
z/OS

UNIX System Services
Planning
Version 2 Release 2

GA32-0884-02

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 449.

This edition applies to Version 2 Release 2 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1996, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures xi

Tables xiii

About this document xv
Using this document xv
z/OS information xv

IBM Systems Center publications xvi
Porting information for z/OS UNIX xvi
z/OS UNIX courses xvi
z/OS UNIX home page xvi
Discussion list xvi

How to send your comments to IBM xix
If you have a technical problem xix

Summary of changes xxi
Summary of changes for z/OS Version 2 Release 2
(V2R2) as updated March 2016. xxi
Summary of changes for z/OS Version 2 Release 2
(V2R2) xxi
z/OS Version 2 Release 1 summary of changes . . xxii

Chapter 1. Introduction to z/OS UNIX . . 1
The API interface 1
The interactive shell interface 2
Interacting with elements and features of z/OS. . . 2

Workload Manager (WLM) 3
WebSphere Application Server Dispatcher . . . 4
System Management Facilities (SMF) 4
XL C/C++ compiler 5
Language Environment 5
DFSMS 5
Security Server (RACF) 5
Resource Measurement Facility (RMF) 5
System Display and Search Facility (SDSF) . . . 5
Time Sharing Options Extensions (TSO/E) . . . 6
Communications Server 6
Interactive System Productivity Facility (ISPF) . . 6
Network File System (NFS) 6
z/OS File System (zFS) 6

Hardware considerations for z/OS UNIX 6
Requirements for accessing kernel services using
TSO/E 7
Tasks that z/OS UNIX application programmers do 9
Administrative tasks using the ISPF shell 10

Chapter 2. Installing z/OS UNIX 11
Methods of installing z/OS UNIX 11

Installing z/OS UNIX for ServerPac customers . 11
Installing z/OS UNIX for CBPDO customers . . 11

Establishing an /etc file system for a new release. . 12

Chapter 3. Customizing z/OS UNIX. . . 15
Setting up kernel services in minimum mode . . . 15
Setting up kernel services in full function mode . . 15

Setting up for full function mode 15
Checking the mode of the kernel in a running
system 16
Evaluating virtual memory needs 17

Using extended common service area (ECSA) . . 17
Using extended system queue area (ESQA) . . . 17

Prioritizing UNIX work on your system 19
Define service classes 20
Define classification rules 20

Defining the BPXPRMxx members in IEASYSxx . . 21
Customizing the BPXPRMxx member of
SYS1.PARMLIB 22

Checking the BPXPRMxx syntax 22
Defining file systems 25
Defining system limits 28
Defining system features 35

Customizing other members of SYS1.PARMLIB . . 40
ALLOCxx 40
COFVLFxx 40
CTnBPXxx. 41
IEADMR00 42
IKJTSOxx 42
SMFPRMxx 42

Customizing /etc 43
Initializing the kernel using a cataloged procedure 44
Running a physical file system in a colony address
space 44

Starting colony address spaces 44
Starting colony address spaces outside of JES . . 45

Running a temporary file system in a colony
address space. 46

Steps for creating a cataloged procedure for a
temporary file system 46

Enabling certain TSO/E commands to z/OS UNIX
users 47
Globalization on z/OS systems 49
Checking for setup errors. 50

Chapter 4. Establishing UNIX security 51
List of subtasks 51
Preparing RACF 52

Steps for preparing RACF 52
Using RACF with z/OS UNIX 56

RACF performance considerations 56
Setting up users and groups 56
Activating supplemental groups 57

Defining z/OS UNIX users to RACF 57
Steps for defining z/OS UNIX users to RACF . . 58

Storing user-specific information in OMVS segments 60
Automatically generating OMVS segments . . . 60

Security implications 61
Checking user and group authority 62

© Copyright IBM Corp. 1996, 2016 iii

||

||
||
||

Obtaining security information about groups . . . 63
Steps for obtaining security information about a
group 63

Obtaining security information about users 63
Steps for obtaining security information about
users 63

Setting up field-level access for the OMVS segment
of a user profile 64

Steps for setting up field-level access 64
Defining group identifiers (GIDs) 65
Defining user identifiers (UIDs) 65

Defining protected user IDs 67
Defining the terminal group name. 67
Managing user and group assignments 67

Assigning UIDs and GIDs in an NFS network . . 67
Assigning identifiers for users 68
Assigning identifiers for groups 68

Upper limits for GIDs and UIDs 68
Creating z/OS UNIX groups 69

Steps for creating z/OS UNIX groups 69
Superusers in z/OS UNIX 70
Using UNIXPRIV class profiles 71

Assigning superuser privileges 74
Allowing z/OS UNIX users to change file
ownerships 75
Allowing z/OS UNIX users to search directories 76

Using the BPX.SUPERUSER resource in the
FACILITY class 76

Steps for setting up BPX.SUPERUSER 76
Deleting superuser authority 77
Changing a superuser from UID(0) to a unique
nonzero UID 77
Switching in and out of superuser authority . . 79

Assigning a UID of 0 80
Setting up the UNIX-related FACILITY and
SURROGAT class profiles 80
Security requirements for ServerPac and CBPDO
installation 88

If you use uppercase group and user IDs . . . 89
If you use mixed-case group and user IDs . . . 89
If you have problems with names such as UUCP,
UUCPG, and TTY 90

Defining cataloged procedures to RACF 91
Controlling access to files and directories 91

Setting classes for a user's process 92
Accessing files 93
Changing the permission bits for a file 93
Changing the owner or group for a file 94
Creating a set-user-ID or set-group-ID executable
file 94
Protecting data 94
Obtaining security information for a file 95
Creating a sticky bit file or external link for an
MVS APF-authorized program 97

Using access control lists (ACLs) 97
ACLs and ACL entries. 98
Managing ACLs 98

Using security labels 102
Setting security labels on z/OS UNIX 102
Symbolic link restrictions 103

Using multilevel security 103

Security labels for zFS files and directories . . 103
Auditing access to files and directories 104

Specifying file audit options 104
Using sanction lists 105

Formatting rules for sanction lists 105
Steps for creating a sanction list 106
Steps for activating the sanction list 107

Maintaining the security level of the system . . . 109
Steps for maintaining the security level of the
system 109

Controlling access to applications. 109
Restricting access to z/OS UNIX file systems . . . 110

Using the FSACCESS class profile to restrict
access 111
Restricting execute access in a zFS or TFS file
system. 112

Setting up TCP/IP security 112
Selecting a security level for the system 112

Chapter 5. Managing the z/OS UNIX
file system 113
Lists of subtasks 113
Basics of the z/OS UNIX file system. 113
Structure of the z/OS UNIX file system 114

Command differences due to symbolic links . . 115
Suggested file system structures for user
directories and files 115

Using the Network File System (NFS) 116
Using the z/OS File System (zFS) 116

How does zFS differ from HFS? 117
Implications of zFS ownership versus z/OS
UNIX ownership of file systems 117
Migrating the HFS file system to the zFS file
system. 117
Migrating the sysplex root file system from HFS
to zFS 118
Mounting considerations for zFS 118
Determining the zFS file system owner 118

Setting up the z/OS UNIX file system 119
Naming rules for file names and path names 119
Allocating a file system for the root file system 119
Defining the root file system 121
What happens when file systems are mounted? 121

Mounting file systems 123
Security considerations when mounting . . . 123
Privileged mount and unmount authority . . . 123
Nonprivileged mount and unmount authority 124
Steps for mounting file systems 125
Restrictions on mounting file systems 127

Automatically replacing the sysplex root file
system with the alternate sysplex root file system if
it becomes unowned 127

Steps for setting up the alternate sysplex root
for the dynamic replacement of the current
sysplex root 128
Steps for removing the alternate sysplex root
support 130

Dynamically replacing the sysplex root file system 130
Steps for dynamically replacing the sysplex root
file system 130

Managing file systems 132

iv z/OS V2R2 UNIX System Services Planning

||

|
||

Reducing the size of the file system 133
Increasing the size of the HFS file system . . . 133
Removing unnecessary files from directories . . 134
Improving accesses to file systems 134
Unmounting file systems 134

Mounting the root file system for execution . . . 134
Deciding how to mount your root 135
Leaving the root file system mounted in
read/write mode 135
Post-installation actions for mounting the root
file system in read-only mode 136
Mounting the root file system in read-only
mode 137

Customizing the cron, uucp, and mail utilities for a
read-only root file system 137

Migration considerations for the cron, uucp, and
mail utilities 139
Customizing the cron, uucp, and mail utilities 139

Remounting a mounted file system 143
Copying the file system 144
Backing up file systems 144

Ways to back up file systems 144
Creating the user file systems 146
Making user file systems available 147

Using direct mount 148
Using file locks 151
Creating special files 152

Pseudoterminal files 153
Null file 153
Zero file 153
Random number files 154
File descriptor files 154
UNIX domain socket name special file 155
System console files 155

Handling file system failures 155
Restoring the root file system 155
Recovering from file system problems with the
root 155

Installing service into the z/OS UNIX file system 157
Example of installing service 158
Transporting the file system from the driving
system to the target system. 159
Making changes to /etc and /var 160

Installing products into the file system 161

Chapter 6. Using the automount
facility 163
Automounting both HFS and zFS file systems . . 163
Automounting NFS file systems 163
Automounting in a shared file system 164
How does the automount facility work? 164
Setting up the automount facility 164

/etc/auto.master 165
MapName 165
Steps for setting up the automount facility . . 166
What happens when you start the automount
facility from the shell? 168
Naming specific directories 170
Changing which file systems are automounted 170
Stopping the automount facility 171

Chapter 7. Sharing file systems in a
sysplex 173
What does shared file system mean? 173
How the end user views the shared file system . . 174
Summary of various file systems in a shared
environment. 174
Illustrating file systems in single system and
sysplex environments. 175

File systems in single system environments . . 176
Establishing a shared file system in a sysplex. . . 177

Creating the sysplex root file system 178
Adding a system-specific or version root file
system to your shared file system configuration . 179
Creating a system-specific file system 179
Mounting the version file system 180
Creating a couple data set (CDS) 181
Customizing BPXPRMxx for a shared file
system 185
Using system lists 191

Sysplex scenarios showing shared file system
capability. 192

Scenario 1: First system in the sysplex 192
Scenario 2: Multiple systems in the sysplex
using the same release level 195
Scenario 3: Multiple systems in a sysplex using
different release levels 199

Using the automount policy 201
File system availability 202

Minimum setup required for file system
availability 202
Situations that can interrupt availability . . . 204

Moving file systems in a sysplex 204
Moving file systems to a back-level system . . 205
zFS sysplex considerations when moving file
systems 206

Implications of shared file systems during system
failures and recovery 206

Managing the movement of data 207
Shared file system implications during a planned
shutdown of z/OS UNIX 209

State of file systems after shutdown 209
Initializing the file system 210
Locking files in the sysplex 210
Mounting file systems using symbolic links . . . 211
Mounting file systems using NFS client mounts 212
Tuning z/OS UNIX performance in a sysplex . . 213
DFS and SMB considerations when exporting file
systems 213

Chapter 8. Customizing the shells and
utilities 215
Lists of subtasks 215
Connecting to the shell 215
Invoking the shell automatically under TSO/E . . 215

Steps for enabling shell users to invoke the shell
automatically 216
Invoking the shell automatically when logging
on to TSO/E 216

Determining the CPU time limit 217
Supplying an alternative shell 217

Contents v

Customizing the z/OS UNIX shells 217
Customizing the shell environment variables 218
Customizing the RACF user profile 219

Customizing files for the z/OS shell. 219
Customizing /etc/profile 219
Customizing $HOME/.profile 225
Customizing /etc/init.options 227
Customizing /etc/rc 229
Customizing /etc/inittab 232

Customizing files for the tcsh shell 235
Customizing /etc/csh.login 235
Customizing $HOME/.login 236
Customizing /etc/csh.cshrc 236
Customizing /etc/complete.tcsh 237

Copying configuration files 237
Enabling the man pages 238
Setting up for mesg, talk, write, and UUCP . . . 239
Customizing c89, cc, and c++ (cxx) compilers. . . 239

Using non-default high-level qualifiers 240
Using a system that does not have
UNIT=SYSDA 240
Selecting z/OS XL C/C++ compilers 240
Targeting a z/OS release earlier than the current
one 242

Customizing the terminfo database 243
Steps for defining terminals or workstations for
a terminfo database 243
Re-creating the terminfo database 244

Customizing electronic mail 244
For the z/OS shell. 244
For the tcsh shell 244

Chapter 9. Customizing for your
national code page in the shell 247
Lists of subtasks 247
Steps for setting up your national code page . . . 247
Customizing for Japanese and Simplified Chinese 250

Steps for customizing the login file for the z/OS
shell 250
Steps for customizing the login file for the tcsh
shell 250
Steps for displaying messages in Japanese . . . 251
Steps for activating MVS Message Service
(MMS). 251
Concatenating target libraries to ISPF 252

PROFILE PLANGUAGE and the OMVS command 252

Chapter 10. Configuring the
UNIX-to-UNIX copy program (UUCP) . 255
Transferring files 255
Executing commands from a remote location . . . 255
Tailoring UUCP for custom applications 256
UUCP commands and daemons 256
UUCP directories and files 256

The UUCP communications network 257
Configuring your local system. 260
Configuring communication with remote systems 262

Obtain information about remote systems . . . 262
Create or edit UUCP configuration files . . . 263
Compile the configuration files 272

Create working directories for the local and
remote systems 273
Schedule periodic UUCP transfers with cron 273

Testing the connection 275
Checking the configuration for connections . . . 276

Contacting the remote site 276
Calling system login 276

Maintaining UUCP 276
Cleaning up UUCP files 276
Displaying information about recorded UUCP
events 278
Notifying remote systems about password
changes 278

Chapter 11. Converting files between
code pages 279
List of subtasks. 279
Using Enhanced ASCII 279

Setting up Enhanced ASCII. 280
Using Unicode Services in a z/OS UNIX
environment. 282

Considerations beyond that of Enhanced ASCII 282
Steps for setting up Unicode Services 282

Chapter 12. Managing operations . . . 285
List of subtasks. 285
Steps for ending a specified process 285
Ending threads 287
Planned shutdowns using F
BPXOINIT,SHUTDOWN=... 287

Steps for shutting down z/OS UNIX using F
BPXOINIT,SHUTDOWN=... 288
Partial shutdowns for JES2 maintenance . . . 290

Planned shutdowns using F OMVS,SHUTDOWN 291
What F OMVS,SHUTDOWN does 292
Successful shutdowns 292
Steps for shutting down z/OS UNIX using F
OMVS,SHUTDOWN 293

Dynamically activating the z/OS UNIX component
service items 294

Identifying service items to be activated . . . 295
Activating service items 295
Deactivating service items 296
Displaying activated service items 296

Dynamically changing the BPXPRMxx parameter
values 297

Dynamically changing certain BPXPRMxx
parameter values 298

Dynamically switching to different BPXPRMxx
members 300
Dynamically adding FILESYSTYPE statements in
BPXPRMxx 300

Steps for activating the HFS file system for the
first time 300
Activating a single sockets file system for the
first time 301
Activating a multiple sockets file system for the
first time with Common INET (CINET). . . . 302
Specifying the maximum number of sockets . . 302

vi z/OS V2R2 UNIX System Services Planning

Adding another sockets file system to an
existing Common INET (CINET) configuration . 303

Tracing events 304
Tracing events in z/OS UNIX 304
Tracing DFSMS events 305
Re-creating problems for IBM service 305

Displaying the status of the kernel or process . . 305
Displaying the status of system-wide limits
specified in BPXPRMxx 307
Taking a dump of the kernel and user processes 308

Displaying the kernel address space 308
Displaying process information 309
Displaying global resource information 309
Displaying information about local and network
sockets 309
Detecting latch contention 309
Preallocating a sufficiently large dump data set 311
Taking dumps 311
Reviewing dump completion information . . . 311

Recovering from a failure 312
z/OS UNIX system failure 312
File system type failure 312
File system failure 312

Managing Interprocess Communication (IPC) . . 313

Chapter 13. Managing processing for
z/OS UNIX 315
List of subtasks. 315
Controlling printing 315

Designating printers 315
Setting up default printers 315
Controlling output print separators 316

Controlling code page conversion 316
Converting single-byte data 317
Converting double-byte data 317
Using character conversion tables 317
Customizing code page conversion 318

Managing z/OS UNIX in relation to other
processing 319

JES2 processing. 319
JES3 processing. 319

Accessing the Language Environment runtime
library. 319

Steps for making the runtime library available
through STEPLIB 320

Fastpath support for System Authorization Facility
(SAF) 321

Enabling the SAF fastpath support 321
Disabling the SAF fastpath support 322

Determining problem causes 322
Abends 322
Return codes and reason codes 322
Messages 322
Component identifiers 323
Formatting dumps. 324
Diagnosing problems 324
Diagnosing problems in application programs 325
Diagnosing hangs during z/OS UNIX
initialization 325

Chapter 14. Managing the temporary
file system (TFS) 327
Features of the TFS 327
Security considerations 327
Creating the TFS 327

Checking the size of the TFS 328
Parameter key options for the mount statement
and mount commands 329
Parameter key options for the FILESYSTYPE
statement. 330

Monitoring space in the TFS 331
Determining the default setting for FSFULL
monitoring 331
Changing the default FSFULL setting 331
Dynamically extending the size 332

Using the TFS in a shared file system 332

Chapter 15. Setting up for daemons 333
Lists of subtasks 333
Comparing UNIX security and z/OS UNIX
security 333
Establishing the correct level of security for
daemons 335

UNIX level 335
Customizing the system for IBM-supplied daemons 338

Defining modules to program control 338
Checking UNIX files for program control . . . 340
Defining UNIX files as APF-authorized
programs 340
Defining UNIX files as shared library programs 341
Handling dirty address spaces. 342
Using enhanced program security 342

Customizing the system for IP-supplied daemons 344
Steps for customizing the system for IP-supplied
daemons 344

Customizing the IBM-supplied daemons 345
Customizing the inetd daemon 345
Customizing the uucpd daemon 346
Customizing the rlogind daemon. 346
Customizing the cron daemon. 347

Starting daemons 351
Using & at the end of a command 352
Starting and restarting daemons 352

Setting up security procedures for daemons . . . 354
Steps for setting up security procedures for
daemons 354

Giving daemon authority to vendor-written
programs 355
Tracking down problems when setting up daemons
and servers 355

Verifying the user OMVS segment 356
Verifying the group OMVS segment 356
Verifying that the sticky bit is on 357
Using external links to access MVS load
libraries 358
Finding modules that were not defined to
program control 358
Checking the daemon authority 359
Checking the server setup 360

Setting up for rlogin 361

Contents vii

Steps for setting up for rlogin 361
Solving problems with rlogin setup 362

Chapter 16. Preparing security for
servers 365
List of subtasks. 365
Designing security for servers 365

Setting up threads and security 366
Checking authority to use protected resources 367
Limitations of RACF client ACEE support . . . 367
Documenting the security requirements . . . 368

Establishing the correct level of security for servers 368
UNIX level: BPX.SERVER is not defined . . . 368
z/OS UNIX level: BPX.SERVER is defined. . . 368
RACF with enhanced program security,
BPX.SERVER, and BPX.MAINCHECK 369
BPX.SERVER 369

Defining servers to use thread-level security . . . 369
Steps for setting up servers 370

Defining servers to process users without
passwords or password phrases 372

Steps for defining servers to process users
without passwords or password phrases . . . 372

Chapter 17. Monitoring the
environment 375
Reporting on activities using SMF records 375

SMF record type 30 375
SMF record types 34 and 35 376
SMF record type 74 376
SMF record type 80 376
SMF record type 92 376

Monitoring process activity. 380
Using installation exits 380

Chapter 18. Tuning performance . . . 383
List of subtasks. 383
Improving performance of runtime routines . . . 383
Tuning tips for the compiler utilities. 384

Improving performance by updating the
PROGxx member 384

Caching RACF user and group information in VLF 384
Steps for caching UID and GID information in
VLF 385

Moving z/OS UNIX executables into the LPA . . 385
Steps for moving an executable in the file
system into the LPA 385
Binding the executable or DLL into a PDSE . . 386

Using the shared library extended attribute . . . 387
Tuning tips for the file system 388
Tuning limits in BPXPRMxx 388

Monitoring system and process limits 388
Monitoring use of system resources 389
Controlling use of ESQA 390
Controlling dispatching priorities. 391
System limits and process limits 392
What are hard limits? 393
What are soft limits? 393
How are limits handled after an identity
change? 393

Inheriting soft limits 394
What happens when an identity change occurs? 394
What happens if an identity change does not
take place when a child is created? 395
What happens if an identity change does not
take place when a new process image is created
by exec()? 395
Specifying a new identity 395
Setting process limits in z/OS UNIX 395
Steps for setting process limits in z/OS UNIX 397
Using the IEFUSI installation exit to set process
limits 398
Displaying process limits 399
Changing process limits 400
Steps for changing the process limits for an
active process 400
Reference information 401

Improving performance of the z/OS shell 402
Setting _BPX_SHAREAS and
_BPX_SPAWN_SCRIPT 402
Controlling use of STEPLIBs 403
Checking that the sticky bit is set. 403

Organizing file systems to improve performance 404
Improving performance of security checking . . . 404
OMVS command and TSO/E response time . . . 404

Chapter 19. Setting up for sockets 405
List of subtasks. 405
Using single stacks 405
Using multiple stacks. 406
Choosing between INET or CINET 407
Setting up for INET 408
Setting up for CINET. 408

The internal routing table 409
Transport providers 410
Limitations of IP configurations using CINET 410
Customizing BPXPRMxx for CINET 411
Using specific transports under CINET 413

Resolver configuration files. 416
Host information 416
Service information 416
Protocol information 416
Resolver information 417

Displaying information about sockets 417

Chapter 20. Managing accounting
work 419
List of subtasks. 419
Using system management facilities (SMF) . . . 419
Assigning account numbers for forked address
spaces 420
Modifying the accounting information for the
OMVS and BPXOINIT address spaces 420

Steps for modifying accounting information . . 421
Validating user accounts using the IEFUAV exit 421
Checking job names and accounting information
using the IEFUJI exit 422

Steps for activating the IEFUJI exit for OMVS
work 422

Using the IEFUJV job validation exit 424

viii z/OS V2R2 UNIX System Services Planning

Using the IEFUSI step initiation exit 424
Generating job names for OMVS address spaces 425

Chapter 21. IBM Health Checker for
z/OS 427

Appendix A. Commonly used
environment variables 429
_BPX environment variables 429
_BPXK environment variables 431
_CEE environment variables 436

Appendix B. Modules for the login
and logout functions 439
FOMTLINP module for the login function. . . . 439
FOMTLOUT module for the logout function . . . 442

Appendix C. Accessibility 445
Accessibility features 445
Consult assistive technologies 445
Keyboard navigation of the user interface 445
Dotted decimal syntax diagrams 445

Notices 449
Policy for unsupported hardware. 450
Minimum supported hardware 451
Programming Interface Information 451
Trademarks 451

Glossary 453

Index 491

Contents ix

x z/OS V2R2 UNIX System Services Planning

Figures

1. z/OS operating system with z/OS UNIX 3
2. How fork() creates a new process 3
3. Example of workstation and network

connections 8
4. BPXPRMXX member of SYS1.PARMLIB (Part

1) 23
5. BPXPRMXX member of SYS1.PARMLIB (Part

2) 24
6. A sample sanctioned list file 37
7. CTIBPX00 member of SYS1.PARMLIB 41
8. Customized CTCBPX08 parmlib member 42
9. How unique UIDs and GIDs are assigned 61

10. Logical view of the hierarchical file system for
the user 114

11. Mounting a file system 122
12. Direct mount. 147
13. Automount facility. 148
14. Mounting the new intermediate file system 149
15. Creating a mount point directory for a user 150
16. Mounting the new file system 151
17. How a pipe works 152
18. Preparation for installing service 159
19. Example of an /etc/auto.master file. It is

named /etc/u.map. 165
20. Example of a generic entry in a MapName

file, /etc/u/map 166
21. Follow-up steps when using the automount

facility 168
22. Specific entry in a MapName file 170
23. Logical view of a shared file system for the

end user 174
24. BPXPRMxx parmlib member for a single

system 176
25. Illustration of a single system 177
26. What the file system structure of a sysplex

root looks like 178
27. What the structure of a system-specific file

system looks like 180

28. What a version file system looks like 181
29. COUPLExx parmlib member 185
30. BPXPRMxx setup — sharing file systems 193
31. Shared file systems in a sysplex 194
32. Sharing file systems: one version file system

and one BPXPRMxx for the entire sysplex . . 196
33. Sharing file systems: one version file system

and separate BPXPRMxx members for each
system in the sysplex 197

34. Sharing file systems in a sysplex: multiple
systems in a sysplex using the same release
level 198

35. BPXPRMxx setup for multiple systems
sharing file systems and using different
release levels. 199

36. Sharing file systems between multiple
systems using different release levels . . . 200

37. One BPXPRMxx parmlib member for multiple
systems sharing file systems and using
different release levels 201

38. Contents of /samples/.profile 225
39. Partial contents of the /samples/inittab file 234
40. Partial contents of the /samples/csh.login file 236
41. Partial contents of the /samples/csh.cshrc file 237
42. A simple UUCP network. 257
43. Sample D OMVS,ACTIVATE=SERVICE

output 297
44. Second example of D

OMVS,ACTIVATE=SERVICE 297
45. Job for placing a program in the LPA 387
46. A z/OS UNIX system using a single stack 406
47. A z/OS UNIX system using multiple stacks. 407
48. Multiple transport provider support with two

z/OS UNIX systems 409
49. Partial extract of the services information 416

© Copyright IBM Corp. 1996, 2016 xi

xii z/OS V2R2 UNIX System Services Planning

Tables

1. Accessing z/OS UNIX 9
2. Task list for customization in full function

mode 16
3. Types of file systems 26
4. System-wide and process-level limits 28
5. Copying /samples/rc and

/samples/init.options to /etc/rc and
/etc/init.options 43

6. Copying /samples/inittab to /etc/inittab 43
7. Resource names in the UNIXPRIV class for

z/OS UNIX privileges 72
8. Permissions for undefined FACILITY class

profiles 86
9. Permissions for defined FACILITY class

profiles if user ID is not permitted 86
10. Permissions for defined FACILITY class

profiles if user ID is permitted 87
11. File access types and permission bits 93
12. Explanation of the characters in tfffggoooa

format 95
13. Explanation of the characters in fff, ggg, and

ooo format 96
14. ACL tasks and their associated commands 101
15. Methods for activating the sanction list 107
16. Comparing read-only and read/write mode

for the root file system of the execution
system 135

17. Required post-installation activities for
mounting a root file system in read-only
mode 136

18. Ways of starting the automount facility 167
19. Various file systems that exist in a sysplex 174
20. Parameters used when setting up shared file

systems in a sysplex 185
21. Soft shutdown actions for various

AUTOMOVE settings 187
22. OMVS shutdown actions for various

AUTOMOVE settings 188

23. Dead system (member gone) takeover for
various AUTOMOVE settings 188

24. PFS termination for various AUTOMOVE
settings 189

25. Move a specific file system to any system for
various AUTOMOVE settings 189

26. Move all file systems from a system to a
specific target system for various
AUTOMOVE settings 190

27. AUTOMOVE options supported by the
MOUNT command 207

28. Environment variables that you can
customize for $HOME/.profile. 226

29. Files that are associated with /usr/sbin/init 227
30. Copying configuration files in order to use

z/OS UNIX shells and utilities 237
31. UUCP configuration files 263
32. Escape characters that can be used in chat

scripts 267
33. Default printers 315
34. List of component identifiers that are used in

dumps and symptom strings 323
35. List of maximum file sizes that the TFS

supports 328
36. Comparing traditional UNIX, MVS, and z/OS

UNIX security 334
37. Verifying that the sticky bit is on 357
38. Subtypes for SMF record type 92 377
39. Calculating initial settings when tuning

process activity 390
40. System-wide limits that can be defined in

BPXPRMxx 396
41. Process-level limits that can be defined in

BPXPRMxx 396
42. Hard limits that can be defined in the RACF

user profile 396

© Copyright IBM Corp. 1996, 2016 xiii

xiv z/OS V2R2 UNIX System Services Planning

About this document

This document presents the information you need to plan for and run an IBM®

z/OS® system with support for z/OS UNIX System Services (z/OS UNIX). This
element and the Language Environment® element and z/OS XL C/C++ compiler
provide an application programming interface (API) and a shell interface based on
the open systems standards of the Institute of Electrical and Electronics Engineers
(IEEE) Portable Operating System Interface (POSIX) project, the Federal
Information Processing Standard (FIPS), and the X/Open Portability Guide Issue 4
(XPG4).

The z/OS Network File System and the z/OS Distributed File Service provide
additional capability.

Using this document, the people who run the installation will be able to do the
following tasks for z/OS UNIX:
v Customize it
v Manage operations
v Manage processing by shell users and application programs
v Manage file systems
v Control security
v Monitor and tune performance
v Collect data for accounting

Using this document
This document is for the system programmers, storage administrators, security
administrators, and security auditors who run a z/OS system with z/OS UNIX.
On other open systems, some system programmer tasks might be done by an
administrator.

This document supports z/OS (5650-ZOS).

It assumes the readers are familiar with z/OS systems and its accompanying
products.

This document also assumes that you are using Security Server for z/OS. RACF® is
a component of the Security Server for z/OS. Instead of RACF, you can use an
equivalent security product if it supports the system authorization facility (SAF)
interfaces required by z/OS UNIX, which are documented in z/OS Security Server
RACF Callable Services.

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS V2R2 Information Roadmap.

© Copyright IBM Corp. 1996, 2016 xv

To find the complete z/OS library, go to IBM Knowledge Center
(http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

IBM Systems Center publications
IBM Systems Centers produce IBM Redbooks® publications that can be helpful in
setting up and using z/OS UNIX. See the IBM Redbooks site at IBM Redbooks
(http://www.ibm.com/redbooks).

These documents have not been subjected to any formal review nor have they been
checked for technical accuracy, but they represent current product understanding at
the time of their publication and provide information on a wide range of topics.
You must order them separately. A selected list of these documents is on the z/OS
UNIX website at http://www.ibm.com/systems/z/os/zos/features/unix/library/.

Porting information for z/OS UNIX
A Porting Guide is available at z/OS UNIX System Services Porting Guide
(http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1por.html). It covers
a range of useful topics, including sizing a port, setting up a porting environment,
ASCII-EBCDIC issues, performance, and much more.

The porting page also features a variety of porting tips and lists porting resources
that will help you in your port.

z/OS UNIX courses
For a current list of courses that you can take, go to IBM Education home page
(http://www.ibm.com/services/learning/).

z/OS UNIX home page
Visit the z/OS UNIX home page at z/OS UNIX home page (http://
www.ibm.com/systems/z/os/zos/features/unix/).

Some of the tools available from the website are ported tools, and some are
unsupported tools designed for z/OS UNIX. The code works in our environment
at the time we make it available, but is not officially supported. Each tool has a
readme file that describes the tool and lists any restrictions.

The simplest way to reach these tools is through the z/OS UNIX home page. From
the home page, click on Tools and Toys.

The code is also available from ftp://ftp.software.ibm.com/s390/zos/unix/ through
anonymous FTP.

Because the tools are not officially supported, APARs cannot be accepted.

Discussion list
Customers and IBM participants also discuss z/OS UNIX on the mvs-oe
discussion list. This list is not operated or sponsored by IBM.

To subscribe to the mvs-oe discussion, send a note to:
listserv@vm.marist.edu

Include the following line in the body of the note, substituting your given name
and family name as indicated:

xvi z/OS V2R2 UNIX System Services Planning

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/redbooks
http://www.ibm.com/redbooks
http://www.ibm.com/systems/z/os/zos/features/unix/library/
http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1por.html
http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1por.html
http://www.ibm.com/services/learning/
http://www.ibm.com/services/learning/
http://www.ibm.com/systems/z/os/zos/features/unix/
http://www.ibm.com/systems/z/os/zos/features/unix/

subscribe mvs-oe given_name family_name

After you have been subscribed, you will receive further instructions on how to
use the mailing list.

About this document xvii

xviii z/OS V2R2 UNIX System Services Planning

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R2 UNIX System Services Planning
GA32-0884-02

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS Support Portal (http://www-947.ibm.com/

systems/support/z/zos/).

© Copyright IBM Corp. 1996, 2016 xix

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www-947.ibm.com/systems/support/z/zos/
http://www-947.ibm.com/systems/support/z/zos/

xx z/OS V2R2 UNIX System Services Planning

Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations for the current edition
are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 2 (V2R2) as updated
March 2016

The following changes are made for z/OS V2R2 as updated March 2016.

New
v z/OS UNIX System Services has new functions to consider:

– BPX.SMF.type.subtype was added to the BPX.* FACILITY class profile. See
“Setting up the UNIX-related FACILITY and SURROGAT class profiles” on
page 80.

v “WebSphere Application Server Dispatcher” on page 4 was added. It explains
how to code Port 10007 in the TCP.PROFILE port statement.

Changed
v With APAR OA47830, the /etc/rc file was updated to check the existence of the

/etc/rc file first. See “Customizing /etc/rc” on page 229.
v With APAR OA48565, updates were made to the examples in “Monitoring space

in the TFS” on page 331.

Summary of changes for z/OS Version 2 Release 2 (V2R2)
The following changes are made in z/OS Version 2 Release 2 (V2R2).

New
v To allow z/OS users to search directories, a new resource name,

SUPERUSER.FILESYS.DIRSRCH, was added to the list of resource names that
are available in the UNIXPRIV class. See “Using UNIXPRIV class profiles” on
page 71 and “Allowing z/OS UNIX users to search directories” on page 76.

v APAR OA45793 added a new profile, BPX.STICKYSUG.program_name. See
“Setting up the UNIX-related FACILITY and SURROGAT class profiles” on page
80.

v To restrict execute access in a zFS or TFS file system, the FSEXEC class was
added. See “Restricting access to z/OS UNIX file systems” on page 110 and
“Restricting execute access in a zFS or TFS file system” on page 112.

v A new environment variable, _BPXK_GPSENT_SECURITY, was added. See
“_BPXK environment variables” on page 431.

Changed
v Information about the /var directory was clarified in “Installing z/OS UNIX for

ServerPac customers” on page 11.
v “Prioritizing UNIX work on your system” on page 19 was reorganized for

clarity.

© Copyright IBM Corp. 1996, 2016 xxi

v The title "Automatically generating UIDs and GIDs" was changed to
"Automatically generating OMVS segments." Information in that section was
also updated for accuracy. See “Automatically generating OMVS segments” on
page 60.

v APAR OA46726 clarified the security requirements for address spaces. See
“Storing user-specific information in OMVS segments” on page 60.

v APAR OA46726 added clarification to the SUPERUSER.FILESYS resource
description in Table 7 on page 72.

v IBM HTTP Server is now IBM HTTP Server Powered by Domino.
“Post-installation actions for mounting the root file system in read-only mode”
on page 136 was updated because the name changed and, starting in V2R2, no
post-installation actions are required.

v APAR OA46726 clarified that the file system containing the UNIX domain socket
address file should not be unmounted. See “Creating special files” on page 152.

v APAR OA45810 changed a line in the contents of the sample /etc/rc file. See
“Customizing /etc/rc” on page 229.

v Corrections were made in “Parameter key options for the mount statement and
mount commands” on page 329.

v Corrections were made in “Parameter key options for the FILESYSTYPE
statement” on page 330.

v Updates were made to “Customizing the cron daemon for the first time” on
page 347.

v An update was made to subtype 16 in “SMF record type 92” on page 376.
v Accounting information for forked address spaces cannot be changed from the

initial value. See “Assigning account numbers for forked address spaces” on
page 420.

Deleted
v The sections “Defining service classes for UNIX work ” and “Defining

classification rules as needed” were deleted because information was clarified in
“Prioritizing UNIX work on your system” on page 19.

z/OS Version 2 Release 1 summary of changes
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

xxii z/OS V2R2 UNIX System Services Planning

Chapter 1. Introduction to z/OS UNIX

The UNIX System Services element of z/OS is a UNIX operating environment,
implemented within the z/OS operating system. It is also known as z/OS UNIX.
The z/OS support enables two open systems interfaces on the z/OS operating
system: an application programming interface (API) and an interactive shell
interface.

Many users use similar interfaces on other systems and use terminology different
from z/OS terminology. For example, they call virtual storage memory. The work
done by their system administrators is handled by system programmers in z/OS
systems. Where possible, individual terms and phrases are indicated.

To sum up z/OS UNIX:
v z/OS UNIX System Services (a component of the BCP FMID) provides:

– XPG4 UNIX 1995 conformance
– Assembler callable services
– TSO/E commands to manage the file system
– ISPF shell environment

v z/OS UNIX System Services Application Services (FMID HOTxxxx) interprets
commands from users or from programs, called shell scripts, and requests MVS™

services in response to the commands. It provides:
– A TSO/E command to enter the shell environment
– A shell environment for developing and running applications
– Utilities to administer and develop in a UNIX environment
– Support for socket applications
– Remote login (rlogin) and inetd functions
– Direct telnet based on TCP/IP protocol
– A dbx debugger to enable the application programmer to debug source

programs written in C or C/C++.
– Support for full-screen applications (curses support)
– The ability to run programs interactively in the foreground, or in the

background

The API interface
With the application programming interface, programs can run in any
environment. For example, the programs can run in batch jobs, in jobs submitted
by TSO/E users, and in most other started tasks. The programs can also run in any
other MVS application task environment. The programs can request only MVS
services, z/OS UNIX, or both MVS and z/OS UNIX.

The application interface is composed of C interfaces. Some of the C interfaces are
managed within the C/C++ Runtime Library and others access kernel
interfaces to perform authorized system functions on behalf of the unauthorized
caller

© Copyright IBM Corp. 1996, 2016 1

The interactive shell interface
z/OS UNIX responds to requests from programs and the shells. z/OS UNIX has
two shells, the z/OS shell and the tcsh shell. They are collectively called the z/OS
UNIX shell. The interactive shell interface is an execution environment analogous
to TSO/E, with a programming language of shell commands analogous to the
Restructured eXtended eXecutor (REXX) Language. The shell work consists of:
v Programs run by shell users
v Shell commands and scripts run by shell users
v Shell commands and scripts run as batch jobs

Interacting with elements and features of z/OS
z/OS provides a number of facilities to enable users to interact directly with the
operating system. The z/OS UNIX facility enables users to write and invoke shell
scripts and utilities, and to use the shell programming language.

z/OS UNIX also interacts with the following elements and features of z/OS:
v BCP (WLM and SMF components)
v z/OS XL C/C++ compiler, to compile programs. In V1R6 and earlier, the

compiler was known as the z/OS C/C++ compiler.
v Language Environment, to execute the shell and utilities or any other

XPG4-compliant shell application
v Data Facility Storage Management Subsystem (DFSMS). HFS is a component of

DFSMS.
v Security Server for z/OS. (RACF is a component of the Security Server.)
v Resource Measurement Facility™ (RMF™)
v System Display and Search Facility (SDSF)
v Time Sharing Option Extensions (TSO/E)
v Communications Server (TCP/IP)
v ISPF, to use the dialogs for OEDIT, OBROWSE, OPUTX, OGETX, or ISPF/PDF

for the ISPF shell
v Network File System (NFS)
v z/OS File System (zFS)

Figure 1 on page 3 shows how z/OS UNIX, the shell interface, and the API relate
to the rest of the z/OS operating system.

2 z/OS V2R2 UNIX System Services Planning

Workload Manager (WLM)
The workload manager is a component of z/OS that provides the ability to
manage multiple workloads at the same time within one z/OS image or across
multiple images. When using WLM, you do not need to do any tuning or issue
any commands. The kernel uses WLM to create child processes while running in
goal mode.

When programs issue fork() or spawn(), the BPXAS PROC found in SYS1.PROCLIB
is used to provide a new address space. For a fork(), the system copies one
process, called the parent process, into a new process, called the child process. The
forked address space is provided by WLM. Figure 2 shows how a fork() creates a
new process.

Existing MVS address space types such as TSO, STC, Batch, and APPC can request
z/OS UNIX services. When one of those address spaces makes its first request to
the z/OS kernel, the kernel dubs the task; that is, it identifies the task as a z/OS
UNIX process. There are two types of processes: user processes, which are associated

Language
Environment
Language
Environment

API
Interface

(C functions)

API
Interface

(C functions)

API
Interface

(C functions)

API
Interface

(C functions)

Kernel

BCP

WLM

SMF

Callable

Services

Callable

Services
Shell

Interface
(commands)

Shell
Interface

(commands)

HFS

zFS

NFS

HFS

zFS

NFS

Figure 1. z/OS operating system with z/OS UNIX

Program A

fork()

Parent Process Child Process

Program A’

Figure 2. How fork() creates a new process

Chapter 1. Introduction to z/OS UNIX 3

with a user, and daemon processes, which perform continuous or periodic
system-wide functions such as a web server.

Daemons are programs that are typically started when the operating system is
initialized and remain active to perform standard services. Some programs are
considered daemons that initialize processes for users even though these daemons
are not long-running processes. Examples of daemons are as follows:
v cron, which starts applications at specific times
v inetd, which provides service management for a network
v rlogind, which starts a user shell session when one is requested, using a remote

rlogin command

In similar systems, initialization typically starts a telnet daemon to perform
terminal services.Daemons are not restarted if they stop. You can restart them in
any of several ways:
v The z/OS operator can restart daemons using a cataloged procedure. For more

information, see “Starting daemons” on page 351.
v A system programmer can restart the daemon from a shell.
v You can use automation products such as Tivoli® NetView® for z/OS to notice

daemons terminating and then restart them using cataloged procedures.

A process can have one or more threads; a thread is a single flow of control within
a process. Application programmers create multiple threads to structure an
application in independent sections that can run in parallel for more efficient use
of system resources.

For more information about threads, refer to the pthread_create service
(BPXB1PTC) in z/OS UNIX System Services Programming: Assembler Callable Services
Reference.

WebSphere Application Server Dispatcher
The WebSphere Application Server Dispatcher provides a workload manager
(WLM) advisor that receives capacity information from WLM and uses it in the
load balancing process. The WLM agent listens on TCP Port 10007 for connection
requests from the WLM advisor. The WLM agent is always activated and will
attempt to establish a listening socket. To ensure that the WLM agent has access to
Port 10007, it must be reserved for the TCP protocol and the job name must be
BPXOINIT. In a CINET configuration, the port must be reserved for BPXOINIT on
all TCPIP instances

If the port is not available on one or more TCPIP stacks, the WLM agent is
unavailable on all stacks.

To code the port in the TCPIP.PROFILE PORT statement, specify:
PORT 10007 TCP BPXOINIT

System Management Facilities (SMF)
System management facilities (SMF) is a component of z/OS that provides the
ability to run multiple workloads at the same time within one z/OS image or
across multiple images. SMF job and job step accounting records identify processes
by user, process, group, and session identifiers. Fields in these records also provide
information about resources used by the process. SMF file system records describe
file system events such as file open, file close, and file system mount, unmount,
quiesce, and unquiesce.

4 z/OS V2R2 UNIX System Services Planning

|

|
|
|
|
|
|
|
|

|
|

|

|

|

Use the JWT, SWT, or TWT value in the SMF parmlib member SMFPRMxx in
conjunction with the BPXPRMxx PWT value to specify when to time out an idle
address space that is waiting for terminal activity. For more information, see
“SMFPRMxx” on page 42.

XL C/C++ compiler
C is a programming language designed for a wide variety of programming
purposes including system-level code. To compile C code using the c89 command,
or to compile C/C++ code using cxx, you need the z/OS XL C/C++ compiler that
is available with z/OS.

Language Environment
Language Environment establishes a common language development and
execution environment for application programmers on z/OS. To run a shell
command or utility, or any user-provided application program written in C or
C++, you need the C/C++ runtime library provided with Language Environment.

DFSMS
Data Facility System-Managed Storage (DFSMS) manages the data sets used for
processing the hierarchical file system which is z/OS. These data sets make up a
file hierarchy which consists of files and directories.
v Files contain data or programs. A file containing a load module or shell script or

REXX program is called an executable file. Files are kept in directories.
v Directories contain files, other directories, or both.

Additional local or remote file systems can be mounted within the file hierarchy.

Security Server (RACF)
The RACF component of the Security Server authenticates users and verifies
whether they are allowed to access certain resources. An equivalent security
product can be used to do those tasks.

A user is identified by a UID, which is kept in the OMVS segment of the RACF
user profile, and a GID, which is kept in the OMVS segment of the RACF group
profile. z/OS Security Server RACF Security Administrator's Guide contains
information about OMVS segments.

Resource Measurement Facility (RMF)
Resource Measurement Facility (RMF) collects data used to describe z/OS UNIX
performance. RMF reports support an address space type of OMVS for address
spaces created by fork or spawn callable services and support two swap reason
codes. It also monitors the use of resources.

System Display and Search Facility (SDSF)
System Display and Search Facility (SDSF) is an IBM-licensed program that
provides a menu-driven full-screen interface that is used to obtained detailed
information about jobs and resources in a system. Shell users can enter TSO/E
sessions and use SDSF to monitor z/OS activities. For example, they can:
v Monitor printing
v Monitor and control a batch job
v Monitor and control forked address spaces
v Find out which users are logged on to TSO/E sessions

Chapter 1. Introduction to z/OS UNIX 5

Time Sharing Options Extensions (TSO/E)
Time Sharing Options Extensions (TSO/E) is a licensed program that is based on
Time Sharing Option (TSO). With TSO/E, users can interactively share computer
time and resources. They can also enter the shell environment by logging on to a
TSO/E session and entering the OMVS command. Other TSO/E commands
logically mount and unmount file systems, create directories in a file system, and
copy files to and from MVS data sets. Users can switch from the shell to their
TSO/E session, enter commands or do editing, and switch back to the shell. For
information about how to perform these tasks using TSO/E commands, see z/OS
V2R2.0 UNIX System Services User's Guide.

Communications Server
Communications Server offers mainframe network security and enables SNA and
TCP/IP applications running on z/OS to communicate with partner applications
and users on the same or different systems. It enables users to enter the shell
environment by using rlogin or telnet from a workstation in the TCP/IP network.

User-written socket applications can use TCP/IP services as a communication
vehicle. Both client and server socket applications can use the socket interface to
communicate over the Internet (AF_INET and AF_INET6) and between other
socket applications by using local sockets (AF_UNIX). An assembler interface is
also provided for those applications that do not use the C/C++ runtime library.

For information about multiple transport providers, see Chapter 19, “Setting up for
sockets,” on page 405.

Interactive System Productivity Facility (ISPF)
Interactive System Productivity Facility (ISPF) offers mainframe network security
and enables SNA and TCP/IP applications running on z/OS to communicate with
partner applications and users on the same or different systems. Users of ISPF can
use the ISPF shell environment to create, edit, browse, and perform other functions
for files and directories in the z/OS UNIX file system.

Network File System (NFS)
Network File System (NFS) enables users to access files on other systems in a
network.

z/OS File System (zFS)
z/OS File System (zFS) is a UNIX file system that can be used, along with HFS.
For more information, see “Using the z/OS File System (zFS)” on page 116.

Hardware considerations for z/OS UNIX
You can use the same hardware as the other components of the z/OS system. Use
the same network connections that TSO/E uses and the processor and network
connections that JES uses.

Additional hardware considerations are:
v If you want to use rlogin, the connections are different from those for TSO/E

users.
v The optional Suppression on Protection feature, if not present, negates certain

functions such as mmap() and fork() copy-on-write.

6 z/OS V2R2 UNIX System Services Planning

v For improved TCP/IP performance, install the CHECKSUM hardware
improvement.

v To take advantage of improved performance in semaphore processing, you must
be running on hardware that supports the PLO (Perform Locked Operation)
instruction.

Requirements for accessing kernel services using TSO/E
To access kernel services using TSO/E, you need the same hardware as other z/OS
components. You also need the workstation connections that TSO/E uses and the
processor and network connections that JES2 or JES3 uses. Network connections
can be made through:

Systems Network Architecture (SNA) network: Configure the workstation
hardware and software to access TSO/E through z/OS Communications Server,
formerly known as Virtual Telecommunications Access Method (VTAM®).The
system requires no additional network definitions for access to z/OS UNIX
through TSO/E.

TCP/IP network: Configure the workstation hardware and software to
communicate with z/OS Communications Server. For the Telnet (TN3270) server,
define the Telnet VTAM parameters.

rlogin or telnet: For rlogin or telnet, configure the workstation hardware and
software to communicate with z/OS Communications Server. If you use rlogin,
you might need additional network capacity to support additional rlogin users.

Figure 3 on page 8 shows an example of workstation and network connections for
the z/OS system with kernel services.

Chapter 1. Introduction to z/OS UNIX 7

Table 1 on page 9 shows several ways that you can access the z/OS UNIX shells:
v The TSO/E OMVS command, which provides a 3270 interface
v The rlogin command, which provides an ASCII interface

The telnet command, which provides an ASCII interface

When you first log in to one of the z/OS UNIX shells, you are in line mode.
Depending on how you access the shell, you might be able to use utilities that
require raw mode (such as vi) or run an X-Windows application.

Line mode
Input is processed after you press <Enter>. Line mode is also called
canonical mode.

TSO/E

3270
Terminal

TN3270-C telnet-C rlogin-C

AIX
Workstation

AIX
Workstation

VTAM

OMVS

Kernel

TCP/IPTN3270-S

z/OS
Shell

rlogin-S
telnet-S

SNA
Network

IP
Network

TN3270-C -- TELNET 3270 Client
TN3270-S -- TELNET 3270 Server
rlogin-C -- rlogin Client
rlogin-S -- rlogin Server
telnet-C -- telnet Client (not shown)
telnet-S -- telnet Server

Windows

Figure 3. Example of workstation and network connections.

In a z/OS system with kernel services, the workstation and network connections are interrelated.

8 z/OS V2R2 UNIX System Services Planning

Raw mode
Each character is processed as it is typed. Raw mode is also called
non-canonical mode.

Graphical
A graphical user interface for X-Windows applications.

Table 1 shows different ways of accessing z/OS UNIX from the 3270, workstation,
and X-terminal.

Table 1. Accessing z/OS UNIX

Terminal
Software at the
terminal Connection to the host Shell access

Supported
modes

3270 Not applicable Front-end processor such as
3174 or 3172

OMVS (TSO
command)

Line

Workstation 3270 emulator (such as
pc3270 or tn3270)

Front-end processor such as
3174 or 3172

OMVS (TSO
command)

Line

Workstation rlogin or telnet client Front-end processor such as
3174 or 3172

rlogin or telnet Line

Workstation X-Window server Front-end processor such as
3174 or 3172

X-Window client Line or raw

X-terminal rlogin or telnet client Front-end processor such as
3174 or 3172

rlogin or telnet Line or raw

X-terminal X-Window server Front-end processor such as
3174 or 3172

X-Window client Graphical

Noncanonical mode cannot be used with a 3270 because a 3270 does not send data
until ENTER, PA, CLEAR, or PF keys are pressed.

Tasks that z/OS UNIX application programmers do
Application programmers are likely to do the following when creating
UNIX-compliant application programs:
1. Design, code, and test the programs on their workstations using XPG4

UNIX-conforming systems.
2. Send the source modules from the workstation to z/OS.
3. Copy the source modules from the MVS data sets to z/OS UNIX files.
4. Compile the source modules and link-edit them into executable programs.
5. Test the application programs.
6. Use the application programs.

A z/OS UNIX program can be run interactively from a shell in the foreground or
background, run as an MVS batch job, or called from another program.

The following types of applications exist in z/OS UNIX:
v Strictly conforming XPG4-conforming applications
v Applications using only kernel services
v Applications using both kernel and MVS services
v Applications using only MVS services

A z/OS program submitted through the job stream or as a job from a TSO/E
session can request kernel services through the following:

Chapter 1. Introduction to z/OS UNIX 9

v C/C++ functions
v Shell commands, after invoking the shell
v Callable services

At the first request for a kernel service, the system dubs the program as a z/OS
UNIX process. C/C++ applications that use RUNOPT 'POSIX(ON)' are always
dubbed implicitly. POSIX(OFF) or non-C/C++ applications are not dubbed until an
explicit kernel service request is issued.

Administrative tasks using the ISPF shell
The ISPF shell is a panel interface that you can use instead of TSO/E commands or
shell commands to perform certain tasks. For example, you can use the ISPF shell
to display all mounted file systems or its attributes such as total blocks.

You can also use the ISPF shell to perform the following tasks, which require
superuser authority or the RACF SPECIAL attribute or both.
v Create character special files
v Mount a file system
v Unmount a file system
v Reset a pending unmount
v Reset a quiesce status
v Change attributes for z/OS UNIX users
v Display a list of users and sort by name, UID, GID
v Print a list of users
v Set up z/OS UNIX users
v Set up z/OS UNIX groups
v Permit users to alter their own home directory and initial program

See z/OS V2R2.0 UNIX System Services User's Guide for more information about
using the ISPF shell.

10 z/OS V2R2 UNIX System Services Planning

Chapter 2. Installing z/OS UNIX

You will read about the actions to take before you start to perform the installation
steps outlined in z/OS ServerPac: Installing Your Order (for ServerPac users) and
z/OS Program Directory at the z/OS installation-related information website (for
CBPDO users).

The information that IBM products keep within /var is not intended for you to
directly edit or modify during the migration period. /var is for IBM use and might
contain customer configuration files that will not need customer modification
during migrations. Like /etc, IBM products create directories under /var during
installation. Unlike /etc, IBM products (during execution or customization) also
create files in /var. However, IBM products do not install files into /var during the
SMP/E installation.

For migration information, go to z/OS Migration.

Methods of installing z/OS UNIX
Two methods of installing z/OS are provided with your z/OS license: ServerPac
and CBPDO. For each of these, describes what z/OS Planning for Installation IBM
does for you, what you receive from IBM, and what actions you need to take.

It is important that you are familiar with the information that comes with those
two installation methods. The information is needed when you install z/OS UNIX,
along with the other elements and features. The custom-built z/OS ServerPac:
Installing Your Order describes the installation jobs that you run to replace an
existing system or install a new one. For CBPDO users, the Program Directory
describes how to use the SMP/E RECEIVE, APPLY, and ACCEPT commands to
install your order. Both describe the installation verification procedures (IVPs) that
you perform to ensure that your installation is proceeding successfully. They also
contain some customization information.

Installing z/OS UNIX for ServerPac customers
For z/OS ServerPac customers, IBM delivers a single root file system. This file
system is unloaded when you do the establishing UNIX Services section of the
ServerPac installation process. Not only does the single-root file system make
cloning of file systems easier, but it also dramatically reduces the number of jobs
that are run by system programmers to establish z/OS UNIX.

Requirement: Performing ServerPac installation requires that you be a superuser
with UID(0) or have access to the BPX.SUPERUSER resource in the FACILITY
class. See “Security requirements for ServerPac and CBPDO installation” on page
88 for a complete description of the security requirements necessary to perform
your ServerPac installation.

IBM also delivers a separate file system for /etc. See “Establishing an /etc file
system for a new release” on page 12.

Installing z/OS UNIX for CBPDO customers
For customers who use the CBPDO (Custom-Built Product Delivery Option)
software delivery package, two sample jobs in SYS1.SAMPLIB are available.

© Copyright IBM Corp. 1996, 2016 11

|
|
|
|
|
|
|

http://www-03.ibm.com/systems/z/os/zos/installation/

v BPXISZFS for zFS file systems
v BPXISHFS for HFS file systems

They allocate the root and /etc data sets and then mount them at a given mount
point. A file system is allocated and mounted on the /etc directory so that
z/OS-delivered code is part of a single file system (either zFS or HFS), while
customized data can be kept separate. Because there is only one file system, it is
easier to clone file systems.

The sample job accepts a mount point directory (commonly referred to as a service
directory) to allow you to install new releases of z/OS without affecting your
production root file system.

Rule: You must be a superuser with UID(0) or have access to the
BPX.SUPERUSER resource in the FACILITY class. See “Security requirements for
ServerPac and CBPDO installation” on page 88 for a complete description of the
security requirements necessary to perform your install.

Elements and features that install into the file system are installed in both WAVE 1
and WAVE 2 of the CBPDO process and are listed in the z/OS Program Directory at
the z/OS installation-related information website.

Setting up BPXOINIT as a started procedure
BPXOINIT is the started procedure that runs the initialization process. If you are
using CBPDO, you have to set up BPXOINIT as a started procedure by adding it
to either the RACF STARTED class or the RACF started procedures table, module
ICHRINO3, as explained in “Steps for preparing RACF” on page 52.

BPXOINIT is also the job name of the initialization process and is shipped in
SYS1.PROCLIB.

The STEPLIB DD statement is propagated from OMVS to BPXOINIT. If there is a
STEPLIB DD statement in the BPXOINIT procedure, it is not used if a STEPLIB DD
statement was specified in the OMVS procedure.

Establishing an /etc file system for a new release
The /etc file system is the location for your own customization data for products.
You set up the /etc files and you maintain their content. IBM products create
directories under /etc during installation, but IBM does not create files under /etc
during SMP/E installation. Because IBM products do not create files into /etc,
there is no possibility that SMP/E installation of an IBM product or service will
overlay your own files within /etc.

Guideline: Establish the /etc file system before you perform the first IPL of the
new system. How you establish the directory differs, depending on whether you
already have an /etc file system.
v If you do not have one, create it using instructions in “Customizing the z/OS

UNIX shells” on page 217. For information about handling files in the /etc
directory of other z/OS elements and features that install into the z/OS UNIX
file system, see z/OS Migration. You might also have /etc file system impacts for
non-z/OS products that you are installing. For that information, see migration
and customization information for those products.

v If you already have an /etc file system, the /etc directory for the new z/OS
system is based on a copy of the /etc file system for your existing system. You
make this copy and migrate your existing /etcfile system, following instructions

12 z/OS V2R2 UNIX System Services Planning

http://www-03.ibm.com/systems/z/os/zos/installation/

in ServerPac: Installing Your Order (for those choosing ServerPac) and the
Program Directory (for those choosing the CBPDO method of installation).
Because the configuration and customization data in your existing /etc file
system might not be correct for the new system, you might need to make
changes to the copy.

Chapter 2. Installing z/OS UNIX 13

14 z/OS V2R2 UNIX System Services Planning

Chapter 3. Customizing z/OS UNIX

Before customizing z/OS UNIX, you must decide whether you want to set up
kernel services in minimum mode or full function mode. If you want to use any
z/OS UNIX service, TCP/IP, or other functions that require the kernel services,
you must use full function mode; otherwise, you can use minimum mode.

Requirement: In order to apply service to the file system, you need at least one
system that can run in full function mode.

SMS (System Managed Storage, which is part of the DFSMSdfp element of z/OS)
must be configured, whether you define the kernel in minimum mode or full
function mode.

Setting up kernel services in minimum mode
In minimum mode, the kernel cannot support some functions, such as the z/OS
shell and TCP/IP.

If you specify OMVS=DEFAULT in the IEASYSxx parmlib member and then
re-IPL, the kernel services start in minimum mode and use the default values for
all BPXPRMxx parmlib statements. See the BPXPRMxx section in z/OS MVS
Initialization and Tuning Reference for information about the default values.

In minimum mode, a temporary file system named SYSROOT is used as the root
file system. It is initialized and primed with a minimum set of files and directories.
Any data written to this file system is not written to DASD. (See Chapter 14,
“Managing the temporary file system (TFS),” on page 327 for a description of a
temporary file system.) The temporary file system does not have any executables;
that is, the shell will not be available. Do not install z/OS UNIX System Services
Application Services in the TFS, because data will not be written to DASD.

To switch to using kernel services in full function mode, complete the tasks that
are described in “Setting up for full function mode.” The task list in Table 2 on
page 16 applies to those who want to use full function mode.

Setting up kernel services in full function mode
If you specify one or more BPXPRMxx members on the OMVS= statement in the
IEASYSxx member, then the kernel services start up in full function mode when
the system is IPLed. To use the full function mode, you need to perform the tasks
listed in Table 2 on page 16.

Before installing the remainder of z/OS, you need to customize SMS, RACF, and
the z/OS UNIX file system.

The setup process is listed in “Setting up for full function mode.”

Setting up for full function mode
The following list identifies the tasks that you do to set up the kernel in full
function mode. It is important to follow the order of the tasks listed here.

© Copyright IBM Corp. 1996, 2016 15

Some tasks require superuser authority. In that case, that authority might be gained
through authority to profiles defined in the UNIXPRIV class that grant certain
superuser privileges to users who do not have superuser authority. See “Using
UNIXPRIV class profiles” on page 71 for more information.

Table 2. Task list for customization in full function mode. This table contains a list of tasks
for customizing in full function mode.

Task

“Evaluating virtual memory needs” on page 17

Chapter 4, “Establishing UNIX security,” on page 51

“Prioritizing UNIX work on your system” on page 19

“Defining the BPXPRMxx members in IEASYSxx” on page 21

“Customizing the BPXPRMxx member of SYS1.PARMLIB” on page 22

“Customizing other members of SYS1.PARMLIB” on page 40

“Initializing the kernel using a cataloged procedure” on page 44

“Running a physical file system in a colony address space” on page 44

“Enabling certain TSO/E commands to z/OS UNIX users” on page 47

Chapter 8, “Customizing the shells and utilities,” on page 215, “Customizing the z/OS
UNIX shells” on page 217

Chapter 15, “Setting up for daemons,” on page 333

“Enabling the man pages” on page 238

“Setting up for rlogin” on page 361

Chapter 16, “Preparing security for servers,” on page 365

“Creating the user file systems” on page 146

Chapter 18, “Tuning performance,” on page 383

“Setting up TCP/IP security” on page 112

Chapter 19, “Setting up for sockets,” on page 405

“Checking for setup errors” on page 50

Checking the mode of the kernel in a running system
To check the mode of the kernel on a running system, issue D OMVS from the
console. If the kernel is running in full function mode, you will see output similar
to the following:
OMVS 000E ACTIVE OMVS=(2W)

where OMVS=(2W) represents the parmlib setting that was used.

If the kernel is running in minimum mode, you will see output similar to the
following:

OMVS 000E ACTIVE DEFAULT

where DEFAULT indicates that an OMVS setting was not specified in IEASYSxx.

16 z/OS V2R2 UNIX System Services Planning

Evaluating virtual memory needs
The kernel services use storage based on expected use as defined by the
BPXPRMxx member of SYS1.PARMLIB, as well as by actual use. If you follow the
guidelines for Extended Common Service Area (ECSA) and Extended System
Queue Area (ESQA), you should avoid running out of storage.

Using extended common service area (ECSA)
The extended common service area (ECSA) is a major storage area above the 16
MB line, containing pageable system data areas addressable by all active virtual
address spaces. Use of ECSA is based on the following formulas:

#tasks_using_Openmvs * 150 bytes
#processes * 500 bytes
#dubbed_address_space * 500 bytes

For example, if your system supports 200 dubbed address spaces, 500 processes,
and 2000 threads, the kernel service consumes an additional 650KB of ECSA.

In addition to this ECSA usage,
v The workload manager (WLM) also uses some ECSA for each initiator to satisfy

a fork request.
v The OMVS address space uses an additional 20 KB of ECSA. The kernel also

uses ECSA to process spawn requests. This storage is freed when no longer
needed. Allocate an additional 100K of ECSA for spawn usage.

v Each process that has a STEPLIB that is propagated from parent to child or
across an exec will consume about 200 bytes of ECSA. If STEPLIBs are used for
all processes and you have 400® processes, an additional 80K of ECSA is
required.

Using extended system queue area (ESQA)
The extended system queue area (ESQA) is a major element of z/OS virtual
memory above the 16MB line. This storage area contains tables and queues relating
to the entire system, and duplicates above the 16MB line the system queue area
(SQA). Kernel services use ESQA in support of several functions. You can use
formulas to predict some of the ESQA usage, but others can only be estimated. The
maximum amount of ESQA consumed by z/OS UNIX shared memory functions
can be limited by the value specified in MAXSHAREPAGES.

The following functions consume ESQA:
1. Signaling uses SRBs to notify the target of a signal. Signaling frequency is

typically not very high and the SRBs are short-lived. For most installations,
additional ESQA does not need to be allocated in order to support signaling. If
you run applications that use signals frequently, increase your ESQA allocation.

2. Using asynchronous socket services causes SRBs to be allocated. Allocate an
additional 100KB of ESQA if there is heavy use of asynchronous socket
services.

3. The following functions use an MVS service called IARVSERV:
v ptrace(), debugger support
v shmat(), shared memory attach
v mmap(), memory map files
v fork() when fork is using Copy on Write (COW) mode

Chapter 3. Customizing z/OS UNIX 17

For each real page of shared storage affected by IARVSERV, RSM allocates a
32-byte anchor block in ESQA. For each virtual page connected to a shared real
page, RSM allocates a 32-byte control block in ESQA.

Predicting and limiting ESQA usage
The following formulas and examples should help you to predict and limit ESQA
usage:
1. Shared memory, shmat(), is typically used by server address spaces to

communicate with clients.
The __IPC_MEGA option enables applications to use large quantities of shared
memory without system overhead. If you have applications taking advantage
of this __IPC_MEGA support, you do not need to be concerned with the
following calculations. The current usage can be calculated by multiplying the
number of pages by the number of (connections plus 3) by 32.
Example: If a server that is not using 500000 bytes of shared memory and has
49 clients connected to it, the consumption of ESQA can be calculated as:
500000 * (49 + 3) / 4096 * 32 = 203125

You will find that 203125 bytes of ESQA, or approximately 200K, is needed.
The 49 plus 3 comes from 49 clients, 1 server, 1 anchor block, and 1 connection
to a kernel data space that is used to manage the storage. Some servers use
large amounts of shared memory that is shared by hundreds or thousands of
clients. This can require large amounts of ESQA (up to one gigabyte).

2. mmap() is typically used by a single process to map a file into virtual memory
using the same sort of logic used by DIV (Data In Virtual). Used in this
manner, each page of the file requires 3 RSM control blocks (anchor block, user
page, and kernel data space page). Each additional user sharing an mmap page
of a file will consume an additional control block.
The __MAP_MEGA option of mmap() enables applications to map very large
files without the system overhead in ESQA. If you have applications using the
__MAP_MEGA option, you do not need to be concerned with the above
calculations. If you are not using _MAP_MEGA and issue mmap(), you can
estimate the ESQA usage just as you would for shared memory.

3. fork() uses IARVSERV to capture the parent's pages for the child's use. Each
page captured represents a requirement for three 32-byte RSM control blocks
(parent, child, and an anchor block per page). Since the child typically issues
the exec call soon after the fork, the ESQA used is short term. This is countered
by the probability that there are multiple forks going on concurrently. Again,
the amount of required ESQA can be calculated by multiplying the size of the
data area (in pages) to be copied by the number of concurrent forks + 3 by 32.
Example: Assuming the Language Environment runtime library is not in LPA, a
typical shell will have 5 MB of private to copy on fork. If there are, on average,
10 forks running concurrently, then the following ESQA is needed:
5MB * 256 pages/MB * (10 forks + 3) * 32 bytes/page

You will find that 532 KB of ESQA is needed.
If the runtime library does reside in LPA and each process has an average of 1
MB of private to copy, then:
1MB * 256 pages/MB * (10 forks + 3) * 32 bytes/page

You will find that 106 KB of ESQA is needed.
4. ptrace() uses captured storage to allow the debugger to map the program being

debugged into private storage that the debugger can refer to frequently. The

18 z/OS V2R2 UNIX System Services Planning

amount of ESQA that is required can be calculated as the number of pages of
storage required times the number of concurrent debug sessions +2 by 32.
Example: To calculate the amount of storage that will be needed if a
programmer is debugging a 1-MB program and a 200 KB automatic data stack
that are both captured:
1.2MB * 256 pages/MB * (1 debug session + 2) * 32 bytes/page

The answer is 29 KB of ESQA.

To predict the amount of ESQA required to support applications, you need to
understand which applications use shmat() and mmap(). You need to approximate
the amount of fork() and dbx debugger activity as well. Then plug your numbers
into the equations for each function to determine the amount of ESQA needed.

In BPXPRMxx, specify the maximum number of shared storage pages that can be
used on the MAXSHAREPAGES statement. By limiting the amount of shared
storage pages used, MAXSHAREPAGES lets an installation control the amount of
ESQA storage that is consumed by users.

This limit applies to the mmap(), shmat(), ptrace(), and fork() callable services.

The fork() and ptrace() callable services use shared storage pages to improve
performance. Because use of shared storage pages is not critical to completion of
these functions, when the amount of shared storage pages in use reaches about
60% of the specified limit, these functions no longer use shared storage pages. The
mmap() service continues to use the shared storage pages until the total resource
consumption reaches about 80% of the limit. The shmat() callable service continues
to use shared storage pages until the total resource consumption reaches the
specified limit.

The mmap() and shmat() callable services return an out-of-memory condition when
they can no longer obtain shared storage without exceeding their respective shared
storage limits.

There is also a FORKCOPY parameter in BPXPRMxx that prevents fork from using
the IARVSERV function.

Reducing the amount of ESQA needed to support servers
To reduce the excessive amounts of EQSA that are required to support a server like
System Authorization Facility (SAF) that needs to access more than 2 GB of
storage, you can use the following services:
v _map_init, which invokes the map service function.
v _map_service, which enables applications to create new data blocks and to

specify which map area block is to be used to view the new data block.

Prioritizing UNIX work on your system
When prioritizing UNIX work on your system, you can optionally define a
workload for z/OS UNIX service classes, define service classes and define
classification rules.

Chapter 3. Customizing z/OS UNIX 19

|

|
|
|

Define service classes

You can specify a number of performance periods. Performance periods for
short-running work can be given response-time goals or percentile response-time
goals. Performance periods for long-running work should be given velocity goals.
1. Define a default service class for forked child processes.
2. Optionally, define additional services classes if you have different work that has

different goals (daemons such as inetd versus user work for instance).
3. Define a service class for startup processes, which are forked by the

initialization process, BPXOINIT. This service class should be given a velocity
goal that is higher than that of other forked child processes.

Define classification rules

Under SUBSYS OMVS:

1. Specify the default service class for forked child processes. All kernel and user
forked processes that do not match on any classification rules gets classified in
the default service class.

2. Classify startup processes that are forked by the initialization process,
BPXOINIT, into their separate service class, classifying by its userid
(USERID=OMVSKERN).

3. Classify other forked child processes that need to be in a separate srvclass,
classifying based on USERID, ACCTINFO, or TRXNAME.

Under SUBSYS STC: You should allow both OMVS and BPXOINIT to default to
the SYSTEM service class. Both the OMVS and BPXOINIT STCs run kernel work
and MUST run with a very high priority. It is recommended that you let these
address spaces default to the SYSTEM service class that runs with a dispatching
priority of 255. This is especially important in a shared file system environment
where cross system communication occurs using XCF services. Running in a
service class that does not allow the OMVS address space to be dispatched in a
timely manner might prevent the OMVS XCF exits from being dispatched and
cause XCF slowdown resulting in latch contentions.

The following example is a sample service class for forked child processes:

- Service Class OMVS - OMVS forked child processes

Base goal:
Duration Imp Goal description
- --------- - -------- --------------------------------
1 2000 2 Response Time 80% 1 second
2 4000 3 Response Time 60% 2 seconds
3 5 Execution velocity of 10

Following is a sample service class for kernel and daemon work:

- Service Class OMVSKERN - OMVS startup processes
Base goal:
Duration Imp Goal description
- --------- - --
1 1 Execution velocity of 40

20 z/OS V2R2 UNIX System Services Planning

|

|
|
|

|

|
|

|
|
|

|

|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
||

|

|
|
|
|
|
||

Following is a sample classification for subsystem type OMVS. This sample
classifies kernel work into service class OMVSKERN and all other forked work is
classified into the default service class named OMVS.

- Subsystem Type OMVS

Classification:

Default service class is OMVS
There is no default report class.

Qualifier Qualifier Starting Service Report
type name position Class Class
- ---------- -------------- --------- -------- --------
1 UI OMVSKERN OMVSKERN

If you have used the PRIORITYGOAL statement in the BPXPRMxx member of
SYS1.PARMLIB to enable the nice(), setpriority(), and chpriority() functions,
additional service classes for kernel work must be added. For details, see
“Controlling dispatching priorities” on page 391.

Defining the BPXPRMxx members in IEASYSxx
After you complete the installation, you need to specify OMVS=xx in the
IEASYSxx member of SYS1.PARMLIB if you want to start in full function mode. If
you do not specify the OMVS parameter or if you specify OMVS=DEFAULT, the
kernel is started in minimum mode with all parmlib statements taking their default
values. You can specify:
v OMVS=nn, where nn is the BPXPRMnn member
v OMVS=(nn,mm,...), where (nn,mm,...) is the set of BPXPRMxx members to use

when locating parmlib statements to configure the system services. The first
value set for a parameter is the one that is used; if a later member in the list
specifies a different value, that value is ignored.
For example, say you have three systems that share parmlib members but do not
want to share file systems. Define these parmlib members:
– BPXPRMLI, which specifies system limits for systems 1 and 2
– BPXPRML3, which specifies system limits for system 3, which needs more

processes than the other two systems
– BPXPRMF1, which specifies file system setup for system 1
– BPXPRMF2, which specifies file system setup for system 2
– BPXPRMF3, which specifies file system setup for system 3
For system 1, the OMVS parameter on the IEASYSxx parmlib member is:
OMVS=(F1,LI)

For system 2, the OMVS parameter on the IEASYSxx parmlib member is:
OMVS=(F2,LI)

For system 3, the OMVS parameter on the IEASYSxx parmlib member is:
OMVS=(F3,L3)

If you want the BPXPRMxx member to be shared by more than one system, you
must define system symbols in the IEASYMxx member. Symbols such as system
name (&SYSNAME) can be used in BPXPRMxx when referring to file system
names.
Example: In order to have different file systems mounted at /etc on each system
in the sysplex:
MOUNT FILESYSTEM(’OMVS.&SYSNAME..ETC’)

TYPE(HFS) MODE(RDWR) MOUNTPOINT (/etc)

Chapter 3. Customizing z/OS UNIX 21

|
|
|

|
|
|
|
|
|
|
|
|
|
||

|
|
|
|

Customizing the BPXPRMxx member of SYS1.PARMLIB
The BPXPRMxx member of SYS1.PARMLIB contains the parameters that control
processing and the file system. This topic only discusses the BPXPRMxx statements
that have planning considerations. For a complete list and descriptions of
BPXPRMxx statements, see z/OS MVS Initialization and Tuning Reference

You should have two BPXPRMxx members, one defining the values to be used for
system setup and the other defining the file systems. Using these two members
makes it easier to migrate from one release to another, especially when using the
ServerPac method of installation.

When you complete your installation activities, you have one or two BPXPRMxx
members, depending on whether you used ServerPac or CBPDO:
v With ServerPac, you receive two members, as IBM recommends.
v With CBPDO, after you complete all the instructions in the Program Directory,

you have the one member that you copied from SYS1.SAMPLIB.
In this case, you should define a second BPXPRMxx member so that the system
setup parameters are in one member and the parameters that define the file
systems are in the other.

When you customize the BPXPRMxx members, use columns 1 through 71 for data;
columns 72 through 80 are ignored.

Checking the BPXPRMxx syntax
You can use the SETOMVS SYNTAXCHECK operator command to check the
syntax of BPXPRMxx before doing an IPL.

Also, the USS_PARMLIB check provided by IBM Health Checker for z/OS can be
used to determine whether there are differences between current system settings
and the settings defined in the BPXPRMxx member of SYS1.PARMLIB. If a
difference is found, an exception message is issued. You receive a report that lists
the differences.

Be aware that when system and parmlib settings are compared, values with
regards to the PARM setting on the MOUNT statement are considered to be
case-sensitive. Thus, the same setting value expressed in uppercase or lowercase in
a system setting are flagged as a difference if that same setting is expressed in the
opposite case in the relevant BPXPRMxx member.

For more details about IBM Health Checker for z/OS, see Chapter 21, “IBM Health
Checker for z/OS,” on page 427 or IBM Health Checker for z/OS User's Guide.

Figure 4 on page 23 shows an example of the IBM-supplied BPXPRMXX member
of SYS1.PARMLIB of the current release.

22 z/OS V2R2 UNIX System Services Planning

MAXPROCSYS(900)
MAXPROCUSER(25)
MAXUIDS(200)
MAXFILEPROC(64000)
MAXPIPEUSER(8730)
MAXPTYS(800)
CTRACE(CTIBPX00)
/*STEPLIBLIST(’/etc/steplib’) */
/*USERIDALIASTABLE(’/etc/tablename’) */

FILESYSTYPE TYPE(HFS)
ENTRYPOINT(GFUAINIT)
PARM(’ ’)

/* FILESYSTYPE TYPE(AUTOMNT) */
/* ENTRYPOINT(BPXTAMD) */

FILESYSTYPE TYPE(TFS)
ENTRYPOINT(BPXTFS)

/* FILESYSTYPE TYPE(NFS) */
/* ENTRYPOINT(GFSCINIT) */
/* ASNAME(MVSNFSC) */
/* PARM(’biod(6)’) */

FILESYSTYPE TYPE(ZFS) */
ENTRYPOINT(IOEFSCM) */
ASNAME(ZFS) */

FILESYSTYPE TYPE(UDS) ENTRYPOINT(BPXTUINT)
NETWORK DOMAINNAME(AF_UNIX)

DOMAINNUMBER(1)

TYPE(UDS)

FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(64000)
TYPE(INET)

/* NETWORK DOMAINNAME(AF_INET6) DOMAINNUMBER(19) */
/* TYPE(INET) */

/* FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT) */
/* NETWORK DOMAINNAME(AF_INET) */
/* DOMAINNUMBER(2) */
/* MAXSOCKETS(64000) */
/* TYPE(CINET) */
/* INADDRANYPORT(2000) */
/* INADDRANYCOUNT(325) */
/* NETWORK DOMAINNAME(AF_INET6) DOMAINNUMBER(19)*/
/* TYPE(CINET) */

Figure 4. BPXPRMXX member of SYS1.PARMLIB (Part 1)

Chapter 3. Customizing z/OS UNIX 23

You can change some BPXPRMxx values without an IPL.

/* SUBFILESYSTYPE NAME(TCPIP) */
/* TYPE(CINET) */
/* ENTRYPOINT(EZBPFINI) */
/* DEFAULT */

/* SUBFILESYSTYPE NAME(TCPIP2) */
/* TYPE(CINET) */
/* ENTRYPOINT(EZBPFINI) */

/* ROOT FILESYSTEM(’OMVS.ROOT’)
/* TYPE(HFS)
/* MODE(RDWR)
/* MKDIR(’...’)

/* MOUNT FILESYSTEM(’OMVS.USER.JOE’) */
/* TYPE(HFS) */
/* MODE(RDWR) */
/* MOUNTPOINT(’/u/joe’) */
/* NOSETUID */
/* SECURITY */
/* TAG(NOTEXT,0) */
/* MKDIR(’...’ */

/* ALTROOT FILESYSTEM(’OMVS.ALTROOT’) */
/* MOUNTPOINT(’/sysalt’) */
/* PARM(’ ’) */

MAXTHREADTASKS(1000)
MAXTHREADS(200)

/*PRIORITYGOAL (n,...,n) */
/*PRIORITYPG (n,...,n) */

IPCMSGNIDS (500)
IPCMSGQBYTES (2147483647)
IPCMSGQMNUM (10000)
IPCSHMNIDS (500)
IPCSHMSPAGES (262144)
IPCSHMMPAGES (25600)
IPCSHMNSEGS (500)
IPCSEMNIDS (500)
IPCSEMNSEMS (1000)
IPCSEMNOPS (25)

MAXMMAPAREA(40960)
MAXFILESIZE(NOLIMIT)
MAXCORESIZE(4194304)
MAXASSIZE(209715200)
MAXCPUTIME(1000)
MAXSHAREPAGES(131072)
FORKCOPY(COW)
SYSPLEX(NO)
SUPERUSER(BPXROOT)
TTYGROUP(TTY)
STARTUP_PROC(OMVS)

/* STARTUP_EXEC(’Dsname(Memname)’,SysoutClass) */
/* RUNOPTS(’runtime options’) */
SYSCALL_COUNTS(NO)
MAXQUEUEDSIGS(1000)
SHRLIBRGNSIZE(67108864)
LIMMSG(NONE)
LOSTMSG(ON)
PWT(SMF|ENV|SMFENV)
AUTOCVT(OFF)
RESOLVER_PROC(DEFAULT)
SWA(BELOW)

/*SERV_LPALIB(’LibraryName’,Volser’) */
/*SERV_LINKLIB(’LibraryName’,Volser’) */
NONEMPTYMOUNTPT(NOWARN) */
MAXUSERMOUNTSYS(0) */
MAXUSERMOUNTUSER(0) */

Figure 5. BPXPRMXX member of SYS1.PARMLIB (Part 2)

24 z/OS V2R2 UNIX System Services Planning

v The SET OMVS and SETOMVS operator commands dynamically change the
settings system-wide. “Dynamically changing the BPXPRMxx parameter values”
on page 297 indicates which parameter statements can and cannot be
dynamically changed.

v The RACF ALTUSER or ADDUSER commands apply settings on a per-process
basis for a particular user, such as Lotus® Domino®. You can use them for the
MAXASSIZE, MAXCPUTIME, MAXFILEPROC, MAXPROCUSER,
MAXMMAPAREA, and MAXTHREADS parameters.

You can use the SETOMVS SYNTAXCHECK operator command to check the
syntax of BPXPRMxx before doing an IPL.

Defining file systems
You can customize the FILESYSTYPE, ROOT, MOUNT, NETWORK, and
SUBFILESYSTYPE statements to define your file systems.

For sharing files across a sysplex, the SYSPLEX(YES) parameter is required, and
you must also specify a value for the VERSION statement. See Chapter 7, “Sharing
file systems in a sysplex,” on page 173 for more information.

FILESYSTYPE
The FILESYSTYPE statement defines the type of physical file system to be used.

When you specify SYSPLEX(YES), you must define the file system type for all
systems participating in a shared file system. The easiest way to define it is to have
a single BPXPRMxx member that contains file system information for each system
participating in a shared file system. If, however, you decide to define a
BPXPRMxx for each system, the FILESYSTYPE statement must be identical on each
system. See “Customizing BPXPRMxx for a shared file system” on page 185 for
more information about configuring BPXPRMxx in a sysplex.

Tip: To facilitate migrating file systems from HFS to zFS, some steps are taken to
support existing mount commands that were not changed after the HFS data set
that was mounted was converted to zFS file system. When you specify either ZFS
or HFS, the selection that is made depends on the type of the file system that is
found.
v If you specify TYPE(HFS), a search is done for a data set that matches the file

system name.
– If the data set is found and it is not an HFS data set, the type is changed to

ZFS.
– If a data set is not found, the type is changed to ZFS in case the file system is

a zFS file system such as a cloned file system.

In both cases, the mount proceeds as though TYPE(ZFS) had been specified.
However, any PARM string that was specified is ignored.

v If you specify TYPE(ZFS) and it is an HFS data set, then the type is changed to
HFS. The mount proceeds as though TYPE(HFS) had been specified. However,
any PARM string that was specified is ignored.

Requirement: Facilities required for a particular file system must be initiated on
that system. For example, NFS requires TCP/IP, so, if you specify a file system
type of NFS, you must also initialize TCP/IP when you initialize NFS, even if
there is no network connection.

Chapter 3. Customizing z/OS UNIX 25

Table 3 lists some types of physical file systems (TYPE parameter) and module
names (ENTRYPOINT parameter).

Table 3. Types of file systems. The table lists the file system type and the corresponding module name.

File system type Description Module name

AUTOMNT Handles automatic mounting and unmounting of file systems.

The AUTOMNT file system is mounted as AUTOMOVE(YES).
However, if the parent file system has the automove unmount
attribute, then the automount file system will have that attribute
instead of AUTOMOUNT(YES).

BPXTAMD

CINET Handles requests for the AF_INET and AF_INET6 family of sockets.
This enables many different AF_INET or dual AF_INET/AF_INET6
physical file systems to be active on the system. See Chapter 19,
“Setting up for sockets,” on page 405 for information about setting
up sockets.

If you want to use CINET, you must be using z/OS
Communications Server (TCP/IP Services).

If you use CINET, you cannot use INET.

BPXTCINT

HFS Processes file system requests. The HFS statement is necessary if
you want to use regular local files.

GFUAINIT

INET Handles requests for the AF_INET and AF_INET6 family of sockets.
You must be using z/OS Communication Services (TCP/IP
Services).

If you use INET, you cannot use CINET.

EZBPFINI

NFS Handles Network File System requests for access to remote files.

For NFS Client you must create a procedure to run a PFS in a
colony address space. For more information, see z/OS Network File
System Guide and Reference. You can also find information in
“Running a physical file system in a colony address space” on page
44.

GFSCINIT

TFS Handles requests to the temporary file system (TFS). BPXTFS

UDS Handles socket requests for the AF_UNIX address family of sockets. BPXTUINT

ZFS Handles z/OS File System requests. IOEFSCM

Restrictions on VIRTUAL(max): The VIRTUAL(max) value on the FILESYSTYPE
PARM('') keyword specifies the maximum amount of virtual memory (in
megabytes) that file system data and meta data buffers should use. If you do not
specifically set a value for VIRTUAL(max), the system assigns to max a default
value that is equal to half the amount of real storage available to the system at
initialization. (The sample BPXPRMxx member provided in SYS1.SAMPLIB uses
this default). If you change the storage, consider beforehand how the change will
affect your current system storage usage.

You should monitor the paging of your system. If paging is increasing, you might
need to set a lower value on the VIRTUAL parameter to relieve the situation.

For more information about VIRTUAL(max) and other FILESYSTYPE PARM('')
keywords, see the BPXPRMxx topic in z/OS MVS Initialization and Tuning Reference.

26 z/OS V2R2 UNIX System Services Planning

MOUNT
The MOUNT statement defines the file systems to be mounted at initialization and
where in the file hierarchy they are to be mounted. All HFS data sets specified on
MOUNT statements in BPXPRMxx must be available at IPL time. If an HFS data
set is migrated by hierarchical storage management (HSM), then the initialization
of z/OS UNIX and HSM will cause an indefinite wait for kernel services. DFHSM
will initialize, but any msgARC0055A issued for the migrated data set will need a
reply.

If you specify the NOSETUID option, the setuid and setgid mode bits are not
respected when a program in this file system is run. The program runs as though
the setuid and setgid mode bits were not set. Also, the APF extended attribute (+a)
and the program control extended attribute (+p) are not honored

Rule: The MOUNTPOINT keyword must specify an absolute path name.

Systems using shared file systems will have I/O to a z/OS UNIX couple data set
(CDS). Because of these I/O operations to the CDS, each mount request requires
additional system overhead. You will need to consider the effect that this change
will have on your recovery time if a large number of mounts are required on any
system that has shared file systems. For more information about shared file
systems, see Chapter 7, “Sharing file systems in a sysplex,” on page 173.

You can use multiple MKDIR keywords on the MOUNT statement to define mount
points in BPXPRMxx so that one or more directories is created in the mounted file
system during z/OS UNIX initialization.

Restriction: MKDIR is intended to run during synchronous mounts on the system
that is initializing. The directory might not be created if any of these situations
exist:
v The file system is mounted asynchronously, such as with NFS.
v The SYSNAME value identifies a remote system.
v The file system is already mounted on a remote system.

Tip: To ensure that the mounts will succeed, use SETOMVS SYNTAXCHECK to
check the MVS catalog for the existence of the HFS or zFS file system name that is
listed on each MOUNT statement.

NETWORK
The NETWORK statement defines address families for sockets. It is necessary if the
facility needs the socket domains.

Example: If you are activating IPv6, add a second NETWORK statement.
FILESYSTYPE Type (INET) Entrypoint (EZBPFINI)
NETWORK DOMAINNAME (AF_INET) TYPE(INET)

DOMAINNUMBER(2) MAXSOCKETS(64000)
NETWORK DOMAINNAME(AF_INET6) DOMAINNUMBER(19) TYPE(INET)

Rule: You must configure just AF_INET or both AF_INET and AF_INET6. You
cannot configure AF_INET6 alone.

Some tips:
1. You can specify separate MAXSOCKETS values. The default MAXSOCKET

value for AF_INET6 is the value that was specified or defaulted to for
AF_INET.

Chapter 3. Customizing z/OS UNIX 27

2. The INADDRANYPORT range for CINET is shared across both address
families and the values are taken from the AF_INET statement. Any value
specified on the AF_INET6 statement is ignored.

3. You can also add the second NETWORK statement with SETOMVS RESET, but
the TCP/IP stacks will have to be recycled in order to activate IPv6.

ROOT
The ROOT statement defines and mounts the root file system. The root file system
can be either HFS and zFS. The zFS file system is the preferred file system, and
continued use of HFS is not encouraged.

You can use multiple MKDIR keywords on the ROOT statement to define mount
points in BPXPRMxx so that one or more directories is created in the mounted file
system during z/OS UNIX initialization.

Restriction: MKDIR is intended to run during synchronous mounts on the system
that is initializing. The directory might not be created if any of these situations
exist:
v The file system is mounted asynchronously, such as with NFS.
v The SYSNAME value identifies a remote system.
v The file system is already mounted on a remote system.

Tip: To ensure that mounts succeed, use SETOMVS SYNTAXCHECK to check the
MVS catalog for the existence of the HFS or zFS file system names listed on each
MOUNT statement.

SUBFILESYSTYPE
The SUBFILESYSTYPE statement identifies each of the AF_INET or dual
AF_INET/AF_INET6 socket physical file systems that are to run underneath the
Common INET socket file system. SUBFILESYSTYPE is an optional statement.

If you plan to support more than one AF_INET or dual AF_INET/AF_INET6
physical file system, such as two TCP/IP networks, the CINET physical file system
must be started to manage the multiple file systems

Changes to BPXPRMxx for sockets might also require changes in the user's TCP/IP
security system. For more information, see “Setting up TCP/IP security” on page
112.

Defining system limits
You can customize your BPXPRMxx member of SYS1.PARMLIB to provide the
performance needed for the way your installation uses kernel services.

Table 4 lists the system-wide and process-level limits that can be set in BPXPRMxx.
Not all of the statements are explained in this table; see the BPXPRMxx topic in
z/OS MVS Initialization and Tuning Reference for a complete description of each
statement. If you specify the SHRLIBMAXPAGES parameter, it will be accepted but
will not have any impact on the system. The value that you specify will never be
reached, because user-shared library objects are no longer supported.

Table 4. System-wide and process-level limits

System-wide limits Process-level limits

IPCMSGNIDS MAXASSIZE

IPCMSGQBYTES MAXCORESIZE

28 z/OS V2R2 UNIX System Services Planning

Table 4. System-wide and process-level limits (continued)

System-wide limits Process-level limits

IPCMSGQMNUM MAXCPUTIME

IPCSEMNIDS MAXFILEPROC

IPCSEMNOPS MAXIOBUFUSER

IPCSEMNSEMS MAXPROCSYS

IPCSHMMPAGES MAXPROCUSER

IPCSHMNIDS MAXQUEUEDSIGS

IPCSHMNSEGS MAXTHREADS

IPCSHMSPAGES MAXTHREADTASKS

MAXASSIZE

MAXMMAPAREA

MAXPIPES

MAXPTYS

MAXUIDS

MAXUSERMOUNTSYS. The limit is
sysplex-wide when it is in the shared file
system configuration.

MAXUSERMOUNTUSER. The limit is
sysplex-wide when it is in the shared file
system configuration.

SHRLIBMAXPAGES

SHRLIBRGNSIZE

CTRACE
Use the CTRACE statement to provide tracing while the kernel is starting and to
avoid having to issue a TRACE operator command to set tracing options.

The only way to change any CTRACE value is with the TRACE command. You
cannot use the SETOMVS or SET OMVS command to change the value.

LIMMSG
Use the LIMMSG statement to control the display of console messages that indicate
when parmlib limits are reaching critical levels. For more information, see
“Displaying the status of system-wide limits specified in BPXPRMxx” on page 307.

MAXASSIZE
MAXASSIZE is the maximum region size (in bytes) for an address space that was
created by rlogind, telnetd, and other daemons. You can set a system-wide limit in
BPXPRMxx and then set higher limits for individual processes. Use the RACF
ADDUSER or ALTUSER command to specify the ASSIZEMAX limit on a
per-process basis as follows:
ALTUSER userid OMVS(ASSIZEMAX(nnnn)

MAXCPUTIME
MAXCPUTIME is the time limit (in seconds) for processes that were created by
rlogind, telnetd, and other daemons. You can set a system-wide limit in
BPXPRMxx and then set higher limits for individual users. Use the RACF
ADDUSER or ALTUSER command to specify the CPUTIMEMAX limit on a
per-process basis as follows:

Chapter 3. Customizing z/OS UNIX 29

ALTUSER userid OMVS(CPUTIMEMAX(nnnn))

Specifying a MAXCPUTIME or CPUTIMEMAX of 86400 seconds disables the JWT,
SWT, or TWT timeout the same way that JCL TIME=1440 does.

MAXFILEPROC
Use MAXFILEPROC to set the maximum number of file descriptors that a single
process can have open concurrently, such as all open files, directories, sockets, and
pipes. By limiting the number of open files that a process can have, you limit the
amount of system resources a single process can use at one time.

You can use the USS_MAXSOCKETS_MAXFILEPROC check provided by IBM
Health Checker for z/OS to determine whether the MAXFILEPROC value is set
too low. For more details about IBM Health Checker for z/OS, see IBM Health
Checker for z/OS User's Guide.

When selecting a value, consider these factors:
v For conformance to standards, set MAXFILEPROC to at least 16 to conform to

the POSIX standard or at least 25 to conform to the FIPS standard.
Guideline: Set this value to 64000.

v The minimum value of 3 supports stdin, stdout, and stderr.
v The value must be larger than 3 to support shell users. If the value is too small,

the shell might issue the message “File descriptor not available.” If this message
occurs, increase the MAXFILEPROC value.

A process can change the MAXFILEPROC value using the setrlimit() function.
Only users with appropriate privileges can increase their limits.

You can set a system-wide limit in BPXPRMxx and then set higher limits for
individual processes. Use the RACF ADDUSER or ALTUSER command to specify
the FILEPROCMAX limit on a per-process basis as follows:
ALTUSER userid OMVS(FILEPROCMAX(nnnn))

“Dynamically changing certain BPXPRMxx parameter values” on page 298 explains
how to dynamically change the MAXFILEPROC value.

MAXIOBUFUSER
MAXIOBUFUSER limits each user’s (for example, a single UID) use of persistent
kernel storage for I/O buffers when used in a Unicode Services conversion
environment. (See “AUTOCVT” on page 35 or the description of the
_BPXK_AUTOCVT environment variable in “_BPXK environment variables” on
page 431.) This storage remains allocated for the life of an open file. The amount
allocated for each open depends on the CCSID of the file and the size of a read or
write requests used by the process. The limit does not apply to UID 0 processes.

z/OS UNIX only tracks such storage for the user that opens the file. If the file is
inherited by a different user ID, the amount is not propagated. This can occur, for
example, when the user identity changes during spawn or exec. A user identity
change is an authorized operation, so the extra tracking is not needed.

MAXMMAPAREA
MAXPMMAPAREA specifies the maximum number of data space pages that can
be allocated for memory mapping of z/OS UNIX files. Storage is not allocated
until memory mappings are active.

30 z/OS V2R2 UNIX System Services Planning

For MAXMMAPAREA, you can set a system-wide limit in BPXPRMxx and then set
higher limits for individual processes. Use the RACF ADDUSER or ALTUSER
command to specify the MMAPAREAMAX limit on a per-process basis. For
example:
ALTUSER userid OMVS(MMAPAREAMAX(nnnn))

The total amount of allocated mmap pages includes those pages in use by
processes limited by the system limit MAXMMAPAREA and also those processes
limited by the MMAPAREAMAX process limit for their OMVS segment.

When system limits are being monitored (LIMMSG=SYSTEM/ALL), the BPXI039I
resource shortage message is only issued for processes limited by the
MAXMMAPAREA value.

Because processes with process limits contribute to the total amount of allocated
mmap pages, processes limited by the MAXMMAPAREA value might fail an
mmap request before a BPXI039I message is issued. Also, processes with
MMAPAREAMAX values for the OMVS segment might be successfully allocating
mmap storage even though the BPXI039I message might be displayed with 100%
usage.

The SHMEMMAX and MEMLIMIT parameters enable installations to manage the
64-bit space more effectively.

MAXPIPES
The MAXPIPES limit refers to the maximum number of named or unnamed pipes
that can be open in the system at any one time. MAXPIPES is a hard system limit
and is not configurable. The limit is monitored, and you can view the current
usage with the DISPLAY OMVS,LIMITS system command.

For more information about monitoring MAXPIPES, see “Monitoring system and
process limits” on page 388.

MAXPIPEUSER
Use MAXPIPEUSER to set the maximum number of named or unnamed pipes that
a user (that is, a UID) can open and use concurrently. By limiting the number of
pipes that a user can open, you limit the amount of the pipe system resources that
a user can use at one time.

The MAXPIPEUSER limit is a hard limit and applies to all non UID=0 users. The
MAXPIPEUSER value cannot be changed on a user basis, and there is no resource
limit (setrlimit) support to alter a soft or hard limit. For UID=0 users, the
MAXPIPEUSER limit of 8,730 (the maximum allowable value) is always enforced.

The MAXPIPEUSER value can be changed dynamically using the SETOMVS
command. For more information, see “Dynamically changing the BPXPRMxx
parameter values” on page 297.

MAXPROCSYS
MAXPROCSYS specifies the maximum number of processes that can be active at
the same time.

You can manage system resources by limiting the number of processes that the
system is to support. The values that you specify for MAXPROCSYS,
MAXPROCUSER, and MAXUIDS are interrelated. When selecting a value for
MAXPROCSYS, remember that these processes are needed:

Chapter 3. Customizing z/OS UNIX 31

v The initialization process (BPXOINIT)
v /usr/sbin/init, for starting and processing
v exec sh to run a shell script
v The process in which the shell script runs

Plan on one process for each daemon (for example, inetd and cron) that you start
from a shell script such as /etc/rc. In addition, each shell user needs a minimum of
three processes and possibly a few more for piping between shell commands.

Do not specify a higher value for MAXPROCSYS than your system can support
because most processes use an entire MVS address space. This value will vary,
depending on your environment. If you set the value too high, failures (EAGAIN)
for fork or spawn might occur because WLM could not provide enough fork
initiators.

“Dynamically changing certain BPXPRMxx parameter values” on page 298 explains
how to dynamically change the MAXPROCSYS value.

For an example of MAXPROCSYS settings in BPXPRMxx, see “Monitoring use of
system resources” on page 389.

MAXPROCUSER
MAXPROCUSER specifies the maximum number of processes that a single user
(that is, with the same UID) can have concurrently active.

To improve performance, use MAXPROCUSER to limit user activity.

When selecting a value, consider these factors:
v Set MAXPROCUSER to at least 16 to conform to the POSIX standard for

CHILD_MAX, or to at least 25 to conform to the FIPS standard.
v A low MAXPROCUSER value limits the number of concurrent processes that a

user can run. A low value limits a user's consumption of processing time, virtual
memory, and other system resources.

v Some daemons or users run without UID(0), and might create many address
spaces. In these cases, give the daemon ID a high enough PROCUSERMAX
value in the OMVS segment.

A user with a UID of 0 is not limited by the MAXPROCUSER value because a
superuser might need to be able to log on and use kernel services to solve a
problem.

Though not suggested, the security administrator can give the same z/OS UNIX
UID to more than one TSO/E user ID. Therefore, the number of users can be
greater than the number of UIDs that are defined. Check with the security
administrator; if users share UIDs, you will need to define a greater number of
processes for each user.

You can set a system-wide limit in BPXPRMxx and then set higher limits for
individual processes. Use the RACF ADDUSER or ALTUSER command to specify
the PROCUSERMAX limit on a per-process basis. For example:
ALTUSER userid OMVS(PROCUSERMAX(nnnn))

For an example of MAXPROCUSER settings in BPXPRMxx, see “Monitoring use of
system resources” on page 389.

32 z/OS V2R2 UNIX System Services Planning

MAXPTYS
Use MAXPTYS to manage the number of interactive shell sessions, where each
interactive session requires one pseudo-TTY pair. Do not specify an arbitrarily high
value for MAXPTYS.

Guideline: Because each user might have more than one session, you should allow
four pseudo-TTY pairs for each user (MAXUIDS * 4). Specify a MAXPTYS value
that is at least twice the MAXUIDS value.

“Dynamically changing certain BPXPRMxx parameter values” on page 298 explains
how to dynamically change the MAXPTYS value. For more information about
pseudoterminal files, see “Pseudoterminal files” on page 153.

For an example of MAXPTYS settings in BPXPRMxx, see “Monitoring use of
system resources” on page 389.

MAXSOCKETS
MAXSOCKETS specifies the maximum number of sockets that can be obtained for
a given file system type.

If you are using AF_UNIX, MAXSOCKETS is ignored and the system uses a value
of 10000.

You can use the USS_MAXSOCKETS_MAXFILEPROC check provided by IBM
Health Checker for z/OS to determine whether the MAXFILEPROC value is set
too low. For more details about IBM Health Checker for z/OS, see Chapter 21,
“IBM Health Checker for z/OS,” on page 427 or IBM Health Checker for z/OS User's
Guide.

MAXTHREADS
MAXTHREADS is the maximum number of threads that a single process can have
active concurrently. If an application needs to create more than the recommended
maximum in SAMPLIB, it must minimize storage allocated below the 16 M line by
specifying C run-time options. For information about BPX1STL (the
set_thread_limit service), see z/OS UNIX System Services Programming: Assembler
Callable Services Reference.

You can set a system-wide limit in BPXPRMxx and then set higher limits for
individual users by using the RACF ADDUSER or ALTUSER command to specify
the THREADSMAX limit on a per user basis as follows:
ALTUSER userid OMVS(THREADSMAX(nnnn))

MAXTHREADTASKS
MAXTHREADTASKS is the maximum number of MVS tasks that a single process
can have concurrently active.

A high MAXTHREADTASKS value might affect storage and performance. Each
task requires additional storage for the following:
v The control blocks built by the kernel
v The control blocks and data areas required by the Run-Time Library
v System control blocks such as the TCB and RB

You can set a system-wide limit in BPXPRMxx, and then set higher limits for
individual users by using the RACF ADDUSER or ALTUSER command to specify
the THREADSMAX limits on a per-user basis, as follows:

Chapter 3. Customizing z/OS UNIX 33

ALTUSER userid OMVS(THREADSMAX(nnnn))

MAXUIDS
MAXUIDS specifies the maximum number of unique UIDs that can use kernel
services at the same time. The UIDs can be for interactive users or for programs
hat requested kernel services.

MAXUIDS limits the number of active UIDs. When you select a value for
MAXUIDS, consider these factors:
v Because users are likely to run with three or more concurrent processes each,

they require more system resources than typical TSO/E users.
v If the MAXUIDS value is too high relative to the MAXPROCSYS value, too

many users can invoke the shell. All users might be affected, because forks
might begin to fail.
For example, if your installation can support 400 concurrent processes—
MAXPROCSYS(400)—and each UID needs an average of 4 processes, then the
system can support 100 users. For this operating system, specify MAXUIDS(100).

For an example of MAXUIDS settings in BPXPRMxx, see “Monitoring use of
system resources” on page 389.

MAXUSERMOUNTSYS
Use the MAXUSERMOUNTSYS statement to specify the maximum number of
nonprivileged user mounts in the system. For more information about
nonprivileged authority, see “Nonprivileged mount and unmount authority” on
page 124.

MAXUSERMOUNTUSER
Use the MAXUSERMOUNTUSER statement to specify the maximum number of
nonprivileged user mounts allowed for each nonprivileged user. For more
information about nonprivileged authority, see “Nonprivileged mount and
unmount authority” on page 124.

PRIORITYGOAL
PRIORITYGOAL specifies a list of service class names of 8 characters or less that
are used with the nice(), setpriority(), and chpriority() callable services when the
system is running in goal mode.

If you are using your system to run a critical real-time application program, specify
a list of service class names. It is difficult to run both real-time application
programs and general users on the same z/OS UNIX system because you cannot
restrict any set of users from access to the nice() and setpriority() functions. For
more information, see “Controlling dispatching priorities” on page 391.

PRIORITYPG
PRIORITYPG specifies a list of performance group numbers that are used with the
nice(), setpriority(), and chpriority() callable services when the system is running in
goal mode.

If you are using your system to run a critical real-time application program, specify
a list of performance group numbers. It is difficult to run both real-time application
programs and general users on the same z/OS UNIX system because you cannot
restrict any set of users from access to the nice() and setpriority() functions. For
more information, see “Controlling dispatching priorities” on page 391.

34 z/OS V2R2 UNIX System Services Planning

Defining system features

AUTOCVT
Use the AUTOCVT statement in BPXPRMxx to enable Enhanced ASCII or Unicode
Services. When AUTOCVT is set, every read and write operation for a file is
checked to see if any conversion is necessary.

Tip: Use AUTOCVT(OFF). If you want to use another method to enable Enhanced
ASCII, see Chapter 11, “Converting files between code pages,” on page 279.

You can also use AUTOCVT(ALL) to enable Unicode Services support. When
AUTOCVT(ALL) is set, every read and write operation for a file is checked to see
if conversion is necessary.

NONEMPTYMOUNTPT
Use the NONEMPTYMOUNTPT statement to control the mounting of file systems
on non-empty mount point directories. For more information, see “Restrictions on
mounting file systems” on page 127.

LOSTMSG
LOSTMSG(ON) detects lost and duplicate XCF messages in a shared file system
configuration. It is ignored if the file system does not have a shared file system
configuration; for example, when SYSPLEX(NO) is specified. While LOSTMSG can
be specified differently for each member in the sysplex, the same LOSTMSG setting
should be specified throughout the sysplex. To disable the detecting of lost and
duplicate messages, specify LOSTMSG(OFF).

Tip: Do not use LOSTMSG(ON) when z/OS UNIX sysplex traffic is high, such as
when many file systems that are not sysplex-aware are being accessed remotely,
because performance might be affected.

LOSTMSG(ON) is the default.

PWT
The PWT (process wait time) statement indicates whether processes waiting on
terminal input should be timed out. To force a timeout for all processes, set PWT
to SMF.

STEPLIBLIST
STEPLIBLIST specifies the path name of the file in the file system that contains the
list of MVS data sets to be used as step libraries for programs that have the
set-user-id and set–group-id bit set on.

Step libraries have many uses; one is so that selected users can test new versions
of run-time libraries before the new versions are made available to everyone on the
system. Customers who do not put the Language Environment library SCEERUN
into the linklist should put the SCEERUN data set name in this file.

If your installation runs programs that have the setuid or setgid bit turned on, only
those load libraries that are found in the STEPLIBLIST sanction list are set up as
step libraries in the environment that those programs will run in. Because
programs with the setuid or setgid bit turned on are considered privileged
programs, they must run in a controlled environment. The STEPLIBLIST sanction
list provides this control by allowing those programs to use only the step libraries
that are considered trusted by the installation.

Chapter 3. Customizing z/OS UNIX 35

Tip: The path name of the file should be /etc/steplib. This naming strategy fits
in with the IBM strategy to place all customized data in the /etc directory.

If you do not specify a value for STEPLIBLIST, step libraries will not be set up for
set-user-ID and set-group-ID executable files.

These step libraries are set up as a result of the invocation of an executable file
using the exec service (BPX1EXC), the attach_exec service (BPX1ATX) or spawn
(BPX1SPN) service. After one of those services has been invoked, the step libraries
can be propagated from the calling task's environment. They can also be specified
by using the STEPLIB environment variable that is passed to the exec service.
When the exec service invokes a set-user-ID or set-group-ID executable file, only
those libraries that are found in the sanctioned list are set up as step libraries in
the environment that the executable file will run in.

If the file does not follow these formatting rules, the sanctioned list is not built
using the file.
v You can include comment lines in the list. Each comment line must start with /*

and end with */.
v You must follow standard MVS data set naming conventions in naming the files

in the list.
v Each data set name must be fully qualified and cannot be enclosed in quotation

marks.
v Each data set name must be on a line by itself, with no comments.
v You must use uppercase letters for data set names.
v You can put blanks before and after each data set name. Entirely blank lines in

the list are ignored.
v You can use the * character to specify multiple files that begin with the same

characters. For example, if you list SYS1.*, you are sanctioning any file that
begins with SYS1. as a step library.

You should catalog each data set listed in the file to prevent user versions of the
data set from being used.

Figure 6 on page 37 shows a sample sanctioned list file:

36 z/OS V2R2 UNIX System Services Planning

To create or update the sanctioned list file, use the OSTEPLIB command, which
specifies read and execute permissions for all users (permissions 555). Because the
sanctioned list file must be protected from update by nonprivileged users, only
users with superuser authority should be given update access to it.

Updates to the file take effect only when the next setuid(0) program is run from a
process with read access to the STEPLIBLIST file because a working copy of the
sanctioned list is maintained in storage.

Use the SETOMVS or SET OMVS command to dynamically change the value of
STEPLIBLIST. However, this action only changes the current settings of the system.
To make a permanent change, edit the BPXPRMxx member that will be used for
IPLs.

USERIDALIASTABLE
On most UNIX systems, you use lowercase IDs. With z/OS UNIX, typically you
will use the uppercase user IDs and group names specified in your security
database. In some cases, however, you might want to use lowercase or mixed case
names in z/OS UNIX processing. Or perhaps certain names do not conform to
your installation's naming conventions. You then need to create an alias table to
associate lowercase or mixed case alias names with uppercase z/OS user ID and
group names. Note that when lowercase or mixed case alias names are not found
in the alias table, they are folded to uppercase.

Using the USERIDALIASTABLE statement degrades performance slightly. The
more names that you define, the greater the performance degradation. Installations
are encouraged to continue using uppercase-only user IDs and group names
defined in their security databases.

Tip: The path name of the file should be /etc/tablename. This naming structure
fits in with the IBM strategy to place all customized data in the /etc directory. If a
value for USERIDALIASTABLE is not specified, alias names are not used.

Formatting rules for the alias table:

/**/
/* */
/* Name: Sample Sanctioned List for set-user-ID and set-group-ID */
/* files */
/* */
/* Updated by: May only be updated by OSTEPLIB TSO/E command */
/* */
/* Description: Contains a list of data set names that may */
/* be used as STEPLIB libraries for SETUID */
/* programs */
/* */
/* Wild cards may be used to specify multiple */
/* data set names that have the same prefix */
/* characters. */
/* */
/**/

/**/
/* Sanction all data set names beginning with CEE.SCEERUN */
/**/
CEE.SCEERUN*

Figure 6. A sample sanctioned list file

Chapter 3. Customizing z/OS UNIX 37

v You can include comment lines in the list. Each comment line must start with /*
and end with */.

v You must follow standard MVS user ID and group name naming conventions in
the first column.

v You must follow XPG4 standard naming conventions in the second column.
v Do not enclose the names in quotation marks.
v Each user ID or group name and associated alias name must be on a line by

itself, with no comments.
v The MVS user IDs and group names must be located in columns 1-8 and the

associated aliases must be located on the same line in columns 10-17.
v The MVS name and the alias name must be separated by 1 or more blanks.
v The tags :user IDs and :groups must be used to delineate between user IDs

and group names.
– If no tags are present in the file, then all names in the file are assumed to be

user IDs.
– If there are any names listed before a tag, those names are considered to be

user IDs.
– If a :userids tag is present, then all name lines following it and up to the

next tag are considered to be user IDs.
– If a :groups tag is present, then all name lines following it and up to the next

tag are considered to be group names.
– If specified, the tag must start in column 1.
– The tag names are not case-sensitive.

If the file does not follow these formatting rules, the alias name might not be
recognized and various functions relating to the attempted use of the alias might
fail.

The next example is a sample alias table for user IDs and group names.

38 z/OS V2R2 UNIX System Services Planning

For installation security reasons, you might have to use an alias table for user IDs.
See “Security requirements for ServerPac and CBPDO installation” on page 88 for
more information.

Rule: You must protect the alias table for user IDs and group names. Only users
with superuser authority should be given update access to it. All users should be
given read access to the file.

Once a user is logged into the system, changing the alias table does not change the
alias name immediately. Database queries, however, will yield the new alias if the
user ID performing the query has read or execute access to the alias table. The
table is checked every 15 minutes and refreshed if it has been changed. If a change
needs to be activated sooner, you can use the following command:
SETOMVS USERIDALIASTABLE=’/etc/tablename’

where /etc/tablename is the name of the alias table used for the user IDs.

/**/
/* */
/* Name: Sample user ID/group name alias table */
/* */
/* Description: Contains a list of MVS user IDs and their */
/* associated alias names. */
/* */
/* Alias names can be constructed from uppercase and */
/* lowercase alphabetic characters. Numbers from 0-9 */
/* can be used as well as the period, underscore, and */
/* hyphen characters. Do not use the hyphen as the first */
/* character. */
/* */
/***/

/***/
/* Mixed case group names */
/***/
:Groups
DEPTD10 DeptD10
DEPTD20 DeptD20

/***/
/* Non-alphanumeric alias user IDs and group names */
/***/
:UserIDs
/***/
/* Mixed case alias names */
/***/
MYUSERID MyUserid

/***/
/* Easier to remember alias names */
/***/
K61XDLBC Daniel

JOEDOE Joe_Doe
MRDOE Mr.Doe
ABCD A-B-C-D
:groups
DEVEL OE-Dev
TEST OE_Test

Chapter 3. Customizing z/OS UNIX 39

AUTHPGMLIST
AUTHPGMLIST specifies the path name of a z/OS UNIX file that contains the lists
of APF-authorized path names and program names.Those lists are called sanction
lists. For more information about setting up and activating sanction lists, see
“Using sanction lists” on page 105. For example:
AUTHPGMLIST(’/etc/authfile’)

To dynamically change the value of AUTHPGMLIST, you can use the SETOMVS or
SET OMVS =(xx) operator command, where xx specifies which BPXPRMxx file is
to be used to reset the various z/OS UNIX parameters.

If the AUTHGPGMLIST statement contains a nonexistent value, you will not get
an error message.

Tip: Using the AUTHPGMLIST statement degrades performance slightly. The more
path names or program names that you specify, the greater the performance
degradation. However, the tradeoff is increased security.

Customizing other members of SYS1.PARMLIB
You might want to customize other members of SYS1.PARMLIB, besides
BPXPRMxx.

ALLOCxx
The ALLOCxx member of SYS1.PARMLIB is used to control allocation requests.

Forked address spaces are perceived to be batch jobs by MVS allocation. If a
forked address space attempts to allocate a data set on a volume that is not
mounted, the request either waits (with or without an operator prompt) or it fails.
The ALLOCxx parmlib member controls the behavior of allocation requests of this
type. If you do not want the request to wait, specify ALLOCxx statements as
follows:
VOLUME_ENQ POLICY (CANCEL)
VOLUME_MNT POLICY (CANCEL)

Use this policy so that forked addresses do not go into allocation waits. Be aware
that using this policy can disrupt your system, because it will cause a failure rather
than a wait.

For complete details on using the ALLOCxx parmlib member to prevent waits,
refer to z/OS MVS Initialization and Tuning Reference.

COFVLFxx
The virtual lookaside facility (VLF) enables an authorized program to store named
objects in virtual storage that is managed by VLF and to retrieve these objects by
name on behalf of users in multiple address spaces. VLF is designed primarily to
improve performance by retrieving frequently used objects from virtual storage
rather than performing repetitive I/O operations from DASD. Certain IBM
products or components such RACF use VLF as an alternate way to access data.

If you are using the virtual lookaside facility (VLF), update the VLF parmlib
member, COFVLFxx. Add CLASS and EMAJ statements to activate a RACF
performance option for z/OS UNIX. The following example shows the added
statements in an example of a COFVLF33 member.

40 z/OS V2R2 UNIX System Services Planning

CLASS NAME(IRRGMAP) /* GMAP table for z/OS UNIX System Services */
EMAJ(GMAP) /* Major name = GMAP */
CLASS NAME(IRRUMAP) /* UMAP table for z/OS UNIX System Services */
EMAJ(UMAP) /* Major name = UMAP */

Start VLF, specifying the updated member, with the following operator command:
START VLF,SUB=MSTR,NN=33

For information about caching UIDs and GIDs, see “Caching RACF user and group
information in VLF” on page 384.

CTnBPXxx
The CTnBPXxx member of SYS1.PARMLIB is used to control tracing. It specifies
the tracing options for a component trace of z/OS UNIX events.
v One member should control initial tracing, which automatically starts when the

OMVS address space is started. It should store trace records in a buffer, which
could be read if a dump is written. This member should be considered the
operating system's default member.
The CTRACE parameter in the BPXPRMxx member specifies the member; see
Figure 4 on page 23, where CTIBPX00 is specified.

v One member can be set up to trace all z/OS UNIX events. This member is
CTIBPX01. This method enables a site to change trace information on the fly to
obtain suitable component trace information for a dump. (CTIBPX00 traces
minimum information.)

v Create other members as needed or when requested by the IBM Support Center.

To change the tracing to collect data needed for a particular problem, ask the
operator to enter a TRACE CT command that specifies a different, customized
CTnBPXxx member that you have placed in parmlib. When you want to resume
normal tracing operations, enter another TRACE CT command specifying the
normal CTIBPXxx that your installation uses.

Figure 7 shows the IBM-supplied CTIBPX00 member in SYS1.PARMLIB.

The statements in CTIBPX00 do the following:

TRACEOPTS
ON
BUFSIZE(128K)

/* OPTIONS(*/
/* ’ALL ’ */
/* ,’CHARS ’ */
/* ,’DEVPTY ’ */
/* ,’FILE ’ */
/* ,’LOCK ’ */
/* ,’PIPE ’ */
/* ,’PROCESS ’ */
/* ,’PTRACE ’ */
/* ,’SIGNAL ’ */
/* ,’STK ’ */
/* ,’STORAGE ’ */
/* ,’SYSCALL ’ */
/* ,’DEVRTY ’ */
/* ,’IPC ’ */
/* ,’XCF ’ */
/*) */

Figure 7. CTIBPX00 member of SYS1.PARMLIB

Chapter 3. Customizing z/OS UNIX 41

v ON turns on the tracing.
v BUFSIZE sets the buffer size at 128KB.

You can specify a buffer size between 16KB and 64MB on the BUFSIZE statement.
Use the TRACE CT operator command to change the size of the trace buffer.

Use any of the listed options to specify which events can be traced. For
performance reasons, set component tracing off during normal operations. With
CTRACE set to OFF, minimal tracing is done.

Customize tracing by adding CTnBPXxx members and storing them in
SYS1.PARMLIB. In these members, anticipate events to be traced for diagnosis. The
initial CTIBPX00 member specifies minimal tracing. The TRACE CT operator
command specifies the customized member name.

Figure 8 shows a member, CTCBPX08, with an OPTIONS statement that requests
tracing of events in files and pipes.

The WTRSTART statement specifies a CTWTR cataloged procedure, which the
installation wrote and which starts a component trace external writer. The buffer
size is set at 4M.

When re-creating a problem for IBM service, you should increase the buffer size to
its maximum.

IEADMR00
The IEADMR00 member of SYS1.PARMLIB is used to gather dump data.

To gather adequate data without an excessive dump size, change IEADMR00
(SYSMDUMP and core dump defaults) to specify:
SDATA=(RGN,SUM,TRT,LPA)

IKJTSOxx
One of the functions of the IKJTSOxx member of SYS1.PARMLIB is to specify the
commands and programs to run on the TSO/E command and program invocation
platform. These commands are included as entries in the PLATCMD and
PLATPGM statements of that member.

Restriction: Do not list any of the z/OS UNIX TSO/E commands, including OGET,
OPUT, OCOPY, BPXBATCH, MOUNT, UNMOUNT, MKDIR, MKNOD, and OMVS
as PLATCMD entries.

SMFPRMxx
To have z/OS shell users be timed out and logged off, you can use the PWT
parmlib option, the _BPXK_TIMEOUT environment variable, or the TMOUT

TRACEOPTS
WTRSTART(CTWTR)
ON
BUFSIZE(4M)
OPTIONS(’FILE’,’PIPE’)
WTR(CTWTR)

Figure 8. Customized CTCBPX08 parmlib member

42 z/OS V2R2 UNIX System Services Planning

environment variable. When PWT is set to SMF, all z/OS UNIX processes waiting
in the shell are timed out based on the JWT, TWT, and SWT values of SMFPRMxx.

The PWT and _BPXK_TIMEOUT options will affect shell users waiting in the shell
and also processes (such as vi or oedit) executing in the shell. The TMOUT
environment variable will only affect shell users waiting in the shell. When both
PWT and TMOUT are specified, TMOUT is only honored when it is less than the
JWT, TWT, and SWT values of SMFPRMxx. For example, if SMFPRMxx
JWT=(0010) (10 minutes), PWT=SMF (honor the JWT value), and TMOUT=300 (5
minutes), the shell user will be timed out in 5 minutes.

The system administrator can set a TMOUT value in /etc/profile. The user can
override that value by specifying a TMOUT value in their .profile. The TMOUT
environment variable contains the number of seconds before user input times out
while the z/OS shell is waiting for input at the prompt. If user input is not
received, the z/OS shell ends.

To have z/OS shell users be timed out and logged off, you must specify the
TMOUT environment variable in /etc/profile. The TMOUT environment variable
contains the number of seconds before user input times out while the z/OS shell is
waiting for input at the prompt. If user input is not received, the z/OS shell ends.

Restriction: The time out value for a TSO user logging into the z/OS UNIX shell
with option NOSHAREAS will be more than the JWT value or TWT value when
TWT is specified greater than JWT. When z/OS UNIX is started with
NOSHAREAS, the sh session is in a different address space than the TSO user. If
JWT is set to 10 minutes and TWT is set to 20 minutes and there is no terminal
activity, the sh session will time out in 10 minutes and the TSO user will time out
20 minutes after that.

To have tcsh shell users be timed out and logged off, you must specify the
autologout variable in /etc/csh.cshrc or /etc/csh.login. The autologout variable
contains the number of minutes before user input times out while the tcsh shell is
waiting for input at the prompt. If user input is not received, the tcsh shell ends.

Customizing /etc
The /etc file system is the location for your own customization data for products.
You set up the /etc files and you maintain their content. You must copy the files
listed in Table 5 to the specified directory. These files are used during system
initialization.

Table 5. Copying /samples/rc and /samples/init.options to /etc/rc and /etc/init.options. This
table shows the corresponding file when copying /samples/rc and /samples/init.options

Copied from: To:

/samples/rc /etc/rc

/samples/init.options /etc/init.options

Copying the /samples/inittab to /etc/inittab is optional.

Table 6. Copying /samples/inittab to /etc/inittab. This table shows the corresponding file
when copying /samples/inittab

Copied from: To:

/samples/inittab /etc/inittab

Chapter 3. Customizing z/OS UNIX 43

Initializing the kernel using a cataloged procedure
A cataloged procedure is a set of job control statements that are stored in a system
library (for example SYS1.PROCLIB). The storage location for cataloged procedures
is installation-defined. For z/OS UNIX, the STARTUP_PROC statement in the
BPXPRMxx member of SYS1.PARMLIB specifies a cataloged procedure that
initializes the kernel. The default name is OMVS.

Following is the IBM-supplied cataloged procedure in SYS1.PROCLIB:
//OMVS PROC
//OMVS EXEC PGM=BPXINIT,REGION=0K,TIME=NOLIMIT

In the EXEC statement in the procedure, the PGM parameter identifies the name of
the initialization module. The REGION=0K parameter specifies that the kernel is to
use all of the available private area storage within the kernel address space. The
TIME=NOLIMIT parameter specifies that kernel is to have unlimited processor
time.

Though not recommended, you can replace the OMVS procedure with a procedure
that has a different name. If you use a started procedure other than OMVS,
v The replacement started procedure must also be a single job step procedure that

invokes the BPXINIT program (EXEC PGM=BPXINIT). If it invokes any other
program, OMVS initialization will fail.

v You must change the procedure name in the RACF started procedures table or
change the definition in the STARTED Class. See “Steps for preparing RACF” on
page 52.

Started subtasks such as OMVS, BPXOINIT, and colony address spaces fall under
SUBSYS STC. These address spaces might be subject to IEFUSI limitations if
IEFUSI exits are allowed for SUBSYS STC. IBM strongly recommends that you
always set REGION=0 and MEMLIMIT=NOLIMIT for OMVS, BPXOINIT, and
colony address spaces.

Running a physical file system in a colony address space
Physical file systems are sometimes initialized in an address space called a colony
address space. You can think of these address spaces as extensions of the kernel
address space. The NFS Client and DFS Client physical file systems must be set up
in a colony address space because they must use socket sessions to talk to their
remote servers, which cannot be done from the kernel. You can choose to set up
the TFS in a colony address space also; to make that decision see “Running a
temporary file system in a colony address space” on page 46.

Some physical file systems cannot be initialized in colony address spaces; for
example, the INET or CINET sockets file systems and HFS.

Starting colony address spaces
To set up a physical file system in a colony address space, create a cataloged
procedure in SYS1.PROCLIB to start the colony address space. Colony address
spaces cannot be started using the START operator command.

44 z/OS V2R2 UNIX System Services Planning

Rule: The name of the procedure must match the name specified on an ASNAME
operand on the FILESYSTYPE statement in BPXPRMxx that starts physical file
systems in this colony address space.

Example: An NFS Client with the cataloged procedure NFSCLNT is associated
with the following FILESYSTYPE statement:
FILESYSTYPE TYPE (NFS)

ENTRYPOINT(GFSCINIT)
ASNAME(NFSCLNT)

The procedure must contain the statement:
EXEC PGM=BPXVCLNY

For the complete sample NFS client cataloged procedure, see z/OS Network File
System Guide and Reference.

Starting colony address spaces outside of JES
If you do not want colony address spaces to be started under JES (which is the
default), you can change this by including the SUB=MSTR parameter with the
ASNAME keyword. The ASNAME keyword is specified as:
ASNAME(procname,’start_parms’)

where:
v The first value is required and is a 1-to-8-character name in SYS1.PROCLIB.
v The second value is optional and is a quoted string that is appended to the

procname when the address space is started. The string can be up to 100
characters long.

The start_parms are not validated; they are just passed to the system when the
address space is started with an internal start command as in
procname,start_parms. For example:
ASNAME (NFSCLNT,’SUB=MSTR’)

The colony address space runs outside of JES control and does not have to be
stopped if JES has to be stopped, which facilitates planned shutdowns of
individual systems in a sysplex that has shared file systems. The NFS Client, TFS,
and zFS physical file systems support running outside of JES and the following
information might help you to decide whether to move these z/OS UNIX colonies
outside of JES. The DFS Client PFS does not support being started outside of JES.

z/OS UNIX colony address spaces are started procedures. If you do not want to
run them under JES, you will need to change any DD SYSOUT= data sets that are
specified in these procedures. These must be changed because SYSOUT data sets
are only supported under JES. There are three ways you can change these data
sets:
1. Direct the output to a named data set by changing to DD DSN=.
2. Direct the output to a named file by changing to DD PATH=.
3. Throw the output away by changing to DD DUMMY.

Restriction: If the NFS or zFS colony address space is started at IPL time, then
PATH= cannot be used because the MOUNT statements have not been processed
yet.

Chapter 3. Customizing z/OS UNIX 45

Additionally, there are some DD names that Language Environment will open
under certain conditions. If these data sets have not been allocated in the
procedure, Language Environment dynamically allocates them with SYSOUT=. The
DD names are:

SYSIN
For standard input.

SYSPRINT
For standard output. If SYSPRINT does not exist, Language Environment
looks for SYSTERM or SYSERR. If one of those exists, it will be used. But
Language Environment does not dynamically allocate either SYSTERM or
SYSERR.

SYSOUT
For standard error. It is also the default message file DD.

CEEDUMP
For capturing dumps formatted by Language Environment

If any of these names are not currently used in the colony procedure, you must
add them with DD DUMMY.

If any of the existing DD SYSOUT= statements are not changed, or any of those
dynamically allocated by Language Environment are not added, and an attempt is
made to open that DD name, the result will be an ABENDS013. Exactly which DD
names are opened and when varies by name and product and the situation.

There are also other consequences of running outside of JES that you might need
to consider:
v SDSF displays will not list the colony address space.
v There will be no JOBLOG or system messages data set.
v System messages will go to SYSLOG.
v SMF recording is different between JES and the master subsystem.

For information about setting up security for the colony address space, see Step 6
on page 55.

Running a temporary file system in a colony address space
In some situations, you might want to run a temporary file system in a colony
address space instead of the kernel address space. Because the temporary file
system can use up a large amount of kernel virtual memory, there might be some
environments in which the kernel can run out of private storage. This can happen
on large systems with many shell users or in some Lotus environments. By putting
the temporary file system in a colony, impact on the kernel is reduced, and you
can have a larger temporary file system.

Guideline: Because TFS uses virtual memory, your real and auxiliary storage
configurations must be large enough to accommodate the size of all of the
temporary file systems that you mount.

Steps for creating a cataloged procedure for a temporary file
system

Perform the following steps to create a cataloged procedure for a temporary file
system.

46 z/OS V2R2 UNIX System Services Planning

1. Set up a FILESYSTYPE statement in BPXPRMxx. It must have the name of the
procedure on the ASNAME operand.
Example: For cataloged procedure XXXXXX, the FILESYSTYPE statement
would be:
FILESYSTYPE TYPE(TFS)

ENTRYPOINT(BPXTFS)
ASNAME(XXXXXX)

2. Create the cataloged procedure XXXXXX in SYS1.PROCLIB. It must contain the

following statement:
EXEC PGM=BPXVCLNY

When you are done, you have created a cataloged procedure for a temporary file
system.

Some tips:
1. A temporary file system uses private storage for the file system in memory. If

you run it in the kernel, then you might run out of virtual memory. However,
by starting multiple temporary file systems in colonies, you can create many
temporary files or very large temporary files (about 1.5 gigabytes per
temporary file system colony).

2. Code REGION=0K, REGIONS=0M, or a specific MEMLIMIT value on the EXEC
statement in the TFS colony cataloged procedure. Doing so allows the TFS
address space to address storage above the bar for the TFS file system. For
more information about the MEMLIMIT parameter, see z/OS MVS Programming:
Extended Addressability Guide

Enabling certain TSO/E commands to z/OS UNIX users
To make certain TSO/E commands (such as OEDIT, OBROWSE, OPUTX, OGETX
and ISHELL) and some shipped REXX execs available to users, concatenate the
following target libraries to the appropriate ISPF data definition names (ddnames).
The following data sets are for the English panels, messages, and tables:
v SYS1.SBPXPENU concatenated to ISPPLIB
v SYS1.SBPXMENU concatenated to ISPMLIB
v SYS1.SBPXTENU concatenated to ISPTLIB
v SYS1.SBPXEXEC concatenated to SYSEXEC or SYSPROC

To use the Japanese translation of the panels, messages, and tables, you must
concatenate the following target libraries to the appropriate ISPF data definition
names (ddnames):
v SYS1.SBPXPJPN concatenated to ISPPLIB
v SYS1.SBPXMJPN concatenated to ISPMLIB
v SYS1.SBPXTJPN concatenated to ISPTLIB
v SYS1.KHELP concatenated to SYSHELP

For more information about translation into Japanese, see Chapter 9, “Customizing
for your national code page in the shell,” on page 247.

Although the user can invoke these TSO/E commands from a TSO/E command
line, most users invoke TSO/E commands or programs from an ISPF menu. For

Chapter 3. Customizing z/OS UNIX 47

that reason, you should add these TSO/E commands to an ISPF selection panel. In
the following example, the ISR@PRIM (ISPF Primary Option Menu) was modified
to include these commands.

%----------------------- ISPF PRIMARY OPTION MENU ---------
%OPTION ===>_ZCMD
%
% 0 +ISPF PARMS - Specify terminal and user parameters
% 1 +BROWSE - Display source data or output listings
% 2 +EDIT - Create or change source data
% 3 +UTILITIES - Perform utility functions
% 4 +FOREGROUND - Invoke language processors in foreground
% 5 +BATCH - Submit job for language processing
% 6 +COMMAND - Enter TSO Command, CLIST, or REXX exec
% 7 +DIALOG TEST - Perform dialog testing
% 8 +LM UTILITIES- Perform library administrator utility functions
% 9 +IBM PRODUCTS- Additional IBM program development products
% X +EXIT - Terminate ISPF using log and list defaults

% 1F - Browse files
% 2F - Edit files
% ISH - ISPF Shell

)INIT
HELP = ISR00003

)PROC
IF (&ZCMD ¬= ’ ’)

&ZQ = TRUNC(&ZCMD,’.’)
IF (&ZQ = ’ ’)

.MSG = ISRU000
&ZSEL = TRANS(TRUNC (&ZCMD,’.’)

0, ’PANEL(ISPOPTA)’
1F,’CMD(OBROWSE)’
2F,’CMD(OEDIT)’
ISH,’CMD(ISHELL)’
’ ’,’ ’

*,’?’)
)END

You must make the following changes to an ISPF selection panel:
1. Add a statement to the list of options for Browse files. Be sure to include a

selection number with the statement. In this example, the statement is:
% 1F - Browse files

2. Add a statement to the)PROC section of the panel to invoke OBROWSE. In
this example, the statement is:
1F,’CMD(OBROWSE)’

Be sure that the symbol at the start of this statement (1F in this example))
matches the number specified in the list of options.

3. Add a statement to the list of options for edit files. Include a selection number
with the statement. In this example, the statement is:
% 2F - Edit files

4. Add a statement to the)PROC section of the panel to invoke OEDIT. In this
example, the statement is:
2F,’CMD(OEDIT)’

Be sure that the symbol at the start of this statement (2F in this example)
matches the number that is specified in the list of options.

5. Add a statement to the list of options for the ISPF shell. Include a selection
number with the statement. In this example, the statement is:
% ISH - ISPF shell

48 z/OS V2R2 UNIX System Services Planning

6. Add a statement to the)PROC section of the panel to invoke the ISPF shell
environment. In this example, the statement is:
ISH,’CMD(ISHELL)’

Be sure that the symbol at the start of this statement (ISH in this example)
matches the number that is specified in the list of options.

Tip: If you customize your ISPF TSO Command Table (ISPTCM) to make your
default flag differ from the ISPF default of 61, you might have to create new
entries in your ISPTCM for some of the TSO/E commands that specify FLAG=61.
The OEDIT and OBROWSE commands do not run with some flag values. You can
correct this by adding ISPTCM entries for BPXWBRWS and BPXWEDIT, restoring
the ISPF defaults. If you changed the defaults and do not experience problems
with those commands, you should not have to add ISPTCM entries to restore
defaults for those commands.

See z/OS V2R2 ISPF Dialog Developer's Guide and Reference for information about
modifying ISPF selection panels.

Globalization on z/OS systems
Setting up your system or user environment for globalization on z/OS systems is a
little different from what most users are accustomed to when setting up
globalization on ASCII platforms. An extra step is typically needed when changing
your locale, which involves setting the ASCII/EBCDIC coded character set
conversion for the controlling terminal. The conversion is required because most
PC terminal emulators require ASCII data, but the z/OS shells use EBCDIC data.

For example, when using a PC emulator to interactively log into an ASCII UNIX
operating system, a user will:
v On the PC, change the emulator's coded character set to match the coded

character set of the remote session's locale.
v In the UNIX shell, assign the environment variable LC_ALL to a new locale,

where the ASCII coded character set of that locale matches the emulator's
setting.

When interactively logging into an EBCDIC z/OS UNIX operating system, the user
will:
v On the PC, change the emulator's coded character set to match the ASCII coded

character set of the remote session's locale. For example, the user might change
the translation settings in their emulator to use coded character set ISO/IEC
8859-2 (Latin-2).

v In the UNIX shell:
– Assign the environment variable LC_ALL to a new locale, whose EBCDIC

coded character set is compatible with the ASCII coded character set used in
the emulator. To determine if a coded character set is compatible with a
particular locale, refer to the information about locales that are supplied with
z/OS XL C/C++ in z/OS XL C/C++ Programming Guide .
For example, a user might issue:
export LC_ALL=Hu_HU.IBM-1165

– If a tty is allocated, issue the chcp command to assign the EBCDIC and ASCII
coded character sets, as appropriate. Note that the specified ASCII coded
character set should match that of the client emulator's setting.
For example, a user might issue:

Chapter 3. Customizing z/OS UNIX 49

chcp -a ISO8859-2 -e IBM-1165

On z/OS systems, in daemons such as rlogind, telnetd, and sshd, conversion
between ASCII and EBCDIC occurs in the forked daemon process which handles
the user's connection. This process allocates the terminal (tty) for the end user. On
ASCII platforms, no conversion is necessary.

Checking for setup errors
After you complete the customization process, you might want to run the Setup
Verification Program (SVP) to check for potential setup errors.

Check the z/OS UNIX website for the program:
http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1svp.html

50 z/OS V2R2 UNIX System Services Planning

http://www.ibm.com/systems/z/os/zos/features/unix/bpxa1svp.html

Chapter 4. Establishing UNIX security

To provide data and system security, the security administrator and security
auditor need to set up and maintain security. z/OS UNIX provides security
mechanisms that work with the security offered by the z/OS system. A security
product is required, either RACF or an equivalent security product. It is assumed
that you are using RACF. If you are using an equivalent security product, you
should refer to that product's documentation. If you do not have a security
product, you must write SAF exits to simulate all of the functions.

Your installation might need to meet the United States Department of Defense
Class C2 criteria specified in Department of Defense Trusted Computer System
Evaluation Criteria, DoD 5200.28-STD. RACF provides the system integrity and user
isolation required to meet the requirements for C2-level security.

Additionally, multilevel security functions for z/OS systems build on the work
done on MVS to meet the B1 criteria. Using multilevel security, an installation can
provide a high level of security on a z/OS system. For more information about
multilevel security, refer to z/OS Planning for Multilevel Security and the Common
Criteria.

When supported by the installed security products, mixed-case passwords and
password phrases are also supported by BPX1PWD, BPX1SEC, and BPX1TLS
callable services.

Use the following documents as references:
v z/OS Security Server RACF Security Administrator's Guide

v z/OS Security Server RACF System Programmer's Guide

v z/OS Security Server RACF Command Language Reference

List of subtasks

Subtasks Associated procedure

Preparing RACF “Steps for preparing RACF” on page 52

Defining z/OS users to RACF “Steps for defining z/OS UNIX users to
RACF” on page 58

Managing group identifiers and user
identifiers (GIDs and UIDs)

“Steps for obtaining security information
about users” on page 63

“Steps for setting up field-level access” on
page 64

Defining groups to RACF “Steps for creating z/OS UNIX groups” on
page 69

Allowing users to transfer file ownership to
any UID or GID on the system

“Steps for authorizing selected users to
transfer ownership of any file” on page 74

“Steps for setting up the
CHOWN.UNRESTRICTED profile” on page
75

Giving superuser authority to users. “Steps for setting up BPX.SUPERUSER” on
page 76

© Copyright IBM Corp. 1996, 2016 51

Subtasks Associated procedure

Changing superusers from UID(0) to a
unique nonzero UID

“Steps for changing a superuser from UID(0)
to a unique nonzero UID” on page 77

Setting up the FILE.GROUPOWNER.SETGID
profile

“Steps for setting up the
FILE.GROUPOWNER.SETGID profile” on
page 92

Creating and activating sanction lists “Steps for creating a sanction list” on page
106

“Steps for activating the sanction list” on
page 107

Maintaining the security level of the system “Steps for maintaining the security level of
the system” on page 109

Activating FSACCESS checking “Steps for giving selected users or groups
access to a z/OS UNIX file system” on page
111

If you require a high level of security in your z/OS system and do not want
superusers to have access to z/OS resources such as SYS1.PROCLIB, read the
following topics:
v “Comparing UNIX security and z/OS UNIX security” on page 333.
v “Establishing the correct level of security for daemons” on page 335.

Preparing RACF
The security administrator needs to prepare RACF to provide security and to
define users to RACF. To be a z/OS UNIX user, the user's default group must be a
z/OS UNIX group.

Other security topics include:
v Chapter 15, “Setting up for daemons,” on page 333, for rlogin security

considerations
v Chapter 16, “Preparing security for servers,” on page 365, for information about

preparing security for servers
v “Steps for preparing the security program for daemons” on page 336

Steps for preparing RACF

Before you begin: You need to have installed a z/OS system and to be aware that
a SAMPLIB member, BPXISEC1, is provided with z/OS UNIX. This sample TSO/E
CLIST provides all the RACF commands needed for the security setup. Use this
sample member to set up your security environment.

Perform the following steps to prepare RACF for z/OS UNIX.
1. The OMVS cataloged procedure runs a program that initializes the kernel. Issue

ADDGROUP and ADDUSER commands to define the user ID and group ID
specified for OMVS. For example:
ADDGROUP OMVSGRP OMVS(GID(1))
ADDUSER OMVSKERN DFLTGRP(OMVSGRP)

OMVS(UID(0) HOME(’/’) PROGRAM(’/bin/sh’))
NOPASSWORD

52 z/OS V2R2 UNIX System Services Planning

v When you create the RACF user ID for OMVSKERN, use the
NOPASSWORD option to create it as a protected user ID. Protected user IDs
cannot be used to log on to the system or be revoked by incorrect password
or passphrase attempts.

v Specify the RACF name for the group: OMVSGRP in the example. Because
the processes created by /usr/sbin/init inherit the GID of the BPXOINIT,
do not permit OMVSGRP to any resources, unless programs you start using
/etc/rc need to be permitted to these resources. For more information, see
“Customizing /etc/rc” on page 229.
In this example, the GID is 1. However, OMVSGRP can have any group ID.
The GID assigned to this group should be consistent with the GID assigned
to the basic files that are installed in the root directory. ServerPac assumes
that the default of GID(1) will be used. If you want to change the GID
value, then you must also change all files and directories in the entire z/OS
UNIX file system that currently has GID(1) to the new GID value.

v The TSO/E segment is not needed because NOPASSWORD prevents the
OMVSKERN user ID from being used with TSO/E. This prevents a user
logon from interfering with the OMVSKERN user ID.

v Assign UID(0) to the kernel user ID (OMVSKERN). Any programs forked by
/etc/rc receive their authority from the user ID assigned to the BPXOINIT
process. Use the same user ID for BPXOINIT as you assigned to the kernel
(OMVS). The BPXOINIT process and any programs forked by the kernel's
descendants have superuser authority.

v Specify the home directory for the kernel: the root (/).
v To define the default shell for processes run with the OMVSKERN user ID,

specify:
PROGRAM(’/bin/sh’)

v The initialization process BPXOINIT controls the accounting information for
/usr/sbin/init, /etc/rc, and any other programs it starts. If you want to
tailor accounting information for the kernel and startup processes, consider
the following:
– OMVS and BPXOINIT get their account data independently. You can

control the account data in the same way that you set up accounting data
for any cataloged procedure.

– The accounting data for /usr/sbin/init, /etc/rc, and any processes
created by /etc/rc is obtained from the security product database for user
OMVSKERN (the same user ID should be assigned to the BPXOINIT
cataloged procedure).

– The account data for a process started by /etc/rc can be set with the
_BPX_ACCOUNT environment variable. For example:
HOME(’/’) export _BPX_ACCOUNT=AccountingData

2. Add the OMVS procedure either to the RACF STARTED class or to the RACF

started procedures table, module ICHRIN03. When deciding which method to
use, keep in mind that the STARTED class profiles are checked before
ICHRIN03, and that any changes made to ICHRIN03 do not take effect until
the next IPL. The entry for the OMVS cataloged procedure defines the user ID
and group name that the OMVS address space will be assigned.
v You must decide whether to mark OMVS (the kernel) trusted for access.

Making the kernel trusted is useful for giving the kernel access to any local
data set that it wants to mount. If you do not mark the kernel trusted for
local access, set up profiles so that the kernel user ID has access to any local

Chapter 4. Establishing UNIX security 53

data set that it needs to mount. For information about trusted attributes, read
about associating started procedures with user IDs in z/OS Security Server
RACF System Programmer's Guide

v Give the entry for the BPXOINIT started procedure the same identity as
OMVS. Do not mark BPXOINIT trusted.

v If you have decided to add OMVS as a trusted procedure, give the kernel the
trusted attribute. With the trusted attribute, the kernel can work with the
local data sets containing the file systems. Use one of these methods:
– Add it to the RACF STARTED class:

SETROPTS GENERIC(STARTED)
RDEFINE STARTED OMVS.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP)
TRUSTED(YES))
SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

If you add any other entries after this, you issue SETROPTS
RACLIST(STARTED) REFRESH and they will be picked up on the next START.
This defines the BPXOINIT task to run under the user ID OMVSKERN,
which should be NOPASSWORD.

– Add the following entries to ICHRIN03.
DC CL8’OMVS’ PROCEDURE NAME
DC CL8’OMVSKERN’ USERID (ANY RACF-DEFINED USER ID)
DC CL8’OMVSGRP’ GROUP NAME OR BLANKS FOR USER’S DEFAULT GROUP
DC XL1’40’ TRUSTED ATTRIBUTE BIT
DC XL7’00’ RESERVED

v If OMVS is not a trusted procedure, add OMVS without making it trusted,
using one of the following methods. (See step 5 on page 55 for additional
measures needed if the kernel is not trusted.)
– Add it to the RACF STARTED class:

SETROPTS GENERIC(STARTED)
RDEFINE STARTED OMVS.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP)
TRUSTED(NO))
SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

If you add any other entries after this, issue
SETROPTS RACLIST(STARTED) REFRESH

They will be picked up on the next START.
– Add it to ICHRIN03, as shown in the following example:

DC CL8’OMVS’ PROCEDURE NAME
DC CL8’OMVSKERN’ USERID (ANY RACF-DEFINED USER ID)
DC CL8’OMVSGRP’ GROUP NAME OR BLANKS FOR USER’S DEFAULT GROUP
DC XL1’00’ NOT TRUSTED
DC XL7’00’ RESERVED

3. Add the BPXOINIT procedure (it runs the initialization process) without

making it trusted, using either one of these methods:
v Add it to the RACF STARTED class:

SETROPTS GENERIC(STARTED)
RDEFINE STARTED BPXOINIT.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP)
TRUSTED(NO))
SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

v Add it to ICHRIN03:

54 z/OS V2R2 UNIX System Services Planning

DC CL8’BPXOINIT’ PROCEDURE NAME
DC CL8’OMVSKERN’ USERID (ANY RACF-DEFINED USER ID)
DC CL8’OMVSGRP’ GROUP NAME OR BLANKS FOR USER’S DEFAULT GROUP
DC XL1’00’ NOT TRUSTED
DC XL7’00’ RESERVED

4. Add the BPXAS procedure without making it trusted. (When programs issue

fork or spawn requests, the BPXAS procedure is used to provide a new address
space.) Use one of the following methods:
v Add it to the RACF STARTED class:

SETROPTS GENERIC(STARTED)
RDEFINE STARTED BPXAS.* STDATA(USER(OMVSKERN)
TRUSTED(NO))
SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

v Add it to ICHRIN03:
DC CL8’BPXAS’ PROCEDURE NAME
DC CL8’OMVSKERN’ USERID (ANY RACF-DEFINED USER ID)
DC CL8’OMVSGRP’ GROUP NAME OR BLANKS FOR USER’S DEFAULT GROUP
DC XL1’00’ NOT TRUSTED
DC XL7’00’ RESERVED

5. If you did not make the kernel address space trusted, you must give the kernel

access to the local data sets in one of two ways.
You will need to either fulfill the three following conditions:
v Use consistent qualifiers for the local data set names. For example, use

OMVS.xxxxxxxx, where OMVS.xxxxxxxx is the name for a data set.
v Create a generic RACF profile for the OMVS.* data sets, giving the kernel's

user ID (that is, OMVSKERN) ALTER authority. For example:
ADDUSER OMVS
ADDSD (’OMVS.*’) OWNER(OMVSKERN) UACC(NONE)
PERMIT ’OMVS.*’ ACCESS(ALTER) ID(OMVSKERN)

v Authorize administrators who will be allocating local data sets by adding
their user IDs to the OMVS.* access list in the data set profile and giving
them ALTER authority.

or:
v Make sure your administrators who create local data sets give the kernel

permission before having the file system mounted. For each local data set,
the creator defines a data set profile with UACC(NONE) and gives the
kernel address space ALTER authority. For example:
ADDUSER SMORG
ADDSD (’SMORG.HFS’)
UACC(NONE) OWNER(SMORG) PERMIT ’SMORG.HFS’
ACCESS(ALTER) ID(OMVSKERN)

6. If you are defining colony address spaces for a physical file system (for

example, for the NFS Client), set up the security by adding an entry to the
RACF STARTED class or to the RACF started procedures table for each colony
address space. The procedure name specified in the entry must match the
ASNAME specified on the FILESYSTYPE statement in the BPXPRMxx member.
For example, if you specified the following:
FILESYSTYPE TYPE(...) ENTRYPOINT(...) ASNAME(OMVSCOL1)

Then use one of these methods to specify the procedure name:
v Add it to the RACF STARTED class:

Chapter 4. Establishing UNIX security 55

SETROPTS GENERIC(STARTED)
RDEFINE STARTED OMVSCOL1.* STDATA(USER(OMVSKERN) GROUP(OMVSGRP)
TRUSTED(NO))
SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

v Add the following entry to ICHRIN03, to allow the colony address space to
be dubbed as a process with UID(0):
DC CL8’OMVSCOL1’ PROCEDURE NAME
DC CL8’OMVSKERN’ USERID
DC CL8’OMVSGRP’ GROUP NAME
DC XL1’00’ NOT TRUSTED
DC XL7’00’ RESERVED

When you are done, you have prepared RACF for z/OS UNIX.

Using RACF with z/OS UNIX
The security functions provided by RACF include validating users, file access
checking, privileged user checking, and user limit checking. z/OS UNIX users are
defined with RACF commands. When a job starts or a user logs on, RACF verifies
the user ID and password or password phrase. When an address space requests a
z/OS UNIX callable service for the first time, RACF:
1. Verifies that the user is defined as a z/OS UNIX user.
2. Verifies that the user's current connect group is defined as a z/OS UNIX group.
3. Initializes the control blocks needed for subsequent security checks.

For complete information about auditing in the RACF environment, see z/OS
Security Server RACF Auditor's Guide.

RACF performance considerations
Associating RACF user IDs and groups to UIDs and GIDs has important
performance considerations. Both the UNIXMAP class and virtual lookaside facility
(VLF) should remain active and the VLF classes IRRUMAP and IRRGMAP should
be defined to VLF. To understand how VLF can affect performance, refer to the
following RACF documentation:
v The section on mapping UIDs to user IDs and GIDs to group IDs in z/OS

Security Server RACF System Programmer's Guide.
v The section on using UNIXMAP and VLF in z/OS Security Server RACF Security

Administrator's Guide.

Setting up users and groups
The system provides security by verifying a user and verifying that a user or
program can access a process or file. It verifies the user IDs and passwords or
password phrases of users when they log on to a TSO/E session or when a job
starts. Then it does the following:
v When a user in a TSO/E session invokes the shell: RACF verifies that the

interactive users are defined as z/OS UNIX users before the system initializes
the shell.

v When a daemon creates a process for a user: RACF verifies that the user is
properly defined before the system initializes the process.

v When a program requests a kernel service for the first time: RACF verifies that
z/OS UNIX users are running the program before the system provides the
service. The types of programs are:

56 z/OS V2R2 UNIX System Services Planning

– Application programs
– Started procedures
– Products that use kernel services, such as Resource Measurement Facility

(RMF)

Authorize a user to access z/OS UNIX resources by:
v Adding a GID to the RACF group profile for an existing or new RACF group,

which is to be defined as the default group of the user
v Adding a UID to the RACF user profile for an existing or new user and

connecting each user to a RACF group that has a GID

Activating supplemental groups
When RACF list-of-groups checking is active, a user can access z/OS UNIX
resources if they are available to members of any group the user is connected to
and if the group has a GID in its RACF group profile. The additional groups are
called supplemental groups. To activate the RACF list-of-groups checking, specify the
GRPLIST option on the RACF SETROPTS command.

Restrictions: Note these restrictions:
v The maximum number of supplemental groups that can be associated with a

process is 300.
v NFS Client only uses the first 16 groups as supplemental groups when

communicating with a remote NFS server.
v A user can be connected to more than 300 groups, but only the first 300 group

IDs are identified as the user's supplemental groups. When you issue a
LISTUSER command, these are shown as associated with a user's process. It is
recommended that all groups be assigned an OMVS GID.

For more information about list-of-groups checking, see z/OS Security Server RACF
Security Administrator's Guide.

Defining z/OS UNIX users to RACF
You can define z/OS UNIX users to RACF. Alternatively, you can use the ISPF
shell to set up existing users with unique UIDs.

Rules: Note these rules:
v You must define the user to your security product as a z/OS UNIX user before

you try to make the user's file system available. If you do not, you will get error
messages when you try to make it available.

v The OMVS segment also contains the HOME directory and the first PROGRAM
that is executed when this user logs into z/OS UNIX or invokes the OMVS
TSO/E command. Make sure the HOME directory in the OMVS segment
matches the home directory that is defined for that user in the file system.

v The recommended home directory for a user is /u followed by the user ID; for
example, /u/user1 would be the home directory for the user1 ID.

v Make sure that unique UIDs are assigned to each user.
Although you can assign the same UID to multiple users, it is not
recommended. However, it may be necessary for some cases, such as superusers.
If you assign the same UID to multiple users, control at an individual user level

Chapter 4. Establishing UNIX security 57

is lost because the UID is used in z/OS UNIX security checks. Users with the
same UID assignment are treated as a single user during z/OS UNIX security
checks.

Restriction: The limit on the number of user IDs that can share a UID when the
RACF database is using AIM is 129.

Steps for defining z/OS UNIX users to RACF
About this task

This task explains the steps for defining z/OS UNIX to RACF

Before you begin: You need to log on the user ID with RACF SPECIAL authority.

Perform the following steps to define z/OS UNIX users to RACF.

Procedure
1. Authorize a user to z/OS UNIX by entering:

v A RACF ADDUSER command for each new user to be given access to z/OS
UNIX resources. The ADDUSER command creates a RACF user profile.

v A RACF ALTUSER command for each current user who is to be given access
to z/OS UNIX resources. The ALTUSER command changes a current RACF
user profile.

To provide access to z/OS UNIX resources, both ADDUSER and ALTUSER
have an OMVS parameter. The UID subparameter specifies the UID, while the
AUTOUID subparameter specifies that RACF is to assign an unused UID value.

2. Assign a home directory for each user through the HOME subparameter on the
ADDUSER or ALTUSER command.

Example: If the home directory is /u/john, specify:
HOME(’/u/john’)

The home directory should be fully qualified ('/u/john'). If a home directory is
partially specified (for example, john) problems might during process
initialization. Then create that home directory for each user. The home
directory, like all file names, is case-sensitive. It is recommended that the user
name in the home directory be entered in lowercase.
Alternatively, you can use the ISPF shell to define a home directory for each
user.

Example: If the home directory is the root, specify:
HOME(’/’)

In similar open systems, the directory used for users is /u and the name of the
user's home directory is the user name associated with the user. In a z/OS
system, the user name is the user ID:
v If a user accesses the shell from TSO/E, the user ID is folded to uppercase
v With rlogin, the user ID is case-sensitive. If the alias table

(USERIDALIASTABLE) is not set up, then case does not matter and the user
ID is folded. If the alias table is being used and the user ID is found in it,
then the case-sensitive user ID for UNIX activity is used.

58 z/OS V2R2 UNIX System Services Planning

3. Specify an initial program for each user through the PROGRAM subparameter
of the ADDUSER or ALTUSER command.
PROGRAM(’/bin/sh’)

Alternatively, you can use the ISPF shell to specify an initial program for each
user.
The system gives control to the user program when the user logs in or invokes
the OMVS command. The PROGRAM value is also used for the rlogin,
otelnetd, su, and newgrp commands, where a shell is to be created.

4. Do one of the following tasks to connect a user to an already-defined RACF
group. The RACF group must have an OMVS GID for the user to access z/OS
UNIX resources.
v Specify the RACF group on the DFLTGRP parameter on the RACF

ADDUSER command. The specified group becomes the user's default group.
If you do not specify a RACF group on the RACF ADDUSER command,
your current group becomes the user's default group

v Enter a RACF CONNECT command to connect a user to the RACF group.
Specify the DFLTGP parameter on the RACF ALTUSER command to change
the user's default group to the RACF group with an OMVS GID.
To use z/OS UNIX resources, the default group of the user must have a GID
defined.

5. z/OS UNIX performs SYSOUT tailoring for every forked address space. When

defining the users, code the WORKATTR parameter to specify the user's name
and address. The name and address appear on the user's SYSOUT output.

Results

When you are done, you have defined z/OS UNIX users to RACF.

In similar open systems, the /etc/passwd file contains definitions for the HOME,
SHELL, and LOGNAME environment variables. z/OS UNIX provides better
security by keeping these values in the RACF user profile.

Example: The following example shows an ADDUSER command to create a new
user ID, JOHN, with authority to use z/OS UNIX.
ADDUSER JOHN DFLTGRP(ENGNGP7) NAME(’JOHN DOE’) PASSWORD(A4B3C2D1)

OMVS(UID(314) HOME(’/u/john’) PROGRAM(’/bin/sh’))
TSO(ACCTNUM(12345678) DEST(P382005) PROC(PROC01) SYSOUTCLASS(A))
WORKATTR(WANAME(’JOHN DOE’) WAACCNT(12345678)
WABLDG(507_PARK_PLACE) WAROOM(124)
WADEPT(ENGNG555) WAADDR1(WIDGET_INC) WAADDR2(NEW_YORK)
WAADDR3(NEW_YORK) WAADDR4(10002))

The DFLTGRP parameter places user ID JOHN in the RACF group ENGNGP7,
which has a GID of 678. The OMVS parameter on the ADDUSER command does
the following:
v Gives JOHN an UID of 314.
v Invokes the shell in the file /bin/sh when John Doe enters a TSO/E OMVS

command.
v Gives JOHN a home directory of /u/john. The home directory needs to be

added to the file system.

Chapter 4. Establishing UNIX security 59

On an open system, a working directory is normally defined in lowercase letters
and typically has the user's user ID as its name—for example, /u/john. If a
REXX exec or CLIST extracts the user ID with a &userid variable, the value
returned is in uppercase: JOHN. If the REXX exec or CLIST appends the
returned value to /u, the result is /u/JOHN. /u/john and /u/JOHN are two different
directories. You should consider this behavior in using REXX execs, CLISTs, C
programs, or programs using the callable services where the functions return
user IDs.

v Specifying the WORKATTR for user ID JOHN allows daemons to create
processes with the correct accounting and SYSOUT defaults. For example, if
JOHN logs into the system using a rlogin command from a workstation, a new
process will be created for JOHN using the attributes from the WORKATTR.

Storing user-specific information in OMVS segments
Information specific to the user is kept in the OMVS segment of the user profile,
while information specific to groups is kept in the OMVS segment of the group
profile.
v The OMVS segment of the user profile contains information such as the user

identifier (UID) and the path name of the HOME directory.
v For the group profile, the OMVS segment contains the group identifier (GID).

Before users and groups can request access to z/OS UNIX services, the OMVS
segments of the profiles associated with them must be defined.

Every address space that is dubbed must have a security environment with a valid
OMVS segment at the address space level. In a multiuser address space, if a task is
dubbed and it has a security environment that is different than the address space,
then the user ID identified with the task must also have a valid OMVS segment.

Automatically generating OMVS segments
Unique UIDs and GIDs can be generated on demand for users and groups that do
not have OMVS segments defined. RACF saves the generated UIDs and GIDs in
new OMVS segments that are created for user and group profiles in the RACF
database. For more information about automatic UID and GID generation, see z/OS
Security Server RACF Security Administrator's Guide.

Note: Any z/OS UNIX command or callable service that can specify an MVS user
ID can also cause the automatic creation of OMVS segments if that user ID does
not have currently have any OMVS segments.

Before the OMVS segment can be created, the BPX.UNIQUE.USER profile must be
defined in the FACILITY class. A model user can be specified in the APPLDATA
field for BPX.UNIQUE.USER. The OMVS segment from the model user is used to
initialize new OMVS segments for the user profile; this includes all attributes
(HOME, PROGRAM, and user limits) except the UID.

The BPX.NEXT.USER profile in the FACILITY class is used by RACF to derive
unused UID and GID values. The FACILITY class does not have to be active for
RACF to use BPX.NEXT.USER. When creating the BPX.NEXT.USER profile, generic
characters cannot be used in the name. The APPLDATA field for BPX.NEXT.USER
can specify either a starting UID or GID value or range of values for generating
unique UIDs and GIDs. After RACF determines the next unique UID, the UID is
saved in the newly created OMVS segment for the user profile. Similar processing

60 z/OS V2R2 UNIX System Services Planning

|
|
|
|

|
|
|

|
|

is done when a starting GID or range of values is specified; if the group associated
does not have a GID, the GID is saved in a newly created OMVS segment for the
group profile.

Figure 9 illustrates how the unique UID assignment process derives the UID and
GID values from the BPX.NEXT.USER profile and saves the values in the OMVS
segment for the user profile (MYUSER) and the OMVS segment for the group
profile (MYGROUP). The figure also shows how a user profile indicated in the
BPX.UNIQUE.USER profile can be the source of other OMVS information that is
copied to the user profile (MYUSER).

For the requirements to enable automatic UID and GID assignment, see the section
on enabling the automatic assignment of UNIX identities in z/OS Security Server
RACF Security Administrator's Guide.

You can specify the RACF string &racuid as a placeholder for the user ID in the
home directory path name. When RACF creates the OMVS segment, it substitutes
the user ID for which the OMVS segment is being created. When automount is
implemented, a user file system is allocated, mounted, and assigned the user ID as
its owner. For more information about specifying &racuid and considerations for
sharing the RACF database, see the topic on automatic assignment in z/OS Security
Server RACF Security Administrator's Guide.

Security implications
Executable programs are generally categorized as coming from authorized or
unauthorized libraries. Programs in authorized libraries are considered safe for
anyone to run. That is, the code should be free of viruses and should uphold the
integrity and security classification of the operating system.

Programs in unauthorized libraries can be further divided into system-controlled
libraries, which are protected from general user modification, and libraries that are
not system-controlled. Libraries that are not system controlled are not considered
safe for anyone to run. This code is generally a local version of a program that the

GID

UID PROGRAM HOME MEMLIMIT,
and so on

UID PROGRAM HOME MEMLIMIT,
and so on

APPLDATA APPLDATA

BPX.UNIQUE.USER BPX.NEXT.USER

MYUSER

USER00

99 /bin/sh /tmp ...

101 /bin/sh /tmp ...

USER00 101/505

505

MYGROUP

Figure 9. How unique UIDs and GIDs are assigned

Chapter 4. Establishing UNIX security 61

owner has created or modified. Users with special privileges, must use caution
when running such programs. If a programmer with RACF SPECIAL or authority
to update APF-authorized libraries runs a program from an uncontrolled library, it
is possible for the program to take advantage of the caller's authority to
compromise the integrity of the system.

The BPX.DEBUG resource in the FACILITY class enables you to debug
APF-authorized programs, using ptrace via dbx. For more information about
BPX.DEBUG, see “Setting up the UNIX-related FACILITY and SURROGAT class
profiles” on page 80.

There are additional considerations when combining traditional MVS services and
z/OS UNIX.

The entire file system is considered to be an unauthorized library. You can
authorize individual programs within the file system as APF-authorized by setting
the APF-extended attribute. Programs that are APF-authorized behave the same as
other programs that are loaded from APF-authorized libraries. If a program
running in an APF-authorized address space attempts to load a program from the
file system that does not have the APF-extended attribute set, the load is rejected.
This applies to non-jobstep exec, local spawn, attach_exec, and DLL loads. This is
consistent with the way that Contents Supervisor rejects requests to LINK, LOAD,
or ATTACH unauthorized programs from an authorized environment.

In order to run a program from the file system in an APF-authorized address
space, you have two choices:
1. You can link-edit the program into an APF-authorized library and turn on the

sticky bit, using the chmod command.
2. You can use the extattr command to set the APF-authorized extended attribute

of the file.

If an APF-authorized program is the first program to be executed in an address
space, then you also need to set the authorization code to 1 (AC=1) when your
program is link-edited. If a program is loaded into an APF-authorized address
space but is not the first program to be executed, it should not have the AC=1
attribute set.

Checking user and group authority
The system uses two types of user and group IDs to check a user's authority to
access different RACF-protected resources. Examples of two RACF-protected
resources are MVS data sets and local files.
v MVS data sets: The system uses:

– The user's RACF profile
– The RACF group name for the user's current group
– The RACF group name for each group the user is connected to, if

list-of-group checking is active
v local files: The system uses:

– The effective UID
– The effective GID
– The GIDs for the supplemental groups, if list-of-group checking is active

62 z/OS V2R2 UNIX System Services Planning

Users must have a UID and GID defined when entering the TSO/E OMVS
command and for certain kernel services.

Users also need search authority to all directories in the path name for their home
directory. Set these permissions for each directory using the chmod command and
either the MODE operand of the TSO/E MKDIR command or the mode option of
the mkdir command that creates a directory. For more information, see
“Controlling access to files and directories” on page 91.

Obtaining security information about groups
Use the RACF LISTGRP command to list details of specific RACF group profiles. A
group profile consists of a RACF segment and, optionally, other segments such as
DFP and OMVS. The LISTGRP command provides you with the option of listing
the information contained in the entire group profile (all segments), or listing the
information contained only in a specific segment of the group profile.

Steps for obtaining security information about a group
Before you begin: You need to have a user ID that has the needed RACF authority.
For the RACF authority you need, see the LISTGRP command in z/OS Security
Server RACF Command Language Reference

Perform the following steps to check the OMVS security information for a group.
1. Log on to your user ID.

2. Issue a RACF LISTGRP command with the OMVS operand and the RACF

group name.
Example: To list the GID information for the RACF group ENGNP7:
LISTGRP ENGNGP7 OMVS NORACF

You should now see information from the RACF group profile. If the RACF group
was assigned a GID, the profile identifies the GID. All groups that OMVS users
belong to should have OMVS GIDs.

Obtaining security information about users
You can obtain security information for users if the security administrator has set
up field-level access for users for the OMVS segment of the RACF user profile.

Steps for obtaining security information about users
Before you begin: You need to have a user ID that has the needed RACF authority.
For the RACF authority you need, see the LISTUSER command in z/OS Security
Server RACF Command Language Reference.

Perform the following steps to check the OMVS segment of the security
information for a user.
1. Log on to your user ID.

2. Issue a RACF LISTUSER command with the OMVS operand and the user ID.

Example: To list the OMVS information for user ID JOHN:
LISTUSER JOHN OMVS NORACF

Chapter 4. Establishing UNIX security 63

You should now see lists from the user's RACF user profile the fields the user has
authority to see. The fields can be:
v The OMVS UID
v The user's home directory
v The program (typically the shell, called when the user invokes it by using the

TSO/E OMVS command, rlogin, or telnet)
v The user limits

Setting up field-level access for the OMVS segment of a user profile
To allow a user to see or change OMVS fields in a RACF user profile, you can set
up field-level access. You can authorize a user to specified fields in any profile or
to specified fields in the user's own profile. To authorize users to the OMVS fields
in their own profiles, use the ISPF shell, or issue the RACF and PERMIT
commands as described in “Steps for setting up field-level access.”

Steps for setting up field-level access
Before you begin, you need to know which users need to have field-level access.

Perform the following steps to set up field-level access for the OMVS segment of a
user profile.
1. Define a profile for each of the OMVS fields with a RACF RDEFINE command.

For example:
RDEFINE FIELD USER.OMVS.UID UACC(NONE)
RDEFINE FIELD USER.OMVS.HOME UACC(NONE)
RDEFINE FIELD USER.OMVS.PROGRAM UACC(NONE)
RDEFINE FIELD USER.OMVS.CPUTIME UACC(NONE)
RDEFINE FIELD USER.OMVS.ASSIZE UACC(NONE
RDEFINE FIELD USER.OMVS.FILEPROC UACC(NONE)
RDEFINE FIELD USER.OMVS.PROCUSER UACC(NONE)
RDEFINE FIELD USER.OMVS.THREADS UACC(NONE)
RDEFINE FIELD USER.OMVS.MMAPAREA UACC(NONE)
RDEFINE FIELD USER.OMVS.MEMLIMIT UACC(NONE)
RDEFINE FIELD USER.OMVS.SHMEMMAX UACC(NONE)

2. Permit users to access the fields with RACF PERMIT commands.

The following example shows commands for the three fields.
v &RACUID allows all users to look at their own fields.
v READ access allows users to read the UID field.
v UPDATE access allows users to change their home directory in the HOME

field or the program invoked for a TSO/E OMVS command in the
PROGRAM field.

Give only selected users update access to the UID field and the user limits
field. Users with UPDATE access can become a superuser by changing the UID
to 0.
PERMIT USER.OMVS.UID CLASS(FIELD) ID(&RACUID) ACCESS(READ)
PERMIT USER.OMVS.HOME CLASS(FIELD) ID(&RACUID) ACCESS(UPDATE)
PERMIT USER.OMVS.PROGRAM CLASS(FIELD) ID(&RACUID) ACCESS(UPDATE)

3. Activate the FIELD class with the RACF SETROPTS command. For example:

SETROPTS CLASSACT(FIELD) RACLIST(FIELD)

64 z/OS V2R2 UNIX System Services Planning

When you are done, you have set up field level access.

For the other parameters on the RDEFINE, PERMIT, and SETROPTS commands,
see z/OS Security Server RACF Command Language Reference.

Defining group identifiers (GIDs)
You can assign a group identifier (GID) to a RACF group by specifying a GID
value in the OMVS segment of the RACF group profile or by using the AUTOGID
keyword. When a GID is assigned to a group, all users connected to that group
who have a user identifier (UID) in their user profile and whose default or current
connect group has a GID in the group profile can use z/OS UNIX functions and
can access z/OS UNIX files based on the GID and UID values assigned.

The limit on the number of groups that can share a GID when the RACF database
is using AIM is 129.

Do not assign the same GID to multiple RACF groups. If you do,control at an
individual group level is lost because the GID is used in z/OS UNIX security
checks. RACF groups that have the same GID assignment are treated as a single
group during z/OS UNIX security checks. They must use the SHARED keyword
of the RACF ADDGROUP or ALTGROUP command if the SHARED.IDS profile is
defined in the UNIXPRIV class. For more information about SHARED.IDS, see
z/OS Security Server RACF Security Administrator's Guide.

If you are using NFS, see “Assigning UIDs and GIDs in an NFS network” on page
67 for more information.

For special considerations when using the RACF list-of-groups checking (GRPLIST)
option for access to the files and directories in the z/OS UNIX file system, see z/OS
Security Server RACF Security Administrator's Guide.

Defining user identifiers (UIDs)
Restriction: The limit on the number of user IDs that can share a UID when the
RACF database is using AIM is 129.

Assigning UIDs to single users
You can assign a z/OS UNIX user identifier (UID) to a RACF user by specifying a
UID value in the OMVS segment of the RACF user profile or by using the
AUTOUID keyword.

When assigning a UID to a user, make sure that the user is connected to at least
one group that has an assigned GID. This group must be either the user's default
group or one that the user specifies during logon or on the batch job. A user with a
UID and a current connect group with a GID can use z/OS UNIX functions and
access z/OS UNIX files based on the assigned UID and GID values. If a UID and a
GID are not available as described, the user cannot use z/OS UNIX functions.

If you are using NFS, see “Assigning UIDs and GIDs in an NFS network” on page
67 for more information.

Assigning UIDs to multiple users
Do not assign the same UID to multiple user IDs because the sharing of UIDs
allows each user to access all of the resources associated with the other users of

Chapter 4. Establishing UNIX security 65

that shared user ID. The shared access includes not only z/OS UNIX resources
such as files, but also includes the possibility that one user could access z/OS
resources of the other user that are normally considered to be outside the scope of
z/OS UNIX.

However, you might want to assign the same UID to multiple user IDs if these
user IDs are used by the same person or persons. It might also be necessary to
assign multiple users a UID of 0 (superuser authority). When doing this, it is
important to remember that a superuser is implicitly a trusted user who has the
potential of using UID(0) to access all z/OS resources.

Rule: If the SHARED.IDS profile is defined in the UNIXPRIV class, in order to
assign a UID that is already in use to another user ID you must specify the
SHARED keyword with the UID keyword on the RACF ADDUSER or ALTUSER
command.

By default, RACF does not prevent the sharing of UIDs and GIDs. However, you
can enforce unique UNIX identifiers by defining a profile called SHARED.IDS in
the UNIXPRIV class. For more information about SHARED.IDS, see z/OS Security
Server RACF Security Administrator's Guide.

Setting limits for users
You can control the amount of resources consumed by certain z/OS UNIX users by
setting individual limits for these users. The resource limits for the majority of
z/OS UNIX users are specified in the BPXPRMxx parmlib member. Instead of
assigning superuser authority to application servers and other users so they can
exceed BPXPRMxx limits, you can individually set higher limits to these users, as
discussed in “System limits and process limits” on page 392. Setting user limits
allows you to minimize the number of assignments of superuser authority at your
installation and reduces your security risk.

Specify limits for z/OS UNIX users by choosing options on the ADDUSER or
ALTUSER commands. The limits are stored in the OMVS segment of the user
profile. You can set the following limits in the OMVS user segment:

ASSIZEMAX
Maximum address space size (RLIMIT_AS)

CPUTIMEMAX
Maximum CPU time (RLIMIT_CPU)

FILEPROCMAX
Maximum number of concurrently open files per process

MEMLIMIT
Maximum size of storage above the bar

MMAPAREAMAX
Maximum memory map size

PROCUSERMAX
Maximum number of processes for this UID

SHMEMMAX
Maximum size of shared memory

THREADSMAX
Maximum number of threads per process

66 z/OS V2R2 UNIX System Services Planning

After you set individual user limits for users who require higher resource limits,
you should consider removing their superuser authority, if they have any. You
should also reevaluate your installation's BPXPRMxx limits and consider reducing
these limits. See “Customizing the BPXPRMxx member of SYS1.PARMLIB” on
page 22 for more information.

Defining protected user IDs
You can define protected user IDs for started procedures associated with z/OS
UNIX, such as the kernel, the initialization started procedure, and daemons that
are critical to the availability of your z/OS UNIX system. Defining the protected
user IDs will prevent these user IDs from being revoked through inadvertent or
malicious incorrect password or password phrase attempts, or from being used for
other purposes, such as logging on to the system. For more information about
protected user IDs, see z/OS Security Server RACF Security Administrator's Guide.

Defining the terminal group name
Certain shell commands, such as mesg, talk, and write require pseudoterminals to
have a group name of TTY. When a user logs in, or issues the OMVS command
from TSO/E, the group name associated with these terminals is changed to TTY.
As part of installation, you had to define the group TTY or use the group alias
support as described in “Security requirements for ServerPac and CBPDO
installation” on page 88.

Rule: Give this group a unique GID and do not connect users to this group.

Tip: To make it easier to transport the data sets from test systems to production
systems, check that this entry is duplicated in all of your security data bases,
including the same UID and GID values in the OMVS segment.

Managing user and group assignments
To prevent duplication, only one or two administrators should assign UIDs and
GIDs. To manage UID and GID assignments, do one of the following:
v Use AUTOGID or AUTOUID keywords to have UIDs and GIDs automatically

assigned to the user. These are keywords on RACF commands that you use to
define users and groups. This is the suggested method.

v Use the RACF database unload utility to move RACF data into a DB2® database
and then use the Structured Query Language (SQL) to query the database.

v Use the ISPF shell to perform the tasks of defining users and groups.

Assigning UIDs and GIDs in an NFS network
Network File System (NFS) enables users to mount file systems from other systems
so that the files appear to be locally mounted. You end up with a mixture of file
systems that come from systems where the UIDs and GIDs might be
independently managed. To maintain good security on your local files in an NFS
network, the system programmer or the UNIX system programmer must
coordinate the UIDs and GIDs on all of the systems. For example, you don't want
user RALPH to have UID(7) on system 1 and user SMORG to have UID(7) on
system 2. If you use NFS to mount a file system from system 2 on system 1, then
user RALPH can access any of user SMORG's files because they both have UID(7).

Chapter 4. Establishing UNIX security 67

Assigning identifiers for users
Assigning the same UID to more than one person is strongly discouraged. If you
assign the same UID to more than one user ID, z/OS UNIX and RACF treat, in
some ways, the users as if they were a single z/OS UNIX user. For example:
v The users share the same MAXPROCUSER limit, which is defined in the

BPXPRMxx member, unless each user profile contains its own user limit for
MAXPROCUSER.

v The users count as a single user for the MAXUIDS limit in BPXPRMxx.
v One user can enter the kill command for the other's processes.
v The users share ownership and access to the same files.
v Services such as the getpwuid() callable service cannot distinguish which user is

meant. Such services return data about one of the users, but which user is
unpredictable.

If you assign users the same UID, you should warn them of the effects. For UID(0),
the effects are less significant because superusers have access to all processes and
files and because most BPXPRMxx limits are not enforced against superusers.

To assign a non-unique UID, you can use the SHARED keyword of the RACF
ADDUSER or ALTUSER command if the SHARED.IDS profile is defined in the
UNIXPRIV class.

Assigning identifiers for groups
All groups should be assigned unique GIDs. If you assign groups the same GIDs,
you should warn users of the following effects:
v The groups share ownership and access to the same files.
v Security audit records show the GID, but do not show the RACF group if it was

in the supplemental group list; see “Activating supplemental groups” on page
57.

v Services such as the getgrgid() callable service cannot distinguish which group is
meant. The services return data about one of the groups, but which group is
unpredictable.

To assign a non-unique GID, you can use the SHARED keyword of the RACF
ADDGROUP or ALTGROUP command if the SHARED.IDS profile is defined in the
UNIXPRIV class.

Upper limits for GIDs and UIDs
RACF allows for UIDs and GIDs within the range of 0-2,147,483,647. However, the
tar command and some interchange formats supported by the pax command might
not be able to properly handle values above 2,097,151. Because they are used often,
you should take these limitations into consideration when assigning UIDs and
GIDs.

When using pax or tar, UIDs and GIDs greater than 2,097,151 will not be restored
correctly unless one of the following conditions are met:
v The archive is created using the pax format with the pax command.
v The archive is created using the USTAR format and the user or group name

associated with the UID or GID exists on the target system. However, an
incorrect UID or GID might be restored. The reason that might happen is
described next.

68 z/OS V2R2 UNIX System Services Planning

|
|
|

When restoring a UID or GID, if the pax or USTAR format was used during
writing, pax and tar will first attempt to set the UID or GID during the restore
using the user or group name stored in the archive. (Of course, the user must have
the appropriate privileges to set the UID or GID). If this name is defined on the
target system, then the UID or GID is set to whatever UID or GID is associated
with the name defined on the target system. (The UID or GID is set, whether or
not it matches the UID or GID in the archive, which means that this could be a
problem if the name stored on the target system is coincidental rather than
intentional).

If the user or group name is not defined on the target system, or if the archive is
using the original tar format, then the UID or GID stored in the archive is used. If
the UID or GID was originally greater than 2,097,151, and the archive was not
created with the pax format, then the archive contains an incorrect version of the
UID or GID value due to truncation. This situation will then result in that same
incorrect UID or GID value being restored. However, if the archive was created
with the pax format, then the original correct UID or GID is restored. The correct
values are restored because the pax format supports UID or GID values up to 2147
483647.

In summary, large UIDs and GIDs might not be correctly restored by pax and tar.
Using the pax format (the preferred method) can avoid this situation, because it
supports values up to 2,147,483,647. (the maximum supported by RACF). Using the
USTAR format might also avoid this situation, but only if the target system has the
same user or group name defined and that name represents the same user or
group as it did on the source system. Or, use UID or GID values within the limits
for the archive format being used. See the description of pax and tar in z/OS UNIX
System Services Command Reference for more information about these commands.

Creating z/OS UNIX groups
A user must belong to at least one group and can be connected to additional
groups. When a user connects to the system (that is, logs on to a TSO/E session),
one of the groups is selected as the user's current group. For a user to be able to
request kernel services and invoke the shell, the user's current RACF group must
have a z/OS UNIX group ID (GID) assigned to it. All groups that a user belongs to
should be assigned an OMVS GID. Also, the user's default group must have a GID
assigned for POSIX standards conformance.

Steps for creating z/OS UNIX groups
Before you begin: You need to know which RACF group profiles will be used as
z/OS UNIX groups.

Perform the following steps to define RACF groups that can be used as z/OS
UNIX groups.
1. Log on to the user ID with RACF SPECIAL authority.

2. Issue one of the following commands. Base your choice on your particular

situation.

Chapter 4. Establishing UNIX security 69

This table shows the tasks for creating z/OS UNIX groups.

If you want to . . . Then issue. . .

Define a new RACF group profile and
have it be used as a z/OS UNIX group

The ADDGROUP command.

Example: To define a RACF group profile
named SYS1 and to give it a GID of 575, issue:

ADDGROUP OMVSGRP SUPGROUP(SYS1)
OWNER(SYS1) OMVS(GID(575))

Result: You have defined a RACF group profile
and created a z/OS UNIX group.

Change a current RACF group profile and
have it used as a z/OS UNIX group

The ALTGROUP command.

Example: To add a GID of 678 to the current
RACF group ENGNGP7, issue:

ALTGROUP ENGNGP7 OMVS(GID(678))

Result: You have created a z/OS UNIX group.

Use AUTOGID to automatically assign an
unused GID. For example:

ALTGROUP ENGNGP7 OMVS(AUTOGID)

To assign OMVS GIDs to all groups, use the
ISPF shell.

Tip: For useful reports and auditing, assign a unique GID to each RACF group
name. Reports for the RACF group name will then supply information about
the corresponding GID.

When you are done, you have created a z/OS UNIX group. When the user
connects to the system (for example, logs on to a TSO/E session), one group is
selected as the user's current group. When a user becomes a z/OS UNIX user, the
GID of the user's current group becomes the effective GID of the user's process.
The user can access resources available to members of the user's effective GID.

Superusers in z/OS UNIX
Your installation defines certain system programmers, users, and started
procedures as superusers. Superusers pass all security checks and can access any
file in the file system. They can do administrative activities such as the following:
v Change the contents of any file
v Install products
v Manage processes
v Change identity from one UID to another.
v Use setrlimit() to increase any of the system limits for a process.

Superusers can also have an unlimited number of processes that are running
concurrently. For a started procedure, this is true only if it has a UID of 0. It is not
true for a trusted or privileged process with a different UID.

When not doing activities that require superuser authority, the superuser joins the
majority of users or programs with user authority, which permits access to their
own files and certain files to which they have access, according to permission bits.

70 z/OS V2R2 UNIX System Services Planning

Rule: The user ID associated with a started procedure needing superuser authority
must have a UID, but the UID can have any value. Users running with the trusted
or privileged attribute are considered superusers even if their assigned UID is a
value other than 0.

The parent process propagates its UID and TRUSTED or PRIVILEGED attribute to
a forked child process. Thus, a UID of 0 is propagated to a forked child.

As you are defining users, you might want to define some of them with
appropriate superuser privileges. There are three ways to assign superuser
authority.
v Using the UNIXPRIV class profiles, the preferred way. See “Using UNIXPRIV

class profiles.”
v Using the BPX.SUPERUSER resource in the FACILITY class. See “Using the

BPX.SUPERUSER resource in the FACILITY class” on page 76.
v Assigning a UID of 0, which is the least desirable way. See “Assigning a UID of

0” on page 80.
For specific installation requirements regarding superuser authority, see
“Security requirements for ServerPac and CBPDO installation” on page 88.

While some functions require a UID of 0, in most cases you can choose among the
three ways. When choosing among them, try to minimize the number of "human"
user IDs (as opposed to started procedures) set up with UID(0) superuser
authority. However, in z/OS, RACF allows certain users to perform specific
privileged functions without being defined as UID(0). BPX.SUPERUSER allows you
to request that you be given such access, but you do not have the access unless
you make the request. And, the UNIXPRIV class allows you to do other privileged
functions, such as mounting a file system. Both these definitions are similar to
having UID(0) in that, before RACF grants access to a system resource or use of it,
the system checks these definitions.

Do not confuse superuser authority with MVS supervisor state. Being a superuser
is not related to supervisor state, PSW key 0, and using APF-authorized
instructions, macros, and callable services.

Using UNIXPRIV class profiles
You can define profiles in the UNIXPRIV class to grant RACF authorization for
certain z/OS UNIX privileges. By defining profiles in the UNIXPRIV class, you can
specifically grant certain superuser privileges with a high degree of granularity to
users who do not have superuser authority. This way, you can minimize the
number of assignments of superuser authority at your installation and reduces
your security risk.

Resource names in the UNIXPRIV class are associated with z/OS UNIX privileges.
You must define profiles in the UNIXPRIV class protecting these resources in order
to use RACF authorization to grant z/OS UNIX privileges. The UNIXPRIV class
must be active and SETROPTS RACLIST must be in effect for the UNIXPRIV class.
Global access checking is not used for authorization checking to UNIXPRIV
resources.

Table 7 on page 72 shows each resource name available in the UNIXPRIV class, the
z/OS UNIX privilege that is associated with each resource, and the level of access
that is required to grant the privilege.

Chapter 4. Establishing UNIX security 71

Table 7. Resource names in the UNIXPRIV class for z/OS UNIX privileges

Resource name z/OS UNIX privilege and required minimum access.

CHOWN.UNRESTRICTED Allows users to use the chown command to transfer
ownership of their own files. No minimum access is
required.

See “Steps for setting up the CHOWN.UNRESTRICTED
profile” on page 75.

FILE.GROUPOWNER.SETGID Specifies that a directory's set-gid bit is used to
determine the group owner of any new objects that are
created within the directory. No minimum access is
required.

RESTRICTED.FILESYS.ACCESS Specifies that RESTRICTED users cannot gain file access
by virtue of the other permission bits.

To override it for a specific user or group, the required
minimum required access is READ.

SHARED.IDS Allows users to assign UID and GID values that are not
unique. The minimum required access is READ.

SUPERUSER.FILESYS.ACLOVERRIDE Specifies that ACL contents override the access that was
granted by SUPERUSER.FILESYS. No minimum access is
required.

It can be overridden for specific users or groups. The
user or group must have the same access that would be
required to SUPERUSER.FILESYS while accessing the
file.

SUPERUSER.FILESYS To allow the user to read any local file, and to read or
search any local directory, the minimum required access
is READ.

To allow the user to write to any local file, and includes
privileges of READ access, the minimum required access
is UPDATE.

To allow the user to write to any local directory, and
includes privileges of UPDATE access, the minimum
required access is CONTROL or higher.

Authorization to the SUPERUSER.FILESYS resource
provides privileges to access only local files. No
authorization to access Network File System (NFS) files
is provided by access to this resource.

READ, UPDATE, and CONTROL (or higher) does not
grant permission to update extended attributes of files.
This is not equivalent to being a superuser.

SUPERUSER.FILESYS.CHANGEPERMS Allows users to use the chmod command to change the
permission bits of any file and to use the setfacl
command to manage access control lists for any file. The
minimum required access is READ.

SUPERUSER.FILESYS.CHOWN Allows users to use the chown command to change
ownership of any file.. The required minimum access is
READ.

SUPERUSER.FILESYS.DIRSRCH Allows users to read and search any local directories.
The required minimum access is READ.

72 z/OS V2R2 UNIX System Services Planning

|
|
|

||
|

Table 7. Resource names in the UNIXPRIV class for z/OS UNIX privileges (continued)

Resource name z/OS UNIX privilege and required minimum access.

SUPERUSER.FILESYS.MOUNT v Allows user to issue the TSO/E MOUNT command or
the mount shell command with the nosetuid option.
Also allows users to unmount a file system with the
TSO/E UNMOUNT command or the unmount shell
command mounted with the nosetuid option.

Users permitted to this profile can use the chmount
shell command to change the mount attributes of a
specified file system.

The minimum required access is READ.

v Allows user to issue the TSO/E MOUNT command or
the mount shell command with the setuid option.
Also allows user to issue the TSO/E UNMOUNT
command or the unmount shell command with the
setuid option.

Users permitted to this profile can issue the chmount
shell command on a file system that is mounted with
the setuid option.

The minimum required access is UPDATE.

SUPERUSER.FILESYS.QUIESCE To allow the user to issue quiesce and unquiesce
commands for a file system mounted with the nosetuid
option, the minimum required access is READ.

To allow the user to issue quiesce and unquiesce
commands for a file system mounted with the setuid
option, the minimum required access is UPDATE.

SUPERUSER.FILESYS.PFSCTL Allows user to use the pfsctl() callable service. The
minimum required access is READ.

SUPERUSER.FILESYS.USERMOUNT Allows nonprivileged users to mount and unmount file
systems with the nosetuid option. The minimum
required access is READ.

SUPERUSER.FILESYS.VREGISTER Allows a server to use the vreg() callable service to
register as a VFS file server. The minimum required
access is READ.

The SUPERUSER.FILESYS.VREGISTER resource only lets
a server such as NFS initialization. Users who are
connected as clients through facilities such as NFS do
not get special privileges based on this resource or other
resources in the UNIXPRIV class.

SUPERUSER.IPC.RMID Allows user to issue the ipcrm command to release any
IPC resources. The minimum required access is READ.

SUPERUSER.PROCESS.GETPSENT Allows user to use the w_getpsent() callable service to
receive data for any process.

Also allows users of the ps command to output
information about all processes. This is the default
behavior of ps on most UNIX platforms.

The minimum required access is READ.

SUPERUSER.PROCESS.KILL Allows user to use the kill() callable service to send
signals to any process. The minimum required access is
READ.

Chapter 4. Establishing UNIX security 73

Table 7. Resource names in the UNIXPRIV class for z/OS UNIX privileges (continued)

Resource name z/OS UNIX privilege and required minimum access.

SUPERUSER.PROCESS.PTRACE Allows user to use the ptrace() callable service through
the dbx debugger to trace any process. The minimum
required access is READ.

Authorization to the BPX.DEBUG resource is also
required to trace processes that run with APF authority
or BPX.SERVER authority.

SUPERUSER.SETPRIORITY Allows user to increase own priority. The minimum
required access is READ.

SUPERUSER.SHMMCV.LIMITS Allows the user to create up to 4,194,304 mutexes or
condition variables to be associated with a single shared
memory segment. The overall system total of mutexes
and condition variables for authorized users must be
less than 134,217,729. When authorized applications
create the maximum number of mutexes and condition
variables, the system requires more auxiliary storage to
be available. System dumps that include the OMVS
address space also require larger dump data sets to
contain the increased size of that address space. It is
unlikely that applications will create the maximum
number of structures allowed. If the maximum number
is created, the increase in auxiliary storage and dump
data set size is roughly 350 gigabytes.

The minimum required access is READ.

Tip: If you are debugging a daemon, use the SUPERUSER.PROCESS.GETPSENT,
SUPERUSER.PROCESS.KILL, and SUPERUSER.PROCESS.PTRACE privileges.

Assigning superuser privileges
The example in “Steps for authorizing selected users to transfer ownership of any
file” applies to the superuser privileges shown in Table 7 on page 72, except the
privilege associated with the CHOWN.UNRESTRICTED resource (see “Steps for
setting up the CHOWN.UNRESTRICTED profile” on page 75).

Steps for authorizing selected users to transfer ownership of any
file
Before you begin: You need to know which users will be assigned superuser
authority.

Perform the following steps to authorize selected users to transfer ownership of
any file.
1. Define a profile in the UNIXPRIV class to protect the resource called

SUPERUSER.FILESYS.CHOWN.
RDEFINE UNIXPRIV SUPERUSER.FILESYS.CHOWN UACC(NONE)

In general, generic profile names are allowed for resources in the UNIXPRIV
class (with a few exceptions, such as SHARED.IDS and
FILE.GROUPOWNER.SETGID).
Tip: To assign all file system privileges, you can define a profile called
SUPERUSER.FILESYS.**.

2. Assign selected users or groups as appropriate.

74 z/OS V2R2 UNIX System Services Planning

PERMIT SUPERUSER.FILESYS.CHOWN CLASS(UNIXPRIV)
ID(appropriate-groups-and-users) ACCESS(READ)

3. Activate the UNIXPRIV class, if it is not currently active at your installation.

SETROPTS CLASSACT(UNIXPRIV)

If you do not activate the UNIXPRIV class and activate SETROPTS RACLIST
processing for the UNIXPRIV class, only superusers are allowed to transfer
ownership of any file.

4. Activate SETROPTS RACLIST processing for the UNIXPRIV class, if it is not
already active.
SETROPTS RACLIST(UNIXPRIV)

If SETROPTS RACLIST processing is already in effect for the UNIXPRIV class,
you must refresh SETROPTS RACLIST processing in order for new or changed
profiles in the UNIXPRIV class to take effect.
SETROPTS RACLIST(UNIXPRIV) REFRESH

When you are done, you have authorized selected users to transfer ownership of
any file.

Allowing z/OS UNIX users to change file ownerships
On z/OS UNIX systems, superusers can change the ownership of any file to any
UID or GID on the system. General users can only change the ownership of files
that they own, and only to one of their own associated GIDs. This is considered
the more secure implementation, and is the one recommended by IBM. However,
you can allow selected z/OS UNIX users to transfer ownership of files they own to
any UID or GID on the system.

To allow z/OS UNIX users to transfer ownership of files they own to any UID or
GID on the system, create a discrete profile in the UNIXPRIV class called
CHOWN.UNRESTRICTED, and permit users with the appropriate access.

Steps for setting up the CHOWN.UNRESTRICTED profile
Before you begin: CHOWN.UNRESTRICTED must be a discrete profile. Matching
generic profiles are ignored.

Perform the following steps to set up the CHOWN.UNRESTRICTED profile.
1. Define the discrete profile in the UNIXPRIV class called

CHOWN.UNRESTRICTED:
RDEFINE UNIXPRIV CHOWN.UNRESTRICTED UACC(NONE)

2. Permit the user or group with the appropriate access level. UPDATE access is

required in order to change ownership to UID 0. READ access is required to
change ownership to any other UID value, or to the GID of a group to which
the user is not connected. For example:
PERMIT CHOWN.UNRESTRICTED CLASS(UNIXPRIV)ID(GRPX) ACCESS(READ)

If you do not activate the UNIXPRIV class and activate SETROPTS RACLIST
processing for the UNIXPRIV class, only superusers are allowed to transfer
ownership of files to others.

Chapter 4. Establishing UNIX security 75

3. Activate the SETROPTS RACLIST processing for the UNIXPRIV class, if it is

not already active.
SETROPTS RACLIST(UNIXPRIV)

If SETROPTS RACLIST processing is already in effect for the UNIXPRIV class,
you must refresh SETROPTS RACLIST processing in order for the
CHOWN.UNRESTRICTED profile to take effect.
SETROPTS RACLIST(UNIXPRIV) REFRESH

When you are done, you have set up the CHOWN.UNRESTRICTED profile in the
UNIXPRIV class.

Allowing z/OS UNIX users to search directories
Sometimes z/OS UNIX administrators need the ability to read and search all file
system directories to manage file ownerships and permissions. It is not necessary
to give such administrators RACF AUDITOR or ROAUDIT authority to provide
this ability when directory permission bits and access lists do not explicitly allow
access. Instead, you can define a UNIXPRIV profile covering
SUPERUSER.FILESYS.DIRSRCH to control such access. This permission is
complementary to administrator authorities provided by
SUPERUSER.FILESYS.CHOWN and SUPERUSER.FILESYS.CHANGEPERMS.

Note: Use caution when permitting users to the DIRSRCH profile if you employ
the strategy of protecting files by disallowing user access to the parent directory.
Since users with DIRSRCH profile permission can read and search all directories,
their access to files in all subdirectories is determined by the defined file
permissions and access lists.

For more information about how to give directory search permission to specified
users and groups, see z/OS Security Server RACF Security Administrator's Guide.

Using the BPX.SUPERUSER resource in the FACILITY class
Using the BPX.SUPERUSER resource in the FACILITY class is another way for
users to get the authority to do most of the tasks that require superuser authority.

Steps for setting up BPX.SUPERUSER
Before you begin: You need to know which users need to have superuser
authority.

Perform the following steps to set up BPX.SUPERUSER.
1. Define the BPX.SUPERUSER resource in the FACILITY class.

RDEFINE FACILITY BPX.SUPERUSER UACC(NONE)

Rule: You must use the name BPX.SUPERUSER. Substitutions for the name are
not allowed.

2. If this is the first FACILITY class profile that the installation has defined,
activate the FACILITY class with the SETROPTS command.
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST(FACILITY)

76 z/OS V2R2 UNIX System Services Planning

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

3. Permit all users who need superuser authority to this profile. Use the RACF
commands shown in the following example, which give the user ID SYSPROG
permission to use the su command to obtain superuser authority. It is assumed
that the default group for SYSPROG is set up with a GID.
ALTUSER SYSPROG OMVS(UID(7) HOME(’/u/sysprog’) PROGRAM(’/bin/sh’))
PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(SYSPROG) ACCESS(READ)

When you are done, you have set up the BPX.SUPERUSER resource in the
FACILITY class and permitted the users who need to have superuser authority.
When they need to perform superuser tasks, they can switch to superuser mode
using the su command or the "Enable superuser mode (SU)" option in the ISPF
shell.

Tips: Note these tips:
1. Instead of using BPX.SUPERUSER to permit users to have superuser authority,

you could define a group, for example, SUPERUSR. You could then add users
who need superuser permission to the group.
Example: To add the user ID SYSPROG to the SUPERUSR group:
CONNECT (SYSPROG) AUTH(USE) GROUP(SUPERUSR) OWNER(SYS1) GRPACC

Then permit this group to BPX.SUPERUSER.
PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(SUPERUSR) ACCESS(READ)

2. As an alternative to assigning superuser authority, you can define which
superuser attributes a given user is to have, and which system resource limits
are to be defined for the user.

Deleting superuser authority
If the installation determines that a user no longer requires superuser authority, the
RACF administrator can remove the user from the access list with the PERMIT
command.

Example: To remove superuser authority from user ID JOHN:
PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(JOHN) DELETE

Changing a superuser from UID(0) to a unique nonzero UID
Give each user a unique UID and have them use the su command to obtain the
authority they need. You can give them the ability to use the su command by
giving them READ authority to the BPX.SUPERUSER resource in the FACILITY
class. For more information about the su command, see z/OS UNIX System Services
Command Reference.

Rule: To run SMP/E jobs, the user must have UID(0) or be permitted to the
BPX.SUPERUSER resource in the FACILITY class.

Steps for changing a superuser from UID(0) to a unique nonzero
UID
Before you begin: You need to know which superusers you want to change from
UID(0) to a unique nonzero UID.

Perform the following steps to change a superuser from a UID of 0 to a unique
nonzero UID.

Chapter 4. Establishing UNIX security 77

1. Change the UID for the superuser from 0 to a unique UID. Base your choice on
your particular situation.

Choices for changing superusers

If you choose this method . . . Then . . .

Have RACF automatically assign an
unused UID.

1. Delete the UID from the user's OMVS segment.
For example:

ALTUSER JOHN OMVS(NOUID)

2. Issue the ALTUSER command with the
AUTOUID keyword. For example:

ALTUSER JOHN OMVS(AUTOUID)

Message IRR52177I identifies the new UID.

Use the ISPF shell to assign the next
available UID.

1. Delete the UID from the user's OMVS segment.
For example:

ALTUSER JOHN OMVS(NOUID)

2. Assign a new UID, using the ISPF shell.

Tip: You can display the user's OMVS segment
to see the UID that was assigned by the
ISHELL. For example:

LISTUSER JOHN OMVS

Manually assign the UID. If the
installation manually manages the UIDs
assigned to users, select the next
available UID and assign it to the user.

Tip: To make sure the UID you selected
is not already in use by another user,
issue:

SEARCH CLASS(USER) UID(7)

Use the ALTUSER command.

Example: Assume that the next available UID is 7
and the user ID is JOHN. To reassign the UID,
issue:

ALTUSER JOHN OMVS(UID(7))

2. Permit the user to the BPX.SUPERUSER resource in the FACILITY class.

Example: For user ID John:
PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(JOHN) ACCESS(READ)

Tip: You can choose to RACLIST the FACILITY class afterward. This step is
optional. If you do so, then you will have to do a REFRESH after the user ID is
permitted to the FACILITY class. For example:
SETROPTS RACLIST(FACILITY) REFRESH

3. Change the ownership of the user's private files to the new UID. These files are

typically those defined in the home directory.
Example: The home directory is /u/john. Issue the following command to
update the ownership of the files.
cd /u/john
chown -R john /u/john

Result: The owning UID of the /u/john directory is changed to 7. The owning
UID of all files and subdirectories of the /u/john directory is also changed.
Tip: The chown command requires a UID of 0, the ability to su to 0, or
authority to SUPERUSER.FILESYS.CHOWN.

78 z/OS V2R2 UNIX System Services Planning

When you are done, you have changed the superuser from a UID of 0 to a unique
nonzero UID.

Switching in and out of superuser authority
You can switch in and out of superuser authority. This discussion assumes that the
installation has not assigned UID(0) to its superusers. Instead, each user has a
unique UID and has been permitted to the BPX.SUPERUSER resource in the
FACILITY class.

You can use any of the following methods to gain superuser authority:
v Enter the shell using the OMVS command and then issue the su command with

no operands. This creates a nested shell that runs with superuser authority.
Programs that change the security environment cannot run in a multiprocess
address space.
Tip: When running in this manner, editing a file with the OEDIT command
(OEDIT with PF6) returns you to the TSO/E address space where your original
authority is still in place.

v Enter the ISPF shell using the ISHELL command or a dialog selection. From the
ISPF shell, you can select the option to switch to superuser state. You can then
manage the file system using ISPF shell functions while in the superuser state.
If you enter the ISPF shell, switch to superuser and then exit the ISPF shell, you
might lose superuser authority. If the ISPF shell is the only process in the
address space, you will lose all connection to kernel services when the ISPF shell
terminates. If there is another dubbed process in this address space (for example,
another ISPF shell, or a local shell), it will share the UID with the ISPF shell
process. For example, you can open an ISPF shell on both sides of a split screen.
When you toggle to superuser in one ISPF shell, it affects the address space and
therefore, both ISPF shells are now superuser. Regardless of which ISPF shell
terminates first, the address space retains its UIDs until the ISPF shell is used to
toggle back, or the last process is undubbed.

v Enter the shell using rlogin or telnet. Once in the shell, enter the su command to
create a nested shell that runs with superuser authority.

v After gaining superuser authority in the ISPF shell, you can split the screen in
ISPF and enter the OMVS command. The shell that is started inherits the
superuser authority set up in the ISPF shell. For privileged shells (when the
effective UID does not match the real UID, or the effective GID does not match
the real GID) $HOME/.profile is not run. If the file /etc/suid_profile exists, it
will be run.

v If you are permitted to the BPX.SUPERUSER resource, then you can get
superuser access through REXX.

v Use the su command from BPXBATCH. Run a job using BPXBATCH following
one of these examples that shows a copy of the file:
– On the PARM= statement, include:

SH echo cp /etc/profile /etc/junk | su

This pipes the result of the echo command (that is, the copy command) into
the su command.

– With PARM=’SH su’, code:
//STDIN DD PATH ’/yourpath/input.stuff’,PATHOPTS=(ORDONLY)

– With no parameters coded at all, create a file that has the su command in it.
//BATBPX1 EXEC PGM=BPXBATCH
//STDIN DD PATH=’/yourpath/suinput.stuff’,PATHOPTS=(ORDONLY)

Chapter 4. Establishing UNIX security 79

In the suinput.stuff section, you would have the su command followed by the
copy command. These are commands as you would have entered them from
the console if you had been running in the z/OS UNIX shell.

Also, when you set up your own $HOME/.profile as superuser, specify the
/usr/sbin directory in your PATH environment variable because certain superuser
utilities are in that directory instead of the /bin directory, such as automount. For
more information about the profile, see “Customizing $HOME/.profile” on page
225.

Assigning a UID of 0
Although sometimes appropriate, the least desirable method of defining superusers
is to assign a UID of 0 in the UID parameter in the OMVS segment of the
ADDUSER or ALTUSER commands. In this environment, you risk entering
commands that can damage the file system.

Tip: If you want to assign a UID of 0, also assign a secondary user ID with a
nonzero UID for activities other than system management. For example, you
would assign:
User ID SMORG UID(0) - used for system maintenance
User ID SMORG1 UID(7) - used for regular programming

Example: In the following example, the ALTUSER command gives the user ID
SMORG superuser authority, makes the root directory the home directory, and
causes invocation of the shell in response to a TSO/E OMVS command. If the shell
is to be installed, specify the HOME and PROGRAM parameters; if a shell is not to
be installed, omit the HOME parameter. This user must be in a RACF group,
typically SYS1, and the group must have an OMVS GID associated with it.
ALTUSER SMORG OMVS(UID(0) HOME(’/’) PROGRAM(’/bin/sh’))
ALTGROUP SYS1 OMVS(GID(0))

You might choose to assign UID(0) to multiple RACF user IDs. However, try to
minimize the use of UID(0). Assignment of UID(0) should be limited to the user
associated with started procedures such as the OMVS kernel and the user who
installs the ServerPac. It should be avoided for the user IDs belonging to the real
users whenever possible.

Tip: If the SHARED.IDS profile is defined in the UNIXPRIV class, you might need
to use the SHARED keyword because UID(0) is likely to be used by several IDs.
For example:
ALTUSER SMORG OMVS(UID(0) SHARED HOME(’/’) PROGRAM(’/bin/sh’))

Setting up the UNIX-related FACILITY and SURROGAT class profiles
You can control who can use certain UNIX functions when you define RACF
profiles with UACC(NONE) to protect the appropriate resources in the FACILITY
and SURROGAT classes. The UNIX-related resources start with the prefix BPX.
Generally, authorized users need at least READ access to the FACILITY resources
in order to use the UNIX function.

Do not define the generic profile BPX.* or unintended security-related behavior
might occur. If BPX.* is defined, then the OMVS address space identity must be
permitted to it and BPXOINIT must have a different user identity than OMVS.
Following these guidelines will prevent unintended security-related behavior from

80 z/OS V2R2 UNIX System Services Planning

occurring on your system, such as BPX.DAEMON activation, BPX.MAINCHECK
checking and BPX.SAFFASTPATH activation.

To activate RACF control of UNIX functions, use the RACF SETROPTS CLASSACT
FACILITY command. Permit your authorized users to the appropriate resources
before you activate the FACILITY class or else users will not be able to use
protected UNIX functions.

Because TRUSTED users are not by default permitted to the BPX.SERVER or the
BPX.DAEMON profiles, they do not have any authorities that are associated with
having access to these two profiles.

For security reasons, you might need to define these class profiles. All of the
following are FACILITY class profiles, except for BPX.SRV, which is a SURROGAT
class profile.
v BPX.CF

Controls access to the _cpl service.
v BPX.CONSOLE

Allows a permitted user the ability to use the _console() or _console2() services.
v BPX.DAEMON

BPX.DAEMON serves two functions in the z/OS UNIX environment:
– Any superuser that is permitted to this profile has the daemon authority to

change MVS identities via z/OS UNIX services without knowing the target
user ID's password or password phrase. This identity change can only occur
if the target user ID has an OMVS segment defined.
If BPX.DAEMON is not defined, then all superusers (UID=0) have daemon
authority. If you want to limit which superusers have daemon authority,
define this profile and permit only selected superusers to it.

– Any program that is loaded into an address space that requires daemon level
authority must be defined to program control. If the BPX.DAEMON
FACILITY class profile is defined, then z/OS UNIX will verify that the
address space has not loaded any executables that are uncontrolled before it
allows any of the following services that are controlled by z/OS UNIX to
succeed:
- seteuid
- setuid
- setreuid
- pthread_security_np()
- auth_check_resource_np()
- _login()
- _spawn() with user ID change
- _passwd()

Daemon authority is required only when a program does a setuid(), seteuid(),
setreuid(), or spawn() user ID to change the current UID without first having
issued a _passwd() call to the target user ID. In order to change the MVS
identity without knowing the target user ID's password or password phrase, the
caller of these services must be a superuser. Additionally, if a BPX.DAEMON
FACILITY class profile is defined and the FACILITY class is active, the caller
must be permitted to use this profile. If a program comes from a controlled
library and knows the target UID's password or password phrase, it can change
the UID without having daemon authority.
The RACF WARNING mode is not supported for BPX.DAEMON.

Chapter 4. Establishing UNIX security 81

For more information about BPX.DAEMON, see “Establishing the correct level of
security for daemons” on page 335.

v BPX.DAEMON.HFSCTL

Controls which users with daemon authority are allowed to load uncontrolled
programs from MVS libraries into their address space.

Restriction: BPX.DAEMON.HFSCTL does not allow generic profiles.
v BPX.DEBUG

Users with READ access to BPX.DEBUG can debug certain types of restricted
processes. These do not include processes that have a PID of 1. To debug
programs that run with APF authority or with BPX.SERVER authority, they can
use dbx to call the ptrace callable service.

v BPX.EXECMVSAPF.program_name

Allows unauthorized callers of the execmvs callable service to pass an argument
that is greater than 100 characters to an authorized program.
If the FACILITY class resource exists, then unauthorized callers can pass
arguments greater than 100 characters to the program name that is specified in
the FACILITY class profile. Individual users do not need to be given access to
the profile. If you do not want unauthorized callers to pass an argument greater
than 100 characters to any authorized programs, do not define any
BPX.EXECMVSAPF.program_name profiles.
To allow certain authorized programs to be called with an argument greater than
100 characters, define a profile for each program:
BPX.EXECMVSAPF.YOURPGM
BPX.EXECMVSAPF.MYPGM

To allow a group of commonly named authorized programs to be called with an
argument greater than 100 characters, define a profile that allows for pattern
matching. For example, if you have a set of related programs that all begin with
the same three characters, MYP, define:
BPX.EXECMVSAPF.MYP*

As a result, all unauthorized callers can pass an argument greater than 100
characters to any authorized program that begins with the characters MYP.
To allow all unauthorized users the ability to pass any argument up to 4096
characters long to any authorized program, then define one profile:
BPX.EXECMVSAPF.*

However, IBM does not recommend defining this type of profile.
v BPX.FILEATTR.APF

Controls which users are allowed to set the APF-authorized attribute in a z/OS
UNIX file. This authority allows the user to create a program that will run
APF-authorized. This is similar to the authority of allowing a programmer to
update SYS1.LINKLIB or SYS1.LPALIB.

v BPX.FILEATTR.PROGCTL

Controls which users are allowed to set the program control attribute. Programs
marked with this attribute can execute in server address spaces that run with a
high level of authority. See “Defining programs in UNIX files to program
control” on page 339 for more information.

v BPX.FILEATTR.SHARELIB

Indicates that extra privilege is required when setting the shared library
extended attribute via the chattr() callable service. This prevents the shared

82 z/OS V2R2 UNIX System Services Planning

library region from being misused. See “Defining UNIX files as shared library
programs” on page 341 for more information.

v BPX.JOBNAME

Controls which users are allowed to set their own job names by using the
_BPX_JOBNAME environment variable or the inheritance structure on spawn.
Users with READ or higher permissions to this profile can define their own job
names.

v BPX.MAINCHECK

Extends the enhanced program security protection to your UNIX daemons and
servers that do not use RACF execute-controlled programs. For more
information, see “RACF with enhanced program security, BPX.DAEMON, and
BPX.MAINCHECK” on page 335 and “RACF with enhanced program security,
BPX.SERVER, and BPX.MAINCHECK” on page 369.

Restriction: BPX.MAINCHECK does not allow generic profiles.
v BPX.MAP

Controls access to the _map and _map_init services.
v BPX.NEXT.USER

Enables automatic assignment of UIDs and GIDs. The APPLDATA field of this
profile specifies a starting value, or range of values, from which RACF will
derive unused UID and GID values. z/OS Security Server RACF Security
Administrator's Guidehas more information about BPX.NEXT.USER.

v BPX.POE

Controls access to the _poe service.
v BPX.SAFFASTPATH

Enables faster security checks for file system and IPC constructs. For more
information, see “Fastpath support for System Authorization Facility (SAF)” on
page 321.

Restriction: BPX.SAFFASTPATH does not allow generic profiles.
v BPX.SERVER

Restricts the use of the pthread_security_np() service. A user with at least READ
or WRITE access to the BPX.SERVER FACILITY class profile can use this service.
It creates or deletes the security environment for the caller's thread.
This profile is also used to restrict the use of the BPX1ACK service, which
determines access authority to z/OS resources
Servers with authority to BPX.SERVER must run in a clean program-controlled
environment. z/OS UNIX will verify that the address space has not loaded any
executables that are uncontrolled before it allows any of the following services
that are controlled by z/OS UNIX to succeed:
– seteuid
– setuid
– setreuid
– pthread_security_np()
– auth_check_resource_np()
– _login()
– _spawn() with user ID change
– _passwd()

Chapter 4. Establishing UNIX security 83

For more information about BPX.SERVER, see Chapter 16, “Preparing security
for servers,” on page 365 and “Establishing the correct level of security for
daemons” on page 335.

v BPX.SMF or BPX.SMF.type.subtype

Grants a permitted user access to write an SMF record or to test if an SMF type
or subtype is being recorded.
– The BPX.SMF profile grants the permitted user the authority to write or test

for any SMF record that is being recorded. The program-controlled attribute is
not required if BPX.SMF is used

– For more granular access to writing SMF records, BPX.SMF.type.subtype
grants a permitted user the authority to write or test only the SMF record of
the specific type and subtype contained in the FACILITY class profile name.
The BPX.SMF.type.subtype FACILITY class profile requires a clean
program-controlled environment.
The smf_record syscall verifies that the address space has not loaded any
executables that are uncontrolled and any future loads or execs to files that
reside in uncontrolled libraries are prevented. Note that type and subtype in
the FACILITY class name do not have leading zeros.
Some examples are as follows:
- BPX.SMF.7.0
- BPX.SMF.119.94
- BPX.SMF.0.0

v BPX.SHUTDOWN

Controls access to the oe_env_np service to register and block for OMVS
shutdown.

v BPX.SRV.userid

Allows users to change their UID if they have access to BPX.SRV.userid, where
uuuuuuuu is the MVS user ID associated with the target UID. BPX.SRV.userid is a
RACF SURROGAT class profile.

v BPX.STOR.SWAP

Controls which users can make address spaces nonswappable. Users who are
permitted with at least READ access to BPX.STOR.SWAP can invoke the
__mlockall() callable service to make their address space either nonswappable or
swappable.
When an application makes an address space nonswappable, it might cause
additional real storage in the system to be converted to preferred storage.
Because preferred storage cannot be configured offline, using this service can
reduce the installation's ability to reconfigure storage in the future. Any
application using this service should warn the customer about this side effect in
their installation documentation.

v BPX.STICKYSUG.program_name

Enables the exec and spawn services to use the MVS program search order to
locate the program to be run when the specified path name resolves to a file
with the sticky attribute and either the set-user-id or set-group-id attributes.
If a FACILITY class resource exists, then the MVS program search order can be
used in locating the program name that is specified in the FACILITY class
profile. Individual users do not need to be given access to the profile.

Examples:

1. If you do not want the exec and spawn services to use the MVS program
search order to locate programs, do not define any
BPX.STICKYSUG.program_name profiles.

84 z/OS V2R2 UNIX System Services Planning

|

|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

2. If you want the exec and spawn services to use the MVS program search
order for certain programs, then define a profile for each program:
BPX.STICKYSUG.YOURPGM
BPX.STICKYSUG.MYPGM

3. If you want the exec and spawn services to use the MVS program search
order for a group of commonly named programs, then define a generic
profile:
BPX.STICKYSUG.MYP*

The exec and spawn will use the MVS program search order for any
programs that begin with the characters MYP.

4. If you want the exec and spawn services to always use the MVS program
search order, then define one profile:
BPX.STICKYSUG.*

However, IBM does not recommend defining this type of profile.
v BPX.SUPERUSER

Allows users to switch to superuser authority. For more information about
BPX.SUPERUSER, see “Superusers in z/OS UNIX” on page 70.

v BPX.UNLIMITED.OUTPUT

Allows users to use the _BPX_UNLIMITED_OUTPUT environment variable to
override the default spooled output limits for processes.

v BPX.WLMSERVER

Controls access to the WLM server functions _server_init() and _server_pwu(). It
also controls access to these C language WLM interfaces:
– QuerySchEnv()
– CheckSchEnv()
– DisconnectServer()
– DeleteWorkUnit()
– JoinWorkUnit()
– LeaveWorkUnit()
– ConnectWorkMgr()
– CreateWorkUnit()
– ContinueWorkUnit()

A server application with read permission to this FACILITY class profile can use
both the server functions and the WLM C language functions to create and
manage work requests.

Table 8 on page 86 shows whether the caller is permitted to use the services with
the indicated profile if that profile is defined and if the caller's user ID is permitted
to the specified RACF FACILITY class profile.
v YES indicates that the caller is permitted to use the services associated with the

profile.
v NO indicates that the caller is not permitted to use the services that are

associated with the profile.

For example, if BPX.DAEMON is not defined and the caller has a nonzero UID,
then that caller would not be permitted to use setuid.

Chapter 4. Establishing UNIX security 85

Table 8. Permissions for undefined FACILITY class profiles
Undefined FACILITY class profile If UID(0) If not UID(0)

BPX.CF No No

BPX.CONSOLE. It controls access to authorized features of the _console() service and
not used to control which users can use the base _console() service.

Yes No

BPX.DAEMON Yes No

BPX.DAEMON.HFSCTL No No

BPX.DEBUG No No

BPX.EXECMVSAPF.program_name No No

BPX.FILEATTR.APF No No

BPX.FILEATTR.PROGCTL No No

BPX.FILEATTR.SHARELIB No No

BPX.JOBNAME Yes No

BPX.MAINCHECK No No

BPX.MAP Yes No

BPX.NEXT.USER, which is used by RACF to assign UIDs and GIDs when creating or
altering a user ID's OMVS segment and is not processed directly by z/OS UNIX.

Not applicable Not applicable

BPX.UNLIMITED.OUTPUT Yes No

BPX.POE Yes No

BPX.SAFFASTPATH No No

BPX.SERVER Yes No

BPX.SHUTDOWN Yes No

BPX.SMF or BPX.SMF.type.subtype No No

BPX.SRV.userid. Its profiles are defined in the RACF SURROGAT class. No No

BPX.STOR.SWAP Yes No

BPX.STICKYSUG.program_name No No

BPX.SUPERUSER No No

BPX.WLMSERVER Yes No

Table 9 shows whether the caller is permitted to use the services with the indicated
profile if that profile is defined and the caller's user ID is not permitted to the
specified RACF FACILITY class profile.
v YES indicates that the caller is permitted to use the services associated with the

profile.
v NO indicates that the caller is not permitted to use the services that are

associated with the profile.

Table 9. Permissions for defined FACILITY class profiles if user ID is not permitted
Defined FACILITY class profile and caller is not permitted If UID(0) If not UID(0)

BPX.CF No No

BPX.CONSOLE. It controls access to authorized features of the _console() service and
not used to control which users can use the base _console() service.

Yes No

BPX.DAEMON No No

BPX.DAEMON.HFSCTL No No

BPX.DEBUG No No

BPX.EXECMVSAPF.program_name Yes Yes

BPX.FILEATTR.APF No No

BPX.FILEATTR.PROGCTL No No

BPX.FILEATTR.SHARELIB No No

BPX.JOBNAME Yes No

BPX.MAINCHECK Yes Yes

BPX.MAP No No

86 z/OS V2R2 UNIX System Services Planning

|

Table 9. Permissions for defined FACILITY class profiles if user ID is not permitted (continued)
Defined FACILITY class profile and caller is not permitted If UID(0) If not UID(0)

BPX.NEXT.USER, which is used by RACF to assign UIDs and GIDs when creating or
altering a user ID's OMVS segment and is not processed directly by z/OS UNIX.

Not applicable Not applicable

BPX.UNLIMITED.OUTPUT Yes No

BPX.POE No No

BPX.SAFFASTPATH No No

BPX.SERVER No No

BPX.SHUTDOWN No No

BPX.SMF or BPX.SMF.type.subtype No No

BPX.SRV.userid. Its profiles are defined in the RACF SURROGAT class. No No

BPX.STOR.SWAP No No

BPX.STICKYSUG.program_name Yes Yes

BPX.SUPERUSER No No

BPX.WLMSERVER No No

Table 10 shows whether the caller is permitted to use the services with the
indicated profile if that profile is defined and the caller's user ID is permitted to
the specified RACF FACILITY class profile.
v YES indicates that the caller is permitted to use the services associated with the

profile.
v NO indicates that the caller is not permitted to use the services that are

associated with the profile.

Table 10. Permissions for defined FACILITY class profiles if user ID is permitted
Defined FACILITY class profile and caller is permitted If UID(0) If not UID(0)

BPX.CF Yes Yes

BPX.CONSOLE. It controls access to authorized features of the _console() service and not
used to control which users can use the base _console() service.

Yes Yes

BPX.DAEMON Yes No

BPX.DAEMON.HFSCTL Yes Yes

BPX.DEBUG Yes Yes

BPX.EXECMVSAPF.program_name Yes Yes

BPX.FILEATTR.APF Yes Yes

BPX.FILEATTR.PROGCTL Yes Yes

BPX.FILEATTR.SHARELIB Yes Yes

BPX.JOBNAME Yes Yes

BPX.MAINCHECK Yes Yes

BPX.MAP Yes Yes

BPX.NEXT.USER, which is used by RACF to assign UIDs and GIDs when creating or
altering a user ID's OMVS segment and is not processed directly by z/OS UNIX.

Not applicable Not applicable

BPX.UNLIMITED.OUTPUT Yes Yes

BPX.POE Yes Yes

BPX.SAFFASTPATH Yes Yes

BPX.SERVER Yes Yes

BPX.SHUTDOWN Yes Yes

BPX.SMF or BPX.SMF.type.subtype Yes Yes

BPX.SRV.userid. Its profiles are defined in the RACF SURROGAT class. Yes Yes

BPX.STOR.SWAP Yes Yes

BPX.STICKYSUG.program_name Yes Yes

BPX.SUPERUSER Yes Yes

BPX.WLMSERVER Yes Yes

Chapter 4. Establishing UNIX security 87

|

|

Security requirements for ServerPac and CBPDO installation
Before you can do the ServerPac or CBPDO installation, or install maintenance,
you need to satisfy certain security requirements.
1. The user ID must be UID=0 or permitted to the BPX.SUPERUSER resource in

the FACILITY class, and be connected to a group that has a GID.
2. The user ID must be permitted READ access to the BPX.FILEATTR.SHARELIB,

BPX.FILEATTR.APF and BPX.FILEATTR.PROGCTL resources in the FACILITY
class (or BPX.FILEATTR.* if you choose to use a generic name for both
resources). These commands are also provided in SYS1.SAMPLIB(BPXISEC1).
To define BPX.FILEATTR.SHARELIB, BPX.FILEATTR.APF and
BPX.FILEATTR.PROGCTL, issue:
RDEFINE FACILITY BPX.FILEATTR.SHARELIB UACC(NONE)
RDEFINE FACILITY BPX.FILEATTR.APF UACC(NONE)
RDEFINE FACILITY BPX.FILEATTR.PROGCTL UACC(NONE)
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST(FACILITY)

These commands are also provided in SYS1.SAMPLIB.
PERMIT BPX.FILEATTR.SHARELIB CLASS(FACILITY) ID(your_userid) ACCESS(READ)
PERMIT BPX.FILEATTR.APF CLASS(FACILITY) ID(your_userid) ACCESS(READ)
PERMIT BPX.FILEATTR.PROGCTL CLASS(FACILITY) ID(your_userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Or, if you choose to use a generic facility:
SETROPTS GENERIC(FACILITY)
RDEFINE FACILITY BPX.FILEATTR.* UACC(NONE)
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST(FACILITY)

PERMIT BPX.FILEATTR.* CLASS(FACILITY) ID(your_userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

3. Define the following user ID and group IDs in your security data base. Even
though they are lowercase in the example, these names should be defined in
uppercase for ease of use and manageability.
v Group IDs

– uucpg

– TTY

v User IDs
– uucp

Note these rules:
a. The GID and UID values assigned to these IDs cannot be used by any other

IDs. They must be unique. If you assign the same GID to multiple groups,
control at an individual group level is lost, because the GID is used in z/OS
UNIX security checks. Because RACF groups that have the same GID
assignment are treated as a single group during the z/OS UNIX security
checks, the sharing of resources between groups might happen
unintentionally. Likewise, the sharing of UIDs allows each user access to all
of the resources associated with the other users of that shared UID. The
shared access includes not only z/OS UNIX resources such as files, but also
includes the possibility that one user could access UNIX resources of the
other user that are normally considered to be outside the scope of z/OS
UNIX.

b. You must duplicate the required user ID and group names in each security
database, including the same UID and GID values in the OMVS segment.
Duplicating the IDs simplifies the process of transporting the HFS data sets

88 z/OS V2R2 UNIX System Services Planning

from test systems to production systems. For example, the group name TTY
on System 1 must have the same GID value on System 2 and System 3. If
you cannot synchronize your databases, you will need to continue running
the FOMISCHO job against each system after z/OS UNIX is installed.

The following topics describe how to define these IDs to RACF. (If you are using
an equivalent security product, refer to that product's documentation.) All the
RACF commands are issued by a user ID with RACF SPECIAL authority. Three
procedures are described:
v “If you use uppercase group and user IDs”
v “If you use mixed-case group and user IDs”
v “If you have problems with names such as UUCP, UUCPG, and TTY” on page

90

If you use uppercase group and user IDs
If you use only uppercase group and user IDs on your system, RACF users can use
the BPX1SEC1 sample in SAMPLIB. They can also use the ADDGROUP or
ADDUSER commands to define the group IDs and user IDs, as shown in the
following examples.
1. To define the TTY group:

ADDGROUP TTY (OMVS(GID(2))

where 2 is an example of a unique group ID on your system. Do not connect
users to this group. This is the same group that is specified on the TTYGROUP
statement in the BPXPRMxx member on your target system.

2. To define the UUCPG group:
ADDGROUP UUCPG OMVS(GID(8765))

where 8765 is an example of a unique group ID on your system.
3. To define the UUCP user ID, issue:

ADDUSER UUCP DFLTGRP(UUCPG) PASSWORD(xxxxxxx)
OMVS(UID(396) HOME(’/usr/spool/uucppublic’)
PROGRAM(’/bin/sh’))

where
v 396 is an example of a unique OMVS UID. Do not use UID(0).
v HOME(’/usr/spool/uucppublic’) is a required parameter that specifies the

initial directory path name for the user ID.
v PROGRAM(’/bin/sh’) is a required parameter that specifies the path name in

the shell program for the user ID.

If you use mixed-case group and user IDs
If you already use mixed-case group and user IDs on your system and the user
(uucp) and group (uupcg) do not conflict with existing names, perform the steps for
uppercase IDs in “If you use uppercase group and user IDs.”

It is not necessary to add the lowercase or mixed-case names to your alias table,
mapping them to uppercase. Using the alias table degrades performance and
increases systems management and complexity. When lowercase or mixed-case
names are not found in the alias table, or there is no table active, they are folded to
uppercase. For more information about the alias table, see “USERIDALIASTABLE”
on page 37.

Chapter 4. Establishing UNIX security 89

If you have problems with names such as UUCP, UUCPG, and
TTY

If names such as uucp, uucpg, and TTY are not allowed on your system (or if they
conflict with existing names), the following examples show the RACF commands
to define the group ID and user IDs.
1. To define a group ID instead of the TTY group, issue:

ADDGROUP xxtty OMVS(GID(2))

where 2 is an example of a unique group ID on your system, and XXTTY is
replaced by a 1-to 8-character group ID of your choice. Do not connect users to
this group. This would be the same group name to be specified in the
TTYGROUP statement in the BPXPRMxx member on your target system.

2. To define a group ID instead of the UUCPG group, issue:
ADDGROUP xxuucpg OMVS(GID(8765))

where 8765 is an example of a unique group ID on your system, and xxuucpg is
replaced by a 1-to 8-character group ID of your choice.

3. To define a user ID instead of the UUCP user ID, issue:
ADDUSER xxuucp DFLTGRP(UUCPG) PASSWORD(xxxxxxx)
OMVS(UID(396) HOME(’/usr/spool/uucppublic’)
PROGRAM(’/bin/sh’))

where:
v 396 is an example of a unique UID. Do not use UID(0).
v xxuucp is replaced by a user ID of your choice. This is a normal user ID

which owns all the UUCP files and directories. Use this user ID when editing
configuration files or performing other administrative tasks.

v HOME(’/usr/spool/uucppublic’) is a required parameter that specifies the
initial path name for the user ID.

v PROGRAM(’/bin/sh’) is a required parameter that specifies the path name in
the shell program for the user ID.

4. Set up a user ID alias table.
Tip: Using the alias table reduces performance and increases systems
management costs and complexity. For more information about the alias table,
see “USERIDALIASTABLE” on page 37.
If you do not have a user ID alias table defined, you will need to create one.
Create it first on your driving system and then on any system image using this
product. This fits in with the IBM strategy to place all customized data in the
/etc directory. This table is specified by the USERIDALIASTABLE keyword in
the BPXPRMxx member. Because the user ID name alias table must be
protected from update by nonprivileged users, only users with superuser
authority should be given update access to it. All users should have read access
to the file.
Your user ID alias table will need to contain your MVS chosen names and the
associated required names. Your chosen MVS user ID and group names must
be located in columns 1-8 and the associated aliases must be located on the
same line in columns 10-17.
:groups
XXTTY TTY
XXUUCPG uucpg
:userids
XXUUCP uucp

90 z/OS V2R2 UNIX System Services Planning

5. Activate the user ID alias table. If you are already using the user ID alias table,
new database queries will yield the new alias if the userid performing the
query has read/execute access to the userid/group name alias table. The table
is checked every 15 minutes and refreshed if it has been changed. If a change
needs to be activated sooner, you can use the SETOMVS or SET OMVS
operator commands.
If you are not using the user ID alias table, you can use the SET OMVS
operator command to activate it now. For example:
SET OMVS USERIDALIASTABLE=/etc/tablename

where /etc/tablename is the name of your user ID alias table. You can also use
the SETOMVS operator command.

6. Specify USERIDALIASTABLE in your BPXPRMxx member to make this change
permanent for your next IPL.

7. Perform these tasks on all of your driving, test, and production system images.

For more information, see:
v “Defining z/OS UNIX users to RACF” on page 57
v “Defining group identifiers (GIDs)” on page 65
v z/OS MVS System Commands

v z/OS Security Server RACF Auditor's Guide

v z/OS Security Server RACF Command Language Reference

Defining cataloged procedures to RACF
If a cataloged procedure starts a program that uses z/OS UNIX or its resources,
the procedure should be defined to RACF. An example is the Resource
Measurement Facility (RMF) Monitor III Gatherer (RMFGAT).

The RMFGAT started task must be associated with a user ID using ICHRINO3 or
the STARTED class, and the user ID that you assign to it must be defined to RACF
and needs to have a UID. The user ID must also belong to a group that has a GID.
You can use the user ID RMFGAT, but it can be any RACF-defined user ID.

Example: The following example gives RMFGAT a UID of 123 and designates the
root directory as its home directory:
ADDUSER RMFGAT DFLTGRP(OMVSGRP) OMVS(UID(123) HOME(’/’)) NOPASSWORD

Controlling access to files and directories
The system provides security for local files by verifying that a z/OS UNIX user
can access a directory, a file, and every directory in the path to the file.

The system does a security check for a file, FIFO special file (named pipe),
character special file, and directory. It does not check an unnamed pipe, because
this pipe can be accessed only by the parent process that created the pipe and by
child processes of the creating process. When the last process using an unnamed
pipe closes it, the pipe vanishes.

Every file and directory has security information, which consists of:
v File access permissions (including an ACL, if one exists)
v UID and GID of the file
v Audit options that the file owner can control

Chapter 4. Establishing UNIX security 91

v Audit options that the security auditor can control

The file access permission bits that accompany each file provide discretionary
access control (DAC). These bits determine the type of access a user has to a file or
directory.

The following topics assume that ACLs are not being used. Go to “Using access
control lists (ACLs)” on page 97 for more information about ACLs.

Setting classes for a user's process
The access permission bits are set for three classes. When a user's process accesses
a file, the system determines the class of the process and then uses the permission
bits for that class to determine if the process can access the file. For a file, a process
can be in only one class. The class for a process can be different for each file or
directory.

The class is one of the following:
v Owner class: Any process with an effective UID that matches the UID of the

file.
v Group class: Any process with an effective GID or supplemental group GID that

matches the GID of the file when the UIDs do not match.
v Other class: Any process that is not in the owner or group class, such as when

the UIDs or GIDs do not match.

By default, the system sets the UID and GID of the file when the file is created:
v The UID is set to the effective UID of the creating process.
v The GID is set to the GID of the owning directory. You can define

FILE.GROUPOWNER.SETGID to change this behavior; see “Steps for setting up
the FILE.GROUPOWNER.SETGID profile.”

To change the UID of a file, a person with superuser authority, or the file owner
with appropriate access to the CHOWN.UNRESTRICTED profile in the UNIXPRIV
class, can enter a chown command or use the chown() callable service. To change
the GID of a file, a superuser or the file owner (that is, a process in the owner
class) can enter a chgrp command or use the chgrp() function. You can define
profiles in the UNIXPRIV class to grant RACF authorization for certain z/OS
UNIX privileges, as explained in “Using UNIXPRIV class profiles” on page 71.

If you want to specify that, by default, the group owner of a new file is to come
from the effective GID of the creating process, you need to set up a profile in the
UNIXPRIV class called FILE.GROUPOWNER.SETGID. “Steps for setting up the
FILE.GROUPOWNER.SETGID profile” describes the process.

Steps for setting up the FILE.GROUPOWNER.SETGID profile
Perform the following steps to set up the FILE.GROUPOWNER.SETGID profile.
1. Define the FILE.GROUPOWNER.SETGID profile.

RDEFINE UNIXPRIV FILE.GROUPOWNER.SETGID

2. Activate the UNIXPRIV class, if it is not currently active at your installation.

SETROPTS CLASSACT(UNIXPRIV)

3. Activate the SETROPTS RACLIST processing for the UNIXPRIV class, if it is

not already active.

92 z/OS V2R2 UNIX System Services Planning

SETROPTS RACLIST(UNIXPRIV)

If SETROPTS RACLIST processing is already in effect for the UNIXPRIV class,
you must refresh SETROPTS RACLIST processing in order for the
FILE.GROUPOWNER.SETGID profile to take effect.
SETROPTS RACLIST(UNIXPRIV) REFRESH

When you are done, you have set up the FILE.GROUPOWNER.SETGID profile.
The set-gid bit for a directory determines how the group owner is initialized for
new objects created within the directory.
v If the set-gid bit is on, then the owning GID is set to that of the directory.
v If the set-gid bit is off, then the owning GID is set to the effective GID of the

process.

Tip: When a new file system is mounted, you must turn on the set-gid bit of its
root directory if you want new objects within the file system to have their group
owner set to that of the parent directory.

Accessing files
To access local files, users need the following permissions:
v Read and search permission to all directories in the path names of files the user

should use. Read permission is required for some options of some commands.
v Write permission to all directories in which the user will be creating or deleting

files or directories.
v Read permission, write permission, or read and write permission, as appropriate

to all files that the user needs to access.
v Execute permission to executable files that the user needs to run.

Table 11 shows types of access and the permissions granted by the accesses.

Table 11. File access types and permission bits. This table shows the permissions needed
for each access type.

Access Permission for file Permission for directory

Read Permission to read or print the
contents.

Permission to read, but not search,
the contents.

Write Permission to change, add to, or
delete from the contents.

Permission to change, add, or
delete directory entries.

Execute or Search Permission to run the file. This
permission is used for executable
files.

Permission to search the directory.

With read permission, you can see the names of the entries stored in the directory
but you cannot see the attributes stored in the entries nor access the contents of the
directory. With search permission, you can read the attributes from a specific entry
and locate a specific entry of the directory.

Changing the permission bits for a file
To change the permission bits for a file, use one of the following:
v The ISPF shell

Chapter 4. Establishing UNIX security 93

v The chmod command. You can use it to change individual bits without affecting
the other bits. You can also use the setfacl command to change permission bits
(see “Managing ACLs” on page 98).

v The chmod() callable service in a program. The callable service changes all
permission bits to the values in the mode argument.

The file owner or a superuser can use the chmod command or chmod() callable
service, or you can define a profile in the UNIXPRIV class to grant RACF
authorization. The file mode creation mask does not affect the permission value
that was specified by either chmod or chmod().

Changing the owner or group for a file
An interactive user might need to change the UID or GID for a file. To protect the
data in a file from unauthorized users, the system controls who can change the file
access:
v To change the owner and, optionally, the group, the superuser can enter a

chown command. The new owner can be identified with a user ID or a UID.
The group, if specified, can be identified with a RACF group name or a GID.
The CHOWN.UNRESTRICTED profile allows users to use the chown command
to transfer ownership of their own files. SUPERUSER.FILESYS.CHOWN allows
users to use chown to change ownership of any file.

v To change the group owner to a specified GID, the superuser or the file owner
can enter a chgrp command. The new group can be identified with a group ID.

Creating a set-user-ID or set-group-ID executable file
A superuser or the file owner can use a chmod command or chmod() callable
service to change two options for an executable file. The options are set in two file
mode bits:
v Set-user-ID (S_ISUID) with the setuid option
v Set-group-ID (S_ISGID) with the setgid option

If one or both of these bits are on, the effective UID, effective GID, or both, plus
the saved UID, saved GID, or both, for the process running the program are
changed to the owning UID, GID, or both, for the file. This change temporarily
gives the process running the program access to data the file owner or group can
access.

In a new file, both bits are set off. Also, if the owning UID or GID of a file is
changed or if the file is written in, the bits are turned off.

In shell scripts, these bits are ignored.

Protecting data
Local files and directories are protected by RACF security rules. You can use
permission bits to control access; access control lists (ACLs) can also be used in
conjunction with permission bits. For more information, see “Using access control
lists (ACLs)” on page 97.

Permission bit information is stored in the file security packet (FSP) within each
file and directory. (ACLs can also be stored with the file.) Permission bits allow
you to specify read authority, write authority, or search authority for a directory.
They also allow specification of read, write, or execute authority for a file. Because
there are three sets of bits, separate authorities can be specified for the owner of

94 z/OS V2R2 UNIX System Services Planning

the file or directory, the owning group, and everyone else (such as RACF's
universal access authority, or UACC). The owner is represented by a UID. The
owning group is represented by a GID. Access checking compares the user's UID
and GID to the ones stored in the FSP.

When a security decision is needed, the file system calls RACF and supplies the
FSP (and ACL, if one exists). RACF makes the decision, does any auditing, and
returns control to the file system. RACF does not provide commands to maintain
the FSP (and ACL). System Authorization Facility (SAF) services handle the FSP
(and ACL) maintenance. z/OS UNIX provides commands that invoke these SAF
services.

For information about using RACF authorization to grant privileges for use of local
files and directories, see Table 7 on page 72.

Obtaining security information for a file
Users with search access to the directories in the path name and, for some options,
read access to the directories can check a file's security information, including the
access permissions. They do not need read access to the file being checked.
Programs can also check security information for files.

To check the security information, do one of the following:
v Use the ISPF shell
v Enter the ls -l or ls -E shell command.
v Run a stat() or fstat() callable service in a program.

In response, the system displays the user ID and the RACF group name that
correspond to the file's UID and GID. The system displays the UID and GID only
if it cannot find the corresponding user ID and RACF group name.

For ls -l, the permission bits appear as 11 characters.
tfffgggoooa

Table 12 explains the meanings of each character.

Table 12. Explanation of the characters in tfffggoooa format. This table lists the meanings of
each character.

Character Meaning

t Identifies the type of file or directory:

— Regular file

b Block special file (not supported for z/OS UNIX)

c Character special file

d Directory

e External link

l Symbolic link

p FIFO special file

s Socket file type

Chapter 4. Establishing UNIX security 95

Table 12. Explanation of the characters in tfffggoooa format (continued). This table lists the
meanings of each character.

Character Meaning

fff Owner permissions

v First character: Read access

v Second character: Write access

v Third character: Execute or, for a directory, search

ggg Group permissions

v First character: Read access

v Second character: Write access

v Third character: Execute or, for a directory, search

ooo Other permissions

v First character: Read access

v Second character: Write access

v Third character: Execute or, for a directory, search

a If a is a plus sign, then the file contains extended ACL entries. Use the
getfacl command to display the ACL entries.

The permissions fff, ggg, and ooo are displayed as shown in Table 13.

Table 13. Explanation of the characters in fff, ggg, and ooo format. This table lists the
meanings and position for each character for the fff permission.

Character Position Meaning

– Any No access

r First Read access

w Second Write access

x Third Execute (or, for a directory, search)

s

S

Third (owner only)

Third (owner only)

Execute permission for owner, set-user-ID set

No execute permission for owner, set-user-ID set

s

S

Third (group only)

Third (group only)

Execute permission for group, set-group-ID set

No execute permission for group, set-group-ID set

t

T

Third (other only)

Third (other only)

Execute permission for other, sticky bit set

No execute permission for other, with sticky bit set

For example, rwx means read, write, and execute permission. Permission for a
directory is often r-x, which means read and search. If a plus sign follows the
permissions, then the file contains extended ACL entries. Use the getfacl command
to display the ACL entries.

If you issue ls –E, it displays extended attributes for regular files. An additional
four characters follow the original 10 characters:

96 z/OS V2R2 UNIX System Services Planning

total 11
-rwxr-xr-x+ -ps- 1 ROOT SYS1 101 Mar 12 19:32 her
-rwxrwxrwx a-s- 1 ROOT SYS1 654 Mar 12 19:32 test
-rwxr-xr-x a--- 1 ROOT SYS1 40 Mar 12 19:32 temp
-rwxr--r-- ap-l 1 ROOT SYS1 572 Mar 12 19:32 foo
-rwxr--r-- --sl 1 ROOT SYS1 640 Mar 12 19:33 abc

a The program runs APF-authorized if linked AC=1.

p The program is considered program controlled.

s The program is enabled to run in a shared address space.

l The program is considered a system-shared library object

— The extended attribute is not set.

Creating a sticky bit file or external link for an MVS
APF-authorized program

If there is a need from a z/OS UNIX environment to invoke an MVS program that
is link-edited AC=1 and in an APF-authorized library, a sticky bit file or external
link can be set up to point to this program. Ensure that the sticky bit file is
installed with an owning UID of 0 or with the APF extended attribute, or that the
external link is installed with an owning UID of 0. Because a file system mounted
as NOSECURITY is considered untrusted, any file or link that is installed in a file
system that is mounted as NOSECURITY is not considered trusted for this type of
invocation. Also, a file with the APF extended attribute is not honored if found in
a file system that is mounted as NOSETUID. Not following this setup will cause
the execution of the program to fail when invoked via the z/OS UNIX spawn, exec
or attach_exec callable service.

Using access control lists (ACLs)
Use access control lists (ACLs) to control access to regular files and directories by
individual user (UID) and group (GID). ACLs are used in conjunction with
permission bits. They are created, modified, and deleted using the setfacl shell
command. To display them, use the getfacl shell command. You can also use the
ISHELL interface to define and display ACLs.

The HFS, zFS, and TFS file systems support ACLs. It is possible that other physical
file systems will eventually support z/OS ACLs. Consult your file system
documentation to see if ACLs are supported.

Before you can begin using ACLs, you must know what security product is being
used. The ACLs are created and checked by RACF, not by the kernel or file system.
If a different security product is being used, you must check their documentation
to see if ACLs are supported and what rules are used when determining file
access.

Notes:

1. The phrases default ACL and model ACL are used interchangeably throughout
z/OS UNIX documentation. Other systems that support ACL have default
ACLs that are essentially the same as the directory default ACLs in z/OS
UNIX.

2. According to the X/Open UNIX 95 specification, additional access control
mechanisms can only restrict the access permissions that are defined by the file

Chapter 4. Establishing UNIX security 97

|

permission bits. They cannot grant additional access permissions. Because z/OS
ACLs can grant and restrict access, the use of ACLs is not UNIX 95-compliant.

ACLs and ACL entries
There are three kinds of ACLs:
v Access ACLs are ACLs that are used to provide protection for a file system object.
v File default ACLs are default ACLs that are inherited by files created within the

parent directory. The file inherits the default ACL as its access ACL. Directories
also inherit the file default ACL as their file default ACL.

v Directory default ACLs are default ACLs that are inherited by subdirectories
created within the parent directory. The directory inherits the default ACL as its
directory default ACL and as its access ACL.

Inheritance is the act of automatically associating an ACL with a newly created
object. Administrative action is not needed. See “Working with default ACLs” on
page 100 for more information.

There are two kinds of ACL entries:
v Base ACL entries are the same as permission bits (owner, group, other). You can

change the permissions using chmod or setfacl. They are not physically part of
the ACL although you can use setfacl to change them and getfacl to display
them.

v Extended ACL entries are ACL entries for individual users or groups; like the
permission bits, they are stored with the file, not in RACF profiles. Each ACL
type (access, file default, directory default) can contain up to 1024 extended ACL
entries. Each extended ACL entry specifies a qualifier to indicate whether the
entry pertains to a user or a group, the actual UID or GID itself, and the
permissions being granted or denied by this entry. The allowable permissions
are read, write, and execute. As with other UNIX commands, setfacl allows the
use of either names or numbers when referring to users and groups.

Managing ACLs
Rules: You need to be aware of the following rules when managing ACLs for files
or directories.
v You must either be the file owner or have superuser authority (UID=0 or READ

access to SUPERUSER.FILESYS.CHANGEPERMS in the UNIXPRIV class).
v You must activate the FSSEC class before ACLs can be used in access decisions.

Example: The following RACF command activates the FSSEC class:
SETROPTS CLASSACT(FSSEC)

You can define ACLs prior to activating the FSSEC class. If you define default
ACLs, they can be inherited by new objects when the FSSEC class is inactive. If
the FSSEC class is not active, the standard POSIX permission bit checks are
done, even if an access ACL exists. You can still display ACL information.

If files are deleted, ACLs are automatically deleted.

Working with access ACLs
The getfacl and setfacl commands are used to manage ACLs. Following are a few
examples to help you get started. For details on these commands, and on other
commands that support ACLs, see z/OS UNIX System Services Command Reference.
1. Permit user Joe and group Admins to the file named /etc/inetd.conf with

read and write authority.

98 z/OS V2R2 UNIX System Services Planning

setfacl -m user:joe:rw-,group:admins:rw- /etc/inetd.conf

The -m option modifies ACL entries, or adds them if they do not exist.
2. Display the ACL that was created in Step 1 on page 98.

getfacl /etc/inetd.conf
#file: /etc/inetd.conf
#owner: BPXROOT
#group: SYS1
user::rw-
group::r--
other::r--
user:JOE:rw-
group:ADMINS:rw-

3. Perform the same operation as in Step 1 on page 98, but at the same time, set
the base permission bits to prevent access by anyone other than the file owner.
setfacl -s user::rw-,group::---,other::---,user

user:joe:rw-,group:admins:rw- /etc/inetd.conf

The -s option replaces the contents of an ACL with the entries specified on the
command line. It requires that the base permissions be specified. The base
permissions are specified similarly to extended ACL entries, except that there is
no user or group name qualifier.

4. Delete the ACL that was created in Step 3.
setfacl -D a /etc/inetd.conf

The -D a option specifies that the access ACL is to be deleted. The permission
bits remain as specified in Step 3. When a file is deleted, its ACL is
automatically deleted; there is no additional extra administrative effort
required.

5. Take the ACL from FileA in the current directory, and apply it to FileB, also in
the current directory.
getfacl FileA | setfacl -S - FileB

The shell pipes the output of getfacl to the input of setfacl. The -S option of
setfacl says to replace the contents of the file's ACL with ACL entries specified
within a file, and the "-" is a special case file name designating stdin. Thus, you
can maintain a list of ACL entries within a file, and use that file as input to a
setfacl command. You might use this ability to implement a "named ACL" for a
given project, such as in Step 6.

6. The file /u/joeadmn/Admins contains a list of ACL entries for users and groups
who need to support some administrative work. The file contains ACL entries,
one per line, in the format that setfacl expects and which getfacl displays.
These people must be granted access to all of the directories within the file
system subtree starting and including /admin/work.
setfacl -S /u/joeadmn/Admins $(find /admin/work -type d)

This example uses shell command substitution to use the output of the find
command as input to the setfacl command. The /u/joeadmn/Admins file might,
for example, contain:
user::rwx
group::---
other::---
u:user1:rwx
u:user2:rwx
g:group1:rwx

Chapter 4. Establishing UNIX security 99

7. Give Lucy read and write access to every file within Fred's home directory for
which Ricky has read and write access.
setfacl -m user:lucy:rw- $(find ~fred -acl_entry user:ricky:+rw)

You can use the find command to search for various ACL criteria. In this
example, it is used to find files containing ACL entries for Ricky, in which
Ricky has at least read and write access.

Tip: You can use an access ACL on the parent directory to grant search access only
to those users and groups who should have file access. The access ACL of the
parent directory can have been automatically created as the result of a directory
default ACL on its parent. Make sure that the 'other' and perhaps the 'group'
search permission bit is off for the parent directory.

Guideline: When creating ACLs, consider the following guidelines:
v To minimize the impact to performance, keep ACLs as small as possible, and

permit groups to files instead of individual users. The pathlength of the access
check will increase with the size of an ACL, but will be smaller than the
associated checking would be for a RACF profile with the same number of
entries in its access list.

v Do not disable ACLs after you have used ACLs for a while and have created
many entries. Only consider disabling ACLs if you have not used them very
long. If you have been using ACLs to grant, rather than deny, access to
particular users and groups, then disabling ACLs will likely result in a loss of
file access authority rather than a gain.

Working with default ACLs
To facilitate management of ACLs, you can define a default ACL in a directory; it
will then be automatically inherited by an object.
v The file default ACL is copied to a newly created file as its access ACL. It is also

copied to a newly created subdirectory as its file default ACL.
v The directory default ACL is copied to a newly created subdirectory as both its

access ACL and directory default ACL. You can modify or delete inherited ACLs
later.

Default ACLs have the same format as access ACLs.

Examples: Following are examples of working with default ACLS:
1. Define a directory default ACL for the directory named /u/ProjectX.

setfacl -m default:group:admins:r-x,default:group:dirgrp:rwx /u/ProjectX

The entries contain an extra qualifier to designate the directory default ACL.
The groups named admins and dirgrp will automatically get access to any new
subdirectories created within /u/ProjectX. Creating a default ACL will not grant
access to directories that already exist.

2. Display the directory default ACL created in Step 1.
getfacl -d /u/ProjectX
#file: /u/ProjectX
#owner: TCPAUTO
#group: SYS1
default:group:ADMINS:r-x
default:group:DIRGRP:rwx

The -d option says to display only the extended ACL entries in the directory
default ACL.

100 z/OS V2R2 UNIX System Services Planning

3. Define a file default ACL for the directory named /u/ProjectX, and all of its
subdirectories.
setfacl -m fdefault:group:admins:r--, \

fdefault:group:dirgrp:rw- $(find /u/ProjectX -type d)

The extra entry qualifier in this case designates the file default ACL. The
groups named admins and dirgrp will automatically get access to any new files
created within the /u/ProjectX subtree. Creating a default ACL will not grant
access to files that already exist.

4. Display the contents of all of the ACL types for the directory named
/u/ProjectX.
getfacl -adf /u/ProjectX
#file: /u/ProjectX
#owner: TCPAUTO
#group: SYS1
user::rwx
group::r-x
other::r-x
user:JOE:--x
fdefault:group:ADMINS:r--
fdefault:group:DIRGRP:rwx
default:group:ADMINS:r-x
default:group:DIRGRP:rwx

This example requests the access ACL (the a option), the directory default ACL
(the d option), and the file default ACL (the f option). The base permission bits
are displayed when the a option is specified (or defaulted).

Guideline: Analyze your file system space utilization before implementing default
ACLs in your file system. If you use both file and directory default ACLs in every
directory in the file system, a separate physical ACL is created for every new file
and directory. Using an access ACL for every directory will probably not cause
concerns about space utilization. However, the same cannot be said of files,
especially if the inherited ACLs are large.

Tip: ACLs are not inherited across mount points. Suppose that you have a default
ACL defined on the directory /dir1/dir2. You decide to create another directory,
/dir1/dir2/dir3, and use it as a mount point on which to mount another file system.
However, if you do so, the root directory of the mounted file system will not
inherit the default ACL which had been established at /dir1/dir2. If you want the
default ACLs of dir2 to apply to dir3, you must copy them to dir3 after dir3 has
been mounted.

Summary of tasks and their associated commands
Table 14 summarizes the tasks that you might want to do and their associated
commands.

Table 14. ACL tasks and their associated commands. This table lists each task and the
associated shell command.

Task Shell command

Add, delete, or update an ACL setfacl

Display contents of an ACL getfacl

Update permission bits setfacl or chmod

Display permission bits ls or getfacl

Find out whether files have extended ACL
entries

ls

Chapter 4. Establishing UNIX security 101

Table 14. ACL tasks and their associated commands (continued). This table lists each task
and the associated shell command.

Task Shell command

Search for files or directories that have
various ACL properties

find

Determine if the file system and security
product support ACLs

df

Determine if the file system supports ACLs
(_PC_ACL) and also determine the
maximum number of ACL entries that the
file system can support
(_PC_ACL_ENTRIES_MAX)

getconf

Restore ACL information or store the
information in an archive

pax or tar

Preserve the ACLs for files and directories The -p option for cp and the -Z option for
mv.

Test files and directories for extended ACL
information. Also test for directory ACLs
and file default ACLs on directories.

filetest, test, [...] and [[...]] reserved-word
command

How ACLs are used in file access checks
The algorithm for access checking is up to the security product that is being used.
If the physical file system supports ACLs, then it uses the SAF ck_access
(IRRSKA00) callable service when passing the ACL to the security product.

If the security product supports ACLs, it applies its own rules to the file access
request. RACF uses the permission bits, access ACL, and various UNIXPRIV class
profiles to determine whether the user is authorized to access the file with the
requested access level. Read about protecting file system resources in z/OS Security
Server RACF Security Administrator's Guide for details on how RACF uses ACLs
when enforcing file security.

Auditing changes to ACLs
You can audit the creation, alteration, and deletion of ACLs by using SETROPTS
LOGOPTIONS for the FSSEC class. The FSSEC class controls auditing for changes
to all file security information, including file owner, permission bits, and auditing
options. See z/OS Security Server RACF Auditor's Guide for more information.

Using security labels
Traditionally, access to z/OS UNIX resources is based on POSIX permissions. With
the SECLABEL class active, authorization checks are performed for security labels
in addition to POSIX permissions, to provide additional security. Security labels are
used to maintain multiple levels of security within a system. By assigning a
security label to a resource, the security administrator can prevent the movement
of data from one level of security to another within the z/OS UNIX environment.

Setting security labels on z/OS UNIX
When the SECLABEL class is active, security labels can be set on z/OS UNIX
resources in the following ways:
v When a physical file system or zFS aggregate is created, the file system root will

be assigned the security label that is specified in the RACF data set profile that

102 z/OS V2R2 UNIX System Services Planning

covers the data set name. If a security label is not specified or if a data set
profile does not exist, then a security label will not be assigned to the file system
root.

v zFS file systems support the chlabel command which allows the setting of an
initial security label on a file or directory. Use this command to set security
labels on zFS files and directories after they have been created.

v If a directory has been assigned a security label, then new files and directories
created within that directory will inherit a security label as follows:
– If the parent directory is assigned a security label of SYSMULTI, the new file

or directory is assigned the security label of the user. If the user has no
security label, no label is assigned to the new object.

– If the parent directory is assigned a security label other than SYSMULTI, the
new file or directory is assigned the same security label as the parent
directory.

v The rules for security label assignment are more extensive when running in a
multilevel-secure environment. For more information, see z/OS Planning for
Multilevel Security and the Common Criteria.

Symbolic link restrictions
When security labels are used, z/OS UNIX restricts the use of certain character
strings within symbolic links to allow for dynamic substitution of a user's security
label within a path name.

The character strings $SYSSECA/ and $SYSSECR/ have special meaning to z/OS
UNIX when they appear as the first nine characters in a symbolic link. For more
information about the use of these strings, read about assigning a home directory
and initial program, depending on security label in z/OS Planning for Multilevel
Security and the Common Criteria.

Using multilevel security
Multilevel security is a security policy that allows the classification of data and
users on a system of hierarchical security levels combined with a system of
non-hierarchical security categories.

In a multilevel-secure z/OS UNIX environment, security labels are used as
described in “Using security labels” on page 102. To set the security label on z/OS
UNIX files and directories, use the chlabel command.

Restriction: Use DFDSS to back up and restore files while maintaining security
labels. You cannot use the pax and tar commands.

Security labels for zFS files and directories
The zFS file system is the only physical file system with support for security labels
in a multilevel-secure environment. The HFS file system does not provide support
for security labels in a multilevel-secure environment. There is setup that can allow
for the use of HFS file systems in this environment, but capability is limited to
read-only access. For more information about multilevel security, see z/OS Planning
for Multilevel Security and the Common Criteria.

Chapter 4. Establishing UNIX security 103

Auditing access to files and directories
The security auditor uses reports formatted from RACF system management
facilities (SMF) records to check successful and failing accesses to kernel resources.
An SMF record can be written at each point where the system makes security
decisions.

Six classes are used to control auditing of security events. These classes do not
have any profiles. They do not have to be active to control auditing. Use the
SETROPTS command to specify the auditing options for the classes. For a list of
the classes used for auditing and an explanation of how to specify the audit
options, see z/OS Security Server RACF Auditor's Guide.

Audit records are always written for the following events:
v When a user not defined as a z/OS UNIX user tries to dub a process
v When a user who is not a superuser or not permitted to the

SUPERUSER.FILESYS.USERMOUNT RACF profile tries to mount or unmount a
file system.

You cannot turn off these audit records.

You can also specify auditing at the file level in the file system. Activate this option
by:
1. Specifying DEFAULT in the class LOGOPTIONS on the SETROPTS command
2. Using the chaudit command to specify audit options for individual files and

directories

If you activate auditing for additional levels of file system access, you might
generate excessive amounts of SMF Type 80 records.

You can also specify, in a RACF user profile, that all actions taken by the user be
audited. Actions taken by superusers can be audited or not, determined by RACF
commands. If you are using RACF profiles in the UNIXPRIV class to control
certain superuser functions, you can use those same profiles to audit those
superuser functions.

Specifying file audit options
Specify file audit options using the ISPF shell, or a chaudit command. The
command can be used to specify either user audit options or auditor audit options.
To specify user audit options, you must be a superuser or the owner of the file. To
specify auditor audit options, you must have RACF AUDITOR authority.

If you have AUDITOR authority, you do not need access in the permission bits to:
v Search and read any directory in the file system
v Use the chaudit command to change the auditor audit options for any file in the

file system

If both user and auditor audit options are set, RACF merges the options and audits
all the set options.

For information about setting audit control, see z/OS Security Server RACF Auditor's
Guide.

104 z/OS V2R2 UNIX System Services Planning

Using sanction lists
You can compile a list to contain the lists of path names and program names that
are sanctioned by the installation for use by APF-authorized or program controlled
calling programs. This file contains properly constructed path names and program
names as defined in z/OS V2R2.0 UNIX System Services User's Guide.

Be sure that you are familiar with the activation instructions before using
sanction lists. It is possible to unintentionally activate only part of this feature.

Sanction lists contain three separate lists delineated by three keywords:

:authprogram_path
This keyword is the start of a list of directories that is only used in the
execution of a hfsload (or C dlload), exec, spawn, or attach_exec from an
authorized program.

:programcontrol_path
This keyword is the start of a list of directories that is only used in the
execution of a hfsload (or C dlload), exec, spawn, or attach_exec from an
executable that is running program controlled.

:apfprogram_name
This keyword is the start of a list of program names that are allowed to get
control of APF-authorized programs as a result of an exec or spawn. These
names are MVS program names.

Formatting rules for sanction lists
Restriction: You cannot use symbolic links (for example, $SYSNAME) in sanction
lists. They will not work.

You have to follow certain formatting rules when creating sanction lists.
v Only use absolute path names.
v Path names cannot start with /*.
v Each list element must be on a line by itself, with no comments. Lines are

terminated with the newline character, as is consistent with the stepliblist and
useridaliastable files. Leading blanks can be on the list element line and are
ignored. Use the newline character to delimit a path name. Trailing blanks are
ignored. Other white space is considered part of the path name.

v Follow standard z/OS UNIX path naming conventions.
v You must follow standard MVS program naming conventions.
v Encode the sanction list file in the IBM-1047 code page.
v You can include comment lines in the list. Each comment line must start with /*

and end with */. They cannot be on the same line with any other type of line.
v Do not enclose the path names or program names in quotation marks.

The tags :authprogram_path, :programcontrol_path, and :apfprogram_name must
be used to delineate between the different types of sanction lists.
v If there are no tags in the file, then all data in the file is ignored and you will get

a parsing error. If a tag is missing, then the subsequent processing of
hfsload/dlload, exec or spawn will not change, based on the tag that was
missing. The effect of different sanction lists is not cumulative. Once a sanction
list is parsed and accepted, the contents provide the only active lists of path
names and program names for hfsloads, execs, and spawns.

Chapter 4. Establishing UNIX security 105

v List elements (path names or program names) before a tag are ignored.
v Lines after the last valid entry line (such as a path name or a program name) are

ignored.
v If an :authprogram_path tag is present, then all lines following it and up to the

next tag are considered to be approved path names from which authorized
programs can be invoked.

v If a :programcontrol_path tag is present, then all lines following it and up to the
next tag are considered to be approved path names from which program
controlled programs can be invoked.

v If an :apfprogram_name tag is present, then all lines following it and up to the
next tag are considered to be approved program names that can get control
APF-authorized.

v If specified, the tag must start in column 1.
v The tag names are not case-sensitive.
v The list element names (for example, the path names and program names) are

case-sensitive.

If the file does not follow these formatting rules, the sanction lists might not be
recognized properly and various functions relating to the attempted use of the lists
might fail.

Steps for creating a sanction list
Before you begin: You need to know what directories and what programs are to
be set into this file. You can partially construct this file and add path names and
program names as you go along. A partially complete file can be activated and
when additional entries are known, this file can be updated. A background task
will automatically check this file every 15 minutes for updates and then
incorporate them.

You also need to be aware that only one sanction list check is done for each
program invocation. Although links in directories are supported, sanction list
processing only performs one check. This check uses the path name or program
name that was specified by the user.

Tip: The installation can construct the sanction lists with link path names or actual
path names, or both. The decision depends on how the site would like the users to
invoke the programs. For example, if the actual directory is in the sanction list
instead of the directory that contains the link, and the associated program is
invoked via the link, the program would not be executed. The program is only
executed if the directory where the link was defined or resides is specified in the
sanction list and the associated program is invoked via the link. Alternatively, both
the actual directory and directory where the link resides could be placed in the
sanction list. This method gives users the option of invoking the program either
way. Likewise, if only the actual directory was placed in the sanction list, the user
would be forced to use actual path names and not links.

Perform the following steps to create a sanction list.
1. Create a sanction list, following the rules listed in “Formatting rules for

sanction lists” on page 105. You can cut and paste the following sample.
/**/
/* */
/* Name: Sample authorized program list */
/* */
/* Description: Contains lists of approved directories and */

106 z/OS V2R2 UNIX System Services Planning

/* program names from which privileged programs */
/* may be invoked */
/* */
/***/
/***/
/* Authorized program directories */
/***/
:authprogram_path
/bin/test
/bin/test/beta

/***/
/* Program control directories */
/***/
:programcontrol_path
/in/test/specials

/***/
/* APF authorized programs */
/***/
:apfprogram_name
PAYOUT

2. Give the sanction list a name.

Guideline: The path name of the sanction file should be /etc/authfile, in
keeping with IBM's strategy to place all customized data in the /etc directory.

When you are done, you have created a sanction list and named it. To activate it,
see “Steps for activating the sanction list.”

Only users with superuser authority should be given update access to sanction
lists.

Steps for activating the sanction list

Before you begin: You must know what the file name is for your sanction list.
This file might or might not exist, or it might not be complete, or both. If this file
exists, it must be properly constructed as described in “Formatting rules for
sanction lists” on page 105 even though it might not be complete.

Perform the following steps to activate the sanction list.
1. Activate the sanction list processing by specifying a value for AUTHPGMLIST.

If you do not specify a value, the sanction list will not be processed. Base your
choice on your particular situation.

Table 15. Methods for activating the sanction list. This table lists the methods of activating
the sanction list.

If you choose this method Then

Use the AUTHPGMLIST statement in
BPXPRMxx. The sanction list might or might
not have already been set up.

Customize BPXPRMxx to include the
AUTHPGMLIST parameter. For example:

AUTHPGMLIST(’/etc/authfile’)

Chapter 4. Establishing UNIX security 107

Table 15. Methods for activating the sanction list (continued). This table lists the methods of
activating the sanction list.

If you choose this method Then

Use SETOMVS.

You should already have set up the sanction
list. Otherwise, you will get an error
message warning you that the file does not
exist. The path name, however, will be set. If
you issue the same command with the same
file name, you will not get an error message.
The DISPLAY OMVS command will show
the AUTHPGMLIST parameter being set.
This file name is used by the background
task to check whether a sanction list has
been created or updated.

Issue the SETOMVS command. For example:

SETOMVS AUTHPGMLIST=’/etc/authfile’

To turn off sanction list checking, issue:

SETOMVS AUTHPGMLIST=NONE

A nonexistent sanction list.

Use this feature only if the sanction list must
not exist before it is activated. It is possible
to set the sanction list value and forget that
the sanction list has not been completely set
up. The system might appear to be
operating with sanction list processing, but
in fact it is not. The background task will
routinely check for the nonexistent file, but
sanctioning will not occur for spawns, execs,
and so on. This sanction list file must be set
up for sanctioning to occur. The background
task will not warn that the sanction list does
not exist.

Use either method described in this table
(customize the BPXPRMxx member of
SYS1.PARMLIB or use SETOMVS).

2. If the sanction list has not already been created (see “Steps for creating a

sanction list” on page 106), create one now.

When you are done, you have activated the sanction list. A background task will
sweep in the background every 15 minutes for updates. Its only job is to check for
the sanction list, and if it is there, to process it. Alternatively, if a change needs to
be activated sooner, you can use SETOMVS or SET OMVS =(xx), where xx specifies
which BPXPRMxx file is to be used to reset the various z/OS UNIX parameters.

Tip: You can turn off sanction list checking with the SETOMVS command:
SETOMVS AUTHPGMLIST=NONE

Notes:

1. If the sanction list was not created when the system is IPLed, you can create it
later and then use the SETOMVS command to dynamically add it. Be careful
because you will not get a message saying that the sanction list file does not
exist, although z/OS UNIX will continue to check every 15 minutes.

2. If the sanction list was created before the system is IPLed, and there are errors,
the sanction list processing is disabled.

3. If the AUTHGPGMLIST statement in the BPXPRMxx member contains a
nonexistent value, you will not get an error message.

108 z/OS V2R2 UNIX System Services Planning

4. If the sanction list is running on the system, you will get error messages when
you try to run program-controlled or APF-authorized programs that are not in
the sanction list. You will have to add them to the sanction list.

Maintaining the security level of the system
After you set up a secure environment for your system, you must ensure that it
stays secure.

Steps for maintaining the security level of the system
Before you begin: You need to have set up a secure environment for your system.

Perform the following steps to ensure that the system stays secure.
1. Check each program that you want to introduce into the system. Add a

program only if you are certain that it will not lower the level of security.

2. For users of the system, set up rules for:
v Sharing data in files
v Specifying permission bits when creating files or using the chmod command

or chmod() callable service

3. Require that users set the permission bits for their files to deny access to all
users except themselves, as the file owners.

4. Protect all local data sets with a RACF profile that specifies UACC(NONE).
Only administrators with responsibility for creating, restoring, or dumping local
data sets should be permitted to this profile.

When you are done, you have taken steps to ensure that your system stays secure.

Controlling access to applications
If the APPL class for the security product is active, you can use a combination of
profiles in the APPL class and the APPL operand on the RACROUTE
REQUEST=VERIFY macro to determine which users are allowed to use specified
applications as they enter the system. For example, if you do not want all of your
users to use certain applications, you can activate the APPL class and create a
profile with an access list that contains only those users who are allowed to access
these applications.

When specifying a profile, you have two choices: use the OMVSAPPL application
ID (APPLID) or create a customized APPLID. In some cases, OMVSAPPL is the
value that is always used for the APPLID parameter.

If no customization is done, the following services specify OMVSAPPL for the
APPLID value. If the APPL class is active, use of these services can be limited to
those users who have access to the OMVSAPPL resource in the CLASS(APPL).
v __login
v pthread_security_np
v __passwd when there is no password or password phrase change specified
v __passwd when the calling process did not call pthread_security_np

Chapter 4. Establishing UNIX security 109

In certain cases, if you customize the APPLID-related fields in the BPXYTHLI, you
can change the value used for the APPLID parameter for these services:
v pthread_security_np
v __passwd

The following C functions allow the APPLID to be specified other than
OMVSAPPL when invoking the service:
v __login _applid
v __passwd_applid
v pthread_security__applid_np

For more information about protecting applications, see z/OS Security Server RACF
Security Administrator's Guide.

Restricting access to z/OS UNIX file systems
There are several ways to restrict user and group access to z/OS UNIX file
systems.
v A z/OS UNIX administrator can control access to file systems at their mount

points by using the setfacl command to create, modify, and delete ACLs for
specific users and groups.

v At a higher level, the security administrator can choose to restrict access to the
z/OS UNIX file system for all authorization checks that involve mount point
traversal. The check is performed at every mount point crossover to see if the
user or group has authority to access the file system. Only those who have been
given permission to covering RACF resource profiles are eligible for access.
Access to objects within the file systems are subject to the superuser, owner,
permission bit, ACL, and UNIXPRIV rules. Users who are designated as RACF
auditors are exempt from this restriction. This check uses the RACF FSACCESS
class profile to validate the authority of users or groups who are accessing the
z/OS UNIX file system, as described in “Using the FSACCESS class profile to
restrict access” on page 111.

v On a more granular level, the RACF FSEXEC class profile prevents users from
executing any file in a z/OS File System (zFS) file system or Temporary File
System (TFS) when an FSEXEC class profile matches the file system name and
the users do not have at least UPDATE permission to that profile.

These restrictions apply:
v This additional access check using the FSACCESS class profile is only supported

on zFS file systems
v For z/OS UNIX, zFS file systems that are mounted with the NOSECURITY

option are not subject to this access control check.
v The root file system is excluded from this access restriction.
v A given zFs file system can be protected from the whole NFS network by not

permitting the NFS Server's MVS UserID to the FSACCESS class profile for that
specific zFS file system. Note that when the NFS Server is configured with
Security(SAF) or Security(SAFEXP), the NFS Client remote MVS UserID might
also need to be permitted to the FSACCESS class profile to avoid unexpected
failures.

110 z/OS V2R2 UNIX System Services Planning

|
|
|
|

Using the FSACCESS class profile to restrict access
Using the FSACCESS class profile to restrict access provides a coarse-grained
control to z/OS UNIX file systems and acts as a gatekeeper to the z/OS UNIX file
system. When the user is permitted to access the file system, any subsequent
decisions to allow file access are based on z/OS UNIX permissions and ACLs. If a
security decision is needed during access validation, the ck_access (IRRSKA00)
callable service is used to determine whether they have access to the file system.
RACF provides authorization checking and auditing and then returns control to
the file system. For more information about the ck_access callable service, see z/OS
Security Server RACF Callable Services.

The basic steps to restrict access to the z/OS UNIX file system are to create a
resource with the identical z/OS UNIX file system name in the FSACCESS class
profile, permit selected z/OS UNIX users with UPDATE access to the resource, and
then activate the FSACCESS class. When the FSACCESS class profile is active,
RACF first uses the FSACCESS class profile resources to determine whether the
user is authorized to access the file system. If the user is authorized to access the
file system resource, then RACF uses the permission bits, access ACLs, and various
UNIXPRIV class profiles to determine whether the user is authorized to access the
individual file system objects with the requested access level. Read the section on
protecting file system resources in z/OS Security Server RACF Security
Administrator's Guide for details on how RACF uses FSACCESS when enforcing file
system security.

Restriction: If the OMVS address space is not marked as trusted, you will need to
update the profiles to ensure that the user ID has the appropriate access.

Steps for giving selected users or groups access to a z/OS UNIX
file system
About this task

Perform the following steps to give selected users and groups access to the
specified file system and then activate FSACCESS checking. Before you begin, you
need to know which users or groups will be given access to the specified file
system.

Procedure
1. Define a profile in the FSACCESS class for each z/OS UNIX file system that

you want to grant permission. To define a profile for
OMVS.ZFS.WEBSRV.TOOLS, for example, issue:
RDEFINE FSACCESS OMVS.ZFS.WEBSRV.TOOLS UACC(NONE)

In general, generic profile names for file systems are allowed for resources in
the FSACCESS class.

Tip: To control a set of file systems with similar names, define a generic
profile. For example, after ensuring that generic profiles were enabled for the
class, define OMVS.ZFS.WEBSRV.** as a generic profile, issue:
SETROPTS GENERIC(FSACCESS)
RDEFINE FSACCESS OMVS.ZFS.WEBSRV.** UACC(NONE)

2. Assign UPDATE access to the selected users or groups.

PERMIT OMVS.ZFS.WEBSRV.TOOLS CLASS(FSACCESS) ID(USER19)
ACCESS(UPDATE)

Chapter 4. Establishing UNIX security 111

|
|

3. Activate the FSACCESS class profile, if it is not currently active at your

installation. By default, it is inactive and is not used for authorization checking.
SETROPTS CLASSACT(FSACCESS)

4. Activate SETROPTS RACLIST processing for the FSACCESS class, if it is not

already active.
SETROPTS RACLIST(FSACCESS)

If SETROPTS RACLIST processing is already in effect for the FSACCESS class,
you must refresh SETROPTS RACLIST processing in order for new or changed
profiles in the FSACCESS class to take effect.
SETROPTS RACLIST(FSACCESS) REFRESH

Results

When you are done, you have restricted access to the specified z/OS UNIX file
system to users and groups who have been explicitly permitted to covering
resource profiles.

Restricting execute access in a zFS or TFS file system
To prevent users from executing any file in a z/OS File System (zFS) or Temporary
File System (TFS), you can define a profile in the FSEXEC class that matches the
file system name and then authorize selected users and groups who require
execute class by giving them UPDATE access. The FSEXEC-eligible users are then
subject to the usual authorization checking, which includes checking for superuser
authority, ownership, permission bits, access control lists (ACLs), and UNIXPRIV
permissions.

For more information about restricting execute access in a zFS or TFS file system to
specified users and groups, see z/OS Security Server RACF Security Administrator's
Guide.

Setting up TCP/IP security
When setting up security for TCP/IP, the TCP/IP started task's user ID and its
default group must both have an OMVS segment defined. The user ID, assigned
using ICHRIN03 or the STARTED class, must have UID(0). For information about
defining a z/OS UNIX user to RACF, see “Defining z/OS UNIX users to RACF”
on page 57.

Other TCP/IP tasks such as ftp and routed must be assigned a RACF user ID
using ICHRIN03 or the STARTED class. If ftpd and routed use a different started
task user ID from the TCP/IP user ID, they must have UID(0) and HOME(‘/’).

Selecting a security level for the system
If you run daemons and servers, you need to set up the appropriate security for
them. Two levels of privileges are available for servers and daemons: UNIX level
and z/OS UNIX level. In providing security, you need to understand the
differences between the two levels. For discussions of the levels, see:
v “Establishing the correct level of security for daemons” on page 335
v “Establishing the correct level of security for servers” on page 368

112 z/OS V2R2 UNIX System Services Planning

|

|
|
|
|
|
|
|

|
|
|

Chapter 5. Managing the z/OS UNIX file system

The z/OS UNIX file system, like other UNIX systems, is a hierarchical file system.
A brief overview of hierarchical file system concepts is provided, and then tasks
involved with managing file systems are discussed. While HFS is used in many of
the examples, the use of the zFS file system is preferred.

The HFS and zFS file system types in mount statements and command operands
are now generic file system types that can mean either HFS or zFS. Based on the
data set type, the system determines which is appropriate. You must still specify a
type (HFS or zFS and it cannot be defaulted), and if the type you specify is not
correct for the file system being mounted, any associated parameter string setting
in the mount statement or command is ignored, even though the system sets the
type correctly and processes the mount.

Lists of subtasks

Subtask Associated procedure

Mounting file systems “Steps for mounting file systems” on page
125

Setting up the alternate sysplex root “Steps for setting up the alternate sysplex
root for the dynamic replacement of the
current sysplex root” on page 128

Disabling support for the alternate root file
system

“Steps for removing the alternate sysplex
root support” on page 130

Dynamically replacing the sysplex root file
system

“Steps for dynamically replacing the sysplex
root file system” on page 130

Customizing the cron, uucp, and mail
utilities

“Customizing the cron, uucp, and mail
utilities” on page 139

Recovering from file system problems with
the root

“Steps for recovering from file system
problems with the root” on page 156

Basics of the z/OS UNIX file system
The z/OS UNIX file system, like other UNIX systems, is a hierarchical file system
that consists of the root file system and all the file systems that are added to it.
Files are members of a directory, and each directory is in turn a member of another
directory at a higher level. The highest level of the hierarchy is the root directory.
Each instance of the system contains only one root directory. Under the /usr/lpp
directory are directories for z/OS elements and features; in this case, BookServer
and TCP/IP. For more information about hierarchical file systems, seez/OS V2R2.0
UNIX System Services User's Guide.

A hierarchical file system consists of files, directories, and additional file systems.
v The files contain data or programs. A file that contains a load module or shell

script or REXX program is called an executable file. Files are kept in directories.
v The directories contain files, other directories, or both. Directories are arranged

hierarchically, in a structure that resembles an upside-down tree, with the root

© Copyright IBM Corp. 1996, 2016 113

directory at the top and the branches at the bottom. The root is the first
directory for the file system at the top of the tree and is designated by a slash
(/).

v The additional local or remote file systems are mounted on directories of the
root file system or other file systems.

Some notes to consider:
v File systems must be cataloged in the master or user catalog in order for the file

systems to be mounted by z/OS UNIX.
v File systems have multiple volume support. The support allows a file system to

span a total of 59 volumes with limits of 123 extents per volume and 255 extents
across all volumes. The maximum size of a file that is stored in a file system is
the following
– 2**31 pages (4K bytes/page) = 2**43 bytes

The volume and extent limits are MVS limits, not file system limits.
v If you are sharing file systems in a sysplex, you know that the term "root file

system" is called the version file system. Think of the version file system when
you see "root file system".

Structure of the z/OS UNIX file system
If you follow the instructions for ServerPac and CBPDO installations, all z/OS
elements and features that store into the z/OS UNIX file system are installed into a
consolidated file system, instead of having separate product-related file systems.
Continue this consolidated approach as you install additional products on the
platform. This method makes maintaining and cloning the file system easier, and it
simplifies the MOUNT statements in the BPXPRMxx member.

Rule: You must maintain a separate file system for each of the following
directories. When you are sharing a file system between systems, those four
directories must have individual copies on each system. That is, each system
should have their own copy of those four file systems mounted under those
directories. You cannot share them between systems.
v /etc, which contains customization data. Keeping the /etc file system in a file

system separate from other file systems allows you to separate your
customization data from IBM's service updates. It also makes migrating to
another release easier. As described in “Establishing an /etc file system for a
new release” on page 12, after you complete instructions for a ServerPac or
CBPDO installation, you will have an /etc file system in its own file system.

SYSTEM dev tmp var etcusrbinu lib opt samples

lpp

booksrv tcpip
. . .

Figure 10. Logical view of the hierarchical file system for the user

114 z/OS V2R2 UNIX System Services Planning

v /dev, which contains character special files that are used when logging into the
shell environment and also during c89 processing. It is shipped empty. The
necessary files are created when the system is IPLed, and on a per-demand
basis.

v /tmp, which contains temporary data that are used by products and applications.
/tmp, is created empty, and temporary files are created dynamically by different
elements and products. You have the option of mounting a temporary file
system (TFS) on /tmp. For more information, see Chapter 14, “Managing the
temporary file system (TFS),” on page 327.

v /var, which contains dynamic data that is used internally by products and by
elements and features of z/OS. Any files or directories that are needed are
created when code is executed or customized. An example is caching data. In
addition, you can be assured that IBM products will only create files under /var
when code is executed or customized.

Command differences due to symbolic links
Certain directories such as /etc, /dev, /tmp, and /var were converted to symbolic
links. Some shell commands have minor behavioral differences when referring to
symbolic links than for regular files or directories. For example, ls does not follow
symbolic links by default. Before Release 9, /etc was a directory, so ls /etc would
display all files in /etc. Beginning in Release 9, /etc became a symbolic link, so ls
/etc displays only the symbolic link. In this case, it is /etc.

In order to follow symbolic links, you must specify ls -L or provide a trailing
slash. For example, ls -L /etc and ls /etc/ both display the files in the directory that
the /etc symbolic link points to.

Other shell commands that have differences due to symbolic links are chmod, du,
find, pax, rm, and tar.

While these behavioral changes should be minor, users can tailor command
defaults by creating aliases for the shell command. For example, if you want ls to
follow symbolic links, you can issue the command:
alias ls="ls -L"

Aliases are typically defined in the user's ENV file. See the alias command
description in z/OS UNIX System Services Command Reference for more information
about alias.

After you establish the alias, ls will follow all symbolic links.

An administrator can put alias commands in the /etc/profile directory, which
might affect login shells. This action is not suggested, because changing the default
behavior in /etc/profile might produce unexpected results in shell scripts or by
shell users.

Suggested file system structures for user directories and files
For users, you should logically mount other file systems on the root file system.
Have your users place their directories and files in the mounted file systems.
Separate user file systems offer several advantages:
v Managing storage is more efficient because the system administrator only needs

to allocate data sets that are large enough to accommodate the needs of
individual users.

Chapter 5. Managing the z/OS UNIX file system 115

v Isolating failures is easier because the system administrator can unmount the
user file system that caused an error without affecting other users' data or
causing z/OS UNIX to fail.

v They relieve the contention for system resources that might occur by having
multiple users in a single file system.

Rules: When working with file system structures, follow these rules:
v Name each user's home directory /u/userid where userid is the user ID in

lowercase.
v Keep system file systems separate from user file systems by putting the file

systems on different volumes.

Tip: For easier management of file systems, use the automount facility. It is
described in Chapter 6, “Using the automount facility,” on page 163.

Using the Network File System (NFS)
A workstation user connected to a host through TCP/IP can mount all or part of a
file system that is at the host so that it appears as part of the user's local file
system. A combination of the TCP/IP server and Network File System (NFS)
makes this possible.

If you are using the NFS server, you can make both traditional MVS data sets and
hierarchical files appear as part of the user's workstation file system. The user can
create, delete, read, write, and otherwise treat the host-located files as an extension
of the workstation's own file system. ASCII-EBCDIC conversion for single-byte text
files is performed automatically by means of default standard conversion tables.
(NFS does not provide conversion of double-byte text files.)

Using the NFS client, you can access hierarchical files and MVS data sets on other
z/OS systems. You can also access hierarchical files on any system with an NFS
server and the proper protocol support.

For more information about NFS, refer to z/OS Network File System Guide and
Reference. For more information about TCP/IP, refer to:
v z/OS Communications Server: New Function Summary

v z/OS Communications Server: IP Configuration Reference

v z/OS Communications Server: IP User's Guide and Commands

Using the z/OS File System (zFS)
zFS is a UNIX file system that can be used in addition to the HFS file system. It
contains files and directories that can be accessed with APIs. They can also be
mounted into the z/OS UNIX hierarchy along with other local or remote file
systems types such as HFS, TFS, and NFS. You can use either the HFS or ZFS file
system type when installing z/OS or as the root file system.

You can use ISPF panels to create and manage the zFS file system. For more
information about working in the ISPF shell, see z/OS V2R2.0 UNIX System Services
User's Guide.

The automount facility can be used for zFS, as described in “Automounting both
HFS and zFS file systems” on page 163.

116 z/OS V2R2 UNIX System Services Planning

You can set up read-only basic partitioned access method (BPAM) access to zFS
files. Each zFS directory is treated as if it were a PDSE or PDS directory. For more
information about BPAM, see z/OS DFSMS Using Data Sets.

For more information about setting up and using zFS, see z/OS Distributed File
Service zFS Administration.

How does zFS differ from HFS?
zFS and HFS are both UNIX file systems and both can participate in a shared file
system. HFS always has a single file system per data set.

zFS also contains a single file system in the data set. The zFS data sets are VSAM
linear data sets called aggregates.

HFS compatibility mode
Restriction: For zFS, only one file system can be defined inside the aggregate, and
the name of the file system must be the same as the aggregate name. Because zFS
can easily determine the data set name from the file system name, these file
systems to be mounted without being attached. This concept is called HFS
compatibility mode.

Implications of zFS ownership versus z/OS UNIX ownership of
file systems

It is important to understand the implications of zFS ownership versus z/OS
ownership of file systems when zFS runs sysplex-aware for read/write mounted
file systems. In that situation, zFS takes responsibility for function-shipping file
requests. For more information about these implications, see z/OS Distributed File
Service zFS Administration .

Migrating the HFS file system to the zFS file system
Because zFS has higher performance characteristics than HFS and is the strategic
file system, you should migrate HFS file systems to zFS. See z/OS Migration for
more information about the migration action.

To compile a list of all mounted HFS file systems, use the USS_HFS_DETECTED
check. For more information about the check, see IBM Health Checker for z/OS
User's Guide.

You can use the BPXWH2Z tool to migrate HFS file systems to zFS file systems.
With this ISPF-based tool, you can change the space allocation, placement, SMS
classes, and data set names. Invoke it from the ISPF command panel.

Requirement: The zFS address space must be successfully configured and
initialized before you can use the BPXWH2Z tool. For more information about the
customization and initialization of zFS, see the topic on post-installation processing
in z/OS Distributed File Service zFS Administration.

To summarize, you can accomplish the following tasks with BPXWH2Z:
v Migrate HFS file systems (both mounted and unmounted) to zFS file systems. If

the HFS being migrated is mounted, BPZWH2Z automatically unmounts it and
then mounts the new zFS file system on its current mount point.

v Define zFS aggregates by default to be approximately the same size as the HFS
file system. The new allocation size can also be increased or decreased.

Chapter 5. Managing the z/OS UNIX file system 117

v Have the migration run in TSO foreground or UNIX background.

You can use the JCL sample ISPBTCH in SYS1.SAMPLIB to invoke BPXWH2Z as
an ISPF batch job. Read the notes section before running the job. If you manually
migrate from an HFS to a zFS file system without using the BPXWH2Z tool, you
must allocate and format the target zFS file systems.

Migrating the sysplex root file system from HFS to zFS
You can migrate the sysplex root file system in a shared file system configuration
from HFS to zFS dynamically without disrupting active workloads. See z/OS
Migration for information about the migration task. Although the shared file system
configuration is required, the sysplex can be a single system.

Mounting considerations for zFS
Keep in mind that the TYPE option is generic. When you specify either ZFS or
HFS, the data set type is determined by the type of the data set.
v If you specify TYPE(HFS), a search is done for a data set that matches the file

system name.
– If the data set is found and it is not an HFS data set, the type is changed to

ZFS.
– If a data set is not found, the type is changed to ZFS.

In both cases, the mount proceeds as though TYPE(ZFS) was specified.
v If you specify TYPE(ZFS) and it is an HFS data set, then the type is changed to

HFS. The mount proceeds as though TYPE(HFS) was specified.

If the file system type that was specified on the mount does not match the type of
the file system and it is changed, the PARM parameter used by the mount is not
preserved.

Restriction: zFS does not support the DDNAME() keyword on the BPXPRMxx
ROOT and MOUNT parmlib statements. The FILESYSTEMNAME() keyword must
be used instead.

Mount behaviors of zFS
This topic describes the mount behaviors of zFS.
v You can use /// as a placeholder in file system names for mount processing to

substitute ZFS or HFS as appropriate.
1. The system first substitutes the characters ZFS and checks the file system. If

the system determines that it is not a ZFS file system, it gives the mount to
zFS to process.

2. If it is an HFS file system, then the system substitutes the characters HFS
and checks the file system. If the system determines that it is an HFS file
system, it gives the mount to HFS to process. If it is not an HFS file system,
it gives the mount to zFS to process.

Determining the zFS file system owner
Beginning with z/OS V1R11, the zFS file system owner can be different than the
z/OS UNIX file system owner when zFS is running sysplex-aware. For an
explanation on how to determine the owner of a zFS file system, see the topic on
zFS ownership versus z/OS UNIX ownership of file systems in z/OS Distributed
File Service zFS Administration. Instead of the typical commands used to determine

118 z/OS V2R2 UNIX System Services Planning

the z/OS UNIX user (for example, df -v, D OMVS,F, or F
BPXOINIT,FILESYS=D,ALL), the zfsadm lsaggr command is used.

Setting up the z/OS UNIX file system
If you are a system programmer, you will set up and manage the z/OS UNIX file
system, including the following tasks:
v Allocating the root file system.
v Mounting the root file system by placing a ROOT statement in the BPXPRMxx

member of SYS1.PARMLIB. During initialization, the system mounts the file
systems in the ROOT statement and in all MOUNT statements in BPXPRMxx.
You can also change the active MOUNT attributes of the root without having to
reIPL by using the TSO/E MOUNT and UNMOUNT commands. However, if
you have any users logged on or applications running, this method can be
disruptive.

v Adding directories to the root file system. You can use an empty directory as a
mount point for a file system that you are mounting.

v Adding MOUNT statements in BPXPRMxx for all file systems that you mount
so that they are mounted whenever the system is IPLed.
If a file system is not mounted, the user does not have access to it. The
BPXPRMxx member can contain MOUNT statements for each of the file systems
that you created. You can also create a REXX exec that contains multiple
MOUNT statements, one for each of the file systems.
Various methods for mounting are:
– Using the automount facility
– Using a TSO/E CLIST or REXX exec
– Issuing the TSO/E MOUNT command from /etc/rc using the tso or tsocmd

shell command. For example:
/bin/tso "mount filesystem(OMVS.ZFS.F96) mountpoint(’/u/d96’) type(zfs) mode(read)"

– Running the REXX exec /usr/sbin/mount from /etc/rc. For example:
/usr/sbin/mount -f OMVS.ZFS.D96 /u/d96

– Using the /sample/samples/mountx utility
– Using the mount shell command
– Using an automation product such as Tivoli NetView for z/OS for mounting

a file system

Naming rules for file names and path names
In the JCL used for files, the file names and path names can be in lowercase letters,
in uppercase and lowercase letters, or in uppercase letters. The case of letters is
important.

Rule: The editor used to create the JCL must not change the file names and path
names into uppercase.

Allocating a file system for the root file system
In open systems analogous to z/OS UNIX, allocation might be called making the file
system. The root file system must be allocated by a user who has an UID of 0,
indicating superuser authority. To create file systems, a security product that
supports the SAF calls made during the system processing must be running.

Chapter 5. Managing the z/OS UNIX file system 119

This example shows a sample job that defines the zFS root file system. Two steps
are required. The file system must first be defined and then formatted. The
allocation specified in this sample does not reflect the amount of space needed for
the root file system. For exact size information, consult z/OS Program Directory at
the z/OS installation-related information website. Later, during customization, put
the specified aggregate name of the root file system in the ROOT statement in the
BPXPRMxx member. In this example the owner of the file system is assigned to
UID (-owner 0) and the file system permissions are 0755 (-perms o755).

//USERIDA JOB ,’Compatibility Mode’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=PRV000
//SYSIN DD *

DEFINE CLUSTER (NAME(OMVS.ROOT) -
VOLUMES(PRV000) -
LINEAR CYL(40 1) SHAREOPTIONS(3))

/*
//CREATE EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=(’-aggregate OMVS.ROOT -compat -owner 0 -perms o755’)
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

This example shows a sample job that defines the root file system in an MKFS DD
statement for a HFS file system. The allocation specified in this sample does not
reflect the amount of space needed for the root file system. For exact size
information, consult z/OS Program Directory at the z/OS installation-related
information website. When you specify space for the file system, you must provide
a nonzero value for the directory space parameter, which is not used. Or you can
specify DSORG=PO to create a data set with partitioned organization. The
DSNAME is in the ROOT statement. Later, during customization, put the
DSNAME of the root file system in the ROOT statement in the BPXPRMxx
member.

//OMVSXX JOB
//STEP03 EXEC PGM=IEFBR14
//MKFS DD DSNAME=OMVS.ROOT,
// SPACE=(CYL,(40,1,1)),DCB=(DSORG=PO),
// DSNTYPE=HFS,
// DISP=(NEW,CATLG,DELETE),
// STORCLAS=STANDARD

Other MVS data sets can reside in available parts of the volume containing the file
system. You can also use the ISPF shell, or the TSO/E ALLOCATE command to
create a file system.

See the following topics:
v To learn more about creating zFS file systems, see the section on creating and

managing zFS file systems using compatibility mode aggregates in z/OS
Distributed File Service zFS Administration.

v For JOB, EXEC, and DD statements, see z/OS MVS JCL Reference.

120 z/OS V2R2 UNIX System Services Planning

http://www-03.ibm.com/systems/z/os/zos/installation/
http://www-03.ibm.com/systems/z/os/zos/installation/
http://www-03.ibm.com/systems/z/os/zos/installation/

v For reference information about BPXPRMxx, go to z/OS MVS Initialization and
Tuning Reference. For guidance information, see “Customizing the BPXPRMxx
member of SYS1.PARMLIB” on page 22.

v To learn more about setting up the root file system structure, see “Structure of
the z/OS UNIX file system” on page 114.

File systems can be allocated by systems other than the one on which the data set
will be used, as long as the allocating system has the correct level of DFSMS. The
system where the file system will be used must share the catalog with the
allocating system or have a catalog entry for the same file system name.

Defining the root file system
Use the ROOT statement in the BPXPRMxx member of SYS1.PARMLIB to define
which file system is the root file system. You have two choices: HFS and zFS. The
zFS file system is the preferred file system, and continued use of HFS is not
encouraged.

Figure 4 on page 23 shows the sample BPXPRMxx member. The ROOT statement is
as follows:
ROOT FILESYSTEM(’OMVS.ROOT’)

TYPE(ZFS)
MODE(RDWR)

The root file system is the starting point for the overall hierarchical file system. It
contains the root directory and any related files or subdirectories.

What happens when file systems are mounted?
After you mount a new file system for the first time (as described in “Mounting
file systems” on page 123), you need to change the owner and group owner. This
topic explains why this step is necessary.

To begin with, the hierarchical file system is used to store data and organize it in a
hierarchical way by using file system entries such as directories and files. These file
system entries have certain attributes, such as ownership, permission bits, and
access time stamps. The data and the attributes of a file are stored with the file in
the file system. All file attributes are stored in a control block that is sometimes
called the inode.

Mounting a file system creates a binding for the duration of the mount. The
binding is between a directory that is already in the file system hierarchy, called
the mount point, and the entry point into the file system about to be mounted,
called the root of this file system. The mount point directory and the root are
connected until unmount time. When a file system is mounted on a mount point, it
overlays the contents of the mount point directory. Files, symbolic links, and
subdirectories within the mount point directory are no longer accessible and are
hidden until the file system is unmounted.

See Figure 11 on page 122 to see what happens when Jane's file system is mounted
on directory /u/jane.

Chapter 5. Managing the z/OS UNIX file system 121

The root directory of a file system, like any other entry, also has attributes, but the
directory does not have a name. At mount time, the mount point directory lends
its name to the root directory of the file system that is to be mounted. The root,
however, keeps its attributes. Logically, the directory (which is an entry in another
directory, one level up the hierarchical tree) no longer points to its own inode.
Instead, it points to the inode of the mounted root. Thus, the attributes and the
content of a directory are hidden as long as a file system is mounted on it.

Remember that the root of a file system always keeps the attributes that it had at
unmount time. The same attributes are used again when the file system is
mounted later. The attributes do not depend on the actual mount point.

The automount facility and the ISPF shell can be used to define either a HFS or
zFS file system. For more information about the automount or ISHELL z/OS UNIX
System Services Command Reference.

When HFS file systems are mounted
A newly created file system is empty except for an unnamed root directory.
Because this directory needs attributes, which will be stored in its inode, the
creating routine must set some start values. The DFSMS allocation routines set
ownership to the user who allocates the data set. The routines also set the file
mode to 700 in order to ensure that only this user can access it until that user
permits other access. When you create file systems for other users, you must
change the attributes of the root directory of the new file system. To do so, mount
the new file system, and then change the attributes. You need to change the
attributes only once because your changes are saved in the root's inode. Assuming
that the file system was mounted on a directory called mount-point-name, follow
these steps:

jane

udevbin

/
OMVS.ROOT.HFS

inode of directory
mount
jane

Active before

Owner
Group
Mode

OMVS.JANE.HFS

/

admin
std
700

Owner
Group
Mode

jane
sysprog
755

Attributes of directory jane
as long as OMVS.JANE.HFS is mounted

inode of directory /

Figure 11. Mounting a file system

122 z/OS V2R2 UNIX System Services Planning

1. For a user file system, change the ownership and leave it up to the user to set
the mode:
chown target-userid:target-groupid mount-point-name

2. For public file systems, change the file mode and assign the correct ownership:
chmod 755 mount-point-name
chown system-userid:system-groupid mount-point-name

The system-userid and system-groupid must match the purpose of the file system.
The same applies to the mode. A mode of 755 allows anyone to make this
directory the current working directory, but only the owner can write to it. For
other situations, a mode of 750 might be more appropriate.

When zFS file systems are mounted
For zFS file systems, the owning user, owning group and permissions can be
specified when the file system is defined. For more information, see z/OS
Distributed File Service zFS Administration .

Mounting file systems
After installation is complete, you need to create file systems and mount them to
your root file system or somewhere else in the hierarchy.

To have mount processing substitute "ZFS" or "HFS" as appropriate, you can use
"///" as a placeholder in file system names. When the system encounters "///" in
the name, the following happens:
1. It first substitutes the characters "ZFS" and checks the file system. If the system

determines that it is not a HFS file system, it gives the mount to zFS to process.
2. If it is a HFS file system, then the system substitutes the characters "HFS" and

checks the file system. If the system determines that it is a HFS file system, it
gives the mount to HFS to process. If it is not a HFS file system, it gives the
mount to zFS to process.

Tip: To verify that file systems specified in BPXPRMxx are currently mounted, use
the USS_FILESYS_PARMLIB_MOUNTS check provided by IBM Health Checker for
z/OS.

Security considerations when mounting
Taking the following into consideration, you should specify "setuid no" when
mounting (the default is yes):
v UNIX files and directories are contained in MVS data sets.
v UNIX users using these files and directory do not need access to these MVS data

sets.
v Only the kernel and the storage administrators needs access to the data sets.
v If you give the users direct access to the MVS data sets by giving them UPDATE

access in a RACF profile protecting the data sets, or by naming the data sets
with the user ID as the HLQ, and you do not specify "setuid no" when
mounting, you have a security exposure

Privileged mount and unmount authority
Mounting and unmounting z/OS UNIX file systems are privileged operations. A
user must have UID(0) or have read access to the SUPERUSER.FILESYS.MOUNT
resource in the UNIXPRIV class before file systems can be mounted or unmounted.

Chapter 5. Managing the z/OS UNIX file system 123

|
|
|

The TSO MOUNT and UNMOUNT commands will perform privileged operations
if the user has read access to the BPX.SUPERUSER resource in the FACILITY class.

Nonprivileged mount and unmount authority
Nonprivileged users must meet certain requirements before they can mount z/OS
UNIX file systems. They must have the following access permissions:
v Read access to SUPERUSER.FILESYS.USERMOUNT profile. The

SUPERUSER.FILESYS.USERMOUNT resource name in the UNIXPRIV class
allows nonprivileged users to mount and unmount file systems with the
nosetuid option.

v Read-write-execute (rwx) access to the directory that the file system will be
mounted on.

v Read-write-execute (rwx) access to the file system root.
If the file system being mounted is an NFS client file system or if the mount
point directory is in an NFS client file system, the access check is sent to the
NFS server and the user must be permitted to the directory by that server. For a
z/OS NFS server, this means that the user might have to be in the server's
export list or the user might have to do an MVSLOGIN.
If the file system being mounted is an NFS remote file system, or if the mount
point directory is in an NFS remote file system, the access check is sent to the
server for processing. In order for the access check to succeed, the user must
have already been permitted to the root or mount point directory, respectively, at
that remote server. For a z/OS NFS server, this is controlled by the server's site
security attribute. The user may have to be listed in the server's export data set,
or may have to issue an mvslogin command to log in to the remote z/OS NFS
server, before issuing the mount command.

In addition, the directory that the file system is to be mounted on must be an
empty directory. If it has the sticky bit on, the user must be the owner of that
directory. If the mount point directory is in a remote type file system (for example,
NFS), then the owner UID of the mount point directory must match the UID of the
user. If the file system root has the sticky bit on, the user must be the owner of the
root. For remote type file systems (for example, NFS), the owner UID of the file
system root must match the UID of the user.

To unmount file systems, the nonprivileged user must have read access to
SUPERUSER.FILESYS.USERMOUNT profile. The file to be unmounted must have
been mounted by that nonprivileged user. The nonprivileged user must also still
have access to the file system root and if the sticky bit is on, must still be the
owner.

When a nonprivileged user mount fails, message BPXF084I is issued to the
hardcopy log.

Use the MAXUSERMOUNTSYS and MAXUSERMOUNTUSER statements in the
BPXPRMxx parmlib member to specify mount limits for nonprivileged users.
v MAXUSERMOUNTSYS is the maximum number of nonprivileged user mounts

for the system or for the shared file system configuration.
v MAXUSERMOUNTUSER is the maximum number of nonprivileged user

mounts for each nonprivileged user in the system or in the shared file system
configuration.

The most recent specification is used for each system that is participating in a
shared file system configuration. To set these values, you must specify them in the

124 z/OS V2R2 UNIX System Services Planning

BPXPRMxx parmlib member. You can use the SETOMVS or SET OMVS command
later to dynamically increase or decrease each of them. However, dynamically
changing the values does not affect currently mounted file systems. If you want to
use nonprivileged user mounts, you must ensure that MAXUSERMOUNTSYS and
MAXUSERMOUNTUSER are both nonzero.

If a value for MAXUSERMOUNTSYS or MAXUSERMOUNTUSER is not specified
in BPXPRMxx, the system uses the default value for them. For a single system, the
default value is 0. For the first IPLed system in the shared file system
configuration, the default value is 0. For a subsequently IPLed system in the
shared file system configuration, the default value is what other systems have at
the time when the subsequent system is being IPLed.

Restrictions: A list of restrictions is provided:
1. The file system type must be HFS, ZFS, or NFS.
2. The SYSNAME option, which specifies the name of the system to be mounted

on, is not supported.
3. The use of /// as a placeholder in the file system name is not supported.
4. Nonprivileged users cannot use the /usr/sbin/chmount function.
5. Nonprivileged users cannot use the remount function.
6. Nonprivileged user mount is a nosetuid mount. The SETUID option is not

allowed.
7. Nonprivileged user mount is a security mount. The NOSECURITY option is

not allowed.
8. The mount operation fails if either MAXUSERMOUNTSYS or

MAXUSERMOUNTUSER is exceeded.
9. The BPX1MNT callable service is not supported for the user mount.

10. Mounting on a non-empty mount point is not allowed regardless of the
NONEMPTYMOUNTPT settings

11. Errors from the security restriction are not recorded in the mount failure
database. Use unique return codes and reason codes to identify the problem
along with the audit failures.

12. The automount facility must be running in order to mount HSM-migrated file
systems.

Steps for mounting file systems
Before you begin: You need to know that the mount point should be an empty
directory. If it is not, then its contents will be hidden for the duration of any
subsequent mounts.

Perform the following steps to mount a file system.
1. Build a directory in the root file system. A directory can be used as a mount

point for a file system.
To build the directory, use one of the following methods:
v The TSO/E MKDIR command interactively; in an in-stream data set in the

JCL, such as SYSIN; or in a CLIST or REXX exec.
v The mkdir shell command.
v The TSO/E ISHELL command.
v The MKDIR keyword in a ROOT or MOUNT statement in the BPXPRMxx

member of SYS1.PARMLIB.

Chapter 5. Managing the z/OS UNIX file system 125

2. If you are allocating an additional zFS file system, do this step. If you are
allocating another HFS file system, go to Step 3.
Allocate another zFS file system, using one of the following methods:
v The zfsadm define and zfsadm format commands, which are described in

z/OS Distributed File Service zFS Administration.
v The TSO/E ISHELL command.
v A JCL job. For more information, see the section on creating and managing

zFS file systems using compatibility mode aggregates in z/OS Distributed File
Service zFS Administration.

After you have completed this step, go to Step 4.

3. To allocate another HFS file system, using one of the following methods:
v The TSO/E ALLOCATE command
v The TSO/E ISHELL command
v The JCL DD statement
v ISPF option 3.2
Sample TSO/E ALLOCATE commands are:
ALLOCATE DATASET(’OMVS.USER.JOE’) DSNTYPE(ZFS) SPACE(5,5) DIR(1) CYL
ALLOCATE DATASET(’OMVS.USER.JANE’) DSNTYPE(ZFS) SPACE(5,5) DIR(1) CYL

Tip: To allocate a file system with no secondary space, use the following
ALLOCATE command:
ALLOCATE DATASET(’OMVS.USER.SAM’) DSNTYPE(HFS) SPACE(5,0) DIR(1) CYL

Because the file system was allocated with no secondary space, it cannot
dynamically grow. However, it can grow if you use confighfs.
Then free the data sets as shown in the following example:
FREE DATASET(’OMVS.USER.JOE’)
FREE DATASET(’OMVS.USER.JANE’)

4. Logically mount the new file system in the directory of an existing file system

by using the TSO/E MOUNT command under a user with mount authority.
Example: The directory /u/joe is a mount point for OMVS.USER.JOE and
/u/jane is a mount point for OMVS.USER.JANE.
v If you are mounting a new zFS file system:

MOUNT FILESYSTEM(’OMVS.USER.JOE’) TYPE(ZFS) MOUNTPOINT(’/u/joe’)

v If you are mounting a new HFS file system:
MOUNT FILESYSTEM(’OMVS.USER.JANE’) TYPE(HFS) MOUNTPOINT(’/u/jane’)

When you are done, you have mounted a file system.

For a HFS file system, after you mount the new file system for the first time,
change the owner and group owner. These values are saved in the new file system
and are reused when the file system is remounted later. To change the owner and
group owner, you have two options:
v Use the chown command. You might need superuser authority to issue the

chown command, depending on your installation.
Example: For the /u/joe directory, to set the user name and group name (if they
have already been defined to the security product), issue:

126 z/OS V2R2 UNIX System Services Planning

chown joe:devgrp /u/joe

v Use the ISPF shell.

Restrictions on mounting file systems
The restrictions on mounting file systems are as follows:
v The mount point must be a directory. If it is not an empty directory, files in that

directory are not accessible while the file system is mounted. The BPXPRMxx
parmlib statement NONEMPTYMOUNTPT can be used to control how the
system mounts the file systems on the non-empty mount points. The NOWARN
option specifies that the mount is to take place without any warning message
when the mount point is a non-empty directory. The contents of that directory
are hidden for the duration of the mount. The WARN option specifies that the
mount is to take place with a warning message when the mount point is a
non-empty directory. The contents of that directory are hidden for the duration
of the mount. The DENY option specifies that mounting is not to take place
when the mount point is a non-empty directory. During OMVS initialization, if
the mount point is contained in an NFS file system, the NONEMPTYMOUNTPT
setting is not honored.

v Only one file system can be mounted at a directory (mount point) at any one
time.

v Systems participating in shared file system capability can mount file systems
that will be shared in read/write mode.

v The file systems in the same file hierarchy cannot have the same name even if
they are mounted on different mount points. This restriction remains true
whether real names or alias names are specified on the FILESYSTEM operands
in BPXPRMxx or on the MOUNT command. If two file systems have the same
name, they cannot be mounted.

v There is an upper limit to the number of HFS or zFS file systems that can be
mounted at one time in your system. For planning purposes, about 1K of
storage is consumed below the 16M line for each mounted file system. You can
limit the amount of storage that is consumed. To limit the amount, use the
timeout capabilities of automount so that file systems are unmounted when they
are not being used. This storage below the line is used for the data set
allocation. If storage is not available and another data set allocation is requested,
the system may be placed in a nonrestartable wait state.
Alternatively, you can specify SWA(ABOVE) in the BPXPRMXX parmlib member
to force the storage for data set allocation to be obtained above the 16M line. See
the BPXPRMxx topic in z/OS MVS Initialization and Tuning Reference for more
details about the SWA parmlib statement.

Automatically replacing the sysplex root file system with the alternate
sysplex root file system if it becomes unowned

In a sysplex configuration, the alternate sysplex root file system is a hot standby for
the sysplex root file system that is used to replace the current sysplex root file
system when the sysplex root file system becomes unowned. The alternate sysplex
root file system is established by using the ALTROOT statement in the BPXPRMxx
parmlib member during OMVS initialization or by using the SET OMVS command.

Requirements: When replacing the sysplex root file system, take the following
requirements into consideration:
v A shared file system configuration is required. However, the sysplex can be a

single system.

Chapter 5. Managing the z/OS UNIX file system 127

v All systems in the shared file system environment must be at z/OS V1R11 at the
minimum.

v The alternate sysplex root must have the same mount points and symbolic links
as the current sysplex root. The mount points are validated during processing,
but the symbolic links are not. If mount points are missing, the current sysplex
root is not replaced by the alternate sysplex root.

v The file system type for the alternate sysplex root and the current sysplex root
must be either HFS or ZFS. They do not have to be identical.

v The alternate sysplex root PFS must be active on all systems in the shared file
system configuration.

v If the SECLABEL class is active and the MLFSOBJ option is active, then the
multilevel security label for the alternate sysplex root must be identical to the
assumed multilevel security label of the current sysplex root.

v The sysplex root or any directories in the sysplex root file system must not be
exported by the DFS or SMB server.

v The real path name for the mount points in the current sysplex root must not
exceed 64 characters in length.

Restriction: The ALTROOT statement is ignored during processing of the F
BPXOINIT,FILESYS=REINIT system command. You will have to manually issue
SET OMVS=(xx) where BXPRMxx is the parmlib member containing the original
ALTROOT statement.

Steps for setting up the alternate sysplex root for the dynamic
replacement of the current sysplex root

About this task

This topic shows how to establish an alternate sysplex root in a shared file system
environment.

Before you begin: You need to ensure that the alternate sysplex root does not
reside in the same volume, device, and control unit as the current sysplex root.

To minimize the single point of failure, the alternate sysplex root file system
should be a different PFS type than that of the current sysplex root file system.

Procedure
1. Allocate a new file system to be used as the alternate sysplex root file system,

following these rules:
a. The UID, GID and the permission bits of the root directory in the alternate

sysplex root file system must match the root directory in the current sysplex
root file system

b. If the SECLABEL class is active and the MLFSOBJ option is active, then the
multilevel security label for the alternate sysplex root must be identical to
the assumed multilevel security label of the current sysplex root.

2. On the alternate sysplex root, set up the mount points and the symbolic links.

The mount points and the symbolic links must be same as the ones on the
current sysplex root.
a. Mount the alternate sysplex root file system at a temporary mount point

(for example, /altroot).

128 z/OS V2R2 UNIX System Services Planning

b. Select one of the following suggested ways to set up mount points and
symbolic links:
v Use the pax shell command to populate the alternate sysplex root file,

using the current sysplex root as a source. For example:
cd /
pax -wr -pe -XCM ./ /altroot

v Use copytree to populate the alternate sysplex root, using the current
sysplex root as a source. For example:
copytree -as / /altroot

v Manually issue mkdir and ln -s shell commands to create the mount
point directories and symbolic links similar to the current sysplex root.

c. Unmount the alternate sysplex root.

3. Specify ALTROOT in the BPXPRMxx parmlib member with the mount point in
the root directory of the current sysplex root file system.

Restriction: The ALTROOT mount point must not exceed 64 characters in
length.

Example: To specify ALTROOT:
ALTROOT FILESYSTEM (’OMVS.ALTROOT.ZFS’)

MOUNTPOINT(’/sysalt’) PARM (’FSFULL(70,10)’)

You can use the SETOMVS SYNTAXCHECK operator command to validate the
ALTROOT syntax.

4. Make sure that all systems in the shared file system environment have direct
access to the new file system and can locally mount it.

5. Process the ALTROOT statement by using the SET OMVS command or by
initializing the OMVS with the updated BPXPRMxx parmlib member. For
example:
SET OMVS=(xx)

Results

When you are done, you have established an alternate sysplex root in the shared
file system configuration. The alternate sysplex root is mounted in read-only mode
at the specified mount point and designated as AUTOMOVE. When the alternate
sysplex root becomes the current sysplex root, it is mounted in read-only mode
and designated as AUTOMOVE regardless of the current sysplex root settings.

Requirement: If you make changes to the current sysplex root after the alternate
sysplex root was established, you must make the same changes to the alternate
sysplex root as well.

Chapter 5. Managing the z/OS UNIX file system 129

Steps for removing the alternate sysplex root support
About this task

This topic shows how to remove support for the alternate sysplex root.

Perform the following steps to remove the alternate sysplex root support.

Procedure
1. In the BPXPRMxx parmlib member, replace the ALTROOT FILESYSTEM

statement with the following statement:
ALTROOT NONE

Because the ALTROOT NONE and ALTROOT FILESYSTEM statements are
mutually exclusive, only one can be specified in the BPXPRMxx parmlib
member.
If concatenating parmlib members result in multiple ALTROOT statements,
then the first parmlib member specified on the OMVS= operator command that
contains the ALTROOT statement will take effect.

2. Issue a SET OMVS operator command to process the ALTROOT NONE
statement. For example:
SET OMVS=(XX)

Results

When you are done, you have removed the alternate sysplex root support and
deleted any outstanding BPXF253E messages. The alternate sysplex root file system
can be left mounted as a regular file system on all systems in the sysplex. If you
need to reestablish the alternate sysplex root support with the same file system
name, the file system will have to be unmounted globally before it can be used in
the ALTROOT FILESYSTEM statement.

Use your preferred unmount method to unmount the alternate sysplex root.

Dynamically replacing the sysplex root file system
This section describes how to dynamically replace the sysplex root file system.

Steps for dynamically replacing the sysplex root file system
About this task

Before you begin: You need to ensure that the following requirements have been
met:
v All systems in the sysplex are at the V1R10 or later level.
v The current sysplex root PFS, and the new sysplex root PFS, are up in all the

systems in shared file system configuration.

Also, be aware of the following restrictions:
v The sysplex root must be locally mounted on all systems in the shared file

system configuration.
v Byte range locks must not be held on the sysplex root during replacement

processing.

130 z/OS V2R2 UNIX System Services Planning

v The current sysplex root and the new sysplex root must be either HFS or zFS in
any combination.

v The sysplex root or any directories on it cannot be exported by the DFS or SMB
server.

Note the following facts:
v Remote NFS mounts of the sysplex root or any directories on it are considered

active use of the current sysplex root file system.
v During the replacement, the new sysplex root must not be HSM-migrated,

mounted, or in use.
v Mount parameters are preserved during the replacement of the sysplex root of

the same file system type (PFS). They are dropped if the file system type is
different.

v Directories, data, files, and links are not copied from one file system to another.

Perform the replacement as follows:
1. To verify that the sysplex root is locally mounted on all systems, issue:

Ro *all, D OMVS,F,NAME=root_file_system_name

You should see CLIENT=N for each system.

2. Allocate a new file system to be used as the new sysplex root file system.
Rules: When allocating new file systems:
v The UID, GID and the permission bits of the root directory in the new

sysplex root file system must match those of the root directory in the current
sysplex root file system.

v If the SECLABEL class is active and the MLFSOBJ option is active, then the
multilevel security label for the new sysplex root must be identical to the
assumed multilevel security label of the current sysplex root.

3. On the new sysplex root, set up the mount points and the symbolic links. The

mount points and the symbolic links must be same as the ones on the current
sysplex root.
a. Mount the new sysplex root file system at a temporary mount point (for

example, /newroot).
b. Verify that all systems in the shared file system configuration have direct

access to the new sysplex root file system and can locally mount it. Issue
Ro *all, D OMVS,F,NAME=new_sysplex_root_file_system_name

and verify that CLIENT=N for each system.
c. Select one of the following recommended ways to set up mount points and

symbolic links:
v Use the pax shell command to populate the new sysplex root file, using

the current sysplex root as a source. For example:
cd /
pax -wr -pe -XCM ./ /newroot

v Use copytree to populate the new sysplex root, using the current sysplex
root as a source. For example:
copytree -as / /altroot

v Manually issue mkdir and ln -s shell commands to create the mount
point directories and symbolic links similar to the current sysplex root.

Chapter 5. Managing the z/OS UNIX file system 131

d. Unmount the new sysplex root.

4. On any system in the shared file system configuration, issue:
F OMVS,NEWROOT=new.root.file.system.name,COND=<YES|NO|FORCE>

YES Proceed conditionally. The system checks for active usage in the current
sysplex root file system and reports the active usage in a BPXF245I
message. If file activity is found, the command fails with EBUSY return
code and JrActivityFound reason code; message BPXF244E is also
displayed. If file activity is not found, the command continues
processing to replace the sysplex root. YES is the default.

NO Proceed unconditionally. The system checks for active usage in the
current sysplex root and reports the active usage in a BPXF245I
message. Replacement of the sysplex root will continue.

FORCE
Forces the replacement of the current sysplex root with the new sysplex
root. This option allows user to replace a failing sysplex root with the
user-specified new sysplex root.

A BPXI085D WTOR message is issued to the console to confirm the
FORCE option. Mount points are validated. Symbolic links are not
validated.

In addition to the restrictions listed “Steps for dynamically replacing
the sysplex root file system” on page 130, these restrictions must be met
in order to use the FORCE option:
v All systems in the sysplex must be at the V1R11 or later level.
v The real path name for the mount points in the current sysplex root

must not exceed 64 characters in length.
The replacement of the sysplex root file system begins. During the replacement,
active connections to files and directories in the current sysplex root file system
are broken.
After the replacement completes:
v The root (/) is updated on all systems in the sysplex to point to the new

sysplex root file system.
v New opens go to the new sysplex root file system. The current sysplex root

for the root directory is replaced for all processes in all systems. The current
directory for root directory is replaced for any processes using it

v Old connections in the previous sysplex root file system might get EIO
errors.

5. Update the TYPE parameter and name of the sysplex root file system in the

BPXPRMxx member of SYS1.PARMLIB.

When you are done, you have dynamically replaced the sysplex root file system

Managing file systems
DFSMS manages the location of all file systems on volumes. However, a file
system can outgrow the space on its volume and need more space. Or activity in a
file system can become so great that it slows response time. In these cases, the file
system needs to be managed.

132 z/OS V2R2 UNIX System Services Planning

File systems can span volumes. As users add files and extend existing files, each
data set can increase in size to a maximum of 123 extents if secondary extents are
specified in the allocation. The system programmer can:
v Remove other data sets from the volume on which the full volume condition

resides.
v Move individual UNIX files and subtrees to other volumes.
v Move the entire full file system to another file system.

The storage administrator or system programmer can monitor the space in a file
system by mounting a file system with the FSFULL parameter. For example, you
would see message IGW023A when the file system is 70 percent full. Then it
would issue another message when the file system is 80 and 90 percent full:
mount parm(’FSFULL(70,10)’)

You can set up read-only basic partitioned access method (BPAM) access to UNIX
files, including HFS, zFS, NFS, and TFS files. Each z/OS UNIX directory is treated
as if it were a PDSE or PDS directory. For more information about BPAM access to
z/OS UNIX directories, see z/OS DFSMS Using Data Sets.

Reducing the size of the file system
If the file system becomes too big for the volume, you can try to reduce the size of
the file system:
v Create a new file system on another volume and move some files from the full

file system to the new file system. Mount the new file system onto the
previously full file system.

v Move a subtree from the active file system into a new file system on a different
volume. Mount the new file system onto the now-empty directory that was the
head of the subtree. Accesses are divided between two volumes.
Moving a subtree, rather than individual files, retains the hierarchical structure
of the file system.

Increasing the size of the HFS file system
This topic discusses how to make more space available for the HFS file system. To
make more space available for the HFS file system, you can move the entire full
file system to another file system, as follows:
1. Have an authorized user enter a TSO/E UNMOUNT command to logically

unmount the file system.
Tip: The REXX exec /usr/sbin/unmount performs essentially the same functions
that the UNMOUNT statement performs. You can run it from the shell.

2. Use the DFSMSdss dump utility to logically dump the old file system to a
sequential data set.

3. Rename the old file system.
4. Preallocate a new file system with a larger size and give it the original file

system name.
5. Use the DFSMSdss restore utility to restore the old file system to the new file

system.
6. Have an authorized user enter a TSO/E MOUNT command to logically mount

the new file system. You can also run the REXX exec /usr/sbin/mount from the
shell.

7. After you check the new file system, you can delete the old file system and the
corresponding sequential data set.

Chapter 5. Managing the z/OS UNIX file system 133

You can also use the confighfs command to manage or expand the HFS file
system. It resides in /usr/lpp/dfsms/bin/confighfs.

For zFS file systems, use the zfsadm grow command to extend the size of an
aggregate.

Removing unnecessary files from directories
You can use the skulker shell script to remove files whose access times are older
than a specified number of days from any directory. It can be run manually or
invoked automatically using cron.

The skulker shell script, which is located in /samples, should be copied. You can
modify it to suit your particular needs. Possible locations for the script include
/bin or /usr/sbin, especially if skulker is to be run from a UID(0) program. If
skulker is to be run by users, a locally created directory called, /usr/bin is a
possibility, but ensure that the sticky bit is on in that directory.

For more information about skulker, see z/OS UNIX System Services Command
Reference.

Improving accesses to file systems
If activity for a file system becomes so extensive that accesses are slow, take one of
the following actions:
v Move the file system to a volume chosen for speed because it has, for instance, a

faster channel or buffered controller.
v Move a subtree from the active file system into a new file system on a different

volume. Mount the new file system onto the now-empty directory that was the
head of the subtree. Accesses are divided between two volumes.
Moving a subtree, rather than individual files, retains the structure of the file
system.

Unmounting file systems
To unmount all active file systems, issue the following operator command:
F BPXOINIT,SHUTDOWN=FILESYS

It unmounts the file systems on the system that the command was issued from.

Mounting the root file system for execution
This topic describes the mounting of the root file system.The root file system
contains system code and binaries, including the /bin, /usr, /lib, /opt, and
/samples directories. These directories contain files that are installed and serviced
by SMP/E.

For systems with shared file system support, mounting the root file system
read-only is optional. For more information about the version file system, which is
also known as the root file system, see Chapter 7, “Sharing file systems in a
sysplex,” on page 173.

Rule: In a sysplex, the /etc, /dev, /tmp, and /var directories must have their own
file system, separate from the root file system. Having those files in their own file
system is also good practice for non-sysplex systems.

134 z/OS V2R2 UNIX System Services Planning

To ensure the integrity of file systems, users must configure their systems to
propagate SYSTEM ENQs on file systems. The serialization used by file system
mount is a SYSTEMS ENQ on SYSZDSN and the data set name. If this ENQ is not
properly maintained, the file system will be damaged. The SYSZDSN ENQ is held
on the file system until the file is unmounted. A file system can be mounted
read/write on a single system, or read on multiple systems. A file system that is
mounted read/write cannot be shared by multiple systems. For more information
about SYSZDSN, see the IBM Redbooks publication Hierarchical File System Usage
Guide.

Deciding how to mount your root
This topic helps you decide whether to keep your root file system read/write or
change it to read-only for execution. Table 16 describes the benefits and drawbacks
of the two mount modes for the production system's root file system.

Table 16. Comparing read-only and read/write mode for the root file system of the execution system. This table
compares the modes for the root file system of the execution system.

Mount mode Benefits Drawbacks

Read/write v You can create directories or files
dynamically in the root file system.

v You do not have to perform the actions
listed in Table 17 on page 136.

v Poorer performance for SYSPLEX file
system operations because I/O must be
directed between system images in a
sysplex.

v Someone might modify files or
directories inadvertently.

Read-only v Better performance for sysplex file
system operation because I/O will not
need to be directed between system
images in a sysplex.

v No one can modify directories or files
within the root file system inadvertently.

v No one can create new directories or
files dynamically in the root file system.

v You must perform the actions listed in
Table 17 on page 136.

v You have extra tasks related to leaving
some directories in read/write mode
such as /dev, /tmp, /etc, and /var,
when these do not have their own file
system separate from the root file
system).

To decide whether you should leave the root file system read/write or change it to
read-only, use the information in Table 16, and any other information that you
might have. You should consider mounting the root file system in read-only mode,
especially if you are mounting the root file system in a shared file system
environment.

Leaving the root file system mounted in read/write mode
To leave the root file system mounted in read/write mode, make sure that the
MODE parameter of the BPXPRMxx member has been specified RDWR. For
example:
ROOT FILESYSTEM(’OMVS.ZFS.ROOT’) /* Root file system */

TYPE(ZFS) /* File system type ZFS */
MODE(RDWR) /* Mounted for read/write */

Chapter 5. Managing the z/OS UNIX file system 135

Post-installation actions for mounting the root file system in
read-only mode

If you want to mount the root file system in read-only mode, look at Table 17 to
see if you must take any actions. The table includes all z/OS base and optional
elements that install into the file system.

These actions can be taken in any order, and do not need to be performed in a
certain sequence.

Table 17. Required post-installation activities for mounting a root file system in read-only mode. List of required
actions when mounting the root file system in read-only mode for elements or functions

Element or function Required action

Common Information Model (CIM) No required actions.

Communications Server No required actions.

Cryptographic Services Open
Cryptographic Services Facility (OCSF)

No required actions.

Cryptographic Services PKI Services No required actions

Cryptographic Services System Secure
Sockets Layer Programming

No required actions.

DFSMSdfp, DFSMSdss, DFSMShsm,
DFSMSrmm, and DFSMStvs

No required actions.

Distributed File Service (DFS) No required actions.

Hardware Configuration Definition
(HCD)

No required actions.

Hardware Configuration Manager (HCM) No required actions

IBM HTTP Server Powered by Domino No required actions.

IBM Tivoli Directory Server No required actions.

Infoprint Server Change ownership of the Infoprint Server files to the Infoprint Server
GID by running the aopsetup customization script. Also, a separate file
system must be mounted read/write on the /var mount point. See z/OS
Infoprint Server Customization for more information.

Integrated Security Services Open
Cryptographic Enhanced Plug-ins (OCEP)

No required actions.

Integrated Security Services - Enterprise
Identity Mapping (EIM) and Network
Authentication Service

No required actions.

Language Environment No required actions.

Library Server See the topic on advanced customization parameters in z/OS Program
Directory at the z/OS installation-related information website.

Metal C Runtime Library No required actions.

Network File System (NFS) No required actions.

Runtime Library Extensions No required actions.

SMP/E No required actions.

XL C/C++ No required actions.

z/OS Font Collection No required actions.

136 z/OS V2R2 UNIX System Services Planning

||

http://www-03.ibm.com/systems/z/os/zos/installation/

Table 17. Required post-installation activities for mounting a root file system in read-only mode (continued). List of
required actions when mounting the root file system in read-only mode for elements or functions

Element or function Required action

z/OS UNIX System Services Post-installation activities might be necessary for some installations. To
determine whether actions are required, see “Customizing the cron,
uucp, and mail utilities for a read-only root file system.” The actions
include moving the files associated with the cron, uucp and mail
utilities from the root file system.

Mounting the root file system in read-only mode
After you perform the actions in Table 17 on page 136, update the BPXPRMxx
member of SYS1.PARMLIB as follows:
ROOT FILESYSTEM(’OMVS.ROOT’) /* Root file system */

TYPE(ZFS) /* File system type ZFS */
MODE(READ) /* Mounted for read */

With the root file system mounted in read-only mode, you must define other
BPXPRMxx parameters for the directories that remain read/write.

Example: You might also have the following BPXPRMxx entry for /etc:
MOUNT FILESYSTEM(’OMVS.ETC’) /* The /etc file system */

MOUNTPOINT(’/etc’) /* Mount at /etc file system */
TYPE(ZFS) /* File system type ZFS */
MODE(RDWR) /* Mounted for read/write */

Customizing the cron, uucp, and mail utilities for a read-only root file
system

As of z/OS V1R13, ServerPac is delivered with the /usr/lib/cron, /usr/mail and
/usr/spool directories as symbolic links. The required directories and symbolic
link structure are created during installation by the BPXMKDIR REXX exec in
SYS1.SAMPLIB. The exec is invoked by BPXISMKD and can also be invoked at
other times as needed.

For systems without shared file support, symbolic links must be created for the
cron, uucp, and mail utilities before the root file system can be mounted in
read-only mode. Files that were written to by those utilities must be moved out of
the root file system and into a directory in a file system that was mounted in
read/write mode.

Typically, no action is needed in order for the BPXMKDIR exec to set up the
required directories and symbolic links. However, if files have been generated by a
previous customization of the cron, uucp, and mail utilities, they must be moved
to the appropriate /var directories before BPXMKDIR can create the needed files
and symbolic links. The procedure is described in“Customizing the cron, uucp, and
mail utilities” on page 139. In order to retain the customization, they should be
moved to the directories that the symbolic links will point to.

The symbolic links are directed to /var directories as follows:

File Linked to

/usr/lib/cron
../../var/cron

Chapter 5. Managing the z/OS UNIX file system 137

/usr/spool
../var/spool

/usr/mail
../var/mail

For files used by uucp, these files are delivered as symbolic links that are directed
to the /var/uucp directories as follows:

File Linked to

/usr/lib/uucp/Systems
../../../var/uucp/System

/usr/lib/uucp/Devices
../../../var/uucp/Devices

/usr/lib/uucp/Dialers
../../../var/uucp/Dialers

/usr/lib/uucp/Dialcodes
../../../var/uucp/Dialcodes

/usr/lib/uucp/Permissions
../../../var/uucp/Permissions

/usr/lib/uucp/config
../../../var/uucp/config

Certain directories must be in the /var directory and have the appropriate
permissions.
v For the mail utility:

– /var/mail with permissions set to 755
v For the cron utility:

– /var/cron with permissions set to 755
– /var/spool with permissions set to 755
– /var/spool/cron with permissions set to 755
– /var/spool/cron/atjobs with permissions set to 755
– /var/spool/cron/crontabs with permissions set to 755

v For the uucp utility:
– /var/uucp with permissions set to 774
– /var/spool with permissions set to 755
– /var/spool/locks with permissions set to 774
– /var/spool/uucp with permissions set to 774
– /var/spool/uucppublic with permissions set to 777
– /var/spool/uucp/.Xqtdir with permissions set to 774
– /var/spool/uucp/.Sequence with permissions set to 774
– /var/spool/uucp/.Status with permissions set to 774
The uucp files must be in the /var directory:
– /var/uucp/Systems

– /var/uucp/Devices

– /var/uucp/Dialers

– /var/uucp/Dialcodes

– /var/uucp/Permissions

138 z/OS V2R2 UNIX System Services Planning

– /var/uucp/config

Migration considerations for the cron, uucp, and mail utilities
When migrating to a new release, verify that all necessary files and directories
have been created in each /var directory in each file system on all system images.
If you use the /var directories and the provided symbolic links, you do not need to
customize the cron, uucp, and mail utilities in order for the root file system to be
mounted in read-only mode.

However, if you decide not to use the /var directory and the provided symbolic
links, you can create symbolic links from the /var directory or file to your
preferred directory or file. With that setup, each time you migrate to a new release,
you will have to customize the z/OS Migration in order for the root file system to
be mounted read-only.

Customizing the cron, uucp, and mail utilities
This topic contains steps that are needed to set up the cron , uucp, and mail
utilities for read-only file systems. See z/OS UNIX System Services Command
Reference for additional customization instructions for configuring these utilities.

The instructions work for most customer environments. Customers with different
customized environments should use this information as a basis to make their
respective changes. The instructions are based on the following assumptions:
v The target system was IPLed in your test environment, the root file system data

set is mounted on / (slash = the root) in read/write mode
v The /var file system is mounted on the /var mount point in read/write mode
v File systems such as the sysplex root and the system-specific file systems are not

being used or being mounted while the customization is taking place.

Steps for customizing the cron, uucp, and mail utilities
The steps assume that you have used cron, uucp and mail and have not followed
the recommended customization in z/OS Migration. These changes to the /var
directories must be performed on every /var directory on every system image in
the sysplex.

Before beginning these tasks, you must meet the following requirements:
v Have superuser authority, such as UID(0). If you have READ access to the

BPX.SUPERUSER resource in the FACILITY class, you can execute setuid(0) or
the su command to gain superuser authority. If you have permission to the
corresponding UNIXPRIV class profile, you will have authority to use specific
authorized services.

v Log in to the shell environment through TSO, telnet, rlogin, or OpenSSH.

First step: If you have used cron, uucp, or mail and have not followed the
recommended customization in z/OS Migration you must move the contents of the
/usr/spool directory to the /var directory and create a symbolic link. Ensure that
no file systems are mounted on the /usr/spool directory or on any mount point
under this directory. If there are any, they must be unmounted.
1. Create a directory called /var/spool. Issue:

mkdir /var/spool

2. Optional. Because spool directories tend to be used heavily, it is good practice
to create a new file system and mount it on /var/spool.

3. Change the permission setting of the /var/spool directory to 755. Issue:

Chapter 5. Managing the z/OS UNIX file system 139

chmod 755 /var/spool

4. Change the current working directory to /usr/spool. Issue:
cd /usr/spool

5. Copy the contents of the /usr/spool directory into /var/spool. Issue:
pax -rw -pe ./ /var/spool

You can choose to move the contents to a directory other than /var/spool (for
example: /etc/spool). If you do, you will have to create another symbolic link
later.

6. Repeat steps 1-5 for every system image in your sysplex.
7. Check that the copy was successful. If the copy was successful, then remove the

/usr/spool directory. Issue:
rm -fr /usr/spool

8. Create a symbolic link for /usr/spool that points to /var/spool. Issue:
ln -s ../var/spool /usr/spool

When you are done, you have moved the contents of the /usr/spool directory to
the /var/spool directory and created a symbolic link for /usr/spool that points to
/var/spool.

If you moved the contents of the /usr/spool directory to a directory other than
/var/spool (for example: /etc/spool), you will have to create another symbolic
link from /var/spool that points to /etc/spool. Use these steps:
1. Change the current working directory to the /var directory. Issue:

cd /var

2. Remove the /var/spool directory after making sure that it is empty. If it is not
empty, then move the items from this directory into /etc/spool. Issue:
rmdir /var/spool

3. Create a symbolic link for /var/spool that points to /etc/spool. Issue:
ln -s ../etc/spool /var/spool

Second step: If you have used cron, uucp, or mail and have not followed the
recommended customization in z/OS Migration, you must move the contents of the
/usr/lib/cron directory to the /var directory and create a symbolic link. Ensure
that no file systems are mounted on the /usr/lib/cron directory or on any mount
point under this directory. If there are any, they must be unmounted.
1. Create a directory called /var/cron. Issue:

mkdir /var/cron

2. Change its permission setting to 755. Issue:
chmod 755 /var/cron

3. Change the current working directory to /usr/lib/cron. Issue:
cd /usr/lib/cron

4. Copy the contents of the /usr/lib/cron directory into/var/cron. Issue:
pax -rw -pe ./ /var/cron

You can choose to move the contents to a directory other than /var/cron (for
example: /etc/cron). If you do, you will have to create another symbolic link
later.

5. Repeat steps 1-4 for every system image in your sysplex.
6. After you are sure that the copy was successful, you can remove the

/usr/lib/cron directory. Issue:
rm -fr /usr/lib/cron

140 z/OS V2R2 UNIX System Services Planning

7. Create a symbolic link for /usr/lib/cron that points to /var/cron. Issue:
ln -s ../../var/cron /usr/lib/cron

When you are done, you have moved the contents of the /usr/lib/cron directory
to the /var/cron directory and created a symbolic link for /usr/lib/cron that
points to /var/cron.

If you chose to move the contents of the /usr/lib/cron directory to a directory
other than /var/cron (for example: /etc/cron), you will need to create an
additional symbolic link from /var/cron to /etc/cron. Use these steps:
1. Change the current working directory to the /var directory. Issue:

cd /var

2. Remove the /var/cron directory after making sure that it is empty. If it is not
empty, then move the items from this directory into /etc/cron. Issue:
rmdir /var/cron

3. Create a symbolic link for /var/cron that points to /etc/cron. Issue:
ln -s ../etc/cron /var/cron

Third step: If you have used cron, uucp, or mail and have not followed the
recommended customization in z/OS Migration, you must move the uucp files and
create a symbolic link.
1. Create a directory called /var/uucp. Issue:

mkdir /var/uucp

2. Change its permission setting to 774. Issue:
chmod 774 /var/uucp

3. Change the current working directory to /usr/lib/uucp. Issue:
cd /usr/lib/uucp

4. Issue ls -al to see if the following files are in /usr/lib/uucp.
Systems
Devices
Dialers
Dialcodes
Permissions
config

If none of these files show up in the directory listing, then you are done.
5. If any of the files listed in Step 4 exist, copy them to the /var/uucp directory by

using the cp command. For example, if all the files exist, then you must copy
them to the /var directory. Issue:
cp -p Systems /var/uucp/Systems
cp -p Devices /var/uucp/Devices
cp -p Dialers /var/uucp/Dialers
cp -p Dialcodes /var/uucp/Dialcodes
cp -p Permissions /var/uucp/Permissions
cp -p config /var/uucp/config

You can choose to move the contents to a directory other than /var/uucp (for
example: /etc/uucp). If you do, you will have to create an additional symbolic
link later.

6. Repeat Steps 1-5 for every system image in the sysplex.
7. After you are sure that the files were copied successfully, you can remove them

from the /usr/lib/uucp directory. Issue:

Chapter 5. Managing the z/OS UNIX file system 141

rm Systems
rm Devices
rm Dialers
rm Dialcodes
rm Permissions
rm config

8. Create symbolic links for these files from /usr/lib/uucp to /var/uucp. Issue
ln -s ../../../var/uucp/Systems Systems
ln -s ../../../var/uucp/Devices Devices
ln -s ../../../var/uucp/Dialers Dialers
ln -s ../../../var/uucp/Dialcodes Dialcodes
ln -s ../../../var/uucp/Permissions Permissions
ln -s ../../../var/uucp/config config

If you chose to copy the files from the /usr/lib/uucp directory to a directory other
than /var/uucp (for example: /etc/uucp), you must create additional symbolic links
from /var/uucp to this directory. You can use these commands to perform these
actions:
1. Change the current working directory to the /var directory. Issue:

cd /var

2. If the following files exist, copy them to /etc/uucp. Issue:
cp -p Systems /etc/uucp/Systems
cp -p Devices /etc/uucp/Devices
cp -p Dialers /etc/uucp/Dialers
cp -p Dialcodes /etc/uucp/Dialcodes
cp -p Permissions /etc/uucp/Permissions
cp -p config /etc/uucp/config

3. Remove the following /var/uucp files, if they exist. Issue:
rm Systems
rm Devices
rm Dialers
rm Dialcodes
rm Permissions
rm config

4. Create symbolic links for these files from /var/uucp to /etc/uucp. Issue:
ln -s ../../etc/uucp/Systems Systems
ln -s ../../etc/uucp/Devices Devices
ln -s ../../etc/uucp/Dialers Dialers
ln -s ../../etc/uucp/Dialcodes Dialcodes
ln -s ../../etc/uucp/Permissions Permissions
ln -s ../../etc/uucp/config config

Fourth step: If you have used cron, mail, or uucp and have not followed the
recommended customization in z/OS Migration, you must move the contents of the
/usr/mail directory to the /var directory and create a symbolic link. Ensure that
no file systems are mounted on the /usr/mail directory or on any mount point
under this directory. If there are any, they must be unmounted.

Before you begin, you must login to the shell environment through TSO, telnet,
rlogin, or OpenSSH.

Perform the following steps to customize the mail utility.
1. Create a directory called /var/mail.

mkdir /var/mail

2. Change its permission setting to 775.
chmod 775 /var/mail

3. Change the current working directory to /usr/mail.

142 z/OS V2R2 UNIX System Services Planning

cd /usr/mail

4. Copy the contents of the /usr/mail directory into /var/mail. Issue:
pax -rw -pe ./ /var/mail

You can choose to move the contents to a directory other than /var/mail (for
example: /etc/mail). If you do, you will have to create an additional symbolic
link later.

5. Repeat steps 1-4 for every system image in your sysplex.
6. After you are sure that the copy was successful, you can remove the /usr/mail

directory:
rm -fr /usr/mail

7. Create a symbolic link for /usr/mail that points to /var/mail. Issue:
ln -s ../var/mail /usr/mail

When you are done, you have customized the mail utility. If you unmounted any
file systems that were mounted on or below /usr/mail, you can mount them now
using the same mount point as before. That directory must contain the contents of
/usr/mail.

If you chose to move the contents of the /usr/mail directory to a directory other
than /var/mail (for example: /etc/mail), you will need to create an additional
symbolic link from /var/mail to this directory using these instructions:
1. Change the current working directory to the /var directory. Issue:

cd /var

2. Remove the /var/mail directory after making sure that it is empty. If it is not
empty, then move the items from this directory into /etc/mail.
rmdir /var/mail

3. Create a symbolic link for /var/mail that points to /etc/mail. Issue:
ln -s ../etc/mail /var/mail

Remounting a mounted file system
To remount the file system, use the TSO/E UNMOUNT command or the ISPF
shell. The REMOUNT operand on the UNMOUNT command specifies that the
specified file system be remounted, changing its mount mode.

Conditions under which you would remount a mounted file system are as follows:
v Maintenance cannot be performed on a read-only file system. The file system

must be unmounted and then mounted again as read/write. If there are
cascaded mounts, all of the file systems mounted on top of that file system must
also be unmounted. You can unmount and remount a root file system. However,
if the file system is a shared read-only root file system in a sysplex, you must
unmount the root on all other systems in the sysplex.

v When you are not using shared file systems, you can use the remount facility to
mount file systems as read-only under normal operating situations and as
read/write to perform maintenance.

If a file is opened for a write, this is not checked if a remount operation changes
the file system from read/write to read-only. Subsequent writes to the file will fail.

If a problem occurs with the remount, determine the failure, correct the problem,
and try the remount again. The file system might be unavailable until the problems
are corrected.

Chapter 5. Managing the z/OS UNIX file system 143

Copying the file system
To copy file systems, use the DFSMSdss COPY DATASET command.

Backing up file systems
Many new applications in z/OS exploit z/OS UNIX and store data into the file
system. Some customers have ported their applications over from other UNIX or
NT platforms, but might not be familiar with the licensed programs available to
back up those applications on the z/OS platform. Other customers have used MVS
and z/OS for a while, and assume that the backup techniques that they use for
their MVS data sets are adequate for z/OS UNIX files as well. This topic addresses
these issues and helps you plan your backup strategies for your file system data.

Guideline: The /dev file system contains character special files that are created on
a per-demand basis. Backing up the /dev file system is not necessary because all
files are created when first referenced. Avoid backing up the /dev file system
because the pseudoterminal files (/dev/ttyp*) might not close correctly when the
process is terminated. For example, pseudoterminal slave file attributes might not
be restored on CANCEL flows if the /dev file system is quiesced when the close()
is processed, which might result in ICH408I security error messages on subsequent
open attempts. Consider mounting /dev as a TFS file system, which is typically not
included in backup policies.

Ways to back up file systems
There are three models for backing up applications:
v The application maintains a transaction log for each transactional unit of work.

A backup can be taken any time the application is running. If the data is
recovered, the transaction log can be used to either back out, or redo, the
transactions to reach a known sync point for the application.

v The application provides a quiesce capability, during which time transactional
updates are suspended.

v The application does not provide either a transaction log or quiesce capability. In
this simplest case, it is suggested that the backups occur only when the files are
closed. If backups are taken while the files are open, it might be difficult to
determine which transactions were fully recorded, and which others were still in
flight.

IBM offers three ways to perform backups and maintain an inventory of their
attributes:
v DFSMShsm
v Tivoli Storage Manager, formerly known as ADSTAR Distributed Storage

Manager (ADSM)
v DFSMSdss

DFSMShsm
Unlike other non-VSAM data sets that can be opened and closed repeatedly
throughout the day, some file systems are often mounted for several days or weeks
at a time, with the individual file members inside opened as needed. Normally,
DFSMShsm's automatic backup (AUTOBACKUP) processes file systems at most
once per mount, so a file system mounted for a week would only have one backup
taken for that week. For some applications, that might not be frequent enough.
Fortunately, DFSMShsm provides some alternatives to ensure that backups are
taken more frequently.

144 z/OS V2R2 UNIX System Services Planning

v An SMS-managed storage group can be defined with guaranteed backup
frequency (GBF). For example, if GBF=3 days, then if a backup has not been
taken for a particular data set in the last three days, a fresh backup is taken,
whether the file has been updated or not. Since this applies to all data sets on a
storage group, some customers have placed their file systems into a unique
storage group with a specification of GBF=1, so as not to affect other types of
data.

v Backups once a day might not be frequent enough. DFSMShsm provides
commands to invoke backups to be taken, independent of the standard
autobackup cycle and window. The BACKVOL TOTAL command can be used to
back up all the files on a single DASD volume, a list of DASD volumes, a single
storage group, or a list of storage groups. This command can be invoked from a
job scheduling package such as Tivoli Workload Scheduler for z/OS, or console
automation package, such as Tivoli NetView for z/OS.

v If file systems are intermixed on the DASD volumes with other data set types,
you might want to back up the file systems individually. You can use the
DFSMShsm command BACKDS to back up a single data set, or a set of data sets
that match a particular mask filter. The DFSMShsm batch program ARCINBAK
can be used to back up a list of data sets that support JCL backward reference
and variable substitution. DFSMShsm also provides ABACKUP, which identifies
which file systems are part of a single aggregate list, and backs these up as a
single entity. You can invoke both the BACKDS and ABACKUP commands from
job scheduling or console automation software.

v If the application was developed in-house, you can modify it to perform the
backups internally. It might be able to perform its own quiesce process, or
coordinate time stamps with its own transactional log. DFSMShsm provides the
ARCHBACK assembler macro interface.

If a file system is mounted for read/write to a single MVS image, back it up by
DFSMShsm from the MVS image that has it mounted. For automatic backup, you
might need to designate host affinity by specifying a system name associated with
AUTOBACKUP for each storage group. For command-initiated backups, you
might need to ensure that the commands or batch jobs are issued to the correct
MVS image.

If the file system being dumped by DFSMShsm is currently mounted as
read/write, then this file system can only be dumped from the system on which it
is mounted. If the file system is mounted as read-only or is in a sysplex (mounted
read-only or read/write), then it can be dumped from any system that has access
to it.

If you use DFSMShsm, you must define a user ID for the DFSMShsm address
space. For DFSMShsm to access the file systems, it must run under a user ID that
is set up for access to a z/OS UNIX system. When you set up this access:
v The default group for the DFSMShsm user ID must have an OMVS segment

defined and a group ID associated with it.
v The home directory must be the root file system.

Tivoli Storage Manager
Tivoli Storage Manager offers another way to back up file systems. You can use
this program in combination with, or instead of, DFSMShsm for your backup
needs related to file systems. Tivoli Storage Manager is a client/server based
product and offers some additional features that are not available from
DFSMShsm.

Chapter 5. Managing the z/OS UNIX file system 145

v The z/OS UNIX System Services Client is available to back up the individual
files and directories within a file system.

v Tivoli Storage Manager features a Central Scheduling component which can
schedule z/OS UNIX client activity, such as "Selective Backup" at defined
intervals. For example, you can back up the files in a specific subdirectory every
four hours.

v Separate policies can be applied to a specific client node such that individual
directories and files within a given file system can be effectively managed using
retention, expiration and versioning attributes. These sophisticated features of
Tivoli Storage Manager used in conjunction with a comprehensive
INCLUDE/EXCLUDE list on the z/OS UNIX client platform provide a great
deal of control over what is backed up and how the data is managed.

v End users can recover individual files that they have appropriate authority
access to.

DFSMSdss
If you use DFSMSdss to dump or restore an active file system, the user ID must be
set up to have superuser authority to quiesce and unquiesce a file system. If file
systems are not mounted, then it is treated as an MVS data set and the user ID
must have read authority for dump purposes and update authority for restore
purposes.

Creating the user file systems
A user file system is allocated in the same way as you created the root file system.
Choose a data set name that has the user name as one of the qualifiers and a size
that provides sufficient space for the user's requirements.

Although the file system does not have to be SMS-managed, it is still highly
suggested. Multivolume file systems are only supported as SMS-managed. (That is,
you cannot have multivolume non-SMS-managed data sets.) As a user adds files
and extends existing files, the data set increases in size to a maximum of 123
extents if secondary extents are specified in the allocation.

If more space is required, you might want to increase the size on the allocation or
you might want to create additional file systems on different DASD volumes for a
user and mount them at different mount points in the user's hierarchy.

The newly allocated data set has a root whose permission bits are set at 700. You
can change the permissions only after the data set is mounted. See “Changing the
permission bits for a file” on page 93 for more information about changing
permission bits for a file or directory.

Example: The following is a sample JCL to create a file system. Change the JCL
where needed.
//USERIDA JOB ,’Compatibility Mode’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=ZFSVOL
//SYSIN DD *

DEFINE CLUSTER (NAME(OMVS.USER1) -
VOLUMES(ZFSVOL) -
LINEAR CYLINDERS(10 1) SHAREOPTIONS(3))

/*

146 z/OS V2R2 UNIX System Services Planning

//CREATE EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=(’-aggregate OMVS.USER1 -compat -owner 11 -perms o755’)
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Making user file systems available
After the user's file system is allocated, you need to mount it at a mount point off
the root directory to make it available. The preferred place to mount all user file
systems is a user directory under the /u user directory. In the z/OS system, there
are two ways to accomplish this:
1. Direct mount. For a direct mount, allocate an intermediate file system (we

called it OMVS.USERS) to be mounted between the root file system and all
user file systems. Create a mount point using the mkdir command and issue
the mount command. (To make the mount permanent, you will need to add the
file system name and its mount point to the BPXPRMxx member.) Figure 12
shows this.
For more information, see “Using direct mount” on page 148.

2. Automount facility. You must customize the automount facility to control all
user file systems to automatically mount them when they are needed. This
method is the preferred way of managing user file systems because it saves

D

Root file system

OMVS.ROOT

F FF

OMVS.USERS

FFF FF

OMVS.USER1

F D

OMVS.USER2

FFF FFF

/

user1

user2

u

user1 user2

Figure 12. Direct mount. To permanently mount file systems, code MOUNT statements in
SYS1.PARMLIB member BPXPRMxx.

Chapter 5. Managing the z/OS UNIX file system 147

administration time. Figure 13 shows this. See “/etc/auto.master” on page 165
for more information.

Using direct mount
The root file system should be set up so that it does not require frequent changes
or updates outside of SMP/E maintenance. To achieve this, we will allocate an
intermediate file system called OMVS.USERS and mount it at /u.

All user directories that are added will reside in this new file system and not in the
root file system.

Example: Following is a sample JCL to allocate the intermediate file system.
Change the JCL to fit your environment.
//USERIDA JOB ,’Compatibility Mode’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=ZFSVOL
//SYSIN DD *

DEFINE CLUSTER (NAME(OMVS.USERS) -
VOLUMES(ZFSVOL) -
LINEAR CYLINDERS(5 1) SHAREOPTIONS(3))

/*
//CREATE EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=(’-aggregate OMVS.USERS -compat -owner 11 -perms o755’)

D

Root file system
OMVS.ROOT

F FF

AUTOMOUNT
FACILITY

FFF FF

OMVS.USER1

F D

OMVS.USER2

FFF FFF

/

user1

user2

u

user1 user2 userx

Figure 13. Automount facility. The automount facility dynamically allocates pseudodirectories
to act as mount points and mount file systems only when files are accessed.

148 z/OS V2R2 UNIX System Services Planning

//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
...

The next thing to do is mount this new intermediate file system at /u. The mount
can be performed from an ID that has superuser authority by:
v Using the usr/sbin/mount REXX exec from the shell
v Using the TSO MOUNT command
v Using the mount shell command
v Using the ISHELL File_Systems pull-down
v Adding an entry to the BPXPRMxx member in SYS1.PARMLIB so that it will be

mounted when the system reIPLs.

An example of the commands required, including issuing the mount command
from the shell is shown in Figure 14. Type OMVS from ISPF option 6 to enter the
shell. Then execute the highlighted commands to mount the file system
OMVS.USERS. In Figure 14, the user ID is ADMIN and it has superuser authority.

v �1� Use the mount command to mount the file system, OMVS.USERS, on mount
point /u.

v �2� Run the display free space command to display the mounted file systems.
v �3� Change the permission bits to allow access to /u.

IBM
Licensed Material - Property of IBM
5655-068 (C) Copyright IBM Corp. 1993, 1995
(C) Copyright Mortice Kern Systems, Inc., 1985, 1994
(C) Copyright Software Development Group, Univ. of Waterloo, 1989

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

- -
- Improve performance by preventing the propagation -
- of TSO/E or ISPF STEPLIBs -
- -
/usr/sbin/mount /u omvs.users �1�
OMVS.USERS is now mounted at
/u
df -P �2�
Filesystem 512-blocks Used Available Capacity Mounted
OMVS.USERS 7200 40 7160 1% /u
OMVS.ROOT 82800 79608 3192 97% /
chmod 755 /u �3�

===>

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Figure 14. Mounting the new intermediate file system. This figure shows an example of the
process to mount thef file system OMVS.USERS.

Chapter 5. Managing the z/OS UNIX file system 149

Now that the OMVS.USERS file system is mounted at mount point /u you can
create the user1 mount point from a superuser ID by using:
v The mkdir command in the shell
v The TSO/E MKDIR command
v The ISHELL Directory pull-down

Figure 15 shows the sequence of commands performed by a superuser in the shell
to create a mount point for a new user off /u. Before you begin, be sure that the
new user is defined to the OMVS segment that your security product uses. Type in
OMVS from ISPF option 6 to enter the shell and execute the highlighted
commands to create the mount point for user1.

v �1� Change to make /u your current working directory.
v �2� Check to make sure /u is the current working directory.
v �3� /u is the current working directory.
v �4� Create a new directory for user1 setting the permission bits to 700. See

“Controlling access to files and directories” on page 91 for information about
permission bit settings.

v �5� List the contents of the /u directory.
v �6� The user1 directory entry.

The user file system that was previously created can now be mounted at /u/user1.
The mount can be performed by:
v Using the /usr/sbin/mount REXX exec from the shell
v Using the TSO/E MOUNT command
v Using the ISHELL File_systems pull-down
v Adding an entry to the BPXPRMxx member in SYS1.PARMLIB so that it is

remounted when the system reIPLs.

Figure 16 on page 151 shows an example of the commands required, including
issuing the mount command from the shell. Type OMVS from ISPF option 6 to
enter the shell and execute the highlighted commands to mount the file system
OMVS.USER1.

cd /u �1�
pwd �2�
/u �3�
mkdir -m 700 user1 �4�
#ls -l �5�
total 16
drwx------ 2 ADMIN OMVSGRP 0 Nov 7 09:07 user1�6�
#
===>

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Figure 15. Creating a mount point directory for a user. This figure shows how to create a
mount point for a new user.

150 z/OS V2R2 UNIX System Services Planning

v �1� Issue the mount command to mount the file system, OMVS.USER1, on
mount point /u/user1.

v �2� Run the display free space command to display the mounted file systems.
v �3� In order for USER1 to use this new file system, you must issue the chown

command to change the ownership and to change the group to the user's default
group. Issue this command to set the owner and group fields of this mount
point directory for the USER1 ID. You only need to issue the chown command
once because the values will be saved in the new file system and will be reused
even when the file system is remounted later.

v �4� Issue a list command to display the new directory for USER1.

To make the mounting of the OMVS.USERS and OMVS.USER1 file systems
permanent, add an entry in the BPXPRMxx member in SYS1.PARMLIB. These two
mount statements must follow the ROOT statement for the root file system.
MOUNT FILESYSTEM(’OMVS.USERS’)

TYPE(ZFS)
MOUNTPOINT(’/u’)
MODE(RDWR)

MOUNT FILESYSTEM(’OMVS.USER1’)
TYPE(ZFS)
MOUNTPOINT(’/u/user1’)
MODE(RDWR)

Using file locks
Programs using files can specify locks. Locks are used to lock byte ranges in files
and are intended for use by cooperating application programs. For information
about how systems participating in a shared file system handle file locks, see
“Locking files in the sysplex” on page 210.

Programs can use file locks via fcntl().
v For more information about the fcntl callable service, seez/OS UNIX System

Services Programming: Assembler Callable Services Reference.
v z/OS XL C/C++ Runtime Library Reference has details about the fcntl() function.

/usr/sbin/mount /u/user1 omvs.user1 �1�
OMVS.USER1 is now mounted at
/u/user1
df -P �2�
Filesystem 512-blocks Used Available Capacity Mounted
OMVS.USER1 12960 40 12920 1% /u/user1
OMVS.ROOT 82800 79608 3192 97% /
chown user1:grpoe /u/user1 �3�
ls -l /u/user1 �4�
total 16
drwx------ 2 USER1 GRPOE 0 Nov 7 09:09 user1
#

===>

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

Figure 16. Mounting the new file system. The sequence of commands needed to mount the
file system OMVS.USER1

Chapter 5. Managing the z/OS UNIX file system 151

Locks are advisory. (Advisory locking is used in UNIX systems.) Consequently,
more than one program can update a file at the same time. Keep advisory locking
in mind during problem determination.

Creating special files
There are several types of special files:

Character special file: A file that provides access to an input/output device.
Examples of character special files are: a terminal file, a NULL file, a file descriptor
file, or a system console file. Each character special file has a device major number,
which identifies the device type, and a device minor number, which identifies a
specific device of a given device type. Character special files are customarily
defined in /dev; these files are defined with the mknod command. You must have
UID(0) to create a character special file. The best way to obtain UID(0) is to be
defined to BPX.SUPERUSER FACILITY class. Then issue the su command to
switch to UID(0) before issuing the mknod command.

You cannot share character special files in read/write mode among systems
participating in a shared file system in a sysplex.

Pipe: A way to communicate in first-in-first-out (FIFO) order from one or more
processes to one or more processes. Pipes are treated as though they were files.

Figure 17 shows how a pipe works.

A pipe sends data from one process to another or back to itself. By forking
processes, a pipe can be shared by a number of processes; for example, written to
by three processes and read by seven.

A program creates a pipe with a pipe() function. The pipe vanishes when the last
process closes it. A pipe does not have a name in the file system; a pipe is also
called an unnamed pipe.

FIFO special file: Sends data from one process to another so that the receiving
process reads the data first-in-first-out (FIFO). A FIFO special file is also called a
named pipe, or a FIFO. A FIFO special file can also be shared by a number of
processes that were not created by forks. A FIFO special file can be written into
and read by the same process using multiple threads.

FIFO special files can be shared between systems that use shared file systems. For
more information about shared file systems, see Chapter 7, “Sharing file systems in
a sysplex,” on page 173.

A program creates a FIFO special file with a mkfifo command or a mkfifo()
function. The name is maintained in the file system until the named pipe is deleted
by an rm command or an unlink() function.

Figure 17. How a pipe works

152 z/OS V2R2 UNIX System Services Planning

UNIX domain socket address file: Represents socket addresses in the UNIX
domain. These files cannot be shared in read/write mode among systems
participating in a shared file system in a sysplex.

To prepare for using AF_UNIX (local) sockets, the AF_UNIX physical file system
(PFS) creates a socket address file in the file hierarchy during the bind() function
call. The files are defined as specified by the program that calls bind() and are
typically in the user's home directory, the root directory, or in /tmp. Because they
are part of the file system, be careful not to delete any of these socket address files
by accident. Also, do not unmount (manually or via automount) the file system
that contains these socket files with active binds. If you do delete the socket files or
unmount the containing file systems, then programs will not be able to connect to
or send datagrams to the program that created the file.

Pipes and FIFO special files are created by programs and users; character special
files are typically created by the system programmer.

Pseudoterminal files
Pseudoterminals (pseudo-TTYs) are used by users and applications to gain access
to the shell. A pseudo-TTY is a pair of character special files, a master file and a
corresponding slave file. The master file is used by a networking application such
as OMVS or rlogin. The corresponding slave file is used by the shell or the user's
process to read and write terminal data.

The convention for the names of the pseudo-TTY pair is:
v /dev/ptypNNNN for the master (major 1)
v /dev/ttypNNNN for the slave (major 2)

The NNNN is between 0000 and one less than the MAXPTYS value in the
BPXPRMxx member.

When a user enters the TSO/E OMVS command or logs in using rlogin or telnet to
initialize a shell, the system selects an available pair of these files. The pair
represents the connection. The maximum number of pairs is 10000. You can specify
an appropriate number of pairs in the MAXPTYS parameter; see “MAXPTYS” on
page 33.

The default controlling terminal can be accessed through the /dev/tty special file
(major 3). This file is defined the first time the system is IPLed.

Pseudo-TTY files are dynamically created by the system when they are first
referenced.

Null file
The null file, /dev/null, (major 4, minor 0) is analogous to an MVS DUMMY data
set. Data written to this file is discarded. The standard null file, named /dev/null,
is created the first time the system is IPLed, or when referenced, if it does not exist
already.

Zero file
The zero file, /dev/zero (major 4, minor 1), is similar to /dev/null in that data
written to this file is discarded, but when the file is read from, it provides an

Chapter 5. Managing the z/OS UNIX file system 153

|
|
|
|

inexhaustible supply of binary zeros. The standard zero file, named /dev/zero, is
created the first time the system is IPLed or when referenced, if it does not exist
already.

Random number files
The random number files, /dev/random and /dev/urandom (major 4, minor 2)
provide cryptographically-secure random output that was generated from the
available cryptographic hardware. The foundation of this random number
generation is a time-variant input with a very low probability of recycling.

Requirement: In order to use these device files, Integrated Cryptographic Service
Facility (ICSF) must be started, and the cryptographic hardware is required,
depending on the model of the server. For more information about the
requirements, see the usage notes for the Random Number Generate callable
service in z/OS Cryptographic Services ICSF Administrator's Guide.

The hardware is designed to produce 8-byte random numbers but any amount of
data might be read. Reads will fail if ICSF or the hardware is not available or if
any addresses passed are invalid. Reads will not block. Data written to these
devices will be ignored without being referenced.

These files are created whenever the system is started or when referenced if they
do not exist. The default permissions are 666, RW-RW-RW-. You can change these
permissions with chmod or by explicitly defining the devices with mknod.

Rules: Note these rules:
v To read from these devices, the user must be authorized to use ICSF, or ICSF

must have been started with the CHECKAUTH(NO) option.
v For specific authority, if the CSFRNG resource in the CSFSERV class has been

protected, then the user must be permitted to the CSFRNG profile.

File descriptor files
A file descriptor file, /dev/fdn or /def/fd/n (major 5, minor n) is used to refer to the
same file as a previously opened file, as indicated by file descriptor n. If file n is a
regular file or a character special file, the open for /dev/fdn or dev/fd/n will be
done as a real open of the file with file descriptor n. Otherwise, the dup protocol
will be used for that open.

When naming file descriptor file, the n in /dev/fdn or /dev/fd/n is the same as the
minor number. The minor number determines which file descriptor number to
duplicate. For example, opening /dev/fd1 creates a file descriptor that is a
duplicate of file descriptor 1. This might be useful for a program that expects a file
name for output, but you might want it to write its output to stdout instead.

/dev/fdn files are used by c89 to avoid the name-length limitations imposed by the
DD statement PATH parameter.

Use of c89 assumes that you follow the naming conventions for file descriptor files.

File descriptor files are created dynamically as needed by the system when they
are first referenced.

154 z/OS V2R2 UNIX System Services Planning

UNIX domain socket name special file
A path name specifies the socket address for a UNIX domain socket. The path
name is assigned by the application programmer. There is no convention for the
name. The operating system creates the file (major 6).

System console files
The following are system console files:
v /dev/console (major 9, minor 0). Data written to the /dev/console file is sent to

the console and is displayed in message BPXF024I by means of a
write-to-operator function. This message also contains the user ID of the process
that wrote to the console. It is automatically created the first time the system is
IPLed and is created with minor number 0.

v /dev/operlog (major 9, minor 1). This device file is intended for the syslog
daemon. Data written to the /dev/operlog file is sent directly to the sysplex
message log, OPERLOG, which must be active, and is displayed in message
BPXF060I. For each write operation to /dev/operlog, the first character is
removed from the message and used as a message indicator code with the
following values:

'00'x The message originated on a remote system.

'80'x The message originated on the local system.

Messages written to /dev/operlog that are not properly formatted results in an
error return code with EINVAL as the errno.
Using /dev/operlog is a quick way of logging messages.

Handling file system failures
If the file system fails, the operator must take several steps to restore it. See “File
system failure” on page 312 for this information.

Restoring the root file system
If the physical file system owning the root fails, all work in progress when a
failure occurs is lost, and it must be restarted from the beginning.

CAUTION:
Unmounting and remounting a root file system is disruptive to the system. Any
work in progress must be undubbed and redubbed.

Rule: The person who restores a failed root file system or an unmounted root file
system must be a superuser who is defined with a home directory of / (root).

Recovering from file system problems with the root
If the root file system becomes corrupted, you can restore to the last known good
copy and IPL the system, or you can avoid doing an IPL by following the steps
described in this topic. This procedure, while it does not require an IPL, is
disruptive to all UNIX processes. For example, any work that depends on TCP/IP
will be affected.

Tip: If your file system becomes full, you can follow the generic recovery
procedure described in z/OS V2R2 Problem Management

Chapter 5. Managing the z/OS UNIX file system 155

Steps for recovering from file system problems with the root
Before you begin: You need to have a terminal that does not depend on TCP/IP,
and the user ID doing the unmounts must be defined as UID(0) or have
appropriate privileges under UNIXPRIV.

Perform the following steps to recover from file system problems with the root.
1. List the applications that are running. Issue:

D OMVS,A=ALL

2. Bring down all the processes listed, except for BPXOINIT.

3. Make sure that all the processes except for BPXOINIT have been shut down.

Issue:
D OMVS,A=ALL

The display will look like the following:

BPXO040I 07.31.14 DISPLAY OMVS 017
OMVS 000E ACTIVE OMVS=(65)
USER JOBNAME ASID PID PPID STATE START CT_SECS
IBMUSER BPXOINIT 0013 1 0 MR---B 07.21.27 .034
LATCHWAITPID= 0 CMD=BPXPINPR
SERVER=Init Process AF= 0 MF=00000 TYPE=FILE

4. Identify the file systems that are mounted.

D OMVS,F

Result: You will see a display that shows the mounted file systems.

5. Unmount the file systems by using the TSO/E ISHELL command.
Rule: The root file system must be unmounted last and you must use the
IMMEDIATE option when unmounting the root file system. After the root has
been unmounted, the mount table should show SYSROOT.

6. Check the display again.
D OMVS,F

Result: You should see a display similar to the following:

BPXO044I 10.38.16 DISPLAY OMVS 054
OMVS 000E ACTIVE OMVS=(65)
TYPENAME DEVICE ----------STATUS----------- MODE QJOBNAME QPID
BPXFTCLN 0 ACTIVE RDWR

NAME=SYSROOT
PATH=/

7. Follow your recovery actions for the root file system.

8. Mount the root.

Example: From TSO READY or ISPF Option 6, issue:
MOUNT FILESYSTEM(’your root dsname’) TYPE(HFS) MOUNTPOINT(’/’)

Result: The root is mounted at / in read/write mode. If your root is read-only,
add MODE(READ) to the MOUNT FILESYSTEM command.

156 z/OS V2R2 UNIX System Services Planning

9. Mount the individual file systems at their respective mount points by using

the TSO/E ISHELL command.
Tip: To determine the output from the first D OMVS,F command, or the
BPXPRMxx member that you IPL with.

10. After the file systems are mounted (check by issuing D OMVS,F again), have a
superuser (UID=0) enter the shell and issue /etc/rc from the prompt to run the
shell initialization script.

11. Follow your procedures to restart other applications (such as TCP/IP, NFS,
FTP, and WebServer) and confirm that all functions are working.

You know you are done when you have rebuilt the z/OS UNIX environment and
all functions are working.

Installing service into the z/OS UNIX file system
Some customers install service in response to a particular problem that they
experience; some customers install service to prevent problems from occurring.
This latter method is called preventive service. In either case, service is installed into
the file system in a way similar to how it is installed into MVS data sets. This topic
describes how to install service.

To install service, system programmers create a copy of the system that they are
migrating from onto another pack. Sometimes the system that they are migrating
from is the active production-level system, called the driving system. This new copy
is called the target system. The DDDEFs or the DD statements in the cataloged
procedure that is used when applying service are updated to point to the libraries
on the target system. When service is applied, updates are made to the target
libraries.

After service is installed, the new target libraries are tested, and if successful, are
put into production as the new driving system.

As you prepare to install service into the file system, keep the following facts in
mind:
v There is only one file hierarchy active at any given time. You might have

multiple file systems on your system. But z/OS UNIX does not recognize them
unless they are mounted at a directory (mount point) within the file hierarchy.

v If you install service directly on the production file system, you will copy new
load modules over existing ones. This causes potential tracking and system-level
problems. Therefore, you should create a copy of the production file system
before installing service.
In most cases, you will copy the root file system. However, you can use this
same concept to duplicate other production file systems that are mounted in the
file hierarchy or in individual directories. For help copying the root file system,
see “Copying the file system” on page 144.
This new copy must be mounted at a directory (mount point) within the active
file hierarchy. The directories in the newly mounted file system will be the target
libraries when installing service.

Chapter 5. Managing the z/OS UNIX file system 157

v The distribution libraries for elements installing into the file system are still
partitioned data sets.

Installing service into the file system involves the following steps. In these steps,
the new file system is called the service file system. The first two steps are shown in
Figure 18 on page 159.
1. Create a clone of the system that you are migrating from. This includes copying

all necessary partitioned data sets and file systems. A number of utilities such
as IEBCOPY or DFSMSdss can be used to copy partitioned data sets.

2. With a superuser ID, mount the service file system at a mount point within the
active file hierarchy. To do this, first create a directory (mount point) for the
/service directory:
a. Issue the TSO MKDIR command and create a directory called /service:

MKDIR ’/service’

b. Issue the TSO/E MOUNT command to mount the service file system to the
root file system.

c. At this time, the /service directory has permission bits of 755. This prevents
unauthorized users from corrupting the service file system.

3. Change the DDDEFs or DD statements used by the SMP/E cataloged
procedure to point to the new target directories. For example, the DDDEFs
must now point to /service/bin/IBM instead of to /bin/IBM.

Note: With SMP/E, you can perform the ZONEEDIT function for all
directories. You no longer need to change individual DDDEFs for directories
manually.
Also change the VOLSER information of the DDDEFs or DD statements for the
partitioned data sets.

4. Install the service.
5. Test out the new target libraries.
6. After the target libraries have been successfully tested, you can move them into

production. To replace the original file system with the service file system,
using either one of the following methods:
v Use DFSMSDss DUMP and RESTORE to copy the service file system to the

original file system.
Or

v Unmount the original file system. Next, unmount the service file system
from /service and mount it on the original file system mount point. This step
might require changes to the BPXPRMxx member. A reIPL is also required.

7. Keep the target system SYSRES and the target system file system synchronized,
because service might affect both files into the file system and members of the
partitioned data set. Make both the target system SYSRES and the target file
available at the same time.

Example of installing service
Figure 18 on page 159 shows a target system that was created by making a copy of
the driving system on another pack and by making a copy of the root file system.
The root file system is copied into another file system and is mounted within the
file hierarchy. In this example, it is mounted to the /service directory.

158 z/OS V2R2 UNIX System Services Planning

The DDDEFs or the DD statements used by the cataloged procedure when
applying service must point to the target system.

The following example shows sample DDDEFs pointing to new target libraries:
LPALIB DD DSN=SYS1.LPALIB,VOLSER=TARGET,

UNIT=3390,DISP=SHR

SFSUMBIN DD PATH=’/service/bin/IBM’

Transporting the file system from the driving system to the
target system

It is possible to install products and service on one system and then transport this
system image to the rest of their enterprise. Using the DFSMSdss DUMP and
RESTORE utilities, you can dump individual product libraries or full volumes,
transport them to other systems, and restore them.

However, because the individual file systems that make up the active file hierarchy
might be on SMS-managed volumes, there are some special considerations for
making a transportable copy:
v You can dump each file system to be transported into individual sequential data

sets using the DFSMSdss dump utility. These sequential data sets contain all the
necessary information about the files and can also exist with other product
libraries that need to be transported.

v After the system image has been transported to the target system, you can
restore individual product libraries or full volumes using the DFSMSdss restore
utility.

v After the data sets have been unloaded on the target system, you can use the
DFSMSdss restore utility to restore the sequential data sets into individual file
systems. These file systems will make up the active file hierarchy on the target
system.

Using the process just outlined, you can duplicate system images across the
enterprise.

This process is also known as using a “one-pack system.” A one-pack system
consists of one logical SYSRES volume.

Driving
System

SYSRES

(The target system
is an exact copy
of the root file system

/service

Root file system

(Copy of the
driving system)

COPY
Target
System

SYSRES

VOLSER = TARGETVOLSER = IPLPAK

Figure 18. Preparation for installing service

Chapter 5. Managing the z/OS UNIX file system 159

See z/OS DFSMSdss Storage Administrationfor information about dumping HFS data
sets.

Making changes to /etc and /var
Because /etc and /var are symbolic links, and not directories, this difference
affects how you install service and make updates when doing a system replace.
Use the procedures in this topic if the installation process must create one or more
directories, or you would like to copy files from one /etc or /var file system to
another/etc or /var file system.

The /etc file system is the location for your own customization data for products.
You set up the /etc files and you maintain their content. The /var file system is
the location for IBM product information, that is created, used, and maintained by
IBM products.IBM products might create directories under /etc or /var during
installation, but IBM does not create files under /etc or /var during SMP/E
installation. Because IBM products do not create files into /etc or /var, there is no
possibility that SMP/E installation of an IBM product or service will overlay your
own files within /etc or /var.

Because /etc and /var are symbolic links, not directories, they cannot receive
product or service code. If you are installing service or products that must write to
/etc or /var, you need to change /etc or /var to a directory, install the code, and
then change /etc or /var back to a symbolic link. The sample JCL for those tasks
are in SYS1.SAMPLIB; they are:
1. Mount a clone of the system that you are installing into the /service mount

point.
2. Run the sample job BPXISETD to convert the /service/etc and /service/var

symbolic links to directories. Pass the /service parameter to the REXX exec.
Optionally, you can use BPXISJCL to submit the job in the background.

3. Mount the clone of the serviceETC.HFS of the system you need to service at
/service/etc. For /var directory updates, mount the clone of serviceVAR.HFS
of the system you need to service at /service/var.

4. Install the service, which might include running REXX execs that create
directories under /service/etc or /service/var. At this point, you can copy
/etc files from an existing file system's /etc to /service/etc, if you wanted to
bring forward any configuration files, and change them properly.

5. Unmount the /etc after everything is installed from /service/etc. Unmount
the /var after everything is installed from /service/var.

6. Run the sample job BPXISETS to convert the /etc and /var back to symbolic
links at /service/etc and /service/var, respectively.

Example:

If you are mounting a maintenance file system named MAINT.ETC at a symbolic
link (/service/etc) that points to the /SYSTEM/etc mount point where the active
file system (PROD.ETC) is mounted, you must convert the symbolic link to a
directory first.

Guideline: While you can mount on a symbolic link that points to a directory, you
must make sure that the mount point that your symbolic link is pointing to is not
still mounted on by the original /etc file system.

For information on how to migrate the /etc and /var file systems during a system
replace, see z/OS V2.1 Migration "Migrate /etc and /var system control files

160 z/OS V2R2 UNIX System Services Planning

Installing products into the file system
When you install other products into the file system, create new directories where
the files associated with the new product will be installed. You might also need to
create a new file system for the new product and mount it to a new directory.

To help you decide how many file systems you need, see the information about
product sets in the topic that discusses placing data sets on specific volumes in
z/OS Planning for Installation.

The procedures in this topic apply to those installing products into the /etc file
system on a production system.

Because /etc is a symbolic link, it cannot receive product or service code. You need
to run jobs that change /etc to a directory, install the code, and change /etc back
to a symbolic link. The jobs you use are in SYS1.SAMPLIB.

Here are the steps to follow:
1. Mount a clone of the root file system at the /service mount point.
2. Run the sample job BPXISETD to convert the /etc symbolic link to a directory.

Pass the /etc as a parameter to the REXX exec.
Optionally, you can use BPXISJCL to submit the job in the background.

3. Mount the /etc file system.
4. Install the products or service.
5. Unmount the /etc file system after everything is installed.
6. Run the sample job BPXISETS to convert the /etc back to a symbolic link.

Follow these steps each time you install code into /etc.

Chapter 5. Managing the z/OS UNIX file system 161

162 z/OS V2R2 UNIX System Services Planning

Chapter 6. Using the automount facility

The automount facility automatically mounts file systems at the time they are
accessed. It manages the creation of the mount point and the mount of the user file
system for you. Whenever someone accesses a directory managed by the
automount facility, the mount is issued automatically.

Using the automount facility provides the following advantages:
v It is easier to manage file systems. You do not need to mount most file systems

at initialization. You also do not need to request that operators perform mounts
for other file systems. It is easier to add new users because you can keep your
parmlib specification stable. You can establish a simple automount policy to
manage user home directories.

v Resources are not consumed until they are requested. A file system that is
managed by the automount facility remains unmounted until its mount point is
accessed.

v You can reclaim system resources used by a mount if that file system has not
been used for a period of time. You can specify how long the file system should
remain mounted after its last use.

You can use the automount facility for the zFS and HFS file systems in addition to
other file system such as NFS.

Restriction: If you are using system-specific security labels, do not use the
automount facility.

Automounting both HFS and zFS file systems
You can use a single automount policy to manage both HFS and zFS file systems
in the same managed directory. An automount policy specifies the file systems that
are to be mounted by the automount facility.

For more information about the automount command, see z/OS UNIX System
Services Command Reference.

You can use IBM Health Checker for z/OS to check the file system configuration.
It is a base function that provides a foundation to help simplify and automate the
identification of potential configuration problems before they affect system
availability. It compares active values and settings to those suggested by IBM or
defined by your installation. For more information about IBM Health Checker for
z/OS, see Chapter 21, “IBM Health Checker for z/OS,” on page 427.

Automounting NFS file systems
You can use the automount facility for Network File System (NFS). For information
about the parameter requirements for NFS client mounts, see z/OS Network File
System Guide and Reference.

© Copyright IBM Corp. 1996, 2016 163

Automounting in a shared file system
The most recent automount policy that was loaded prevails for all the systems
participating in a shared file system.

Tip: Keep automount policies consistent across systems.

The default delay time for automount is 10 minutes. Do not use a value less than
10. You can use the USS_AUTOMOUNT_DELAY check provided by IBM Health
Checker for z/OS to verify the setting of the delay time. For more information
about IBM Health Checker, see IBM Health Checker for z/OS User's Guide.

How does the automount facility work?
You create an automount policy that specifies directories containing only mount
points, which is the recommended method of managing file systems. An automount
policy specifies the file systems that are to be mounted by the automount facility.
As each mount point is accessed, an appropriate file system is mounted. The
mount point directories are created as they are required. If the file system is no
longer used, the mount point directories are deleted.

Think of the automount facility as an administrator that has total control over a
directory. When a name is accessed in this directory, the automount facility checks
the automount policy for the file system that is supposed to be associated with that
name. Then it performs a mkdir followed by a mount and moves out of the way.
Now the root directory of that newly mounted file system can be accessed as that
name.

For example, suppose that you had created the USER1 directory with the mkdir
command. If you had set up the automount facility and put the automount policy
in place, you would not have needed to do that. The USER1 directory would have
been dynamically created and the OMVS.USER1 data set automatically mounted at
the /u/user1 mount point.

Later, if the /u/user1 file system was not accessed based on certain criteria in your
automount policy, the OMVS.USER1 data set is automatically unmounted and the
USER1 directory removed.

The automount facility will not manage any directory until it can process the entire
policy without encountering any errors.

You can use a prefilter by updating the automount master file to include the name
of the filter utility. For more information, see the automount description in z/OS
UNIX System Services Command Reference.

The automount file system is mounted with an automove attribute of either
AUTOMOVE or UNMOUNT. The automove attribute is set to UNMOUNT only
when its parent file system has its automove attribute set to UNMOUNT.

If the automount policy is loaded, you will get a return code of 0. A nonzero
return code indicates that the policy was not loaded.

Setting up the automount facility
You need to customize the configuration files before you can start using the
automount facility.

164 z/OS V2R2 UNIX System Services Planning

v The /etc/auto.master file must contain the directory or directories that the
automount facility will monitor.

v The MapName file must have entries for the mapping between the subdirectory
of a directory managed by the automount facility and the mount parameters. For
an example of a MapName file, see “MapName.”

You can also refer to the automount command in z/OS UNIX System Services
Command Reference for more information about both files.

Restriction: File system name templates using symbol symbolics cannot be more
than 44 characters long. Symbolics used for the automount facility (&SYSNAME.,
<asis_name>, <us_name>) are resolved within automount as part of checking the
length of the file system name template.

/etc/auto.master
The /etc/auto.master file contains the directory or directories that the automount
facility will monitor. It also contains an associated MapName file that contains the
mount parameters.

Figure 19 is an example of a /etc/auto.master file. It specifies that the automount
facility is to manage the /u directory. If someone using kernel services tries to
access a directory in the /u directory, the automount facility automatically mounts
the data set based on the MapName policy in Figure 20 on page 166.

The name of the map file can be specified as a data set name. The data set name
must be specified as a fully qualified name and can be uppercase or lowercase.
Single quotation marks are not needed. For example:
/u //sys1.parmlib(amtmapu)

MapName
The MapName file contains the mapping between a subdirectory of a directory
managed by the automount facility and the mount parameters. It can contain both
specific entries and a generic entry. When the automount facility tries to resolve a
lookup request, it attempts to find a specific entry. If a specific entry does not exist
for the name being looked up, it will then attempt to use the generic entry.

Tip: The MapName file can contain only one generic entry, and it has to be the
first entry in the MapName file. When using generic entries, you should have a
consistent naming criterion. The file system in Figure 20 on page 166 has a
high-level qualifier of OMVS, and the lower level qualifier is equal to the user ID.

Figure 20 on page 166 shows an example of a MapName file. It contains the mount
parameters for the user directories.

/u /etc/u.map

Figure 19. Example of an /etc/auto.master file. It is named /etc/u.map.

Chapter 6. Using the automount facility 165

In the example, &SYSNAME. represents the system name while <uc_name> specifies
that the name being looked up is to be represented in uppercase. The automount
facility creates a directory containing that name and uses it as a mount point for
the file system to be mounted. You can use <uc_name> to replace any level qualifier.
For example, if the name of the directory that is being looked up is USER1, the
automount facility will resolve the name in the following ways:
OMVS. <uc_name> = OMVS.USER1
OMVS. <uc_name>.ZFS = OMVS.USER1.ZFS

For a complete list of supported keywords, see the automount command in z/OS
UNIX System Services Command Reference.

Security considerations for the automount policy
In the MapName file, the setuid keyword specifies whether to support or ignore
the setuid or setgid mode bits on executable files loaded from the file system. The
default is yes.

For security reasons, consider specifying "setuid no" . If you do, then the setuid
and setgid flags in the permission bits are ignored, as well as the program control
extended attribute (+p) and the APF-authorized extended attribute (+a). Consider
the following:
v UNIX files and directories are contained in MVS data sets.
v UNIX users using these files and directory do not need access to these MVS data

sets. Only the kernel and your storage administrators need access to the data
sets.

v If you give the users direct access to the MVS data sets by giving them
UPDATE access in a RACF profile protecting the data sets, or by naming the
data sets with the user ID as the HLQ, and you do not specify "setuid no" when
mounting, you have a security exposure.

Using map files from other systems
If you have been using a map file on another system and want to use it on z/OS
UNIX, you will have to use a conversion utility to reformat it. If you want to use a
map file with syntax different from that supported by z/OS UNIX, such as a map
file from another type of system, you can implement a conversion utility that
converts the file to syntax supported by z/OS UNIX. Then you can direct the
automount utility to run it and use the output of your conversion utility as the
map file. For more information, see the automount command in z/OS UNIX System
Services Command Reference.

Steps for setting up the automount facility

Before you begin: You must have a superuser ID in order to activate the
automount facility from the shell.

Perform the following steps to set up the automount facility.

name *
type ZFS
filesystem OMVS.&SYSNAME..<uc_name>
mode rdwr
duration nolimit
delay 10
setuid no | yes

Figure 20. Example of a generic entry in a MapName file, /etc/u/map

166 z/OS V2R2 UNIX System Services Planning

1. Add the following statement to your BPXPRMxx parmlib member.
FILESYSTYPE TYPE(AUTOMNT) ENTRYPOINT(BPXTAMD)

2. Either restart z/OS UNIX or issue SETOMVS RESET to activate the automount

PFS.

3. Customize the /etc/auto.master file. For more information about the
/etc/auto.master file, see “/etc/auto.master” on page 165 and z/OS UNIX
System Services Command Reference.
Set the permission bits so that the file is protected from write by ordinary users
like other system files. The files should be owned by UID(0) and have write
permission only for owner, such as 644. If the group for the file is a properly
restricted group, 664 would also be appropriate.

4. Customize the MapName file

5. Activate the automount facility from the shell. You can activate the automount
facility in one of two ways as shown in Table 18. Base your choice on your
particular situation.

Table 18. Ways of starting the automount facility. This table lists the ways of starting the
automount facility (from the shell and during initialization)

If you want to start the
automount facility

Then

From the shell

Rule: You must have a superuser
ID.

Issue:

/usr/sbin/automount

If the automount facility was started from the shell, do
not submit any job that requires an automount-managed
file system until automount initialization is complete.

During initialization Add the following lines to the /etc/rc file:

Start the automount facility
/usr/sbin/automount

If the automount has been started from /etc/rc, do not
submit jobs that require an automount-managed file
system before you get the message BPXI004I, or they
may fail due to allocation errors.

When working with the automount facility:
v If arguments are not used, the automount facility reads the /etc/auto.master

and MapName files. If a master file name is specified, that file name is used
instead of /etc/auto.master.

v The -s option only checks the syntax of the configuration file. The automount
policy is not activated.

v Use the -a option if you want to append the new automount policy to the
original policy instead of replacing it. It is mutually exclusive with the -q
option.

When you are done, you have activated the automount facility.

Chapter 6. Using the automount facility 167

What happens when you start the automount facility from the
shell?

Figure 21 shows what happens when the automount facility is started from the
shell. It shows how file systems are automatically mounted. To access the shell,
type OMVS from ISPF option 6.

v �1� The automount command is being issued from a superuser ID to start the
automount facility from the shell.

v �2� The automount facility scans the /etc/auto.master file first to see what
MapName file or files should be read. Here, the /u directory is being managed.
Calling the automount command twice by mistake does not cause problems
regardless of whether a file system is already mounted. The automount facility
reads the /etc/auto.master file and associated MapName file or files again and
then picks up any changes.

v �3� The display free space command (df) is issued. It shows that the automount
facility has been started and is managing the /u directory. Notice the (*AMD/u).

v �4� Change directory (cd) commands are issued to access directories in the three
file systems that are to be mounted from the /u directory. In this case, the
directories USER1, RPETRI, and SLEKKA are used to resolve the <uc_name>

df
Mounted on Filesystem Avail/Total Files Status
/ (OMVS.ROOT) 1432/89280 0 Available
/usr/sbin/automount �1�
FOMF0107I Processing file /etc/u.map
FOMF0108I Managing directory /u �2�
df �3�
Mounted on Filesystem Avail/Total Files Status
/u (*AMD/u) 0/8 0 Available
/ (OMVS.ROOT) 1432/89280 0 Available
cd /u/user1 �4�
cd /u/slekka/testdir �4�
cd /u/rpetri �4�
df �5�
Mounted on Filesystem Avail/Total Files Status
/u (*AMD/u) 0/8 0 Available
/u/rpetri (OMVS.RPETRI) 4256/4320 0 Available
/u/slekka (OMVS.SLEKKA) 4232/4320 0 Available
/u/user1 (OMVS.USER1) 4232/4320 0 Available
/ (OMVS.ROOT) 1432/89280 0 Available
ls -l /u �6�
Total 496
drwxr-xr-x 2 RPETRI OMVSGRP 0 Nov 2 09:59 rpetri
drwxr-xr-x 2 SLEKKA OMVSGRP 0 Nov 1 09:47 slekka
drwx------ 2 ADMIN OMVSGRP 0 Nov 7 09:07 user1
chown user1 /u/user1 �7�
ls -l /u �8�
Total 496
drwxr-xr-x 2 RPETRI OMVSGRP 0 Nov 2 09:59 rpetri
drwxr-xr-x 2 SLEKKA OMVSGRP 0 Nov 1 09:47 slekka
drwx------ 2 USER1 OMVSGRP 0 Nov 7 09:07 user1
#

===>

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FedRetr 12=Retrieve

Figure 21. Follow-up steps when using the automount facility

168 z/OS V2R2 UNIX System Services Planning

symbol in the /etc/u.map file. The RPETRI, SLEKKA, and USER1 directory
names are translated to uppercase and substituted to build the data set names
OMVS.RPETRI, OMVS.SLEKKA, and OMVS.USER1, respectively. The RPETRI,
SLEKKA, and USER1 directories do not physically exist in any file system but
will be created as pseudo mount points by the automount facility on which the
HFS data sets OMVS.RPETRI, OMVS.SLEKKA, and OMVS.USER1 are mounted.

v �5� Output from another df command shows that (*AMD/u) is managing the /u
directory. It also shows that the OMVS.RPETRI, OMVS.SLEKKA and
OMVS.USER1 data sets are now mounted at pseudo mount points /u/rpetri,
/u/slekka, and /u/user1, respectively.
When automount is actively managing a particular mount point (in this case /u)
you cannot add a file to this directory (/u) or create a new subdirectory off the
/u directory using the mkdir command. If you try, you will see an allocation or
catalog error.

v �6� The ls -l /u command is issued against the /u directory and the directory
attributes are displayed.

v �7� The chown is issued to change the ownership of /u/user1 directory from
ADMIN to USER1.

v �8� The ls -l /u command is issued again to show that the owner field of the
/u/user1 directory is now set to USER1.

Figure 21 on page 168 shows how <uc_name> works with the /etc/auto.master and
/etc/u.map files from Figure 19 on page 165. The OMVS.RPETRI, OMVS.SLEKKA
and OMVS.USER1 data sets have already been allocated. The low-level qualifier of
the data sets is the user ID which is also the directory mount point that automount
will dynamically allocate. With the automount facility, if a user tries to access any
directory in their file system, the data set is automatically mounted under the /u
directory.

When working with the automount facility:
v You can use specific entries for directory names when the parameters you want

to use differ from the generic entry. Any parameters that are not specified are
inherited from the generic entry. A specific entry defines a directory name called
wjs in the name parameter of the MapName file rather than an * as shown in
Figure 22 on page 170.
In this example, the duration for generic mounts is set to unmount idle file
systems after 60 minutes. But in this specific mount entry, idle file systems will
stay mounted indefinitely. Also, a specific file system is specified because the file
system name does not conform to the format in the generic entry. All other
attributes are inherited from the generic entry.

v To display the current automount policy, issue
/usr/sbin/automount -q

v You can specify the allocation parameters when using automount to allocate a
data set. The specifications for the automount map file have keywords that you
can use to specify allocation keywords.

Note:

1. When a new file system of the type HFS is created and allocated to a new user,
the owner UID and GID are based on that user. The setting of the permission
bits is 700. By default, the automount process uses the UID and GID of the user
ID that owns the process. If the euid keyword is specified for allocany or
allocuser, the thread level UID and GID are used instead.

Chapter 6. Using the automount facility 169

2. When a new file system of the type ZFS is created and allocated to a new user,
the owner UID and GID are based on that user. The setting of the permission
bits is 750. By default, the automount process uses the UID and GID of the user
ID that owns the process. If the euid keyword is specified for allocany or
allocuser, the thread level UID and GID are used instead.

Naming specific directories
Given the /etc/auto.master and /etc/u.map files as shown in Figure 22, whenever
the directory /u/wjs is referred to by a command such as cd or cp, the automount
facility mounts the OMVS.WJS.HFS data set.

Restrictions: For generic and specific entries:
v Do not use a / in front of the name of the directory to be mounted in a specific

entry in a MapName file. For example, in /etc/u.map, the following is correct:
name wjs

But the following is not correct:
name /wjs

v The directory name and the data set name qualifier for the data set which is
replaced by the variable <uc_name> must be the same. Otherwise you will
receive such error messages as:
DC129I No such file or directory

or
EDC515I Dynamic allocation error

Changing which file systems are automounted
The automount facility is a physical file system (PFS) that is started with a
FILESYSTYPE statement in the BPXPRMxx parmlib member. After the PFS is
started, the automount facility manages the policy that you make active by using
the /usr/sbin/automount command. You can change the automount policy at any
time, although you cannot set it to null. To change it, update the automount
configuration files (/etc/auto.master and MyMap). Then activate that configuration
with the /usr/sbin/automount command.

------ /etc/auto.master ------

/u /etc/u.map

------ /etc/u.map ---------

name *
type HFS
filesystem OMVS.<uc_name>
mode rdwr
duration 60
delay 10
/*
name wjs
filesystem OMVS.WJS.HFS
duration nolimit

Figure 22. Specific entry in a MapName file

170 z/OS V2R2 UNIX System Services Planning

Stopping the automount facility
You cannot stop the automount facility after it has been started. Instead, change
the automount configuration files (/etc/auto.master and MyMap) so that the
automount facility is set to manage a dummy directory. Then activate that
configuration with the /usr/sbin/automount command. Or you can simply
unmount any *AMD/ file system.

Chapter 6. Using the automount facility 171

172 z/OS V2R2 UNIX System Services Planning

Chapter 7. Sharing file systems in a sysplex

Some terms were changed in V1R7.
v The term "shared HFS” was renamed to “shared file system”.
v The term "root HFS” was changed to "root file system”.
v The term "version HFS” was changed to "version file system”.

You will read about the shared file system capability in a multisystem sysplex
environment. It is assumed that you already have completed the other setup
activities for a sysplex environment. You will learn about the shared file system
concept, the different file systems that exist in a sysplex, and how to establish that
environment.

Although it is suggested that you exploit shared file system support when running
in a sysplex environment, you are not required to do so. If you choose not to, you
will continue to share file systems as you have before. To see how the file system
structure has changed to support the shared file system environment, even when
running on a single system, see “Illustrating file systems in single system and
sysplex environments” on page 175.

z/OS Program Directory describes how IBM's integration test team implemented a
shared file system.

Use the IBM Health Checker for z/OS to check the file system configuration, as
described in Chapter 21, “IBM Health Checker for z/OS,” on page 427.

What does shared file system mean?
By establishing the shared file system environment, sysplex users can access data
throughout the file hierarchy from any system in the sysplex.

The best way to describe the benefit of this function is by comparing what was the
file system sharing capability prior to the introduction of shared file system
support with the capability that exists now. Consider a sysplex that consists of two
systems, SY1 and SY2:
v Users logged onto SY1 can write to the directories on SY1. For users on SY1 to

make a change to file systems mounted on SY2's /u directory, they would have
to log onto SY2.

v The system programmer who makes configuration changes for the sysplex needs
to change the entries in the /etc file systems for SY1 and SY2. To make the
changes for both systems, the system programmer must log onto each system.

With shared file system support, all file systems that are mounted by a system
participating in a shared file system are available to all participating systems. In
other words, once a file system is mounted by a participating system, that file
system is accessible by any other participating system. It is not possible to mount a
file system so that it is restricted to just one of those systems. Consider a sysplex
that consists of two systems, SY1 and SY2:
v A user logged onto any system can make changes to file systems mounted on /u,

and those changes are visible to all systems.

© Copyright IBM Corp. 1996, 2016 173

v The system programmer who manages maintenance for the sysplex can change
entries in both /etc file systems from either system.

The term participating group is used to identify those systems that belong to the
same SYSBPX XCF sysplex group and have followed the required installation and
migration activities to participate in a shared file system.

There is also greater availability of data in case of system outage, and a greater
flexibility for data placement and the ability for a single BPXPRMxx member to
define all the file systems in the sysplex.

How the end user views the shared file system
You will read about the kinds of file systems and data sets that support the shared
file system capability in the sysplex. Figure 23 shows that, to the end users, the
logical view of the hierarchical file system does not change. From their point of
view, accessing files and directories in the system is just the same. That is true for
all end users, whether they are in a sysplex or not.

This logical view applies to the end user only. However, system programmers need
to know that the illustration of directories found in Figure 23 does not reflect the
physical view of file systems. For example, some of the directories are actually
symbolic links, as is described in the following information.

Summary of various file systems in a shared environment
This topic introduces the various file systems and terms needed to use the shared
file system support. Table 19 summarizes the file systems that are needed in a
sysplex environment. As you study the illustrations of file system configurations,
you can refer back to this table.

Table 19. Various file systems that exist in a sysplex. This table lists a summary of the various file systems in a
shared environment

Name Characteristics Purpose How created

Sysplex root It contains directories and
symbolic links that allow
redirection of directories.
Only one sysplex root file
system is allowed for all
systems participating in a
shared file system.

The sysplex root is used by the
system to redirect addressing
to other directories. It is very
small and is mounted
read-only.

For the zFS file system, the
user runs the BPXISYZR job.

For the HFS file system, the
user runs the BPXISYSR job.

SYSTEM dev tmp var etcusrbinu lib opt samples

lpp

booksrv tcpip
. . .

Figure 23. Logical view of a shared file system for the end user

174 z/OS V2R2 UNIX System Services Planning

Table 19. Various file systems that exist in a sysplex (continued). This table lists a summary of the various file
systems in a shared environment

Name Characteristics Purpose How created

System specific It contains data specific to
each system, including the
/dev, /tmp, /var, and /etc
directories for one system.
There is one system-specific
file system each system
participating in a shared file
system.

When using the TSO/E
MOUNT command to set up
system-specific file systems,
specify the UNMOUNT
parameter. Then, if data sets
are replaced during a reIPL,
the new data sets will be
mounted as the original file
systems.

Use the NORWSHARE
mount parameter to mount
zFS system-specific file
systems.

The system-specific file system
is used by the system to mount
system-specific data. It contains
the necessary mount points for
system-specific data and the
symbolic links to access
sysplex-wide data, and must be
mounted read/write.

For the zFS file system, the
user runs the BPXISYZS job on
each participating system.

For the HFS file system, the
user runs the BPXISYSS job on
each participating system.

Version

In a sysplex, the
version file system is
the new name for
the root file system.

It contains system code and
binaries, including the /bin,
/usr, /lib, /opt, and /samples
directories. IBM delivers
only one version root; you
might define more as you
add new system levels and
new maintenance levels.

The version file system has the
same purpose as the root file
system in the non-sysplex
world. It must be mounted
read-only. See “Mounting the
version file system” on page
180 for a complete description
of the version file system.

IBM supplies this file system
in the ServerPac. CBPDO users
create the file system by
following steps defined in the
Program Directory.

Illustrating file systems in single system and sysplex environments
The illustrations in this section show you how the file system structures have
changed since the introduction of the shared file system support. These
illustrations build upon IBM's long-standing suggestions that you separate the
system setup parameters from the file system parameters so that each system in
the sysplex has two BPXPRMxx members: a system limits member and a file
system member.

In the shared file system environment, that separation of system limit parameters
from file system parameters is even more important. Each system will continue to
have a system limits BPXPRxx member. As you will see in sections that follow,
with shared file system support, you can have a file system BPXPRMxx member
for each participating system or you can replace those individual file system
BPXPRMxx members with a single file system BPXPRMxx member for all
participating systems.

Chapter 7. Sharing file systems in a sysplex 175

File systems in single system environments
Figure 24 shows what BPXPRMxx file system parameters would look like in a
single system environment, and Figure 25 on page 177 shows the corresponding
single system image. SYSPLEX(NO) is specified (or the default taken), and the
mount mode is read-only.

The root can be mounted either read-only or read/write.

BPXPRMxx

FILESYSTYPE
TYPE(ZFS)
ENTRYPOINT(IOEFSCM)
ASNAME(ZFS)

SYSPLEX(NO)

ROOT
FILESYSTEM(’OMVS.ROOT.ZFS’)
TYPE(ZFS) MODE(RDWR)

MOUNT
FILESYSTEM(’OMVS.DEV.ZFS’)
TYPE(ZFS) MODE(RDWR)
MOUNTPOINT(’/dev’)

MOUNT
FILESYSTEM(’OMVS.TMP.ZFS’)
TYPE(ZFS) MODE(RDWR)
MOUNTPOINT(’/tmp’)

MOUNT
FILESYSTEM(’OMVS.VAR.ZFS’)
TYPE(ZFS) MODE(RDWR))
MOUNTPOINT(’/var’)

MOUNT
FILESYSTEM(’OMVS.ETC.ZFS’)
TYPE(ZFS) MODE(RDWR)
MOUNTPOINT(’/etc’)

Figure 24. BPXPRMxx parmlib member for a single system

176 z/OS V2R2 UNIX System Services Planning

The presence of symbolic links is transparent to the user. In the illustrations used
throughout this section, symbolic links are indicated with an arrow.

In Figure 25, the root file system contains an additional directory, /SYSTEM;
existing directories, /etc, /dev, /tmp and /var are converted into symbolic links.
These changes, however, are transparent to the user who brings up a single system
environment.

If the content of the symbolic link begins with $SYSNAME and SYSPLEX is
specified NO, then $SYSNAME is replaced with /SYSTEM when the symbolic link
is resolved.

Establishing a shared file system in a sysplex
When setting up a shared file system in a sysplex, do not assume that with shared
file systems, two systems can share a common file system for /etc, /tmp, /var, and
/dev. This is not the case. Even with shared file systems, each system must have
specific file systems for each of these mount points. The file systems are then
mounted under the system-specific file system (see Figure 34 on page 198). With
shared file system support, one system can access system-specific file systems on
another system. (The existing security model remains the same.) For example,
while logged onto SY2, you can gain read/write access to SY1's /tmp by specifying
/SY1/tmp/.

Be aware that when SYSPLEX(YES) is specified, each FILESYSTYPE in use within
the participating group must be defined for all systems participating in a shared
file system. The easiest way to accomplish this is to create a single BPXPRMxx
member that contains file system information for each system participating in a
shared file system. If you decide to define a BPXPRMxx member for each system,
the FILESYSTYPE statements must be identical on each system. To see the
differences between having one BPXPRMxx member for all participating systems

/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

/bin

/usr

/lib

/opt

/samples

dev
tmp
var
etc

dev
tmp
var
etc

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples
...
u

bin
usr
lib
opt
samples
...
u

SYSTEM/

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.VAR.ZFS

OMVS.DEV.ZFS

OMVS.TMP.ZFS

OMVS.ETC.ZFS

OMVS.ROOT.ZFS

Figure 25. Illustration of a single system

Chapter 7. Sharing file systems in a sysplex 177

and having one member for each participating system, see the two examples in
“Scenario 2: Multiple systems in the sysplex using the same release level” on page
195.

In addition, facilities required for a particular file system must be initiated on all
systems in the participating group. For example, NFS requires TCP/IP; if you
specify a FILESYSTYPE of NFS, you must also initialize TCP/IP when you
initialize NFS, even if there is no network connection.

Tip: When using the TSO/E MOUNT command to set up system-specific file
systems, specify the UNMOUNT parameter. Then, if data sets are replaced during
a reIPL, the new data sets are mounted as the original file systems.

Creating the sysplex root file system
The sysplex root is a file system that is used as the sysplex-wide root. This file
system must be initially mounted read/write and designated AUTOMOVE. (See
“Customizing BPXPRMxx for a shared file system” on page 185 for a description
of the AUTOMOVE parameter in BPXPRMxx.) Only one sysplex root is allowed
for all systems participating in a shared file system.

The sysplex root is created in one of two ways:
v For the zFS file system, it is created by invoking the BPXISYZR job in

SYS1.SAMPLIB.
v For the HFS file system, it is created by invoking the BPXISYSR sample job in

SYS1.SAMPLIB.

After the job runs, the structure of a sysplex root file system would look like
Figure 26:

Sysplex root

/...

/bin
/usr
/lib
/opt
/samples
$VERSION
$SYSNAME
/dev
/tmp
/var
/etc

/u

/...

/bin
/usr
/lib
/opt
/samples
$VERSION
$SYSNAME
/dev
/tmp
/var
/etc

/u

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

Figure 26. What the file system structure of a sysplex root looks like

178 z/OS V2R2 UNIX System Services Planning

No files or code reside in the sysplex root file system. It consists of directories and
symbolic links only, and hence the size of the data set representing the sysplex root
is very small.

The sysplex root provides access to all directories. Each system in a sysplex can
access directories through the symbolic links that are provided. Essentially, the
sysplex root provides redirection to the appropriate directories.

Guideline: After you create the directories for each system-specific file system and
the version root file system, use the TSO UNMOUNT command to remount the
sysplex root as read-only. Remounting the sysplex root file system as read-only
prevents accidental corruption or full-file system problems with the sysplex root,
both of which might require a sysplex IPL to recover. Additionally, most
configurations will show improved performance if the file system is mounted as
read-only. If a new directory needs to be added to the sysplex root file system, you
can do the following tasks without disrupting the availability of the file system:
1. Use the TSO UNMOUNT command to remount the read-only file system to

read/write mode.
2. Create the new directories.
3. Remount the file system in read-only mode.

Adding a system-specific or version root file system to your
shared file system configuration

In general, the contents of the sysplex root should only change when you need a
new version root or system-specific root file system directory for your shared file
system configuration. When a system is IPLed (initialized), the mount processing
for the sysplex root file system will include defining the appropriate $SYSNAME
or $VERSION directory in the sysplex root file system if the sysplex root is
mounted as read/write. Assuming that you have the sysplex root file system
mounted as read-only, the procedure to use to create a new version root or
system-specific file system directory is as follows:
1. Use the following TSO command to change the file system from read-only to

read/write mode:
UNMOUNT FILESYSTEM(’Sysplex.Root.File.System.Name’) REMOUNT(RDWR)

2. IPL the new system. When OMVS is initialized on the new system, the new
directories will be defined automatically. If the system is already active, you
can manually define the appropriate directories using ISHELL or the shell
mkdir command.

3. To change the file back to read-only mode, use the following TSO command:
UNMOUNT FILESYSTEM(’Sysplex.Root.File.System.Name’) REMOUNT(READ)

Creating a system-specific file system
Directories in the system-specific file system are used as mount points, specifically
for /etc, /var, /tmp, and /dev.

Rule: To create the system-specific file system, you need to run the appropriate
sample job in SYS1.SAMPLIB on each participating system. In other words, you
must run the sample job separately for each system that will participate in a file
system.
v For the zFS file system, run the BPXISYZS sample job in SYS1.SAMPLIB.
v For the HFS file system, run the BPXISYSS sample job in SYS1.SAMPLIB.

Chapter 7. Sharing file systems in a sysplex 179

After you invoke the job, the system-specific file system structure would look like
Figure 27:

The system-specific file system should be mounted read/write. When specifying
MOUNT statements in the BPXPRMxx parmlib member for system-specific file
systems, specify the UNMOUNT parameter. Then, if a system is removed from the
sysplex, its file systems will be unmounted. If data sets are replaced during a
reIPL, the new data sets are mounted as the original file systems.

If the system-specific file system is a zFS file system, specify the
PARM('NORWSHARE') parameter in the BPXPRMxx MOUNT statement.
Specifying NORWSHARE reduces zFS storage requirements for the file system and
simplifies recovery flows.

Also, /etc, /var, /tmp, and /dev should be mounted similarly.

Guideline: In order to use the &SYSNAME symbolic (defined in IEASYMxx) in the
BPXPRMxx parmlib member, make sure that the name of the system-specific data
set contains the system name as one of the qualifiers.

If you mount a system-specific file system on other than the correct
(system-specific) owner, either explicitly or due to AUTOMOVE, loss of function
might occur. For example, if the system-specific file system mounted at /dev for
SY1 is moved to SY2 so that ownership is now SY2, the OMVS command on SY1
will fail.

Mounting the version file system
The version file system is the IBM-supplied root file system. To avoid confusion
with the sysplex root file system, "root file system" has been renamed to "version
file system".

Figure 28 on page 181 shows a version file system.

System-specific file system

bin
usr
lib
opt
samples

dev
tmp
var
etc

bin
usr
lib
opt
samples

dev
tmp
var
etc

/bin
/usr
/lib
/opt
/samples

Figure 27. What the structure of a system-specific file system looks like

180 z/OS V2R2 UNIX System Services Planning

Guidelines: When mounting the version file system, keep these guidelines in
mind.
1. Mount the version file system read-only in a sysplex environment, and

designate it AUTOMOVE. The mount point for the version file system is
dynamically created if the VERSION statement is used in BPXPRMxx.

2. &SYSNAME as one of the qualifiers for the version file system data set name.
In “Sysplex scenarios showing shared file system capability” on page 192, REL9
and REL9A are used as qualifiers, which correspond to the system release
levels. However, you do not necessarily have to use the same qualifiers. Other
appropriate names are the name of the target zone, &SYSR1, or another
qualifier meaningful to the system programmer.

IBM supplies the version file system in ServerPac. CBPDO users obtain the version
file system by following directions in the Program Directory. There is one version
file system for each set of systems participating in a shared file system and who
are at the same release level (that is, using the same SYSRES volume). In other
words, each version file system denotes a different level of the system or a
different service level. For example, if you have 20 systems participating in a
shared file system, and 10 of those systems are at Release 9 and the other 10 are at
Release 9A, then you'll have one version file system for the Release 9 systems and
one for the Release 9A systems. In essence, you will have as many version file
systems for the participating systems as you have different levels running.

Before you mount your version file system read-only, you might have some
element-specific actions. These are described in “Post-installation actions for
mounting the root file system in read-only mode” on page 136.

Creating a couple data set (CDS)
The TYPE(BPXMCDS) couple data set (CDS) contains the sysplex-wide mount
table and information about all participating systems, and all mounted file systems

Version file system
/

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

$SYSNAME/etc

/bin

/usr

/lib

/opt

/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples
…

bin
usr
lib
opt
samples
…

SYSTEM/

Figure 28. What a version file system looks like

Chapter 7. Sharing file systems in a sysplex 181

in the sysplex. To allocate and format a TYPE(BPXMCDS) CDS, customize and
invoke the BPXISCDS sample job in SYS1.SAMPLIB. The job will create two couple
data sets: one is the primary and the other is a backup that is referred to as the
alternate. In BPXISCDS, you also specify the number of mount records that are
supported by the CDS.

Use of the CDS functions in the following manner:
1. The first system that enters the sysplex with SYSPLEX(YES) initializes the CDS

for z/OS UNIX System Services. The z/OS UNIX CDS controls shared file
system mounts and will eventually contain information about all systems
participating in the shared file system configuration.
This system processes its BPXPRMxx parmlib member, including all its ROOT
and MOUNT statement information. The MOUNT and ROOT information are
logged in the CDS so that other systems that eventually join the participating
group can read data about systems that are already using shared file system.

2. Subsequent systems joining the participating group will read what is already
logged in the CDS and will perform all mounts. Any new BPXPRMxx mounts
are processed and logged into the CDS. Systems already in the participating
group will then process the new mounts added to the CDS.

Following is the sample JCL with comments. The statements in bold contain the
values that you specify based on your environment. Place the primary and
alternate couple data sets on separate volumes.

182 z/OS V2R2 UNIX System Services Planning

AMTRULES specifies the number of automount rules that can be supported by
z/OS UNIX. It must be large enough to describe each automount-managed
directory in your automount policy. The maximum value is 5000. Generally, each
managed directory requires one AMTRULE, and each generic or specific rule for
that managed directory requires one-half of an AMTRULE. For example, an
automount policy consisting of two managed directories where the first managed
directory contains a single generic rule and the second managed directory contains

//*
//STEP10 EXEC PGM=IXCL1DSU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
/* Begin definition for OMVS couple data set(1) */
DEFINEDS SYSPLEX(PLEX1)
/* Name of the sysplex in which the OMVS couple data set is to be used.*/
DSN(SYS1.OMVS.CDS01) VOLSER(3390x1)
/* The name and volume for the OMVS couple data set.
The utility will allocate a new data set by the name specified on the
volume specified.*/
MAXSYSTEMS(8)
/* Specifies the number of systems to be supported by the z/OS UNIX CDS.

Default = 8 */
NOCATALOG

/* Default is not to CATALOG */
DATA TYPE(BPXMCDS)
/* The type of data in the data set being created for OMVS.

BPXMCDS is the TYPE for OMVS. */ITEM NAME(MOUNTS) NUMBER(100)
/* Specifies the number of MOUNTS that can be supported by OMVS.*/

Default = 100
Suggested minimum = 10
Suggested maximum = 35000 */

ITEM NAME(AMTRULES) NUMBER(50)
/* Specifies the number of automount rules that can be supported by OMVS.*/

Default = 50
Minimum = 50
Maximum = 5000 */

/* Begin definition for OMVS couple data set(2) */
DEFINEDS SYSPLEX(PLEX1)
/* Name of the sysplex in which the OMVS couple data set is to be used. */
DSN(SYS1.OMVS.CDS02) VOLSER(3390x2)
/* The name and volume for the OMVS couple data set. The utility will

allocate a new data set by the namespecified on the volume specified. */
MAXSYSTEMS(8)
/* Specifies the number of systems to be supported by the z/OS UNIX CDS.

Default = 8 */
NOCATALOG

/* Default is not to CATALOG */
DATA TYPE(BPXMCDS)

/* The type of data in the data set being created is for OMVS.
BPXMCDS is the TYPE for OMVS. */

ITEM NAME(MOUNTS) NUMBER(100)
/* Specifies the number of MOUNTS that can be supported by OMVS.

Default = 100
Suggested minimum = 10
Suggested maximum = 35000 */

ITEM NAME(AMTRULES) NUMBER(50)
/* Specifies the number of automount rules that can be supported by OMVS.

Default = 50
Minimum = 50
Maximum = 5000 */

Chapter 7. Sharing file systems in a sysplex 183

three specific rules would require a total of four AMTRULES. The first managed
directory requires 1.5 AMTRULES and the second managed directory requires 2.5
AMTRULES.

Rule: Automount mounts must be included in the MOUNTS value. The number of
automount mounts is the expected number of concurrently mounted file systems
using the automount facility. For example, you might have specified 1000 file
systems to be automounted, but if you expect only 50 to be used concurrently, then
factor these 50 into your MOUNTS value.

For more information about setting up a z/OS system to run in a sysplex, see z/OS
MVS Setting Up a Sysplex.

The NUMBER(nnnn) specified for mounts and automount rules (a generic or
specific entry in an automount map file) is directly linked to function performance
and the size of the CDS. If maximum values are specified, the size of the CDS will
increase accordingly and the performance level for reading and updating it will
decline.

Conversely, if the NUMBER values are too small, the function (for example, the
number of mounts supported) would fail after the limit is reached. However, a
new CDS can be formatted and switched in with larger values specified in
NUMBER. To make the switch, issue the SETXCF COUPLE,PSWITCH command.
The number of file systems required (factoring in an additional number to account
for extra mounts), determines your minimum and maximum NUMBER value.

After the CDS is created, it must be identified to XCF for use by z/OS UNIX.

Updating COUPLExx to define the z/OS UNIX CDS to XCF
Update the active COUPLExx parmlib member to define a primary and alternate
z/OS UNIX couple data sets to XCF. Place the primary and alternate couple data
sets on separate volumes. (The sample JCL in “Creating a couple data set (CDS)”
on page 181 shows the primary CDS on volume 3390x1 and the secondary CDS on
3390x2.)

Figure 29 on page 185 shows the COUPLExx parmlib member; statements that
define the CDS are in bold.

184 z/OS V2R2 UNIX System Services Planning

The MVS operator commands (DISPLAY XCF, SETXCF, DUMP, CONFIG, and
VARY) enable the operator to manage the z/OS UNIX CDS.

Customizing BPXPRMxx for a shared file system
You can use one BPXPRMxx member to define all the file systems in the sysplex.
Each participating system has its own BPXPRMxx member to define system limits,
but shares a common BPXPRMxx member to define the file systems for the
sysplex. The sharing is done through the use of system symbolics. Figure 32 on
page 196 shows an example of this unified member. You can also have multiple
BPXPRMxx members defining the file systems for individual systems in the
sysplex. An example of this is Figure 33 on page 197.

Tip: You can use the USS_CLIENT_MOUNTS check provided by IBM Health
Checker for z/OS to verify that, in a shared file system configuration,
sysplex-aware file systems are not function-shipping.

When setting up a shared file system in a sysplex, use the parameters described in
Table 20.

Table 20. Parameters used when setting up shared file systems in a sysplex. This table lists the parameters that are
used when setting up shared file systems in a sysplex.

Parameter What it does

SYSPLEX(YES) Indicates that this system is to participate in the shared file system configuration.
This involves joining the SYSBPX XCF group. Those systems that specify
SYSPLEX(YES) make up the systems that participate in the shared file system
configuration and are members of the SYSBPX XCF group.

If SYSPLEX(YES) is specified in the BPXPRMxx member, but the system is
initialized in XCF-local mode, either by specifying COUPLE SYSPLEX(LOCAL) in
the COUPLExx member or by specifying PLEXCFG=XCFLOCAL in the IEASYSxx
member, then the kernel will ignore the SYSPLEX(YES) value and initialize with
SYSPLEX(NO). This system will not participate in a shared file system support
after the initialization completes.

/* For all systems in any combination, up to an eightway */
COUPLE INTERVAL(60) /* 1 minute */

OPNOTIFY(60) /* 1 minute */
SYSPLEX(PLEX1) /* SYSPLEX NAME*/
PCOUPLE(SYS1.PCOUPLE,CPLPKP) /* COUPLE DS */
ACOUPLE(SYS1.ACOUPLE,CPLPKA) /* ALTERNATE DS*/
MAXMSG(750)
RETRY(10)

DATA TYPE(CFRM)
PCOUPLE(SYS1.PFUNCT.CTTEST,FDSPKP)
ACOUPLE(SYS1.AFUNCT.CTTEST,FDSPKA)

DATA TYPE(BPXMCDS)
PCOUPLE(SYS1.OMVS.CDS01,3390x1)
ACOUPLE(SYS1.OMVS.CDS02,3390x2)

/* CTC DEFINITIONS: ALL SYSTEMS */
PATHOUT DEVICE(8E0)
PATHIN DEVICE(CEF)

Figure 29. COUPLExx parmlib member

Chapter 7. Sharing file systems in a sysplex 185

Table 20. Parameters used when setting up shared file systems in a sysplex (continued). This table lists the
parameters that are used when setting up shared file systems in a sysplex.

Parameter What it does

VERSION('nnnn') Allows multiple releases and service levels of the binaries to coexist and
participate in a shared file system. nnnn is a qualifier to represent a level of the
version file system. The most appropriate values for nnnn are the name of the
target zone, &SYSR1, or another qualifier meaningful to the system programmer. A
directory with the value nnnn specified on VERSION will be dynamically created
at system initialization under the sysplex root and will be used as a mount point
for the version file system.

There is one version file system for every instance of the VERSION parameter.
More information about version file system appears in “Mounting the version file
system” on page 180.

The SYSNAME(sysname)
parameter on the MOUNT
statements

Specifies the particular system on which a mount is to be performed. sysname is a
1-to-8 alphanumeric name of the system. This system will then become the owner
of the file system that is mounted. The owning system must also be IPLed with
SYSPLEX(YES).
Tip: Only specify a SYSNAME() value if you want only the specified system to be
the file system owner.

The MOUNT statement is ignored during z/OS UNIX initialization processing if
SYSNAME() specifies another system. Once mounted on the specified owner, the
file system will become locally available as a client or non-owner system.

For SET OMVS and SETOMVS processing, the MOUNT statement is processed
and the MOUNT is function-shipped to the system specified by SYSNAME(). If
SYSNAME() is used with a value other than &SYSNAME. then there should not
be any subsequent parmlib MOUNT statements that specify a MOUNTPOINT()
with a path name that includes a directory in this file system

The SYSNAME parameter is also used with SETOMVS when moving file systems,
as demonstrated in “Moving file systems in a sysplex” on page 204.

The AUTOMOVE,
NOAUTOMOVE, and
UNMOUNT parameters on the
ROOT and MOUNT statements

Indicate what happens to the file system if the system that owns that file system
goes down. Note that the system list form of the AUTOMOVE parameter only
applies to the MOUNT statement, and not to the ROOT statement.

v AUTOMOVE without a system list specifies that ownership of the file system is
automatically moved to another system. It is the default.

v AUTOMOVE with a system list (SYSLIST) indicates which systems the file
system should or should not be moved to when the owning system leaves the
sysplex.

v NOAUTOMOVE specifies that the file system will not be moved if the owning
system goes down and the file system is not accessible.

v UNMOUNT specifies that the file system will be unmounted when the system
leaves the sysplex. This option is not available for automounted file systems.

Define your version and sysplex root file system data as AUTOMOVE, and define
your system-specific file systems as UNMOUNT. Do not define a file system as
NOAUTOMOVE or UNMOUNT and a file system underneath it as AUTOMOVE.
If you do, the file system that is defined as AUTOMOVE will not be recovered
after a system failure until that failing system has been restarted.

To ensure that the root is always available, use the default, which is AUTOMOVE.

For file systems that are exported by the Distributed File System (DFS) or System
Message Block (SMB) server to their remote clients, consider specifying
NOAUTOMOVE on the MOUNT statement. Then the file systems will not change
ownership if the system is suddenly recycled, and they will be available for

186 z/OS V2R2 UNIX System Services Planning

automatic reexport. Specifying NOAUTOMOVE is suggested because a file system
can only be exported by the DFS or SMB server at the system that owns the file
system. Once a file system has been exported, it cannot be moved until it has been
unexported by the server that exported it. When recovering from system outages,
you need to weigh sysplex availability against availability to the server. When an
owning system recycles and a DFS-exported file system has been taken over by
one of the other systems, the server cannot automatically reexport that file system.
The file system will have to be moved from its current owner back to the original
system, the one that has just been recycled, and then exported again.

The owner of a file system is the first system that processes the mount. This
system always accesses the file system locally; that is, the system does not access
the file system through a remote system. Other non-owning systems in the sysplex
access the file system either locally or through the remote owning system,
depending on the PFS and the mount mode. If a PFS allows a file system to be
locally accessed on all systems in a sysplex for a particular mode, then the PFS is
sysplex-aware for that mount mode.

Even if a PFS is sysplex-aware for a particular mode, if a non-owning system does
not have DASD connectivity, the file system is accessed remotely through the
owning system. For example, HFS is non-sysplex aware for read/write mode,
because all non-owning systems must access read/write file systems through the
remote owning system. The non-owning systems are said to be sysplex clients.
However, HFS is sysplex-aware for read-only mode, which means that each system
can access read-only file systems locally, and do not need to contact the owning
system. For more information, see “File system availability” on page 202.

TFS file systems do not participate in move operations, regardless of the
AUTOMOVE setting. They are unmounted if the file system owner becomes
unavailable

Restrictions: Keep the following restrictions in mind:
1. An AUTOMOVE file system cannot be moved to a system where z/OS UNIX

was shut down or where F BPXOINIT,SHUTDOWN=fileowner was issued.
2. Automount-managed file systems are handled as AUTOMOVE if the file

system is being locally used.
3. NOAUTOMOVE and system list are permitted for a sysplex-aware file system

and are honored on a V1R9 system. However, if the file system is moved to a
system at an earlier release, the automove setting is changed to AUTOMOVE.

Table 21 shows what happens during soft shutdown for various AUTOMOVE
settings. Soft shutdown is done by issuing one of the following MODIFY
commands:
F BPXOINIT,SHUTDOWN=FILESYS
F BPXOINIT,SHTUDOWN=FILEOWNER

A leaf file system refers to a file system that does not contain any file systems that
are mounted on a directory within that file system. A subtree is the file system and
all file systems that are mounted beneath that file system.

Table 21. Soft shutdown actions for various AUTOMOVE settings. This table lists the soft shutdown actions for
various AUTOMOVE settings.

Automove value Action taken

NOAUTOMOVE or UNMOUNT An attempt to unmount the file system occurs. The unmount fails
if it is not a leaf file system.

Chapter 7. Sharing file systems in a sysplex 187

Table 21. Soft shutdown actions for various AUTOMOVE settings (continued). This table lists the soft shutdown
actions for various AUTOMOVE settings.

Automove value Action taken

AUTOMOVE without a system list Moves the file system to any system. If the move fails, the
unmount is not attempted.

AUTOMOVE with a system list Moves the file system to any system. If the file system cannot be
moved, then the unmount is not attempted.

Table 22 shows what happens during soft shutdown for various AUTOMOVE
settings for an OMVS shutdown, performed by using the F OMVS,SHUTDOWN
system command.

Table 22. OMVS shutdown actions for various AUTOMOVE settings. This table lists the shutdown actions that are
taken by OMVS for various AUTOMOVE settings.

Automove value Action taken

NOAUTOMOVE An attempt to unmount the file system occurs. The unmount fails
if it is not a leaf file system and the file system becomes unowned.
The file system remains unowned until the last owning system
restarts, or until the file system is unmounted. Because the file
system still exists in the file system hierarchy, the file system
mount point is still in use.

UNMOUNT The file system is unmounted, and all the file systems that are
mounted within it are also unmounted.

AUTOMOVE without a system list Moves the file system to any system. If the move fails, the file
system becomes unowned. The file system remains unowned until
the last owning system restarts or until the unowned recovery
daemon can establish a new file system owner.

AUTOMOVE with a system list An attempt to move ownership of the file system to eligible
systems (as defined by the INCLUDE or EXCLUDE system list) is
performed. If no systems could become the file system owner, the
file system is unmounted, as well as all the file systems mounted
within it.

Automount-managed file systems are unmounted by a soft shutdown operation if
the file system is not referenced by any other system in the sysplex. If it is
referenced by another system or systems, ownership of the file system is moved. If
the move fails, an unmount is not attempted and ownership does not change.

Table 23 shows what happens during dead system takeover for various
AUTOMOVE settings for sysplex-aware file systems. Dead system takeover
(otherwise known as Member Gone Recovery) is the action that is taken by
systems in a sysplex when they attempt to take over ownership of file systems that
were previously owned by a system that has just left the XCF BPXGRP member
group.

Table 23. Dead system (member gone) takeover for various AUTOMOVE settings. This table lists the action that is
taken for dead system takeover for various AUTOMOVE settings.

Automove value Action taken

NOAUTOMOVE The file system becomes unowned. The file system remains
unowned until the last owning system restarts, or until the file
system is unmounted. Because the file system still exists in the file
system hierarchy, the mount point for the file system is still in use.

188 z/OS V2R2 UNIX System Services Planning

Table 23. Dead system (member gone) takeover for various AUTOMOVE settings (continued). This table lists the
action that is taken for dead system takeover for various AUTOMOVE settings.

Automove value Action taken

UNMOUNT The file system is unmounted, and all the file systems that are
mounted within it are also unmounted.

AUTOMOVE without a system list An attempt to move ownership of the file system to all other
eligible systems in the participating group is performed. If another
file system cannot become the owner of the file system, the file
system becomes unowned. The file system remains unowned until
the last owning system restarts or until the unowned recovery
daemon can establish a new file system owner.

AUTOMOVE with a system list An attempt to move ownership of the file system to eligible
systems (as defined by the INCLUDE or EXCLUDE system list) is
performed. If another system could not become the file system
owner, the file system is unmounted, in addition to all the file
systems mounted within it.

There is no attempt to take over automount-managed file systems if the file system
is not being used locally. Automount-managed, unowned file systems are
unmounted.

Table 24 shows what happens during PFS termination for various AUTOMOVE
settings.

Table 24. PFS termination for various AUTOMOVE settings. This table discusses what happens if PFS is terminated

What happens if . . . Action taken

NOAUTOMOVE The file system is unmounted, and all the file systems that are
mounted within it are also unmounted.

UNMOUNT The file system is unmounted, and all the file systems that are
mounted within it are also unmounted.

AUTOMOVE without a system list An attempt to move ownership of the file system to all other
eligible systems in the participating group is performed. If another
system cannot become the owner of the file system, the file system
is unmounted, in addition to all the file systems mounted within
it.

AUTOMOVE with a system list An attempt to move ownership of the file system to eligible
systems (as defined by the INCLUDE or EXCLUDE system list) is
performed. If another system cannot become the file system
owner, the file system is unmounted, in addition to all the file
systems mounted within it.

Table 25 shows what happens when a move file system is requested to move a
specific file system to any target system (wildcard is used). A move file system
request can be issued with a SETOMVS operator command or a chmount shell
command.

Table 25. Move a specific file system to any system for various AUTOMOVE settings. This table lists what happens
during an automove for a fixed file system.

What happens if . . . For sysplex-aware file systems

NOAUTOMOVE Move is attempted to all systems.

UNMOUNT Move is attempted to all systems.

AUTOMOVE without a system list Move is attempted to all systems.

Chapter 7. Sharing file systems in a sysplex 189

Table 25. Move a specific file system to any system for various AUTOMOVE settings (continued). This table lists
what happens during an automove for a fixed file system.

What happens if . . . For sysplex-aware file systems

AUTOMOVE with a system list Move is attempted only to systems in the system list.

Table 26 shows what happens when a move filesystem is requested to do a
multi-file system move, moving all file systems from a system to a specific target
system. A move file system request can be issued with a SETOMVS operator
command or a chmount shell command.

Table 26. Move all file systems from a system to a specific target system for various AUTOMOVE settings. This table
lists what happens when all file systems are moved to a specific target system.

What happens if . . . Action taken

NOAUTOMOVE Move is not attempted.

UNMOUNT Move is not attempted.

AUTOMOVE without a system list Move is attempted to the target system.

AUTOMOVE with a system list Move is attempted to the target system and the system list is
ignored.

Rules: Define your version and sysplex root file system as AUTOMOVE. Also:
1. Define your system-specific file systems as UNMOUNT.
2. Do not define a file system as NOAUTOMOVE or UNMOUNT and a file

system under it as AUTOMOVE. If you do, the file system defined as
AUTOMOVE will not be recovered after a system failure until that failing
system is restarted.

To ensure that the root is always available, use the default, which is AUTOMOVE.
Also:
1. For non-sysplex aware file systems that are mostly exported by the DFS or SMB

server to their remote clients, consider specifying NOAUTOMOVE on the
MOUNT statement. Then the file systems will not change ownership if the
system is suddenly recycled, and they will be available for automatic re-export
by DFS or SMB.
Consider NOAUTOMOVE because a file system can only be exported by the
DFS or SMB server at the system that owns the file system. Once a file system
has been exported by DFS, it cannot be moved until it has been unexported by
DFS. The same holds true of file systems that are exported by SMB. When
recovering from system outages, you need to weigh sysplex availability against
availability to the DFS or SMB clients.
v When an owning system recycles and a file system exported by DFS or SMB

has been taken over by one of the other systems, DFS or SMB cannot
automatically re-export that file system.

v When an owning system is recycled and an exported file system has been
taken over by one of the other systems, that file system will not be
automatically reexported. The file system will have to be moved from its
current owner back to the original system, the one that has just been
recycled, and then exported again.

2. If a file system that is mounted as AUTOMOVE with or without a SYSLIST is
not moved or recovered as expected, use D OMVS,MF on all systems to review
MOUNT or MOVE failures relating to the specific file system.

190 z/OS V2R2 UNIX System Services Planning

For more information about VERSION, SYSPLEX, SYSNAME and AUTOMOVE,
NOAUTOMOVE, and UNMOUNT, see z/OS MVS Initialization and Tuning Reference.

Using system lists
When mounting file systems in the sysplex, you can specify a prioritized system
list to indicate where the file system should or should not be moved to when the
owning system leaves the sysplex changes due to any of the following situations:
v A soft shutdown request was issued.
v A dead system takeover took place (when a system leaves the sysplex without a

prior soft shutdown).
v A PFS terminates on the owning system.
v A request to move ownership of the file system was issued.

There are different ways to specify the system list.
v On the MOUNT statement in BPXPRMxx, specify the automove keyword,

including the indicator and system list.
v For the TSO MOUNT command, specify the automove keyword, including the

indicator and system list.
v Use the mount shell command.
v Use the ISHELL MOUNT interface.
v Specify the MNTE_SYSLIST variable for REXX.
v Specify the indicator and system list for the AUTOMOVE option in the chmount

shell command.
v Specify the indicator and system list for the AUTOMOVE option in the

SETOMVS operator command.

Using wildcards
When you specify the system list, you can use wildcards in certain situations.

Example: If you have many systems in your sysplex, you can specify only the
systems that should have priority and use a wildcard to indicate the rest of the
systems.
AUTOMOVE INCLUDE(s1,S2,...*)

At first glance, AUTOMOVE INCLUDE (*) appears to work the same way as
AUTOMOVE because all of the systems will try to take over the file system.
However with AUTOMOVE INCLUDE (*), if none of the systems can take over the
file system, it is unmounted. If AUTOMOVE is used, the file system remains
mounted but becomes unowned.

You can use the wildcard support on all methods of mounts, including the
MOUNT statement in BPXPRMxx, the TSO MOUNT command, the mount shell
command, the ISHELL MOUNT interface, the MNTE_SYSLIST variable for REXX,
C program, and assembler program.

Restrictions: The wildcard is only allowed in an INCLUDE list. It is not allowed in
an EXCLUDE list. Also, it must be the last item (or the only item) in the system
list.

zFS sysplex considerations when using system lists
zFS file systems in a mixed zFS sysplex-aware and non-sysplex aware
configuration typically cannot be moved from a zFS sysplex-aware system to a zFS

Chapter 7. Sharing file systems in a sysplex 191

non-sysplex aware system. For more details, refer to the section about running
mixed zFS systems in z/OS Distributed File Service zFS Administration .

Sysplex scenarios showing shared file system capability
The BPXPRMxx member of SYS1.PARMLIB needs to reflect the requirements for
the sysplex configuration. Update it according to your needs.

Scenario 1: First system in the sysplex
Figure 30 on page 193 and Figure 31 on page 194 show a z/OS UNIX file system
configuration for a shared file system. SYSPLEX(YES) and a value on VERSION are
specified, and a directory is dynamically created on which the version file system
data set is mounted. This type of configuration requires a sysplex root and
system-specific file system.

Guideline: After you create the directories for each system-specific file system and
the version root file system, use the TSO UNMOUNT command to remount the
sysplex root as read-only. Remounting the sysplex root file system as read-only
prevents accidental corruption or full-file system problems with the sysplex root,
both of which might require a sysplex IPL to recover. Additionally, most
configurations will show improved performance if the file system is mounted as
read-only. If a new directory needs to be added to the sysplex root file system, you
can do the following tasks without disrupting the availability of the file system:
1. Use the TSO UNMOUNT command to remount the read-only file system to

read/write mode.
2. Create the new directories.
3. Remount the file system in read-only mode.

192 z/OS V2R2 UNIX System Services Planning

v �1� This is the sysplex root file system and was created by running the
BPXISYZR job. To create a sysplex root file system that is a HFS, run the sample
job BPXISYSR. Because AUTOMOVE is the default, another system can take
ownership of this file system when the owning system goes down.

v �2� This is the system-specific file system, and was created by running the
BPXISYZS job. To create a system-specific file system that is a zFS, run the
sample job BPXISYSS. It must be mounted read/write. UNMOUNT is specified
because this file system is system-specific and ownership of the file system
should not move to another system if the owning system go down. The
MOUNTPOINT statement /&SYSNAME. will resolve to /SY1 during parmlib
processing. This mount point is created dynamically at system initialization.

v �3� This is the previous root file system (version file system).
Guideline: It should be mounted read-only. Its mount point is created
dynamically and the name of the file system is the value specified on the
VERSION statement in the BPXPRMxx member. AUTOMOVE is the default and
therefore is not specified, allowing another system to take ownership of this file
system when the owning system goes down.

v �4� This file system contains the system-specific /dev information. UNMOUNT
is specified because this file system is system-specific; ownership should not

BPXPRMxx for (SY1)

FILESYSTYPE
TYPE(ZFS)
ENTRYPOINT(IOEFSCM)
ASNAME(ZFS)

VERSION(’REL9’)
SYSPLEX(YES)

ROOT
FILESYSTEM (’OMVS.SYSPLEX.ROOT’) �1�
TYPE(ZFS) MODE(READ)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.ZFS’) �2�
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/&SYSNAME’)

MOUNT
FILESYSTEM(’OMVS.ROOT.ZFS’) �3�
TYPE(ZFS) MODE(READ)
MOUNTPOINT(’/$VERSION’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..DEV’) �4�
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/&SYSNAME/dev’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..TMP’) �5�
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/&SYSNAME/tmp’)
.
.
.

Figure 30. BPXPRMxx setup — sharing file systems

Chapter 7. Sharing file systems in a sysplex 193

move to another system should the owning system go down. The
MOUNTPOINT statement /&SYSNAME./dev will resolve to /SY1/dev during
parmlib processing.

v �5� This file system contains system-specific /tmp information. UNMOUNT is
specified because this file system is system-specific; ownership should not move
to another system if the owning system goes down. The MOUNTPOINT
statement /&SYSNAME./tmp will resolve to /SY1/tmp during parmlib
processing.

If the content of the symbolic link begins with $VERSION or $SYSNAME, the
symbolic link will resolve in the following manner:
v If you specify SYSPLEX(YES) and the symbolic link for /dev has the contents

$SYSNAME/dev, the symbolic link resolves to /SY1/dev on system SY1 and
/SY2/dev on system SY2.

v If you specify SYSPLEX(YES) and the content of the symbolic link begins with
$VERSION, $VERSION resolves to the value nnnn specified on the VERSION
parameter. Thus, if VERSION in parmlib is set to REL9, then $VERSION resolves

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin

/usr

/lib

/opt

/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY1.DEV

OMVS.SY1.TMP

OMVS.SY1.VAR

OMVS.SY1.ETC

Sysplex root file system

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

SY1

REL9

/

OMVS.SYSPLEX.ROOT

OMVS.ROOT.ZFS

Version file system

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

$SYSNAME/etc

/bin

/usr

/lib

/opt

/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…

bin
usr
lib
opt
samples

…

SYSTEM/

Not used in

a sysplex

environment

OMVS.SY1.SYSTEM.ZFS

/

/

Figure 31. Shared file systems in a sysplex

194 z/OS V2R2 UNIX System Services Planning

to /REL9. For example, a symbolic link for /bin, which has the contents
$VERSION/bin, resolves to /REL9/bin on a system whose $VERSION value is
set to REL9.

In the previous scenario, if ls –l /bin/ is issued, the user expects to see the contents
of /bin. However, because /bin is a symbolic link pointing to $VERSION/bin, the
symbolic link must be resolved first. $VERSION resolves to /REL9 which makes
the path name /REL9/bin. The contents of /REL9/bin will now be displayed.

Scenario 2: Multiple systems in the sysplex using the same
release level

Figure 34 on page 198 shows another SYSPLEX(YES) configuration. In this
configuration, however, two or more systems are sharing the same version file
system (the same release level of code). Figure 32 on page 196 shows a sample
BPXPRMxx for the entire sysplex (what IBM suggests) using &SYSNAME. as a
symbolic name, and Figure 33 on page 197 shows a configuration where each
system in the sysplex has its own BPXPRMxx. For our example, SY1 has its own
BPXPRMxx and SY2 has its own BPXPRMxx.

Chapter 7. Sharing file systems in a sysplex 195

One BPXPRMxx member to define file systems for the entire sysplex

FILESYSTYPE
TYPE(ZFS)
ENTRYPOINT(IOEFSCM)
ASNAME(ZFS)

VERSION(’REL9’)
SYSPLEX(YES)

ROOT
FILESYSTEM (’OMVS.SYSPLEX.ROOT’)
TYPE(ZFS) MODE(READ)

MOUNT FILESYSTEM(’OMVS.USER.ZFS’
MOUNTPOINT(’/u’) AUTOMOVE
TYPE(ZFS) MODE(RDWR)

MOUNT FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.ZFS’)
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/&SYSNAME’)

MOUNT
FILESYSTEM(’OMVS.ROOT.ZFS’)
TYPE(ZFS) MODE(READ)
MOUNTPOINT(’/$VERSION’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..DEV’)
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/&SYSNAME/dev’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..TMP’)
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/&SYSNAME/tmp’)
.
.
.

Figure 32. Sharing file systems: one version file system and one BPXPRMxx for the entire
sysplex

196 z/OS V2R2 UNIX System Services Planning

BPXPRMS1 (for SY1) BPXPRMS2 (for SY2)

FILESYSTYPE FILESYSTYPE
TYPE(ZFS) TYPE(ZFS)
ENTRYPOINT(IOEFSCM) ENTRYPOINT(IOEFSCM)
ASNAME(ZFS) ASNAME(ZFS)

VERSION(’REL9’) VERSION(’REL9’)
SYSPLEX(YES) SYSPLEX(YES)

ROOT ROOT
FILESYSTEM(’OMVS.SYSPLEX.ROOT’) FILESYSTEM(’OMVS.SYSPLEX.ROOT’)
TYPE(ZFS) MODE(READ) TYPE(ZFS) MODE(READ)

MOUNT MOUNT
FILESYSTEM(’OMVS.SY1.SYSTEM.ZFS’) FILESYSTEM(’OMVS.SY2.SYSTEM.ZFS’)
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’) TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/SY1’) MOUNTPOINT(’/SY2’)

MOUNT FILESYSTEM(’OMVS.ROOT.ZFS’) MOUNT FILESYSTEM(’OMVS.ROOT.ZFS’)
TYPE(ZFS) MODE(READ) TYPE(ZFS) MODE(READ)
MOUNTPOINT(’/$VERSION’) MOUNTPOINT(’/$VERSION’)

MOUNT FILESYSTEM(’OMVS.SY1.DEV’) MOUNT FILESYSTEM(’OMVS.SY2.DEV’)
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’) TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/SY1/dev’) MOUNTPOINT(’/SY2/dev’)

MOUNT FILESYSTEM(’OMVS.SY1.TMP’) MOUNT FILESYSTEM(’OMVS.SY2.TMP’)
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’) TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/SY1/tmp’) MOUNTPOINT(’/SY2/tmp’)
.
.
.

Figure 33. Sharing file systems: one version file system and separate BPXPRMxx members for each system in the
sysplex

Chapter 7. Sharing file systems in a sysplex 197

In this scenario, where multiple systems in the sysplex are using the same version
file system, if ls –l /bin/ is issued from either system, the user expects to see the
contents of /bin. However, because /bin is a symbolic link pointing to

Sysplex root file system

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

SY1

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

REL9

/

OMVS.SYSPLEX.ROOT

OMVS.ROOT.ZFS

Version file system

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

$SYSNAME/etc

/bin

/usr

/lib

/opt

/samples

dev
tmp
var
etc

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

bin
usr
lib
opt
samples

…
u

SYSTEM/

/bin

/usr

/lib

/opt

/samples

/bin

/usr

/lib

/opt

/samples

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin

/usr

/lib

/opt

/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY1.DEV

OMVS.SY1.TMP

OMVS.SY1.VAR

OMVS.SY1.ETC

OMVS.SY1.SYSTEM.ZFS

System-specific file system

bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

/bin

/usr

/lib

/opt

/samples

dev

tmp

var

etc

dev

tmp

var

etc

OMVS.SY2.DEV

OMVS.SY2.TMP

OMVS.SY2.VAR

OMVS.SY2.ETC

OMVS.SY2.SYSTEM.ZFS

SY2

/

/

/

Not used in

a sysplex

environment

Figure 34. Sharing file systems in a sysplex: multiple systems in a sysplex using the same release level

198 z/OS V2R2 UNIX System Services Planning

$VERSION/bin, the symbolic link must be resolved first. $VERSION resolves to
/REL9 which makes the path name /REL9/bin. The contents of this directory are
displayed.

Scenario 3: Multiple systems in a sysplex using different
release levels

If your participating group is in a sysplex that runs multiple levels of z/OS, your
configuration might look like the one in Figure 36 on page 200. In that
configuration, each system is running a different level of z/OS and, therefore, has
different version file system data sets; SY1 has the version file system named
OMVS.SYSR9A.ROOT.ZFS and SY2 has the version file system named
OMVS.SYSR9.ROOT.ZFS. Figure 35 shows two BPXPRMxx parmlib members that
define the file systems in this configuration. Figure 37 on page 201 shows a single
BPXPRMxx parmlib member that can be used to define this same configuration; it
uses &SYSR1. as the symbolic name for the two version file system data sets.

BPXPRMxx (for SY1) BPXPRMxx (for SY2)

FILESYSTYPE FILESYSTYPE
TYPE(ZFS) TYPE(ZFS)
ENTRYPOINT(IOEFSCM) ENTRYPOINT(IOEFSCM)
ASNAME(ZFS) ASNAME(ZFS)

VERSION(’REL9A’) VERSION(’REL9’)
SYSPLEX(YES) SYSPLEX(YES)

ROOT ROOT
FILESYSTEM(’OMVS.SYSPLEX.ROOT’) FILESYSTEM(’OMVS.SYSPLEX.ROOT’)
TYPE(ZFS) MODE(READ) TYPE(ZFS) MODE(READ)

MOUNT MOUNT
FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.ZFS’) FILESYSTEM(’OMVS.&SYSNAME..SYSTEM.ZFS’)
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’) TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/&SYSNAME’) MOUNTPOINT(’/&SYSNAME’)

MOUNT MOUNT
FILESYSTEM(’OMVS.SYSR9A.ROOT.ZFS’) FILESYSTEM(’OMVS.SYSR9.ROOT.ZFS’)
TYPE(ZFS) MODE(READ) TYPE(ZFS) MODE(READ)
MOUNTPOINT(’/$VERSION’) MOUNTPOINT(’/$VERSION’)

MOUNT MOUNT
FILESYSTEM(’OMVS.&SYSNAME..DEV’) FILESYSTEM(’OMVS.&SYSNAME..DEV’)
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’) TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/&SYSNAME/dev’) MOUNTPOINT(’/&SYSNAME/dev’)

MOUNT MOUNT
FILESYSTEM(’OMVS.&SYSNAME..TMP’) FILESYSTEM(’OMVS.&SYSNAME..TMP’)
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’) TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/&SYSNAME/tmp’) MOUNTPOINT(’/&SYSNAME/tmp’)
.
.
.

Figure 35. BPXPRMxx setup for multiple systems sharing file systems and using different release levels

Chapter 7. Sharing file systems in a sysplex 199

In this scenario, for example, if ls –l /bin/ is issued on SY1, the user expects to see
the contents of /bin. However, because /bin is a symbolic link pointing to
$VERSION/bin, the symbolic link must be resolved first. $VERSION resolves to
/SYSR9A on SY1, which makes the path name /SYSR9A/bin. The contents of this
directory will now be displayed. If ls –l /bin/ is issued on SY2, the contents of
/SYSR9/bin will display.

From SY2 you can display information on SY1 by fully qualifying the directory.

Example: To view SY1's /bin directory:
ls –l /SY1/bin/

OMVS. SYSR9 . ROOT. ZFS

Version file system

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

$SYSNAME/etc

/bin

/usr

/lib

/opt

/samples

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

SYSTEM/

/bin

/usr

/lib

/opt

/samples

/bin

/usr

/lib

/opt

/samples

System-specific file system

bin
usr
lib
opt
samples

/bin

/usr

/lib

/opt

/samples

dev

tmp

var

etc

OMVS. SY1 . DEV

OMVS. SY1 . TMP

OMVS. SY1 . VAR

OMVS. SY1 . ETC

OMVS. SY1 . SYSTEM. ZFS

System-specific file system

bin
usr
lib
opt
samples

/bin

/usr

/lib

/opt

/samples

dev

tmp

var

etc

OMVS. SY2 . DEV

OMVS. SY2 . TMP

OMVS. SY2 . VAR

OMVS. SY2 . ETC

OMVS. SY2 . SYSTEM. ZFS

Sysplex root file system

...

bin
usr
lib
opt
samples
$VERSION
$SYSNAME
dev
tmp
var
etc

u

$VERSION/bin
$VERSION/usr
$VERSION/lib
$VERSION/opt
$VERSION/samples

$VERSION/
$SYSNAME/

$SYSNAME/dev
$SYSNAME/tmp
$SYSNAME/var
$SYSNAME/etc

SY1

REL9A

/

OMVS. SYSPL EX. ROOT

SY2

REL9

OMVS. SYSR9 A. ROOT. ZFS

Version file system

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

$SYSNAME/etc

/bin

/usr

/lib

/opt

/samples

dev
tmp
var
etc

dev
tmp
var
etc
bin
usr
lib
opt
samples

bin
usr
lib
opt
samples

…
u

SYSTEM/

/bin

/usr

/lib

/opt

/samples

/bin

/usr

/lib

/opt

/samples

/

/

/

/

Not used in

a sysplex

environment

Not used in

a sysplex

environment

Figure 36. Sharing file systems between multiple systems using different release levels

200 z/OS V2R2 UNIX System Services Planning

In order to use one BPXPRMxx parmlib file system member, we have used another
system symbolic like &SYSR1. This system symbolic is used in the VERSION
parameter and also as a qualifier in the version file system data set name.

Using the automount policy
The default delay time for automount is 10. Do not use a value less than 10. To
verify the setting of the delay time, use the USS_AUTOMOUNT_DELAY check
provided by IBM Health Checker for z/OS.

Rule: You must keep the automount policy consistent across all the participating
systems in the sysplex. The automount facility will not manage any directory until
it can process the entire policy without encountering any errors.

Your automount policy most likely resided in the /etc/auto.master and /etc/u.map
files. For those using shared file systems, each participating system has a separate
/etc file system. In order for the automount policy to be consistent across

One BPXPRMxx member to define file systems for the entire sysplex
using different releases

FILESYSTYPE
TYPE(ZFS)
ENTRYPOINT(IOEFSCM)
PARM(’ ’)

VERSION(’&SYSR1.’)
SYSPLEX(YES)

ROOT
FILESYSTEM (’OMVS.SYSPLEX.ROOT’)
TYPE(ZFS) MODE(READ)
MOUNT FILESYSTEM(’OMVS.USER.ZFS’)
MOUNTPOINT(’u’) AUTOMOVE
TYPE(ZFS) MODE(READ)

MOUNTFILESYSTEM(’OMVS.&SYSNAME..SYSTEM.ZFS’)
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/&SYSNAME.’)

MOUNT
FILESYSTEM(’OMVS.&SYSR1..ROOT.ZFS’)
TYPE(ZFS) MODE(READ)
MOUNTPOINT(’/$VERSION’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..DEV’)
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/&SYSNAME./dev’)

MOUNT
FILESYSTEM(’OMVS.&SYSNAME..TMP’)
TYPE(ZFS) MODE(RDWR) UNMOUNT PARM(’NORWSHARE’)
MOUNTPOINT(’/&SYSNAME./tmp’)
.
.
.

Figure 37. One BPXPRMxx parmlib member for multiple systems sharing file systems and
using different release levels

Chapter 7. Sharing file systems in a sysplex 201

participating systems, the same copy of the automount policy must exist in every
system's /etc/auto.master and /etc/u.map files.

AUTOMOUNT is the preferred method of managing the /u directory. You do not
need a mount statement for /u in the BPXPRMxx parmlib member.

For example, both SY1 and SY2 have the following files:
v /etc/auto.master

/u /etc/u.map

v /etc/u.map
name *
type ZFS
filesystem OMVS.<uc_name>.ZFS
mode rdwr
duration 60
delay 60

When the automount daemon initializes on SY1, it will read its local
/etc/auto.master file to identify what directories to manage; in this case, it is /u.
Next, the automount daemon will use the policy specified in the local /etc/u.map
file to mount file systems with the specified naming convention under /u. The
automount daemon on SY2 will perform similar actions. Because all mounted file
systems are available to all participating systems in the sysplex, your automount
policy must be consistent. This is true for the file system name specified in
/etc/u.map and the values for other parameters in /etc/u.map and /etc/auto.master.

File system availability
In the shared file system environment, file system availability and accessibility
depend on a number of important factors. These factors can vary depending on
how a file system is mounted and the capability of the file system to manage itself
in a sysplex environment. After you set up the shared file system environment for
cross-system communication, it will be helpful to understand how file system
availability is provided to your systems, and what kinds of actions can cause
interruptions to that availability.

Minimum setup required for file system availability
For DASD file systems, at least one system in the shared file system group needs
to have a physical I/O path to the volume where the file system resides and the
volume is varied online. Without connectivity from at least one system, the file
system will not be available to any of the systems in the shared file system group.
Connectivity from one system can provide shared file system accessibility to the
file system for all other systems in the shared file system group.

All systems need to have the physical file system (PFS) started. Accomplish this by
placing the appropriate FILESYSTYPE statement in the BPXPRMxx parmlib
member that is used in the configuration. Additionally, any necessary subsystems
required by the PFS must be started and configured, especially if this system is to
function as the file system owner. For example, the NFS Client PFS requires that
the TCP/IP subsystem be started and a network connection configured.

Read-write connections for non-sysplex aware file systems
Most physical file systems (PFSes) allow only one connection for update at a time.
Such file systems are called non-sysplex aware for update. This is directly related to

202 z/OS V2R2 UNIX System Services Planning

the mount mode of the file system. With HFS, for example, only one system can
actually connect to the file system with a mode of RDWR. That system is called the
file system owner.

The other systems that want to participate in shared file systems will also request
an RDWR mount, but their access will be provided via cross-system messaging
with the file system owner which has already established the read-write
connection. These systems are called file system clients. When the file system owner
becomes unavailable (for example, through system shutdown), it will be important
for another system (one of the file system clients) to have the file system volume
varied online so that a new owner can be established. This helps ensure maximum
file system availability in the shared file system group.

Read-write connections for sysplex-aware file systems
Some PFSes can handle multiple concurrent connections for update. They can
manage the serialization of such requests. Such file systems are called sysplex aware
for update. Most network file systems have this capability. NFS Client is one such
file system type.

For a read/write mount to NFS Client, each system in the shared file system group
will make a direct connection to NFS. The first system to make such a connection
is still called the file system owner. All subsequent systems to make a direct
connection are considered non-owners, rather than clients. This type of multiple
direct connection for read/write access allows for maximum I/O performance by
eliminating the need to send requests to the file system owner.

However, sometimes a non-owning system cannot make a direct connection to the
PFS even after meeting the minimum requirements (for example, sometimes
requests to NFS Client time out before they are satisfied). That system might be
given a cross-system messaging connection, making it a client to the file system.
While this is not the optimal mount mode for this type of file system, it does allow
access to the file system.

As of z/OS V1R11, zFS provides the capability for sysplex-aware for update. This
support is configurable and can provide the following levels of support:
v No support for sysplex-aware for update. Like HFS file systems, zFS only

allows a single system to connect to the file system for update. All other systems
will function as client systems and will function-ship requests to the file system
owner system.

v Global support for sysplex-aware for update. zFS supports multiple concurrent
connections for update for all file systems.

v "Per file system" support for sysplex-aware for update. This level of support
requires z/OS UNIX APAR OA29712 and zFS APAR OA29619. It provides the
capability for specific file systems to be configured as sysplex-aware or
non-sysplex aware for update. Refer to z/OS Distributed File Service zFS
Administrationfor more information about configuring ZFS for sysplex-aware
capability.

Read-only connections for non-sysplex aware file systems
Some physical file systems such as TFS do not support multiple concurrent
connections for read-only access. These are called non-sysplex aware for read-only,
and are handled the same as the read/write connections for non-sysplex aware file
systems.

Chapter 7. Sharing file systems in a sysplex 203

Read-only connections for sysplex-aware file systems
Physical file systems that support multiple concurrent connections for read-only
access are called sysplex aware for read-only. The zFS physical file system falls into
this category. Such file systems are handled the same as the read/write connections
for sysplex aware file systems. The read-only connections are attempted locally for
each system in the shared file system group, but if the file system volume is not
online to a system, then the system becomes a client to the file system by means of
cross-system messaging with the owner.

Situations that can interrupt availability
Some situations might cause interruptions to file system availability on one or
more systems. Following is a list of some of the most common causes. It is not
meant to be an exhaustive list.
v Loss of the file system owner. If the file system owner leaves the shared file

system group (through system failure, soft shutdown, VARY, XCF, OFFLINE, or
some other means), an attempt might be made to establish another file system
owner if requested by the AUTOMOVE specification of the mount. If a new file
system owner cannot be established, the file system will become unowned. It
will be unavailable until the original owner can reclaim it, or until another
owner is established through subsequent automated recovery actions performed
by shared file system.

v PFS termination. If a PFS terminates on one system, it can affect file system
availability on other systems. If a PFS terminates on one system, any file systems
of that type that are owned by other systems are not affected. File systems of
that type are moved to new owners whenever possible if they are owned by the
system where the PFS is terminating and if they can be automoved. These file
systems remain accessible to other systems. If they cannot be moved to new
owners, they are unmounted across the sysplex. It might not be possible to
move a file system due to a lack of connectivity from other systems, or if the file
system containing the mount point for the file system needed to be moved but
could not be.

v VARY volume,OFFLINE. When the volume for a file system is varied offline, it
will make that file system inaccessible to that system. However, if the volume is
online to other systems, it might still be accessible to those systems and to other
systems via cross-system messaging. This would be the case for sysplex-aware
file systems for read/write or read-only access. Unlike loss of the file system
owner, varying a file system volume offline will not result in any attempt by the
system to restore accessibility to systems on which it is lost.

Moving file systems in a sysplex
You might need to change ownership of the file system for recovery or reIPLing.

Tips: When working with file systems in a sysplex, consider these tips:
v To check for file systems that have already been mounted, use the df command

from the shell.
v To move a file system in a sysplex, use the SETOMVS command used with the

FILESYS, FILESYSTEM, mount point and SYSNAME parameters. You can also
use the chmount command from the shell. However, do not move these two
types of file systems:
System-specific file systems
File systems that are being exported by DFS. You have to unexport them from
DFS first and then move them

204 z/OS V2R2 UNIX System Services Planning

Examples: These examples assume you are working with file systems in a sysplex.
1. To move ownership of the file system that contains /u/wjs to SY1:

chmount -d SY1 /u/wjs

2. To move ownership of the payroll file system from the current owner to SY2
using SETOMVS, issue:
SETOMVS FILESYS,FILESYSTEM=’POSIX.PAYROLL.ZFS’,SYSNAME=SY2

or (assuming the mount point is over directory /PAYROLL)
SETOMVS FILESYS,mountpoint=’/PAYROLL’,SYSNAME=SY2

If you mount a system-specific file system on other than the correct
(system-specific) owner, either explicitly or due to AUTOMOVE=YES, loss of
function might occur. For example, if the system-specific file system mounted at
/dev for SY1 is moved to SY2 so that ownership is now SY2, the OMVS command
on SY1 will fail.

Also, opened FIFO files are automatically closed before the file system containing
the FIFO is moved. They are closed because the in-storage FIFO data on the old
system is not moved and is no longer accessible on new owning system.

Moving file systems to a back-level system
If you move a file system to a back-level system, existing NFS client connections to
the files in that file system might be broken if Share Reservations are used. With
Share Reservations, remote NFS clients can open files on z/OS in such a way that
no one else can open that file until the first program finishes and closes the file.
For more information about Share Reservations, see the BPX1VOP callable service
in z/OS UNIX System Services File System Interface Reference.

Share Reservations that attempt to deny reading or writing for files in a read-only
file system are accepted but will not be enforced.

File systems cannot be remounted from read/write to read-only or from read-only
to read/write while there are Share Reservations established on any file in that file
system.

Restrictions: A file system cannot be moved to a back-level system while there are
active Share Reservations on any file in the file system. You will have to move the
file system to a sysplex member at the z/OS V1R7 release level or later.
Alternatively, you can stop the applications at the NFS clients who have put
reservations on the files, or wait for them to finish.

If an NFS client is going to open a file that has Share Reservations set:
v That file must be owned by a system at the z/OS V1R7 level or higher before it

can be opened.
v If the file is owned by a remote system that supports Share Reservations, they

are enforced at the owner for all opens within the sysplex.
v If the file is owned by a remote system at a lower level, the client's open will

fail. The reason code of the failure will indicate that the file system has to be
moved to a sysplex member that is at the z/OS V1R7 release or later.

If the system goes down and there are Share Reservations on a file owned by a
remote system:

Chapter 7. Sharing file systems in a sysplex 205

1. If the file system is taken over by another z/OS V1R7 or later system, the
reservations are reestablished at the new owner and enforced there.

2. If the file system is taken over by an owner that does not support Share
Reservations, the NFS client's open is invalidated and subsequent operations
from that client for this open are rejected. If you move the file system to a
sysplex member that supports Share Reservations, the file can be reopened as it
was before. You can use the AUTOMOVE parameter of the MOUNT command
to restrict these takeovers to the systems that do support Share Reservations.

zFS sysplex considerations when moving file systems
zFS file systems in a mixed zFS sysplex-aware and non-sysplex aware
configuration typically cannot be moved from a zFS sysplex-aware system to a zFS
non-sysplex aware system. For more details, refer to the section about running
mixed zFS systems in z/OS Distributed File Service zFS Administration .

Implications of shared file systems during system failures and
recovery

File system recovery in a shared file system environment takes into consideration
file system characteristics such as the PFS capabilities, whether or not the file
system is automount-managed, and the AUTOMOVE value. “Customizing
BPXPRMxx for a shared file system” on page 185 describes the various
AUTOMOVE values and the system actions taken for the various shutdown and
recovery flows.

Generally, when an owning system fails, ownership of a file system that is
mounted as AUTOMOVE is moved to another system and the file system remains
usable. However, if a file system is mounted as read/write and the owning system
fails, then all file system operations for files in that file system will fail. This
happens because data integrity is lost when the file system owner fails. All files
should be closed (BPX1CLO) and reopened (BPX1OPN) when the file system is
recovered. See z/OS UNIX System Services Programming: Assembler Callable Services
Reference for more information about BPX1CLO and BPX1OPN.

For file systems that are mounted as read-only, specific I/O operations that were in
progress at the time the file system owner failed might need to be started again.

In some situations, even though a file system is mounted as AUTOMOVE,
ownership of the file system might not be immediately moved to another system.
This can occur, for example, when a physical I/O path from another system to the
volume where the file system resides is not available. As a result, the file system
becomes unowned; if this happens, you will see message BPXF213E. This is true if
the file system is mounted either read/write or read-only. The file system still
exists in the file system hierarchy so that any dependent file systems that are
owned by another system are still usable. However, all file operations for the
unowned file system will fail until a new owner is established. The shared file
system support will continue to attempt recovery of AUTOMOVE file systems on
all systems in the sysplex that are enabled for shared file system. If a subsequent
recovery attempt succeeds, the file system moves from the unowned to the active
state.

Applications using files in unowned file systems will need to close (BPX1CLO)
those files and reopen (BPX1OPN) them after the file system is recovered. File
systems that are mounted as NOAUTOMOVE will become unowned when the file
system owner exits the sysplex. The file system will remain unowned until the

206 z/OS V2R2 UNIX System Services Planning

original owning system restarts or until the unowned file system is unmounted.
Because the file system still exists in the file system hierarchy, the file system
mount point is still in use. File systems that are mounted below a NOAUTOMOVE
file system will not be accessible via path name when the NOAUTOMOVE file
system becomes available.

Restriction: Do not mount AUTOMOVE file systems within NOAUTOMOVE file
systems. When a NOAUTOMOVE file system becomes unowned and there are
AUTOMOVE file systems mounted within it, those AUTOMOVE file systems will
retain a level of availability, but only for files that are already open. When the
NOAUTOMOVE file system becomes unowned, it will not be possible to perform
path name lookup through it to the file systems mounted within it, which will
make those file systems unavailable for new access. When ownership is restored to
the unowned file system, access to the file systems mounted within it is also
restored.

Guideline: If a file system that is mounted as AUTOMOVE with or without a
SYSLIST is not moved or recovered as expected, use D OMVS,MF on all systems to
review MOUNT or MOVE failures relating to the specific file system.

Managing the movement of data
File systems can be managed so as to maximize their availability when systems
exit the participating group. You have more control over this when the outage is
planned, but there are steps you can take to help manage the placement of data in
the event of a system failure.

Recovery processing for the file systems that are owned by a failed system is
managed internally by all the systems in the participating group. If you want
special considerations for the placement of certain file systems, you can use the
options provided by the various mount services to specify the original owner and
subsequent owners for a particular file system.

“Customizing BPXPRMxx for a shared file system” on page 185 describes the
behavior of the various AUTOMOVE options.

Table 27 shows the AUTOMOVE options that you can use with the MOUNT
command to manage file systems.

Table 27. AUTOMOVE options supported by the MOUNT command. This table lists the automove options supported
by the MOUNT command.

Automove option Action

UNMOUNT Attempts will not be made to keep the file system active when the current owner fails.
The file system is unmounted when the owner is no longer active in the participating
group, as well as all the file systems mounted within it.

Use UNMOUNT when mounting system-specific file systems, such as those that would be
mounted at /etc, /dev, /tmp, and /var.

Chapter 7. Sharing file systems in a sysplex 207

Table 27. AUTOMOVE options supported by the MOUNT command (continued). This table lists the automove
options supported by the MOUNT command.

Automove option Action

NOAUTOMOVE Attempts are not made to keep the file system active when the current owner fails. The
file system remains in the hierarchy for possible recovery when the original owner
reinitializes. Use this option on mounts for system-specific file systems if you want to
have automatic recovery when the original owner rejoins the participating group.

When the NOAUTOMOVE option is used, the file system becomes unowned when the
owning system exits the participating group. The file system remains unowned until the
last owning system restarts, or until the file system is unmounted. Because the file system
still exists in the file system hierarchy, the mount point for the file system is still in use.

An unowned file system is a mounted file system that does not have an owner. Because it
still exists in the file system hierarchy, it can be recovered or unmounted.

AUTOMOVE without a
system list

Recovery of the file system is performed when the current owner fails. Use this option on
mounts of file systems that are critical to operation across all the systems in the
participating group. AUTOMOVE is the default.

AUTOMOVE with a
system list

AUTOMOVE(EXCLUDE|INCLUDE,sysname1,sysname2,...sysnameN) specifies managed
recovery of the file system if the current owner fails.

v Use the EXCLUDE list to prevent recovery of a file system from transferring ownership
to a particular system, or set of systems, in the participating group. When the current
owner fails, recovery of the file system is performed to an owner outside the exclude
list. When the current owner fails, recovery of the file system is performed to a
randomly selected owner outside the exclude list.

v Use the INCLUDE list to ensure that recovery of a file system will transfer ownership
only to a particular system or set of systems in the participating group. Recovery of the
file system is performed in priority order only by the list of systems specified in the
INCLUDE list.

Restriction: Only use this option on mounts of file systems that are critical to operation
across a subset of systems in the participating group, or when you do not want certain
systems in the participating group to have ownership of the file system.

If recovery processing fails to establish a new owner for the file system, the file system is
unmounted, along with all the file systems mounted within it.

Most of the z/OS UNIX interfaces that provide for mounting file systems (such as
TSO, shell, ISHELL, and BPX2MNT) support some form of the options described in
“Customizing BPXPRMxx for a shared file system” on page 185. See the associated
documentation for the exact syntax.

Tip: To ensure that the root is always available, use the default, which is
AUTOMOVE.

For file systems that are exported by the Distributed File System (DFS) or System
Message Block (SMB) server to their remote clients, consider specifying
NOAUTOMOVE on the MOUNT statement. Then the file systems will not change
ownership if the system is suddenly recycled, and they are available for automatic
re-export. Specifying NOAUTOMOVE is suggested because a file system can only
be exported by the DFS or SMB server at the system that owns the file system.
Once a file system has been exported, it cannot be moved until it has been
unexported by the server that exported it.

In addition, when recovering from system outages, you need to weigh sysplex
availability against availability to the server. When an owning system recycles and
a DFS-exported file system has been taken over by one of the other systems, the

208 z/OS V2R2 UNIX System Services Planning

server cannot automatically re-export that file system. The file system will have to
be moved from its current owner back to the original system, the one that has just
been recycled, and then exported again.

Tip: When an original owner system reinitializes, you might want to move the
read/write file system back to this original owner if the original owner is the
primary system that accesses the file system and if the PFS does not support
accessing the read/write file system in a sysplex-aware mode. Better performance
should occur when the file system is locally mounted (owned) at the system that
most frequently accesses the file system. See also “File system availability” on page
202 and “Tuning z/OS UNIX performance in a sysplex” on page 213.

Shared file system implications during a planned shutdown of z/OS
UNIX

These sections contain the procedures to use when shutting down z/OS UNIX.
v “Steps for shutting down z/OS UNIX using F OMVS,SHUTDOWN” on page

293
v “Steps for shutting down z/OS UNIX using F BPXOINIT,SHUTDOWN=...” on

page 288

It is important that you understand the system actions that result when you use
those procedures.

The current AUTOMOVE option dictates if and how the participating group
recovers file system ownership from an exited system. It has no effect on the
manual movement of the file system. However, when you are using the procedures
for shutting down z/OS UNIX to prepare for a planned system outage, the
AUTOMOVE option does apply. This can be explained with the following
rationale:
v A system failure does not provide any means for manual intervention. The

AUTOMOVE option provides a set of rules for automatic recovery.
v A request to move a file system manually is a deliberate action on behalf of an

authorized user or administrator, and should override any rules for automatic
recovery.

v Using tools to prepare for a system outage is also a deliberate action on behalf
of an authorized user or administrator, but you are using these tools in an
environment that can be customized to allow for additional manual intervention.
You can synchronize data before the system outage, and then manage the
planned outage in the same way as the unplanned outage, by making use of the
automatic recovery rules that are supplied by the automove options. If you
prefer some other action, you can perform manual intervention to move specific
file system ownership before you use these methods for shutdown preparation.

Use F OMVS,SHUTDOWN to shut down file systems. It is described in “What F
OMVS,SHUTDOWN does” on page 292. If this is not appropriate for your
installation, use the F BPXOINIT,SHUTDOWN=... procedure described in “Planned
shutdowns using F BPXOINIT,SHUTDOWN=...” on page 287.

State of file systems after shutdown
File systems on the system where the shutdown was issued are immediately
unmounted. As a result, data is synched to disk. For shared file systems, one of the
following actions is done on the file systems that are owned by the system where
the command was issued.

Chapter 7. Sharing file systems in a sysplex 209

v Unmount if automounted or if a file system was mounted on an automounted
file system.

v Move to another system if an AUTOMOVE was specified.
v Unmount for all other file systems.

File systems that are not owned by the system on which the shutdown was issued
are not affected.

Initializing the file system
When you are preparing to bring a system back into the participating group after
it has left, it is helpful to understand the coordination that occurs among the
systems that are already participating in the group. You might see delays in the
availability of the entering system because of activity occurring elsewhere in the
sysplex. Although it is possible to bring up multiple systems simultaneously, when
they reach the point of z/OS UNIX initialization, their processing is serialized so
as to allow only one system at a time to initialize z/OS UNIX.

Other examples of activities occurring on other active systems that can cause the
initializing system to experience delays are
v Unmounting a file system
v Changing ownership of a file system
v Recovering for systems that have left the participating group

Before it rejoins the participating group, a system processes all the file systems that
are listed in the current hierarchy of the participating group. It also attempts to
reclaim any unowned file systems that it previously owned when it was part of the
participating group. It does not attempt to reclaim those file systems that were
successfully moved or recovered to another system in the sysplex.

During initialization, any new MOUNT statements in the BPXPRMxx parmlib
member are processed, which makes those file systems available for use within the
participating group after they are successfully mounted.

While a system is initializing in a sysplex, critical file systems that are necessary
for initialization to complete successfully might become unavailable due to a
system outage. When a system is removed from the sysplex, there is a window of
time during which any file systems it owned will become inaccessible to other
systems. This window of time occurs while other systems are being notified of the
system's exit from the sysplex and before they start the cleanup for that system.

Ideally, ownership of critical file systems will have been moved to other systems
before the system exits. If that has not happened, there will be a window of time
during which these critical file systems are unowned. If the initializing system
requires access to these critical file systems during this window, there will likely be
mount failures that prevent the initialization from completing successfully. To
avoid this situation, you must make sure that any system that is being removed
from the sysplex does not own any critical file systems.

Locking files in the sysplex
You can lock all or part of a file that you are accessing for read/write purposes by
using the byte range lock manager (BRLM).

210 z/OS V2R2 UNIX System Services Planning

The lock manager is initialized on every system in the sysplex. This is known as
distributed BRLM, and it is the only supported byte range locking method. Each
BRLM is responsible for handling locking requests for files whose file systems are
mounted locally in that system.

z/OS UNIX backs up each lock in the application's system when the actual lock is
stored in another system. This redundant locking provides recovery of locks when
a system in the sysplex terminates abnormally. If z/OS UNIX is able to
successfully recover a file system, then it restores the locks held for files in that file
system. Doing so prevents error conditions from occurring.

If the following situations occur, the locks for the corresponding files are
considered to be lost:
v z/OS UNIX cannot recover the file system and unmounts it, including

unmounting due to a MODIFY OMVS,STOPPFS command.
v NOAUTOMOVE was specified for the file system.
v Any lock for a file was not successfully backed up.

Existing applications that have locked those files are prevented from accessing
those files. Specifically, after a failure where byte range locks are lost, z/OS UNIX
provides the following information to processes that have used byte range locking:
v Access to open files for which byte range locks are held by any process will

result in an I/O error. The file must be closed and reopened before use can
continue.

v A signal is issued to any process which has made use of byte range locking. By
default, a SIGTERM signal is issued against every such process and an EC6
abend with reason code 0D258038 will terminate the process. If you do not want
the process to be terminated, the process can use BPX1PCT (the physical file
system control callable service) to specify a different signal for z/OS UNIX to
use for notifying the process that the BRLM has failed. Any signal can be used
for this purpose, thus allowing the user or application the ability to catch or
ignore the signal and react accordingly.
z/OS MVS System Codes describes the system completion code EC6 and its
associated reason codes. See z/OS UNIX System Services Programming: Assembler
Callable Services Reference for more information about BPX1PCT.

Note: The F BPXOINIT,SHUTDOWN=FILESYS|FILEOWNER and F
OMVS,SHUTDOWN commands do not cause a signal to be generated just because
an application has lost byte range locks, although a signal might be generated for
other reasons during shutdown processing.

Mounting file systems using symbolic links
You can mount different file systems at a logical mount point that resolves to a
different path name on different systems.

While $VERSION/ can be used to differentiate a path based on the version level of
a system and $SYSNAME/ can be used to differentiate on each system, you can
use special identifiers to mount file systems using symbolic links. These are
$SYSSYMR/template and $SYSSYMA/template.

Restrictions: When mounting file systems using symbolic links, observe these
restrictions:
1. Like $VERSION/ and $SYSNAME/, the identifiers need to be at the beginning

of the link name.

Chapter 7. Sharing file systems in a sysplex 211

2. Only the first occurrence of $SYSSYMR/ or $SYSSYMA/ in the link name is
recognized as an identifier for which the remaining text requires substitutions.
Any other identifiers after the first one will remain as is in the resolved
linkname.

3. Text must follow a $SYSSYMR/ or $SYSSYMA/ in order for it to be recognized
as a valid identifier with text containing symbols to be resolved.

4. Any system symbol in the symbolic link text that is recognized by the
ASASYMBM service are resolved. However, only static system symbols should
be used in order to avoid unexpected results. These symbols are assigned a
value at initialization. For information about system symbols, see z/OS MVS
Initialization and Tuning Reference.

Tip: You can use D SYMBOLS to display the current settings of system symbols.

These examples assume that the standard MVS symbol &SYSR1. resolves to
OSV315 on SY1 and resolves to OSV315B on SY2.
1. If the symbolic link is /x/y/sym1, and the symbolic link contains

$SYSSYMR/&SYSR1./resdir, a path name lookup on /x/y/sym1 from SY1 will
resolve the symbolic link to OSV315/resdir. Because it is a relative path name
(the identifier was $SYSSYMR/), the resulting path name will be
/x/y/OSV315/resdir.
Example: On a mount, passing /x/y/sym1 as the input mount point path
name, the mount point would be: /x/y/OSV315/resdir on SY1.
v If the symbol &SYSR1. resolves to OSV315B on SY2, a lookup of the same

path name would result in a mount point of /x/y/OSV315B/resdir.
v On a v_readlink syscall, passing the VnToken for the symbolic link, the

output linkname would be OSV315/resdir on SY1 or OSV315B/resdir on
SY2.

2. If the symbolic link is /x/y/sym1, and the symbolic link contains
$SYSSYMA/&SYSR1./resdir, a path name lookup on /x/y/sym1 from SY1 will
resolve the symbolic link to /OSV315/resdir. Because it is an absolute path
name (the identifier was $SYSSYMA/), the resulting path name will be
/OSV315/resdir.
Example: On a mount, passing /x/y/sym1 as the input mount point path
name, the mount point would be /OSV315/resdir on SY1.
v If the symbol &SYSR1. resolves to OSV315B on SY2, a lookup of the same

path name from SY2 would result in a mount point of /OSV315B/resdir.
v On a v_readlink syscall, passing the VnToken for the symbolic link, the

output linkname would be /OSV315/resdir on SY1 and /OSV315B/resdir on
SY2.

Mounting file systems using NFS client mounts
With the z/OS NFS server, the client has remote access to z/OS UNIX files from a
client workstation. Using the Network File System, the client can mount all or part
of the file system and make it appear as part of its local file system. From the
workstation, the client user can create, delete, read, write, and treat the
host-located files as part of the workstation's own file system.

In a similar way, the z/OS NFS client gives users remote access to files on an NFS
server. Using NFS, the user can mount all or part of the remote file system and

212 z/OS V2R2 UNIX System Services Planning

make it appear as part of the local z/OS UNIX file hierarchy. From there, the user
can create, delete, read, write, and treat the remotely located files as part of their
own file system.

In a sysplex, the NFS Client-NFS Server relationship is as follows: the data that
becomes accessible is accessible from any place in the sysplex as long as at least
one of the systems has connectivity to the NFS server. Entries in the NFS Server
Export Data Set can control which UNIX directories can be mounted by client
users. You can specify either fully qualified path names or symbolic links.

Tuning z/OS UNIX performance in a sysplex
The intersystem communication required to provide the additional availability and
recoverability associated with z/OS UNIX shared file system support, affects
response time and throughput on R/W file systems being shared in a sysplex.

For example, assume that a user on SY1 requests a read on a file system mounted
R/W and owned by SY2. Using shared file system support, SY1 sends a message
requesting this read to SY2 via an XCF messaging function:
SY1 ===> (XCF messaging function) ===> SY2

After SY2 gets this message, it issues the read on behalf of SY1, and gathers the
data from the file. It then returns the data via the same route the request message
took:
SY2 ===> (XCF messaging function) ===> SY1

Thus, adding z/OS UNIX to a sysplex increases XCF message traffic. To control
this traffic, closely monitor the number and size of message buffers and the
number of message paths within the sysplex. It is likely that you will need to
define additional XCF paths and increase the number of XCF message buffers
above the minimum default. For more information on signaling services in a
sysplex environment, see z/OS MVS Setting Up a Sysplex .

Be aware that because of I/O operations to the CDS, every mount request requires
additional system overhead. Mount time increases as a function of the number of
mounts, the number of members in a sysplex, and the size of the CDS. You will
need to consider the effect on your recovery time if a large number of mounts are
required on any system participating in a shared file system.

DFS and SMB considerations when exporting file systems
A file system can only be exported by the Distributed File System (DFS) or Server
Message Block (SMB) server at the system that owns the file system. Once a file
system has been exported by DFS, it cannot be moved until it has been unexported
by DFS. The same holds true of file systems exported by SMB.

To recover from system outages, you need to weigh sysplex availability against
availability to the DFS and SMB clients. When an owning system is recycled and
an exported file system has been taken over by one of the other systems, that file
system will not be automatically reexported. The file system will have to be moved
from its current owner back to the original system, the one that has just been
recycled, and then reexported.

For file systems that are mostly for use by DFS or SMB servers, consider specifying
NOAUTOMOVE on the MOUNT statement in the BPXPRMxx parmlib member. If

Chapter 7. Sharing file systems in a sysplex 213

you specify NOAUTOMOVE, the file systems will not be taken over if the system
is recycled, and they will be available for automatic reexport by DFS.

In order for either the DFS or SMB server to move file systems to itself when they
are not owned locally, the following server configuration option can be specified:
_IOE_MOVE_SHARED_FILESYSTEM=ON.

214 z/OS V2R2 UNIX System Services Planning

Chapter 8. Customizing the shells and utilities

This topic discusses how to customize the z/OS and tcsh shells and the common
tasks that need to be done when setting up the utilities.

Lists of subtasks

Subtask Associated procedure

Invoking the shell automatically under
TSO/E

“Steps for enabling shell users to invoke the
shell automatically” on page 216

Customizing the /etc/profile file “Steps for customizing /etc/profile” on page
223

Customizing the /$HOME/.profile file “Steps for customizing $HOME/.profile” on
page 225

Customizing the /etc/rc file “Steps for customizing /etc/rc” on page 231

Customizing the /etc/inittab file “Steps for customizing /etc/inittab” on page
234

Connecting to the shell
To work interactively, the shell user connects to the system in one of the following
ways:
v Logs on to TSO/E and enters the TSO/E command OMVS, which invokes a

shell. The OMVS command provides a 3270 terminal interface to the shell, and
you can use the options to customize the interface - for example, function key
settings.

v Issues the rlogin command, which invokes the shell. It provides an
asynchronous terminal interface to the shell, which is familiar to UNIX users.

v Issues the telnet command, which invokes the shell. It provides an
asynchronous terminal interface to the shell, which is familiar to UNIX users.

See z/OS V2R2.0 UNIX System Services User's Guide for a description of these
interfaces to the shell.

After the user logs in to the shell, the system initializes the shell. See “Customizing
the z/OS UNIX shells” on page 217 for information about customizing the shell
invocation.

Invoking the shell automatically under TSO/E
A shell user can invoke the shell automatically at the end of logging on to TSO/E.
For the automatic invocations, the system invokes the shell after the TSO/E logon
completes initialization. Automatic invocation is a handy way to enter the same
OMVS command with options each time.

The automatic invocation can be set up by the system programmer or by the shell
user.

© Copyright IBM Corp. 1996, 2016 215

Steps for enabling shell users to invoke the shell
automatically

Before you begin: You need to know which shell users want to invoke the shell
automatically when they log on to TSO/E, and you must be the system
programmer.

Perform the following steps to enable shell users to invoke the shell automatically
when they log on to TSO/E.
1. Select or create a TSO/E logon procedure for users who want to invoke the

shell automatically when they log on to TSO/E

2. In the logon procedure, add a PARM parameter to the EXEC statement for
program IKJEFT01.
// EXEC PGM=IKJEFT01, ...
// PARM=OMVS

3. Tell users to specify the procedure on the TSO/E logon panel on the line:

Procedure ===>

When you are done, you have enabled shell users to invoke the shell automatically
when they log on to TSO/E.

Tip:

v To customize the OMVS command for all shell users, you can create a REXX
exec with the customized options. Then specify the name of the REXX exec in
the PARM parameter, instead of with the OMVS command. In the exec, for
example, you can specify the following changes:
– Use of the 3270 alarm.
– Number of sessions. (The default is 1.) For example:

OMVS SESSIONS (3)

– The key or keys to be used for escape.
– The settings for the function keys.
– The table to be used for code page conversion.
– Shared address space.

v To customize any of the default function key settings, type your selection within
the parentheses after the function key name.
To make function key 1 (<PF1>) the Control key, issue:
OMVS PF1(CONTROL)

Use it to type an escape sequence such as <Ctrl-D>. (First type d on the
command line and then press the function key.)

You can now perform the steps for the decision you have made.

Invoking the shell automatically when logging on to TSO/E
A TSO/E user can invoke the shell automatically when logging on to TSO/E.
When logging on, you can invoke the shell by adding one of the following to the
TSO/E logon panel:
v The OMVS command.

216 z/OS V2R2 UNIX System Services Planning

Example: If the default options are required:
Command ===> OMVS

Or:
v The name of the REXX exec that contains an OMVS command with operands for

required options.
Example: If the exec name is MYOM:
Command ===> MYOM

TSO/E processes this command each time the user logs on until the user deletes
the command from the panel or changes it.

Tip: You might want to invoke OMVS from ISPF for the following reasons:
1. It is faster to invoke an ISPF dialog such as OEDIT or OBROWSE because ISPF

does not need to start and stop to run the command.
2. It is not necessary to type *** and press <Enter> after running an ISPF dialog;

control returns to the shell.
3. You can use split-screen support when using an ISPF dialog.

For information about REXX, see z/OS TSO/E REXX Reference and z/OS TSO/E
REXX Reference

Determining the CPU time limit
The time limit for using a shell is the same as the TSO/E timeout. In determining
the time, the system does not count the processing time for shells running in
separate address spaces or processes forked by the shell. If you specify
environment variable _BPX_SHAREAS=YES, then the shell processes and possibly
one shell command are created in local processes. The CPU time consumed by
local processes comes out of the TSO/E address space's time limit.

Supplying an alternative shell
If your installation decides to supply its own shell, consider doing the following
tasks::
v Install the alternative shell in the file system.
v Set the sticky bit on and put the alternative shell in the link pack area (LPA).
v Specify the path name of the shell in the PROGRAM parameter for the OMVS

RACF profile for users who want to use this as their default shell.
v Customize /etc/init.options if the shell script used for system initialization will

use this shell.
v Identify the alternative shell in an input parameter in the /etc/init.options file.

If you are using the /etc/profile for the z/OS shell or /etc/csh.login for the tcsh
shell, you might need to review them and make any necessary adjustments.

For an example of MAXPROCSYS settings in BPXPRMxx, see “Monitoring use of
system resources” on page 389.

Customizing the z/OS UNIX shells
After a user logs in to the shell, the system initializes the shell for that user. During
the initialization, the system does the following:

Chapter 8. Customizing the shells and utilities 217

1. Determines whether the user is authorized to use the shell by checking for a
UID value in the user's RACF user profile. It also checks that the user's RACF
group has a GID assigned to it.

2. Sets the LOGNAME, HOME, and SHELL environment variables from data in
the RACF user profile, which was specified in the RACF ADDUSER and
ALTUSER commands. See “Customizing the RACF user profile” on page 219.

3. Connects the user to the initial working directory that was identified in the
HOME environment variable in the RACF user profile. If the RACF user profile
does not identify a working directory, the system uses the root as the user's
working directory and issues a message.

4. Invokes the shell named in the PROGRAM statement of the OMVS segment in
the RACF user profile.
v For the z/OS shell, it is named /bin/sh.
v For the tcsh shell, it is named /bin/tcsh.

Similar systems typically have an /etc/passwd file, which contains the HOME and
PROGRAM environment variables. The file also contains the passwords and
password phrases that are used. To provide better security, the z/OS shell does not
use the /etc/passwd file; instead, it uses the initial values assigned to these
variables in the RACF user profiles. RACF maintains the passwords and password
phrases.

Customizing the shell environment variables
If an environment variable is not set, it has no value. Setting an environment
variable is optional.

For the z/OS shell
The places to set environment variables, in the order that the system sets them, are:
1. The RACF user profile.
2. The /etc/profile file, which is a system-wide file that sets environment variables

for all z/OS shell users. This file is only run for login shells.
3. The $HOME/.profile file, which sets environment variables for individual

users. This file is only run for login shells.
4. The file named in the ENV environment variable. This file is run for both login

shells and subshells.
5. A shell command or shell script.

Later settings take precedence. For example, the values set in $HOME/.profile
override those in /etc/profile.

Depending on the commands used to set it, an environment variable can be local
(used only for the current process) or exported (used for the current process and for
any other processes spawned by the current process).

For the tcsh shell
The places to set environment variables, in the order that the system sets them, are:
1. The RACF user profile
2. The /etc/csh.login file, which is the system-wide file that sets environment

variables. This file is only run for login shells.
3. The $HOME/.login file, which sets environment variables for individual users.

This file is only run for login shells.

218 z/OS V2R2 UNIX System Services Planning

4. The /etc/csh.cshrc file, which is the system-wide file that sets shell variables,
some environment variables (like PATH), and umask. It also defines command
aliases. It is used by subshells.

5. The $HOME/.tcshrc file, which sets environment variables for individual users.
It is used by subshells.

6. The $HOME/.cshrc file, if it is provided for compatibility with the C shell.

Later settings take precedence. For example, the values set in $HOME/.login
override those in /etc/csh.login.

Customizing the RACF user profile
The security administrator defines a user by creating a RACF user profile with an
ADDUSER command or alters the user profile with an ALTUSER command. The
RACF user profile contains values that are used to set the following environment
variables:

LOGNAME
The TSO/E user ID.

HOME
The path name of the user's home directory as specified in the HOME
parameter of the RACF command. If the HOME parameter was not
specified, HOME is the root directory. Unpredictable results might occur if
an invalid or nonexistent directory is specified for the HOME parameter.
For more information about setting up home directories for users, see
“Defining z/OS UNIX users to RACF” on page 57.

SHELL
The path name of the file containing the shell program as specified in the
PROGRAM parameter on the RACF command. If PROGRAM was not
specified, SHELL is /bin/sh.

The PROGRAM parameter can specify a special-purpose shell or another kind of
program.

Customizing files for the z/OS shell
You might want to customize these system-wide profiles that you might want to
customize to meet the needs of your installation:
v /etc/profile
v $HOME/.profile
v /etc/init.options
v /etc/rc
v /etc/inittab

Customizing /etc/profile
The /etc/profile file is the system-wide profile for the z/OS shell users. It
contains environment variables and commands used by most shell users. To
improve system performance, use STEPLIB=none.

Note: Because /etc/profile is the z/OS shell equivalent to /etc/csh.login for
tcsh, you must keep system-wide information for both sets of users in synch. Any
customization that you have done for /etc/profile (such as setting environment
variables) must be duplicated in C-shell syntax in /etc/profile. Future changes to
/etc/profile also must be made to /etc/csh.login. If you maintain a non-z/OS
UNIX system, you could consider porting /etc/profile

Chapter 8. Customizing the shells and utilities 219

and /etc/csh.login from that system to the z/OS system and merging them with
the z/OS samples.

Copy the IBM-supplied /samples/profile file to /etc/profile. (See “Steps for
customizing /etc/profile” on page 223 for the procedure.) The following extract
shows an excerpt of /samples/profile.
==
STEPLIB environment variable

Specifies a list of data sets to be searched ahead of the normal
search order when executing a program. To improve the shell’s
performance for users from ISPF or users with data sets allocated to
STEPLIB DD statements, specify "STEPLIB=none" .
This performance improvement is not applicable to non-interactive
shells, for example those started with the BPXBATCH and OSHELL
utilities.
The exec will restart the current shell, as a login shell with the
same argv[0] name.
==

if [-z "$STEPLIB"] && tty -s;
then

export STEPLIB=none
exec -a $0 $SHELL

fi

==
TZ environment variable

Specifies the local time zone.
===
TZ=EST5EDT
export TZ

==
LANG environment variable

Specifies the language you want the messages to displayed in.
For Japanese: LANG=Ja_JP
==
LANG=C
export LANG

==
LOGNAME environment variable

This environment variable is set when ’logging’ into the shell
environment. You can avoid accidental modification to this variable
by making the LOGNAME variable read-only.
==
readonly LOGNAME

==
PATH environment variable

Specifies the list of directories that the system searches for an
executable command. If you want to include the current working
directory in your search order, then the enviroment variable would
be
PATH=/bin:.

#
The current working directory is represented by dot (’.’) .
===
PATH=/bin
export PATH# ==

220 z/OS V2R2 UNIX System Services Planning

LIBPATH environment variable

Specifies the list of directories that the system searches for a DLL
(Dynamic Link Library) filename. If not set, the current working
directory is searched.

LIBPATH=/lib:/usr/lib:.
export LIBPATH

==
NLSPATH environment variable
--------------------------–-
Specifies the list of directories that the system searches for
message catalogs (NLS files). The %L represents the language currently
set by the LANG environment variable, and %N represents the name
of the message catalog.
==

NLSPATH=/usr/lib/nls/msg/%L/%N
export NLSPATH

==
MANPATH environment variable

Specifies the list of directories that the system searches for man
pages (help files). The %L represents the language currently set by
the LANG environment variable.
==
MANPATH=/usr/man/%L
export MANPATH

==
MAIL environment variable

Sets the name of the user’s mailbox file and enables mail
notification.
==
MAIL=/usr/mail/$LOGNAME
export MAIL

==
umask variable

Sets the default file creation mask - reference umask in the z/OS
UNIX System Services Command Reference
==
umask 022# ==
Start of c89/cc/c++ customization section
==
#
The following environment variables are used to provide information
to the c89/cc/c++ utilities, such as (parts of) data set names which
are dynamically allocated.
#
##
#
for _CMP in _C89 _CC _CXX; do
##
High-Level Qualifier "prefixes" for data sets used by c89/cc/c++:
==
#
C/C++ Compiler:
--
export ${_CMP}_CLIB_PREFIX="CBC"
##
Prelinker and runtime library:
--

Chapter 8. Customizing the shells and utilities 221

export ${_CMP}_PLIB_PREFIX="CEE"
##
z/OS system data sets:
--
export ${_CMP}_SLIB_PREFIX="SYS1"
#
#
Compile and link-edit search paths:
==
##
Compiler include file directories:
--
export ${_CMP}_INCDIRS="/usr/include /usr/lpp/cbclib/include"
##
Link-edit archive library directories:
--
export ${_CMP}_LIBDIRS="/lib /usr/lib"
##
Esoteric unit for data sets:
==
##
Unit for (unnamed) work data sets:
--
export ${_CMP}_WORK_UNIT="SYSDA"
##
done; unset _CMP
#
==
End of c89/cc/c++ customization section

Some of the statements in /etc/profile are explained in the following list:

STEPLIB=none
Indicates that STEPLIBs should be not propagated. Running the shell with
STEPLIB=none assumes that the Language Environment runtime library
resides in LINKLIST or in LPA. It is run only on the first invocation of an
interactive shell.

exec -a $0 $SHELL
Restarts the current shell in the current address space with the environment
variables that you have just defined. The "if test" causes this to be run only on
the first invocation of an interactive shell. The tty -s test prevents the shell
from being run by noninteractive invocations such as those started with
BPXBATCH and OSHELL.

TZ=EST5EDT
Sets the time zone as appropriate. In the sample profile, TZ is set to EST5EDT,
which is Eastern Daylight Time.

LANG=C
Specifies the name of the default locale. C specifies the POSIX locale and Ja_JP
specifies the Japanese locale.

readonly LOGNAME
Sets the LOGNAME variable to read-only so that it is not accidentally
modified.

PATH=/bin
Sets a default command search path to search only the /bin directory.

LIBPATH=/lib:/usr/lib:.
Specifies the directory to search for a dynamic link library (DLL) file name. If
this is not set, only the working directory is searched.

222 z/OS V2R2 UNIX System Services Planning

NLSPATH=/usr/lib/nls/msg/%L/%N
Sets the path for message catalogs.

MANPATH=/usr/man/%L
Sets the path for the man pages.

MAIL=/usr/mail/$LOGNAME
Sets the name of the system mail file and enables mail notification.

umask 022
Sets the default file creation mask. In the sample, the mask is set to 022. This
causes a file created with mode 777 to have permissions of 755. The creator
cannot set the group write or other write bits on in the file mode field, because
the mask sets them off.

export TZ PATH NLSPATH MAIL LANG
Exports the values so the system will have access to them.

Steps for customizing /etc/profile
Before you begin: You need to have access to /samples/profile.

Perform the following steps to customize /etc/profile.
1. Copy /samples/profile to /etc/profile. If you already have /etc/profile, then

compare it to /samples/profile and retrofit any new updates. For example:
cp /samples/profile /etc/profile

2. Edit /etc/profile to change and add environment variables. For more

information about environment variables that you can use, see “Environment
variables that you can customize for /etc/profile.”

When you are done, you have customized /etc/profile.

Environment variables that you can customize for /etc/profile
TZ Identifies the time zone used by most of your users. It gives the standard

time zone, the number of hours offset from Coordinated Universal Time
Coordinated (UTC) – also called Greenwich Mean Time (GMT) – and the
daylight saving time zone.
1. For a system whose users are mostly in New York and Boston, this

variable would be:
TZ=EST5EDT

2. For a system with most users in Houston, this variable would be:
TZ=CST6CDT

PATH Defines the default command path. This variable should name all
directories in which the installation plans to put utilities and licensed
programs.

If you plan to place all standard utilities in the /bin directory, this variable
is:
PATH=/bin

If you want your users to access another product's binaries that was
installed into /usr/lpp/xxxxxxxx/bin, the variable becomes:
PATH=/bin:/usr/lpp/xxxxxxxx/bin

Chapter 8. Customizing the shells and utilities 223

The order of the directories in the PATH environment variable controls the
search order.

To add the working directory to the search, add a colon and a period (:.)
as follows:
PATH=/bin:/usr/lpp/xxxxxxxx/bin:.

To search the working directory first, specify:
PATH=.:/bin:/usr/lpp/xxxxxxxx/bin

FPATH
Contains a list of directories that the z/OS shell searches to find shell
functions. The /samples/profile file does not have a default FPATH
setting. Add the definition of the FPATH environment variable to point to
the directories in /etc/profile that contain the shell function definitions.

Directories in this list are separated by colons. Every directory is searched
in the order specified in the list until a matching function definition file is
found. If you have shell functions that you want to make available to all
users, do the following:
1. Define a directory that is readable by all users.
2. Put the shell function definitions in files within this directory.
3. Add the definition of the FPATH environment variable to /etc/profile.

Mark it as an exported variable with the export command.

Example: A function named buildapp is in a file named
/usr/lib/appdev/functions/buildapp. Add the following statement to
/etc/profile:
export FPATH=/usr/lib/appdev/functions

The user can then just issue buildapp. The first time buildapp is run, it is
found in FPATH, defined in the current shell, and executed. After that first
time, every time buildapp is issued (within the same shell), the shell
executes buildapp without first searching for that function.

FPATH follows the same format as the PATH environment variable.

NLSPATH
Specifies the path that the messaging service will use to find a message
catalog.

LANG
Contains the default locale name.

MAIL Define the name of the system mail file and enables notification of mail. If
you plan to use a mail file other than /usr/mail (for example, /usr/notes),
set the variable as follows:
MAIL=/usr/notes/$LOGNAME

STEPLIB
Defines libraries that should be searched to load MVS load modules.
Normally, installations should specify STEPLIB=NONE to prevent the
propagation of STEPLIBs. If a STEPLIB environment variable is needed,
specify only the required library. For example:
STEPLIB=CEE.SCEERUN:CEE.SCEERUN2

If you do not specify the STEPLIB environment variable, STEPLIBs are
propagated from the user's TSO/E user ID. Specifying a value other than
STEPLIB=NONE can affect performance for the following reasons:

224 z/OS V2R2 UNIX System Services Planning

v Each time a fork or exec is invoked, STEPLIB data sets are dynamically
allocated for the user.

v Each time an MVS load module is loaded, the STEPLIB data set
directories are searched.

v Each time an MVS load module is found in the STEPLIB concatenation,
the module is loaded from there into the user's private area storage.

LOCPATH
Tells the setlocale() function the name of the directory from which to load
locale object files. If LOCPATH is not defined, the default directory
/usr/lib/nls/locale is searched.

LOCPATH is similar to the PATH environment variable. It contains a list of
z/OS UNIX directories separated by colons.

For information about how setlocale() searches for locale object files, see
the description of setlocale() in z/OS XL C/C++ Runtime Library Reference.

Customizing $HOME/.profile
The optional $HOME/.profile file contains commands that set or change the values
of environment variables for an individual user. (HOME is a variable for the path
name for a user's home directory.) The values set in $HOME/.profile can override
those in /etc/profile.

Note: Because $HOME/.profile is the z/OS shell equivalent to $HOME/.login for
tcsh, you must keep system-wide information for both sets of users in synch. Any
customization that you did for $HOME/.profile (such as setting environment
variables) must be duplicated in C-shell syntax in $HOME/.login. Future changes
to $HOME/.profile also must be made to $HOME/.login. If you maintain a
non-z/OS UNIX system, you could consider porting $HOME/.profile and
$HOME/.login from that system to the z/OS system and merging them with the
z/OS samples.

Figure 38 shows the IBM-supplied /samples/.profile.

Steps for customizing $HOME/.profile
Before you begin: You need to have access to /samples/.profile.

Perform the following steps to customize $HOME/profile.
1. Copy /samples/.profile to your $HOME directory. For example:

cp /samples/.profile $HOME/.profile

ENV=$HOME/.setup
export ENV

PATH=$PATH:$HOME:

EDITOR=ed

PS1=’$LOGNAME’:’$PWD’:’ >’

export PATH EDITOR PS1

Figure 38. Contents of /samples/.profile

Chapter 8. Customizing the shells and utilities 225

2. Edit .profile to change and add environment variables. For more information
about environment variables that you can use, see “Environment variables that
you can customize for $HOME/.profile.”

When you are done, you have customized $HOME/.profile.

Environment variables that you can customize for $HOME/.profile
Table 28 lists the environment variables that you can customize for $HOME/.profile.

Table 28. Environment variables that you can customize for $HOME/.profile

Environment variable What it does

ENV Specifies the name of the user's environment file, which is a
shell script. ENV=$HOME/.setup specifies a file called .setup,
which the user added to the home directory.

STEPLIB Specifies STEPLIBs for individual users who have STEPLIB
requirements that are different from those of other users.
Tip: Use STEPLIB=none. However, there might be cases in
which a specific library is needed; for example,
STEPLIB=USER1.MY.USERLIB.

PATH Appends your home directory to the current path.

When you set up your own $HOME/.profile as superuser,
specify the /usr/sbin directory in your PATH variable
because some superuser utilities are in that directory
instead of the /bin directory. Those utilities include
automount, inetd, lm, mknod, ocsconfig, rlogind, uucpd,
chroot and cron

PS1 Specifies the prompt character or string.

TZ Specifies a different time zone if the user is in a remote
location.

MAILRC Specifies the name of the user's mail startup file. The
default is $HOME/.mailrc.

MAIL Specifies the name of the user's file for mail that the user
does not save in some other file. The default is $HOME/mbox.

MBOX Specifies the name of the user's file for mail that the user
does not save in some other file. The default is $HOME/mbox.

DEAD Specifies the name of the user's file for partial messages
when an interrupt or error occurs when creating a message
or delivering it. The default is $HOME/dead.letter.

In order for system programmers and administrators to run authorized utilities
and to start daemons found in /usr/sbin, they must have a $HOME/.profile file
with the PATH environment variable set as follows:
PATH=$PATH:/usr/sbin:$HOME:

Using an ENV environment variable file
When the shell is invoked as a login shell, /etc/profile and $HOME/.profile are
used. If you want environment variables in a shell invoked from the current shell,
you should identify a file in an ENV environment variable and place shell
commands in the file. The shell interprets the file named in ENV each time a new
shell is invoked.

226 z/OS V2R2 UNIX System Services Planning

Using a shell command or shell script
For the current shell invocation, a user can enter a shell command to set the value
of any environment variable. Any variables set in a shell script are set only while
the script is running and do not affect the shell that invoked the shell script (unless
the script is “sourced” by running it with the dot command).

Customizing /etc/init.options
The file /etc/init and /usr/sbin/init are referred to synonymously as the
initialization program that is run when the OMVS address space is initialized.

The /usr/sbin/init program invokes a shell to execute an initialization shell script
that customizes the environment. When this shell script finishes or when a time
interval established by /usr/sbin/init expires, kernel services become available for
general batch and interactive use. Standard output (stdout) and standard error
output (stderr) are redirected to /etc/log.

Table 29 lists the files that are associated with /usr/sbin/init.

Table 29. Files that are associated with /usr/sbin/init

File What it is

/bin/sh The default shell that /usr/sbin/init invokes to execute
/etc/rc or another shell script that is specified in the
/etc/init.options file.

/etc/init.options The customized initialization options file, which is read by
/usr/sbin/init.

/etc/rc The default shell script that is used for initialization.

/etc/log The file that output is written to.

Other utilities Services that are called by the initialization shell script.

/usr/sbin/init and the customized /etc/init.options and /etc/rc are run at IPL.
There is no other way to invoke them explicitly.

Before /usr/sbin/init invokes the shell to execute the system initialization shell
script, it reads the file /etc/init.options for values of various options. The
IBM-supplied default is in /samples/init.options. Copy this file to
/etc/init.options and make the appropriate changes. If you already have
/etc/init.options, then compare it to /samples/init.options and retrofit any
new updates.

/usr/sbin/init treats all lines in /etc/init.options that do not start with a
hyphen (-) as comment lines. Lines that start with a hyphen are used to specify
options. The format of lines specifying options is as follows:
-oo vvvvv comment

where:
v oo is a field of one or more nonblank characters immediately following the

hyphen that identifies the option. The end of the option field is delimited by one
or more blanks.

v vvvvv is a field of one or more nonblank characters that specify an option value.
These characters are numeric, alphabetic, or a combination of both, depending
on the option being specified. The end of the value field is delimited by one or
more blanks.

Chapter 8. Customizing the shells and utilities 227

Option and option value characters must appear in columns 1 through 79 of an
option line in /etc/init.options. /usr/sbin/init ignores characters beyond
column 79. However, a backslash (\) immediately following nonblank value
field characters is recognized as a continuation character. If the continuation
character is found, nonblank characters at the beginning of the next line are
treated as option value characters. The first blank character delimits the end of
the value field.
Option value characters on a continuation line are limited to columns 1 through
79.
The continuation character is recognized on continuation lines as well as the
option line.

v Any characters after a blank delimiting the end of the option value field on the
same line are treated as comment characters.

Options and option value ranges are listed as follows:

-a nnnn
Alarm option. Specifies the maximum time in seconds allowed for the shell
script to complete. You must specify enough time for the system
initialization script to complete if this is a requirement at your installation.

The default is 180 seconds.

The maximum is 9999 seconds.

If the shell does not signal completion of the script before this time elapses,
/usr/sbin/init writes the timeout error message, FSUM4013I, in /etc/log
and exits.

If the value 0 is specified, no timeout interval is set. The decision to specify
the value 0 for the alarm option should be made carefully and only after
you know that the initialization script is error-free.

-t n Terminate option. Specifies whether to end the shell script initialization if
the timeout specified by the alarm option (-a) occurs.
0 Allows the shell script to continue
>0 Ends the shell script
1 The default; ends the shell script.

If you specify terminate and the timeout waiting for the initialization shell
script occurs, /usr/sbin/init sends a stop signal to the shell process
group.

It is your responsibility to decide if the initialization shell script can
continue concurrently with batch and interactive use of the shell.

-e string
Environment variable option: string in the form name=value specifies the
environment variable name and the value that /usr/sbin/init passes to
the shell that it is invoking

The maximum length is 255 characters.

/etc/init.options can contain up to 25 -e option lines specifying names
and values for different environment variables. /usr/sbin/init passes the
resultant environment variable array to the shell that it invokes. In turn,
the shell uses this array to set up an execution environment for the
initialization shell script that is appropriate for the installation. TZ is an
example of an environment variable that should be considered.

228 z/OS V2R2 UNIX System Services Planning

These environment variables should also be set up in /etc/profile or
$HOME/.profile for each interactive user. Examples of variables that you
could specify are TZ, LANG, and NLSPATH.

-sc pathname
The path name of the initialization shell script.

The default is /etc/rc.

The maximum length is 255 characters.

-sh pathname
pathname specifies the shell to be invoked by /usr/sbin/init to run the
initialization script. /usr/sbin/init cannot set environment variables for
the rest of the system.

The default is /bin/sh.

The maximum length is 255 characters.

-sh <blanks> tells /usr/sbin/init not to run the shell. Instead,
/usr/sbin/init signals that multiuser mode is to be entered and then exits.

Following is a sample /etc/init.options file showing the time zone, the Japanese
language, and the locale:
-e TZ=JST-9
-e LANG=Ja_JP
-e NLSPATH=/usr/lib/nls/msg/%L/%N

/etc/init opens the message catalog fsumucat.cat in directory
/usr/lib/nls/msg/C unless an NLSPATH environment variable naming a different
directory is specified in the /etc/init.options file.

For more information about national language support, see Chapter 9,
“Customizing for your national code page in the shell,” on page 247.

Tip: You can use a REXX exec in an MVS data set as an alternative to running the
/etc/init initialization program. To activate the REXX exec for initialization, you
must specify its name on the STARTUP_EXEC statement in the BPXPRMxx
parmlib member.

Customizing /etc/rc
The /etc/rc file contains customization commands for z/OS UNIX System
Services Application Services. Copy the IBM-supplied /samples/rc file to /etc/rc,
as described in “Steps for customizing /etc/rc” on page 231 and customize it.

If the /etc/inittab file is installed, z/OS UNIX installation processes the
/etc/inittab file instead of executing the /etc/rc file. If you want to use
/etc/inittab in addition to the existing /etc/rc file, then include an entry in the
/etc/inittab file to start /etc/rc.

The following excerpt of IBM-supplied /samples/rc file includes the set -v -x
command, which specifies that a verbose shell command trace of /etc/rc is to be
written to /etc/log. Certain comments are also commented out.
Initial setup for z/OS UNIX
export _BPX_JOBNAME=’ETCRC’

Provide z/OS UNIX Startup Diagnostics
set -v -x

Chapter 8. Customizing the shells and utilities 229

Setup utmpx file
>/etc/utmpx
chmod 644 /etc/utmpx

Reset all slave tty files
chmod 666 /dev/tty*
chown 0 /dev/tty*

Allow only file owner to remove files from /tmp
chmod 1777 /tmp

Allow only file owner to remove files from /var
chmod 1777 /var

Allow only file owner to remove files from /dev
chmod 1755 /dev

Setup write, talk, mesg utilities
chgrp TTY /bin/write
chgrp TTY /bin/mesg
chgrp TTY /bin/talk
chmod 2755 /bin/write
chmod 2755 /bin/mesg
chmod 2755 /bin/talk
Performed at install in HOT7707
Commented out in HOT6609 and performed in SAMPLIB job FOMISCHO

Setup mailx utility
No need to CHGRP /usr/mail directory
No need to CHGRP mailx utility
No need to CHMOD mailx to turn on SETGID

Setup uucp utility
chown uucp:uucpg /usr/lib/uucp
chown uucp:uucpg /usr/lib/uucp/IBM
chown uucp:uucpg /usr/spool/uucp
chown uucp:uucpg /usr/spool/locks
chown uucp:uucpg /usr/spool/uucppublic
chown uucp:uucpg /usr/spool/uucp/.Xqtdir
chown uucp:uucpg /usr/spool/uucp/.Sequence
chown uucp:uucpg /usr/spool/uucp/.Status
chown uucp:uucpg /bin/uucp
chown uucp:uucpg /bin/uuname
chown uucp:uucpg /bin/uustat
chown uucp:uucpg /bin/uux
chown uucp:uucpg /usr/lib/uucp/uucico
chown uucp:uucpg /usr/lib/uucp/uuxqt
chown uucp:uucpg /usr/lib/uucp/uucc
chmod 4775 /bin/uucp
chmod 4775 /bin/uuname
chmod 4775 /bin/uustat
chmod 4775 /bin/uux
chmod 4754 /usr/lib/uucp/uucico
chmod 4754 /usr/lib/uucp/uuxqt
chmod 4774 /usr/lib/uucp/uucc
Performed at install in HOT7707
Commented out in HOT6609 and performed in SAMPLIB job FOMISCHO

Invoke vi recovery
#

mkdir -m 777 /var/tmp
export TMP_VI="/var/tmp"
if [-e /etc/recover]
then

chmod 1777 /etc/recover

230 z/OS V2R2 UNIX System Services Planning

|
|
|

else
mkdir -m 1777 /etc/recover

fi
/usr/lib/exrecover

Create TERMINFO database
tic /usr/share/lib/terminfo/ibm.ti
tic /usr/share/lib/terminfo/dec.ti
tic /usr/share/lib/terminfo/wyse.ti
tic /usr/share/lib/terminfo/dtterm.ti
commented tic out in HOT1180 - all TERMINFO files are shipped

#--
Added in HOT7750 to eliminate a manual migration action.
#
Remove all files in the man cache that were created by the
man command for the default MANPATH directory.
#
NOTE: This loop only removes files for a subset of the LANG values
possible. Administrators should customize the loop to include
the LANG values supported on their system.
#--
for MAN_CACHE_LANG in C Ja_JP Zh_CN ; do

[[-d /var/man/$MAN_CACHE_LANG]] && rm /var/man/$MAN_CACHE_LANG/*.[0-9].*
done

Start the INET daemon for remote login activity
#_BPX_JOBNAME=’INETD’ /usr/sbin/inetd /etc/inetd.conf &

sleep 5
echo /etc/rc script executed, `date`

The following setup sections have been commented out:
v For the mailx utility because the mailx utility no longer requires these entries.
v For creating the terminfo database because IBM ships the individual files that

make up the terminfo database.
v For the mesg, talk, write and uucp because this customization is now done

when running the FOMISCHO sample job.

Steps for customizing /etc/rc
Before you begin: You need to have access to /samples/rc. If you already have
/etc/rc, then compare it to /samples/rc and retrofit any new updates.

Perform the following steps to customize /etc/rc.
1. Copy /samples/rc to the /etc/rc file. For example:

cp /samples/rc etc/rc

2. Edit /etc/profile to add additional entries, such as those for shell commands.

For instance, you could add a command to start an installation-supplied
daemon. The script can also invoke other scripts such as an rc.tcpip script to
start tcp daemons.

3. Save the file.

When you are done, you have customized /etc/rc.

Chapter 8. Customizing the shells and utilities 231

|
|
|

Customizing /etc/inittab
The /etc/inittab file lists system processes (for example, commands and shell
scripts) that are started when z/OS UNIX is initialized. The file also identifies
processes that can be restarted automatically when they end.

To create the/etc/inittab file, copy the /samples/inittab file to /etc/inittab as
described in “Steps for customizing /etc/inittab” on page 234 and add additional
entries to it. For example, if you want to take advantage of the respawn capability,
you can add an inittab entry to start daemons such as syslogd and cron from
/etc/inittab instead of from /etc/rc. When the respawn capability is used,
programs that end are automatically restarted or respawned.

Tip: When the /etc/inittab file is installed, it is processed instead of the
/etc/rcfile. Do not create the /etc/inittab file if you want the /etc/rc file to be
run directly from the initialization process. If you want to use /etc/inittab in
addition to the existing /etc/rc file, then include an entry in the /etc/inittab file
to start /etc/rc. For example:
etcrc::wait:/etc/rc >/etc/log 2>&1

Rule: The /etc/inittab file must be installed into the file system before the
system is IPLed or before it is restarted. It is processed only once during
initialization and also once during OMVS restart.

Format of the /etc/inittab file
The /etc/inittab file is composed of entries that are position-dependent and have
the following format:
Identifier:RunLevel:Action:Command

The colon character (:) is used as a delimiter. To comment out an entry in the
/etc/inittab file, add : or # at the beginning of the entry.

Example: The following entry is commented out.
:Identifer:RunLevel:Action:Command

Each entry is delimited by a newline character. A backslash (\) character preceding
a newline character indicates the continuation of an entry. There are no limits on
the number of entries in the /etc/inittab file. The maximum entry size is 1024
characters. The entry fields are:

Identifier
A string of 1 to 7 characters that uniquely identifies the entry. The ID is
used as the job name for the process.
v The identifier must start in column 1 of the file.
v Valid characters are A-Z and 0-9. Lowercase characters are converted to

uppercase.
v The identifier must start with an alphabetic character.

The identifier is required; there is no default.

RunLevel
Not supported on z/OS UNIX. Identifies the run levels in which this entry
can be processed. Even though the RunLevel field is not supported, it is in
the inittab entry for compatibility with other UNIX implementations. The
run level field can be up to 32 alphanumeric characters. If it is specified, it
will be checked for validity and the inittab entry will be skipped if it is in
error.

232 z/OS V2R2 UNIX System Services Planning

Action
Specifies how to handle the process that is started in the command field.
The supported actions are:

once Starts the process and does not wait for it to end. Continues
scanning the /etc/inittab file and processes the next entry. When it
ends, the process is not restarted.

respawn
Starts the process and does not wait for it to end. Continues
scanning the /etc/inittab file and processes the next entry. The
process is restarted when it ends. When a process is spawned
again, it is restarted with the same file descriptors and
environment variables that it was started with originally.

If a process ends due to a shutdown of all fork activity, the process
is not restarted until fork activity is re-enabled. If a respawnable
process ends and then ends again after being restarted within 15
minutes of its first ending, then message BPXI082D is displayed.
The message identifies the process entry and asks whether to try
again or ignore the error. A process identified for respawn will not
be able to register as a permanent process that can survive a
shutdown and restart cycle because the /etc/inittab file will be
processed again during restart.

Restriction: Daemons, such as cron, inetd, and sshd (the OpenSSH
daemon), cannot be restarted using the respawn attribute. These
processes fork themselves. The respawn attribute is associated with
the parent process that is started, not the forked child processes.

To check the status of the respawn attribute, issue the D OMVS
operator command and check the STATE field. You can also use
the -o attr option of the ps shell command, which displays the
process attributes.

Tip: To avoid excessive consumption of common storage, limit the
number of processes started with the respawn attribute to 100 or
fewer.

respfrk
Starts the process and does not wait for it to end. Continues
scanning the /etc/inittab file and processes the next entry.
v If the process never issues a fork command, then this action

behaves the same way as the respawn action.
v If the process issues a fork, then the respawn attribute is

transferred to the forked child process. When the child process
ends, the original parent process is spawned. This process will
fork itself, thus restarting the daemon process.

v If the original process issues any additional forks, the respawn
attribute is not transferred to those forked children. It is only
transferred the first time the fork is issued.

The respfrk option is intended for a program that forks itself to
create a child process which then continues running while the
parent process ends. For example, the cron and inetd daemons are
written this way.

This option is not found on any other UNIX platforms.

Chapter 8. Customizing the shells and utilities 233

Restriction: Daemons such as the OpenSSH daemon cannot be
respawned with the respfrk attribute. The OpenSSH daemon also
forks itself to create a child process which then continues running
while the parent process ends. However, it does additional forks
before actually forking the daemon process.

wait Starts the process and waits for it to end. The process is not
restarted when it ends. Any subsequent /etc/inittab entries are not
processed until this process ends.

Command
Identifies a shell command, script, or executable program to be run. The
name must be a fully qualified path name. The entire command is, by
default, executed by the shell as:
/bin/sh -c "exec command"

You can change the path name of the target shell via the -sh option in the
/etc/init.options file, but if respawn is required, this action is not
suggested.

Tip: You might see a message indicating that an inittab entry was started
successfully although the command might not have run successfully. This is the
case if the syntax of the inittab entry was correct but the command path was not a
valid path name.

The /samples/inittab file
A partial sample file, /samples/inittab, is shown in Figure 39.

Because the first entry, /etc/rc, does not have redirection specified, standard output
and standard error are both directed to /etc/log.

In the sample file:
v The following entry invokes /etc/rc:

etcrc::wait:/etc/rc

v The following entry invokes the inetd daemon by means of the /etc/initttab file.
You can use this entry instead of starting the inetd daemon from /etc/rc. The
sample inittab entry for inetd causes the inetd daemon to be started under
jobname INETD1 with the respawn capability:
inetd::respfrk:/usr/sbin/inetd /etc/inetd.conf

Steps for customizing /etc/inittab
Before you begin: You need to have access to /samples/inittab. You should also
check that the value for the -a option in the /etc/init.options file specifies enough
time for the system initialization script to complete.

Perform the following steps to customize /etc/inittab.
1. Copy /samples/inittab to /etc/inittab. For example:

cp /samples/inittab /etc/inittab

etcrc::wait:/etc/rc
inetd::respfrk:/usr/sbin/inetd /etc/inetd.conf
msgend::once:/bin/echo Done processing /etc/inittab >/dev/console

Figure 39. Partial contents of the /samples/inittab file

234 z/OS V2R2 UNIX System Services Planning

2. Add entries to /etc/inittab for system processes that you want to be started
when the system is initialized. The sample file has an entry for inetd. You can
add any other system processes to the file. Some examples are provided:
v The following entry is defined in /etc/rc for starting the cron daemon:

_BPX_JOBNAME=’CRON’ /usr/sbin/cron &

You want to get the equivalent function using /etc/inittab. To do so, add the
following entry to the /etc/inittab file:
cron::once:/usr/sbin/cron

The first positional, the identifier, is CRON. This will assign the job name of
CRON to the started process. You do not need to set _BPX_JOBNAME. The
& at the end of the /etc/rc entry is not needed in the /etc/inittab file. The &
indicates the process is to be started in the background and should be
forked, ensuring it gets the job name specified by _BPX_JOBNAME. Starting
the process from the /etc/inittab file ensures the started process gets the job
name as the specified identifier.

v To start cron the same way but with the additional function of assigning it
the respawn capability, add the following entry to the /etc/inittab file:
cron::respfrk:/usr/sbin/cron

Guideline: For commands that are only run once (during initialization),
consider keeping them in /etc/rc. Consider starting daemons (long-running
commands that service user requests) from /etc/inittab.

3. If you have an entry for /etc/rc, remove any command entry from /etc/rc that
you have added to /etc/inittab.

4. Save the file.

When you are done, you have customized the /etc/inittab file.

Customizing files for the tcsh shell
You might want to customize these files for the tcsh shell:
v /etc/csh/login
v $HOME/.login
v /etc/csh.cshrc
v /etc/complete/csrc

Customizing /etc/csh.login
The /etc/csh.login file is used for setting environment variables such as TERM
and is only read by tcsh when it is a login shell.

Important: Because /etc/csh.login is the tcsh equivalent to /etc/profile for sh,
you need to keep system-wide information for both sets of users in synch. Any
customization that you have done for /etc/profile (such as setting environment
variables) must be duplicated in tcsh syntax in /etc/csh.login. Future changes to
/etc/profile also need to be made to /etc/csh.login. If you maintain a non-z/OS
UNIX system, you could consider porting /etc/csh.cshrc and /etc/csh.login
from that system to z/OS and merging them with the z/OS samples.

Chapter 8. Customizing the shells and utilities 235

Figure 40 shows a sample /samples/csh.login file:

Use the cp command to copy /samples/csh.login to /etc/csh.login. Edit
/etc/csh.login to change or add environment variables.

Customizing $HOME/.login

To change or add environment variables such as TERM that are customized for
individual users, first use the cp command to copy /samples/.login to
$HOME/.login. Then edit the file to change or add environment variables. The
$HOME/.login file is only read by tcsh when it is a login shell.

Important: Because $HOME/.login is the tcsh equivalent to $HOME/.profile for sh,
you must keep system-wide information for both sets of users in synch. Any
customization that you have done for $HOME/.login (such as setting environment
variables) must be duplicated in C-shell syntax in$HOME/.profile. Future changes
to $HOME/.login also must be made to $HOME/.profile. If you maintain a non-z/OS
UNIX system, you could consider porting $HOME/.login and $HOME/.profile from
that system to the z/OS system and merging them with the z/OS samples.

Customizing /etc/csh.cshrc
The /etc/csh.cshrc file is the system-wide profile for tcsh shell users and is read by
subshells.

tty -s
set tty_rc=$status
if (($?STEPLIB == 0) && ($tty_rc == 0)) then

setenv STEPLIB none
exec tcsh -l

endif
unset tty_rc

setenv TZ EST5EDT
setenv LANG C
setenv LIBPATH /lib:/usr/lib:.
setenv MAIL /usr/mail/$LOGNAME

==
Start of c89/cc/c++ customization section
==
foreach _CMP(_C89_CC_CXX)
setenv ${_CMP}_CLIB_PREFIX "CBC"
setenv ${_CMP}_PLIB_PREFIX "CEE"
setenv ${_CMP}_SLIB_PREFIX "SYS1"
setenv ${_CMP}_INCDIRS "/usr/include /usr/lpp/cbclib/include"
setenv ${_CMP}_LIBDIRS "/lib /usr/lib"
#
Esoteric unit for data sets:
setenv ${_CMP}_WORK_UNIT "SYSDA"
end
unset _CMP
#
===
End of c89/cc/c++ customization section
===

Figure 40. Partial contents of the /samples/csh.login file

236 z/OS V2R2 UNIX System Services Planning

Figure 41 shows suggested settings for /etc/csh.cshrc provided in the IBM-supplied
/samples/csh.cshrc:

Use the cp command to copy the /samples/csh.cshrc file to /etc/csh.cshrc. Then edit
/etc/csh.cshrc to change or add shell variables.

Customizing $HOME/.tcshrc

The $HOME/.tcshrc file contains commands that set or change the values of shell
variables for individual users and is read by subshells. HOME is a variable for the
path name for a user's home directory. The values set in $HOME/.tcshrc override
those in /etc/csh.cshrc.

Use the cp command to copy /samples/.tcshrc to your $HOME directory. Then edit
the new file to change or add shell variables.

Customizing /etc/complete.tcsh
The /etc/complete.tcsh file contains programmed completions that might be useful
to the user. Programmed completions associate specific types of completion with
individual commands.

Use the cp command to copy /samples/complete.tcsh to /etc/complete.tcsh. Then
edit the new file.

Copying configuration files
In order to use z/OS UNIX shells and utilities, you must copy the configuration
files listed in Table 30 to the specified directory.

Table 30. Copying configuration files in order to use z/OS UNIX shells and utilities

Utility Copied from: To:

cron /samples/queuedefs /usr/lib/cron/queuedefs

file /samples/magic /etc/magic

inetd /samples/inetd.conf /etc/inetd.conf

lexx /samples/yylex.c /etc/yylex.c

mailx /samples/mailx.rc /etc/mailx.rc

make /samples/startup.mk /etc/startup.mk

===
path shell variable
===
#
Specifies the list of directories that the system searches for an
executable command.
set path = (/bin)
===
#
umask variable
#
umask 022
==

Figure 41. Partial contents of the /samples/csh.cshrc file

Chapter 8. Customizing the shells and utilities 237

Table 30. Copying configuration files in order to use z/OS UNIX shells and utilities (continued)

Utility Copied from: To:

sh /samples/profile /etc/profile

/samples/.profile $HOME/.profile

tcsh /samples/complete/tcsh /etc/complete.tcsh

/samples/csh.cshrc /etc/csh.cshrc

/samples/csh.login /etc/csh.login

/samples/.tcshrc $HOME/.tcshrc

/samples/.login $HOME/.login

uucp /samples/Devices /usr/lib/uucp/Devices

/samples/Dialers /usr/lib/uucp/Dialers

/samples/Dialcodes /usr/lib/uucp/Dialcodes

/samples/Permissions /usr/lib/uucp/Permissions

/samples/Systems /usr/lib/uucp/Systems

yacc /samples/yyparse.c /etc/yyparse.c

Enabling the man pages
The man command displays help information about both shell commands and the
z/OS UNIX set of TSO/E commands. To use man pages on z/OS UNIX, you must
have a SEPHTAB data set cataloged in your system, and the SEPHTAB data set
name must be available to the BookRead service called by the man command.

When configuring your system to use man pages:
1. Catalog a SEPHTAB data set in your system and make the SEPHTAB data set

name available to the BookRead service called by the man command. The
SEPHTAB data set contains translation tables used to translate data from the
internal BookManager® softcopy format to the code page displayed by
BookManager.

2. Make sure that the BookServer-supplied EPH.SEPTHTAB data set is available.
If you are using the default IBM-supplied prefix on data set EPH.SEPHTAB, the
setup for man pages is simple. All you have to do is let the shell know where
to find the man pages by setting the MANPATH environment variable.

3. Tell the shell where to find the man pages by setting the MANPATH
environment variable:
MANPATH=/usr/man/%L

After you configure the system for man pages, you can use the man command
(which works from within the z/OS UNIX shell) to view the available commands
online in man page format.

If you are not using the default data set EPH.SEPHTAB, you will have to copy the
sample EPHWP00 parmlib member from SEPHSAMP into SYS1.PARMLIB. The
EPHWP00 sample member contains one line of left-aligned text, "EPH" , which is
the IBM-supplied prefix for the SEPHTAB data set. If you change this prefix, you
must then change the "EPH" statement to match the new prefix. Make sure that the
prefix is left justified on the first line of the EPHWP00 member

238 z/OS V2R2 UNIX System Services Planning

If you rename the SEPTHTAB data set to another suffix, the first line of
/etc/booksrv/bookread.conf must contain:
DSN=fully.qualified.dsn.where.members.are

The preferred location of the BookRead configuration file is /etc/booksrv/
bookread.conf. If that location is not found, the system uses
sys1.parmlib(ephwp00). In other words, if you use the default name
EPH.SEPHTAB, you have nothing more to do. However, if you have a
/etc/booksrv/bookread.conf file, it must contain the name of the data set. If you
decide not to use the /etc/booksrv/bookread.conf file, you must set an
environment variable (EPHBookReadConfig) to let the shell know where to find
the BookRead configuration file.

Setting up for mesg, talk, write, and UUCP
The customization required for the mesg, write, and talk utilities is done at
installation time. Likewise, part of UUCP customization is done at installation
time. For more information, see “Security requirements for ServerPac and CBPDO
installation” on page 88. In the past, these tasks were done with the FOMISCHO
job from SYS1.SAMPLIB.

The FOMISCHO job remains available in SYS1.SAMPLIB for installations that
cannot synchronize their security databases for the required user ID uucp and
group IDs uucpg and TTY. To complete this customization step, these installations
must run FOMISCHO against each system image.

Customizing c89, cc, and c++ (cxx) compilers
The c89 utility is customized by setting environment variables. The ones that most
commonly require setting are specified in the c89 customization section.
v For the z/OS shell, the customization section is in /etc/profile.
v For the tcsh shell, the customization section is in /etc/csh.login.

z/OS UNIX System Services Command Reference lists the rest of the variables that
might require setting for typical c89 usage.

z/OS UNIX System Services Command Reference, in its c89 section, assumes that the
current level of the z/OS XL C/C++ compiler and Language Environment runtime
library will be used. If you must use a previous level of the compiler, then you
must customize other environment variables, which are only documented here.

The environment variables used by the cc command have the same names as the
ones used by c89, except that the prefix is _CC instead of _C89. Likewise, for the
c++ (cxx) command, the prefix is _CXX instead of _C89. Normally, you do not
need to explicitly export the environment variables for all three commands; the "for
loop" at the bottom of the c89 customization section can be used. This "for loop"
sets the variables for all the c89/cc/c++ (cxx) commands.

By putting any customization statements for c89 into /etc/profile for the z/OS
shell (or /etc/csh.login for the tcsh shell) and commenting out those lines, the
environment variables are automatically exported for c89, cc, and c++ (cxx). See
“Customizing /etc/profile” on page 219 and “Customizing /etc/csh.login” on
page 235 for more information.

Chapter 8. Customizing the shells and utilities 239

After you customize the profile, you probably will not need to change it again.
However, you can change the variables at any time; the next time a user logs into
the shell, they will get the new settings.

Using non-default high-level qualifiers
If any of the listed installed products did not use the installation default for the
high-level qualifier, then the appropriate environment variable must be exported to
make c89 aware of this. The environment variables in this table are set to the
default values for the current level of z/OS, but you will need to set them to your
high-level qualifiers. These high-level qualifiers are used to construct the names of
data sets used by c89. All named data sets used by c89 must be cataloged.

Element
c89 environment variable

z/OS XL C/C++ compiler
_C89_CLIB_PREFIX=CBC

Language Environment
_C89_PLIB_PREFIX=CEE

BCP _C89_SLIB_PREFIX=SYS1

Using a system that does not have UNIT=SYSDA
If the system is not configured with an esoteric unit SYSDA, or some other esoteric
unit is to be used for VIO temporary unnamed work data sets set by c89, the
_C89_WORK_UNIT=SYSDA environment variable must be set. Specifying a null
value for this variable ("") results in c89 using an installation-defined default for
the UNIT. The environment variable is shown being set to the default value:

Element
c89 environment variable

All c89–allocated work data sets
_C89_WORK_UNIT=SYSDA

Selecting z/OS XL C/C++ compilers
This section lists the compiler choices; the environment variable settings for each
compiler are identified.

The c89/cc/c++ commands use a number of environment variables. The default
values are specified as comments in the /samples/profile file that is shipped with
each release. The environment variables for:
v c89 begin with the prefix _C89

v cc begin with the prefix _CC

v c++ begin with the prefix _CXX

If the C/C++ Class Library DLLS are used in building your executables (the
default for the c++ command), then this will also target your executable for the
same level of C/C++ Class Library

Using the same compiler for the entire system
If you are using the same compiler for the entire system, then put the compiler
data set name in the linklist. By default, the linklist contains the name of the
default compiler

240 z/OS V2R2 UNIX System Services Planning

If you are using a compiler that is not the system-wide default, then you must
specify the compiler data set name in the STEPLIB environment variable and
export it. Performance might be somewhat affected.

Using the command names common to the xlc and c89 utility
The c89 and xlc commands support the c89, cxx, cc, and c++ command names.
Users can use the c89 or xlc versions of these commands.

The c89 utility is installed in the /bin directory. To use the c89 version of these
commands, the /bin directory must precede the /usr/lpp/cbclib/xlc/bin directory in
the PATH environment variable.

xlc is installed in the /usr/lpp/cbclib/xlc/bin directory. To use the xlc version of
these commands, that directory must precede the /bin directory in the PATH
environment variable.

If the /bin directory precedes the /usr/lpp/cbclib/xlc/bin directory, you can still use
the xlc version of these commands. To do so, use one of xlc, xlC, xlc++ and related
command names (such as those with the _x and _64 suffix) and the -F option.

Example: To invoke the xlc utility using the c89 command names, issue:
xlc -F:c89

Setting up c89 to work with the current z/OS XL C/C++ compiler
These are the export statements for each compiler version, assuming that the
default high-level qualifiers are being used. Where the c89 environment variables
are shown, the environment variables for c++ and cc must also be set.
v For the current z/OS XL C/C++ compiler:

– If you are using the z/OS shell, issue the following command:
export STEPLIB="CBC.SCCNCMP"

– If you are using the tcsh shell, issue the following command:
setenv STEPLIB "CBC.SCCNCMP"

Because the current z/OS XL C/C++ compiler supports compiling code that is
to run on previous releases of z/OS, you do not need to use any additional c89
environment variables. All you need to do is specify the c89 option
-Wc,"target(LEVEL)", where LEVEL is the level of z/OS on which the program
is to be executed. For more information see the description of the TARGET
option in z/OS XL C/C++ User's Guide.

v For the IBM C/C++ V3R2 compiler:
– If you are using the z/OS shell, issue the following commands:

export STEPLIB="CBC.V3R2M0.SCBC3CMP"
export _C89_CVERSION=Ox13020000
export _C89_CLIB_PREFIX=CBC.V3R1M0

– If you are using the tcsh shell, issue the following commands:
setenv STEPLIB "CBC.V3R2M0.SCBC3CMP"
setenv _C89_CVERSION Ox13020000
setenv _C89_CLIB_PREFIX CBC.V3R1M0

v For the AD/Cycle C/370™ V1R2 compiler:
– If you are using the z/OS shell, issue the following commands:

export STEPLIB="EDC.V1R2M0.SEDCDCMP"
export _C89_CVERSION=Ox11020000
export _C89_CLIB_PREFIX=EDC.V1R2M0)

– If you are using the tcsh shell, issue the following commands:

Chapter 8. Customizing the shells and utilities 241

setenv STEPLIB "EDC.V1R2M0.SEDCDCMP"
setenv _C89_CVERSION Ox11020000
setenv _C89_CLIB_PREFIX EDC.V1R2M0)

Because this compiler only supports the C language, it cannot be used with the
c++ command.

Setting up xlc to work with the current z/OS XL C/C++ compiler
The xlc utility uses an external configuration file to control the invocation of the
compiler. Before you can compile C and C++ programs, you must set up the
environment variables and the configuration file for your application. For more
information about those, see the xlc utility description in z/OS UNIX System
Services Command Reference.

If you are using the z/OS shell, issue the following commands to set the
environment variables:
LANG=En_US
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat
PATH=/bin/c89:/usr/lpp/cbclib/xlc/bin${PATH:+${PATH}}
export LANG NLSPATH PATH

If you are using the tcsh shell, issue the following commands to set the
environment variables:
setenv LANG=En_US
setenv NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat
setenv PATH=/bin/c89:/usr/lpp/cbclib/xlc/bin${PATH:+${PATH}}

Before using the compiler, you need to install the message catalogs and set the
environment variables as described in the xlc utility description in z/OS UNIX
System Services Command Reference.

Targeting a z/OS release earlier than the current one
The current release of Language Environment supports creating executables that
will run on previous releases of the operating system. You can use the current
system to build programs to run on previous releases, but the release that the
program is executed on still determines what functionality is available. The C
runtime library headers will detect attempts to use new function when targeting
for an older releases. There is runtime detection of attempts to use new functions
on all supported older releases.

Targeting an earlier release
When targeting an earlier release, you might need to pass the 'compat' option to
the binder. For example:
-Wl,compat=min

A convenient way to do this as part of the setup is to use ${prefix}_OPTIONS
(along with the other environment variables like ${prefix}_VERSION). Some
examples are provided:
v For the z/OS shell, issue:

export _C89_OPTIONS="-Wl,compat=min"

v For the tcsh shell, issue:
setenv _C89_OPTIONS "-WI,compat=min"

You can set {_INCDIRS} to a null string. Some examples are provided:
v For the z/OS shell:

export _C89_INCDIRS=" "

242 z/OS V2R2 UNIX System Services Planning

v For the tcsh shell:
setenv _C89_INCDIRS " "

Or, if you have other directories that you want to be automatically searched, you
can add them to {_INCDIRS}, as long as the default directories are not used with
this environment variable.

Customizing the terminfo database
Full-screen application programs such as the vi editor and the more utility require
a terminfo database. The terminfo database contains the characteristics of different
terminal types that are used to run these full-screen applications.

The terminfo database is shipped as part of z/OS UNIX System Services
Application Services. The database is populated with the terminal types defined by
ibm.ti, dec.ti, wyse.ti, ansi.ti, and dtterm.ti. The database is in the directory
/usr/share/lib/terminfo and the source files are in /samples.

If you need to define other terminal or workstations for a terminfo database, see
“Steps for defining terminals or workstations for a terminfo database.”

Steps for defining terminals or workstations for a terminfo
database

Before you begin: You need to know what terminals or workstation you want to
define. You also need to know what directory the terminal definitions are in.

Perform the following steps to define terminals or workstations for a terminfo
database.
1. Create a subdirectory in your home directory for the terminfo database

terminal definition. For example:
mkdir /u/myhome/terminfo

where myhome is the name of the home directory.

2. Copy the .ti file for the terminal that you are building the terminfo database for
into the directory that you just created. You can obtain the terminal file from
another UNIX operating system, if necessary.
Example: Copy the file pc.ti into the directory:
/u/myhome/terminfo/pc.ti

where myhome is the name of the home directory.

3. Set the TERMINFO environment variable to the directory that the terminal
definitions are in. Base your choice on the shell that you want to use.

For the . . . Then issue . . .

z/OS shell export TERMINFO=/u/myhome/terminfo

tcsh shell setenv TERMINFO=/u/myhome/terminfo

4. Issue the tic command, specifying the terminal file. For example:

tic /u/myhome/terminfo/pc.ti

Chapter 8. Customizing the shells and utilities 243

5. Set the TERM environment variable to the name of the terminal that you want

to use. Base your choice on the shell that you want to use.

For the . . . Then issue . . .

z/OS shell export TERM=sun

tcsh shell setenv TERM=sun

When you are done, you have defined terminals or workstations for the terminfo
database.

Re-creating the terminfo database
If you need to re-create the terminfo database, use the tic utility. Each type of
terminal that is defined has a corresponding file with the suffix .ti. Some examples
are provided:
1. To define an IBM terminal for the terminfo database, specify from the shell

environment:
tic /samples/ibm.ti

2. To define terminal types such as VT100 and VT220, specify from the shell
environment:
tic /samples/dec.ti

For information about curses, see z/OS C Curses.

Customizing electronic mail
The mailx shell command sends electronic mail between shell users on the same
system.

For the z/OS shell
To enable mailx processing, do the following:
v Set up a system startup file, /etc/mailx.rc, which contains variable values and

definitions common to all shell users. The IBM-supplied sample is in
/samples/mailx.rc. Copy this file to /etc/mailx.rc.

v If you use a system mailbox directory other than /usr/mail, identify it in the
$MAIL environment variable in /etc/profile. See “Customizing /etc/profile” on
page 219.

Users can give names to mail files using variables in $HOME/.profile or they can
use files with the default names. See “Customizing $HOME/.profile” on page 225.

For the tcsh shell
To enable mailx processing, do the following:
v Set up a system startup file, /etc/mailx.rc, which contains variable values and

definitions common to all shell users. The IBM-supplied sample is in
/samples/mailx.rc. Copy this file to /etc/mailx.rc.

v If you use a system mailbox directory other than /usr/mail, identify it in the
$MAIL environment variable in /etc/csh.login. See “Customizing /etc/csh.login”
on page 235.

244 z/OS V2R2 UNIX System Services Planning

Users can give names to mail files using variables in $HOME/.login or they can
use files with the default names. See “Customizing /etc/csh.login” on page 235.

Chapter 8. Customizing the shells and utilities 245

246 z/OS V2R2 UNIX System Services Planning

Chapter 9. Customizing for your national code page in the
shell

You can set up a default language for all users of the z/OS shell. You can also
customize your system so that z/OS UNIX messages are displayed in Japanese or
Simplified Chinese. (They are available in English, Japanese, or Simplified
Chinese.)
v For the z/OS shell, if you want to set the language for yourself, or for just one

user, you can make these changes in the $HOME/.profile, or log on to the z/OS
shell and export the LANG and NLSPATH environment variables.

v For the tcsh shell, if you want to set the language for yourself, or for just one
user, you can make these changes in the $HOME/.login, or log on to the z/OS
shell and set the LANG and NLSPATH environment variables.

See z/OS V2R2.0 UNIX System Services User's Guide for information about locale
objects, source files, and charmaps that the UNIX System Services Application
Services support.

Lists of subtasks

Subtask Associated procedure

Setting up your national code page “Steps for setting up your national code
page”

Customizing for Japanese and Simplified
Chinese

“Steps for customizing the login file for the
z/OS shell” on page 250

“Steps for customizing the login file for the
tcsh shell” on page 250

“Steps for displaying messages in Japanese”
on page 251

“Steps for activating MVS Message Service
(MMS)” on page 251

Steps for setting up your national code page
If you will be using Japanese or Simplified Chinese, you still need to do these
steps first before going on to “Customizing for Japanese and Simplified Chinese”
on page 250.

Before you begin: You need to have the login file for your shell.
1. For the z/OS shell, copy /samples/profile to /etc/profile. You might have

already done this, as described in “Customizing /etc/profile” on page 219.
2. For the tcsh shell, copy /samples/csh.login to /etc/csh.login. You might have

already done this, as described in “Customizing /etc/csh.login” on page 235.

Perform the following steps to set up your national code page for shell users.
1. Customize the login file for your shell.

© Copyright IBM Corp. 1996, 2016 247

For this shell Do this . . .

z/OS shell Customize /etc/profile so that your selected national
page is enabled when the shell is first invoked. Be careful
that the shell, with the updated /etc/profile, does not
keep restarting itself after you restart the shell.

Tip: To make sure that exec sh -L is executed only once,
you can copy the code in the sample /etc/profile and
update it with your national code page.

tcsh shell Customize /etc/csh.login so that your selected national
page is enabled when the tcsh shell is first invoked. Be
careful that the shell, with the updated /etc/csh.login
does not keep restarting itself after you restart the shell.

Tip: To make sure that exec sh -l is executed only once,
you can copy the code shown in the sample
/etc/csh.login, and update it with your national code
page.

2. Convert from ASCII to your national code page. Use the chcp command to

change the data conversion for rlogin sessions.
v For the z/OS shell, the following sample /etc/profile shows examples of

statements to convert the terminal session data using ASCII code page
ISO8859-1 and EBCDIC code page IBM-277. This example uses the Danish
locale.

if test -z "$LOCALE_SWITCH" && tty -s
then

echo " - "
echo " - Logon shell will now be invoked to reflect - "
echo " - code page IBM-277 - "
echo " - "
LOCALE_SWITCH=EXECUTED
LANG=C
LC_ALL=Da_DK.IBM-277
export LANG LC_ALL LOCALE_SWITCH

Issue chcp if not using OMVS command
if test "$?_BPX_TERMPATH != "OMVS") then

chcp -a IS08859-1 -e IBM-277
fi
exec sh -L

else
echo " - "
echo " - Welcome to z/OS UNIX System Services -"
echo " - "

fi

v For the tcsh shell, the following sample /etc/csh.login shows examples of
statements to convert the terminal session data using ASCII code page
ISO8859-1 and EBCDIC code page IBM-277. This example uses the Danish
locale.

248 z/OS V2R2 UNIX System Services Planning

tty -s
set tty_rc=$status
if (($?LOCALE_SWITCH == 0 && tty_rc == 0)) then

echo " - "
echo " - Logon shell will now be invoked to reflect - "
echo " - code page IBM-277 - "
echo " - "
setenv LOCALE_SWITCH=EXECUTED
setenv LANG=C
setenv LC_ALL=Da_DK.IBM-277
Issue chcp if not using OMVS command
if ($?_BPX_TERMPATH != "OMVS") then

chcp -a ISO8859-l -e IBM-277
endif
exec tcsh -l

endif
unset tty_rc

3. Convert these files to your selected locale, using the iconv command.

v /etc/yylex.c

v /etc/mailx.rc

v /etc/startup.mk

v /etc/yyparse.c

The lex, mailx, make, and yacc utilities expect both system files and user files
to be in the same code page.
Example: To convert /etc/mailx.rc to be used in the Da_DK.IBM-277 locale,
issue:
iconv -f IBM-1047 -t IBM-277 /etc/mailx.rc >/etc/mailx.rc.277

4. Update BPXBATCH or OSHELL, if necessary.

Tip: If you use BPXBATCH or OSHELL (which uses BPXBATCH), you must do
this step in order to get the code page working immediately under BPXBATCH
and OSHELL. Use the STDENV ddname to point to a file or data set that
contains the environment variable definitions for the code page. The code page
you specify will not affect the shell because ddname is read before the first
shell is invoked, (Because the STDENV DD statement does not affect the OMVS
command, you need to put the environment variables in /etc/profile.)
For more information about BPXBATCH and STDENV, see z/OS V2R2.0 UNIX
System Services User's Guide.

5. If you need to customize for Japanese or Simplified Chinese, go to
“Customizing for Japanese and Simplified Chinese” on page 250.

6. If you do not need to customize for Japanese or Simplified Chinese, save the
login file.
v For the z/OS shell, it is /etc/profile.
v For the tcsh shell, it is /etc/csh.login.

When you are done, you have set up your national code page.

Tip: To verify your code page, issue:
echo $HOME

Chapter 9. Customizing for your national code page in the shell 249

If you entered the shell before the code page was set up, you will see $HOME.
Otherwise, the shell will display the path name of your home directory. The $
should be read as your code page's dollar sign.

Customizing for Japanese and Simplified Chinese
If you are customizing for Japanese or Simplified Chinese, you need to make more
changes to your login file after completing the steps in “Steps for setting up your
national code page” on page 247. If you want to display your messages in
Japanese or Simplified Chinese, you need to customize /etc/init. These changes
take effect the next time OMVS is started.

Tip: You can set the system default to display translated messages. “Steps for
activating MVS Message Service (MMS)” on page 251 describes the procedure.

The examples are for Japanese. Equivalent changes are required to customize for
Simplified Chinese.

Steps for customizing the login file for the z/OS shell
Before you begin: You need to have /etc/profile set up so that you can edit it.

Perform the following steps to customize the login file for the z/OS shell so that it
runs in the Japanese locale.
1. Change the line LANG=C to LANG=Ja_JP.

2. Add the following line:

LC_ALL=Ja_JP.IBM-939

3. Enable man to use the more command as its pager:

setenv MANPAGER /bin/more

4. Ensure that LANG and LC_ALL are specified on the line containing export.

5. Save /etc/profile.

When you are done, you have customized the login file for the z/OS shell so that
it runs in the Japanese locale.

Steps for customizing the login file for the tcsh shell
Before you begin: You need to have /etc/csh.login set up so that you can edit it.

Perform the following steps to customize the login file for the tcsh shell so that it
runs in the Japanese locale.
1. Change the line setenv LANG=C to LANG=Ja_JP.

2. Add the following line:

setenv LC_ALL Ja_JP.IBM-939

3. Enable man to use the more command as its pager:

250 z/OS V2R2 UNIX System Services Planning

setenv MANPAGER /bin/more

4. Save /etc/csh.login.

When you are done, you have customized the login file for the tcsh shell so that it
runs in the Japanese locale.

Steps for displaying messages in Japanese
Before you begin: You need to have /etc/init.options set up so that you can edit it.

Perform the following steps to display messages in Japanese.
1. Locate the following line:

*e LANG=En_US.IBM-1047

2. Replace it with:

-e LANG=Ja_JP

3. Locate the line:

*e NLSPATH=/usr/lib/nls/msg/%L/%N

4. Replace it with:

-e NLSPATH=/usr/lib/nls/msg/%L/%N

5. Save /etc/init.options.

When you are done, you have customized the /etc/init to display messages in
Japanese.

Steps for activating MVS Message Service (MMS)
Before you begin: Because MVS Message Service does not support translating
messages to the MVS operator console, you must set up a TSO/E console that
mirrors the operator's console in order to see the translated messages. TSO/E
displays Japanese and Simplified Chinese messages to DBCS terminals only.

Perform the following steps to activate the MVS Message Service.
1. Compile the English and translated message skeletons.

2. Create or update the following SYS1.PARMLIB members to initialize values for

MVS Message Service:
v MMSLSTxx
v CNLcccxx
v CONSOLxx to define the MMSLSTxx member in effect for the system

3. Activate MVS Message Service.
Tip: One way to activate MVS is to issue SET MMS=xx from the MVS operator
console, where xx refers to the MMSLSTxx member of SYS1.PARMLIB.

Chapter 9. Customizing for your national code page in the shell 251

When you are done, you have activated the MVS Message Service; translated
messages will be displayed.

TSO/E messages
TSO/E messages are issued through MVS Message Service. For more information,
see the topic on providing translated messages in z/OS TSO/E Customization.

If you do not want Japanese or Simplified Chinese to be the default language, but
want to see translated messages on your terminal, follow these instructions:
v For Japanese, issue PROFILE PLANGUAGE(JPN) at the TSO/E READY prompt

on your DBCS terminal. This TSO/E command sets the primary language. The
code JPN must match the LANGCODE statement in
SYS1.PARMLIB(MMSLSTxx).

v For Simplified Chinese, issue PROFILE PLANGUAGE(CHS) at the TSO/E
READY prompt on your DBCS terminal. The code CHS must match the
LANGCODE statement in SYS1.PARMLIB(MMSLSTxx).

TSO/E help panels
The TSO/E help panels must be set up separately. Edit your
SYS1.PARMLIB(IJKTSOxx) member in effect and ensure that the HELP statement
refers to where the TSO/E help files are.

Tip: If you allocate a SYSHELP DDNAME in SYS1.PARMLIB, TSO/E searches
there, rather than in the data sets pointed to by the TSO/E HELP statement.

See the topic in z/OS TSO/E Customization for more information about setting up
help data sets.

Concatenating target libraries to ISPF
To use the Japanese translation of the panels, messages, and tables, you must
concatenate the following target libraries to the appropriate ISPF data definition
names (ddnames):
v SYS1.SBPXPJPN to ISPPLIB
v SYS1.SBPXMJPN to ISPMLIB
v SYS1.SBPXTJPN to ISPTLIB
v SYS1.KHELP to SYSHELP

To use the Simplified Chinese translation, concatenate the following target libraries
to the appropriate ISPF ddnames:
v SYS1.SBPXPCHS to ISPPLIB
v SYS1.SBPXMCHS to ISPMLIB
v SYS1.SBPXTCHS to ISPTLIB
v SYS1.PHELP to SYSHELP

PROFILE PLANGUAGE and the OMVS command
The PROFILE PLANGUAGE setting in effect when the OMVS TSO/E command is
first issued determines the language for all OMVS command messages not from
TSO/E, until you exit OMVS and return to TSO/E.

If PROFILE PLANGUAGE(JPN) is specified, and later you go to TSO/E and enter
PROFILE PLANGUAGE(ENU), most TSO/E messages appear in
English—including TSO/E messages about the OMVS command.

252 z/OS V2R2 UNIX System Services Planning

However, any OMVS command message not from TSO/E (such as the help panels
invoked from <PF1> or the FSUM23-prefix messages) is displayed in Japanese. In
particular, the TSO/E prompt message “OMVS - enter a TSO/E command” is still
displayed in Japanese but all other messages are displayed in English while you
are in TSO/E.

Chapter 9. Customizing for your national code page in the shell 253

254 z/OS V2R2 UNIX System Services Planning

Chapter 10. Configuring the UNIX-to-UNIX copy program
(UUCP)

UNIX-to-UNIX copy program (UUCP) is a group of programs, directories, and files
that can be used to communicate with any UNIX system that is running a version
of the UNIX-to-UNIX copy program (UUCP). A UUCP network traditionally
consists of a group of computers joined in a network using serial connections or
TCP/IP. The z/OS UNIX implementation of UUCP uses TCP/IP; it does not
provide modem support. It is also XPG4-compliant.

The UUCP functions are used to automatically transfer files and requests for
command execution from one UUCP system to another, typically in batch mode at
scheduled intervals. You can use UUCP for file transfer, remote command
execution, and custom applications.

If you use a UUCP utility to transfer a file or execute a remote command, a job
request is created and queued. Depending on how UUCP has been configured at
your system, the job might be processed immediately or remain queued and only
be processed at scheduled times. At some point, either your system will contact the
remote system, or be contacted by the remote system at which time the queued
jobs will be processed. For security purposes, configuration files on each system
control which transfers can take place and which commands can be executed. (See
“Create or edit UUCP configuration files” on page 263.)

You must decide if you want to have your system participate in a UUCP network.
If you already have made that decision, go to “Configuring your local system” on
page 260.

Restriction: UUCP is restricted to an 8-character password. It does not support
password phrases.

Transferring files
UUCP can send and receive files between systems. The uucp command queues
requests for file transmission or retrieval, and invokes uucico to establish the
connection with the remote system and complete the transfer. Based on
configuration specifications, file transfers with the remote system might not be
allowed. The cron daemon can be used to invoke uucico to send the queued files
in the background when appropriate. After uucico has made a connection with a
remote system, and local uucp requests have been processed, file transfer requests
created on the remote system are processed.

Executing commands from a remote location
The uux command allows you to run a program at another system, with the
appropriate permissions. An execute file is sent to the remote system where it is
treated as a command (like a batch file).

© Copyright IBM Corp. 1996, 2016 255

Tailoring UUCP for custom applications
You can also tailor UUCP for custom applications, which can send or collect data
from remote systems and execute commands remotely. A common application built
on UUCP is public discussion groups, called netnews, or simply news. The net is a
public forum (consisting of member systems) for the exchange of ideas in the form
of news articles. Users belonging to the member systems can post, read, and reply
to news.

UUCP commands and daemons
UUCP provides the uucp command, which schedules files to be exchanged with
other UUCP systems, and the uux command, which schedules commands to be
executed by other UUCP systems. However, the uucp and uux commands do not
cause any files to be exchanged or commands to be executed. For this, UUCP
provides two daemons called uucico and uuxqt which establish communication
sessions, transfer data, and execute commands according to the requests scheduled
by uucp and uux.

The commands associated with UUCP are:

uucc Compile UUCP configuration files

uucp Copy files between remote systems

uulog Display log information about UUCP events

uuname
Display a list of UUCP systems

uupick
Manage files sent to you via uuto

uustat Display the status of pending UUCP transfers

uuto Copy files to users on remote systems

uux Request command execution on remote systems

The daemons associated with UUCP are:

cron Starts the uucico daemon according to the schedule specified

inetd This TCP/IP daemon starts the uucpd daemon

uucico Processes uucp and uux file transfer requests

uucpd Invokes the uucico daemon for TCP/IP connections from remote uucp
systems

uuxqt Run commands from other systems

UUCP directories and files
The directories associated with UUCP are:
v /usr/spool/uucppublic, the public UUCP directory that is the default directory

for storing files that have been transferred to the local system by uucp.
v /usr/spool/uucppublic/receive, a subdirectory in the public directory for files

sent from remote systems using uuto.
v /usr/spool/uucp, the spool directory that holds all work requests and all log files

for UUCP.

256 z/OS V2R2 UNIX System Services Planning

v /usr/spool/uucp/.Sequence, a subdirectory for sequence files used by uucp and
uucico.

v /usr/spool/uucp/.Status, a subdirectory containing status files for each remote
system.

v /usr/spool/uucp/.Xqtdir, the working directory for uuxqt.
v /samples, the directory that sample configuration files are shipped in.
v /usr/lib/uucp, the directory that customized configuration files reside in.

As of z/OS V1R13, /usr/spool is configured as a symbolic link to /var/spool.
Also, the configuration files now reside in /var/uucp with symbolic links directed
from /usr/lib/uucp for each file. The setup commands in this chapter can still be
performed using the original root directory as documented, whereby the symbolic
link will redirect them as necessary. See “Customizing the cron, uucp, and mail
utilities for a read-only root file system” on page 137 for more information.

For a discussion of configuration files, see “Create or edit UUCP configuration
files” on page 263.

For a discussion of system files, see “Log files, lock files, status files, and working
files” on page 277.

The UUCP communications network
A UUCP network consists of a number of systems that exchange information. Each
system has a working copy of UUCP and a unique name that identifies it in the
network. There is no central control system for a UUCP network; each system
controls its own connections. In a UUCP network, computers connect computers in
the same building or to networks that include computers around the world.

In a UUCP network, every system (also known as a site) communicates with at
least one other system, but does not have to call all the sites. See Figure 42 for a
diagram of a simple network. This network has four sites named North, South,
East, and West.

The lines indicate a direct connection between two systems:

North Connects to East, South, West

East Connects to North, South

South Connects to North, East

Figure 42. A simple UUCP network

Chapter 10. Configuring the UNIX-to-UNIX copy program (UUCP) 257

West Connects to North

Each system exchanges files with the systems it calls directly. Users on North can
send files directly to any of the other three systems, but users on West can only
send files directly to North. These are called direct connections to distinguish them
from connections made through intermediaries. Someone on West can send a file to
someone on East indirectly through North, if North has agreed to pass along file
requests from West to East. This makes North an intermediary node.

Alternatively, North could set up its configuration so that West could not transfer
files through North, but only to North. This is called a terminal or leaf-node
connection. For information on how to define a connection between two nodes, see
the description of the COMMANDS option in “The Permissions file” on page 268.

Securing your system
UUCP gives users on other systems access to your computer. By default, remote
users can only write data to your public directory; they cannot read any data nor
can they execute any commands.

However, remote users potentially could copy files to your file system or from
your file system. They could also run commands on your system. How do you
ensure that they do not remove files you want, read your private files, or run
commands that damage your system? In short, how do you keep your UUCP
system secure?

There are three things to consider in security:
v Authorization—Who is authorized to access your system?
v Access—What files can users on other systems read and write?
v Execution—What commands can users on other systems run on your system?

Authorization is the highest level of security. Only those with the current NUUCP
password can access your system and even then, only authorized systems can use
it. There is one catch, however, and that is when more than one system is involved
in the file transfer (a multi-hop transfer). If South allows North access, there is
nothing South can do to prevent North from giving West the ability to use North
as an intermediary node between South and West. South cannot differentiate
between requests originating from North and requests being forwarded through
North.

To deal with the security issues of access and execution, UUCP uses the concept of
permissions. For each directly connected system, you assign access permissions to
look at a specific portion of your file system and execute permission to run certain
commands.

Permissions can be broad or restrictive. If you are using UUCP to connect a group
of machines in your office, you might want everyone to have access to all the files
and be able to run all of the commands on each machine. On the other hand, you
might not want private files to be made public.

For example, imagine a central office with many branch offices. The central office
uses remote commands to run reports in each branch office, and send the results
back to the central office. The central office needs permission to run the command
that produces reports, and it needs permissions to read and write the associated
files. People on other systems do not need those files or permissions. In fact, it
could be dangerous to the company to allow those permissions to anyone else.

258 z/OS V2R2 UNIX System Services Planning

If one of the branch offices has a connection to a different UUCP network, private
information could go out worldwide. The branch office denies that outside
connection permission to run any commands which produce reports or to read
those files. It limits the outside system to reading and writing in a small part of the
file system, perhaps one directory. This directory is the only part of the file system
that all other UUCP systems can read or write — it's public. Not surprisingly, this
directory is called the public UUCP directory.

The public UUCP directory
The public UUCP directory is the default destination for files that have been
transferred to the local system from other systems. Additionally, if a remote user
has read access to the local system, by default the directory he can read from is the
public directory. The files remain in the public directory until users claim them.

Typically, users on the local system have read access to the public directory (and
sometimes write and execute access as well). So users can access files in the public
directory using normal file access methods (for example, cp, cat, or vi)—or for files
sent by uuto, they can use uupick to handle them. The uuto command, a
simplified method of using uucp, uses the receive subdirectory of the public
directory as its target. Within that subdirectory, each user on the local system has a
subdirectory.

The public UUCP directory is called /usr/spool/uucppublic, and it is created when
the BPXISMKD job is run as part of the z/OS installation. (Other UUCP systems or
operating systems might use different names for the public directory.) Within the
public directory, UUCP creates a subdirectory for each remote system that sends
files to the local system.

As of z/OS V1R13, /usr/spool is configured as a symbolic link to /var/spool. The
public UUCP directory must reside in the /var directory and the subdirectories
created by UUCP are created in /var/uucppublic. See “Customizing the cron,
uucp, and mail utilities for a read-only root file system” on page 137 for more
information.

To make file transfers easier, you can use a special character in path names for the
public UUCP directory: when tilde (˜) is written as the first directory in a
destination path name, the ˜/ stands for the public UUCP directory. You can
specify the public UUCP directory with the path name ˜/. The public UUCP
directory is defined as the home directory of the user uucp, so you can also specify
it as ˜uucp.

Execute permissions
By default, UUCP does not give permission for remote systems to run any
commands; you must specify the commands that remote systems can run at the
local system.

If you are willing to pass along files copied with uucp, or if you want to allow
other direct systems to use wild cards when requesting files from your system,
give the remote system permission to run the uucp command. If you do not assign
execute permissions for the uucp program to another system, it can transfer files
only to your system (meaning your system is a terminal node, or leaf-node) but not
through your system (meaning your system is an intermediary node).

If a remote system has permission to run uucp, it can be an intermediary for
another system to which it is connected. Your local system cannot distinguish if an
incoming request from an authorized system originated at that system or at a

Chapter 10. Configuring the UNIX-to-UNIX copy program (UUCP) 259

system to which it is connected. Therefore, you must assume that the execute
permission you give to a remote system can be inherited, or used, by another
system to which it is connected.

To use wild cards to request files from your system, the remote system must have
permission to run uucp and also have read permission on the directory holding
the files.
v For an example of a multiple system uucp transfer, see the uux command in

z/OS UNIX System Services Command Reference.
v For an example of how to give a remote system permission to run uucp, see

“The Permissions file” on page 268.

Configuring your local system
To configure your local system for UUCP access, you must: take the following
actions
1. Determine your local system name.
2. Create or edit configuration files.
3. Define the new user ID, NUUCP, to RACF. The other required user ID, uucp,

and group ID, uucpg, were already defined at installation time.

Determine your local system name

To determine what your system is called in the shell, issue:
uname –n

You will see the name by which your system is known in a communications
network. It is the name specified by the IPL parameter SYSNAME. In z/OS UNIX,
UUCP recognizes the first eight characters of this name. Other UNIX systems
might recognize more or fewer characters.

Add an entry to the permissions file

UUCP uses five different configuration files to describe various aspects of your
UUCP setup. (To learn more about the configuration files, refer to “Create or edit
UUCP configuration files” on page 263 before proceeding with this section.)

The Permissions file is used to control the access that remote systems have to data
and programs on the local system. You might want to change some of the default
settings of the Permissions file.

If you need to change some of the default permissions for your local system (such
as PUBDIR, READ, WRITE, NOREAD, or NOWRITE) then you will need an
additional entry in the Permissions file for your local system. If you do not need to
change the default permissions then you do not need an entry in the Permissions
file for your local system.

For example, if you wanted to change your uucp public directory, your
Permissions file might look like this:

MACHINE=local \
READ=/readall \
PUBDIR=/free

MACHINE=site1:site2:SITE3 \
READ=/readall \
COMMANDS=uucp:cat:cp:ls

260 z/OS V2R2 UNIX System Services Planning

LOGNAME=NUUCP \
READ=/readall \
PUBDIR=/free \
SENDFILES=yes \
VALIDATE=site1:site2:SITE3

Define the group ID and the user ID to RACF

As a customization step for UUCP, a UUCP-specific group ID (uucpg), and at least
two user IDs are defined. The user IDs are:
v uucp, the user ID that owns all the UUCP files and directories. Use it when

editing configuration files or performing other administrative tasks. The user ID
uucp and group ID uucpg are now requirements for ServerPac and CBPDO
installations. See “Security requirements for ServerPac and CBPDO installation”
on page 88.

v A LOGNAME user ID that remote systems use when dialing in to your system.
Traditionally, this user ID begins with NUUCP. For purposes of example here,
we use NUUCP as the user ID. You might want to establish more than one
LOGNAME user ID to handle different levels of access for remote systems.

You need to define these IDs to RACF. (If you are using an equivalent security
product, refer to that product's documentation for more information about defining
IDs to the security product.) All the RACF commands are issued by a TSO/E user
ID with RACF SPECIAL authority. To make it easier to transport data sets from
test systems to production systems, duplicate these entries in all of your security
data bases, including the same UID and GID values in the OMVS segment.

If you use only uppercase IDs on your system, follow these steps to define the
group ID and user IDs:
1. To define the LOGNAME user ID (in this example, it is specified as NUUCP),

issue the following command:
ADDUSER NUUCP DFLTGRP(UUCPG) PASSWORD(xxxxxxx)
OMVS(UID(397) HOME(’/usr/spool/uucppublic’)
PROGRAM(’/usr/lib/uucp/uucico’))

where:
v 397 is an example of a unique UID. Do not use UID(0).
v HOME(’/usr/spool/uucppublic’) is a required parameter that specifies the

initial path name for the directory.
v PROGRAM(’/usr/lib/uucp/uucico’) is a required parameter that specifies the

initial path name for the shell program.
2. Consider defining other user IDs similar to NUUCP to provide different access

to your systems resources to the different remote systems issuing requests to
your system. Each would have a unique UID, but would have the same
attributes as NUUCP. In particular, each must have home directory of
/usr/spool/uucppublic and initial program of /usr/lib/uucp/uucico. The
UUCP permissions file is used to specify what these user IDs can access, as
explained in “The Permissions file” on page 268.

Also follow these steps if you already use mixed-case group and user IDs on your
system and the users do not conflict with existing names. You might want to add
the lowercase names to your alias table, mapping them to uppercase names. This is
not necessary, because when the lowercase names are not found in the alias table,
they are folded to uppercase. For more information about the alias table, see
“USERIDALIASTABLE” on page 37.

Chapter 10. Configuring the UNIX-to-UNIX copy program (UUCP) 261

If a name such as NUUCP is not allowed on your system (or if it conflicts with an
existing name), these are the RACF commands to define the user ID.

To define a LOGNAME user ID of xxnuucp):
ADDUSER xxnuucp DFLTGRP(UUCPG) PASSWORD(xxxxxxx)
OMVS(UID(397) HOME(’/usr/spool/uucppublic’)
PROGRAM(’/usr/lib/uucp/uucico’))

where: xxnuucp is replaced by a 1- to 7-character user ID of your choice. This is the
user ID that remote systems use when communicating with your system.397 is an
example of a unique UID. Do not use UID(0). HOME(’/usr/spool/uucppublic’) is a
required parameter that specifies the initial path name for the directory.
PROGRAM(’/usr/lib/uucp/uucico’) is a required parameter that specifies the path
name for the shell program.

You might want to define other user IDs similar to NUUCP to provide different
access to your system resources to the different remote systems issuing UUCP
requests to your system. Each would have a unique UID, but would have the same
attributes as NUUCP. Each must have home directory of /usr/spool/uucppublic
and initial program of /usr/lib/uucp/uucico. The UUCP Permissions file is used
to specify the accessibility of each of these user IDs.

Define an alias for the xxnuucp user ID in your user ID and group name alias
table.
xxnuucp nuucp

Tip: Using the alias table causes poorer performance and increases systems
management costs and complexity. For more information about the alias table, see
“USERIDALIASTABLE” on page 37.

Configuring communication with remote systems
To configure UUCP so that it can communicate with remote systems, you must
establish the appropriate communication protocols in the Systems file and create
working directories for each supported remote system. To do this:
1. Obtain information about remote systems.
2. Create or edit the required configuration files.
3. Compile the configuration files with the uucc utility.
4. Create working directories for local and remote systems.
5. Schedule UUCP transfers with cron.

Obtain information about remote systems
Before attempting remote system configuration, contact the system administrator
for that system. Together, you must decide if your system can call the other
system, the other system can call your system, or either system can call each other.

If your system is going to call the remote system, you need the following
information:
v The UUCP name of the remote system.
v A UUCP login account on that system. You need a login name and a password,

so your system can log into the remote system.
v The login procedures. Ask whether any special send/expect sequences are used.

Send/expect sequences are explained in the description of chat scripts in “The

262 z/OS V2R2 UNIX System Services Planning

systems file” on page 264. Alternatively, you can attempt a remote login and
note the sequence of prompt strings and commands required to login.

v You might need scheduling information, because there might be times when
UUCP connections are not allowed. You can control the time when calls are
made—for example, when lower rates are available—either with the scheduling
information in the Systems file or when setting up cron.

If the remote system will call your system, you must provide the following
information:
v Your system name.
v A login name for the remote system.
v A UUCP password for the remote system.
v The send/expect sequence. For z/OS systems, this would typically be in the

following format:
in:--in: uucp_login_user password: password

where:
– uucp_login_user is the login user ID that the remote system is authorized to

use—such as NUUCP.
– password is the password for the login user ID.

Create or edit UUCP configuration files
UUCP uses five different configuration files to describe various aspects of your
UUCP setup. Sample configuration files are shipped in the /samples directory. You
can customize them. To do this, log in as the UUCP user or use the su command to
switch to the user uucp so that you can create or change configuration files. Copy
each configuration file into the /usr/lib/uucp directory and customize it with
entries for your local system. Table 31 lists these files and summarizes the
information each one contains. Because the UUCP configuration files are delivered
as symbolic links that are directed to files in the /var/uucp directory, you can copy
the files directly to /var/uucp if you prefer. See “Customizing the cron, uucp, and
mail utilities for a read-only root file system” on page 137 for more information.

Table 31. UUCP configuration files. List of UUCP configuration files and their contents

File Contents

Systems Lists each supported system and describes when and how to establish a
connection for each system. See “The systems file” on page 264.

Devices Describes communications hardware on your system. See “The Devices
file” on page 268.

Dialers Contains dialing instructions for your system's modems. See “The
Dialers file” on page 268.

Dialcodes Defines abbreviations that can be used as part of phone numbers. See
“The Dialcodes file” on page 268.

Permissions Defines for each remote system the sections of your file system that can
be read from or written to and the commands which can be executed
on your system by that system. Also defines how your system
exchanges queued work with remote systems. See “The Permissions
file” on page 268.

If you need to make changes to your configuration, edit the configuration files and
then run the uucc command to compile them.

Chapter 10. Configuring the UNIX-to-UNIX copy program (UUCP) 263

Editing a configuration file
If you need to extend an entry in the configuration file over two or more lines, end
all lines, except the last one, with a backslash (\).

Example: Look at this Permissions file, for example:
LOGNAME=uwest MACHINE=west READ=/ WRITE=/ \

COMMANDS=uucp:cat NOREAD=/usr/private \
NOWRITE=/usr/private SENDFILES=yes REQUEST=yes \
VALIDATE=west

LOGNAME=nuucp MACHINE=OTHER REQUEST=yes \
SENDFILES=call

The systems file
The Systems file contains at least one entry for each remote system that your
system is going to call. It provides information for the uucico utility to use when it
is invoked. Each entry in the file has the format:
system sched device_type speed phone chat_script

For example,
sys2 Any TCP - sys2.kgn.ibm.com in:--in: nuucp ssword: uupasswd

The following list describes what each field represents:

system The name of a remote system. This name must be unique (compared to
other remote system names in the Systems file) in its first seven characters.

sched The times when your local system is permitted to call system. There are
four subfields in the sched field: day, time, grade, and retry.

An example sched field looks like this:
Mo1200/C;5

where Mo is the day subfield, 1200 is the time subfield, /C is the grade
subfield, and 5 is the retry subfield.

The description of each subfield follows:

day Indicates which days of the week your system can call the remote
system named by system. The abbreviations Mo, Tu, We, Th, Fr, Sa,
and Su represent individual days. You can also use the following
keywords:

Any Your system can call the remote system on any day.

Never Your system should never call the remote system. It should
only wait to be called.

Wk Your system can call the remote system on any weekday
(that is, Monday-Friday).

time The range of times during which your system can call the remote
system named by system. This subfield immediately follows the day
subfield with no intervening spaces. The times given apply only to
days specified by day. If you do not specify a time subfield, your
system can call the remote system any time during the given days.
The format of this subfield is:
time1–time2

where both time1 and time2 are 24-hour clock times. For example,

264 z/OS V2R2 UNIX System Services Planning

WeTh0730-1415

means that your system can call the remote system between 7:30
a.m. and 2:15 p.m. on Wednesdays and Thursdays. This time range
can extend over 0000 (midnight), but be careful. It doesn't quite
work the way you might expect it to. For example,
Mo2300-0700

does not indicate 11:00 p.m. on Monday through 7:00 a.m. on
Tuesday, but rather midnight through 7:00 a.m. on Monday
morning and 11:00 p.m. through 11:59 p.m. on Monday evening.

You can specify multiple day/time combinations in an entry by
separating them with a comma. For example a Systems file entry
containing
Th0800-1600,Fr1215-1900,SaSu

indicates your system can call the remote system during the
following times:
v 8:00 a.m. through 4:00 p.m. on Thursday
v 12:15 p.m. through 7:00 p.m. on Friday
v Anytime on Saturday or Sunday

grade An optional subfield that lets you specify the minimum grade of
work file that uucico will send during a given time period (as
indicated by the day/time subfields). A grade is a single digit, or a
single uppercase or lowercase letter. In order of priority, from
highest to lowest, the grades are arranged
0 1 2 ... 9 A B ... Z a b ... z

That is, 0 has the highest priority and z has the lowest).

As work files are created for UUCP file transfers, they are
automatically assigned grades that determine the order in which
they are sent. By default, uux requests have a grade of A and uucp
requests have a grade of n.

This optional subfield is separated from a day/time pair by a
slash. For example,
MoTu0800-1200/C

indicates that only work files with a grade of C or higher will be
sent during the hours of 8:00 a.m. to noon on Mondays.

The grade subfield only controls outgoing files during the given
time period. It does not affect incoming files.

retry An optional subfield that indicates how many minutes after an
unsuccessful call to a remote system, uucico should wait before
trying to call that system again. This subfield, if specified, appears
at the end of the sched field (separated by a semicolon). For
example, a sched field of
Any;60

indicates that your system can try to call the remote system at any
time and if it is not successful in connecting, it will not try again
for 60 minutes.

Chapter 10. Configuring the UNIX-to-UNIX copy program (UUCP) 265

If you do not include the retry subfield, uucico waits five minutes
after the first unsuccessful connection attempt. This waiting period
doubles after each subsequent failure.

device_type
Only TCP/IP connections are supported, so specify TCP.

speed Only TCP/IP connections are supported, so specify – (hyphen).

phone Only TCP/IP connections are supported, so this field must contain the IP
address of the remote system, or a host name by which the IP address is
known. You should be able to ping this address. For example, from TSO/E:
ping omvsoe2a
PING V3R1: PINGING HOST OMVSOE2A (198.151.241.130). USE
PING: PING #1 RESPONSE TOOK 0.004 SECONDS. SUCCESSES SO FAR

chat_script
A text string that defines the initial login conversation that takes place
between your system and the remote system. It has the format:
expect_string send_string expect_string send_string ...

where expect_string is the text string that you expect to receive from the
remote system and send_string is the text_string that you want to send in
response. These two strings are separated by blanks. For example, when
you login to a remote system, it responds with
login:

Type
nuucp

and press ENTER. The remote system then replies
password:

Enter your password
Shazam!

and press ENTER.

This conversation can be expressed as the following chat script:
login: nuucp password: Shazam!

This chat script tells uucico to expect the string login. After it is received,
reply by sending the string nuucp (automatically sending a newline
afterwards). uucico then waits for the string password and replies with
Shazam!.

The expect_string can be any part of the string expected from the remote
string. Thus, the sample chat script could be written:
ogin: nuucp ssword Shazam!

and yield the same result.

Tip: Omit the first letter of the login and password because some systems
might use capital letters for one or both of the words and some might not.
To avoid having to find out which way a system is and possible changes
on the remote system, the first letters are omitted from the expect string.

The expect_string can be replaced with a string of the format:
expect_string–subsend_string–subexpect_string

266 z/OS V2R2 UNIX System Services Planning

where subsend_string and subexpect_string are text strings similar to
send_string and expect_string. Hyphens separate the expect_string, the
subsend_string, and the subexpect_string. With this format, your system waits
for expect_string from the remote system and if it is received within a
reasonable length of time, uucico responds with the send_string. If it is not
received, uucico sends the subsend_string, waits for the subexpect_string, and
then finally sends the send_string.

For example, if you were using a chat script and there was noise on the
line that garbled the login: string, the chat script would fail. However, the
following chat script might work:
ogin:--login: nuucp ssword: Shazam!

This script waits for login: from the remote system. If it is not received,
uucico replies by sending a null string (there is nothing between the two
hyphens) followed by a newline. uucico then again waits for login:. When
it is received, nuucp is sent. The remainder of the script is identical to the
earlier example.

If you want an expect_string to wait a specific length of time for a match,
you can suffix the expect_string with a tilde (˜) followed by a number.
The number is the number of seconds to wait for the expect_string. For
example, the chat script
ogin:˜10--login: nuucp ssword: Shazam!

waits 10 seconds for the string login: before continuing. You can use this
suffix with subexpect_string as well.

Table 32 shows the escape sequences which you can use in a chat script.

Table 32. Escape characters that can be used in chat scripts

Escape Description

"" Expect a null string

EOT Send the end-of-transmission character

BREAK Cause a BREAK

\b Send a BACKSPACE

\c Suppress newline or carriage return

\d Delay for one second

\K Send a BREAK

\n Send a newline

\N Send a NULL

\p Pause for a fraction of a second

\r Carriage return

\s Send a space

\t Send a tab

\\ Send a backslash

\ ˜ Expect a tilde

\ddd Send the EBCDIC character with octal code ddd. For example, use \100
to represent a space character.

Chapter 10. Configuring the UNIX-to-UNIX copy program (UUCP) 267

The Devices file
The Devices file contains information for direct links and network connections.
Each entry has the format:
type dataport – speed dialer-arg ...

Only TCP/IP connections are supported. Specify this entry in the Devices file:
TCP - - -

The following list describes what each field represents:

type Describes the type of link. The following keyword is a valid entry for this
field:

TCP A link through TCP/IP. When TCP is specified, each of the other
fields should contain a hyphen. You must also specify TCP in the
dialer field of the Dialers file.

dataport
Is the device name of the port used to make the connection. For TCP/IP,
specify a – (hyphen).

– An obsolete field, dialer-port. Specify a hyphen.

speed This speed must match the value of the speed field in the corresponding
Systems file entry. For TCP/IP, specify a – (hyphen).

dialer-arg
Contains a list of one or more pairs with the format
dialer arg

where dialer is the dialer name and arg is an argument to pass to that
dialer. For TCP/IP, leave this blank.

The Dialers file
The Dialers file provides dialing instructions for the dialers referred to in the
Devices file. Each entry has the following format:
dialer subs expect-send [expect-send ...]

Only TCP/IP is supported, so the entry that must appear in this file is:
TCP

The following list explains what each of these fields represents:

dialer The type of dialer. For TCP/IP, specify TCP.

subs Contains a string of characters. For TCP/IP, leave this blank.

expect_send
Is similar to the chat_script field in the Systems file. The major difference is
the set of escape characters which can be used.

The Dialcodes file
The Dialcodes file contains abbreviations that can be included in the phone
numbers specified in the Systems file. For TCP/IP, in this file you specify:
- -

The Permissions file
The Permissions file is used to control the access that remote systems have to data
and programs on the local system. Specifically, it is used to specify:

268 z/OS V2R2 UNIX System Services Planning

v Which systems can establish a uucico connection
v The areas in the file system that a remote system can read or write from
v The commands that the remote system can run on the local system
v If the local system will process its waiting work when contacted by another

system
v An alias for the local system
v A different public directory

The format of each entry in the Permissions file is:
LOGNAME=userid [MACHINE=system] option=value [option=value] ...

or
MACHINE=system [LOGNAME=userid] option=value [option=value] ...

where option is one of the options and value is one or more values that you want to
set for that option. Options and values are case-sensitive. When specifying multiple
values for an option, separate the values with a colon (:). Here is a sample entry:
MACHINE=ME READ=/ WRITE=/ COMMANDS=ALL
MACHINE=site1:site2:SITE3 \

READ=/ \
WRITE=/ \
COMMANDS=uucp:cat:ls

LOGNAME=NUUCP \
READ=/ \
WRITE=/ \
SENDFILES=yes \
DEBUG=9 \
VALIDATE=site1:site2:SITE3

The Permissions file can also contain blank lines (which are ignored) and comment
lines. To indicate that a line is a comment line, use a number sign (#) as the first
character in the line.

Each entry must contain the LOGNAME option or the MACHINE option, or both. Both
options are used to identify an entry that applies to a remote system when it is
processing its file transfer requests. The difference between them is based on which
system initiates the connection:
v LOGNAME=userid entries apply to a remote system when it initiates the connection

by logging onto your system as userid.
v MACHINE=system entries apply to a remote system when your system initiates the

call to system.

If your system initiates the connection, your system first processes any queued file
transfer requests that it has. When this is complete, the remote system can indicate
that it has file transfer requests queued on its system that it would like to process.
If the correct permissions are set, control switches to the remote system which then
processes its file transfer requests. At this point, the MACHINE entry options are used
for the remote system.

If your system does not need to differentiate Permissions options based on which
system initiates the call, then LOGNAME and MACHINE can appear in the same entry.

These are the LOGNAME and MACHINE options:

LOGNAME
Indicates the user IDs that remote systems can use when logging on to

Chapter 10. Configuring the UNIX-to-UNIX copy program (UUCP) 269

your system. For z/OS systems, these names must be specified in
uppercase unless USERIDALIASTABLE is used to define lowercase or
mixed-case aliases. See “USERIDALIASTABLE” on page 37 for more
information about defining user aliases.

MACHINE
Specified as MACHINE=system, this indicates the remote systems that your
system can call using the other options specified in this entry. The system
name specified here must also be specified as a system in the systems file.
If you set this option to OTHER, the options specified apply to any remote
system not specified by a MACHINE option in another entry. For remote
systems, these names are typically uppercase. Contact the remote system's
UUCP administrator to make sure that the names are uppercase.

Permissions for uux commands (which are executed by uuxqt) are based
on MACHINE entries regardless of which system initiates the call.

These are the valid options that are used with either LOGNAME or MACHINE entries, or
with both. Options are marked with an (L) or an (M) to indicate that they are
intended for LOGNAME or MACHINE entries or for both (L,M). An option used in an
entry for which it is not intended will be ignored.

READ (L,M) Indicates which directories uucico can read. By default, this is the
home directory of user uucp (/usr/spool/uucppublic). Remember that
uucico runs with the effective UID of UUCP, so you must permit the uucp
user or uucpg group to read from these directories.

WRITE
(L,M) Indicates which directories uucico can write to. By default, this is
/usr/spool/uucppublic, the home directory of user uucp. Remember that
uucico runs with the effective UID of UUCP, so you must permit the uucp
user or uucpg group to write to these directories.

NOREAD
(L,M) Indicates that files in the specified directories cannot be read. If a
directory is specified by both READ and NOREAD, files in that directory cannot
be read. The public directory can always be read (even if specified on
NOREAD).

NOWRITE
(L,M) Indicates that files in the specified directories cannot be written to. If
a directory is specified by both WRITE and NOWRITE, files in that directory
cannot be written to. The public directory can always be written to (even if
specified on NOWRITE).

PUBDIR
(L,M) Indicates the public directory. By default, this is the home directory
of user uucp (/usr/spool/uucppublic).

If you are going to change PUBDIR on your system, you need to have an
additional MACHINE entry for your local site. Consider this example:
uucp remote_site!/file1 local_site!˜/file1

When uucp processes this command it looks for a MACHINE=local_site
entry to find the value for PUBDIR.

DEBUG
(L,M) Indicates the verbosity of the debugging information. Set this to a
number between 0 and 9. Level 0 provides terse debug messages while
level 9 provides verbose output. This output is stored in

270 z/OS V2R2 UNIX System Services Planning

/usr/spool/uucp/LOGFILE to aid you in debugging communications
problems when remote systems call you.

REQUEST
(L,M) Indicates whether requests made by remote systems to transfer data
from your system are allowed. This option can be used to protect data on
your system from being read by remote systems.
v If set to yes, remote systems can read data from those directories it is

authorized to read from.
v If set to no, a remote system can write data to your system, but cannot

read data irrespective of the value of the READ option. This is the
default.

This option only applies to requests originating from the remote system.
This option has no effect on file transfer requests that originate on your
system.

SENDFILES
(L) Indicates if your system will process its own queued file transfer
requests after the remote system has initiated the connection and
completed its file transfer requests. The SENDFILES option allows the local
system to control when its queued file transfer requests are processed.
v If this option is set to yes, your system will process its queued requests

after the remote system has completed processing its own.
v If this option is set to call, your system will only process its own file

transfer requests when it initiates the connection with the remote system.
This is the default.

VALIDATE
(L) Names the remote systems that can login to your system using the user
IDs given by LOGNAME. If another system attempts to login using this user
ID, uucico refuses the connection.

COMMANDS
(M) Indicates the commands that the remote system can execute on your
system.

By default, the uucp command is not permitted, which means that by
default your local system is a terminal, or leaf-node, connection. To allow a
remote system to transfer files through your local system, specify uucp for
the COMMANDS option.
v To specify more than one command, separate the command names with

a colon (:). For example, COMMANDS=uucp:ls.
v To prohibit all commands, do not use the COMMANDS option.
v To allow access to all commands, set this option to ALL.

MYNAME
(M) Tells the remote system that the name of your local system is the
specified value rather than the name given by uname -n.

An example might help to explain how the entries in the Permissions file work.
Suppose that the system named North in the sample network has the following
Permissions file.
LOGNAME=uwest MACHINE=west READ=/ WRITE=/ \

COMMANDS=uucp:mail NOREAD=/usr/private \
NOWRITE=/usr/private SENDFILES=yes REQUEST=yes \

Chapter 10. Configuring the UNIX-to-UNIX copy program (UUCP) 271

VALIDATE=west

LOGNAME=nuucp MACHINE=OTHER REQUEST=yes \
SENDFILES=call

The first entry in this file specifies the options that are in effect when a remote
system logs in as uwest. Because of the VALIDATE=west option, the only remote
system that can use this user ID is West. When West calls North and logs in as
uwest, it can read from and write to all directories except the ones starting with
/usr/private and can execute the commands uucp and mail on North's system.
This entry also includes the MACHINE=west option, meaning the options given
also apply when North has called West and control has been transferred to North's
uucico utility. Because REQUEST=yes and SENDFILES=yes, either system can
request or send working files.

The second entry specifies the options in effect when a remote system logs in with
the NUUCP user ID. Because MACHINE=OTHER, these options will also apply when
North has called any remote system except west (which has its own entry) and
control has been transferred to North's uucico. Files can only be read from or
written to the /usr/spool/uucppublic directory (no READ or WRITE options to
change the default). Either system can request files from the other, but working
files are only transferred from north when it calls the remote system.

Tip: Whenr a z/OS system or uucp login is specified, the name must be specified
in uppercase.

How uucico uses configuration files
When uucico is invoked, it searches the information provided by the Systems file
(and compiled into the configuration file) for the remote system indicated on its
command line. If the sched field of the matching entry indicates that it is valid to
contact the remote system at that time, uucico then checks to see if a connection
with the remote system is already in progress (a lock exists in /usr/spool/locks for
the system or system IP address). If a connection is already in progress, uucico will
not initiate another connection at this time. Otherwise, uucico will attempt to open
a TCP/IP connection using the remote system's IP address. If successful, it uses the
contents of the chat_script field to complete the connection.

Compile the configuration files
In z/OS UNIX, UUCP does not use the configuration files directly. Instead, it uses
a special configuration file named config which is created when the administrator
runs the uucc utility to compile the configuration files.

After you set up the configuration files, change directories and then issue:
cd /var/uucp
/usr/lib/uucp/uucc

A compiled configuration file is created in the /var/uucp directory using the uucc
command from /usr/lib/uucp. It contains all of the information specified in the
individual configuration files.

Rule: The configuration file must be owned by the uucp user ID. If you run uucp
from any other user ID, you must change the owner of the configuration file from
that user ID to uucp.

Do not edit the configuration file directly. If you need to change your
configuration, first edit the configuration files and then run uucc again.

272 z/OS V2R2 UNIX System Services Planning

Create working directories for the local and remote systems
UUCP requires a working directory in /usr/spool/uucp for the local system and for
each system defined in the Systems file. Each directory must be owned by uucp
and have uucpg as its group ID. If you create the directories with the uucp user ID,
this will happen automatically. Otherwise, you will need to chown these directories
from a superuser user ID.
v Create a working directory for the local system. Enter:

mkdir -m 774 /usr/spool/uucp/$(uuname -l)

($(uuname -l) will be replaced with the name of your system). If the directory is
not owned by uucp and uucpg, enter:
chown uucp:uucpg /usr/spool/uucp/$(uuname -l)

v Create working directories for remote systems. (If you are setting up your uucp
environment for the first time, see the Tip at the end of this step.) For each
remote system, enter:
mkdir -m 774 /usr/spool/uucp/system

where system is the name of the remote system.
If the directories are not owned by uucp and uucpg, enter:
chown uucp:uucpg /usr/spool/uucp/system

where system is the name of the remote system.
Tip: If you are setting up your UUCP environment for the first time,
cd /usr/spool/uucp
mkdir -m 774 $(uuname)
chown uucp:uucpg $(uuname) # if necessary.

$(uuname) will be replaced with a list of all systems defined in the Systems file

Schedule periodic UUCP transfers with cron
UUCP provides two daemons (uucico and uuxqt) which establish communication
sessions, transfer data, and execute commands according to the requests scheduled
by uucp (for file exchange) and uux (for command execution). uux will invoke
uucico unless the command is a local one, in which case it will invoke uuxqt to
process the local command immediately. While you can invoke these daemons
interactively as the need arises, this becomes inconvenient if many users become
dependent on UUCP's capabilities, or if the system must receive data from other
UUCP systems according to some regular schedule.

You might need to use cron for two reasons:
1. To process requests that were left on the request queue when uucico could not

connect.
2. To get files that are waiting to be received from other systems.

The cron facility can be used to run the UUCP daemons according to a fixed
schedule such as:
v Monday through Friday at 7:30 p.m.
v Each day at 8:00 a.m. and noon
v Every 15 minutes starting at midnight

It is also used to initiate work on behalf of others at predefined times. A crontab
file defines the work to be done for a user and the schedule for running it. Use the

Chapter 10. Configuring the UNIX-to-UNIX copy program (UUCP) 273

crontab command to create the crontab file. After a user creates a crontab file
(assuming that the cron facility has been configured by the administrator), cron
initiates the work according the schedule specified.

If the UUCP daemons are running from cron and encounter an error, they send
mail to the user who ran the uucp or uux command that the daemons are
processing. The daemons log their status and errors in two files:
/usr/spool/uucp/ERRLOG is used to log errors and /usr/spool/uucp/LOGFILE is
used to log non-error status. Check those files if the daemons uucico or uuxqt do
not seem to be running correctly.

Creating a crontab entry
You can use cron to run the UUCP daemons on a fixed schedule. For example, if
you want to run the UUCP daemons every Monday through Friday at 7:30 p.m.,
you would:
1. Log on as UUCP or su to the UUCP user ID
2. Enter the following echo command to create a working copy of the desired

crontab entry:
echo ’30 19 * * 1-5 /usr/lib/uucp/uucico; /usr/lib/uucp/uuxqt;’ >tfile

where
v 0 means zero minutes
v 19:30 means 7:30 p.m.
v * means no selected day of the month
v * means no selected month of the year
v 1-5 means Monday through Friday
v /usr/lib/uucp/uucico; /usr/lib/uucp/uuxqt; are the commands to be run
v >tfile directs the output to a temporary file

3. Enter the crontab command to activate your request.
crontab tfile

4. To display your current crontab entries, enter the following command:
crontab -l

Tip: Do not issue the crontab command without any options. If you do, the system
will erase your current crontab entries and accept new crontab entries from the
terminal. If you accidentally enter crontab without any options, end it with the
INTERRUPT key, which by default is <Crtl-C>.

Example of schedules
Here are some examples of other schedules and their crontab entries:
1. Every day at 8:00 a.m. and noon:

0 8,12 * * * /usr/lib/uucp/uucico; /usr/lib/uucp/uuxqt;

where:
v 0 specifies what minute
v 8 and 12 specify 8 a.m. and noon
v * is every day of the month
v * is every day of the year
v * is every day of the week

2. Every fifteen minutes starting at midnight:
0,15,30,45 * * * * /usr/lib/uucp/uucico; /usr/lib/uucp/uuxqt;

274 z/OS V2R2 UNIX System Services Planning

where
v 0, 25, 30, 45 indicates every 15 minutes
v * specifies every hour of the day
v * specifies every day of the month
v * specifies every month of the year
v * specifies every day of the week

There are many other scheduling possibilities. For more information, see the
crontab command in z/OS UNIX System Services Command Reference.

Controlling calls to each system
By default, uucico attempts connection to every system listed in the Systems file.
To reduce these attempts, you can code acceptable callout times for each system in
the Systems file. In addition, each system will be contacted even if no data
transfers or remote command executions have been requested on the local system.
(This is to receive data transfers or local command executions that were requested
on the remote system.)

You can specify different crontab entries for different systems. Each of these
crontab entries will specify a command of the form
uucico -r1 -s site

where site is the name of the remote site to be called.

Example: This sample crontab entry calls the system named North every hour on
the hour:
0 * * * * /usr/lib/uucp/uucico -r1 -s north

Example: This sample crontab entry calls the system named East at 12:00 noon and
7:00 p.m. each day from Monday to Friday:
0 12,19 * * 1-5 /usr/lib/uucp/uucico -r1 -s east

Testing the connection
Once your local system is configured and a remote system is configured, you must
test the connection.
1. Change directories to the public UUCP directory.

cd /usr/spool/uucppublic

2. Queue a file request with this command:
uucp -mr testfile remote!˜/

where testfile is the name of a file in the public UUCP directory and remote is
the name of the remote system.

3. Force a connection:
a. If the remote system calls your system, have the remote system

administrator attempt a connection.
b. If your system calls the remote system, force a connection with this

command:
/usr/lib/uucp/uucico -f -r 1 -s remote -x 5

where remote is the name of the remote system.

Chapter 10. Configuring the UNIX-to-UNIX copy program (UUCP) 275

4. If everything has been configured correctly, the file is transferred and you can
read the mail with mailx.

Checking the configuration for connections
If there are problems, check the configuration for this connection. In solving UUCP
problems, try to determine how far the connection proceeds before failing. Every
UUCP connection goes through these stages:
1. One system establishes a TCP/IP connection with another.
2. The contacted system sends a login prompt and the calling system logs in.
3. The systems negotiate protocols.
4. Files are exchanged.
5. The calling system hangs up.

Try to determine at what stage your connection breaks down. Examine the file
/usr/spool/uucp/LOGFILE for clues.

Contacting the remote site
If uucp cannot establish a connection with the remote system, one of the IP
address for the remote system might be wrong or the network path between your
system and the remote system might be down. You should be able to ping the
remote system to confirm this.

Example: If the address of the remote system west is west.ibm.com, enter:
tso ’ping west.ibm.com’

The following display indicates a successful connection:

PING V3R1: PINGING HOST west.ibm.com (120.40.41.3).
USE ATTN TO INTERRUPT.
PING: PING #1 RESPONSE TOOK 0.043 SECONDS. SUCCESSES SO FAR 1.

Calling system login
If the call is made but is not answered, then the login sequence might be at fault.
Check /usr/spool/uucp/LOGFILE for the record of the sequence exchanged.
v Check the login send/expect sequences specified in the Systems file.
v If the log shows failed logins and the message “you are unknown to me,”

confirm that both systems have the correct login name and password and their
configurations are set up correctly.

Maintaining UUCP
To maintain UUCP, you need to:
v Read and remove log files periodically—check /usr/spool/uucp/LOGFILE.
v Use the uustat command to check the status file to ensure that files are

transferring to remote systems. Periodically update the configuration files to
reflect changes in your system.

Cleaning up UUCP files
Some UUCP files will reside on your UUCP system after it is configured. Here are
some pointers on how to clean up old files and make sure that all necessary files
are present.

276 z/OS V2R2 UNIX System Services Planning

The spool directory
The spool directory holds all work requests and all log files for UUCP. File
transfers can be requested by the uucp and uux.

For each remote system specified in the Systems configuration file, there is a
subdirectory in the /usr/spool/uucp directory named for the system (for example,
the subdirectory for a remote system named South is /usr/spool/uucp/south). This
subdirectory contains:
v File transfer requests for a remote system.
v Data files for file transfer requests for a remote system.

UUCP data files are created from:
v uucp with the -C option.
v uux requests whose arguments are files that are not on the system running the

requested command.
v Execute files, commands that a user on the remote system has requested be run

on your system. When you run uuxqt, it looks for files in those directories and
runs the commands indicated (if all of the permissions are correct).

v The .Xqtdir subdirectory, which acts as a working directory when uuxqt runs
remote commands. After finishing a command, uuxqt removes working files
from this directory.

Log files, lock files, status files, and working files
UUCP creates system files in the spool directory or in its system subdirectories. The
following types of system files are created:

Log files
Records of events such as file transfers, deletions, attempts to connect with
other systems, and system errors. The spool directory contains the
following log file: /usr/spool/uucp/LOGFILE. It contains the record of
when jobs were queued and executed.

Tip: This log file can grow indefinitely. You should edit or delete it on a
regular basis.

Lock files
Temporary files created to prevent two programs writing to a file or device
simultaneously. These files will have a name of LCK..site and
LCK..site_address.

Status files
Records of the most recent unsuccessful attempt to contact a remote
system. There is one status file for each remote system you contact; status
files are named /usr/spool/uucp/.Status/site, where site is the remote
site's name.

You can use the uustat -q command to view the contents of the status file.

A status file is only created if the last attempt to contact a system was
unsuccessful. The status file is not required for UUCP to attempt another
call.

Working files
Command, data, and execute files for the UUCP file transfer programs,
stored in the appropriate subdirectory for the system. These files are
described in z/OS UNIX System Services Command Reference.

Chapter 10. Configuring the UNIX-to-UNIX copy program (UUCP) 277

Displaying information about recorded UUCP events
You can use the uulog command to display information about recorded UUCP
events, such as file transfers and remote command execution.

Notifying remote systems about password changes
When you change the password of a user ID (for example, NUUCP) that is used
for a remote system to login to the local system, you must notify each remote
system to update its Systems file chat script with the new password.

278 z/OS V2R2 UNIX System Services Planning

Chapter 11. Converting files between code pages

This topic discusses the conversion and tagging of files between code pages.

z/OS is an EBCDIC platform. It has devices that are configured for EBCDIC; it also
has programs that are compiled to handle the EBCDIC encoding of characters. If
you implement Enhanced ASCII or exploit Unicode Services, the basic EBCDIC
nature of a z/OS platform remains. For example, the z/OS shell and utilities
continue to be EBCDIC programs. However, if C programs have been compiled as
ASCII, the EBCDIC nature can be partially hidden.

This topic discusses the conversion and tagging of files between various code
pages. Before Enhanced ASCII and Unicode Services were available, you could use
iconv to convert characters from one code page set to another. The converted text
is written to standard input (stdout). See z/OS XL C/C++ Programming Guide for
more information about the supported code sets.

C programs that have been compiled as ASCII use ASCII locales. These ASCII
locales are produced by using the -A option of localedef.

List of subtasks
This topic covers the following subtasks:

Subtask Associated procedure

Setting up enhanced ASCII “Setting up Enhanced ASCII” on page 280

Setting up Unicode Services “Steps for setting up Unicode Services” on
page 282

Using Enhanced ASCII
Enhanced ASCII introduces automatic conversion which, in some cases, is an
alternative to iconv. z/OS UNIX System Services Porting Guide contains examples of
automatic conversion. The enhanced ASCII functionality makes it easier to port
internationalized applications developed on ASCII platforms, or for them, to z/OS
platforms by providing conversion from ASCII to EBCDIC, and from EBCDIC to
ASCII. Enhanced ASCII also provides support for file tagging. File tags are a way
to identify the code set of text data within files and are used during automatic
conversion.

Enhanced ASCII provides limited conversion of ASCII to EBCDIC, and EBCDIC to
ASCII. The character set or alphabet that is associated with any locale consists of
the following:
v A common, XPG4-defined subset of characters such as POSIX portable characters
v A unique, locale-specific subset of characters such as NLS characters

Restriction: The conversion only applies to the portable subset of characters that
are associated with a locale. Only the EBCDIC IBM-1047 encoding of portable
characters is supported.

You might encounter unexpected results in the following situations:

© Copyright IBM Corp. 1996, 2016 279

v If Enhanced ASCII applications run in locales that contain non-Latin Alphabet
Number 1 characters, C-RTL functions might copy some of the locale's non-Latin
1 characters into buffers that the application is writing to stdout or another file.
The non-Latin Alphabet Number 1 characters would then cause problems during
automatic conversion.

v Language Environment applications might select non-English message files. If
the NATLANG runtime option is not ENU or UEN, then conversion does not
take place. The messages are presented to the file system write routine in
EBCDIC, before any automatic conversion takes place. If the automatic
conversion is to EBCDIC, then there will be a problem because EBCDIC cannot
be converted to EBCDIC.

A subset of C headers and functions is provided in ASCII. For a list of all C/C++
runtime library functions that support Enhanced ASCII, see z/OS XL C/C++
Language Reference.

The only way to get to the ASCII version of functions and the external variables
environ and tzname is to use the appropriate IBM header files. ASCII applications
may read, but not update, environment variables using the environ external
variable. Updates to the environment variables using environ in an ASCII
application causes unpredictable results and might result in an abend. Language
Environment maintains two equivalent arrays of environment variables when
running an ASCII application, one with EBCDIC encodings and the other with
ASCII encodings. All ASCII compile units that use the environ external variable
must include <stdlib.h> so that environ can be mapped to access the ASCII
encoded environment strings. If <stdlib.h> is not included, environwill refer to the
EBCDIC representation of the environment variable strings.

To execute ASCII shell scripts and REXX execs, use spawn (BPX1SPN).

Setting up Enhanced ASCII
Guideline: Limit the enabling of automatic conversion to the smallest environment
possible. One way to accomplish this is by using the _BPXK_AUTOCVT
environment variable, optionally with the FILETAG runtime option.

It is important to understand that file tagging and enabling automatic conversion
are independent operations. Because you can tag files without enabling automatic
conversion, and vice versa, it is possible to have many tagged files without any
conversion occurring. However, if you enable automatic conversion for the entire
system by using the AUTOCVT statement in BPXPRMxx, each tagged file becomes
subject to conversion by any program that reads from or writes to those tagged
files. Thus, programs may be processing converted data even though they do not
support it. (An example would be an EBCDIC program that expects to read an
ASCII file as ASCII data.) For those reasons, it is a good idea to limit the enabling
of automatic conversion to the smallest environment possible using
_BPXK_AUTOCVT and, if applicable for the C run time environment, the
FILETAG runtime option.

Before you begin: You need to have an overall understanding of the limitations of
Enhanced ASCII, as explained in Chapter 11, “Converting files between code
pages,” on page 279.

Perform the following steps to set up Enhanced ASCII.
1. Set up Enhanced ASCII. Base your choice on your particular situation.

280 z/OS V2R2 UNIX System Services Planning

If this situation exists . . . Then use . . .

The application is written in C/C++. The FILETAG runtime option with the
_BPXK_AUTOCVT environment variable.

The application is run in the z/OS UNIX
shell or BPXBATCH.

The _BPXK_AUTOCVT environment
variable.

You are enabling automatic conversion for
the z/OS UNIX environment.

AUTOCVT(ON) statement in the BPXPRMxx
parmlib member.

Tip: You can use the SETOMVS and SET
OMVS operator commands to turn
AUTOCVT on or off.

2. Assign the appropriate file tag for each file that is to be converted. Base your
choice on your particular situation.

If you choose this method . . . Then this happens . . .

Issuing the chtag command. Files are permanently tagged.

Mounting a file system with the TAG
parameter.

Files are temporarily tagged. All untagged
files in the file system that is being mounted
are implicitly tagged. When the file system is
unmounted, the tags are lost.

Issuing the F_SETTAG subcommand of the
BPX1FCT (fcntl) callable service from a
program.

Files are either temporarily or permanently
tagged, depending on the input parameters.
For more information about BPX1FCT, see
z/OS UNIX System Services Programming:
Assembler Callable Services Reference.

Issuing BPX1CHR (chattr) callable service
from a program.

Files are permanently tagged. For more
information about BPX1CHR, see z/OS UNIX
System Services Programming: Assembler Callable
Services Reference.

Issuing fopen() or popen() with the 'text'
option and the C-RTL FILETAG(,AUTOTAG)
runtime option.

New or empty files are automatically tagged
at first write(). Programs that use this form of
opening a file are already set up for tagging,
and require the least effort to set up
automatic conversion.

3. Assign a coded character set identifier (CCSID) to each program or thread in

the shell. By default, the initial CCSID for every thread is IBM-1047 (EBCDIC).
v For entire programs written in C/C++, use the ASCII compiler to change it

to 819 (ISO8859-1 ASCII).
v For C/C++ threads, use the F_CONTROL_CVT subcommand of fcntl().
v For Assembler programs and threads, use the F_CONTROL_CVT

subcommand of the BPX1FCT callable service. F_CONTROL_CVT sets the
CCSID of the program associated with each opened file. (That is, the
program CCSID can be different depending on which file is chosen.)

v Use the mapping macro BPXYTHLI to set field Thliccsid. IBM no longer
recommends this method.

When you are done, you have set up Enhanced ASCII.

Chapter 11. Converting files between code pages 281

Using Unicode Services in a z/OS UNIX environment
z/OS UNIX exploitation of Unicode Services is functionally similar to that
provided for Enhanced ASCII, which is described in “Using Enhanced ASCII” on
page 279. The basic EBCDIC nature of the z/OS platform remains. Likewise,
programs cannot alter their EBCDIC nature as compiled units, except for C
programs, which can be compiled as ASCII. Locale restrictions that apply to
Enhanced ASCII functions apply to Unicode Services functions as well.

Files that are tagged can be converted between any CCSID of the program or user
and the CCSID of the file, if Unicode Services supports that conversion. Unlike
Enhanced ASCII, which affects conversion of regular file, pipes, and character
special files, an environment enabled for Unicode Services environment affects
regular files and pipes only. No character special support beyond that provided for
Enhanced ASCII is included.

For more information about Unicode Services, see z/OS Unicode Services User's
Guide and Reference.

Considerations beyond that of Enhanced ASCII
Because POSIX standards apply, z/OS UNIX still treats text that is to be (or has
been) converted as a series of bytes. Read and write request sizes, return values,
file offsets, file sizes, and so on, remain byte-designated values. However, because
one byte does not always equal one character, complications can result when the
LFS is requested to perform text conversion. For example, for a write operation, a
program might receive a return value equal to the number of bytes that the
program requested, but z/OS UNIX might write a different amount due to
converting the data. Typically, a program would not be aware of this action, but
file sizes increase or decrease differently due to conversion. A large write operation
might fail because the maximum number of bytes that are allowed (2 G default for
a regular file) was exceeded, even though the program specified less than 2 G.

Incomplete characters at the end of an I/O stream might cause problems. This
situation occurs, for example, when z/OS UNIX receives data that does not end on
a character boundary. z/OS UNIX tries to resolve this problem by caching the end
of this data for the next I/O operation. But unconverted data will not be hardened.
Consequently, an fsync operation will not cause a partial character to be written to
the file. Likewise, closing a file with a partial character held by z/OS UNIX causes
that partial character to be lost. Partial characters occur only when multibyte
characters sets are being converted.

Additionally, when certain multibyte character sets are being converted, a lseek
operation can cause the file offset to jump to a location in the file that is not on a
character boundary or that contains a different character set. These jumps can
cause a subsequent read or write operation to fail with an I/O error or a
conversion error. Sequential reading and writing is the preferred I/O method to
use when different character sets exist in the file.

Steps for setting up Unicode Services
Setting up for Unicode Services conversion is similar to setting up for Enhanced
ASCII with the following changes:
v _BPXK_AUTOCVT can be set to ALL, which enables a Unicode Services

conversion environment for the program or user.

282 z/OS V2R2 UNIX System Services Planning

v AUTOCVT(ALL) can be specified in the BPXPRMxx parmlib member, which
enables a Unicode Services conversion program for all programs and users. The
SETOMVS or SET OMVS operator commands can turn AUTOCVT to ALL.

v Instead of setting the ThliCcsid field the environment variable _BPXK_PCCSID
should be set. For a description of the _BPXK_PCCSID environment variable, see
“_BPXK environment variables” on page 431.

Before you begin: You need to have an overall understanding of the limitations of
Unicode Services, as explained in “Considerations beyond that of Enhanced ASCII”
on page 282.

Perform the following steps to set up Enhanced ASCII.
1. Set up Unicode Services. Base your choice on your particular situation.

If this situation exists . . . Then use . . .

The application wants to exploit Unicode
Services when enabling automatic
conversion.

The _BPXK_AUTOCVT environment variable
can be set to ALL or fcntl(), or BPX1FCT can
be called to enable to conversion. For the XL
C/C++ runtime environment, refer to z/OS
XL C/C++ Programming Guide.

The application is run in the z/OS UNIX
shell or BPXBATCH.

The _BPXK_AUTOCVT environment
variable. _BPXK_AUTOCVT can be set to
ALL, which enables a Unicode Services
conversion environment for the program or
user.

You are enabling automatic conversion for
the z/OS UNIX environment.

AUTOCVT(ALL) in BPXPRMxx, which
enables Unicode Services conversion
environment for all programs and users.
Tip: Use the SETOMVS and SET OMVS
operator commands to turn AUTOCVT on or
off.

2. Assign the appropriate file tag for each file that is to be converted. Base your
choice on your particular situation.

If you choose this method . . . Then this happens . . .

Issuing the chtag command. Files are permanently tagged.

Mounting a file system with the TAG
parameter.

Files are temporarily tagged. All untagged
files in the file system that is being mounted
are implicitly tagged. When the file system is
unmounted, the tags are lost.

Issuing the F_SETTAG subcommand of the
BPX1FCT (fcntl) callable service from a
program.

Files are either temporarily or permanently
tagged, depending on the input parameters.
For more information about BPX1FCT, see
z/OS UNIX System Services Programming:
Assembler Callable Services Reference.

Issuing BPX1CHR (chattr) callable service
from a program.

Files are permanently tagged. For more
information about BPX1CHR, see z/OS UNIX
System Services Programming: Assembler Callable
Services Reference.

3. Assign a coded character set identifier (CCSID) to each program or thread in

the shell. By default, the initial CCSID for every thread is IBM-1047 (EBCDIC).

Chapter 11. Converting files between code pages 283

v For entire programs written in C/C++, use the ASCII compiler to change it
to 819 (ISO8859-1 ASCII).

v For C/C++ threads, use the F_CONTROL_CVT subcommand of fcntl().
v For Assembler programs and threads, use the F_CONTROL_CVT

subcommand of the BPX1FCT callable service. F_CONTROL_CVT sets the
CCSID of the program associated with each opened file. (That is, the
program CCSID can be different depending on which file is chosen.)

v Set environment variable _BPXK_PCCSID.

When you are done, you have set up Unicode Services.

284 z/OS V2R2 UNIX System Services Planning

Chapter 12. Managing operations

The z/OS UNIX element is designed to be continually available. This topic
discusses tasks that are done by operators.

List of subtasks

Subtasks Associated procedure

Ending a specified process “Steps for ending a specified process”

Shutting down z/OS UNIX “Steps for shutting down z/OS UNIX using
F BPXOINIT,SHUTDOWN=...” on page 288

“Steps for shutting down z/OS UNIX using
F OMVS,SHUTDOWN” on page 293

Doing partial shutdowns for JES maintenance “Steps for partial shutdowns for JES2
maintenance” on page 290

Dynamically adding FILESYSTYPE
parameters in BPXPRMxx

“Steps for activating the HFS file system for
the first time” on page 300

“Steps for activating a single sockets file
system for the first time” on page 301

“Steps for activating a multiple socket file
system for the first time with Common
INET” on page 302

“Steps for increasing the MAXSOCKETS
value” on page 302

“Steps for adding another sockets file system
to an existing CINET configuration” on page
304

If you require a high level of security in your z/OS system and do not want
superusers to have access to z/OS resources such as SYS1.PROCLIB, read the
following topics:
v “Comparing UNIX security and z/OS UNIX security” on page 333.
v “Establishing the correct level of security for daemons” on page 335.

Steps for ending a specified process
A process is the execution of a program. MVS calls the basic unit of execution a job
or a task; in UNIX, it's called a process. You can find out whether a process is
active, and you can end it.

Before you begin: You need to know which processes you want to end and
whether they are active.

Examples: Use the DISPLAY OMVS operator command or the ps command to
display all active processes.
1. To list the address space identifiers for processes, issue:

DISPLAY OMVS,A=ALL

© Copyright IBM Corp. 1996, 2016 285

2. To display a particular ASID, where asid is a specified ASID:
DISPLAY OMVS,A=asid

3. To display information about all accessible processes, providing that you have
the appropriate privileges:
ps -elf

Perform the following steps to end a specified process, where pppp is the process
identifier (pid).
1. Send a SIGTERM signal using the shell kill command or use the TERM

parameter of the MODIFY operator command. For example:
a. kill -s term pppp
b. F BPXOINIT,TERM=pppp

If the process is not ended, then go to Step 2. Otherwise, you have canceled the
process and you are finished.

2. Send a SIGKILL signal using the shell kill command or use the FORCE
parameter of the MODIFY operator command. For example:
a. kill -s kill pppp
b. F BPXOINIT,FORCE=pppp

If the process is still not ended, then go to Step 3. Otherwise, you have
canceled the process and you are all done.

3. Send a stronger SIGKILL signal using the shell kill command or use the
SUPERKILL parameter of the MODIFY operator command. For example:
v kill -K pppp
v F BPXOINIT,SUPERKILL=pppp

If the process is still not ended, then go to Step 4. Otherwise, you have
canceled the process and you are finished.

4. If the previous steps did not end the process, then use the CANCEL command.
Issue:
CANCEL jobname,a=asid

Example: The following example shows how to obtain the ASIDs for a user
with the TSO/E user ID JOE and then cancel the user's process that is running
the sleep 6000 command.

display omvs,u=joe
BPXO001I 17.12.23 DISPLAY OMVS 361

OMVS ACTIVE OMVS=(93)
USER JOBNAME ASID PID PPID STATE START CT_SECS
JOE JOE 001D 5 1 1RI 17.00.10 1.203
JOE JOE3 001B 131076 262147 1SI 17.00.10 .111

LATCHWAITPID= 0 CMD=sleep 6000
JOE JOE1 0041 262147 5 1WI 17.00.10 .595

LATCHWAITPID= 0 CMD=-sh

cancel joe3,a=1b

When you are done, you have ended the specified process.

286 z/OS V2R2 UNIX System Services Planning

Ending threads
A thread is a stream of computer instructions that is in control of a process. Several
threads can run concurrently, performing different jobs. An operator can use the
MODIFY command to end a thread without disrupting the entire process. The
syntax is:
F BPXOINIT,{TERM}=pid[.tid]

{FORCE}

where
v pid indicates the process identifier (PID) of the thread to be ended. The PID is

specified in decimal form as displayed by the D OMVS command.
v tid indicates the thread identifier (TID) of the thread to be ended. The TID is 16

hexadecimal (0-9,A-F) characters as displayed by the following command:
D OMVS,PID=pppppppp

v TERM= indicates the signal interface routine will be allowed to receive control
before the thread is ended.

v FORCE= indicates the signal interface routine will not be allowed to receive
control before the thread is ended.
Although abnormal termination of a thread typically causes a process to end,
using the MODIFY command to end a thread will not cause the process to end.

You will typically want to end a single thread when the thread represents a single
user in a server address space. Otherwise, random termination of threads can
cause some processes to hang or fail. If a thread in a process is hung, use the
MODIFY operator command to terminate the thread without ending the entire
process. Use the TERM keyword first. If that does not succeed, then use FORCE.
For example:
v To allow the signal interface routine to receive control before the thread is

ended:
F BPXOINIT,TERM=pppppppp.tttttttttttttttt

where pppppppp is the process identifier and tttttttttttttttt is the thread
identifier.

v To end the thread without allowing the signal interface routine to receive
control:
F BPXOINIT,FORCE=pppppppp.tttttttttttttttt

where pppppppp is the process identifier and tttttttttttttttt is the thread
identifier.

Planned shutdowns using F BPXOINIT,SHUTDOWN=...
When you are doing a planned shutdown of z/OS UNIX, follow the instructions in
“Steps for shutting down z/OS UNIX using F BPXOINIT,SHUTDOWN=...” on
page 288. As part of a planned shutdown, you need to prepare the file systems
before shutting down z/OS UNIX by issuing one of these commands:
F BPXOINIT,SHUTDOWN=FILEOWNER
F BPXOINIT,SHUTDOWN=FILESYS

Issuing one of these commands synchronizes data to the file systems and possibly
unmounts or moves ownership of the file systems. If you use
SHUTDOWN=FILEOWNER, the system is disabled as a future file system owner
via move or recovery operations until z/OS UNIX has been restarted.

Chapter 12. Managing operations 287

Restriction: SHUTDOWN=FILEOWNER is valid only in a shared file system
configuration.

If you get message BPXM048I saying that the file system shutdown was
incomplete, a local mount might have been performed while the shutdown was in
progress. To identify the file systems that were not moved or unmounted, issue D
OMVS,F,O on the source system to see which file systems are still owned by this
system. You can try to move individual file systems by issuing the following
operator command for each file system in question:
SETOMVS FILESYS,FILESYSTEM=xxxxxxxx,SYSNAME=yyyyyyyy

If a move fails, you will see message BPXO037E.

Automounted file systems are not mounted during the processing of F
BPXOINIT,SHUTDOWN=FILEOWNER, or after it completes in order to provide
the ability to handle unexpected mounts that occur when a file system is shut
down.

In a shared file system configuration, the resulting system actions are more
complex, because they might involve the movement of file system ownership
between systems in the shared file system. For more information about the system
actions that might occur in a shared file system, see “Implications of shared file
systems during system failures and recovery” on page 206.

To shut down the system as part of JES maintenance without reIPLing the system,
see “Partial shutdowns for JES2 maintenance” on page 290.

Steps for shutting down z/OS UNIX using F
BPXOINIT,SHUTDOWN=...

About this task

You will shut down z/OS UNIX using the F BPXOINIT,SHUTDOWN=... system
command.

Before you begin: You need to notify users that the system is being shut down
and ask them to log off. If you do not shut down and quiesce the UNIX workload,
these critical system functions might be ended abnormally during the shutdown,
which might cause several failures on the system. As a result, the system might not
be shut down successfully.
1. Use the operator SEND command to send a note to all TSO/E users telling

them that the system will be shut down at a certain time. For example:
send ’The system is being shut down in five minutes. Log off.’,NOW

2. Use the wall command to send a similar note about the impending shutdown
to all shell users who are logged on. For example:
wall The system is being shut down in five minutes. Please log off.

Perform the following steps to shut down z/OS UNIX using F
BPXOINIT,SHUTDOWN.

Procedure
1. Prevent new TSO/E logons and shut down other z/OS subsystems (such as

CICS® and IMS™), following your typical procedures.

288 z/OS V2R2 UNIX System Services Planning

2. Shut down all JES initiators.

3. Move or unmount all of the NFS file systems by issuing the following
command:
F OMVS,STOPPFS=NFS

4. Use normal shutdown procedures to end all file system address spaces such as

TCP/IP and DFSS. Do this after the final warning has been sent to users that
the system is ending.

5. End running daemons such as inetd. Then end any remaining processes.
To obtain a list of daemons that are running, issue:
D OMVS,U=OMVSKERN

OMVSKERN is the user ID that is used for the kernel and daemons.
To display all processes (most daemons have recognizable names), issue:
D OMVS,A=ALL

Then use the F BPXOINIT,TERM=xxxxxxxx operator command or the kill
command to terminate those processes.

6. Move or unmount all file systems (including the root file system). Issue:
F BPXOINIT,SHUTDOWN=FILEOWNER

or
F BPXOINIT,SHUTDOWN=FILESYS

7. Take down JES. At this point, there might still be a number of initiators that are

provided by WLM for use on fork and spawn. These initiators time out after 30
minutes on their own, but you can end them by issuing:
F BPXOINIT,SHUTDOWN=FORKINIT

Results

When you are done, you have ended all of the processes. You can do any of the
following:
v IPL
v Power® off
v Take down JES, restart JES, and then rebuild your environment. For example:

– Remount any file systems that you unmounted. To do all the mounts, you
must issue mount commands or construct a REXX exec or CLIST. If you are
using automount for user file systems, there will be less work involved.

– If you terminated the address spaces for TCP/IP and DFSS, you must restart
these.

– If you terminated daemons, log on to TSO as superuser and run /etc/rc from
a shell or from the ISHELL.

– Notify users that the system is once again available for UNIX processing.

Chapter 12. Managing operations 289

Partial shutdowns for JES2 maintenance
Before JES2 can be shut down for maintenance purposes, part of z/OS UNIX must
be shut down. This topic explains how you can terminate all of the forked
processes without having to reIPL the entire system. (The kernel remains active but
new forked processes are not allowed.) Use this procedure for JES2 maintenance
only.

Guideline: Do the partial shutdown as infrequently as possible because it is a
disruptive shutdown; all the user processes that are either forked or non-local
spawned are terminated.

After the forked processes have been terminated, you can end the colony address
spaces. Now JES2 can be shut down for maintenance. z/OS UNIX can be
reinitialized after JES2 has been restarted, and forked processes will start being
dubbed again. The file system colonies can then be restarted manually.

Steps for partial shutdowns for JES2 maintenance
Before you begin: You need to notify users that the system is being shut down
and ask them to log off. If you do not shut down and quiesce the UNIX workload,
these critical system functions might be ended abnormally during the shutdown,
which might cause several failures on the system. As a result, the system might not
be shut down successfully.
1. Use the operator SEND command to send a note to all TSO/E users telling

them that the system will be shut down. For example:
send ’The system is being shut down in five minutes. Please log off.’

2. Use the wall command to send a similar note to all shell users that are logged
on. For example:
wall The system is being shut down in five minutes. Please log off.

Perform the following steps to accomplish a partial shutdown.
1. Shut down z/OS UNIX.

F BPXOINIT,SHUTDOWN=FORKS

Result: You have ended all forked and non-local spawned address spaces on
the system. If the operator receives a success message, the shutdown can be
continued.
failure message means that some forked processes or non-local spawned
address spaces could not be ended. To find these processes, issue:
D OMVS,A=ALL

To terminate them, issue:
F BPXOINIT,FORCE,FORCE=xxxxxxxx

If that does not work, use the CANCEL or FORCE operator commands.

2. Stop the file system colonies that were started under JES (those without
SUB=MSTR specified when they were defined). Use normal shutdown
procedures to close all file system address spaces such as Network File System
Client (NFSC).
For NFSC use the F OMVS,STOPPFS=NFS command to bring down NFSC.
For all other colonies, use the procedures documented in their publications.

290 z/OS V2R2 UNIX System Services Planning

When you are done, you have partially shut down z/OS UNIX. New fork and
spawn activity cannot be done; however, it is still possible for batch jobs and TSO
users to use z/OS UNIX services. Now you can do whatever corrective or
maintenance actions that were needed for JES2, such as restarting it.

Tip: To restart z/OS UNIX:
1. Issue the MODIFY (F) command.

F BPXOINIT,RESTART=FORKS

2. Restart the file system address spaces.
For NFSC, respond to the operator message BPXF032D issued when you
previously stopped NFSC using F OMVS,STOPPFS=NFS command. Then
reissue all the mounts if required.
For DFSCM, respond to the operator message BPXF032D.
For all other colonies, use the procedures that were documented in their
product publications.

Planned shutdowns using F OMVS,SHUTDOWN
“Steps for shutting down z/OS UNIX using F OMVS,SHUTDOWN” on page 293
describes how to use the F OMVS,SHUTDOWN operator command for a planned
shutdown and reIPL. Consider using it if you plan to recustomize and reinitialize
the z/OS UNIX environment without reIPLing. Using F OMVS,SHUTDOWN along
with F OMVS,RESTART might allow you to avoid a system outage by providing
the ability to shut down and then reinitialize the z/OS UNIX environment without
the need for a reIPL.

F OMVS,SHUTDOWN is an alternative to F BPXOINIT,SHUTDOWN=...
commands for synchronizing data to the file systems and unmounting or moving
file system ownership before a planned shutdown.

Guideline: Sometimes F OMVS,SHUTDOWN cannot shut down z/OS UNIX
completely and you must do a reIPL in order to correct the condition that is
requiring the shutdown. With F OMVS,SHUTDOWN and F OMVS,RESTART, some
reconfiguration tasks can be accomplished that otherwise would have required a
reIPL. These tasks include the following steps:
v Reconfiguring a system to go from a non-shared file system to a shared file

system.
v Completely applying a new file system file structure.

However, there are some tasks that you cannot accomplish using these commands,
as follows:
v Installing maintenance to the z/OS UNIX component.
v Resolving severe system outages.

Follow the recommended pre-shutdown procedure described in “Steps for shutting
down z/OS UNIX using F OMVS,SHUTDOWN” on page 293 when using
F,OMVS,SHUTDOWN. If you do not, the risk of having to do a reIPL is far greater.

If you want to shut down the system as part of JES2 maintenance and do not want
to reIPL the system, issue F BPXOINIT,SHUTDOWN=FORKS as described in
“Partial shutdowns for JES2 maintenance” on page 290.

Chapter 12. Managing operations 291

What F OMVS,SHUTDOWN does
Use the F OMVS,SHUTDOWN operator command when you want to do a
planned shutdown, and might or might not be reIPLing the system. You will be
shutting down the entire z/OS UNIX system and all processes.

Only eligible running processes are shut down. Some processes might not be shut
down because they have registered as a permanent process. Additionally, some
applications might register to block a shutdown, which delays the shutdown
request until the blockers end or unblock. Also, an application exit can be set up to
be given control when a shutdown request is initiated in order to allow specific
shutdown actions to be taken. This might include initiating the shutdown of the
application or sending messages that indicate the specific steps that are required to
shut down the application.

If any blocking jobs or processes are active when a shutdown request is initiated,
the shutdown is delayed until all blocking jobs or processes either unblock or end.
If the delay exceeds a certain time interval, you will receive messages telling you
that the shutdown is delayed and which jobs are delaying the shutdown. At this
point, you can either attempt to end the jobs that are identified as blocking
shutdown or issue F OMVS,RESTART to restart the z/OS UNIX environment,
which will cause the shutdown request to be ended.

Successful shutdowns
The shutdown succeeds only if all non-permanent z/OS UNIX processes end, all
permanent processes are successfully checkpointed, and if all physical file systems
are successfully quiesced. Otherwise, the shutdown request will fail.
Nonpermanent processes within jobs that are not prepared for shutdown cause the
shutdown request to fail. These jobs are identified in messages so that you can
force these jobs to end. At this point, because most processes have been ended, you
should force the hung jobs to end and then try the shutdown again. Because some
jobs might have ended abnormally, JES spool resources might have accumulated
for these jobs; you will have to purge them using commands such as
$POJOBQ,READY.

At each phase of shutdown, it is possible that there could be a stall where no
shutdown activity is occurring. That situation could cause the shutdown to hang. If
such a situation is detected, the shutdown will wait approximately six minutes for
the stall to resolve itself. If the stall does not resolve itself by then, the shutdown
request will fail.

Because some resources are tied to components outside of the scope of the kernel
(shared memory, mmap, shared libraries, for example), you must end any
application that is using any of these resources before z/OS UNIX can be ended,
including applications that are registered as permanent.

Tip: Because the F OMVS,SHUTDOWN support encompasses the existing support
in the F BPXOINIT,SHUTDOWN= command, you do not need to issue F
BPXOINIT,SHUTDOWN before using F OMVS,SHUTDOWN. If F
OMVS,SHUTDOWN fails, z/OS UNIX services are reenabled whether or not a F
BPXOINIT,SHUTDOWN= was done prior to the F OMVS,SHUTDOWN command.
An F BPXOINIT command of any kind issued when OMVS is shut down is
ignored.

Guideline: Use F OMVS,SHUTDOWN carefully because this method will take
down other system address spaces. As a result, some system-wide resources might

292 z/OS V2R2 UNIX System Services Planning

not be completely cleaned up during a shutdown and restart. Do not use this
command to shut down and restart the z/OS UNIX environment on a frequent
basis. (If you do so, you will eventually have to do a reIPL.) An example of a
system-wide resource that can be consumed due to the shutdown are non-reusable
ASIDs. If colony address spaces are being used, a non-reusable ASID will be
consumed for each colony address space that is shut down. For this reason,
installations should plan on increasing the value set for the RSVNONR= parameter
in the IEASYSxx parmlib member to account for the consumption of non-reusable
ASIDs due to each shut down of OMVS. If this value is not increased, the
installation might receive an error message after shutting down the system
multiple times.

If a shutdown does not succeed, a critical z/OS UNIX resource might not have
been available during the shutdown, due to a prior system problem, such as latch
contention. If a resource such as the z/OS UNIX file system MOUNT latch could
not be obtained, the shutdown request to likely to stall and then fail.

Steps for shutting down z/OS UNIX using F
OMVS,SHUTDOWN

Before you begin: You need to notify users that the system is being shut down
and ask them to log off. If you do not shut down and quiesce the UNIX workload,
these critical system functions might be ended abnormally during the shutdown,
which might cause several failures on the system. As a result, the system might not
be shut down successfully.
v Use the operator SEND command to send a note to all TSO/E users telling them

that the system will be shut down. For example:
send ’The system is being shut down in five minutes. Please log off.’,NOW

v Use the wall command to send a similar note to all logged-on shell users. For
example:
wall The system is being shut down in five minutes. Please log off.

Perform the following steps to shut down z/OS UNIX using F
OMVS,SHUTDOWN.
1. Prevent new TSO/E logons.

2. Quiesce your batch and TSO workloads. Having batch jobs and TSO users

running during the shutdown might cause these jobs to experience unexpected
signals or abends. Additionally, these jobs and users might end up being hung,
waiting for z/OS UNIX services to be restarted, if they first access z/OS UNIX
services during a shutdown.
Quiesce those application and subsystem workloads using z/OS UNIX services
in the manner that each application or subsystem recommends. Doing so will
allow subsystems such as DB2, CICS and IMS, and applications like SAP, Lotus
Domino, Tivoli NetView for z/OS, and WebSphere® to be quiesced in a more
controlled manner than this facility will provide.
Tip: You can use the D OMVS,A=ALL operator command to determine which
applications, if any, require quiescing.

3. Move or unmount all of the NFS file systems by issuing: F
OMVS,STOPPFS=NFS. Doing so prevents the NFS file system from losing data.

Chapter 12. Managing operations 293

4. Terminate all file system address spaces such as TCP/IP and DFSS, using their
recommended shutdown methods. If you do not shut them down before
issuing F OMVS,SHUTDOWN, these system functions might terminate
abnormally when the shutdown takes place. Do not shut down existing PFS
colony address spaces such as zFS because they are shut down as part of F
OMVS,SHUTDOWN.

Result: Now you can issue F OMVS,SHUTDOWN.

Note:

1. After an F OMVS,SHUTDOWN request is accepted, jobs that attempt to use
z/OS UNIX services for the first time will be delayed until the system is
restarted. Terminating signals are sent to jobs that are already connected; these
jobs will be ended abruptly.

2. After F OMVS,SHUTDOWN has completed, you can shut down the system
completely via an IPL or by powering off.
Tip: You can completely restart and reinitialize the z/OS UNIX environment by
issuing F OMVS,RESTART. You can also use it to change the configuration of
z/OS UNIX services by specifying a different set of BPXPRMxx members when
z/OS UNIX is started. For more information about F OMVS,RESTART, see z/OS
MVS System Commands

3. Using F OMVS,SHUTDOWN, the steps for shutting down z/OS UNIX are the
same whether or not the system is participating in a shared file system.
However, in a shared file system, the resulting system actions are more
complex because they might involve the movement of file system ownership
between systems in the shared file system. For more information about system
actions that might occur in a shared file system, see “Implications of shared file
systems during system failures and recovery” on page 206.

Dynamically activating the z/OS UNIX component service items
You can dynamically activate and deactivate some service items (PTFs, ++APARs,
++Usermods) that affect the z/OS UNIX component modules without having to
reIPL. This capability is primarily intended to allow an installation to activate
corrective service to avoid unplanned reIPLs of your systems. Additionally, this
capability can be used to activate temporary code that can be used in gathering
additional documentation for a recurring system problem. Although this capability
can be used to activate preventive service on an ongoing basis, it is not intended
for this purpose.
v F OMVS,ACTIVATE=SERVICE activates the service.
v F OMVS,DEACTIVATE=SERVICE backs off the service.
v D OMVS,ACTIVATE displays the current set of services that were dynamically

activated.

Those PTFs that are capable of being activated dynamically will have ++HOLD
REASON(DYNACT) included within their PTF. Additionally, any ++USERMOD or
++APAR provided from IBM will have explicit instructions provided by the IBM
Service Team indicating whether the ++Usermod or ++APAR can be dynamically
activated. Although a service item might be identified as being capable of dynamic
activation, the level of a given system might not be current enough to allow the
activation of the service item. The ++HOLD REASON(DYNACT) will identify the
service level required to activate the PTF. In order to properly activate the PTF,
follow the directions in the ++HOLD in the PTF.

294 z/OS V2R2 UNIX System Services Planning

Restriction: Dynamically activating a PTF on top of a superseded ++APAR is not
allowed. If the ++APAR was activated dynamically, you can deactivate it and then
activate the PTF. Otherwise, the PTF will need to be applied with an IPL.

In order to be prepared to exploit dynamic service activation, you must stay
current on z/OS UNIX Component maintenance. Staying current makes it more
likely that any given service item can be activated dynamically, because the
running system will be at a high enough level to accept the service item. On a
periodic or as-needed basis, you will have to determine the selected PTFs that you
would be interested in activating dynamically for corrective purposes. These would
likely be the PTFs that are of highest severity and highest impact related to your
workloads.

To ensure that you activate only those service items that are of interest, it is
recommended that you additionally install these service items into a separate load
library from the LPALIB or LINKLIB libraries that are used for your normal install
process. You can copy (or clone) the SMP/E environment for the currently running
z/OS system and then install the applicable PTFs using the cloned SMP/E
environment and cloned target libraries. The applicable PTFs are the ones that
have been identified with ++HOLD REASON(DYNACT).

Identifying service items to be activated
Service items are activated from service activation libraries that have been
identified via the SERV_LPALIB and SERV_LINKLIB parameters in the BPXPRMxx
member. The service activation libraries contain the service items that have already
been SMP/E-installed and that you want to activate on the next F
OMVS,ACTIVATE=SERVICE command. The libraries enable you to identify for a
given activation request the normal LPALIB and LINKLIB target libraries where
you install service via SMP/E for future IPLs or a specific library where you have
installed a specific fix. For example:
SERV_LINKLIB(’dsname’,’volser’)

The SERV_LINKLIB statement identifies the target service library where the z/OS
UNIX modules that are normally loaded from SYS1.LINKLIB into the private area
of the OMVS address space are located.
v The dsname parameter identifies a 1-to-44 character value that represents a valid

data set name for the specified MVS load library. This library must be
APF-authorized. The alphabetic characters in the load library name must be
uppercase.

v The volser parameter identifies a 1-to-6 character value that represents a valid
volume serial number for the volume that contains the specified MVS load
library. The alphabetic characters in the volume serial number must be
uppercase.

Because you can set these new statements via SET OMVS, different target service
libraries can be used for any given F OMVS,ACTIVATE=SERVICE command
invocation.

Activating service items
After you identify the target service activation libraries via the SERV_LPALIB and
SERV_LINKLIB parameters in the BPXPRMxx member, you can then activate the
service items.

Chapter 12. Managing operations 295

For most service items that can be activated dynamically, issuing F
OMVS,ACTIVATE=SERVICE is sufficient to activate the service item. But for a
small number of service items, the procedure to activate a fix or set of fixes might
require the dynamic LPA add of BPXINLPA and its ALIASes. This is the case only
if the maintenance to be activated affects one of the ALIASes of BPXINLPA. The
accompanying documentation provided by IBM for a service item (for example,
.++HOLD) will indicate if this extra step is required to activate a service item.

Restrictions: Note the following restrictions:
1. Only those service items found in the target libraries that are identified

internally by z/OS UNIX as capable of being dynamically activated are
activated. Service items that are not explicitly identified as such cannot be
activated.

2. If a fix capable of dynamic activation is found that cannot be activated due to
earlier service on the active system or missing parts in the target activation
libraries, the activation will fail.

The set of service items to be activated and the amount of ECSA and OMVS
address space storage consumed for those service items are indicated in messages
displayed by the F OMVS,ACTIVATE=SERVICE command. The issuer of the
command is then prompted on whether to proceed with the activation based on
this information.

Tip: The activation of a set of service items potentially causes the additional
consumption of both ECSA and OMVS address space storage that is permanent
regardless of whether the service items are deactivated. A dynamic activation that
involves fixes to modules in LPA resident load modules will cause additional
consumption of ECSA. Careful consideration should be given to ensure that this
additional ECSA storage consumption does not cause a problem for your system.

To activate the component service items, issue:
F OMVS,ACTIVATE=SERVICE

If a fix capable of dynamic activation is found that cannot be activated due to
earlier service found on the active system or missing parts in the target activation
libraries, the activation will fail.

Deactivating service items
You can back off a set of dynamically activated service items, if you need to. This
might be necessary if, for example, a problem is encountered with a dynamically
activated service item or if a particular service item is no longer necessary.

To deactivate the service items, issue:
F OMVS,DEACTIVATE=SERVICE

Only the service items that were activated when F OMVS,ACTIVATE=SERVICE was last
issued are backed off. You will see a list of service items to be deactivated and you
will be asked whether the deactivation should proceed.

Displaying activated service items
Use the D OMVS,ACTIVATE=SERVICE command to display all of the service
items that were dynamically activated using F OMVS,ACTIVATE=SERVICE. It
displays only those service items that are currently active dynamically. Once a fix
has been deactivated, it will no longer show up in this command's display output.

296 z/OS V2R2 UNIX System Services Planning

Additionally, D OMVS,ACTIVATE=SERVICE reports the library and volume where
each set of fixes was activated from and the amount of ECSA and OMVS address
space storage that is being consumed for all dynamically activated fixes. The
amount of storage consumed will not decrease when a deactivation is done.

Example: To display all the service items that were dynamically activated, issue:
D OMVS,ACTIVATE=SERVICE

Result: The following is a sample output:

The service items are listed in groups based on when they were activated. All
service items activated by a given F OMVS,ACTIVATE=SERVICE command are
listed together as one set of activated service items. The most recently activated set
of service items is listed first followed in descending order by the next most recent
activation set and so on. The most recent set of service items is the only service
items that are deactivated if a F OMVS,DEACTIVATE=SERVICE command is
issued.

Example: As an example, if a F OMVS,DEACTIVATE=SERVICE was done on a
system with the service items activated, the following would then show up on a D
OMVS,ACTIVATE=SERVICE after the deactivation:

Dynamically changing the BPXPRMxx parameter values
The SETOMVS command enables you to modify BPXPRMxx settings without
reIPLing.

You can dynamically change process-wide limits separately for each process. For
example:
SETOMVS PID=123,MAXFILEPROC=200

BPXO059I 08.51.42 DISPLAY OMVS 284
OMVS 000E ACTIVE OMVS=(6D)

DYNAMIC SERVICE ACTIVATION REPORT
SET #3: LINKLIB=SYS1.DYNLIB.PVT VOL=BPXLK1
LPALIB=SYS1.DYNLIB.LPA VOL=BPXLK1
OA12345 OA23456 OA34567 OA45678 ANLATC1

SET #2:
LINKLIB=SYS1.DYNLIB.PVT VOL=BPXLK1 LPALIB=SYS1.DYNLIB.LPA VOL=BPXLK1
OA02001 OA02002 OA02003 OA02004 OA02004 OA02005
OA02007 OA02008 OA02009

SET #1:
LINKLIB=SYS2.DYNLIB.PVT VOL=BPXLK1 LPALIB=SYS1.DYNLIB.LPA VOL=BPXLK1
OA01001 OA01002 OA01003

ECSA STORAGE: 1268496 OMVS STORAGE: 4768248

Figure 43. Sample D OMVS,ACTIVATE=SERVICE output

BPXO059I 08.58.26 DISPLAY OMVS 296
OMVS 000E ACTIVE OMVS=(6D)

DYNAMIC SERVICE ACTIVATION REPORT
SET #2:
LINKLIB=SYS1.DYNLIB.PVT VOL=BPXLK1 LPALIB=SYS1.DYNLIB.LPA VOL=BPXLK1
OA02001 OA02002 OA02003 OA02004 OA02005 OA02006
OA02007 OA02008 OA02009

SET #1:
LINKLIB=SYS2.DYNLIB.PVT VOL=BPXLK1 LPALIB=SYS1.DYNLIB.LPA VOL=BPXLK1

OA01001 OA01002 OA01003
ECSA STORAGE: 1268496 OMVS STORAGE: 4768248

Figure 44. Second example of D OMVS,ACTIVATE=SERVICE

Chapter 12. Managing operations 297

The SET OMVS command enables you to dynamically change the BPXPRMxx
parameters that are in effect. Because you can have multiple BPXPRMxx
definitions, you can easily reconfigure a large set of the system characteristics. You
can keep the reconfiguration settings in a permanent location for later reference or
reuse. A sample SET OMVS command is:
SET OMVS=(AA,BB)

If a parameter is specified more than once with different values, in the parmlib
members, the first value that is specified is the first value that is used. For
example, if you specify SET OMVS=(AA,BB) where AA has a MAXPROCUSER=10
value and BB has a MAXPROCUSER=5 value, MAXPROCUSER =10 is used.

You can use the SETOMVS RESET command to dynamically add the
FILESYSTYPE, NETWORK, and SUBFILESYSTYPE statements without having to
reIPL. However, if you change the values, a reIPL will be necessary. For more
information, see “Dynamically adding FILESYSTYPE statements in BPXPRMxx” on
page 300.

SET OMVS=xx can be used to execute the ROOT, MOUNT, FILESYSTYPE,
SUBFILESYSTYPE, and NETWORK statements in the BPXPRMxx member.

Dynamically changing certain BPXPRMxx parameter values
These parameters specify maximum values: MAXPROCSYS, MAXPTYS,
IPCMSGNIDS, IPCSEMNIDS, IPCSHMNIDS, IPCSHMSPAGES, and
SHLIBRGNSIZE. You can use the SETOMVS or SET OMVS command to
dynamically increase the current system setting, but if you specify a value that is
too low or too high, you will get an error message. To use a value outside the
range, you must change the specification in BPXPRMxx and reIPL.

While you can specify the SHRLIBMAXPAGES parameter to specify a maximum
value, it will be accepted but will not have any impact on the system. The value
that you specify will never be reached, because user-shared library objects are no
longer supported.

To avoid specifying a value that is too low or too high, you can use a formula to
calculate the maximum values. The minimum value is sometimes the current
setting of the parameter and sometimes lower than that, as identified in the
description of each parameter.

Example: The following example shows you how to perform the calculations using
the IPCMSGNIDS parameter, which determines the highest number of unique
message queues in the system. To use SETOMVS IPCMSGNIDS=xxx to increase the
current setting, you must calculate the highest number that you can specify.
According to the description of IPCMSGNIDS in “IPCMSGNIDS and
IPCSEMNIDS” on page 299, the formula is:
MIN(20000,MAX(4096,3*initial value))

For this example, the current value of IPCMSGNIDS is 1000; the value of
IPCMSGNIDS at IPL is also 1000 (that is, 1000 is the initial value). Use the formula
in the following way:
1. Compare 4096 with 3 times 1000 to find the higher number (the MAX). 4096 is

the higher number.
2. Compare 20000 with 4096 to find the smaller number (the MIN). 4096 is the

smaller number.

298 z/OS V2R2 UNIX System Services Planning

Therefore, the highest number that you can specify on SETOMVS IPCMSGNIDS is
4096. The range of numbers that you can specify is 1000 (the current value) to
4096. The correct SETOMVS command for increasing the message queue limit to
the maximum (assuming a starting value of 1000) would be:
SETOMVS IPCMSGNIDS=4096

To change to a number higher than 4096 (but lower than 20000), you will have to
change BPXPRMxx and reIPL.

MAXPROCSYS
The range that you can use has a minimum value of 5; the maximum value is
based on the following formula:
MIN(32767,MAX(4096,3*initial value))

The initial value is the MAXPROCSYS value that was specified during BPXPRMxx
initialization. You cannot use a value less than 5. If you want to use a value greater
than the current maximum (as calculated by the formula) but lower than the initial
maximum (32767), you will have to change the value in BPXPRMxx and reIPL.

MAXPTYS
The range's minimum value is 1 and the maximum is based on the following
formula:
MIN(10000,MAX(256,2*initial value))

The initial value is the MAXPTYS value that was specified during BPXPRMxx
initialization.

IPCMSGNIDS and IPCSEMNIDS
The range's minimum value is the current setting of IPCMSGNIDS or
IPCSEMNIDS, and the maximum is based on the following formula:
MIN(20000,MAX(4096,3*initial value))

The initial value is the value that was specified during BPXPRMxx initialization. If
you want to use a value greater than the current maximum (as calculated by the
formula) but lower than the initial maximum (20000), you will have to change the
value in BPXPRMxx and re-IPL.

SHRLIBRGNSIZE and SHRLIBMAXPAGES
Use the D OMVS,L command to determine shared library usage and adjust your
parameters.

If you specify the SHRLIBMAXPAGES parameter, it will be accepted but will not
have any impact on the system. The value that you specify will never be reached,
because user-shared library objects are no longer supported.

IPCSHMNIDS and IPCSHMSPAGES
The range's minimum value is the current setting of IPCMSGNIDS or
IPCSHMSPAGES, and the maximum is based on the following formula:
MIN(20000,MAX(4096,3*initial value))

The initial value is the value that was specified during BPXPRMxx initialization. If
you want to use a value greater than the current maximum (as calculated by the
formula) but lower than the initial maximum (20000), you will have to change the
value in BPXPRMxx and re-IPL.

Chapter 12. Managing operations 299

Dynamically switching to different BPXPRMxx members
Another way to dynamically reconfigure parameters is to use the SET OMVS
command to change the BPXPRMxx members that are in effect. With the SET
OMVS command, you can have multiple BPXPRMxx definitions and use them to
easily reconfigure a set of the z/OS UNIX system characteristics. You can keep the
reconfiguration settings in a permanent location for later reference or reuse.

For example, you could keep the system limits parameters that can be reconfigured
in parmlib member BPXPRMLI. When you need to change any of the limits, edit
the parmlib member and then issue SET OMVS. For example:
SET OMVS=(LI)

Changes to system limits (for example, MAXPROCSYS) take effect immediately.
Changes to user limits (for example, MAXTHREADS) are set when a new user
enters the system (for example, rlogin or a batch job). These limits persist for the
length of the user connection to z/OS UNIX.

Restriction: While the MAXPROCSYS, MAXPTYS, IPCMSGNIDS, IPCSEMNIDS,
IPCSHMNIDS and IPCSHMSPAGES values can be changed dynamically, the
changes are limited by the initial value that was used at IPL time, as described in
“Dynamically changing certain BPXPRMxx parameter values” on page 298.
SHLIBRGNSIZE and SHLIBMAXPAGES are not affected by this restriction.

SET OMVS=xx can be used to execute the ROOT, MOUNT, FILESYSTYPE,
SUBFILESYSTYPE, and NETWORK statements in the BPXPRMxx member.

Dynamically adding FILESYSTYPE statements in BPXPRMxx
When you dynamically add the FILESYSTYPE, NETWORK, and SUBFILESYSTYPE
statements, you can make the change permanent without having to reIPL by using
the SETOMVS RESET command. If you want to change the values, you will have
to edit the BPXPMRxx member that is used for IPLs. You can also dynamically add
the parmlib statements currently supported by SETOMVS, such as MAXPROCSYS.

To display information about the current FILESYSTYPE, NETWORK, or
SUBFILESYSTYPE statements, issue the following command:
DISPLAY OMVS,PFS

The following list shows examples of some of the more common configuration
changes, adding the file system and adding sockets.
1. “Steps for activating the HFS file system for the first time”
2. “Steps for activating a single sockets file system for the first time” on page 301
3. “Steps for activating a multiple socket file system for the first time with

Common INET” on page 302
4. “Steps for increasing the MAXSOCKETS value” on page 302
5. “Steps for adding another sockets file system to an existing CINET

configuration” on page 304

Steps for activating the HFS file system for the first time
Perform the following steps to activate the HFS file system for the first time.
1. Set up a root file system by putting the following statement in BPXPRMxx.

300 z/OS V2R2 UNIX System Services Planning

ROOT FILESYSTEM (’OMVS.ROOT’)
TYPE HFS
MODE(RDWR)

2. Create a temporary BPXPRMtt member that has the following statement.

FILESYSTYPE TYPE(HFS) ENTRYPOINT(GFUAINIT)

3. Dynamically add the statements to BPXPRMtt.

SETOMVS RESET=(tt)

4. From TSO or the ISHELL, do the following:

a. Unmount the current root file system.
b. Mount the root data set as the new root file system.
c. Mount any additional HFS data sets as needed.

5. Add the following statements to the BPXPRMxx member that is used on IPL:
a. The FILESYSTYPE statement used in Step 2.
b. A ROOT statement for the root file system.
c. MOUNT statements for the additional mounts that should be done initially.

When you are done, you have activated the HFS file system for the first time.

Activating a single sockets file system for the first time
About this task

This topic explains how to activate a single sockets file system for the first time. It
uses the TCP/IP Socket File System for network sockets and also brings up
support for local sockets.

Steps for activating a single sockets file system for the first time
Before you begin: You need to know what MAXSOCKETS value to use. The value
used in the example might be different from the value that you want to use.

Perform the following steps to activate a single sockets file system for the first
time.
1. Create a temporary BPXPRMtt member with the following statements:

/* Start Address Family AF_INET for Network Sockets /*
FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)
NETWORK TYPE(INET) MAXSOCKETS(64000)

DOMAINNAME(AF_INET) DOMAINNUMBER(2)

/* Start Address Family AF_UNIX for Local Sockets */
FILESYSTYPE TYPE(UDS) ENTRYPOINT(BPXTUINT)
NETWORK TYPE(UDS)

DOMAINNAME(AF_UNIX) DOMAINNUMBER(1)

2. Dynamically add the statements to BPXPRMtt.

SETOMVS RESET=(tt)

3. Add the statements in Step 1 to the BPXPRMxx member that is used on IPL.

Chapter 12. Managing operations 301

When you are done, you have activated a single sockets file system for the first
time.

Activating a multiple sockets file system for the first time with
Common INET (CINET)

About this task

You will activate multiple sockets file systems for the first time with Common
INET. In the example, two TCP/IP stacks are started.

Steps for activating a multiple socket file system for the first
time with Common INET
Before you begin: You need to know what MAXSOCKETS value to use. The value
used in the example might be different from the value that you want to use.

Perform the following steps to activate a multiple file system for the first time with
Common INET (CINET).
1. Create a temporary BPXPRMtt member with the following statements:

/* Start Address Family AF_INET for Common INET */
FILESYSTYPE TYPE(CINET) ENTRYPOINT(BPXTCINT)
NETWORK TYPE(CINET) MAXSOCKETS(64000)

DOMAINNAME(AF_INET) DOMAINNUMBER(2)
INADDRANYPORT(5000) INADDRANYCOUNT(100)

/* Start nultiple TCP/IP stacks under Common INET */
SUBFILESYSTYPE TYPE(CINET) NAME(TCPIP) ENTRYOINT(EZBPFINI) DEFAULT
SUBFILESYSTYPE TIME(CINET) NAME(TCPIP2) ENTRYPOINT(EZBPFINI)

2. Dynamically add the statements to BPXPRMtt.

SETOMVS RESET=(tt)

3. Restart TCP/IP.

S TCPIP
S TCPIP2

4. Add the statements in Step 1 to the BPXPRMxx member that is used on IPL.

When you are done, you have activated a multiple sockets file system for the first
time with Common INET.

Rule: The names used in the example, TCPIP and TCPIP2, must match those used
when configuring the associated products.

Specifying the maximum number of sockets
The MAXSOCKETS parameter in the BPXPRMxx member of SYS1.PARMLIB is
used to specify the maximum number of sockets that can be obtained for a given
file system type.

Steps for increasing the MAXSOCKETS value
The following steps assume that you want to make a permanent change to the
MAXSOCKETS value without having to stop and then restart z/OS UNIX.

302 z/OS V2R2 UNIX System Services Planning

Restriction: This procedure can only be used if you have specified
DOMAINNAME(AF_INET) or DOMAINNAME(AF_INET6). MAXSOCKETS is
always set to 10000 for AF_UNIX and any MAXSOCKETS value specified on the
NETWORK statement is ignored.

Before you begin: You need to know what MAXSOCKETS value you want to use,
and you must have specified either DOMAINNAME(AF_INET) or
DOMAINNAME(AF_INET6).

Perform the following steps to increase the MAXSOCKETS value.
1. Create a temporary parmlib member, BPXPRMtt, and add the following

information:
NETWORK TYPE(INET) MAXSOCKETS(200000)

DOMAINNAME(AF_INET) DOMAINNUMBER(2)

2. Activate the updated BPXPRMtt member.

SETOMVS RESET=(tt)

3. To make the change permanent, update the MAXSOCKETS value in the

BPXPRMxx member that is used on IPL.

When you are done, you have increased the MAXSOCKETS value.

Tip: You can add support for AF_INET6 to a running system for the first time. To
do so, the NETWORK statement would specify DOMMAINNAME(AF_INET6) and
DOMAINNUMBER(19). TCPIP would have to be recycled for this to take effect.
You can add AF_INET6 in this way to an INET or as discussed in the next step to
a CINET configuration. You can also change the MAXSOCKETS value for a CINET
configuration with a similar procedure:
1. The TYPE() keyword of the NETWORK statement would specify the TYPE

name of the CINET INET PFS, which was "CINET" in the previous examples.
2. INADDRANYPORT cannot be changed.
3. INADDRANYCOUNT can be increased for DOMAINNAME(AF_INET).

INADDRANYCOUNT for AF_INET6 is ignored. The reserved port range for
CINET is shared across both address families and the values are taken from the
AF_INET statement. The maximum value allowed for INADDRANYCOUNT is
8000.

4. If you only want to increase MAXSOCKETS, and if INADDRANYCOUNT and
INADDRANYPORT were specified on the NETWORK statement used during
initialization, specify INADDRANYCOUNT and INADDRANYPORT the same
way for the SET OMVS. If you omit them from the NETWORK statement, the
default value of INADDRANYCOUNT=1000 is used.

5. Before INADDRANYCOUNT is increased, the PORTRANGE statement in the
TCP/IP profile might need to be modified to reserve the additional ports for
z/OS UNIX and the TCP/IP stacks recycled. For information about reserving
the additional ports, see z/OS Communications Server: IP Configuration Reference .

Adding another sockets file system to an existing Common
INET (CINET) configuration

This topic explains how to start a second TCP/IP sockets file system.

Chapter 12. Managing operations 303

Steps for adding another sockets file system to an existing
CINET configuration
Before you begin: You need to know what socket file system you want to add.

Perform the following steps to add another sockets file system to an existing
CINET configuration.
1. Create a temporary BPXPRMtt member with the following statements:

SUBFILESYSTYPE TYPE(CINET) NAME(TCPIP2) ENTRYPOINT(EZBPFINI)

2. Dynamically add the statements to BPXPRMtt.

SETOMVS RESET=(tt)

3. Start the TCPIP2 address space.

4. Update the SUBFILESYSTYPE value in the BPXPRMxx member that is used on

IPL.

When you are done, you have added another sockets file systems to an existing
Common INET configuration.

Tracing events
To provide problem data, events are traced. When the OMVS address space is
started, the trace automatically starts. The trace cannot be completely turned off.

Tracing events in z/OS UNIX
Your installation specifies events to be traced in CTnBPXxx parmlib members. Each
member should specify one or more events; keep the number of events small
because tracing affects system performance. The installation can filter the events by
address spaces, user IDs, and level of detail.

The CTnBPXxx member to be used when the OMVS address space is initialized is
identified on the CTRACE parameter of the BPXPRMxx member. You also specify
the size of the trace buffers in the CTnBPXxx member used when the system is
IPLed. You can change the buffer size while z/OS UNIX is running. The buffer can
be 16 KB minimum to 32 MB maximum. If you need a different buffer size, change
buffer size (BUFSIZE) in a CTnBPXxx member and issue:
TRACE CT,ON,COMP=SYSOMVS,PARM=CTnBPXxx

An operator starts and stops tracing events in the z/OS UNIX system with the
commands:
TRACE CT,ON,COMP=SYSOMVS,PARM=CTnBPXxx
TRACE CT,OFF,COMP=SYSOMVS

The operator can resume full tracing, with the previously used CTnBPXxx parmlib
member or a different member, with the command:
TRACE CT,ON,COMP=SYSOMVS,PARM=CTnBPXxx

The PARM operand specifies the parmlib member with the tracing options.

304 z/OS V2R2 UNIX System Services Planning

Tracing DFSMS events
To trace DFSMS events, issue:
TRACE CT,nnnnk,COMP=SYSSMS
R X,OPTIONS=(CALL,RRTN,CB,SUSP,EXITA,COMP=(ALL,NOIMF,NOSSF)),END

or:
TRACE CT,nnnnk,COMP=SYSSMS
R X,OPTIONS=(ENTRY,EXIT,EXITA,CB,COMP=(PFS,CDM)),END

Attention: SMS trace buffers are allocated in every initiator running kernel
workloads. They are allocated in DREF ELSQA, which can cause a shortage of real
pages.

For information about how to set up and use a trace, and for diagnosis information
about interpreting a trace, see z/OS DFSMSdfp Diagnosis.

Re-creating problems for IBM service
You might be asked to re-create a problem for IBM service to aid in diagnosis.

Tip: If you are re-creating a problem for IBM service, you should increase the
OMVS CTRACE buffer size to 8 MB.

Example: To increase the OMVS CTRACE buffer size to 8 MB, with the parmlib
member specifying the required options:
TRACE CT,8M,COMP=SYSOMVS,PARM=CTnBPXxx

As an alternative, you can change the parmlib member to specify the required
buffer size. After you capture the dump for the problem, you can reset the trace
buffer size to the original setting.

Example: To reset the trace buffer size to the original setting:
TRACE CT,xxxK,COMP=SYSOMVS

where xxxK is the size of the required trace buffer.

Filtering trace data
Use the JOBNAME= parameter on the TRACE CT command to filter trace data.
The JOBNAME= parameter can be used for the OMVS CTRACE to trace data just
for jobs that run with the specific user ID or user IDs that are specified in the
JOBNAME list. It is important to note that this filtering is based on the user ID of
the job, not its job name.

Displaying the status of the kernel or process
Display information about the kernel or processes as follows:
v The operator enters a DISPLAY OMVS command to display the status of the

kernel and processes.
v The operator enters the DISPLAY TRACE,COMP=SYSOMVS command to

display the status of the kernel trace.
v A shell user enters the ps command or the PS ISHELL command to display the

status of the user's processes.
v A superuser enters the ps command or the PS ISHELL command to display the

status of all processes.

Chapter 12. Managing operations 305

The operator displays the status for kernel services with the command:
DISPLAY OMVS

The command can be used to show information about a user ID, about the parmlib
members that are in effect, or about the current values of reconfigurable parmlib
member settings.

Example: To display the status of address spaces that the user ID JANES is using
and the processor resources used by each address space, the operator enters:
DISPLAY OMVS,U=JANES

For another example, see the one in “Steps for ending a specified process” on page
285.

If the system IPLed with the specification of OMVS=(XX,YY,ZZ), the output for the
D OMVS command is:

BPXO004I 10.17.23 DISPLAY OMVS 869
OMVS ACTIVE 000E OMVS=(XX,YY,ZZ)

The keyword OPTIONS lets you display the current configuration of the
BPXPRMxx statements that are reconfigurable via the SET OMVS or SETOMVS
command. The updated output from D OMVS,OPTIONS reflects any changes that
resulted from a SETOMVS or a SET OMVS= operator command invocation.

In this example, when the PID option is used to obtain the thread identifiers, the
output is:

D OMVS,PID=117440514

BPXO040I 14.16.58 DISPLAY OMVS 177
OMVS 000E ACTIVE OMVS=(93)
USER JOBNAME ASID PID PPID STATE START CT_SECS
MEGA TC1 0021 117440514 117440515 HKI 14.16.14 .170

LATCHWAITPID= 0 CMD=ACEECACH
THREAD_ID TCB@ PRI_JOB USERNAME ACC_TIME SC STATE
0496146000000000 009E0438 .050 PTJ KU
04961D0800000001 009D5E88 .002 SLP JSN
049625B000000002 009D8798 .003 SLP JSN
04962E5800000003 009D5090 .012 SLP JSN
0496370000000004 009D5228 .011 SLP JSN
04963FA800000005 009D5A88 .010 SLP JSN
0496485000000006 009D8048 .011 SLP JSN
049650F800000007 009D81E0 .011 SLP JSN
049659A000000008 009D8378 .011 SLP JSN
0496624800000009 009D8510 .011 SLP JSN
04966AF00000000A 009D8930 .030 SLP JSN

Tip: Message BPXO040I contains a complete description of the DISPLAY OMVS
output. To look up that message, go to z/OS MVS System Messages, Vol 3
(ASB-BPX).

You can cancel selected threads. For example:

F BPXOINIT,FORCE=117440514.04962E5800000003
BPXM027I COMMAND ACCEPTED.

F BPXOINIT,TERM=117440514.0496624800000009
BPXM027I COMMAND ACCEPTED.

306 z/OS V2R2 UNIX System Services Planning

An operator displays status for the rest of the z/OS system with the commands:
v DISPLAY TS,LIST: The number of time-sharing users, including the number of

users
v DISPLAY JOBS,LIST: The number of active jobs, including the number of address

spaces that were forked or that were created in other ways but requested kernel
services.

v DISPLAY A,LIST: The combined information from the DISPLAY TS,LIST and
DISPLAY JOBS,LIST commands.

Displaying the status of system-wide limits specified in BPXPRMxx
You can display information about current system-wide limits, including current
usage and high-water usage, with the DISPLAY OMVS,LIMITS command:

An * displayed after a system limit indicates that the system limit was changed via
a SETOMVS or SET OMVS= command. For the sysplex-wide limits, the command
can be issued from any of the systems in the shared file system configuration
environment, and the change can also be caused by subsequent OMVS
initialization on the other systems.

The display output shows for each limit the current usage, high-water (peak)
usage, and the system limit as specified in the BPXPRMxx member. The displayed
system values might be the values as specified in the BPXPRMxx member, or they
might be the modified values resulting from the SETOMVS or SET OMVS
commands.

You can also use the DISPLAY OMVS,LIMITS command with the PID= operand to
display information about high-water marks and current usage for an individual
process.

The high-water marks for the system limits can be reset to 0 with the D
OMVS,LIMITS,RESET command. High water marks for process limits cannot be
reset.

DISPLAY OMVS,L
BPXO051I 14.05.52 DISPLAY OMVS 904
OMVS 0042 ACTIVE OMVS=(69)
SYSTEM WIDE LIMITS: LIMMSG=NONE

CURRENT HIGHWATER SYSTEM
USAGE USAGE LIMIT

MAXPROCSYS 1 4 256
MAXUIDS 0 0 200
MAXPTYS 0 0 256
MAXMMAPAREA 0 0 256
IPCMSGNIDS 0 0 500
IPCSEMNIDS 0 0 500
IPCSHMNIDS 0 0 500
IPCSHMSPAGES 0 0 262144
IPCMSGQBYTES --- 0 262144
IPCMSGQMNUM --- 0 10000
IPCSHMMPAGES --- 0 256
SHRLIBRGNSIZE 0 0 67108864
SHRLIBMAXPAGES 0 0 4096
MAXUSERMOUNTSYS 15 20 100
MAXUSERMOUNTUSER 7 8 10
MAXPIPES 28 51 15360

Chapter 12. Managing operations 307

Taking a dump of the kernel and user processes
If you have a loop, hang, or wait state in a process and need a dump for diagnosis,
you need to dump several types of data:
v The kernel address space.
v Any kernel data spaces that might be associated with the problem.
v Any process address spaces that might be associated with the problem.
v Appropriate storage areas containing system control blocks (for example, SQA,

CSA, RGN, TRT).

The steps are:
1. Use the DISPLAY operator command to display information about currently

active address spaces and data spaces.
2. Allocate a sufficiently large dump data set.
3. Take the dump.
4. Review the dump completion information.

Displaying the kernel address space
To find the kernel address space and associated data spaces, issue:
D A,OMVS

The output will be similar to the following:

The display output shows the kernel address space identifier (ASID) as A=nnnn
where nnnn is the hexadecimal ASID value. In this example, A=000E. The display
output also shows the data space names that are associated with the kernel
address space.

When the list of address spaces being dumped includes a dubbed address space or
the kernel (OMVS) address space, the CTRACE buffers are automatically included
in the dump and need not be explicitly added to a DUMP command or SLIP trap.

d a,omvs
IEE115I 14.18.59 2011.339 ACTIVITY 491
JOBS M/S TS USERS SYSAS INITS ACTIVE/MAX VTAM OAS
00000 00007 00000 00029 00001 00000/00020 00006
OMVS OMVS OMVS NSW * A=000E PER=NO SMC=000

PGN=N/A DMN=N/A AFF=NONE
CT=000.572S ET=02.05.49
WKL=SYSTEM SCL=SYSTEM P=1
RGP=N/A SRVR=NO QSC=NO
ADDR SPACE ASTE=07F34380
DSPNAME=SYSIGWB1 ASTE=03DD5480
DSPNAME=SYSZBPXC ASTE=04EB1380
DSPNAME=SYSZBPXU ASTE=04EB1300
DSPNAME=HFSDSP04 ASTE=01837F80
DSPNAME=HFSDSP03 ASTE=01837D80
DSPNAME=HFSDSP02 ASTE=01837D00
DSPNAME=HFSDSP01 ASTE=03DD5200
DSPNAME=HFSDSPS1 ASTE=01837F00
DSPNAME=SYSZBPX3 ASTE=01837E00
DSPNAME=SYSZBPX2 ASTE=01EBE600
DSPNAME=BPXSMBIT ASTE=01837B80
DSPNAME=SYSZBPXX ASTE=07F39400
DSPNAME=SYSZBPX1 ASTE=07F39380
DSPNAME=BPXLATCH ASTE=01EBE400

308 z/OS V2R2 UNIX System Services Planning

Dump other data spaces if there is reason to believe that they contain data that
could be useful in analyzing the problem.

Displaying process information
Example: To display the process information for address spaces, issue:
D OMVS,A=ALL

Result: The output will be similar to the following example:

D OMVS,A=ALL

USER JOBNAME ASID PID PPID STATE
OMVSKERN BPXOINIT 002A 1 0 1WI
MVS TCPIP 002B 65538 1 MR
TS65106 TS65106 0032 9 1 1RI
TS65106 TS65106 0032 10 9 1CI

LATCHWAITPID= 0 CMD=-sh

The display output shows the active processes, ASIDs, process identifiers, parent
process IDs, and states. Use this to obtain ASIDs of processes that you want to
dump.

Tip: A complete description of the D OMVS output can be found in message
BPXO040I. To look up that message, go to z/OS MVS System Messages, Vol 3
(ASB-BPX).

Displaying global resource information
To display global resource serialization information to see possible latch contention,
issue:
D GRS,C

This display might show latch contention, which could be the cause of the
problem. You should dump the address space of the process holding the latch. If
the latch is a file system latch, dump the file system data space SYSZBPX2 also.

Displaying information about local and network sockets
You can display information about local and network sockets.
v To display information about network sockets (AF_INET and AF_INET6), use

the TSO NETSTAT command. You can also use the z/OS UNIX onetstat or
netstat command. (The netstat command is a synonym for the onetset
command.) For more information about these commands, see z/OS
Communications Server: IP System Administrator's Commands.

v To display information about AF_UNIX sockets (which are local sockets and
therefore do not have any network connections), issue D OMVS,Sockets. For
more information about D OMVS and an example of the display output, see
z/OS MVS System Commands .

Detecting latch contention
This topic discusses latch contention.

For shared memory mutexes and conditional variables
To isolate contention problems for shared memory mutexes and condition
variables, issue the D OMVS,SER operator command. It will display serialization
data that you can use in problem determination.

Chapter 12. Managing operations 309

v Each mutex and condition variable is identified by the shared memory ID and
location of the shared memory object.

v If the object is in an above-the-bar shared memory segment, the location
information indicates the address of the mutex or condition variable.

v If the object is in a below-the-bar segment, the location information indicates the
offset within the shared memory segment. The offset is displayed, in this case,
because each address space sharing a below-the-bar segment can map it at a
different virtual address.

v For each mutex, the output shows the owner's TCB address, process ID and
ASID, and the same for the waiters, if the information can be determined.

v For each condition variable, the output shows the same information for the
owner and waiter of the mutex or conditional variable.

v If Language Environment is the caller of BPX1SMC, the user data represents the
address of the Language Environment data area for the waiting or owning task.

If there is no contention, the output will be similar to the following:

BPXO057I 08.51.42 DISPLAY OMVS 284
OMVS 000E ACTIVE OMVS=(6D)

UNIX SERIALIZATION REPORT
NO RESOURCE CONTENTION EXISTS

If there is contention, the display will be similar to the following:

BPXO0xxI 08.51.42 DISPLAY OMVS 284
OMVS 000E ACTIVE OMVS=(6D)

UNIX SERIALIZATION REPORT
RESOURCE #1:

NAME=SHARED MUTEX DATA: SHMID=00000648 OFFS/ADDR=0000000000002428

JOBNAME ASID TCB PID USER DATA EXC/SHR OWN/WAIT
DOMINO1 013A 008EF190 16777220 0000000024780148 EXC OWN
DOMINO2 02B2 008FA190 16908357 0000000024825220 EXC WAIT
DOMINO3 0206 008FF458 16973924 0000000024824778 EXC WAIT
RESOURCE #2:

NAME=SHARED CONDVAR DATA: SHMID=00000648 OFFS/ADDR=0000000000002458
JOBNAME ASID TCB PID USER DATA EXC/SHR OWN/WAIT
DOMINO2 02B6 008FA190 16908357 0000000024825220 EXC WAIT
DOMINO3 0206 008FF458 16973924 0000000024824778 EXC WAIT
RESOURCE #0002 IS LOCKED BY:
NAME=SHARED MUTEX DATA: SHMID=00000648 OFFS/ADDR=0000000000002428

For user tasks
The kernel keeps track of latch contention caused by z/OS UNIX user tasks and
takes action if a latch causing contention has been held for an excessive amount of
time. If the problem is not corrected, an error message is issued, and you will be
asked to issue the D GRS operator command to gather information about the latch
resource, latch owners, and latch waiters. Try using the methods described in
“Steps for ending a specified process” on page 285 to end the latch contention.

If the latch contention is not ended, then use the F
BPXOINIT,RECOVER=LATCHES operator command. It ends user tasks that are
holding latches for an excessive period of time. Only individual tasks are ended,
not entire processes.

Note: F BPXOINIT,RECOVER=LATCHES might not be able to resolve latch hangs
in the kernel address space.

310 z/OS V2R2 UNIX System Services Planning

Preallocating a sufficiently large dump data set
Because you are dumping multiple address spaces, multiple data spaces, and
multiple storage data areas, you might need a much larger dump data set defined
than is normally used for dumping a single address space. You should preallocate
a very large SYS1.DUMPnn data set.

SDUMP has a limit on how much storage it allows in a single dump. It is called
MAXSPACE. To determine the current value of MAXSPACE, issue:
D D,O

The default value is 500 megabytes. To change this value, issue:
CD SET,SDUMP,MAXSPACE=nnnnM

Tip: In a large server environment, you might need to increase MAXSPACE to
2000M (2 gigabytes) or more.

Taking dumps
To initiate the dump, enter this command:
DUMP COMM=(dname)

where dname is a descriptive name for this dump. You can specify up to 100
characters for the title of the dump. The system responds and gives you a prompt
ID. You reply by specifying the data to be included in the dump. If you specify the
operand CONT, the system will prompt you for more input.

In the following examples of replies you can give, rn is the REPLY number to the
prompt.

The data areas in the following reply contain system control blocks and data areas
generally necessary for investigating problems:
R rn,SDATA=(CSA,SQA,RGN,TRT,GRSQ),CONT

In the next reply, x’E’ is the OMVS address space. The other address space IDs
specified are those believed to be part of the problem. You can specify up to 15
ASIDs.
R rn,ASID=(E,3A,32),CONT

This example specifies data spaces:
R rn,DSPNAME=(’OMVS’.SYSZBPX2,’OMVS’.SYSZBPX1),END

The file system data space, SYSZBPX2, is useful if the hang condition appears to be
due to a file system latch.

For more information about the DUMP command, particularly on specifying a
large number of operands, see z/OS MVS System Commands.

Reviewing dump completion information
After the dump completes, you receive an IEA911E message indicating whether the
dump was complete or partial. If it was partial, check the SDRSN value. If
insufficient disk space is the reason, delete the dump, allocate a larger dump data
set, and request the dump again.

Chapter 12. Managing operations 311

Recovering from a failure
The operator needs to recover if a failure occurs.
v If the kernel fails, both interactive processing in the shell and z/OS UNIX

applications fail.
v If a file system type fails, z/OS UNIX continues processing even though the file

system type is not operational. Requests to use the files in any file systems of
that file system type will fail.

v If a file system fails, programs might fail because some files cannot be used.

The operator starts recovery by collecting messages and a dump, if written.

z/OS UNIX system failure
If the z/OS UNIX system fails, the operator collects problem data, which includes
messages, SVC dumps, and SYS1.LOGREC records for abends and decides if re-IPL
is warranted.

The work in progress when the failure occurred is lost and must be started from
the beginning.

File system type failure
After a failure of a file system type, the system issues message BPXF032D. In
response, the operator or automation corrects the problem as indicated by previous
messages and then enters R in reply to message BPXF032D.

If a file system type fails to initialize, the system normally issues message
BPXF006I. If the failing file system type was specified with the option to prompt
for restart (the default), the error that caused the problem can be corrected, and
then the prompt responded to. If it was specified with the option to not prompt for
restart, the system continues to run without that file system type, but requests to
use the files in any file systems of that file system type will fail.

In rare cases, the initialization of a file system type might fail due to a
programming or environmental error, such as a severe storage shortage in the
kernel address space. The failure can occur before the file system type is initialized,
and, on rare occasions, the BPXF006I message is not issued. In these cases, the
severe programming or environmental error should be addressed first. After the
severe condition that prevented the initialization of the file system type is resolved,
the operator can manually initialize the file system type with the SETOMVS
RESET=xx operator command.

File system failure
These events can be symptoms of file system failure:
v 0F4 abend
v EMVSPFSFILE return code
v EMVSPFSPERM return code
v A file becomes unrecognizable or cannot be opened

After a failure of a file system, the operator:
1. Restores the file system with the file system from the previous level.
2. Asks a superuser to logically mount the restored file system with a TSO/E

MOUNT command.

312 z/OS V2R2 UNIX System Services Planning

3. Notifies all shell users that when they invoke the shell they will mount an
earlier file system, telling them the mount point. (Use the wall command to
broadcast a message to all shell users.)

Files added since the earlier file system was saved must be created again and then
added again.

If the physical file system owning the root fails, or if the root file system is
unmounted, the operator must restore the root file system. A superuser who is
defined with a home directory of /; (root) can also restore the file system. All work
in progress when the failure occurred is lost and must be started from the
beginning.

Managing Interprocess Communication (IPC)
Users can invoke applications that create IPC resources and wait for IPC resources.
IPC resources are not automatically released when a process is ended or a user
logs off. Therefore, it is possible that an IPC user might need assistance to do
either of the following:
v Remove an IPC resource using the shell's ipcrm command
v Remove an IPC resource using the shell's ipcrm command to release a user from

an IPC wait state

Example: To display IPC resources and which user ID owns the resource:
ipcs -w

Tip: To delete message queue IDs, use the ipcrm -q or ipcrm -Q command.

Another problem might occur when a user waits a long time for a resource such as
semaphores or a message receive. Removing a message queue ID or semaphore ID
brings any user in an IPC wait state out of the wait state.

Example: To display which users are waiting for semaphores and message queues:
ipcs -w

Chapter 12. Managing operations 313

314 z/OS V2R2 UNIX System Services Planning

Chapter 13. Managing processing for z/OS UNIX

Managing processing for z/OS UNIX involves tasks such as controlling printing
and code page conversion.

List of subtasks

Subtask Associated procedure

Making the Language Environment runtime
library available through STEPLIB

“Steps for making the runtime library
available through STEPLIB” on page 320

Controlling printing
Control printing by doing the following tasks:
v Designate printers to be used for shell users and applications
v Set up default printers for each user
v Control output print separators

You can arrange for all printing to be done by one or two printers by assigning
one or more output classes for all users. Then you and the users can look at the
printer queues for those output classes to check for all output.

Tip: Infoprint Server provides an alternate version of the lp command, as well as
related utilities. For more information, see z/OS Infoprint Server User's Guide.

Designating printers
Tell the application programmers the destinations or symbolic names for printers
you specified in JES initialization statements. The dest option of the lp command
uses the same destinations as the DEST parameter in the OUTPUT JCL statement.

The dest option on lp can be:
v LOCAL for any installation printer.
v A destination that is defined in a JES2 DESTID initialization statement.
v Omitted. The system uses the default printer.

For information about DESTID, see z/OS JES2 Initialization and Tuning Reference.

Setting up default printers
Each user has a number of default printers specified in different ways, as shown in
Table 33. The system will use printer number 1, if designated; if not, the system
will use printer number 2; and so on.

Table 33. Default printers

Printer number Printer designation Specified by

1 The printer in the dest option of the lp shell
command, or the printf() or fprintf() functions.

User or application programmer

2 The printer LPDEST environment variable User or system programmer

© Copyright IBM Corp. 1996, 2016 315

Table 33. Default printers (continued)

Printer number Printer designation Specified by

3 The printer PRINTER environment variable User or system programmer

4 The printer in the RACF user profile. It is specified
by the DEST parameter of the RACF ADDUSER or
ALTUSER command.

Security administrator

Controlling output print separators
JES controls the print separators, also called cover pages and banner pages, for
SYSOUT output for all users, including z/OS UNIX users.

To place a user's name and address in the print separator for forked processes,
specify the user's name and address in the WORKATTR segment of the RACF user
profile. See “Defining z/OS UNIX users to RACF” on page 57.

Controlling code page conversion
For an overview of character sets and code pages, refer to National Language
Support Reference Manual, Volume 2, SE09-8002.

A code page for a character set determines the graphic character that is produced for
each hexadecimal code. The code page is determined by the programs and national
languages being used.

The z/OS UNIX Application Services can process data in the following code pages:
v Any of the EBCDIC Latin 1 Country-Extended Code Pages

v Japanese (Latin) Extended Code Page 01027, which defines single-byte
encodings for character set 01172 (Japanese Extended EBCDIC/PC Common)

v Japanese Combined Code Page 00939, which is the combination of code page
01027 and code page 00300. Code page 00300 (Japan [Kanji]–Host, DBCS) defines
DBCS encodings for character set 00370 (IBM Japanese Graphic Character Set,
Kanji)

Data intended for processing by the z/OS shell might require conversion to one of
the preceding code pages. This data might be encoded in:
v Latin 1 code page 00500, which is used for Systems Application Architecture®

(SAA).
v An ASCII code page, for example, for a file from a workstation. A source

program on a tape archive (TAR) tape might be stored in the ASCII code set.
v Code page 00293, which the z/OS XL C/C++ compiler can optionally use.
v Code page 00290, Japanese (Katakana) single-byte.
v Code page 00930, the Japanese combined code page (code page 0290 plus DBCS

code page 300).

For code page 00037, only two characters are different from code page 01047:
v Right square bracket (])
v Left square bracket ([)

Rule: If you have characters from the preceding list in your data, you must convert
from one code page to another when, for example, you are doing one of the
following:

316 z/OS V2R2 UNIX System Services Planning

v Transferring files between a workstation and the file system.
v Copying data between an MVS data set and a UNIX file.
v Placing data in SYSOUT data sets.
v Passing JCL path name data to programs, unless the name contains only

characters in the portable filename character set.
v Passing JCL parameters and path names to a shell invoked from a batch

program, unless the parameters and names contain only characters in the
portable filename character set.

v Using the lp command to print. You need to convert the data before sending it
to the printer.

v Using the pax command.

Converting single-byte data
If MVS data is single-byte, you can specify the conversion at the same time that
you copy the data.

Rule: You must specify the CONVERT operand in the TSO/E OCOPY, OGET,
OPUT, OGETX, and OPUTX commands to convert the data that the command is
copying. Copying can be from data sets or UNIX files and to data sets or UNIX
files.

Converting double-byte data
Double-byte data that is already in a supported DBCS code page, such as IBM-939,
does not need to be converted.

Rule: DBCS data not in code page IBM-939 must be converted to IBM-939 with the
iconv command so that it can be processed in the z/OS UNIX environment.

Guideline: If the data is in a code page not supported by the shell, you can copy
the data with the OCOPY command first and then convert it using the iconv
command. Or you can convert the data with the TSO/E ICONV CLIST and then
copy it using the OCOPY command.

For more information about code page conversion, see:
v z/OS XL C/C++ User's Guide

v z/OS V2R2.0 UNIX System Services User's Guide

Using character conversion tables
A character conversion table is a table that converts one or more characters to
alternative characters using hexadecimal encoding for the character sets. The
character sets are defined in code pages. IBM supplies these character conversion
tables as members in SYS1.LINKLIB:
v BPXFX100 (code page 00037 to and from 01047 for non-APL 3270)
v BPXFX111 (null conversion)
v BPXFX211 (code page 00037 to and from 01047 for APL 3270)
v BPXFX311 (ASCII code page 008859 to and from 01047)

In particular, for the OMVS command, BPXFX100 is the default conversion table.
As shipped, FSUMQ000 is an alias for BPXFX100. To change the OMVS default
table, move the FSUMQ000 ALIAS to the new default, or rename the new default
table to FSUMQ000.

Chapter 13. Managing processing for z/OS UNIX 317

Tip: Users who need different conversion tables can manually override the default
table by using the CONVERT operand. In addition, the system programmer can
write a REXX exec or CLIST to invoke the OMVS command with the proper table.

The source for these members is shipped in SYS1.SAMPLIB. If you need to change
them, see “Customizing code page conversion.”

Example of data conversion specified by a user
Use the OPUT command for conversion of single-byte data. You can copy a
sequential data set or partitioned data set member to a UNIX file. Code page
conversion is an option.

Example: Issue:
OPUT WORKLOAD.TOTALS(OCT17) ’u/turbo/wkld/totals/oct17’ TEXT CONVERT(YES)

Result: The user ID TURBO copied a member from a PDSE into a file. The
partitioned data set member OCT17 was copied from the data set
TURBO.WORKLOAD.TOTALS to a text file with the path name
/u/turbo/wkld/totals/oct17. Data was converted from the z/OS UNIX
country-extended code page to code page 01047, using the default conversion table
because YES was specified. To use a different conversion table, specify its
name—for example, BPXFX311 for conversion from the ASCII conversion table. If
you do not want conversion, omit the CONVERT operand.

Customizing code page conversion
If the installation has special conversion needs for single-byte data conversion,
create the needed character conversion table by customizing an existing table:
1. Copy the assembler source for a table from SYS1.SAMPLIB into a new data set.
2. Edit the new data set to customize the table. SYS1.SAMPLIB(BPXFX100) shows

the format of the conversion tables and, in its prolog, gives instructions and
examples of how to edit a table.

3. Assemble the table.
4. Link-edit the table into a load module in SYS1.LINKLIB or another partitioned

data set.

Each table is 1792 bytes long and contains the 8-bit codes that the system
substitutes for characters in the input data set or file. Each table contains nine
sections; you might have to change the data in all nine sections. Each member has
a TO and a FROM subtable:
v The TO subtable is used to translate data from another code page to 01047.
v The FROM subtable is used to translate data from code page 01047 to another

code page.

Example of code page conversion of OMVS command
For customization, suppose you change a table, name it WCOFXCHG, and place it
in a SYS1.LINKLIB member. Then you would use the following OMVS command
to invoke the shell, with SYS1.LINKLIB understood as the location of
WCOFXCHG:
OMVS CONVERT((WCOFXCHG))

To avoid conflicts in the names of modules containing tables, begin your name
with letter K through Z; letters A through J are reserved for IBM use.

318 z/OS V2R2 UNIX System Services Planning

Managing z/OS UNIX in relation to other processing
The IMS batch message processing program (BMP) can request z/OS UNIX
services. However, the following applications cannot request z/OS UNIX services:
v Customer Information Control System/ESA (CICS/ESA): A CICS transaction

cannot access a file in a file system, because the access would put CICS in a
wait. Also, other z/OS UNIX functions could not be used and would abnormally
end CICS.

v Information Management System/ESA (IMS/ESA®): An IMS application cannot
access a file in a file system, because the access would put the IMS application
in a wait. Also, other z/OS UNIX functions could not be used and would
abnormally end the IMS application.

JES2 processing
In a JES2 multi-access spool (MAS) complex, a z/OS UNIX application might
experience the following situation:
v The system can convert the job on one system and interpret it on another. If

all systems do not have z/OS UNIX, the job processing can begin on a system
with z/OS UNIX installed and started, but continue on a system without z/OS
UNIX installed.

If a job requires z/OS UNIX or a file system, use a JES2 /*JOBPARM statement
with a SYSAFF keyword to direct the job to the correct system.

If you need to bring down JES2, there might still be a number of initiators that are
provided by WLM for use on fork and spawn. These initiators time out after 30
minutes on their own. To terminate the initiators, you can issue the following
operator command:
F BPXOINIT,SHUTDOWN=FORKINIT

For more information, see “Partial shutdowns for JES2 maintenance” on page 290.

JES3 processing
In a JES3 global or local configuration, a z/OS UNIX application might experience
the following situation:
v One system can complete conversion and interpretation and another system

can run the job. If all systems do not have z/OS UNIX, the job might be
assigned to a system without z/OS UNIX. In this case, the job will fail. To
prevent this problem, use a JES3 //*MAIN statement with a SYSTEM keyword
to direct the job to a system with z/OS UNIX.

Accessing the Language Environment runtime library
For most z/OS UNIX applications, the Language Environment runtime library
(SCEERUN and SCEERUN2) is needed. The SCEERUN and SCEERUN2 data sets
can be placed in LNKLST or accessed via STEPLIB. (A STEPLIB is a set of private
libraries used to store a new or test version of an application program, such as a
new version of a runtime library.)

When choosing a method for runtime library access, consider the following
questions:
v Can the Language Environment runtime library be placed in LNKLST, without

adversely affecting other applications?

Chapter 13. Managing processing for z/OS UNIX 319

v Is the Language Environment runtime library heavily used at your installation?
v Does the RTL require frequent testing or replacement with new versions?

Placing the Language Environment runtime library (SCEERUN and SCEERUN2) in
LNKLST requires the least amount of setup. If this method is used, then consider
placing the SCEELPA data set (which contains key modules) in LPA for better
performance. See “Improving performance of runtime routines” on page 383.

However, sometimes the SCEERUN data set cannot be placed in LNKLST, because
other applications require the pre-Language Environment runtime libraries. In that
case, you can make the Language Environment runtime library available through
STEPLIB as described in “Steps for making the runtime library available through
STEPLIB.” In addition, you can use this approach to test new levels of the runtime
libraries.

Steps for making the runtime library available through
STEPLIB

Before you begin: You need to be aware that putting the Language Environment
runtime library in LNKLIST requires the least amount of setup. However, if your
applications require the pre-Language Environment runtime library, then make the
Language Environment runtime library available through STEPLIB.

Restriction: Do not include a STEPLIB DD statement in the BPXAS procedure.
Doing so can lead to recursive 0C4 abends when the BPXAS procedure is
processing a fork or spawn request.

Perform the following steps to make the runtime library available through
STEPLIB.
1. Add the SCEERUN data set on a STEPLIB DD statement to the OMVS startup

procedure found in PROCLIB.
Result: The STEPLIB data set is propagated to BPXOINIT and the /usr/sbin/init
program including all programs it invokes using fork or exec.

2. Add the SCEERUN data set to your TSO/E logon procedure by concatenating
it to the ISPLLIB DD statement (if it exists) and then concatenating it to the
STEPLIB DD statement (if it exists). You can also use the TSOLIB function to
add the SCEERUN data set.
Result: After you have added the SCEERUN data set, the TSO/E OMVS
command can begin to use it.

3. Add the following statement to the /etc/rc file:
export STEPLIB=hlq.SCEERUN

Result: Daemons started in /etc/rc will use the SCEERUN data set.

4. In /etc/profile, remove:
if [-z "$STEPLIB"] && tty -s;
then

export STEPLIB=none
exec sh -L

fi

and replace with
export STEPLIB=hlq.SCEERUN

320 z/OS V2R2 UNIX System Services Planning

This is used when issuing commands and utilities in the shell environment.
Tip: If a small number of interactive users need a special version of the runtime
library, the STEPLIB environment variable can be set in the $HOME/.profile for
each of these users.

5. Add the SCEERUN data set on a STEPLIB DD statement to any job invoking
BPXBATCH.

6. Add the SCEERUN data set to the STEPLIBLIST statement of the BPXPRMxx
parmlib member.
Rule: The SCEERUN data set must be APF-authorized.

When you are done, you have made the Language Environment runtime library
available through STEPLIB.

Tip: Place the SCEERUN2 data set in LNKLST, even though the SCEERUN data set
is accessed through STEPLIB. Because the SCEERUN data set does not contain
module names that conflict with pre-Language Environment runtime libraries,
adding it to LNKLST will not have any adverse effects.

For BPXBATCH processing, you still have to specify the SCEERUN data set on a
STEPLIB DD statement even though the RUNOPTS parameter has been set in the
BPXPRMxx member.

Fastpath support for System Authorization Facility (SAF)
System Authorization Facility (SAF) provides a system interface that conditionally
directs control to RACF or any other security product when a request is received
from a resource manager. To improve the performance of security checking done
for z/OS UNIX, define the BPX.SAFFASTPATH FACILITY class profile. Defining
the profile reduces overhead when doing z/OS UNIX security checks for a wide
variety of operations. These checks include file access checking, IPC access
checking, and process ownership checking.

When the BPX.SAFFASTPATH FACILITY class profile is defined, the security
product is not called if z/OS UNIX can quickly determine that file access will be
successful. When the security product is bypassed, better performance is achieved,
but the audit trail of successful accesses is eliminated.

If the security product is called, it is still possible that access will be successful,
and that audit records will be created; for example, when the permission bits do
not grant access, but UNIXPRIV authority, or an access control list, does.

Be aware that auditing successful accesses can generate enormous amounts of
audit records, particularly for directory searches.

Enabling the SAF fastpath support
If the BPX.SAFFASTPATH FACILITY class profile is defined when the system is
IPLed, the SAF fastpath support is enabled. If it is defined after the system is
IPLed, you must issue the SETOMVS or SET OMVS operator command to activate
the fastpath support. You can also start the refresh by issuing the following
command, where xx represents an empty BPXPRMxx member.

Chapter 13. Managing processing for z/OS UNIX 321

SET OMVS=xx

Users do not need to be permitted to the BPX.SAFFASTPATH profile.

Example: To define the BPX.SAFFASTPATH profile, issue the following RACF
command:
RDEFINE FACILITY BPX.SAFFASTPATH UACC(NONE)

Tip: If your installation uses the IRRSXT00 exit to control access to the file system,
do not define the BPX.SAFFASTPATH profile.

Disabling the SAF fastpath support
To disable the fastpath support, remove the BPX.SAFFASTPATH FACILITY class
profile and then issue the SET OMVS or SETOMVS operator command. You do not
need to reIPL.

Determining problem causes
If a problem occurs, the system might write a dump and issue messages or an
abend. Collect the problem data and determine the cause of the problem as you
would for any system problem. For information about how to take a dump, see
“Taking a dump of the kernel and user processes” on page 308.

Abends
z/OS UNIX services issues system completion codes: abend codes EC6 and 422.

All 422 abends and some EC6 abends might not be accompanied by an SVC dump,
because the IBM-supplied IEASLP00 parmlib member contains SLIP commands to
suppress the dumps.

Some abends are a normal result of a kill shell command, an exec shell command
or program function, or the ending of a process. Others are caused by errors.

Return codes and reason codes
If a z/OS system service fails, a failing return code and reason code is sent. Reason
codes are unique and should supply enough information to debug the problem.
You can set a slip trap on a specific reason code to gather further diagnostic data.
For information about setting the slip trap, see the section on reason codes listed
by value in z/OS UNIX System Services Messages and Codes.

Messages
z/OS UNIX issues messages with the following prefixes:

BPX Messages from the System Services component

FDBX Messages from the dbx debugger

FOM Messages from the Application Services component

FSUM Messages from the Shell and Utilities

DFSMS issues messages with the prefix IGD.

Messages to the operator and system programmer have identifiers; messages from
the shell to the interactive user do not have identifiers.

322 z/OS V2R2 UNIX System Services Planning

You can refer to the following publications:
v For the BPX messages, go to z/OS UNIX System Services Messages and Codes.
v The IGD messages are in z/OS MVS System Messages, Vol 8 (IEF-IGD).
v For the FDBX, FOM, and FSUM messages, see z/OS MVS System Messages, Vol 3

(ASB-BPX).

Writing messages to a job log file
You can use the _BPXK_JOBLOG environment variable to specify that messages be
written to a job log. Set it to one of these values:
v nn specifies that job log messages are to be written to open file descriptor nn.
v NONE specifies that job log messages are not to be written. This is the default.
v STDERR specifies that messages are to be written to the standard error file

descriptor, 2.

Tip: You can change the file that is used to capture messages by calling the
oe_env_np (BPX1ENV) service and specifying _BPXK_JOBLOG with a different file
descriptor. Message capturing is turned off if the specified file descriptor is marked
for close on a fork or exec. Message capturing is process-related. All threads under
a given process share the same job log file, and any thread under that process can
initiate message capturing.

Multiple processes in a single address space can each have different files active as
the JOBLOG file. Some or all of them can share the same file, and some processes
can have message capturing active while others do not.

Guideline: When the file that is used as a job log is shared by several processes
(for example, by a parent and child), the file should be opened for append. If the
file is not opened, unpredictable results might occur. Only files that can be
represented by file descriptors can be used as job log files; MVS data sets are not
supported.

Message capturing is propagated on a fork or spawn.
v If a file descriptor was specified, the physical file must be the same before

message capturing can continue in the forked or spawned process.
v If STDERR was specified, the file descriptor can be remapped to a different

physical file. You can override message capturing on exec or spawn by
specifying the _BPXK_JOBLOG environment variable as a parameter to the exec
or spawn. Message capturing only works in forked (BPXAS) address spaces.

Messages that would normally go to the JESYSMSG data set are captured, but
messages that go to JESMSGLG are not captured.

Component identifiers
Table 34 lists the component identifiers that are used in dumps and symptom
strings.

Table 34. List of component identifiers that are used in dumps and symptom strings

Component identifier Code Module prefix

DF185 HFS physical file system GFU

SCPX1 SCPX4 SCPX6 z/OS UNIX System Services BPX FOM BOP

Chapter 13. Managing processing for z/OS UNIX 323

Table 34. List of component identifiers that are used in dumps and symptom
strings (continued)

Component identifier Code Module prefix

SCPX2 Shell and Utilities, shell
initialization, TSO/E OMVS
command, and the c89 shell
command

FSUM

SCPX3 dbx debugger FDBX

5696EFS00 zFS physical file system IOE

Formatting dumps
To format problem data in a stand-alone dump or SVC dump, use the interactive
problem control system (IPCS) OMVSDATA subcommand. OMVSDATA is not
useful in an SYSMDUMP dump or a core dump, which the system writes for an
application program, because these dumps do not contain the z/OS UNIX
programs or data structures.

See the following:
v z/OS MVS System Codesfor the abend codes
v z/OS MVS IPCS Commands for the syntax of the IPCS OMVSDATA command
v z/OS MVS Diagnosis: Reference for information about formatting an SVC dump
v z/OS MVS Diagnosis: Referencefor general problem determination procedures
v z/OS MVS Diagnosis: Tools and Service Aids for SYSMDUMP and SYSABEND

dumps produced by applications

Diagnosing problems
If the problem is in the shell or debugger, the system treats it as an application
problem.

For information about diagnosing problems, refer to z/OS Language Environment
Debugging Guide. There are suboptions for the TERMTHDACT runtime option that
enables you to specify the amount of dump data that is to be collected. For more
information about the suboptions, see z/OS Language Environment Programming
Reference.

If you specify a dump by setting the _BPXK_MDUMP environment variable, you
do not have to allocate a SYSMDUMP data set for the TSO/E session. The dump is
written to either the MVS data set or the specified z/OS UNIX file.

If the _BPXK_MDUMP environment variable is not set, then you can specify a
dump by allocating a SYSMDUMP data set for the TSO/E session. The system
then does the following:
v Creates a file in the user's working directory.
v Names it coredump.pid, where pid is the process ID for the process being

dumped. It is in hexadecimal format.
v Writes a core dump in the file. The core dump is a SYSMDUMP dump.

Setting _BPX_SHARAS to NO causes the output to go to a UNIX file. If it is set to
REUSE (or YES), the dump is written directly to the MVS file, and the
coredump.pid file is not created.

324 z/OS V2R2 UNIX System Services Planning

To use the core dump, follow these steps:
1. Copy the file into an MVS data set with a record length (LRECL) of 4160, by

entering a TSO/E OGET command.
2. Use IPCS to analyze the dump. (Use the IPCS subcommands STATUS and

SUMMARY FORMAT CURRENT.)

You can dynamically request a SYSMDUMP by using the SIGDUMP signal. Use
the _BPXK_MDUMP environment variable to specify where the SYSMDUMP is to
be written to. You can also use F BPXOINIT,DUMP=pid to request a SYSMDUMP.
A SIGDUMP signal is then sent to the specified process. For both the SIGDUMP
signal and the F BPXOINIT,DUMP command, the _BPXK_MDUMP environment
variable must be set to an MVS data set name. If it is set to a UNIX file name or
defaulted to OFF, then both the SIGDUMP signal and the F BPXOINIT,DUMP
command might be ignored.

Diagnosing problems in application programs
The dbx debugger helps in debugging application programs that are written in the
C language. With the debugger, the application programmer can set breakpoints at
source statements and function entry points, display and modify storage using
program variable names rather than absolute storage addresses, trace execution at
the source statement level, and so on.

Diagnosing hangs during z/OS UNIX initialization
If there is a hang during initialization, the hang is likely to occur during the
initialization process (/etc/init and etc/rc).

If you receive message BPXP006E indicating that z/OS UNIX is being initialized,
you can check the /etc/log file to see what the last command processed from
/etc/rc was. This might help you determine the cause of delay or hang.

The sample /etc/rc file that is shipped with z/OS UNIX includes the set -v -x
command. That command specifies that shell input lines are to be printed to
/etc/log as they are run, in addition to commands and their arguments.

Tip: If you are a superuser (permission to BPX.SUPERUSER is not sufficient), you
can view /etc/log during a hang in /etc/rc by starting a shell from a superuser
and issuing the following command:
cat /etc/log

Chapter 13. Managing processing for z/OS UNIX 325

326 z/OS V2R2 UNIX System Services Planning

Chapter 14. Managing the temporary file system (TFS)

The temporary file system (TFS) is an in-memory physical file system that supports
in-storage mountable file systems and is not written to DASD. Putting the
temporary data in a separate file system makes it easier to manage the space used
by temporary files. Typically, a temporary file system runs in the kernel address
space, but it can be run in a logical file system (LFS) colony address space.

Tip: Run TFS in a colony address space if more space is needed than can fit in an
address space. When it is run in a colony address space, you can use the STOP and
MODIFY commands. For more information, see “Running a physical file system in
a colony address space” on page 44.

Features of the TFS
The temporary file system includes these features:
v Attributes unique to z/OS UNIX are supported (for example, external symbolic

links and the create time attribute) and is not part of a branded product.
v Access control lists (ACLs) are supported. The number of ACL entries that TFS

supports is limited by the block size. Each ACL takes one TFS block. For
example, if the TFS block size is set to 4K (the default is -b0), the number of
ACL entries in any ACL is limited to approximately 500. For more information
about ACLs, see “Using access control lists (ACLs)” on page 97.

v You can set up basic partitioned access method (BPAM) access to files in the
TFS. Each TFS directory is treated as if it were a PDSE or PDS directory. For an
introduction to BPAM, see z/OS DFSMS Using Data Sets. For a discussion about
reading UNIX files with BPAM, see z/OS DFSMS Using Data Sets.

Security considerations
If you require a high level of security in your z/OS system and do not want
superusers to have access to z/OS resources such as SYS1.PROCLIB, read these
sections:
v “Comparing UNIX security and z/OS UNIX security” on page 333.
v “Establishing the correct level of security for daemons” on page 335.

Creating the TFS
The TFS is automatically mounted if the kernel is started in minimum mode. In
this environment, the TFS is the in-storage file system and it defaults to the root
file system. If it is to be used in other situations, it is made available by mounting.
Because the TFS is a temporary file system, all data that is stored in the file system
is discarded after it is unmounted. If you mount another TFS, that file system has
only dot (.) and dot-dot (..) and nothing else.

If you are using kernel services in full function mode, you might want to mount a
temporary file system over /tmp. If you do, it can be used as a high-speed file
system for temporary files. However, you cannot recover vi files if the system goes
down because vi writes temporary files to TMPDIR (/tmp by default). To recover
these files, use the exrecover command, which automatically runs from /etc/rc.

© Copyright IBM Corp. 1996, 2016 327

Restriction: You cannot mount a TFS using a DDname. If the TFS is unmounted,
all data stored in a TFS is lost; when remounted, the file system has only dot(.) and
dot-dot(..) entries.

ServerPac installation jobs define the following FILESYSTYPE definition in
SYS1.PARMLIB(BPXPRMFS):
FILESYSTYPE TYPE(TFS) ENTRYPOINT(BPXTFS)

Edit SYS1.PARMLIB(BPXPRMFS), that is, add the mount statement to mount a file
system at the /tmp mount point. For example, you can add the following mount
statement under the FILESYSTYPE TYPE(TFS) definition:
MOUNT FILESYSTEM(’/TMP’)
MOUNTPOINT(’/tmp’)
TYPE(TFS)
PARM(’-s 10’)

(-s 10) allocates 10 MB of storage

The following example shows the mount command for a TFS. Typically this
specification would be in BPXPRMxx.
FILESYSTYPE TYPE(TFS) ENTRYPOINT(BPXTFS)
MOUNT FILESYSTEM(’/TMP’) TYPE(TFS)
MOUNTPOINT(’/tmp’)
PARM(’ -s 10’)

Note:

1. FILESYSTEM must be a unique name for the file system. Using the path name
of the mount point makes it easier to understand output produced by
commands such as df.

2. PARM specifies how much virtual storage the TFS can use. It can also be used
to specify other information as listed in “Parameter key options for the mount
statement and mount commands” on page 329. If PARM is omitted or is not
valid, the TFS defaults to 1 MB. If the mount request specifies a size in
megabytes that is too large for the address space, the request fails with an
EMVSERR (9D) error. Try the request again, using a smaller value.

3. MODE is either RDWR or READ.
4. To specify that the temporary files are to be written to a specified directory

instead of TMPDIR, use the TMP_VI environment variable.

Checking the size of the TFS
Because the TFS uses virtual storage, make sure that your real and auxiliary
storage configurations are large enough to accommodate the total size of the file
systems to be mounted on the TFS. The maximum file size that TFS supports is a
function of the TFS block size. To find the maximum file size, refer to Table 35,
which shows the approximate maximum file sizes that are based on the block size
factor.

Table 35. List of maximum file sizes that the TFS supports

Block size factor size File size

0 2 GB

1 25 GB

2 240 GB

3 2 TB

328 z/OS V2R2 UNIX System Services Planning

Table 35. List of maximum file sizes that the TFS supports (continued)

Block size factor size File size

4 17 TB

Parameter key options for the mount statement and mount
commands

The parameter key options for the mount statement and mount commands are as
follows:

-3 Specifies that the file system is to be allocated in 31-bit mode regardless of
system capabilities.

-b <block>
<block> specifies the blocking factor that is used to set the size of a TFS
block.

The following chart shows how <block> relates to the TFS block size:
0 4 K
1 8 K
2 16 K
3 32 K
4 64 K

Default: 0

–c <cache>
<cache> is the amount of buffer storage in MB that TFS uses in the 32-bit
address range to support a 64-bit TFS. This parameter is ignored for file
systems that are allocated in the 31-bit range. The default is calculated
based on the TFS block size such that the numbers of cache buffers is 256.

-ea count
Allows the TFS file system to automatically grow count times. The TFS
grows 1-K blocks each time it grows. For the default 4-K block size, the
TFS grows 4 MB. The extension occurs when the file system fills up, before
the file system full message.

Default: 0

Restriction: The sum of auto-extend and manual extend cannot exceed
500.

-em count
Allows the TFS file system to manually grow count times. The TFS grows
1-K blocks each time it grows. For the default 4-K block size, the TFS
grows 4 MB. If -em is specified, any excess block allocation space is added
to count.

Default: The calculated number that is based on the excess block allocation
space for the file system.

Restriction: The sum of auto-extend and manual extend cannot exceed
500.

-fsfull(threshold,increment)
Sets FSFULL monitoring to the specified values. When specified, this
option overrides the default setting.

Chapter 14. Managing the temporary file system (TFS) 329

|

|
|

v threshold is a number in the range 1-99. When the temporary file system
is threshold percent full, a message is issued.

v increment is a number in the range 1-99. When the temporary file system
becomes increment full or empty, any threshold messages that were
previously issued is deleted.

-fsfull can be specified in uppercase or lowercase.

Default: fsfull (99,5)

-g <group>
<group> is the numeric GID that is to be assigned to the root directory of
the file system. The default is 0.

-nofsfull
Sets FSFULL monitoring to the TFS default of fsfull(99,5). When
specified, this option overrides the TFS default setting.

-p <perm>
<perm> is the permission bits in octal to be assigned to the root directory
of the file system. The default is 0777.

-s <size>
<size> is the number of MB for the file system. If the value specified is
larger than the size that can be supported, the maximum size is used. The
default is 1.

Note: If the size specified for the file system size is too large, the
maximum file system size is used and a message is not issued. If the
extend factors will result in the file system size becoming larger than the
maximum size, the extend factors are ignored. A message is not issued and
the file system will not have extend capability.

-u <uid>
<uid> is the numeric UID that is to be assigned to the root directory of the
file system. The default is 0.

Invalid mount options are ignored.

Parameter key options for the FILESYSTYPE statement
The parameter key options for the FILESYSTYPE statement are as follows:

-ea count
Allows the TFS file system to automatically grow count times. The TFS
grows 1 K blocks each time it grows. For the default 4 K block size, the
TFS grows 4 MB. The extension occurs when the file system fills up, before
the file system full message. When specified, this option overrides the TFS
default setting.

Default: 0

Note: The sum of auto-extend and manual extend cannot exceed 500.

-em count
Allows the TFS file system to manually grow count times. The TFS grows 1
K blocks each time it grows. For the default 4 K block size, the TFS grows
4 MB. If -em is specified, any excess block allocation space is added to
count. When specified, this option overrides the TFS default setting.

Default: 0

330 z/OS V2R2 UNIX System Services Planning

|

|

|

Note: The sum of auto-extend and manual extend cannot exceed 500.

-fsfull(threshold,increment)
Sets FSFULL monitoring to the specified values. When specified, this
option overrides the default setting.
v threshold is a number in the range 1-99. When the temporary file system

is threshold percent full, a message is issued.
v increment is a number in the range 1-99. When the temporary file system

becomes increment full or empty, any threshold messages that were
previously issued is deleted.

-fsfull can be specified in uppercase or lowercase.

“FILESYSTYPE” on page 25 contains more information about FILESYSTYPE.
Complete reference information for FILESYSTYPE is in z/OS MVS Initialization and
Tuning Reference.

Monitoring space in the TFS
If the TFS was mounted with the FSFULL mount parameter, status messages are
issued as the file system fills up. To receive status messages for the TFS file system,
use the mount parameter statement. For example:
mount parm(’-FSFULL(70,10)’)

The storage administrator or system programmer can monitor the space in a file
system by mounting a file system with the FSFULL mount parameter. For example,
message BPXTF009E is displayed when the file system is 70 percent full. Another
message is issued when the file system is 80 and 90 percent full:
BPXTF009E FILESYSTEM EXCEEDS 80% FULL: /TMP
BPXTF009E FILESYSTEM EXCEEDS 90% FULL: /TMP

For temporary file systems that are run in a colony, you can use the MODIFY ZFS
command to change the default FSFULL value. This value applies to subsequent
TFS mounts that do not specify FSFULL.

Determining the default setting for FSFULL monitoring
To display the current default setting for the -fsfull, -ea, and -em options, issue:
F TFS,Q

In addition to displaying the default settings, information is also displayed about
each mounted TFS.

Changing the default FSFULL setting
To change the default FSFULL setting:
F tfs,FSFULL(threshold,increment)

threshold
Specifies a number in the range 1-99. TFS issues a message when a TFS file
system is threshold percent full.

increment
Specifies a number in the range 1-99. TFS updates or deletes a threshold
message that was issued when the file system fills or empties increment
percent.

Chapter 14. Managing the temporary file system (TFS) 331

|

|
|

Dynamically extending the size
To dynamically extend the size of the TFS, the maximum size or a maximum
number of extensions can be specified. For example:
F tfs,GROW filesysname

where filesysname is the name of the file system to be extended. Each extension is 1
K blocks.

The default extend settings can be changed. For example:
F tfs,EA number
F tfs,EM number

where number is the number of automatic or manual extends allowed for a file
system that is subsequently mounted without using the -ea or -em parameters.

Restriction: The sum of auto-extend and manual extend cannot exceed 500.

Using the TFS in a shared file system
A shared file system can include a temporary file system.If you are using a TFS for
/tmp, the FILESYSTEM name must be different because each system requires its
own copy. For
MOUNT FILESYSTEM(’/TMP&SYSNAME.’)
TYPE(TFS) MODE(RDWR) UNMOUNT
MOUNTPOINT(’/&SYSNAME/tmp’)
PARM(’-s 10’)

Because &SYSNAME is different on each system, ’/TMP&SYSNAME.’ has a different
file system name on each system.

332 z/OS V2R2 UNIX System Services Planning

Chapter 15. Setting up for daemons

A daemon process is a process that runs in the background and is not associated
with any particular terminal or user. Daemons have superuser authority and can
issue authorized functions such as setuid(), seteuid() and spawn() to change the
identity of a user's process. When setting up daemons, security levels need to be
taken into consideration.

Lists of subtasks

Subtasks Associated procedure

Establishing the correct level of security for
daemon

“Steps for preparing the security program for
daemons” on page 336

Customizing the system for IBM-supplied
daemons

“Steps for defining programs from load
libraries to program control” on page 338

“Steps for checking UNIX files for program
control” on page 340

“Steps for setting up enhanced program
security” on page 343

“Steps for customizing the cron daemon” on
page 348

Customizing the system for IP-supplied
daemons

“Steps for customizing the system for
IP-supplied daemons” on page 344

Customizing the IBM-supplied daemons “Steps for customizing the inetd daemon” on
page 345

“Steps for customizing the uucpd daemon”
on page 346

Setting up security procedures for daemons “Steps for setting up security procedures for
daemons” on page 354

Tracking down problems when setting up
daemons and servers

“Steps for finding modules that were not
defined to program control” on page 358

Setting up for rlogin “Steps for setting up for rlogin” on page 361

If you require a high level of security in your z/OS system and do not want
superusers to have access to z/OS resources such as SYS1.PROCLIB, read the
following sections:
v “Comparing UNIX security and z/OS UNIX security.”
v “Establishing the correct level of security for daemons” on page 335.

Comparing UNIX security and z/OS UNIX security
Some of the people who perform z/OS UNIX tasks have a background in MVS,
while others have experience in UNIX systems other than z/OS UNIX.

MVS, traditional UNIX, and z/OS UNIX systems manage user identities
differently. Table 36 on page 334 contrasts various aspects of security on these
systems.

© Copyright IBM Corp. 1996, 2016 333

Table 36. Comparing traditional UNIX, MVS, and z/OS UNIX security. This table compares the aspects of security on
traditional UNIX, MVS, and z/OS UNIX systems.

Category Traditional UNIX MVS z/OS UNIX

User identity Users are assigned a unique
UID, a 4-byte integer and
user name.

Users are assigned a unique
user ID of 1-to-8 characters.

Users are assigned a unique
user ID with an associated
UID.

Security identity UID User ID UID for accessing
traditional UNIX resources
and the user ID for
accessing traditional z/OS
resources

Login ID Name used to locate a UID Same as the user ID Same as the user ID

Special user Multiple user IDs can be
assigned a UID of 0.

RACF administrator assigns
necessary authority to
users.

Multiple user IDs can be
assigned a UID of 0 or
users can be permitted to
BPX.SUPERUSER.

Data set access Superuser can access all
files.

All data sets controlled by
RACF profiles.

Superuser can access all
UNIX files; data sets
controlled by RACF
profiles.

Identity change from
superuser to regular user

Superuser can change the
UID of a process to any
UID using setuid() or
seteuid() functions.

APF-authorized program
can invoke SAF service to
change identity.

There are two options:

1. If BPX.DAEMON is not
defined, the superuser
can change the UID of a
process to any UID
using setuid() or
seteuid() functions.

2. Or, the superuser must
be permitted to
BPX.DAEMON in order
to change UIDs.

Identity change from
regular user to superuser

The su shell command
allows change if user
provides password for the
root. Password phrases are
not used in traditional
UNIX security.

No provision for
unauthorized user to
change identity.

The su shell command
allows change if the user is
permitted to
BPX.SUPERUSER or if the
user provides the password
or password phrase of a
user with a UID of 0.

Identity change of a regular
user from one UID to
another UID

The su shell command
allows change if user
provides password.
Password phrases are not
used in traditional UNIX
security.

No provision for
unauthorized user to
change identity.

The su shell command
allows change if user
provides password or
password phrase.

Terminate user processes Superuser can kill any
process.

MVS operator can cancel
any address space.

Superuser can kill any
process.

Multiple logins Users can login to a single
user ID multiple times.

Users can only log on to
TSO/E once per user ID.

Users can rlogin multiple
times to a single user ID
and logon once to TSO/E
at the same time.

334 z/OS V2R2 UNIX System Services Planning

Table 36. Comparing traditional UNIX, MVS, and z/OS UNIX security (continued). This table compares the aspects
of security on traditional UNIX, MVS, and z/OS UNIX systems.

Category Traditional UNIX MVS z/OS UNIX

Login daemons inetd, rlogind, lm, and
telnetd process user
requests for login. A
process is created with the
user identity (UID).

TCAS and VTAM process
user requests for logon. A
TSO/E address space
(process) is created with the
user identity (user ID).

Users can log on to TSO/E
or login using one of the
login daemons. In all cases,
an address space is created
with both an MVS identity
(user ID) and a UID.

Establishing the correct level of security for daemons
Kernel services support two levels of appropriate privileges: UNIX level and z/OS
UNIX level. This lets you distinguish superusers from daemons. You need to
determine which level of security is appropriate for your installation.

UNIX level
If the BPX.DAEMON resource in the FACILITY class is not defined, your system
has UNIX-level security. In this case, the system is less secure.

This level of security is for installations where superuser authority has been
granted to system programmers. These individuals already have permission to
access critical data sets such as PARMLIB, PROCLIB, and LINKLIB. These system
programmers have total authority over a system.

Programs that run with superuser authority have daemon level authority. They can
issue MVS identity-changing services such as setuid(), seteuid() and __spawn()
without having first issued a successful _passwd() for the target user ID.

To use the UNIX level of security, assign UID(0) to the superuser. Also assign
UID(0) to the user ID used for running daemon programs; for example, inetd or
cron.

RACF with enhanced program security, BPX.DAEMON, and
BPX.MAINCHECK
If you enable enhanced program security, and you have any daemons or servers
that run execute-controlled programs (MVS programs defined to RACF in the
PROGRAM class using EXECUTE authority, or loaded from libraries using
EXECUTE authority), then you must define the initial program executed by your
daemon or server as a trusted ("MAIN") program to RACF via the PROGRAM
class. If this initial program resides in the z/OS UNIX file system, rather than in an
MVS library, you will need to move it to an MVS library.

Additionally, you can choose whether to extend the enhanced program security
protection to your UNIX daemons and servers that do not make use of RACF
execute-controlled programs. Enable this function by defining the profile
BPX.MAINCHECK to RACF in the FACILITY class. Again, need to ensure that the
initial program executed by your daemon or server resides in an MVS library and
you need to define it to RACF as a PROGRAM with the MAIN attribute.

Kernel services that change a caller's z/OS user identity require the target z/OS
user identity to have an OMVS segment defined. If you want to maintain this extra
level of control at your installation, you will have to choose which daemons to
permit to BPX.DAEMON FACILITY. You will also have to choose the users to

Chapter 15. Setting up for daemons 335

whom you give the OMVS security profile segments. To accomplish this, see
“Steps for preparing the security program for daemons.”

“Steps for setting up enhanced program security” on page 343 explains how to set
up enhanced program security.

BPX.DAEMON
If the BPX.DAEMON resource in the FACILITY class is defined, your system has
z/OS UNIX security. Your system can exercise more control over your superusers.

This level of security is for customers with stricter security requirements who need
to have some superusers maintaining the file system but want to have greater
control over the z/OS resources that these users can access. Although
BPX.DAEMON provides some additional control over the capabilities of a
superuser, a superuser should still be regarded as a privileged user because of the
full range of privileges the superuser is granted.

The additional control that BPX.DAEMON provides involves the use of kernel
services such as setuid() that change a caller's z/OS user identity. Any user can
issue a setuid() which follows a successful __passwd() call to the same target user
ID. However, a user with daemon authority can issue setuid() without knowing
the target user's password or password phrase. With BPX.DAEMON defined, a
superuser process can run these types of change services and identity if the
following statements are true:
v The caller's user identity was permitted to BPX.DAEMON.
v All programs running in the address space have been loaded from a library that

is controlled by a security product. A library that is identified to RACF program
control is an example. You can identify individual files as controlled programs.
For more information, “Customizing the system for IBM-supplied daemons” on
page 338.
Programs that were loaded from MVS libraries do not need to be controlled
programs if BPX.DAEMON.HFSCTL has been set up. Only UNIX files are
checked for program control. For information about setting up
BPX.DAEMON.HFSCTL, see “Checking UNIX files for program control” on page
340.

Kernel services that change a caller's z/OS user identity require the target z/OS
user identity to have an OMVS segment defined. If you want to maintain this extra
level of control at your installation, you must choose which daemons to permit to
BPX.DAEMON. You will also have to choose the users to whom you give the
OMVS security profile segments. To accomplish this, see “Steps for preparing the
security program for daemons.”

The RACF WARN mode is not supported for BPX.DAEMON.

Steps for preparing the security program for daemons
Before you begin: You need to follow the procedures for security as described in:
1. “Preparing RACF” on page 52.
2. “Defining z/OS UNIX users to RACF” on page 57 and “Defining group

identifiers (GIDs)” on page 65.
3. “Controlling access to files and directories” on page 91.

Perform the following steps to prepare RACF for daemons:

336 z/OS V2R2 UNIX System Services Planning

1. Define BPX.DAEMON to permit users that are known as daemons to query or
modify the z/OS security environment of a process.
RDEFINE FACILITY BPX.DAEMON UACC(NONE)

Rule: You must use the name BPX.DAEMON. Substitutions are not allowed.
Tip: The system administrator must be defined to the daemon FACILITY class
so that if a daemon process fails, the system administrator can restart it. To
authorize a current RACF security administrator to be a superuser who can
restart daemons, issue:
PERMIT BPX.DAEMON CLASS(FACILITY) ID(RACFADM) ACCESS(READ)

2. If this is the first FACILITY class that the installation has defined, activate it.

SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST(FACILITY)

3. Give daemon authority to the kernel. Most daemons that inherit their identities

from the kernel address space are started from /etc/rc.
Example: To authorize the OMVSKERN user ID to BPX.DAEMON, issue:
PERMIT BPX.DAEMON CLASS(FACILITY) ID(OMVSKERN) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

4. Define a superuser with a user ID of BPXROOT on all systems so that daemon

processes can invoke setuid() for superusers.
ADDUSER BPXROOT DFLTGRP(OMVSGRP) OMVS(UID(0)

HOME(’/’) PROGRAM(’/bin/sh’))
NOPASSWORD

The NOPASSWORD option indicates that BPXROOT is a protected user ID that
cannot be used to enter the system by using a password or password phrase.
The user ID will not be revoked due to invalid logon attempts.

5. On the SUPERUSER statement in BPXPRMxx, specify the user ID that the
kernel will use when you need a user ID for UID(0).
Example:
SUPERUSER(BPXROOT)

If you do not specify the SUPERUSER statement, the default is BPXROOT.
The BPXROOT user ID should not be permitted to the BPX.DAEMON
FACILITY class profile. The BPXROOT user ID is used when a daemon process
invokes setuid() to change the UID to 0 and the user name has not been
previously identified by getpwnam() or by the _passwd() function. This action
prevents the granting of daemon authority to a superuser who is not defined to
BPX.DAEMON.

When you are done, you have prepared RACF for daemons. To complete the
security setup, you must also activate program control, as described in
“Customizing the system for IBM-supplied daemons” on page 338.

Chapter 15. Setting up for daemons 337

Customizing the system for IBM-supplied daemons
z/OS UNIX supplies these daemons:
v inetd—the network daemon
v rlogind—the remote login daemon
v cron—the clock daemon
v uucpd—the UUCP daemon

The syslogd daemon, which is used to route messages, is shipped with TCP/IP
and is documented in their library.

Rules:

v If you are defining BPX.DAEMON for a higher level of security, you need to
customize the system for IBM-supplied daemons. Many daemons require
BPX.DAEMON authority and must have all modules loaded in their address
spaces identified as being defined to program control.

v All modules loaded from LPA are considered to be controlled.

See the topic on protecting programs in z/OS Security Server RACF Security
Administrator's Guide

Defining modules to program control
In most cases, programs loaded into an address space that requires daemon
authority must be controlled programs. All programs must be program controlled.
However, programs loaded from MVS libraries do not have to be program
controlled if BPX.DAEMON.HFSCTL has been set up. (See “Checking UNIX files
for program control” on page 340.) In that case, only UNIX files are checked for
program control.

If a program that is not a controlled program is loaded, the address space is
marked dirty and cannot perform daemon activities. For more information about
dirty address spaces, see “Handling dirty address spaces” on page 342.

Steps for defining programs from load libraries to program
control
Before you begin: You need to know which programs you want to define to
program control. If you run with enhanced program security, you might need to
define some programs with the MAIN attribute via the APPLDATA operand on the
PROGRAM profile.

Perform the following steps to define programs from traditional load libraries to
program control.
1. Activate the RACF program control (both access control to load modules and

program access to data sets).
SETROPTS WHEN(PROGRAM)

2. Define one of the following profiles.

a. For a particular program, define a discrete RACF PROGRAM class profile:
RDEFINE PROGRAM membername ADDMEM(’datasetname’/volser/NOPADCHK) UACC(READ)

b. For all members in a data set:
RDEFINE PROGRAM * ADDMEM(’datasetname’/volser/NOPADCHK) UACC(READ)

338 z/OS V2R2 UNIX System Services Planning

3. Refresh the in-storage copy of the PROGRAM profile.
SETROPTS WHEN(PROGRAM) REFRESH

When you are done, you have defined a program from a load library to program
control.

Tips:

1. PROGRAM profile * provides the same function as PROGRAM profile **. If
you already have a PROGRAM profile * defined, do not create an ** profile.
Instead, issue the RALTER command against PROGRAM * with the same
operands shown in the RDEFINE PROGRAM example.

2. If you are running in a sysplex with a shared RACF data base and your system
libraries are also shared, then leaving the VOLSER off will allow you to use the
same RACF definitions on all systems in the sysplex.

3. Any time you add, change, or delete a profile in the PROGRAM class (with
RDEFINE, RALTER, PERMIT, or RDELETE), you must update the in-storage
copy of the PROGRAM profile.
SETROPTS WHEN(PROGRAM)
REFRESH

4. Daemons that are shipped by z/OS reside in the file system and are controlled
programs, so you do not need to define them to program control. For example,
suppose you have a daemon named server1. The file /bin/server1 would have
the sticky bit on. Member SERVER1 would reside in SYS1.LINKLIB and be
defined as a controlled program.
RDEFINE PROGRAM SERVER1
ADDMEM(’SYS1.LINKLIB’/’******’/NOPADCHK) UACC(READ)
SETROPTS WHEN(PROGRAM) REFRESH

Tip: You do not need to define the daemons that are shipped by z/OS if you
decide to define BPX.MAINCHECK, as discussed in “Using enhanced program
security” on page 342.

5. Daemons can load locales from the file system or from MVS load modules. If
they are loaded from MVS load libraries, then these modules must be marked
program-controlled. If they are loaded from the file system, the program control
extended attribute bit must be set. The locales shipped by IBM already have
this extended attribute bit set.

Defining programs in UNIX files to program control
Before you can define programs in UNIX files to program control, you need READ
access to the BPX.FILEATTR.PROGCTL resource in the FACILITY class. Then use
the extattr command with the +p option to set the program control extended
attribute.

Example: To set the program control extended attribute in the file named proga,
issue:
extattr +p /user/sbin/proga

Tip: The attribute is turned off if there is any activity that can change the contents
of the file. If this happens, a system programmer with the appropriate privilege
will have to verify that the file is still correct. Then the programmer will have to
issue the extattr command to set the program control attribute back on. To find out
if the program control extended attribute has been set, use the ls -E command.

Chapter 15. Setting up for daemons 339

Using sanction lists
You can compile a list to contain the lists of path names and program names that
are sanctioned by the installation for use by program-controlled programs. This file
contains properly constructed path names and program names as defined in z/OS
V2R2.0 UNIX System Services User's Guide. For more information, see “Using
sanction lists” on page 105.

Checking UNIX files for program control
If you want only UNIX files to be checked for program control, and do not want
programs loaded from MVS libraries to be checked, you can set up
BPX.DAEMON.HFSCTL. However, doing this weakens some of the security
provided by the BPX.DAEMON resource. It should be done only in restricted and
carefully considered cases, or if you do not already run with BPX.DAEMON but
want to gain only a subset of the benefits of running with BPX.DAEMON.

Steps for checking UNIX files for program control
Before you begin: You need to know whether BPX.DAEMON has already been
activated.

Perform the following steps to set up the BPX.DAEMON.HFSCTL resource in the
FACILITY class.
1. Activate BPX.DAEMON, if it is not already active. For more information about

that topic, see “Steps for preparing the security program for daemons” on page
336.

2. Define the resource profile.
RDEFINE FACILITY BPX.DAEMON.HFSCTL UACC(NONE)

3. Give READ access to users.

PERMIT BPX.DAEMON.HFSCTL CLASS(FACILITY) ID(uuuuuu) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

When you are done, you have set up the BPX.DAEMON.HFSCTL resource in the
FACILITY class.

Defining UNIX files as APF-authorized programs
The authorized program facility (APF) allows your installation to identify system
or user programs that can use sensitive system functions. To be APF-authorized,
programs must reside in APF-authorized libraries, and be link-edited with
authorization code AC=1. The program must also be the initial program (that is, it
must be the job step task program), or it was invoked by a caller that is running
APF-authorized.

Rule: If the specified program is going to be invoked as a job step program, you
must link-edit it with AC=1. For example:
c89 -Wl, AC=1

To avoid possible integrity problems, do not set AC=1 if the program will be run
in an APF-authorized environment but not as the job step program (such as DLL).

The APF rules for programs that reside in the z/OS UNIX file system are similar to
those for programs that reside in authorized libraries. Setting the APF-authorized

340 z/OS V2R2 UNIX System Services Planning

extended attribute bit should be thought of as putting that program into an
authorized library. If you try to run a program from an authorized library that is
not linked AC=1, it will not run APF-authorized, but that same program could be
fetched by another that is running APF-authorized and executed in the
authorization state in which it is called, or even have its state changed.

Tip: To find out whether the APF-authorized extended attribute of the UNIX file
was set, use the ls -E command.

Compiling a list of sanctioned path names and program names
You can compile a list to contain the lists of path names and program names that
are sanctioned by the installation for use by APF-authorized programs. This file
contains properly constructed path names and program names. The path and path
name section in z/OS V2R2.0 UNIX System Services User's Guide discusses rules for
path names. For more information about sanction lists, see “Using sanction lists”
on page 105.

Controlling who can set the APF-authorized attribute
Use the BPX.FILEATTR.APF resource in the FACILITY class to control which users
are allowed to set the APF-authorized attribute in a z/OS UNIX file.

Example: The following example shows the RACF command that is used to give
the necessary permission to user Ralph Smorg with user ID SMORG:
RDEFINE FACILITY BPX.FILEATTR.APF UACC(NONE)
PERMIT BPX.FILEATTR.APF CLASS(FACILITY) ID(SMORG) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Example: To set the APF-authorized extended attribute in an executable file, issue
the extattr command with the +a option. In the following example, proga is the
name of the file.
extattr +a /user/sbin/proga

Defining UNIX files as shared library programs
Shared libraries are programs that, when loaded, are put in the shared library
region for system-wide sharing. A program is loaded as a shared library program
if the executable file has the shared library extended attribute set.

Tip: To find out if the shared library extended attribute has been set, use the ls -E
command.

Setting the shared library attribute
The BPX.FILEATTR.SHARELIB resource in the FACILITY class controls who can
set the shared library extended attribute. You need to have at least READ access
before you can set the shared library extended attribute.

Example: The following example shows the RACF command that was used to give
READ access to user Ralph Smorg with user ID SMORG:
RDEFINE FACILITY BPX.FILEATTR.SHARELIB UACC(NONE)
PERMIT BPX.FILEATTR.SHARELIB CLASS(FACILITY) ID(SMORG) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

To set the shared library attribute, issue the extattr command with the +l option.

Example: In the following example, progdll is the name of the file.
extattr +l /user/sbin/progdll

Chapter 15. Setting up for daemons 341

Note: Once the ST_SHARELIB bit has been set for a module, any program,
whether or not it has read access to the BPX.FILEATTR.SHARELIB FACILITY, will
be able to load modules into the system shared library and use those that are
already loaded.

Handling dirty address spaces
A dirty address space is an address space requiring daemon authority that has had
an uncontrolled program loaded into it. Dirty address spaces, which are also
known as dirty environments, cannot perform daemon activities.

If the BPX.DAEMON resource in the FACILITY class has been defined, then
programs that are loaded from MVS libraries are checked for program control. The
checking is bypassed only if BPX.DAEMON.HFSCTL is defined and the user is
permitted to it.

Programs in files are controlled programs if they have the program control
attribute set. If a program that is not a controlled program is loaded, the address
space is marked dirty and cannot perform daemon activities. If an address space
was marked dirty, you can load a controlled program but it will not be able to do
any controlled functions such as setuid(). All BPX.SERVER and BPX.DAEMON
privileges are revoked, including the right to check passwords and password
phrases.

Programs can be defined to program control in the following ways:
v The load modules can be loaded from a load library, where all modules in the

library can be defined to program control, or specific modules in the library can
be defined to program control.

v The module can reside in the file system with the sticky bit on. The system then
searches the MVS search order and the rules for program control apply.

v The module can reside in the file system with the external attribute set for
program control.

RACF supports program control. Other security products might not. If you are
using a security product that does not support program control, you might still
have BPX.DAEMON defined. In this case, the only situation that will mark an
address space dirty is a load from the file system where the program is not defined
to program control.

Using enhanced program security
If you choose to use the enhanced program security function, and you have
daemons that use programs defined to RACF as execute-controlled programs (by
having EXECUTE access to the RACF PROGRAM profile that defines the program,
or EXECUTE access to the library containing the program), then you need to take
some special actions to configure your daemons so that they will run properly.

In an environment with enhanced program security, and using execute-controlled
programs, the initial program executed by a daemon must be defined to RACF
with a profile in the PROGRAM class, and that profile must specify the MAIN
option via the profile's APPLDATA. However, only programs loaded from an MVS
library can be defined using the RACF PROGRAM class; you cannot define
programs loaded from the z/OS UNIX file system. Therefore, if you have daemons
that use execute-controlled programs, you need to move their initial program from
the z/OS UNIX file system into an MVS library so that you can define it
completely to RACF.

342 z/OS V2R2 UNIX System Services Planning

Additionally, if you run with enhanced program security and have the
BPX.DAEMON FACILITY class profile defined, you can use another FACILITY
profile to request that z/OS UNIX apply tighter security controls to your daemons.
Typically, with BPX.DAEMON defined, z/OS UNIX will work with RACF to
enforce a clean environment for any daemon. In this case, the daemon can run
only those programs defined to the RACF PROGRAM class or marked controlled
via the extattr shell command with the +p option.

For additional security, you can define FACILITY profile BPX.MAINCHECK. When
you do that, z/OS UNIX and RACF will require that the first program your
daemon executes must be defined to RACF using a PROGRAM profile with the
MAIN option for use of execute-controlled programs. If you define
BPX.MAINCHECK, then you need to move the first program that any daemon
executes from to an MVS library if it currently resides in the UNIX file system.

Steps for setting up enhanced program security
Before you begin: You need to have:
1. RACF set up as your security product
2. Enabled RACF enhanced program security
3. Enabled BPX.MAINCHECK
4. Determined which privileged programs you run that are affected by setting up

RACF enhanced program security. The RACF programs that would be affected
are the main jobstep programs of one of the following types of privileged
applications:
v z/OS UNIX applications that require a program controlled environment. This

includes applications that require permission to BPX.DAEMON, BPX.SERVER
or BPX.SRV.userid or those that use a privileged function like __passwd().
Examples of applications that would be affected by this are rlogin, telnet and
su.

v Applications that gain access to MVS data sets by using RACF program
access to data sets (PADS) via entries in a DATASET profile's conditional
access list.

Perform the following steps to set up ENHANCED program security mode.
1. Turn on RACF ENHANCED program security mode. For more information

about ENHANCED program security mode, see z/OS Security Server RACF
Security Administrator's Guide.

2. Ensure that all affected MAIN jobstep programs are in an MVS load library in
your MVS load library search order. They should have either the sticky bit
attribute turned on (see “Verifying that the sticky bit is on” on page 357) or
have been set up as an external link z/OS UNIX file (see “Using external links
to access MVS load libraries” on page 358).
If you use the warning mode provided by RACF enhanced program security as
a way to determine which programs will be affected by the new enhanced
security checking, note that in warning mode, the applications will not fail but
you will get messages that indicate which programs are affected

3. Define the BPX.MAINCHECK security profile.
RDEFINE FACILITY BPX.MAINCHECK UACC(NONE)

4. Re-IPL.

Chapter 15. Setting up for daemons 343

When you are done, you have set up enhanced program security.

Tips:

1. You can partially activate enhanced program security by defining the profile
before restarting OMVS or issuing a SET OMVS or SETOMVS command.
However, only address spaces that are started after enhanced program security
was enabled are affected. Use this partial enablement for testing purposes only.

2. Because the new RACF enhanced security checking requires a completely
controlled program environment, testing using dbx might be restricted because
it can cause the program environment to be considered uncontrolled. Testing a
trusted MAIN program under dbx might require that the RACF enhanced
security checking be set up in warning mode or that BPX.MAINCHECK be
undefined. Attempting to do otherwise might cause some privileged operations
to fail while under dbx control.

Guideline: Remain in warning mode until you have done at least one IPL, to
ensure that you have tested with all your daemons.

Customizing the system for IP-supplied daemons
The syslogd daemon, which is used to route messages, is shipped with z/OS
Communications Server, (TCP/IP Services). Other daemons provided by z/OS
Communications Server are otelnetd and orexecd.

Rule: Before you can use the daemons, you have to permit each daemon to the
BPX.DAEMON FACILITY class profile and then ensure that the library that
contains the daemon is added to the program control profile.

Steps for customizing the system for IP-supplied daemons
Before you begin: You need to know what IP-supplied daemons you will be using.

Perform the following steps to customize the system for IP-supplied daemons.
1. Permit each daemon to BPX.DAEMON.

Example: Set up the syslogd daemon, which is in the SEZALOAD library:
PERMIT BPX.DAEMON CLASS(FACILITY) ID(syslogd) ACCESS(READ)

2. Add the library that contains the library to the program control profile.

Example: Define the SEZALOAD library to the PROGAM class:
RALT PROGRAM * ADDMEM(’tcpip.SEZALOAD’/’volser’/NOPADCHCK) UACC(READ)

Result: You have set up the syslogd daemon and then added the SEZALOAD
library to the program control profile. You can start using that daemon.
See “Customizing the system for IBM-supplied daemons” on page 338 for more
information about program control. z/OS Communications Server: IP Configuration
Guide also has more information.

When you are done, you have customized the system for IP-supplied daemons.

344 z/OS V2R2 UNIX System Services Planning

Customizing the IBM-supplied daemons
This section discusses customizing these IBM-supplied daemons: inetd, uucpd,
rlogind, and cron.

Customizing the inetd daemon
The inetd daemon provides service management for a network. It reduces system
load by invoking other daemons only when they are needed and by providing
several simple Internet services internally without invoking other daemons.

After it has been started, the inetd daemon monitors network sockets for services
listed in /etc/inetd.conf. That file tells the inetd daemon which services to support
and how to handle service requests. When inetd receives a request on one of these
sockets, it determines which service corresponds to that socket. Then it either
handles the service request itself or invokes the appropriate server. For more
information about the /etc/inetd.conf file, see the description of inetd in z/OS
UNIX System Services Command Reference.

For z/OS UNIX, inetd handles rlogin, telnet, rsch, rexec, and others. It uses a
configuration file in /etc/inetd.conf when handling the requests.

Steps for customizing the inetd daemon
Before you begin: TCP/IP must be properly configured and started.

Perform the following steps to customize the inetd daemon.
1. Copy /samples/inetd.conf to /etc/inetd.conf.

2. Decide which services you want to support, such as rlogin and telnet. There is

no list of daemons that can be started from inetd. To find out whether a
daemon can run under inetd, check its documentation. The documentation
should also tell you what its inetd.conf entry should look like.

3. Decide on a user name for the services. You can use the one in the sample
inetd.conf (OMVSKERN). You can also use a different user name for each
service. Some daemons might not require as many privileges as others.

4. Set up the user names in RACF, with appropriate privileges. You should
consider whether to use BPX.DAEMON support. (For more information, see
“Establishing the correct level of security for daemons” on page 335.)
For a multilevel secure environment: If the SAF FACILITY class resource
profile BPX.POE is defined, you must grant the user ID assigned to INETD to
at least READ access to this profile. For example:
PERMIT BPX.POE CLASS(FACILITY) ID(OMVSKERN) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

5. Uncomment or add a line in inetd.conf for each service that you want to

support. Make any changes needed to the lines for supported services. See the
description of inetd in z/OS UNIX System Services Command Reference for the
syntax of inetd.conf entries. Also see the appropriate documentation for the
various daemon programs for the requirements for each daemon.

Chapter 15. Setting up for daemons 345

6. Make sure that each service is listed in TCPIP.ETC.SERVICES or /etc/services
with the appropriate port number.

7. Arrange for inetd to be started on each IPL. The most common way to do this
is to start it from /etc/rc. It can also be started from a started task using
BPXBATCH with PARM='SH...' or from a shell session of a user with
appropriate authority.
If you start inetd from /etc/rc, then messages will be sent to /etc/log. If you
start inetd as a started task and you have syslogd running, then any inetd
messages will go to syslogd. You can have syslogd direct those messages to the
MVS console with a statement like the following in your /etc/syslog.conf file:
.INETD.daemon.debug /dev/console

When you are done, you have customized the inetd daemon.

Customizing the uucpd daemon
The uucpd daemon handles the communications between local and remote sites
for file transfer via TCP/IP connections in an UUCP network. For more
information, see Chapter 10, “Configuring the UNIX-to-UNIX copy program
(UUCP),” on page 255 and the descriptions of the various uucp commands in z/OS
UNIX System Services Command Reference.

Steps for customizing the uucpd daemon
Before you begin: You need to set up the uucpd daemon to /etc/inetd.conf.

Example: Add the following lines to /etc/inetd.conf:
uucp stream tcp nowait omvskern /usr/sbin/uucpd
uucpd -l0

If you want to have the uucpd daemon run with a user ID other than OMVSKERN
(for example, UUCPD), you need to decide what the new user ID will be.

Perform the following steps to customize the uucpd daemon.
1. Change the line in /etc/inetd.conf to:

uucp stream tcp nowait uucpd /usr/sbin/uucpd uucpd -l0

2. Define user ID UUCPD to RACF.

ADDUSER UUCPD DFLTGRP(OMVSGRP)
OMVS(UID(0) HOME(’/’) PROGRAM(’/bin/sh’))
NOPASSWORD

The NOPASSWORD option indicates that this is a protected user ID that cannot
be used to enter the system by using a password or password phrase. The user
ID will not be revoked due to invalid logon attempts. In this case, you are
defining the UUCPD user ID without a TSO/E segment.

When you are done, you have customized the uucpd daemon so that it runs with
the UUCP user ID.

Customizing the rlogind daemon
The rlogind daemon validates rlogin requests. If you choose to have the rlogind
daemon run with a user ID other than OMVSKERN, you will have to customize it.

346 z/OS V2R2 UNIX System Services Planning

Example: To customize the rlogind daemon so that it runs with a user ID other
than OMVSKERN (for example, RLOGIND), issue the following:
ADDUSER RLOGIND
DFLTGRP(OMVSGRP) OMVS(UID(0) HOME(’/’)
PROGRAM(’/bin/sh’)) NOPASSWORD

The NOPASSWORD option indicates that this is a protected user ID that cannot be
used to enter the system by using a password or password phrase. The user ID
will not be revoked due to invalid logon attempts.

Tips:

v For all the other setup steps required for rlogin, see “Setting up for rlogin” on
page 361.

v If you are writing or porting your own command to process login requests, the
shell interface to rlogin is the FOMTLINP module, which is documented in
Appendix B, “Modules for the login and logout functions,” on page 439.
FOMTLINP has many parameters that can be used to tailor the rlogin
processing. FOMTLINP is the login function and FOMTLOUT is the logout
function.

For more information about the rlogind daemon, see z/OS UNIX System Services
Command Reference.

Customizing the cron daemon
cron is a clock daemon that runs the at, batch and crontab jobs at specified times
and dates. crontab runs regularly-scheduled jobs, while at and batch are used for
jobs that are run only once.

Before customizing the cron daemon, you need to read either “Customizing the
cron daemon for the first time” or “Migrating from a previous release” on page
348 if you have mounted the root file system read-only.

Customizing the cron daemon for the first time
If you are customizing for the first time, you will have to perform some setup
steps. The steps assume that /usr/spool and /usr/lib/cron do not exist or that
they are empty directories. If these assumptions are not true, then you need to
follow the instructions in “Migrating from a previous release” on page 348.
1. Set up an /var/spool (or /etc/spool) directory. Consider using /var/spool

rather than /etc/spool and using a separate file system for the cron spool data.

Tip: The /var directory is the location for IBM products to put their own
customization and execution data. It is for IBM product usage only and cannot
be edited or modified by you. It is up to you to decide where to put the spool
directory. However, because those files are built by cron when it runs, they are
suitable for the /var directory. In addition, because /etc typically contains a lot
of data and /var does not, using /var might keep /etc from being overloaded.
a. Create the /var/spool directory and set its permissions to 755. For example:

mkdir -m 755 /var/spool
chmod 755 /var/spool

b. Remove the empty /usr/spool directory, if it exists. For example:
rmdir /usr/spool

c. Create a symbolic link from /usr/spool to /var/spool. For example:
ln -s /var/spool /usr/spool

Chapter 15. Setting up for daemons 347

|

|

|
|

|

|

This symbolic link is shipped to you, beginning in z/OS V1R13.
2. Set up a /var/cron directory.

a. Create the /var/cron directory and set its permissions to 755. For example:
mkdir -m 755 /var/cron
chmod 755 /var/cron

b. Remove the empty /usr/lib/cron directory, if it exists. For example:
rmdir /usr/lib/cron

c. Create a symbolic link from /usr/lib/cron to /var/cron. For example:
ln -s /var/cron /usr/lib/cron

3. Create the /var/spool/cron, /var/spool/cron/atjobs and /var/spool/cron/
crontabs directories and set their permissions to 755. For example:
mkdir -m 755 /var/spool/cron
chmod 755 /var/spool/cron

mkdir -m 755 /var/spool/cron/atjobs
chmod 755 /var/spool/cron/atjobs

mkdir -m 755 /var/spool/cron/crontabs
chmod 755 /var/spool/cron/crontabs

When you are done, you have customized the cron daemon for the first time.

Migrating from a previous release
If you are migrating from a previous release, do the following actions:
v Copy existing /usr/spool to /var/spool as described in “Customizing the cron,

uucp, and mail utilities for a read-only root file system” on page 137.
v Copy existing /usr/lib/cron to /var/cron as described in “Customizing the

cron, uucp, and mail utilities for a read-only root file system” on page 137.

Guideline: If you are moving from a read/write root to a read-only root, follow
the steps in “Customizing the cron, uucp, and mail utilities for a read-only root file
system” on page 137. If you do not mount the root read-only, the procedure that is
described in “Steps for customizing the cron daemon” will still work. However, if
you are using a shared file system, mounting in read-only mode is suggested.

Steps for customizing the cron daemon
Before you begin: You need to make sure that several files have the correct
settings.
1. The at, batch, and crontab executable program files must be owned by a

UID(0) user, and the setuid bit must be set. To check the settings, issue:
ls -E /bin/at /bin/batch /bin/crontab

2. The cron executable program file must have the setuid bit off and the program
control attribute set. To check the settings, issue:
ls -E /usr/sbin/cron

Perform the following steps to set up the cron daemon.
1. Copy /samples/queuedefs to /usr/lib/cron/queuedefs.

Example:
cp /samples/queuedefs /usr/lib/cron/queuedefs

2. Set up the queue definitions in the /usr/lib/cron/queuedefs file.

Example:
c.5j2n15w

348 z/OS V2R2 UNIX System Services Planning

|

|

|

|
|

|

|

|

|

|
|

|
|
|
|
|
|
|
|

c Queue name. The default queue name for crontab jobs isc.

5 Number of jobs running at the same time. Set this to the appropriate
value for your installation.

2 The nice value mapped to the PRIORITYGOAL or PRIORITYPG
statement in BPXPRMxx. Set this to the appropriate value for your
installation.

15 If five jobs are already running, wait 15 seconds before trying the next
job.

3. Create lists for allowed and denied users for the crontab command:

v Allowed users: /usr/lib/cron/cron.allow

v Denied users: /usr/lib/cron/cron.deny

Tip: To give access to all users, create an empty cron.deny file and do not
create an cron.allow file.

4. Create lists for allowed and denied users for the at command:
v Allowed users: /usr/lib/cron/at.allow

v Denied users: /usr/lib/cron/at.deny

Tip: To give access to all users, create an empty at.deny file and do not create
an at.allow file.

5. Set the TZ environment variable as described in z/OS UNIX System Services
Command Reference. cron uses this time zone when matching the crontab entries.
at jobs use the TZ of the user.

When you are done, the cron daemon has been customized and can be started.
v It must be started by a user ID with READ permission to the BPX.DAEMON

resource profile in the FACILITY class. (For more information about
BPX.DAEMON, see “Setting up the UNIX-related FACILITY and SURROGAT
class profiles” on page 80 and “Establishing the correct level of security for
daemons” on page 335.)

v It is typically called from /etc/rc. The command is:
_BPX_JOBNAME=CROND /usr/sbin/cron &

As explained in “Using & at the end of a command” on page 352, using the & at
the end of a command starts the command in the background and the
_BPX_JOBNAME environment variable assigns a job name to the cron daemon.

v The cron daemon can only be started once because it will continue to run in the
background.

For more information about starting daemons, see “Starting daemons” on page
351.

Note:

1. Because cron might try to send mail, you might want to configure the mailx
utility as described in “Customizing electronic mail” on page 244.

2. The job log file is in /usr/spool/cron/log and can be used when debugging.
The log file must be periodically archived and cleaned up or it will grow too
large.

Chapter 15. Setting up for daemons 349

Scheduling at and cron jobs
Schedule cron jobs by using at or crontab.

Examples:

1. To run bigcopy.sh script at 11:00 p.m., issue:
at -f bigcopy.sh 23:00

To list the at jobs, issue at -l.
2. To schedule regular jobs, issue:

crontab myjobs

myjobs contains the following entries:
0 0 * * * /u/admin/daily_bup >>/etc/bup_log 2>>&1 #midnight daily
30 1 * * 6 /u/admin/weekly_bup >>/etc/bup_log 2>>&1 #1:30 every Saturday

Input consists of six fields, separated by blanks. All blank lines and any input
that contain a # as the first non-blank character is ignored. The first five fields
give a date and time in the following form:
v A minute, expressed as a number from 0 through 59.
v An hour, expressed as a number from 0 through 23.
v A day of the month, expressed as a number from 1 through 31.
v A month of the year, expressed as a number from 1 through 12.
v A day of the week, expressed as a number from 0 through 6 (with 0 standing

for Sunday).
Any of these fields can contain an asterisk (*) standing for all possible values.
For example, if you have an * as the day of the month, the job runs every day
of the month.
The sixth field of a crontab entry is a string that the shell executes at the
specified time.

To list the crontab jobs, issue crontab -l.

Note:

1. crontab jobs do not run with the shell variable definitions that exist when
crontab was invoked. Also, login profiles are not run. The only environment
variables that are set are HOME, LOGNAME, PATH, SHELL, and TZ.
However, at jobs inherit the current environment variables.

2. To ensure that user IDs that share a UNIX UID have the correct settings, the
user's HOME and LOGNAME environment variables are set according to the
MVS identity of the user.

3. PATH is set to the system default. If you want to invoke commands or scripts
in other directories, you need to specify the full path name or set the PATH
variable in your crontab job.

4. The shell variable is set to /bin/sh.

Rule: Do not change or put other files in these spool directories:

350 z/OS V2R2 UNIX System Services Planning

Starting daemons
Daemons can be started by JCL and also by the shell. Some daemons such as inetd
can also be started by the shell. Interactive login shells, shell scripts run as
background jobs from a login shell, and batch jobs using BPXBATCH to run the
shell all can start daemons.

BPXBATSL is provided as an alias for BPXBATCH. BPXBATSL performs a local
spawn but does not require the resetting of environment variables. BPXBATSL
behaves exactly like BPXBATCH, and allows local spawning whether the current
environment is set up or not.

Many daemons can be started from the shell, both interactively and from shell
scripts. In general, processes started from the shell complete (either successfully or
with some error) before the parent shell itself exits. Any processes still running
receive a SIGHUP signal when the parent shell exits. The default action for
SIGHUP is to terminate the process. That is, when the shell exits, the system
terminates all running processes started by the shell.

Daemon processes are long-running and generally must continue to run even after
the invoking shell terminates. Those daemons started using the shell are therefore
written to ignore SIGHUP signals. They are also typically written to return control
to the shell immediately. If they did not return, the shell script would wait forever
for the daemon to exit.

Rules:

v When started from the shell, most daemons should not be placed in the
background environment. That is, an ampersand should not appear on the shell
command line that starts a daemon. Doing so exposes the background job
containing the daemon to SIGHUP and causes the daemon to terminate
unexpectedly when the shell script exits.

v Some daemons either do not protect themselves from the SIGHUP signal or do
not return to the shell immediately. You have to have those daemons start in the
background environment. To do this, add an ampersand character at the end of
the command line that starts the daemon.

v When starting daemons in the background environment, it is very important to
include a sleep command at the end of the script. This command gives the
background processes time to get started and set up to ignore SIGHUP so that
when the shell exits, the daemons keep running when the shell script completes.
The amount of time required can be determined empirically. A value of 5
seconds is suggested for a start.

A shell script that starts a more simple daemon called slowpoke that does not
return control immediately to the shell would look like this:
slowpoke &
sleep 5
exit

In summary, a shell script that starts the syslogd and cron daemons would look
like the following:
_BPX_JOBNAME=’SYSLOGD’ /usr/sbin/syslogd -f /etc/syslog.conf &
_BPX_JOBNAME=’CROND’ /usr/sbin/cron &
sleep 5
exit

Chapter 15. Setting up for daemons 351

Although cron and syslogd return immediately and protect themselves from
SIGHUP, the & is included with syslogd because this is the only method of getting
_BPX_JOBNAME to take effect.

Using & at the end of a command
Using an & at the end of a command starts the command in the background. The
shell forks a child process, executes the command program, and then does not wait
for the command to complete. Some daemons must be started this way in order to
allow the invoking shell script (such as /etc/rc) to continue. cron does not need to
be started with an & because it forks itself to create the child process, which
continues running while the cron parent process returns to the invoker such as
/etc/rc. If the script does /usr/sbin/cron, the shell will spawn the cron program to
create a child process, and then the cron program will fork a child process to run
the daemon independently. The cron command returns to the shell, and the script
continues.

However, system programmers might want the cron daemon process to have a job
name. To do this from a shell script, you can use the _BPX_JOBNAME
environment variable. (This can be done on the command line, or in a prior export
command.) The _BPX_JOBNAME variable assigns the job name to executed
programs, running in forked processes, but not to locally spawned processes. As a
result, the shell command
_BPX_JOBNAME=CROND /usr/sbin/cron

cannot assign the job name to the cron daemon. (It depends if the spawn is done
within the same address space.) But, the shell command
_BPX_JOBNAME=CROND /usr/sbin/cron &

will assign the job name to the cron daemon, because it is run with a fork/exec.

Starting and restarting daemons
There are several ways to start and restart daemons. The method used depends on
the level of control the installation has chosen for daemons.

During initialization
Put the command in /etc/rc to start the daemon automatically during initialization.
For information about starting programs from /etc/rc, see “Customizing /etc/rc”
on page 229.

When UNIX systems are initialized (IPLed or restarted), the /etc/rc shell script is
run to perform system initialization functions and to start daemons. If a daemon
terminates, a superuser must restart the daemon.

Tip: You can use /etc/inittab instead of /etc/rc to start daemons.

The following explanation uses the syslogd daemon (which supplies logging
functions for programs) as an example of a daemon. Similar steps are required for
other daemons.

syslogd is typically started from /etc/rc.

Example: The _BPX_JOBNAME environment variable is set to assign a job name of
SYSLOGD to the syslogd daemon. The operator will then have better control over
managing the syslogd daemon.
_BPX_JOBNAME=’SYSLOGD’ /usr/sbin/syslogd -f /etc/syslog.conf &

352 z/OS V2R2 UNIX System Services Planning

When /etc/rc is started by /etc/init or /usr/sbin/init, stdin is /dev/null and both
stdout and stderr are open to the /etc/log file. The /etc/rc script then invokes the
requisite daemons with these files, as such. If the syslogd process fails, you could
re-IPL, but this would be very disruptive to the users.

Using a cataloged procedure
You can start syslogd with a cataloged procedure

Example:
//SYSLOGD PROC
//SYSLOGD EXEC PGM=SYSLOGD,REGION=30M,TIME=NOLIMIT
// PARM=’POSIX(ON) ALL31(ON)/ -f /etc/syslogd.conf’
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSOUT DD SYSOUT=*
//SYSERR DD SYSOUT=*
//CEEDUMP DD SYSOUT=*

For this syslogd cataloged procedure to get control with superuser and daemon
authority, you must add an entry to the started procedures table, or define it in the
STARTED class.

It is suggested that you assign user ID OMVSKERN to SYSLOGD in the RACF
started procedures table.

Example:
DC CL8’SYSLOGD’ PROCEDURE NAME
DC CL8’OMVSKERN’ USER ID (to be used for SYSLOGD proc)
DC CL8’OMVSGRP’ GROUP NAME OR BLANKS FOR USER’S DEFAULT GROUP
DC XL1’00’ NOT TRUSTED
DC XL7’00’ RESERVED

For more information about the started procedure table, see z/OS Security Server
RACF System Programmer's Guide

To start syslogd, issue the following command from the console:
S SYSLOGD

Whenever the syslogd daemon is deactivated, you can issue this command to
restart it.

Using BPXBATCH
You can use a cataloged procedure using BPXBATCH to invoke a daemon program
located in the file system.

Example:
//SYSLOGD PROC
//SYSLOGD EXEC PGM=BPXBATCH,REGION=30M,TIME=NOLIMIT,
// PARM=’PGM /usr/lpp/tcpip/sbin/syslogd -f /etc/syslogd.conf’
//* STDIN and STDOUT are both defaulted to /dev/null
//STDERR DD PATH=’/etc/log’,PATHOPTS=(OWRONLY,OCREAT,OAPPEND),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)

Rule: syslogd requires superuser and daemon authority.

The JCL in the SYSLOGD PROC invokes BPXBATCH, which sets up the standard
file descriptors and environment variables before running /usr/lpp/tcpip/sbin/
syslogd.

Chapter 15. Setting up for daemons 353

Tip: In order to reference the syslogd messages from the message catalog files in
the file system, you must create a symbolic link to the syslogd.cat file. With a
superuser ID, in one of the z/OS UNIX shells, issue the following command:
ln -s /usr/lpp/tcpip/lib/nls/msg/C/syslogd.cat
/usr/lib/nls/msg/C/syslogd.cat

For more information about the syslog daemon, see z/OS Communications Server: IP
Configuration Guide

Setting up security procedures for daemons
Consider setting up security for daemons if you plan to take advantage of z/OS
UNIX.

Steps for setting up security procedures for daemons
Before you begin: You need to assume the following:
v You want the added system integrity of having BPX.DAEMON defined.
v Daemons will share the OMVSKERN user ID and be started from /etc/rc.

Perform the following steps to define and start daemons.
1. Define the group OMVSGRP.

ADDGROUP
OMVSGRP OMVS(GID(1))

2. Define the user OMVSKERN.

ADDUSER OMVSKERN DFLTGRP(OMVSGRP)
OMVS(UID(0) HOME(’/’) PROGRAM(’/bin/sh’))
NOPASSWORD

NOPASSWORD indicates that OMVSKERN is a protected user ID; it cannot be
used to enter the system by using a password or password phrase. The user ID
will not be revoked due to invalid logon attempts.

3. Add the daemon cataloged procedure to the RACF STARTED class or the
Started Procedure table, module ICHRIN03. Do not make it trusted. See “Steps
for preparing RACF” on page 52.

4. Create the BPX.DAEMON FACILITY class profile.
RDEFINE FACILITY
BPX.DAEMON UACC(NONE)

5. Grant daemon authority to the kernel.

PERMIT BPX.DAEMON
CLASS(FACILITY) ID(OMVSKERN) ACCESS(READ)

6. Activate program control if you have not already done so and ensure that the

daemon programs and Language Environment runtime library are in a library
that is controlled by z/OS.
SETROPTS WHEN(PROGRAM)
RDEFINE PROGRAM * ADDMEM
(’CEE.SCEERUN’/RTLPAK/NOPADCHK
’SYS1.LINKLIB’/’******’/NOPADCHK) UACC(READ)
SETROPTS WHEN(PROGRAM) REFRESH

354 z/OS V2R2 UNIX System Services Planning

Change RTLPAK to the pack that the PDS resides on.
Tip: You can use PROGRAM PROFILE ** instead of PROGRAM PROFILE *.

When you are done, you have set up and defined daemons.

Giving daemon authority to vendor-written programs
If you are writing a program that uses z/OS UNIX services to change user identity
(such as using setuid and seteuid and so forth), you should refer to “Setting up the
UNIX-related FACILITY and SURROGAT class profiles” on page 80 to determine
whether your program's use of these services requires it to have DAEMON
authority.

If you determine that your program requires DAEMON authority, then you need
to do the following:
1. Document the requirement to assign a user ID to the daemon which has a UID

of 0.
2. Document the requirement to permit the daemon to the BPX.DAEMON

FACILITY class profile.
3. Document how to start the daemon from /etc/rc or as a started procedure.
4. The main program and all programs that it loads must be marked program

controlled in the file system or be loaded from an MVS program controlled
library. For more information about marking programs program-controlled, see
“Customizing the system for IBM-supplied daemons” on page 338. For more
information about placing your programs into MVS libraries, see “Moving
z/OS UNIX executables into the LPA” on page 385. This section describes steps
to move a program into LPA; similar steps can be followed to move a program
into a system linklist library or a step library. If you decide to use MVS
libraries, you need to also see “Steps for defining programs from load libraries
to program control” on page 338.

Tracking down problems when setting up daemons and servers
This section describes possible problems you might encounter when setting up
daemons and servers.

This table lists the problems that you might encounter when setting up daemons and servers.

Problem Reference

A user or daemon is not properly defined with an OMVS
segment.

“Verifying the user OMVS segment” on page 356

A group is not properly defined with an OMVS segment. “Verifying the group OMVS segment” on page 356

A module that is not defined to program control was
loaded into the daemon's address space.

“Using external links to access MVS load libraries” on
page 358

The daemon module is coming from the file system. The
sticky bit might be off or the program might not be in the
MVS search order.

“Verifying that the sticky bit is on” on page 357 and
“Using external links to access MVS load libraries” on
page 358

The executable file being loaded from the file system does
not have the program control extended attribute set.

“Finding modules that were not defined to program
control” on page 358

The file system containing a program control executable
file was mounted with the NOSETUID option. This
makes the entire file system uncontrolled.

“Finding modules that were not defined to program
control” on page 358

Chapter 15. Setting up for daemons 355

This table lists the problems that you might encounter when setting up daemons and servers.

Problem Reference

The daemon does not have READ or higher permission
to BPX.DAEMON.FACILITY.

“Checking the daemon authority” on page 359

The server does not have READ or higher permission to
BPX.SERVER.FACILITY.

“Checking the server setup” on page 360

The in-storage data that is managed by RACF might be
out of date.

“Refreshing RACF in-storage data” on page 360

The server might not have been defined to the
BPX.SRV.uuuuuuuu SURROGAT class profile.

“Checking the SURROGAT class profile” on page 361

Verifying the user OMVS segment
If a user or daemon is not properly defined with an OMVS segment, you need to
verify that the user or daemon has an OMVS segment with a UID.

Example: To verify that the DAEMONU daemon was properly defined with an
OMVS segment, issue:
LU DAEMONU OMVS

Result: You will see output similar to the following:

LU DAEMONU OMVS

USER=DAEMONU NAME=UNKNOWN OWNER=WELLIE CREATED=92.104
DEFAULT-GROUP=DAEMONG PASSDATE=92.125 PASS-INTERVAL=N/A
ATTRIBUTES=SPECIAL OPERATIONS
...

GROUP=DAEMONG AUTH=USE CONNECT-OWNER=WELLIE CONNECT-DATE=92.104
CONNECTS= 82 UACC=NONE LAST-CONNECT=95.261/14:09:38

...
OMVS INFORMATION

UID= 0000000000
HOME= /
PROGRAM= /bin/sh
CPUTIMEMAX=NONE
ASSIZEMAX=NONE
PROCUSERMAX=NONE
THREADSMAX=NONE
MMAPAREAMAX=NONE

You should now see that the UID is 0. (The UID for all daemons must be 0, which
gives superuser authority to the daemon.)

Verifying the group OMVS segment
If a group is not properly defined with an OMVS segment, you need to verify that
the user has a group OMVS segment with a GID defined.

Example: To verify the group OMVS segment of user DAEMONG, issue:
LG DAEMONG OMVS

Result: You will see output similar to the following:

356 z/OS V2R2 UNIX System Services Planning

In the output, the UID is 500. (Installations can choose the GID values for their
groups.)

Verifying that the sticky bit is on
If the daemon module resides in an MVS load library, the file containing the
daemon module must have the sticky bit set on. For information about how to
verify that the sticky bit is on, see Table 37.

Table 37. Verifying that the sticky bit is on. This table summarizes how to verify that the
sticky bit is on in certain situations.

If you are using Then

The ISPF shell From the ISPF shell, enter the file name of the daemon
(/usr/sbin/daemon1, for example) and request Attributes.

You will see a display similar to the following:

Display File Attributes

Pathname : /usr/sbin/daemon1

Link count : 2
Set UID bit . . . : 0
Set GID bit . . . : 0
Sticky bit : 1
...

In the line for the sticky bit, 1 indicates that the sticky bit is
on.

The z/OS UNIX shell Issue

ls -l

You will see a display similar to the following:

-rwxr--r-T 2 SUPERU SYS2 131072
Oct 25 10:19 daemon1

T indicates that the sticky bit for daemon1 is on.

Rules:

1. If the daemon module resides in the file system, the file containing the daemon
module must have the program control extended attribute set.

2. If the program does have the extended attribute set, you still need to verify that
the file system that it resides in is not mounted with the NOSETUID option. Do
one of the following:
v Check the MOUNT statement in BPXPRMxx.

LG DAEMONG OMVS
INFORMATION FOR GROUP DAEMONG

SUPERIOR GROUP=NONE OWNER=IBMUSER
...
USER(S)= ACCESS= ACCESS COUNT= UNIVERSAL ACCESS=

DAEMONU JOIN 000392 READ
...

OMVS INFORMATION

GID= 0000000500

Chapter 15. Setting up for daemons 357

v Display the file system information by using the df command. The file
system, the mount table, and ISHELL have attributes that enable you to see
this setting:
Ignore SETUID : 1

If the "Ignore SETUID" value is set to 1, loading modules from this file
system will mark your address space dirty. For more information about dirty
address spaces, see “Handling dirty address spaces” on page 342.

Using external links to access MVS load libraries
Instead of using the sticky bit for programs that are invoked via either exec() or
spawn(), or are loaded with the dllload() function, use an external link to an MVS
program name. Both functions search the MVS load library search order for the
MVS program.

Tip: If you use an external link, the MVS program defined by the external link
does not have to be part of the file name of the program that was invoked via
either exec() or spawn().

Example: Define a z/OS UNIX file /usr/lpp/internet/bin/wwwss.so as MVS
program name IMWYWWS in an external link.
ln -e IMWYWWS /usr/lpp/internet/bin/wwwss.so

When you are done, you have created an external link that can be used to access
an MVS load library.

Finding modules that were not defined to program control
If a module that was not defined to program control is loaded into an address
space and a process in the address space tries to invoke a restricted z/OS UNIX
service such as setuid(), you get the JRENVDIRTY reason code. It indicates a dirty
address space; see “Handling dirty address spaces” on page 342 for more
information.

Steps for finding modules that were not defined to program
control
Before you begin: You need to check your job log and have the security
administrator check the security console for diagnostic messages.

Perform the following steps to find the module that was not defined to program
control.
1. Search the RACF database for a list of the modules that are defined to program

control.
Example: Issue the following TSO/E command:
SEARCH CLASS(PROGRAM) NOMASK

Result: You will see output similar to the following:

CEEOLVD
CEEOV
CEEPLPKA
CEEZ24
DAEMON
EDCUCSNM
EDCUEYI1
EDC$EUEY
...

358 z/OS V2R2 UNIX System Services Planning

2. Look for the daemon module (for example, DAEMON) and locations in the

format EDC$xxyy (in the output in Step 1, EDC$EUEY is the module for the
U.S. English locale).

3. If the output of the SEARCH module shows *, issue:
RLIST PROGRAM *

The * covers any module name in the libraries displayed in the output of the
RLIST command. If a VOLSER is displayed with a library name, make sure that
the VOLSER is also correct.

4. Gather data about which programs need to be defined to program control by
using SLIP. The complete details are in z/OS Security Server RACF Diagnosis
Guide.
Example:

SLIP SET,IF,ACTION=TRACE,LPAMOD=(ICHRFR00,xxxxx),J=jobname,
TRDATA=(STD,REGS,zzzzzz),ML=100,END

5. Because this SLIP produces GTF records, you must start GTF. Be sure that you

specify PARM TRACE=SLIP. Then use IPCS to format the data with the
GTFTRACE IPCS command. You will see output similar to the following:

SLIP S+U ASCB.... 00FAF580 CPU..... 0001 JOBN.... INETD8
.....
GENERAL PURPOSE REGISTER VALUES
0-3..... 7FFEB744 7FFEB748 00000000 007F2978
4-7..... 0000000C 007F0738 00000004 007F24D8
8-11.... 00000000 7FFEB6A8 80E2323E 007F2978
12-15... 00000000 7FFEB6A8 80E23616 0000000C
...

SLIP USR CPU..... 0001 EXT..... 0001 CNTLN... 00
0008 C3C5C5C2 C9D5C9E3 | CEEBINIT
002C C3C5C54B E2C3C5C5 D9E4D540 40404040 | CEE.SCEERUN

40404040 40404040 40404040 40404040 |
40404040 40404040 40404040 |

0006 D6D7F2D9 E2F1 | OP2RS1

6. Look for a SLIP S+U entry where R15 has a value of 0000000C. Then look at

that entry to identify the module and library that needs to be defined to
program control.

You know you are done when you have identified the module and library that
needs to be defined to program control.

Tip: To define the module to program control, issue:
RDEFINE PROGRAM CEEBINIT ADDMEM -
(’CEE.SCEERUN’/OP2RS1/NOPADCHK) UACC(READ)

Checking the daemon authority
You might need to check to see if the daemon has READ or higher permission to
BPX.DAEMON.

Chapter 15. Setting up for daemons 359

To check whether BPX.DAEMON has been properly defined with READ or higher
permission, issue:
RLIST FACILITY BPX.DAEMON AUTHUSER

You will see output similar to the following:

RLIST FACILITY BPX.DAEMON AUTHUSER

CLASS NAME
----- ----
FACILITY BPX.DAEMON
...
USER ACCESS ACCESS COUNT
---- ------ ------ -----
...
DAEMONU UPDATE 000007
...

The output shows that daemon (DAEMONU in this example) has UPDATE
permission to BPX.DAEMON.

Checking the server setup
You can have similar problems setting up a server as when setting up daemons.
All of the steps for verifying program control apply to servers as well as daemons,
but instead of checking the BPX.DAEMON FACILITY class profiles, verify that the
BPX.SERVER profile is properly defined.

To check whether BPX.SERVER has been properly defined with READ or higher
permission, issue:
RLIST FACILITY BPX.SERVER AUTHUSER

You will see output similar to the following:

RLIST FACILITY BPX.SERVER AUTHUSER

CLASS NAME
----- ----
FACILITY BPX.SERVER
...
USER ACCESS ACCESS COUNT
---- ------ ------ -----
...
SERVERU UPDATE 000007
...

The output shows that BPX.SERVER has been properly defined with READ or
higher permission.

Refreshing RACF in-storage data
RACF uses the RACLIST option of the SETROPTS command to define what profile
information is to be buffered in storage for faster performance. If you think that
you have defined everything correctly, try refreshing the various profiles relating to
the daemon and server support.

Following is the set of all relevant refresh commands:
SETROPTS WHEN(PROGRAM) REFRESH
SETROPTS RACLIST(FACILITY) REFRESH
SETROPTS RACLIST(SURROGAT) REFRESH

360 z/OS V2R2 UNIX System Services Planning

Checking the SURROGAT class profile
If your server processes user requests without a password or password phrase, it
must be defined to a SURROGAT class profile for the user ID. To check whether
the server has been defined to the BPX.SRV.uuuuuuuu SURROGAT class profile,
use the appropriate RLIST command.

Example: Assuming that your server needs to process requests from user ID
ANONYMOS, issue:
RLIST SURROGAT BPX.SRV.ANONYMOS AUTHUSER

Result: You will get output similar to the following:

RLIST SURROGAT BPX.SRV.ANONYMOS AUTHUSER

CLASS NAME
----- ----
SURROGAT BPX.SRV.ANONYMOS
...
USER ACCESS ACCESS COUNT
---- ------ ------ -----
...
SERVERU READ 000007
...

From the output, you can verify that the user ID that you are running your server
on (in this example, it is SERVERU) has READ or higher permission to the
BPX.SRV.userid SURROGAT class profile.

Setting up for rlogin
You can use rlogin to log on to a z/OS UNIX system from a remote system. Two
daemons are used when processing rlogin requests:
v The inetd daemon handles rlogin requests.
v The rlogind daemon is the server that validates the remote login request and

checks the password or password phrase. It does not have a customization file
in the file system.

The z/OS UNIX system does not use the .rhosts file that many UNIX systems use.
It indicates the remote hosts and users who can access your system without
specifying a password or password phrase. Either a password or password phrase
is always required to rlogin to a z/OS UNIX system.

Steps for setting up for rlogin
Before you begin:

1. You need to set up the appropriate security as described in:
a. “Preparing RACF” on page 52.
b. “Defining z/OS UNIX users to RACF” on page 57.
c. “Defining group identifiers (GIDs)” on page 65
d. “Controlling access to files and directories” on page 91.
e. “Setting up TCP/IP security” on page 112

2. You also need to customize the SUBFILESYSTYPE statement in BPXPRMxx to
include TCP/IP.

Perform the following steps to set up for rlogin.

Chapter 15. Setting up for daemons 361

1. Set up security for the inetd and rlogind daemons. See “Steps for preparing the
security program for daemons” on page 336.

2. Establish the connection between TCP/IP and z/OS UNIX; see z/OS
Communications Server for more information.
a. Define port 513 in /etc/services (if this file is to be used) or in the

hlq.ETC.SERVICES data set, where hlq is the prefix defined by
DATASETPREFIX in the TCP/IP profile ("TCPIP" by default). If /etc/services
is defined, it will be used instead of hlq.ETC.SERVICES. The format of the
line is:
login 513/tcp

b. IPL or re-IPL if needed.
c. Start TCP/IP.

3. Customize /etc/inetd.conf. It tells inetd how to handle Internet service requests
on Internet sockets. If you do not have that file, copy it from /samples.
Example:
cp /samples/inetd.conf /etc/inetd.conf

Make these changes in the file:
a. Change the user ID of the login server (which is rlogind) to an ID with

daemon authority.
login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m

b. Comment out any servers that are not needed by putting a # in the first
column.

4. Start the inetd daemon. It is typically started from /etc/rc, which is executed

when the system is initialized. Put these lines in /etc/rc, or uncomment them
out, as the case might be:
_BPX_JOBNAME=’INETD’ /usr/sbin/inetd /etc/inetd.conf&

Tips:

v When you start inetd from the shell, you need to do it from an OMVS
session.

v If TCP/IP is not yet up, you will receive error messages, but inetd will try
again in a few minutes.

v To obtain debugging information, issue:
/usr/sbin/inetd -d

v To verify that inetd is listening on port 513, issue the TSO NETSTAT
INTERVAL command and check the output.

When you are done, you can issue the rlogin command to log in from a remote
UNIX system.

Solving problems with rlogin setup
When debugging problems with rlogin setup, you can use any of the following:
v The -d option of the inetd command
v The -d option of the rlogind command
v The /tmp/.stderr file

362 z/OS V2R2 UNIX System Services Planning

If there are problems on the client side, you might get the following message:
v invalid logon name or password. This message is misleading and often is

caused by setup problems on the z/OS UNIX side. It is possible that security
was not set up correctly.

If there are problems on the server side, you might get the following messages:
v Resource temporarily unavailable. In this case, inetd will try initializing the

service every three minutes.
v service unavailable. This typically means that the port assignment is not correct.

Use the TSO NETSTAT INTERVAL command to verify that OMVS issued a
LISTEN for port 513. If 513 is not there, then inetd cannot find the port
assignment for 513 in /etc/services or hlq.ETC.SERVICES. You will need to
establish the connection between TCP/IP and z/OS UNIX by defining port 513
in /etc/services (if this file is to be used) or in the hlq.ETC.SERVICES data set,
where hlq is the prefix defined by DATASETPREFIX in the TCP/IP profile
("TCPIP" by default). If /etc/services is defined, it is used instead of
hlq.ETC.SERVICES.

Chapter 15. Setting up for daemons 363

364 z/OS V2R2 UNIX System Services Planning

Chapter 16. Preparing security for servers

You will read about security for your server applications. The word "server" is
taken to mean "server application" , which is an application that provides a service
for clients. This server could be part of a software product that will run on any
company's z/OS computing environment, or it might be written by your
application programmers for your own company's use. This topic is for both
audiences:
v The application programmers designing the server. They must decide what kind

of security the server is to have so they can code for it and provide
documentation (either verbally or in writing) for those who will run the server.

v The security administrator at the company that runs the server. They must set
up the profiles based on the documentation provided with the server.

Security administrators, who might not be versed in developing programs, will
learn the rationale for setting up profiles in certain ways, and application
programmers writing the servers will be able to document the security
requirements of their products.

Appropriate decisions need to be made regarding server security. In the past,
applications had to run APF-authorized in order to be able to call RACF to build
task-level security. z/OS UNIX provides services for servers written in C to create
task-level security without being APF-authorized. A server can create a thread-level
security environment and control which servers have the ability to do so. You can
prepare a z/OS system for a server that uses thread-level security for its clients.
(Note that a thread on UNIX systems corresponds to a task on MVS; so,
thread-level security is the same as task-level security.)

List of subtasks

Subtasks Associated procedure

Setting up servers “Steps for setting up servers” on page 370

Defining servers to process users without
passwords

“Steps for defining servers to process users
without passwords or password phrases” on
page 372

Designing security for servers
Chapter 15, “Setting up for daemons,” on page 333 is prerequisite reading. If you
need a high level of security, read and follow the steps in that topic first.

This section is intended for the application developer who is designing and
developing servers that use z/OS UNIX. The section describes:
v Setting up the clients with the appropriate security; see “Setting up threads and

security” on page 366.
v Controlling access to resources; see “Checking authority to use protected

resources” on page 367.
v Using the RACF client ACEE support; see “Limitations of RACF client ACEE

support” on page 367.

© Copyright IBM Corp. 1996, 2016 365

v Writing the documentation that supports your server; see “Documenting the
security requirements” on page 368.

Setting up threads and security
z/OS UNIX supports two fundamental types of application servers: multithreaded
servers and single-threaded servers.
v A multithreaded server has multiple sequential flows of control. In this family of

applications, the server can process more than one unit of work at a time.
v A single-threaded server has one sequential flow of control. In this family of

applications, the server processes one unit of work at a time.

z/OS UNIX provides the pthread_security_np() callable service and support
through the C runtime library. It enables unauthorized multithreaded servers to
create and delete a RACF security environment in a way that is mediated and
controlled by the kernel and RACF. Multithreaded servers can customize the
security environment of a thread, thus allowing it to be executed under a different
RACF identity than that of the server. You must authorize the server to use that
service.

The term unauthorized refers to applications that are not APF-authorized and do
not run in supervisor state or in a system storage protection key.

A server that uses the pthread_security_np() service can customize the RACF
identity of a thread. This server initiates a thread that processes the client's request.
If the server customizes the thread that is initiated for the client with the client's
RACF identity, any resource access decisions to RACF-protected resources are
made using the client's RACF identity and authorizations.

Depending on the trust you place in a server, you have the option of enforcing
whether to use both the server's RACF identity and the RACF identity of the client
in resource access control decisions on z/OS.

You can choose one of the following:
v Only the RACF user ID of the client is used in local resource access control

decisions that are made by RACF on z/OS.
v Both the RACF user ID of the server and the RACF user ID of the client are

used in local resource access control decisions on z/OS.

The use of the pthread_security_np() service is in part protected by the RACF
FACILITY class profile BPX.SERVER. If this profile is defined, then the RACF user
ID that is associated with the server needs at least READ authority to use the
pthread_security_np() service.
v If the RACF user ID that is associated with a server is permitted with UPDATE

access to this profile, the server is allowed to establish a thread-level (task-level)
security environment for clients connecting to the server. With UPDATE
authority to BPX.SERVER in the RACF FACILITY class, the server can act as a
surrogate of the client. This means that the identity of the thread associated with
the request from the server's client executes with the z/OS user ID of the
server's client.
The RACF identity of the client determines the type of access that is allowed to
z/OS resources (such as data sets) and z/OS UNIX resources (such as UNIX
files), which are accessed by the client's thread in the server.

v READ access allows the server to establish a thread-level security environment
for the clients it services. However, the user ID of the server and the user ID of

366 z/OS V2R2 UNIX System Services Planning

the client must be authorized to the resources the server accesses. A thread-level
security environment in which both the client's and server's identities are used
in the access control decision, but a password or password phrase was not
supplied by the client, is called an unauthenticated client security environment.
Depending on the design and implementation of the client/server application, a
client might need to supply an authenticator to the server.
For example, the client might be prompted to supply a password, password
phrase, or a password substitute, such as a RACF PassTicket, to the server to
prove its identity. If a RACF password, password phrase, or PassTicket is
specified as an option on the pthread_security_np() service, and it is valid for
the client user ID, only the RACF user ID of the client is used in rendering
access control decisions. This task level security environment created by a server
is called an authenticated client security environment. Because the client has
trusted the server sufficiently to supply a RACF password, password phrase, or
PassTicket to the server, the server can act as a surrogate for that client.
This capability enables you to determine on behalf of which user IDs the server
can act and what resources the server can access when acting on behalf of one of
its clients.

Potentially, for additional security checking, two audit records can be produced to
audit the client accessing the resource and the server accessing the resource on
behalf of the client.

If you choose to implement this additional security checking, you might need to
authorize the identity that is associated with the server to the resource profiles that
protect the resources accessed by the server on behalf of its clients.

Checking authority to use protected resources
Application developers might want a server to check the authority of a user to
access RACF-protected resources. In this way, the server can control access to those
resources. The resources include printers and tapes, but not UNIX files and
directories and MVS data sets. Use the z/OS UNIX auth_check_resource_np
(BPX1ACK) callable service or the C/C++ runtime library
check_resource_auth_np() function call to invoke the RACF v_dceauth callable
services to do the necessary checking. The resources must be defined to RACF
general resource classes. The server must have read access to the BPX.SERVER
FACILITY class profile or have UID(0); in addition, all server modules must be
defined to RACF.

Limitations of RACF client ACEE support
If both the server's RACF identity and the client's RACF identity are used to make
access decisions, you should be aware of limitations of the RACF client ACEE
support.
v RACROUTE REQUEST=FASTAUTH processing does not check both the server

and client RACF identities automatically.
Unauthorized servers cannot use the RACROUTE REQUEST=LIST instruction to
build in-storage profiles for RACF defined resources. Profiles must reside in
storage before RACROUTE REQUEST=FASTAUTH can verify a user's access to a
resource.

v The client/server relationship is not propagated from the server.

If your server controls access to resources by checking and authenticating both the
server's RACF identity and client's RACF identity, treat servers you do not trust as

Chapter 16. Preparing security for servers 367

end points on z/OS. These servers should not be allowed to submit batch jobs or
use the services of other servers that run exclusively under the identity of the
client. You must ensure that servers that do not meet this criteria are not
authorized to the profile BPX.SERVER in the RACF FACILITY class.

Documenting the security requirements
In documentation that accompanies your servers, you might need to give some
instructions to the security administrator whose installation will be running the
server. This might happen if your server uses services that require special
authority; these services include:
v The SAF R_dceruid() callable service
v The z/OS UNIX convert_id_np callable service
v The C library function __convert_id_np() function call

Without the appropriate authority set up at the installation, your server will not
run. Documentation that accompanies these services tells the security administrator
the kind of RACF definitions to set. For example, if the server uses the z/OS UNIX
convert_id_np() callable service, the server must have READ access or higher to
the IRR.RDCERUID FACILITY class profile.

Establishing the correct level of security for servers
The choice of security level is a decision more likely made by management than by
security administrators. That decision depends on answers to the questions "How
secure does our company's information need to be?" and "How much do we trust
our employees?" Regardless of who makes the decision, it is important that both
application developers and security administrators understand the two levels of
security supported by z/OS, and the differences between them. The two levels are:
UNIX level and z/OS UNIX level. Read the following descriptions to help you
decide which level of security is appropriate for your server.

UNIX level: BPX.SERVER is not defined
If the BPX.SERVER (or BPX.DAEMON) FACILITY class is not defined, your system
has UNIX-level security. In this case, the system is less secure. This level of security
is for installations where superuser authority has been granted to system
programmers. These individuals already have permission to access critical MVS
data sets such as PARMLIB, PROCLIB, and LINKLIB. These system programmers
have total authority over a system. Server programs that run with superuser
authority can issue pthread_security_np() service to change the MVS identity of a
thread.

To establish UNIX-level security, assign a UID of 0 to the superuser and assign a
UID of 0 to the user ID used for running server programs; for example,
DATASRVR.

z/OS UNIX level: BPX.SERVER is defined
There are two z/OS UNIX levels:
v RACF running with enhanced program security, BPX.SERVER defined, and

BPX.MAINCHECK defined. You can use BPX.MAINCHECK for any privileged
z/OS UNIX application that requires a program controlled environment, because
the application uses a privileged z/OS UNIX service that requires one. An
example is the __passwd() service, which is used by applications such as telnet
and rlogin.

368 z/OS V2R2 UNIX System Services Planning

v BPX.SERVER

RACF with enhanced program security, BPX.SERVER, and
BPX.MAINCHECK

If you enable enhanced program security, and you have any daemons or servers
that run execute-controlled programs (MVS programs defined to RACF in the
PROGRAM class using EXECUTE authority, or loaded from libraries using
EXECUTE authority), then you must define the initial program executed by your
daemon or server as a trusted ("MAIN") program to RACF via the PROGRAM
class. If this initial program resides in the z/OS UNIX file system, rather than in an
MVS library, you will need to move it to an MVS library.

Additionally, you can choose whether to extend the enhanced program security
protection to your UNIX daemons and servers that do not make use of RACF
execute-controlled programs. You would enable this function by defining the
profile BPX.MAINCHECK to RACF in the FACILITY class. Again, you would need
to ensure that the initial program executed by your daemon or server resides in an
MVS library and you would need to define it to RACF as a PROGRAM with the
MAIN attribute.

Kernel services that change a caller's z/OS user identity require the target z/OS
user identity to have an OMVS segment defined. If you want to maintain this extra
level of control at your installation, you will have to choose which daemons to
permit to the BPX.DAEMON FACILITY class. You will also have to choose the
users to whom you give the OMVS security profile segments. To accomplish this,
refer to “Steps for preparing the security program for daemons” on page 336.

“Steps for setting up enhanced program security” on page 343 explains how to set
up enhanced program security.

BPX.SERVER
If the BPX.SERVER (or BPX.DAEMON) FACILITY class is defined, your system has
z/OS UNIX-level security. In this case, the system is more secure than a traditional
UNIX system.

This level of security is for customers with very strict security requirements who
need superusers to maintain the file system but who do not want these users to
have the authority to change their identities to access existing MVS resources. To
accomplish this, take the additional steps described in “Defining servers to use
thread-level security.”

Defining servers to use thread-level security
When the profile BPX.SERVER is defined, there might be two authorization checks:
v The first check authorizes the use of the pthread_security_np() service.
v The second check authorizes for whom the server can establish a security

context. This check establishes the scope of users for whom the server can act as
a surrogate. See “Defining servers to process users without passwords or
password phrases” on page 372 for the steps required to enable servers to act as
surrogates for their clients when a password or password phrase is not specified
on the pthread_security_np() service.

Chapter 16. Preparing security for servers 369

You can also use the BPX.SERVER profile to set the scope of z/OS resources that
the server can access when acting as a surrogate for its clients. There are two levels
of authority that can be granted to the server using thread-level security services:
v UPDATE access

Lets the server establish a thread-level (task-level) security environment for
clients connecting to the server. When the RACF identity of the server has been
granted UPDATE authority to BPX.SERVER in the RACF FACILITY class, the
server is capable of acting as a surrogate for the client. This means that the
identity of the thread associated with the request from the server's client runs
with the z/OS user ID of the server's client. Access control decisions to z/OS
resources (such as data sets) and to z/OS UNIX resources (such as UNIX files)
which are accessed by the client's thread in the server are made using the RACF
identity of the client.

v READ access

Lets the server establish a thread-level security environment for the clients that it
services. However, the user ID of the server and the user ID of the client must
be authorized to the resources which the server will be accessing. A thread-level
security context in which both the client's and server's identity is used in the
access control decision and a password or password phrase was not supplied by
the client is called an unauthenticated client security context.
Depending on the design and implementation of the client/server application, a
client might have to supply an authenticator to the server. For example, the
client might be prompted to supply a password, password phrase, or a
password substitute, such as a RACF PassTicket to the server to prove its
identity. If a RACF password, password phrase, or PassTicket is specified as a
parameter on the pthread_security_np() service, and the password, password
phrase, or PassTicket is valid for the client user ID, even if the server's identity
has been granted READ access to the profile BPX.SERVER in the RACF
FACILITY class, the task level security environment is only used in access
control decisions. That is, only the RACF user ID of the client is used in making
access control decisions. This task level security environment created by a server
is called an authenticated client security context. Because the client has trusted the
server sufficiently to supply a RACF password, password phrase, or PassTicket
to the server, the server is granted the capability of acting as a surrogate for that
client (user).

Steps for setting up servers
Before you begin: You will need to know which programs are program-controlled.
To identify those programs, use the RACF RDEFINE command, which is discussed
in “Customizing the system for IBM-supplied daemons” on page 338.

Perform the following steps each time you add a server.
1. Define all programs that are loaded into an address space that requires server

authority, including the server program and any runtime library modules, to
program control. For more information about defining programs to program
control, see “Defining modules to program control” on page 338.

2. Assign a user ID to the server and define it to RACF.
Example: Assume that the user ID of the server is DATASRVR. Define user ID
DATASRVR to RACF.
ADDUSER DATASRVR DFLTGRP(OMVSGRP) OMVS(UID(7) HOME(’/’)
PROGRAM(’/bin/sh’)) NOPASSWORD

370 z/OS V2R2 UNIX System Services Planning

Tip: You can use the NOPASSWORD option with the ADDUSER command for
DATASRVR. This indicates that it is a protected user ID that cannot be used to
enter the system by means of a password or password phrase. The user ID will
not be revoked due to invalid logon attempts. In this case, you are defining the
DATASRVR user ID without a TSO/E segment.

3. Create a cataloged procedure. For example:
//DATASRVR PROC
//DATASRVR EXEC PGM=DATASRVR,REGION=0M,TIME=NOLIMIT,
// PARM=’POSIX(ON) ALL31(ON)/ serverparms’
//SYSPRINT DD SYSOUT=*

4. Enable the DATASRVR cataloged procedure to obtain control with the required

user identity. To do so, you must either add it to the RACF STARTED class or
add an entry to the started procedures table.
Example: To add an entry to the started procedures table:
DC CL8’DATASRVR’ PROCEDURE NAME
DC CL8’DATASRVR’ USERID (ANY RACF-DEFINED USER ID)
DC CL8’DATASGRP’ GROUP NAME OR BLANKS FOR USER’S DEFAULT GROUP
DC XL1’00’ NOT TRUSTED
DC XL7’00’ RESERVED

5. Create the FACILITY class profile for the server.

RDEFINE FACILITY BPX.SERVER UACC(NONE)
SETROPTS RACLIST(FACILITY) REFRESH

6. Activate program control for the server, if you have not already done so for

daemon support.
SETROPTS WHEN(PROGRAM)

7. Grant a level of authority to the server using thread-level security services. The

BPX.SERVER FACILITY class profile controls the server's access to the
pthread_security_np() service. There are two choices when setting the server's
authority:
v UPDATE access allows the server to establish a thread-level (task-level)

security environment for clients connecting to the server. Decisions about
access control for z/OS resources (such as data sets) and to z/OS UNIX
resources (such as UNIX files) that are accessed by the client's thread in the
server are made using only the RACF identity of the client.
Example: To give UPDATE access in the BPX.SERVER FACILITY class profile
to user ID DATASRVR:
PERMIT BPX.SERVER CLASS(FACILITY) ID(DATASRVR) ACCESS(UPDATE)
SETROPTS RACLIST(FACILITY) REFRESH

v READ access allows the server to establish a thread-level security
environment for the clients that it services. However, unless the server has
specified a valid RACF password, password phrase, or PassTicket on the
pthread_security_np() service invocation, the user ID of the server and the
user ID of the client are used in resource access control decisions.
Example: To give DATASRVR server authority for unauthenticated clients:
PERMIT BPX.SERVER CLASS(FACILITY) ID(DATASRVR) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Chapter 16. Preparing security for servers 371

If you are installing a product that uses thread-level security services, check
the documentation that is supplied with the product to determine if the
server requires READ or UPDATE access to the BPX.SERVER profile.
If you grant READ access to the BPX.SERVER profile in the FACILITY class,
and the server does not request a password, password phrase, or PassTicket
for its clients, both the server's user ID and the client's user ID are used in
decisions about resource access control. Additional security administration
will have to be performed to ensure that both the server's user ID and the
client's user ID were appropriately authorized to the resources that are
accessed by the server.

When you are done, you have set up the server.

Example: To start DATASRVR, issue the following command from the MVS
console:
S DATASRVR

If the DATASRVR daemon is deactivated, you can also issue this command to
restart it.

Defining servers to process users without passwords or password
phrases

Depending on the design and implementation of a client/server application, a
client might not supply an authenticator to the server. For example, some servers
process user requests that come from generic user IDs representing anonymous
users, or use a method of authentication other than a user ID and password or
password phrase combination.

In this case, in which the RACF password, password phrase, or password
substitute (such as the RACF PassTicket) is not specified on the
pthread_security_np() service invocation, an additional check is made to ensure
that the server is authorized to act as the client. z/OS UNIX uses profiles defined
to the RACF SURROGAT class to authorize the server to act as a surrogate of a
client. Profiles defined to the SURROGAT class are of the form:
BPX.SRV.<userid>

<userid> is the MVS user ID of the user that the server will act as a surrogate of.
See “Defining servers to use thread-level security” on page 369 for the steps to
authorize a server to act as a surrogate for client user IDs.

Some servers have the requirement to process user requests that come from generic
user IDs representing anonymous users. In order for servers to process requests for
thread-level security without passwords or password phrases, follow the steps
shown below.

Steps for defining servers to process users without
passwords or password phrases

Before you begin: You need to identify all MVS user IDs that the specified server
needs to access without any client authentication. You also need to determine the
level access, either ACCESS(READ) or ACCESS(UPDATE) that the server will have
while running with the client's identity. “Defining servers to use thread-level
security” on page 369 describes those two levels of authority.

372 z/OS V2R2 UNIX System Services Planning

Perform the following steps to define servers to process users without passwords
or password phrases. The steps are for a sample server called DATASRVR that can
support user ID ANONYMOS without a password or password phrase. As you
add more servers, you will need to follow similar procedures.
1. Activate the SURROGAT class support in RACF, if it has not already been set

up on your system.
SETROPTS CLASSACT(SURROGAT)

You only have to do this once on your system.
Tip: If a daemon or server you are running will use the SURROGAT support,
consider using the RACLIST command to keep the SURROGAT profiles in
storage. The following example shows how to cache the SURROGAT profiles in
storage:
SETROPTS RACLIST(SURROGAT)

2. If the SURROGAT profile is in the RACLIST, any changes to the SURROGAT

profiles must be followed by a REFRESH command. To create the SURROGAT
class profile for user ANONYMOS, issue:
RDEFINE SURROGAT BPX.SRV.ANONYMOS UACC(NONE)
SETROPTS RACLIST(SURROGAT) REFRESH

A similar SURROGAT profile is required for each user ID that a server must
support without a password or password phrase.

3. Permit the server to create a thread-level security environment for a specified
user.
Example: To permit server DATASRVR to create a thread-level security
environment for user ANONYMOS, issue the PERMIT command:
PERMIT BPX.SRV.ANONYMOS CLASS(SURROGAT) ID(DATASRVR) ACCESS(READ)
SETROPTS RACLIST(SURROGAT) REFRESH

When you are done, you have defined a server to process users without passwords
or password phrases.

Chapter 16. Preparing security for servers 373

374 z/OS V2R2 UNIX System Services Planning

Chapter 17. Monitoring the environment

NOT Programming Interface Information

You can monitor performance, use of resources, and the use of system resources by
users and programs. Use the information that is collected to tune the system.
Tuning the system might improve performance and reduce resource consumption.

Reporting on activities using SMF records
System management facilities (SMF) collects data for accounting. SMF job and job
step accounting records identify processes by user, process, group, and session
identifiers. Fields in these records also provide information about resources used
by the process. SMF file system records describe system events such as file open,
file close, and file system mount, unmount, quiesce, and unquiesce.

You can use SMF to report on the following activities:
v User applications
v Jobs and job step basis
v Mounted file stems and files

See z/OS MVS System Management Facilities (SMF) for the full contents of SMF
records provided for z/OS UNIX and for information about how to obtain the
records.

SMF record type 30
SMF record type 30 reports activity on a job and job step basis. Even though file
system activity is included in the EXCP count for the address space, the process
section in the record breaks down the EXCP count into the following categories:
v Directory reads
v Reads and writes to regular files
v Reads and writes to pipes
v Reads and writes to character special files
v Reads and writes to network sockets

This section also provides information about file system lookups, which can use
significant resources on systems with hierarchical files.

You can monitor the file system activity of various classes of users by
postprocessing SMF type 30 records. This type of monitoring might be helpful in
forecasting DASD and other system resource requirements. If key jobs appear to be
doing many lookups, your installation might be able to reduce this processing
overload. To reduce the overload, reorganize the file system so that key files are
closer to the root of the file system.

Applications can reduce lookup activity by using the chdir command to change
the working directory and specifying only the file name when opening a file.

© Copyright IBM Corp. 1996, 2016 375

SMF records contain a program name field for job steps that are initiated by fork(),
spawn(), or exec(). For interactive commands, this feature allows performance
analysts to determine what resources were required to complete a particular
command.

If a user runs the OMVS command with the SHAREAS option or sets the
environment variable _BPX_SHAREAS to YES, two or more processes might be
running in the same address space. In this case, SMF provides process
identification only for the first process in the address space. However, resource
consumption is accumulated for all processes that are running.

With an exec that follows a setuid(), the exec processing no longer creates a
substep. Instead, the initiator stops the old job (ending type 30 record). Then a new
job is started with the user ID that was established on the setuid().

The CPU time for each syscall is accumulated for the process and saved in field
SMF30OST. The number of requested z/OS UNIX syscalls is reported in field
SMF30OSC. Data for SMF30OST and SMF30OSC is only collected when parmlib
option SYSCALL_COUNTS is set to YES.

When SYSCALL_COUNTS is set to NO, the CPU time and the count of syscalls is
not accumulated. If you always run with SYSCALL_COUNTS=NO, both
SMF30OST and SMF30OSC are always reported with a value of zero.

If you switch between SYSCALL_COUNTS=YES and SYSCALL_COUNTS=NO
while collecting SMF data for an address space, the SMF 30 record data will not be
accurate.

SMF record types 34 and 35
When a new address space is created as a result of a fork() or spawn() service,
SMF cuts a Type 34 record. When the process ends, SMF cuts a Type 35 record.
Type 34 is defined as TSO Logon and Type 35 is defined as TSO logoff. If you do
not have Type 34 or Type 35 active, you do not need to take any further action. If
you do use Type 34 and Type 35 for TSO accounting, then you need to suppress
these recordings for UNIX processes.

Example: To suppress these records, add the following:
SYS(TYPE(34,35))
SUBSYS(OMVS,NOTYPE(34,35))

SMF record type 74
SMF record type 74, subtype 3, reports kernel activity. For more information, see
z/OS MVS System Management Facilities (SMF) .

SMF record type 80
SMF record type 80 includes an extended-length relocate section. For specifics on
auditing information in SMF record type 80, see z/OS Security Server RACROUTE
Macro Reference.

SMF record type 92
SMF record type 92 provides reports of activities that are related to the z/OS UNIX
file system.

376 z/OS V2R2 UNIX System Services Planning

Tip: The File System I/O counts displayed in the ISHELL mount table is available
if type 92 subtype 5 (unmount) is active at the time the file system was mounted.
To avoid the overhead that is associated with recording type 92 subtype 10, 11, and
14 (open, close, delete, or rename), adjust the parameters in SMPFPRMxx by using
the TYPE or NOTYPE operands to exclude the subtype 10, 11, and 14 records.

Table 38 lists the subtypes for SMF record type 92.

Table 38. Subtypes for SMF record type 92. This table lists the subtypes for SMF record
type 92 and explains how they are produced.

Subtype When reports are produced

1 Reports are provided after the file system is mounted. I/O activity
for a file system is reported in a subtype 5 record when the file
system is unmounted. This activity is not accumulated unless
subtype 5 is active when the file system is mounted.

When a file system is mounted, SMF begins collecting accounting
data for the file system's I/O activity if subtype 5 for unmount is
active at the time of the mount. Partial SMF accounting does not
occur; either all the information for a file system is collected, or
none is collected.

Subtype 1 records are useful because they provide information
about the total space available in the file system and the total space
currently used. You can see if it is time to increase the size of a
mountable file system.

2 Reports are provided after the file system is quiesced (that is,
suspended).

HFS file systems are quiesced when they are backed up by the
hierarchical storage manager (HMS). Any non-zFS system can also
be quiesced by programs that call the BPX1QSE (quiesce) callable
service. Any file system might be quiesced during certain sysplex
operations such as when a file system is moved within a shared file
system configuration.

4 Reports are provided after the file system is unquiesced (that is,
resumed).

5 Reports are provided after the file system is unmounted. Unmount
records provide the following I/O data summarized for the entire
mountable file system:

v Directory reads

v Read and write callable services that were requested

v Read and write EXCP counts

v Total bytes read and bytes written

To obtain this data, SMF recording for unmount must be active at
the same time that the file system is originally mounted.

6 Reports are provided after the file system is remounted.

If a file system is remounted to change modes between read-only
and read/write, a subtype 6 record is produced. It contains the
same information as in the type 5 (unmount) record. In order for
the remount records to contain data on I/O activity, unmount
recording must be active at the time the file system is originally
mounted.

Chapter 17. Monitoring the environment 377

Table 38. Subtypes for SMF record type 92 (continued). This table lists the subtypes for
SMF record type 92 and explains how they are produced.

Subtype When reports are produced

7 Reports are provided after the file system is moved.

If ownership of a file system is changed in a shared file system
configuration, a subtype 7 record is produced.

10 Reports are provided after a file is opened. I/O activity for
particular open is reported in a subtype 11 (close) record when the
file is closed. This activity is not accumulated unless subtype 11 is
active when the file is opened.

When a file is opened, SMF begins collecting accounting data for
I/O activity that is related to this open if subtype 11 is active.
Partial SMF accounting does not occur; either all the information for
an open file is collected, or none is collected.

Because collecting file activity can be expensive, collect subtype 10
records only when file-level data is needed.

11 Reports are provided when a file is closed.

File-close records provide information about I/O activity of a user
or application against a specific file. These records provide the
following data for a specific user or application and a specific file:

v Read and write callable services that were requested

v Read and write EXCP counts

v Total bytes that are read and bytes that are written

v Path name of the file

To obtain a record of I/O activity, SMF recording must be active for
subtype 11 at the time a file is both opened and closed. Because
collecting file activity can be expensive, collect subtype 11 records
when file-level data is needed.

12 Reports are provided after mmap() is used to establish a mapping
between a process's address space and a file.

13 Reports are provided after munmap() is used to remove the
mapping that was established by a previous mmap() request.

14 Reports are provided after a file or file directory is deleted or
renamed.

To gather information about the deleting of files and directories,
you can set up monitoring for SMF type 92 records with subtype
14. When files or directories are deleted, you will receive
information about the time the file or directory was deleted or
renamed, in addition to its file type, serial number, and unique
device number. In a shared file system, the recording occurs on the
user's system where the command was issued.

378 z/OS V2R2 UNIX System Services Planning

Table 38. Subtypes for SMF record type 92 (continued). This table lists the subtypes for
SMF record type 92 and explains how they are produced.

Subtype When reports are produced

15 Reports are provided when the security attributes for
APF-authorized programs, shared library programs, or programs
that are defined to program control are changed.

External calls to change these attributes are audited. The various
places where the system clears these attributes, such as if the file is
opened for write or if it is renamed, are not audited. In addition to
the regular user, file, and file system information for type 92
records, the following information is also included

v The old and the new security attributes, to show what was
changed.

v The file's RACF file ID, to help in correlating these records with
the XXXX_FILE_ID field of SMF 80 records for the same file .

v The full path name of the file. If the path name string that was
passed on the call to chattr() is an absolute path name, it is
copied here. If it is a relative path name, the input string is
appended to the realpath() value of the current working
directory. The path name will be as passed on the call to chattr()
for absolute path names. For relative path names the input path
name segment is appended to the realpath() value of the current
working directory.

16 Reports about the activity of sockets, character special files, pipes,
and FIFOs are provided when files are closed.

File-close records provide information about I/O activity of a user
or application against a specific file. These records provide the
following data for a specific user or application and a specific file:

v Read and write callable services that were requested

v Read and write EXCP counts

v Total bytes that are read and bytes that are written

v Path name of the file

To obtain a record of I/O activity, SMF recording must be active for
subtype 16 at the time a file is both opened and closed. Because
collecting file activity can be expensive, only collect subtype 16
records when file-level data is needed.

17 Reports that contain information about the number of times a file is
accessed throughout the life of an open are provided. The
information is written on the SMF global recording interval and
when the internal representation (control block) of the file is freed.
In some error flows (for example, file system move failures and
dead system recovery), some SMF records might be lost.

Unmount records also provide the following I/O data summarized for the entire
mountable file system:
v Directory reads
v Read and write callable services that were requested
v Read and write EXCP counts
v Total bytes read and bytes written

Chapter 17. Monitoring the environment 379

|
|

File-close records provide information about I/O activity of a user or application
against a specific file. These records provide the following data for a specific user
or application and a specific file:
v Read and write callable services that were requested
v Read and write EXCP counts
v Total bytes that are read and bytes that are written
v Path name of the file

Monitoring process activity
To monitor process activity, you can display pending jobs. You can also enable
applications to monitor activities of z/OS UNIX processes.

While z/OS UNIX is being started or restarted, jobs are not processed. After the
start or restart process has been completed, jobs will begin processing again. An
operator message tells the system operator that jobs are waiting for z/OS UNIX to
become available again.

The system operator can also use the D OMVS,A=DUBW command to show which
jobs are in wait status. When the BPXO040I message is displayed in response, the
PID field shows a ''-" instead of a PID value and the STATE field is set to D,
indicating that the job is waiting to be dubbed. For example:

*10.52.00 STC00010 *BPXP022E ONE OR MORE JOBS ARE WAITING FOR UNIX SYSTEM
* SERVICES AVAILABILITY.

- 10.52.10 d omvs,a=dubw
00 10.52.12 BPXO040I 10.52.10 DISPLAY OMVS 266 C

OMVS 000E SHUTDOWN
USER JOBNAME ASID PID PPID STATE START CT_SECS

TC 0022 - 0 1D---- .001

Using installation exits
You can use installation exits to enable applications to monitor process activities.

Preprocess initiation exit (BPX_PREPROC_INIT)
Receives control immediately before the creation of any new process. This
exit cannot use any z/OS UNIX callable service. When these exit routines
receive control, the Process Exit Data Block (PEDB) will contain data about
the creating process.

Post-process initiation exit (BPX_POSPROC_INIT)
Receives control immediately after the creation of any new process. When
this exit receives control, the Process Exit Data Block (PEDB) will contain
the creator and the new process data.

Process image initiation exit (BPX_IMAGE_INIT)
Receives control immediately before any new process image is initiated.
This occurs after a successful spawn, attach_exec, attach_execmvs, exec, or
execmvs callable service is done. The exit will receive control before the
new process image file is run. When this exit receives control, the Process
Exit Data Block (PEDB) will contain the data of the creator and the new
image.

Preprocess termination exit (BPX_PREPROC_TERM)
Receives control immediately before the termination of a process. These
exits might receive control in the address space of the process or in the
master address space, if the address space of the process was terminated.

380 z/OS V2R2 UNIX System Services Planning

In the latter case (ASID=1), the exit cannot use z/OS UNIX callable
services. When these exits receive control, the Process Exit Data Block
(PEDB) will contain details about the terminating process.

Exit routines can be added to each exit point. z/OS UNIX passes control to the exit
routine when an exit point is reached. Information about the current process and
its creator is then passed to the exit routine.

Defining exits
The kernel defines the four process start and end exits at kernel initialization time
by means of the CSVDYNEX service.

Rule: When you are adding exit routines to an exit, certain exit attributes are
required.

For BPX_PREPROC_INIT, BPX_POSPROC_INIT, and BPX_IMAGE_INT:
v AMODE=31
v REENTRANT=REQ
v PERSIST=IPL
v ABENDNUM=10000
v ABENDSCONSEC=YES
v FASTPATH=YES,KEY=0

For BPX_PREPROC_TERM:
v AMODE=31
v REENTRANT=REQ
v PERSIST=IPL
v ABENDNUM=10000
v ABENDSCONSEC=YES
v FASTPATH=NO,KEY=0

Adding exit routines to exits
You can use any of the following methods to add exit routines to exits:
v PROGxx member of SYS1.PARMLIB
v SETPROG console command
v REQUEST=ADD via the CSVDYNEX service

Example: To add the DUBEXIT exit routine to the BPX_PREPROC_INIT exit via a
PROGxx member:
EXIT ADD

EXITNAME(BPX_PREPROC_INIT)
MODNAME(DUBEXIT)

Example: To remove the DUBEXIT exit routine from the BPX_PREPROC_INIT exit:
SETPROG EXIT,DELETE,EXITNAME=BPX_PREPROC_INIT,MODNAME=DUBEXIT,FORCE=YES

End of NOT Programming Interface Information

Chapter 17. Monitoring the environment 381

382 z/OS V2R2 UNIX System Services Planning

Chapter 18. Tuning performance

You need to take some tuning steps because you are combining MVS and UNIX.
Two tuning situations exist, depending on how your system is being used: as a
production system or a porting system. For both, you can take important steps and
control resource consumption.

Tip: If your system is running in a virtual server or as a VM guest, the storage
size should be at least 64 MB.

To learn how to improve performance on a porting system, read Chapter 8 of
Porting Applications to the z/OS UNIX Platform.

List of subtasks

Subtasks Associated procedure

Caching UID and GID information in VLF “Steps for caching UID and GID information
in VLF” on page 385

Moving an executable in the file system into
the LPA

“Steps for moving an executable in the file
system into the LPA” on page 385

Setting process limits “Steps for setting process limits in z/OS
UNIX” on page 397

Changing process limits “Steps for changing the process limits for an
active process” on page 400

Improving performance of runtime routines
When C programs (including the shell and utilities) are run, they frequently use
routines from the Language Environment runtime library, which come from the
SCEERUN data set. On average, about 4 MB of the runtime library are loaded into
memory for every address space running a Language Environment-enabled
program, and copied on every fork. If you have 200 address spaces running, this
uses 800 MB of pageable storage. It also increases your paging rates or reduces the
amount of work that the system can support. For information about the effect of
putting modules into the LPA, see z/OS MVS Initialization and Tuning Guide .

To reduce this overhead and improve performance, you can do one of the
following:
v Put the SCEELPA data set in the LPA list. Because the SCEERUN data set has

many modules that are not reentrant, you cannot place the entire data set in the
link pack area using the LPALIST member of SYS1.PARMLIB. However, you can
take advantage of a SCEELPA data set that contains a subset of the SCEERUN
modules – those that are reentrant, reside above the line, and are heavily used
by z/OS UNIX.
To improve performance, put the SCEERUN data set in the link list (LNKLSTxx
member). Then use the LPALSTxx member to place the SCEELPA data set in the
LPA list. You can also add additional modules to the LPA, using the dynamic
LPA capability (SET PROG=). For more information about LPALSTxx and
LNKLSTxx, see z/OS MVS Initialization and Tuning Reference.

© Copyright IBM Corp. 1996, 2016 383

v Put libraries CEE.SCEERUN and CEE.SCEERUN2 into LLA. The library
lookaside facility (LLA) minimizes I/O by keeping heavily used modules in a
virtual lookaside facility (VLF) dataspace and keeping a version of the library
directory in its own address space. Assuming that the libraries CEE.SCEERUN
and CEE.SCEERUN2 are included in LNKLST, you might choose to include all
LNKLST modules in LLA. For example:
SYS1.PARMLIB(CSVLLAxx)

LIBRARIES(-LNKLST-)
FREEZE(-LNKLST-)

v Manage the runtime library in STEPLIBs. If you decide not to put the runtime
library in the link list, then you must set up the appropriate STEPLIB for each
application that needs to load modules from SCEERUN. Although this method
always uses additional virtual storage, you can improve performance by
defining the SCEERUN data set to LLA. This action reduces the I/O that is
needed to load the runtime modules.

Tuning tips for the compiler utilities
On systems where application development is a critical activity, you can improve
the performance of the compiler utilities c89, cc, cxx,c++ by loading
CBC.SCCNCMP into dynamic LPA if space allows. If common area space is an
issue, selected modules can be put into the LPA.

Example: If space allows, load the entire load library into dynamic LPA.
SYS1.PARMLIB(PROGxx)

. . .
LPA ADD MASK(*) DSNAME(CBC.SCCNCMP)
. . .
LNKLST ADD NAME(LLZB) DSNAME(CEE.SCEERUN)
LNKLST ADD NAME(LLZB) DSNAME(CEE.SCEERUN2)
. . .

For more information about the PROGxx parmlib member, see z/OS MVS
Initialization and Tuning Reference.

Improving performance by updating the PROGxx member
On systems where application development is the primary activity, making certain
changes to the PROGxx member of SYS1.PARMLIB might improve performance.
For example:
SYS1.PARMLIB(PROGxx)
LPA,ADD,MODNAME(CEEBINIT,CEEBLIBM,CEEEV003,EDCZV),DSNAME(CEE.SCEERUN)
LPA,ADD,MODNAME(IEFIB600,IEFXB603),DSNAME(SYS1.LINKLIB)

Rule: Your primary Language Environment level must be the default level for the
release, and you must be using the default compiler. To verify your Language
Environment primary level, check that the library name (for example,
CEE.SCEERUN) appears first in the linklist concatenation in the LNKLSTxx
member of SYS1.PARMLIB.

Caching RACF user and group information in VLF
Caching UIDs and GIDs improves performance for commands such as ls -l, which
must convert UID numbers to user IDs and GID numbers to RACF group names.
RACF allows you to cache UID and GID information in virtual lookaside facility
(VLF).

384 z/OS V2R2 UNIX System Services Planning

Guideline: To avoid performance degradation, VLF should be made active. For
more information about performance considerations, see “RACF performance
considerations” on page 56.

Steps for caching UID and GID information in VLF
Before you begin: You need to have access to the COFVLxx member of
SYS1.PARMLIB.

Perform the following steps to cache UID and GID information in VLF.
1. Add these VLF options to the COFVLFxx member of SYS1.PARMLIB.

CLASS NAME(IRRUMAP)
EMAJ(UMAP)

CLASS NAME(IRRGMAP)
EMAJ(GMAP)

CLASS NAME(IRRSMAP)
EMAJ(SMAP)

2. Start VLF, specifying the updated member.

Example: In this example, the updated member is COFVLF33.
START VLF,SUB=MSTR,NN=33

When you are done, you have cached GID and UID information in VLF.

Because VLF is started after RACF and OMVS, you might get a message from
RACF during the IPL saying that running without VLF will cause slower
performance. If VLF is being started, you can ignore this message.

For information about updating the VLF parmlib member COFVLFxx, see
“COFVLFxx” on page 40.

Moving z/OS UNIX executables into the LPA
Some executables in the file system can be commonly used by many concurrent
users, or they can be loaded and deleted frequently during normal production.
Such executables are performance sensitive, and they might be good candidates for
inclusion in the LPA. Moving such programs to the LPA can reduce storage
consumption, reduce DASD I/O activity for loads, and reduce the storage copied
on each fork().

Guideline: One thing to consider when you analyze which executables belong in
LPA is that modules with the sticky bit on are not eligible for local spawn(). If your
executable is normally invoked by spawn(), either by the shell or by another
application, turning on the sticky bit forces spawn() processing to execute the
program in a spawned child address space. In cases where local spawn() would be
used if the sticky bit were not on, this reduces the benefit of loading the executable
from the LPA.

Steps for moving an executable in the file system into the LPA
Before you begin: You need to know how long the executable or DLL name is.

Perform the following steps to move an executable in the file system into the LPA.
1. Select one of the following actions, depending on how long the executable or

DLL name is.

Chapter 18. Tuning performance 385

If . . . Then . . .

The executable or DLL name is no
more than 8 characters excluding
the extension (such as longname.dll)
and contains no special characters
that are not valid for TSO PDSE
member names.

1. Bind the executable or DLL into a PDSE member
(for example, LONGNAME)

2. For the executable or DLL in the file system, turn
on the sticky bit. For example:

chmod +t longname.dll

3. Verify that the executable is marked reentrant.

Tip: You can check that the executable is marked
reentrant by checking TSO browse on the PDSE,
locating the member in the member list, pressing
PF11 and then looking for the RN attribute.

4. Put the executable into dynamic LPA by
modifying the PROGxx parmlib member or by
issuing the SETPROG console command.

The executable or DLL name is
more than 8 characters long,
excluding the extension (for
example, reallylonglongname.dll), or
if the name contains special
characters.

1. Bind the executable or DLL into a PDSE member
with a valid member name (for example, REALLY)

2. Rename the original executable or dll to save it.
For example:

mv reallylonglongname.dll
reallylonglongname.dll.save

3. Create an external link for the name. For example:

ln -e REALLY reallylonglongname.dll

4. Verify that the executable is marked reentrant.

Tip: Check that the executable is marked reentrant
by checking TSO browse on the PDSE, locating the
member in the member list, pressing PF11 and
then looking for the RN attribute.

5. Put the executable into dynamic LPA by
modifying the PROGxx parmlib member or by
issuing the SETPROG console command.

When you are done, you have moved an executable in the file system into the
LPA.

Binding the executable or DLL into a PDSE
To bind the executable or DLL into a PDSE you can use sample JCL in Figure 45 on
page 387. While this JCL will work for most simple executables, the binder options
(specified as PARM= below) will not be appropriate for all executables or DLLs. If
you have a makefile for the executable or DLL, this will tell you what binder
options should be used.

Because most executables in the file system today are program objects (new load
module format), they must be bound into PDSE libraries. So, SYSLMOD DD
should point to a PDSE (Data Set Name Type = Library).

386 z/OS V2R2 UNIX System Services Planning

Use an SMP/E USERMOD to link any IBM-supplied programs from a UNIX file
system into another library, such as when loading it into LPA. Doing so
automatically keeps the two copies of the module at the same level when service is
installed. It also provides a record of modifications to your systems. See SMP/E for
z/OS User's Guide for more information about SMP/E usermods.

Also, not all modules are eligible for LPA. Modules placed in LPA must be both
reentrant and executable. For more information about PROGxx, see z/OS MVS
Initialization and Tuning Reference.

Using the shared library extended attribute
Shared object libraries contain subroutines that can be shared by multiple
processes. Programs using shared libraries contain references to the library routines
that are resolved by the loader at run time. The loadhfs topic in z/OS UNIX System
Services Programming: Assembler Callable Services Reference discusses both shared
object library programs and the ST_SHARELIB extended attribute.

Executables that have the ST_SHARELIB extended attribute turned on are called
system shared library programs. They are an optimal way of sharing large executables
across many address spaces in the system. These executables are shared on a
megabyte boundary to allow for the sharing of a single-page table (similar to LPA).
The storage used in the user address space to establish the mapping to the shared
library region is from the high end of private storage; in most cases, it does not
interfere with the virtual storage used by the application program.

Guideline: The amount of storage that is carved out of the high end of private
storage of each address space that loads a system shared library object is based on
the value of the SHRLIBRGNSIZE parameter in the BPXPRMxx parmlib member. If
this value is set too high, the storage set aside for the mapping of the shared
library region might interfere with the private storage requirements of each of
these address spaces. For this reason, the value specified for SHRLIBRGNSIZE
should be the minimum size that is required to contain all of the shared library
programs that are to be used on the system. Note that z/OS UNIX attempts to

//PUTINLPA JOB MSGLEVEL=(1,1)
//* *
//* INLMOD DD STATEMENT SPECIFIES THE DIRECTORY THAT CONTAINS *
//* THE PROGRAM. *
//* *
//* THE INCLUDE STATEMENT SPECIFIES THE NAME OF THE FILE TO *
//* RUN FROM THE LPA. *
//* *
//* THE NAME STATEMENT SPECIFIES THE FILE NAME BUT IN *
//* UPPERCASE. THIS MUST BE SAME AS THE FILE NAME. *
//* *
//LINK EXEC PGM=IEWL,REGION=100M,
// PARM=’LIST,XREF,LET,RENT,REUS,AMODE=31,RMODE=ANY,CASE=MIXED’
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,10))
//SYSPRINT DD SYSOUT=*
//INLMOD DD PATH=’/bin/’
//SYSLMOD DD DSN=OECMD.LPALIB,DISP=SHR
//SYSLIN DD *

INCLUDE INLMOD(myprog)
ENTRY CEESTART
NAME MYPROG(R)

/*

Figure 45. Job for placing a program in the LPA

Chapter 18. Tuning performance 387

map the entire SHRLIBRGNSIZE into the private region, not just the portion that
contains programs. If the private region is too small to map the entire
shrlibrgnsize, then this shared library region is not be used, A message is not
issued to indicate that the shrlibrgnsize was not mapped.

See “Defining UNIX files as shared library programs” on page 341 for information
about setting the ST_SHARELIB extended attribute.

Tuning tips for the file system
Use the following tips to fine-tune your file system:
v Make sure that all files in your file system have valid owning UIDs and GIDs. If

you restore files from an archive and accidentally keep a UID and GID that were
valid on another system, it can create problems that affect response time. For
example, say that there is an invalid UID associated with a file. When you use a
utility that checks the UID (such as ls -l), RACF searches the entire database for
the UID.

v Place HFS data sets on volumes that are cached with DASD Fast Write.
v Give each user a separate mountable file system. Doing so enables you to avoid

I/O contention by spreading user file systems across multiple DASD devices.
v Use the temporary file system (TFS) for /tmp.
v Customize the statements in the BXPRMxx member of SYS1.PARMLIB as

needed. See “Customizing the BPXPRMxx member of SYS1.PARMLIB” on page
22 for guidelines and tips.

Tuning limits in BPXPRMxx
You can improve the performance of your z/OS UNIX environment by fine-tuning
your BPXPRMxx member. However, because each installation is unique, some of
the suggestions might not be appropriate for your system.

For more information, refer to these documents:
v z/OS MVS Planning: Workload Management

v z/OS MVS Initialization and Tuning Guide

v z/OS MVS Initialization and Tuning Reference for parmlib members
v z/OS RMF User's Guide for RMF monitoring
v z/OS RMF Report Analysis for RMF reports

Monitoring system and process limits
You can monitor the status of the z/OS UNIX system and process limits with the
D OMVS, LIMITS operator command and console messages that indicate when
limits are reaching critical levels. Use SET OMVS or SETOMVS to change certain
system limits dynamically, or SETOMVS with PID= to change a process-level limit
for a specific process.

The LIMMSG statement in BPXPRMxx controls message activity for limits
checking. You can specify whether no console messages are to be displayed when
any of the parmlib limits have been reached (NONE); console messages are to be
displayed for all processes that reach system limits and for certain process limits
(SYSTEM); or console messages are to be displayed for all the system limits and
the process limits (ALL).

388 z/OS V2R2 UNIX System Services Planning

The LIMMSG options can be changed with the SETOMVS LIMMSG command. The
LIMMSG value appears in the D OMVS,O display.

If the LIMMSG statement is specified with SYSTEM or ALL, a warning console
message appears whenever a limit reaches 85%, 90%, 95%, and 100%, identifying
the process that has reached the limit. When the limit reaches the next limit level,
the prior message is removed from the console and a new message indicates the
new limit level that has been reached. When the limit falls below the 85%
threshold, a message indicates that the resource shortage has been relieved.

For limit MaxSharePages, the first warning message appears at 60% to warn the
installation when copy-on-write (COW) processing for fork() is about to be
disabled (which occurs at a usage of 62.5%). This message is replaced when the
next limit is reached or removed from the console when the limit falls under 60%.

Example: BPXI039I SYSTEM LIMIT MAXSHAREPAGES HAS REACHED 60% OF
ITS CURRENT CAPACITY OF 4096

Changing from LIMMSG(ALL) or LIMMSG(SYSTEM) to LIMMSG(NONE) with the
SETOMVS command stops any further monitoring of resources. However, existing
outstanding messages are not deleted from the screen for a process until the limit
is relieved for that process.

Tip: When LIMMSG(ALL) is in effect, a large number of messages can be issued.
This option is best suited for use during the initial configuration of a system, when
the installation has not yet determined the optimal settings for the z/OS UNIX
parmlib limits.

Monitoring use of system resources
z/OS UNIX provides the system programmer with a number of controls that
monitor and tune the use of system resources by users. As part of the tuning
process, you can follow these initial rules of thumb:
1. Assume that each user will consume up to double the system resources

required for a TSO/E user.
2. Assume that at most 4 PTYs will be required per average user.
3. Assume that the starting point for maximum processes per user is 25.
4. Assume that 4 concurrent processes will be required by the average active user.
5. Assume that 5 processes will be required for various daemons.
6. Assume that 3 concurrent address spaces will be required by the average active

user. This number will be high if your users are running with the
_BPX_SHAREAS environment variable set to YES.

7. Assume that no user, including servers or daemons, needs more than 2048 files
open at one time for Unicode Services conversion. In this case, the default
MAXIOBFUSER setting of 2048 (which equals 2 G of above the bar storage) is
enough and no changes to the initial setting is necessary.

Tip: If you have a few users who need a large number of processes, use the
PROCUSERMAX keyword in the OMVS segment to set the process limit for these
users.

For example, assume that your system supports 600 TSO/E users and has enough
capacity for 20 additional users. Rather than adding more TSO/E work, you want

Chapter 18. Tuning performance 389

to allow TSO/E users to access z/OS UNIX. You have no other z/OS UNIX work
on your system at this time. In this example the initial settings in BPXPRMxx
might be:
MAXUIDS(20)
MAXPTYS(80)
MAXPROCUSER(25)
MAXPROCSYS(85)

Table 39 shows how the initial settings were calculated.

Table 39. Calculating initial settings when tuning process activity. This table lists the initial
settings for certain BPXPRMxx parameters.

Parameter Initial setting Note

MAXUIDS 20 If you allow 20 current TSO/E users to access
the z/OS UNIX system, each of them could
consume twice the resource they normally
used for TSO/E. This would require all your
remaining system resources.

MAXPTYS 80 Assume that 4 PTYs are needed per user.
Users can login with multiple sessions at the
same time

MAXPROCUSER 25 This should normally be a reasonable starting
point. Some users might require more
processes, depending on the work they are
doing. This value can be set only on a
system-wide basis.

MAXPROCSYS 85 Assume that you need 4 processes per user
and 5 processes for daemons. (20 users * 4) +
5 daemons = 85 processes.

Controlling use of ESQA
The extended system queue area (ESQA) is a major element of z/OS virtual
storage above the 16MB line. This storage area contains tables and queues relating
to the entire system, and duplicates above the 16MB line the system queue area
(SQA). A number of services use base z/OS functions that use ESQA storage.
Much of this storage is fixed, consuming main memory rather than only virtual
storage. Installations having constraints on virtual storage or main memory can
control the amount of ESQA storage used by the following services:
v Shared memory
v Memory map files
v ptrace
v fork (copy-on-write)

The following statements in the BPXPRMxx member of SYS1.PARMLIB are the
primary means of controlling consumption by UNIX services:
v MAXSHAREPAGES controls the maximum number of shared pages to be used

for fork, shared memory, memory map files, and ptrace. ESQA storage is
required for each shared page.

v FORKCOPY determines whether fork should use copy-on-write support.
Copy-on-write support should normally reduce the cost of fork by removing the
need to copy all the parent's virtual storage to the child address space. However,
on systems with storage constraints, the benefit of copy-on-write might be
outweighed by the impact on ESQA storage.

390 z/OS V2R2 UNIX System Services Planning

Follow these guidelines:
– If the runtime library is in the link pack area, specify FORKCOPY(COPY).
– If the runtime library is not in the link pack area, specify FORKCOPY(COW).

Other statements in the BPXPRMxx member provide more detailed control of how
shared memory, and memory map files can be used.

See the BPXPRMxx topic in z/OS MVS Initialization and Tuning Reference for a
complete description of each BPXPRMxx statement. For more detail on ESQA and
other storage requirements for MVS, see “Evaluating virtual memory needs” on
page 17.

Tip: Consider adjusting MAXSHAREPAGES on an active system. Dynamically
decreasing the number of pages available to ESQA might cause errors because, for
those jobs, the ESQA limit might be reached or exceeded. It is possible that shared
programs will not be able to be loaded and fork() might not succeed. This situation
will exist until the workload adjusts to the new lower limit.

Controlling dispatching priorities
The setpriority() and chpriority() functions let the caller set the dispatching priority
for a process, a process group, or a user. The priority value that is specified can
range from -20 to 19. On this scale, -20 is highest priority and 19 is lowest priority.
The nice() function allows a calling process to change its own priority.

Resulting nice() values can range from 0 to 39, with 0 being the highest priority
and 39 being the lowest. With all three services, appropriate privileges are required
to increase the priority of one or more processes.

Priority values (-20 to 19) and nice() values (0 to 39) are mapped one-to-one such
that nice() values are always 20 higher than priority values. All processes start with
a priority value of 0 and a nice() value of 20.

priority value nice value
(setpriority and chpriority) (nice)
---------------------------- ----------

-20 A 0
. | higher priority .
. | .
. | .
0 -- start here 20
. | .
. | .
. | lower priority .

+19 V 39

In general, do not enable nice(), setpriority(), and chpriority() support. Instead, you
should only use normal SRM controls. However, nice(), setpriority(), and
chpriority() support is provided. This support interfaces with SRM and workload
manager to provide system control and monitoring support.

If your installation plans to support the cron daemon, setpriority() support might
be needed. cron allows interactive users to schedule work to run in the
background at various times in the future. Normally, this background work should
run at a lower priority than other interactive work. By default, cron uses
setpriority() to lower the priority of batch work it starts. The return code is not
checked, so if the setpriority() call fails, the batch work runs at the same priority as
other forked children. This could become a problem if background work started by
cron begins to affect the responsiveness of foreground interactive work. In this

Chapter 18. Tuning performance 391

case, it might be appropriate to customize your system to support three levels of
dispatching priority (as illustrated in the following example).

To enable the nice(), setpriority(), and chpriority() functions, an installation must
specify a PRIORITYPG statement or PRIORITYGOAL statement in BPXPRMxx. The
first value corresponds to a priority value of -20 (very high priority). The next
corresponds to a priority value of -19, and so on until the 40th value corresponds
with a priority value of 19. If fewer than 40 values are specified, the last value is
propagated through the remaining priority values. The same performance group
can be specified several times.

Installations that are running in goal mode to exploit MVS workload manager can
enable nice(), setpriority(), and chpriority() support using the PRIORITYGOAL
statement in the BPXPRMxx parmlib member. They must specify a service class for
each possible priority value (-20 to 19). If fewer than 40 service classes are
specified, the last service class is propagated to all remaining priority values. The
same service class can be specified several times. All service classes specified must
appear in your current service policy.

Tip: Do not specify PRIORITYPG and PRIORITYGOAL in BPXPRMxx unless you
need nice() and setpriority() support. It is simplest and best to give MVS full
control over priorities of work.

System limits and process limits
Limits can be set for the system (system-wide limits) or for individual processes
(process limits).

System-wide limits, which are limits that apply to every process, are set in the
BPXPRMxx member of SYS1.PARMLIB. You can display limits defined in
BPXPRMxx by using the operator commands D OMVS,OPTIONS and D
OMVS,LIMITS.
v Limits associated with an MVS application derive their value from MVS. The

soft and hard limit might be different when an MVS unit of work is dubbed.
v Limits for processes initiated by z/OS UNIX that cause an identity change, such

as telnet, rlogin or a daemon process using setuid or exec, are created with the
same hard and soft limits.

Process limits are limits that apply to individual processes. You can set some
process limits by using the RACF user profile segment. Some process limits, such
as the disk space, allow for a file or the size of a dump are set in BPXPRMxx.
v You can control the amount of resources used by specified z/OS UNIX users by

setting individual limits for these users, as described in “Setting limits for users”
on page 66. These limits apply to all users except for those with a UID of 0.
Normally, when a process is initially dubbed, the soft limit is inherited from
MVS and the hard limit is set in the BPXPRMxx parmlib member.
For more information about UID(0) superuser authority, see “Obtaining security
information about users” on page 63. Users with UID(0) will still have a limit
but they can change it while other users can only change their soft limits.

v You can set limits on a process for resources such virtual storage space after you
know which resources the application will need, and how the operating system
affects application limits. For information about the types of processes and how
they are created, see “Setting process limits in z/OS UNIX” on page 395.

v You can use the RACF ADDUSER and ALTUSER commands to specify the
ASSIZEMAX limit on a per-user basis. See the topic on limiting the use of

392 z/OS V2R2 UNIX System Services Planning

memory objects in z/OS MVS Programming: Extended Addressability Guide, which
discusses the use of MEMLIMIT. Table 42 on page 396 lists the process limits
that you can set.

Before setting process limits as described in “Setting process limits in z/OS UNIX”
on page 395, you need to understand how z/OS UNIX applications interact with
the operating system and take into consideration all services that affect that
resource. Then you can decide what soft and hard limits the application needs. For
an explanation soft and hard limits, see “What are hard limits?” and “What are
soft limits?.”

What are hard limits?
The hard limit is the maximum value that a process's application can raise a soft
limit to. The hard limit is derived from z/OS UNIX or RACF.
v Use BPXPRMxx statements to define z/OS UNIX defaults. Defaults exist for

z/OS UNIX processes even when none are defined in BPXPRMxx. To find out
what the defaults are, see the BPXPRMxx topic in z/OS MVS Initialization and
Tuning Reference.

v Limits defined in the RACF user profile. See Table 42 on page 396 for a list of
hard limits that are defined in the RACF user profile.

z/OS UNIX mechanisms that affect limits are setrlimit(), inheritance from the
parent and spawn inheritance structure (BPXYINHE), identity change, and
dubbing. Any process can raise the soft limits to the hard limits. A superuser can
raise both the hard and soft limits. A fork/spawn child inherits the same limits
unless the parent changed the limits in the spawn inheritance structure or there is
an identity change. The SETOMVS operator command can also affect these
settings.

What are soft limits?
The soft limit is the value of the current process limit that is enforced by the
operating system. If a failure such as an abend occurs, the application might want
to temporarily change the soft limit for a specific work item, or change the limits
of child processes that it creates. For example, a larger server daemon might
reduce the amount of virtual memory available to a spawned child. New processes
receive the same limits as the parent process as long as the installation or the
application do not alter those values and an identity change does not occur. The
soft limits for CPUTIME, ASSIZE and MEMLIMIT can be affected by several MVS
limits mechanisms.

MVS limits are the soft limits provided to z/OS UNIX processes when z/OS UNIX
services are invoked using TSO login, STC, or JCL. At the first request for a kernel
service, the system dubs the program as a z/OS UNIX process. When a traditional
MVS unit of work is first dubbed, the soft limits are normally obtained from MVS.
The hard limit is normally obtained from BPXPRMxx if it is higher than the soft
limit.

New processes that are created by a dubbed user receive the same soft and hard
limits as the parent process if the installation has not changed the process limits
and an identity change has not occurred.

How are limits handled after an identity change?
When the installation does not use any other method to define a limit, then exec
and spawn handle limits after an identity change. After an identity change, an exec

Chapter 18. Tuning performance 393

sets hard and soft limits to z/OS UNIX values. The change to z/OS UNIX values
can also be accomplished by using a setuid() followed by an exec().

Spawn() can also cause an identity change. A spawned child that was created with
a different identity than the parent using InheUserid or _BPX_USERID sets the
hard and soft limits to the z/OS UNIX values for the new identity. A forked child
with no identity change inherits the settings of the parent.

Task-level security (pthread_security or _login) causes spawn to use the limits of
the new identity.

Resources values that processes receive when they are dubbed a process use the
RACF profile to determine the hard limit if it is higher than the soft (current) limit.
It is also used when processes are initiated by a daemon process using an exec
after setuid(). In this case, both the RLIMIT_AS hard and soft limits are set to the
address-space-size value.

Inheriting soft limits
Normally, soft and hard limits are not changed when a new process is created
unless the creating process requests a change. Both the soft limits and the hard
limits are set to the value that was specified the parent's inheritance structure, if it
is requested. The values of both limits are raised to the hard limit if a child was
spawned with a new identity, or if an exec occurred after the identity was
changed.

Setting a global value in BPXPRMxx (using the MAXASSIZE parameter) provides
the values that the system will use to assign to all processes. The RACF security
administrator can override these values by defining the MEMLIMIT value for
individual identities in the associated OMVS segment.

The only time MEMLIMIT or ASSIZE from the OMVS segment is used to define
these limits for inheritance is with a spawn with identity change or an exec after
setuid. For more details, see “What happens when an identity change occurs?.”

What happens when an identity change occurs?
When an identity change occurs, the new identity might or might not have an
OMVS segment associated with it. If an identity change takes place, the following
happens:
1. If the new identity has the limit defined by RACF, that limit overrides any

other system control including the IEFUSI installation exit and the parent's
inheritance structure.

2. If there is no RACF segment for the new identity, the IEFUSI installation exit
might override the inheritance structure and set the limit.

3. If a RACF limit was not set for the new identity and if IEFUSI did not set the
limit, the Inhe inheritance overrides the current values of the parent's
inheritance structure.

4. The setting of the MAXASSIZE parameter in BPXPRMxx is the default for a
new z/OS UNIX identity if none of the other values applied (except for
MEMLIMIT, which is set in SMFPRMxx).

Setuid() alone or child processes created by either fork or spawn after a setuid
retains the limits behavior of the previous identity.

394 z/OS V2R2 UNIX System Services Planning

What happens if an identity change does not take place when
a child is created?

Normally, the child inherits the parent's current hard and soft limits. However, a
change to the child's limit causes the child's hard and soft limit to be set to the
hard limit. The child's limit can be changed by the parent in the inheritance
structure on spawn() or by IEFUSI. How the system honors changes made in the
inheritance structure or IEFUSI will vary depending on the parent's security
setting.

When the same limit is not defined in the OMVS segment, the system will honor
IEFUSI even if the parent requests a change using the inheritance structure (Inhe).

After a limit has been defined for a parent identity by the security administrator,
that limit is trusted before other system components only if it is higher than the
MVS limits. When a limit is defined in the OMVS segment:
v The system ignores requests by IEFUSI to change the limit in the OMVS segment

if the limit in the OMVS segment is higher than the limit set in IEFUSI. The
OMVS segment is in control of ASSIZE and MEMLIMIT. If the OMVS segment
value is lower than IEFUSI, then IEFUSI sets hard and soft limits for both
MEMLIMIT and ASSIZE. IEFUSI is in control of ASSIZE and MEMLIMIT.

v If the OMVS segment is in control of ASSIZE and MEMLIMIT for the parent, the
system also ignores requests by IEFUSI to change limits for child processes that
were created by that identity. In this case, the child is created with the parent's
current limits. If IEFUSI is in control of ASSIZE and MEMLIMIT for the parent,
the child's MEMLIMIT and ASSIZE will be set by IEFUSI. In both cases, if
IEFUSI is active in the system and is attempting to control limits for an OMVS
address space, the inheritance structure (Inhe) is ignored for MEMLIMIT and
ASSIZE.

What happens if an identity change does not take place when
a new process image is created by exec()?

When a new process image is created, limits are not affected unless a limit has
been defined in the OMVS segment, an IEFUSI exit modifies the limit, or an
identity change occurs. When the limit is controlled by system security or IEFUSI,
the hard and soft limit are changed to the hard limit in the new image.

Note: If RACF or UNIX limits for CPUTIMEMAX, ASSIZEMAX, or MEMLIMIT
are higher than the MVS limits, they are used for the hard limit.

Specifying a new identity
You can specify a new identity in the following ways:
v Inheritance structure
v The _BPX_USERID environment variable
v The pthread_security callable service
v _login
v The setuid() function

For more information about APIs that affect process limits, see z/OS UNIX System
Services Programming: Assembler Callable Services Reference.

Setting process limits in z/OS UNIX
System-wide limits are defined in the BPXPRMxx parmlib member. Table 40 on
page 396 lists the BPXPRMxx statements that you can use to set system-wide

Chapter 18. Tuning performance 395

limits. If you specify the SHRLIBMAXPAGES parameter, it will be accepted but
will not have any impact on the system. The value that you specify will never be
reached, because user-shared library objects are no longer supported.

Table 40. System-wide limits that can be defined in BPXPRMxx. This table lists the
system-wide limits that can be defined in the BPXPRMxx parmlib member.

IPCMSGNIDS IPCSHMMPAGES MAXPTYS

IPCMSGQBYTES IPCSHMNSEGS MAXRTYS

IPCMSGQMNUM IPCSHMSPAGES MAXSHAREPAGES

IPCSEMNIDS IPCSHMNIDS MAXUIDS

IPCSEMNSEMS MAXASSIZE SHRLIBMAXPAGES

IPCSEMNOPS MAXMMAPAREA SHRLIBRGNSIZE

Process-level limits are defined in the BPXPRMxx parmlib member. Table 41 lists
the BPXPRMxx statements that you can use to set process-level limits.

Table 41. Process-level limits that can be defined in BPXPRMxx

MAXASSIZE MAXFILEPROC MAXPROCSYS

MAXCORESIZE MAXPIPEUSER MAXQUEUEDSIGS

MAXCPUTIME MAXPROCUSER MAXTHREADS

MAXCPUTIME specifies the RLIMIT_CPU hard limit resource values that
processes receive when they are dubbed a process. RLIMIT_CPU indicates the CPU
time that a process is allowed to use, in seconds. The soft limit is obtained from
MVS. If the soft limit value from MVS is greater than the MAXCPUTIME value,
the hard limit is set to the soft limit. This value is also used when processes are
initiated by a daemon process using an exec after setuid(). In this case, both the
RLIMIT_CPU hard and soft limit values are set to the MAXCPUTIME value.
v For processes running in or forked from TSO or BATCH, the MAXCPUTIME

value has no effect. A superuser can override this value by specifying a new
time limit in the spawn inheritance structure on __spawn().

v For processes running in or forked from TSO or BATCH, the MAXCPUTIME
value has no effect. The TIME limit is inherited from the parent. If a TIME
parameter is specified on the JCL for the started task, then that value is used. If
not, then the TIME value is taken from the JES default TIME value.

v For processes created by rlogind or another daemon, MAXCPUTIME is the time
limit for the address space.

Table 42 lists the hard limits that can be defined in the RACF user profile.

Table 42. Hard limits that can be defined in the RACF user profile. This table lists the hard
limits that can be defined in the RACF user profile.

Hard limit Description

ASSIZEMAX The maximum address space size (RLIMIT_AS) for the z/OS
UNIX user.

CPUTIMEMAX The maximum CPU time (RLIMIT_CPU) for the z/OS UNIX
user.

FILEPROCMAX The maximum number of files per process for the z/OS UNIX
user.

396 z/OS V2R2 UNIX System Services Planning

Table 42. Hard limits that can be defined in the RACF user profile (continued). This table
lists the hard limits that can be defined in the RACF user profile.

Hard limit Description

MEMLIMIT The maximum storage above the bar (nonshared memory
size). MEMLIMIT is initially set in the SMFPRMxx parmlib
member.

MMAPAREAMAX The maximum memory map size for the z/OS UNIX user.

PROCUSERMAX The maximum number of processes per UID for thz/OS UNIX
user.

SHMEMMAX The maximum size of shared memory

THREADSMAX The maximum number of threads per process for the z/OS
UNIX user.

Steps for setting process limits in z/OS UNIX
Before you begin: You need to understand how the MVS limits affect z/OS UNIX
processes. For an explanation of soft and hard limits, see “What are hard limits?”
on page 393 and “What are soft limits?” on page 393. You can modify some limits.
Parameters are provided by batch JCL, TSO logon, and started to limit region size
and high memory. Some MVS system-wide limits such as MEMLIMIT are initially
set in SMFPRMxx.

You also need to have planned the system-wide limits that will affect all z/OS
UNIX users. For more information, see “Defining system limits” on page 28.

Perform the following steps to set process limits in z/OS UNIX.
1. Determine the sources that your installation uses to control MVS limits and

z/OS UNIX limits. For more details, see “Tuning limits in BPXPRMxx” on page
388. Also see the topic on limiting the use of memory objects in z/OS MVS
Programming: Extended Addressability Guide, which discusses region sizes.

2. Specify the z/OS UNIX system-wide limits in BPXPRMxx. The system-wide
limits are listed in Table 40 on page 396. If you do not set them, defaults are
used. To look up the defaults, go to z/OS MVS Initialization and Tuning Reference.

3. Specify higher limits for individual processes, if needed. For an explanation
about setting process limits in general, see “Setting limits for users” on page 66.
Also see the topic on limiting the use of memory objects in z/OS MVS
Programming: Extended Addressability Guide, which discusses the use of
MEMLIMIT.
You can use any of the following to change z/OS UNIX limits:
v The SETOMVS operator command
v z/OS UNIX programming APIs
v RACF
v z/OS UNIX commands
v setrlimit
v spawn()
You can use the RACF ADDUSER and ALTUSER commands to specify the
ASSIZEMAX limit on a per-user basis. Table 42 on page 396 lists the process
limits that you can set.

Chapter 18. Tuning performance 397

Rule: To define or change information in the OMVS segment of a user profile,
including your own, you must have the SPECIAL attribute or at least UPDATE
authority to the segment through field-level access checking.
For more information about the OMVS segment in RACF user profiles and a
complete list of what you can specify, see z/OS Security Server RACF Security
Administrator's Guide.
Resource values that processes receive when they are dubbed a process will use
the RACF profile to determine the hard limit if it is higher than the soft
(current) limit. It is also used when processes are initiated by a daemon process
using an exec after setuid(). In this case, both the RLIMT_AS hard and soft
limits are set to the address-space-size value

When you are done, you have set process limits in z/OS UNIX.

Note: Limits defined in the RACF user profile or modified by the IEFUSI
installation exit override limits defined by z/OS UNIX processes.

Using the IEFUSI installation exit to set process limits
The IEFUSI and IEALIMIT installation exits control region size and memory above
the bar, but z/OS UNIX ignores changes made by IEALIMIT. Changes made by
IEFUSI to the region limit and hi memory limit are used if a RACF user profile is
not used to define these values for the user. The IEFUSI exit can change the values
used by the system for virtual storage available above and below the 16M line, and
hi memory. Normally, z/OS UNIX takes action to ensure that these changes are
honored. When a limit is specifically defined for a user via the OMVS segment,
z/OS UNIX will ignore the changes made by the IEFUSI exit if the ASSIZE or
MEMLIMIT in the OMVS segment is specified as a higher value than IEFUSI.

Because z/OS UNIX limits are normally inherited from MVS, the IEFUSI exit has
already had a chance to modify the region size and MEMLIMIT for TSO, batch,
and started task. The exit does not have to be called again during OMVS
subsystem processing. z/OS UNIX processes such as telnet and rlogin do not have
a chance to change the limits, so IEFUSI is not needed to control those limits.

Rule: If you install your own IEFUSI exit, update your SMFPRMxx parmlib
member to exclude OMVS work and use z/OS UNIX to control the process limit.
Specify:
SUBSYS(OMVS,NOEXITS)

Started subtasks such as OMVS, BPXOINIT, and colony address spaces fall under
SUBSYS STC. These address spaces might be subject to IEFUSI limitations if
IEFUSI exits are allowed for SUBSYS STC. IBM strongly recommends that you
always set REGION=0 and MEMLIMIT=NOLIMIT for OMVS, BPXOINIT, and
colony address spaces.

Message IEE968I is issued when the SET SMF= command is processed because
z/OS UNIX does not support the SSI Notify function. You can ignore this message.

After a hard limit is defined in the user RACF profile, the parents' hard and soft
values for that limit will override IEFUSI, MVS, and z/OS UNIX changes in any
child processes or executed programs. An executed or spawned process after an
identity change always set hard and soft limits to the OMVS limit of the new
identity. Other processes exhibit this behavior only if the value in the user RACF
profile was higher than the value provided by MVS when the process was dubbed.

398 z/OS V2R2 UNIX System Services Planning

For more information about the IEFUSI installation exit, see “Using the IEFUSI step
initiation exit” on page 424 and z/OS MVS Installation Exits.

Displaying process limits
You can use any of the following to display process limits:
v ps shell command
v ulimit shell command
v D OMVS,LIMIT operator command
v D OMVS,OPTIONS
v MEMLIMIT
v ASSIZEMAX

You can display the RACF limit using the following RACF command:
LU user NORACF OMVS

For more information about how to obtain security information for users, see
“Obtaining security information about users” on page 63. You can obtain the
information if the security administrator has set up field-level access for users for
the OMVS segment of the RACF user profile as described in “Setting up field-level
access for the OMVS segment of a user profile” on page 64.

Example: Issue:
ps

Result: Following is a sample output:

/shut/home/wellie2==>ps ; alias to ps -o ruser,pid,vsz,vsz64,vszlmt64,comm
RUSER PID VSZ VSZ64 VSZLMT64 COMMAND

Erin 24 2432 0 20M sh -L
Erin 29 2432 0 20M /tst/bin/ps -oruser,pid,vsz,vsz64,vszlmt64 -oargs

Example: Issue:
ulimit -a

Result: Following is a sample output:

core file 8192b
cpu time unlimited
data size unlimited
file size unlimited
stack size unlimited
file descriptors 256
address space 259192k
memory above bar 17592186040320m

Example: Assuming that the PID is 0050331651:
d omvs,limits,pid=0050331651

Result: Following is a sample output:

Chapter 18. Tuning performance 399

BPXO051I 16.42.32 DISPLAY OMVS 277
OMVS 000D ACTIVE OMVS=(6F)
USER JOBNAME ASID PID PPID STATE START CT_SECS
MEGA MEGA1 0020 0050331651 33554434 1CI--- 16.31.46 .051

LATCHWAITPID= 0 CMD=sh -L
PROCESS LIMITS: LIMMSG=NONE

CURRENT HIGHWATER PROCESS
USAGE USAGE LIMIT

MAXFILEPROC 6 7 256
MAXFILESIZE --- --- NOLIMIT
MAXPROCUSER 3 4 NOLIMIT
MAXQUEUEDSIGS 0 1 1000
MAXTHREADS 0 0 200
MAXTHREAD 0 0 1000
IPCSHMNSEGS 0 0 500
MAXCORESIZE --- --- 4194304
MAXMEMLIMIT 0 0 16383P

If you do not specify the PID, the display will show the system-wide limits

Changing process limits
You can set a system-wide limit using these BPXPRMxx statements and then
specify the process limit using the RACF ADDUSER or ALTUSER command. The
OMVS operator command can also be used.
v MAXASSIZE (see “MAXASSIZE” on page 29
v MAXCPUTIME (see “MAXCPUTIME” on page 29)
v MAXFILEPROC (see “MAXFILEPROC” on page 30)
v MAXMMAPAREA (see “MAXMMAPAREA” on page 30)
v MAXPIPEUSER (see “MAXPIPEUSER” on page 31
v MAXPROCUSER (see “MAXPROCUSER” on page 32)
v MAXTHREADS (see “MAXTHREADS” on page 33)

To change the MEMLIMIT of a specific process (or to be more exact, to change the
MEMLIMIT value of the ASID that the process is running in), use the SETOMVS
command.

Steps for changing the process limits for an active process
Before you begin: You need to know the PID of the process. To find the process,
issue D OMVS,A=ALL.

Perform the following steps to change the process limits for an active process.
1. Display information about the current parmlib limits for a process with the ID

nnn.
Example: Issue:
d omvs,limits,pid=nnn

Result: You will get a display similar to the following:

400 z/OS V2R2 UNIX System Services Planning

BPXO051I 16.42.32 DISPLAY OMVS 277
OMVS 000D ACTIVE OMVS=(6F)
USER JOBNAME ASID PID PPID STATE START CT_SECS
MEGA MEGA1 0020 0050331651 33554434 1CI--- 16.31.46 .051

LATCHWAITPID= 0 CMD=sh -L
PROCESS LIMITS: LIMMSG=NONE

CURRENT HIGHWATER PROCESS
USAGE USAGE LIMIT

MAXFILEPROC 6 7 256
MAXFILESIZE --- --- NOLIMIT
MAXPROCUSER 3 4 NOLIMIT
MAXQUEUEDSIGS 0 1 1000
MAXTHREADS 0 0 200
MAXTHREADTASKS 0 0 1000
IPCSHMNSEGS 0 0 500
MAXCORESIZE --- --- 4194304
MAXMEMLIMIT 0 0 16383P

2. Change the high memory limit, MEMLIMIT, in the address space containing

PID nnn.
Example: Issue:
SETOMVS PID=nnn, memlimit=16M

Result: You will get a message that the SETOMVS command was successful.

3. Check that the limit has been changed.
Example: Issue:
D OMVS,LIMITS,PID=nnn

Result: You will see a display similar to the following:

BPXO051I 16.44.40 DISPLAY OMVS 283 C
OMVS 000D ACTIVE OMVS=(6F)
USER JOBNAME ASID PID PPID STATE START CT_SECS
MEGA MEGA1 0020 0050331651 33554434 1CI--- 16.31.46 .051

LATCHWAITPID= 0 CMD=sh -L
PROCESS LIMITS: LIMMSG=NONE

CURRENT HIGHWATER PROCESS
USAGE USAGE LIMIT

MAXFILEPROC 6 7 256
MAXFILESIZE --- --- NOLIMIT
MAXPROCUSER 3 4 NOLIMIT
MAXQUEUEDSIGS 0 1 1000
MAXTHREADS 0 0 200
MAXTHREADTASKS 0 0 1000
IPCSHMNSEGS 0 0 500
MAXCORESIZE --- --- 4194304
MAXMEMLIMIT 0 0 16M *

When you are done, you have changed the process limit.

Reference information
For more information, see the following:
v “Defining z/OS UNIX users to RACF” on page 57
v “Storing user-specific information in OMVS segments” on page 60
v “Setting limits for users” on page 66
v “Steps for obtaining security information about users” on page 63

Chapter 18. Tuning performance 401

v For information about the RACF ADDUSER and LISTUSER commands, see z/OS
Security Server RACF Command Language Reference .

v z/OS MVS System Management Facilities (SMF)

v z/OS MVS Initialization and Tuning Reference

v z/OS MVS Programming: Extended Addressability Guide

Improving performance of the z/OS shell
You have several options if you want to fine-tune performance of the z/OS shell.
You can use the _BPX_SHAREAS and _BPX_SPAWN_SCRIPT . Other helpful hints
include controlling the use of STEPLIBs and ensuring that the sticky bit is on.

Guideline: Do not specify PRIORITYPG and PRIORITYGOAL in BPXPRMxx
unless you need nice() and setpriority() support. It is simplest and best to give
MVS full control over priorities of work.

Setting _BPX_SHAREAS and _BPX_SPAWN_SCRIPT
To improve the performance of z/OS UNIX shell utilities, use the following
environment variables: _BPX_SHAREAS and _BPX_SPAWN_SCRIPT. Note that
they cannot be used for the tcsh shell.
v Set _BPX_SHAREAS to YES. (REUSE is the same as YES.) The shell will run

foreground processes in the same address space as the shell is running in, which
saves the overhead of a fork() and exec().
To improve performance for all shell users, /etc/profile or $HOME/.profile
should set BPX_SHAREAS=YES as follows:
export _BPX_SHAREAS=YES

The spawn() runs faster, the child process consumes fewer resources, and the
system can support more resources. However, when running multiple processes
with BPX_SHAREAS=YES, the processes cannot change identity information. For
example, setuid() and setgid() will fail. You cannot execute setuid() or setgid() in
the same address space as another process. Also, when the parent ends, the child
will end because it is a subtask.
If the extended attribute for the shared address space is not set, the program will
not run in a shared address space, regardless of the setting of _BPX_SHAREAS.
The attribute is set by extattr +s and reset by extattr -s. If the attribute is set,
_BPX_SHAREAS has precedence.

v To improve performance when running the shell scripts, set
_BPX_SPAWN_SCRIPT to YES. The spawn() service will run files that are not in
the correct format to be either an executable or a REXX exec as shell scripts
directly from the spawn() function. Because the shell uses spawn() to run
foreground commands, setting this variable to YES eliminates the additional
overhead of the shell invoking fork after receiving ENOEXEC for an input shell
script.
To provide this performance benefit to all shell users, set the environment
variable in /etc/profile or $HOME/.profile:
export _BPX_SPAWN_SCRIPT=YES

However, there might be exceptions, depending on your environment.

Guideline: Because spawn() uses system resources that require the user's private
storage, excessive use might lead to storage shortages in the user's address space.

402 z/OS V2R2 UNIX System Services Planning

Controlling use of STEPLIBs
You can improve shell performance by controlling the use of STEPLIBs. A STEPLIB
is a set of private libraries used to store a new or test version of an application
program, such as a new version of a runtime library. To improve performance of
the z/OS shell, avoid propagating STEPLIBs by using one of the following options:
v If you enter the OMVS command either from ISPF or with STEPLIB data sets

allocated, include the statements in the shell profile. For example:
if [-z "$STEPLIB"] &&; tty -s;
then

export STEPLIB=none
exec sh -L

fi

The STEPLIB data sets are not extensively searched or propagated from the shell
process to the shell command on exec(). They are also not propagated to shell
processes, which might have been necessary because a specific release level of
the Language Environment runtime library is needed.

v If you use the OMVS command to login to the shell, you can improve
performance by using a logon procedure that does not contain any JOBLIB or
STEPLIB DD allocations. Using that procedure reduces the amount of storage
that is copied for fork(). It also prevents excessive searching of STEPLIB data
sets and the propagation of STEPLIB data sets from the shell process to the shell
command processes on exec().
If you enter the OMVS command from ISPF or with STEPLIB data sets allocated,
you can put certain statements in either /etc/profile or $HOME/.profile.

v If you export a specific STEPLIB, you can have the Language Environment
runtime library (SCEERUN) data set allocated as part of ISPLLIB to invoke
OMVS from ISPF. In this case, you need to customize $HOME/.profile so that
subset of the STEPLIB data sets is propagated
Example: Customize $HOME/.profile so that only the STEPLIB data set
CEE.SCEERUN containing the Language Environment runtime library is
propagated.

if [-z "$STEPLIB"] &&; tty -s;
then

export STEPLIB=CEE.SCEERUN;
exec sh -L

fi

Result: A module found in CEE.SCEERUN is loaded from that library into the
user's private storage, even if the same module has been put into the LPA. This
action can become a concern if the STEPLIB points to a Language Environment
runtime library, because several loads are done for each exec() to initialize the
environment. If you have a number of users accessing this load library, you can
avoid directory I/O as well as I/O to load frequently used members by caching
the library in LLA and VLF.

Checking that the sticky bit is set
The z/OS shell is shipped with the sticky bit set on, which reduces I/O and
improves performance. Check to see that the sticky bit is still on by issuing:
ls -l /bin/sh

The first part of the output should be:
-rwxr-xr-t

The t indicates that the sticky bit is on.

Chapter 18. Tuning performance 403

Organizing file systems to improve performance
How well the file system performs depends on how it is organized. Because a
mountable file system must reside on a single DASD volume, several file systems
on a volume or too much activity in a single file system can cause DASD I/O
response time to be a bottleneck. In addition, some file system locking is done on a
mountable file system basis. For these reasons, each user should normally have a
unique mountable file system.

Another consideration is the placement of files in the file system hierarchy. Files
deep in the hierarchy require several lookups each time they are opened.

Improving performance of security checking
To improve the performance of security checking done for z/OS UNIX, define the
BPX.SAFFASTPATH FACILITY class profile. This reduces overhead when doing
z/OS UNIX security checks for a wide variety of operations. These include file
access checking, IPC access checking, and process ownership checking. For more
information about the BPX.SAFFASTPATH profile, see “Fastpath support for
System Authorization Facility (SAF)” on page 321.

OMVS command and TSO/E response time
When a user goes into the shell environment using the OMVS command from
TSO/E, very long TSO/E response times (several seconds) might be recorded. This
can affect those WLM goals for TSO users that are based on response time.

Normally, a TSO/E transaction starts when a user enters a command and ends
when the command is completed. After the TSO/E command completes, a TGET
WAIT is issued, indicating that the current transaction has completed and a new
transaction will start when there is more work to be done.

In the OMVS shell environment, however, things work a little differently. A
transaction starts when a command is issued from the terminal. After the
command is issued, polling is done to wait for output to return from the
command. Every half second, there is a test for output and a test (TGET NOWAIT)
for terminal input. This goes on for 20 seconds before the session goes into INPUT
mode and does a TGET WAIT for terminal input only. TGET NOWAIT does not
end the current transaction unless terminal input is found. If there is no more
terminal input for over 20 seconds, the transaction does not end until the TGET
WAIT is issued and the session goes into INPUT mode.

In effect, TSO/E users in the shell environment can experience response times of
up to 20 seconds, often with little service consumption. Response times under 20
seconds occur only when users immediately enter the next command.

404 z/OS V2R2 UNIX System Services Planning

Chapter 19. Setting up for sockets

A socket is a method of communication between two processes that allows
communication in two directions, in contrast to pipes, which allow communication
in one direction. The processes using a socket can be on the same system or on
different systems in the same network. A program creates a socket with the
socket() function.

When setting up for sockets, your two choices are INET and CINET (Common
INET). These are network sockets, and this topic describes those sockets in detail.
Local network sockets (AF_UNIX), which do not have network connectivity, are
also available, but are not discussed. INET and CINET are file systems that are in
the AF_INET and AF_INET6 family of sockets. This topic helps you decide which
file system is best for you to use and describes how to set it up. It contains
examples that are based on an assumed sample configuration. You will need to
modify the examples based on the requirements for your installation.

User-written socket applications can use TCP/IP as a communication vehicle.
TCP/IP is also the transport provider when users rlogin or telnet from a UNIX
workstation directly into the z/OS shell.

You can use CINET configured with just one stack, but this configuration will not
run as efficiently as INET. “Choosing between INET or CINET” on page 407
provides background information that you may need.

List of subtasks

Subtask Associated procedure

Customizing BPXPRMxx for CINET systems “Steps for customizing BPXPRMxx for
CINET” on page 411

Using single stacks
In a single stack environment, the socket application program is always associated
with the single TCP/IP stack. Figure 46 on page 406 shows an example of a z/OS
UNIX system that uses a single stack.

© Copyright IBM Corp. 1996, 2016 405

The TYPE(INET) parameter on the FILESYSTYPE statement defines INET.

INET is defined by the presence of a FILESYSTYPE statement for a socket file
system whose ENTRYPOINT is not BPXTCINT. By convention, and in this topic,
TYPE(INET) parameter for INET configurations is specified. The entry point for
INET is typically EZBPFINI, for z/OS Communications Server (TCP/IP Services).

Using multiple stacks
In the z/OS UNIX Common INET (CINET) environment, the application is
associated with multiple TCP/IP stacks unless the application specifically
associates itself with a particular stack using the socket call setibmopt(). Figure 47
on page 407 shows an example of a z/OS UNIX system that uses multiple stacks.

INET physical file system

socket

stack

IP network

Application

Figure 46. A z/OS UNIX system using a single stack

406 z/OS V2R2 UNIX System Services Planning

CINET is defined by the presence of a FILESYSTYPE statement with an
ENTRYPOINT of BPXTCINT and the presence of one or more SUBFILESYSTYPE
statements that define the actual TCP/IP stacks to be used. By convention, and in
this topic, TYPE(CINET) parameter for CINET configurations is used. The
entrypoints for the SUBFILESYSTYPE statements are typically EZBPFINI for
several instances of the daemon, which is used to route messages, is shipped with
(TCP/IP Services) or the entry point for a conforming TCP/IP stack that is
provided by a vendor.

For the example in Figure 47, you would have the two SUBFILESYSTYPE
statements to define the two stacks shown in the illustration.

Choosing between INET or CINET
Previous enhancements to TCP/IP have reduced the need for multiple TCP/IP
stacks. CINET may still be a viable choice if you are isolating access from different
networks to the same z/OS UNIX system. An example of such a situation would
be internal company networks versus internet access.

Both this topic and z/OS Communications Server: IP Configuration Guide contain
information about running one TCP/IP stack and multiple TCP/IP stacks

Local INET (LINET) has been retired. SUBFILESYSTYPE
ENTRYPOINT(BPXTLINT) was originally supplied as an alternative stack under
CINET for a performance enhancement for AF_INET socket sessions between
programs on the same system. The performance improvements that have been
made in the TCP/IP socket stack in the past have removed the need for LINET. If
LINET is started, an informational message is sent to the system console and
LINET will deactivate itself. This will not affect the use of sockets, and you can
delete the definition of LINET from your BPXPRMxx member at your convenience.

CINET physical file system

socket

stack

IP network

Application

IP network

stack

Figure 47. A z/OS UNIX system using multiple stacks.

Chapter 19. Setting up for sockets 407

Setting up for INET
Guideline: Use INET unless you have a special reason to use CINET.

To use the single transport provider support, see the following example of the
statements that should be in the BPXPRMxx member of SYS1.PARMLIB.
FILESYSTYPE TYPE(INET)

ENTRYPOINT(EZBPFINI)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(64000)
TYPE(INET)

Tip: To use the single transport provider support, change the MAXSOCKETS value
to 64000.

IBM Communications Server for z/OS supports the AF_INET6 address family,
which allows socket applications to use the IPv6 APIs. See z/OS Communications
Server: IPv6 Network and Appl Design Guide for more information about IPv6 APIs.

If you want to use the single transport provider support with both AF_INET and
AF_INET6 address families, the following excerpt shows an example of the
statements that should be in the BPXPRMxx member.
FILESYSTYPE TYPE(INET)

ENTRYPOINT(EZBPFINI)
NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)
MAXSOCKETS(64000)
TYPE(INET)

NETWORK DOMAINNAME(AF_INET6)
DOMAINNUMBER(19)
MAXSOCKETS(64000)
TYPE(INET)

Tip: You can activate AF_INET6 without recycling z/OS UNIX by adding this
NETWORK statement to a running configuration with the SETOMVS RESET=()
operator command. Specify a BPXPRMxx member that contains just this one
statement. However, the TCP/IP stack would have to be stopped and restarted in
order to pick up the new definition. You can specify a separate MAXSOCKETS
value for AF_INET6 or default to the value specified for AF_INET. In either case,
each family has its own separate maximum.

Setting up for CINET
The CINET support enables an installation to connect up to 32 transport providers
to z/OS UNIX. The user of the sockets library does not need to change any code to
take advantage of the multiple transports connected to the kernel services.

Note: The CINET support enables an installation to connect up to 32 transport
providers to z/OS UNIX. The user of the sockets library does not need to change
any code to take advantage of the multiple transports connected to the kernel
services. Note that only a maximum of eight z/OS Communications Server
TCP/IP stacks can be active concurrently.

z/OS Communications Server: IP Configuration Reference contains the sample TCP/IP
configuration files.

408 z/OS V2R2 UNIX System Services Planning

Supporting multiple transports and providing a single AF_INET or AF_INET6
image to the user means that CINET must perform a set of management and
distribution functions that govern how a socket behaves with multiple transports.
A fundamental requirement for distributing work across multiple transports is the
need to understand the IP configurations of each. The IP configurations are needed
to determine which transport should handle a bind(), a connect(), or a sendto() to a
particular Internet Protocol (IP) address. An IPv4 address is a 32-bit address
defined by the Internet protocols, and an IPv6 address is a 128-bit address defined
by the Internet protocols.

When the CINET function processes a socket request that requires it to select only
a particular transport based on an input IP address from a user, CINET uses its
copy of each transport's IP configuration to select the correct transport to process
the user's request. Copies of the IP configurations are maintained by CINET
internally and are only used for prerouting a socket call to the correct transport.
The transport that is selected performs all of the official transport functions, such
as IP routing, once the socket request reaches the transport from CINET.

The internal routing table
Each transport connected to kernel services must provide CINET with a copy of its
internal routing table. The CINET function queries the routing tables of the
transports connected to the kernel services. After the CINET prerouter function has
successfully retrieved and stored routing information from a particular transport,
message BPXF206I is issued.

For example, IBM's TCP/IP may refresh its routing tables as part of the OBEYFILE
command. Message BPXF207I is issued to the hardcopy log whenever CINET

Common INET Common INET z/OS

TCPIP2TCPIP1 TCPIP3 TCPIP4CTC/
IUTSAMEH

CTC/
IUTSAMEH

CTC

z/OS UNIX z/OS UNIX

OEAIX6OEAIX7

OEAIX10OEAIX5

OEAIX9OEAIX8

OSA Adapter OSA Adapter

OMPRoute OMPRoute OMPRoute OMPRoute

z/OS

Figure 48. Multiple transport provider support with two z/OS UNIX systems

Chapter 19. Setting up for sockets 409

deletes internal routing information for a transport. For example, when a z/OS
UNIX-to-TCP/IP connection is severed, the CINET routing information for that
TCP/IP is deleted.

You can display the network routing information for all the active transport
providers being used by CINET prerouter by using the CINET operand of the
DISPLAY OMVS operator command. For example:
D OMVS,CINET=ALL

Transport providers
The transport providers are specified with the SUBFILESYSTYPE statements in
BPXPRMxx or specified with the SETOMVS command. The default transport
provider is one of the following:
v The transport provider specified as the default on the SUBFILESYSTYPE

statement in BPXPRMxx.
v If DEFAULT was not specified, the transport provider from the first

SUBFILESYSTYPE statement will become the default transport provider while it
is active.

v If DEFAULT was not specified, the first SUBFILESYSTYPE transport provider
specified is not active, and no other stacks are active, then the first transport
provider activated becomes the default. The selection of default transport
providers can become unpredictable if stacks are stopped and restarted while the
specified default transport provider and the first SUBFILESYSTYPE transport
provider are inactive.

Limitations of IP configurations using CINET
Restrictions: System programmers and network designers should be aware of the
following information about the CINET prerouting function:
1. Home IP addresses. Two or more transports running on z/OS that connect to

z/OS UNIX may contain home IP addresses on the same network or
subnetwork. However, load balancing across transports is not done.

2. Network destinations. Two or more transports may have network destinations
that are the same. Again, load balancing across transports is not performed.

3. Metrics for network routes. All routes are equal and their metrics are
compared.
If two or more transports maintain network routes to the same destination
network, metric information is needed from each transport in order to correctly
select the best route. For IBM's TCP/IP, this is best accomplished when each
TCP/IP is running with a dynamic routing daemon (OMPROUTE). When two
or more transports maintain indirect routes to the network, statically defined
indirect routes (routes to destinations that do not reside on a transport's
directly attached links) do not provide adequate metric information to select the
shortest route to a destination network.

4. If two or more transports contain network routes with no metric information or
duplicate metrics, then the default transport is called to process the request.
The default transport is either the file system that specified DEFAULT on the
SUBFILESYSTYPE statement (if active), or it is the first transport that was
activated.

5. Host routes. Host-defined routes are always searched before network routes.
6. Severed connection to z/OS UNIX services. If a transport should sever its

connection with z/OS UNIX, all routing information for the severed transport

410 z/OS V2R2 UNIX System Services Planning

is deleted. If the severed transport maintained duplicate home or network
routes, these routes are deleted. Subsequent requests for the duplicate routes
are routed to the remaining transports.

Customizing BPXPRMxx for CINET
“Steps for customizing BPXPRMxx for CINET” shows an example of the
statements in the BPXPRMxx member to use the multiple transport provider
support.

Steps for customizing BPXPRMxx for CINET
Before you begin: You must know that:
v The names TCPIP1, TCPIP2, TCPIP3, and TCPIP4 are the names of the TCP/IP

started tasks. The names must match the job names that are associated with the
TCP/IP started task procedure.

v The first TCP/IP has been designated as the default (DEFAULT) transport
provider.

v The value specified for the TYPE operand can be any 8-character value, but that
value must match on the FILESYSTYPE statement for CINET, on the
SUBFILESYSTYPE statements for the transport providers, and on the NETWORK
statement for CINET.

Perform the following steps to customize BPXPRMxx for CINET.
1. Specify the following in BPXPRMxx:

FILESYSTYPE TYPE(CINET)
ENTRYPOINT(BPXTCINT)

2. Specify the AF_INET or dual AF_INET/AF_INET6 sockets physical file systems

that are to be activated.
SUBFILESYSTYPE NAME(TCPIP1) /* First TCPIP (TCPIP1) */

TYPE(CINET)
ENTRYPOINT(EZBPFINI)

DEFAULT

SUBFILESYSTYPE NAME(TCPIP2) /* Second TCPIP (TCPIP2) */
TYPE(CINET)
ENTRYPOINT(EZBPFINI)

SUBFILESYSTYPE NAME(TCPIP3) /* Third TCPIP (TCPIP3) */
TYPE(CINET)
ENTRYPOINT(EZBPFINI)

SUBFILESYSTYPE NAME(TCPIP4) /* Fourth TCPIP (TCPIP4) */
TYPE(CINET)
ENTRYPOINT(EZBPFINI)

NETWORK DOMAINNAME(AF_INET) DOMAINNUMBER(2) MAXSOCKETS(64000)
TYPE(CINET) INADDRANYPORT(4901) INADDRANYCOUNT(100)

When you are done, you have customized BPXPRMxx for CINET sockets
processing.

Note:

1. If you want to use IPv6, add the following NETWORK statement:
NETWORK TYPE(CINET) DOMAINNAME(AF_INET6) DOMAINNUMBER(19)

IPv6 support is optional.

Chapter 19. Setting up for sockets 411

2. For AF_INET6, you can specify a separate MAXSOCKETS value or let it default
to the value specified for AF_INET. In either case, each family has its own
separate maximum.

3. For AF_INET6, the INADDRANYPORT and INADDRANYCOUNT keywords
are ignored. You can activate AF_INET6 without recycling z/OS UNIX by
adding this NETWORK statement to a running configuration with the
SETOMVS RESET=() operator command. You would specify a BPXPRMxx
member that contains just this one statement. However, you would have to
stop and restart each TCP/IP stack in order to pick up the new definition.

After the default transport provider is assigned, the following actions are taken on
sockets calls unless transport affinity has been established. (For more information,
see “Transport providers” on page 410)
v getsockname(): If there is a single transport provider that has been connected or

bound to, that transport provider is used. Otherwise, the default transport
provider is used.

v gethostname() or gethostid(): The request is always to be routed to the default
transport provider.

v getsockopt() or setsockopt(): If there is a single transport provider that has been
connected or bound to, that transport provider is used. Otherwise, the default
transport provider is used.

v Route selection: When an application program makes a request that could be
sent to any of a number of transport providers (for example, a datagram
sendto() request, connect() request or bind2addrsel() request), the CINET
prerouter examines its internal routing table information and decides which
transport provider to send the request to. If matching host routes or network
routes are found, then following criteria is applied to select the best route in
order:
1. If the route is an implicit and NON-DVIPA route, then it is selected to route

the request regardless of the interface state (active or inactive).
2. If the route is an implicit and DVIPA route, then it is selected to route the

request only if the interface is active.
3. If the route is a non-implicit route (DVIPA or NON-DVIPA), then it is

selected to route the request only if the interface is active.
4. If there are multiple matching non implicit routes, then the route with better

route type and routing metric is selected to route the request.
5. If no matching host routes are found, the CINET prerouter looks for most

specific matching network route.
6. If there are multiple specific matching network routes, then the route with

better route type and routing metric is selected to route the request.
7. If there are no matching host or network routes, then active best default

route is selected to route the request.

Note:

1. If there is more than one transport provider that maintains a route to the
destination with the same route type and routing metrics, then the transport
provider specified as the default is chosen.

2. When looking for default routes, if more than one transport provider
maintains a default route, then the transport provider with the better route
type and routing metric is chosen. If there are no active default routes, then
the default transport provider is chosen to route the request.

.

412 z/OS V2R2 UNIX System Services Planning

Specifying INADDRANYPORT and INADDRANYCOUNT
These parameters only apply to CINET.

Port reservation information for port 0, INADDR_ANY binds is required for the
AF_INET domain with a CINET configuration. Specify this information on the
INADDRANYPORT and INADDRANYCOUNT parameters on the NETWORK
statement for AF_INET in BPXPRMxx. This also includes the port 0,
IN6ADDR_ANY binds for AF_INET6.

If you omit both INADDRANYPORT and INADDRANYCOUNT, then those values
will be defaulted. Be careful when allowing the default values because they may
not be the values you want. If you do not want to support any reserved ports,
then specify INADDRANYPORT(xxx) without specifying INADDRANYCOUNT. In
this case, xxx can be any valid numeric value.

INADDRANYPORT specifies the starting port number to be reserved for use by
application programs that issue port 0, INADDR_ANY binds.
INADDRANYCOUNT specifies how many ports to reserve.

If you are running a CINET configuration and you specify the INADDRANYPORT
and INADDRANYCOUNT parameters, you must specify the same values to each
transport provider that is specified on the SUBFILESYSTYPE statement.

Refer to the documentation for that transport provider to determine how the port
reservation information is specified. For IBM's z/OS Communications Services, use
the PORTRANGE profile statement.

If the transport provider does not support the port reservation requirement, you
must still specify INADDRANYPORT and INADDRANYCOUNT to process port 0,
INADDR_ANY binds. In this case, you should specify a high port number for
INADDRANYPORT (for example, 4000) to improve the probability that the port
will be available on the transport provider. If the port is not available on any of the
transport providers connected to z/OS UNIX, a port 0, INADDR_ANY bind will
fail with an ERRNO of EADDRINUSE.

Using specific transports under CINET
The CINET layer performs a multiplexing and demultiplexing function between an
application program and the several transports that are active. When a socket is
initially created with the socket() call, it is generally available to all the transports.
Once the socket becomes associated with a single transport, all subsequent calls go
to that one transport; the other transports have no knowledge of the socket at all.
Server sockets typically remain associated with all the transports while client
sockets often become associated with just one.

Binding to a specific transport
Each transport under CINET has its own home IP addresses. When a program
binds a socket to a specific IP address, that socket becomes associated with the one
transport that supports that IP address.

When a program binds to INADDR_ANY or IN6ADDR_ANY, or an IP address of
all zeros, the socket remains available to all the transports. This is also true for
sockets that are never bound.

Chapter 19. Setting up for sockets 413

Connecting through a specific transport
When a stream, or TCP, socket is connected, it becomes associated with the single
transport that is chosen with the best route to the destination IP address specified
on the connect() call.

Sockets created from accept() are associated with just the one transport on which
the connection arrived.

Requesting transport affinity
When you set transport affinity, sockets are restricted to just one transport. A
program can associate a socket with a specifically-named transport in one of these
ways:
1. With setibmopt(IBMTCP_IMAGE), all future socket() calls for AF_INET or

AF_INET6 create sockets that are associated with only the one specified
transport. This can be invoked from non-C programs via
BPX1PCT(PC#SetIbmOptCmd). This specification of a specific transport is
inherited over fork() and propagated over exec().
SetIbmOpt can be issued more than once to change the chosen transport and
affect future sockets that are created. If a blank transport name is used, the
process is reset so that no transports are chosen.
When CINET is not configured, there is only one AF_INET or dual
AF_INET/AF_INET6 transport, and all socket() calls for AF_INET or AF_INET6
create sockets with that transport. In this case, setibmopt() has no effect and is
ignored.
If the specific transport is not found, setibmopt() fails with
EIBMBADTCPNAME if CINET is installed, and with ENXIO if it isn't.
For more details, see setibmopt() in z/OS XL C/C++ Language Reference or pfsctl
(BPX1PCT) in z/OS UNIX System Services Programming: Assembler Callable
Services Reference.

2. Call ioctl(SIOCSETRTTD) associates an existing socket with the one specified
transport, removing the others, if any, from the socket.

3. The _BPXK_SETIBMOPT_TRANSPORT environment variable can be set to the
name of the desired transport before starting the program. This variable can
also be set in the PARM= parameter of a started procedure to have the
Language Environment runtime initialization issue a setibmopt() call on behalf
of the program being started. This variable can also be included in the
_CEE_ENV file.

4. Include a job step that invokes BPXTCAFF. BPXTCAFF is invoked as a job step
in front of an existing program in a started procedure or submitted job stream.
For example:
//STEP0 EXEC PGM=BPXTCAFF,PARM=TPNAME
//REALSTEP EXEC PGM=MYPGM,PARM=’MyParms’

The desired transport is specified with the PARM= keyword and must be 1 to 8
uppercase characters. This is the same value that would be specified for
_BPXK_SETIBMOPT_TRANSPORT. If PARM= is not supplied, or is blank, then
the address space's transport affinity will be reset to no transport selected. This
can also be specified as PARM=&VAR, where VAR is a PROC keyword that is
passed in from the Start command or is a static system symbol.
BPXTCAFF sets transport affinity for an address space for the duration of that
address space or job. This affinity persists over job steps within the job, persists
over UNIX process termination and re-dubbing, and applies to all UNIX
processes running within that address space. BPXTCAFF is intended for use
with non-C or POSIX(OFF) programs where the

414 z/OS V2R2 UNIX System Services Planning

_BPXK_SETIBMOPT_TRANSPORT environment variable is not effective. It is
also intended for programs that do not make their own calls to setibmopt() or
BPX1PCT or that can not be modified to do so. BPXTCAFF exits with one of
the following return codes in register 15.

0 Successful. TPNAME matched an AF_INET socket transport

2 Minor failure. TPNAME did not match any transport but CINET is not
configured so transport affinity is moot.

8 Failure. CINET is configured and TPNAME did not match any
transport running under CINET.

12 Failure. The interface to the routine was not valid.

To set transport affinity for a TSO address space, you can also invoke
BPXTCAFF from TSO/E by issuing:
TSO CALL ’SYS1.LINKLIB(BPXTCAFF)’ ’TPNAME’

To set transport affinity for an address space using a REXX procedure, you can
invoke BPXTCAFF from REXX by issuing:
/* REXX */
Address Linkmvs BPXTCAFF ’TPNAME’
Exit rc

BPXTCAFF makes a call to BPX1PCT(PC#SetIbmOptCmd) with an Arg value of
1 specified to achieve transport affinity for a persistent address space. For more
details, see BPX1PCT in z/OS UNIX System Services Programming: Assembler
Callable Services Reference.
Restriction: A BPXTCAFF job step must not be used with z/OS UNIX address
spaces that are set up for the NFS or DFS clients. The z/OS UNIX services that
are needed by BPXTCAFF are not available when the colony is started from the
BPXPRMxx member. However, z/OS UNIX cannot finish initialization until the
colonies are initialized, so the system will hang. The technique described in
Step 5 sets up affinity for NFS or DFS clients.

5. Use the PARM= parameter of the z/OS UNIX colony address space. To set
transport affinity for the NFS Client or DFS Client, use the PARM= keyword of
the EXEC statement that starts BPXVCLNY in the colony address space
procedure as follows:
//MVSCLNT EXEC PGM=BPXVCLNY,TIME=1440,PARM=TP(TPNAME)

where the PARM=value is the following:
v All in uppercase
v Starts with "TP("
v TPNAME is the left-aligned, 1-to-8-character name of the desired transport
If PARM= is specified and does not conform to these rules, the colony is
terminated by an EC6 abend with a reason code of 11BE8039. When CINET is
configured on the system and the specified transport is not configured under
CINET, the colony is terminated by an EC6 abend with a reason code of
11BE803A. In either case, the colony can be restarted after the procedure is
corrected by replying to the operator prompt that is issued.
Tip: The _BPXK_SETIBMOPT_TRANSPORT environment variable does not
work in a z/OS UNIX colony address space because it does not start under
Language Environment.

6. Specify a transport name when a socket is created.
Individual sockets can be created with transport affinity by passing the
transport name directly to the BPX1SOC callable service. This specific socket
affinity will override any process-level affinity that has been established. This

Chapter 19. Setting up for sockets 415

feature is not available to C programs through the standard socket() function,
but C programs can call BPX1SOC directly. For more information, see BPX1SOC
in z/OS UNIX System Services Programming: Assembler Callable Services Reference.

7. Specify a transport name for GETHOSTID() or GETHOSTNAME().
A BPX1HST request for GETHOSTID or GETHOSTNAME can be directed to a
specific transport by using the BPX1PCT(PC#DIRGETHOST) function. This will
override any process-level affinity that has been established. For more
information, see BPX1PCT in z/OS UNIX System Services Programming: Assembler
Callable Services Reference.

Resolver configuration files
The resolver acts on behalf of programs as a client that accesses name servers for
name-to-address or address-to-name resolution. The resolver can also be used to
provide protocol and services information. To resolve the query for the requesting
program, the resolver can access available name servers, use local definitions (for
example, /etc/resolv.conf, /etc/hosts, /etc/ipnodes, HOSTS.SITEINFO,
HOSTS.ADDRINFO, or ETC.IPNODES), or use a combination of both. How and if
the resolver uses name servers is controlled by TCPIP.DATA statements (resolver
directives). The resolver address space must be started before any application or
TCP/IP stack resolver calls can occur.

This topic explains the format of the resolver data sets and files when they are
stored in the z/OS UNIX file system.

Host information
Host information not obtained from a domain name server can be obtained from
local host tables. If you want to know what the options are for creating local host
tables and how the tables are searched, refer to z/OS Communications Server: IP
Configuration Guide

Service information
Figure 49 shows an extract of the services file. You can copy the sample service
information from /usr/lpp/tcpip/samples/services into your tcpip.ETC.SERVICES
data set or /etc/services file. See z/OS Communications Server: IP Configuration
Reference for more information about the syntax rules for /etc/services and
ETC.SERVICES.

Protocol information
You can copy the sample protocol information from /usr/lpp/tcpip/samples/
protocol into your tcpip.ETC.PROTO data set or /etc/protocol file.

echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
qotd 17/tcp
chargen 19/tcp

Figure 49. Partial extract of the services information

416 z/OS V2R2 UNIX System Services Planning

To see the MVS version of the TCPIP.DATA data set, see the sample in the topic on
defining TCP/IP client system parameters in z/OS Communications Server: IP
Configuration Reference.

Resolver information
The TCPIP.DATA data set is the only one of the TCP/IP data sets for which a
unique copy is needed for each transport provider. This is because the
TCPIPJOBNAME statement identifies the TCP/IP address space and the
HOSTNAME statement identifies the host name of the TCP/IP address space.

The following example shows a typical TCP/IP syntax:
Datasetprefix TCPIP.TEST1 ; This stack’s data set prefix
TCPIPjobname TCPCO1 ; Stack name
NSinterAddr 127.0.0.1 ; Name server (on this system)
NSportAddr 53 ; Name server port number
ResolveVia UDP ; Use UDP for Name server
ResolverTimeout 30 ; 30-second name server timeout;
ResolverUdpRetries 1 ; Retry name server once
HostName TCPIP1 ; My host name
DomainOrigin pok.ibm.com ; My domain origin
Messagecase mixed ; Issue mixed-case messages

The following example shows a typical z/OS UNIX syntax:
domain pok.ibm.com
nameserver 9.114.75.254
nameserver 9.114.171.254
nameserver 9.114.151.254

The system processes this information during the initial request for service. It
accepts either format for the information supplied regardless of the source selected.

When they are mixed, only the last domain or DOMAINORIGIN data is used and
up to 16 name server's addresses are used for initialization. However, if you set up
/etc/resolv.conf to supply resolver information, you must specify the
DATASETPREFIX information in /etc/resolv.conf unless you have also set up
/etc/services, /etc/protocol, and /etc/hosts files.

Any mix of MVS data sets and z/OS UNIX files can be used. For example, you
could use the TCPIP.DATA information from SYS1.TCPPARMS, the service and
protocol information from ETC.SERVICE and ETC.PROTO and use the /etc
directory in the z/OS UNIX file system to record hosts names and addresses of the
z/OS UNIX hosts file.

Displaying information about sockets
You can display information about AF_INET, AF_INET6, and AF_UNIX sockets as
described in “Displaying information about local and network sockets” on page
309.

Chapter 19. Setting up for sockets 417

418 z/OS V2R2 UNIX System Services Planning

Chapter 20. Managing accounting work

You can measure, collect, and report accounting information.

List of subtasks

Subtasks Associated procedure

Modifying the accounting information for the
OMVS and BPXOINIT address spaces

“Steps for modifying accounting
information” on page 421

Checking job names and accounting
information using IEFUJI

“Steps for activating the IEFUJI exit for
OMVS work” on page 422

Using system management facilities (SMF)
To perform accounting for UNIX workloads, use system management facilities
(SMF). Basic accounting models that use address-space level data from SMF type
30 records should work correctly for UNIX processes. Be aware that:
v The TCB time in SMF type 30 record includes the time in the kernel address

space.
v The address-space level EXCP (I/O) count includes the I/O for UNIX files.
v If the program in a user address space issues fork(), the child inherits the TSO/E

user ID and the UID.

To weigh central processor time or I/O or both, use the fields in SMF type 30
records to isolate the resources used. Record type 30 also includes the user
identification fields:
v UID
v GID
v Process ID (PID)
v Parent process ID (PPID)
v Process group ID (PGID)
v Session ID (SID)

For detailed file system and file open and close activity data, look in SMF record
type 92.

When you perform the accounting, one other major factor to be aware of is that
the exec() family of functions typically causes step termination and a new substep
is started. The new substep still has the same step number, but the substep number
is incremented. Therefore, accounting applications must look for substep_number
in addition to job name, job_start_time, and step_number.

The kernel creates other address spaces, such as BPXOINIT, and forks other
programs—for example, /etc/init. The kernel and all its child processes use the
same account number. BPXOINIT is the source of the account number propagated
to the /etc/rc and daemons.

© Copyright IBM Corp. 1996, 2016 419

Because the kernel is a started procedure, you can assign accounting data only by
coding a JCL installation exit. Alternatively, you can allow the resources used by
the kernel and its forked address spaces to be accounted for as system overhead.

Assigning account numbers for forked address spaces
Account numbers for forked or spawned address spaces are set as follows:
v Forked or spawned address spaces inherit accounting data from the parent

address space.
v When daemon processes such as rlogind or cron create new work using setuid()

and exec(), accounting data comes from the user's RACF profile (the WAACCNT
value in the WORKATTR segment). If this value is not defined in RACF, the
address space will not have accounting data.

Guideline: The user ID starting the cron daemon should be different than the
user ID running the cron jobs in order to pick up the correct WAACCNT
information in the WORKATTR segment for the cron jobs that are running.
In addition, if you have multiple UID(0) users defined, and you want to track
SMF accounting data for the cron daemon itself, there is no guarantee you will
get the same user ID that started the cron daemon in your SMF type 30 records.
If there are multiple user IDs in the OMVS segments that share UID(0), it will
not be known which RACF profile will be used to create accounting data, so
results will be unpredictable.

v Accounting data can also be verified or changed using the IEFUAV or IEFUSI
installation exits.

Restriction: Your IEFUSI exit will not receive any step account information for
forked address spaces.

v With the _BPX_ACCT_DATA environment variable, users can change the
account data for a process that is about to be exec()'d or spawned.

v With the __spawn() service, the caller can define account information in the
spawn inheritance structure.

The IEFUAV exit is only passed control when the IEFUAV exit is activated for
subsystem OMVS (or all subsystems). This environment typically describes the
environment in which a daemon determines the identity of a client, sets up the
security environment, and passes the routine control.

In the case of a fork(), spawn(), or exec() where the accounting data is provided by
a superuser, the IEFUAV exit is not passed control.

For forked address spaces, the accounting information cannot be changed from the
initial value because it is a single step transaction. The SMF30ACT field is only
present in SMF30 subtype records 1 (Job start) and 5 (Job termination). It is not
present in SMF30 subtype records 2 (Interval), 3 (Step termination) or 4 (Step total).

Modifying the accounting information for the OMVS and BPXOINIT
address spaces

Account information for TSO users who log into the shell environment and run
utilities or shell scripts comes from the TSO/E logon panel account field. This is
true even for users who have a WORKATTR segment in the security product data
base.

420 z/OS V2R2 UNIX System Services Planning

|
|
|
|

Steps for modifying accounting information
Before you begin: You must decide whether to put the IEFJOBS DD statement in
the MSTJCLxx member or in the MSTJCLxx module in SYS1.LINKLIB. The
advantage to using the MSTJCLxx member is that it is easier to make changes to
the master JCL. For more information about using the MSTJCLxx member, see z/OS
MVS Initialization and Tuning Reference.

Perform the following steps to modify account information by putting the IEFJOBS
DD statement in the MSTJCLxx member.
1. Put an IEFJOBS DD statement in the MSTJCLxx member. The statement must

point to a data set called SYS1.STCJOBS, which is an FB 80 data set. For
example:
//MSTJCL01 JOB MSGLEVEL=(1,1),TIME=1440
// EXEC PGM=IEEMB860,DPRTY=(15,15)
//STCINRDR DD SYSOUT=(A,INTRDR)
//TSOINRDR DD SYSOUT=(A,INTRDR)
//IEFPDSI DD DSN=SYS1.PROCLIB,DISP=SHR
//IEFJOBS DD DSN=SYS1.STCJOBS,DISP=SHR
//IEFPARM DD DSN=SYS1.PARMLIB,DISP=SHR
//SYSUADS DD DSN=SYS1.UADS,DISP=SHR
//SYSLBC DD DSN=SYS1.BRODCAST,DISP=SHR

2. Create a data member in the SYS1.STCJOBS data set that has the same name as

the started procedure.

If the started
procedure is ...

Then the data member should contain ...

OMVS //OMVS JOB (account data),TIME=NOLIMIT,REGION=0k
//OMVS EXEC OMVS

BPXOINIT //BPXOINIT JOB (account data),TIME=NOLIMIT,REGION=0K
//BPXOINIT EXEC BPXOINIT

Account data for BPXOINIT is propagated to the /etc/init process (or
/usr/sbin/init) and all the processes that they create.

3. IPL the system.

When you are done, you have modified the accounting information in both OMVS
and BPXOINIT address spaces.

Validating user accounts using the IEFUAV exit
After the IEFUAV exit receives control for forked or spawned address space, the
accounting information can be checked.

If the _BPX_ACCT_DATA environment variable and the account data was not
specified in the spawn inheritance structure for _spawn only, then the account data
passed to the exit is the same as the account data of the parent of the
forked/spawned address space.

If the _BPX_ACCT_DATA environment variable or account data was specified in
the spawn inheritance structure for _spawn, then this is the account data that is
seen in this exit. For spawned address spaces, the account data in the spawn

Chapter 20. Managing accounting work 421

inheritance structure takes precedence over account data from the
_BPX_ACCT_DATA environment variable.

If the IEFUAV exit sets a return code indicating that the user is not to be allowed
to continue, the reason code 0BFC0432 is issued and the address space is
terminated.
v 0BFC0432 — issued from module BPXPRJSR
v Reason code 0432 - JRJsrUavXit - The IEFUAV exit rejected the accounting data

If users are running in the shell, they might see the following message:
FSUM9209 cannot execute: reason code 0bfc0432

Message BPXP005I is written to the job log for the user:
BPXP005I A fork or spawn error was encountered.

Return code 00000070 Reason code 0BFC0432

Checking job names and accounting information using the IEFUJI exit
Use the IEFUJI installation exit to check job names, accounting information, or
both. You will have to customize your system setup in order to activate the IEFUJI
installation exit for z/OS UNIX services. (The OMVS, BPXOINIT and BPXAS
address spaces have a subsystem type of STC. Other address spaces that are
started by BPXOINIT have a subsystem type of OMVS.)

See z/OS MVS Installation Exits for more information about the IEFUJI installation
exit.

Steps for activating the IEFUJI exit for OMVS work
Before you begin: You must know that when defining OMVS, you must use the
keyword parameter form of the IEFSSNxx member of SYS1.PARMLIB. Subsystems
defined in the keyword parameter form can use dynamic SSI services, while
positional format cannot.

Perform the following steps to activate the IEFUJI installation exit.
1. Define OMVS as a subsystem by adding it to the IEFSSNxx member.

Example: To define OMVS, using the keyword parameter form of the IEFSSNxx
member:
SUBSYS SUBNAME(OMVS)

If you define SUBSYS(OMVS) in IEFSSNxx and then use SET OMVS
commands, you might receive a warning message stating that the notification
of SUBSYS(OMVS) failed. Ignore this message.
If you want to use the positional parameter form, it is still supported. However,
subsytems defined using the positional parameter form cannot use dynamic SSI
services. For more information about the positional parameter form of the
IEFSSNxx member, see z/OS MVS Initialization and Tuning Reference.
Example: To define OMVS, using the positional parameter form of the
IEFSSNxx member:
OMVS

To learn more about writing subsystems, see z/OS MVS Using the Subsystem
Interface..

2. Specify the subsystem type in the SMFPRMxx member. For example:
SUBSYS(OMVS,EXITS(IEFUJI))

422 z/OS V2R2 UNIX System Services Planning

Tip: Specify your installation-specific options for TYPE, INTERVAL, and
DETAIL in the SUBSYS statement. If you specify EXITS, then only those listed
are invoked for OMVS work. If EXITS is not specified, all SMF exits are
invoked.

3. Specify IEFUJI in the EXITS option of PROGxx. If it is not specified, it will not
get control of work attributed to the address spaces (such as logging into the
shell environment, running utilities, or executing shell scripts).
Example: Use one of the following:
v EXIT ADD EXITNAME(SYSOMVS.IEFUJI) MODNAME(IEFUJI)
v SETPROG EXIT,ADD,EXITNAME=SYSOMVS.IEFUJI,MODNAME=IEFUJI,

DSNAME=...............,STATE=ACTIVE

Result: IEFUJI is called for forked or spawned address spaces, or both.

4. Add system processes and any daemons you intend to start from /etc/rc to the
job names exclusion list.
Guideline: Add the following system processes to the job name exclusion list
for the IEFUJI installation exit:

ETCINIT
ETCINIT1
ETCINIT2
ETCINIT3
ETCRC

When you are done, IEFUJI will have been activated.

Restriction: You cannot distinguish a forked or spawned address space as being
used for foreground or background activity. When the IEFUJI installation exit
obtains control for a forked or spawned address space, a flag is set in the interface
identifying it as a foreground job. In the past, the only time this flag was set was
for TSO address spaces. In a TSO address space, there is a TSB pointed to by
ASCBTSB. For an address space of subsystype OMVS, ASCBTSB is zero and no
TSB exists. Therefore, you cannot count on having a TSB just because the SMF flag
identifies it as a foreground job.

If the IEFUJI exit sets a return code indication that the user should not be able to
continue, the initiator will try again. An attempt is made to fork the address space
again and if the IEFUJI exit sets the same return code, then reason code 0BFC0434
is set and the address space is terminated.
v 0BFC0434 (issued from module BPXPRJSR)
v Reason code 0434 - JrJsrint (Internal error from BPXPRJSR)

If users are running in the shell, they might see the following message:
FSUM7726 cannot fork - reason code 0bfc0434

Message BPXP005I is written to the job log for the user:
BPXP005I A fork or spawn error was encountered.

Return code 00000070 Reason code 0BFC0434

Chapter 20. Managing accounting work 423

Using the IEFUJV job validation exit
At the time of the first fork or spawn, IEFUJV is entered with a subsystem value of
OMVS and a job name of BPXYOEJS, which is the job that is used to create the
SWA control blocks used by all subsequent forked or spawned address spaces. The
IEFUJV exit is not given control for forked or spawned address spaces under
subsystem OMVS.

The BPXAS initiators, in which the forked or spawned processes run, do go
through the IEFUJV exit with a subsystem value of STC. The IEFUJV exit is given
control when the BPXAS initiator is first started. When subsequent fork/spawn
requests use that BPXAS initiator address space, the IEFUJV exit is not called
because the BPXAS initiator is already active.

The account data that is on the job card for the BPXAS procedure is propagated
from the BPXOINIT job. If a BPXOINIT job is defined in SYS1.STCJOBS and the
SYS1.STCJOBS data set is set up so that it is used during IPL, then an installation
can define account data there that will be propagated to the BPXAS procedure.

The BPXOINIT job is started and the account data is saved in SWA blocks in
internal text format. Then, later, when the first BPXAS procedure is started, z/OS
UNIX reads the account data that was saved in the SWA blocks and adds the
account data to the default job card that it builds. The default job card looks like
the following:
//BPXYOEJS JOB(acct-data),MSGLEVEL=(0,0),REGION=54M,TIME=60

z/OS UNIX takes the account data and reconstructs the internal text to a format
that can be placed on a JCL statement. The account data is reconstructed by
placing quotes around each account data field and then parentheses around the
account data. As a result, the account data might look different than it did when it
was defined on the BPXOINIT job. For example, if BPXOINIT had the account data
defined as (AA,BB), then when z/OS UNIX adds it to the BPXYOEJS job card, the
account data is reconstructed as (’AA’,’BB’).

Using the IEFUSI step initiation exit
When the IEFUSI exit receives control, one of the parameters that is passed is the
region size that was requested for the JOB or EXEC test JCL statement. For a
forked address space, this is displayed as 54M. This value comes from the default
SWA blocks that are defined in module BPXPRBS. This is the default JCL that is
used when creating forked address spaces.

If the IEFUSI exit does not change any of the region limit values, then the region
value is propagated from parent to child, overriding the 54M value. If the region
limit value is changed, then the region value is not propagated. The value set by
the IEFUSI exit is used instead.

If the IEFUSI exit sets a return code indication that the user should not be able to
continue, the initiator will try again. An attempt is made to fork the address space
again and if the IEFUSI exit sets the same return code, then reason code 0BFC0434
is set and the address space is terminated.
v 0BFC0434 — issued from module BPXPRJSR
v Reason code 0434 - JrJsrint - Internal error from BPXPRJSR

If users are running in the shell, they might see the following message:

424 z/OS V2R2 UNIX System Services Planning

FSUM7726 cannot fork - reason code 0bfc0434

Message BPXP005I is written to the job log for the user:
BPXP005I A fork or spawn error was encountered.

Return code 00000070 Reason code 0BFC0434

Generating job names for OMVS address spaces
When the kernel provides an address space for a fork or spawn request, the
following rules are used when generating the job name:
1. For fork and spawn requests that do not involve changing user IDs, the job

name of the child is set to the base job name with a number from 1 to 9
appended at the end. For example, if you logon to TSO, you will have a job
name that is the same as your user ID (for example, SMORG). The first fork or
spawn creates an address space with SMORG1. In this case, the base job name
is SMORG and all children inherit the same base job name.
Continuing this example, if address space SMORG1 does a fork or spawn, the
new child address space will have a job name of SMORG1 to SMORG9. It is
possible to have multiple address spaces with the same job name running
concurrently.

2. If you run a batch job with a job name that is 8 characters long (such as
PAYROLLX), then all child processes created by this job have the same job
name.

3. When you use rlogin to enter the system, the rlogin daemon prompts for your
user ID and password or password phrase. The daemon then validates the
caller and performs a setuid() followed by an exec(). The setuid()/exec()
combination triggers the kernel to change the job name of the address space to
the user ID. Because rlogin supports 8-character user IDs, any children created
by this process will follow the rules defined in Step 1 and Step 2, depending on
the length of the user ID.

4. If a daemon issues a spawn() with user ID, the child address space is assigned
a job name that is the same as the user ID.

5. If a daemon does a spawn() or exec() with the _BPX_JOBNAME environment
variable set, the address space gets the requested job name.

Any time the job name is changed, the new job name becomes the base job name
for future children.

Restriction: JES attributes for a job with a job name assigned with
_BPX_JOBNAME cannot be displayed by job display commands under JES2 or
JES3.

Chapter 20. Managing accounting work 425

426 z/OS V2R2 UNIX System Services Planning

Chapter 21. IBM Health Checker for z/OS

IBM Health Checker for z/OS checks the current active z/OS and sysplex settings
and definitions for an image and compares their values to either those suggested
by IBM or defined by you. It identifies potential problems before they affect your
availability or, in worst cases, cause outages.

The z/OS UNIX checks are as follows:

USS_AUTOMOUNT_DELAY
Evaluates the delay times of the configuration.

USS_FILESYS_CONFIG
Evaluates the configuration of the file system.

USS_CLIENT_MOUNTS
In a shared file system configuration, checks whether each file system that
can be locally accessed by a non-owning system is indeed locally accessed.

USS _HFS_DETECTED
Checks all mounted file systems and issues a message if any file systems of
type HFS are found.

USS_PARMLIB_MOUNTS
Verifies that file systems that are specified in the BPXPRMxx member were
mounted successfully. It checks the values that were specified in
BPXPRMxx at initialization time. If BPXPRMxx was updated after
initialization with different values, those changed values are not included
in subsequent checks. Only the initial values are checked.

USS_MAXSOCKETS_MAXFILEPROC
Evaluates whether the MAXSOCKETS and MAXFILEPROC statements in
the BPXPRMxx member are set high enough.

USS_PARMLIB
Determines whether there are differences between current system settings
and the settings defined in the BPXPRMxx member. If a difference is
found, an exception message is issued. You will receive a report that lists
the differences.

For more information about IBM Health Checker for z/OS, see IBM Health Checker
for z/OS User's Guide.

© Copyright IBM Corp. 1996, 2016 427

428 z/OS V2R2 UNIX System Services Planning

Appendix A. Commonly used environment variables

An environment variable is a variable that describes the operating environment of a
process and typically includes information about the home directory, command
search path, the terminal in use, and the current time zone. Setting an environment
variable is optional. If a variable is not set, it will not have any value. This topic
contains a partial list of _BPX, _BPXK, and _CEE environment variables.

For information about environment variables used by a particular command, read
the description of that command. See z/OS XL C/C++ Programming Guide for more
information about environment variables that are used by the C-RTL.

_BPX environment variables
This section contains a partial list of the _BPX environment variables.

_BPX_ACCT_DATA
Used by the exec callable service to change the account data of the new
process image. For the rules on specifying account data, see the description
of the exec callable service in z/OS UNIX System Services Programming:
Assembler Callable Services Reference.

_BPX_BATCH_SPAWN
Specifies whether BPXBATCH is to use spawn instead of either fork or
exec when executing programs.

SPAWN
Spawn is used to execute the program. Data definitions are carried
over into the spawned process.

Guideline: When using _BPX_BATCH_SPAWN, you should
consider two other environment variables that affect spawn
behavior, _BPX_SHAREAS and BPX_SPAWN_SCRIPT. For more
details, see BPXBATCH in z/OS UNIX System Services Command
Reference.

NO Either fork or exec is used to execute the program. NO is
equivalent to the default

_BPX_BATCH_UMASK
Modifies the permission bits on newly created files instead of using the
default mask, if PGM has been defined. For more details, see BPXBATCH
in z/OS UNIX System Services Command Reference.

_BPX_JOBNAME
Specifies the job name of the process, or changes the name. You can specify
a string of 1-to-8 alphanumeric characters. Incorrect specifications are
ignored. The environment variable is processed on the next spawn() or
exec() service with the specified job name being used in the new image.

Restriction: Before the job name can be changed, the invoker must have
appropriate privileges. The privileges include either superuser authority or
READ permission to BPX.JOBNAME FACILITY class profile. The invoker
must also be running in a space created by the fork callable services.
Otherwise _BPX_JOBNAME is ignored.

© Copyright IBM Corp. 1996, 2016 429

_BPX_PTRACE_ATTACH
Used when you want to debug target programs.

YES Programs that are invoked by the spawn, exec, and attach_exec
callable services or by the C language spawn() and exec() functions
are loaded into user-modifiable storage. Then those target
programs can be debugged. The programs that are loaded into
storage when the target program is executed, except for modules
loaded from LPA, are also loaded.

_BPX_SHAREAS
Specifies whether the spawned child process is to be run in a separate
address space from the login shell's address space or in the same address
space. Use _BPX_SHAREAS is to improve performance in the z/OS shell.
The spawn callable service uses _BPX_SHAREAS when creating child
processes.

Restriction: If tcsh is your login shell, do not use BPX_SHAREAS.

YES The child process is created on a subtask in the parent's address
space. If the request cannot be honored, the child is created in
another address space.

NO The child process is created in a new address space. NO is the
default.

MUST
The child process is created on a subtask in the parent's address
space. If the request cannot be honored, the request will not
complete.

Restriction: Sometimes the YES and MUST values cannot be used. For
more details, see the description of the spawn callable service in z/OS
UNIX System Services Programming: Assembler Callable Services Reference.

For a discussion of the benefits and side effects of using BPX_SHAREAS,
see “Setting _BPX_SHAREAS and _BPX_SPAWN_SCRIPT” on page 402.

_BPX_SPAWN_SCRIPT
Indicates whether the specified file is to be treated as a shell script. Use
_BPX_SPAWN_SCRIPT to improve performance when running z/OS shell
scripts.

YES Treats the specified file as a shell script if it is not an executable
process image file or a REXX exec. The shell is also executed to run
the specified shell script. You can specify the path name for the
shell in the SHELL environment variable on spawn's environment
data list. You can also use /bin/sh as the default. The first
argument passed when spawning a shell script should be the path
name of the shell script.

NO If the specified file is not an executable process image file or a
REXX exec, the spawn callable service fails with the ENOEXEC
return code. NO is the default if _BPX_SPAWN_SCRIPT is not
specified or if it contains an unsupported value.

For more information about performance considerations when using
_BPX_SPAWN_SCRIPT, see “Setting _BPX_SHAREAS and
_BPX_SPAWN_SCRIPT” on page 402.

430 z/OS V2R2 UNIX System Services Planning

Restriction: If tcsh is your login shell, do not use _BPX_SPAWN_SCRIPT
because it is only used for improving performance of /bin/sh scripts.

_BPX_TERMPATH
Enables shell scripts to determine if the user logged on from TSO, rather
than from rlogin or telnet.

_BPX_UNLIMITED_OUTPUT
Specifies output limits that are processed only for non-local spawn
requests.

Restriction: To use _BPX_UNLIMITED_OUTPUT, the caller must be a
superuser or be permitted to the BPX.UNLIMITED.OUTPUT FACILITY
class profile with READ access or greater.

YES Specifies unlimited spooled output.

NO Specifies that the default spooled output limits is to be used. Not
defining or specifying a value is the equivalent of specifying NO
and the defaults limits are not overridden.

_BPX_USERID
Specifies that the child process is to be created with the specified MVS user
identity. _BPX_USERID is used by the spawn callable service.

Example: _BPX_USERID=DANIEL creates a child process with the
DANIEL user ID to run the spawned program. Authorization for use of the
_BPX_USERID is the same as that for the setuid() function. Child processes
running with a different user identity than the parent's are always created
in a new address space. _BPX_SHAREAS is ignored in this case.

Using _BPX_USERID can improve performance for a program. The
program can establish a new user identity for the child that runs the
spawned program, instead of creating a child with the original user
identity and having the child establish a new user identity. Otherwise, that
program would have forked a new address space before establishing a new
user identity for the new address space by issuing initgroups(), setgid(),
and setuid(), and so forth. Then it would have done an exec() of the
program that was to run under the new user identity.

Be careful when using _BPX_USERID. Typically, environment variables
passed on spawn are still active in the child process. If _BPX_USERID is
set in the parent and not cleared in the child, any spawn calls issued by
the child picks up the same _BPX_USERID setting. This behavior is likely
to be undesirable. The support that allows the specification of a user ID in
the inheritance structure on spawn does not have this drawback.

_BPXK environment variables
A partial list of the _BPXK environment variables is as follows.

_BPXK_AUTOCVT
Used when enabling automatic conversion of tagged files. When set, this
variable overrides the AUTOCVT setting in BPXPRMxx.

For fork (BPX1FRK/BPX4FRK), spawn (BPX1SPn/BPX4SPN), exec
(BPX1EXC/BPX4EXC), and pthread_create (BPX1PTC/BPX4PTC),
_BPXK_AUTOCVT is propagated from the parent to the child. For
pthread_create, the parent is the Initial Program Task (IPT).

Appendix A. Commonly used environment variables 431

|
|
|
|

ON Activates the automatic file conversion of tagged files. This option
affects conversion for I/O for regular, pipe, and character-special
files that are tagged.

OFF Deactivates the automatic file conversion of tagged files. OFF is the
default.

ALL Activates the automatic conversion of tagged files that are
supported by Unicode Services. This option affects conversion for
I/O for regular and pipe files that are tagged. Setting or unsetting
ALL has no effect after translation for a file begins. If the
conversion is between EBCDIC and ASCII, this option also affects
conversion for I/O for character special files.

_BPXK_CCSIDS
Defines an EBCDIC/ASCII pair of valid coded character set IDs (CCSIDs)
to be used when automatically converting data or tagging new files. For
example:
_BPXK_CCSIDS=(1234,5678)

_BPXK_DAEMON_ATTACH
Attaches the security environment of the caller of either the setuid(),
seteuid(), or setreuid() services to the security environment of the target
UID. This combined security environment is called a nested ACEE. Using
the nested ACEE, the new client identity can then access RACF delegated
resources to which only the caller (for example, a daemon), but not the
client, is permitted. A RACF-protected resource is delegated if the profile
protecting the resource has the string ’RACF-DELEGATED’ in the application
data (APPLDATA) field. For more information about authorizing daemons
to use delegated resources, see z/OS Security Server RACF Security
Administrator's Guide.

YES Attaches the security environment of the caller of either the
setuid(), seteuid(), or setreuid() services to the security
environment of the target UID. The new client identity can then
access MVS resources that are protected by profiles with
APPLDATA(’RACF-DELEGATED’)

NO Security environments are built the way that they normally are.
NO is the default.

_BPXK_DISABLE_SHLIB
Specifies whether normal system shared library program processing is
enabled (NO) or disabled (YES) for a process.

YES System shared libraries are disabled. When loading a program with
the system shared library extended attribute (st_sharelib), the
attribute is ignored and the program is loaded into the caller's
private storage. Virtual storage is not allocated from the caller's
region for system shared libraries.

NO System shared libraries are enabled, with normal processing of
system shared library programs. NO is the default setting.

Note:

1. The scope of _BPXK_DISABLE_SHLIB scope is process-wide.
2. In a multiple process address space, each process must disable system

shared libraries to prevent SHRLIBREGSIZE bytes from being allocated
from the caller's region. All processes in the same address space share
the same region.

432 z/OS V2R2 UNIX System Services Planning

3. The _BPXK_DISABLE_SHLIB setting is propagated on both fork and
spawn from the parent to the child process.

4. The z/OS UNIX spawn (BPX1SPN), exec (BPX1EXC and BPX1ATX) and
oe_env_np (BPX1ENV) services have support for
_BPXK_DISABLE_SHLIB.

5. The use of the_BPXK_DISABLE_SHLIB environment variable disables
the sharing of storage for system shared libraries and can increase the
amount of real or auxiliary storage consumed.

_BPXK_FORCE_CANCEL
Controls the behavior of the pthread_cancel() service for the scope of the
process that sets this environment variable.

YES Specifies that the pthread_cancel() service is to cancel the target
thread even if it is not in a normally cancelable state. To
accomplish this task, the pthread_cancel() service can wait up to
three seconds to ensure that the targeted thread is terminated. If
the normal signal mechanism does not terminate the thread in that
time, then the nonresponding thread is terminated with a 422
ABEND, reason code 1A0. The threads that can be canceled with
this setting include:
v Threads that are waiting but do not use a z/OS UNIX service to

enter the wait.
v Threads that are running in an MVS service other than one

provided by z/OS UNIX.
v Threads that are running with a non-z/OS UNIX linkage stack

entry at the top of the stack

This environment variable does not override the interruptability
state set by pthread_setintr() or the interruptability type set by
pthread_setintrtype(). The behavior for a thread that has been
created but not yet assigned to a task control block (TCB) is not
affected by this environment variable. The cancel remains pending
and is delivered when the thread is assigned to a TCB. Threads
that are waiting in a z/OS UNIX service that is not defined as a
cancellation point are also not affected by this environment
variable. See the usage notes for the pthread_setintr() service in
z/OS UNIX System Services Programming: Assembler Callable Services
Reference for the definition of thread cancellation points.

NO Specifies that the pthread_cancel() service retains the existing
behavior. NO is the default.

_BPXK_GPSENT_SECURITY
The w_getpsent() service (BPX1GTH/BPX4GTH) can use the thread-level
identity that is created by the pthread_security_np() service when it checks
the ownership of process information.

THREAD
Any thread that is running in the invoking process uses the
thread-level identity that is created by pthread_security_np(), if any
exists, when it processes the w_getpsent() service. Task-level
identities that are not created by pthread_security_np() continues
to be ignored by w_getpsent().

PROCESS
w_getpsent() ignores the thread-level identity and uses the
process-level identity. PROCESS is the default.

Appendix A. Commonly used environment variables 433

|
|
|
|

|
|
|
|
|
|

|
|
|

_BPXK_INITTAB_RESPAWN
Specifies whether a process is to be dynamically started with the respawn
attribute.

YES Specifies that a process is to be started with the respawn attribute.
Setting the YES attribute after the process has started does not
affect the setting of the respawn attribute. If a process is started by
a spawn with _BPXK_INITTAB_RESPAWN=YES (set by an export
shell command, for example), the shell invokes the target program.
The program will be automatically restarted when it ends, even if
it was not originally started from the /etc/inittab file.

To set the variable to YES, you must have superuser authority.

NO Disables the respawn capability of the process.

The NO setting must be set by an application (by a putenv call, for
example), while it is running.

You can choose the NO setting to allow for a problem to be fixed if
one forced the application to end. Doing so prevents the
application from being restarted automatically again with the same
problem.

_BPXK_JOBLOG
Specifies whether WTO messages are to be written to an open job log file.
For more information about setting _BPXK_JOBLOG, see “Writing
messages to a job log file” on page 323.

nn The job log messages are to be written to open file descriptor nn.

NONE
Job log messages are not written. NONE is the default.

STDERR
Messages are written to the standard error file descriptor, 2.

_BPXK_MDUMP
Specifies whether a SYSMDUMP is to be written to the current working
directory or an MVS data set.

OFF The dump is written to the current working directory. OFF is the
default.

This dump is written only if the user allocates a SYSMDUMP data
set for the TSO/E session. The system creates a file in the user's
working directory, names it coredump.pid, where pid is the process
ID for the process that is being dumped, and writes the core dump
(SYSMDUMP) in hexadecimal format.

MVS data set name
The dump is written to an MVS data set. The data set name can be
up to 44 characters long. It can also be uppercase or lowercase. If it
is lowercase or mixed case, the data set name is folded to
uppercase.

The data set name must be a fully qualified name. It must also be
preallocated and cataloged.

z/OS UNIX name
The dump is written to a z/OS UNIX file. The file name can be up
to 1024 characters long.

434 z/OS V2R2 UNIX System Services Planning

The file name must be an absolute path name; that is, it must
begin with a slash. The slash refers to the root directory, and the
file is created in that directory.

_BPXK_PCCSID
Identifies the program CCSID for the running thread or user. It can be
used to override the internal default of 1047 (EBCDIC). Any value between
0 and 65535 can be assigned, but to avoid any subsequent errors, only
values that are supported by Unicode Services should be used. Setting or
unsetting this variable has no effect after translation for a file begins. When
unset, the internal value of the program CCSID reverts to the default of
1047.

_BPXK_SETIBMOPT_TRANSPORT
Used in a Common INET configuration to choose a socket stack for a
program.

_BPXK_SUID_FORK
Specifies whether the setuid indicator is propagated to a child address
space that was created by a fork process.

YES The setuid indicator is propagated to child processes that were
created by a fork process. If those children perform a job step exec,
it is treated as a new job exec. A new job exec updates job-related
attributes to match the RACF identity.

NO The setuid indicator is not propagated to child processes that were
created by a fork process. A job-step exec from the child will not be
a new job exec. NO is the default.

_BPXK_TECHNIQUE
Specifies the Unicode Services conversion technique to use for the I/O
conversion operation. Setting or unsetting this variable has no effect after
conversion of the file starts. If _BPXK_TECHNIQUE is not specified, the
default is LMREC. For more information, see z/OS Unicode Services User's
Guide and Reference.
R Roundtrip
E Enforced subset
C Customized subset
L Language Environment behavior
M Modified for special use
0-9 User-defined conversions

_BPXK_TIMEOUT
Specifies whether the process should time out or not.

SMF Uses the JWT|TWT|SWT values specified in SMFRMxx.

NONE
Specifies that this process is not to be timed out.

The timeout value that is used is the SMF settings for JWT/TWT/SWT.
The _BPXK_TIMEOUT variable is ignored when PWT is set to SMF. It is
honored when BPXPRMxx PWT is set to ENV or SMFENV.

_BPXK_UNICODE_TECHNIQUE
Specifies the Unicode Services conversion technique to use for the I/O
translation operation. Setting or unsetting this variable has no effect after
translation for a file starts. If _BPXK_UNICODE_TECHNIQUE is not
specified, the Unicode Services default applies. Any eight of the following

Appendix A. Commonly used environment variables 435

characters techniques can be specified. Do not specify spaces or commas.
For more information, see z/OS Unicode Services User's Guide and Reference.
R Roundtrip
E Enforced subset
C Customized subset
L Language Environment behavior
M Modified for special use
0-9 User-defined conversions

_BPXK_UNICODE_MAL
Specifies the Unicode Services substitution action to take for the translation
operation when a source character is malformed. Setting or unsetting this
variable has no effect after translation for a file begins.
_BPXK_UNICODE_SUB must be YES for this option to apply. For more
information, see z/OS Unicode Services User's Guide and Reference.

NO Unicode Services performs the substitution action. NO is the
default.

YES Unicode Services and, therefore z/OS UNIX, terminates the I/O
with an error. _BPXK_UNICODE_SUB must be YES for this option
to apply. YES is the default.

_BPXK_UNICODE_SUB
Specifies the Unicode Services substitution action to take for I/O
translation operation when a source character is not convertible to a target
character. Setting or unsetting this variable has no effect after translation
for a file begins. For more information, see z/OS Unicode Services User's
Guide and Reference.

NO Instructs Unicode Services and, therefore z/OS UNIX, to terminate
the I/O with an error. NO is the default.

YES Instructs Unicode Services to place a substitute character in the
output buffer.

_BPXK_UNUSEDTASKS
Specifies whether to keep pthreads in a wait.

KEEP Do not limit the number of pthreads in a wait.

TERM Terminates waiting pthreads after 30 seconds. TERM is the default.

_BPXK_WLM_PROPAGATE
Controls propagation of WLM enclaves that were not created by the z/OS
UNIX kernel.

YES z/OS UNIX services propagates all enclaves (address spaces or
task). The services that propagate enclaves are fork(), exec(),
spawn(), pthread_create(), _osenv(), and FastCGI. YES is the
default.

NO z/OS UNIX services does not propagate any enclaves that were
not created by the z/OS UNIX kernel.

_CEE environment variables
This section contains a partial list of the _CEE environment variables.

_CEE_ENVFILE
Enables a list of environment variables to be set from a specified file. It
does not strip trailing white spaces from each name=value read from a file.

436 z/OS V2R2 UNIX System Services Planning

Rule: _CEE_ENVFILE must be set through the ENVAR runtime option
during initialization of a parent program.

_CEE_ENVFILE is intended for use in batch programs. Because it can
supersede built-in shell environment variables such as LIBPATH, do not
use _CEE_ENVFILE in the shell environment. For more information about
the _CEE_ENVFILE environment variable, see z/OS XL C/C++ Programming
Guide.

When both _CEE_ENVFILE and _CEE_ENVFILE_S are specified,
_CEE_ENVFILE_S takes precedence.

_CEE_ENVFILE_S
Enables a list of environment variables to be set from a specified file. It
strips trailing white spaces from each name=value line read from a file.

Rule: _CEE_ENVFILE must be set through the ENVAR runtime option
during initialization of a parent program.

For more information about the _CEE_ENVFILE_S environment variable,
see z/OS XL C/C++ Programming Guide.

When both _CEE_ENVFILE and _CEE_ENVFILE_S are specified,
_CEE_ENVFILE_S takes precedence.

Appendix A. Commonly used environment variables 437

438 z/OS V2R2 UNIX System Services Planning

Appendix B. Modules for the login and logout functions

FOMTLINP module for the login function
The FOMTLINP module (/bin/fomtlinp) performs the login function. The login
command initiates sessions on the system for the user specified by the user
parameter. You can also specify environment variables to be added to the user's
environment.

The FOMTLINP module is the interface used by rlogin and telnet in z/OS UNIX.
In UNIX programs, rlogin calls the login command; for the z/OS shell, rlogin calls
this module. For z/OS UNIX, rlogin checks passwords and password phrases.

**
*
* Function:
* --------
*
* This routine is attach_exec()ed to or spawn()ed to from a
* non-superuser caller (unless UID 0 is logging on).
*
* It receives an open master and slave pseudo-TTY pair as input.
* It sets up file descriptors 0/1/2 as usual, sets up several
* environment variables, fork/exec()s /bin/fomtlinc to do the utmpx
* recording, and than exec()s to the shell.
*

* Parameters:
* ----------
*
* 1:IN argc -- usual main() parameter
*
* = 17 -- normal version
*
*
*
* 2:IN argv -- usual main() parameter
*
* note: all arguments are the usual NULL-terminated C/370
* strings
*

* max
* len argument description
* --- -------- ---
*
* 15 argv[0] = program name
*
* "fomtlinp"
*
*
* 16 argv[1] = magic number string (to prevent accidental
* invocation from shell command line)
*
* "*4OurhrEa)R0,H/h" (required value)

* 47 argv[2] = message catalog name for catopen()
*
* Empty string means use the default message
* catalog ="fomcmcat.cat".
*
* catopen() will supply the full path
* name by looking at any inherited settings

© Copyright IBM Corp. 1996, 2016 439

* for LC_MESSAGES, NLSPATH, etc. (note that
* catopen() is issued with the NL_CAT_LOCALE
* parameter.)
*

* -- argv[3] = message catalog set for catopen()
*
* "0" means to use the default catalog set,
* which is 2
*
*
* -- argv[4] = master pseudo-TTY file descriptor
*
* The correct value is required, if the master
* TTY file descriptor is open in the
* spawned process. If the master TTY is
* closed (perhaps because FD_CLOEXEC was set),
* this parameter must be the number of some
* closed file descriptor.
*
*
* -- argv[5] = slave pseudo-TTY file descriptor
*
* (correct value is required -- must be open)
*
*
* -- argv[6] = highest used file descriptor
*
* (This value is used only if fcntl(F_CLOSFD)
* fails (perhaps because one of the file
* descriptors was opened by an authorized
* program, etc.). fomtlinp will then close
* (one-by-one) all file descriptors from 3 to
* argv[6] + argv[7] onclusive.)
*
* This argument should not be needed by anyone
* other than the TSO/E OMVS command.

* -- argv[7] = extra file descriptors to close
*
* (This value is used only if fcntl(F_CLOSFD)
* fails (perhaps because one of the file
* descriptors was opened by an authorized
* program, etc.). fomtlinp will then close
* (one-by-one) all file descriptors from 3 to
* argv[6] + argv[7] inclusive.)
*
* This argument should not be needed by anyone
* other than the TSO/E OMVS command.

* -- argv[8] = debug level
*
* controls whether or not (hidden) debug
* messages are sent to the TTY slave file
* descriptor or STDERR (after it has been
* set up). These messages contain debug
* information, but are backspaced over and
* overwritten with blanks, so they would not
* usually appear on the screen. They will
* appear in traces, etc. This option is
* meant to work in conjunction with TSO/E
* OMVS command debug mode.
*
* 0 = don’t do any debug recording
* 1 = don’t do any debug recording
* 2 = don’t do any debug recording
* 3 = don’t do any debug recording
*
* 4 = do debug recording, with overwriting

440 z/OS V2R2 UNIX System Services Planning

* to hide message on display screen
*
* 5 = do debug recording, but don’t try to
* overwrite the debug text on the screen
*
* 6 = do debug recording to syslog

* -- argv[9] = screen width for debug messages
*
* This value should be set to the width of
* the display screen, if the debug level is
* set to 4. It is used when backspacing and
* erasing the debug messages.
*
* This value may be set to 0, if the debug
* level is not 4.
*
*
* 31 argv[10] = remote hostname (or null) -- only 15
* bytes of this will fit into the utmpx
* entry

* 255 argv[11] = text for TERM environment variable
*
* TERM is not set, if this is an empty
* string ("").
*
*
* 15 argv[12] = text for ROWS environment variable
*
* ROWS is not set, if this is an empty
* string ("").
*
*
* 15 argv[13] = text for COLUMNS environment variable
*
* COLUMNS is not set, if this is an empty
* string ("").

* 47 argv[14] = path name for SETUID utmpx recording
* routine
*
* Empty string ("") means use the default
* path, which is "/bin/fomtlinc"
*
*
* 15 argv[15] = program name for SETUID utmpx recording
* routine
*
* Empty string ("") means use the default
* program, which is "fomtlinc"
*
*
* -- argv[16] = SIGCHLD reset flag
*
* 1 = SIGCHLD will be reset to the default
* handling (This value should seldom
* (if ever) be needed -- the main
* purpose in the past was to be sure
* that NOCLDSTOP was off.)
*
* 0 = SIGCHLD handling will not be changed
*

* Other expected input conditions:
* -------------------------------
*
* 1) Slave TTY must be open, with no controlling terminal
* established yet.
*

Appendix B. Modules for the login and logout functions 441

*
* 2) All signals (except perhaps SIGCHLD) should be in their
* default handling state, before this routine is called.
* It is OK for signals to be blocked when this routine is
* called, however.
*
* 3) Any environment variables other than NLSPATH, LC_SYNTAX,
* LC_MESSAGES, LC_CTYPE, and LC_COLLATE will be passed through
* to the invoked shell. The environment variables named here
* will be gotten rid of before the shell is called. They
* will control message catalog processing before the shell is
* invoked.
*
* 4) Little validity checking is done on the parameters, which
* are expected to be correct. This command is not designed to
* be run from the shell command line.
*
*
*
* Return Value: Does not return to caller
* ------------
*
*
* Non-returning Exits: Does not return to caller
* -------------------

FOMTLOUT module for the logout function
The FOMTLOUT module (/bin/fomtlout) performs the logout function.

**
*
* Function:
* --------
*
* This function uses the utmpx
* functions to locate and remove the caller’s USERID from the utmpx
* file. This routine is a SETUID program, so that it can write to the
* utmpx file.
*
* note: This routine removes the caller’s session from the utmpx file
* whenever it is called. If this routine is called erroneously
* (when the user is not really logging off) it will go ahead and
* remove the session from the utmpx file. This will destroy the
* integrity of the utmpx file.

* Parameters:
* ----------
*
* 1:IN argc -- usual main() parameters
*
* 2:IN argv -- usual main() parameters
*
* argv[0] = program name ("fomtlinc")
*
* argv[1] = exit status (as a %d-coded integer value)
*
* argv[2] = (not used)
*
* argv[3] = (not used)
*
* argv[4] = debug level (as a %d-coded integer = 0 to 5)
*
* others -- test only arguments follow
*

442 z/OS V2R2 UNIX System Services Planning

*
*
* assumed file descriptors on entry:
*
* 0 -- master TTY (needed for ttyname()
* 1 -- might be a debug fd (debug messages written here)
* 2 -- might be an error fd (for system error messages)
*
*
* Return Value:
* ------------
*
* 1-byte exit status contains 2 bits of syscall ID and 6 bits of
* compressed errno information for the parent. This information is
* used only by the TSO/E OMVS command to put out logoff-oriented
* error messages to the user’s terminal.

* Non-returning Exits: none
* -------------------
*
*
* Main Side Effects:
* -----------------
*
* The caller’s session is removed from the utmpx file

Appendix B. Modules for the login and logout functions 443

444 z/OS V2R2 UNIX System Services Planning

Appendix C. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the "Contact us" web page for z/OS (http://www.ibm.com/
systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS V2R2 ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out

© Copyright IBM Corp. 1996, 2016 445

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html

punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

446 z/OS V2R2 UNIX System Services Planning

default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix C. Accessibility 447

448 z/OS V2R2 UNIX System Services Planning

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1996, 2016 449

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

450 z/OS V2R2 UNIX System Services Planning

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming Interface Information
This book is intended to help the customer plan for, customize, operate, manage,
and maintain a z/OS system with z/OS UNIX System Services (z/OS UNIX).

This book primarily documents intended Programming Interfaces that allow the
customer to write programs that use z/OS UNIX.

This book also documents information that is NOT intended to be used as
Programming Interfaces of z/OS UNIX. This information is identified where it
occurs, either by an introductory statement to a chapter or section or by the
following marking:

NOT Programming Interface Information

End of NOT Programming Interface Information

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtm.

Adobe and the Adobe logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 451

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

452 z/OS V2R2 UNIX System Services Planning

Glossary

This glossary includes terms and definitions for
z/OS UNIX System Services.

The following cross-references are used in this
glossary:
1. See refers the reader from a term to a

preferred synonym, or from an acronym or
abbreviation to the defined full form.

2. See also refers the reader to a related or
contrasting term.

To view glossaries for other IBM products, go to
www.ibm.com/software/globalization/
terminology.

3270 pass-through mode
A mode that lets a program running in a
shell environment send and receive a data
stream or issue TSO/E commands.

absolute address
An address that, without the need for
further evaluation, identifies a storage
location or a device.

absolute path name
A string of characters used to refer to an
object, starting at the highest level (or
root) of the directory hierarchy. The
absolute path name must begin with a
slash (/), which indicates that the path
begins at the root.

absolute value
The numeric value of a number regardless
of its algebraic sign (positive or negative).

access The ability to read, update, or otherwise
use a resource. Access to protected
resources is usually controlled by system
software.

access ACL
An access control list (ACL) that provides
protection for a file system object.

access authority
One of a range of possible authority
levels that control access to protected
resources.

access control
In computer security, the process of

ensuring that users can access only those
resources of a computer system for which
they are authorized.

access control list (ACL)
In computer security, a list associated
with an object that identifies all the
subjects that can access the object and
their access rights.

access list entry token (ALET)
A token that serves as an index into an
access list.

access method
A technique for moving data between
main storage and input/output devices.

access method services (AMS)
A multifunction utility named IDCAMS
that is used to manage catalogs, devices,
and both VSAM and non-VSAM data
sets.

access mode
A form of access permitted for a file.

access permission
A group of designations that determine
the users who can access a particular file
and how the users can access the file. The
access permissions are read, write, and
run (execute).

accessible
Pertaining to an object for which a client
has a valid designator or handle.

accessor environment element (ACEE)
A control block that contains a description
of the current user's security environment,
including user ID, current connect group,
user attributes, and group authorities. An
ACEE is constructed during user
identification and verification.

account
An entity that contains a set of
parameters that define the
application-specific attributes of a user,
which include the identity, user profile,
and credentials.

ACEE See accessor environment element. .

ACL See access control list.

© Copyright IBM Corp. 1996, 2016 453

http://www-306.ibm.com/software/globalization/terminology/
http://www-306.ibm.com/software/globalization/terminology/

address
A unique code or identifier for a register,
device, workstation, system, or storage
location.

address space (ASID)
The range of addresses available to a
computer program or process. Address
space can refer to physical storage, virtual
storage, or both.

address space identifier (ASID)
A unique, system-assigned identifier for
an address space.

Advanced Program-to-Program Communication
(APPC)

An implementation of the SNA LU 6.2
protocol that allows interconnected
systems to communicate and share the
processing of programs.

advisory lock
A type of lock that a process holds on a
region of a file preventing any other
process from locking the region or an
overlapping region.

aggregate
A structured collection of data objects that
form a data type.

alert To cause the user's terminal to give some
audible or visual indication that an error
or some other event has occurred.

ALET See access list entry token.

algorithm
A set of well-defined rules for the
solution of a problem in a finite number
of steps.

alias An alternative name used instead of a
primary name.

alias address
An alternative address for a network
interface that can be used in place of the
real address.

alias name
A name that is used to represent all or
part of a command.

allocate
To assign a resource to a specific task.

alphabetic
Pertaining to the set of letters and
symbols, excluding digits, used in a
language. This set usually consists of the

uppercase and lowercase letters plus
special symbols (such as $ and _) allowed
by a particular language.

alphabetic character
A letter or other symbol, excluding digits,
used in a language. Usually the uppercase
and lowercase letters A through Z plus
other special symbols (such as $ and _)
allowed by a particular language.

alphanumeric character
A lowercase or uppercase letter, number,
or special symbol.

American National Standards Institute (ANSI)
A private, nonprofit organization whose
membership includes private companies,
U.S. government agencies, and
professional, technical, trade, labor, and
consumer organizations. ANSI coordinates
the development of voluntary consensus
standards in the U.S.

American Standard Code for Information
Interchange (ASCII)

A standard code used for information
exchange among data processing systems,
data communication systems, and
associated equipment. ASCII uses a coded
character set consisting of 7-bit coded
characters.

AMS See access method services.

angle bracket
Either the left angle bracket (<) or the
right angle bracket (>). In the portable
character set, these characters are referred
to by the names <less-than-sign> and
<greater-than-sign>.

ANSI See American National Standards
Institute.

ANSI control character
A control character as defined by the
FORTRAN standards of American
National Standards Institute (ANSI) and
International Organization for
Standardization (ISO). It appears at the
beginning of each record.

APAR See authorized program analysis report.

APF See authorized program facility.

APF-authorized
Pertaining to a program that is authorized
by the authorized program facility (APF)

454 z/OS V2R2 UNIX System Services Planning

to access restricted functions, such as
supervisor calls (SVC) or SVC paths.

API See application programming interface.

APPC See Advanced Program-to-Program
Communication.

application
One or more computer programs or
software components that provide a
function in direct support of a specific
business process or processes.

application program
A program used to communicate with
stations in a network, enabling users to
perform application-oriented activities.

application programming interface (API)
An interface that allows an application
program that is written in a high-level
language to use specific data or functions
of the operating system or another
program.

archive
To copy programs, data, or files to
another storage media, usually for
long-term storage or security.

archive library
A facility for grouping
application-program object files. The
archive library file, when created for
application-program object files, has a
special symbol table for members that are
object files.

array A number of items stored together, which
a user can quickly retrieve by supplying
the correct index.

ASCII See American Standard Code for
Information Interchange.

ASID See address space identifier.

See address space.

assembler
A computer program that converts
assembly language instructions into object
code.

associativity
The order for grouping operands with an
operator (either left-to-right or
right-to-left).

ASYNC
See asynchronous.

asynchronous (ASYNC)
Pertaining to events that are not
synchronized in time or do not occur in
regular or predictable time intervals.

attach In z/OS, to create a task that can execute
concurrently with the attaching code.

authorized program analysis report (APAR)
A request for correction of a defect in a
supported release of an IBM-supplied
program.

authorized program facility (APF)
In a z/OS environment, a facility that
permits the identification of programs
that are authorized to use restricted
functions.

automatic conversion
In Enhanced ASCII, the conversion of text
data from EBCDIC to ASCII and from
ASCII to EBCDIC. This capability makes
it easier to port international applications
developed on, or for, ASCII systems to
z/OS systems.

automatic variable
A variable allocated on entry to a routine
and deallocated on the return.

automount rule
A generic or specific entry in an
automount map file.

auxiliary storage
All addressable storage other than main
storage.See also memory.

awk A file processing language that is well
suited to data manipulation and retrieval
of information from text files.

B See byte.

background
The conditions under which low-priority,
noninteractive programs are run.

background process
A process that does not require operator
intervention but can be run by the
computer while the workstation is used to
do other work.

backslash
The character \. The backslash enables a
user to escape the special meaning of a
character. That is, typing a backslash

Glossary 455

before a character tells the system to
ignore any special meaning the character
might have.

backup
Pertaining to a system, device, file, or
facility that can be used in the event of a
malfunction or loss of data.

base address
An address that is used as a reference
point for resolving symbolic references to
locations in storage.

base address register
See base register.

base name
The last element to the right of a full path
name.

base register
A general purpose register that the
programmer chooses to contain a base
address.

basic mode
A central processor mode that does not
use logical partitioning.

basic partitioned access method (BPAM)
An access method that can be used to
create program libraries in direct access
storage for convenient storage and
retrieval of programs.

batch A group of records or data processing
jobs brought together for processing or
transmission.

Pertaining to a group of jobs to be run on
a computer sequentially with the same
program with little or no operator action.

batch job
A predefined group of processing actions
submitted to the system to be performed
with little or no interaction between the
user and the system.

batch mode
The condition established so that batch
processing can be performed.

batch processing
A method of running a program or a
series of programs in which one or more
records (a batch) are processed with little
or no action from the user or operator.

binary file
A file format that does not consist of a
sequence of printable characters (text).

binder
See linkage editor.

block special file
A file that provides a low level block
access to an input or output device.See
also character special file.

Boolean
Characteristic of an expression or variable
that can only have a value of true or false.

BPAM See basic partitioned access method.

brace Either of the characters left brace ({) and
right brace (}). When an object is enclosed
in braces, the left brace immediately
precedes the object and the right brace
immediately follows it.

bracket
Either of the characters left bracket ([) and
right bracket (]).

break condition
In the TTY subsystem, a character
framing error in which the data is all
zeros.

break statement
A C or C++ control statement that
contains the keyword break and a
semicolon (;). It is used to end an iterative
or a switch statement by exiting from it at
any point other than the logical end.
Control is passed to the first statement
after the iteration or switch statement.

breakpoint
A marked point in a process or
programmatic flow that causes that flow
to pause when the point is reached,
usually to allow debugging or
monitoring.

build To convert a product from source code to
a binary or executable software product.

built-in shell command
A command that is implemented as part
of a shell program. Certain commands are
built into the shell in order to improve
the performance of shell scripts or to
access the shell's internal data structures
and variables.

byte (B)
A string that represents a character and

456 z/OS V2R2 UNIX System Services Planning

usually consists of eight binary digits that
are treated as a unit. A byte is the
smallest unit of storage that can be
addressed directly.

C library
A system library that contains common C
language subroutines for file access, string
operations, character operations, memory
allocation, and other functions.

C shell
A command line processor for UNIX that
provides interactive features such as job
control and command history.

C++ library
A system library that contains common
C++ language subroutines for file access,
memory allocation, and other functions.

call To start a program or procedure, usually
by specifying the entry conditions and
transferring control to an entry point.

callable service
A set of documented interfaces between
the z/OS operating system and higher
level applications that want to access
functions specified in the Single UNIX
Specification and earlier standards.

cancel To end a task before it is completed.

canonical mode
See line mode.

carriage control character
A character that is used to specify a write,
space, or skip operation.See also control
character.

carriage return
A keystroke generally indicating the end
of a command line.

catalog
A directory of files and libraries, with
reference to their locations.

cataloged procedure
A set of job control language (JCL)
statements that has been placed in a
library and that is retrievable by name.

CBPDO
See Custom-built Product Delivery
Option.

CCSID
See coded character set identifier.

CDS See couple data set.

CECP See country extended code page.

cell A logical grouping of users, computers,
data, and other resources that share either
a common purpose or a common level of
trust.

central storage
Storage that is an integral part of the
processor unit. Central storage includes
both main storage and the hardware
system area. UNIX-experienced users
refer to central storage as memory.

character class
A named set of characters sharing an
attribute associated with the name of the
class. The classes and the characters that
they contain are dependent on the value
of the LC_CTYPE category in the current
locale.

character constant
A constant value whose data attribute is
character.

character conversion table
A table that converts one or more
characters to alternative characters using
hexadecimal encoding for the character
sets. The character sets are defined in
code pages.

character set
A defined set of characters with no coded
representation assumed that can be
recognized by a configured hardware or
software system. A character set may be
defined by alphabet, language, script, or
any combination of these items.

character special file
A special interface file that provides
access to an input or output device, which
uses character I/0 instead of block I/0.

character string
A sequence of consecutive characters that
are treated as a unit.

character type
A data type that consists of alphanumeric
characters.

checksum
The sum of a group of data that is
associated with a group of data and that
is used for error detection.

Glossary 457

child A node that is subordinate to another
node in a tree structure. Only the root
node is not a child.

child process
A process that is created by a parent
process and that shares the resources of
the parent process to carry out a request.

child resource
A secured resource, either a file or library,
that uses the user list of a parent resource.
A child resource can have only one parent
resource.

child segment
In a database, any segment that is
dependent on another segment above it
(its parent) in the hierarchy.

choice An option in a pop-up window or menu
used to influence the operation of the
system.

CINET
See Common INET.

classification rule
A rule used by the workload manager
component of z/OS to assign a service
class.

client A software program or computer that
requests services from a server.

client process
A process that requests services from a
server process.

client/server
Pertaining to the model of interaction in
distributed data processing in which a
program on one computer sends a request
to a program on another computer and
awaits a response. The requesting
program is called a client; the answering
program is called a server.

close To end processing by ending the
connection between the file and a
program.

code page
A particular assignment of code points to
graphic characters. Within a given code
page, a code point can have only one
specific meaning. A code page also
identifies how undefined code points are
handled..

code point
A unique bit pattern that represents a
character in a code page.

coded character set identifier (CCSID)
A 16-bit number that includes a specific
set of encoding scheme identifiers,
character set identifiers, code page
identifiers, and other information that
uniquely identifies the coded
graphic-character representation.

collating element
The smallest entity used to determine the
logical ordering of strings. A collating
element consists of either a single
character, or two or more characters
collating as a single entity. The value of
the LC_COLLATE category in the current
locale determines the current set of
collating elements.

collating sequence
A specified arrangement used in
sequencing.

colony address space
An address space in which a physical file
system (PFS) can be initialized. The
address space can be viewed as a logical
extension to the kernel address space.

column
A vertical arrangement of characters or
other expressions. Columns are positioned
side by side on a page or display.

command
A statement used to initiate an action or
start a service. A command consists of the
command name abbreviation, and its
parameters and flags if applicable.

command alias
An abbreviation of a long command line
or a new name for a command. [OSF]

command history
An automatic listing of previously issued
commands.

command interpreter
See command language interpreter

command language interpreter
A program that reads commands and
changes them into computer instructions.

458 z/OS V2R2 UNIX System Services Planning

command line
The blank line on a display where
commands, option numbers, or selections
can be entered.

command list
A list of commands and statements
designed to perform a specific function
for the user.

command mode
A state of a system or device in which the
user can enter commands.

command name
The first term in a command, a verb,
which specifies the action to be performed
and is usually followed by operands.

command processor
A module designed to perform a specific
function for the user. Users can write
command processors in assembler
language or in a high-level language.
Command processors are started as
commands.

command substitution
In UNIX-based operating systems, a shell
feature that makes it possible to use the
output from one command as an
argument to another command.

command-line argument
A part of a command line, delimited by
white space. Arguments are used to
specify detailed behavior to a program.
They are usually either command line
options selecting variations in program
operation, or path names of files to be
processed.

comment
Explanatory text in a program or file that
is not translated by the compiler.

commit
To end a unit of work by releasing locks
so that the database changes made by that
unit of work can be perceived by other
processes. This operation makes the data
changes permanent.

Common INET (CINET)
A physical file system layer for the
address families AF_INET and AF_INET6
that multiplexes sockets across several
other physical file systems or transports.

common VTOC access facility (CVAF)
A set of macros that enables programs to

access data in the volume table of
contents (VTOC) and the VTOC index.

communication
The process of sending or receiving data
between two points of a network.

Communications Server
IBM SecureWay Software that supports (a)
the development and use of application
programs across two or more connected
systems or workstations, (b) multiple
concurrent connections that use a wide
range of protocols, and (c) several
application programming interfaces (APIs)
that may be called concurrently and that
are designed for client/server and
distributed application programs.

compatibility
The ability of a device or system to work
with another device or system without
modification.

compilation unit
A portion of a computer program
sufficiently complete to be compiled
correctly.

compile
To translate all or part of a program
expressed in a high-level language into a
computer program expressed in an
intermediate language, an assembly
language, or a machine language.

compiler
A program that translates a source
program into an executable program (an
object program).

compiler option
A keyword that can be specified to
control certain aspects of compilation.
Compiler options can control the nature
of the load module generated by the
compiler, the types of printed output to
be produced, the efficient use of the
compiler, and the destination of error
messages.

component
A part of a structured type or value, such
as an array element or a record field.

condition
An expression that can be evaluated as
true, false, or unknown. It can be
expressed in natural language text, in

Glossary 459

mathematically formal notation, or in a
machine-readable language.

condition code
A code that reflects the result of a
previous input/output, arithmetic, or
logical operation.

condition variable
An object that allows a thread to suspend
execution when it finds an untrue
condition, and to resume execution when
another thread makes the condition true.

configuration
The machines, devices, and programs that
make up a system, subsystem, or
network.

configure
To describe the interconnected
arrangement of the devices, programs,
communications, and optional features
installed on a system.

conformance document
A document provided by an implementer
(such as IBM) that contains
implementation details as described in the
current POSIX.1 standard.

connection
In data communication, an association
established between entities for conveying
information.

constant
A language element that specifies an
unchanging value. Constants are classified
as string constants or numeric constants.

constant field
A field defined by a display format to
contain a value that does not change.

context
The address space for a process, hardware
registers, and related kernel data
structures.

control block
A storage area used by a program to hold
control information.

control character
A character whose occurrence in a
particular context initiates, modifies, or
stops a control function.

control section (CSECT)
The part of a program specified by the
programmer to be a relocatable unit, all

elements of which are to be loaded into
adjoining main storage locations.

control statement
In programming languages, a statement
that is used to interrupt the continuous
sequential processing of programming
statements. Conditional statements such
as IF, PAUSE, and STOP are examples of
control statements.

controlled program
A RACF function with which an
installation can control who can run
RACF-controlled programs.

controlling process
A session leader that has control of a
terminal.

controlling terminal
The active workstation from which the
process group for that process was
started. Each session may have at most
one controlling terminal associated with
it, and a controlling terminal is associated
with exactly one session.

conversational
Pertaining to a program or a system that
conducts a dialog with a terminal user,
alternately receiving and transmitting
data.

conversion
The process of changing from one form of
representation to another. Changing a
code point that is assigned to a character
in one code page to its corresponding
code point in another code page is an
example of conversion.

conversion table
A table that contains a set of characters
that can be replaced with alternative
characters.

Coordinated Universal Time (UTC)
The international standard of time that is
kept by atomic clocks around the world.

copy To read data from a source, leaving the
source data unchanged, and to write the
same data elsewhere.

counter
A register or storage location used to
accumulate the number of occurrences of
an event.

460 z/OS V2R2 UNIX System Services Planning

country extended code page (CECP)
An EBCDIC code page that is extended
by the addition of code points for
characters needed in the language used
by a specific country. Using country
extended code page (CECP) support, a
German panel, for example, can be
displayed on a French CECP terminal
with all common characters displayed
correctly

couple data set (CDS)
A data set that contains information
related to a sysplex, its systems,
cross-system coupling facility (XCF)
groups, and their members.

coupling facility
A special logical partition that provides
high-speed caching, list processing, and
locking functions in a sysplex.

CRC See cyclic redundancy check.

cross-system coupling facility (XCF)
A component that provides functions to
support cooperation between authorized
programs running within a sysplex.

CSECT
See control section.

current directory
See working directory.

current file
The file being edited. If multiple windows
are in use, the current file is the file
containing the cursor.

current line
The line on which the cursor is located.

current record
The record pointed to by the current line
pointer.

cursor A movable symbol on a display, often a
blinking or solid block of light, that
identifies a choice to select, indicates
where user interaction with the keyboard
will appear, or indicates a position of
interest on the display surface.

Custom-built Product Delivery Option
(CBPDO)

A software delivery package consisting of
uninstalled products and unintegrated
service. Installation requires the use of

SMP/E. CBPDO is one of the two entitled
methods for installing z/OS; the other
method is ServerPac.

customization
The process of designing a data
processing installation or network to meet
the requirements of particular users.
Activities can include installing additional
products, taking advantage of new
software features and functions, and
enabling or disabling optional features.

CVAF See common VTOC access facility.

cyclic redundancy check (CRC)
A redundancy check in which the check
key is generated by a cyclic algorithm

daemon
A program that runs unattended to
perform continuous or periodic functions,
such as network control.

DASD
See direct access storage device.

data area
A memory area that is used by a program
to hold information.

data definition (DD)
A program statement that describes the
features of, specifies relationships of, or
establishes the context of data. A data
definition reserves storage and can
provide an initial value.

data definition name (ddname)
The name of a data definition (DD)
statement that corresponds to a data
control block that contains the same
name.

data definition statement (DD statement)
A job control statement that is used to
define a data set for use by a batch job
step, started task or job, or an online user.

Data Facility Storage Management Subsystem
See DFSMS.

data integrity
The condition that exists as long as
accidental or intentional destruction,
alteration, or loss of data does not occur.

data security
The protection of data against
unauthorized disclosure, transfer,
modification, or destruction, whether
accidental or intentional.

Glossary 461

data set
The major unit of data storage and
retrieval, consisting of a collection of data
in one of several prescribed arrangements
and described by control information to
which the system has access. See also file.

data space
A separate area of addressable storage
that contains only data. A data space can
hold up to 2 gigabytes of data.

data stream
The commands, control codes, data, or
structured fields that are transmitted
between an application program and a
device such as printer or
nonprogrammable display station.

data structure
In Open Source Initiative (OSI), the
syntactic structure of symbolic expressions
and their storage allocation characteristics.

data type
In programming languages, a descriptor
of a set of values together with a set of
permitted operations. A data type
determines the kind of value that a
variable can assume or that a function can
return.

database (DB)
A collection of interrelated or
independent data items that are stored
together to serve one or more
applications.

DB See database.

DBCS See double-byte character set.

DD See device driver.

See data definition.

DD statement
See data definition statement.

ddname
See data definition name.

deadlock
Unresolved contention for the use of
resources.

deallocate
To release a resource that is assigned to a
specific task.

debug To detect, diagnose, and eliminate errors
in programs.

debugger
A tool used to detect and trace errors in
computer programs.

decimal
Pertaining to a system of numbers to the
base 10. The decimal digits range from 0
through 9.

declaration
In the C and C++ languages, a description
that makes an external object or function
available to a function or a block
statement.

default
Pertaining to an attribute, value, or option
that is assumed when none is explicitly
specified.

default access control list (default ACL)
A template used to generate access
control lists (ACLs) for the files within a
directory. A default ACL is not used to
verify permissions.

default ACL
See default access control list.

default directory
The directory name supplied by the
operating system if none is specified.

definition
A declaration that reserves storage and
can provide an initial value for a data
object or define a function.

descriptor
A small, unsigned integer that a UNIX
system uses to identify an object
supported by the kernel. Descriptors can
represent files, pipes, sockets, and other
I/O streams.

device A piece of equipment. Devices can be
workstations, printers, disk drives, tape
units, or remote systems.

device driver (DD)
A program that provides an interface
between a specific device and the
application program that uses the device.

DFSMS (Data Facility Storage Management
Subsystem)

An operating environment that helps
automate and centralize the management
of storage. To manage storage, the storage
management subsystem (SMS) provides
the storage administrator with control

462 z/OS V2R2 UNIX System Services Planning

over data class, storage class,
management class, storage group, and
automatic class selection (ACS) routine
definitions.

diagnostic
Pertaining to the detection and isolation
of an error.

digit A symbol that represents one of the
nonnegative integers smaller than the
radix.

direct access storage device (DASD)
A device that allows storage to be directly
accessed, such as a disk drive.

direct data set
A data set that has records in random
order on a direct access volume. Each
record is stored or retrieved according to
its actual address or its address relative to
the beginning of the data set. See also
sequential data set.

directory
A type of file that contains the names and
controlling information for objects or
other directories.

In a hierarchical file system, a grouping of
related files and directories. A directory
can contain zero or more entries, which
refer to other directories and files.

directory default ACL
A model access control list (ACL) that is
inherited by subdirectories that are
created within the parent directory.

dirty address space
An address space requiring daemon
authority that has had an uncontrolled
program loaded into it. A dirty address
space cannot perform daemon activities.

discretionary access control
A security mechanism that protects
information from unauthorized disclosure
or modification through owner-controlled
access to files.

distributed computing
A method of computing in which large
problems are divided into small tasks that
are distributed across a network for
simultaneous processing. Individual
results are then brought together to form
the total solution.

DLL See dynamic link library.

DNS See Domain Name System.

Domain Name System (DNS)
The distributed database system that
maps domain names to IP addresses.

dot A symbol (.) that indicates the current
directory in a relative path name.

dot dot
A symbol (..) in a relative path name that
indicates the parent directory.

double quote
See quotation mark.

double-byte character set (DBCS)
A set of characters in which each
character is represented by two bytes.
These character sets are commonly used
by national languages, such as Japanese
and Chinese, that have more symbols
than can be represented by a single byte.

double-precision
Pertaining to the use of two computer
words to represent a number in
accordance with the required precision.

DSECT
See dummy control section.

dub To make an MVS address space known to
z/OS UNIX.

dummy control section (DSECT)
A control section that an assembler can
use to format an area of storage without
producing any object code.

dump To record or copy, at a particular instant,
data from one storage device onto another
storage device to protect the data and
debug the program.

dynamic
Pertaining to an operation that occurs at
the time it is needed rather than at a
predetermined or fixed time.

dynamic link library (DLL)
A file containing executable code and data
bound to a program at load time or run
time, rather than during linking. The code
and data in a DLL can be shared by
several applications simultaneously.

dynamic link pack area (dynamic LPA)
A facility for adding additional modules
to the to the link pack area (LPA) after the
LPA has been created.

Glossary 463

dynamic LPA
See dynamic link pack area.

dynamic storage
An area of storage that is explicitly
allocated by a program or procedure
while it is running.

EBCDIC
See Extended Binary Coded Decimal
Interchange Code.

EBCDIC character
Any one of the symbols included in the
EBCDIC set.

editor program
A computer program designed to perform
such functions as rearrangement,
modification, and deletion of data in
accordance with prescribed rules.

effective group ID
The current group ID, but not necessarily
the user's own ID. For example, a user
logged in under a particular group ID
might be able to change to another group
ID. The ID to which the user changes
then becomes the effective group ID.

element
The smallest unit in a table, array, list, set,
or other structure. Examples of an
element are a value in a list of values and
a data field in an array.

ELPA See extended link pack area.

empty string
A character array whose first element is a
null character.

emulation
The use of software, hardware, or both by
one system to imitate another system. The
imitating system accepts the same data,
runs the same programs, and achieves the
same results as the imitated system.

enclave
A transaction that can span multiple
dispatchable units (service request blocks
and tasks) in one or more address spaces
and is reported on and managed as a
unit.

end-of-file (EOF)
A code that signals that the last record of
a file has been read.

enforced lock
A type of lock that a process holds on a
region of a file preventing any other
process from accessing that region with
read or write system calls. In addition, the
create command is prevented from
truncating the files.

entry An element of information in a table, list,
queue, or other organized structure of
data or control information.

entry point
The address or label of the first
instruction processed or entered in a
program, routine, or subroutine.There
might be a number of different entry
points, each corresponding to a different
function or purpose.

environment
The settings for shell variables and paths
that are set when the user logs in. These
variables can be modified later by the
user.

environment variable
A variable that defines an aspect of the
operating environment for a process. For
example, environment variables can
define the home directory, the command
search path, the terminal in use, or the
current time zone.

EOF See end-of-file.

epoch The time and date corresponding to 0 in
an operating system's clock and
time-stamp values. For most versions of
the UNIX operating system, the epoch is
00:00:00 GMT, 01 January 1970. System
time is measured as the number of
seconds past the epoch.

equivalence class
A grouping of characters or character
strings that are considered equal for
purposes of collation. For example, many
languages place an uppercase character in
the same equivalence class as its
lowercase form, but some languages
distinguish between accented and
unaccented character forms for the
purpose of collation.

error condition
The state that results from an attempt to
run instructions in a computer program
that are not valid or that operate on data
that is not valid.

464 z/OS V2R2 UNIX System Services Planning

ESC See escape character.

escape To return to the original level of a user
interface.

escape character (ESC)
The control character in a text-control
sequence that indicates the beginning of a
sequence and the end of any preceding
text.

escape sequence
A character that is preceded by a \
(backslash) and is interpreted to have a
special meaning to the operating system.

ESQA See extended system queue area.

executable file
A file that contains programs or
commands that perform operations on
actions to be taken.

executable program
A program in a form suitable for
execution by a computer. The program
can be an application or a shell script.

exit routine
A program that receives control from
another program in order to perform
specific functions.

export In Network File System (NFS), to make
file systems on a server available to
remote clients.

Extended Binary Coded Decimal Interchange
Code (EBCDIC)

A coded character set of 256 8-bit
characters developed for the
representation of textual data.

extended link pack area (ELPA)
The portion of virtual storage above
16MB that contains frequently used
modules.

extended system queue area (ESQA)
A major element of z/OS virtual storage
above the 16MB line. This storage area
contains tables and queues relating to the
entire system. It duplicates above the
16MB line the system queue area (SQA) .

extent A continuous space on a disk,
direct-access storage volume, or diskette
that is occupied by or reserved for a
particular data set, data space, or file.

external
In programming languages, pertaining to

a language object that has a scope that
extends beyond one module, for example,
the entry names of a module.

external link
A symbolic link that contains the name of
an object that is outside the hierarchical
file system.

Extra Performance Linkage (XPLINK)
A type of call linkage that can improve
performance in an environment of
frequent calls between small functions.

Federal Information Processing Standard (FIPS)
A standard produced by the National
Institute of Standards and Technology
when national and international standards
are nonexistent or inadequate to satisfy
the U.S. government requirements.

FIFO special file
A type of file with the property that data
written to such a file is read on a
first-in-first-out (FIFO) basis.

file A collection of related data that is stored
and retrieved by an assigned name.See
also data set.

file access permission
A designation that determines who can
access a particular file and how the user
can access the file.

file default ACL
A model access control list (ACL) that is
inherited by files that are created within
the parent directory.

file descriptor
A positive integer or a data structure that
uniquely identifies an open file for the
purpose of file access.

file lock
A means to limit or deny access to a file
by other users. A file lock can be a read
lock or a write lock.

file mode
An object containing the file permission
bits and other characteristics of a file.

file mode creation mask
A pattern of characters that is used to
establish maximum permissions that can
then be applied to individual access
control list (ACL) entries.

Glossary 465

file name
A name assigned to identify a file.

file offset
The byte position in the file where the
next I/O operation begins.

file owner
The user who has the highest level of
access authority to a file, as defined by
the file.

file permission bit
Information about a file that is used,
along with other information, to
determine whether a process has read,
write, or execute permission to a file. The
use of file permission bits is described in
file access permissions.

file pointer
An identifier that indicates a structure
containing the file name.

file system
A collection of files and certain attributes
associated with those files.

file system owner
The system that coordinates sysplex
activity for a particular file system.

file tag
A file attribute that identifies the
character set of the text data within a file
and indicates whether the file is eligible
for automatic conversion.

File Transfer Protocol (FTP)
In TCP/IP, an application layer protocol
that uses TCP and Telnet services to
transfer bulk-data files between machines
or hosts.

filter A command that reads standard input
data, modifies the data, and sends it to
standard output. A pipeline usually has
several filters.

FIPS See Federal Information Processing
Standard.

fixed-length record
A record whose length is established as
an attribute of the file in which it is
stored, and cannot be changed. Every
record in such a file has the same length,
which is specified by the record length
attribute (LRECL) of the file.

flag An indicator or parameter that shows the
setting of a switch.

floating-point number
A real number represented by a pair of
distinct numerals. The real number is the
product of the fractional part, one of the
numerals, and a value obtained by raising
the implicit floating-point base to a power
indicated by the second numeral.

floating-point register (FPR)
A register used to manipulate data in a
floating-point representation system.
[I][A]

fold To translate the lowercase characters of a
character string into uppercase.

foreground
In multiprogramming, the environment in
which high-priority programs are run.

foreground process group
A group whose member processes have
privileges that are denied to background
processes when the controlling terminal is
being accessed. Each controlling terminal
can have only one foreground process
group.

foreign cell
A cell other than the one to which the
local machine belongs. A foreign cell and
its binding information are stored in
either Global Directory Service (GDS) or
the Domain Name System (DNS).

fork To create and start a child process.

forked address space
An address space created by a fork
function. A forked address space is
perceived by MVS to be a batch job.

formatted file
A file that is arranged with particular
characteristics, such as line spacing,
headings, and number of characters and
lines per page.

FPR See floating-point register.

free space
The total amount of unused space in a
page, data set, file, or storage medium.
Free space is the space that is not used to
store records or control information.

FRR See functional recovery routine.

FTP See File Transfer Protocol.

fully qualified name
A qualified name that includes all names

466 z/OS V2R2 UNIX System Services Planning

in the hierarchical sequence above the
structure member to which the name
refers, as well as the name of the member
itself.

function
Any instruction or set of related
instructions that perform a specific
operation.

function call
An expression that transfers the path of
execution from the current function to a
specified function (the called function). A
function call contains the name of the
function to which control is transferred
and a parenthesized list of values

function key
A keyboard key that can be programmed
to perform certain actions.

functional recovery routine (FRR)
A z/OS recovery and termination
manager that enables a recovery routine
to gain control in the event of a program
interrupt.

function shipping
The process of requesting function from
the owning file system and returning the
response to the requester through XCF
communications.

G11N See globalization.

GDG See generation data group.

GDS See generation data set.

general purpose register (GPR)
An explicitly addressable register that can
be used for a variety of purposes (for
example, as an accumulator or an index
register).

generation data group (GDG)
A chronological collection of historically
related data sets that do not use the
Virtual Storage Access Method (VSAM);
each data set is called a generation data
set.

generation data set (GDS)
One of the data sets in a generation data
group (GDG); a GDS is historically related
to the other data sets in the group.

Generic Security Services API
See Generic Security Services application
programming interface.

Generic Security Services application
programming interface (Generic Security
Services API, GSS API)

A common application programming
interface (API) for accessing security
services.

GID See group ID.

globalization (G11N)
In computing, the provision of a single
software solution that has (1)
multicultural support and (2) a user
interface and documentation that is
available in one or more languages.

goal mode
A mode of processing in which the active
service policy determines system resource
management.

GPR See general purpose register.

graphic character
A visual representation of a character,
other than a control character, that is
normally produced by writing, printing,
or displaying.

group A collection of users who can share access
authorities for protected resources.

group ID (GID)
In the UNIX operating system, an integer
that uniquely identifies each group of
users to the operating system.

group name
A name that uniquely identifies a group
of users to the system. The group name
contains 1 - 8 alphanumeric characters,
beginning with an alphabetic character or
one of these special characters: #, $, or >.

GSS API
See Generic Security Services application
programming interface.

H/W See hardware.

halfword
A contiguous sequence of bits or
characters that constitutes half a computer
word and can be addressed as a unit.

handler
A software routine that controls a

Glossary 467

program's reaction to specific external
events, such as an interrupt handler.

hardware (H/W)
The physical components of a computer
system.

header
System-defined control information that
precedes user data.

header file
See include file.

HFS See hierarchical file system.

hierarchical file system (HFS)
A system for organizing files in a
hierarchy, as in a UNIX system.

hierarchical storage management (HSM)
A function that automatically distributes
and manages data on disk, tape, or both
by regarding devices of these types and
potentially others as levels in a storage
hierarchy that range from fast, expensive
devices to slower, cheaper, and possibly
removable devices. The objectives are to
minimize access time to data and
maximize available media capacity.

High Level Assembler
An IBM licensed program that translates
symbolic assembler language into binary
machine language.

high-level language (HLL)
A programming language that provides
some level of abstraction from assembler
language and independence from a
particular type of machine.

high-order
The most significant; leftmost. For
example, bit 0 in a register is the
high-order bit.

Hiragana
One of the two common Japanese
phonetic alphabets (the other is katakana).
The symbols are cursive or curvilinear in
style. Hiragana syllables are typically
used in the representation of native
Japanese words and grammatical
particles.

history file
A file in which a record is kept of shell
commands that are executed.

HLL See high-level language.

HSM See hierarchical storage management.

Huffman coding
A character-coding technique to compress
data.

i-node The internal structure that describes the
individual files in the UNIX file system.
An i-node contains the node, type, owner,
and location of a file.

i-node number
A number specifying a particular i-node
file in the file system.

I/O See input/output.

IAR See instruction address register.

ID See identifier.

identifier (ID)
A sequence of bits or characters that
identifies a user, program, device, or
system to another user, program, device,
or system.

IEEE See Institute of Electrical and Electronics
Engineers.

if statement
A conditional statement that specifies a
condition to be tested and the action to be
taken if the condition is satisfied.

include file
A text file that contains declarations that
are used by a group of functions,
programs, or users.

index A table that contains key values or
referrences for locating information in an
indexed file.

informational message
A message that provides information
about the system and is not the result of
an error condition. This message does not
require a response.

inherit
To copy resources or attributes from a
parent to a child.

initial program load
The process of loading the operating
system and other basic software into main
storage.

input Data entered for processing or storage.

468 z/OS V2R2 UNIX System Services Planning

input redirection
The specification of an input source other
than the standard one.

input stream
A sequence of control statements and data
submitted to an operating system by an
input device.

input/output (I/O)
Pertaining to a device, process, channel,
or communication path involved in data
input, data output, or both.

installation
A particular computing system, including
the work it does and the people who
manage it, operate it, apply it to
problems, service it, and use the results it
produces.

Institute of Electrical and Electronics Engineers
(IEEE) A professional society accredited by the

American National Standards Institute
(ANSI) to issue standards for the
electronics industry.

instruction
A program statement that specifies an
operation to be performed by the
computer, along with the values or
locations of operands. This statement
represents the programmer's request to
the processor to perform a specific
operation. [OSF]

instruction address register (IAR)
A register in the processor that contains
the address of the next instruction to be
processed.

integer
A positive or negative whole number, or
zero.

integer expression
An arithmetic expression with only
integer type values.

Interactive Problem Control System (IPCS)
A component of MVS and z/OS that
permits online problem management,
interactive problem diagnosis, online
debugging for disk-resident abend
dumps, problem tracking, and problem
reporting.

interactive processing
A processing method in which each
operator action causes a response from
the program or the system.

Interactive System Productivity Facility (ISPF)
An IBM licensed program that serves as a
full-screen editor and dialog manager.
Used for writing application programs, it
provides a means of generating standard
screen panels and interactive dialogs
between the application programmer and
terminal user.

interface
A shared boundary between independent
systems. An interface can be a hardware
component used to link two devices, a
convention that supports communication
between software systems, or a method
for a user to communicate with the
operating system, such as a keyboard.

International Organization for Standardization
(ISO) An international body charged with

creating standards to facilitate the
exchange of goods and services as well as
cooperation in intellectual, scientific,
technological, and economic activity.

Internet
The worldwide collection of
interconnected networks that use the
Internet suite of protocols and permit
public access.

Internet Protocol (IP)
A protocol that routes data through a
network or interconnected networks. This
protocol acts as an intermediary between
the higher protocol layers and the
physical network.

interoperability
The ability of a computer or program to
work with other computers or programs.

interprocess communication (IPC)
The process by which programs send
messages to each other. Sockets,
semaphores, signals, and internal message
queues are common methods of
interprocess communication.

interrupt
Suspension of a process, such as
execution of a computer program, caused
by an external event and performed in
such a way that the process can be
resumed.

IP See Internet Protocol.

Glossary 469

IP socket
The port that is concatenated with the
Internet Protocol (IP) address.

IPC See interprocess communication.

IPCS See Interactive Problem Control System.

ISO See International Organization for
Standardization.

ISPF See Interactive System Productivity
Facility.

item The data in one line of an indexed field.

JCL See job control language.

JES See Job Entry Subsystem.

JES2 An MVS subsystem that receives jobs into
the system, converts them to internal
format, selects them for execution,
processes their output, and purges them
from the system. In an installation with
more than one processor, each JES2
processor independently controls its job
input, scheduling, and output processing.

JES3 An MVS subsystem that receives jobs into
the system, converts them to internal
format, selects them for execution,
processes their output, and purges them
from the system. In complexes that have
several loosely coupled processing units,
the JES3 program manages processors so
that the global processor exercises
centralized control over the local
processors and distributes jobs to them
using a common job queue.

job control language (JCL)
A command language that identifies a job
to an operating system and describes the
job's requirements.

Job Entry Subsystem (JES)
An IBM licensed program that receives
jobs into the system and processes all
output data that is produced by those
jobs.

job name
The name of the job as identified to the
system. For an interactive job, the job is
assigned the name of the workstation at
which the job was started; for a batch job,
the name is specified in the command
used to submit the job.

job step
The execution of a computer program
explicitly identified by a job control
statement. A job may specify that several
job steps be executed. [A]

jump In the running of a computer program, a
departure from the implicit or declared
order in which instructions are being run.

justify To align text so that the margins are even

Kanji A graphic character set consisting of
symbols used in Japanese ideographic
alphabets. Each character is represented
by 2 bytes.

Katakana
A Japanese phonetic syllabary used
primarily for foreign names and place
names and words of foreign origin.

Kerberos
A network authentication protocol that is
based on symmetric key cryptography.
Kerberos assigns a unique key, called a
ticket, to each user who logs on to the
network. The ticket is embedded in
messages that are sent over the network.
The receiver of a message uses the ticket
to authenticate the sender.

kernel The part of an operating system that
contains programs for such tasks as
input/output, management and control of
hardware, and the scheduling of user
tasks.

kernel address space
The address space containing the MVS
support for z/OS UNIX services. This
address space can also be called the
kernel.

keyboard
An input device consisting of various
keys that allows the user to input data,
control cursor and pointer locations, and
control the dialog with the workstation.

keyword
One of the predefined words of a
programming language, artificial
language, application, or command.

keyword parameter
A parameter that consists of a keyword
followed by one or more values.

470 z/OS V2R2 UNIX System Services Planning

kill character
A character that deletes a line of
characters entered after a prompt.

Korn shell
A command interpreter developed for
UNIX, which forms the basis for the z/OS
shell.

label One or more characters used to identify a
statement or an item of data in a
computer program.

labeled statement
A programming language statement that
contains one or more identifiers followed
by a colon and a statement.

last-in first-out (LIFO)
A queuing technique in which the next
item to be retrieved is the item most
recently placed on the queue.

Latin 1
See Latin alphabet no. 1.

Latin alphabet
An alphabet composed of the letters a - z
and A - Z with or without accents and
ligatures.

Latin alphabet no. 1 (Latin 1, Latin-1)
The 190 characters used in most of
Western Europe, North America, Central
and South America . There are other Latin
alphabets such as Latin-2 and Latin-3 that
correspond to some of the other ISO/IEC
8859 character sets. The numbering
scheme is neither rational nor orderly.

Latin-1
See Latin alphabet no. 1.

Lempel-Ziv (LZ)
A technique for compressing data. This
technique replaces some character strings,
which occur repeatedly within the data,
with codes. The encoded character strings
are then kept in a common dictionary,
which is created as the data is being sent.

level In a database, the successive vertical
dependencies in a hierarchical structure.

lexical analyzer
A program that analyzes input and breaks
it into categories, such as numbers, letters,
or operators.

library
A collection of model elements, including
business items, processes, tasks, resources,
and organizations.

library lookaside (LLA)
A z/OS facility that reduces library I/O
activity by keeping selected directory
entries and modules in storage, instead of
making repetitive searches of DASD

licensed program (LP)
A separately priced program and its
associated materials that have a copyright
and are offered to customers under the
terms and conditions of a licensing
agreement.

LIFO See last-in first-out.

line On a terminal, one or more characters
entered before a return to the first
printing or display position, or accepted
by the system as a single block of output.

line editor
An editor that displays data one line at a
time and that allows data to be accessed
and modified only by entering
commands.

line mode
An input-processing mode in which input
is collected and processed one line at a
time.

link In a file system, a connection between an
i-node and one or more file names
associated with it.

link count
The number of directory entries that refer
to a particular file. [POSIX.1]

link list
The list of libraries searched by the
control program (after the job pack, task
library, step library, job library, and link
pack area have been searched) for any
load that does not provide a specific data
control block to be used. In MVS, the
system name is LNKLST.

link pack area (LPA)
The portion of virtual storage below
16MB that contains frequently used
modules.

link-edit
To create a loadable computer program by
means of a linkage editor.

Glossary 471

linkage editor
A computer program for creating load
modules from one or more object
modules or load modules by resolving
cross-references among the modules and,
if necessary, adjusting addresses.

literal A symbol or a quantity in a source
program that is itself data, rather than a
reference to data.

LLA See library lookaside.

load To bring all or part of a computer
program into memory from auxiliary
storage so that the computer can run the
program.

load module
A program in a form suitable for loading
into main storage for execution.

loader A program that copies an executable file
into main storage so that the file can be
run.

local Pertaining to a device, file, or system that
is accessed directly from a user's system,
without the use of a communication line.

locale A setting that identifies language or
geography and determines formatting
conventions such as collation, case
conversion, character classification, the
language of messages, date and time
representation, and numeric
representation.

lock A mechanism with which a resource is
restricted for use by the holder of the
lock.

log in To connect to a computer system or
network by entering identification and
authentication information at the
workstation.

logger A functional unit that records events and
physical conditions, usually with respect
to time.

logical mount
A mount that attaches a file system to the
root directory or to a directory of another
file system so that the files and directories
on the file system can be referenced. The
attached file system can consist of a file or
many files and directories.

logical operator
A symbol, such as AND, OR, or NOT,
that represents an operation on logical
expressions.

logical record
A group of logically related fields.
Portions of the same logical record may
be located in different physical records,
and several logical records or parts of
several logical records may be located in
one physical record.

logically partitioned mode
A capability provided by the Processor
Resource/System Manager (PR/SM™) that
allows a single processor to run multiple
operating systems using separate sets of
system resources, or logical partitions.

login name
A string of characters that uniquely
identifies a user to the system.

logon The process of connecting to a computer
system, network, or terminal session

loop A sequence of instructions performed
repeatedly.

low-order
The least significant, or rightmost,
example. For example, in a 32-bit register
(0 through 31), bit 31 is the low-order bit.

LP See licensed program.

LPA See link pack area.

LZ See Lempel-Ziv.

machine instruction
A binary number that directs the
operation of a processor. Compilers and
assemblers convert source instructions to
machine instructions.

magic number
A numeric or string constant in a file that
indicates the file type.

main function
A function that has the identifier main.
Each program must have exactly one
function named main. The main function
is the first user function that receives
control when a program starts to run.

main program
The first program unit to receive control
when a program is run.

472 z/OS V2R2 UNIX System Services Planning

main storage
The part of internal storage into which
instructions and other data must be
loaded for running or processing.

mainline routine
The first subroutine encountered when
link-editing.

master address space
The virtual storage used by the master
scheduler task.

MBCS See multibyte character set.

medium
The material on which computer
information is stored. Examples of media
are diskettes, CDs, and tape.

member
A data object in a structure, a union, or a
library.

memory
Program-addressable storage from which
instructions and other data can be loaded
directly into registers for subsequent
running or processing.See also auxiliary
storage.

Message Passing Interface (MPI)
A library specification for message
passing. MPI is a standard application
programming interface (API) that can be
used with parallel applications and that
uses the best features of a number of
existing message-passing systems.

message queue
A set of messages that are waiting to be
processed by a program or to be sent to a
terminal, display, or workstation.

metacharacter
In UNIX, a character that has special
meaning to the shell.

migrate
To install a new version or release of a
program to replace an earlier version or
release.

MIME See Multipurpose Internet Mail
Extensions.

model ACL
See default access control list.

modem (modulator-demodulator)
A device that converts digital data from a
computer to an analog signal that can be

transmitted on a telecommunication line,
and converts the analog signal received to
data for the computer.

modulator-demodulator
See modem.

module
A program unit that is discrete and
identifiable with respect to compiling,
combining with other units, and loading.

mount To make a file system accessible.

mount point
In Linux operating systems and in UNIX
operating systems such as AIX®, the
directory at which a file system is
mounted and under which other file
systems may be mounted.

MPI See Message Passing Interface.

multibyte character set (MBCS)
A character set that represents single
characters with more than a single byte.

multilevel security
A security policy that allows the
classification of data and users based on a
system of hierarchical security levels
combined with a system of
non-hierarchical security categories. The
system imposes mandatory access
controls restricting which users can access
data based on a comparison of the
classification of the users and the data.

Multiple Virtual Storage (MVS)
An IBM operating system that accesses
multiple address spaces in virtual storage.

multiprocessing
Simultaneous processing by multiple
central-processing units.

Multipurpose Internet Mail Extensions (MIME)
An Internet standard that allows different
forms of data, including video, audio, or
binary data, to be attached to e-mail
without requiring translation into ASCII
text.

mutual exclusion lock
A lock that excludes all threads other than
the lock holder from any access to the
locked resource.

MVS See Multiple Virtual Storage.

Glossary 473

named pipe
A pipe that an application opens by name
in order to write data into or read data
from the pipe. Using a named pipe
facilitates communication between a
sending process and a receiving process.

network
In data communication, a configuration in
which two or more locations are
physically connected for the purpose of
exchanging data.

Network File System (NFS)
A protocol, developed by Sun
Microsystems, Incorporated, that allows a
computer to access files over a network as
if they were on its local disks.

newline character (NL)
A control character that causes the print
or display position to move down one
line.

NFS See Network File System.

NL See newline character.

node In communications, an end point of a
communication link or a junction
common to two or more links in a
network. Nodes can be processors,
communication controllers, cluster
controllers, terminals, or workstations.
Nodes can vary in routing and other
functional capabilities.

NUL See null character.

NULL In the C and C++ languages, a pointer
that does not point to a data object.

null character (NUL)
A control character with the value of X'00'
that represents the absence of a displayed
or printed character.

null string
A character or bit string with a length of
zero.

null value
A parameter position for which no value
is specified.

null wide-character code
A wide-character code with all bits set to
zero.

null-terminated
Pertaining to a character string that ends
with a zero byte.

numeric
Pertaining to any of the digits 0 through
9.

numeric constant
A constant that expresses an integer, a
real number, or a complex number.

object code
Machine-executable instructions, usually
generated by a compiler from source code
written in a higher level language. Object
code might itself be executable or it might
require linking with other object code
files.

object file
A member file in an object library.

object library
An area on a direct access storage device
used to store object programs and
routines.

object module
A set of instructions in machine language
that is produced by a compiler or
assembler from a subroutine or source
module and can be input to the linking
program. The object module consists of
object code.

object program
A fully compiled or assembled program
that is ready to be loaded into the
computer. An object program consists of
object modules.

OMVS
The portion of a RACF profile that
contains information about users of z/OS
UNIX System Services, such as attributes.

OMVS segment
The portion of a RACF profile that
contains logon information for z/OS
UNIX users and groups.

open file
A file that is currently associated with a
file descriptor.

open system
A system that complies with
industry-defined interoperability
standards. An open system can be
connected to other systems complying
with the same standards.

474 z/OS V2R2 UNIX System Services Planning

operand
An argument to a command that is
generally used as an object supplying
information to a utility necessary to
complete its processing. Operands
generally follow the options in a
command line.

operating system (OS)
A collection of system programs that
control the overall operation of a
computer system.

operation
A specific action (such as add, multiply,
or shift) that the computer performs when
requested.

optimize
To improve the speed of a program or to
reduce the use of storage during
processing.

option A specification in a statement that can
influence the running of the statement.

OS See operating system.

output
The result of processing data. Output can
be displayed, printed, stored, or passed to
another process.

output file
A database or device file that is opened
with the option to allow records to be
written.

output list
A list of variables from which values are
written to a file or device.

output redirection
The specification of an output destination
other than the standard one.

output stream
Messages and other output data that an
operating system or a processing program
displays on output devices.

overflow exception
A condition caused by the result of an
arithmetic operation having a magnitude
that exceeds the largest possible number.

owner In UNIX-based operating systems, the
user name associated with a file. The
owner and the superuser control access to
the file.

padding
Bytes inserted in the data stream to
maintain alignment of the protocol
requests on natural boundaries. Padding
increases the ease of portability to some
machine architectures.

page A fixed-length block of instructions, data,
or both instructions and data that can be
transferred between active physical
memory and external page storage.

page frame
In real storage, a storage location having
the size of a page.

parent directory
The directory one level above the current
directory. An object's parent directory is
the directory that contains the names and
controlling information for the object. If
the object is named in more than one
directory, it has multiple parent
directories.

parent process
A process that is created to carry out a
request or set of requests. The parent
process, in turn, can create child processes
to process requests for the parent.

parent process ID (PPID)
An attribute of a new process identifying
the parent of the process. The parent
process ID of a process is the process ID
of its creator for the lifetime of the creator.
After the creator's lifetime has ended, the
parent process ID is the process ID of an
implementation-dependent system
process.

parent segment
In a database, a segment that has one or
more dependent segments (its children)
hierarchically below it.

parity The state of being either even-numbered
or odd-numbered.

parity check
A test to determine whether the number
of ones or zeros in an array of binary
digits is odd or even.

parse To break down a string of information,
such as a command or file, into its
constituent parts.

parser A program that interprets user input and
determines what to do with the input.

Glossary 475

partitioned data set (PDS)
A data set on direct access storage that is
divided into partitions, called members,
each of which can contain a program, part
of a program, or data.See also sequential
data set.

partitioned data set extended (PDSE)
A data set that contains an indexed
directory and members that are similar to
the directory and members of partitioned
data sets (PDSs).

password phrase
A string consisting of mixed-case letters,
numbers, and special characters,
including blanks, that is used to control
access to data and systems.

path In a network environment, the route
between any two nodes.

path name
A name that specifies all directories
leading to a file plus the file name itself.

pattern matching
The specification of a pattern of characters
for search purposes.

PDS See partitioned data set.

PDSE See partitioned data set extended.

performance
A measure of a system's ability to
perform its functions, including response
time, throughput, and number of
transactions per second.

period The symbol ".". The term dot is used for
the same symbol when referring to a Web
address or file extension. This character is
named <period> in the portable character
set.

permanent storage
A storage device whose contents cannot
be modified.

permission
The ability to access a protected object,
such as a file or directory. The number
and meaning of permissions for an object
are defined by the access control list.

PFS See physical file system.

PGID See process group ID.

phase A distinct part of a process in which
related operations are performed.

physical file
A database file that describes how data is
to be presented or received from a
program and how data is actually stored
in the database. A physical file contains
one record format and one or more
members.

physical file system (PFS)
The part of the operating system that
handles the actual storage and
manipulation of data on a storage
medium.

physical unit (PU)
In SNA, one of three types of network
addressable units (NAUs). A PU exists in
each node of an SNA network to manage
and monitor, at the request of a system
services control point logical unit
(SSCP-LU) session, the resources (such as
attached links and adjacent link stations)
of a node.

PID See process ID.

pipe An interprocess communication
mechanism that connects an output file
descriptor to an input file descriptor.
Usually the standard output of one
process is connected to the standard input
of another, forming a pipeline.

pipeline
A direct, one-way connection between
two or more processes.

pointer
A data element or variable that holds the
address of a data object or a function.

polling
Interrogation of devices for such purposes
as avoiding contention, determining
operational status, or determining
readiness to send or receive data.

port An end point for communication between
applications, generally referring to a
logical connection. A port provides
queues for sending and receiving data.
Each port has a port number for
identification.

To modify a computer program that runs
on a given system to enable it to run on a
different system.

port number
The part of a socket address that
identifies a port within a host.

476 z/OS V2R2 UNIX System Services Planning

portability
The ability of a program to run on more
than one type of computer system
without modification.

portable file name character set
The set of characters from which portable
file names must be constructed to be
portable across implementations
conforming to the ISO POSIX-1 standard
and to ISO/IEC 9945.

Portable Operating System Interface (POSIX)
An IEEE family of standards designed to
provide portability between operating
systems that are based on UNIX. POSIX
describes a wide spectrum of
operating-system components ranging
from C language and shell interfaces to
system administration

Portable Operating System Interface for
Computer Environments

See Portable Operating System Interface.

positional parameter
A variable within a shell program.
Positional parameters are assigned from
the shell's arguments when the shell is
invoked

POSIX
See Portable Operating System Interface.

POSIX open system environment (POSIX OSE)
The open system environment in which
the standards included are not in conflict
with ISO/IEC and consist of: International
Standards and Profiles, developed by ISO,
IEC, or CCITT; Regional Standards and
Profiles, developed by a group recognized
as an official body by a regional
governmental entity, such as the
European Community; and National
Information Technology Standards and
Profiles, developed by a national
standards body recognized as such by
ISO, IEC, or CCITT, as appropriate.

POSIX OSE
See POSIX open system environment.

PPID See parent process ID.

PPTP See protocol.

precedence
The priority system for grouping different
types of operators with their operands.

precision
A measure of the ability to distinguish
between nearly equal values.

predefined macro
In C/C++, an identifier predefined by the
compiler, which will be expanded by the
preprocessor during compilation.

preprocessor
A routine that performs initial processing
and translation of source code or data
prior to compiling the source code or
processing the data in another program
such as an emulator.

print file
A file that is created for the purpose of
printing data. A print file includes
information to be printed and, optionally,
some of the data.

privileged user
A user logged into an account with root
user authority.

procedure
A sequenced set of statements that may
be used at one or more points in one or
more computer programs, and that
usually has one or more input parameters
and yields one or more output
parameters. [T]

process
An instance of a program running on a
system and the resources that it uses.

process accounting
An analysis of the way that each process
uses the processing unit, memory, and
I/O resources.

process group
A collection of processes in a system that
is identified by a process group ID.

process group ID (PGID)
The unique identifier representing a
process group during its lifetime. A
process group ID is a positive integer that
is not reused by the system until the
process group lifetime ends.

process ID (PID)
The unique identifier that represents a
process. A process ID is a positive integer
and is not reused until the process
lifetime ends.

Glossary 477

processor
In a computer, the part that interprets and
executes instructions. Two typical
components of a processor are a control
unit and an arithmetic logic unit.

production system
A system on which application programs
that are already developed and tested run
on a regular basis.

profile
A file containing customized settings for a
system or user.

program
A prepared sequence of instructions to the
system to accomplish a defined task. In
POSIX.2, a program encompasses
applications written in the shell command
language, complex utility input
languages, and high-level languages
(HLLs).

program CCSID
In Enhanced ASCII, a 16-bit value that
identifies the current character set of text
strings within a program.

program check
A condition that occurs when
programming errors are detected by a
processor during execution.

program control
An RACF function with which an
installation can control who runs
RACF-controlled programs.

program counter
See instruction address register.

program status word (PSW)
An area in storage used to indicate the
order in which instructions are executed,
and to hold and indicate the status of the
computer system.

prolog A user-written definition of an application
program, record, or table. A prolog is
used for documentation.

prompt
A message or a displayed symbol that
requests information or user action. The
user must respond to allow the program
to proceed.

protocol (PPTP)
A set of rules controlling the
communication and transfer of data

between two or more devices or systems
in a communication network.

PSW See program status word.

PU See physical unit.

qualified name
A data name explicitly accompanied by a
specification of the class to which it
belongs in a specified classification
system.

qualifier
A modifier that makes a name unique.

query In interactive systems, an operation at a
workstation that elicits a response from
the system.

queue A data structure for processing work in
which the first element added to the
queue is the first element processed. This
order is referred to as first-in first-out
(FIFO).

quiesce
To end a process or shut down a system
after allowing normal completion of
active operations.

quotation mark
The characters " and '.

quote To mask the special meaning of certain
characters, causing the characters to be
taken literally.

RACF See Resource Access Control Facility.

RACF-indicated
Pertaining to a data set for which the
RACF indicator is set on. If a data set is
RACF-indicated, a user can access the
data set only if a RACF profile or an
entry in the global access checking table
exists for that data set.

RACF-protected
Pertaining to resources that are defined to
RACF. A data set that is RACF-protected
by a discrete profile must also be
RACF-indicated.

RE See regular expression.

read lock
A lock that prevents any other process
from setting a write lock on any part of
the protected area.

478 z/OS V2R2 UNIX System Services Planning

real GID
See real group ID.

real group ID (real GID)
For each user, the group ID defined in the
password file.

real storage
The main storage in a virtual storage
system. Physically, real storage and main
storage are identical. Conceptually,
however, real storage represents only part
of the range of addresses available to the
user of a virtual storage system.

real UID
See real user ID.

real user ID (real UID)
For each user, the user ID that is specified
in the /etc/passwd file.

reason code
A value used to indicate the specific
reason for an event or condition.

record In programming languages, an aggregate
that consists of data objects, possibly with
different attributes, that usually have
identifiers attached to them. In some
programming languages, records are
called structures.

record name
A user-defined name for a record. The
name is listed in a record description
entry.

recovery procedure
An action performed by the operator
when an error message appears on the
display screen. This action usually
permits the program to continue or
permits the operator to run the next job.

recursion
A programming technique in which a
program or routine calls itself to perform
successive steps in an operation, with
each step using the output of the
preceding step.

redirect
To divert data from a process to a file or
device to which it would not normally go.

redirection
In a shell, a method of associating files
with the input or output of commands.

reentrant
The attribute of a program or routine that

allows the same copy of the program or
routine to be used concurrently by two or
more tasks.

region A contiguous area of virtual storage that
has common characteristics and that can
be shared between processes.

register
An internal computer component capable
of storing a specified amount of data and
accepting or transferring this data rapidly.

regular expression
A mechanism for selecting specific strings
from a set of character strings.

A sequence of characters or symbols
constructed according to the rules defined
in POSIX.2 2.8.

regular file
A file that is a randomly accessible
sequence of bytes, with no further
structure imposed by the system.
[POSIX.1]

relative path name
A string of characters that is used to refer
to an object and that starts at some point
in the directory hierarchy other than the
root. The starting point is frequently a
user's current directory.

relative record number (RRN)
A number that expresses the location of a
record in relation to a base position in the
file containing it.

remote
Pertaining to a system, program, or
device that is accessed through a
communication line.

remote terminal
A terminal attached to a system through a
data link.

reset To cause a counter to take the state
corresponding to a specified initial
number.

resource
A facility of a computing system or
operating system required by a job, task,
or running program. Resources include
main storage, input/output devices, the
processing unit, data sets, files, libraries,
folders, application servers, and control or
processing programs.

Glossary 479

Resource Access Control Facility (RACF)
An IBM licensed program that provides
access control by identifying users to the
system; verifying users of the system;
authorizing access to protected resources;
logging unauthorized attempts to enter
the system; and logging accesses to
protected resources.

restore
To return to an original value or image,
for example, to restore data to main
storage from auxiliary storage.

restricted shell
A facility that provides controlled, limited
access to specified users.

resume
To continue execution of an application
after an activity has been suspended.

retrieve
To locate data in storage and read it so
that it can be processed, printed, or
displayed.

return code
A value returned by a program to
indicate the result of its processing.
Completion codes and reason codes are
examples of return codes.

return statement
A control statement in a programming
language that contains the word "return"
followed by an optional expression and a
semicolon.

return value
See return code.

reverse solidus
See backslash.

rollback
The process of restoring data that was
changed by an application program or
user.

root The UNIX definition for a directory that is
the base for all other directories.

root directory
The directory that contains all other
directories in the system.

root file system
The basic file system onto which all other
file systems can be mounted. The root file
system contains the operating system files
that run the rest of the system.

root user
A system user who operates without
restrictions. A root user has the special
rights and privileges needed to perform
administrative tasks.

routine
A program or sequence of instructions
called by a program. Typically, a routine
has a general purpose and is frequently
used.

row A horizontal arrangement of characters or
other expressions.

RRN See relative record number.

run To cause a program, utility, or other
machine function to be performed.

runtime library
A library that is loaded dynamically and
used during execution time.

SA See system administrator.

SAF See System Authorization Facility.

SBCS See single-byte character set.

Scalable Parallel 2 (SP2)
IBM's parallel UNIX system: effectively
parallel AIX systems on a high-speed
network.

scheduler
A computer program that performs
functions such as scheduling, initiation,
and termination of jobs.

SDSF See System Display and Search Facility.

SDUMP
See system dump.

search path
A list of directories searched by the shell
when a command path name is not
specified.

security
The protection of data, system operations,
and devices from accidental or intentional
ruin, damage, or exposure.

security administrator
A programmer who manages, protects,
and controls access to sensitive
information.

480 z/OS V2R2 UNIX System Services Planning

segment
A part of a program that can be run
without the entire program being in main
storage.

semaphore
An indicator used to control access to a
file. For example, in a multiuser
application, a semaphore is a flag that
prevents simultaneous access to a file.

separator
A punctuation character that separates
parts of a command or file, or that
delimits character strings.

sequential data set
A data set whose records are organized
on the basis of their successive physical
positions, such as on magnetic tape.

Serial Line Internet Protocol (SLIP)
An Internet protocol that connects a
computer to the Internet using a serial
line.

serialization
The consecutive ordering of items.

server A software program or a computer that
provides services to other software
programs or other computers.

server process
A process that provides services to client
processes.

ServerPac
A software-delivery package consisting of
products and service for which IBM has
performed the System Modification
Program/Extended (SMP/E) installation
steps and some of the post-SMP/E
installation steps.

service class
A group of work that has the same
service goals or performance objectives,
resource requirements, or availability
requirements. For workload management,
a service goal and, optionally, a resource
group is assigned to a service class.

service request block (SRB)
A control block that represents a routine
that performs a particular function or
service in a specified address space.

session leader
A process that has created a session.

shared address space
A type of address space shared by
multiple UNIX System Services (z/OS
UNIX) processors.

shared file system
An operating system extension that
allows multiple users or computers to use
the same set of files at the same time,
across a network. To each user, the shared
file system appears to be an extension of
the local file system.

shared library
On Linux and UNIX operating systems, a
library that contains at least one
subroutine that can be used by multiple
processes.

shared library program
A program that, when loaded, is put in
the shared library region for system-wide
sharing.

shared library region
The area of storage in the system in
which shared library objects are loaded.

shared object library
A collection of subroutines that can be
shared by multiple processes.

shell A software interface between users and an
operating system. Shells generally fall into
one of two categories: a command line
shell, which provides a command line
interface to the operating system; and a
graphical shell, which provides a
graphical user interface (GUI).

shell program
See shell.

shell prompt
On operating systems such as AIX or
UNIX, the character string indicating that
the system can accept a command. The
shell prompt is typically the dollar sign
($).

shell script
A program, or script, that is interpreted
by the shell of an operating system.

signal A mechanism by which a process can be
notified of, or affected by, an event
occurring in the system. Examples of such
events include hardware exceptions and
specific actions by processes. The term
signal is also used to refer to the event
itself.

Glossary 481

signal handler
A subroutine or function that is called
when a signal occurs.

signal mask
A collection of signals that are currently
blocked from delivery to a process.

single precision
The use of one computer word to
represent a number, in accordance with
the required precision.

single-byte character set (SBCS)
A coded character set in which each
character is represented by a 1-byte code.
A 1-byte code point allows representation
of up to 256 characters.

slash The character /, also known as forward
slash. This character is named <slash> in
the portable character set.

SLIP See Serial Line Internet Protocol.

SMF See System Management Facilities.

SMF record
A collection of information about capacity
and system management that is written to
a Systems Management Facility (SMF)
data set. Each SMF record includes
information about the system's
configuration, paging activity, and
workload.

SMIT See System Management Interface Tool.

socket An identifier that an application uses to
uniquely identify an end point of
communication. The user associates a
protocol address with the socket by
associating a socket address with the
socket.

software
The programs, procedures, rules, and
associated documentation pertaining to
the operation of a system.

sort To rearrange some or all of a group of
items, based upon the contents or
characteristics of those items.

source A system, a program within a system, or
a device that makes a request to a target.

source code
A computer program in a format that is
readable by people. Source code is
converted into binary code that can be
used by a computer.

source file
A file of programming code that is not
compiled into machine language.

source language
A programming language acceptable as
input to a translator.

source module
See source program.

source program
A set of instructions that are written in a
programming language and must be
translated into machine language before
the program can be run.

source statement
A statement written in the symbols of a
programming language. For example,
COBOL, RPG, and DDS statements are
source statements.

SP2 See Scalable Parallel 2.

space A site intended for storage of data, such
as a location in a storage medium.

spawn A function in which a calling process (the
parent process) creates a new process
called a child process. The child process
inherits attributes from the parent process.
A new program is specified and starts
running in the child process.

spec See specification.

special character
A character other than a digit, a letter, or
one of these characters: $, #, @, ., or _. For
example, the following characters are
special characters: *, +, and %.

special file
A file that provides an interface to input
or output devices. There is at least one
special file for each device attached to the
computer.

specification (spec)
A document that describes, in a complete,
precise, verifiable manner, the
requirements, design, behavior, or
characteristics of a system or system
component, for the purpose of developing
or validating the system.

square bracket
See bracket.

SRB See service request block.

stack An area in memory that typically stores

482 z/OS V2R2 UNIX System Services Planning

information such as temporary register
information, values of parameters, and
return addresses of subroutines and is
based on the principle of last in, first out
(LIFO).

standard error (STDERR)
The output stream to which error
messages or diagnostic messages are sent.

standard input (STDIN)
An input stream from which data is
retrieved. Standard input is normally
associated with the keyboard, but if
redirection or piping is used, the standard
input can be a file or the output from a
command.

standard output (STDOUT)
The output stream to which data is
directed. Standard output is normally
associated with the console, but if
redirection or piping is used, the standard
output can be a file or the input to a
command.

stanza A group of lines in a file that together
have a common function or define a part
of the system. Stanzas are usually
separated by blank lines or colons, and
each stanza has a name.

started procedures table
A function that provides a method for
assigning RACF identities to started
procedures

started task
In MVS, a process that begins at system
start and runs unattended. Started tasks
are generally used for critical applications.
The UNIX equivalent of a started task is a
daemon.

statement
In programming languages, a language
construct that represents a step in a
sequence of actions or a set of
declarations.

static storage
An area that is allocated by the system
when a program is activated. Static
storage exists as long as the program
activation exists. If the program has not
been deactivated, the values in the
storage persist from one call to another.

station
A computer or device that can send or
receive data.

status The current condition or state of a
program or device, for example, the status
of a printer.

STDERR
See standard error.

STDIN
See standard input.

STDOUT
See standard output.

sticky bit
A type of access permission bit that
causes an executable program to remain
on the swap area of the disk. Only
someone with root authority can set the
sticky bit. This bit is also used on
directories to indicate that only file
owners can link or unlink files in that
directory.

stop See cancel.

stopped state
A state that allows a device to be made
unavailable although it is still known by
the device driver, which remains loaded
and bound in the kernel.

storage
The location of saved information.

storage administrator
A person in the data processing center
who is responsible for defining,
implementing, and maintaining storage
management policies.

storage device
A physical unit that provides a
mechanism to store data on a given
medium so that it can be subsequently
retrieved.

stream
A continuous sequence of data elements
being transmitted one character at a time,
or intended for transmission, using a
defined format.

stream editor
A type of editor that is used to perform
basic transformations on text read from a
file or a pipe. The results are sent to a
standard output.

Glossary 483

structure
A class data type that contains an ordered
group of data objects. Unlike an array, the
data objects within a structure can have
varied data types.

stub A protocol extension procedure that
connects with the library but remains
outside the library.

subcommand
A request for an operation that is within
the scope of work requested by a
previously issued command.

subdirectory
A directory contained within another
directory in a file system hierarchy.

subprogram
A program that is called by another
program, such as a subshell.

subroutine
A sequence of instructions within a larger
program that performs a particular task.
A subroutine can be accessed repeatedly,
can be used in more than one program,
and can be called at more than one point
in a program.

subscript
An integer or variable whose value selects
a particular element in a table or array.

subshell
An instance of the shell program started
from an existing shell program.

substring
A part of a character string.

suffix A character string attached to the end of a
file name that helps identify its file type.

superuser
See root user.

superuser authority
The unrestricted ability to access and
modify any part of the operating system,
usually associated with the user who
manages the system.

supervisor
The part of a control program that
coordinates the use of resources and
maintains the flow of processor
operations.

supplementary group ID
A process attribute that is used when file
access permissions are determined.

symbol table
A list of symbol names and their
associated values, usually in an object or
executable file, which gives the names of
external symbols and their addresses.

symbolic link
A type of file that contains a pointer to
another file or directory.

synchronous
Occurring with a regular or predictable
time relationship.

synchronous transmission
A method of transmission in which the
sending and receiving of data is
controlled by timing signals.

syntax The rules for the construction of a
command or statement.

sysplex
A set of z/OS systems that communicate
with each other through certain
multisystem hardware components and
software services.

sysplex-aware
In zFS, pertaining to a physical file
system that handles file requests for
mounted file systems locally instead of
shipping function requests through z/OS
UNIX.

sysplex CDS
See sysplex couple data set.

sysplex couple data set (sysplex CDS)
A couple data set (CDS) that contains
sysplex-wide data about systems, groups,
and members that use cross-system
coupling facility (XCF) services. All
systems in a sysplex must be connected to
the sysplex CDS.

Sysplex Timer
An IBM unit that synchronizes the
time-of-day (TOD) clocks in processors.

system
A computer and its associated devices
and programs.

system administrator (SA)
The person who controls and manages a
computer system.

484 z/OS V2R2 UNIX System Services Planning

System Authorization Facility (SAF)
An MVS interface with which programs
can communicate with an external
security manager, such as RACF.

System Display and Search Facility (SDSF)
An IBM-licensed program that provides a
menu-driven full-screen interface that is
used to obtained detailed information
about jobs and resources in a system.

system dump (SDUMP)
A dump of all the storage in the system
that can be used for problem
determination.

System Management Facilities (SMF)
A component of z/OS that collects and
records a variety of system and
job-related information.

System Management Interface Tool (SMIT)
An interface tool of the AIX operating
system for installing, maintaining,
configuring, and diagnosing tasks.

system program
A program providing services in general
support of the running of a system.

system programmer
A programmer who plans, maintains, and
controls the use of an operating system
with the aim of improving overall
productivity of an installation.

tag A mechanism used to identify certain
attributes having some bearing on
handling of character data. Some
examples are character set identifier, code
page identifier, language identifier,
country identifier, and encoding scheme
identifier.

target The program or system to which a
request for files or processing is sent.

task A unit of work to be accomplished by a
device or process.

task control block (TCB)
A z/OS control block that is used to
communicate information about tasks
within an address space that is connected
to a subsystem.

TCB See task control block.

TCP See Transmission Control Protocol.

TCP/IP
See Transmission Control
Protocol/Internet Protocol.

tcsh See Tenex C shell.

temporary file system (TFS)
A temporary, in-memory physical file
system that supports in-storage
mountable file systems. Normally, a TFS
runs in the kernel address space, but it
can be run in a logical file system (LFS)
colony address space.

temporary storage
The section of computer storage in which
data is stored temporarily while a
program is running.

Tenex C shell (tcsh)
An enhancement of the UNIX C shell
(csh) that is compatible with csh.

term The smallest part of an expression that
can be assigned a value.

terminal
In data communication, a device, usually
equipped with a keyboard and display
device, capable of sending and receiving
information.

terminal device file
See character special file.

Terminal Monitor Program (TMP)
The program that manages a Time
Sharing Option (TSO) session.

terminal type (tty)
A generic device driver for a text display.
A tty typically performs input and output
on a character-by-character basis.

text editor
A program used to create, modify, and
print or display text files.

text file
A file that contains only printable
characters.

TFS See temporary file system.

thread A stream of computer instructions that is
in control of a process. In some operating
systems, a thread is the smallest unit of
operation in a process. Several threads
can run concurrently, performing different
jobs.

tilde One of the accent marks in Latin script
(~).

Glossary 485

Time Sharing Option (TSO)
A base element of the z/OS operating
system with which users can interactively
work with the system.

Time Sharing Option Extensions (TSO/E)
A licensed program that is based on Time
Sharing Option (TSO). With TSO/E, MVS
users can interactively share computer
time and resources.

time stamp
The value of an object that indicates the
system time at some critical point in the
object's history.

timeout
A time interval that is allotted for an
event to occur or complete before
operation is interrupted.

TMP See Terminal Monitor Program.

token The basic syntactic unit of a computing
language. A token consists of one or more
characters, excluding the blank character
and excluding characters within a string
constant or delimited identifier.

token number
A nonnegative integer that represents the
name of a token.

touch To set a flag in a window that indicates
that the information in the window could
differ from the that displayed on the
terminal device.

trace To record data that provides a history of
events occurring in the system.

track A circular path on the surface of a disk or
diskette on which information is
magnetically recorded and from which
recorded information is read.

transactional
Pertaining to an application program that
is divided into segments, where each
segment typically requests an I/O
operation with a terminal user, giving up
control to other application program
segments for the duration of the I/O
operation.

transient
Pertaining to a program or subroutine
that does not reside in main storage.

transmission
The sending of data from one place for
reception elsewhere.

Transmission Control Protocol (TCP)
A communication protocol used in the
Internet and in any network that follows
the Internet Engineering Task Force (IETF)
standards for internetwork protocol. TCP
provides a reliable host-to-host protocol in
packet-switched communication networks
and in interconnected systems of such
networks.

Transmission Control Protocol/Internet Protocol
(TCP/IP)

An industry-standard, nonproprietary set
of communication protocols that provides
reliable end-to-end connections between
applications over interconnected networks
of different types.

trap A special statement used to catch signals
within the z/OS shell.[OSF]

truncate
To shorten a field, value, statement, or
string.

TSO See Time Sharing Option.

TSO/E See Time Sharing Option Extensions.

tty See terminal type.

tuning
The process of adjusting an application, a
system, or system control variables to
operate in a more efficient manner.

UI See user interface.

underscore character
A character used in each position of an
entry field to indicate its length. This
indicator of entry field length is used on
display devices that do not have the
underscore attribute.

undub
To make an address space unknown to
MVS.

unformatted file
A file that is arranged without such
characteristics as a certain number of
characters and lines per page, line
spacing, and headings.

union A variable that can hold any one of
several data types, one data type at a
time.

486 z/OS V2R2 UNIX System Services Planning

union tag
An identifier that names a union data
type.

UNIX A highly portable operating system that
features multiprogramming in a multiuser
environment. The UNIX operating system
was originally developed for use on
minicomputers, but was adapted for
mainframes and microcomputers. The
AIX operating system is IBM's
implementation of the UNIX operating
system.

UNIX file
An object that exists in a hierarchical file
system. Examples of UNIX files are HFS,
ZFS, NFS, and TFS.

UNIX System Services
An element of z/OS that creates a UNIX
environment that conforms to XPG4
UNIX 1995 specifications and that
provides two open-system interfaces on
the z/OS operating system: an application
programming interface (API) and an
interactive shell interface.

unmount
To logically disassociate a mountable file
system from another file system.

user Any individual, organization, process,
device, program, protocol, or system that
uses the services of a computing system.

user address space
An address space that has at least one
MVS task known to the kernel address
space. This address space can contain a
shell or an application program that uses
UNIX System Services.

user area
The parts of main storage and disk
available to the user.

user ID
See user identification.

user identification (user ID)
The name used to associate the user
profile with a user when a user signs on
to a system.

user interface (UI)
The hardware, or software, or both that
enables a user to interact with a system,
program, or device.

user name
A string of characters that uniquely
identifies a user to a system.

user profile
In computer security, a description of a
user that includes such information as
user ID, user name, password, access
authority, and other attributes that are
obtained when the user logs on.

UTC See Coordinated Universal Time.

UTF-8 Unicode Transformation Format, 8-bit
encoding form, which is designed for ease
of use with existing ASCII-based systems.
The CCSID value for data in UTF-8
format is 1208.

valid Pertaining to that which is allowed, is
true, or conforms to some standard.

value In programming, the alphabetic or
numeric contents of a variable or a
storage location.

variable
A representation of a changeable value.

variable-length record
A record having a length independent of
the length of other records with which it
is logically or physically associated.

vector An array of one dimension.

version file system
See root file system.

VFS See virtual file system.

virtual file system (VFS)
A remote file system that has been
mounted so that it is accessible to the
local user.

virtual lookaside facility (VLF)
A z/OS facility that enables named data
to be kept in virtual storage instead of
DASD.

virtual storage (VS)
The storage space that can be regarded as
addressable main storage by the user of a
computer system in which virtual
addresses are mapped to real addresses.
The size of virtual storage is limited by
the addressing scheme of the computer
system and by the amount of auxiliary
storage available, not by the actual
number of main storage locations.

Glossary 487

Virtual Storage Access Method (VSAM)
An access method for direct or sequential
processing of fixed-length and
variable-length records on disk devices.
The records in a VSAM data set or file
can be organized in logical sequence by a
key field (key sequence), in the physical
sequence in which they are written on the
data set or file (entry sequence), or by
relative-record number.

Virtual Telecommunications Access Method
(VTAM)

An IBM licensed program that controls
communication and the flow of data in an
SNA network.

VLF See virtual lookaside facility.

volume
A discrete unit of storage on disk, tape or
other data recording medium that
supports some form of identifier and
parameter list, such as a volume label or
input/output control.

VS See virtual storage.

VSAM
See Virtual Storage Access Method.

VTAM
See Virtual Telecommunications Access
Method.

wait A state allowing a parent process to
synchronize with the execution of an exit
issued by a child process.

white space
A sequence of one or more characters,
such as the blank character, the newline
character, or the tab character, that belong
to the space character class.

wide character
A character whose range of values can
represent distinct codes for all members
of the largest extended character set
specified among the supporting locales.

wildcard character
A special character such as an asterisk (*)
or a question mark (?) that can be used to
represent one or more characters. Any
character or set of characters can replace
the wildcard character.

window
An area of the screen with visible

boundaries in which an application
program or information is displayed or in
which a dialog is presented.

word A fundamental unit of storage that refers
to the amount of data that can be
processed at a time. Word size is a
characteristic of the computer architecture.
See also halfword.

work area
That portion of central storage that is
used by a computer program to hold data
temporarily.

working directory
The active directory. When a file name is
specified without a directory, the current
directory is searched.

working storage
See temporary storage.

workstation
A terminal or microcomputer at which a
user can run applications and that is
usually connected to a mainframe or a
network.

write To output characters to a file, such as
standard output or standard error. Unless
otherwise stated, standard output is the
default output destination for all uses of
the term write. [POSIX.2]

write access
In computer security, permission to write
to an object.

write lock
A lock that prevents any other process
from setting a read lock or a write lock on
any part of the protected area.

write to log (WTL)
A system service used to send messages
to the system log or hardcopy log.

write to operator with reply (WTOR)
A system service used to send messages
to an operator console informing the
operator of errors and system conditions
that might need correcting. A response is
required.

WTL See write to log.

WTOR
See write to operator with reply.

488 z/OS V2R2 UNIX System Services Planning

X Window System
A software system, developed by the
Massachusetts Institute of Technology,
that enables the user of a display to
concurrently use multiple application
programs through different windows of
the display. The application programs can
execute on different computers.

XCF See cross-system coupling facility.

XCF couple data set
A data set that is created through the
cross-system coupling facility (XCF)
couple data set (CDS) format utility and,
depending on its designated type, is
shared by some or all of the systems in a
sysplex.

XPLINK
See Extra Performance Linkage.

z/OS An IBM mainframe operating system that
uses 64-bit real storage.

z/VM®

An IBM mainframe operating system that
acts as a hypervisor. z/VM can virtualize
all system resources, including processors,
memory, storage devices, communication
devices, and networking, and can
dynamically add or increase system
resources. z/VM supports the concurrent
operation of hundreds of operating
system instances.

Glossary 489

490 z/OS V2R2 UNIX System Services Planning

Index

Special characters
__BPXK_UNICODE_MAL environment variable 436
__BPXK_UNICODE_SUB environment variable 436
__BPXK_UNUSEDTASKS environment variable 436
__IPC_MEGA option for shmat() 18
__MAP_MEGA option for mmap() 18
_BKXK_FORCE_CANCEL environment variable 433
_BPX_ACCT_DATA environment variable 420, 429
_BPX_BATCH_SPAWN environment variable 429
_BPX_BATCH_UMASK environment variable 429
_BPX_JOBNAME environment variable 229, 430

customizing 83
_BPX_PTRACE_ATTACH environment variable 430
_BPX_SHAREAS environment variable 430

benefits and side effects of using 402
improving performance with 402
shared address space 402

_BPX_SPAWN_SCRIPT environment variable 430
improving performance of shell scripts 402

_BPX_TERMPATH environment variable 431
_BPX_UNLIMITED_OUTPUT environment variable 431
_BPX_USERID environment variable 431
_BPXK_AUTOCVT environment variable 431

using 280
_BPXK_CCSIDS environment variable 432
_BPXK_DAEMON_ATTACH environment variable 432
_BPXK_DISABLE_SHLIB environment variable 432
_BPXK_GPSENT_SECURITY environment variable 433
_BPXK_INITTAB_RESPAWN environment variable 434
_BPXK_JOBLOG environment variable 434

setting the 323
_BPXK_MDUMP environment variable 434

dynamically requesting a SYSMDUMP 325
used in diagnosing problems 324

_BPXK_PCCSID environment variable 435
_BPXK_SETIBMOPT_TRANSPORT environment variable 414,

435
_BPXK_SUID_FORK environment variable 435
_BPXK_TECHNIQUE environment variable 435
_BPXK_TIMEOUT environment variable 435
_BPXK_UNICODE_TECHNIQUE environment variable 436
_BPXK_WLM_PROPAGATE environment variable 436
_C89_CLIB_PREFIX variable 240
_CEE_ENVFILE environment variable 436
_CEE_ENVFILE_S environment variable 437
_map_init 19
_map_service 19
_server_init() 85
///

placeholder in mount processing (ZFS and HFS) 118, 123
/dev directory

explanation of 115
/dev/console 155
/dev/fd/n

special character file 154
/dev/fdn

special character file 154
/dev/null

special character file 153
/dev/operlog 155

/dev/ptypNNNN
specifying 153

/dev/random
special character file 154

/dev/ttypNNNN
specifying 153

/dev/urandom
special character file 154

/dev/zero
special character file 153

/etc
installing service into 160

/etc directory
customizing configuration files 43, 237
putting USERIDALIASTABLE in 37

/etc file system
explanation of 114
migrating the 12

/etc/complete.tcsh
customizing 237

/etc/csh.cshrc
customizing 236

/etc/csh.login
customizing 235
national code page customization

for z/OS shell 249
/etc/inetd.conf

customizing for rlogin 362
/etc/init

customizing 227
/etc/init.options

copying from /samples 43
customizing 227

/etc/inittab
and the /etc/rc file 229, 232
copying from /samples 43
customizing 232, 234

/etc/log
and /usr/sbin/init 227

/etc/passwd
explanation of 218

/etc/profile
customizing 219, 223
national code page customization

for Japanese 250
for z/OS shell 248
Simplified Chinese 250

/etc/rc
and the /etc/inittab file 229, 232
copying from /samples 43
customizing 231
sample file 231

/samples/init.options
copying to /etc/init.options 227

/samples/profile
sample of 219

/tmp directory
explanation of 115
managing the 327

/u directory
suggested file system structure 116

© Copyright IBM Corp. 1996, 2016 491

/usr/sbin
specifying for superusers 226

/usr/sbin/ini 227
/usr/sbin/mount 149
/usr/sbin/unmount 133
/var directory

explanation of 115
.rhosts file 361
$HOME/.login

customizing 236
$HOME/.profile

customizing 225
environment variables that can be customized for 226

$HOME/.tcshrc
customizing 237

$SYSSYMA
mounting file systems using symbolic links 211

$SYSSYMR
mounting file systems, using symbolic links 211

+ extended attribute 97

A
a extended attribute 97
abend code

0F4 312
422 322
EC6 322

access
to directories 91
to files 91, 93
to z/OS UNIX resources 56

access ACL 98
managing 98

access control list (ACL)
access ACL 98
access checks 102
auditing 102
base ACL entry 98
defining default 100
directory default ACL 98

inheritance 100
extended ACL entry 98
file default ACL 98

inheritance 100
inheritance 98
managing 98
protecting data 94
working with 101

access permission bits
setting 92

accessibility 445
contact IBM 445
features 445

account number
assigning to forked address spaces 420

accounting information
checking 422
modifying

for BPXOINIT address space 420
for OMVS address space 420

MVS 419
ACEE support

limitations of 367
address space

assigning account numbers for forked 420
creating a forked 3

address space (continued)
dirty

explanation of 342
loading modules from the file system 358

displaying 308
ending 287
generating job names for 425
loading programs into 338
making nonswappable 84
server 18

ADDUSER RACF command
using with the OMVS segment 59

administrator
in z/OS UNIX 1

AF_INET sockets
BPXPRMxx parmlib member 28
displaying 309
processing with common INET (CINET) 411
setting up 405

AF_INET6 sockets
BPXPRMxx parmlib member 28
setting up 405

AF_INET8 sockets
displaying 309

AF_UNIX 405
AF_UNIX sockets

displaying 309
aggregates 117
allocation

waits 40
ALLOCxx parmlib member 40
alternate sysplex root file system 127

removing the 130
setting up the 128

AMTRULES 184
APF authorization for UNIX files

using sanction lists 341
APF-authorized extended attribute

and sanction lists 341
description of 82

APF-authorized extended attributes
security implications 62

APF-authorized programs 97
application program

problem determination 325
application programmers

z/OS UNIX 9
Application Services

customization commands in /etc/rc file 231
applications

controlling access to 109
APPLID (customized)

using the 109
appropriate privilege

determining for
daemons 335

ASCII
enhanced

limitations of 280
setting up 280

ASCII code page 316
assistive technologies 445
ASSIZEMAX 66
at jobs

scheduling 350
at shell command

running one-time-only jobs 347

492 z/OS V2R2 UNIX System Services Planning

audit
accesses

to files 104
authenticated client security environment 367
authority checks 62
AUTHPGMLIST

activating sanction lists 107
AUTHPGMLIST statement

customizing in BPXPRMxx 40
AUTOCVT statement

customizing in BPXPRMxx 35
using 280

AUTOGID keyword
defining group identifiers (GIDs) 65

automatic conversion 279
AUTOMNT file system type

customizing in FILESYSTYPE 26
automount facility

AUTOMOVE options supported by MOUNT
command 207

changing data sets 170
delay time 164, 201
managing both zFS and HFS file systems 163
MapName file 165
mounting

in a sysplex 164
NFS data sets 163

mounting zFS data sets 116
naming specific directories 170
prefilter support 164
setting up the 166
stopping 171
using in a shared file system 164
using multilevel security 163
zFS considerations for sysplex 192, 206

automount policy 201
displaying 169
return codes 164
security considerations 166

AUTOMOVE parameter in BPXPRMxx 186
automove system list

wildcard support 191
AUTOUID keyword

assigning UIDs to single users 65

B
banner page

print separator for output 316
base ACL entry 98
BPAM (basic partitioned access method)

access to TFS files 327
access to UNIX files 133
access to zFS files 117

BPX messages 322
BPX_IMAGE_INIT (process image initiation exit) 380
BPX_PREPROC_INIT (preprocess initiation exit) 380
BPX_PREPROC_TERM (preprocess termination exit) 381
BPX.CF

defining 81
BPX.CONSOLE

defining 81
BPX.DAEMON

defining 81
handling dirty address spaces 342
setting up for daemons 336
setting up security for servers 368

BPX.DAEMON.HFSCTL
defining 82
defining modules to program control 338
handling dirty address spaces 342
setting up 340

BPX.DEBUG
defining 82

BPX.EXECMVSAPF.program_name
defining 82

BPX.FILEATTR
defining files as shared library programs 341

BPX.FILEATTR.APF
defining 82

BPX.FILEATTR.PROGCTL
defining 82
setting program control 339

BPX.FILEATTR.SHARELIB
defining 82

BPX.JOBNAME
defining 83

BPX.MAINCHECK
defining 83, 343
setting up for daemons 335
setting up for servers 369

BPX.MAP
defining 83

BPX.NEXT.USER 60
defining 83

BPX.POE
defining 83

BPX.SAFFASTPATH
defining 83, 322

BPX.SERVER
defining 83
setting up for servers 369
setting up security for servers 368

BPX.SHUTDOWN
defining 84

BPX.SMF
defining 84

BPX.SMF.type.subtype
defining 84

BPX.SRV.userid
defining 84

BPX.STICKYSUG.program_name
defining 84

BPX.STOR.SWAP
defining 84

BPX.SUPERUSER
defining 85
defining superusers 76

BPX.UNIQUE.USER 60
BPX.UNLIMITED.OUTPUT

defining 85
BPX.WLMSERVER

defining 85
BPXAS PROCLIB member

used by workload manager (WLM) 3
BPXAS started procedure

adding 55
BPXBATCH

BPXABATSL alias 351
starting daemons 351
updating for code page support 249

BPXBATSL entry point 351
BPXFX100 317
BPXFX111 317

Index 493

BPXFX211 317
BPXFX311 317
BPXISCDS sample job

creating the couple data set 182
BPXISETD REXX exec

converting /etc symbolic link to directory 160
BPXISETS REXX exec

converting /etc to symbolic link 160, 180
BPXISHFS sample job

role in installation process 12
BPXISJCL

converting /etc in background 160
BPXISMKD 137
BPXISYS1 REXX exec

using the 178
BPXISYS2 REXX exec 179
BPXISYSR sample job

creating sysplex-wide root 175, 179
BPXISYSS sample job 181
BPXISYZR sample job

creating sysplex-wide root 175, 179
BPXISYZS sample job 181
BPXISZFS sample job

role in installation process 12
BPXMKDIR REXX exec 137
BPXOINIT

port 10007 4
BPXOINIT address space

modifying accounting information for 420
BPXOINIT started procedure

adding 53, 54
cataloged procedure 53
CBPDO installation 12

BPXP006E 325
BPXPRMLI parmlib member

keeping reconfigurable parameters in 300
BPXPRMXX (sample member) 22
BPXPRMxx parmlib member

changing values without reIPLing 25
customizing 22

CINET 411
INET 408

customizing for a shared file system 185
dynamically adding filetypes to 300
dynamically changing values of 297
parameters for common INET (CINET)

INADDRANYCOUNT 413
INADDRANYPORT 413

setting limits for users 66
sharing 21
specifying the initial values in IEASYSxx parmlib

member 22
switching to different members 300
syntax checker 22

BPXTAMD module name
customizing in FILESYSTYPE 26

BPXTCAFF 414
BPXTCINT module name

customizing in FILESYSTYPE 26
BPXTFS module name

customizing in FILESYSTYPE 26
BPXTUINT module name

customizing in FILESYSTYPE 26
BPXWH2Z tool

used to migrate HFS file systems to zFS 117
byte range lock manager (BRLM) 210

initializing 182

C
c++ command

customizing 239
c89 utility

customizing 239
setting up to work with compiler 241
tuning 384
using the c89 versions of the c89 command names 241

caching UID and GID information in VLF
steps for 385

CANCEL command
ending

processes 287
canonical mode 8
cataloged procedure

BPXOINIT 53
daemons 351
defining to RACF 91
initializing the kernel 44
OMVS 53

CBC.SCCNCMP
loading into LPA 384

CBPDO installation
explanation of process 11
security requirements for 89
setting up BPXOINIT 12

cc command
customizing 239

changing process limits for active processes
steps for 400

character conversion table
convert code page 317
customizing 318

character special file
creating 152

CHECKSUM
used to improve TCP/IP performance 7

Chinese, Simplified
customizing

for the z/OS shell 247
CHOWN.UNRESTRICTED 72

using 75
chpriority()

enabling 391
CICS/ESA (Customer Information Control System/ESA) 319
CINET (common INET)

binding to a specific socket 413
connecting to a specific socket 414
customizing BPXPRMxx member 411
displaying network routing information 409
setting up for sockets 406
specifying parameters in BPXPRMxx member

INADDRANYCOUNT 413
starting sockets processing 411
transport affinity 414
using specific transports 413

CINET file system type
customizing in FILESYSTYPE 26

CINET operand of DISPLAY OMVS 409
code page

conversion 316
customizing 318

national 247
code page 00037 316
code page 00290 316
code page 00293 316
code page 00930 316

494 z/OS V2R2 UNIX System Services Planning

COFVLFxx parmlib member 40
colony address space

running a physical file system 44
setting up 44
setting up security for 55
starting outside of JES 45

commands
executing from remote locations, with UUCP 255

common INET (CINET)
activating multiple file systems with, for the first time 302
binding to a specific socket 413
connecting to a specific socket 414
customizing BPXPRMxx member 411
displaying network routing information 409
setting up for sockets 406
specifying parameters in BPXPRMxx member

INADDRANYPORT 413
starting sockets processing 411
transport affinity 414
using specific transports 413

Communications Server
description of 6

compiler
selecting previous, for Language Environment 240
using the same one, for Language Environment 240

component identifiers 323
concatenating

libraries to ISPF ddnames 47
for the z/OS shell 252, 256

condition variable
displaying latch contention 310

confighfs shell command
expanding the file system 134

configuration
files

TCP/IP 408
files, UUCP

compiling the 272
creating or editing 263
how uucico uses 272

UUCP (UNIX-to-UNIX copy program) 255
configuration files

customizing 237
CONNECT RACF command

connecting a user to a group with 59
console, system

file 155
contact

z/OS 445
controlled programs

defining modules 338
explanation of 342

conversion
code page 316
using a character conversion table 317

CONVERT operand
OMVS command

converting data with the 318
COPY DATASET command (DFSMSdss)

copying a file system 144
core dump

using the 325
couple data set (CDS)

BPXISCDS sample job 182
creating 182
identifying to XCF 184

COUPLExx parmlib
defining z/OS UNIX CDS to XCF 184

cover page
print separator for output 316

CPU time limit 217
CPUTIMEMAX 66
cron daemon 256

assigning job name to 352
customizing the 347
removing files from directories 134
scheduling UUCP transfers 273
starting from the shell 351

cron jobs
scheduling 350

cron shell command
customizing for read-only root file system 139

crontab
scheduling cron jobs with 350

crontab shell command
running regularly-scheduled jobs 347

CSVDYNEX service
defining exits 381

CTIBPX00 parmlib member 41
CTIBPX01 parmlib member 41
CTnBPXxx parmlib member 41

customizing 41
CTRACE buffer size

increasing the 305
CTRACE statement

customizing in BPXPRMxx 29
curses applications

terminfo database 243
customization

/etc/complete.tcsh 237
/etc/csh.cshrc 236
/etc/csh.login 235
/etc/init.options 227
/etc/rc 231
$HOME/.login 236
$HOME/.profile 225
$HOME/.tcshrc 237
ALLOCxx parmlib member 40
BPXPRMxx parmlib member 22
c++ 239
c89 239
carriage conversion tables 318
cc 239
COFVLFxx member 40
CTIBPX00 parmlib member 41
CTIBPX01 parmlib member 41
CTnBPXxx member 41
CTnBPXxx parmlib member 41
daemons

cataloged procedure 351
IEADMR00 member 42
IEASYSxx parmlib member 22
IKJTSOxx member 42
inetd daemon 345
ISPF selection panel 47
RACF user profile 219
Setup Verification Program (SVP) 50
shell

_C89_CLIB_PREFIX environment variable 240
/etc/profile 219
electronic mail 244

tcsh shell 215
electronic mail 244

Index 495

customization (continued)
tcsh shell (continued)

environment variables 217
uucpd daemon 346
verifying setup choices 50
z/OS shell 215, 217

environment variables 217
customizing

z/OS shell
Japanese 247
Simplified Chinese 247

D
D OMVS, SER

displaying serialization data 309
D OMVS,A=DUBW

showing jobs in wait status 380
D OMVS,ACTIVATE=SERVICE 297
D OMVS,Sockets 309
daemon

appropriate privileges for 335
authorizing to use delegated resources 432
cron

customizing 347
starting from the shell 351

customizing
inetd 345
rlogind 346

customizing system for 338
description of 4
IP-supplied 344
preparing security program for 336
restarting 351
security considerations for 335
security procedures 354
setup problems 355
starting 351
starting from the shell 351

starting in background environment 351
sticky bit, checking the 357
syslogd

starting from the shell 351
uucpd

customizing 346
data set

changing automounted 170
protecting 94

dbx
enhanced security checking 344

debug
APF-authorized programs 82
with BPX.SERVER authority 82

defining
groups 69
z/OS UNIX users 57

delegated resources (RACF) 432
Devices file, UUCP 268
DFS (Distributed File System)

exporting considerations 213
DFS Client

colony address space 44
DFSMDss

backing up files 146
DFSMS 5

managing file systems with 132
messages 322

DFSMS (continued)
tracing events 305

DFSMSdfp
SMS (System Managed Storage) 15
System Managed Storage (SMS) 15

DFSMSdss
COPY DATASET command 144

DFSMShsm
backing up files 144

Dialcodes file, UUCP 268
Dialers file, UUCP 268
direct mount 147, 148
directory

allowing z/OS UNIX users to search 76
auditing accesses to 104
controlling access to 91
file system 114

directory default ACL 98
inheritance 100

dirty address space
defining modules to program control 338
explanation of 342
loading modules from the file system 358

dirty environment
explanation of 342
loading modules from the file system 358

display
information about processes

ps shell command 305
DISPLAY command 305
DISPLAY OMVS command

displaying
current PFSes 300
transport providers 409

Distributed File System (DFS)
exporting considerations 213

double-byte data
converting 317

driving system 157
dump

formatting 324
how to take a 308

dynamic LPA 383

E
EBCDIC Latin 1 country-extended code page 316
EBCDIC Latin 1/Open Systems Interconnection code page

1047 316
electronic mail 255

customizing
tcsh shell 244

customizing in the shell 244
Enhanced ASCII

enabling 35
limitations of 280
setting up 280
using 279

enhanced program security
dbx 344
setting up 343

environment
dirty

explanation of 342
loading modules from the file ssytem 358

environment variable
_BPX_ACCT_DATA 420, 429

496 z/OS V2R2 UNIX System Services Planning

environment variable (continued)
_BPX_BATCH_SPAWN 429
_BPX_BATCH_UMASK 429
_BPX_JOBNAME 229, 430

defining 83
_BPX_PTRACE_ATTACH 430
_BPX_SHAREAS 430

improving performance with 402
shared address space 402

_BPX_SPAWN_SCRIPT 430
improving performance of shell scripts 402

_BPX_TERMPATH 431
_BPX_UNLIMITED_OUTPUT 431
_BPX_USERID 431
_BPXK_AUTOCVT 431
_BPXK_CCSIDS 432
_BPXK_DAEMON_ATTACH 432
_BPXK_DISABLE_SHLIB 432
_BPXK_FORCE_CANCEL 433
_BPXK_GPSENT_SECURITY 433
_BPXK_INITTAB_RESPAWN 434
_BPXK_JOBLOG 323, 434
_BPXK_MDUMP 434

dynamically requesting a SYSMDUMP 325
used in diagnosing problems 324

_BPXK_PCCSID 435
_BPXK_SETIBMOPT_TRANSPORT 414, 435
_BPXK_SUID_FORK 435
_BPXK_TECHNIQUE 435
_BPXK_TIMEOUT 435
_BPXK_UNICODE_MAL 436
_BPXK_UNICODE_SUB 436
_BPXK_UNICODE_TECHNIQUE 436
_BPXK_UNUSEDTASKS 436
_BPXK_WLM_PROPAGATE 436
_C89_CLIB_PREFIX 240
_CEE_ENVFILE 436
_CEE_ENVFILE_S 437
customizing

for shells 217
STEPLIB

in /etc/profile 222
TMOUT 43

events
tracing 304

exec -a $0 $SHELL
running the shell command

in sample /etc/profile 222
executable file 5

changing owner and group 94
explanation of 113

executables
moving into the link pack area (LPA) 385
moving into the LPA

steps for 385
exits

adding exit routines 381
extended ACL entry 98
extended attributes

+ 97
1 97
a 97
APF-authorized 62

using sanction lists 341
p 97
program control 339
s 97

extended attributes (continued)
shared address space 402
shared library 341
ST_SHARELIB 387

extended common service area (ECSA)
evaluating virtual memory needs 17

extended system queue area (ESQA) 17
controlling use of 390

external link
accessing MVS load libraries 358
for APF-authorized program 97

EZBPFINI module name
customizing in FILESYSTYPE 26

F
F BPXOINIT,DUMP

requesting a SYSMDUMP 325
F BPXOINIT,FORCE 290
F BPXOINIT,RECOVER=LATCHES 310
F BPXOINIT,SHUTDOWN

shutting down z/OS UNIX 288
F BPXOINIT,SHUTDOWN=FORKS 290
F OMVS, ACTIVATE=SERVICE 296
F OMVS,DEACTIVATE=SERVICE 296
F OMVS,RESTART 291
F OMVS,SHUTDOWN 291

explanation of 292
using 291

FACILITY class
BPX.CF

defining 81
BPX.CONSOLE

defining 81
BPX.DAEMON

defining 81
setting up for daemons 335, 336
setting up security for servers 368

BPX.DAEMON.HFSCTL
defining 82
defining modules to program control 338
handling dirty address spaces 342
setting up 340

BPX.DEBUG
defining 82

BPX.EXECMVSAPF.program_name
defining 82

BPX.FILEATTR.APF
defining 82

BPX.FILEATTR.PROGCTL
setting program control 339
setting up 82

BPX.FILEATTR.SHARELIB
defining files as shared library programs 341
setting up 83

BPX.JOBNAME
defining 83

BPX.MAINCHECK
defining 83, 343
setting up for servers 369

BPX.MAP
defining 83

BPX.NEXT.USER
defining 83

BPX.POE
defining 83

BPX.SAFFASTPATH 322

Index 497

FACILITY class (continued)
defining 83

BPX.SERVER
defining 83
setting up for servers 369
setting up security for servers 368

BPX.SHUTDOWN
defining 84

BPX.SMF
defining 84

BPX.SRV.userid
defining 84

BPX.STICKYSUG.program_name
defining 84

BPX.STOR.SWAP
defining 84

BPX.SUPERUSER
defining 85

BPX.UNLIMITED.OUTPUT
defining 85

BPX.WLMSERVER
defining 85

FACILITY class profiles
setting up 80

failure
file system 155, 312
file system type 312
kernel 312
recovering from 312
System Services 312

fastpath support for SAF
disabling 322
enabling 322

fcntl() service
used in file locking 151

FDBX messages 322
field level access

OMVS segment of RACF user profile 64
FIFO special file 152
file

accessing 93
auditing accesses to 104
changing

group 94
owner 94

character special
creating 152

checking for program control 340
controlling access to 91
description 5, 113
in file system 5, 113
locking 151

parallel sysplex 210
obtaining security information for 95
permission bits

changing 93
removing from directories 134
special 152
transferring

UUCP 255
transferring, by all users 75
UUCP

Devices 268
Dialcodes 268
Dialers 268
Permissions 268
Systems 264

file default ACL 98
inheritance 100

file descriptor
specifying 154

file descriptor not available message 30
file security packet (FSP)

and RACF 95
definition of 94

file system
/dev

explanation of 115
/etc

explanation of 114
migrating 12

/tmp
explanation of 115

/u
explanation of 116

/var
explanation of 115

allocating the root 119
back-level sysplex

moving to a 205
backing up 144
BPAM access 133
changing mount mode 143
copying 144
creating 116
defining 25
expanding the 134
failure 155
in-memory

managing 327
increasing size of 133
installing products into 161
installing service into 157
managing 114, 132
mounting 121, 123

HFS 122
mounting, using symbolic links 211
multivolume support 146
nonprivileged mount 124

MAXUSERMOUNTSYS 124
MAXUSERMOUNTUSER 124

nonprivileged unmount 124
MAXUSERMOUNTSYS 124
MAXUSERMOUNTUSER 124

organization 404
placement of files 404
planned shutdown 287
privileged mount 123
privileged unmount 123
recovering from root problems 155
reducing size of 133
remounting 143
root

restoring a 155
setting up the 119
slow response time 134
steps for mounting 125
sysplex

mounting using NFS Client Mount 212
moving in a 204

transporting the 159
unmounting

in a non-sysplex environment 134
in sysplex 186

498 z/OS V2R2 UNIX System Services Planning

file system clients 203
file system owner 203
FILE.GROUPOWNER.SETGID 72

setting up 92
FILEPROCMAX 66
FILESYSTYPE statement

customizing in BPXPRMxx 25
defining CINET 411
defining for INET 408
dynamically adding 300
PARM('')

VIRTUAL(max) 26
FILETAG runtime option

using 280
FOM messages 322
FOMISCHO sample job

using 239
FOMTLINP module

for login 439
FOMTLOUT module

for login 442
FORCE parameter of the MODIFY command 286
fork() service 18

description of 3
forked address space

creating 3
FSACCESS class profile 110, 111

activating 111
FSEXEC class profile 110, 112
FSUM messages 322
full function mode

explanation of 15
switching from minimum mode 15

G
GFSCINIT module name

customizing in FILESYSTYPE 26
GFUAINIT module name

customizing in FILESYSTYPE 26
GID

automatically creating 60
GID (group ID)

accounting for 419
activating supplemental 57
assigning 61, 68

in an NFS network 67
defining 65, 69
description 57
unique 61
upper limits 68

global resource information
displaying 309

globalization
setting up for 49

graphical mode 8
group

changing 94
defining 69
supplemental 57

group names
mapping GID to 65

group profile, RACF
in security 57

GRPLIST option on the SETROPTS command 57

H
hangs

during initialization 325
hard limits

defining in RACF user profile 396
explanation of 393

hardware
installation 6

Health Checker for z/OS
checking the delay times 164, 201
MAXFILEPROC 30, 33
MAXSOCKETS 33
z/OS UNIX checks 427

HFS (hierarchical file system)
file ownership versus zFS file ownership 117
migrating to zFS 117

using the BPXWH2Z tool 117
security labels 103

HFS compatibility mode 117
HFS file system type

customizing in FILESYSTYPE 26
hierarchical file system (HFS)

mounting 122
home directory

setting up 57

I
IARVSERV (MVS function) 17
IBM service

re-creating problems for 305
iconv command

using to convert data 317
ICONV TSO/E CLIST

using to convert data 317
identity

specifying 395
identity change

how it affects limits 394
what happens if it doesn't take place when a child is

created 395
what happens if it takes place 394

IEADMR00 parmlib member 42
IEASYSxx parmlib member

OMVS parameter 15
specifying the initial BPXPRMxx parmlib members 22

IEFUAVI installation exit 421
IEFUJI installation exit 422
IEFUJV installation exit 424
IEFUSI installation exit 424

setting process limits 398
IGD messages 322
IKJTSOxxparmlib member 42
in-storage data

refreshing 360
INADDRANYCOUNT

in BPXPRMxx member
customizing 413

INADDRANYPORT
in BPXPRMxx member

customizing 413
INET

customizing BPXPRMxx member 408
setting up for sockets 405

INET file system type
customizing in FILESYSTYPE 26

Index 499

inetd daemon 256
customizing 345

Infoprint Server
alternate version of lp command 315

Information Management System/ESA (IMS/ESA)
batch message processing (BMP) program 319

initialization
diagnosing hangs during 325

initializing 44
inode

mounting file systems 121
installation

hardware 6
preparing RACF 52
RACF, preparing for 52
security program, preparing the 336
security requirements for 89

installation exit
BPX_IMAGE_INIT (process image initiation exit) 380
BPX_PREPROC_INIT (preprocess initiation) 380
BPX_PREPROC_TERM (preprocess termination exit) 381
IEFUJI 421, 422
IEFUJV 424
IEFUSI 424
monitoring process activity 381
preprocess initiation (BPX_PREPROC_INIT) 380
preprocess termination exit (BPX_PREPROC_TERM) 381
process image initiation exit (BPX_IMAGE_INIT) 380

installing 11
internal routing table 409
Interprocess Communication (IPC)

managing 313
IOEFSCM module name

customizing in FILESYSTYPE 26
IPCMSGNIDS statement

dynamically changing 299
IPCS

in formatting dumps 324
IPCSEMNIDS statement

dynamically changing 299
IPCSHMGPAGES statement

dynamically changing 299
IPCSHMNIDS statement

dynamically changing 299
IPv4

setting up 27
IPv6

setting up 27
ISPBTCH 118
ISPF 6

customizing the menu 47
managing zFS file systems 116
setting to display Japanese 252
shell 10
tasks 10

ISPF TSO Command Table (ISPTCM)
customizing 49

ISPMLIB
ISPF ddname 47

for the z/OS shell 252, 256
ISPPLIB

ISPF ddname 47
for the z/OS shell 252, 256

ISPTCM (ISPF TSO Command Table)
customizing 49

ISPTLIB
ISPF ddname 47

ISPTLIB (continued)
for the z/OS shell 252, 256

J
Japanese

customizing
for the z/OS shell 247

displaying messages 251
issuing messages 252
seeing help panels 252
setting ISPF for 252

Japanese (Latin) extended code page 01027 316
Japanese combined code page 00939 316
JES2

relation to z/OS UNIX 319
JES2 maintenance

partial shutdown of z/OS UNIX 290
JES3

relation to z/OS UNIX 319
job control language (JCL)

couple data set format utility 181
job name

checking 422
job names

rules used when generating 425
jobs

displaying status of pending 380
scheduling 347

JRENVDIRTY reason code 358

K
kernel 44

checking status of 16
displaying address space 308
displaying status of 305
failure 312
taking dump of a 308

keyboard
navigation 445
PF keys 445
shortcut keys 445

L
l extended attribute 97
language

customizing
for the z/OS shell 247

Language Environment
runtime library (SCEERUN)

putting in LNKLST 384
putting into LLA 384

runtime routines 383
SCEERUN

using 319
SCEERUN2

using 319
selecting previous compilers 240
UNIT=SYSDA 240
using STEPLIB to export 403
using the same compiler 240

latch contention
conditional variables 309
detecting 309

500 z/OS V2R2 UNIX System Services Planning

latch contention (continued)
locating

global resource information 309
shared memory mutexes 309

Latin 1 code page 316
leaf-node connection, UUCP 258
limits

handling after an identity change 394
limits for active processes

changing 400
LIMITS parameter value

DISPLAY OMVS command 307
LIMMSG statement

customizing in BPXPRMxx 29
line mode 8
LINET 407
link list (LNKLST) 383
link pack area (LPA)

dynamic 383
inserting modules in 383
moving executables into the 385
putting the runtime library in 336, 383

linkage editor
putting into dynamic LPA 384

list-of-groups checking
activating 57

LISTGRP RACF command
obtaining a group profile value with 63

LISTUSER RACF command
obtaining a user profile value with 63

LNKLST (link list) 383
load library

accessing 358
local system

UUCP
configuring 260
creating working directories 273

lock
for files 151

login
function 439, 442

logon procedure, TSO/E
invoking the shell 216

LOSTMSG BPXPRMxx statement 35
lp command

Infoprint Server version 315
ls shell command

performance 384

M
mail

shell
customization 244

tcsh shell
customization 244

mail shell command
customizing for read-only root file system 139

mail, electronic 255
mailx shell command 244
man pages

enabling the 238
setting the path for 223

managing
system limits 388

MapName file 165
reformatting 166

master file
for pseudo-TTY

specifying 153
MAXASSIZE statement

changing value 25
customizing in BPXPRMxx 29

MAXCPUTIME statement
changing value 25
customizing in BPXPRMxx 29

MAXFILEPROC statement
changing value 25
customizing in BPXPRMxx 30
using IBM Health Checker for z/OS to check values 30,

33
maximum mode

determining 16
MAXIOBUFUSER statement

customizing in BPXPRMxx 30
MAXMMAPAREA statement

changing value 25
customizing in BPXPRMxx 30

MAXPIPES statement
customizing in BPXPRMxx 31

MAXPIPEUSER statement
customizing in BPXPRMxx 31

MAXPROCSYS statement
customizing in BPXPRMxx 31
dynamically changing 299

MAXPROCUSER statement
changing value 25
customizing in BPXPRMxx 32

MAXPTYS statement
customizing in BPXPRMxx 33
dynamically changing 299

MAXSOCKETS statement
customizing in BPXPRMxx 33
increasing the value 302
using IBM Health Checker for z/OS to check values 33

MAXSPACE
determining the value of 311
increasing the value of 311

MAXTHREADS statement
changing value 25
customizing in BPXPRMxx 33

MAXTHREADTASKS statement
customizing in BPXPRMxx 33

MAXUIDS statement
customizing in BPXPRMxx 34

MAXUSERMOUNTSYS 124
MAXUSERMOUNTSYS statement

customizing in BPXPRMxx 34
MAXUSERMOUNTUSER 124
MAXUSERMOUNTUSER statement

customizing in BPXPRMxx 34
MEMLIMIT parameter 31, 66
mesg shell command 67

setting up 239
message

BPXF032D 312
BPXP006E 325

messages
BPX 322
dbx 322
FDBX 322
FOM 322
FSUM 322
IGD 322

Index 501

messages (continued)
writing to job log

using _BPXK_JOBLOG 323
migrating

/etc file system 12
migrating to new releases 11
minimum mode

determining 16
explanation of 15
switching to full function mode 15

mixed-case password and password phrase
support for 51

MKDIR keyword
defining multiple mount points 28

mkdir shell command 150
MKDIR TSO/E command 150
MKNOD TSO/E command

specifying pseudo-TTY files with 153
mmap() 18
MMAPAREAMAX 66
MMAPAREAMAX statement

specifying in BPXPRMxx 30
MMAPSIZE parameter 31
MODIFY command

ending processes 285
ending threads 287
FORCE parameter 286
SUPERKILL parameter 286
TERM parameter 286

module
not defined to program control 358

monitor
processing 375
shell processing 375

mount
direct 147

mount authority 123
MAXUSERMOUNTSYS 124
MAXUSERMOUNTUSER 124
privileged mount 123, 124
privileged unmount 123, 124

mount authorization 123
MOUNT command

AUTOMOVE options 207
mount mode

remounting 143
mount point

defining multiple 27, 28
mount processing

/// used as placeholder 118, 123
MOUNT statement

customizing in BPXPRMxx
defining multiple mount points 27

mounting 123
file systems

logical 119
root 155

in a shared file system 164
NFS data sets 163
restrictions 127
security considerations 123
user file systems directly 147
zFS data sets 116

considerations for 118
multilevel security

automount issues 163
HFS file system 103

multilevel security (continued)
using 103
zFS file system 103

multiple sockets
activating for first time 302

multithreaded server 366
MVS Message Service (MMS)

activating 251

N
national code page

customizing 247
navigation

keyboard 445
nested ACEE

creating 432
NETSTAT command (TSO command) 309
netstat command (z/OS UNIX command) 309
network

connections for z/OS UNIX 7
UCP 257

Network File System (NFS) 6
assigning UIDs and GIDs 67
BPAM access 133
customizing in FILESYSTYPE 26
managing files 116
mounting data sets 163

NETWORK statement
customizing in BPXPRMxx 27

NFS Client
colony address space 44
defining colony address spaces 55
mounting in a sysplex 212
using supplemental groups for remote communication 57

nice()
enabling 391

NOAUTOMOVE parameter in BPXPRMxx 186
non-canonical mode 8
non-sysplex aware file systems 203
non-sysplex aware for read-only 203
NONEMPTYMOUNTPT statement

customizing in BPXPRMxx 35
nonprivileged mount 124

MAXUSERMOUNTSYS 124
MAXUSERMOUNTUSER 124

nonprivileged unmount 124
MAXUSERMOUNTSYS 124
MAXUSERMOUNTUSER 124

Notices 449
NUUCP user ID

for ServerPac and CBPDO installation 261

O
OBROWSE TSO/E command

putting in ISPF menu 47
OEDIT TSO/E command

putting in ISPF menu 47
OMVS address space

modifying accounting information for 420
OMVS parameter

IEASYSxx parmlib member 15, 22
TRACE command 305

OMVS segment
ADDUSER RACF command 59

502 z/OS V2R2 UNIX System Services Planning

OMVS segment (continued)
automatically generating 60
RACF user profile

field level access 64
storing user-specific segment 60
TCP/IP user 112
verifying 356

OMVS TSO/E command
customizing code page conversion 318
invoking the z/OS shell with 215
response time 404
specifying Japanese language 252

OMVSAPPL application ID (APPLID)
using the 109

OMVSAPPL profile
defining the 109

OMVSDATA subcommand
to format problem data 324

one-pack system 159
onetstat command 309
OPEN_MAX variable 30
operation

managing 285
OPERLOG (system message log) 155
orexecd daemon

defining to PROGRAM class 344
OSHELL

updating for code page support 249
owner

changing 94

P
p extended attribute 97
PADS (program access to data sets) 343
pageable storage

evaluating virtual memory needs 17
parameter key options

for mount statement and mount commands 329
for the FILESYSTYPE statement 330

parent process
ID (PPID)

accounting for 419
parmlib member

ALLOCxx 40
BPXPRMLI 300
BPXPRMxx 22
COFVLFxx 40
COUPLExx

defining the z/OS UNIX CDS to XCF 184
CTIBPX00 41
CTIBPX01 41
CTnBPXxx 41
IEADMR00 42
IEASYSxx

OMVS parameter 15
IKJTSOxx 42
SMFPRMxx 5, 43

partial shutdown
for JES2 maintenance 290

participating group
definition of 174

password and password phrase
support for mixed-case 51
UUCP restrictions 255

pax command
limitations of 68

Perform Locked Operation (PLO) instruction
used to improve semaphore processing 7

performance
file system

improving 404
ideal storage size 383
ls shell command 384
parmlib limits 388
STEPLIB data sets, using 403
z/OS UNIX 383

collecting data 375
permission bits

access 92
changing 93
for file access types 93

Permissions file, UUCP 268
PERMIT RACF command

permitting field access with 64
PGID (process group ID)

accounting for 419
physical file system

colony address space 55
running in a 44

PID (process ID)
using for dump naming 324

pipe
communication between processes 152

planned shutdown
using F OMVS,SHUTDOWN 291

PLO (Perform Locked Operation) instruction
used to improve semaphore processing 7

port 10007 4
PPID (parent process ID)

accounting for 419
preprocess initiation exit (BPX_PREPROC_INIT) 380
preprocess termination exit (BPX_PREPROC_TERM) 381
preventive service 157
print separator

output 316
printer

designating 315
setting up default 315

printing
controlling 315

PRIORITYGOAL statement
customizing in BPXPRMxx 34, 392

PRIORITYPG statement
customizing in BPXPRMxx 34, 392

privileged mount 123
privileged unmount 123
problem data

formatting 324
problem determination

application program 325
daemon setup 355
debugger 324
server setup 355
shell 324
taking a dump 308
z/OS UNIX 322

problems
re-creating for IBM service 305

process
child 3
displaying information about 309
displaying status of 305
ending 285, 287

Index 503

process (continued)
group ID (PGID)

accounting for 419
parent 3

process activity
monitoring 380
tuning 389

process ID (PID)
used for dump naming 324

process image initiation exit (BPX_IMAGE_INIT) 380
process limits

changing 400
displaying 399
explanation of 392
setting 396

steps for 397
using IEFUSI exit 398

processing
z/OS UNIX

managing 315
relation to other processing 319

PROCUSERMAX 66
PROFILE PLANGUAGE setting 252
program access to data sets (PADS) 343
program control

checking in UNIX files 340
defining modules to 338
dirty address space 342
enhanced program security 342
finding modules not defined to 358
using sanction lists 340

program control extended attribute
in files 62
marking files with the 339
setting 82

program security
setting up 343

PROGxx member
tuning 384

protected resources
checking authority for using 367

protected user ID
defining 67

ps shell command
displaying processes with 305

pseudo-TTY
specifying 153

ptrace
debugging

APF-authorized programs 82
programs with BPX.SERVER authority 82

public UUCP directory 259
PWT BPXPRMxx statement 35

R
RACF (Resource Access Control Facility)

classes
activating 40

description of 5
establishing 51
GIDs, caching 384
installing 52
UIDs, caching 384
user profile, OMVS segment

field level access 64
verifying users 56

RACF user profile
customizing

for z/OS shell 219
raw mode 8
RDEFINE RACF command

defining a field profile with 64
reason codes 322

JRENVDIRTY 358
recovery

file system 312
file system type 312
System Services 312

remote locations
executing commands from, with UUCP 255

remote system
UUCP

configuring communication with 262
creating working directories 273

Resource Measurement Facility (RMF) 5
defining 91

Resource Measurement Facility (RMF) Monitor III Gatherer
defining 91

resource name
CHOWN.UNRESTRICTED 72
RESTRICTED.FILESYS.ACCESS 72
SHARED.IDS 72
SUPERUSER.FILESYS 72
SUPERUSER.FILESYS.ACLOVERRIDE 72
SUPERUSER.FILESYS.CHANGEPERMS 72
SUPERUSER.FILESYS.CHOWN 72
SUPERUSER.FILESYS.DIRSRCH 72
SUPERUSER.FILESYS.MOUNT 71, 73
SUPERUSER.FILESYS.PFSCTL 71, 73
SUPERUSER.FILESYS.QUIESCE 71, 73
SUPERUSER.FILESYS.USERMOUNT 73, 124
SUPERUSER.FILESYS.VREGISTER 71, 73
SUPERUSER.IPC.RMID 71, 73
SUPERUSER.PROCESS.GETPSENT 71, 73
SUPERUSER.PROCESS.KILL 71, 73
SUPERUSER.PROCESS.PTRACE 71, 74
SUPERUSER.SETPRIORITY 71, 74
SUPERUSER.SHMMCV.LIMITS 74

resources
collecting usage data 375

response time
TSO/E 404

restarting
daemons 351

RESTRICTED.FILESYS.ACCESS 72
return code 322

EMVSPFSFILE 312
EMVSPFSPERM 312

REXX exec
BPXISETS

converting /etc to symbolic link 180
BPXISYS1 178
BPXISYS2 179

rlogin
problem determination 362
setting up for 361

rlogind daemon
customizing the 346

RMFGAT
defining 91

root directory
creating 119
in file system 114

504 z/OS V2R2 UNIX System Services Planning

root file system
mounting for execution 134
recovery procedure 155
restoring a 155

root HFS
renamed to root file system 173

ROOT statement
customizing in BPXPRMxx 28
defining multiple mount points 28

runtime library
managing 319
putting in the LNKLST 384
putting into the LLA 384
using STEPLIBs 385

S
s extended attribute 97
sample job

BPXISCDS 182
BPXISHFS

role in installation process 12
BPXISYSR 175, 179
BPXISYSS 181
BPXISYZR 175, 179
BPXISYZS 181
BPXISZFS

role in installation process 12
FOMISCHO

using 239
sanction lists

activating 107
creating 106
formatting rules 105
sample 106
used by APF-authorized programs 341
used by program-controlled programs 340

SCEELPA data set
putting in the link pack area 383
putting in the LPA list 383

SCEERUN
putting in the LNKLIST 384
putting into LLA 384
used by Language Environment 319
using STEPLIBs 385

SCEERUN2
used by Language Environment 319

security
checking for user authorization to resources 62
comparison of UNIX with z/OS UNIX 333
considerations

for daemons 335
for servers 368

controlling access to 109
daemons

checklist for 354
defining cataloged procedures 91
establishing 51
improving performance of 404
information for files 95
level 109
multilevel security 103
Network File System Client (NFSC) 55
obtaining security information

about users 63
for groups 63

preparing 52

security (continued)
preparing for daemons 336
selecting levels for system 112
setting up 366
setting up for TCP/IP 112
threads 366
UUCP 258

security environment
authenticated client 367
unauthenticated client 367

security labels
automount issues 163
HFS file system 103
using 102
zFS file system 103

semaphore processing
improving performance 7

sending comments to IBM xix
serialization data

displaying 309
displaying latch contention 310

server
address space 18
BPX.SERVER not defined 368
checking authority 360
processing users without passwords 372
setting up 370
setting up security level 368
setup problems 355
using thread-level security 369
web

SMF records 375
WLM server 85

server message block (SMB)
exporting considerations 213

ServerPac installation 11
explanation of process 11
security requirements for 89

service
installing into

/etc 160
file system 157

restricting access to 81
transporting the file system 159

service items
activating 294, 296
displaying 296

service terms
deactivating 296

session
ID (SID)

accounting for 419
SET OMVS command

changing values of BPXPRMxx parameters 297
for a process 297

executing MOUNT, FILESYSTYPE, SUBFILESYSTYPE, and
NETWORK statements 298, 300

RESET operand 298
switching to different BPXPRMxx members

dynamically 300
set-group-ID

of executable file
creating 94

set-user-ID
of executable file

creating 94

Index 505

SETOMVS command
activating sanction lists 107
changing values of BPXPRMxx parameters 297

for a process 297
SYNTAXCHECK operand 22

SETOMVS RESET command
changing values of BPXPRMxx parameters 297
dynamically adding physical file systems to

BPXPRMxx 300
SETOMVS SYNTAXCHECK command 25
SETOMVS SYNTAXCHECK=parmlibmember 27, 28
setpriority()

enabling 391
SETROPTS RACF command

activating field access with 64
Setup Verification Program (SVP) 50
Share Reservations 205
shared address space 97

extended attributes 402
shared file system

automount facility 164
availability 202
customizing BPXPRMxx 185
definition of 173
description of 173
DFS considerations 213
exporting by DFS 213
exporting by SMB 213
file system clients 203
file system owner 203
implications during recovery 206
interruptions to file availability 204
mounting 164
non-sysplex aware file systems 203
non-sysplex aware for read-only 203
setting up 178, 202
sysplex aware for read-only 204
sysplex aware for update file system 203
using TFS 332

shared HFS
renamed to shared file system 173

shared library extended attribute 341, 387
shared library object 97
shared library program

defining files as 341
shared memory mutexes

displaying latch contention 310
SHARED.IDS 66, 71, 72

assigning UIDs to multiple users 66
when UID(0) is assigned 80

shell
customizing

z/OS 217
improving performance of

using _BPX_SHAREAS 402
using _BPX_SPAWN_SCRIPT 402

initialization of 215
invoking the 215

automatically 215
with OMVS command 215

setting up 215
starting daemon from the 351

starting in background environment 351
supplying installation-provided shell 217

SHMEMMAX parameter 31, 66
shortcut keys 445

shutdown
partial 290
planned 287, 293

shared file system implications 209
shutting down

partial, for JES2 maintenance 290
system before an IPL 293

shutting down z/OS UNIX
using F BPXOINIT,SHUTDOWN 288

SID (session ID)
accounting for 419

SIGDUMP signal 325
signal

SIGDUMP 325
Simplified Chinese

customizing
for the z/OS shell 247

single sockets
activating for first time 301

single stack
See INET 408

single-byte data
converting 317

single-threaded server 366
skulker shell script

removing files from directories 134
slave file

for pseudo-TTY
specifying 153

SMB (server message block)
exporting considerations 213

SMFPRMxx parmlib member
customizing the 43
used in JWT 5

SMP/E
running 77

sockets
activating

multiple 302
single 301

AF_INET 405
AF_INET6 405
binding to a specific 413
CINET 405
connecting through a specific transport 414
considerations for a file system 153
INET 405
MAXSOCKETS 302
processing for

common INET (CINET) 411
specifying maximum number of 302
TCP/IP security setup 112
UNIX domain 155

soft limits
explanation of 393
inheriting 394

special file
/dev/random

specifying 154
/dev/urandom

specifying 154
file descriptor 154
null

specifying 153
types 152
UNIX domain socket 155

506 z/OS V2R2 UNIX System Services Planning

special file (continued)
zero

specifying 153
spool directory, UUCP 277
ST_SHARELIB extended attribute 387
start/end exits

defining 381
started procedure

accounting data 420
BPXOINIT

CBPDO installation 12
starting

daemons 351
STEPLIB

definition of 403
eliminating propagation 403
exporting only Language Environment 403
improving shell performance 403
preventing excessive searches of 403
using to manage the runtime library 385

STEPLIB environment variable
in /etc/profile 222

STEPLIBLIST statement
customizing in BPXPRMxx 35

sticky bit
checking 357
checking if it is on 403

sticky bit file
for APF-authorized programs 97

storage
evaluating virtual 17

SUBFILESYSTYPE statement
customizing in BPXPRMxx 28

summary of changes xxi
Summary of changes xxii
summary of changes for V2R2 xxi
SUPERKILL parameter of the MODIFY command 286
superuser

assigning attributes 70
assigning privileges 74
changing from a UID of 0 77
defining 70

assigning UID(0) 80
using BPX.SUPERUSER 76
using UNIXPRIV 71

setting up $HOME/.profile 226
switching in and out 79

superuser granularity
managing z/OS UNIX privileges 71

SUPERUSER.FILESYS 71, 72
SUPERUSER.FILESYS.ACLOVERRIDE 72
SUPERUSER.FILESYS.CHANGEPERMS 72
SUPERUSER.FILESYS.CHOWN 71, 72
SUPERUSER.FILESYS.DIRSRCH 72

using 76
SUPERUSER.FILESYS.MOUNT 71, 73
SUPERUSER.FILESYS.PFSCTL 73
SUPERUSER.FILESYS.QUIESCE 73
SUPERUSER.FILESYS.USERMOUNT 73, 124
SUPERUSER.FILESYS.VREGISTER 73
SUPERUSER.IPC.RMID 73
SUPERUSER.PROCESS.GETPSENT 73
SUPERUSER.PROCESS.KILL 73
SUPERUSER.PROCESS.PTRACE 74
SUPERUSER.SETPRIORITY 74
SUPERUSER.SHMMCV.LIMITS 74

supplemental group
activating 57

SURROGAT class
defining servers to process users without passwords 372

SURROGAT class profile
checking the 361

SURROGAT class profiles
setting up 80

surrogate profile 369
SVC dump

problem
suppressing 322

symbolic link 179
command differences 115
cron and uucp 139, 142
mounting file systems 211

syntax checker (BPXPRMxx) 22
SYS1.KHELP

concatenating 47
for the z/OS shell 252

SYS1.LINKLIB system library
character conversion tables 317

SYS1.PARMLIB
tuning 388

SYS1.PHELP
concatenating

for the z/OS shell 256
SYS1.SAMPLIB

sample BPXPRMXX member 22
SYS1.SBPXEXEC

concatenating 47
SYS1.SBPXMCHS

concatenating
for the z/OS shell 256

SYS1.SBPXMENU
concatenating 47

SYS1.SBPXMJPN
concatenating 47

for the z/OS shell 252
SYS1.SBPXPCHS

concatenating
for the z/OS shell 256

SYS1.SBPXPENU
concatenating 47

SYS1.SBPXPJPN
concatenating 47

for the z/OS shell 252
SYS1.SBPXTCHS

concatenating
for the z/OS shell 256

SYS1.SBPXTENU
concatenating 47

SYS1.SBPXTJPN
concatenating 47

for the z/OS shell 252
SYSEXEC

ISPF ddname 47
SYSHELP

ISPF ddname 47
for the z/OS shell 252, 256

syslogd daemon
starting from the shell 351

SYSMDUMP
dynamically requesting a 325
specifying 42

SYSOMVS parameter value
DISPLAY TRACE command 307

Index 507

SYSOMVS parameter value (continued)
TRACE command 304

sysout (system output data set)
print separator for output 316

sysplex
automount policy 201
BPXISYS1 REXX exec 178
BPXISYSR sample job 178
byte range lock manager (BRLM) 210
character special files 152
couple data set (CDS) 182
cross system coupling facility (XCF) 182
customizing BPXPRMxx for a shared file system 185
DFS considerations 213
exporting by DFS 213
exporting by SMB 213
FIFO special files 152
file lock 210
moving file systems in a back-level sysplex 205
moving file systems in a sysplex 204
NFS client mounts 212
sharing file systems 179
signaling services 213
SMB considerations 213
symbolic links 180
sysplex root 178
UNIX domain socket address file 153
unmounting file system 186
version file system

mounting read-only 180
zFS considerations for 192, 206

sysplex aware for read-only 204
sysplex aware for update file system 203
sysplex HFS

renamed to sysplex file system 173
sysplex root

creating the 178
sysplex root file system

dynamically replacing with the alternate sysplex root 127
migrating from HFS to zFS 118
replacing the 130

sysplex-aware
explanation of 187

SYSPROC
ISPF ddname 47

SYSROOT 15
system administrator

in z/OS UNIX 1
System Authorization Facility (SAF)

disabling fastpath support for 322
enabling fastpath support for 322
z/OS UNIX services 95

system completion code 322
system console file

/dev/console 155
/dev/operlog 155
specifying 155

System Display and Search Facility (SDSF) 5
system limits

defining 28
displaying status 307
managing 388

system list
using 191

System Managed Storage (SMS)
for file systems 114
used in full function mode 15

System Managed Storage (SMS) (continued)
used in minimum mode 15

system management facilities (SMF) 4
managing accounting for UNIX workloads 419
obtaining data 375
record type 30 375
record type 34

preventing 376
record type 35

preventing 376
record type 74 376
record type 80 376
record type 92 376
user application support 375
web server 375

system output data set (sysout)
print separator for output 316

system programmer
in z/OS UNIX 1

system queue area (SQA) 17
system-shared library programs 387
system-wide limits

explanation of 392
Systems file, UUCP 264
systems network architecture (SNA) 7
SYSZDSN 135

T
talk shell command 67

setting up 239
tar command

limitations of 68
target system 157
task

using ISPF shell 10
tasks

activating a single sockets file system for the first time
steps for 301

activating multiple file systems for the first time with
Common INET

steps for 302
activating MVS Message Service (MMS)

steps for 251
activating sanction lists

steps for 107
activating the file system for the first time

steps for 300
activating the IEFUJI installation exit

steps for 422
adding another sockets file system to an existing Common

INET configuration
steps for 304

assigning UIDs and GIDs
steps for 77

authorizing selected users to transfer file ownership
steps for 74

checking OMVS security information about a group
steps for 63

checking UNIX files for program control
steps for 340

converting files between code pages
roadmap 279

creating a cataloged procedure for a TFS
steps for 46

creating sanction lists
steps for 106

508 z/OS V2R2 UNIX System Services Planning

tasks (continued)
customizing /etc/inittab

steps for 234
customizing /etc/profile

steps for 223
customizing /etc/rc

steps for 231
customizing $HOME/.profile

steps for 225
customizing BPXPRMxx for CINET

steps for 411
customizing the cron daemon

steps for 348
customizing the login file for the tcsh shell

steps for 250
customizing the login file for the z/OS shell

steps for 250
customizing the shell and utilities

roadmap 215
customizing the system for IP-supplied daemons

steps for 344
customizing the uucpd daemon

steps for 346
defining files as shared library programs

steps for 341
defining programs from load libraries to program control

steps for 338
defining RACF groups as z/OS UNIX groups

steps for 69
defining servers to process users without passwords or

password phrases
steps for 372

defining terminals or workstations for a terminfo database
steps for 243

defining z/OS UNIX users to RACF
steps 58

displaying messages in Japanese
steps for 251

dynamically replacing the sysplex root file system
steps 130

ending processes
steps for 285

finding modules that were not defined to program control
steps for 358

FSACCESS class profile, activating
steps 111

increasing the MAXSOCKETS value
steps for 302

keeping automount policy consistent
steps for 201

maintaining the security level of the system
steps for 109

making the Language Environment runtime library
available via STEPLIB

roadmap 315
making the runtime library available through STEPLIB

steps for 320
managing accounting work

roadmap 419
managing operations

roadmap 285
managing the z/OS UNIX file system

roadmap 113
modifying account information

steps for 421
mounting file systems

steps for 125

tasks (continued)
obtaining security information about users

steps for 63
preparing RACF

steps for 52
preparing security for servers

roadmap 365
preparing the security program for daemons

steps for 336
recovering from file system problems with the root

steps for 156
removing alternate sysplex root support

steps 130
setting the APF-authorized attribute in UNIX files

steps for 341
setting up and customizing your national code page

roadmap 247
setting up automatic invocation (to be done by the system

programmer)
steps for 216

setting up BPX.SUPERUSER
steps for 76

setting up Enhanced ASCII
steps for 280

setting up enhanced program security
steps for 343

setting up field-level access
steps for 64

setting up for rlogin
steps for 361

setting up for security
roadmap 51

setting up for sockets
roadmap 405

setting up for your national code page
steps for 247

setting up security procedures for daemons
steps for 354

setting up servers
steps for 370

setting up the alternate sysplex root
steps 128

setting up the automount facility
steps for 166

setting up the CHOWN.UNRESTRICTED profile
steps for 75

setting up the FILE.GROUPOWNER.SETGID profile.
steps for 92

setting up the inetd daemon
steps for 345

setting up Unicode Services
steps for 282

shutting down for JES2 maintenance
steps for 290

shutting down z/OS UNIX
steps for 293

shutting down z/OS UNIX using F OMVS,SHUTDOWN
overview 291

shutting down z/OS UNIX, using F
BPXOINIT,SHUTDOWN

steps for 288
tuning for performance

roadmap 383
tuning performance

overview 383
using ACLs

overview 97

Index 509

TCP/IP
/etc/resolv.conf 417
AF_INET sockets 28
AF_INET6 28
configuration files 408
customizing BPXPRMxx 28
description of 6
improving performance with CHECKSUM 7
protocol information 416
resolver file 417
security setup 112
service information 416
socket considerations

security setup 112
user, security setup for 112

TCPIP.PROFILE PORT statement
coding port 10007 4

tcsh shell
setting up 215

telnet daemon 4
temporary file system

security 327
temporary file system (TFS)

ACL support 327
BPAM access 327
cataloged procedure 46
changing the default FSFULL setting 331
changing the size 332
checking the size 328
creating 327
determining the default FSFULL setting 331
extending the size 332
in a shared file system 332
managing 327
monitoring space in the 331
running in a colony address space 46
running in colony address space 46
SYSROOT 15

term
z/OS UNIX and z/OS equivalents 1

TERM parameter of the MODIFY command 286
terminal character special file

specifying 153
terminal connection, UUCP 258
terminal definitions

terminfo database 243
terminal group name

defining 67
terminfo database

customizing 243
TFS file system type

customizing in FILESYSTYPE 26
TGET WAIT 404
thread

customizing the RACF identity of 366
ending 287
setting up 366

THREADSMAX 66
tic utility

customizing 243
time limit

CPU
determining the 217

Tivoli Storage Manager
backing up files 145

TMOUT environment variable
used in job wait timeout 43

TRACE command 304
trace data

filtering 305
tracing

events 304
using the CTnBPXxx parmlib members 41

tracing events
DFSMS 305
z/OS UNIX 304

transfer files between systems with UUCP 255
transport affinity

requesting 414
transport provider

default 410
transports

displaying network routing information 409
using for common INET (CINET) 413

TSO/E (Time Sharing Option Extensions) 6
Japanese messages 252
seeing translated help panels 252
seeing translated messages on terminals 252

TTY group name
CS remote terminals 67
talk and write commands 67

tuning
by updating PROGxx member 384
c89/cc/cxx/c++ 384
parmlib limits 388
process activity 389
processing 375, 383
SYS1.PARMLIB 388
z/OS UNIX file system 388

U
UDS file system type

customizing in FILESYSTYPE 26
UID

automatically creating 60
UID (user ID)

assigning 61, 68
in an NFS network 67
to multiple users 66
to single users 65

changing from UID(0) to a nonzero UID 77
defining

to RACF 57
defining protected 67
description 57
mapping UID to 66
unique 61
upper limits 68

unauthenticated client security environment 367
Unicode services

Enhanced ASCII considerations 282
Unicode Services 282

enabling 35
setting up 282

UNIT=SYSDA
using a system that doesn't have it 240

UNIX domain socket 155
UNIX domain socket address file

socket considerations
for a file system 153

UNIX System Services checks
for IBM Health Checker for z/OS

USS_FILESYS_PARMLIB_MOUNTS 123

510 z/OS V2R2 UNIX System Services Planning

UNIX workprioritizing 20
UNIXPRIV class

managing z/OS UNIX privileges 71
UNMOUNT parameter in BPXPRMxx 186
unmounting

in sysplex 186
user authority 70
user file systems

creating 146
user interface

ISPF 445
TSO/E 445

user limits
establishing 66

user OMVS segment
verifying 356

user processes
taking dump of a 308

user profile, RACF
customizing

for z/OS shell 219
in security 57

USERIDALIASTABLE statement
customizing in BPXPRMxx 37

users
RACF verification 56
z/OS UNIX

defining 57
USS _HFS_DETECTED check for IBM Health Checker for

z/OS 117, 427
USS_AUTOMOUNT_DELAY 164, 201
USS_AUTOMOUNT_DELAY check for IBM Health

Checker 427
USS_CLIENT_MOUNTS check for IBM Health Checker for

z/OS 427
USS_FILESYS_CONFIG check for IBM Health Checker for

z/OS 427
USS_FILESYS_MOUNTS check for IBM Health Checker for

z/OS 185
USS_FILESYS_PARMLIB_MOUNTS check for IBM Health

Checker 123
USS_MAXSOCKETS_MAXFILEPROC check for IBM Health

Checker 30, 33
USS_MAXSOCKETS_MAXFILEPROC check for IBM Health

Checker for z/OS 427
USS_PARMLIB check for IBM Health Checker 22, 427
USS_PARMLIB_MOUNTS check for IBM Health Checker for

z/OS 427
uucc shell command 256
uucico daemon 256

configuration files, using 272
UUCP

chat script 266
escape characters 267

commands 256
configuration 255
configuration files

compiling the 272
creating or editing 263

controlling calls to each system 275
cron transfers 273
daemons 256
Devices file 268
Dialcodes file 268
Dialers file 268
directories 256
files 257

UUCP (continued)
leaf-node connection 258
local system

configuring the 260
creating working directories 273

lock files 277
log files 277
maintenance 276
network 257
password changes, notifying remote systems 278
Permissions file 268
public directory 259
recorded events, displaying 278
remote systems

configuring 262
creating working directories 273

security 258
setting up 239
spool directory 277
status files 277
Systems file 264
terminal connection 258
testing the connection 275
working files 277

uucp shell command 256
customizing for read-only root file system 139

uucpd daemon 256
customizing the 346

uulog shell command 256, 278
uuname shell command 256
uupick shell command 256
uustat shell command 256
uuto shell command 256
uux shell command 256
uuxqt daemon 256

V
vendor-written programs

giving daemon authority to 355
version file system

mounting read-only 180
virtual lookaside facility (VLF)

caching UIDs and GIDs 384
updating COFVLFxx 40

VIRTUAL(max)
storage use 26
virtual memory 26

W
waits

allocation 40
WebSphere Application Server Dispatcher 4
wildcard support

for automove system list 191
workload manager (WLM)

BPXAS PROCLIB member 3
controlling access to server functions 85
description of 3
facility class profile 85
port 10007 4
response time goals 404
WebSphere Application Server Dispatcher 4

write shell command 67
setting up 239

Index 511

X
XCF (Cross System Coupling Facility)

initializing 182
XL C/C++ compiler

selecting a previous version 240
setting up c89 241
setting up xlc 242
using the same compiler 240

xlc utility
setting up to work with compiler 242
using the xlc versions of the c89 command names 241

Z
z?OS UNIX checks

for IBM Health Checker for z/OS
USS_FILESYS_MOUNTS 185

z/OS shell
customizing 217
setting up 215

z/OS UNIX checks
for IBM Health Checker for z/OS

USS _HFS_DETECTED 117, 427
USS_AUTOMOUNT_DELAY 427
USS_FILESYS_CONFIG 427
USS_FILESYS_MOUNTS 427
USS_MAXSOCKETS_MAXFILEPROC 427
USS_PARMLIB 22, 427
USS_PARMLIB_MOUNTS 427

z/OS UNIX System Services Application Services
description of 2

zFS (z/OS File System) 6
automount facility 116
automount policy 163
BPAM access 117
determining file system owner 118
differences from HFS 117
file ownership versus z/OS UNIX file ownership 117
generic file system type 118
HFS compatibility mode 117
ISPF shell 116
migrating from HFS 117

using the BPXWH2Z tool 117
mount behavior 118
mounting 123
mounting data sets 116
multilevel security 103
security labels 103
sysplex considerations for 192, 206

ZFS file system type
customizing in FILESYSTYPE 26

zfsadm grow command 133

512 z/OS V2R2 UNIX System Services Planning

IBM®

Product Number: 5650-ZOS

Printed in USA

GA32-0884-02

	Contents
	Figures
	Tables
	About this document
	Using this document
	z/OS information
	IBM Systems Center publications
	Porting information for z/OS UNIX
	z/OS UNIX courses
	z/OS UNIX home page
	Discussion list

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 2 (V2R2) as updated March 2016
	Summary of changes for z/OS Version 2 Release 2 (V2R2)
	z/OS Version 2 Release 1 summary of changes

	Chapter 1. Introduction to z/OS UNIX
	The API interface
	The interactive shell interface
	Interacting with elements and features of z/OS
	Workload Manager (WLM)
	WebSphere Application Server Dispatcher
	System Management Facilities (SMF)
	XL C/C++ compiler
	Language Environment
	DFSMS
	Security Server (RACF)
	Resource Measurement Facility (RMF)
	System Display and Search Facility (SDSF)
	Time Sharing Options Extensions (TSO/E)
	Communications Server
	Interactive System Productivity Facility (ISPF)
	Network File System (NFS)
	z/OS File System (zFS)

	Hardware considerations for z/OS UNIX
	Requirements for accessing kernel services using TSO/E
	Tasks that z/OS UNIX application programmers do
	Administrative tasks using the ISPF shell

	Chapter 2. Installing z/OS UNIX
	Methods of installing z/OS UNIX
	Installing z/OS UNIX for ServerPac customers
	Installing z/OS UNIX for CBPDO customers
	Setting up BPXOINIT as a started procedure

	Establishing an /etc file system for a new release

	Chapter 3. Customizing z/OS UNIX
	Setting up kernel services in minimum mode
	Setting up kernel services in full function mode
	Setting up for full function mode

	Checking the mode of the kernel in a running system
	Evaluating virtual memory needs
	Using extended common service area (ECSA)
	Using extended system queue area (ESQA)
	Predicting and limiting ESQA usage
	Reducing the amount of ESQA needed to support servers

	Prioritizing UNIX work on your system
	Define service classes
	Define classification rules

	Defining the BPXPRMxx members in IEASYSxx
	Customizing the BPXPRMxx member of SYS1.PARMLIB
	Checking the BPXPRMxx syntax
	Defining file systems
	FILESYSTYPE
	MOUNT
	NETWORK
	ROOT
	SUBFILESYSTYPE

	Defining system limits
	CTRACE
	LIMMSG
	MAXASSIZE
	MAXCPUTIME
	MAXFILEPROC
	MAXIOBUFUSER
	MAXMMAPAREA
	MAXPIPES
	MAXPIPEUSER
	MAXPROCSYS
	MAXPROCUSER
	MAXPTYS
	MAXSOCKETS
	MAXTHREADS
	MAXTHREADTASKS
	MAXUIDS
	MAXUSERMOUNTSYS
	MAXUSERMOUNTUSER
	PRIORITYGOAL
	PRIORITYPG

	Defining system features
	AUTOCVT
	NONEMPTYMOUNTPT
	LOSTMSG
	PWT
	STEPLIBLIST
	USERIDALIASTABLE
	AUTHPGMLIST

	Customizing other members of SYS1.PARMLIB
	ALLOCxx
	COFVLFxx
	CTnBPXxx
	IEADMR00
	IKJTSOxx
	SMFPRMxx

	Customizing /etc
	Initializing the kernel using a cataloged procedure
	Running a physical file system in a colony address space
	Starting colony address spaces
	Starting colony address spaces outside of JES

	Running a temporary file system in a colony address space
	Steps for creating a cataloged procedure for a temporary file system

	Enabling certain TSO/E commands to z/OS UNIX users
	Globalization on z/OS systems
	Checking for setup errors

	Chapter 4. Establishing UNIX security
	List of subtasks
	Preparing RACF
	Steps for preparing RACF

	Using RACF with z/OS UNIX
	RACF performance considerations
	Setting up users and groups
	Activating supplemental groups

	Defining z/OS UNIX users to RACF
	Steps for defining z/OS UNIX users to RACF

	Storing user-specific information in OMVS segments
	Automatically generating OMVS segments

	Security implications
	Checking user and group authority
	Obtaining security information about groups
	Steps for obtaining security information about a group

	Obtaining security information about users
	Steps for obtaining security information about users

	Setting up field-level access for the OMVS segment of a user profile
	Steps for setting up field-level access
	Defining group identifiers (GIDs)
	Defining user identifiers (UIDs)
	Assigning UIDs to single users
	Assigning UIDs to multiple users
	Setting limits for users

	Defining protected user IDs
	Defining the terminal group name
	Managing user and group assignments
	Assigning UIDs and GIDs in an NFS network
	Assigning identifiers for users
	Assigning identifiers for groups

	Upper limits for GIDs and UIDs
	Creating z/OS UNIX groups
	Steps for creating z/OS UNIX groups

	Superusers in z/OS UNIX
	Using UNIXPRIV class profiles
	Assigning superuser privileges
	Steps for authorizing selected users to transfer ownership of any file

	Allowing z/OS UNIX users to change file ownerships
	Steps for setting up the CHOWN.UNRESTRICTED profile

	Allowing z/OS UNIX users to search directories

	Using the BPX.SUPERUSER resource in the FACILITY class
	Steps for setting up BPX.SUPERUSER
	Deleting superuser authority
	Changing a superuser from UID(0) to a unique nonzero UID
	Steps for changing a superuser from UID(0) to a unique nonzero UID

	Switching in and out of superuser authority

	Assigning a UID of 0
	Setting up the UNIX-related FACILITY and SURROGAT class profiles
	Security requirements for ServerPac and CBPDO installation
	If you use uppercase group and user IDs
	If you use mixed-case group and user IDs
	If you have problems with names such as UUCP, UUCPG, and TTY

	Defining cataloged procedures to RACF
	Controlling access to files and directories
	Setting classes for a user's process
	Steps for setting up the FILE.GROUPOWNER.SETGID profile

	Accessing files
	Changing the permission bits for a file
	Changing the owner or group for a file
	Creating a set-user-ID or set-group-ID executable file
	Protecting data
	Obtaining security information for a file
	Creating a sticky bit file or external link for an MVS APF-authorized program

	Using access control lists (ACLs)
	ACLs and ACL entries
	Managing ACLs
	Working with access ACLs
	Working with default ACLs
	Summary of tasks and their associated commands
	How ACLs are used in file access checks
	Auditing changes to ACLs

	Using security labels
	Setting security labels on z/OS UNIX
	Symbolic link restrictions

	Using multilevel security
	Security labels for zFS files and directories

	Auditing access to files and directories
	Specifying file audit options

	Using sanction lists
	Formatting rules for sanction lists
	Steps for creating a sanction list
	Steps for activating the sanction list

	Maintaining the security level of the system
	Steps for maintaining the security level of the system

	Controlling access to applications
	Restricting access to z/OS UNIX file systems
	Using the FSACCESS class profile to restrict access
	Steps for giving selected users or groups access to a z/OS UNIX file system

	Restricting execute access in a zFS or TFS file system

	Setting up TCP/IP security
	Selecting a security level for the system

	Chapter 5. Managing the z/OS UNIX file system
	Lists of subtasks
	Basics of the z/OS UNIX file system
	Structure of the z/OS UNIX file system
	Command differences due to symbolic links
	Suggested file system structures for user directories and files

	Using the Network File System (NFS)
	Using the z/OS File System (zFS)
	How does zFS differ from HFS?
	HFS compatibility mode

	Implications of zFS ownership versus z/OS UNIX ownership of file systems
	Migrating the HFS file system to the zFS file system
	Migrating the sysplex root file system from HFS to zFS
	Mounting considerations for zFS
	Mount behaviors of zFS

	Determining the zFS file system owner

	Setting up the z/OS UNIX file system
	Naming rules for file names and path names
	Allocating a file system for the root file system
	Defining the root file system
	What happens when file systems are mounted?
	When HFS file systems are mounted
	When zFS file systems are mounted

	Mounting file systems
	Security considerations when mounting
	Privileged mount and unmount authority
	Nonprivileged mount and unmount authority
	Steps for mounting file systems
	Restrictions on mounting file systems

	Automatically replacing the sysplex root file system with the alternate sysplex root file system if it becomes unowned
	Steps for setting up the alternate sysplex root for the dynamic replacement of the current sysplex root
	Steps for removing the alternate sysplex root support

	Dynamically replacing the sysplex root file system
	Steps for dynamically replacing the sysplex root file system

	Managing file systems
	Reducing the size of the file system
	Increasing the size of the HFS file system
	Removing unnecessary files from directories
	Improving accesses to file systems
	Unmounting file systems

	Mounting the root file system for execution
	Deciding how to mount your root
	Leaving the root file system mounted in read/write mode
	Post-installation actions for mounting the root file system in read-only mode
	Mounting the root file system in read-only mode

	Customizing the cron, uucp, and mail utilities for a read-only root file system
	Migration considerations for the cron, uucp, and mail utilities
	Customizing the cron, uucp, and mail utilities
	Steps for customizing the cron, uucp, and mail utilities

	Remounting a mounted file system
	Copying the file system
	Backing up file systems
	Ways to back up file systems
	DFSMShsm
	Tivoli Storage Manager
	DFSMSdss

	Creating the user file systems
	Making user file systems available
	Using direct mount

	Using file locks
	Creating special files
	Pseudoterminal files
	Null file
	Zero file
	Random number files
	File descriptor files
	UNIX domain socket name special file
	System console files

	Handling file system failures
	Restoring the root file system
	Recovering from file system problems with the root
	Steps for recovering from file system problems with the root

	Installing service into the z/OS UNIX file system
	Example of installing service
	Transporting the file system from the driving system to the target system
	Making changes to /etc and /var

	Installing products into the file system

	Chapter 6. Using the automount facility
	Automounting both HFS and zFS file systems
	Automounting NFS file systems
	Automounting in a shared file system
	How does the automount facility work?
	Setting up the automount facility
	/etc/auto.master
	MapName
	Security considerations for the automount policy
	Using map files from other systems

	Steps for setting up the automount facility
	What happens when you start the automount facility from the shell?
	Naming specific directories
	Changing which file systems are automounted
	Stopping the automount facility

	Chapter 7. Sharing file systems in a sysplex
	What does shared file system mean?
	How the end user views the shared file system
	Summary of various file systems in a shared environment
	Illustrating file systems in single system and sysplex environments
	File systems in single system environments

	Establishing a shared file system in a sysplex
	Creating the sysplex root file system
	Adding a system-specific or version root file system to your shared file system configuration
	Creating a system-specific file system
	Mounting the version file system
	Creating a couple data set (CDS)
	Updating COUPLExx to define the z/OS UNIX CDS to XCF

	Customizing BPXPRMxx for a shared file system
	Using system lists
	Using wildcards
	zFS sysplex considerations when using system lists

	Sysplex scenarios showing shared file system capability
	Scenario 1: First system in the sysplex
	Scenario 2: Multiple systems in the sysplex using the same release level
	Scenario 3: Multiple systems in a sysplex using different release levels

	Using the automount policy
	File system availability
	Minimum setup required for file system availability
	Read-write connections for non-sysplex aware file systems
	Read-write connections for sysplex-aware file systems
	Read-only connections for non-sysplex aware file systems
	Read-only connections for sysplex-aware file systems

	Situations that can interrupt availability

	Moving file systems in a sysplex
	Moving file systems to a back-level system
	zFS sysplex considerations when moving file systems

	Implications of shared file systems during system failures and recovery
	Managing the movement of data

	Shared file system implications during a planned shutdown of z/OS UNIX
	State of file systems after shutdown

	Initializing the file system
	Locking files in the sysplex
	Mounting file systems using symbolic links
	Mounting file systems using NFS client mounts
	Tuning z/OS UNIX performance in a sysplex
	DFS and SMB considerations when exporting file systems

	Chapter 8. Customizing the shells and utilities
	Lists of subtasks
	Connecting to the shell
	Invoking the shell automatically under TSO/E
	Steps for enabling shell users to invoke the shell automatically
	Invoking the shell automatically when logging on to TSO/E

	Determining the CPU time limit
	Supplying an alternative shell
	Customizing the z/OS UNIX shells
	Customizing the shell environment variables
	For the z/OS shell
	For the tcsh shell

	Customizing the RACF user profile

	Customizing files for the z/OS shell
	Customizing /etc/profile
	Steps for customizing /etc/profile
	Environment variables that you can customize for /etc/profile

	Customizing $HOME/.profile
	Steps for customizing $HOME/.profile
	Environment variables that you can customize for $HOME/.profile
	Using an ENV environment variable file
	Using a shell command or shell script

	Customizing /etc/init.options
	Customizing /etc/rc
	Steps for customizing /etc/rc

	Customizing /etc/inittab
	Format of the /etc/inittab file
	The /samples/inittab file
	Steps for customizing /etc/inittab

	Customizing files for the tcsh shell
	Customizing /etc/csh.login
	Customizing $HOME/.login
	Customizing /etc/csh.cshrc
	Customizing $HOME/.tcshrc

	Customizing /etc/complete.tcsh

	Copying configuration files
	Enabling the man pages
	Setting up for mesg, talk, write, and UUCP
	Customizing c89, cc, and c++ (cxx) compilers
	Using non-default high-level qualifiers
	Using a system that does not have UNIT=SYSDA
	Selecting z/OS XL C/C++ compilers
	Using the same compiler for the entire system
	Using the command names common to the xlc and c89 utility
	Setting up c89 to work with the current z/OS XL C/C++ compiler
	Setting up xlc to work with the current z/OS XL C/C++ compiler

	Targeting a z/OS release earlier than the current one
	Targeting an earlier release

	Customizing the terminfo database
	Steps for defining terminals or workstations for a terminfo database
	Re-creating the terminfo database

	Customizing electronic mail
	For the z/OS shell
	For the tcsh shell

	Chapter 9. Customizing for your national code page in the shell
	Lists of subtasks
	Steps for setting up your national code page
	Customizing for Japanese and Simplified Chinese
	Steps for customizing the login file for the z/OS shell
	Steps for customizing the login file for the tcsh shell
	Steps for displaying messages in Japanese
	Steps for activating MVS Message Service (MMS)
	TSO/E messages
	TSO/E help panels

	Concatenating target libraries to ISPF

	PROFILE PLANGUAGE and the OMVS command

	Chapter 10. Configuring the UNIX-to-UNIX copy program (UUCP)
	Transferring files
	Executing commands from a remote location
	Tailoring UUCP for custom applications
	UUCP commands and daemons
	UUCP directories and files
	The UUCP communications network
	Securing your system
	The public UUCP directory
	Execute permissions

	Configuring your local system
	Configuring communication with remote systems
	Obtain information about remote systems
	Create or edit UUCP configuration files
	Editing a configuration file
	The systems file
	The Devices file
	The Dialers file
	The Dialcodes file
	The Permissions file
	How uucico uses configuration files

	Compile the configuration files
	Create working directories for the local and remote systems
	Schedule periodic UUCP transfers with cron
	Creating a crontab entry
	Example of schedules
	Controlling calls to each system

	Testing the connection
	Checking the configuration for connections
	Contacting the remote site
	Calling system login

	Maintaining UUCP
	Cleaning up UUCP files
	The spool directory
	Log files, lock files, status files, and working files

	Displaying information about recorded UUCP events
	Notifying remote systems about password changes

	Chapter 11. Converting files between code pages
	List of subtasks
	Using Enhanced ASCII
	Setting up Enhanced ASCII

	Using Unicode Services in a z/OS UNIX environment
	Considerations beyond that of Enhanced ASCII
	Steps for setting up Unicode Services

	Chapter 12. Managing operations
	List of subtasks
	Steps for ending a specified process
	Ending threads
	Planned shutdowns using F BPXOINIT,SHUTDOWN=...
	Steps for shutting down z/OS UNIX using F BPXOINIT,SHUTDOWN=...
	Partial shutdowns for JES2 maintenance
	Steps for partial shutdowns for JES2 maintenance

	Planned shutdowns using F OMVS,SHUTDOWN
	What F OMVS,SHUTDOWN does
	Successful shutdowns
	Steps for shutting down z/OS UNIX using F OMVS,SHUTDOWN

	Dynamically activating the z/OS UNIX component service items
	Identifying service items to be activated
	Activating service items
	Deactivating service items
	Displaying activated service items

	Dynamically changing the BPXPRMxx parameter values
	Dynamically changing certain BPXPRMxx parameter values
	MAXPROCSYS
	MAXPTYS
	IPCMSGNIDS and IPCSEMNIDS
	SHRLIBRGNSIZE and SHRLIBMAXPAGES
	IPCSHMNIDS and IPCSHMSPAGES

	Dynamically switching to different BPXPRMxx members
	Dynamically adding FILESYSTYPE statements in BPXPRMxx
	Steps for activating the HFS file system for the first time
	Activating a single sockets file system for the first time
	Steps for activating a single sockets file system for the first time

	Activating a multiple sockets file system for the first time with Common INET (CINET)
	Steps for activating a multiple socket file system for the first time with Common INET

	Specifying the maximum number of sockets
	Steps for increasing the MAXSOCKETS value

	Adding another sockets file system to an existing Common INET (CINET) configuration
	Steps for adding another sockets file system to an existing CINET configuration

	Tracing events
	Tracing events in z/OS UNIX
	Tracing DFSMS events
	Re-creating problems for IBM service
	Filtering trace data

	Displaying the status of the kernel or process
	Displaying the status of system-wide limits specified in BPXPRMxx
	Taking a dump of the kernel and user processes
	Displaying the kernel address space
	Displaying process information
	Displaying global resource information
	Displaying information about local and network sockets
	Detecting latch contention
	For shared memory mutexes and conditional variables
	For user tasks

	Preallocating a sufficiently large dump data set
	Taking dumps
	Reviewing dump completion information

	Recovering from a failure
	z/OS UNIX system failure
	File system type failure
	File system failure

	Managing Interprocess Communication (IPC)

	Chapter 13. Managing processing for z/OS UNIX
	List of subtasks
	Controlling printing
	Designating printers
	Setting up default printers
	Controlling output print separators

	Controlling code page conversion
	Converting single-byte data
	Converting double-byte data
	Using character conversion tables
	Example of data conversion specified by a user

	Customizing code page conversion
	Example of code page conversion of OMVS command

	Managing z/OS UNIX in relation to other processing
	JES2 processing
	JES3 processing

	Accessing the Language Environment runtime library
	Steps for making the runtime library available through STEPLIB

	Fastpath support for System Authorization Facility (SAF)
	Enabling the SAF fastpath support
	Disabling the SAF fastpath support

	Determining problem causes
	Abends
	Return codes and reason codes
	Messages
	Writing messages to a job log file

	Component identifiers
	Formatting dumps
	Diagnosing problems
	Diagnosing problems in application programs
	Diagnosing hangs during z/OS UNIX initialization

	Chapter 14. Managing the temporary file system (TFS)
	Features of the TFS
	Security considerations
	Creating the TFS
	Checking the size of the TFS
	Parameter key options for the mount statement and mount commands
	Parameter key options for the FILESYSTYPE statement

	Monitoring space in the TFS
	Determining the default setting for FSFULL monitoring
	Changing the default FSFULL setting
	Dynamically extending the size

	Using the TFS in a shared file system

	Chapter 15. Setting up for daemons
	Lists of subtasks
	Comparing UNIX security and z/OS UNIX security
	Establishing the correct level of security for daemons
	UNIX level
	RACF with enhanced program security, BPX.DAEMON, and BPX.MAINCHECK
	BPX.DAEMON
	Steps for preparing the security program for daemons

	Customizing the system for IBM-supplied daemons
	Defining modules to program control
	Steps for defining programs from load libraries to program control
	Defining programs in UNIX files to program control
	Using sanction lists

	Checking UNIX files for program control
	Steps for checking UNIX files for program control

	Defining UNIX files as APF-authorized programs
	Compiling a list of sanctioned path names and program names
	Controlling who can set the APF-authorized attribute

	Defining UNIX files as shared library programs
	Setting the shared library attribute

	Handling dirty address spaces
	Using enhanced program security
	Steps for setting up enhanced program security

	Customizing the system for IP-supplied daemons
	Steps for customizing the system for IP-supplied daemons

	Customizing the IBM-supplied daemons
	Customizing the inetd daemon
	Steps for customizing the inetd daemon

	Customizing the uucpd daemon
	Steps for customizing the uucpd daemon

	Customizing the rlogind daemon
	Customizing the cron daemon
	Customizing the cron daemon for the first time
	Migrating from a previous release
	Steps for customizing the cron daemon
	Scheduling at and cron jobs

	Starting daemons
	Using & at the end of a command
	Starting and restarting daemons
	During initialization
	Using a cataloged procedure
	Using BPXBATCH

	Setting up security procedures for daemons
	Steps for setting up security procedures for daemons

	Giving daemon authority to vendor-written programs
	Tracking down problems when setting up daemons and servers
	Verifying the user OMVS segment
	Verifying the group OMVS segment
	Verifying that the sticky bit is on
	Using external links to access MVS load libraries
	Finding modules that were not defined to program control
	Steps for finding modules that were not defined to program control

	Checking the daemon authority
	Checking the server setup
	Refreshing RACF in-storage data
	Checking the SURROGAT class profile

	Setting up for rlogin
	Steps for setting up for rlogin
	Solving problems with rlogin setup

	Chapter 16. Preparing security for servers
	List of subtasks
	Designing security for servers
	Setting up threads and security
	Checking authority to use protected resources
	Limitations of RACF client ACEE support
	Documenting the security requirements

	Establishing the correct level of security for servers
	UNIX level: BPX.SERVER is not defined
	z/OS UNIX level: BPX.SERVER is defined
	RACF with enhanced program security, BPX.SERVER, and BPX.MAINCHECK
	BPX.SERVER

	Defining servers to use thread-level security
	Steps for setting up servers

	Defining servers to process users without passwords or password phrases
	Steps for defining servers to process users without passwords or password phrases

	Chapter 17. Monitoring the environment
	Reporting on activities using SMF records
	SMF record type 30
	SMF record types 34 and 35
	SMF record type 74
	SMF record type 80
	SMF record type 92

	Monitoring process activity
	Using installation exits
	Defining exits
	Adding exit routines to exits

	Chapter 18. Tuning performance
	List of subtasks
	Improving performance of runtime routines
	Tuning tips for the compiler utilities
	Improving performance by updating the PROGxx member

	Caching RACF user and group information in VLF
	Steps for caching UID and GID information in VLF

	Moving z/OS UNIX executables into the LPA
	Steps for moving an executable in the file system into the LPA
	Binding the executable or DLL into a PDSE

	Using the shared library extended attribute
	Tuning tips for the file system
	Tuning limits in BPXPRMxx
	Monitoring system and process limits
	Monitoring use of system resources
	Controlling use of ESQA
	Controlling dispatching priorities
	System limits and process limits
	What are hard limits?
	What are soft limits?
	How are limits handled after an identity change?
	Inheriting soft limits
	What happens when an identity change occurs?
	What happens if an identity change does not take place when a child is created?
	What happens if an identity change does not take place when a new process image is created by exec()?
	Specifying a new identity
	Setting process limits in z/OS UNIX
	Steps for setting process limits in z/OS UNIX
	Using the IEFUSI installation exit to set process limits
	Displaying process limits
	Changing process limits
	Steps for changing the process limits for an active process
	Reference information

	Improving performance of the z/OS shell
	Setting _BPX_SHAREAS and _BPX_SPAWN_SCRIPT
	Controlling use of STEPLIBs
	Checking that the sticky bit is set

	Organizing file systems to improve performance
	Improving performance of security checking
	OMVS command and TSO/E response time

	Chapter 19. Setting up for sockets
	List of subtasks
	Using single stacks
	Using multiple stacks
	Choosing between INET or CINET
	Setting up for INET
	Setting up for CINET
	The internal routing table
	Transport providers
	Limitations of IP configurations using CINET
	Customizing BPXPRMxx for CINET
	Steps for customizing BPXPRMxx for CINET
	Specifying INADDRANYPORT and INADDRANYCOUNT

	Using specific transports under CINET
	Binding to a specific transport
	Connecting through a specific transport
	Requesting transport affinity

	Resolver configuration files
	Host information
	Service information
	Protocol information
	Resolver information

	Displaying information about sockets

	Chapter 20. Managing accounting work
	List of subtasks
	Using system management facilities (SMF)
	Assigning account numbers for forked address spaces
	Modifying the accounting information for the OMVS and BPXOINIT address spaces
	Steps for modifying accounting information

	Validating user accounts using the IEFUAV exit
	Checking job names and accounting information using the IEFUJI exit
	Steps for activating the IEFUJI exit for OMVS work

	Using the IEFUJV job validation exit
	Using the IEFUSI step initiation exit
	Generating job names for OMVS address spaces

	Chapter 21. IBM Health Checker for z/OS
	Appendix A. Commonly used environment variables
	_BPX environment variables
	_BPXK environment variables
	_CEE environment variables

	Appendix B. Modules for the login and logout functions
	FOMTLINP module for the login function
	FOMTLOUT module for the logout function

	Appendix C. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

