2 1000

are all equivalent.

When awk compares numbers (with such operators as > or <), it makes
comparisons in accordance with the usual rules of arithmetic.

Using the print action for output
So far, print has been the only action discussed. As you have seen, print can
display an entire record. It can also display selected fields of the record, as in:
$2 == "bridge" { print $1 }

This displays the first field of every record with a second field that is bridge. The
output is:
Jim
Linda
Lori

print can display more than a single field. If you give print a list of fields
separated by commas, as in:
$1 == "Jim" { print $2,$3,$4 }

print displays the given fields separated by single blanks, as in:
reading 15 100.00
bridge 4 10.00
role playing 5 70.00

The print action can display strings and numbers along with fields. For example:
$1 == "John" { print "$",$4 }

prints:
$ 100.00
$ 30.00

In this instruction, the print action prints a string containing a $, followed by a
blank, followed by the value of the fourth field in each selected record.

As an exercise, predict the output of the following:
(a) $1 == "Lori" { print $1,"spends $", $4,"on",$2 }
(b) $2 == "jogging" { print $1,"jogs",$3,"hours a week" }
(c) $4 > 100.00 { print $1, "has an expensive hobby" }

You can check your predictions by running these programs against the hobbies
file.

Appendix B. Using awk 303



Running awk programs
There are two ways to run awk programs: from a command line and from a
program file.

The awk command line
The simplest awk command line is:
awk ’program’ datafile

The awk program is enclosed in single-quote or apostrophe (’) characters. The
datafile argument gives the name of the data file. For example:
awk ’$1 == "Linda"’ hobbies

executes the program:
$1 == "Linda"

on the data file hobbies.

If you are using the z/OS shell, you can type in a multiline program within single
quotation marks, as in:
awk ’

$1 == "Linda"
$2 == "bridge" { print $1 }
’ hobbies

awk assumes that blanks or horizontal tabs separate fields in a record. If the data
file uses different field separator characters, you must indicate this on the
command line. You can do this with an option of the form:
–Fstring

where string lists the characters used to separate fields. For example:
awk –F":" ’{ print $3 }’ file.dat

indicates that the given data file uses colon (:) characters to separate record fields.
The –F option must come before the quoted program instructions.

awk also allows you to define the value of variables on the command line by
using the –v option. See z/OS UNIX System Services Command Reference for details.

Program files
A program file is a text file that contains an awk program. You can create program
files with any text editor (such as ed). For example, you might create a file named
lbprog.awk that contains the lines:
$1 == "Linda"
$2 == "bridge" { print $1 }

To execute a program on a particular data file, use the command:
awk –f progfile
datafile

where progfile is the name of the file that contains the awk program, and datafile is
the name of the data file. For example:
awk –f lbprog.awk hobbies

304 z/OS V2R2 UNIX System Services User's Guide



runs the program in lbprog.awk on the data in hobbies.

If the data file does not use the default separator characters, you must specify a –F
option after the progfile name, as in:
awk –f prog.awk –F":" file.dat

To gain some experience using awk, you can test the examples on the hobbies file.
Run some from the command line and some from program files.

Sources of data
If you do not specify a data file on the command line, awk begins to read data
from standard input. For example, if you enter the command:
awk ’{ print $1 }’

awk prints the first word of every line you type. When you type in data from the
workstation, press <Enter> at the end of each line. To stop passing data to awk,
type <EscChar-D> and press <Enter>.

A command line may also specify several data files, as in:
awk -f progfile data1 data2 data3 ...

When awk has finished reading through the first data file data1, it goes on to
data2, and so on.

Operators
awk recognizes these types of operators:
v Comparison operators
v Arithmetic operators
v Compound assignments
v Increment and decrement operators
v Matching operators
v Multiple-condition operators

Comparison operators
The == notation is an example of a comparison. awk recognizes several types of
comparisons:

Operator Meaning
== Equal to
!= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Arithmetic operators
The following awk program uses simple arithmetic:
$3 > 10 { print $1, $2, $3–10 }

In the print statement:
$3–10

Appendix B. Using awk 305



has the value of the third field in the record, minus 10. This is the value that print
prints. If you apply this program to the hobbies file, the output is:
Jim reading 5
Linda bridge 2
Katie jogging 4
Andrew wind surfing 10
Lori weight lifting 2

You could describe how the program works like this: If someone spends more than
10 hours on a hobby, the program prints the person's name, the name of the hobby,
and how many extra hours the person spends on the hobby (that is, the number of
hours more than 10).

An expression such as:
$3–10

is called an arithmetic expression. It performs an arithmetic operation and comes up
with a result, which is called the value of the expression.

awk recognizes the following arithmetic operations:

Operation Operator Example
Addition A + B 2+3 is 5
Subtraction A – B 7–3 is 4
Multiplication A * B 2*4 is 8
Division A / B 6/3 is 2
Negation – A – 9 is –9
Remainder A % B 7%3 is 1
Exponentiation A ^ B 3^2 is 9

The remainder operation is also known as the modulus, or integer remainder
operation. The value of this expression is the integer remainder you get when you
divide A by B. For example:
7 % 3

has a value of 1, because dividing 7 by 3 gives you 2 with a remainder of 1.

The value for the exponentiation operation:
A ^ B

is the value of A raised to the exponent B. For example:
3 ^ 2

has the value 9 (that is, 32).

Operation ordering
Expressions can contain several operations, as in:
A+B*C

As is customary in mathematics, all multiplications and divisions and remainder
operations are performed before additions and subtractions. When handling the
foregoing expression, awk performs B*C first and then adds A. The value of:
2+3*4

306 z/OS V2R2 UNIX System Services User's Guide



is therefore 14 (3*4 first, then add 2). If you want a particular operation done first,
enclose it in parentheses, as in:
(A+B)*C

When evaluating this expression, awk performs the addition before the
multiplication. Therefore:
(2+3)*4

is 20 (2+3 first, then multiply by 4). As an example of this, consider the program:
{ print $4/($3*52) }

$4 is the amount of money a person spent on a hobby in the last year. $3 is the
average number of hours a week the person spent on that hobby, so $3*52 is the
number of hours in 52 weeks (that is, 1 year). $4/($3*52) is therefore the amount
of money that the person spent on the hobby per hour.

An order-of-operations table for awk can be found in the awk command
description in z/OS UNIX System Services Command Reference.

Compound assignments
The following are the compound assignment operations of awk and their
equivalents:

Compound operation Equivalent
A += B A = A + B
A –= B A = A – B
A *= B A = A * B
A /= B A = A / B
A %= B A = A % B
A ^= B A = A ^ B

Increment and decrement operators
You can advance the value held in a variable, with:
count = count + 1

This is such a common operation that awk has a special operator for incrementing
variables by 1.

++ The ++ operator increments the current value of the variable by 1. For
example:
count++

adds 1 to the current value of count.

– – The – – decrements (subtracts 1 from) the current value of a variable. For
example, to subtract 1 from count, write:
count--

Matching operators
If the pattern in an instruction is just a regular expression, awk looks for a
matching string anywhere in a record. Sometimes, however, you want to look for a
matching string only in a particular field of a record. In this case, you can use a
matching expression.

Appendix B. Using awk 307



There are two types of matching expressions:

string ~ /regular-expression/
Is true if string matches the given regular expression. (The ~ character is
called a tilde.)

string !~ /regular-expression/
Is true if string does not match the given regular expression.

Multiple-condition operators
Operator

Meaning

&& The double ampersand operator means AND. For example:
$3 > 10 && $4 > 100.00 { print $1, $2 }

prints the first and second fields of any record where $3 is greater than 10
and $4 is greater than 100.00.

|| The double "or-bar" operator means OR. For example:
$1 == "Linda" || $1 == "Lori"

prints any record with a first field that is either Linda or Lori.

Regular expressions
A regular expression is a way of telling awk to select records that contain certain
strings of characters. For example, the instruction:
/ri/ { print }

tells awk to print all records that contain the string ri. Regular expressions are
always enclosed in slashes, as shown in the instruction just discussed. For a
discussion of regular expressions beyond their usage in awk, see Appendix C.
Regular Expressions (regexp) in z/OS UNIX System Services Command Reference.

The following characters have special meanings when you use them in regular
expressions:

Character
Meaning

^ Stands for the beginning of a field. For example:
$2 ~ /^b/ { print }

Prints any record whose second field begins with b.

$ Stands for the end of a field. For example:
$2 ~ /g$/ { print }

prints any record with a second field that ends with g.

. Matches any single character (except the newline). For example:
$2 ~ /i.g/ { print }

selects the records with fields containing ing, and also selects the records
containing bridge (idg).

| Means or. For example:

308 z/OS V2R2 UNIX System Services User's Guide



/Linda|Lori/

is a regular expression that matches either of the strings Linda or Lori.

* Indicates zero or more repetitions of a character. For example:
/ab*c/

matches abc, abbc, abbbc, and so on. It also matches ac (zero repetitions of
b). Since . matches any character except the newline, .* matches an
arbitrary string of zero or more characters. For example:
$2 ~ /^r.*g$/ { print }

prints any record with a second field that begins with r, ends in g, and has
any set of characters between (for example, reading and role playing).

+ Is similar to *, but stands for one or more repetitions of a character. For
example:
/ab+c/

matches abc, abbc, and so on, but does not match ac.

\{m,n\}
Indicates m to n repetitions of a character (where m and n are both
integers). For example:
/ab\{2,4\}c/

would match abbc, abbbc, and abbbbc, and nothing else.

? Is similar to *, but stands for zero or one repetitions of a string. For
example:
/ab?c/

matches ac and abc, but not abbc, and so on.

[X] Matches any one of the set of characters X given inside the square
brackets. For example:
$1 ~ /^[LJ]/ { print }

prints any record whose first field begins with either L or J. As a special
case: [:lower:] inside the square brackets stands for any lowercase letter,
[:upper:] inside the square brackets stands for any uppercase letter,
[:alpha:] inside the square brackets stands for any letter, and [:digit:]
inside the square brackets stands for any digit.

Thus:
/[[:digit:][:alpha:]]/

matches a digit or letter.

[^X] Matches any one character that is not in the set X. For example:
$1 ~ /^[^LJ]/ { print }

prints any record with a first field that does not begin with L or J.
$1 ~ /^[^[:digit:]]/ { print }

prints any record with a first field that does not begin with a digit.

(X) Matches anything that the regular expression X does. You can use

Appendix B. Using awk 309



parentheses to control how other special characters behave. For example, *
normally applies to the single character immediately preceding it. This
means that:
/abc*d/

matches abd, abcd, abccd, and so on. However:
/a(bc)*d/

matches ad, abcd, abcbcd, abcbcbcd, and so on.

The characters with special meanings are:
^ $ . * + ? [ ] ( ) |

These are known as metacharacters.

When a metacharacter appears in a regular expression, it usually has its special
meaning. If you want to use one of these characters literally (without its special
meaning), put a backslash in front of the character. For example:
/\$1/ { print }

prints all records that contain a dollar sign $ followed by a 1. If you simply
entered:
/$1/ { print }

awk would search for records where the end of the record was followed by a 1,
which is impossible.

Because the backslash has this special meaning, \ is also considered a
metacharacter. If you want to create a regular expression that matches a backslash,
you must therefore use two backslashes \\.

Pattern ranges
An instruction of the form:
pattern1, pattern2 { action }

performs the given action on every line, starting at an occurrence of pattern1 and
ending at the next occurrence of pattern2 (inclusive). For example, the instruction
/Jim/, /Linda/ { print $2 }

prints the second field of all lines between an occurrence of Jim and an occurrence
of Linda. Using the hobbies file as our data file, the output is:
reading
bridge
role playing
bridge

When awk finds a record matching pattern2, it begins to look for a line matching
pattern1 again. Thus, with this instruction:
/reading/, /role/

the output is

310 z/OS V2R2 UNIX System Services User's Guide



Jim reading 15 100.00
Jim bridge 4 10.00
Jim role playing 5 70.00
Katie reading 10 60.00
John role playing 8 100.00

awk prints the first range of records from reading to role and then starts looking
for reading again.

awk starts performing the instruction's action as soon as there is a record that
matches pattern1. awk does not check to make sure that there is a line matching
pattern2 in the rest of the file. This means that:
/Lori/, /Jim/ { print $2 }

begins printing at the first record that contains Lori, and keeps going until it
reaches the end of the file. No Jim is found.

Using special patterns
BEGIN and END are two special patterns.

BEGIN When an instruction has BEGIN as its pattern, awk performs the associated
action before looking at any of the records in the data file.

END When an instruction has END as its pattern, awk performs the associated
action after looking at all records in the data files specified on the
command line.

Consider the action:
count = count + 1

awk first finds the value of:
count + 1

and then assigns this value to count. Thus this action increases the value of count
by 1. In a program, you can use this sort of action to count how many people have
jogging as a hobby:
BEGIN { count = 0 }
$2 == "jogging" { count = count + 1 }
END { printf "%d people like jogging.\n", count }

Let's look at this program line by line.
BEGIN { count = 0 }

In this example, awk begins by assigning the value 0 to count:
$2 == "jogging" { count = count + 1 }

adds 1 to count every time awk finds a record with jogging in the second field.
END { printf "%d people like jogging.\n", count }

When awk has looked at all the records, the printf action prints the count of
people who jog. The output from the program is:
3 people like jogging.

Notice how the value of count was printed in place of the %d placeholder. For
more information about using a placeholder, see “Placeholders” on page 319.

Appendix B. Using awk 311



Built-in variables
awk has a number of built-in variables that you can use in your programs. You do
not have to assign values to these variables; awk automatically assigns the values
for you.

Built-in numeric variables
The following list describes some of the important numeric built-in variables:

NR Contains the number of records that have been read so far. When awk is
looking at the first record, NR has the value 1; when awk is looking at the
second record, NR has the value 2; and so on. In a BEGIN instruction, NR has
the value 0. In an END instruction, NR contains the total number of records
that were read. This instruction:
END { print NR }

prints the total number of data records read by the awk program.

FNR Is like NR, but it counts the number of records that have been read so far
from the current file. When you give several data files on the awk command
line, awk sets FNR back to 1 when it begins reading each new file. Thus, a
command such as:
{ printf "%d:%s\n",FNR,$0 }

prints the line number in the current file, followed by a colon, followed by
the contents of the current line.

NF Gives the number of fields in the current record. For the hobbies file, NF is
4 for each line, because there are four fields in each record. In an arbitrary
text file, NF gives the number of words on the current line in the file; by
default, awk assumes that blanks separate the fields of a record, so it
considers each word on a line to be a separate field. Therefore, the
program:
{ count = count + NF }
END { print count }

prints the total number of words in the file.

Using these built-in variables, you can create more ambitious awk commands.
awk ’NF == 1 {print}’ file

prints those records with precisely one field in them. There is no –F option
specified for this command, so awk assumes that blanks or tab characters separate
the fields. The foregoing command therefore prints all lines that contain only one
word (that is, one field).
awk ’{print FNR ": " $0}’ file

$0 stands for the entire record. The foregoing command displays the contents of
file, putting a line number and a colon before each line.
awk ’/abc/ {print FILENAME ": " $0}’ *.bas

examines all files that have the .bas extension in the working directory. It prints
every line that contains the string abc and also displays the filename, so you know
which file contains which lines.

312 z/OS V2R2 UNIX System Services User's Guide



Built-in string variables
awk also provides a number of built-in string variables:

FILENAME
Contains the name of the current input file. For example, when running
programs against the hobbies file, the value of FILENAME would be hobbies
(if that is the file you are using). If the input is coming from the awk
standard input, the value is -.

FS Is the field separator string, giving the character that is used to separate
fields in the current file. The default value for FS is "" (a single blank),
which as a special case matches both blank and tab. However, if the
command line contains an –F option specifying a different field separator,
FS is a string containing the given separator character. A program may also
assign values to FS to indicate new field separator characters. For example,
you could create a data file with a first line that provides the character
used to separate fields in the records in the rest of the file. An awk
program could then contain the instruction:
FNR == 1 { FS = $0 }

This says that the field separator string FS should be assigned the contents
of the first record in the current data file. The character in this line is then
taken to be the field separator for the rest of the file (unless FS changes
value again). Any FS value of more than one character is used as a regular
expression. For details, see the Input topic of the awk command
description in z/OS UNIX System Services Command Reference.

RS Is the input record separator. Just as FS indicates the character that separates
fields within records, RS indicates the character that separates one record
from another. By default, RS contains a newline character, which means
that input records are separated by newlines. However, you can assign a
different character to RS; for example, with:
RS = ";"

input records are separated by semicolons. This lets you have several
records on a single line, or a single record that extends over several lines.
Records are separated by a semicolon, not a <newline> character. As an
important special case:
RS = ""

separates records by empty lines.

OFS Gives the output field separator string. When you use the print action to
print several values, as in:
{ print A, B, C }

awk prints the output field separator string between each of the values. By
default, OFS contains a single blank character, which is why output values
are separated by a single blank. However, if you make the assignment:
OFS = " : "

the output values are separated by the given string. You can also use OFS
to reconstruct the $0 field during field assignment.

ORS Gives the output record separator. When you use the print action to print
records, awk prints the output record separator at the end of each record.
By default, ORS is the newline character, which is why print prints a new

Appendix B. Using awk 313



output line each time it is called. However, you can use a different
separator string by assigning the string to ORS.

OFMT
Is the default output format for numbers when they are displayed by print.
This is a format string like the one used by printf. By default, it is %.6g,
indicating that numbers are to be displayed with a maximum of six digits
after the decimal point. By changing OFMT, you can obtain more or less
displayed precision.

CONVFMT
Is the default format which awk uses when converting numbers into strings
internally. This differs from the OFMT variable, which is used only when
displaying numbers. The internal conversion of a number to a string occurs
when you perform concatenation, indexing, and some comparison
operations. awk converts floating-point numbers (numbers that are not
integers) to strings as if you had specified the operation:
sprintf(CONVFMT, number ...)

By default, the value of CONVFMT is %.6g.

Note: CONVFMT is a POSIX extension not found in traditional
implementations of awk.

Statements and loops
awk supports the following types of statements and loops:
v if statement
v while loop
v for loop
v next statement
v exit statement

The if statement
An if statement is an action of the form:
if (expression) statement1 else
statement2

Typically, the expression in the if statement has a true-or-false value. If the value is
true, statement1 is performed; otherwise, statement2 is performed. The else
statement2 part is optional.

The while loop
A while loop repeats one or more other instructions as long as a given condition
holds true. The format of the loop is:
while (expression) statement

where the statement can be a single statement or a compound statement.

The for loop
The statement:
for
(expression1;expression2;expression3)
statement

314 z/OS V2R2 UNIX System Services User's Guide



is equivalent to the following instruction sequence:
expression1
while (expression2) {

statement
expression3

}

The next statement
The next instruction skips immediately to the next record in the data file.

The exit statement
The exit statement makes an awk program behave as if it had just reached the end
of data input. No further input is read. If there is an END action, awk executes it
before the program ends. As with next, exit is often used when input data is found
to be incorrect.

If exit appears inside the END action, the program ends immediately.

Functions
awk supports:
v Arithmetic functions
v String manipulation functions
v User-defined functions
v Passing an array to a function
v The getline function

Arithmetic functions
awk recognizes the most common mathematical functions, as shown in the
following table.

Function Result
sqrt(x) Square root of x
sin(x) Sine of x, where x is in radians
cos(x) Cosine of x, where x is in radians
atan2(y,x) Arctangent of y/x in range -π to π
log(x) Natural logarithm of x
exp(x) The constant e to the power x
int(x) Integer part of x
rand() Random number between 0 and 1
srand(x) Sets x as seed for rand()

Several of these functions may require more explanation.

The int function takes a floating-point number as an argument and returns an
integer. The integer is just the floating-point number, without its fractional part.

Every call to rand returns a new random number between 0 and 1. In this way,
you can get a sequence of random numbers. You can use srand to set the starting
point, or seed, for a random number sequence. If you set the seed to a particular
value, you always get the same sequence of numbers from rand. This is useful if
you want a program to use rand but obtain uniform results every time the
program runs.

Appendix B. Using awk 315



String manipulation functions
awk has a number of functions that perform string operations:

length Returns an integer that is the length of the current record (that is, the
number of characters in the record, without the newline on the end). For
example, the following program calculates the total number of characters
in a file (except for newline characters):

{ sum = sum + length }
END { print sum }

length(s)
Returns an integer that is the length of the string s. For example, the
following program prints the length of the first field in each record of the
file:
{ print length($1) }

The function call length($0) is equivalent to just length.

gsub(regexp,replacement)
Puts the replacement string replacement in place of every string matching
the regular expression regexp in the current record. For example, the
program:
{

gsub(/John/,"Jonathan")
print

}

checks every record in the data file for the regular expression John,
replaces matching strings with Jonathan, and prints the resulting record.
As a result, the program's output is exactly like its input, except that every
occurrence of John is changed to Jonathan. This form of the gsub function
returns an integer telling how many substitutions were made in the current
record. This is 0 if the record has no strings that match regexp.

sub(regexp,replacement)
Is similar to gsub, except that it replaces only the first occurrence of a
string matching regexp in the current record.

gsub(regexp,replacement,string_var)
Puts the replacement string replacement in place of every string matching
the regular expression regexp in the string string_var. For example, the
program:
{

gsub(/John/,"Jonathan",$1)
print

}

is similar to the previous program, but the replacement is made only in the
first field of each record. This form of the gsub function returns an integer
telling how many substitutions were made in string_var.

sub(regexp,replacement,string_var)
Is similar to the previous version of gsub, except that it only replaces the
first occurrence of a string matching regexp in the string string_var.

Note: You must use four backslashes to embed one literal backslash in a
gsub() or sub() substitution string. For example,
gsub(/backslash/,"\\\\")

316 z/OS V2R2 UNIX System Services User's Guide



replaces all occurrences of the word backslash with the single character \.

index(string,substring)
Searches the given string for the appearance of the given substring. If it
cannot find substring, index returns 0; otherwise, index returns the number
(origin 1) of the character in string where substring begins. For example:
index("abcd","cd")

returns the integer 3 because cd is found beginning at the third character of
abcd.

match(string,regexp)
Determines if string contains a substring that matches the regular
expression (pattern) regexp. If so, the function returns an index giving the
position of the matching substring within string; if not, match returns 0.
match also sets a variable named RSTART to the index where the
matching string starts, and a variable named RLENGTH to the length of
the matching string.

substr(string,pos)
Returns the last part of string, beginning at a particular character position.
The argument pos is an integer, giving the number of a character.
Numbering begins at 1. For example, the value of:
substr("abcd",3)

is the string cd.

substr(string,pos,length)
Returns the part of string that begins at the character position given by pos
and has the length given by length. For example, the value of:
substr("abcdefg",3,2)

is cd (a string of length 2 beginning at position 3).

sprintf(format,value1,value2,...)
Is based on the printf action. The value of sprintf is the string that would
be printed out by the action
printf(format,value1,value2,...)

For example:
str = sprintf("%d %d!!!\n",2,3)

assigns the string "2 3!!!\n" to the string variable str.

tolower(string)
Returns the value of string, but with all the letters in lowercase. (This
function is an extension to standard awk.)

toupper(string)
Returns the value of string, but with all the letters in uppercase. (This
function is an extension to standard awk.)

ord(string)
Converts the first character of string into a number. This number gives the
decimal value of the character in the character set used on the system.
(This function is an extension to standard awk.)

User-defined functions
In an awk program, a function definition looks like this:

Appendix B. Using awk 317



function name(argument-list) {
statements

}

The argument-list is a list of one or more names (separated by commas) that
represent argument values passed to the function. When an argument name is
used in the statements of a function, it is replaced by a copy of the corresponding
argument value.

For example, the following is a simple function that takes a single numeric
argument N and returns a random integer between 1 and N (inclusive):
function random(N) {

return (int(N * rand() + 1))
}

Passing an array to a function
When an array is passed as an argument to a function, it is passed by reference.
This means that the function works with the actual array, not with a copy.
Anything that the function does to the array has an effect on the original array.
split is a built-in function that takes an array as an argument.

split(string,array)
split breaks up string into fields, and assigns each of the fields to an
element of array. The first field is assigned to array[1], the next to array[2],
and so on. Fields are assumed to be separated with the field separator
string FS. If you want to use a different field separator string, you can use:
split(string,array,fsstring)

where fsstring is the field separator string you want to use instead of FS.
The result of split is the number of fields that string contained.

Note: split actually changes the elements of array. When an array is passed to a
function, the function may change the array elements.

The Getline function
The getline function reads input from the current data file or from a different file.

Running system commands
You can run commands with the system function:
system("command line")

runs the given command line: For example:
system("cd XYZ")

runs a cd command to change the working directory.

Controlling awk output
By default, awk output is written to your workstation screen. You can save the
output of an awk program in a file by using output redirection. To do this, put:
>filename

on the end of any awk command line. For example:
awk –f progfile datafile >outfile

318 z/OS V2R2 UNIX System Services User's Guide



writes all the output from the awk program to a file named outfile. In this case,
the output does not appear on the workstation screen.

Formatting the output
The output of the program:
$1 == "Jim" { print "$", $4/52 }

is:
$ 1.92308
$ 0.192308
$ 1.34615

This output shows the amount of money per week that Jim spent on his hobbies.
However, money amounts usually have only two digits after the decimal point.
How can you change the program to make the money amounts appear more
normal? The answer is to use the printf action instead of print. This lets you
specify the format in which awk prints the output.

A printf action looks like this:
{ printf format-string, value, value, ... }

The format-string indicates the output format. The values are the data to be printed.

A format string contains two kinds of items:
v Normal characters, which are just printed out as is
v Placeholders, which awk replaces with values given later in the printf action

As an example, try running the following program on the hobbies file:
$2 == "bridge" { printf "%5s plays bridge\n", $1 }

awk prints:
Jim plays bridge

Linda plays bridge
Lori plays bridge

The format string:
"%5s plays bridge\n"

has one placeholder: %5s. When printf prints its output, replacing the placeholder
with the value $1, which is the first field of the record being examined. The rest of
the format string is just printed out as is.

Note: The format string ends in \n; for more information, see “Escape sequences”
on page 321.

Placeholders
The form of the placeholder %5s tells awk how to print the associated value. All
placeholders begin with % and end in a letter. The following are some of the most
common letters used in placeholders:

c If the associated value is an integer, printf prints the character in the native
character set that has that integer value; if the associated value is a string,
printf prints the first character of the string.

d An integer in decimal form (base 10).

Appendix B. Using awk 319



e A floating-point number in scientific notation, as in -d.ddd dddE+dd.

f A floating-point number in conventional form, as in -ddd.ddd ddd.

g A floating-point number in either e or f form, whichever is shorter; also,
nonsignificant zeros are not printed.

o An unsigned integer in octal form (base 8).

s A string.

x An unsigned integer in hexadecimal form (base 16).

For example, the format string:
"%s %d\n"

contains two placeholders: %s represents a string, and %d represents a decimal
integer.

Between the % and the letter at the end of the placeholder, you can put additional
information. If you put an integer, as in %5s, the number is used as a width. awk
prints the corresponding value using (at least) the given number of characters.
Therefore in:
$2 == "bridge" { printf "%5s plays bridge\n", $1 }

the value of the string $1 replaces the placeholder %5s and is always printed using
five characters. The output is therefore:

Jim plays bridge
Linda plays bridge
Lori plays bridge

as shown before. If you just write:
$2 == "bridge" { printf "%s plays bridge\n", $1 }

without the 5, the output is:
Jim plays bridge
Linda plays bridge
Lori plays bridge

If no width is given, awk prints values using the smallest number of characters
possible.

awk also lets you put a minus sign (–) in front of the number in the width
position. The amount of output space is the same, but the information is
left-justified. For example:
$2 == "bridge" { printf "%–5s plays bridge\n", $1 }

prints:
Jim plays bridge
Linda plays bridge
Lori plays bridge

A placeholder for a floating-point number can also contain a precision. You can
write this as a dot (decimal point) followed by an integer. Specifying a precision
tells printf how many digits to print after the decimal point in a floating-point
number. For example, in:
$1 == "John" { printf "$%.2f on %s\n", $4 * 1.05, $2 }

320 z/OS V2R2 UNIX System Services User's Guide



the placeholder %.2f indicates that printf is to print all floating-point numbers
with two digits after the decimal point. The output of this program is:
$105.00 on role playing
$31.50 on jogging

For good-looking output, you might specify both a width and a precision. For
example, the program:
$1 == "John" { printf "$%6.2f on %s\n", $4 * 1.05, $2 }

prints the following:
$105.00 on role playing
$ 31.50 on jogging

%6.2f indicates that the corresponding floating-point value should be printed with
a width of six characters, with two characters after the decimal point.

Here are a few more awk programs that work on the hobbies file. Predict what
each prints and run them to see if your prediction is right:
(a) { printf "%6s %s\n", $1, $2 }
(b) { printf "%20s: %2d hours/week\n", $2, $3 }
(c) $1=="Katie" { printf "%20s: $%6.2f\n",$2,$4 }

Escape sequences
All the format strings shown so far have ended in \n. This kind of construct is
called an escape sequence. All escape sequences are made from a backslash character
(\) followed by one to three other characters.

Escape sequences are used inside strings, not just those for printf, to represent
special characters. In particular, the \n escape sequence represents the newline
character. A \n in a printf format string tells awk to start printing output at the
beginning of a newline.

The following list shows escape sequences that can be used in awk strings:

Escape ASCII character
\a Audible bell
\b Backspace
\f Formfeed
\n Newline
\r Carriage return
\t Horizontal tab
\v Vertical tab
\ooo ASCII character, octal ooo
\xdd Hexadecimal value dd
\" Quote
\c Any other character c

Appendix B. Using awk 321



322 z/OS V2R2 UNIX System Services User's Guide



Appendix C. Code page conversion when the shell and MVS
have different locales

A code page for a specific character set determines the graphic character produced
for each hexadecimal encoding. The code page used is determined by the
programs and national languages being used.

If the shell is using a locale generated with code pages IBM-1047, IBM-1027, or
IBM-939, an application programmer needs to be concerned about variant
characters in the POSIX portable character set whose encoding may vary from
other EBCDIC code pages:

Right brace (})
Left brace ({)
Backslash (\)
Right square bracket (])
Left square bracket ([)
Circumflex (^)
Tilde (~)
Exclamation point (!)
Pound sign (#)
Vertical bar (|)
Dollar sign ($)
Commercial at-sign (@)
Accent grave (`)

For example, the encodings for the square brackets do not match on code pages
IBM-037 and IBM-1047:
v Left square bracket: [
v Right square bracket: ]

Customizing the variant characters on your keyboard
Assuming that you are not using an APL character set, on many programmable
workstations you can customize your keys so that you have hexadecimal
encodings for the variant characters that match the shell-supported code pages. For
example, for those brackets the compatible encodings would be:

X'AD' for a left square bracket ([)
X'BD' for a right square bracket (])

Using the CONVERT option on the OMVS command
The OMVS command has a CONVERT option that lets you specify a conversion
table for converting between code pages. The table you want to specify depends
on the code pages you are using in MVS and in the shell. For example, if you are
using code page IBM-037 in MVS and code page IBM-1047 in the shell, specify the
following when you enter the OMVS command:
OMVS CONVERT((BPXFX111))

For more information, see the OMVS command description in z/OS UNIX System
Services Command Reference.

© Copyright IBM Corp. 1996, 2015 323



When do you need to convert between code pages?
If you are using code page IBM-037 in MVS and the shell is using code page
IBM-1047, you need to convert from one code page to another when:
v Transferring files between a workstation and the file system.
v Copying data between MVS data sets and the file system.
v Passing JCL pathname data to z/OS UNIX programs—unless you restrict

yourself to characters in the POSIX portable file name character set.
v Passing JCL parameters and pathnames to a shell invoked from a batch

program—unless you restrict yourself to characters in the POSIX portable file
name character set.

v Converting between ASCII and EBCDIC when using the pax utility.

Methods for converting data
There are several methods for converting data to or from a shell-supported code
page:
v To convert data you are typing at a 3270 terminal, you specify a conversion table

other than BPXFX100 (the null conversion table) with the OMVS command. The
data you type at your workstation when you are working in the shell is
converted to a shell-supported code page.

v To convert data between code pages IBM-037 and IBM-1047 when you are
moving the data to or from the hierarchical file system, you can use the
CONVERT option on the OPUT, OGET, and OCOPY commands.

v To convert double-byte or single-byte data to a selected code page while you are
working in MVS, use the z/OS XL C/C++ iconv utility. For information on how
to use this utility, see z/OS XL C/C++ User's Guide.

v To convert double-byte or single-byte data to a selected code page while you are
working in the shell, use the shell iconv utility.

The POSIX portable file name character set
To simplify conversion requirements, use the POSIX portable file name character
set when naming your files:

Uppercase A to Z
Lowercase a to z
Numbers 0 to 9
Period (.)
Underscore (_)
Hyphen (-)

The POSIX portable character set
The POSIX portable character set consists of

Uppercase A to Z
Lowercase a to z
Numbers 0 to 9

and these characters:

Characters

+ < = >

$ ` ^ ~

324 z/OS V2R2 UNIX System Services User's Guide



Characters

# % & *

@ [ ] \

{ } | !

" ' ( )

, _ - .

/ : ; ?

Appendix C. Code page conversion when the shell and MVS have different locales 325



326 z/OS V2R2 UNIX System Services User's Guide



Appendix D. Escape sequences for a 3270 keyboard

When using a 3270 keyboard, you can use escape sequences to type:
v Portable characters not included on your keyboard. See “Escape sequences for

portable characters not on your keyboard.”
v Control characters that are normally available on ASCII workstations, but not

EBCDIC ones. See “Escape sequences for control characters” on page 328.

The notation EscChar coupled with another letter (for example, <EscChar> m)
indicates an escape sequence.

Escape sequences for portable characters not on your keyboard
If you do not have keys on your keyboard for the following portable characters,
you can use an escape sequence to obtain them.

Table 9. Portable characters: Escape sequences

z/OS UNIX escape sequence Character ASCII control sequence

<EscChar> @
<EscChar> 0

<NUL> Ctrl-@

<EscChar> g
<EscChar> G

<alert> Ctrl-G

<EscChar> h
<EscChar> H

<backspace> Ctrl-H

<EscChar> i
<EscChar> I

<tab> Ctrl-I

<EscChar> j
<EscChar> J

<newline> Ctrl-J

<EscChar> k
<EscChar> K

<vertical-tab> Ctrl-K

<EscChar> l
<EscChar> L

<form-feed> Ctrl-L

<EscChar> m
<EscChar> M

<carriage-return> Ctrl-M

<EscChar> ( [ [

<EscChar> ) ] ]

<tab> character: When you are writing makefiles for the make utility, you need to
use a <tab> character. If you are using a shell editor, you can type a <tab>
character as an <EscChar-I> sequence. After you press <Enter>, the tab displays as
blank space.

If you are using the ISPF editor, you cannot type a <tab> character (ISPF handles
only displayable characters).

© Copyright IBM Corp. 1996, 2015 327



Escape sequences for control characters
To obtain the following control characters, you must use an escape sequence.

Table 10. Control characters: Escape sequences

z/OS UNIX escape sequence Character ASCII control sequence

<EscChar> f
<EscChar> F

<ACK> Ctrl-F

<EscChar> x
<EscChar> X

<CAN> Ctrl-X

<EscChar> q
<EscChar> Q

<DC1> Ctrl-Q

<EscChar> r
<EscChar> R

<DC2> Ctrl-R

<EscChar> s
<EscChar> S

<DC3> Ctrl-S

<EscChar> t
<EscChar> T

<DC4> Ctrl-T

<EscChar> p
<EscChar> P

<DLE> Ctrl-P

<EscChar> y
<EscChar> Y

<EM> Ctrl-Y

<EscChar> e
<EscChar> E

<ENQ> Ctrl-E

<EscChar> d
<EscChar> D

<EOT> Ctrl-D

<EscChar> 2
<EscChar> [

<ESC> Ctrl-[

<EscChar> w
<EscChar> W

<ETB> Ctrl-W

<EscChar> c
<EscChar> C

<ETX> Ctrl-C

<EscChar> 6
<EscChar> _

<IS1> Ctrl-_

<EscChar> 5 <IS2> Ctrl-^

<EscChar> 4
<EscChar> ]

<IS3> Ctrl-]

<EscChar> 3
<EscChar>

<IS4> Ctrl-\

<EscChar> u
<EscChar> U

<NAK> Ctrl-U

<EscChar> o
<EscChar> O

<SI> Ctrl-O

<EscChar> n
<EscChar> N

<SO> Ctrl-N

<EscChar> a
<EscChar> A

<SOH> Ctrl-A

<EscChar> b
<EscChar> B

<STX> Ctrl-B

328 z/OS V2R2 UNIX System Services User's Guide



Table 10. Control characters: Escape sequences (continued)

z/OS UNIX escape sequence Character ASCII control sequence

<EscChar> z
<EscChar> Z

<SUB> Ctrl-Z

<EscChar> v
<EscChar> V

<SYN> Ctrl-V

Escape sequences unique to a conversion table
Depending on the conversion table that you specify with the CONVERT keyword
on the OMVS command, you may need to type a unique escape sequence to enter
a character. This information shows how unique escape sequences are translated by
each of the character conversion tables. The translations for escaped alphabetic
characters (which are the same for all tables—these are Ctrl-A through Ctrl-Z) are
not shown in these tables.

BPXFX100 conversion table
This table shows the escape sequences for certain characters that may not be on
your keyboard.

Table 11. Translation of selected escaped characters (BPXFX100)

z/OS UNIX escape sequence Character ASCII control sequence

<EscChar> ?
<EscChar> #
<EscChar> 7

<DEL> Ctrl-?

<EscChar> { [ [

] ]

<EscChar> ¬ <IS2> Ctrl-^

BPXFX111 and BPXFX211 conversion tables
This table shows the escape sequences for certain characters that may not be on
your keyboard.

Table 12. Translation of selected escaped characters (BPXFX111 and BPXFX211)

z/OS UNIX escape sequence Character ASCII control sequence

<EscChar> ?
<EscChar> #
<EscChar> 7

<DEL> Ctrl-?

<EscChar> { [ [

] ]

<EscChar> ¬ <IS2> Ctrl-^

BPXFX437, BPXFX450, BPXFX471, BPXFX473, BPXFX477,
BPXFX478, BPXFX480, BPXFX484, BPXFX485, BPXFX497
conversion tables

Conversion tables BPXFX437, BPXFX450, BPXFX471, BPXFX473, BPXFX477,
BPXFX478, BPXFX480, BPXFX484, BPXFX485, and BPXFX497 have the following
escape sequences for certain characters that may not be on your keyboard.

Appendix D. Escape sequences for a 3270 keyboard 329



Table 13. Translation of selected escaped characters. (BPXFX437, BPXFX450, BPXFX471,
BPXFX473, BPXFX477, BPXFX478, BPXFX480, BPXFX484, BPXFX485, and BPXFX497)

z/OS UNIX escape sequence Character ASCII control sequence

<EscChar> ?
<EscChar> 7

<DEL> Ctrl-?

<EscChar> - ~

<EscChar> % @

<EscChar> & $

<EscChar> ;
<EscChar> !

|

<EscChar> ' ^

<EscChar> = #

<EscChar> " `

<EscChar> / \

<EscChar> : !

<EscChar> < {

<EscChar> > }

<EscChar> ^ <IS2> Ctrl-^

330 z/OS V2R2 UNIX System Services User's Guide



Appendix E. Locale objects, source files, and charmaps

The z/OS shells and utilities support the locales listed in the appendix in z/OS XL
C/C++ Programming Guide.

A locale name is the same as a locale object name. The suffix of the locale name, for
example, IBM-277, indicates the code page that the locale is based on.

The symbolic link is a shortened name for the complete locale object name; You can
use the symbolic link name when specifying a locale for an environment variable or
with the setlocale() function. For example, you can specify
LANG=En_US

instead of
LANG=En_US.IBM-1047

The compiled locale object files are in the directory /usr/lib/nls/locale. The locale
source definition files are in /usr/lib/nls/localedef. The source file name combined
with the code page name results in the name of the locale object.

The charmap files are in /usr/lib/nls/charmap. The charmap file names are identical
to code page names— for example, IBM-1047.

© Copyright IBM Corp. 1996, 2015 331



332 z/OS V2R2 UNIX System Services User's Guide



Appendix F. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the "Contact us" web page for z/OS (http://www.ibm.com/
systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out

© Copyright IBM Corp. 1996, 2015 333

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html


punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 \* FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* \* FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

334 z/OS V2R2 UNIX System Services User's Guide



default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix F. Accessibility 335



336 z/OS V2R2 UNIX System Services User's Guide



Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1996, 2015 337



IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

338 z/OS V2R2 UNIX System Services User's Guide



for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interfaces
This publication primarily documents information that is NOT intended to be used
as Programming Interfaces of z/OS UNIX System Services.

This publication also documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of z/OS UNIX System Services.
This information is identified where it occurs, either by an introductory statement
to a chapter or section or by the following marking:

Programming interface information

End of Programming interface information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at www.ibm.com/legal/copytrade.shtml (http://www.ibm.com/legal/
copytrade.shtml).

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 339

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml


340 z/OS V2R2 UNIX System Services User's Guide



Acknowledgments

InterOpen Shell and Utilities is a source code product providing POSIX.2 (Shell
and Utilities) functions to the z/OS UNIX services offered with MVS.
InterOpen/POSIX Shell and Utilities is developed and licensed by Mortice Kern
Systems (MKS) Inc. of Waterloo, Ontario, Canada.

© Copyright IBM Corp. 1996, 2015 341



342 z/OS V2R2 UNIX System Services User's Guide



Index

Special characters
_BPX_BATCH_SPAWN environment

variable 159
_BPX_BATCH_UMASK environment

variable 159
_BPX_SHAREAS variable 173
_BPX_SPAWN_SCRIPT variable 45
-- option 67, 91
; (semicolon) 75, 98
? 81, 103
/dev directory 191
/dev/null 70, 94
/etc/profile 39
. (dot) 204
. (dot) shell command 116
.. (dot dot) 204
.profile file 39
$ prompt 15
$? 125
$( ) syntax 76, 99
$* 125
$@ 125
$– 125
$# 125
$N construct 120, 138
* 80, 103
*** prompt 18
\ continuation character 21, 36
\ escape character 79, 102
[[ ]] double square brackets 126
> 69, 93
> prompt 21, 80, 102
>> 70, 94
< 94
|| 75, 98
&& 75, 98
#! 116, 134
` ` syntax 76, 99
' ' escape character 80, 102
" " escape character 80

Numerics
2> 70, 94
3270 emulation 13
3270 pass-through mode

keyword on the OMVS command 28

A
access ACL 239
access control list (ACL)

using 239
accessibility 333

contact IBM 333
features 333

action
print 303
printf 319

address
socket 191
TCP/IP X-Window application 4

address alias 176
address space

limit for kernel 173
shared 173

keyword on OMVS command 30
TSO/E working directory 199

ADSTAR 224
alarm

keyword on OMVS command 27
alias

address 176
defining 71, 95
mailx 176
redefining 72, 96
tracking 73
turning off 74, 97

alias shell command 71, 95
ALLOCATE TSO/E command 269

example 269, 274, 279
path name and data set name

requirement 195
specifying standard files 69, 93

appending to an archive 229
application

hung 32
archive file

copying into a file system 288
installing into the file system 287
transferring to a data set 287
transferring to tape or diskette 289

archive viewing 227
argument 68, 92

array 318
arithmetic

calculation 117, 135
function 315
operator 305

array, used in awk 318
ASCII terminal interface 35
assistive technologies 333
audit file 236
autoloading 131
autoscrolling

keyword on OMVS command 27
awk utility 299

blanks and horizontal tabs 301
command line 304
compound assignment 307
controlling output 318
data files 299
escape sequences 321
formatting output 319
functions 315
output 303, 319
print action 303
printf action 319
program shape 300
running a program 304

awk utility (continued)
running system commands 318

B
background job 145

canceling 148
exiting the shell 32
moving to foreground 147
suspended 146
TSO/E 146
using BPXBATCH or & 151

backing up files
backing up a directory 226
from the shell 225
manually 224
selected 224
selected by date 229
system 224

backslash (\) character 79, 102
backup file

TSM 224
base ACL entry 239
batch job

BPXBATA2 and BPXBATA8 156
BPXBATCH 151, 156
BPXBATSL 156
support for path name 153

BEGIN pattern 311
bit

bucket 70, 94
SETGID 238
SETUID 238
sticky 234, 235

blank screen
clearing with a form-feed 27

BPX.SUPERUSER FACILITY 87, 111
BPXBATA2, alias for BPXBATCH 156
BPXBATA8, alias for BPXBATCH 156
BPXBATCH 156

environment variable file
(STDENV) 158

invoked from TSO/E 166
invoked in the OSHELL REXX

exec 166
invoked with JCL

running a shell command 164
running a shell script 163
running an executable file or REXX

exec 165
national language support 47, 61
parameter file (STDPARM) 160
REGION size 163
running a background job 151
standard input, output and error 157
STDENV 158
STDPARM 160
STEPLIB data sets, cataloged 163

BPXBATSL, alias for BPXBATCH 156
BPXFX100

escape sequences 329

© Copyright IBM Corp. 1996, 2015 343



BPXFX111
escape sequences 329

BPXFX211
escape sequences 329

BPXFX311 268, 278
BPXFX437

escape sequences 329
BPXFX450

escape sequences 329
BPXFX471

escape sequences 329
BPXFX473

escape sequences 329
BPXFX477

escape sequences 329
BPXFX478

escape sequences 329
BPXFX480

escape sequences 329
BPXFX484

escape sequences 329
BPXFX485

escape sequences 329
BPXFX497 329
bpxtrace

job tracing 147
bracket character

code page conversion 323
BSAM access, HFS files 155
buffer size, output

keyword on the OMVS command 29
built-in variable

numeric 312
string 313

byte-range locking 224

C
cancel shell command 263
canonical mode 16
carriage return 22
case-sensitive processing 212
cat shell command 223
catalog

master 192
user 192

cd shell command 204
changing a password or password

phrase 87, 110
character conversion table

keyword on OMVS command 27
character set

double-byte
using 32

doublebyte
using 36

portable file name 211, 324
POSIX portable file name 324

character special file 191
characters

variant 4, 47, 48, 61, 62, 323
chaudit shell command 236
chgrp shell command 238
child process 145
chmod shell command 233
chown shell command 238
cksum shell command 86, 109

CLIST 9
code page 201

conversion
copying data 282
DBCS data 282
doublebyte data 324
iconv command 283
OMVS command CONVERT

option 323
square brackets 323
UUCP commands 181
with Network File System 200

code set 282
code set conversion

automatic 202
combined commands

filter 76, 98
pipe 75, 98

command
argument 4, 68, 92
combining more than one 75, 97
continuation character (\) 21, 36
delaying execution 150
editing 84, 106
file system

shell 197
flag 4
history 82, 104

function keys 84, 106
r command 82, 105

interrupting 22, 36
option 4, 67, 91
retrieving 82, 104
running after logoff 150
substitution 76, 99
usage 68
usage help 92

command line 15
awk 304
editing 84, 106
hiding

keyword, OMVS command 28
Communications Server session

ISPF Edit 36
multiple logins 36

comparison operator 305
compound assignment 307
compress shell command

running in batch 164
console file 191
construct

using quotes around 122, 139
contact

z/OS 333
continuation

character (\) 21, 36
prompt 80, 102

control
messages and online

conversations 181
control characters

escape sequences 328
Control function key

using a 22
control structure 125, 140

for loop 129, 143
if conditional 127, 140

control structure (continued)
while loop 128, 142

control structures
combining 130

conversion
between code pages 227, 282
OMVS command

CONVERT option 323
table copy commands 282

CONVERT copy command
conversion tables 282

converting files between 201
copy

data set into a data set
OCOPY command 278

data set into a directory
OPUTX command 271

data set into a file
cp command 267, 271
OCOPY command 269
OPUT command 267

data using TSO/E commands 266
data using z/OS shell

commands 265
DBCS data 283
directory into a data set

cp command 276
OGETX command 276

executable into a file
cp command 280

file into a data set
OCOPY command 274
OGET command 273

file into a file
cp command 277
OCOPY command 278
pax command 278

file into data set
cp command 272

load module into a data set 280
load module into a file 280
MBCS data 283
VSAM data set 272

cp command 267, 271, 272, 276, 280
cp shell command 265, 277

default permissions 232
cron daemon 4
Ctrl-C 36
current working directory 203
customization

.tcshrc 56
ENV variable 42
keyboard 23
OMVS command 26
PATH variable 43, 57
profile file 39
shell interface 26
shell options 32, 51, 64
square brackets 323
tcsh shell startup files 53

D
daemons 4
data access 193
data set

allocating 269

344 z/OS V2R2 UNIX System Services User's Guide



data set (continued)
cataloged 50, 64
copying

cp command 267, 271
into a file 267, 271, 278
load module into a file 280
OCOPY command 269, 278
OPUT command 267
OPUTX command 271

deleting 287
executable module

copying 280
hierarchical file system (HFS) 190
load module copying 280
STEPLIB

cataloging 50, 64
DD statement

in JCL
ddnames 153
pathname keywords 153

z/OS UNIX support 153
ddname 153
debug data

wrapping
keyword on OMVS command 30

debugging
keyword on the OMVS command 28

decrement operator 307
DELETE TSO/E command 287
description of 202
dev directory 191
DFSMS

management of HFS data sets 190
DFSMS/MVS

Network File System feature 199
DFSMShsm

data set backup and restore 224
HFS data set back up and

restore 190
diff shell command 208, 218
directory

access
using ACLs 239

changing 204
comparing contents 208
copying

cp command 276
OGETX command 276

creating 205
default permissions 205, 232
dev 191
finding 209
listing contents 207
permissions

default 232
displaying 236

removing 207
specifying name 203
sticky bit 234, 235
working 203

directory default ACL 239
displaying a user name 88, 111
Distributed File System (DFS) 190
distribution list 176

sending a message to 186
dot notation 204

double quotatioin marks enclosing a
construct 122

double quotation marks enclosing a
construct 80, 103, 139

double square brackets 126
double-byte character set

alias names 72
exporting a variable name 72
keyword on OMVS command 28
using 36
using a 32

double-byte data code page
conversion 324

DSNTYPE keyword 154
dump

nontext file 71, 95
dynamic link library (DLL)

environment variable 44, 59

E
echo shell command 42, 55
ed editor

default permissions 232
using 254

editor
command editing 84, 106
ed 254
ISPF 241
sed 260
vi 242

effective group ID 238
effective user ID 238
emacs editor 85, 107
emulation

3270 13
END pattern 311
Enhanced ASCII 201

file tagging 201
porting 202

ENV variable
setting 42

environment file 42, 56
environment variable

BPX_BATCH_SPAWN 159
BPX_BATCH_UMASK 159
BPX_SHAREAS 173
BPX_SPAWN_SCRIPT 45
changing dynamically 41, 55
displaying 41, 55
ENV, setting 42
file (STDENV) 158
LANG 46, 49, 60, 63
LC_ALL 46, 60
LC_COLLATE 46, 60
LC_CTYPE 46, 60
LC_MESSAGES 46, 60
LC_SYNTAX 47, 61
LOCPATH 49, 63
PATH

setting 43, 57
STEPLIB 50, 64
TMP_VI 253
TZ 49, 63

error
redirection 70, 94
standard 68, 92

error message
shell 16

escape
character

keyword on OMVS command 28
notation 21
shell command 79, 102

sequence 22
BPXFX100 table 329
BPXFX111 table 329
BPXFX211 table 329
BPXFX437 table 329
BPXFX450 table 329
BPXFX471 table 329
BPXFX473 table 329
BPXFX477 table 329
BPXFX478 table 329
BPXFX480 table 329
BPXFX484 table 329
BPXFX485 table 329
BPXFX497 table 329
control characters 328
portable characters 327
tables 327

escape sequences 329
EscChar notation 21
EscChar-C 22, 32
EscChar-D 23, 31
EscChar-V 32
EscChar-Z 149
etc/profile 39
exec shell command 71
executable

copying
cp command 280

executable file 153
invoked with BPXBATCH and

JCL 165
executable module

copying into a data set 280
copying into the file system 280

exit shell command 31
exit statement 315
expansion

preventing wildcard 52, 65
export shell command 119
export variable 40, 51, 118, 136
expressions 117, 135
extattr shell command 194
extended ACL entry 239
external link 192, 200, 216

deleting 217
DLL support 216
locale object files 216
NFS client support 216
sticky bit 196

F
field 300
FIFO special file 192
file

.tcshrc 56
access

auditing 236
BSAM, QSAM 155
program 224

Index 345



file (continued)
access (continued)

using ACLs 239
allocating 269
analyzing contents 221
awk program 304
back up and restore 224
browsing 223, 224
changing ownership 238
closing 71
comparing two 218
copying

cp command 272, 277
OCOPY command 274, 278
OGET command 273
pax command 278

creation
mode mask 237

default permissions
ed 259
ISPF Edit 241
OEDIT 241

deleting 213
descriptor 69
displaying contents 223
editing with ISPF 241
environment variables for

BPXBATCH 158
erasing 213
executable 153
finding 209
formatted browsing 224
formatting 261
I/O 193
inode number 214
locking 224
login script 42
moving 218
naming 211
nontext

dumping 71, 95
opening with JCL 154
parameter string for BPXBATCH

(STDPARM) 160
permissions

default 232
displaying 236

printing 261
profile file example 39
removing 235
renaming 218, 235
searching

pattern 222
string 221

sending 179
sh_history 82, 105
sorting contents 219

example 220
sticky bit 234
transfer

to a workstation 287
to the host 286
UUCP 182

file default ACL 239
file descriptor file 191
file name

creating 211

file name (continued)
length 211
listing 209
portable file name character set 211
using a wildcard character 80, 103

file name completion
using 108

file system
data access 193
I/O 193
mountable 189
permissions 231
root 189
security 231
shell commands 197
using the ISPF shell 169, 199

file tagging 201, 202
file/etc/profile 39
filter 76, 98
find shell command 76, 86, 93, 99, 109,

209
flag, shell command 4
FOMTLINP module 35
fopen() function 154
for loop 129, 143, 314
foreground job 145

canceling 148
moving to background 147

form-feed character 27
formatting files

pr command 261
fsck shell command 200
FSUM messages 90, 113
FTAM function

OSI/File Services 286
ftp 31
function

arithmetic 315
getline 318
passing an array to 318
string manipulation 316
user-defined 317
using 131

function key
customizing

keyword on OMVS command 29
description of function 17
display

keyword on OMVS command 29
displaying the settings 15
setting

keyword on OMVS command 29
fuser utility 229

G
getline function 318
GID 5, 231

changing 238
Greenwich Mean Time (GMT) 49, 63
grep shell command 73, 96, 221

H
hard link 214

deleting 217

head shell command 223
help facility 113
HELP TSO/E command 198
HFS

data set 190
backing up and restoring 190

power failure 200
history file 82, 105

editing commands 83, 105
history shell command 82, 104, 105
hung application 32

I
iconv shell command 282, 283, 324

example 283
iconv utility

z/OS XL C/C++ 282, 324
identifier

job 145
process 145

IEWBLINK
copying executables to file 281
copying load module to file 280

if conditional 127, 140
if statement 314
IKJETF01 270
increment operator 307
inetd daemon 4
inode number 214
input

redirection 70, 94
standard 68, 92

INPUT HIDDEN indicator 24
INPUT indicator 23
Interactive System Productivity

Facility 212
introduction to 201
ISPF

browsing a file 223
case-sensitive processing 212
editing a file 241

sequence numbers 158
ISPF command 18
NUMBER OFF 158
sequence numbers 158
shell 169, 199

help facility 171
locale 49, 62

uppercase processing 212
ISPF TSO/E command 18

J
JCL

case-sensitive processing 212
ddnames 153
example using OCOPY 270, 275, 279
path name and data set name

requirement 195
path name support 153
shell commands 8
specifying standard files 69, 93
submitting 155

JES printer 261

346 z/OS V2R2 UNIX System Services User's Guide



job
background 145

canceling 148
moving to foreground 147
stopping 149
suspended 146

control commands 145
foreground 145

canceling 148
moving to background 147
stopping 149

identifier 145
priority 145
resuming stopped 149
status 147
tracing 147

job control language 8
job entry subsystem 261
jobs shell command 147

K
keyboard

escape sequence 22
BPXFX100 table 329
BPXFX111 table 329
BPXFX211 table 329
BPXFX437 table 329
BPXFX450 table 329
BPXFX471 table 329
BPXFX473 table 329
BPXFX477 table 329
BPXFX478 table 329
BPXFX480 table 329
BPXFX484 table 329
BPXFX485 table 329
BPXFX497 table 329
tables 327

navigation 333
PF keys 333
remapping 23
shortcut keys 333

kill shell command 145, 148
Korn shell 3

L
LANG variable 46, 49, 60, 63
language

of messages 49, 63
LC_ALL variable 46, 60
LC_COLLATE variable 46, 60
LC_CTYPE variable 46, 60
LC_MESSAGES variable 46, 60
LC_SYNTAX variable 47, 61

limitations 49, 62
lex shell command

locale modifications 45, 59
LIBPATH variable 44, 59
line mode 16
LINES keyword, OMVS command 29
link

external 192, 200, 216
hard 214
symbolic 192, 214

ln shell command 214, 215

load module
copying into a data set 280
copying into a z/OS UNIX file 280

locale
changing 59
code page conversion 323
customizing lex, mailx, make, and

yacc 45, 59
default 4
ISPF shell 49, 62
LC_SYNTAX 47, 61

example 48, 62
limitations 49, 62

lex, mailx, make, and yacc 45, 59
LOCPATH variable 49, 63
object files 49, 63
REXX execs 49, 62
selecting 45
selecting a 47, 59, 61
shell and utilities, changing 59
variant characters 4, 47, 48, 61, 62,

323
locale name 331
locale object files 216
LOCPATH variable 49, 63
login

from a remote system 35
multiple 36
name 205
script 42, 56

logout
shell 31

loop
for 314
while 314

lp shell command 262
lpstat shell command 263
ls command

for displaying file information 196
ls shell command 207, 236

M
magic number 116, 134
mail, steps for sending 176
mailx shell command 175

locale modifications 45, 59
make shell command

locale modifications 45, 59
man shell command 89, 113
mask

file creation mode 237
master catalog 192
matching operator 307
member

partitioned data set
naming requirements 276

mesg shell command 181
messages

broadcasting 180
controlling 181
language of 49, 63
receiving 177, 186
sending 175, 179, 185

to MVS operator 177, 186
shell 90, 113
vi/ex file recovered 252

metacharacter 77, 100, 222
mkdir shell command 205

default permissions 232
MKDIR TSO/E command 206

default permissions 232
mode

cp command 232
default

directory 205
directory creation 232
file creation 232, 241

ed command 232
mask

file creation 237
mkdir command 232
MKDIR command 232
OCOPY command 232
oedit command 232
OEDIT command 232
OPUT command 232
redirection

creating a file 232
vi command 232

modified expansion 122, 140
more shell command 223
MORE... indicator 23
mountable file system 189
multiple commands

filter 76, 98
pipe 75, 98

multiple logins 36
multiple sessions 26

asynchronous terminal interface 36
keyword on OMVS command 29
OPEN subcommand 20
switching between 19

multiple-condition operator 308
mv shell command 218, 236, 265
MVS operator

sending a message to 177, 186

N
name

file 211
login 205

named pipe 192
navigation

keyboard 333
nawk utility 299
Network File System feature

code page conversion 200
external link 200
running an NFS-mounted

executable 285
newline character

appending 22
suppressing 22

next statement 315
NEXTSESS subcommand 19
nice shell command 145
nohup shell command 150

z/OS shell processing 151
NOT ACCEPTED indicator 24
NOT ACCEPTED/MORE indicator 24
notation

dot 204

Index 347



notation (continued)
tilde (~) 205

Notices 337
null file 191
numeric value 303
numeric variable, built-in 312

O
obrowse shell command 223
OBROWSE TSO/E command 223

path name and data set name
requirement 195

OCOPY TSO/E command 269, 274
default permissions 232

octal numbers 234
od shell command 71, 95
oedit shell command default

permissions 232
OEDIT TSO/E command

default permissions 232
path name and data set name

requirement 195
OGET TSO/E command 273

path name and data set name
requirement 195

OGETX TSO/E command 276
OMVS TSO/E command

CONVERT option 323
customizing 26
invoking the shell 14
subcommands 25

online conversation
having 180

online help 113
OPEN macro 155
OPEN subcommand 20
operation

compound assignment 307
ordering 306

operator
arithmetic 305
comparison 305
increment or decrement 307
matching 307
multiple-condition 308

operator message
sending 177, 186

option settings
shell session

deletion verification 65
displaying 52, 65

option, shell command 91
OPUT TSO/E command 267

default permissions 232
path name and data set name

requirement 195
OPUTX TSO/E command 271
order, arithmetic operation 306
OS/2 Extended Edition

SEND and RECEIVE programs 286
OSHELL REXX exec 22, 166
OSI/File Services

FTAM function 286
output

awk
controlling 318

output (continued)
redirection 69, 93
standard 68, 92

output buffer size
keyword on the OMVS command 29

P
parameter

expansion 122, 140
positional 122, 140
special 125, 140

parameter string for BPXBATCH
file 160

parent process 145
partitioned data set member names 276
pass-through mode, 3270

keyword on the OMVS command 28
passwd shell command 87, 110
password or password phrase

changing 87, 110
path 194
PATH keyword 154
path name 194

JCL requirement 195
symbolic link resolution 195
TSO command requirement 195

PATH variable setting 43, 57
PATHDISP keyword 154
PATHMODE keyword 154
pathname

JCL 153
PATHOPTS keyword 154
pattern matching 222
pattern, awk

ranges 310
simple 300
special 311

pax (copy mode) shell command 278
PC 3270 emulation program

SEND and RECEIVE programs 286
performance

shared address space 173
shell script 45

permissions
bits 231
changing 233
cp command 232
default

directory 205
directory creation 232
file creation 232
ISPF Edit 241
OEDIT 241
summary 232

displaying 236
ed command 232
mkdir command 232
MKDIR command 232
OCOPY command 232
octal 234
oedit command 232
OEDIT command 232
OPUT command 232
redirection

creating a file 232
symbolic 233

permissions (continued)
vi command 232

PF key 15
pg shell command 223
PGID 145
PID 145
pipe 75, 98

named 192
unnamed 192

pipeline 75, 98
placeholders 319
portable characters

escape sequences for 327
portable file name character set 324
porting considerations 202
positional parameter 120, 122, 137, 139
POSIX portable file name character

set 324
power failure 200
PPID 145
pr shell command 224, 261
PREVSESS subcommand 20
print action, awk utility 303
PRINTDS TSO/E command 263
printenv shell command 41, 55
printf action, awk utility 319
printing

checking job status 263
lp command 262
TSO/E commands 262
z/OS Print Server 262

process
child 145, 173
ending 145
group 145
identifier 145
limit per user 173
parent 145, 173
priority 145

process IDs, listing 229
PROFILE PLANGUAGE TSO/E

command 32
profile/etc/profile 39
profile.profile 39
program

awk, running 304
file, awk 304
timing 86, 110

program function key 15
programming 91
prompt *** 18
prompt, continuation 80, 102
ps shell command 148
pwd shell command 203

Q
QSAM access, HFS files 155
QUIT subcommand 20
quotation marks enclosing a

construct 122
quotes enclosing a construct 139

348 z/OS V2R2 UNIX System Services User's Guide



R
r shell command 83
RACF 4

BPX.SUPERUSER FACILITY 87, 111
random number files 191
ranges, in a pattern 310
RECEIVE program 286
RECEIVE TSO/E command 185
record keeping 85, 109
records 300
redirection 69, 93, 219

controlling 52, 65
creating a file

default permissions 232
REGION size, BPXBATCH 163
regular expression 223, 308
regular file 191
relative pathname

dot notation 204
tilde notation 205

remap keyboard 23
remote login 35
rename shell command 236
renice shell command 145
Resource Access Control Facility 4
restoring files

file system 224
from the shell 225, 229
restoring a directory 226

retrieve function key 84, 106
retrieving commands 82, 104
return statement 131
REXX 9

calling z/OS UNIX System
Services 9

OSHELL 166
z/OS UNIX extensions 168

rlogin 35
rlogin session

ISPF Edit 36
multiple logins 36
retrieving commands 84, 106

rlogin shell command, porting 35
rm shell command 73, 96, 207, 213, 236
rmdir shell command 207, 236
root directory 189
RUNNING indicator 23

S
screen

clearing with a form-feed 27
SDSF (System Display and Search

Facility) 10
print job 261

search path 43, 57
verifying 44, 59

searching files 221
security 4

RACF 4
sed editor 241

using 260
SEND program 286
SEND TSO/E command 185
sending a file 179
sending a message 175, 179, 185

sending comments to IBM xix
sending mail, steps for 176
sequence numbers, ISPF 158
sessions

ASCII terminal limitations 36
keyword on OMVS command 29
using multiple shell 26

set shell command 32, 41, 51, 55, 64
set-group-ID bit 238
set-user-ID bit 238
setlocale() 49, 63, 216
sh_history file 82, 105
shared address space 173

keyword on OMVS command 30
shell

changing the locale 45
command

escape characters 79, 102
invoked with BPXBATCH 166
invoked with BPXBATCH and

JCL 164
run from TSO/E 166

command -- option 67, 91
daemons 4
differences from UNIX or AIX 13
entering TSO/E commands 30
error message 16
escape sequence 22

BPXFX100 table 329
BPXFX111 table 329
BPXFX211 table 329
BPXFX437 table 329
BPXFX450 table 329
BPXFX471 table 329
BPXFX473 table 329
BPXFX477 table 329
BPXFX478 table 329
BPXFX480 table 329
BPXFX484 table 329
BPXFX485 table 329
BPXFX497 table 329
tables 327

exiting 31
using NOHUP 150
with a background job 150
with a nohup background job 150

function 131
invoking 14
ISPF 169, 199

help facility 171
login 14
logout 31
messages 90, 113
metacharacter 77, 100
options

deletion verification 65
displaying settings 52, 65
setting 32, 51, 64

prompt default 15
remote login 35
screen description 15
script

executable 115, 133
function 131
invoked with JCL using

BPXBATCH 163
running 115, 133

shell (continued)
special characters 77, 100
special parameters 125, 140
using multiple sessions 26
variable 122, 140

arithmetic calculation 117, 135
creating 116, 135
exporting 40, 51, 118, 136

z/OS UNIX locale 49, 62
shell command

alias 71, 95
awk 299
cat 223
cd 204
chaudit 236
chgrp 238
chmod 233
chown 238
cksum 86, 109
compress 164
cp 277
diff 208, 218
echo 42, 55
exec 71
exit 31
export 119
extattr 194
find 76, 86, 93, 99, 109, 209
fsck 200
grep 73, 96, 221
head 223
history 82, 104, 105
iconv 282, 283, 324
jobs 147
kill 148
ln 214, 215
lp 262
ls 207, 236
mailx 175
man 89, 113
mesg 181
mkdir 205
more 223
mv 218, 236
nice 145
nohup 150
obrowse 223
od 71, 95
options 67
passwd 87, 110
pax (copy mode) 278
pg 223
pr 224, 261
printenv 41, 55
ps 148
pwd 203
r 83
rename 236
renice 145
rm 73, 96, 207, 213, 236
rmdir 207, 236
set 32, 41, 51, 55, 64
sort 219
stty 146
su 87, 111
submit 155
tail 223

Index 349



shell command (continued)
talk 180
test 126
time 86, 110
tso 30, 88, 112, 116, 134
typeset 119
umask 237
uucp 182
uulog 184
uupick 184
uustat 184
uuto 182
uux 185
wait 150
wall 180
wc 221
whence 44
which 59
whoami 88, 111
writing 179

shell script
performance

improving 45
skulker 213
writing 115

shortcut keys 333
simple pattern 300
single quotation marks enclosing a

construct 80, 102, 122, 139
skulker shell script 213
SMF (system management facilities) 236
socket 192

address 191
sort shell command 219
sorting key example 220
source command 134
special

characters 77, 100
parameters 125, 140
pattern 311

square brackets
customization 323
wildcard expansion 81, 104

standard error
BPXBATCH 157
ddname 69, 93
file descriptor 69
ISPF shell 169
meaning 68, 92
redirection 70, 94

standard input
BPXBATCH 157
ddname 69, 93
file descriptor 69
ISPF shell 169
meaning 68, 92
redirection 70, 94

standard output
BPXBATCH 157
ddname 69, 93
file descriptor 69
ISPF shell 169
meaning 68, 92
redirection 69, 93

statement
exit 315
if 314

statement (continued)
next 315
return 131

status
indicator

location 15
meaning 23

job 147
print job 263

STATUS TSO/E command 263
stderr file 157, 169
stdin file 69, 93, 157, 169
stdout file 69, 93, 157, 169
STEPLIB data sets 50, 64, 163
STEPLIB variable 50, 64
sterr file 69, 93
sticky bit 234, 235

symbolic and external links 196
STOP signal 149
storage

not enough 29
stream

closing 71
string

manipulation function 316
value 302
variable, built-in 313

stty shell command 146
su shell command 87, 111
subcommand mode

subcommands 25
using 25

subdirectory
removing 235

submit shell command 155
SUBMIT TSO/E command 146, 263
submitting JCL 155
substitution

command 76, 99
substring 120
summary of changes xxi
Summary of changes xxi
superuser 4

switching to 87, 111
whoami command 88, 111

symbolic link 192, 214
deleting 217
sticky bit 196

symbolic links
command differences

tar, du, find, pax, rm, ls 196
symbolic mode 233
syscall command 168
System Display and Search Facility 10
system management facilities 236
system-specific directories

/etc, /tmp, /var, /dev 196

T
tab character

awk 301
talk shell command 180
TCP/IP 13, 175

address for X-Window application 4
File Transfer Protocol (FTP)

facility 31, 285

tcsh shell
changing the locale 59
customizing 53
files accessed at termination 66

telnet 35
from TSO/E 31

Temporary File System (TFS) 190
terminal

3270 13
ASCII interface 35
EBCDIC interface 13

terminal file 191
test shell command 126
tilde (~) notation 205
time shell command 86, 110
time zone

specifying 49, 63
Tivoli Storage Manager 224
tracing

job 147
tracked alias 73
TRANSMIT TSO/E command 185, 186
TSM file backup 224
tso command

using 88
tso shell command 30, 88, 112

in a shell script 116, 134
TSO/E

address space
working directory 199

case-sensitive processing 212
commands

entering from ISPF 198
entering from the shell 30
printing files 262
using a relative path name 199

ftp and telnet 31
invoking BPXBATCH 166
mail facilities 175
prefix 195
prompt 18
switching to 31

TSO/E command
ALLOCATE 269
DELETE 287
HELP 198
ISPF 18
MKDIR 206
OBROWSE 223
OCOPY 269, 274
OGET 273
OGETX 276
OMVS 26
OPUT 267
OPUTX 271
PRINTDS 263
PROFILE PLANGUAGE 32
RECEIVE 185
SEND 185
STATUS 263
SUBMIT 146, 263
TRANSMIT 185, 186

tsocmd command
using 89

typeset shell command 119
TZ variable 49, 63

350 z/OS V2R2 UNIX System Services User's Guide



U
UID 5, 231

4294967294 237
changing 87, 111, 238

umask shell command 237
unalias shell command 74, 97
Unicode services 202
Unicode Services 201, 202

porting 202
Universal Time Coordinated (UTC) 49,

63
UNIX-to-UNIX copy program

(UUCP) 175
unnamed pipe 192
user

catalog 192
classes 231
definition 231

user interface
ISPF 333
TSO/E 333

user-defined function 317
utility definition 4
UUCP 175

commands 181
code page conversion 181

daemons 181
file transfer

from a remote site 184
to a remote site 182
to the local public directory 183

file transfer (multiple)
to a remote site 182

file transfer status
checking 184

files
public directory 184

network, using 181
notification of file transfer 183
permissions 183
remote site

running a command on 185
transferring a file to a 182

uucp shell command 181, 182
uulog shell command 184
uuname shell command 181
uupick shell command 181, 184
uustat shell command 181, 184
uuto shell command 181, 182
uux shell command 181, 185

V
value

assigning to a variable 302
numeric 303
string 302

variable
assigning value 302
associating attributes 119
built-in numeric 312
built-in string 313
environment

BPX_SPAWN_SCRIPT 45
displaying 41, 55
ENV 42

variable (continued)
environment (continued)

LANG 46, 49, 60, 63
LC_ALL 46, 60
LC_COLLATE 46, 60
LC_CTYPE 46, 60
LC_MESSAGES 46, 60
LC_SYNTAX 47, 61
LIBPATH 44, 59
LOCPATH 49, 63
PATH 43, 57
TZ 49, 63

exporting 118, 136
allexport option 51
profile file 40

shell
arithmetic calculation 117, 135
creating 116, 135
displaying definitions 120

variant characters 4, 47, 48, 61, 62, 323
vi editor 242

adding text 244
advanced topics 293
arrow keys 244
backwards search 249
changing text 248
checking substitutions 298
combining files 295
command editing 84, 107
controlling indention 295
copying text 251
cursor

moving 244, 245, 246
cursor commands 246, 247
default permissions 232
deleting text 247
determining line numbers 297
editing options 293, 294

setting up a command file 294
editing several files 294
editing source code 295
file recovered message 252
locating text 249
making substitutions 297
message

file recovered 252
modes 243
moving text 251
pasting text 251
quitting a file 249
saving a file 248
searching

backwards 249
for brackets 296
for strings 249

setting tab stops 293
setting up an options command

file 294
special characters 250
specifying a range of lines 297
text

adding 244
changing 248
copying 251
deleting 247
locating 249
moving 251

vi editor (continued)
text (continued)

pasting 251
undoing a command 248
using abbreviations 293
vi/ex file recovered 252

viewing an archive 227
VSAM data set

copying to a file 272

W
wait shell command 150
wall shell command 180
wc shell command 221
whence shell command 44
which shell command 59
while loop 128, 142, 314
whoami shell command 88, 111
wildcard character 80, 103

preventing expansion 52, 65
word count 221
working directory 203

TSO/E address space 199
workstation, remote login 35
write shell command 179

X
X-Window

TCP/IP workstation address 4
X-Window application

running 4

Y
yacc shell command

locale modifications 45, 59

Z
z/OS Print Server lp command 262
z/OS XL C/C++ iconv utility 282, 283,

324
zero file 191

Index 351



352 z/OS V2R2 UNIX System Services User's Guide





����

Product Number: 5650-ZOS

Printed in USA

SA23-2279-01


	Contents
	Figures
	Tables
	About this document
	Who should use z/OS UNIX System Services User's Guide?
	What is in z/OS UNIX System Services User's Guide?
	Tasks that can be performed in more than one environment
	z/OS information
	IBM Systems Center publications
	Porting information for z/OS UNIX
	z/OS UNIX courses
	z/OS UNIX home page
	Discussion list



	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 2 (V2R2)
	Summary of changes for z/OS Version 2 Release 1

	Part 1. The z/OS shells
	Chapter 1. An introduction to the z/OS shells
	About shells
	Shell commands and utilities
	The locale in the shells
	Daemon support
	Running an X-Window application
	The shell user
	Security

	Accessing the shells — the choices
	Terminal emulators

	Interoperability between the shells and MVS
	Parallels between the MVS environment and the shell environment
	Programming for everyday tasks
	Editing
	Job control
	Background jobs
	Programming
	Debugging
	Data management


	Chapter 2. OMVS, a 3270 terminal interface to the z/OS shell
	Differences from a UNIX or AIX environment
	Invoking the shell
	Changing options on the OMVS command

	Understanding the shell screen
	Working in line mode
	Why isn't your output displayed on the screen?

	Determining function key settings and the escape character
	The function key functions
	The escape character

	Entering a shell command
	Customizing the variant characters on your keyboard
	Entering a long shell command
	Entering a shell command from TSO/E

	Interrupting a shell command
	Typing escape sequences in the shell
	Suppressing the newline character
	Keyboard remapping

	Determining your session status
	Scrolling through output
	Using function keys or subcommands
	Using cursor scrolling

	Running a subcommand
	Switching to subcommand mode

	Using multiple sessions
	Starting sessions
	Switching between sessions

	Customizing the OMVS interface
	An example of customizing the OMVS command
	The alarm setting (ALARM | NOALARM)
	Autoscrolling (AUTOSCROLL | NOAUTOSCROLL)
	The character conversion table (CONVERT)
	Double-byte character set support (DBCS | NODBCS)
	Debugging for the OMVS command (DEBUG)
	Giving an application control of the command line (ECHO | NOECHO)
	Ending 3270 pass-through mode (ENDPASSTHROUGH)
	The escape character (ESCAPE)
	Controlling the size of the output scroll buffer (LINES)
	Function key settings (PFn)
	Displaying the function key settings (PFSHOW | NOPFSHOW)
	Specifying Language Environment runtime options (RUNOPTS)
	Multiple sessions (SESSIONS)
	The shared TSO/E address space (SHAREAS | NOSHAREAS)
	Controlling data recorded in the debug data set (WRAPDEBUG)

	Performing TSO/E work or ISPF work after invoking the shell
	Entering a TSO/E command from the z/OS shell
	Switching to TSO/E command mode

	ftp or telnet from TSO
	Exiting the shell
	Getting rid of a hung application
	Using a double-byte character set (DBCS)
	Single-byte restrictions


	Chapter 3. The asynchronous terminal interface to the shells
	ASCII-EBCDIC translation
	Using rlogin to access the shell
	Using telnet to access the shell
	Using Communications Server login to access the shell
	The shell session
	Entering a shell command
	Interrupting a shell command
	Using multiple sessions
	Using a double-byte character set (DBCS)
	Standard shell escape characters

	Chapter 4. Customizing the z/OS shell
	Customizing your .profile
	Quoting variable values
	Changing variable values dynamically

	Understanding shell variables
	Customizing your shell environment: The ENV variable
	Customizing the search path for commands: The PATH variable
	Adding your working directory to the search path
	Checking the search path used for a command
	Customizing the FPATH search path: The FPATH variable

	Customizing the DLL search path: The LIBPATH variable
	Improving the performance of shell scripts
	Changing the locale in the shell
	Advantages of a locale compatible with the MVS code page
	Customizing for a locale not based on code page IBM-1047

	Advantages of a locale generated with code page IBM-1047
	Changing the locale setting in your profile
	Examples: Changing locale

	The LC_SYNTAX environment variable
	Limitations

	The LOCPATH environment variable

	Customizing the language of your messages
	Setting your local time zone
	Building a STEPLIB environment: The STEPLIB environment variable
	Restrictions on STEPLIB data sets

	Setting options for a shell session
	Exporting variables
	Controlling redirection
	Preventing wildcard character expansion
	Displaying input from a file
	Running a command in the current environment
	Displaying current option settings


	Chapter 5. Customizing the tcsh shell
	Understanding the startup files
	Quoting variable values
	Changing variable values dynamically

	Understanding shell variables
	Customizing your shell environment: The .tcshrc file
	Customizing the search path for commands: The PATH variable
	Adding your working directory to the search path
	Checking the search path used for a command

	Customizing the DLL search path: The LIBPATH variable
	Changing the locale in the shell
	Advantages of a locale compatible with the MVS code page
	Customizing for a locale not based on code page IBM-1047

	Advantages of a locale generated with code page IBM-1047
	Changing the locale setting in your profile
	Examples: Changing locale

	The LC_SYNTAX environment variable
	Limitations

	The LOCPATH environment variable

	Customizing the language of your messages
	Setting your local time zone
	Building a STEPLIB environment: The STEPLIB environment variable
	Restrictions on STEPLIB data sets

	Setting variables for a shell session
	Displaying current option settings
	Controlling redirection
	Preventing wildcard character expansion
	Displaying input from a file
	Displaying deletion verification

	Files accessed at termination

	Chapter 6. Working with z/OS shell commands
	Specifying shell command options
	Specifying options with accompanying arguments
	Help for shell command usage

	Understanding standard input, standard output, and standard error
	Redirecting command output to a file
	Redirecting input from a file
	Redirecting error output to a file
	Closing a file
	Dumping nontext files to standard output
	Setting up an alias for a command
	Defining an alias
	Redefining an alias for a session
	Setting up an alias for a particular version of a command
	Using alias tracking
	Turning off an alias

	Combining commands
	Using a semicolon (;)
	Using && and ||
	Using a pipe

	Using substitution in commands
	Using the find command in command substitution constructs

	Characters that have special meaning to the shell
	Characters used with commands
	Characters used in file names
	Redirecting input and output

	Using a special character without its special meaning
	The backslash
	A pair of single quotation marks (' ')
	A pair of double quotation marks (" ")

	Using a wildcard character to specify file names
	The * character
	The ? character
	The square brackets

	Retrieving previously entered commands
	Retrieving commands from the history file
	Editing commands from the history file
	Using the retrieve function keys
	Command-line editing
	Using the vi command editor
	Using the emacs command editor


	Using record-keeping commands
	Finding elements in a file and presenting them in a specific format
	Timing programs
	Using the passwd command
	Switching to superuser or another ID
	Using the whoami command
	Running a TSO/E command
	Using the tso command
	Using the tsocmd command

	Using the man command to get online help
	Shell messages

	Chapter 7. Working with tcsh shell commands
	Specifying shell command options
	Specifying options with accompanying arguments
	Help for shell command usage

	Understanding standard input, standard output, and standard error
	Redirecting command output to a file
	Redirecting input from a file
	Redirecting error output to a file
	Dumping nontext files to standard output
	Setting up an alias for a command
	Defining an alias
	Arguments in aliases

	Redefining an alias for a session
	Setting up an alias for a particular version of a command
	Turning off an alias

	Combining commands
	Using a semicolon (;)
	Using && and ||
	Using a pipe

	Using substitution in commands
	Using the find command in command substitution constructs

	Characters that have special meaning to the shell
	Characters used with commands
	Characters used in file names
	Redirecting input and output

	Using a special character without its special meaning
	The backslash
	A pair of single quotation marks (' ')
	A pair of double quotation marks (" ")

	Using a wildcard character to specify file names
	The * character
	The ? character
	The square brackets

	Retrieving previously entered commands
	Retrieving commands from the history file
	Editing commands from the history file
	Using the retrieve function keys
	Command-line editing
	Using the vi command editor
	Using the emacs command editor


	Using file name completion
	Using record-keeping commands
	Finding elements in a file and presenting them in a specific format
	Timing programs
	Using the passwd command
	Switching to superuser or another ID
	Using the whoami command
	Running a TSO/E command
	Using the tso command
	Using the tsocmd command

	Online help
	Using the man command

	Shell messages

	Chapter 8. Writing z/OS shell scripts
	Running a shell script
	Using the magic number
	Using TSO/E commands in shell scripts
	Using variables
	Creating a variable
	Calculating with variables
	Exporting variables
	Associating attributes with variables
	Displaying currently defined variables

	Using positional parameters — the $N construct
	Using quotation marks to enclose a construct in a shell script

	Using parameter and variable expansion
	Using special parameters in commands and shell scripts
	Using control structures
	Using test to test conditions
	The if conditional
	The while loop
	The for loop
	Combining control structures

	Using functions
	Autoloading functions


	Chapter 9. Writing tcsh shell scripts
	Running a shell script
	Using the magic number
	Using TSO/E commands in shell scripts
	Using variables
	Creating a shell variable
	Calculating with variables
	Setting environment variables

	Using positional parameters — the $N construct
	Using quotes to enclose a construct in a shell script

	Using parameter and variable expansion
	Using special parameters in commands and shell scripts
	Using control structures
	The if conditional
	The while loop
	The foreach loop
	Combining control structures


	Chapter 10. Using job control in the shells
	Running several jobs at once (foreground and background)
	Starting a job in the background with an ampersand (&)
	Moving a job to the background
	Moving a job to the foreground

	Setting up job tracing
	Checking the status of jobs
	Using the jobs command
	Using the ps command

	Canceling a job
	Canceling a foreground job
	Canceling a background job

	Stopping and resuming a job
	Stopping a foreground job
	Stopping a background job
	Resuming a stopped job

	Delaying a command
	Exiting the shell with background jobs running
	Changing the default in the z/OS shell

	Comparison of shell background jobs and MVS batch jobs

	Chapter 11. Using z/OS UNIX from batch, TSO/E, and ISPF
	JCL support for z/OS UNIX
	The PATH keyword
	The DSNTYPE keyword
	Using the ddname in an application
	The fopen() function
	The OPEN macro

	Specifying a ddname in the JCL

	Using the submit command
	The BPXBATCH utility
	Aliases for BPXBATCH
	BPXBATSL
	BPXBATA2 and BPXBATA8

	Defining standard input, output, and error streams for BPXBATCH
	Guidelines for defining stdin, stdout, and stderr
	Ways to define stdin, stdout, and stderr

	Passing environment variables to BPXBATCH
	Guidelines for defining STDENV
	Ways to define STDENV
	Example: Setting up code page support in a STDENV file
	_BPX_BATCH_SPAWN and _BPX_BATCH_UMASK environment variables

	Passing parameter data to BPXBATCH
	Guidelines for defining STDPARM
	Ways to define STDPARM

	Invoking BPXBATCH in a batch job
	Example: Running a shell script in batch
	Example: Running a shell command in batch
	Example: Running a z/OS UNIX executable file or REXX exec in batch

	Invoking BPXBATCH from the TSO/E environment
	OSHELL: Running a shell command from the TSO/E READY prompt


	Using TSO/E REXX for z/OS UNIX processing
	Using the ISPF shell
	Invoking the ISPF shell
	Working in the ISPF shell
	Using the online help facility


	Chapter 12. Performance: Running executable files
	Improving shell script performance

	Chapter 13. Communicating with other users
	Using mailx to send and receive mail
	Steps for sending mail to another user
	Sending mail to a distribution list
	Sending a message to an MVS operator
	Receiving mail from other users
	Replying to mail
	Saving and deleting mail
	Ending the mailx program

	Using write to send a message or a file
	Sending a message: An example
	Ending a message
	Sending a file

	Using talk for an online conversation
	Beginning a conversation: An example
	Viewing the conversation

	Using wall to broadcast messages
	Controlling messages and online conversations
	Using the UUCP network
	Transferring a file to a remote site
	Using uucp to transfer files
	Using uuto to transfer files

	Transferring multiple files to a remote site
	Transferring a file to the local public directory
	Notification of transfer
	Permissions
	Transferring a file from a remote site
	Checking a file's transfer status
	Working with your files in the public directory
	Running a command on a remote site
	Using a remote file as an argument
	Using a local file as an argument


	Using TSO/E to send or receive mail
	Sending a message
	Sending a message to a distribution list
	Sending a message to an MVS operator
	Receiving mail from other users
	Receiving messages from other systems


	Part 2. The z/OS UNIX file system
	Chapter 14. An introduction to the z/OS UNIX file system
	The root file system and mountable file systems
	Directories
	Files
	Files not in the file system
	Comparison between MVS data sets and the z/OS UNIX file system
	Sharing files between LPARs
	Executable modules in the file system

	Path and path name
	Requirement for an absolute path name
	Resolving a symbolic link in a path name
	Symbolic and external links with a sticky bit


	Command differences with symbolic links
	Using commands to work with directories and files
	Entering a TSO/E command
	Using a relative path name on TSO/E commands
	Finding the data set that contains a file

	Using the ISPF shell to work with directories and files
	Using the Network File System feature
	External links

	Security for the file system
	Power® failures and the file system

	Chapter 15. Converting files between code pages
	Enhanced ASCII
	File tagging in Enhanced ASCII

	Unicode Services
	File tagging in Unicode Services

	Automatic code set conversion
	Porting considerations

	Chapter 16. Working with directories
	The working directory
	Displaying the name of your working directory
	Changing directories
	Using notations for relative path names
	Dot notation
	Tilde notation
	Example


	Creating a directory
	Removing a directory
	Listing directory contents
	Comparing directory contents
	Finding a directory or file

	Chapter 17. Working with files
	Using an editor to create a file
	Naming files
	Processing in uppercase and lowercase

	Deleting a file
	Deleting files over a certain age

	Identifying a file by its inode number
	Creating links
	Creating a hard link
	Creating a symbolic link
	Creating an external link

	Deleting links
	Renaming or moving a file or directory
	Comparing files
	Sorting file contents
	Using sorting keys — an example

	Counting lines, words, and bytes in a file
	Searching files by using pattern matching
	Patterns
	Regular expressions

	Browsing files
	Browsing files without formatting
	Browsing files with formatting

	Simultaneous access to a file
	Backing up and restoring files: options
	Backing up and restoring files from the shell
	Backing up a complete directory into an MVS data set
	Restoring a complete directory from an MVS data set
	Viewing the contents of an archive
	Converting between code pages
	Appending to an existing archive
	Backing up selected files by date

	Listing process IDs of processes with open files

	Chapter 18. Handling security for your files
	Default permissions set by the system
	Changing permissions for files and directories
	Using a symbolic mode to specify permissions
	Using octal numbers to specify permissions
	Position 1
	Positions 2, 3, and 4


	Using the sticky bit on a directory to control file access
	Auditing file access
	Displaying file and directory permissions
	Setting the file mode creation mask
	Changing the owner ID or group ID associated with a file
	Temporarily changing the user ID or group ID during execution
	Displaying extended attributes
	Using access control lists (ACLs) to control access to files and directories
	Setting up ACL support


	Chapter 19. Editing files
	Using ISPF to edit a z/OS UNIX file
	Using the vi screen editor
	Basic principles
	A simple vi session
	Adding text
	Moving the cursor up and down the screen
	Moving up and down through a file
	Moving the cursor on the line
	Moving to sentences and paragraphs
	Deleting text
	Changing text
	Undoing a command
	Saving a file
	Searching for strings
	Searching backwards through a file
	Case-sensitive searching
	Special search characters

	Moving text
	Copying text
	Other vi features
	Message: vi/ex edited file recovered
	Using the TMP_VI environment variable
	Stopping the mail messages
	Deleting the old mail messages


	Using the ed editor
	Creating and saving a text file
	Editing an existing file
	Identifying line numbers and changing your position in the buffer
	Changing position using numbers
	Changing position using a search string (regular expression)

	Appending one file to another
	Displaying the current line in the edit buffer
	Changing a character string
	Inserting text at the beginning or end of a line
	Deleting lines of text
	Changing lines of text
	Inserting lines of text
	Copying lines of text
	Moving lines of text
	Undoing a change
	Entering a shell command while using ed
	Ending an ed edit session
	Default permissions

	Using sed to edit a z/OS UNIX file

	Chapter 20. Printing files
	Formatting files for online browsing or printing
	Printing requests in shell scripts

	Printing with the lp command
	Printing with TSO/E commands
	Checking the status of print jobs

	Chapter 21. Copying data between the z/OS UNIX file system and MVS data sets
	Copying data using z/OS shell commands
	Copying data using TSO/E commands
	Copying a sequential data set or PDS member into a z/OS UNIX file
	Using cp to copy a sequential data or PDS member into a z/OS UNIX file
	Using OPUT and OCOPY to copy a PDS member, a PDSE member, or a sequential data set
	Using OPUT
	Example: Using OPUT with a PDSE member
	Example: Using OPUT with a sequential data set
	Using OCOPY
	Example: Using ALLOCATE and OCOPY
	Example: Using JCL and OCOPY


	Copying a PDS or PDSE to a z/OS UNIX directory
	Using cp to copy a PDS to a z/OS UNIX directory
	Using OPUTX to copy a sequential data set or members of a PDS or PDSE
	Example: Using OPUTX with a PDSE


	Copying an MVS VSAM data set to a z/OS UNIX file
	Copying a z/OS UNIX file into a sequential data set or PDS member
	Using cp to copy a z/OS UNIX file into a sequential data set or PDS member
	Using OGET and OCOPY to copy a file into a sequential data set or a PDS member
	OGET
	Example: Using OGET with a PDSE member
	Example: Using OGET with a sequential data set

	OCOPY
	Example: Using ALLOCATE and OCOPY
	Example: Using JCL and OCOPY


	Copying z/OS UNIX files into a PDS or PDSE
	Using cp to copy z/OS UNIX files into a PDS or PDSE
	Using OGETX to copy files into a PDS or PDSE
	Example: Using OGETX with a PDSE


	Copying files within the z/OS UNIX file system
	Copying an MVS data set into another MVS data set
	Example: Using ALLOCATE and OCOPY
	Example: Using JCL and OCOPY

	Copying executable modules between MVS data sets and the z/OS UNIX file system
	Using cp to copy executables between MVS and z/OS UNIX
	Using TSO/E commands and JCL to copy executables
	Copying an executable module from a PDSE
	Copying an executable module from a PDS


	Copying data: Code page conversion
	Single-byte data
	Double-byte data
	Example: Using the iconv shell utility with MBCS data



	Chapter 22. Transferring files between systems
	File transfer directly to or from z/OS UNIX
	Transferring files using File Transfer Protocol (FTP)
	Transferring files using the Network File System feature
	Transferring files using the SEND and RECEIVE programs
	Transferring files using the File Transfer, Access, and Management Function

	File transfer using MVS data sets
	Transferring files into the z/OS UNIX file system
	Transferring files to the workstation

	Transporting an archive file on tape or diskette
	Putting an archive file into the file system
	Step 1. Transferring the archive file to a data set
	Step 2. Copying the file from a data set into a file system

	Sending an archive file to others
	Step 1. Create an archive file for multiple files
	Step 2. Copy the file from the file system to a data set
	Step 3. Transfer the archive file to a tape or diskette



	Part 3. Appendixes
	Appendix A. Advanced vi topics
	Editing options
	Setting tab stops
	Using abbreviations
	Other editing options
	Setting up an editing options command file

	Editing several files
	Combining files
	Editing program source code
	Controlling indention
	Searching for opening and closing brackets
	Making substitutions
	Specifying a range of lines to change
	Determining line numbers
	Checking as you substitute



	Appendix B. Using awk
	Data files
	Records
	Fields

	The shape of a program
	Simple patterns
	Using blanks and horizontal tabs
	Applying more than one instruction
	Assigning values to variables
	String values
	Numeric values
	Using the print action for output

	Running awk programs
	The awk command line
	Program files
	Sources of data

	Operators
	Comparison operators
	Arithmetic operators
	Operation ordering

	Compound assignments
	Increment and decrement operators
	Matching operators
	Multiple-condition operators

	Regular expressions
	Pattern ranges
	Using special patterns
	Built-in variables
	Built-in numeric variables
	Built-in string variables

	Statements and loops
	The if statement
	The while loop
	The for loop
	The next statement
	The exit statement

	Functions
	Arithmetic functions
	String manipulation functions
	User-defined functions
	Passing an array to a function
	The Getline function

	Running system commands
	Controlling awk output
	Formatting the output
	Placeholders
	Escape sequences


	Appendix C. Code page conversion when the shell and MVS have different locales
	Customizing the variant characters on your keyboard
	Using the CONVERT option on the OMVS command
	When do you need to convert between code pages?
	Methods for converting data
	The POSIX portable file name character set
	The POSIX portable character set

	Appendix D. Escape sequences for a 3270 keyboard
	Escape sequences for portable characters not on your keyboard
	Escape sequences for control characters
	Escape sequences unique to a conversion table
	BPXFX100 conversion table
	BPXFX111 and BPXFX211 conversion tables
	BPXFX437, BPXFX450, BPXFX471, BPXFX473, BPXFX477, BPXFX478, BPXFX480, BPXFX484, BPXFX485, BPXFX497 conversion tables


	Appendix E. Locale objects, source files, and charmaps
	Appendix F. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interfaces
	Trademarks

	Acknowledgments
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


