
z/OS

Cryptographic Services System Secure
Sockets Layer Programming
Version 2 Release 1

SC14-7495-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 635.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this document xi
Intended audience xi
How this information is organized xi
Conventions used in this information xii
Where to find more information xiii

Internet sources. xiii

How to send your comments to IBM . . xv
If you have a technical problem xv

z/OS Version 2 Release 1 summary of
changes xvii

Chapter 1. Introduction 1
Software dependencies 1
Installation information 2

System SSL parts shipped in the UNIX System
Services file system 2
System SSL parts shipped in PDS and PDSE . . . 2

Chapter 2. How System SSL works for
secure socket communication 5
Using System SSL on z/OS 6
System SSL application overview 6

Chapter 3. Using cryptographic
features with System SSL 11
Guidelines for using hardware cryptographic
features 11
Overview of hardware cryptographic features and
System SSL 12
Random byte generation support 14
Elliptic Curve Cryptography support 14
Diffie-Hellman key agreement 16
RACF CSFSERV resource requirements 16
PKCS #11 and Setting CLEARKEY resource within
CRYPTOZ class 18
PKCS #11 Cryptographic operations using ICSF
handles 18

Chapter 4. System SSL and FIPS 140-2 19
Algorithms and key sizes 19
Random byte generation 20
Diffie-Hellman key agreement 20
Certificates 20
SSL/TLS protocol 21
System SSL module verification setup 21

Performance guideline. 24
Certificate stores 25

SAF key rings and PKCS #11 tokens 25
Application changes 25
SSL started task 26

Sysplex session ID cache 26

Chapter 5. Writing and building a z/OS
System SSL application 29
Writing a System SSL source program 29

Create an SSL environment 29
System SSL server program 31
System SSL client program 33

Building a z/OS System SSL application. 35
Running a z/OS System SSL application. 35
System SSL application programming considerations 35

Non-Blocking I/O 36
Client authentication certificate selection. . . . 38
I/O routine replacement 39
Use of user data 39
Session ID (SID) cache 40
Session renegotiation notification 42
TLS extensions 42
Suite B cryptography support 45

Chapter 6. Migrating from deprecated
SSL interfaces 47

Chapter 7. API reference 49
gsk_attribute_get_buffer(). 52
gsk_attribute_get_cert_info() 56
gsk_attribute_get_data() 61
gsk_attribute_get_enum() 63
gsk_attribute_get_numeric_value() 68
gsk_attribute_set_buffer() 70
gsk_attribute_set_callback() 74
gsk_attribute_set_enum() 79
gsk_attribute_set_numeric_value() 85
gsk_attribute_set_tls_extension() 87
gsk_environment_close() 90
gsk_environment_init() 91
gsk_environment_open() 93
gsk_free_cert_data() 100
gsk_get_all_cipher_suites() 101
gsk_get_cert_by_label() 102
gsk_get_cipher_suites() 107
gsk_get_ssl_vector() 108
gsk_get_update() 109
gsk_list_free() 110
gsk_secure_socket_close() 111
gsk_secure_socket_init() 112
gsk_secure_socket_misc() 119
gsk_secure_socket_open() 121
gsk_secure_socket_read() 122
gsk_secure_socket_shutdown() 125
gsk_secure_socket_write() 127
gsk_strerror() 129

© Copyright IBM Corp. 1999, 2013 iii

Chapter 8. Certificate Management
Services (CMS) API reference 131
gsk_add_record() 137
gsk_change_database_password(). 140
gsk_change_database_record_length() 142
gsk_close_database() 143
gsk_close_directory() 144
gsk_construct_certificate() 145
gsk_construct_private_key() 149
gsk_construct_private_key_rsa() 151
gsk_construct_public_key() 153
gsk_construct_public_key_rsa() 155
gsk_construct_renewal_request() 156
gsk_construct_self_signed_certificate() 159
gsk_construct_signed_certificate(). 162
gsk_copy_attributes_signers() 166
gsk_copy_buffer() 167
gsk_copy_certificate() 168
gsk_copy_certificate_extension() 169
gsk_copy_certification_request() 170
gsk_copy_content_info() 171
gsk_copy_crl() 172
gsk_copy_name() 173
gsk_copy_private_key_info() 174
gsk_copy_public_key_info() 175
gsk_copy_record() 176
gsk_create_certification_request() 177
gsk_create_database(). 181
gsk_create_database_renewal_request() 183
gsk_create_database_signed_certificate() 186
gsk_create_renewal_request() 192
gsk_create_self_signed_certificate() 194
gsk_create_signed_certificate() 198
gsk_create_signed_certificate_record() 201
gsk_create_signed_certificate_set() 206
gsk_create_signed_crl() 211
gsk_create_signed_crl_record(). 214
gsk_decode_base64() 218
gsk_decode_certificate() 219
gsk_decode_certificate_extension() 220
gsk_decode_certification_request() 222
gsk_decode_crl() 223
gsk_decode_import_certificate() 224
gsk_decode_import_key() 225
gsk_decode_name() 227
gsk_decode_private key() 228
gsk_decode_public key(). 229
gsk_delete_record() 230
gsk_dn_to_name() 231
gsk_encode_base64() 234
gsk_encode_certificate_extension() 235
gsk_encode_ec_parameters() 237
gsk_encode_export_certificate() 238
gsk_encode_export_key() 240
gsk_encode_export_request() 243
gsk_encode_name() 244
gsk_encode_private_key() 245
gsk_encode_public_key() 246
gsk_encode_signature() 247
gsk_export_certificate() 248
gsk_export_certification_request(). 250

gsk_export_key() 252
gsk_factor_private_key(). 255
gsk_factor_private_key_rsa() 256
gsk_factor_public_key() 257
gsk_factor_public_key_rsa() 258
gsk_fips_state_query() 259
gsk_fips_state_set() 260
gsk_free_attributes_signers() 262
gsk_free_buffer() 263
gsk_free_certificate() 264
gsk_free_certificates() 265
gsk_free_certificate_extension() 266
gsk_free_certification_request() 267
gsk_free_content_info() 268
gsk_free_crl() 269
gsk_free_crls() 270
gsk_free_decoded_extension() 271
gsk_free_name() 272
gsk_free_private_key() 273
gsk_free_private_key_info(). 274
gsk_free_public_key(). 275
gsk_free_public_key_info() 276
gsk_free_record() 277
gsk_free_records() 278
gsk_free_string() 279
gsk_free_strings() 280
gsk_generate_key_agreement_pair() 281
gsk_generate_key_pair() 283
gsk_generate_key_parameters() 286
gsk_generate_random_bytes() 288
gsk_generate_secret() 289
gsk_get_certificate_algorithms() 290
gsk_get_certificate_info() 291
gsk_get_cms_vector() 293
gsk_get_default_key() 295
gsk_get_default_label() 296
gsk_get_directory_certificates() 297
gsk_get_directory_crls() 299
gsk_get_directory_enum() 301
gsk_get_ec_parameters_info() 303
gsk_get_record_by_id() 304
gsk_get_record_by_index() 305
gsk_get_record_by_label() 306
gsk_get_record_by_subject() 307
gsk_get_record_labels() 308
gsk_get_update_code() 309
gsk_import_certificate() 310
gsk_import_key() 313
gsk_make_content_msg() 316
gsk_make_data_content() 317
gsk_make_data_msg() 318
gsk_make_encrypted_data_content() 319
gsk_make_encrypted_data_msg() 321
gsk_make_enveloped_data_content() 323
gsk_make_enveloped_data_content_extended() . . 325
gsk_make_enveloped_data_msg(). 328
gsk_make_enveloped_data_msg_extended() . . . 330
gsk_make_enveloped_private_key_msg() 333
gsk_make_signed_data_content() 336
gsk_make_signed_data_content_extended() . . . 339
gsk_make_signed_data_msg() 342

iv z/OS V2R1.0 System SSL Programming

gsk_make_signed_data_msg_extended() 345
gsk_make_wrapped_content() 348
gsk_mktime() 349
gsk_modify_pkcs11_key_label() 350
gsk_name_compare() 352
gsk_name_to_dn() 353
gsk_open_database() 355
gsk_open_database_using_stash_file() 357
gsk_open_directory() 359
gsk_open_keyring() 361
gsk_perform_kat() 363
gsk_query_crypto_level() 364
gsk_query_database_label() 365
gsk_query_database_record_length(). 366
gsk_rdtime(). 367
gsk_read_content_msg() 368
gsk_read_data_content() 369
gsk_read_data_msg() 370
gsk_read_encrypted_data_content() 371
gsk_read_encrypted_data_msg() 373
gsk_read_enveloped_data_content() 375
gsk_read_enveloped_data_content_extended() . . 377
gsk_read_enveloped_data_msg() 379
gsk_read_enveloped_data_msg_extended() . . . 381
gsk_read_signed_data_content() 383
gsk_read_signed_data_content_extended() 386
gsk_read_signed_data_msg() 389
gsk_read_signed_data_msg_extended() 392
gsk_read_wrapped_content() 396
gsk_receive_certificate() 397
gsk_replace_record() 398
gsk_set_default_key(). 401
gsk_set_directory_enum() 403
gsk_sign_certificate() 405
gsk_sign_crl() 408
gsk_sign_data() 411
gsk_validate_certificate(). 414
gsk_validate_certificate_mode() 418
gsk_validate_hostname(). 423
gsk_validate_server() 425
gsk_verify_certificate_signature() 426
gsk_verify_crl_signature() 428
gsk_verify_data_signature(). 431

Chapter 9. Deprecated Secure Socket
Layer (SSL) APIs 435
gsk_free_memory() 436
gsk_get_cipher_info() 437
gsk_get_dn_by_label() 438
gsk_initialize() 439
gsk_secure_soc_close() 445
gsk_secure_soc_init() 446
gsk_secure_soc_read() 454
gsk_secure_soc_reset() 457
gsk_secure_soc_write() 458
gsk_srb_initialize(). 460
GSKSRBRD 462
GSKSRBWT 463
gsk_uninitialize() 464
gsk_user_set() 465

Chapter 10. Certificate/Key
management. 469
Introduction 469
gskkyman Overview 469
Setting up the environment to run gskkyman. . . 470
Key database files 471
z/OS PKCS #11 tokens 472
gskkyman interactive mode descriptions 473

Database menu 473
Key/Token management 476

gskkyman interactive mode examples 485
Starting gskkyman 485
Creating, opening, and deleting a key database
file 486
Changing a key database password 489
Storing an encrypted key database password 490
Creating, opening, and deleting a z/OS PKCS
#11 token 491
Creating a self-signed server or client certificate 495
Creating a certificate request 498
Sending the certificate request 501
Receiving the signed certificate or renewal
certificate 501
Managing keys and certificates 502
Importing a certificate from a file as a trusted
CA certificate 519
Importing a certificate from a file with its
private key 521
Using gskkyman to be your own certificate
authority (CA) 522
Migrating from key database files to z/OS
PKCS #11 token 525
Migrating key database files to RACF key rings 525

gskkyman command line mode syntax 525
gskkyman 525
gskkyman command line mode examples . . . 528
gskkyman command line mode displays . . . 530

Chapter 11. SSL started task 535
GSKSRVR environment variables 535
Configuring the SSL started task 536
Server operator commands 537
Sysplex session cache support 538
Component trace support 538
Hardware cryptography failure notification . . . 538

Chapter 12. Obtaining diagnostic
information 539
Obtaining System SSL trace information 539

Capturing trace data through environment
variables 539

Component trace support 540
Capturing component trace data 540
Displaying the trace data 542
Event trace records for System SSL 542
Capturing component trace data without an
external writer 544

Chapter 13. Messages and codes . . . 547
SSL function return codes 547

Contents v

Deprecated SSL function return codes 561
ASN.1 status codes (014CExxx) 571
CMS status codes (03353xxx) 575
SSL started task messages (GSK01nnn) 593
Utility messages (GSK00nnn) 602

Appendix A. Environment variables 605

Appendix B. Sample C++ SSL files 617

Appendix C. Cipher suite definitions 619

Appendix D. Object identifiers 629

Appendix E. Accessibility 631
Accessibility features 631

Using assistive technologies 631
Keyboard navigation of the user interface 631
Dotted decimal syntax diagrams 631

Notices 635
Policy for unsupported hardware. 636
Minimum supported hardware 637
Programming interface information 637
Trademarks 637

Index 639

vi z/OS V2R1.0 System SSL Programming

Figures

1. Sockets Programming Model Using System SSL 9
2. Database menu 473
3. Key Management Menu 476
4. Token Management Menu 476
5. Key and Certificate Menus 477
6. Token Key and Certificate Menu 477
7. Certificate Menu 479
8. Token Certificate Menus 479
9. Request Menu 480

10. Token Certificate Request Menu 480
11. Starting Menu for gskkyman 486
12. Creating a New Key Database 486
13. Key Management Menu for gskkyman 487
14. Opening an Existing Key Database File 488
15. Key Management Menu 488
16. Deleting an Existing Key Database 489
17. Changing a Key Database Password 490
18. Key Management Menu 491
19. Creating a New z/OS PKCS #11 Token 491
20. Opening a z/OS PKCS #11 Token from token

name 492
21. Opening a z/OS PKCS #11 Token from token

list 493
22. Token Management Menu 493
23. Deleting an existing z/OS PKCS #11 Token 494
24. Deleting an existing z/OS PKCS #11 Token 494
25. Creating a Self-Signed Certificate-Key

Management Menu 496
26. Creating a Self-Signed Certificate-Token

Management Menu 496
27. Creating a Self-Signed Certificate 497
28. Creating a certificate request-Key

Management Menu 498
29. Creating a certificate request-Token

Management Menu 498
30. Creating a Certificate Request 499
31. Specifying subject alternate names 500
32. Contents of certreq.arm after Certificate

Request Generation 501
33. Receiving a Certificate Issued for your

Request-Key Management Menu 502
34. Receiving a Certificate Issued for your

Request-Token Management Menu 502
35. Key and Certificate List 503
36. Token Key and Certificate List 503
37. Key and Certificate Menu 503
38. Token Key and Certificate Menu 503
39. Certificate Information 504
40. Certificate extensions list 504
41. Key usage information 505
42. Key information menu 505
43. Token key information menu of a certificate

with a secure private key 505

44. Token key information menu of a certificate
with a clear private key 506

45. Marking a certificate (and private key) as the
default certificate-Key and Certificate Menu . 506

46. Marking a certificate (and private key) as the
default certificate-Token Key and Certificate
Menu 506

47. Copying a Certificate Without its Private Key 507
48. Copying a Certificate and Private key to a

Different Key Database-Export File Format. . 508
49. Copying a Certificate and Private key to a

Different Key Database-Export File Format. . 508
50. Copying a Certificate with its Private Key to

a Key Database on the Same System 509
51. Copying a Certificate with its Private Key to

a z/OS PKCS #11 Token on the Same System . 510
52. Delete Certificate and Key-Key and Certificate

Menu 511
53. Delete Certificate and Key-Token Key and

Certificate Menu 511
54. Changing a Certificate Label-Key and

Certificate Menu 511
55. Changing a Certificate Label-Token and

Certificate Menu 511
56. Select 10 to Create a Signed Certificate and

Key-Key and Certificate Menu 512
57. Select 10 to Create a Signed Certificate and

Key-Token Key and Certificate Menu . . . 512
58. Enter Certificate Details 513
59. Subject Alternate Name Type 514
60. Selecting the ECC Key Type. 515
61. Selecting the ECC Curve Type 516
62. Creating a key parameter file to be used with

Diffie-Hellman 517
63. Creating a certificate to be used with

Diffie_Hellman 518
64. Select 11 to Create a Certificate Renewal

Request-Key and Certificate Menu 519
65. Select 11 to Create a Certificate Renewal

Request-Token Key and Certificate Menu . . 519
66. Certificate List (part 1) 520
67. Certificate List (part 2) 520
68. Certificate List (part 3) 521
69. Importing a Certificate from a File-Key

Management Menu 521
70. Importing a Certificate from a File-Token

Management Menu 521
71. Importing a Certificate and Private Key from

a File-Key Management Menu 522
72. Importing a Certificate and Private Key from

a File-Token Management Menu 522

© Copyright IBM Corp. 1999, 2013 vii

viii z/OS V2R1.0 System SSL Programming

Tables

1. Hardware cryptographic functions used by
System SSL 13

2. Recommended digest sizes for ECDSA
signature key sizes 15

3. Default EC named curves for specified key
sizes 15

4. CSFSERV resources required for hardware
support through ICSF callable services . . . 17

5. CSFSERV resources required for ICSF PKCS
#11 callable services support 17

6. Algorithm support: FIPS and non-FIPS 19
7. Server communicating with clients by way of a

socket 36
8. Using the select() routine 37
9. Suite B supported cipher suites 45

10. Supported curves 45
11. DN attribute names 232
12. SAF access levels 472
13. SSL-Specific environment variables 605

14. System environment variables used by SSL 615
15. Cipher suite definitions for SSL V2 619
16. 2-character and 4-character cipher suite

definitions for SSL V3, TLS V1.0, TLS V1.1,
and TLS V1.2 619

17. Cipher suite definitions for SSL V3, TLS V1.0,
TLS V1.1, and TLS V1.2 by supported
protocol, symmetric algorithm, and message
authentication algorithm 623

18. Cipher suite definitions for SSL V3, TLS V1.0,
TLS V1.1, and TLS V1.2 by key-exchange
method and signing certificate 625

19. Supported elliptic curve definitions for TLS
V1.0, TLS V1.1, and TLS V1.2 627

20. Signature algorithm pair definitions for TLS
V1.2. 627

21. System SSL supported object identifiers
(OIDS) 629

© Copyright IBM Corp. 1999, 2013 ix

x z/OS V2R1.0 System SSL Programming

About this document

This information supports z/OS® (5650-ZOS) and contains information about
Cryptographic Services Integrated Cryptographic Service Facility.

This document contains information about the System SSL product. This
information consists of primarily two sets of APIs and a Certificate Management
utility. The first set of APIs support the Secure Sockets Layer protocols (SSL V2.0,
SSL 3.0, TLS V1.0, TLS V1.1, and TLS V1.2) which can be used by C/C++
applications to communicate securely across an open communications network.
The other set of APIs (Certificate Management) provide the ability to use function
other than the SSL protocols. These functions include the ability to create/manage
key database files in a similar function to the SSL Certificate Management utility,
use certificates stored in a key database file, SAF key ring or z/OS PKCS #11 token
for purposes other than SSL and basic PKCS #7 message support to provide
application writers a mechanism to communicate with another application through
the PKCS #7 standard.

This information also provides guidance on how to write a client and server secure
sockets layer application. The client and server may both reside on z/OS™ systems
or reside on different systems.

Intended audience
This document is intended to assist system administrators in setting up the system
to use System SSL support and for application programmers in writing System SSL
applications.

How this information is organized
The format and organization of this information:

Chapter 1, “Introduction,” on page 1 describes Secure Sockets Layer (SSL) and lists
the software dependencies and installation information you need to use the System
SSL support.

Chapter 2, “How System SSL works for secure socket communication,” on page 5
provides a general overview of System SSL and the basic structure of a z/OS
application using System SSL.

Chapter 3, “Using cryptographic features with System SSL,” on page 11 describes
System SSLs use of cryptographic features on z/OS.

Chapter 4, “System SSL and FIPS 140-2,” on page 19 describes how to execute
System SSL securely in a mode designed to meet FIPS 140-2 criteria.

Chapter 5, “Writing and building a z/OS System SSL application,” on page 29
describes how to write a System SSL source program and build the System SSL
application.

Chapter 6, “Migrating from deprecated SSL interfaces,” on page 47 describes how
to migrate an existing application which uses the deprecated SSL interfaces to the
latest SSL interfaces.

© Copyright IBM Corp. 1999, 2013 xi

Chapter 7, “API reference,” on page 49 describes the System SSL program
interfaces.

Chapter 8, “Certificate Management Services (CMS) API reference,” on page 131
describes the Certificate Management Services (CMS) program interfaces.

Chapter 9, “Deprecated Secure Socket Layer (SSL) APIs,” on page 435 describes the
deprecated System SSL program interfaces.

Chapter 10, “Certificate/Key management,” on page 469 describes how to use the
gskkyman utility to create a key database file, a z/OS PKCS #11 token, a
public/private key pair, a certificate request, and other tasks.

Chapter 11, “SSL started task,” on page 535 provides sysplex session cache support
and dynamic trace support.

Chapter 12, “Obtaining diagnostic information,” on page 539 provides debugging
information.

Chapter 13, “Messages and codes,” on page 547 contains various messages and
codes you might encounter using System SSL.

Appendix A, “Environment variables,” on page 605 lists the environment variables
used by System SSL.

Appendix B, “Sample C++ SSL files,” on page 617 describes the sample set of files
shipped to provide an example of what is needed to build a C++ System SSL
application.

Appendix C, “Cipher suite definitions,” on page 619 describes supported cipher
suite definitions.

Appendix D, “Object identifiers,” on page 629 describes object identifiers (OIDS)
supported by System SSL.

Conventions used in this information
This information uses these typographic conventions:

Bold Bold words or characters

Highlighting1
Words or characters highlighted in this manner represent system elements
that you must enter into the system literally, such as commands, options,
or path names.

Italic Italic words or characters

Highlighting2
Words or characters highlighted in this manner represent values for
variables that you must supply.

Example font
Examples and information displayed by the system appear in constant
width type style.

[] Brackets enclose optional items in format and syntax descriptions.

Preface

xii z/OS V2R1.0 System SSL Programming

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

\ A backslash is used as a continuation character when entering commands
from the shell that exceed one line (255 characters). If the command
exceeds one line, use the backslash character \ as the last non blank
character on the line to be continued, and continue the command on the
next line.

This information uses these keying conventions:

<ALT-c>
The notation <Alt-c> followed by the name of a key indicates a control
character sequence.

<Return>
The notation <Return> refers to the key on your keyboard that is labeled
with the word Return or Enter, or with a left arrow.

Entering commands
When instructed to enter a command, type the command name and then
press <Return>.

Where to find more information
When possible, this information uses cross-document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, see
z/OS Internet Library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Internet sources
The following resources are available through the internet to provide additional
information about the z/OS library and other security-related topics:
v Online library

To view and print online versions of the z/OS publications, use this address:
http://www.ibm.com/systems/z/os/zos/bkserv/

v Redbooks®

The documents known as IBM® Redbooks that are produced by the International
Technical Support Organization (ITSO) are available at the following address:
http://www.redbooks.ibm.com

Preface

About this document xiii

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/redbooks

Preface

xiv z/OS V2R1.0 System SSL Programming

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 System SSL Programming
SC14-7495-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1999, 2013 xv

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xvi z/OS V2R1.0 System SSL Programming

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1999, 2013 xvii

xviii z/OS V2R1.0 System SSL Programming

Chapter 1. Introduction

Secure Sockets Layer (SSL) is a communications protocol that provides secure
communications over an open communications network (for example, the Internet).
The SSL protocol is a layered protocol that is intended to be used on top of a
reliable transport, such as Transmission Control Protocol (TCP/IP). SSL provides
data privacy and integrity including server and client authentication that is based
on public key certificates. Once an SSL connection is established between a client
and server, data communications between client and server are transparent to the
encryption and integrity added by the SSL protocol. System SSL supports the SSL
V2.0, SSL V3.0 and TLS (Transport Layer Security) V1.0, TLS V1.1, and TLS V1.2
protocols. TLS V1.2 is the latest version of the secure sockets layer protocol that is
supported by System SSL.

Note: The phrase SSL is used throughout to describe both the SSL and TLS
protocols.

z/OS provides a set of SSL C/C++ callable application programming interfaces
that, when used with the z/OS Sockets APIs, provide the functions that are
required for applications to establish secure sockets communications.

In addition to providing the API interfaces to use the Secure Sockets Layer and
Transport Layer Security protocols, System SSL is also providing a suite of
Certificate Management APIs. These APIs give the capability to create/manage
your own certificate databases, use certificates that are stored in key databases, key
rings or tokens for purposes other than SSL and to build/process PKCS #7
standard messages.

In addition to providing APIs for applications to use for both SSL and certificate
management support, System SSL also provides a certificate management utility
called gskkyman. The gskkyman utility allows for the management of certificates
that are stored in a key database file or z/OS PKCS #11 token.

System SSL is designed to meet the Federal Information Processing Standard - FIPS
140-2 criteria. See Chapter 4, “System SSL and FIPS 140-2,” on page 19 for more
information.

Software dependencies
v Cryptographic Services System SSL (Function Modification Identifier (FMID)

HCPT410)
System SSL Version 2 Release 1 is part of the Cryptographic Services Base
element of z/OS. (The System SSL Base members are installed in the PDSE
pdsename.SIEALNKE and PDS pdsname.SGSKSAMP.)

v Cryptographic Services Security Level 3 (FMID JCPT411)
When you order the Cryptographic Services Security Level 3 support,
GSKSUS31, GSKSUS64, GSKC31F, GSKC64F, GSKS31F, and GSKS64F are
installed as members of the pdsename.SIEALNKE PDSE. pdsename.SIEALNKE is
the PDSE in which the System SSL Cryptographic Services Base members are
installed.

v Japanese (FMID JCPT41J)

© Copyright IBM Corp. 1999, 2013 1

Contains Japanese message text files for gskkyman utility. The gskmsgs.cat file
is installed in the /usr/lpp/gskssl/lib/nls/msg/Ja_JP.IBM-939 directory.

Appendix C, “Cipher suite definitions,” on page 619 provides information about
the encryption capabilities (ciphers) for each protocol and FMID.

Installation information
System SSL is part of the System SSL Cryptographic Services Base element of
z/OS. If you choose to install the z/OS Version 2 Release 1 Server Pack, you do
not need to install the System SSL Cryptographic Services Base element separately.
If you choose the z/OS Custom-Build Product Delivery Offering (CBPDO), you can
install the System SSL Cryptographic Services Base element using SMP/E. The
z/OS Program Directory contains the directions for installing the System SSL
Cryptographic Services Base element using SMP/E.

System SSL parts shipped in the UNIX System Services file
system

v /usr/lpp/gskssl/include
Contains the header files, gskssl.h, gsktypes.h and gskcms.h, which declare
structures and constants that are used by the System SSL and Certificate
Management interfaces.

v /usr/lpp/gskssl/examples
Contains sample client/server files including a display_certificate sample
program.

v /usr/lpp/gskssl/lib
Contains GSKSSL.x for APIs exported by the GSKSSL DLL, GSKSSL64.x for APIs
exported by the GSKSSL64 DLL, GSKCMS31.x for APIs exported by the
GSKCMS31 DLL, and GSKCMS64.x for APIs exported by the GSKCMS64 DLL.
You use GSKSSL.x and GSKCMS31.x when you linkedit a 31-bit program that
uses System SSL and you use GSKSSL64.x and GSKCMS64.x when you linkedit
a 64-bit program that uses System SSL.

v /usr/lpp/gskssl/lib/nls/msg/En_US.IBM-1047
Contains the English gskmsgs.cat message catalog file.

v /usr/lpp/gskssl/lib/nls/msg/Ja_JP.IBM-939
Contains the Kanji gskmsgs.cat message catalog file.

v /usr/lpp/gskssl/bin
Contains the gskkyman and gsktrace utilities.

System SSL parts shipped in PDS and PDSE
pdsename.SIEALNKE PDSE contains members GSKSSL, GSKCMS31,
GSKSRBRD, GSKSRBWT, GSKKYMAN, GSKSCTSS, GSKSRVR, GSKCMS64,
GSKS31, GSKS64, GSKC31, GSKC64 and GSKSSL64 when the base FMID
HCPT410 is installed. When JCPT411 is installed, members GSKSUS31, GSKS31F,
GSKS64F, GSKC31F, GSKC64F and GSKSUS64 are also in the PDSE.

pdsname.SIEAHDR PDS contains header files GSKSSL, GSKCMS and
GSKTYPES.

pdsename.SIEASID PDS contains side files GSKSSL, GSKCMS31, GSKSSL64 and
GSKCMS64 when the base FMID HCPT410 is installed.

2 z/OS V2R1.0 System SSL Programming

pdsname.SGSKSAMP PDS contains members GSKMSGXT, GSKRACF,
GSKSRVR and GSKWTR.

pdsename.SIEAMIGE PDS contains member GSKSCTFT.

pdsname and pdsename are the names determined during installation. You need to
know the name of this PDS or PDSE when you identify the STEPLIB in the
runtime steps. See z/OS Program Directory for information about installing the
System SSL.

Note:

1. The DLLs are shipped in PDSE form so the DLLs can be called from UNIX
System Services file-system-based or PDSE-based programs.

2. The DLLs are not placed in SYS1.LPALIB during installation. The DLLs cannot
be added to an LPALSTxx member since PDSE data sets are not supported in
LPALSTxx. The DLLs can be added to the dynamic LPA by adding them to a
PROGxx member.

3. The DLLs cannot be added to the LPA if System SSL is to be used in FIPS
mode.

System SSL is designed to meet the National Institute of Standards and Technology
(NIST) FIPS 140-2 criteria. For more information about enabling applications and
running System SSL FIPS enabled applications, see Chapter 4, “System SSL and
FIPS 140-2,” on page 19.

Chapter 1. Introduction 3

4 z/OS V2R1.0 System SSL Programming

Chapter 2. How System SSL works for secure socket
communication

System SSL supports both the TLS (Transport Layer Security) and SSL (Secure
Sockets Layer) protocols. Before you start writing your application, let's look at
how System SSL works.

Note: The phrase SSL is used throughout to describe both the SSL and TLS
protocols.

The SSL protocol begins with a "handshake". During the handshake, the client
authenticates the server, the server optionally authenticates the client, and the
client and server agree on how to encrypt and decrypt information. In addition to
the "handshake", SSL also defines the format that is used to transmit encrypted
data.

X.509 (V1, V2, or V3) certificates are used by both the client and server when
securing communications using System SSL. The client must verify the server's
certificate based on the certificate of the Certificate Authority (CA) that signed the
certificate or based on a self-signed certificate from the server. The server must
verify the client's certificate (if requested) using the certificate of the CA that
signed the client's certificate. The client and the server then use the negotiated
session keys and begin encrypted communications.

The SSL protocol runs above the TCP/IP and below higher-level protocols such as
HTTP. It uses TCP/IP on behalf of the higher-level protocols.

The capabilities of SSL address several fundamental concerns about communication
over the Internet and other TCP/IP networks:

SSL server authentication allows a client application to confirm the identity of the
server application. The client application through SSL uses standard public-key
cryptography to verify that the server's certificate and public key are valid and are
signed by a trusted certificate authority (CA) that is known to the client
application.

SSL client authentication allows a server application to confirm the identity of the
client application. The server application through SSL uses standard public-key
cryptography to verify that the client's certificate and public key are valid and are
signed by a trusted certificate authority (CA) that is known to the server
application.

An encrypted SSL connection requires all information that is sent between the
client and server application to be encrypted. The sending application is
responsible for encrypting the data and the receiving application is responsible for
decrypting the data. In addition to encrypting the data, SSL provides message
integrity. Message integrity provides a means to determine if the data has been
tampered with since it was sent by the partner application.

© Copyright IBM Corp. 1999, 2013 5

Using System SSL on z/OS
System SSL provides programming interfaces to write both client and server
applications. These programming interfaces provide functionality that is associated
with either the SSL environment layer or secure socket connection layer. The SSL
environment layer defines the general attributes of the environment, such as the
key database file name, stash file name and session timeout. The secure socket
connection layer defines the attributes that are associated with each secure
connection being established, such as the file descriptor and certificate label. The
SSL application program must first create the SSL environment layer. Once the
environment is created, one or more instances of the secure socket connection layer
can be associated with the SSL environment. Each of these secure socket
connections can be established and closed independently of each other.

Each layer has four general function calls:
v open
v attribute_set
v initialize
v close

In addition, the secure socket connection layer has read and write function calls for
reading and writing secure data between the two SSL enabled applications.

The open function calls return a handle (an environment handle or a secure socket
connection handle) that must be passed back as a parameter on subsequent
function calls. An instance of a secure socket connection handle is associated with
an environment by passing the environment handle as a parameter on the
gsk_secure_socket_open() call. The gsk_secure_socket_open() function is
completely thread safe. Invocations to the gsk_secure_socket open() function can
be issued from different threads within an environment. Read and write functions
are full-duplex, so asynchronous read and write function calls can be performed
from different threads for a given secure socket connection. However, there can
only be one read and one write call in progress at one time for any secure socket
connection handle.

For every open, there must be a corresponding close.

In addition to these functions, various gsk_attribute_set ...() and
gsk_attribute_get...() functions exist to define and retrieve attributes values
associated with either the environment or secure socket connection layers. The
syntax of these function calls is the same for both the environment and the secure
socket connection layers. The target for the set/get function is determined by the
handle specified on the function call.

System SSL application overview
Figure 1 on page 9 describes the basic structure of the elements that are needed in
your System SSL source program.

Whether writing a server or client applications, the initial steps are the same. First,
an SSL environment must be established with these function calls:

gsk_environment_open()
This is the first function call. It returns an environment handle that is used
in all subsequent function calls. It also obtains storage and sets default

How System SSL works

6 z/OS V2R1.0 System SSL Programming

values for all internal variables and picks up the values that are specified
in system environment variables that override the built-in defaults.

gsk_attribute_set...()
One or more of these function calls are issued to set attribute values for the
environment.

gsk_environment_init()
After you set all variables, issue this function call to complete the
initialization of the SSL environment. When complete, you can open and
close SSL connections.

Now, the client and server sides diverge. The server side sets up a listen
environment. The listen environment is established by obtaining a socket
descriptor through the socket() call and the activation of a connection through the
bind(), listen() and accept() socket calls.When the listen environment is
established, the server waits for notification that a secure socket connection is
requested and issues these System SSL API function calls:

gsk_secure_socket_open()
This function call reserves a handle in which to store information for
initializing each secure socket. Default values for each SSL connection are
set from the environment.

gsk_attribute_set...()
This function call sets attribute values for this particular SSL connection.
These values could include the socket file descriptor, ciphers, protocol, and
application-supplied callback routines.

gsk_secure_socket_init()
For each connection to be started, the application must issue this function
call to complete the initialization of the SSL connection and to run the SSL
handshake protocol. The SSL handshake is a function of the System SSL
support.

gsk_secure_socket_read()
One or more read function calls is issued until the inbound data flow is
complete. The number of calls is purely application-dependent.

gsk_secure_socket_write()
One or more write function calls is issued until all appropriate data is sent
to the partner. Reads and writes may be alternated as defined by the
application protocol until the data flow is complete.

gsk_secure_socket_close()
This function call frees all the resources that are used for the SSL
connection.

All of the SSL API function calls are thread-safe. This is useful on the server side,
since each connection can be run on its own thread, simplifying application design.
See the sample client/server program that is shipped with z/OS System SSL, for
an illustration of a multi-threaded application.

The client application then opens a connection to the server through the socket()
and connect() calls and issues these System SSL API function calls:

gsk_secure_socket_open()
This function call reserves a handle in which to store information for
initializing each secure socket.

How System SSL works

Chapter 2. How System SSL works for secure socket communication 7

gsk_attribute_set...()
This function call sets values for this particular SSL connection. These
values could include the socket file descriptor, ciphers, protocol, and
application-supplied callback routines.

gsk_secure_socket_init()
For each connection to be started, the application must issue this function
call to complete the initialization of the SSL connection and to run the SSL
handshake protocol. The SSL handshake is a function of the System SSL
support.

gsk_secure_socket_write()
One or more write function calls are issued until the outbound data flow is
complete. The number of calls is purely application-dependent.

gsk_secure_socket_read()
One or more read function calls are issued until all appropriate data is
received from the partner. Writes and reads may be alternated as defined
by the application protocol until the data flow is complete.

gsk_secure_socket_close()
This function call frees all the resources that are used for the SSL
connection.

For both client and server applications, when the application is ready to end and
all gsk_secure_socket_close() functions complete, destroy the sockets through the
close() call and issue the gsk_environment_close() function call to close the SSL
environment and return resources to the operating system.

Note: skread() and skwrite() are the routines responsible for sending and receiving
data from the socket. They are invoked by the gsk_secure_socket_init(),
gsk_secure_socket_read() and gsk_secure_socket_write() functions.

In addition to using the previous SSL programming interfaces in an application, an
application is not complete until a key database is available for use by the SSL
application. The key database contains certificate information and is a z/OS UNIX
System Services file that is built and managed using the gskkyman utility, a SAF
key ring or a z/OS PKCS #11 token. For more information about key databases, see
Chapter 10, “Certificate/Key management,” on page 469.

How System SSL works

8 z/OS V2R1.0 System SSL Programming

Client

socket()
connect()

skwrite()

skread()

skread()

skwrite()

skwrite()
skread()

skread()
skwrite()

close()
close()
close()

socket()
bind()

listen()
accept()

gsk_environment_open()
gsk_attribute_set...()
gsk_environment_init()

gsk_environment_open()
gsk_attribute_set...()
gsk_environment_init()

gsk_secure_socket_open()
gsk_attribute_set_...()
gsk_secure_socket_init()

gsk_secure_socket_open()
gsk_attribute_set_...()
gsk_secure_socket_init()

gsk_secure_socket_write()
gsk_secure_socket_read()
gsk_secure_socket_close()

gsk_secure_socket_read()
gsk_secure_socket_write()
gsk_secure_socket_close()

gsk_environment_close() gsk_environment_close()

Server

h
a
n
d
s
h
a
k
e

Figure 1. Sockets Programming Model Using System SSL

Chapter 2. How System SSL works for secure socket communication 9

10 z/OS V2R1.0 System SSL Programming

Chapter 3. Using cryptographic features with System SSL

System SSL uses cryptographic features available on z/OS to offer a
comprehensive range of cryptographic support. In addition to software
cryptographic processing performed by System SSL, services offered by the
Integrated Cryptographic Service Facility (ICSF) and the CP Assist for
Cryptographic Function (CPACF) are employed to enhance System SSL with
hardware cryptographic support for commonly used algorithms. ICSF also
provides support for Elliptic Curve Cryptography (ECC).

In order for System SSL to use cryptographic support provided through ICSF, the
ICSF started task must be running and the application user ID must be authorized
for the appropriate resources in the RACF® CSFSERV class (when the class is
active), either explicitly or through a generic resource profile. See “RACF CSFSERV
resource requirements” on page 16 for further details. In addition to the CSFSERV
class, the application user ID needs READ access to:
v RACF CSFKEYS class when SAF key rings are being used and the application's

certificate keys are stored in ICSF'S PKDS. This access is not required if the
CSFKEYS class is not active or the RACF resource is not defined.

v RACF resource USER.token-name within the CRYPTOZ class when either SAF
key rings or PKCS #11 tokens are being used and the application's certificate
keys are stored as secure keys in an ICSF PKCS #11 token. The CRYPTOZ class
must be active and the RACF resource must exist, otherwise access is not
granted.

For more information about access to CSFKEYS, see the RACDCERT command in
z/OS Security Server RACF Command Language Reference. For more information
about the CRYPTOZ class, see z/OS Cryptographic Services ICSF Writing PKCS #11
Applications.

Guidelines for using hardware cryptographic features
System SSL handshake processing uses the RSA and digital signature functions
that are expensive functions when performed in software. For installations that
have high volumes of SSL handshake processing, using the capabilities of the
hardware provides maximum performance and throughput. For example, on z9,
z10, z196, or zEC12, having a Crypto Express Coprocessor and/or Accelerator
results in the maximum clear key RSA and digital signature processing being done
in hardware.

For installations that are more concerned with the transfer of encrypted data than
with SSL handshakes, moving the encrypt/decrypt processing to hardware
(CPACF) provides maximum performance. The encryption algorithm is determined
by the SSL cipher value. To use hardware, the ciphers symmetric algorithm must
be available in hardware. For example, on z9, z10, z196, or zEC12, an application
encrypting/decrypting data using the symmetric algorithm 3DES would benefit
from the processing being done in the hardware.

For maximum performance and throughput, it is recommended that hardware is
used for both the SSL handshake and data encrypt/decrypt.

For information about the types of hardware cryptographic features supported by
ICSF, see z/OS Cryptographic Services ICSF Overview. For information about

© Copyright IBM Corp. 1999, 2013 11

configuring and using ICSF, see z/OS Cryptographic Services ICSF Administrator's
Guide and z/OS Cryptographic Services ICSF System Programmer's Guide.

Several products use System SSL. See the specific product publications to see if
there is information about System SSL and ICSF considerations.

Note that access to ICSF cryptographic services can be controlled by the z/OS
Security Server (RACF). For further information, see the topic about controlling
who can use cryptographic keys and services in z/OS Cryptographic Services ICSF
Administrator's Guide.

Overview of hardware cryptographic features and System SSL
System SSL might use ICSF or the CPACF for cryptographic hardware support, if
they are available. Cryptographic hardware support provides performance benefits
over software processing and might be used for particular cryptographic
algorithms instead of the System SSL software algorithms. System SSL also uses
ICSF for cryptographic algorithms that are not supported within the software of
System SSL (for example, Elliptic Curve Cryptography). For algorithms for which
System SSL has software versions, System SSL checks for hardware support during
its runtime initialization and uses the support if available, unless the application
specifies otherwise. See Appendix A, “Environment variables,” on page 605 for
information about the GSK_HW_CRYPTO environment variable (which specifies
whether the hardware cryptographic support is used).

When using a secure key (a key stored either in the ICSF PKDS or a PKCS #11
token) or an algorithm that is not supported within System SSL's software, System
SSL always uses ICSF for the cryptographic operation. If ICSF is not available, the
operation fails.

If the appropriate hardware is available, System SSL uses the CPACF directly for
symmetric encryption algorithms DES, 3DES, and AES-CBC, and SHA based digest
algorithms. It calls ICSF for RSA signature and encryption operations. If these
functions are not available in hardware, System SSL uses internal software
implementations of the algorithms.

If a severe ICSF error occurs during a clear key RSA operation, System SSL stops
using the hardware support and reverts to using the software algorithms, when
applicable. In this event, hardware failure notification is available through the SSL
Started Task or SSL trace output, if either facility is enabled. The SSL Started Task
outputs an error message to the console on the first occurrence of the hardware
failure and to the system log on any subsequent events. A message showing the
failing encryption algorithm appears in the system log only. Any future
cryptographic operations for the current SSL application that attempt to use this
algorithm is performed in software. When the severe problem with ICSF is
resolved, the System SSL application must be restarted to begin using ICSF again.

When using a secure key (a key stored either in the ICSF PKDS or a PKCS #11
token) or an algorithm that is not supported within System SSL's software (ECC
and AES-GCM), System SSL always uses ICSF for the cryptographic operation. If
ICSF is not available when these algorithms are called upon, the operation fails.
Clear key ECC and AES-GCM operations use ICSF PKCS #11 support. For more
information about ECC cryptographic support, see “Elliptic Curve Cryptography
support” on page 14.

Using cryptographic features with System SSL

12 z/OS V2R1.0 System SSL Programming

Note: System SSL can use secure key support for RSA and ECC through ICSF.
System SSL does not use secure symmetric keys except for the symmetric key that
is used to encrypt the private key being encrypted by the
gsk_make_enveloped_private_key_msg() API.

Table 1 describes the hardware cryptographic functions that are used by System
SSL under different hardware configurations.

To use 4096-bit RSA keys in the hardware, you need one of the following:
v a z9 or higher processor with feature 0863 installed with the Crypto Express2

Coprocessor with microcode level MCL006-MCL009 or higher
v a z10 or higher processor with feature 0863 installed with a Crypto Express3

Coprocessor.
v a z196(z114) or higher processor with a Crypto Express3 Accelerator with

September 2011 or later Licensed Internal Code (LIC).

Table 1. Hardware cryptographic functions used by System SSL
z9 z10 z196/z114 zEC12

Algorithm CPACF CEX2C CEX2A CPACF
CEX2C /
CEX3C

CEX2A
/
CEX3A CPACF CEX3C CEX3A CPACF

CEX3C/
CEX4C

CEX3A/
CEX4A CEX4P

DES X X X X

3DES X X X X

AES 128-bit X X X X

AES 256-bit X X X

AES-GCM
128-bit

X X

AES-GCM
256-bit

X X

SHA-1 X X X X

SHA-2
(SHA-224)

X X X X

SHA-2
(SHA-256)

X X X X

SHA-2
(SHA-384)

X X X

SHA-2
(SHA-512)

X X X

PKA (RSA)
Decrypt
(Clear
Private Key)

X X X X X X X X X

PKA (RSA)
Decrypt
(Secure
Private Key)

X X X X X

PKA (RSA)
Encrypt

X X X X X X X X

Digital
Signature
Generate
(RSA) (Clear
and/or
Secure
Private key)

X X X X X

Digital
Signature
Verify (RSA)

X X X X X X X X

Using cryptographic features with System SSL

Chapter 3. Using cryptographic features with System SSL 13

Table 1. Hardware cryptographic functions used by System SSL (continued)
z9 z10 z196/z114 zEC12

Algorithm CPACF CEX2C CEX2A CPACF
CEX2C /
CEX3C

CEX2A
/
CEX3A CPACF CEX3C CEX3A CPACF

CEX3C/
CEX4C

CEX3A/
CEX4A CEX4P

Digital
Signature
Generate
(ECC)
(Clear
and/or
Secure
Private key)

X X X X

Random byte generation support
System SSL supports the generation of random bytes. This support is performed
either by calling the ICSF CSFPPRF callable service or through a software
implementation within System SSL. If ICSF is available during System SSL's
runtime initialization, System SSL calls ICSF. If unavailable, System SSL's software
implementation is used. If ICSF terminates or access to the ICSF callable service
CSFPPRF is protected by a CSFSERV class profile and the application user is not
authorized, the generation of random bytes is performed in software. For more
information about the CSFSERV resource class, see “RACF CSFSERV resource
requirements” on page 16.

If the System SSL application is FIPS enabled, see “Random byte generation” on
page 20 for more information about random bytes generation in FIPS mode.

Elliptic Curve Cryptography support
System SSL uses ICSF callable services for Elliptic Curve Cryptography (ECC)
algorithm support. For ECC support through ICSF, ICSF must be initialized with
PKCS #11 support. For more information, see z/OS Cryptographic Services ICSF
System Programmer's Guide. In addition, the application user ID must be authorized
for the appropriate resources in the RACF CSFSERV class, either explicitly or
through a generic resource profile. See Table 4 on page 17 for the required
CSFSERV resources for each ECC function.

If the ICSF started task is not running as required or ECC support is otherwise
unavailable, System SSL might fail if an ECC-based operation is required. In this
event, notification is available through return or status codes and System SSL trace
output.

Current ICSF cryptographic support for ECC can be verified using the DISPLAY
CRYPTO function of the SSL Started Task. See Chapter 11, “SSL started task,” on
page 535 for more information.

ECC public/private keys must be defined over prime finite fields (Fp type fields)
only; characteristic two finite fields (F2m type fields) are not supported. EC domain
parameters may be defined using either the specifiedCurve format or the
namedCurve format, as described in RFC 5480: Elliptic Curve Cryptography Subject
Public Key Information. If the EC domain parameters are defined using the
specifiedCurve format, then they must match a supported named curve.

The following named curves are supported:
v NIST recommended curves

Using cryptographic features with System SSL

14 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc5480.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5480.txt.pdf

– secp192r1 – {1.2.840.10045.3.1.1}
– secp224r1 – {1.3.132.0.33}
– secp256r1 – {1.2.840.10045.3.1.7}
– secp384r1 – {1.3.132.0.34}
– secp521r1 – {1.3.132.0.35}

v Brainpool defined curves
– brainpoolP160r1 – {1.3.36.3.3.2.8.1.1.1}
– brainpoolP192r1 – {1.3.36.3.3.2.8.1.1.3}
– brainpoolP224r1 – {1.3.36.3.3.2.8.1.1.5}
– brainpoolP256r1 – {1.3.36.3.3.2.8.1.1.7}
– brainpoolP320r1 – {1.3.36.3.3.2.8.1.1.9}
– brainpoolP384r1 – {1.3.36.3.3.2.8.1.1.11}
– brainpoolP512r1 – {1.3.36.3.3.2.8.1.1.13}

Note: In FIPS mode, only NIST recommended curves are currently supported.
Curves under 224 bits are not recommended.

For data signature generation and verification operations involving ECC-based
algorithms, z/OS System SSL supports ECDSA with SHA-1, SHA-224, SHA-256,
SHA-384, and SHA-512 digest algorithms. When creating signed certificates using
the System SSL certificate management utility, gskkyman, or through CMS APIs
that use a default digest algorithm, the recommended digest for the ECC key size
of the signing private key is used (as specified in the following table).

Table 2. Recommended digest sizes for ECDSA signature key sizes

ECC curve type
ECDSA key
sizes (bits)

Recommended
digest algorithm Signature algorithm type

x509_ecurve_brainpoolP160r1
x509_ecurve_secp192r1
x509_ecurve_brainpoolP192r1
x509_ecurve_secp224r1
x509_ecurve_brainpoolP224r1
x509_ecurve_secp256r1
x509_ecurve_brainpoolP256r1
x509_ecurve_brainpoolP320r1

160-383 SHA-256 x509_alg_ecdsaWithSha256

x509_ecurve_secp384r1
x509_ecurve_brainpoolP384r1

384-511 SHA-384 x509_alg_ecdsaWithSha384

x509_ecurve_brainpoolP512r1
x509_ecurve_secp521r1

512 and
greater

SHA-512 x509_alg_ecdsaWithSha512

System SSL regards certain EC named curves to be the default curve for their key
size. For CMS APIs that require ECC key generation and accept a key size
parameter only, the default curve for the key size specified is used. These default
EC named curves are outlined in the following table.

Table 3. Default EC named curves for specified key sizes

Key size (bits) Default EC named curve Named curve OID

160 brainpoolP160r1 1.3.36.3.3.2.8.1.1.1

192 secp192r1 1.2.840.10045.3.1.1

224 secp224r1 1.3.132.0.33

Using cryptographic features with System SSL

Chapter 3. Using cryptographic features with System SSL 15

Table 3. Default EC named curves for specified key sizes (continued)

Key size (bits) Default EC named curve Named curve OID

256 secp256r1 1.2.840.10045.3.1.7

320 brainpoolP320r1 1.3.36.3.3.2.8.1.1.9

384 secp384r1 1.3.132.0.34

512 brainpoolP512r1 1.3.36.3.3.2.8.1.1.13

521 secp521r1 1.3.132.0.35

Diffie-Hellman key agreement
System SSL supports Diffie-Hellman (DH) key agreement group parameters as
defined in PKCS #3 (Diffie-Hellman Key Agreement Standard) and RFC 2631:
Diffie-Hellman Key Agreement Method. The Diffie-Hellman key agreement parameters
are the prime P, the base G, and, in non-FIPS mode, the optional subprime Q, and
subgroup factor J.

Diffie-Hellman key pairs are the private value X and the public value Y. The
private value X is less than Q-1 if Q is present in the key parameters, otherwise,
the private value X is less than P-1.

Multiple Diffie-Hellman key agreement keys can share domain group parameters
(P and G). In addition, the Diffie-Hellman key agreement algorithm requires both
parties to use the same group parameters when computing the secret value. An
SSL client generates temporary Diffie-Hellman values if the group parameters in
the client certificate are not the same as the group parameters in the server
certificate. DSA keys may also share domain group parameters as Diffie-Hellman
keys.

DH keys:
v Can be used only for end user certificates
v Can only be signed using a certificate that contains either an RSA or a DSA key
v Key size when in non-FIPS mode is between 512 and 2048 bits rounded up to a

multiple of 64
v Key size in FIPS mode of 2048 bits
v Can only be used for connections where the cipher specification is a fixed

Diffie-Hellman key exchange
v When used in fixed Diffie-Hellman key exchange must allow key agreement.

Only an RSA or DSA client certificate can be used in an ephemeral Diffie-Hellman
key exchange.

RACF CSFSERV resource requirements
ICSF controls access to cryptographic services through the RACF CSFSERV
resource class. An application using System SSL that requires cryptographic
support from ICSF must be authorized for the appropriate resources in the class,
either explicitly or through a generic resource profile. For more information, see
z/OS Cryptographic Services ICSF Administrator's Guide.

When the System SSL DLLs are loaded, System SSL determines what hardware is
available by using the ICSF Query Algorithm callable service (CSFIQA). For this

Using cryptographic features with System SSL

16 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf

reason, make sure that the RACF user ID that starts the application can access the
CSFIQA resource of the CSFSERV class. If the user ID that starts the SSL
application cannot access the CSFIQA resource of the CSFSERV class, System SSL
cannot retrieve information by using the CSFIQA callable service, and the
informational message ICH408I (which indicates insufficient authorization) may be
issued to the console. Although System SSL processing continues, System SSL
might not be aware of all the hardware that is currently available.

The following tables summarize the CSFSERV resources required for each ICSF
cryptographic function used by System SSL.

Table 4. CSFSERV resources required for hardware support through ICSF callable services

Function
ICSF callable
services z9 and z10 z196/z114 and zEC12

PKA (RSA) Encrypt CSNDPKB
CSNDPKE

--
CSFPKE

--
CSFPKE

PKA (RSA) Decrypt CSNDPKB
CSNDPKD

--
CSFPKD

--
CSFPKD

RSA Digital
Signature
Generation

CSNDPKB
CSNDPKI
CSNDDSG

--
CSFPKI
CSFDSG

--
CSFPKI
CSFDSG

RSA Digital
Signature Verify

CSFDPKB
CSNDDSV

--
CSFDSV

--
CSFDSV

ECC Digital
Signature
Generation (private
key in the PKDS)

CSNDDSG CSFDSG

Table 5. CSFSERV resources required for ICSF PKCS #11 callable services support

Function
ICSF PKCS #11 callable
services

CSFSERV resources
required

ECC Key Generation CSFPGKP
CSFPGAV
CSFPTRD

CSF1GKP
CSF1GAV
CSF1TRD

RSA/ECC Digital Signature
Generation

CSFPTRC
CSFPPKS
CSFPTRD

CSF1TRC
CSF1PKS
CSF1TRD

ECC Digital Signature Verify CSFPTRC
CSFPPKV
CSFPTRD

CSF1TRC
CSF1PKV
CSF1TRD

ECDH Derive Key CSFPTRC
CSFPDVK
CSFPGAV
CSFPTRD

CSF1TRC
CSF1DVK
CSF1GAV
CSF1TRD

Diffie-Hellman in FIPS mode CSFPTRC
CSFPDVK
CSFPGKP
CSFPGSK
CSFPGAV
CSFPTRD

CSF1TRC
CSF1DVK
CSF1GKP
CSF1GSK
CSF1GAV
CSF1TRD

AES-GCM Secret Key Decrypt CSFPSKD
CSFPTRC
CSFPTRD

CSF1SKD
CSF1TRC
CSF1TRD

Using cryptographic features with System SSL

Chapter 3. Using cryptographic features with System SSL 17

Table 5. CSFSERV resources required for ICSF PKCS #11 callable services
support (continued)

Function
ICSF PKCS #11 callable
services

CSFSERV resources
required

AES-GCM Secret Key Encrypt CSFPSKE
CSFPTRC
CSFPTRD

CSF1SKE
CSF1TRC
CSF1TRD

Random Number Generation CSFPPRF CSFRNG

Secure PKCS #7 Make Enveloped
Data Message

CSFPTRC
CSFPGSK
CSFPWPK
CSFPTRD

CSF1TRC
CSF1GSK
CSF1WPK
CSF1TRD

Secure PKCS #7 Read Enveloped
Data Message

CSFPPKS CSF1PKS

Secure PKCS #12 Private Key Export CSFPGSK
CSFPWPK
CSFPTRC
CSFPTRD

CSF1GSK
CSF1WPK
CSF1TRC
CSF1TRD

RSA PKCS #11 Secure Key Decrypt CSFPPKS CSF1PKS

PKCS #11 and Setting CLEARKEY resource within CRYPTOZ class
The CLEARKEY.token-name resource within the CRYPTOZ class controls the ICSF
policy for creating a clear key versus a secure key. When the resource is defined
and set to NONE, System SSL's usage of the PKCS #11 callable services to generate
keys is restricted to secure keys only. This causes functions within System SSL to
fail. System SSL uses both explicit tokens and the SYSTOK-SESSION-ONLY
omnipresent token.

The following are examples that can fail in this environment in System SSL:
v The gskkyman utility or CMS APIs that create ECC or DH (FIPS mode) keys or

certificates.
v Ephemeral ECDH and Ephemeral DH key exchanges during a SSL/TLS

handshake.

PKCS #11 Cryptographic operations using ICSF handles
When executing cryptographic operations against PKCS #11 certificates and keys,
System SSL uses the 44-byte handle as defined by ICSF. See Introducing PKCS #11
and using PKCS #11 callable services in z/OS Cryptographic Services ICSF Application
Programmer's Guide for the definition of this handle. When using System SSL CMS
APIs, the ICSF handle may be referred to as a label, for example, the input
private_key_label to Certificate Management Services (CMS) API
gsk_make_enveloped_private_key_msg() is the ICSF definition of a handle. The
ICSF 44-byte handle is not the same as a PKCS #11 object handle, which is defined
as PKCS #11 attribute CK_ULONG.

Using cryptographic features with System SSL

18 z/OS V2R1.0 System SSL Programming

Chapter 4. System SSL and FIPS 140-2

National Institute of Standards and Technology (NIST) is the US federal technology
agency that works with industry to develop and apply technology, measurements,
and standards. One of the standards published by NIST is the Federal Information
Processing Standard Security Requirements for Cryptographic Modules referred to
as ‘FIPS 140-2’. FIPS 140-2 provides a standard that can be required by
organizations which specify that cryptographic-based security systems are to be
used to provide protection for sensitive or valuable data.

The objective of System SSL is to provide the capability to execute securely in a
mode that is designed to meet the NIST FIPS 140-2 criteria. To this end, System
SSL can run in either ‘FIPS mode’ or ‘non-FIPS mode’. System SSL by default runs
in ‘non-FIPS mode’ mode. Applications wanting to execute in FIPS mode must
code to the gsk_fips_state_set() API. See “Application changes” on page 25 for
more information.

To meet the FIPS 140-2 criteria, System SSL, when executing in FIPS mode, is more
restrictive with respect to cryptographic algorithms, protocols, and key sizes that
can be supported.

Algorithms and key sizes
When executing in FIPS mode, System SSL continues to take advantage of the CP
Assist for Cryptographic Function (CPACF) when available. Hardware
cryptographic functions allowed in FIPS mode support clear keys and secure PKCS
#11 keys. Secure keys stored in the PKDS are not supported.

Table 6 summarizes the differences between FIPS mode and non-FIPS mode
algorithm support. Hardware availability depends on the processor and CPACF
feature installed. See Chapter 3, “Using cryptographic features with System SSL,”
on page 11 for more information about processors, CPACF algorithm availability,
and cryptographic card support.

Table 6. Algorithm support: FIPS and non-FIPS

Non-FIPS FIPS

Algorithm Sizes
System SSL
software

Direct calls to
CPACF

Support
through
ICSF Sizes

System SSL
software

Direct calls
to CPACF

Support
through ICSF

RC2 40 and 128 X

RC4 40 and 128 X

DES 56 X X

3DES 168 X X 168 X X

AES 128 and 256 X X 128 and
256

X X

AES-GCM 128 and 256 X 128 and
256

X

MD5 48 X

SHA-1 160 X X 160 X X

SHA-2 224, 256,
384, and 512

X X 224, 256,
384, and
512

X X

© Copyright IBM Corp. 1999, 2013 19

Table 6. Algorithm support: FIPS and non-FIPS (continued)

Non-FIPS FIPS

Algorithm Sizes
System SSL
software

Direct calls to
CPACF

Support
through
ICSF Sizes

System SSL
software

Direct calls
to CPACF

Support
through ICSF

RSA 512–4096 X X 1024–4096 X X

DSA 512–2048 X 1024-2048

DH 512–2048 X 2048 X

ECC 160-521 X 192-521 X

Note: NIST SP800-131 recommended transition key sizes RSA >= 2048 and DSA
2048 are not enforced by System SSL. Enforcement is the responsibility of the
calling application or system administrator.

Random byte generation
When executing in FIPS mode, System SSL supports the generation of random
bytes. System SSL generates random bytes by using ICSF's CSFPPRF callable
service. In order for System SSL to call this service, ICSF must be available before
System SSL's run time that is being initialized by the application. If access to the
CSFPPRF callable service is protected by a CSFSERV class profile, the application's
user ID must be authorized to use the service. For more information about the
CSFSERV resource class, see “RACF CSFSERV resource requirements” on page 16.

Diffie-Hellman key agreement
When executing in FIPS mode, System SSL uses ICSF's Diffie-Hellman support as
documented in z/OS Cryptographic Services ICSF Writing PKCS #11 Applications. In
order for System SSL to be able to use ICSF, ICSF must be available before System
SSL's run time is being initialized by the application. If access to the ICSF services
is being protected by the CSFSERV class profile, the application user ID must be
authorized. For more information about the CSFSERV resource class, see “RACF
CSFSERV resource requirements” on page 16.

In FIPS mode, the only Diffie-Hellman key agreement parameters used are the
prime P, and the base G.

Diffie-Hellman key size in FIPS mode is 2048 bits.

Certificates
When executing in FIPS mode, System SSL can only use certificates that use the
algorithms and key sizes shown in Table 6 on page 19. During X.509 certificate
validation (including CA certificates from untrusted data sources, that is,
certificates flowing during the SSL/TLS handshake), if an algorithm that is
incompatible with FIPS mode is encountered, then the certificate cannot be used
and is treated as not valid.

System SSL and FIPS 140-2

20 z/OS V2R1.0 System SSL Programming

SSL/TLS protocol
When executing in FIPS mode, applications are allowed to use the TLS V1.0, TLS
V1.1, and TLS V1.2 protocols. SSL V2 and SSL V3 are not supported. The
specification of SSL V2 and SSL V3 during setup of the SSL/TLS application is
ignored. When executing in non-FIPS mode, the default 2-character specifications
string reflects the default order of suites supported:

050435363738392F303132330A1613100D0915120F0C0306020100

When executing in non-FIPS mode, if GSK_V3_CIPHERS is set to
GSK_V3_CIPHERS_CHAR4, and a cipher specification is not set in
GSK_V3_CIPHER_SPECS_EXPANDED, then the default cipher specification is set
as follows:

0005000400350036003700380039002F0030003100320033000A0016
00130010000D000900150012000F000C00030006000200010000

The algorithm restrictions (see Table 6 on page 19) result in the following default
cipher specifications string in FIPS mode:

35363738392F303132330A1613100D

If using 4-character cipher specifications, the default cipher specifications string in
FIPS mode becomes:

00350036003700380039002F0030003100320033000A001600130010000D

Only the following cipher suites are compatible with the restrictions in Table 6 on
page 19 and are therefore supported while executing in FIPS mode:

When using 2-character cipher suites:

0A 0D 10 13 16 2F 30 31 32 33 35 36 37 38 39

When using 4-character cipher suites:

000A 000D 0010 0013 0016 002F 0030 0031 0032 0033 0035 0036 0037 0038
0039 C003 C004 C005 C008 C009 C00A C00D C00E C00F C012 C013 C014

If non-FIPS mode ciphers are specified, they are ignored during the TLS handshake
processing.

For more information about ciphers and their 2character or 4-character values, see
Appendix C, “Cipher suite definitions,” on page 619.

System SSL module verification setup
System SSL requires Security Level 3 FMID (JCPT411) to be installed in order for
enabled applications to execute in FIPS mode. Application enablement requires
applications to invoke the gsk_fips_state_set() API. For more information about
the FIPS enablement API, see “gsk_fips_state_set()” on page 260.

System SSL and FIPS 140-2

Chapter 4. System SSL and FIPS 140-2 21

The System SSL modules that form the FIPS 140-2 cryptographic boundary are
signed using an IBM key during the build process. Once System SSL is installed,
additional steps are required before the execution of a FIPS enabled System SSL
application.

These steps involve:
v Defining specific RACF profiles to enable the verification of the System SSL

module signature (added during the IBM module build process) when loaded by
the z/OS loader.

v Defining specific RACF profiles and identifying which System SSL modules
require signature verification.

Signature verification provides a method to ensure that the System SSL modules
remain unchanged from the time they were built, installed onto the system, and
loaded into storage to be used by a FIPS enabled System SSL application.

The IBM key used to sign the System SSL modules is an RSA private key that
belongs to an X.509 certificate signed by the STG Code Signing CA certificate. This
certificate is shipped as a default CERTAUTH certificate in the RACF database
under the label 'STG Code Signing CA'.

Note: A sample clist, GSKRACF, is shipped in pdsename.SGSKSAMP to assist you
with the RACF commands needed to enable signature verification.

The following steps need to be followed by the system administrator to enable
signature validation of the System SSL modules:
1. Mark the IBM root CA as TRUSTed if not already TRUSTed

RACDCERT CERTAUTH LIST(LABEL(’STG Code Signing CA’))
RACDCERT CERTAUTH ALTER (LABEL(’STG Code Signing CA’)) TRUST

2. Create a key ring to hold the STG Code Signing CA certificate and connect the
certificate to the key ring.
The key ring needs to be owned by a valid RACF ID and the key ring must
be defined in uppercase. Make sure that the ID is an ID of a security
administrator. In our example the security administrator ID is RACFADM.
There can only be one designated signature verification key ring active at one
time. If already active, add the CA certificate to the key ring. If not already
active create the key ring. The suggested key ring name is
CODE.SIGNATURE.VERIFICATION.KEYRING.
v Determine if signature verification key ring is already active:

RLIST FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION

The key ring is present in the APPLICATION DATA field
v Create key ring if needed and connect CA certificate:

RACDCERT ID(RACFADM) ADDRING(CODE.SIGNATURE.VERIFICATION.KEYRING)

RACDCERT ID(RACFADM)
CONNECT(RING(CODE.SIGNATURE.VERIFICATION.KEYRING) CERTAUTH LABEL(’STG
Code Signing CA’) USAGE(CERTAUTH))

v If a key ring exists, verify that the CA certificate is connected to the key
ring. If not connected, connect the certificate:
RACDCERT ID(RACFADM) LISTRING(CODE.SIGNATURE.VERIFICATION.KEYRING)

System SSL and FIPS 140-2

22 z/OS V2R1.0 System SSL Programming

RACDCERT ID(RACFADM)
CONNECT(RING(CODE.SIGNATURE.VERIFICATION.KEYRING) CERTAUTH LABEL(’STG
Code Signing CA’) USAGE(CERTAUTH))

3. Create the FACILITY class profile that tells RACF the key ring to use for
module signature verification if it is not already defined.

Note: Because of space constraints, the second command example appears on
two lines. However, the command should be entered completely (on one line)
on your system.
RLIST FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION

RDEFINE FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION APPLDATA(’RACFADM/
CODE.SIGNATURE.VERIFICATION.KEYRING’)

4. Activate your profile changes in the FACILITY, DIGTCERT and/or DIGTRING
classes if active and RACLISTed.

SETROPTS RACLIST(FACILITY) REFRESH
SETROPTS RACLIST(DIGTCERT, DIGTRING) REFRESH

5. Activate PROGRAM control, if not already active.

SETROPTS WHEN(PROGRAM)

Note: Installations that have not previously turned on program control, may
encounter problems after issuing SETROPTS WHEN(PROGRAM). Program control is
necessary for signature verification, hence installations must evaluate the
impact of enabling program control for the first time.

6. Create the PROGRAM class profile that protects the program verification
module IRRPVERS and specify its signature verification options.

Note: Because of space constraints, the command appears on two lines.
However, the command should be entered completely (on one line) on your
system.
RDEFINE PROGRAM IRRPVERS ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

7. Refresh the PROGRAM class.
SETROPTS WHEN(PROGRAM) REFRESH

8. Contact your system programmer to complete this step.
a. Notify your system programmer to initialize program signature

verification by running the IRRVERLD program which loads and verifies
the program verification module IRRPVERS. For programming
information, see z/OS Security Server RACF System Programmer's Guide.

b. Check with your system programmer to ensure that IRRVERLD executed
successfully. If it did not execute successfully, work with your system
programmer to check error messages. Correct any setup errors and retry.

c. Do not define PROGRAM profiles for the System SSL modules until
IRRVERLD executes successfully.

9. Create the PROGRAM class profiles to indicate that the System SSL modules
must be signed. The load should fail if the signature cannot be verified and
auditing should occur for failure only. If your installation requires event
logging for the signature verification, see the RALTER and RDEFINE
commands in the z/OS Security Server RACF Command Language Reference for
customizing the SIGAUDIT operand within the SIGVER segment.

System SSL and FIPS 140-2

Chapter 4. System SSL and FIPS 140-2 23

Note: Because of space constraints, the command examples appear on two
lines. However, the command should be entered completely (on one line) on
your system.

RDEFINE PROGRAM GSKSSL ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

RDEFINE PROGRAM GSKSSL64 ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

RDEFINE PROGRAM GSKS31F ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

RDEFINE PROGRAM GSKS64F ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

RDEFINE PROGRAM GSKCMS31 ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

RDEFINE PROGRAM GSKCMS64 ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

RDEFINE PROGRAM GSKC31F ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

RDEFINE PROGRAM GSKC64F ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

RDEFINE PROGRAM GSKSRVR ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

RDEFINE PROGRAM GSKKYMAN ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

RDEFINE PROGRAM GSKSRBRD ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

RDEFINE PROGRAM GSKSRBWT ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

10. Refresh the PROGRAM class.

SETROPTS WHEN(PROGRAM) REFRESH

Performance guideline
RACF can use virtual lookaside facility (VLF) to cache signature verification data
in order to improve the performance of signature verification of signed program
objects. This in turn can improve the load time of the signed System SSL program
objects. For more information about using VLF see VLF considerations for program
signature verification in z/OS Security Server RACF System Programmer's Guide.

System SSL and FIPS 140-2

24 z/OS V2R1.0 System SSL Programming

Certificate stores
To use FIPS mode, certificates can be stored in either a SAF key ring, PKCS #11
token, or a FIPS mode key database. All certificates in a certificate chain to be used
by a FIPS enabled application must use algorithms and key sizes as specified in
Table 6 on page 19.

SAF key rings and PKCS #11 tokens
Provided a certificate and its signers chain use only valid algorithms and key sizes,
then there are no changes that are required if using a SAF key ring or a PKCS #11
token. A SAF key ring or PKCS #11 token may contain certificates with keys sizes
or algorithms that are not supported in FIPS mode if those certificates are never
used while executing in FIPS mode. While executing in FIPS mode, if an attempt to
use a certificate with unsupported key size or algorithms is made, then the process
fails. The corrective action is to either add/replace certificates with key sizes and
algorithms that are valid in FIPS mode, or execute in non-FIPS mode.

The gskkyman utility runs in non-FIPS mode when managing PKCS #11 tokens. It
is therefore possible to add certificates/keys with algorithms or key sizes that are
not supported if the PKCS #11 token is later used while executing in FIPS mode.

Key database files
To use a key database in FIPS mode, it must be created as a FIPS mode database.
Key databases that are created through gskkyman not explicitly specifying FIPS
during creation, or created through an application not executing in FIPS mode,
cannot be used by an application executing in FIPS mode. To create a FIPS mode
key database using the gskkyman utility, see “Creating, opening, and deleting a
key database file” on page 486. To create a FIPS mode key database using the
Certificate Management Services API, the application must start in FIPS mode (see
“gsk_fips_state_set()” on page 260).

The following are key points when using FIPS key databases:
v Only certificates that meet the requirements for FIPS (see Table 6 on page 19) can

be added to a FIPS key database.
v A FIPS key database may only be modified if executing in FIPS mode. When

opening an existing FIPS key database, the gskkyman utility ensures that it is
executing in FIPS mode. If an application modifies the key database by using the
Certificate Management Services (CMS) APIs, then it too must ensure that it is
executing in FIPS mode.

v A FIPS key database can be used in non-FIPS mode if it is opened for read only.
v A non-FIPS key database cannot be opened while executing in FIPS mode.

The gskkyman utility automatically detects when a FIPS mode key database is
opened, and executes in FIPS mode. This ensures that only certificates or certificate
requests that meet the FIPS mode requirements in Table 6 on page 19 may be
added to the key database.

Application changes
To use System SSL in FIPS mode, application changes are required. By default, all
applications that use System SSL execute in non-FIPS mode. The application must
request that System SSL execute in FIPS mode in the very early stages of
interaction with the System SSL API. The application does this by invoking the
function gsk_fips_state_set() (see “gsk_fips_state_set()” on page 260). To set FIPS

System SSL and FIPS 140-2

Chapter 4. System SSL and FIPS 140-2 25

mode, gsk_fips_state_set() must be executed before all other System SSL functions
except for gsk_get_cms_vector(), gsk_get_ssl_vector() and gsk_fips_state_query().
It is possible to switch to non-FIPS mode later. It is not possible to switch from
non-FIPS mode to FIPS mode at any time.

The FIPS mode setting applies to the entire process. Once set, then all threads of
the same process execute in FIPS mode. If any thread switches to non-FIPS mode,
then all threads in the same process execute in non-FIPS mode.

When executing in FIPS mode and a severe cryptographic problem is encountered,
one of the following return codes is returned from the API executing at the time of
failure. These return codes should be treated as severe and the application should
be terminated and restarted. If execution continues, all APIs except for
gsk_get_cms_vector(), gsk_get_ssl_vector(), gsk_fips_state_query(),
gsk_query_crypto_level(), and gsk_strerror() fails.
v CMSERR_BAD_RNG_OUTPUT - Failure during random number generation
v GSK_ERR_RNG, GSK_ERROR_RNG - Failure during random number generation
v CMSERR_FIPS_KEY_PAIR_CONSISTENCY - Failure when generating either an

RSA or DSA key pair
v CMSERR_KATPW_FAILED - Failure was encountered by the gsk_perform_kat()

API when performing known answer tests against the System SSL cryptographic
algorithms.

v CMSERR_KATPW_ICSF_FAILED - Failure was encountered by the
gsk_perform_kat() API when performing known answer tests using ICSF.

The sample files (see Appendix B, “Sample C++ SSL files,” on page 617) client.cpp
and server.cpp demonstrate the use of gsk_fips_state_set() to set the application to
run in FIPS mode. In both cases, the gsk_fips_state_set() function is invoked
before any other System SSL function.

SSL started task
The System SSL started task (GSKSRVR) executes in non-FIPS mode by default. In
order for the GSKSRVR started task to execute in FIPS mode, environment variable
GSK_FIPS_STATE must be specified and set to GSK_FIPS_STATE_ON in the envar
file in the GSKSRVR home directory. If the GSKSRVR is unable to execute in FIPS
mode (for example, the Level 3 FMID JCPT411 is not installed), it executes in
non-FIPS mode after issuing message GSK01054E (see “SSL started task messages
(GSK01nnn)” on page 593).

Sysplex session ID cache
GSKSRVR must be running in FIPS mode to maintain Sysplex Session ID cache
entries for SSL server applications executing in FIPS mode. An SSL server
application executing in FIPS mode caches its session in the Sysplex Session cache
provided GSKSRVR is also executing in FIPS mode. An SSL server application
executing in non-FIPS mode is able to cache its session in the Sysplex Session
cache if GSKSRVR is executing in either FIPS mode or non-FIPS mode.

An SSL server application executing in FIPS mode is only able to resume a Sysplex
Session cached session if it was for a session that executed in FIPS mode when the
cache entry was created. Non-FIPS SSL server applications can resume FIPS and
non-FIPS sessions that are cached in the Sysplex Session cache.

System SSL and FIPS 140-2

26 z/OS V2R1.0 System SSL Programming

SSL servers executing in non-FIPS mode on systems with a back-level GSKSRVR
are able to resume FIPS and non-FIPS sessions that are cached in the Sysplex
Session cache by systems where the System SSL started task is executing in FIPS
mode.

System SSL and FIPS 140-2

Chapter 4. System SSL and FIPS 140-2 27

28 z/OS V2R1.0 System SSL Programming

Chapter 5. Writing and building a z/OS System SSL
application

This topic describes how to write, build, and run a secure socket layer (SSL)
application that uses the System SSL programming interfaces. You can write both
client and server applications using the System SSL (TLS/SSL) programming
interfaces.

In Version 1 Release 2 of z/OS, a new set of functions were added that superseded
some functions from previous System SSL releases. The functions that were
superseded are referred to collectively as "the deprecated SSL interface". It is
suggested that new application programs do not use the deprecated SSL interface.
For a complete list and descriptions of the suggested APIs, see Chapter 7, “API
reference,” on page 49. See Chapter 9, “Deprecated Secure Socket Layer (SSL)
APIs,” on page 435 for more information about deprecated APIs .

Note: When migrating from the deprecated SSL interface, the entire System SSL
application must be migrated. The application must not contain a mixture of
deprecated and superseding APIs.

In addition to writing the SSL applications, you must have a certificate repository
available for the application. The certificate repository can be a key database file,
PKCS #11 token, or SAF key ring. See Chapter 10, “Certificate/Key management,”
on page 469 for details about creating and managing key database files or PKCS
#11 tokens. For SAF key rings, see the RACDCERT command information in z/OS
Security Server RACF Command Language Reference for more information.

Sample programs using the new APIs are shipped in /usr/lpp/gskssl/examples.

Writing a System SSL source program

The first step in creating a System SSL application is to write the source program
using the System SSL programming interfaces. See Chapter 7, “API reference,” on
page 49 for a description of the format of the System SSL programming interfaces.

Before establishing a secure connection, SIGPIPE signals should be set to be
ignored or a signal handler should be defined. TCP/IP functions can cause
SIGPIPE signals. When the signal is ignored, TCP/IP reflects the signal as an
EPIPE error for the TCP/IP functions.

Create an SSL environment
For both the client and server System SSL programs, you must initialize the System
SSL environment using the programming interfaces associated with the SSL
environment layer.

gsk_environment_open()
Will define and obtain storage for the SSL environment and return an
environment handle to be used on subsequent API invocations.

gsk_attribute_set...()
Sets environment attributes such as:

© Copyright IBM Corp. 1999, 2013 29

v The SSL protocol version to be used: SSL Version 2.0, SSL Version 3.0,
TLS Version 1.0, TLS Version 1.1, and/or TLS Version 1.2.

v The key database to be used. (key database file, SAF key ring or z/OS
PKCS #11 token)

v The password for the key database. This can be specified directly by the
application or by using a stashed password file. See Chapter 10,
“Certificate/Key management,” on page 469 for details about creating a
stashed password file.

Note: When using SAF key rings or z/OS PKCS #11 tokens, the
password and stash file must not be specified.

v The amount of time the SSL session identifier information is valid. By
using already negotiated and agreed to SSL session identifier
information, System SSL can reduce the amount of data exchanged
during the SSL handshake that occurs during the
gsk_secure_socket_init() call.

gsk_environment_init()
Initializes the SSL environment.

This example code illustrates how to call the environment layer programming
interface from a client or server System SSL program. In this example, TLS Version
1.0 support is requested, /keyring/key.kdb is the key database that is used, the
password for the key database is "password", and default values are taken for the
remaining SSL environment variable attributes.

gsk_handle env_handle;
int rc;

/* create the SSL environment */
rc = gsk_environment_open(&env_handle);

/* set environment attributes */
rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_SSLV2, GSK_PROTOCOL_SSLV2_OFF);

/* By default, SSL V2 protocol is set on */
rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_SSLV3, GSK_PROTOCOL_SSLV3_OFF);

/* By default, SSL V3.0 protocol is set on */
rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_TLSV1, GSK_PROTOCOL_TLSV1_ON);
rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_TLSV1_1, GSK_PROTOCOL_TLSV1_1_OFF);
rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_TLSV1_2, GSK_PROTOCOL_TLSV1_2_OFF);
rc = gsk_attribute_set_buffer(env_handle, GSK_KEYRING_FILE, "/keyring/key.kdb",0);
rc = gsk_attribute_set_buffer(env_handle, GSK_KEYRING_PW, "password",0);

/* initialize environment */
rc = gsk_environment_init(env_handle);

This example code illustrates how to create an SSL environment for a server
System SSL program supporting TLS Version 1.0, TLS Version 1.1, and TLS Version
1.2.

gsk_handle env_handle;
int rc;

/* create the SSL environment */
rc = gsk_environment_open(&env_handle);

/* set environment attributes */
rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_SSLV2, GSK_PROTOCOL_SSLV2_OFF);

/* By default, SSL V2.0 protocol is set on */
rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_SSLV3, GSK_PROTOCOL_SSLV3_OFF);

/* By default, SSL V3.0 protocol is set on */
rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_TLSV1, GSK_PROTOCOL_TLSV1_ON);
rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_TLSV1_1, GSK_PROTOCOL_TLSV1_1_ON);

/* By default, TLS V1.1 protocol is set off */
rc = gsk_attribute_set_enum(env_handle, GSK_PROTOCOL_TLSV1_2, GSK_PROTOCOL_TLSV1_2_ON);

/* By default, TLS V1.2 protocol is set off */
rc = gsk_attribute_set_buffer(env_handle, GSK_KEYRING_FILE, "/keyring/key.kdb",0);

Writing and building a z/OS System SSL application

30 z/OS V2R1.0 System SSL Programming

rc = gsk_attribute_set_buffer(env_handle, GSK_KEYRING_PW, "password",0);

/* initialize environment */
rc = gsk_environment_init(env_handle);

Note: When the environment is initialized, the environment attributes cannot be
changed unless they are also attributes of the secure socket connection. In this case,
they can be changed only for that connection. If changes are necessary to the
environment, a new SSL environment can be created within the same process.

When the System SSL program successfully creates the SSL environment, it must
now perform the steps that are needed to allow the program to communicate with
a peer program. The exact sockets and System SSL calls required to allow the
program to communicate differ depending on whether the program is a client or a
server.

System SSL server program
You can use these sockets and System SSL calls to enable a server program to
communicate with a client program.

To create a stream socket to which client programs can connect, use this function
call:

int server_sock;

server_sock = socket(AF_INET, SOCK_STREAM, 0);

Now that the server program socket is created, bind the socket to a port (for
example, 1234) that is known to the client program using this function call:

int rc;
int namelength;
struct sockaddr_in name;

nameLength = sizeof(name);
memset(&name, '\0', nameLength);
name.sin_family = AF_INET;
name.sin_port = 1234;
name.sin_addr.s_addr = INADDR_ANY;

rc = bind(server_sock, (struct sockaddr *)&name, nameLength);

To make the server program socket ready to listen for incoming connection request,
use this function call:

int rc;

rc = listen(server_sock, 5); /* allow max of 5 connections */

The server program is now ready to begin accepting connections from client
programs. To accept connections, use these function calls:

int client_sock;
int incomingNameLength;
struct sockaddr_in incomingName;

client_sock = accept(server_sock, (struct sockaddr *)incomingName, &incomingNameLength);

After successfully accepting a connection from a client program, the server
program must establish the secure socket connection which will result in the SSL
handshake being performed. Once the handshake is completed, secure transfer of
application data can be done. The secure socket connection is established with
these attribute values:

Writing and building a z/OS System SSL application

Chapter 5. Writing and building a z/OS System SSL application 31

v The socket descriptor over which the communication is to occur.
v Certificate with label "ServerCertLabel"
v The type of handshake (for example, server) to be performed.
v The set of SSL protocol cipher specifications to be allowed for the secure session

specified using 4-character cipher specifications . (For example, ciphers utilizing
a RSA key exchange with either AES 128/256 or 3DES encryption.) The cipher is
selected by the System SSL server program according to the server's order of
usage preference.

v The 4-character cipher specification list in GSK_V3_CIPHER_SPECS_EXPANDED
is used.

v The address of a routine to be called by System SSL to read data from the socket
for the secure session.

v The address of a routine to be called by System SSL to write data on the socket
for the secure session.
gsk_handle soc_handle;
int rc;
gsk_iocallback local_io = {secureSocRecv, secureSocSend, NULL, NULL, NULL, NULL};

rc = gsk_secure_socket_open(env_handle, &soc_handle);

rc = gsk_attribute_set_numeric_value(soc_handle, GSK_FD, client_sock);
rc = gsk_attribute_set_buffer(soc_handle, GSK_KEYRING_LABEL, "ServerCertLabel",0);
rc = gsk_attribute_set_enum(soc_handle, GSK_SESSION_TYPE, GSK_SERVER_SESSION);
rc = gsk_attribute_set_buffer(soc_handle, GSK_V3_CIPHER_SPECS_EXPANDED, "0035002F000A",0);
rc = gsk_attribute_set_enum(soc_handle, GSK_V3_CIPHERS, GSK_V3_CIPHERS_CHAR4);
rc = gsk_attribute_set_callback(soc_handle, GSK_IO_CALLBACK, &local_io);

rc = gsk_secure_socket_init(soc_handle);

The System SSL program should provide the function to send and receive data
over the application socket. For more information, see “I/O routine replacement”
on page 39. Use these function calls, send() and recv(), to send and receive the
application data.

int secureSocRecv(int fd, void *data, int len, char *user_data) {
return(recv(fd, data, len,0));

}

int secureSocSend(int fd, void *data, int len, char *user_data) {
return(send(fd, data, len,0));

}

After the server program successfully calls gsk_secure_socket_init(), it can now
read and write data securely over the application socket. To read application data
from the application socket, use this code:

int rc;
int buffer_length;
int length_read;
char *data_buffer;

rc = gsk_secure_socket_read(soc_handle, data_buffer, buffer_length, &length_read);

To write application data over the application socket, use this code:
int rc;
int buffer_length;
int length_written;
char *data_buffer;

rc = gsk_secure_socket_write(soc_handle, data_buffer, buffer_length, &length_written);

Once the server program is finished using the application socket to securely send
and receive data, it must free all of the System SSL resources for the SSL session
and close the socket. To free the System SSL resource for the SSL session, use the
gsk_secure_socket_close() call:

Writing and building a z/OS System SSL application

32 z/OS V2R1.0 System SSL Programming

gsk_secure_socket_close(&soc_handle);

To free the resources used by the SSL environment, use the
gsk_environment_close() call:

gsk_environment_close(&env_handle);

Finally, to close the application socket, use this function call:
int rc;
rc = close(client_sock);

System SSL client program
The socket and System SSL API calls used by the client program are very similar to
the calls used by the server program. Rather than accepting connections like a
server program, a client program connects to the server program.

To create a stream socket that the client program can use to connect to the server,
use this function call:

int sock;

sock = socket(AF_INET, SOCK_STREAM,0);

Now that the client program socket is created, connect the socket to the server
program port using this function call:

int rc;
int namelength;
struct sockaddr_in name;
char *ServeHostName;

nameLength = sizeof(name);
memset(&name, '\0', nameLength);
name.sin_family = AF_INET;
name.sin_port = 1234;
name.sin_addr.s_addr = ServerHostName;
rc = connect(sock, (struct sockaddr *)&name, nameLength);

After successfully connecting to the server program, the client program must
establish the secure socket connection. This connection causes the SSL handshake
to be performed. Once the handshake is complete, secure communication of the
application data can be done. This example code establishes the connection using
these attribute values:
v The socket descriptor over which the communication is to occur.
v Certificate with label "THELABEL"
v The type of handshake (client) to be performed.
v The set of SSL protocol cipher specifications to be allowed for the secure session

in client-preferred order specified using 4-character cipher specifications. (For
example, ciphers utilizing a RSA key exchange with either AES 128/256 or 3DES
encryption.)

Note: Although the client is allowed to specify a preference order, an SSL
server might not accept the preference.

v The 4-character cipher specification list in GSK_V3_CIPHER_SPECS_EXPANDED
is used.

v The address of a routine to be called by System SSL to read data from the socket
for the secure session.

Writing and building a z/OS System SSL application

Chapter 5. Writing and building a z/OS System SSL application 33

v The address of a routine to be called by System SSL to write data on the socket
for the secure session.
int rc;
gsk_handle soc_handle;
gsk_iocallback local_io = {secureSocRecv, secureSocSend, NULL, NULL, NULL, NULL};

rc = gsk_secure_socket_open(env_handle, &soc_handle);
rc = gsk_attribute_set_numeric_value(soc_handle, GSK_FD, sock);
rc = gsk_attribute_set_buffer(soc_handle, GSK_KEYRING_LABEL, "THELABEL",0);
rc = gsk_attribute_set_enum(soc_handle, GSK_SESSION_TYPE, GSK_CLIENT_SESSION);
rc = gsk_attribute_set_buffer(soc_handle, GSK_V3_CIPHER_SPECS_EXPANDED, "0035002F000A",0);
rc = gsk_attribute_set_enum(soc_handle, GSK_V3_CIPHERS, GSK_V3_CIPHERS_CHAR4);
rc = gsk_attribute_set_callback(soc_handle, GSK_IO_CALLBACK, &local_io);

rc = gsk_secure_socket_init(soc_handle);

The System SSL program should provide the function to send and receive data
over the application socket. For more information, see “I/O routine replacement”
on page 39. Use these function calls, send() and recv(), to send and receive the
application data.

int secureSocRecv(int fd, void *data, int len, char *user_data) {
return(recv(fd, data, len,0));

}

int secureSocSend(int fd, void *data, int len, char *user_data) {
return(send(fd, data, len,0));

}

After the client program successfully calls gsk_secure_socket_init(), it can now
read and write data securely over the application socket. To read application data
from the application socket, use this code:

int rc;
int buffer_length;
int length_read;
char *data_buffer;

rc = gsk_secure_socket_read(soc_handle, data_buffer, buffer_length, &length_read);

To write application data over the application socket, use this code:
int rc;
int buffer_length;
int length_written;
char *data_buffer;

rc = gsk_secure_socket_write(soc_handle, data_buffer, buffer_length, &length_written);

Once the client program is finished using the application socket to securely send
and receive data, it must free all of the System SSL resources for the SSL session
and close the socket.

To free the System SSL resource for the SSL session, use the
gsk_secure_socket_close() call:

gsk_secure_socket_close(&soc_handle);

To free the resources used by the SSL environment, use the
gsk_environment_close() call:

gsk_environment_close(&env_handle);

Finally, to close the application socket, use this function call:
int rc;
rc=close(sock);

Writing and building a z/OS System SSL application

34 z/OS V2R1.0 System SSL Programming

Building a z/OS System SSL application
1. Write the System SSL source program (see “Writing a System SSL source

program” on page 29).
2. Compile your System SSL source program using the DLL compiler option.
3. Include the /usr/lib/GSKSSL.x or /usr/lib/GSKSSL64.x sidedeck in the prelink

or bind step input.
If using the Certificate Management APIs, include either the
/usr/lib/GSKCMS31.x or /usr/lib/GSKCMS64.x sidedeck in the prelink or bind
step input.

4. Build a key database file or z/OS PKCS #11 token using the gskkyman utility
or create a SAF key ring or PKCS #11 token using the RACDCERT command.
The name of the key database file, z/OS PKCS #11 token, or SAF key ring must
match the name you specified as the GSK_KEYRING_FILE on the
gsk_attribute_set_buffer() API. You need the name of the key database file,
z/OS PKCS #11 token, or SAF key ring and, for key database files, either the
password associated with the key file or the stash file name. The password
must match the password specified on GSK_KEYRING_PW on the
gsk_attribute_set_buffer() API or must be set to NULL if using a SAF key ring
or z/OS PKCS #11 token. Note that the password is case-sensitive. See
Chapter 10, “Certificate/Key management,” on page 469 for information about
how to create a key database file, SAF key ring, or z/OS PKCS #11 token.

Running a z/OS System SSL application
After successfully writing and building the System SSL application and creating
the certificate repository, you can run the System SSL application. To run the
application follow these steps:
1. Ensure that pdsename.SIEALNKE, the PDSE that contains the System SSL

DLLs, is in the MVS™ search order. If it is not in the linklist or LPA, you can
use the STEPLIB DD statement in your JCL or the STEPLIB environment
variable in the shell. For example, in the z/OS shell, issue this command:

export STEPLIB=$STEPLIB:pdsename.SIEALNKE

2. Ensure that the key database file, SAF key ring, or z/OS PKCS #11 token is
accessible to the System SSL application.

3. Run the System SSL application.

Note:

1. SSL applications must be run from within a POSIX environment.
2. Once SSL applications call gsk_initialize() or gsk_environment_open(), they

cannot destroy the LE environment.
3. SSL applications must call SSL APIs from a C program, as they are C APIs.

System SSL application programming considerations
When programming System SSL applications, you should consider the following.
v Will the application need to communicate with other applications using

non-blocking I/O? The socket connections used for communication between
System SSL applications are, by default, blocking. An application attempting to
read or write to a socket is blocked until all expected data is received. This
might not be desirable, because no other processing can occur while the
application is waiting for a read or write to complete.

Writing and building a z/OS System SSL application

Chapter 5. Writing and building a z/OS System SSL application 35

v Will the application need to prompt the client user to select a certificate from a
list during the client authentication process in the SSL handshake? This behavior,
if needed, can be accomplished using a registered callback routine that is
invoked from inside the gsk_secure_socket_init() function call.

v Will the application need to override System SSLs default I/O callback routines
to specify I/O behavior? This can be accomplished by specifying your own
callback routines for receiving and sending data.

v Will application-specific data need to be available to the SSL callback routines? If
needed, application-specific data can be made available using the
gsk_attribute_set_buffer() and gsk_attribute_get_buffer() function calls.

v Considering both security and performance benefits, how long should SSL
sessions be allowed to remain active? Security conscious applications should
keep the session timeout values very low to ensure keys are generated
frequently to avoid security breaches. Applications that are more performance
conscious than security conscious should have longer session timeout values and
a larger cache size.

v Will the application need to initiate session renegotiation? If needed, the
application can call the gsk_secure_socket_misc API to renegotiate the
communications session to establish a new session key or have the session
cipher reset. Notification callback routines allow the application to take specific
actions during a session renegotiation.

v Will the application need to add functionality to the Transport Layer Security
(TLS) protocol? Applications can define a TLS extension to the SSL environment
or connection by calling the gsk_attribute_set_tls_extension() function.

v Will a "Suite B Compliant" TLS V1.2 session be required? System SSL allows TLS
client and server applications to specify a profile compliant with Suite B
Cryptography as defined in RFC 5430: Suite B Profile for Transport Layer Security
(TLS). This profile restricts the cryptographic algorithms used for the session to
the set of algorithms supported by Suite B Cryptography.

Non-Blocking I/O
Applications wanting to communicate securely to one another may establish a
secure connection. Each application opens a socket and attempts to establish an
SSL connection. After an SSL connection is established, the applications may now
use the socket to exchange data securely. The default (blocking) mode of a socket
requires an application attempting to read or write to the socket to block until all
expected data is received. This blocking may not be desirable since no other
processing may occur while the application is waiting for a read or write to
complete. One solution to this problem is the use of non-blocking sockets.

When a socket is set up as non-blocking, reads and writes to the socket do not
cause the application to block and wait. Instead the read or write function will
read/write only the data currently available (if any). If the entire read/write is not
completed, a status indicator is returned. The application might try read/write
again later.

Non-Blocking socket primer
When a server wants to communicate with clients by using a socket, these routines
are used:

Table 7. Server communicating with clients by way of a socket

Routine Purpose

1) socket() Create a socket

Writing and building a z/OS System SSL application

36 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc5430.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5430.txt.pdf

Table 7. Server communicating with clients by way of a socket (continued)

Routine Purpose

2) bind() Register the socket

3) listen() Indicate willingness to accept connections

4) accept() Accept a connection request

5) Read request

6) Write response

7) Return to step 4

Once the accept() routine is called, the server blocks until data is available for the
socket. Problems arise when the server wants to monitor multiple sockets
simultaneously or if the server wants to perform other tasks until data is available
on the socket. However, by configuring the socket as non-blocking, these problems
may be avoided. For more information, see “Enable/disable non-blocking mode”
on page 38. When using non-blocking sockets, the select() routine is used to
instruct the system to notify the server application when data is available on a
particular socket.

Table 8. Using the select() routine

Routine Purpose

1) socket() Create a socket

2) bind() Register the socket

3) listen() Indicate willingness to accept connections

4) Set socket as non-blocking See “Enable/disable non-blocking mode” on page 38

5) select() Monitor a number of sockets

6) accept() Accept a connection request

7) Read request If unable to read all data, return to step 5

8) Write response If unable to write all data, return to step 5

9) Return to step 4

Affected SSL functions
These functions are affected by the use of non-blocking sockets with SSL.

gsk_secure_socket_init()
During the SSL handshake, the io_setsocketoptions() routine is called by
the gsk_secure_socket_init() routine before initiating the SSL handshake
(GSK_SET_SOCKET_STATE_FOR_HANDSHAKE) and again upon
completion of the SSL handshake
(GSK_SET_SOCKET_STATE_FOR_READ_WRITE). The default
io_setsocketoptions() routine puts the socket into blocking mode for
GSK_SET_SOCKET_STATE_FOR_HANDSHAKE and restores the original
mode for GSK_SET_SOCKET_STATE_FOR_READ_WRITE. In order to
perform a non-blocking SSL handshake, an application supplied
io_setsocketoptions() callback must be provided to control the state of the
socket. When the socket is in non-blocking mode, gsk_secure_socket_init()
may return GSK_WOULD_BLOCK_READ or
GSK_WOULD_BLOCK_WRITE. This error indicates that System SSL was

Writing and building a z/OS System SSL application

Chapter 5. Writing and building a z/OS System SSL application 37

unable to read or write the entire message. When this occurs, the
application should call select() and then call gsk_secure_socket_init()
again.

gsk_secure_socket_read()
Once the socket is configured as non-blocking, any calls to
gsk_secure_socket_read() can potentially return GSK_WOULD_BLOCK.
When this occurs, the application should call select() and then call
gsk_secure_socket_read() again.

gsk_secure_socket_write()
Once the socket is configured as non-blocking, any calls to
gsk_secure_socket_write() can potentially return GSK_WOULD_BLOCK.
When this occurs, the application should call select() and then call
gsk_secure_socket_write() again.

Enable/disable non-blocking mode: Once a socket is created using the socket()
call, it may be set to non-blocking as follows:

#include "sys/ioctl.h"
int on =1;
int off =0;

//Enable non-blocking
ioctl (mySocket, FIONBIO, &(on));
//Disable non-blocking
ioctl (mySocket, FIONBIO, (char *) &(off));

Differences in SSL and unsecured non-blocking mode:

Partial Data
An unsecured socket in non-blocking mode returns the partial data
received or written. Since System SSL processes encrypted data, it is not
possible to decrypt a message until the entire message is received, making
it impossible to return partial data.

Error Indicator
When non-blocking mode is used on a non-secure socket, the status
indicator is generally found by checking the errno variable, which is
normally EWOULDBLOCK. System SSL does not set the errno variable.
Instead the value returned from gsk_secure_socket_read() or
gsk_secure_socket_write() is set to GSK_WOULD_BLOCK.
gsk_secure_socket_init() returns either GSK_WOULD_BLOCK_READ or
GSK_WOULD_BLOCK_WRITE.

Client authentication certificate selection
SSL enables the application to prompt the client user to select a certificate from a
list during the client authentication process in the SSL handshake.

This is accomplished with a registered callback routine that is invoked from inside
the gsk_secure_socket_init() function call. This topic provides an overview of that
code.

The client application code must provide these functions:
v Register a standard C linkage callback routine using the

gsk_attribute_set_callback() function call.
v Implement the callback routine that performs these functions:

Writing and building a z/OS System SSL application

38 z/OS V2R1.0 System SSL Programming

– Get the list of available certificates using the gsk_attribute_get_data() function
call with the GSK_DATA_ID_SUPPORTED_KEYS option. This returns a list of
labels from the key data base file, SAF key ring, or z/OS PKCS #11 token.

– Display the list of labels to the user.
– Prompt the user to select the label from the list
– Set the label to be used with a gsk_attribute_set_buffer() function call with

the GSK_KEYRING_LABEL option.
– Return to SSL with the return value set to indicate use client authentication.
– If the user elects to not use any of the certificates in the list, return with the

value set to skip client authentication. A certificate is not sent to the partner,
but the SSL handshake completes. The server decides whether to continue or
close the connection.

– Optionally, the application can display certificate information using the
gsk_get_cert_by_label() function call.

– Optionally, the application can use the gsk_attribute_get_data() function call
with the GSK_DATA_ID_SERVER_ISSUERS option to display a list of server
signer certificates.

I/O routine replacement

Callback routine for I/O
SSL allows applications to specify how I/O is to take place. This is done by
specifying callback routines for receiving and sending data. The contents of this
routine can be very unique per application. SSL has an internally defined default
routine which is used if gsk_attribute_set_callback() is not used to override I/O
routines. The default assumes that TCP/IP is being used. For reading it executes a
recv() and for write a send(). If not using TCP/IP, applications should also
consider the specification of the getpeername and setsocketoptions callback
routine. It also depends on TCP/IP as being the transport layer protocol.

Note: Application provided I/O routines must use standard C linkage
conventions.

Use of user data
Some complex applications require application-specific data to be available in the
SSL callbacks. SSL enables this with the gsk_attribute_set_buffer() and
gsk_attribute_get_buffer() function calls. In addition, the I/O callbacks pass a
pointer to the user data.

These are the steps that need to be taken to effectively use the user data functions:
v Issue the gsk_secure_socket_open() function. This returns a soc_handle.
v To set the user data for a connection issue:

– gsk_attribute_set_buffer(soc_handle, GSK_USER_DATA, user_data,
sizeof(user_data));

– This function call copies the user_data into an area of storage owned by SSL.
v The address of the SSL copy of the user data is passed as a parameter to the

user-specified read, write, getpeername, and set_socket_options callbacks.
v Other callbacks pass the soc_handle as a parameter to the callback. To find the

address of the copy of user data associated with a particular connection, issue:
– gsk_attribute_get_buffer(soc_handle, GSK_USER_DATA, &user_data_ptr,

&user_data_size);

Writing and building a z/OS System SSL application

Chapter 5. Writing and building a z/OS System SSL application 39

– You can modify the contents of the SSL copy of the user data, but you may
not free or re-allocate the SSL user data. The SSL user data is freed when the
connection is closed with the gsk_secure_socket_close() function call.

You can point to other application data from the SSL user data area. However, it is
up to the application to free this other application data before the connection is
closed.

Session ID (SID) cache
The SSL protocol has a mechanism built in to allow for faster secure connections
between a client/server pair. There is a concept of an SSL Session that allows this
to happen. The first time a client and server connect, cryptographic characteristics
of that connection are saved into a Session Cache entry. A Session is identified by a
Session ID (SID). The cached cryptographic components (SID cache entry) allows
for new bulk encryption keys to be generated with subsequent SSL handshakes
between the same client/server pair. The subsequent handshakes would be
abbreviated since much of the data used to generate keys is in the SID cache entry.
This abbreviated handshake does not require public key encryption to take place.

Public key encryption is very time consuming, so avoiding it improves
performance for clients and servers using SSL. A SID cache entry exists for a
limited time. Take care when specifying how long an SSL session is allowed to live.
Setting the SID cache timeout or number of SID cache entries to ZERO turns off
SID caching, causing a full handshake to be completed for every connection.

Applications need to be sensitive to both security and performance issues. Security
conscious applications should keep the session timeout values very low to ensure
keys are generated frequently to avoid security breaches. Applications that are
more performance conscious than security conscious should have longer session
timeouts and a larger cache size.

Session ID (SID)
SID caching for the client is done internally within the clients address space, and
each SSL environment has its own cache. The server can either cache within its
address space per SSL environment or externally through the GSKSRVR for
SYSPLEX caching. SYSPLEX caching allows session information to be shared
among like servers or processes. See Chapter 11, “SSL started task,” on page 535
for more information about Sysplex caching.

Modifying SSL session caching parameters can help tune the security performance
characteristics of SSL enabled servers and clients. The contents of the internal client
and server caches are controlled by the setting of an expiration lifetime for an SSL
session ID entry and the number of entries that can reside concurrently in the
cache. Separate caches exist for SSL V2 and SSL V3 (TLS) sessions. The internal SSL
SID cache is fixed to a configurable number of entries defined when the SSL
environment is being established. By default, the SSL V2 cache size is 256 entries
and can be modified through the GSK_V2_SIDCACHE_SIZE environment
attribute. The default expiration (or timeout) is 100 seconds and can be modified
through the GSK_V2_SESSION_TIMEOUT environment attribute. By default, the
SSL V3 (TLS) cache size is 512 entries and can be modified through the
GSK_V3_SIDCACHE_SIZE environment attribute. The default expiration (or
timeout) is 24 hours and can be modified through the
GSK_V3_SESSION_TIMEOUT environment attribute. There is no way to remove or
to reuse entries for other connections except for repeated connections between the
same client/server pair.

Writing and building a z/OS System SSL application

40 z/OS V2R1.0 System SSL Programming

Each time a full handshake is performed and caching is active (cache size !=0), a
SID cache entry is created and added to the cache. During the add process,
detected expired SID entries are removed. If the cache reaches its size limit, an
entry is removed from the cache and the newly created SID entry is added.

Session ID cache replacement
The list of options for extending SID caching functionality can become quite long
so an external SID cache API was created for those who are more discriminating
about managing SID cache data. There are several callbacks used for external SID
cache access.

Note that there are probably few applications where using an external SID cache
makes sense. Some suggested environments where it might be considered is in a
server configuration where multiple instances of a server exist for workload
balancing purposes. It might be desirable to have a single SID cache to be used by
all of the processes which each server is running in. Usually this can be avoided by
writing applications which are multi threaded. All threads would use the single
internal SID cache buffer.

Format:
typedef gsk_data_buffer * (*ptgsk_getcache) (

const unsigned char * session_id,
unsigned int session_id_length,
int ssl_version);

typedef gsk_data_buffer * (*ptgsk_putcache) (
gsk_data_buffer * ssl_session_data,
const unsigned char * session_id,
unsigned int session_id_length,
int ssl_version);

typedef void (*ptgsk_deletecache) (
const unsigned char * session_id,
unsigned int session_id_length,
int ssl_version);

typedef void (*ptgsk_freecache) (
gsk_data_buffer * ssl_session_data);

typedef struct _gsk_sidcache_callback {
ptgsk_getcache Get;
ptgsk_putcache Put;
ptgsk_deletecache Delete;
ptgsk_freecache FreeDataBuffer;

} gsk_sidcache_callback;

Callbacks:

Get
Specifies the routine System SSL calls to search the session ID cache for the
entry that matches the passed values in sessionID, sessionIDLen, and
SSLVersion. The value returned by this routine is a pointer to a malloc'ed
gsk_data_buffer structure for the sslSessionData that contains the session id
cache entry.

Put
Specifies the routine System SSL calls to add an entry to the session ID cache.
The passed in values sessionID, sessionIDLen, SSLVersion and
sslSessionData are used to define the entry. This routine is responsible for
getting storage to hold the entry. The value returned by this routine is either

Writing and building a z/OS System SSL application

Chapter 5. Writing and building a z/OS System SSL application 41

NULL if unable to allocate storage or a pointer to a gsk_data_buffer structure
containing the sslSessionData that was passed into the routine.

Delete
Specifies the routine System SSL calls to delete an entry from the session ID
cache. sessionID, sessionIDLen and SSLVersion are used to determine which
entry is deleted.

FreeDataBuffer
Specifies the routine that System SSL calls to free memory that was returned
by the Get session id cache callback routine.

Parameters:

sessionID
The buffer containing the Session data

sessionIDLen
The length of the entry for the SID cache buffer entry.

SSLVersion
The version of the SSL Protocol.

data
This is the buffer that is created by the external SID cache process to transfer
the SID cache entry to SSL.

Session renegotiation notification
SSL provides a mechanism to renegotiate the communications session to establish a
new session key or have the session cipher reset. This can be initiated by either the
SSL server or SSL client through the gsk_secure_socket_misc API. System SSL
allows applications to specify callback routines for receiving notifications when SSL
is commencing and completing a session renegotiation. System SSL calls the
specified routines and supply the connection handle for session identification,
indicating that new session keys are being negotiated. This allows the user
application to take specific actions during a session renegotiation, such as
suspending application communications until the negotiation is complete.

TLS extensions
System SSL allows applications to specify TLS extensions that add functionality to
the Transport Layer Security (TLS) protocol. TLS extensions may be set by both
TLS clients and servers. The use of TLS extensions is compatible with earlier
versions: communication is possible between TLS clients that support TLS
extensions and TLS servers that do not support TLS extensions, and vice versa.

To use TLS extensions in a TLS client/server session, the
gsk_attribute_set_tls_extension() SSL API must be used to define the extensions
that the TLS client or server supports. TLS extensions may be defined:
v After gsk_environment_open() is performed but before the

gsk_environment_init() call
v After gsk_secure_socket_open() is performed but before the

gsk_secure_socket_init() call

TLS extensions that are defined for an SSL environment applies to all connections
within the environment. Each connection can define additional TLS extensions to
be used for that connection, or may override TLS extension settings that are
defined for the environment. System SSL currently provides support for the
following TLS extensions:

Writing and building a z/OS System SSL application

42 z/OS V2R1.0 System SSL Programming

Truncated HMAC
Truncates the HMAC used to authenticate record layer communications to
80 bits

Maximum Fragment Length
Allows the client to use a fragment length smaller than the TLS default of
16,384 bytes when transmitting messages

Server Name Indication
Allows the client to tell the server the name of the server it wants to
connect to

Setting server side extensions
The following example illustrates how to define each of the supported System SSL
TLS extensions for a TLS server. The extensions are defined at the environment
level and are optional. Optional allows the TLS server to communicate with TLS
clients that support the extensions, including TLS clients that do not support the
extensions.
int rc;
gsk_handle envHandle;

gsk_tls_extension tls_extn[3];
char server1[] = "server1.ibm.com";
char server2[] = "server2.ibm.com";
char server3[] = "server3.ibm.com";
char label1[] = "Server1 Certificate";
char label2[] = "Server2 Certificate";
char label3[] = "Server3 Certificate";
gsk_server_key_label serverLabelPairs[] = {{server1, label1},

{server2, label2},
{server3, label3}};

/*
* Open the SSL environment
*/

rc = gsk_environment_open(&envHandle);

/*
* Set truncated HMAC extension
*/

memset(&tls_extn[0], 0, sizeof(gsk_tls_extension));
tls_extn[0].extId = GSK_TLS_EXTID_TRUNCATED_HMAC;
tls_extn[0].required = FALSE; /* optional extension */
tls_extn[0].u.truncateHmac = TRUE; /* enable extension */
rc = gsk_attribute_set_tls_extension(envHandle, &tls_extn[0]);

/*
* Set maximum fragment length extension
*/

memset(&tls_extn[1], 0, sizeof(gsk_tls_extension));
tls_extn[1].extId = GSK_TLS_EXTID_SERVER_MFL;
tls_extn[1].required = FALSE; /* optional extension */
tls_extn[1].u.maxFragmentLength = GSK_TLS_MFL_ON;

/* enable extension */
rc = gsk_attribute_set_tls_extension(envHandle, &tls_extn[1]);

/*
* Set server name indication extension
*/

memset(&tls_extn[2], 0, sizeof(gsk_tls_extension));
tls_extn[2].extId = GSK_TLS_EXTID_SNI_SERVER_LABELS;
tls_extn[2].required = FALSE; /* optional extension */
tls_extn[2].u.serverLabels.setSni = TRUE;

/* enable extension */
tls_extn[2].u.serverLabels.unrecognized_name_fatal = TRUE;

/* unrecognized name is fatal */
tls_extn[2].u.serverLabels.count = 3;
tls_extn[2].u.serverLabels.serverKeyLabel = serverLabelPairs;
rc = gsk_attribute_set_tls_extension(envHandle, &tls_extn[2]);

Writing and building a z/OS System SSL application

Chapter 5. Writing and building a z/OS System SSL application 43

/*
* Initialize the SSL environment
*/

rc = gsk_environment_init(envHandle);

Setting client side extensions
The following example illustrates how to define each of the supported System SSL
TLS extensions for a TLS client. The HMAC and maximum fragment extensions
are defined at the environment level. The server name indication extension is
defined, while the HMAC extension is modified for a particular connection. The
environment level extensions are being defined as required and connection level
extensions as optional. Required extensions require that the partner TLS server
support the specified TLS extensions. If it does not support the extensions, the TLS
handshake fails.
int rc;
gsk_handle envHandle;
gsk_handle conHandle;

gsk_tls_extension tls_extn_env[2];
gsk_tls_extension tls_extn_con[2];
char server1[] = "server1.ibm.com";
char server2[] = "server2.ibm.com";
char * serverNames[] = {server1, server2};

/*
* Open the SSL environment
*/

rc = gsk_environment_open(&envHandle);

/*
* Set truncated HMAC extension
*/

memset(&tls_extn_env[0], 0, sizeof(gsk_tls_extension));
tls_extn_env[0].extId = GSK_TLS_EXTID_TRUNCATED_HMAC;
tls_extn_env[0].required = TRUE; /* required extension */
tls_extn_env[0].u.truncateHmac = TRUE; /* enable extension */
rc = gsk_attribute_set_tls_extension(envHandle,&tls_extn_env[0]);

/*
* Set maximum fragment length extension
*/

memset(&tls_extn_env[1], 0, sizeof(gsk_tls_extension));
tls_extn_env[1].extId = GSK_TLS_EXTID_CLIENT_MFL;
tls_extn_env[1].required = TRUE; /* required extension */
tls_extn_env[1].u.maxFragmentLength = GSK_TLS_MFL_4096;

/* set 4096 bit fragment length */
rc = gsk_attribute_set_tls_extension(envHandle,&tls_extn_env[1]);

/*
* Initialize the SSL environment
*/

rc = gsk_environment_init(envHandle);

/*
* Open the SSL connection
*/

rc = gsk_secure_socket_open(envHandle, &conHandle);

/*
* Set server name indication extension
*/

memset(&tls_extn_con[0], 0, sizeof(gsk_tls_extension));
tls_extn_con[0].extId = GSK_TLS_EXTID_SNI_CLIENT_SNAMES;
tls_extn_con[0].required = FALSE; /* optional extension */
tls_extn_con[0].u.clientSnameList.setSni = TRUE;

/* enable extension */
tls_extn_con[0].u.clientSnameList.unrecognized_name_fatal = TRUE;

/* unrecognized name is fatal */
tls_extn_con[0].u.clientSnameList.count = 2;
tls_extn_con[0].u.clientSnameList.serverNames = serverNames;
rc = gsk_attribute_set_tls_extension(envHandle,&tls_extn_con[0]);

/*
* Modify truncated HMAC extension
*/

Writing and building a z/OS System SSL application

44 z/OS V2R1.0 System SSL Programming

memset(&tls_extn_con[0], 0, sizeof(gsk_tls_extension));
tls_extn_con[0].extId = GSK_TLS_EXTID_TRUNCATED_HMAC;
tls_extn_con[1].required = FALSE; /* optional extension */
tls_extn_con[0].u.truncateHmac = TRUE; /* enable extension */
rc = gsk_attribute_set_tls_extension(envHandle,&tls_extn_con[1]);

/*
* Initialize the SSL connection
*/

rc = gsk_secure_socket_init(conHandle)

Suite B cryptography support
System SSL allows TLS client and server applications to specify a profile compliant
with Suite B Cryptography as defined in RFC 5430: Suite B Profile for Transport
Layer Security (TLS). This profile restricts the cryptographic algorithms that are
used for the session to the set of algorithms that are supported by Suite B
Cryptography. Communication is possible between TLS clients that require Suite B
cryptography and TLS servers that do not explicitly support Suite B cryptography,
and vice versa, provided the non-Suite B entity supports the Suite B compliant
cryptographic algorithms.

Suite B cryptography does not define cryptographic algorithms. Instead, it specifies
the cryptographic algorithms that can be used in a “Suite B Compliant” TLS V1.2
session. Suite B requires the key establishment and authentication algorithms that
are used in TLS V1.2 sessions to be based on Elliptic Curve Cryptography, and the
encryption algorithm to be AES.

The security levels that are defined in the Suite B profile are:
v 128-bit security level, which corresponds to an elliptic curve size of 256 bits and

AES-128
v 192-bit security level, which corresponds to an elliptic curve size of 384 bits and

AES-256

Cipher suites that are allowed for the 128-bit and 192-bit Suite B profiles are:

Table 9. Suite B supported cipher suites

Cipher Suite 128-bit security level 192-bit security level

C02B X

C023 X

C02C X

C024 X

For more information about the cipher suites, see Appendix C, “Cipher suite
definitions,” on page 619.

The Suite B standard specifies the elliptic curves that are allowed in a TLS
connection. The following is a list of the curves that are allowed for the 128-bit and
192-bit Suite B profiles.

Table 10. Supported curves

Named Curve 128-bit security level 192-bit security level

secp256r1 – {1.2.840.10045.3.1.7} X

secp384r1 – {1.3.132.0.34} X

Server and client certificates that are used to establish a Suite B-compliant
connection must be signed with ECDSA.

Writing and building a z/OS System SSL application

Chapter 5. Writing and building a z/OS System SSL application 45

http://www.rfc-editor.org/rfc/pdfrfc/rfc5430.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5430.txt.pdf

v For certificates used at the 128-bit security level, the subject public key must use
the secp256r1 curve and be signed with either the secp384r1 curve or the
secp256r1 curve.

v For certificates used at the 192-bit security level, the subject public key must use
the secp384r1 curve and be signed with the secp384r1 curve.

Whenever a Suite B-compliant client and a Suite B-compliant server establish a TLS
V1.2 session, only Suite B algorithms are employed. For more information about
the cipher suites, see Appendix C, “Cipher suite definitions,” on page 619.

Note that in a fully Suite B-compliant session, the TLS 1.2 protocol must be used to
establish an SSL connection. Therefore, when System SSL is configured to run in a
Suite B-compliant mode, any non-TLS 1.2 protocols that are configured for the
connection are ignored and the TLS 1.2 protocol is activated, if not already active.

Additionally, Suite B also places restrictions on which cipher suites, elliptical
curves, and signature algorithms can be used in a Suite B-compliant session. When
System SSL is running in a Suite B mode, any cipher suites, cipher format,
elliptical curves, and signature algorithms that are configured are ignored. Only
the cipher suites, cipher format, elliptical curves, and signature algorithms for the
profile that is chosen for the Suite B session are used by System SSL to establish
the connection.

Writing and building a z/OS System SSL application

46 z/OS V2R1.0 System SSL Programming

Chapter 6. Migrating from deprecated SSL interfaces

In Version 1 Release 2 of z/OS, a new set of functions were added that superseded
some functions from previous System SSL releases. The functions that were
superseded are referred to collectively as "the deprecated SSL interface". It is
suggested that new application programs do not use the deprecated SSL interface.
For application programs that currently use the deprecated SSL interface, this topic
describes how to migrate to the most recent interface.

Note: When migrating from the deprecated SSL interface, the entire System SSL
application must be migrated. The application must not contain a mixture of
deprecated and superseding APIs.
v Replace manually initializing the gsk_init_data structure with

gsk_environment_open(), plus a number of gsk_attribute_set_buffer(),
gsk_attribute_set_enum() and gsk_attribute_set_numeric_value() functions (as
needed) to set attributes.

v Replace gsk_get_cipher_info() with a call to gsk_attribute_get_buffer() to get
the list of available ciphers. This call must be done after a successful
gsk_environment_open() call. The ciphers returned always represent the high
security ciphers.

v Replace gsk_initialize() with gsk_environment_init().
v Replace manually initializing the gsk_soc_init_data structure with

gsk_secure_socket_open(), plus a number of gsk_attribute_set_buffer(),
gsk_attribute_set_enum() and gsk_attribute_set_numeric_value() functions (as
needed) to set attributes.

v Replace manually initializing the gsk_soc_init_data structure with the addresses of
your I/O callback routines with gsk_attribute_set_callback(). You specify the
address of a gsk_iocallback structure that contains the addresses of the callback
routines. The gsk_iocallback structure is defined in gskssl.h. Note that an
additional parameter must be added to the function declarator for your existing
callback routines.

v Replace gsk_user_set() with gsk_attribute_set_callback() for defining the
address of your get peer ID callback routine. You specify the address of an
gsk_iocallback structure that contains the address of the callback routine. The
gsk_iocallback structure is defined in gskssl.h. Note that an additional parameter
must be added to the function declarator for your existing callback routine.

v Replace gsk_user_set() with gsk_attribute_set_callback() for defining the
address of your session ID cache callback routines. You specify the address of a
gsk_sidcache_callback structure that contains the address of the callback routines.
The gsk_sidcache_callback structure is defined in gskssl.h.

v Replace gsk_get_dn_by_label() with gsk_get_cert_by_label().
v Replace gsk_secure_soc_init() with gsk_secure_socket_init().
v Replace gsk_secure_soc_read() with gsk_secure_socket_read(). Note that

gsk_secure_socket_read() has an extra parameter to return the length of the data
read.

v Replace gsk_secure_soc_write() with gsk_secure_socket_write(). Note that
gsk_secure_socket_write() has an extra parameter to return the length of the
data written.

© Copyright IBM Corp. 1999, 2013 47

v To notify your partner application that you are done sending data on the secure
connection, a call to gsk_secure_socket_shutdown should be issued before the
gsk_secure_socket_close call.

v Replace gsk_secure_soc_close() with gsk_secure_socket_close().
v Be sure that every gsk_secure_socket_open() is matched with a

gsk_secure_socket_close() even if there is an error on gsk_secure_socket_init().
Normal sequence is open, init, close. So, if init gets an error return code, you
still must do the close.

v Be sure that every gsk_environment_open() is matched with a
gsk_environment_close() even if there is an error on gsk_environment_init().
Normal sequence is open, init, close. So, if init gets an error return code, you
still must do the close.

v A method is provided to display certificates after gsk_secure_socket_init() is
issued. You may use gsk_attribute_get_cert_info(), if you prefer.

v Note that all of the error return values are renamed and renumbered. Program
logic must be changed accordingly.

v There is a gsk_strerror() debug routine that returns a text string (in English
only) when an error number is passed to it.

48 z/OS V2R1.0 System SSL Programming

Chapter 7. API reference

This topic describes the set of application programming interfaces (APIs) that z/OS
System SSL supports for performing secure sockets layer (SSL/TLS)
communication.

These APIs were introduced in z/OS Version 1 Release 2 and beyond and
supersede the APIs from prior releases. Only the APIs in this topic should be used
for writing new application programs. Existing application programs should be
recoded if possible to use the new APIs. See Chapter 6, “Migrating from
deprecated SSL interfaces,” on page 47 for more information about updating your
application programs.

The deprecated APIs included in Chapter 9, “Deprecated Secure Socket Layer (SSL)
APIs,” on page 435 are for reference only. When creating new application
programs, you must not include any of the deprecated APIs; you should use only
the APIs in this topic.

These provide more information about X.509 certificates and the Secure Sockets
Layer protocol. System SSL only supports the PKCS versions that are indicated
below. Make sure that you select the appropriate version of the document on the
website.

Note: Copies of ANSI standards can be purchased from the American National
Standards Institute (ANSI) web page at www.ansi.org.
v ANSI: ANSI X9.31 - 1998 Digital Certificates Using Reversible Public Key

Cryptography for the Financial Services Industry

v ANSI: ANSI X9.62 - Elliptic Curve Digital Signature Algorithm

v FIPS 186-2: Digital Signature Standard (DSS) (1024-bit and less)
v FIPS 186-3: Digital Signature Standard (DSS) (1024-bit and greater)
v PKCS #1, Version 2.1: RSA Encryption Standard

v PKCS #3, Version 1.4: Diffie-Hellman Key Agreement Standard

v PKCS #5, Version 2.0: Password-based Encryption

v PKCS #7, Version 1.5 and 1.6: Cryptographic Message Syntax

v PKCS #8, Version 1.2: Private Key Information Syntax

v PKCS #10, Version 1.7: Certification Request

v PKCS #12, Version 1.0: Personal Information Exchange

v RFC 2246: The TLS Protocol Version 1.0

v RFC 2253: UTF-8 String Representation of Distinguished Names

v RFC 2279: UTF-8, a transformation format of ISO 10646

v RFC 2459: X.509 certificate, certificate revocation list, and certificate extensions

v RFC 2587: PKIX LDAP Version 2 Schema

v RFC 2631: Diffie-Hellman Key Agreement Method

v RFC 3268: Advanced Encryption Standard (AES) Ciphersuites for Transport Layer
Security (TLS)

v RFC 3280: Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile

v RFC 4346: The Transport Layer Security (TLS) Protocol Version 1.1

© Copyright IBM Corp. 1999, 2013 49

http://www.ansi.org/
http://www.ansi.org/
http://www.ansi.org/
http://www.ansi.org/
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.rsa.com/rsalabs/node.asp?id=2126
http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2129
http://www.rsa.com/rsalabs/node.asp?id=2130
http://www.rsa.com/rsalabs/node.asp?id=2132
http://www.rsa.com/rsalabs/node.asp?id=2138
http://www.rfc-editor.org/rfc/pdfrfc/rfc2246.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2279.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2459.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2587.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3268.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3268.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc4346.txt.pdf

v RFC 4366: Transport Layer Security (TLS) Extensions

v RFC 4492: Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
Security (TLS)

v RFC 5116: An Interface and Algorithms for Authenticated Encryption

v RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2

v RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile

v RFC 5288: AES Galois Counter Mode (GCM) Cipher Suites for TLS

v RFC 5289: TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois
Counter Mode (GCM))

v RFC 5430: Suite B Profile for Transport Layer Security (TLS)

v RFC 5746: Transport Layer Security (TLS) Renegotiation Indication Extension

v RFC 5480: Elliptic Curve Cryptography Subject Public Key Information

This is a list of APIs. Use these APIs when creating new application programs. If
possible, recode your existing application programs to use these APIs as well:
v gsk_attribute_get_buffer() (see “gsk_attribute_get_buffer()” on page 52)
v gsk_attribute_get_cert_info() (see “gsk_attribute_get_cert_info()” on page 56)
v gsk_attribute_get_data() (see “gsk_attribute_get_data()” on page 61)
v gsk_attribute_get_enum() (see “gsk_attribute_get_enum()” on page 63)
v gsk_attribute_get_numeric_value() (see “gsk_attribute_get_numeric_value()” on

page 68)
v gsk_attribute_set_buffer() (see “gsk_attribute_set_buffer()” on page 70)
v gsk_attribute_set_callback() (see “gsk_attribute_set_callback()” on page 74)
v gsk_attribute_set_enum() (see “gsk_attribute_set_enum()” on page 79)
v gsk_attribute_set_numeric_value() (see “gsk_attribute_set_numeric_value()” on

page 85)
v gsk_attribute_set_tls_extensions() (see “gsk_attribute_set_tls_extension()” on

page 87)
v gsk_environment_close() (see “gsk_environment_close()” on page 90)
v gsk_environment_init() (see “gsk_environment_init()” on page 91)
v gsk_environment_open() (see “gsk_environment_open()” on page 93)
v gsk_free_cert_data() (see “gsk_free_cert_data()” on page 100)
v gsk_get_all_cipher_suites() (see “gsk_get_all_cipher_suites()” on page 101)
v gsk_get_cert_by_label() (see “gsk_get_cert_by_label()” on page 102)
v gsk_get_cipher_suites() (see “gsk_get_cipher_suites()” on page 107)
v gsk_get_ssl_vector() (see “gsk_get_ssl_vector()” on page 108)
v gsk_get_update() (see “gsk_get_update()” on page 109)
v gsk_list_free() (see “gsk_list_free()” on page 110)
v gsk_secure_socket_close() (see “gsk_secure_socket_close()” on page 111)
v gsk_secure_socket_init() (see “gsk_secure_socket_init()” on page 112)
v gsk_secure_socket_misc() (see “gsk_secure_socket_misc()” on page 119)
v gsk_secure_socket_open() (see “gsk_secure_socket_open()” on page 121)
v gsk_secure_socket_read() (see “gsk_secure_socket_read()” on page 122)
v gsk_secure_socket_shutdown() (see “gsk_secure_socket_shutdown()” on page

125)
v gsk_secure_socket_write() (see “gsk_secure_socket_write()” on page 127)

50 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc4366.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc4492.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc4492.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5116.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5246.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5288.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5289.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5289.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5430.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5746.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5480.txt.pdf

v gsk_strerror() (see “gsk_strerror()” on page 129)

Chapter 7. API reference 51

gsk_attribute_get_buffer()
Gets the value of an attribute buffer.

Format
#include <gskssl.h>

gsk_status gsk_attribute_get_buffer (
gsk_handle ssl_handle,
GSK_BUF_ID buffer_id,
const char ** buffer_value,
int * buffer_length)

Parameters

ssl_handle
Specifies an SSL environment handle returned by gsk_environment_open()
or an SSL connection handle returned by gsk_secure_socket_open().

buffer_id
Specifies the buffer identifier.

buffer_value
Returns the address of the buffer value. The buffer is in storage owned by
the SSL run time and must not be modified or released by the application.
The buffer returned for the GSK_USER_DATA identifier may be modified
by the application but must not be released.

buffer_length
Returns the length of the buffer value.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_ID]
The buffer identifier is not valid or cannot be used with the specified
handle.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The handle is closed.

Usage

The gsk_attribute_get_buffer() routine will return a buffer value for an SSL
environment or an SSL connection. The buffer is in storage owned by the SSL run
time and must not be released by the application. The address remains valid until
the SSL environment or connection is closed or until the application calls the
gsk_attribute_set_buffer() routine to set a new buffer value.

These buffer identifiers are supported:

GSK_CLIENT_ECURVE_LIST
Returns the list of elliptic curve specifications supported by the client as a
string consisting of 4-character decimal values.
GSK_CLIENT_ECURVE_LIST may be specified for an SSL environment or

gsk_attribute_get_buffer()

52 z/OS V2R1.0 System SSL Programming

an SSL connection. The elliptic curve specifications are used by the client to
guide the server as to which elliptic curves can be used when using cipher
suites that use Elliptic Curve Cryptography for the TLS V1.0 or higher
protocols. See Table 19 on page 627 for a list of valid 4-character elliptic
curve specifications.

GSK_CONNECT_CIPHER_SPEC
Returns the cipher specification selected for an initialized connection.
When using the SSL V2 protocol the cipher specification will be returned
as a single character. For other protocols the cipher specification may be
returned as either a 2-character or 4-character cipher depending on the
setting in GSK_V3_CIPHERS. See Table 15 on page 619 for a list of valid
SSL V2 cipher specifications. See Table 16 on page 619 and Table 17 on
page 623 for a list of valid 2-character and 4-character cipher specifications
for the SSL V3 and TLS protocols.

GSK_CONNECT_SEC_TYPE
Returns the security protocol for an initialized connection. The value will
be "SSLV2", "SSLV3", "TLSV1", "TLSV1.1", or "TLSV1.2" depending upon the
protocol selected during the SSL handshake. GSK_CONNECT_SEC_TYPE
may be specified only for an SSL connection.

GSK_KEYRING_FILE
Returns the name of the key database file, SAF key ring or z/OS PKCS #11
token. A key database is used if a database password or stash file is
defined using either an environment variable or the
gsk_attribute_set_buffer() routine.

GSK_KEYRING_LABEL
Returns the label associated with the certificate being used by the SSL
environment or connection. This will be the value set by the application if
the environment or connection is not initialized. GSK_KEYRING_LABEL
may be specified for an SSL environment or an SSL connection.

GSK_KEYRING_PW
Returns the password for the key database. A NULL address will be
returned after the environment is initialized. GSK_KEYRING_PW may be
specified only for an SSL environment.

GSK_KEYRING_STASH_FILE
Returns the name of the key database password stash file.
GSK_KEYRING_STASH_FILE may be specified only for an SSL
environment.

GSK_LDAP_SERVER
Returns the DNS name or IP address of the LDAP server.
GSK_LDAP_SERVER may be specified only for an SSL environment.

GSK_LDAP_USER
Returns the distinguished name to use when connecting to the LDAP
server. GSK_LDAP_USER may be specified only for an SSL environment.

GSK_LDAP_USER_PW
Returns the password to use when connecting to the LDAP server.
GSK_LDAP_USER_PW may be specified only for an SSL environment.

GSK_SID_VALUE
Returns the session identifier for an initialized connection. This is the
Base64-encoded version of the session identifier and consists of displayable
characters. GSK_SID_VALUE may be specified only for an SSL connection.

gsk_attribute_get_buffer()

Chapter 7. API reference 53

GSK_SNI_LIST
Returns the address of a list of server names passed to the server by the
client for use during server name indication callback routine. Server name
indication is an extension to TLS V1.0 or higher protocols which allow the
client to pass server names to the server. The server can use the list of
server names as an aid in selection of the certificate to be used by the
server. GSK_SNI_LIST may be specified only for an SSL connection and
only on the server side of the connection. When returned, the buffer
contains a list of server names with each server name preceded by a 1-byte
name type and a 2-byte field (in large endian format) containing the length
of the server name. The name type always contains X'00' to indicate that it
is a hostname; however, new name types may be introduced in the future.
The server name content will be in UTF-8 format.

GSK_SUITE_B_CIPHER_SPECS
Returns the Suite B cipher specifications configured for the environment as
a string consisting of 4-character values. GSK_SUITE_B_CIPHER_SPECS
may be specified for an SSL environment after the environment has been
initialized. See Table 9 on page 45 for a list of valid suite B cipher
specifications.

GSK_TLS_SIG_ALG_PAIRS
Returns the list of hash and signature algorithm pairs set by the client or
server as a string consisting of 1 or more 4-character values.
GSK_TLS_SIG_ALG_PAIRS may be specified for an SSL environment or an
SSL connection. The signature algorithm pair specifications are used by the
client and server to show which signature/hash algorithm combinations
are supported for digital signatures. Signature algorithm pair specification
only has relevance for sessions using TLS V1.2 or higher protocols. See
Table 20 on page 627 for a list of valid 4-character signature algorithm
pairs specifications.

GSK_USER_DATA
Returns the address of the user data to be passed to SSL exit routines. The
application may alter the user data but may not free it. GSK_USER_DATA
may be specified only for an SSL connection.

GSK_V2_CIPHER_SPECS
Returns the SSL V2 cipher specifications as a string consisting of
1-character values. GSK_V2_CIPHER_SPECS may be specified for an SSL
environment or an SSL connection. See Table 15 on page 619 for a list of
valid SSL v2 cipher specifications.

GSK_V3_CIPHER_SPECS
Returns the SSL V3 cipher specifications as a string consisting of
2-character values. GSK_V3_CIPHER_SPECS may be specified for an SSL
environment or an SSL connection. The SSL V3 cipher specifications are
used for the SSL V3, TLS V1.0, or higher protocols. See Table 16 on page
619 for a list of valid 2-character cipher specifications.

GSK_V3_CIPHER_SPECS_EXPANDED
Returns the SSL V3 cipher specifications as a string consisting of
4-character values. GSK_V3_CIPHER_SPECS_EXPANDED may be specified
for an SSL environment or an SSL connection. The SSL V3 cipher
specifications are used for the SSL V3, TLS V1.0, and higher protocols. See
Table 17 on page 623 for a list of valid 4-character cipher specifications.

gsk_attribute_get_buffer()

54 z/OS V2R1.0 System SSL Programming

Related Topics

“gsk_attribute_set_buffer()” on page 70

“gsk_environment_open()” on page 93

“gsk_secure_socket_open()” on page 121

gsk_attribute_get_buffer()

Chapter 7. API reference 55

gsk_attribute_get_cert_info()
Returns certificate information following an SSL handshake.

Format
#include <gskssl.h>

gsk_status gsk_attribute_get_cert_info (
gsk_handle soc_handle,
GSK_CERT_ID cert_id,
gsk_cert_data_elem ** cert_data,
int * elem_count)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_socket_open()
routine.

cert_id
Specifies the certificate identifier.

cert_data
Returns the certificate data array. The gsk_free_cert_data() routine should
be called to release the array when the certificate information is no longer
needed. A NULL address will be returned if no certificate information is
available.

elem_count
Returns the number of elements in the array of gsk_cert_data_elem
structures.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_ID]
The certificate identifier is not valid.

[GSK_ERR_ASN]
Unable to decode certificate.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The connection handle is not valid.

[GSK_INVALID_STATE]
The connection is not initialized.

Usage

The gsk_attribute_get_cert_info() routine returns information about certificates
used in an SSL handshake. The connection must be in the initialized state. The
certificate data address will be NULL if there is no certificate information available.

These certificate identifiers are supported:

gsk_attribute_get_cert_info()

56 z/OS V2R1.0 System SSL Programming

GSK_LOCAL_CERT_INFO
Returns information about the local certificate.

GSK_PARTNER_CERT_INFO
Returns information about the partner certificate.

Each element of the certificate data array has an element identifier. The element
identifiers used for a particular certificate depend upon the contents of the
certificate. These element identifiers are currently provided:

CERT_BODY_BASE64
Certificate body in Base64-encoded format

CERT_BODY_DER
Certificate body in binary ASN.1 DER-encoded format

CERT_COMMON_NAME
Subject common name (CN)

CERT_COUNTRY
Subject country (C)

CERT_DN_DER
Subject distinguished name in binary ASN.1 DER-encoded format

CERT_DN_PRINTABLE
Subject distinguished name as a printable character string

These DN attribute names are recognized by the System SSL run time.
v C - Country
v CN - Common name
v DC - Domain component
v DNQUALIFIER - Distinguished name qualifier
v EMAIL - email address
v GENERATIONQUALIFIER - Generation qualifier
v GIVENNAME - Given name
v INITIALS - Initials
v L - Locality
v MAIL - RFC 822 style address
v NAME - Name
v O - Organization name
v OU - Organizational unit name
v PC - Postal code
v SERIALNUMBER - Serial number
v SN - Surname
v ST - State or province
v STREET - Street
v T - Title

CERT_DNQUALIFIER
Subject distinguished name qualifier (DNQUALIFIER)

CERT_DOMAIN_COMPONENT
Subject domain component (DC)

CERT_EMAIL
Subject email address (EMAIL)

gsk_attribute_get_cert_info()

Chapter 7. API reference 57

CERT_GENERATIONQUALIFIER
Subject generation qualifier (GENERATIONQUALIFIER)

CERT_GIVENNAME
Subject given name (GIVENNAME)

CERT_INITIALS
Subject initials (INITIALS)

CERT_ISSUER_COMMON_NAME
Issuer common name (CN)

CERT_ISSUER_COUNTRY
Issuer country (C)

CERT_ISSUER_DN_DER
Issuer distinguished name in binary ASN.1 DER-encoded format

CERT_ISSUER_DN_PRINTABLE
Issuer distinguished name as a printable character string

These DN attribute names are recognized by the System SSL run time.
v C - Country
v CN - Common name
v DC - Domain component
v DNQUALIFIER - Distinguished name qualifier
v EMAIL - email address
v GENERATIONQUALIFIER - Generation qualifier
v GIVENNAME - Given name
v INITIALS - Initials
v L - Locality
v MAIL - RFC 822 style address
v NAME - Name
v O - Organization name
v OU - Organizational unit name
v PC - Postal code
v SERIALNUMBER - Serial number
v SN - Surname
v ST - State or province
v STREET - Street
v T - Title

CERT_ISSUER_DNQUALIFIER
Issuer distinguished name qualifier (DNQUALIFIER)

CERT_ISSUER_DOMAIN_COMPONENT
Issuer domain component (DC)

CERT_ISSUER_EMAIL
Issuer email address (EMAIL)

CERT_ISSUER_GENERATIONQUALIFIER
Issuer generation qualifier (GENERATIONQUALIFIER)

CERT_ISSUER_GIVENNAME
Issuer given name (GIVENNAME)

gsk_attribute_get_cert_info()

58 z/OS V2R1.0 System SSL Programming

CERT_ISSUER_INITIALS
Issuer initials (INITIALS)

CERT_ISSUER_LOCALITY
Issuer locality (L)

CERT_ISSUER_MAIL
Issuer RFC 822 style address (MAIL)

CERT_ISSUER_NAME
Issuer name (NAME)

CERT_ISSUER_ORG
Issuer organization (O)

CERT_ISSUER_ORG_UNIT
Issuer organizational unit (OU)

CERT_ISSUER_POSTAL_CODE
Issuer postal code (PC)

CERT_ISSUER_SERIALNUMBER
Issuer serial number (SERIALNUMBER)

CERT_ISSUER_STATE_OR_PROVINCE
Issuer state or province (ST)

CERT_ISSUER_STREET
Issuer street (STREET)

CERT_ISSUER_SURNAME
Issuer surname (SN)

CERT_ISSUER_TITLE
Issuer title (T)

CERT_LOCALITY
Subject locality (L)

CERT_MAIL
Subject RFC 822 style address (MAIL)

CERT_NAME
Subject name (NAME)

CERT_ORG
Subject organization (O)

CERT_ORG_UNIT
Subject organizational unit (OU)

CERT_POSTAL_CODE
Subject postal code (PC)

CERT_SERIAL_NUMBER
Certificate serial number

CERT_SERIALNUMBER
Subject serial number (SERIALNUMBER)

CERT_STATE_OR_PROVINCE
Subject state or province (ST)

CERT_STREET
Subject street (STREET)

gsk_attribute_get_cert_info()

Chapter 7. API reference 59

CERT_SURNAME
Subject surname (SN)

CERT_TITLE
Subject title (T)

The CERT_BODY_DER, CERT_DN_DER, and CERT_ISSUER_DN_DER elements
are not null-terminated and the 'cert_data' field must be used to get the element
length. All of the other elements are null-terminated character strings and the
'cert_data' field is the length of the string excluding the end-of-string delimiter.

Related Topics

“gsk_secure_socket_init()” on page 112

“gsk_free_cert_data()” on page 100

gsk_attribute_get_cert_info()

60 z/OS V2R1.0 System SSL Programming

gsk_attribute_get_data()
Returns information related to a certificate request.

Format
#include <gskssl.h>

gsk_status gsk_attribute_get_data (
gsk_handle soc_handle,
GSK_DATA_ID data_id,
void ** data_ptr)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_socket_open()
routine.

data_id Specifies the data identifier.

data_ptr
Returns the address of the requested data. The address will be NULL if the
requested data is not available.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_ID]
The data identifier is not valid.

[GSK_ERR_ASN]
Unable to decode certification authority name.

[GSK_ERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[GSK_ERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[GSK_ERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[GSK_ERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The connection handle is not valid.

[GSK_INVALID_STATE]
The connection is not initialized.

Usage

The gsk_attribute_get_data() routine returns information related to a certificate
request. The server sends a certificate request to the client as part of the client
authentication portion of the SSL handshake. The connection must be in the
initialized state.

gsk_attribute_get_data()

Chapter 7. API reference 61

These data identifiers are supported:

GSK_DATA_ID_SUPPORTED_KEYS
Returns a list of labels in the key database for certificates signed by a
certification authority that is in the list provided by the server. A database
entry is included in the list only if it has both a certificate and a private
key. If executing in FIPS mode, the list only includes labels that can be
used in FIPS mode. If using the TLS V1.2 protocol, the list includes only
those certificates that use the key and signature algorithms supported by
the server. The gsk_list_free() routine should be called to release the list
when it is no longer needed.

GSK_DATA_ID_SERVER_ISSUERS
Returns a list of distinguished names of certification authorities provided
by the server in the certificate request. The gsk_list_free() routine should
be called to release the list when it is no longer needed.

Related Topics

“gsk_list_free()” on page 110

gsk_attribute_get_data()

62 z/OS V2R1.0 System SSL Programming

gsk_attribute_get_enum()
Gets an enumerated value.

Format
#include <gskssl.h>

gsk_status gsk_attribute_get_enum (
gsk_handle ssl_handle,
GSK_ENUM_ID enum_id,
GSK_ENUM_VALUE * enum_value)

Parameters

ssl_handle
Specifies an SSL environment handle that is returned by
gsk_environment_open() or an SSL connection handle that is returned by
gsk_secure_socket_open().

enum_id
Specifies the enumeration identifier.

enum_value
Returns the enumeration value.

Results

The function return value is 0 (GSK_OK) if no error is detected. Otherwise, it is
one of the return codes that are listed in the gskssl.h include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_ID]
The enumeration identifier is not valid or cannot be used with the
specified handle.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment is closed or the SSL connection is established.

Usage

The gsk_attribute_get_enum() routine returns an enumerated value for an SSL
environment or an SSL connection.

These enumeration identifiers are supported:

GSK_CERT_VALIDATE_KEYRING_ROOT
Returns the setting of how certificates in a SAF key ring are validated.
Returns GSK_CERT_VALIDATE_KEYRING_ROOT_ON if SAF key ring
certificates must be validated to the root CA certificate. Returns
GSK_CERT_VALIDATE_KEYRING_ROOT_OFF if SAF key ring certificates
are only validated to the trust anchor certificate. If a sole intermediate
certificate is found in a SAF key ring and the next issuer is not found in
the same SAF key ring, the intermediate certificate acts as a trust anchor
and the certificate chain is considered complete.
GSK_CERT_VALIDATE_KEYRING_ROOT can only be specified for an SSL
environment.

gsk_attribute_get_enum()

Chapter 7. API reference 63

GSK_CERT_VALIDATION_MODE
Returns the certificate validation mode setting. Returns
GSK_CERT_VALIDATION_MODE_2459 if certificate validation is based on
the RFC 2459 method, GSK_CERT_VALIDATION_MODE_3280 if certificate
validation is based on the RFC 3280 method, and
GSK_CERT_VALIDATION_MODE_5280 if certificate validation is based on
the RFC 5280 method. Returns GSK_CERT_VALIDATION_MODE_ANY if
certificate validation can use any supported X.509 certificate validation
method. GSK_CERT_VALIDATION_MODE can only be specified for an
SSL environment.

GSK_CLIENT_AUTH_ALERT
Returns GSK_CLIENT_AUTH_NOCERT_ALERT_OFF if the SSL server
application is configured to allow client connections where client
authentication is requested and the client failed to supply an X.509
certificate. Returns GSK_CLIENT_AUTH_NOCERT_ALERT_ON if the SSL
server application is configured to terminate client connections where client
authentication is requested and the client failed to supply an X.509
certificate. GSK_CLIENT_AUTH_ALERT can be specified only for an SSL
environment.

GSK_CLIENT_AUTH_TYPE
Returns GSK_CLIENT_AUTH_FULL_TYPE if received certificates are
validated by the System SSL runtime and
GSK_CLIENT_AUTH_PASSTHRU_TYPE otherwise.
GSK_CLIENT_AUTH_TYPE can be specified only for an SSL environment.

GSK_CRL_SECURITY_LEVEL
Returns the level of security that is set for the SSL environment when
contact is attempted between the application and an LDAP server that
might contain a Certificate Revocation List (CRL).
GSK_CRL_SECURITY_LEVEL can be specified only for an SSL
environment.

One of the three possible settings for GSK_CRL_SECURITY_LEVEL are
returned:
v GSK_CRL_SECURITY_LEVEL_LOW - Certificate validation does not fail

if the LDAP server cannot be contacted.
v GSK_CRL_SECURITY_LEVEL_MEDIUM - Certificate validation requires

the LDAP server to be contactable, but does not require a CRL to be
defined. This is the default setting.

v GSK_CRL_SECURITY_LEVEL_HIGH - Certificate validation requires the
LDAP server to be contactable, and a CRL to be defined.

GSK_EXTENDED_RENEGOTIATION_INDICATOR
Returns GSK_EXTENDED_RENEGOTIATION_INDICATOR_OPTIONAL if
renegotiation indication is not required during the initial SSL V3 or TLS
handshake. This is the default.

Returns GSK_EXTENDED_RENEGOTIATION_INDICATOR_CLIENT if the
client initial handshake is allowed to proceed only if the server indicates
support for RFC 5746 renegotiation.

Returns GSK_EXTENDED_RENEGOTIATION_INDICATOR_SERVER if the
server initial handshake is allowed to proceed only if the client indicates
support for RFC 5746 renegotiation.

gsk_attribute_get_enum()

64 z/OS V2R1.0 System SSL Programming

Returns GSK_EXTENDED_RENEGOTIATION_INDICATOR_BOTH if the
server and client initial handshakes are allowed to proceed only if partner
indicates support for RFC 5746 renegotiation.

GSK_EXTENDED_RENEGOTIATION_INDICATOR can only be specified
for an SSL environment.

GSK_PROTOCOL_SSLV2
Returns GSK_PROTOCOL_SSLV2_ON if the SSL Version 2 protocol is
enabled and GSK_PROTOCOL_SSLV2_OFF if the SSL Version 2 protocol is
not enabled. GSK_PROTOCOL_SSLV2 can be specified for an SSL
environment or an SSL connection.

GSK_PROTOCOL_SSLV3
Returns GSK_PROTOCOL_SSLV3_ON if the SSL Version 3 protocol is
enabled and GSK_PROTOCOL_SSLV3_OFF if the SSL Version 3 protocol is
not enabled. GSK_PROTOCOL_SSLV3 can be specified for an SSL
environment or an SSL connection.

GSK_PROTOCOL_TLSV1
Returns GSK_PROTOCOL_TLSV1_ON if the TLS Version 1 protocol is
enabled and GSK_PROTOCOL_TLSV1_OFF if the TLS Version 1 protocol is
not enabled. GSK_PROTOCOL_TLSV1 can be specified for an SSL
environment or an SSL connection.

GSK_PROTOCOL_TLSV1_1
Returns GSK_PROTOCOL_TLSV1_1_ON if the TLS Version 1.1 protocol is
enabled and GSK_PROTOCOL_TLSV1_1_OFF if the TLS Version 1.1
protocol is not enabled. GSK_PROTOCOL_TLSV1_1 can be specified for an
SSL environment or an SSL connection.

GSK_PROTOCOL_TLSV1_2
Returns GSK_PROTOCOL_TLSV1_2_ON if the TLS Version 1.2 protocol is
enabled and GSK_PROTOCOL_TLSV1_2_OFF if the TLS Version 1.2
protocol is not enabled. GSK_PROTOCOL_TLSV1_2 can be specified for an
SSL environment or an SSL connection.

GSK_PROTOCOL_USED
Returns GSK_PROTOCOL_USED_SSLV2 if the SSL Version 2 protocol was
used to establish the connection, GSK_PROTOCOL_USED_SSLV3 if the SSL
Version 3 protocol was used to establish the connection,
GSK_PROTOCOL_USED_TLSV1 if the TLS Version 1.0 protocol was used
to establish the connection, GSK_PROTOCOL_USED_TLSV1_1 if the TLS
Version 1.1 protocol was used to establish the connection, or
GSK_PROTOCOL_USED_TLSV1_2 if the TLS Version 1.2 protocol was
used to establish the connection. GSK_NULL is returned if a connection is
not established. GSK_PROTOCOL_USED can be specified only for an SSL
connection.

GSK_RENEGOTIATION

Returns GSK_RENEGOTIATION_NONE if SSL V3 and TLS handshake
renegotiation as a server is disabled, while RFC 5746 renegotiation is
allowed. This is the default.

Returns GSK_RENEGOTIATION_DISABLED if SSL V3 and TLS handshake
renegotiation, including RFC 5746 renegotiation, is disabled.

Returns GSK_RENEGOTIATION_ALL if SSL V3 and TLS handshake
renegotiation as a server is enabled.

gsk_attribute_get_enum()

Chapter 7. API reference 65

Returns GSK_RENEGOTIATION_ABBREVIATED if SSL V3 and TLS
abbreviated handshake renegotiation for resuming the current session only
is permitted as a server. RFC 5746 renegotiation is also allowed.

GSK_RENEGOTIATION can only be specified for an SSL environment.

GSK_RENEGOTIATION_PEER_CERT_CHECK
Returns GSK_RENEGOTIATION_PEER_CERT_CHECK_OFF if an identity
check against the peer's certificate is not performed during renegotiation.
This is the default.

Returns GSK_RENEGOTIATION_PEER_CERT_CHECK_ON if a
comparison is performed against the peer's certificate to ensure that
certificate does not change during renegotiation.

GSK_RENEGOTIATION_PEER_CERT_CHECK can only be specified for an
SSL environment.

GSK_SESSION_TYPE
Returns GSK_CLIENT_SESSION if the SSL handshake is to be performed
as a client, GSK_SERVER_SESSION if the SSL handshake is to be
performed as a server, or GSK_SERVER_SESSION_WITH_CL_AUTH if the
SSL handshake is to be performed as a server requiring client
authentication. GSK_SESSION_TYPE can be specified for an SSL
environment or an SSL connection.

GSK_SID_FIRST
Returns GSK_SID_IS_FIRST if a full SSL handshake was performed to
establish the connection or GSK_SID_NOT_FIRST if an existing session was
used to establish the connection. GSK_NULL is returned if a connection is
not established. GSK_SID_FIRST can be specified only for an SSL
connection.

GSK_SUITE_B_PROFILE
Returns the Suite B for TLS profile setting. Returns:
v GSK_SUITE_B_PROFILE_128 if the 128-bit Suite B security profile is

being applied by the SSL client or server to TLS sessions.
v GSK_SUITE_B_PROFILE_192 if the 192-bit Suite B security profile is

being applied by the SSL client or server to TLS sessions.
v GSK_SUITE_B_PROFILE_ALL if either the 128-bit or 192-bit Suite B

security profile is allowed by the SSL client or server for TLS sessions.
v GSK_SUITE_B_PROFILE_OFF if there is no Suite B security profile being

applied by the SSL client or server to TLS sessions.

GSK_SUITE_B_PROFILE can only be specified for an SSL environment.

GSK_SYSPLEX_SIDCACHE
Returns GSK_SYSPLEX_SIDCACHE_ON if sysplex session caching is
enabled for this application or GSK_SYSPLEX_SIDCACHE_OFF if sysplex
session caching is not enabled. GSK_SYSPLEX_SIDCACHE can be specified
only for an SSL environment.

GSK_TLSEXT_MFL
Returns GSK_TLSEXT_MFL_OFF if the "Maximum Fragment Length" type
TLS extension is not negotiated, and the SSL connection is therefore using
the default fragment length (16384 bytes). Returns GSK_TLSEXT_MFL_512,
GSK_TLSEXT_MFL_1024, GSK_TLSEXT_MFL_2048 or
GSK_TLSEXT_MFL_4096 if the "Maximum Fragment Length" type TLS

gsk_attribute_get_enum()

66 z/OS V2R1.0 System SSL Programming

extension is negotiated, where the returned value reflects the negotiated
maximum fragment length. GSK_TLSEXT_MFL can be specified only for
an SSL connection.

GSK_TLSEXT_THMAC
Returns GSK_TLSEXT_THMAC_ON if the "Truncated HMAC" type TLS
extension is negotiated and is in use. Returns GSK_TLSEXT_THMAC_OFF
if the "Truncated HMAC" type TLS extension is not negotiated.
GSK_TLSEXT_MFL can be specified only for an SSL connection.

GSK_TLSEXT_SNI
Returns GSK_TLSEXT_SNI_ON if the "Server Name Indication" type TLS
extension is negotiated and is in use. Returns GSK_TLSEXT_SNI_OFF if
the "Server Name Indication" type TLS extension is not negotiated.
GSK_TLSEXT_SNI can be specified only for an SSL connection.

GSK_T61_AS_LATIN1
Returns GSK_T61_AS_LATIN1_ON if the ISO8859-1 character set is used
when converting a string tagged as TELETEXSTRING or
GSK_T61_AS_LATIN1_OFF if the T.61 character set is used.
GSK_T61_AS_LATIN1 can be specified only for an SSL environment. The
GSK_T61_AS_LATIN1 setting is global and applies to all SSL
environments.

GSK_V3_CIPHERS
Returns the V3 cipher specification size. When 2 characters in size;
GSK_V3_CIPHERS_CHAR2 is returned. When 4 characters in size;
GSK_V3_CIPHERS_CHAR4 is returned. GSK_V3_CIPHERS can be
specified for an SSL environment or an SSL connection.

Related Topics

“gsk_attribute_set_enum()” on page 79

“gsk_environment_open()” on page 93

“gsk_secure_socket_open()” on page 121

gsk_attribute_get_enum()

Chapter 7. API reference 67

gsk_attribute_get_numeric_value()
Gets a numeric value.

Format
#include <gskssl.h>

gsk_status gsk_attribute_get_numeric_value (
gsk_handle ssl_handle,
GSK_NUM_ID num_id,
int * num_value)

Parameters

ssl_handle
Specifies an SSL environment handle returned by gsk_environment_open()
or an SSL connection handle returned by gsk_secure_socket_open().

num_id
Specifies the numeric identifier.

num_value
Returns the numeric value.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_ID]
The numeric identifier is not valid or cannot be used with the specified
handle.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment is closed.

Usage

The gsk_attribute_get_numeric_value() routine will return a numeric value for an
SSL environment or an SSL connection.

These numeric identifiers are supported:

GSK_CRL_CACHE_TIMEOUT
Returns the CRL cache timeout. GSK_CRL_CACHE_TIMEOUT can be
specified only for an SSL environment.

GSK_FD
Returns the socket descriptor used for network operations. GSK_FD can be
specified only for an SSL connection.

GSK_LDAP_SERVER_PORT
Returns the LDAP server port. GSK_LDAP_SERVER_PORT can be
specified only for an SSL environment.

GSK_V2_SESSION_TIMEOUT
Returns the SSL Version 2 session timeout. GSK_V2_SESSION_TIMEOUT
can be specified only for an SSL environment.

gsk_attribute_get_numeric_value()

68 z/OS V2R1.0 System SSL Programming

GSK_V2_SIDCACHE_SIZE
Returns the size of the SSL Version 2 session identifier cache.
GSK_V2_SIDCACHE_SIZE can be specified only for an SSL environment.

GSK_V3_SESSION_TIMEOUT
Returns the SSL Version 3 session timeout. GSK_V3_SESSION_TIMEOUT
can be specified only for an SSL environment.

GSK_V3_SIDCACHE_SIZE
Returns the size of the SSL Version 3 session identifier cache.
GSK_V3_SIDCACHE_SIZE can be specified only for an SSL environment.

Related Topics

“gsk_attribute_set_numeric_value()” on page 85

“gsk_environment_open()” on page 93

“gsk_secure_socket_open()” on page 121

gsk_attribute_get_numeric_value()

Chapter 7. API reference 69

gsk_attribute_set_buffer()
Sets the value of an attribute buffer.

Format
#include <gskssl.h>

gsk_status gsk_attribute_set_buffer (
gsk_handle ssl_handle,
GSK_BUF_ID buffer_id,
const char * buffer_value,
int buffer_length)

Parameters

ssl_handle
Specifies an SSL environment handle returned by gsk_environment_open()
or an SSL connection handle returned by gsk_secure_socket_open().

buffer_id
Specifies the buffer identifier.

buffer_value
Specifies the buffer value.

buffer_length
Specifies the buffer length. Specify 0 for this parameter if the buffer value
is a null-delimited character string.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
is one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_ID]
The buffer identifier is not valid or cannot be used with the specified
handle.

[GSK_ATTRIBUTE_INVALID_LENGTH]
The buffer length is not valid.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment or connection is not in the open state.

Usage

The gsk_attribute_set_buffer() routine sets a buffer value in an SSL environment
or an SSL connection. The environment or connection must be in the open state
and not in the initialized state (that is, gsk_environment_init() or
gsk_secure_socket_init() has not been called).

The values set using this service are treated as independent values. They are not
validated with other values set using gsk_attribute_set_buffer(),

gsk_attribute_set_buffer()

70 z/OS V2R1.0 System SSL Programming

gsk_attribute_set_enum(), or gsk_attribute_set_tls_extensions() APIs until used
together to perform a SSL/TLS handshake by calling gsk_secure_socket_init().

These buffer identifiers are supported:

GSK_CLIENT_ECURVE_LIST
Specifies the list of elliptic curves that are supported by the client as a
string consisting of 1 or more 4-character decimal values in order of
preference for use. GSK_CLIENT_ECURVE_LIST may be specified for an
SSL environment or an SSL connection. The list is used by the client to
guide the server as to which elliptic curves are preferred when using
ECC-based cipher suites for the TLS V1.0 or higher protocols.

Only NIST recommended curves are able to be specified for the attribute.
To use Brainpool standard curves for an SSL connection, the buffer must be
reinitialized to NULL using either gsk_attribute_set_buffer() or the
GSK_CLIENT_ECURVE_LIST environment variable. See Table 19 on page
627 for a list of valid 4-character elliptic curve specifications

GSK_KEYRING_FILE
Specifies the name of the key database file, SAF key ring, or z/OS PKCS
#11 token. A key database is used if a database password or stash file is
defined using either an environment variable or the
gsk_attribute_set_buffer() routine. Otherwise, a SAF key ring or z/OS
PKCS #11 token is used. GSK_KEYRING_FILE may be specified only for
an SSL environment.

The SAF key ring name is specified as "userid/keyring". The current user
ID is used if the user ID is omitted. The user must have READ access to
the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using
a SAF key ring owned by the user. The user must have UPDATE access to
the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using
a SAF key ring owned by another user.

A z/OS PKCS #11 token name is specified as *TOKEN*/token-name.
TOKEN indicates a PKCS #11 token is being specified.

Note: Certificate private keys are not available when using a SAF key ring
owned by another user, except for SITE certificates where CONTROL
authority is given to IRR.DIGTCERT.GENCERT in the FACILITY class or
for user certificates where READ or UPDATE authority is given to
ringOwner.ringName.LST resource in the RDATALIB class.

GSK_KEYRING_LABEL
Specifies the label of the key that is used to authenticate the application.
The default key is used if a key label is not specified.
GSK_KEYRING_LABEL may be specified for an SSL environment or an
SSL connection. If either the GSK_CLIENT_CERT_CALLBACK function or
the GSK_SNI_CALLBACK function is registered, the key label can be set or
reset by the callback function after a call to gsk_secure_socket_init().

GSK_KEYRING_PW
Specifies the password for the key database. GSK_KEYRING_PW may be
specified only for an SSL environment.

GSK_KEYRING_STASH_FILE
Specifies the name of the key database password stash file. The stash file
name always has an extension of ".sth" and the supplied name is changed
if it does not have the correct extension. The GSK_KEYRING_PW value is

gsk_attribute_set_buffer()

Chapter 7. API reference 71

used instead of the GSK_KEYRING_STASH value if it is also specified.
GSK_KEYRING_STASH_FILE may be specified only for an SSL
environment.

GSK_LDAP_SERVER
Specifies one or more blank-separated LDAP server host names. Each host
name can contain an optional port number that is separated from the host
name by a colon. GSK_LDAP_SERVER may be specified only for an SSL
environment. The LDAP server is used to obtain CA certificates when
validating a certificate and the local database does not contain the required
certificate. The local database must contain the required certificates if no
LDAP server is specified. Even when an LDAP server is used, root CA
certificates must be found in the local database since the LDAP server is
not a trusted data source. The LDAP server is also used to obtain
certificate revocation lists.

GSK_LDAP_USER
Specifies the distinguished name to use when connecting to the LDAP
server. GSK_LDAP_USER may be specified only for an SSL environment.

GSK_LDAP_USER_PW
Specifies the password to use when connecting to the LDAP server.
GSK_LDAP_USER_PW may be specified only for an SSL environment.

GSK_TLS_SIG_ALG_PAIRS
Specifies the list of hash and signature algorithm pair specifications that
are supported by the client or server as a string consisting of 1 or more
4-character values in order of preference for use.
GSK_TLS_SIG_ALG_PAIRS may be specified for an SSL environment or an
SSL connection. The signature algorithm pair specifications are sent by
either the client or server to the session partner to indicate which
signature/hash algorithm combinations are supported for digital
signatures. Signature algorithm pair specification only has relevance for
sessions using TLS V1.2 or higher protocols. See Table 20 on page 627 for a
list of valid 4-character signature algorithm pair specifications.

GSK_USER_DATA
Specifies the user data to be passed to SSL exit routines. The user data is
copied to storage owned by the SSL run time and the address of this
storage is passed to the SSL exit routines. The application may alter this
copy of the user data but may not free it. GSK_USER_DATA may be
specified only for an SSL connection.

GSK_V2_CIPHER_SPECS
Specifies the SSL V2 cipher specifications as a string consisting of 1 or
more 1-character values. GSK_V2_CIPHER_SPECS may be specified for an
SSL environment or an SSL connection. See Table 15 on page 619 for a list
of valid SSL v2 cipher specifications.

GSK_V3_CIPHER_SPECS
Specifies the SSL V3 cipher specifications as a string consisting of 1 or
more 2-character values. GSK_V3_CIPHER_SPECS may be specified for an
SSL environment or an SSL connection. The SSL V3 cipher specifications
are used for the SSL V3, TLS V1.0, or higher protocols. See Table 16 on
page 619 for a list of valid 2-character cipher specifications.

GSK_V3_CIPHER_SPECS_EXPANDED
Specifies the SSL V3 cipher specifications as a string consisting of 1 or
more 4-character values. GSK_V3_CIPHER_SPECS_EXPANDED may be
specified for an SSL environment or an SSL connection. The SSL V3 cipher

gsk_attribute_set_buffer()

72 z/OS V2R1.0 System SSL Programming

specifications are used for the SSL V3, TLS V1.0, or higher protocols. See
Table 17 on page 623 for a list of valid 4-character cipher specifications.
Applications wanting to use cipher suites that use Elliptic Curve
Cryptography must set an appropriate cipher specification in
GSK_V3_CIPHER_SPECS_EXPANDED.

Related Topics

“gsk_attribute_get_buffer()” on page 52

“gsk_environment_open()” on page 93

“gsk_environment_init()” on page 91

“gsk_secure_socket_open()” on page 121

“gsk_secure_socket_init()” on page 112

gsk_attribute_set_buffer()

Chapter 7. API reference 73

gsk_attribute_set_callback()
Sets an SSL callback.

Format
#include <gskssl.h>

gsk_status gsk_attribute_set_callback (
gsk_handle ssl_handle,
GSK_CALLBACK_ID callback_id,
void * callback)

Parameters

ssl_handle
Specifies an SSL environment handle returned by gsk_environment_open()
or an SSL connection handle returned by gsk_secure_socket_open().

callback_id
Specifies the callback identifier.

callback
Specifies the address of the callback parameter.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
is one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_ID]
The callback identifier is not valid or cannot be used with the specified
handle.

[GSK_ATTRIBUTE_INVALID_PARAMETER]
The attribute parameter value is not valid.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment or connection is not in the open state.

Usage

The gsk_attribute_set_callback() routine establishes a callback to an application
routine by the SSL run time. A callback allows the application to replace the
default routine used by the SSL run time. The SSL environment or SSL connection
must be in the open state and not in the initialized state (that is,
gsk_environment_init() or gsk_secure_socket_init() has not been called). The
callback routine must use standard C linkage and not C++ linkage.

These callback identifiers are supported:

GSK_CLIENT_CERT_CALLBACK
Indicates that the application is providing a routine to be used during a
full handshake to prompt a client user to select a certificate from a list
during the client authentication process. The callback parameter is the
address of this routine. The exit routine can obtain the user data address
by calling the gsk_attribute_get_buffer() routine. The
gsk_attribute_set_buffer() routine should be called to set the selected key

gsk_attribute_set_callback()

74 z/OS V2R1.0 System SSL Programming

label before returning from the callback routine. The function return value
should be 0 if a key label has been set or GSK_ERR_NO_CERTIFICATE if
no client certificate is to be used. GSK_CLIENT_CERT_CALLBACK can be
specified only for an SSL environment.

This is the prototype for the callback routine provided by the application.
It shows the parameters passed to the application callback and the value
returned by the callback.
int client_cert_callback (

gsk_handle soc_handle)

GSK_IO_CALLBACK
Indicates that the application is providing the routines to perform read,
write, and control functions. The callback parameter is the address of a
gsk_iocallback structure. Each entry in the structure overrides the
corresponding SSL runtime routine. A NULL entry will cause the current
callback routine to be used or the SSL runtime routine will be used if there
is no callback routine. GSK_IO_CALLBACK can be specified for an SSL
environment or an SSL connection.

The routine specified by the io_read entry is used to read data from the
network. The fd parameter is the socket descriptor, the buffer parameter is
the address of the data buffer, the count parameter is the buffer size, and
the user_data parameter is the user data address. The function return value
should be 0 if the connection has been closed by the remote partner, -1 if
an error is detected, or the number of bytes read from the network. The
error code is returned in the errno runtime variable. The default routine
uses the recv() library routine to read data from the network.
int io_read (

int fd,
void * buffer,
int count,
char * user_data)

The routine specified by the io_write entry is used to write data to the
network. The fd parameter is the socket descriptor, the buffer parameter is
the address of the data buffer, the count parameter is the data length, and
the user_data parameter is the user data address. The function return value
should be -1 if an error is detected or the number of bytes written to the
network. The error code is returned in the errno runtime variable. The
default routine uses the send() library routine to write data to the network.
int io_write (

int fd,
void * buffer,
int count,
char * user_data)

The routine specified by the io_getpeerid entry is used to get the 32-bit
network identifier for the remote partner. The fd parameter is the socket
descriptor and the user_data parameter is the user data address. However,
the io_getpeerid entry is deprecated and should not be used since it does
not support IPv6 networks which use a 16-byte network identifier. Instead,
the io_getpeername entry should be used for both IPv4 and IPv6 networks.
The io_getpeerid entry will not be used if the io_getpeername entry is not
NULL.
unsigned long io_getpeerid (

int fd,
char * user_data)

gsk_attribute_set_callback()

Chapter 7. API reference 75

The routine specified by the io_setsocketoptions entry is used to set socket
options. The fd parameter is the socket descriptor, the cmd parameter is the
function to be performed, and the user_data parameter is the user data
address. The return value should be -1 if an error is detected and 0
otherwise. The error code is returned in the errno runtime variable. The
io_setsocketoptions() routine is called by the gsk_secure_socket_init()
routine before initiating the SSL handshake
(GSK_SET_SOCKET_STATE_FOR_HANDSHAKE) and again upon
completion of the SSL handshake
(GSK_SET_SOCKET_STATE_FOR_READ_WRITE). The default
io_setsocketoptions() routine puts the socket into blocking mode for
GSK_SET_SOCKET_STATE_FOR_HANDSHAKE and restores the original
mode for GSK_SET_SOCKET_STATE_FOR_READ_WRITE.
int io_setsocketoptions (

int fd,
int cmd,
char * user_data)

The routine specified by the io_getpeername entry is used to get the network
identifier for the remote partner. The fd parameter is the socket descriptor,
the buffer parameter is the address of the return buffer, the length
parameter is the size of the return buffer, and the user_data parameter is
the user data address. Upon return, the length parameter should contain
the actual length of the network identifier. The function return value
should be -1 if an error is detected and 0 otherwise. The error code is
returned in the errno runtime variable. The default routine uses the
getpeername() library routine and returns the IP address of the remote
partner (4 bytes for IPv4 and 16 bytes for IPv6) followed by the 2-byte port
number.
int io_getpeername (

int fd,
void * buffer,
int * length,
char * user_data)

GSK_SESSION_RESET_CALLBACK
Indicates that the application is providing the routines to be called when a
session renegotiation has been initiated or completed to establish a new
session key or have the session cipher reset. The callback parameter is the
address of a gsk_reset_callback structure.

GSK_SESSION_RESET_CALLBACK can be specified for an SSL
environment or an SSL connection. The callback is only invoked when
using SSL V3, TLS V1.0, or higher protocols.

The routine specified by the Reset_Init entry is called when a session
renegotiation has been initiated, and the SSL client has commenced the
renegotiation process. The con_handle parameter is the handle for the SSL
connection.
void (Reset_Init) (

gsk_handle con_handle)

The Reset_Complete routine is called when a session renegotiation has been
completed. If session renegotiation does not successfully complete, for
example because of renegotiation not being allowed, then the
Reset_Complete routine is not invoked even though the Reset_Init routine
was called at the commencement of renegotiation. The con_handle
parameter is the handle for the SSL connection.

gsk_attribute_set_callback()

76 z/OS V2R1.0 System SSL Programming

void (Reset_Complete) (
gsk_handle con_handle)

GSK_SID_CACHE_CALLBACK
Indicates that the application is providing the routines to maintain the
session identifier cache. The callback parameter is the address of a
gsk_sidcache_callback structure. GSK_SID_CACHE_CALLBACK can be
specified only for an SSL environment and will be used only for SSL
servers (the internal cache is always used for SSL clients).

The routine specified by the Get entry is called to retrieve an entry from
the session identifier cache. The session_id parameter is the session
identifier, the session_id_length parameter is the length of the session
identifier, and the ssl_version parameter is the SSL protocol version number
(GSK_SSLVERSION_V2 or GSK_SSLVERSION_V3). The function return
value is the address of the session data buffer or NULL if an error is
detected. The FreeDataBuffer routine will be called to release the session
data buffer when it is no longer needed by the SSL run time.
gsk_data_buffer * Get (

const unsigned char * session_id,
unsigned int session_id_length,
gsk_sslversion ssl_version)

The routine specified by the Put entry is called to store an entry in the
session identifier cache. The ssl_session_data parameter is the session data,
the session_id parameter is the session identifier, the session_id_length
parameter is the length of the session identifier, and the ssl_version
parameter is the SSL protocol version number (GSK_SSLVERSION_V2 or
GSK_SSLVERSION_V3). The function return value is ignored and can be a
NULL address. The callback routine must make its own copy of the session
data since the SSL structure will be released when the connection is closed.
gsk_data_buffer * Put (

gsk_data_buffer * ssl_session_data,
const unsigned char * session_id,
unsigned int session_id_length,
gsk_sslversion ssl_version)

The routine specified by the Delete entry is called to remove an entry from
the session identifier cache. The session_id parameter is the session
identifier, the session_id_length parameter is the length of the session
identifier, and the ssl_version parameter is the SSL protocol version number
(GSK_SSLVERSION_V2 or GSK_SSLVERSION_V3).
void Delete (

const unsigned char * session_id,
unsigned int session_id_length,
gsk_sslversion ssl_version)

The routine specified by the FreeDataBuffer entry is called to release the
data buffer returned by the Get routine.
void FreeDataBuffer (

gsk_data_buffer * ssl_session_data)

GSK_SNI_CALLBACK
Indicates that the application is providing the routine to allow a server to
interrogate a list of server names supplied by the client and select an
appropriate key label for use as the server certificate based on the
information received from the client. The selected certificate from the key
database, key ring or token will be sent to the client as the server
certificate during the handshake process. The callback parameter is the
address of this routine. The exit routine can obtain the server name list

gsk_attribute_set_callback()

Chapter 7. API reference 77

provided by the client by calling the gsk_attribute_get_buffer() routine.
The gsk_attribute_set_buffer() routine should be called to set the selected
key label before returning from the callback routine.

The callback routine cannot enforce the required use of the server name
indication extension. The failure to select a key label causes a fatal
UNRECOGNIZED_NAME alert. To enforce such actions with the callback
routine the user must set the GSK_TLS_EXTID_SNI_SERVER_LABELS
extension by calling the attribute_set_tls_extension() routine. The required
and unrecognized_name_fatal fields of the extension must be set
appropriately to achieve the requested outcome, although the
serverKeyLabel list may be empty.

The function return value should be 0 if a key label has been set or
GSK_ERR_UNRECOGNIZED_NAME if no server certificate is selected.
Enforcement of the required and unrecognized_name_fatal settings occur
on return from the callback routine. GSK_SNI_CALLBACK can be specified
only for an SSL environment.

This is the prototype for the callback routine provided by the application.
It shows the parameters passed to the application callback and the value
returned by the callback.
int sni_callback (

gsk_handle soc_handle)

Related Topics

“gsk_environment_init()” on page 91

“gsk_secure_socket_init()” on page 112

gsk_attribute_set_callback()

78 z/OS V2R1.0 System SSL Programming

gsk_attribute_set_enum()
Sets an enumerated value.

Format
#include <gskssl.h>

gsk_status gsk_attribute_set_enum (
gsk_handle ssl_handle,
GSK_ENUM_ID enum_id,
GSK_ENUM_VALUE enum_value)

Parameters

ssl_handle
Specifies an SSL environment handle that is returned by
gsk_environment_open() or an SSL connection handle that is returned by
gsk_secure_socket_open().

enum_id
Specifies the enumeration identifier.

enum_value
Specifies the enumeration value.

Results

The function return value is 0 (GSK_OK) if no error is detected. Otherwise, it is
one of the return codes that are listed in the gskssl.h include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_ID]
The enumeration identifier is not valid or cannot be used with the
specified handle.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment or connection is not in the open state.

Usage

The gsk_attribute_set_enum() routine sets an enumerated value for an SSL
environment or an SSL connection. The environment or connection must be in the
open state and not in the initialized state (that is, gsk_environment_init() or
gsk_secure_socket_init() has not been called).

The values set using this service are treated as independent values. They are not
validated with other values set using gsk_attribute_set_buffer(),
gsk_attribute_set_enum(), or gsk_attribute_set_tls_extensions() APIs until used
together to perform a SSL/TLS handshake by calling gsk_secure_socket_init().

These enumeration identifiers are supported:

GSK_CERT_VALIDATE_KEYRING_ROOT
Specifies the setting of how certificates in a SAF key ring are validated.
Specify GSK_CERT_VALIDATE_KEYRING_ROOT_ON if SAF key ring
certificates must be validated to the root CA certificate. Specify
GSK_CERT_VALIDATE_KEYRING_ROOT_OFF if SAF key ring certificates

gsk_attribute_set_enum()

Chapter 7. API reference 79

are only validated to the trust anchor certificate. If a sole intermediate
certificate is found in a SAF key ring and the next issuer is not found in
the same SAF key ring, the intermediate certificate acts as a trust anchor
and the certificate chain is considered complete. By default, SAF key ring
certificates are only validated to the trust anchor certificate. This setting
does not affect the validation of SSL key database file and PKCS #11 token
certificates as these certificates are always validated to the root CA
certificate.

GSK_CERT_VALIDATE_KEYRING_ROOT can only be specified for an SSL
environment.

GSK_CERT_VALIDATION_MODE
Specifies the method of certificate validation. RFC 2459, RFC 3280, and
RFC 5280 describe differing methods of certificate validation. Specify
GSK_CERT_VALIDATION_MODE_2459 if certificate validation according
to the RFC 2459 method is required,
GSK_CERT_VALIDATION_MODE_3280 if certificate validation according
to the RFC 3280 method is required, or
GSK_CERT_VALIDATION_MODE_5280 if certificate validation according
to the RFC 5280 method is required.

Specify GSK_CERT_VALIDATION_MODE_ANY if certificate validation can
use any supported X.509 certificate validation method.

GSK_CERT_VALIDATION_MODE can only be specified for an SSL
environment.

GSK_CRL_SECURITY_LEVEL

Specify the level of security to be used when contacting an LDAP server to
check for revoked certificates in a Certificate Revocation List (CRL). CRLs
located are cached according to the GSK_CRL_CACHE_TIMEOUT setting
of the SSL environment. To enforce contact with the LDAP server for each
CRL check, CRL caching must be disabled. If a CRL is not defined, an
empty CRL is placed in the CRL cache to prevent repeated calls to the
LDAP server. This entry is not cleared until the CRL cache timeout is
reached. See “gsk_attribute_set_numeric_value()” on page 85 and
Appendix A, “Environment variables,” on page 605 for more information
about the GSK_CRL_CACHE_TIMEOUT setting.
GSK_CRL_SECURITY_LEVEL can only be specified at the environment
level.

Three levels of security are available:
v GSK_CRL_SECURITY_LEVEL_LOW - Certificate validation does not fail

if the LDAP server cannot be contacted.
v GSK_CRL_SECURITY_LEVEL_MEDIUM - Certificate validation requires

the LDAP server to be contactable, but does not require a CRL to be
defined. This is the default.

v GSK_CRL_SECURITY_LEVEL_HIGH - Certificate validation requires the
LDAP server to be contactable, and a CRL to be defined.

GSK_CLIENT_AUTH_ALERT
Specify GSK_CLIENT_AUTH_NOCERT_ALERT_OFF if the SSL server
application is to allow client connections where client authentication is
requested and the client fails to supply an X.509 certificate. Specify
GSK_CLIENT_AUTH_NOCERT_ALERT_ON if the SSL server application
is to terminate client connections where client authentication is requested
and the client fails to supply an X.509 certificate.

gsk_attribute_set_enum()

80 z/OS V2R1.0 System SSL Programming

GSK_CLIENT_AUTH_ALERT can be specified only for an SSL
environment and is only applicable for server sessions with client
authentication active.

GSK_CLIENT_AUTH_TYPE
Specifies GSK_CLIENT_AUTH_FULL_TYPE to validate client certificates. If
a certificate is not valid, the connection is not started and an error code is
returned by the gsk_secure_socket_init() routine. If an LDAP server is
specified, the LDAP server is queried for CA certificates and certificate
revocation lists. If the LDAP server is not available, only local validation is
performed. If no client certificate is received and either
GSK_CLIENT_AUTH_ALERT is not specified or is set to
GSK_CLIENT_AUTH_NOCERT_ALERT_OFF, the connection is successful.
The application can check for this case by calling the
gsk_attribute_get_cert_info() routine and checking for a NULL return
address.

When a client's certificate is being requested, the client can be required to
provide a certificate by setting GSK_CLIENT_AUTH_ALERT to
GSK_CLIENT_NOCERT_ALERT_ON. If no certificate is received, the
requested handshake fails. See “gsk_attribute_set_enum()” on page 79 for
more information about the GSK_CLIENT_AUTH_ALERT setting.

Specify GSK_CLIENT_AUTH_PASSTHRU_TYPE to bypass client certificate
validation. The application can retrieve the certificate by calling the
gsk_attribute_get_cert_info() routine.

GSK_CLIENT_AUTH_TYPE can be specified only for an SSL environment
and is only applicable for server sessions with client authentication active.

GSK_EXTENDED_RENEGOTIATION_INDICATOR
Specify GSK_EXTENDED_RENEGOTIATION_INDICATOR_OPTIONAL to
not require the renegotiation indicator during initial handshake. This is the
default.

Specify GSK_EXTENDED_RENEGOTIATION_INDICATOR_CLIENT to
allow the client initial handshake to proceed only if the server indicates
support for RFC 5746 Renegotiation.

Specify GSK_EXTENDED_RENEGOTIATION_INDICATOR_SERVER to
allow the server initial handshake to proceed only if the client indicates
support for RFC 5746 Renegotiation.

Specify GSK_EXTENDED_RENEGOTIATION_INDICATOR_BOTH to allow
the server and client initial handshakes to proceed only if partner indicates
support for RFC 5746 Renegotiation.

GSK_EXTENDED_RENEGOTIATION_INDICATOR can only be specified
for an SSL environment.

GSK_PROTOCOL_SSLV2
Specifies GSK_PROTOCOL_SSLV2_ON to enable the SSL Version 2
protocol or GSK_PROTOCOL_SSLV2_OFF to disable the SSL Version 2
protocol. The SSL V2 protocol should be disabled whenever possible since
the SSL V3 and TLS protocols provide significant security enhancements.

GSK_PROTOCOL_SSLV2 can be specified for an SSL environment or an
SSL connection.

When operating in FIPS mode, the SSL Version 2 protocol is not used.
Enabling this protocol has no effect.

gsk_attribute_set_enum()

Chapter 7. API reference 81

When TLS extensions are defined for the client and any of the TLS
protocols are enabled for the connection, the SSL Version 2 protocol is not
used. Enabling this protocol has no effect.

GSK_PROTOCOL_SSLV3
Specifies GSK_PROTOCOL_SSLV3_ON to enable the SSL Version 3
protocol or GSK_PROTOCOL_SSLV3_OFF to disable the SSL Version 3
protocol.

GSK_PROTOCOL_SSLV3 can be specified for an SSL environment or an
SSL connection.

When operating in FIPS mode, the SSL Version 3 protocol is not used.
Enabling this protocol has no effect.

GSK_PROTOCOL_TLSV1
Specifies GSK_PROTOCOL_TLSV1_ON to enable the TLS Version 1.0
protocol or GSK_PROTOCOL_TLSV1_OFF to disable the TLS Version 1.0
protocol.

GSK_PROTOCOL_TLSV1 can be specified for an SSL environment or an
SSL connection.

GSK_PROTOCOL_TLSV1_1
Specifies GSK_PROTOCOL_TLSV1_1_ON to enable the TLS Version 1.1
protocol or GSK_PROTOCOL_TLSV1_1_OFF to disable the TLS Version 1.1
protocol.

GSK_PROTOCOL_TLSV1_1 can be specified for an SSL environment or an
SSL connection.

GSK_PROTOCOL_TLSV1_2
Specify GSK_PROTOCOL_TLSV1_2_ON to enable the TLS Version 1.2
protocol or GSK_PROTOCOL_TLSV1_2_OFF to disable the TLS Version 1.2
protocol.

GSK_PROTOCOL_TLSV1_2 can be specified for an SSL environment or an
SSL connection.

GSK_RENEGOTIATION
Specify GSK_RENEGOTIATION_NONE to disable SSL V3 and TLS
handshake renegotiation as a server and allow RFC 5746 renegotiation.
This is the default.

Specify GSK_RENEGOTIATION_DISABLED to disable SSL V3 and TLS
handshake renegotiation as a server and also disable RFC 5746
renegotiation.

Specify GSK_RENEGOTIATION_ALL to allow SSL V3 and TLS handshake
renegotiation as a server while also allowing RFC 5746 renegotiation.

Specify GSK_RENEGOTIATION_ABBREVIATED to allow SSL V3 and TLS
abbreviated handshake renegotiation as a server for resuming the current
session only, while disabling SSL V3 and TLS full handshake renegotiation
as a server. With this enumeration value set, the System SSL session ID
cache is not checked when resuming the current session. RFC 5746
renegotiation is allowed.

GSK_RENEGOTIATION can only be specified for an SSL environment.

GSK_RENEGOTIATION_PEER_CERT_CHECK
Specify GSK_RENEGOTIATION_PEER_CERT_CHECK_OFF to not perform

gsk_attribute_set_enum()

82 z/OS V2R1.0 System SSL Programming

an identity check against the peer's certificate during renegotiation. This
allows the peer certificate to change during renegotiation. This is the
default.

Specify GSK_RENEGOTIATION_PEER_CERT_CHECK_ON to perform a
comparison against the peer's certificate to ensure that certificate does not
change during renegotiation.

GSK_RENEGOTIATION_PEER_CERT_CHECK can only be specified for an
SSL environment.

GSK_SESSION_TYPE
Specifies GSK_CLIENT_SESSION to perform the SSL handshake as a client,
GSK_SERVER_SESSION to perform the SSL handshake as a server, or
GSK_SERVER_SESSION_WITH_CL_AUTH to perform the SSL handshake
as a server requiring client authentication.

GSK_SESSION_TYPE can be specified for an SSL environment or an SSL
connection.

GSK_SUITE_B_PROFILE
Specifies the Suite B profile that an SSL server or client applies to TLS
sessions. RFC 5430 defines the cipher suites that are valid for use when
using the compliant Suite B profile for TLS. Specify:
v GSK_SUITE_B_PROFILE_128 if only the 128-bit Suite B security profile

is required.
v GSK_SUITE_B_PROFILE_192 if only the 192-bit Suite B security profile

is required.
v GSK_SUITE_B_PROFILE_ALL if both the 128-bit and 192-bit Suite B

security profiles are required.
v GSK_SUITE_B_PROFILE_OFF if the Suite B security profile is not to be

applied to any TLS sessions.

GSK_SUITE_B_PROFILE can only be specified for an SSL environment.

Because this setting affects the cipher suites that are allowed, this also has
an implicit effect on the Elliptic Curves and Certificates that can be used.
Suite B Cryptography requires that key establishment and authentication
algorithms that are used in TLS sessions be based on Elliptic Curve
Cryptography, and that the encryption algorithm be AES.

For more information about the cipher suites, elliptic curves, and
certificates that are allowed by Suite B, see “Suite B cryptography support”
on page 45.

GSK_SYSPLEX_SIDCACHE
Returns GSK_SYSPLEX_SIDCACHE_ON if sysplex session caching is
enabled for this application or GSK_SYSPLEX_SIDCACHE_OFF if sysplex
session caching is not enabled. GSK_SYSPLEX_SIDCACHE can be specified
only for an SSL environment.

GSK_T61_AS_LATIN1
Specify GSK_T61_AS_LATIN1_ON to use the ISO8859-1 character set when
processing a TELETEX string. Specify GSK_T61_AS_LATIN1_OFF to use
the T.61 character set. The default is to use the ISO8859-1 character set.

Note: Selecting the incorrect character set can cause strings to be converted
incorrectly. GSK_T61_AS_LATIN1 can be specified only for an SSL
environment. This setting is global and affects all string conversions for all
SSL environments.

gsk_attribute_set_enum()

Chapter 7. API reference 83

GSK_V3_CIPHERS
Specify GSK_V3_CIPHERS_CHAR2 if the cipher specification is specified
using 1 or more 2-character values in GSK_V3_CIPHER_SPECS. Specify
GSK_V3_CIPHERS_CHAR4 if the cipher specification is specified using 1
or more 4-character values in GSK_V3_CIPHER_SPECS_EXPANDED.
GSK_V3_CIPHERS can be specified for an SSL environment or an SSL
connection.

Related Topics

“gsk_attribute_get_enum()” on page 63

“gsk_environment_open()” on page 93

“gsk_environment_init()” on page 91

“gsk_secure_socket_open()” on page 121

“gsk_secure_socket_init()” on page 112

gsk_attribute_set_enum()

84 z/OS V2R1.0 System SSL Programming

gsk_attribute_set_numeric_value()
Sets a numeric value.

Format
#include <gskssl.h>

gsk_status gsk_attribute_set_numeric_value (
gsk_handle ssl_handle,
GSK_NUM_ID num_id,
int num_value)

Parameters

ssl_handle
Specifies an SSL environment handle returned by gsk_environment_open()
or an SSL connection handle returned by gsk_secure_socket_open().

num_id
Specifies the numeric identifier.

num_value
Specifies the numeric value.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_ID]
The numeric identifier is not valid or cannot be used with the specified
handle.

[GSK_ATTRIBUTE_INVALID_NUMERIC_VALUE]
The numeric value is not within the valid range.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The environment or connection is not in the open state.

Usage

The gsk_attribute_set_numeric_value() routine sets a numeric value for an SSL
environment or an SSL connection. The environment or connection must be in the
open state and not in the initialized state (that is, gsk_environment_init() or
gsk_secure_socket_init() has not been called).

These numeric identifiers are supported:

GSK_CRL_CACHE_TIMEOUT
Sets the CRL cache timeout. This is the number of hours that a cached CRL
remains valid. The range is 0-720 and defaults to 24. A value of 0 disables
CRL caching. GSK_CRL_CACHE_TIMEOUT can be specified only for an
SSL environment.

GSK_FD
Sets the socket descriptor for network operations. GSK_FD can be specified

gsk_attribute_set_numeric_value()

Chapter 7. API reference 85

only for an SSL connection. The socket must not be closed until the
gsk_secure_socket_close() routine has been called to terminate the secure
connection.

GSK_LDAP_SERVER_PORT
Sets the LDAP server port. The port must be between 1 and 65535. Port
389 will be used if no LDAP server port is set. GSK_LDAP_SERVER_PORT
can be specified only for an SSL environment. GSK_LDAP_SERVER_PORT
can be specified only for an SSL environment.

GSK_V2_SESSION_TIMEOUT
Sets the SSL Version 2 session timeout. This is the number of seconds until
an SSL V2 session identifier expires. The range is 0-100 and defaults to 100.
System SSL remembers SSL V2 session identifiers for this amount of time.
This reduces the amount of data exchanged during the SSL handshake
when a complete initial handshake is performed. Session identifiers are not
remembered if a value of 0 is specified. GSK_V2_SESSION_TIMEOUT can
be specified only for an SSL environment.

GSK_V2_SIDCACHE_SIZE
Sets the size of the SSL Version 2 session identifier cache. The oldest entry
is removed when the cache is full to add a new entry. The range is 0-32000
and defaults to 256. Session identifiers are not remembered if a value of 0
is specified. The session identifier cache is allocated using the requested
size rounded up to a power of 2 with a minimum size of 16.
GSK_V2_SIDCACHE_SIZE can be specified only for an SSL environment.

GSK_V3_SESSION_TIMEOUT
Sets the session timeout for the SSL V3, TLS V1.0, or higher protocols. This
is the number of seconds until an SSL V3 session identifier expires. The
range is 0-86400 and defaults to 86400. System SSL remembers session
identifiers for this amount of time. This reduces the amount of data
exchanged during the SSL handshake when a complete initial handshake
has already been performed. Session identifiers are not remembered if a
value of 0 is specified. GSK_V3_SESSION_TIMEOUT can be specified only
for an SSL environment.

GSK_V3_SIDCACHE_SIZE
Sets the size of the SSL Version 3 session identifier cache. The oldest entry
will be removed when the cache is full to add a new entry. The range is
0-64000 and defaults to 512. Session identifiers are not remembered if a
value of 0 is specified. The SSL V3 session cache is used for the SSL V3,
TLS V1.0, or higher protocols. The session identifier cache is allocated by
using the requested size rounded up to a power of 2 with a minimum size
of 16. GSK_V3_SIDCACHE_SIZE can be specified only for an SSL
environment.

Related Topics

“gsk_attribute_get_numeric_value()” on page 68

“gsk_environment_open()” on page 93

“gsk_environment_init()” on page 91

“gsk_secure_socket_init()” on page 112

“gsk_secure_socket_open()” on page 121

gsk_attribute_set_numeric_value()

86 z/OS V2R1.0 System SSL Programming

gsk_attribute_set_tls_extension()
Defines a TLS extension to the SSL environment or connection.

Format
#include <gskssl.h>

gsk_attribute_set_tls_extension (
gsk_handle ssl_handle,
gsk_tls_extension * tls_extension)

Parameters

ssl_handle
Specifies an SSL environment handle returned by gsk_environment_open()
or an SSL connection handle returned by gsk_secure_socket_open().

tls_extension
Specifies the TLS extension structure containing extension data.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_TLS_EXTENSION]
The TLS extension type identifier is not valid or cannot be used with the
specified handle.

[GSK_ATTRIBUTE_INVALID_TLS_EXT_DATA]
TLS extension data has been incorrectly defined.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_INVALID_STATE]
The handle is closed.

Usage

The gsk_attribute_set_tls_extension() routine defines a TLS extension for an SSL
environment or an SSL connection. The environment or connection must be in the
open state and not in the initialized state (that is, gsk_environment_init() or
gsk_secure_socket_init() is not called). TLS extensions that are defined for an SSL
environment applies to all connections made as part of that environment unless
explicitly deactivated or replaced using a call to gsk_attribute_set_tls_extension()
for the connection. TLS extensions are applied to TLS V1.0 or higher connections
only.

The application must prime the TLS extension structure with the appropriate TLS
extension data before calling the routine, including the TLS extension type
identifier and the specific data that is required for the TLS extension type. The TLS
extension may be designated as required or optional in the gsk_tls_extension
structure. A required setting enforces support requirements of the specific
extension type on the communicating partner. If the partner indicates that it does
not support the extension, the connection is rejected. An optional setting allows the
connection to continue without support for that particular extension type if the
communicating partner indicates that it does not support the TLS extension type.

gsk_attribute_set_tls_extension()

Chapter 7. API reference 87

Note:

1. Setting an extension as required for a server means that all clients connecting to
the server must have the extension enabled. Failure for a client to do so results
in the server rejecting the connection request from the client. It is recommended
that for maximum interoperability, that the required field is not enabled on the
server side.

2. The gsk_tls_extension structure contains a 32-byte field, rsvd, which is reserved
for future use. This field must contain binary zeros; any non-zero data results
in gsk_attribute_set_tls_extension() returning a
GSK_ATTRIBUTE_INVALID_TLS_EXT_DATA error.

3. Definition of TLS extensions for the client when any of the TLS protocols are
enabled prevents the SSL V2 protocol from being used.

The values set by using this service are treated as independent values. They are
not validated with other values set using gsk_attribute_set_buffer(),
gsk_attribute_set_enum(), or gsk_attribute_set_tls_extensions() APIs until used
together to perform a SSL/TLS handshake by calling gsk_secure_socket_init().

These TLS extension type identifiers are supported:

GSK_TLS_EXTID_SNI_SERVER_LABELS
Specifies the pairings of server name to certificate key label to be used
when the TLS server receives a 'Server Name Indication' type TLS
extension from the TLS client. The server name/key label pairs are used
with the server name details received from the client to determine which
certificate from the key database, key ring or token is sent to the client as
the servers certificate.

Set the setSni setting of the gsk_sni_server_labels extension data to TRUE to
register the extension data with the SSL environment or connection. A
setSni setting of FALSE deactivates a previously registered
GSK_TLS_EXTID_SNI_SERVER_LABELS type TLS extension setting.

If the TLS server does not recognize any server names in the clients server
name list, the server sends an 'unrecognized_name' alert to the client,
which, by default, is a warning. Set the unrecognized_name_fatal flag in the
gsk_sni_server_labels extension data to TRUE to treat the
'unrecognized_name' alert as fatal and close the connection.

GSK_TLS_EXTID_SNI_SERVER_LABELS can be defined on both the server
and client sides. Its settings, however, are effective when running as a
server; it is ignored for clients.

Note:

1. It is recommended that the gsk_sni_server_labels structure to be included
in the gsk_tls_extension data be initialized with binary zeros before
setting the required server label data. This ensures future application
compatibility when additional bits within the gsk_sni_server_labels
structure are used.

2. System SSL only supports server names that contain US-ASCII
characters.

GSK_TLS_EXTID_SNI_CLIENT_SNAMES
Specifies the server name (or list of server names) that the client sends to
the server in a 'Server Name Indication' type TLS extension to indicate

gsk_attribute_set_tls_extension()

88 z/OS V2R1.0 System SSL Programming

with which server the client wants to communicate. The list of server
names is defined using a pointer to an array of pointers to strings
containing the server names.

Set the setSni setting of the gsk_sni_client_names extension data to TRUE to
register the extension data with the SSL environment or connection. A
setSni setting of FALSE deactivates a previously registered
GSK_TLS_EXTID_SNI_CLIENT_SNAMES type TLS extension setting.

If the TLS server does not recognize any server names in the clients server
name list, the server sends an 'unrecognized_name' alert to the client,
which, by default, is a warning. Set the unrecognized_name_fatal flag in the
gsk_sni_client_names extension data to TRUE to treat the
'unrecognized_name' alert as fatal and close the connection.

GSK_TLS_EXTID_SNI_CLIENT_SNAMES can be defined on both the
server and client sides. Its settings, however, are effective when running as
a client; it is ignored for servers.

Note:

1. It is recommended that the gsk_sni_client_snames structure to be
included in the gsk_tls_extension data be initialized with binary zeros
before setting the required server label data. This will ensure future
application compatibility when additional bits within the
gsk_sni_client_snames structure are used.

2. System SSL only supports server names that contain US-ASCII
characters.

GSK_TLS_EXTID_SERVER_MFL
Specifies the 'Maximum Fragment Length' type TLS extension requirements
for the TLS server. Specify to the TLS server whether to support the
'Maximum Fragment Length' TLS extension using the GSK_TLS_MFL_ON
setting. The GSK_TLS_MFL_OFF setting deactivates a previously registered
GSK_TLS_EXTID_SERVER_MFL type TLS extension setting.

GSK_TLS_EXTID_CLIENT_MFL
Specifies the 'Maximum Fragment Length' type TLS extension requirements
for the TLS client. Specify the size of the maximum fragment length to be
used using settings GSK_TLS_MFL_512 (29 bytes), GSK_TLS_MFL_1024
(210), GSK_TLS_MFL_2048 (211) or GSK_TLS_MFL_4096 (212). The
GSK_TLS_MFL_OFF setting deactivates a previously registered
GSK_TLS_EXTID_CLIENT_MFL type TLS extension setting.

GSK_TLS_EXTID_TRUNCATED_HMAC
Specifies whether the TLS server or client supports the 'Truncated HMAC'
type TLS extension. Set truncateHmac to TRUE to enable the extension. A
truncateHmac setting of FALSE deactivates a previously registered
GSK_TLS_EXTID_TRUNCATED_HMAC type TLS extension setting.

gsk_attribute_set_tls_extension()

Chapter 7. API reference 89

gsk_environment_close()
Closes an SSL environment.

Format
#include <gskssl.h>

gsk_status gsk_environment_close (
gsk_handle * env_handle)

Parameters

env_handle
Specifies the SSL environment handle returned by the
gsk_environment_open() routine. The environment handle will be set to
NULL upon completion.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_INVALID_HANDLE]
The environment handle is not valid.

[GSK_INVALID_STATE]
The environment is already closed.

Usage

The gsk_environment_close() routine closes an environment created by the
gsk_environment_open() routine. The storage that is allocated for the environment
is not released until all connections created using the environment are closed. The
SSL environment cannot be used to create new connections upon completion of the
close.

Related Topics

“gsk_environment_open()” on page 93

“gsk_environment_init()” on page 91

“gsk_secure_socket_init()” on page 112

“gsk_secure_socket_close()” on page 111

gsk_environment_close()

90 z/OS V2R1.0 System SSL Programming

gsk_environment_init()
Initializes an SSL environment.

Format
#include <gskssl.h>

gsk_status gsk_environment_init (
gsk_handle env_handle)

Parameters

env_handle
Specifies the SSL environment handle returned by the
gsk_environment_open() routine.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_CERTIFICATE_NOT_AVAILABLE]
The key database, key ring or token does not contain any certificates.

[GSK_ERR_BAD_KEYFILE_PASSWORD]
The key database password is not correct.

[GSK_ERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[GSK_ERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[GSK_ERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[GSK_ERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[GSK_ERR_LDAP]
Unable to initialize the LDAP client.

[GSK_ERR_LDAP_NOT_AVAILABLE]
The LDAP server is not available.

[GSK_ERR_PERMISSION_DENIED]
Not authorized to access key database, SAF key ring or z/OS PKCS #11
token.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The environment handle is not valid.

[GSK_INVALID_STATE]
The environment is not in the open state.

[GSK_KEYFILE_INVALID_FORMAT]
The database is not a key database.

gsk_environment_init()

Chapter 7. API reference 91

[GSK_KEYFILE_IO_ERR]
An input/output error occurred while reading the key database, key ring
or token.

[GSK_KEYFILE_PASSWORD_EXPIRED]
The key database password is expired.

[GSK_KEYRING_OPEN_ERROR]
Unable to open the key database, key ring or token.

[GSK_NO_KEYFILE_PASSWORD]
The key database password is not available.

Usage

The gsk_environment_init() routine initializes an SSL environment created by the
gsk_environment_open() routine. After the SSL environment has been initialized, it
can be used to create one or more SSL connections by calling the
gsk_secure_socket_open() routine. The gsk_environment_close() routine should be
called to close the environment when it is no longer needed. The
gsk_environment_close() routine should also be called if an error is returned by
the gsk_environment_init() routine.

Related Topics

“gsk_environment_open()” on page 93

“gsk_environment_close()” on page 90

“gsk_secure_socket_open()” on page 121

gsk_environment_init()

92 z/OS V2R1.0 System SSL Programming

gsk_environment_open()
Creates an SSL environment.

Format
#include <gskssl.h>

gsk_status gsk_environment_open (
gsk_handle * env_handle)

Parameters

env_handle
Returns the handle for the environment. The application should call the
gsk_environment_close() routine to release the environment when it is no
longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ATTRIBUTE_INVALID_ENUMERATION]
The value of an environment variable is not valid.

[GSK_ATTRIBUTE_INVALID_LENGTH]
The length of an environment variable value is not valid.

[GSK_ATTRIBUTE_INVALID_NUMERIC_VALUE]
The value of an environment variable is not valid.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

Usage

The gsk_environment_open() routine creates an SSL environment. The
environment will be initialized with default values and then any SSL environment
variables will be processed. These values can be changed by the application using
the appropriate gsk_attribute_set_*() routines. The gsk_environment_init() routine
should then be called to initialize the SSL environment. This environment can then
be used to establish one or more SSL connections.

When not executing in FIPS mode, the following default values are set:
v SSL V2, SSL V3, and TLS V1.0 are enabled (TLS V1.1 and TLS V1.2 are disabled

by default)
v The connection type is set to CLIENT
v The SSL V2 connection timeout is set to 100 seconds
v The SSL V3 connection timeout is set to 86400 seconds
v The SSL V2 cache size is set to 256
v The SSL V3 cache size is set to 512
v The sysplex session cache is disabled
v The default key will be used
v No revoked certificate checking performed
v The default callback routines will be used

gsk_environment_open()

Chapter 7. API reference 93

v The SSL V2 cipher specification is set to "713642" if United States only
encryption is enabled and "642" otherwise

v 2-character cipher definitions in GSK_V3_CIPHER_SPECS will be used for SSL
V3 cipher values

v The SSL V3 cipher specification is set to
"050435363738392F303132330A1613100D0915120F0C0306020100" if United States
only encryption is enabled and "0915120F0C0306020100" otherwise

v The supported elliptic curve list is set to "00210023002400250019"
v The signature algorithm pair list is set to

"0601060305010503040104030402030103030201020302020101"
v No TLS extensions are initialized
v Suite B is disabled.

When executing in FIPS mode, the following default values are set:
v TLS V1.0 is enabled (TLS V1.1 and TLS V1.2 are disabled by default)
v The connection type is set to CLIENT
v The connection timeout is set to 86400 seconds
v The cache size is set to 512
v The sysplex session cache is disabled
v The default key will be used
v No revoked certificate checking performed
v The default callback routines will be used
v 2-character cipher definitions in GSK_V3_CIPHER_SPECS will be used for SSL

V3 cipher values
v The cipher specification is set to "35363738392F303132330A1613100D"
v The supported elliptic curve list is set to "00210023002400250019"
v The signature algorithm pair list is set to

"060106030501050304010403040203010303020102030202"
v Suite B is disabled.

See Table 15 on page 619 for a list of supported SSL V2 cipher specifications.

See Table 16 on page 619 for a list of supported 2-character SSL V3 cipher
specifications.

See Table 17 on page 623 for a list of supported 4-character SSL V3 cipher
specifications.

See Table 19 on page 627 for a list of supported 4-character elliptic curve
specifications.

Applications wanting to use cipher suites that use elliptic curve certificates must
set an appropriate cipher specification in GSK_V3_CIPHER_SPECS_EXPANDED. If
an application requires an SSL V3, TLS V1.0, or higher session to use the
4-character cipher suites specified in GSK_V3_CIPHER_SPECS_EXPANDED then it
must explicitly call gsk_attribute_set_enum() and set the enumeration identifier
GSK_V3_CIPHERS to have a value of GSK_V3_CIPHERS_CHAR4.

gsk_environment_open()

94 z/OS V2R1.0 System SSL Programming

If an application has indicated it is using the 4-character cipher specifications by
setting GSK_V3_CIPHERS to GSK_V3_CIPHERS_CHAR4, but does not set a cipher
specification in GSK_V3_CIPHER_SPECS_EXPANDED the default cipher
specification will be set as follows:
v executing in non-FIPS mode with United States only encryption enabled:

"0005000400350036003700380039002F0030003100320033000A001600130010000D000900150012
000F000C00030006000200010000"

v executing in non-FIPS mode with United States only encryption disabled:
"000900150012000F000C00030006000200010000"

v executing in FIPS mode:
"00350036003700380039002F0030003100320033000A001600130010000D"

If an application has indicated it will be running in Suite B compatibility mode by
setting GSK_SUITE_B_PROFILE to a value other than
GSK_SUITE_B_PROFILE_OFF, the cipher specification will be set based on the
values for GSK_SUITE_B_PROFILE as follows:
v executing with GSK_SUITE_B_PROFILE_128 "C02BC023"
v executing with GSK_SUITE_B_PROFILE_192 "C02CC024"
v executing with GSK_SUITE_B_PROFILE_ALL "C02CC024C02BC023"

If executing in FIPS mode, the following cipher specifications are supported:
v When using 2-character cipher suites:

0A 0D 10 13 16 2F 30 31 32 33 35 36 37 38 39 3C 3D 3E 3F 40 67 68 69
6A 6B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5

v When using 4-character cipher suites:

000A 000D 0010 0013 0016 002F 0030 0031 0032 0033 0035 0036 0037 0038
0039 003C 003D 003E 003F 0040 0067 0068 0069 006A 006B 009C 009D 009E
009F 00A0 00A1 00A2 00A3 00A4 00A5 C003 C004 C005 C008 C009 C00A
C00D C00E C00F C012 C013 C014 C023 C024 C025 C026 C027 C028 C029
C02A C02B C02C C02D C02E C02F C030 C031 C032

If using the TLS V1.1 or higher protocols, export ciphers are not supported. The
40-bit ciphers (cipher specifications "03" and "06" or "0003" and "0006") will be
ignored if specified.

If using the TLS V1.2 or higher protocols the 56-bit DES cipher suites "09", "0C",
"0F", "12" and "15" (or "0009", "000C", "000F", "0012" and "0015") will be ignored if
specified.

These environment variables are processed:

GSK_CLIENT_ECURVE_LIST
Specifies the list of elliptic curves supported by the client as a string
consisting of 1 or more 4-character decimal values in order of preference
for use. The list is used by the client to guide the server as to which elliptic
curves are preferred when using ECC-based cipher suites for the TLS V1.0,
TLS V1.1, and TLS V1.2 protocols.

Only NIST recommended curves are able to be specified. To use Brainpool
standard curves for an SSL environment or connection, set
GSK_CLIENT_ECURVE_LIST to "" or use gsk_attribute_set_buffer() to
reinitialize the GSK_CLIENT_ECURVE_LIST buffer to NULL. See Table 19
on page 627 for a list of valid 4-character elliptic curve specifications.

gsk_environment_open()

Chapter 7. API reference 95

GSK_CRL_SECURITY_LEVEL
Specifies the level of security SSL applications will use when contacting
LDAP servers to check CRLs for revoked certificates during certificate
validation.

GSK_EXTENDED_RENEGOTIATION_INDICATOR
Specifies the level of enforcement of renegotiation indication as specified
by RFC 5746 during the initial handshake.

Specify "OPTIONAL" to not require the renegotiation indicator during
initial handshake. This is the default.

Specify "CLIENT" to allow the client initial handshake to proceed only if
the server indicates support for RFC 5746 Renegotiation.

Specify "SERVER" to allow the server initial handshake to proceed only if
the client indicates support for RFC 5746 Renegotiation.

Specify "BOTH" to allow the server and client initial handshakes to
proceed only if partner indicates support for RFC 5746 Renegotiation.

GSK_KEY_LABEL
Specifies the label of the key used to authenticate the application. The
default key will be used if a key label is not specified.

GSK_KEYRING_FILE
Specifies the name of the key database file, SAF key ring or z/OS PKCS
#11 token. A key database is used if a database password or stash file is
defined using either an environment variable or the
gsk_attribute_set_buffer() routine. Otherwise a SAF key ring or z/OS
PKCS #11 token is used. GSK_KEYRING_FILE may be specified only for
an SSL environment.

The SAF key ring name is specified as "userid/keyring". The current user
ID is used if the user ID is omitted. The user must have READ access to
the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using
a SAF key ring owned by the user. The user must have UPDATE access to
the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using
a SAF key ring owned by another user.

A z/OS PKCS #11 token name is specified as *TOKEN*/token-name.
TOKEN indicates a PKCS #11 token is being specified.

Note: Certificate private keys are not available when using a SAF key ring
owned by another user, except for SITE certificates where CONTROL
authority is given to IRR.DIGTCERT.GENCERT in the FACILITY class or
for user certificates where READ or UPDATE authority is given to
ringOwner.ringName.LST resource in the RDATALIB class.

GSK_KEYRING_PW
Specifies the password for the key database.

GSK_KEYRING_STASH
Specifies the name of the key database password stash file. The stash file
name always has an extension of ".sth" and the supplied name will be
changed if it does not have the correct extension. The GSK_KEYRING_PW
environment variable will be used instead of the GSK_KEYRING_STASH
environment variable if it is also specified.

GSK_LDAP_SERVER
Specifies one or more blank-separated LDAP server host names. Each host
name can contain an optional port number separated from the host name

gsk_environment_open()

96 z/OS V2R1.0 System SSL Programming

by a colon. The LDAP server is used to obtain CA certificates when
validating a certificate and the local database does not contain the required
certificate. The local database must contain the required certificates if no
LDAP server is specified. Even when an LDAP server is used, root CA
certificates must be found in the local database since the LDAP server is
not a trusted data source. The LDAP server is also used to obtain
certificate revocation lists. When multiple LDAP server names are
specified, a bind is attempted for each name in the list until a bind is
successful. Once a bind is successful, that LDAP server is used.

GSK_LDAP_PASSWORD
Specifies the password to use when connecting to the LDAP server.

GSK_LDAP_PORT
Specifies the LDAP server port. Port 389 will be used if no LDAP server
port is specified.

GSK_LDAP_USER
Specifies the distinguished name to use when connecting to the LDAP
server.

GSK_PROTOCOL_SSLV2
Specifies whether the SSL V2 protocol is supported. A value of "0", "OFF",
or "DISABLED" disables the SSL V2 protocol while a value of "1", "ON", or
"ENABLED" enables the SSL V2 protocol. The SSL V2 protocol should be
disabled whenever possible since the SSL V3 protocol provides significant
security enhancements.

When operating in FIPS mode, SSL Version 2 protocol will not be used.
Enabling this protocol will have no effect.

When TLS extensions are defined for the client and any of the TLS
protocols are also enabled, the SSL Version 2 protocol will not be used.
Enabling this protocol will have no effect.

GSK_PROTOCOL_SSLV3
Specifies whether the SSL V3 protocol is supported. A value of "0", "OFF",
or "DISABLED" disables the SSL V3 protocol while a value of "1", "ON", or
"ENABLED" enables the SSL V3 protocol.

When operating in FIPS mode, SSL Version 3 protocol will not be used.
Enabling this protocol will have no effect.

GSK_PROTOCOL_TLSV1
Specifies whether the TLS V1.0 protocol is supported. A value of "0",
"OFF", or "DISABLED" disables the TLS V1.0 protocol while value of "1",
"ON", or "ENABLED" enables the TLS V1.0 protocol. The TLS V1.0 protocol
uses the same session cache and cipher specifications as the SSL V3
protocol.

GSK_PROTOCOL_TLSV1_1
Specifies whether the TLS V1.1 protocol is supported. A value of "0",
"OFF", or "DISABLED" disables the TLS V1.1 protocol while value of "1",
"ON", or "ENABLED" enables the TLS V1.1 protocol. The TLS V1.1 protocol
uses the same session cache and cipher specifications as the SSL V3
protocol. The TLS V1.1 protocol will not use export (40-bit) ciphers. They
will be ignored if TLS V1.1 is negotiated as the communications protocol.

GSK_PROTOCOL_TLSV1_2
Specifies whether the TLS V1.2 protocol is supported. A value of "0",
"OFF", or "DISABLED" disables the TLS V1.2 protocol while value of "1",

gsk_environment_open()

Chapter 7. API reference 97

"ON", or "ENABLED" enables the TLS V1.2 protocol. The TLS V1.2 protocol
uses the same session cache as the SSL V3 protocol. The TLS V1.2 protocol
will not use export cipher suites. 40-bit ciphers will be ignored if TLS V1.2
is negotiated as the communications protocol.

GSK_SUITE_B_PROFILE
Specifies the Suite B profile that an SSL server or client will apply to TLS
sessions. RFC 5430 defines the cipher suites that are valid for use when
using the Suite B profile for TLS.
v Specify "128" if only the 128-bit Suite B security profile is required.
v Specify "192" if only the 192-bit Suite B security profile is required.
v Specify "ALL" if both the 128-bit and 192-bit Suite B security profiles are

required.
v Specify "OFF" if the Suite B security profile is not to be applied to any

TLS sessions.

GSK_RENEGOTIATION
Specifies the type of session renegotiation allowed for an SSL environment.

Specify "NONE" to disable SSL V3 and TLS handshake renegotiation as a
server and allow RFC 5746 renegotiation. This is the default.

Specify "DISABLED" to disable SSL V3 and TLS handshake renegotiation
as a server and also disable RFC 5746 renegotiation.

Specify "ALL" to allow SSL V3 and TLS handshake renegotiation as a
server while also allowing RFC 5746 renegotiation.

Specify "ABBREVIATED" to allow SSL V3 and TLS abbreviated handshake
renegotiation as a server for resuming the current session only, while
disabling SSL V3 and TLS full handshake renegotiation as a server. With
this value specified, the System SSL session ID cache is not checked when
resuming the current session. RFC 5746 renegotiation is allowed.

GSK_RENEGOTIATION_PEER_CERT_CHECK
Specifies if the peer certificate is allowed to change during renegotiation.

Specify "OFF" or "0" to not perform an identity check against the peer's
certificate during renegotiation. This allows the peer certificate to change
during renegotiation. This is the default.

Specify "ON" or "1" to perform a comparison against the peer's certificate
to ensure certificate does not change during renegotiation.

GSK_SYSPLEX_SIDCACHE
Specifies whether sysplex session caching is supported for this application.
A value of 0, OFF or DISABLED will disable sysplex session caching while
a value of 1, ON or ENABLED will enable sysplex session caching.

GSK_TLS_SIG_ALG_PAIRS
Specifies the list of hash and signature algorithm pair specifications
supported by the client or server as a string consisting of 1 or more
4-character values in order of preference for use. The signature algorithm
pair specifications are sent by either the client or server to the session
partner to indicate which signature/hash algorithm combinations are
supported for digital signatures. Signature algorithm pair specification only
has relevance for sessions using TLS V1.2 or higher protocols. See Table 20
on page 627 for a list of valid 4-character signature algorithm pair
specifications.

gsk_environment_open()

98 z/OS V2R1.0 System SSL Programming

GSK_V2_CIPHER_SPECS
Specifies the SSL V2 cipher specifications in order of preference as a
null-terminated string consisting of 1 or more 1-character values. Valid
cipher specifications that are not supported because of the installed
cryptographic level will be skipped when the connection is initialized.

GSK_V2_SESSION_TIMEOUT
Specifies the session timeout value in seconds for the SSL V2 protocol. The
valid timeout values are 0 through 100 and defaults to 100.

GSK_V2_SIDCACHE_SIZE
Specifies the number of session identifiers that can be contained in the SSL
V2 cache. The valid cache sizes are 0 through 32000 and defaults to 256.
The SSL V2 cache will be disabled if 0 is specified.

GSK_V3_CIPHER_SPECS
Specifies the SSL V3 cipher specifications in order of preference as a
null-terminated string consisting of 1 or more 2-character values. The SSL
V3 cipher specifications are used for the SSL V3, TLS V1.0, and higher
protocols. Valid cipher specifications that are not supported because of the
installed cryptographic level will be skipped when the connection is
initialized. For protocols TLS V1.1 and above, 40-bit ciphers will be ignored
if these protocols are negotiated as the security protocol. For protocols TLS
V1.2 and above, the 56-bit DES cipher suites will be ignored if these
protocols are negotiated as the communications protocol. See Table 16 on
page 619 for a list of the supported 2-character SSL V3 cipher
specifications.

GSK_V3_CIPHER_SPECS_EXPANDED
Specifies the SSL V3 cipher specifications in order of preference as a
null-terminated string consisting of 1 or more 4-character values. The SSL
V3 cipher specifications are used for the SSL V3.0, TLS V1.0, and higher
protocols. Valid cipher specifications that are not supported because of the
installed cryptographic level will be skipped when the connection is
initialized. For protocols TLS V1.1 and above, 40-bit ciphers will be ignored
if these protocols are negotiated as the security protocol. For protocols TLS
V1.2 and above, the 56-bit DES cipher suites will be ignored if these
protocols are negotiated as the communications protocol. See Table 17 on
page 623 for a list of supported 4-character SSL V3 cipher specifications.

GSK_V3_SESSION_TIMEOUT
Specifies the session timeout value in seconds for the SSL V3, TLS V1.0 and
higher protocols. The valid timeout values are 0 through 86400 and
defaults to 86400.

GSK_V3_SIDCACHE_SIZE
Specifies the number of session identifiers that can be contained in the SSL
V3 cache. The valid cache sizes are 0 through 64000 and defaults to 512.
The SSL V3 cache will be disabled if 0 is specified. The SSL V3 cache is
used for the SSL V3, TLS V1.0 and higher protocols.

Related Topics

“gsk_environment_init()” on page 91

“gsk_environment_close()” on page 90

gsk_environment_open()

Chapter 7. API reference 99

gsk_free_cert_data()
Releases the storage allocated for a certificate data array.

Format
#include <gskssl.h>

void gsk_free_cert_data (
gsk_cert_data_elem * cert_data,
int elem_count)

Parameters

cert_data
Specifies the certificate data array to be released.

elem_count
Specifies the number of elements in the certificate data array.

Usage

The gsk_free_cert_data() routine releases the storage allocated for an array of
certificate data elements.

Related Topics

“gsk_attribute_get_cert_info()” on page 56

“gsk_get_cert_by_label()” on page 102

gsk_free_cert_data()

100 z/OS V2R1.0 System SSL Programming

gsk_get_all_cipher_suites()
Returns the available SSL cipher suites.

Format
#include <gskssl.h>

gsk_status gsk_get_all_cipher_suites (
gsk_all_cipher_suites * cipher_suites)

Parameters

cipher_suites
Returns the runtime version, release, security level, and cipher suites.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ERR_STRUCTURE_TOO_SMALL]
Size specified for supplied structure is too small.

Usage

The gsk_get_all_cipher_suites() routine returns the System SSL runtime version,
release, security level, and available cipher suites. The current System SSL run time
is Version 4 Release 1. The cipher suites are static null-terminated character strings
which must not be modified or freed by the application. The available cipher suites
for protocols SSL V3.0, TLS V1.0, and higher are returned in both 2-character and
4-character formats.

The cipher lists include all supported ciphers. As new ciphers are added, the lists
will be modified to contain the newly added ciphers. The adding of ciphers may
cause cipher selection to be modified as new ciphers are added, and different
ciphers to be selected if the lists are being used as the cipher list strings.

If executing in FIPS mode, the cipher suites are those that meet FIPS 140-2 criteria.
For more information about the FIPS cipher suites, see “gsk_environment_open()”
on page 93.

The application must initialize the size field in the gsk_all_cipher_suites structure
to the size of the gsk_all_ciphers_suites structure before using this function.

gsk_get_all_cipher_suites()

Chapter 7. API reference 101

gsk_get_cert_by_label()
Gets certificate information for a record label.

Format
#include <gskssl.h>

gsk_status gsk_get_cert_by_label (
gsk_handle ssl_handle,
const char * record_label,
gsk_cert_data_elem ** cert_data,
int * elem_count)

Parameters

ssl_handle
Specifies an SSL environment handle returned by gsk_environment_open()
or an SSL connection handle returned by gsk_secure_socket_open().

record_label
Specifies the record label for the certificate.

cert_data
Returns the certificate data array. The gsk_free_cert_data() routine should
be called to release the array when the certificate information is no longer
needed.

elem_count
Returns the number of elements in the array of gsk_cert_data_elem
structures.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ERR_ASN]
Unable to decode certificate.

[GSK_ERR_MULTIPLE_LABEL]
Multiple certificates exist for label.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The handle is not valid.

[GSK_KEY_LABEL_NOT_FOUND]
The key record is not found.

Usage

The gsk_get_cert_by_label() routine returns certificate information for a record
label. The supplied handle can be for an SSL environment or an SSL connection.

Each element of the certificate data array has an element identifier. The element
identifiers used for a particular certificate depends upon the contents of the
certificate. These element identifiers are currently provided:

gsk_get_cert_by_label()

102 z/OS V2R1.0 System SSL Programming

CERT_BODY_BASE64
Certificate body in Base64-encoded format

CERT_BODY_DER
Certificate body in binary ASN.1 DER-encoded format

CERT_COMMON_NAME
Subject common name (CN)

CERT_COUNTRY
Subject country (C)

CERT_DN_DER
Subject distinguished name in binary ASN.1 DER-encoded format

CERT_DN_PRINTABLE
Subject distinguished name as a printable character string

These DN attribute names are recognized by the System SSL run time.
v C - Country
v CN - Common name
v DC - Domain component
v DNQUALIFIER - Distinguished name qualifier
v EMAIL - email address
v GENERATIONQUALIFIER - Generation qualifier
v GIVENNAME - Given name
v INITIALS - Initials
v L - Locality
v MAIL - RFC 822 style address
v NAME - Name
v O - Organization name
v OU - Organizational unit name
v PC - Postal code
v SERIALNUMBER - Serial number
v SN - Surname
v ST - State or province
v STREET - Street
v T - Title

CERT_DNQUALIFIER
Subject distinguished name qualifier (DNQUALIFIER)

CERT_DOMAIN_COMPONENT
Subject domain component (DC)

CERT_EMAIL
Subject email address (EMAIL)

CERT_GENERATIONQUALIFIER
Subject generation qualifier (GENERATIONQUALIFIER)

CERT_GIVENNAME
Subject given name (GIVENNAME)

CERT_INITIALS
Subject initials (INITIALS)

gsk_get_cert_by_label()

Chapter 7. API reference 103

CERT_ISSUER_COMMON_NAME
Issuer common name (CN)

CERT_ISSUER_COUNTRY
Issuer country (C)

CERT_ISSUER_DN_DER
Issuer distinguished name in binary ASN.1 DER-encoded format

CERT_ISSUER_DN_PRINTABLE
Issuer distinguished name as a printable character string

These DN attribute names are recognized by the System SSL run time.
v C - Country
v CN - Common name
v DC - Domain component
v DNQUALIFIER - Distinguished name qualifier
v EMAIL - email address
v GENERATIONQUALIFIER - Generation qualifier
v GIVENNAME - Given name
v INITIALS - Initials
v L - Locality
v MAIL - RFC 822 style address
v NAME - Name
v O - Organization name
v OU - Organizational unit name
v PC - Postal code
v SERIALNUMBER - Serial number
v SN - Surname
v ST - State or province
v STREET - Street
v T - Title

CERT_ISSUER_DNQUALIFIER
Issuer distinguished name qualifier (DNQUALIFIER)

CERT_ISSUER_DOMAIN_COMPONENT
Issuer domain component (DC)

CERT_ISSUER_EMAIL
Issuer email address (EMAIL)

CERT_ISSUER_GENERATIONQUALIFIER
Issuer generation qualifier (GENERATIONQUALIFIER)

CERT_ISSUER_GIVENNAME
Issuer given name (GIVENNAME)

CERT_ISSUER_INITIALS
Issuer initials (INITIALS)

CERT_ISSUER_LOCALITY
Issuer locality (L)

CERT_ISSUER_MAIL
Issuer RFC 822 style address (MAIL)

gsk_get_cert_by_label()

104 z/OS V2R1.0 System SSL Programming

CERT_ISSUER_NAME
Issuer name (NAME)

CERT_ISSUER_ORG
Issuer organization (O)

CERT_ISSUER_ORG_UNIT
Issuer organizational unit (OU)

CERT_ISSUER_POSTAL_CODE
Issuer postal code (PC)

CERT_ISSUER_SERIALNUMBER
Issuer serial number (SERIALNUMBER)

CERT_ISSUER_STATE_OR_PROVINCE
Issuer state or province (ST)

CERT_ISSUER_STREET
Issuer street (STREET)

CERT_ISSUER_SURNAME
Issuer surname (SN)

CERT_ISSUER_TITLE
Issuer title (T)

CERT_LOCALITY
Subject locality (L)

CERT_MAIL
Subject RFC 822 style address (MAIL)

CERT_NAME
Subject name (NAME)

CERT_ORG
Subject organization (O)

CERT_ORG_UNIT
Subject organizational unit (OU)

CERT_POSTAL_CODE
Subject postal code (PC)

CERT_SERIAL_NUMBER
Certificate serial number

CERT_SERIALNUMBER
Subject serial number (SERIALNUMBER)

CERT_STATE_OR_PROVINCE
Subject state or province (ST)

CERT_STREET
Subject street (STREET)

CERT_SURNAME
Subject surname (SN)

CERT_TITLE
Subject title (T)

The CERT_BODY_DER, CERT_BODY_BASE64, CERT_DN_DER, and
CERT_ISSUER_DN_DER elements are not null-terminated and the 'cert_data_l'
field must be used to get the element length. All of the other elements are

gsk_get_cert_by_label()

Chapter 7. API reference 105

null-terminated character strings and the 'cert_data_l' field is the length of the
string excluding the string delimiter.

Related Topics

“gsk_environment_init()” on page 91

“gsk_secure_socket_init()” on page 112

gsk_get_cert_by_label()

106 z/OS V2R1.0 System SSL Programming

gsk_get_cipher_suites()
Returns the default available SSL cipher suites.

Format
#include <gskssl.h>

void gsk_get_cipher_suites (
gsk_cipher_suites * cipher_suites)

Parameters

cipher_suites
Returns the runtime version, release, security level, and cipher suites.

Usage

The gsk_get_cipher_suites() routine returns the System SSL runtime version,
release, security level, and available cipher suites. The current System SSL run time
is Version 4 Release 1. The cipher suites are static null-terminated character strings
which must not be modified or freed by the application.

If executing in FIPS mode, the cipher suites are those that meet FIPS 140-2 criteria.
For more information about the FIPS cipher suites, see “gsk_environment_open()”
on page 93.

gsk_get_cipher_suites()

Chapter 7. API reference 107

gsk_get_ssl_vector()
Obtain the address of the Secure Socket Layer function vector.

Format
#include <gskssl.h>

void gsk_get_ssl_vector (
gsk_uint32 * function_mask,
gsk_ssl_vector ** function_vector)

Parameters

function_mask
Returns a bit mask indicating the Secure Socket Layer level.

function_vector
Returns the address of the Secure Socket Layer function vector.

Usage

The Secure Socket Layer (SSL) functions can be called using either static binding or
runtime binding. Static binding is performed when the application is compiled
while runtime binding is performed when the application is run.

In order to use static binding, the SSL sidedeck file is specified as input to the
binder. This causes all SSL functions to be resolved at bind time and causes the
SSL DLL to be implicitly loaded when the application is run.

In order to use runtime binding, the SSL DLL must be explicitly loaded by the
application and the SSL functions must be called using indirect addresses. The
gsk_get_ssl_vector() routine allows an application to obtain the address of the SSL
function vector containing an entry for each SSL API routine. This eliminates the
need for the application to build the function vector through repeated calls to the
dllqueryfn() routine.

The function mask indicates the capabilities of the SSL DLL. These values are
defined:

GSKSSL_API_LVL1
SSL functions provided as part of z/OS Version 1 Release 6 are available.

GSKSSL_API_LVL2
SSL functions provided as part of z/OS Version 1 Release 11 are available.

GSKSSL_API_LVL3
SSL functions provided as part of z/OS Version 1 Release 13 are available.

gsk_get_ssl_vector()

108 z/OS V2R1.0 System SSL Programming

gsk_get_update()
Checks for a key database, SAF key ring or z/OS PKCS #11 token update.

Format
#include <gskssl.h>

gsk_status gsk_get_update (
gsk_handle env_handle,
long * update_flag)

Parameters

env_handle
Specifies the SSL environment handle returned by the
gsk_environment_open() routine.

update_flag
Returns 1 if the key database, SAF key ring or z/OS PKCS #11 token has
been updated or 0 if it has not been updated.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_INVALID_HANDLE]
The environment handle is not valid.

[GSK_INVALID_STATE]
The environment is not in the initialized state.

[GSK_KEYRING_OPEN_ERROR]
The key ring or token cannot be accessed.

Usage

The gsk_get_update() routine tests if the key database, SAF key ring or z/OS
PKCS #11 token associated with the SSL environment has been updated since the
last time that gsk_get_update() was called or since the environment was initialized
if gsk_get_update() has not been called yet. If an update has occurred, the
application can close the current environment and then create a new environment
to pick up the updates.

Related Topics

“gsk_environment_open()” on page 93

gsk_get_update()

Chapter 7. API reference 109

gsk_list_free()
Releases storage allocated for a list.

Format
#include <gskssl.h>

void gsk_list_free (
gsk_list * list)

Parameters

list Specifies the list to be released.

Usage

The gsk_list_free() routine releases storage allocated for a list. This includes the
gsk_list structure itself and all gsk_list structures anchored by the structure passed
on the function call.

Related Topics

“gsk_attribute_get_data()” on page 61

gsk_list_free()

110 z/OS V2R1.0 System SSL Programming

gsk_secure_socket_close()
Closes a secure socket connection.

Format
#include <gskssl.h>

gsk_status gsk_secure_socket_close (
gsk_handle * soc_handle)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_socket_open()
routine. The connection handle will be set to NULL upon completion.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_CONNECTION_ACTIVE]
The connection has an active read or write request.

[GSK_INVALID_HANDLE]
The connection handle is not valid.

[GSK_WOULD_BLOCK_WRITE]
An attempt to write pending data failed with EWOULDBLOCK.

Usage

The gsk_secure_socket_close() routine closes a secure socket connection created by
the gsk_secure_socket_open() routine. The socket itself is not closed (the
application is responsible for closing the socket). The connection can no longer be
used for secure communications after calling the gsk_secure_socket_close()
routine.

The gsk_secure_socket_close() routine can return GSK_WOULD_BLOCK_WRITE if
the socket is in non-blocking mode and there is pending write data. The
connection is not closed in this case and the application should call
gsk_secure_socket_close() again when the socket is ready to accept a write request.

Be sure gsk_secure_socket_shutdown() call is issued before a
gsk_secure_socket_close() call.

Related Topics

“gsk_secure_socket_open()” on page 121

“gsk_secure_socket_init()” on page 112

“gsk_secure_socket_read()” on page 122

“gsk_secure_socket_write()” on page 127

gsk_secure_socket_close()

Chapter 7. API reference 111

gsk_secure_socket_init()
Initializes a secure socket connection.

Format
#include <gskssl.h>

gsk_status gsk_secure_socket_init(
gsk_handle soc_handle)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_socket_open()
routine.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_CERTIFICATE_NOT_AVAILABLE]
No certificates available.

[GSK_ERR_BAD_EC_PARAMS]
EC parameters not supplied.

[GSK_ERR_BAD_CERT]
Certificate is not valid.

[GSK_ERR_BAD_DATE]
Certificate is not valid yet or is expired.

[GSK_ERR_BAD_KEYFILE_LABEL]
The specified key is not found in the key database or the key is not
trusted.

[GSK_ERR_BAD_MAC]
Message verification failed.

[GSK_ERR_BAD_MESSAGE]
Incorrectly-formatted message received from peer application.

[GSK_ERR_BAD_MSG_LEN]
Incorrectly-formatted TLS extension data contained within message
received from peer application.

[GSK_ERR_BAD_PEER]
Peer application has violated the SSL protocol.

[GSK_ERR_BAD_SIG_ALG_PAIR]
Signature algorithm pairs list is not valid.

[GSK_ERR_BAD_V2_CIPHER]
SSL V2 cipher is not valid.

[GSK_ERR_BAD_V3_CIPHER]
SSL V3 cipher is not valid.

[GSK_ERR_BAD_V3_EXPANDED_CIPHER]
SSL V3 expanded cipher is not valid.

gsk_secure_socket_init()

112 z/OS V2R1.0 System SSL Programming

[GSK_ERR_CERT_VALIDATION]
Certificate validation error.

[GSK_ERR_CERTIFICATE_REVOKED]
Peer certificate is revoked.

[GSK_ERR_CRYPTO]
Cryptographic error detected.

[GSK_ERR_EC_PARAMETERS_NOT_SUPPLIED]
EC parameters not supplied.

[GSK_ERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[GSK_ERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[GSK_ERR_INCOMPATIBLE_KEY]
Certificate key is not compatible with cipher suite.

[GSK_ERR_ICSF_CLEAR_KEY_SUPPORT_NOT_AVAILABLE]
Clear key support not available due to ICSF key policy.

[GSK_ERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[GSK_ERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[GSK_ERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[GSK_ERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[GSK_ERR_INCORRECT_KEY_ATTRIBUTE]
TKDS Private Key attributes do not support digital signature or RSA
operation.

[GSK_ERR_INVALID_FRAGMENT_LENGTH]
An unsupported fragment length was received.

[GSK_ERR_IO]
I/O error communicating with peer application.

[GSK_ERR_LDAP]
An LDAP error is detected.

[GSK_ERR_LDAP_NOT_AVAILABLE]
The LDAP server is not available.

[GSK_ERR_MISSING_KEY_ALGORITHM]
Certificate key algorithm is not in signature algorithm pairs list.

[GSK_ERR_MISSING_SIGNATURE_ALGORITHM]
Signature algorithm is not in signature algorithm pairs list.

[GSK_ERR_MULTIPLE_DEFAULT]
Multiple keys are marked as the default.

[GSK_ERR_MULTIPLE_LABEL]
Multiple certificates exist for label.

[GSK_ERR_NO_CERTIFICATE]
No certificate received from partner.

gsk_secure_socket_init()

Chapter 7. API reference 113

[GSK_ERR_NO_CIPHERS]
No cipher specifications.

[GSK_ERR_NO_PRIVATE_KEY]
Certificate does not contain a private key or the private key is unusable.

[GSK_ERR_NON_SUITE_B_CERTIFICATE]
Certificate does not meet Suite B requirements.

[GSK_ERR_SECURE_LABEL_OPERATION_UNSUPPORTED]
A secure private key cannot be used with a fixed ECDH key exchange.

[GSK_ERR_SELF_SIGNED]
A self-signed certificate cannot be validated.

[GSK_ERR_SIGNATURE_NOT_SUPPLIED]
Signature not supplied.

[GSK_ERR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_ERR_RNG]
Error encountered when generating random bytes.

[GSK_ERR_UNKNOWN_CA]
A certification authority certificate is missing.

[GSK_ERR_UNRECOGNIZED_NAME]
The requested server name is not recognized.

[GSK_ERR_UNSUPPORTED]
SSL protocol or certificate type is not supported.

[GSK_ERR_UNSUPPORTED_CERTIFICATE_TYPE]
The certificate type is not supported by System SSL.

[GSK_ERR_UNSUPPORTED_REQUIRED_EXTENSION]
A required TLS extension has been rejected.

[GSK_ERR_UNSUPPORTED_EXTENSION]
An unrequested TLS Extension has been encountered.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The connection handle is not valid.

[GSK_INVALID_STATE]
The connection is not in the open state or a previous initialization request
has failed.

[GSK_RSA_TEMP_KEY_PAIR]
Unable to generate temporary RSA public/private key pair.

[GSK_WOULD_BLOCK_READ]
An attempt to read a handshake message failed with EWOULDBLOCK.

[GSK_WOULD_BLOCK_WRITE]
An attempt to write a handshake message failed with EWOULDBLOCK.

Usage

The gsk_secure_socket_init() routine initializes a secure socket connection created
by the gsk_secure_socket_open() routine. After the connection has been initialized,

gsk_secure_socket_init()

114 z/OS V2R1.0 System SSL Programming

it can be used for secure data transmission using the gsk_secure_socket_read() and
gsk_secure_socket_write() routines. The gsk_secure_socket_close() routine should
be called to close the connection when it is no longer needed. The
gsk_secure_socket_close() routine should also be called if an error is returned by
the gsk_secure_socket_init() routine.

Before calling the gsk_secure_socket_init() routine, the application must create a
connected socket and store the socket descriptor in the SSL connection by calling
the gsk_attribute_set_numeric_value() routine. For a client, this means calling the
socket() and connect() routines. For a server, this means calling the socket(),
listen(), and accept() routines. However, SSL does not require the use of TCP/IP
for the communications layer. The socket descriptor can be any integer value
which is meaningful to the application. The application must provide its own
socket routines if it is not using TCP/IP by calling the gsk_attribute_set_callback()
routine.

The gsk_secure_socket_init() routine can return GSK_WOULD_BLOCK_READ or
GSK_WOULD_BLOCK_WRITE if the socket is in non-blocking mode. The
connection is not initialized in this case and the application must call
gsk_secure_socket_init() again when the socket is ready to accept a read request
(GSK_WOULD_BLOCK_READ) or a write request
(GSK_WOULD_BLOCK_WRITE). The application must provide its own callback
routine for io_setsocketoptions() to have the SSL handshake processed in
non-blocking mode (the default io_setsocketoptions() routine places the socket into
blocking mode during the handshake processing).

In FIPS mode, only DSA certificates with domain parameters that conform to FIPS
186-3: Digital Signature Standard (DSS) are supported. In non-FIPS mode, if the key
size is less than 1024 bits, then domain parameters that conform to FIPS 186-2 are
supported. In non-FIPS mode, if the key size is greater than or equal to 1024 bits,
the domain parameters must conform to FIPS 186-3, with the exception that
parameters that have a prime modulus (p) of 2048 bits and a prime divisor (q) of
160 bits are also tolerated.

Be sure a gsk_secure_socket_shutdown() call is issued before a
gsk_secure_socket_close() call.

Protocol Selection

An SSL handshake is performed as part of the processing of the
gsk_secure_socket_init() routine. This establishes the server identity and optionally
the client identity. It also negotiates the cryptographic parameters to be used for
the connection. The client and server attempts to use the highest available protocol
version as determined by the intersection of the enabled protocol versions for the
client and the server and the compatible ciphers. Thus:
v TLS V1.2 is used if it is enabled on both the client and the server
v If TLS V1.2 cannot be used and TLS V1.1 is enabled, negotiations drop back to

TLS V1.1
v If TLS V1.1 cannot be used and TLS V1.0 is enabled, negotiations drop back to

TLS V1.0
v If TLS V1.0 cannot be used and SSL V3 is enabled, negotiations drop back to SSL

V3
v If SSL V3 cannot be used, TLS V1.2 was not enabled on the client or server, and

SSL V2 is enabled, negotiations drop back to SSL V2

gsk_secure_socket_init()

Chapter 7. API reference 115

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

Note:

1. SSL V2 is not as secure as SSL V3 or TLS and should be disabled whenever
possible to avoid attacks that force the client and server to drop back to SSL V2
even though they are capable of using SSL V3, TLS V1.0 or TLS V1.1.

2. When TLS extensions are defined for a client and any of the TLS protocols are
enabled for the connection, SSL V2 is not negotiated even if it is enabled.

3. If TLS V1.2 is enabled on the client, establishment of SSL sessions with SSL V2
servers is not supported.

Cipher selection

The client sends a list of ciphers it supports during the SSL handshake. The server
application uses this list, and the defined ciphers that are supported by the server,
to determine the cipher to be used during the SSL handshake. If the client is
operating in FIPS mode, then the list provided only contains FIPS ciphers. A server
executing in FIPS mode will only use FIPS ciphers. The cipher selection is done by
looking through the servers cipher list for a match in the clients list. The first
matching cipher is used.

When building the server's list of cipher suites for comparison with the list sent by
the client, the server might omit some ciphers from the list as follows:
v When executing in an export level cryptographic environment, any ciphers that

are not permitted for use in an export level environment.
v When executing in FIPS mode, any cipher suites that are not valid for use in

FIPS mode.
v Any cipher suites that specify a key algorithm that is not supported for use with

the server certificate's key. For example, if the cipher requires an RSA key
algorithm but the server certificate uses a DSA key algorithm.

v When using protocol SSL V3.0 or lower, any cipher suites that specify Elliptic
Curve Cryptography.

v When using protocol TLS V1.1 or lower, any cipher suites that specify:
– A sign key algorithm that is not supported for use with the server certificate's

key. For example, if the cipher requires a Diffie-Hellman certificate signed
with an RSA signature, but the server certificate is a Diffie-Hellman certificate
that is signed with a DSA signature.

– SHA-2 message authentication.
– AES-GCM encryption.

v When using protocol TLS V1.1 and higher, any cipher suites that specify 40-bit
export encryption.

v When using protocol TLS V1.2 and higher, any cipher suites that specify:
– 56-bit DES encryption.
– A key algorithm that is not specified in the signature algorithm pairs list that

is supplied by the client.

Note:

1. For protocols TLS V1.1 and above, export cipher suites cannot be used. 40-bit
ciphers is ignored if TLS V1.1 or above is negotiated as the security protocol. If
TLS V1.1 or above is the intended protocol and only 40-bit ciphers are
available, the connection fails with GSK_ERR_NO_CIPHERS.

2. To use a cipher specification that requires a fixed ECDH key exchange (C001,
C002, C003, C004, C005, C00B, C00C, C00D, C00E, and C00F), the ECC private
key cannot be a secure key that is stored in ICSF PKDS or TKDS.

gsk_secure_socket_init()

116 z/OS V2R1.0 System SSL Programming

Server certificate

The server certificate can use either RSA, DSA, Diffie-Hellman, or ECDSA as the
public/private key algorithm.

In FIPS mode, the RSA or DSA key size must be at least 1024 bits, the
Diffie-Hellman key size must be at least 2048 bits, and the ECC key size must be at
least 192 bits and use a NIST-approved named curve.

An RSA certificate can be used with an RSA, ephemeral Diffie-Hellman, or
ephemeral ECDH key exchange. A DSA certificate can be used with an ephemeral
Diffie-Hellman key exchange. A Diffie-Hellman certificate can be used in a fixed
Diffie-Hellman key exchange. An ECDSA certificate can be used with a fixed
ECDH or ephemeral ECDH key exchange.

If the servers certificate contains a key usage extension during the SSL handshake,
it must allow key usage as follows:
v RSA certificates using export restricted ciphers (40-bit RC4 encryption and 40-bit

RC2 encryption) with a public key size greater than 512 bits must allow digital
signature. If operating in FIPS mode, export restricted ciphers cannot be selected.

v Diffie-Hellman certificates that are used in fixed Diffie-Hellman key exchange
must allow key agreement.

v Other RSA certificates must allow key encipherment.
v ECDSA certificates that are used in fixed ECDH key exchange must allow key

agreement.
v ECDSA certificates that are used in ephemeral ECDH key exchange must allow

digital signature.
v RSA certificates that are used in ephemeral ECDH key exchange must allow

digital signature.
v DSA certificates using ephemeral Diffie-Hellman key exchange must allow

digital signature.

System SSL does not accept VeriSign Global Server ID certificates. When specified,
System SSL uses these certificates as any other certificate when determining the
encryption cipher to be used for the SSL session.

When using TLS V1.2 as the SSL session protocol, the client may pass to the server
a list of signature algorithm pairs as part of the TLS handshake. The key algorithm
and signature algorithm of the server certificate must be present in this list of
signature algorithm pairs. In addition, any peer certificates in the server certificate
chain must also be signed using a signature algorithm present in the list.

The signature algorithm pair list under the TLS V1.2 protocol may allow some TLS
ciphers to operate using certificates that were previously incompatible with the
cipher specification. In previous versions of TLS, these ciphers (primarily ciphers
that use a fixed Diffie-Hellman or fixed ECDH key exchange) required the server
certificate to be signed with a specific signature key algorithm. Under TLS V1.2,
the signature algorithm pairs list allows the cipher to be used if the signature
algorithm is specified in the list.

Client certificate

The SSL server always provides its certificate to the SSL client as part of the
handshake. The client always performs server authentication using the certificate

gsk_secure_socket_init()

Chapter 7. API reference 117

that is provided by the server. Depending upon the server handshake type, the
server may ask the client to provide its certificate. The key label that is stored in
the connection is used to retrieve the certificate from the key database, key ring, or
token. The default key is used if no label is set. The key record must contain both
an X.509 certificate and a private key. See “gsk_validate_certificate_mode()” on
page 418 for a description of the steps that are performed during certificate
validation.

The client certificate can use either RSA, Digital Signature Standard algorithm
(DSA), ECDSA, or Diffie-Hellman as the public/private key algorithm. The type of
client certificate that can be used depends on the key exchange method being used
for the session cipher that is selected by the server, as detailed in the following list.
v RSA key exchange - RSA or DSA
v fixed Diffie-Hellman key exchange - RSA, DSA, or Diffie-Hellman
v ephemeral Diffie-Hellman key exchange - RSA or DSA
v fixed ECDH key exchange - RSA, DSA, or ECDSA
v ephemeral ECDH key exchange - RSA, DSA, or ECDSA

Client certificates that are used in a fixed Diffie-Hellman or fixed ECDH key
exchange where the client certificate is used to send the client's public key to the
server must support key agreement. This means the certificate key usage extension
(if any) must allow key agreement.

In all other cases the client certificate must support digital signatures. This means
the certificate key usage extension (if any) must allow digital signature.

Client certificates that are used with a fixed ECDH key exchange where the client
private key is a secure key label in the TKDS are not supported.

When using TLS V1.2 as the SSL session protocol, the server may pass to the client
a list of signature algorithm pairs as part of the TLS handshake. The key algorithm
and signature algorithm of the client certificate must be present in this list of
signature algorithm pairs. In addition, any peer certificates in the client certificate
chain must also be signed using a signature algorithm present in the list.

Related Topics

“gsk_environment_init()” on page 91

“gsk_secure_socket_write()” on page 127

“gsk_secure_socket_read()” on page 122

“gsk_secure_socket_misc()” on page 119

“gsk_secure_socket_close()” on page 111

gsk_secure_socket_init()

118 z/OS V2R1.0 System SSL Programming

gsk_secure_socket_misc()
Performs miscellaneous secure connection functions.

Format
#include <gskssl.h>

gsk_status gsk_secure_socket_misc (
gsk_handle soc_handle,
GSK_MISC_ID misc_id)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_socket_open()
routine.

misc_id
Miscellaneous function identifier.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ERR_CONNECTION_CLOSED]
A close notification alert has been sent for the connection.

[GSK_ERR_IO]
I/O error communicating with peer application.

[GSK_ERR_NO_NEGOTIATION]
An attempt was made to renegotiate a session when renegotiation is
disabled.

[GSK_ERR_NOT_SSLV3]
The session is not using the SSL V3, TLS V1.0, or higher protocol.

[GSK_ERR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_INVALID_HANDLE]
The connection handle is not valid.

GSK_INVALID_STATE
The connection is not in the initialized state.

[GSK_MISC_INVALID_ID]
The miscellaneous identifier is not valid.

Usage

The gsk_secure_socket_misc() routine performs miscellaneous function for an
initialized secure connection.

These miscellaneous functions are provided:

GSK_RESET_CIPHER
This function generates new session keys for the connection. A full SSL
handshake will be performed if the session has expired or has been reset
by the GSK_RESET_SESSION function. Otherwise a short SSL handshake

gsk_secure_socket_misc()

Chapter 7. API reference 119

will be performed. The GSK_RESET_CIPHER function can be performed
only for a session using the SSL V3, TLS V1.0, or higher protocol. The
GSK_RESET_CIPHER function initiates the SSL handshake but does not
wait for it to complete. Any pending handshake messages will be
processed when the gsk_secure_socket_read() routine is called to process
incoming data.

GSK_RESET_SESSION
This function resets the session associated with the connection. A full SSL
handshake will be performed for the next connection using the session.
The current connection is not affected unless the GSK_RESET_CIPHER
function is performed after the GSK_RESET_SESSION function has
completed.

Related Topics

“gsk_secure_socket_open()” on page 121

“gsk_secure_socket_read()” on page 122

“gsk_secure_socket_write()” on page 127

gsk_secure_socket_misc()

120 z/OS V2R1.0 System SSL Programming

gsk_secure_socket_open()
Creates a secure socket connection.

Format
#include <gskssl.h>

gsk_status gsk_secure_socket_open (
gsk_handle env_handle,
gsk_handle * soc_handle)

Parameters

env_handle
Specifies the SSL environment handle returned by the
gsk_environment_open() routine.

soc_handle
Returns the handle for the secure connection. The application should call
the gsk_secure_socket_close() routine to release the connection when it is
no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_HANDLE]
The environment handle is not valid.

[GSK_INVALID_STATE]
The environment is not in the initialized state.

Usage

The gsk_secure_socket_open() routine creates a secure socket connection. The
connection will be initialized with values obtained from the SSL environment.
These values can be changed by the application using the appropriate
gsk_attribute_set_*() routines. The gsk_secure_socket_init() routine should then be
called to initialize the connection. This connection can then be used to send and
receive data with the remote partner.

Related Topics

“gsk_secure_socket_close()” on page 111

“gsk_secure_socket_init()” on page 112

gsk_secure_socket_open()

Chapter 7. API reference 121

gsk_secure_socket_read()
Reads data using a secure socket connection.

Format
#include <gskssl.h>

gsk_status gsk_secure_socket_read (
gsk_handle soc_handle,
char * buffer,
int size,
int * length)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_socket_open()
routine.

buffer Specifies the buffer to receive the data read from the secure socket
connection. The maximum amount of data returned by
gsk_secure_socket_read() is 16384 (16K) bytes. If the SSL V2 protocol is
used, then the maximum length is 16384 minus the length of the SSL
protocol headers.

size Specifies the size of the supplied buffer.

length Returns the length of the data read into the supplied buffer.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_CONNECTION_ACTIVE]
A read request is already active for the connection.

[GSK_ERR_BAD_MAC]
Message verification failed.

[GSK_ERR_BAD_MESSAGE]
Incorrectly-formatted message received from peer application.

[GSK_ERR_BAD_PEER]
Peer application has violated the SSL protocol.

[GSK_ERR_CONNECTION_CLOSED]
Close notification received from peer application.

[GSK_ERR_CRYPTO]
Cryptographic error detected.

[GSK_ERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[GSK_ERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[GSK_ERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[GSK_ERR_IO]
I/O error communicating with peer application.

gsk_secure_socket_read()

122 z/OS V2R1.0 System SSL Programming

[GSK_ERR_NO_NEGOTIATION]
An attempt was made to renegotiate a session when renegotiation is
disabled or the peer rejected an attempted session renegotiation.

[GSK_ERROR_RENEGOTIATION_INDICATION]
Peer did not signal support for TLS Renegotiation Indication.

[GSK_ERR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_BUFFER_SIZE]
The buffer address or buffer size is not valid.

[GSK_INVALID_HANDLE]
The connection handle is not valid.

[GSK_INVALID_STATE]
The connection is not in the initialized state.

[GSK_WOULD_BLOCK]
A complete SSL record is not available.

[GSK_WOULD_BLOCK_WRITE]
An SSL handshake is in progress but data cannot be written to the socket.

Usage

The gsk_secure_socket_read() routine reads data from a secure socket connection
and returns it in the application buffer. SSL is a record-based protocol and a single
call does not return more than a single SSL record. The maximum amount of data
returned by gsk_secure_socket_read() is 16384 (16K) bytes. If the SSL V2 protocol
is used, then the maximum length is 16384 minus the length of the SSL protocol
headers. The application can read an entire SSL record in a single call by supplying
a buffer large enough to contain the record. Otherwise, multiple calls will be
required to retrieve the entire SSL record.

SSL supports multiple threads but only one thread at a time can call the
gsk_secure_socket_read() routine for a given connection handle. Multiple
concurrent threads can call gsk_secure_socket_read() if each thread has its own
connection handle.

SSL supports sockets in blocking mode and in non-blocking mode. When a socket
is in non-blocking mode and a complete SSL record is not available,
gsk_secure_socket_read() will return with GSK_WOULD_BLOCK. No data will be
returned in the application buffer when GSK_WOULD_BLOCK is returned. The
application should call gsk_secure_socket_read() again when there is data
available to be read from the socket.

The peer application can initiate an SSL handshake sequence after the connection is
established. If this is done and the socket is in non-blocking mode, it is possible for
gsk_secure_socket_read() to return with GSK_WOULD_BLOCK_WRITE. This
indicates that an SSL handshake is in progress and the application should call
gsk_secure_socket_read() again when data can be written to the socket. No data
will be returned in the application buffer when GSK_WOULD_BLOCK_WRITE is
returned.

gsk_secure_socket_read()

Chapter 7. API reference 123

The application should not read data directly from the socket since this can cause
SSL protocol errors if the application inadvertently reads part of an SSL record. If
the application must read data from the socket, it is responsible for synchronizing
this activity with the peer application so that no SSL records are sent while the
application is performing its own read operations.

Related Topics

“gsk_secure_socket_write()” on page 127

“gsk_secure_socket_init()” on page 112

gsk_secure_socket_read()

124 z/OS V2R1.0 System SSL Programming

gsk_secure_socket_shutdown()
Shuts down a secure socket connection.

Format
#include <gskssl.h>

gsk_status gsk_secure_socket_shutdown (
gsk_handle soc_handle)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_socket_open()
routine.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_CONNECTION_ACTIVE]
The connection has an active write request.

[GSK_ERR_CONNECTION_CLOSED]
The close notification alert has already been sent.

[GSK_ERR_IO]
I/O error communicating with peer application.

[GSK_ERR_NOT_SSLV3]
The session is not using the SSL V3, TLS V1.0, or higher protocol.

[GSK_ERR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_INVALID_HANDLE]
The connection handle is not valid.

[GSK_INVALID_STATE]
The connection is not in the initialized state.

[GSK_WOULD_BLOCK_WRITE]
An attempt to write pending data failed with EWOULDBLOCK.

Usage

The gsk_secure_socket_shutdown() routine will send a close notification alert to
the peer application. Any subsequent calls to the gsk_secure_socket_write()
routine will return GSK_ERR_CONNECTION_CLOSED. The
gsk_secure_socket_shutdown() routine cannot be used with the SSL V2 protocol.

The application should call gsk_secure_socket_shutdown() before calling
gsk_secure_socket_close() in order to comply with the SSL V3, TLS V1.0, or higher
specifications, which require that a close notification alert be sent before closing the
transport connection.

For a 1-step shutdown, the application should call the
gsk_secure_socket_shutdown() routine and then call the gsk_secure_socket_close()

gsk_secure_socket_shutdown()

Chapter 7. API reference 125

routine. This sends the close notification alert and then closes the secure socket
connection. The application does not wait for acknowledgement from the peer
application to the close notification.

For a 2-step shutdown, the application should call the
gsk_secure_socket_shutdown() routine to send the close notification alert and then
call the gsk_secure_socket_read() routine to process any pending data sent by the
peer application. The SSL runtime on the peer system will send a close notification
alert when it receives the close notification alert from the local system. The
gsk_secure_socket_read() routine will return GSK_ERR_CONNECTION_CLOSED
when it receives this close notification. The application should then call the
gsk_secure_socket_close() routine to close the secure socket connection.

Related Topics

“gsk_secure_socket_close()” on page 111

“gsk_secure_socket_open()” on page 121

“gsk_secure_socket_read()” on page 122

“gsk_secure_socket_write()” on page 127

gsk_secure_socket_shutdown()

126 z/OS V2R1.0 System SSL Programming

gsk_secure_socket_write()
Writes data using a secure socket connection.

Format
#include <gskssl.h>

gsk_status gsk_secure_socket_write (
gsk_handle soc_handle,
char * buffer,
int size,
int * length)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_socket_open()
routine.

buffer Specifies the buffer containing the data to write to the secure socket
connection.

size Specifies the amount to write.

length Returns the length of the data written.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_CONNECTION_ACTIVE]
A write request is already active for the connection.

[GSK_ERR_CONNECTION_CLOSED]
A close notification alert has been sent for the connection.

[GSK_ERR_CRYPTO]
Cryptographic error detected.

[GSK_ERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[GSK_ERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[GSK_ERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[GSK_ERR_IO]
I/O error communicating with peer application.

[GSK_ERR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_INSUFFICIENT_STORAGE]
Insufficient storage is available.

[GSK_INVALID_BUFFER_SIZE]
The buffer address or buffer size is not valid.

[GSK_INVALID_HANDLE]
The connection handle is not valid.

gsk_secure_socket_write()

Chapter 7. API reference 127

[GSK_INVALID_STATE]
The connection is not in the initialized state.

[GSK_WOULD_BLOCK]
The SSL record cannot be written to the socket because of an
EWOULDBLOCK condition.

Usage

The gsk_secure_socket_write() routine writes data to a secure socket connection.
SSL is a record-based protocol with a maximum record length of 16384 bytes. If the
SSL V2 protocol is used, then the maximum length is 16384 minus the length of the
SSL protocol headers. Application data larger than the size of an SSL record will be
sent using multiple records.

SSL supports multiple threads but only one thread at a time can call the
gsk_secure_socket_write() routine for a given connection handle. Multiple
concurrent threads can call gsk_secure_socket_write() if each thread has its own
connection handle.

SSL supports sockets in blocking mode and in non-blocking mode. When a socket
is in non-blocking mode and the SSL record cannot be written to the socket,
gsk_secure_socket_write() will return with GSK_WOULD_BLOCK. The application
must call gsk_secure_socket_write() again when the socket is ready to accept more
data, specifying the same buffer address and buffer size as the original request. A
new write request must not be initiated until the pending write request has been
completed as indicated by a return value of 0.

The application should not write data directly to the socket since this can cause
SSL protocol errors if the application inadvertently intermixes its data with SSL
protocol data. If the application must write data to the socket, it is responsible for
synchronizing this activity with the peer application so that application data is not
intermixed with SSL data.

To notify your partner application that you are done sending data on the secure
connection, a call to gsk_secure_socket_shutdown() should be issued before the
gsk_secure_socket_close() call.

Related Topics

“gsk_secure_socket_read()” on page 122

“gsk_secure_socket_init()” on page 112

gsk_secure_socket_write()

128 z/OS V2R1.0 System SSL Programming

gsk_strerror()
Return a text string for an SSL error code

Format
#include <gskssl.h>

const char * gsk_strerror (
gsk_status error_code)

Parameters

error_code
Specifies an error code returned by a Secure Sockets layer (SSL) routine or
by a Certificate Management Services (CMS) routine.

Results

The function return value is the address of the text string. The return value is
always a valid text string address even when the error code is not recognized (the
return value is the string "N/A" in this case).

Usage

The gsk_strerror() routine returns a text string describing an error code returned
by an SSL (Secure Sockets layer) or CMS (Certificate Management Services)
routine. The gsk_strerror() routine cannot be used to return a text string for an
error code returned by one of the deprecated SSL routines. The text string must not
be modified or released by the application program.

gsk_strerror()

Chapter 7. API reference 129

gsk_strerror()

130 z/OS V2R1.0 System SSL Programming

Chapter 8. Certificate Management Services (CMS) API
reference

This topic describes the Certificate Management Services (CMS) APIs. These APIs
can be used to create/manage your own key database files in a similar function to
the SSL gskkyman utility, use certificates stored in the key database file or key ring
for purposes other than SSL, and basic PKCS #7 message support.

System SSL supports X.509 certificates (V1, V2, or V3) and X.509 V2 Certificate
Revocation Lists as described in RFC 5280: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile, RFC 3280: Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile and RFC
2459: X.509 certificate, certificate revocation list, and certificate extensions. RFC 5280
obsoletes RFC 3280 which obsoletes RFC 2459.

Note: You can use the gsk_strerror() routine to return a text string describing a
CMS error code. See “gsk_strerror()” on page 129 for more information.

This is a list of the Certificate Management Services (CMS) APIs:
v gsk_add_record() (see “gsk_add_record()” on page 137)
v gsk_change_database_password() (see “gsk_change_database_password()” on

page 140)
v gsk_change_database_record_length() (see

“gsk_change_database_record_length()” on page 142)
v gsk_close_database() (see “gsk_close_database()” on page 143)
v gsk_close_directory() (see “gsk_close_directory()” on page 144)
v gsk_construct_certificate() (see “gsk_construct_certificate()” on page 145)
v gsk_construct_private_key() (see “gsk_construct_private_key()” on page 149)
v gsk_construct_private_key_rsa() (see “gsk_construct_private_key_rsa()” on page

151)
v gsk_construct_public_key() (see “gsk_construct_public_key()” on page 153)
v gsk_construct_public_key_rsa() (see “gsk_construct_public_key_rsa()” on page

155)
v gsk_construct_renewal_request() (see “gsk_construct_renewal_request()” on

page 156)
v gsk_construct_self_signed_certificate() (see

“gsk_construct_self_signed_certificate()” on page 159)
v gsk_construct_signed_certificate() (see “gsk_construct_signed_certificate()” on

page 162)
v gsk_copy_attributes_signers() (see “gsk_copy_attributes_signers()” on page 166)
v gsk_copy_buffer() (see “gsk_copy_buffer()” on page 167)
v gsk_copy_certificate() (see “gsk_copy_certificate()” on page 168)
v gsk_copy_certificate_extension() (see “gsk_copy_certificate_extension()” on page

169)
v gsk_copy_certification_request() (see “gsk_copy_certification_request()” on page

170)
v gsk_copy_content_info() (see “gsk_copy_content_info()” on page 171)

© Copyright IBM Corp. 1999, 2013 131

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2459.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2459.txt.pdf

v gsk_copy_crl() (see “gsk_copy_crl()” on page 172)
v gsk_copy_name() (see “gsk_copy_name()” on page 173)
v gsk_copy_private_key_info() (see “gsk_copy_private_key_info()” on page 174)
v gsk_copy_public_key_info() (see “gsk_copy_public_key_info()” on page 175)
v gsk_copy_record() (see “gsk_copy_record()” on page 176)
v gsk_create_certification_request() (see “gsk_create_certification_request()” on

page 177)
v gsk_create_database() (see “gsk_create_database()” on page 181)
v gsk_create_database_renewal_request() (see

“gsk_create_database_renewal_request()” on page 183)
v gsk_create_database_signed_certificate() (see

“gsk_create_database_signed_certificate()” on page 186)
v gsk_create_renewal_request() (see “gsk_create_renewal_request()” on page 192)
v gsk_create_self_signed_certificate() (see “gsk_create_self_signed_certificate()” on

page 194)
v gsk_create_signed_certificate() (see “gsk_create_signed_certificate()” on page

198)
v gsk_create_signed_certificate_record() (see

“gsk_create_signed_certificate_record()” on page 201)
v gsk_create_signed_certificate_set() (see “gsk_create_signed_certificate_set()” on

page 206)
v gsk_create_signed_crl() (see “gsk_create_signed_crl()” on page 211)
v gsk_create_signed_crl_record() (see “gsk_create_signed_crl_record()” on page

214)
v gsk_decode_base64() (see “gsk_decode_base64()” on page 218)
v gsk_decode_certificate() (see “gsk_decode_certificate()” on page 219)
v gsk_decode_certificate_extension() (see “gsk_decode_certificate_extension()” on

page 220)
v gsk_decode_certification_request() (see “gsk_decode_certification_request()” on

page 222)
v gsk_decode_crl() (see “gsk_decode_crl()” on page 223)
v gsk_decode_import_certificate() (see “gsk_decode_import_certificate()” on page

224)
v gsk_decode_import_key() (see “gsk_decode_import_key()” on page 225)
v gsk_decode_name() (see “gsk_decode_name()” on page 227)
v gsk_decode_private_key() (see “gsk_decode_private key()” on page 228)
v gsk_decode_public_key() (see “gsk_decode_public key()” on page 229)
v gsk_delete_record() (see “gsk_delete_record()” on page 230)
v gsk_dn_to_name() (see “gsk_dn_to_name()” on page 231)
v gsk_encode_base64() (see “gsk_encode_base64()” on page 234)
v gsk_encode_certificate_extension() (see “gsk_encode_certificate_extension()” on

page 235)
v gsk_encode_ec_parameters() (see “gsk_encode_ec_parameters()” on page 237)
v gsk_encode_export_certificate() (see “gsk_encode_export_certificate()” on page

238)
v gsk_encode_export_key() (see “gsk_encode_export_key()” on page 240)
v gsk_encode_export_request() (see “gsk_encode_export_request()” on page 243)

132 z/OS V2R1.0 System SSL Programming

v gsk_encode_name() (see “gsk_encode_name()” on page 244)
v gsk_encode_private_key() (see “gsk_encode_private_key()” on page 245)
v gsk_encode_public_key() (see “gsk_encode_public_key()” on page 246)
v gsk_encode_signature() (see “gsk_encode_signature()” on page 247)
v gsk_export_certificate() (see “gsk_export_certificate()” on page 248)
v gsk_export_certification_request() (see “gsk_export_certification_request()” on

page 250)
v gsk_export_key() (see “gsk_export_key()” on page 252)
v gsk_factor_private_key() (see “gsk_factor_private_key()” on page 255)
v gsk_factor_private_key_rsa() (see “gsk_factor_private_key_rsa()” on page 256)
v gsk_factor_public_key() (see “gsk_factor_public_key()” on page 257)
v gsk_factor_public_key_rsa() (see “gsk_factor_public_key_rsa()” on page 258)
v gsk_fips_state_query() (see “gsk_fips_state_query()” on page 259)
v gsk_fips_state_set() (see “gsk_fips_state_set()” on page 260)
v gsk_free_attributes_signers() (see “gsk_free_attributes_signers()” on page 262)
v gsk_free_buffer() (see “gsk_free_buffer()” on page 263)
v gsk_free_certificate() (see “gsk_free_certificate()” on page 264)
v gsk_free_certificates() (see “gsk_free_certificates()” on page 265)
v gsk_free_certificate_extension() (see “gsk_free_certificate_extension()” on page

266)
v gsk_free_certification_request() (see “gsk_free_certification_request()” on page

267)
v gsk_free_content_info() (see “gsk_free_content_info()” on page 268)
v gsk_free_crl() (see “gsk_free_crl()” on page 269)
v gsk_free_crls() (see “gsk_free_crls()” on page 270)
v gsk_free_decoded_extension() (see “gsk_free_decoded_extension()” on page 271)
v gsk_free_name() (see “gsk_free_name()” on page 272)
v gsk_free_private_key() (see “gsk_free_private_key()” on page 273)
v gsk_free_private_key_info() (see “gsk_free_private_key_info()” on page 274)
v gsk_free_public_key() (see “gsk_free_public_key()” on page 275)
v gsk_free_public_key_info() (see “gsk_free_public_key_info()” on page 276)
v gsk_free_record() (see “gsk_free_record()” on page 277)
v gsk_free_records() (see “gsk_free_records()” on page 278)
v gsk_free_string() (see “gsk_free_string()” on page 279)
v gsk_free_strings() (see “gsk_free_strings()” on page 280)
v gsk_generate_key_agreement_pair() (see “gsk_generate_key_agreement_pair()”

on page 281)
v gsk_generate_key_pair() (see “gsk_generate_key_pair()” on page 283)
v gsk_generate_key_parameters() (see “gsk_generate_key_parameters()” on page

286)
v gsk_generate_random_bytes() (see “gsk_generate_random_bytes()” on page 288)
v gsk_generate_secret() (see “gsk_generate_secret()” on page 289)
v gsk_get_certificate_algorithms() (see “gsk_get_certificate_algorithms()” on page

290)
v gsk_get_certificate_info() (see “gsk_get_certificate_info()” on page 291)
v gsk_get_cms_vector() (see “gsk_get_cms_vector()” on page 293)

Chapter 8. Certificate Management Services (CMS) API reference 133

v gsk_get_default_key() (see “gsk_get_default_key()” on page 295)
v gsk_get_default_label() (see “gsk_get_default_label()” on page 296)
v gsk_get_directory_certificates() (see “gsk_get_directory_certificates()” on page

297)
v gsk_get_directory_crls() (see “gsk_get_directory_crls()” on page 299)
v gsk_get_directory_enum() (see “gsk_get_directory_enum()” on page 301)
v gsk_get_ec_parameters_info() (see “gsk_get_ec_parameters_info()” on page 303)
v gsk_get_record_by_id() (see “gsk_get_record_by_id()” on page 304)
v gsk_get_record_by_index() (see “gsk_get_record_by_index()” on page 305)
v gsk_get_record_by_label() (see “gsk_get_record_by_label()” on page 306)
v gsk_get_record_by_subject() (see “gsk_get_record_by_subject()” on page 307)
v gsk_get_record_labels() (see “gsk_get_record_labels()” on page 308)
v gsk_get_update_code() (see “gsk_get_update_code()” on page 309)
v gsk_import_certificate() (see “gsk_import_certificate()” on page 310)
v gsk_import_key() (see “gsk_import_key()” on page 313)
v gsk_make_content_msg() (see “gsk_make_content_msg()” on page 316)
v gsk_make_data_content() (see “gsk_make_data_content()” on page 317)
v gsk_make_data_msg() (see “gsk_make_data_msg()” on page 318)
v gsk_make_encrypted_data_content() (see “gsk_make_encrypted_data_content()”

on page 319)
v gsk_make_encrypted_data_msg() (see “gsk_make_encrypted_data_msg()” on

page 321)
v gsk_make_enveloped_data_content() (see

“gsk_make_enveloped_data_content()” on page 323)
v gsk_make_enveloped_data_content_extended() (see

“gsk_make_enveloped_data_content_extended()” on page 325)
v gsk_make_enveloped_data_msg() (see “gsk_make_enveloped_data_msg()” on

page 328)
v gsk_make_enveloped_data_msg_extended()

(see“gsk_make_enveloped_data_msg_extended()” on page 330)
v gsk_make_enveloped_private_key_msg() (see

“gsk_make_enveloped_private_key_msg()” on page 333
v gsk_make_signed_data_content() (see “gsk_make_signed_data_content()” on

page 336)
v gsk_make_signed_data_content_extended() (see

“gsk_make_signed_data_content_extended()” on page 339)
v gsk_make_signed_data_msg() (see “gsk_make_signed_data_msg()” on page 342)
v gsk_make_signed_data_msg_extended() (see

“gsk_make_signed_data_msg_extended()” on page 345)
v gsk_make_wrapped_content() (see “gsk_make_wrapped_content()” on page 348)
v gsk_mktime() (see “gsk_mktime()” on page 349)
v gsk_modify_pkcs11_key_label() (see “gsk_modify_pkcs11_key_label()” on page

350
v gsk_name_compare() (see “gsk_name_compare()” on page 352)
v gsk_name_to_dn()(see “gsk_name_to_dn()” on page 353)
v gsk_open_database() (see “gsk_open_database()” on page 355)

134 z/OS V2R1.0 System SSL Programming

v gsk_open_database_using_stash_file() (see
“gsk_open_database_using_stash_file()” on page 357)

v gsk_open_directory() (see “gsk_open_directory()” on page 359)
v gsk_open_keyring() (see “gsk_open_keyring()” on page 361)
v gsk_perform_kat() (see “gsk_perform_kat()” on page 363)
v gsk_query_crypto_level() (see “gsk_query_crypto_level()” on page 364)
v gsk_query_database_label() (see “gsk_query_database_label()” on page 365)
v gsk_query_database_record_length() (see “gsk_query_database_record_length()”

on page 366)
v gsk_rdtime() (see “gsk_rdtime()” on page 367)
v gsk_read_content_msg() (see “gsk_read_content_msg()” on page 368)
v gsk_read_data_content() (see “gsk_read_data_content()” on page 369)
v gsk_read_data_msg() (see “gsk_read_data_msg()” on page 370)
v gsk_read_encrypted_data_content() (see “gsk_read_encrypted_data_content()”

on page 371)
v gsk_read_encrypted_data_msg() (see “gsk_read_encrypted_data_msg()” on page

373)
v gsk_read_enveloped_data_content() (see “gsk_read_enveloped_data_content()”

on page 375)
v gsk_read_enveloped_data_content_extended() (see

“gsk_read_enveloped_data_content_extended()” on page 377)
v gsk_read_enveloped_data_msg() (see “gsk_read_enveloped_data_msg()” on

page 379)
v gsk_read_enveloped_data_msg_extended() (see

“gsk_read_enveloped_data_msg_extended()” on page 381)
v gsk_read_signed_data_content() (see “gsk_read_signed_data_content()” on page

383)
v gsk_read_signed_data_content_extended() (see

“gsk_read_signed_data_content_extended()” on page 386)
v gsk_read_signed_data_msg() (see “gsk_read_signed_data_msg()” on page 389)
v gsk_read_signed_data_msg_extended() (see

“gsk_read_signed_data_msg_extended()” on page 392)
v gsk_read_wrapped_content() (see “gsk_read_wrapped_content()” on page 396)
v gsk_receive_certificate() (see “gsk_receive_certificate()” on page 397)
v gsk_replace_record() (see “gsk_replace_record()” on page 398)
v gsk_set_default_key() (see “gsk_set_default_key()” on page 401)
v gsk_set_directory_enum() (see “gsk_set_directory_enum()” on page 403)
v gsk_sign_certificate() (see “gsk_sign_certificate()” on page 405)
v gsk_sign_crl() (see “gsk_sign_crl()” on page 408)
v gsk_sign_data() (see “gsk_sign_data()” on page 411)
v gsk_validate_certificate() (see “gsk_validate_certificate()” on page 414)
v gsk_validate_certificate_mode() (see “gsk_validate_certificate_mode()” on page

418)
v gsk_validate_hostname() (see “gsk_validate_hostname()” on page 423)
v gsk_validate_server() (see “gsk_validate_server()” on page 425)
v gsk_verify_certificate_signature() (see “gsk_verify_certificate_signature()” on

page 426)

Chapter 8. Certificate Management Services (CMS) API reference 135

v gsk_verify_crl_signature() (see “gsk_verify_crl_signature()” on page 428)
v gsk_verify_data_signature() (see “gsk_verify_data_signature()” on page 431)

136 z/OS V2R1.0 System SSL Programming

gsk_add_record()
Adds a record to a key or request database.

Format
#include <gskcms.h>

gsk_status gsk_add_record (
gsk_handle db_handle,
gskdb_record * record)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or
the gsk_open_database() routine.

record
Specifies the database record.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The key algorithm or signature algorithm is not supported.

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_BAD_RNG_OUTPUT]
In FIPS mode, random bytes generation produced duplicate output.

[CMSERR_DUPLICATE_CERTIFICATE]
The database already contains the certificate.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

gsk_add_record()

Chapter 8. Certificate Management Services (CMS) API reference 137

[CMSERR_INCORRECT_DBTYPE]
The record type is not supported for the database type.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
No private key is provided for a record type that requires a private key.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_RECTYPE_NOT_VALID]
The record type is not valid.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update or update attempted on a FIPS mode
database while in non-FIPS mode.

Usage

The gsk_add_record() routine adds a record to a key or request database. The
database must be open for update in order to add records. Unused and reserved
fields in the gskdb_record structure must be initialized to zero. An error will be
returned when adding a certificate to a key database if the database already
contains the certificate. If the record has a private key, the encrypted private key
will be generated from the private key supplied in the database record.

The recordType field identifies the database record type as follows:

gskdb_rectype_certificate
The record contains an X.509 certificate

gskdb_rectype_certKey
The record contains an X.509 certificate and private key

gskdb_rectype_keyPair
The record contains a PKCS #10 certification request and private key

The recordFlags field is a bit field with these values:

GSKDB_RECFLAG_TRUSTED
The certificate is trusted

GSKDB_RECFLAG_DEFAULT
This is the default key

A unique record identifier is assigned when the record is added to the database
and will be returned to the application in the recordId field. If the record contains
an X.509 certificate, the issuerRecordId field will be set to the record identifier of the
certificate issuer.

The record label is used as a friendly name for the database entry and is in the
local code page. It can be set to any value and consists of characters which can be
represented using 7-bit ASCII (letters, numbers, and punctuation). It may not be set
to an empty string.

gsk_add_record()

138 z/OS V2R1.0 System SSL Programming

If the record contains an X.509 certificate, the certificate will be validated and the
record will not be added to the database if the validation check fails. If the
database is a FIPS key database, then the certificate must use only FIPS algorithms
and key sizes.

Except for the record label, all character strings are specified using UTF-8.

The database file is updated as part of the gsk_add_record() processing. A
temporary database file is created using the same name as the database file with
".new" appended to the name. The database file is then overwritten and the
temporary database file is deleted. The temporary database file will not be deleted
if an error occurs while rewriting the database file.

gsk_add_record()

Chapter 8. Certificate Management Services (CMS) API reference 139

gsk_change_database_password()
Changes the database password.

Format
#include <gskcms.h>

gsk_status gsk_change_database_password (
const char * filename,
const char * old_password,
const char * new_password,
gsk_time pwd_expiration)

Parameters

filename
Specifies the database file name in the local code page. The length of the
fully-qualified file name cannot exceed 251.

old_password
Specifies the current database password in the local code page. The user will
be prompted to enter the password if NULL is specified for this parameter.

new_password
Specifies the new database password in the local code page. The user will be
prompted to enter the password if NULL is specified for this parameter.

pwd_expiration
Specifies the new password expiration time as the number of seconds since the
POSIX epoch. A value of 0 indicates the password does not expire.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ACCESS_DENIED]
The file permissions do not allow access.

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_FILENAME]
The database file name is not valid.

[CMSERR_DB_CORRUPTED]
The database file is not valid.

[CMSERR_DB_FIPS_MODE_ONLY]
Key database can only be opened for update if running in FIPS mode.

[CMSERR_DB_LOCKED]
The database is open for update by another process.

[CMSERR_DB_NOT_FIPS]
Key database is not a FIPS mode database.

[CMSERR_FILE_NOT_FOUND]
The database file is not found.

[CMSERR_IO_CANCELED]
The user canceled the password prompt.

gsk_change_database_password()

140 z/OS V2R1.0 System SSL Programming

[CMSERR_IO_ERROR]
An input/output request failed.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_OPEN_FAILED]
Unable to open the database.

[CMSERR_PW_INCORRECT]
The password is not correct.

Usage

The gsk_change_database_password() routine will change the password for the
database and set a new password expiration time. gsk_mktime() can be used to
convert a year/month/day time value to the number of seconds since the POSIX
epoch.

A FIPS database password may only be changed while executing in FIPS mode. A
non-FIPS database password can only be changed if not executing in FIPS mode.

gsk_change_database_password()

Chapter 8. Certificate Management Services (CMS) API reference 141

gsk_change_database_record_length()
Changes the database record length.

Format
#include <gskcms.h>

gsk_status gsk_change_record_length (
gsk_handle db_handle,
gsk_size record_length)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or
the gsk_open_database() routine.

record_length
Specifies the new database record length. The default record length will be
used if zero is specified for this parameter. All records in the database will
have this length. The minimum record length is 2500. The default record length
is 5000.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_IO_ERROR]
An input/output request failed.

[CMSERR_LENGTH_TOO_SMALL]
The record length is less than the minimum value.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_TOO_BIG]
A record in the database is larger than the new record length.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update or update attempted on a FIPS mode
database while in non-FIPS mode.

Usage

The gsk_change_database_record_length() routine will change the record length
for the database. All records in the database have the same length and a database
entry cannot span records. An error will be returned if the requested record length
is smaller than the largest entry in the database.

gsk_change_database_record_length()

142 z/OS V2R1.0 System SSL Programming

gsk_close_database()
Closes a key or request database.

Format
#include <gskcms.h>

gsk_status gsk_close_database (
gsk_handle * db_handle)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or
the gsk_open_database() routine. The handle will be set to NULL upon
successful completion.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

Usage

The gsk_close_database() routine will close a key or request database. The
db_handle will not be valid upon return from the gsk_close_database() routine.

gsk_close_database()

Chapter 8. Certificate Management Services (CMS) API reference 143

gsk_close_directory()
Closes an LDAP directory.

Format
#include <gskcms.h>

gsk_status gsk_close_directory (
gsk_handle * directory_handle)

Parameters

directory_handle
Specifies the directory handle returned by the gsk_open_directory() routine.
The handle will be set to NULL upon successful completion.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_BAD_HANDLE]
The directory handle is not valid.

Usage

The gsk_close_directory() routine closes an LDAP directory opened by the
gsk_open_directory() routine. The directory_handle is not valid upon return from
the gsk_close_directory() routine.

gsk_close_directory()

144 z/OS V2R1.0 System SSL Programming

gsk_construct_certificate()
Constructs a signed certificate and returns it to the caller.

Format
#include <gskcms.h>

gsk_status gsk_construct_certificate (
pkcs_cert_key * issuer_certificate,
x509_algorithm_type signature_algorithm,
const char * subject_name,
int num_days,
gsk_boolean ca_certificate,
x509_extensions * extensions,
x509_public_key_info * public_key,
x509_certificate * subject_certificate)

Parameters

issuer_certificate
Specifies the issuing CA certificate with private key.

signature_algorithm
Specifies the signature algorithm for the certificate.

subject_name
Specifies the distinguished name for the certificate subject. The distinguished
name is specified in the local code page and consists of one or more relative
distinguished name components separated by commas.

num_days
Specifies the number of days for the certificate validity period as a value
between 1 and 9999 (the maximum of 9999 will be used if a larger value is
specified and the minimum of 1 will be used if a smaller value is specified).

ca_certificate
Specify TRUE if this is a certification authority certificate or FALSE if this is an
end user certificate.

extensions
Specifies the certificate extensions for the new certificate. Specify NULL for this
parameter if no certificate extensions are supplied.

public_key
Specifies the public key for the constructed certificate.

subject_certificate
Contains the constructed certificate.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not valid.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

gsk_construct_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 145

[CMSERR_BAD_SUBJECT_NAME]
The subject name is not valid.

[CMSERR_CA_NOT_SUPPLIED]
Signing Certificate Authority Certificate not supplied.

[CMSERR_DUPLICATE_EXTENSION]
Supplied extensions contain a duplicate extension.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_EXPIRED]
The signer certificate is expired.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_KEY_TYPE]
Incorrect key algorithm.

[CMSERR_INCORRECT_KEY_USAGE]
The signer certificate key usage does not allow signing certificates.

[CMSERR_ISSUER_NOT_CA]
The signer certificate is not for a certification authority.

[CMSERR_KEY_MISMATCH]
The signer certificate key cannot be used to sign a certificate or the key
type is not supported for the requested signature algorithm.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
The signer certificate does not have a private key.

[CMSERR_SUBJECT_IS_CA]
The requested subject name is the same as the signer name.

Usage

The gsk_construct_certificate() routine will construct an X.509 certificate as
described in RFC 5280: Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. The certificate will be signed using the
certificate as supplied by the issuer_certificate parameter.
v If the supplied public_key contains a Diffie-Hellman key, the issuer_certificate must

contain either an RSA or a DSA key.
v If the supplied public_key is an ECC key, the issuer_certificate cannot contain a

DSA key.

gsk_construct_certificate()

146 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

A certification authority (CA) certificate will have basic constraints and key usage
extensions which allow the certificate to be used to sign other certificates and
certificate revocation lists. An end user certificate will have basic constraints and
key usage extensions as follows:
v An RSA key can be used for authentication, digital signature, and data

encryption. An RSA key can be used for both CA certificates and end user
certificates.

v A DSS key can be used for authentication and digital signature. A DSS key can
be used for both CA certificates and end user certificates.

v A Diffie_Hellman key can be used for key agreement. A Diffie-Hellman key can
be used only for end user certificates.

v An ECC key can be used for authentication, digital signature and key
agreement. An ECC key can be used for both CA certificates and end user
certificates.

The new certificate is returned in the supplied x509_certificate structure.

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest – {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest – {2.16.840.1.101.3.4.3.2}

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest –
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest –
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest –
{1.2.840.10045.4.3.2}

gsk_construct_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 147

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest –
{1.2.840.10045.4.3.3}

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest –
{1.2.840.10045.4.3.4}

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

A CA certificate will have SubjectKeyIdentifier, KeyUsage and BasicConstraints
extensions while an end user certificate will have SubjectKeyIdentifier and
KeyUsage extensions. An AuthorityKeyIdentifier extension will be created if the
signing certificate has a SubjectKeyIdentifier extension. The application can supply
additional extensions through the extensions parameter. An AuthorityKeyIdentifier,
KeyUsage or BasicConstraints extension provided by the application will replace
the default extension constructed for the certificate, however a SubjectKeyIdentifier
extension provided by the application will be ignored.

gsk_construct_certificate()

148 z/OS V2R1.0 System SSL Programming

gsk_construct_private_key()
Constructs a private key from its component values.

Format
#include <gskcms.h>

gsk_status gsk_construct_private_key (
gsk_private_key * private_key_factors,
pkcs_private_key_info * private_key)

Parameters

private_key_factors
Specifies the private key structure containing the key algorithm type and
private key components.

private_key
Returns the private key.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
Cryptographic algorithm is not supported.

[CMSERR_BASE_NOT_SUPPLIED]
Base not supplied.

[CMSERR_COEFFICIENT_NOT_SUPPLIED]
CRT Coefficient not supplied.

[CMSERR_EC_PARAMETERS_NOT_SUPPLIED]
EC parameters not supplied.

[CMSERR_MODULUS_NOT_SUPPLIED]
Modulus not supplied.

[CMSERR_PRIME_EXPONENT1_NOT_SUPPLIED]
First prime exponent not supplied.

[CMSERR_PRIME_EXPONENT2_NOT_SUPPLIED]
Second prime exponent not supplied.

[CMSERR_PRIME_NOT_SUPPLIED]
Prime not supplied.

[CMSERR_PRIME1_NOT_SUPPLIED]
First prime not supplied.

[CMSERR_PRIME2_NOT_SUPPLIED]
Second prime not supplied.

[CMSERR_PRIVATE_EXPONENT_NOT_SUPPLIED]
Private exponent not supplied.

[CMSERR_PRIVATE_KEY_INFO_NOT_SUPPLIED]
Private key information not supplied.

[CMSERR_PRIVATE_KEY_NOT_SUPPLIED]
Private key structure not supplied.

gsk_construct_private_key()

Chapter 8. Certificate Management Services (CMS) API reference 149

[CMSERR_PRIVATE_VALUE_NOT_SUPPLIED]
Private value not supplied.

[CMSERR_PUBLIC_EXPONENT_NOT_SUPPLIED]
Public exponent not supplied.

[CMSERR_STRUCTURE_TOO_SMALL]
Size specified for supplied structure is too small.

[CMSERR_SUB_PRIME_NOT_SUPPLIED]
Sub-prime not supplied.

Usage

The gsk_construct_private_key() function constructs the pkcs_private_key_info
from the supplied private key components. The format of the supplied components
is as stored in ICSF PKCS #11 tokens.

Before calling the function, the application must initialize the size field in
private_key_factors to the size of the gsk_private_key structure. It must also prime
private_key_factors with the x509_algorithm_identifier, including appropriate private
key components for the private key type being constructed.

The x509_algorithm_identifier in private_key is set with the appropriate value for
the private key type when returned.

gsk_construct_private_key()

150 z/OS V2R1.0 System SSL Programming

gsk_construct_private_key_rsa()
Constructs an RSA private key from its component values.

Note: This function is deprecated. Use gsk_construct_private_key() instead.

Format
#include <gskcms.h>

gsk_status gsk_construct_private_key_rsa (
gsk_buffer * modulus,
gsk_buffer * public_exponent,
gsk_buffer * private_exponent,
gsk_buffer * prime1,
gsk_buffer * prime2,
gsk_buffer * prime_exponent1,
gsk_buffer * prime_exponent2,
gsk_buffer * coefficient,
pkcs_private_key_info * private_key)

Parameters

modulus
Specifies the modulus (n).

public_exponent
Specifies the public exponent (e).

private_exponent
Specifies the private exponent (d).

prime1
Specifies the 1st prime (p).

prime2
Species the 2nd prime (q).

prime_exponent1
Specifies the private exponent d modulo p-1

prime_exponent2
Specifies the private exponent d modulo q-1.

coefficient
Specifies the CRT coefficient q-1 mod p.

private_key
Returns the private key

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_ELEMENTS_MISSING]
Required data element is missing.

Usage

The gsk_construct_private_key_rsa() function constructs pkcs_private_key_info
from its RSA private key components. The pkcs_private_key_info structures
x509_algorithm_identifier is set with x509_alg_rsaEncryption, while version

gsk_construct_private_key_rsa()

Chapter 8. Certificate Management Services (CMS) API reference 151

specifies 0.

gsk_construct_private_key_rsa()

152 z/OS V2R1.0 System SSL Programming

gsk_construct_public_key()
Constructs a public key from its component values

Format
#include <gskcms.h>

gsk_status gsk_construct_public_key(
gsk_public_key * public_key_factors,
x509_public_key_info * public_key)

Parameters

public_key_factors
Specifies the public key structure containing the key algorithm type and
public key components.

public_key
Returns the public key.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
Cryptographic algorithm not supported

[CMSERR_BASE_NOT_SUPPLIED]
Base not supplied

[CMSERR_EC_PARAMETERS_NOT_SUPPLIED]
EC parameters not supplied.

[CMSERR_MODULUS_NOT_SUPPLIED]
Modulus not supplied

[CMSERR_PRIME_NOT_SUPPLIED]
Prime not supplied

[CMSERR_PUBLIC_EXPONENT_NOT_SUPPLIED]
Public exponent not supplied

[CMSERR_PUBLIC_KEY_INFO_NOT_SUPPLIED]
Public key information not supplied

[CMSERR_PUBLIC_KEY_NOT_SUPPLIED]
Public key structure not supplied

[CMSERR_PUBLIC_VALUE_NOT_SUPPLIED]
Public value not supplied

[CMSERR_STRUCTURE_TOO_SMALL]
Size specified for supplied structure is too small

[CMSERR_SUB_PRIME_NOT_SUPPLIED]
Sub-prime not supplied

Usage

The gsk_construct_public_key() function constructs the x509_public_key_info from
the supplied public key components. The format of the supplied components is as
stored in ICSF PKCS #11 tokens.

gsk_construct_public_key()

Chapter 8. Certificate Management Services (CMS) API reference 153

Before calling the function, the application must initialize the size field in
public_key_factors to the size of the gsk_public_key structure. It must also prime
public_key_factors with the x509_algorithm_identifier, including appropriate public
key components for the public key type being constructed.

The x509_algorithm_identifier in public_key is set with the appropriate value for the
public key type when returned.

gsk_construct_public_key()

154 z/OS V2R1.0 System SSL Programming

gsk_construct_public_key_rsa()
Constructs an RSA public key from its component values.

Note: This function is deprecated. Use gsk_construct_public_key() instead.

Format
#include <gskcms.h>

gsk_status gsk_construct_public_key_rsa (
gsk_buffer * modulus,
gsk_buffer * exponent,
x509_public_key_info * public_key)

Parameters

modulus
Specifies the modulus (n).

exponent
Specifies the public exponent (e).

public_key
Returns the public key.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_ELEMENTS_MISSING]
Required data element is missing.

Usage

The gsk_construct_public_key_rsa() function constructs pkcs_public_key_info from
its RSA public key components. The x509_public_key_info structures
x509_algorithm_identifier is set with x509_alg_rsaEncryption.

gsk_construct_public_key_rsa()

Chapter 8. Certificate Management Services (CMS) API reference 155

gsk_construct_renewal_request()
Constructs a certification renewal request as described in PKCS #10, Version 1.7:
Certification Request.

Format
#include <gskcms.h>

gsk_status gsk_construct_renewal_request (
x509_public_key_info * public_key,
pkcs_private_key_info * private_key,
x509_algorithm_type signature_algorithm,
const char * subject_name,
x509_extensions * extensions,
pkcs_cert_request * request)

Parameters

public_key
Specifies the public key for the certification request.

private_key
Specifies the private key for the certification request.

signature_algorithm
Specifies the signature algorithm used to sign the constructed request.

subject_name
Specifies the distinguished name for the certificate subject. The distinguished
name is specified in the local code page and consists of one or more relative
distinguished name components separated by commas.

extensions
Specifies certificate extensions to be included in the certification request.
Specify NULL for this parameter if no certificate extensions are provided.

request
Returns the certification renewal request as a pkcs_cert_request structure.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_X500_NO_AVA_SEP]
An attribute value separator is missing.

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_KEY MISMATCH]
The signing key type is not supported by the requested signature
algorithm.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

gsk_construct_renewal_request()

156 z/OS V2R1.0 System SSL Programming

http://www.rsa.com/rsalabs/node.asp?id=2132
http://www.rsa.com/rsalabs/node.asp?id=2132

Usage

The gsk_construct_renewal_request() routine constructs a certification renewal
request and returns the constructed request in the pkcs_cert_request structure
request.

The gsk_encode_export_request() routine can be called to create an export file
containing the request for transmission to the certification authority.

The certification request will be signed using the key specified by the private_key
parameter and the signature algorithm specified by the signature_algorithm
parameter.

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest – {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest – {2.16.840.1.101.3.4.3.2}

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest -
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest -
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest -
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest -
{1.2.840.10045.4.3.3}

gsk_construct_renewal_request()

Chapter 8. Certificate Management Services (CMS) API reference 157

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest -
{1.2.840.10045.4.3.4}

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

The extensions parameter can be used to provide certificate extensions for inclusion
in the certification request. Whether or not a particular certificate extension will be
included in the new certificate is determined by the certification authority.

gsk_construct_renewal_request()

158 z/OS V2R1.0 System SSL Programming

gsk_construct_self_signed_certificate()
Constructs a self-signed certificate and returns it to the caller.

Format
#include <gskcms.h>

gsk_status gsk_construct_self_signed_certificate (
x509_algorithm_type signature_algorithm,
const_char * subject_name,
int num_days,
gsk_boolean ca_certificate,
x509_extensions * extensions,
x509_public_key_info * public_key,
pkcs_private_key_info * private_key,
x509_certificate * subject_certificate)

Parameters

signature_algorithm
Specifies the signature algorithm used to sign the constructed certificate.

subject_name
Specifies the distinguished name for the certificate subject. The distinguished
name is specified in the local code page and consists of one or more relative
distinguished name components separated by commas.

num_days
Specifies the number of days for the certificate validity period as a value
between 1 and 9999 (the maximum of 9999 will be used if a larger value is
specified and the minimum of 1 will be used if a smaller value is specified).

ca_certificate
Specify TRUE if this is a certification authority certificate or FALSE if this is an
end user certificate.

extensions
Specifies the certificate extensions for the new certificate. Specify NULL for this
parameter if no certificate extensions are supplied.

public_key
Specifies the public key for the constructed certificate.

private_key
Specifies the private key for the constructed certificate.

subject_certificate
Contains the constructed certificate.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not valid.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

gsk_construct_self_signed_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 159

[CMSERR_BAD_SUBJECT_NAME]
The subject name is not valid.

[CMSERR_DUPLICATE_EXTENSION]
Supplied extensions contain a duplicate extension.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_KEY_MISMATCH]
The signer key cannot be used to sign a certificate or the key type is not
supported for the requested signature algorithm.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_construct_self_signed_certificate() routine will construct an X.509
certificate as described in RFC 5280: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. A certification authority
certificate will have basic constraints and key usage extensions which allow the
certificate to be used to sign other certificates and certificate revocation lists. An
end user certificate will have no basic constraints limitations or key usage
limitations. The constructed certificate is then returned in the x509_certificate
structure subject_certificate.

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

gsk_construct_self_signed_certificate()

160 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest – {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest – {2.16.840.1.101.3.4.3.2}

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest -
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest -
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest -
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest -
{1.2.840.10045.4.3.3}

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest -
{1.2.840.10045.4.3.4}

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

If not in FIPS mode, an RSA key size must be between 512 and 4096 bits. A DSA
key size must be between 512 and 2048 bits. A key size of 1024 or less should
specify signature algorithm x509_alg_dsaWithSha1, while a key size of 2048 bits
should specify either x509_alg_dsaWithSha224 or x509_alg_dsaWithSha256 as the
signature algorithm.

In FIPS mode, an RSA key size must be between 1024 and 4096 bits. A DSA key
size must be either 1024 bits or 2048 bits. A key size of 1024 bits should specify
signature algorithm x509_alg_dsaWithSha1, while a key size of 2048 bits should
specify either x509_alg_dsaWithSha224 or x509_alg_dsaWithSha256 as the signature
algorithm. An ECC key must use a NIST recommended named curve.

Note: A self-signed end-entity certificate (server or client certificate) is not
recommended for use in production environments and should only be used to
facilitate test environments before production. Self-signed certificates do not imply
any level of security or authenticity of the certificate because, as their name
implies, they are signed by the same key that is contained in the certificate.
However, certificates that are signed by a certificate authority indicate that, at least
at the time of signature, the certificate authority approved the information
contained in the certificate.

gsk_construct_self_signed_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 161

gsk_construct_signed_certificate()
Constructs a signed certificate for a certificate request.

Format
#include <gskcms.h>

gsk_status gsk_construct_signed_certificate (
pkcs_cert_key * signer_certificate,
pkcs_cert_request * request,
x509_algorithm_type signature_algorithm,
int num_days,
gsk_boolean ca_certificate,
x509_extensions * extensions,
x509_certificate * certificate)

Parameters

signer_certificate
Specifies the signing certificate with private key.

request
Specifies the PKCS #10 certification request stream in either binary
DERencoded format or in Base64 format. A Base64 stream is in the local code
page.

signature_algorithm
Specifies the signature algorithm used to sign the constructed certificate.

num_days
Specifies the number of days for the certificate validity period as a value
between 1 and 9999 (the maximum of 9999 will be used if a larger value is
specified and the minimum of 1 will be used if a smaller value is specified).

ca_certificate
Specify TRUE if this is a certification authority certificate or FALSE if this is an
end user certificate.

extensions
Specifies the certificate extensions for the new certificate. Specify NULL for this
parameter if no certificate extensions are supplied.

certificate
Contains the constructed signed certificate.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The key algorithm or the signature algorithm is not valid.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_ENCODING]
The certificate request stream is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

gsk_construct_signed_certificate()

162 z/OS V2R1.0 System SSL Programming

[CMSERR_BAD_SIGNATURE]
The request signature is not correct.

CMSERR_CA_NOT_SUPPLIED[]
CA certificate is not supplied.

[CMSERR_DUPLICATE_EXTENSION]
Supplied extensions contain a duplicate extension.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_EXPIRED]
The signer certificate is expired.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_KEY_USAGE]
The signer certificate key usage does not allow signing certificates.

[CMSERR_ISSUER_NOT_CA]
The signer certificate is not for a certification authority.

[CMSERR_KEY_MISMATCH]
The signer certificate key cannot be used to sign a certificate or the key
type is not supported for the requested signature algorithm.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
The signer certificate does not have a private key.

[CMSERR_REQUEST_NOT_SUPPLIED]
Certificate request not supplied.

[CMSERR_SUBJECT_IS_CA]
The requested subject name is the same as the signer name.

Usage

The gsk_construct_signed_certificate() routine will construct an X.509 certificate as
described in RFC 5280: Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. The new certificate will be signed using the
certificate specified by the signer_certificate parameter. A certification authority
certificate will have basic constraints and key usage extensions which allow the
certificate to be used to sign other certificates and certificate revocation lists. An
end user certificate will have basic constraints and key usage extensions which
allow the certificate to be used for authentication, digital signatures, and data
encryption (except for a DSA key which cannot be used for data encryption). The

gsk_construct_signed_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 163

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

certificate expiration will be set to the earlier of the requested expiration date and
the expiration date of the signing certificate.

The signing certificate must have an associated private key, the Basic Constraints
extension must either be omitted or must have the CA indicator set, and the
KeyUsage extension must either be omitted or must allow signing certificates.

A CA certificate will have SubjectKeyIdentifier, KeyUsage and BasicConstraints
extensions while an end user certificate will have SubjectKeyIdentifier and
KeyUsage extensions. An AuthorityKeyIdentifier extension will be created if the
signing certificate has a SubjectKeyIdentifier extension. The application can supply
additional extensions through the extensions parameter. An AuthorityKeyIdentifier,
KeyUsage or BasicConstraints extension provided by the application will replace
the default extension constructed for the certificate, however a SubjectKeyIdentifier
extension provided by the application will be ignored.

Certificate extensions can also be contained within the certification request. A
certificate extension supplied by the application will override a certificate extension
of the same type contained in the certification request. The certificate extension
found in the certification request will be copied unmodified to the new certificate
with these exceptions:
v The AuthorityInfoAccess, AuthorityKeyIdentifier, BasicConstraints,

CrlDistributionPoints, IssuerAltName, NameConstraints, PolicyConstraints,
PolicyMappings, and PrivateKeyUsagePeriod extensions will not be copied.

v The keyCertSign and crlSign flags in the KeyUsage extension will be modified
based upon the value of the ca_certificate parameter.

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest – {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest – {2.16.840.1.101.3.4.3.2}

gsk_construct_signed_certificate()

164 z/OS V2R1.0 System SSL Programming

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest –
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest –
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest –
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest –
{1.2.840.10045.4.3.3}

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest –
{1.2.840.10045.4.3.4}

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

No certification path validation is performed by the
gsk_construct_signed_certificate() routine. An error will be returned if the
requested subject name is the same as the subject name in the signing certificate.

gsk_construct_signed_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 165

gsk_copy_attributes_signers()
Copies a gsk_attributes_signers structure.

Format
#include <gskcms.h>

gsk_status gsk_copy_attributes_signers (
gsk_attributes_signers * in_attributesSigners,
gsk_attributes_signers * out_attributesSigners)

Parameters

in_attributesSigners
Specifies the source gsk_attributes_signers structure.

out_attributesSigners
Specifies the destination gsk_attributes_signers structure. The application
should call the gsk_free_attributes_signers() routine when the
gsk_attributes_signers structure is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_attributes_signers() routine will allocate the output
gsk_attributes_signers structure and then copy the input gsk_attributes_signers
structure to the output gsk_attributes_signers structure. Storage for the base
gsk_attributes_signers structure (in_attributesSigners) is provided by the application.

gsk_copy_attributes_signers()

166 z/OS V2R1.0 System SSL Programming

gsk_copy_buffer()
Copies a buffer.

Format
#include <gskcms.h>

gsk_status gsk_copy_buffer (
gsk_buffer * in_buffer,
gsk_buffer * out_buffer)

Parameters

in_buffer
Specifies the source buffer.

out_buffer
Specifies the destination buffer. The application should call the
gsk_free_buffer() routine when the buffer is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_buffer() routine will allocate the output buffer and then copy the
input buffer to the output buffer. Storage for the base gsk_buffer structure is
provided by the caller.

gsk_copy_buffer()

Chapter 8. Certificate Management Services (CMS) API reference 167

gsk_copy_certificate()
Copies an X.509 certificate.

Format
#include <gskcms.h>

gsk_status gsk_copy_certificate (
x509_certificate * in_certificate,
x509_certificate * out_certificate)

Parameters

in_certificate
Specifies the source certificate.

out_certificate
Specifies the destination certificate. The application should call the
gsk_free_certificate() routine when the certificate is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_certificate() routine will allocate the output certificate and then copy
the input certificate to the output certificate. Storage for the base x509_certificate
structure is provided by the caller.

gsk_copy_certificate()

168 z/OS V2R1.0 System SSL Programming

gsk_copy_certificate_extension()
Copies an X.509 certificate extension.

Format
#include <gskcms.h>

gsk_status gsk_copy_certificate_extension (
x509_extension * in_extension,
x509_extension * out_extension)

Parameters

in_extension
Specifies the source certificate extension.

out_extension
Specifies the destination certificate extension. The application should call the
gsk_free_certificate_extension() routine when the extension is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_certificate_extension() routine will allocate the output certificate
extension and then copy the input certificate extension to the output certificate
extension. Storage for the base x509_extension structure is provided by the caller.

gsk_copy_certificate_extension()

Chapter 8. Certificate Management Services (CMS) API reference 169

gsk_copy_certification_request()
Copies a PKCS #10 certification request.

Format
#include <gskcms.h>

gsk_status gsk_copy_certification_request (
pkcs_cert_request * in_request,
pkcs_cert_request * out_request)

Parameters

in_request
Specifies the source certification request.

out_request
Specifies the destination certification request. The application should call the
gsk_free_certification_request() routine when the certification request is no
longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_certification_request() routine will allocate the output certification
request and then copy the input certification request to the output certification
request. Storage for the base pkcs_cert_request structure is provided by the
application.

gsk_copy_certification_request()

170 z/OS V2R1.0 System SSL Programming

gsk_copy_content_info()
Copies PKCS #7 content information.

Format
#include <gskcms.h>

gsk_status gsk_copy_content_info (
pkcs_content_info * in_info,
pkcs_content_info * out_info)

Parameters

in_info
Specifies the source content information.

out_info
Specifies the destination content information. The application should call the
gsk_free_content_info() routine when the content information is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_content_info() routine will allocate the output content information
and then copy the input content information to the output content information.
Storage for the base pkcs_content_info structure is provided by the application.

gsk_copy_content_info()

Chapter 8. Certificate Management Services (CMS) API reference 171

gsk_copy_crl()
Copies an X.509 certificate revocation list.

Format
#include <gskcms.h>

gsk_status gsk_copy_crl (
x509_crl * in_crl,
x509_crl * out_crl)

Parameters

in_crl
Specifies the source certificate revocation list.

out_crl
Specifies the destination certificate revocation list. The application should call
the gsk_free_crl() routine when the certificate revocation list is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_crl() routine will allocate the output certificate revocation list and
then copy the input list to the output list. Storage for the base x509_crl structure is
provided by the caller.

gsk_copy_crl()

172 z/OS V2R1.0 System SSL Programming

gsk_copy_name()
Copies an X.509 name.

Format
#include <gskcms.h>

gsk_status gsk_copy_name (
x509_name * in_name,
x509_name * out_name)

Parameters

in_name
Specifies the source name.

out_name
Specifies the destination name. The application should call the
gsk_free_name() routine when the name is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_name() routine will allocate the output name and then copy the
input name to the output name. Storage for the base x509_name structure is
provided by the caller.

gsk_copy_name()

Chapter 8. Certificate Management Services (CMS) API reference 173

gsk_copy_private_key_info()
Copies the private key information.

Format
#include <gskcms.h>

gsk_status gsk_copy_private_key_info (
pkcs_private_key_info * in_info,
pkcs_private_key_info * out_info)

Parameters

in_info
Specifies the source private key information.

out_info
Specifies the destination private key information. The application should call
the gsk_free_private_key_info() routine when the private key is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_private_key_info() routine will allocate the output private key and
then copy the input key to the output key. Storage for the base
pkcs_private_key_info structure is provided by the caller.

gsk_copy_private_key_info()

174 z/OS V2R1.0 System SSL Programming

gsk_copy_public_key_info()
Copies the public key information.

Format
#include <gskcms.h>

gsk_status gsk_copy_public_key_info (
x509_public_key_info * in_info,
x509_public_key_info * out_info)

Parameters

in_info
Specifies the source public key information.

out_info
Specifies the destination public key information. The application should call
the gsk_free_public_key_info() routine when the public key is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_public_key_info() routine will allocate the output public key and
then copy the input key to the output key. Storage for the base
x509_public_key_info structure is provided by the caller.

gsk_copy_public_key_info()

Chapter 8. Certificate Management Services (CMS) API reference 175

gsk_copy_record()
Copies a database record.

Format
#include <gskcms.h>

gsk_status gsk_copy_record (
gskdb_record * in_record,
gskdb_record ** out_record)

Parameters

in_record
Specifies the source record.

out_record
Returns the copied record. The application should call the gsk_free_record()
routine when the record is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_copy_record() routine will allocate the output record and then copy the
input record to the output record. The address of the copied record will then be
returned to the application.

gsk_copy_record()

176 z/OS V2R1.0 System SSL Programming

gsk_create_certification_request()
Creates a PKCS #10 certification request as described in PKCS #10, Version 1.7:
Certification Request.

Format
#include <gskcms.h>

gsk_status gsk_create_certification_request (
gsk_handle db_handle,
const char * label,
x509_algorithm_type signature_algorithm,
int key_size,
const char * subject_name,
x509_extensions * extensions)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or
the gsk_open_database() routine. This must be a request database and not a
key database.

label
Specifies the label for the new database record. The label is specified in the
local code page.

signature_algorithm
Specifies the signature algorithm for the certificate.

key_size
Specifies the key size in bits.

subject_name
Specifies the distinguished name for the certificate subject. The distinguished
name is specified in the local code page and consists of one or more relative
distinguished name components separated by commas.

extensions
Specifies certificate extensions to be included in the certification request.
Specify NULL for this parameter if no certificate extensions are provided.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

gsk_create_certification_request()

Chapter 8. Certificate Management Services (CMS) API reference 177

http://www.rsa.com/rsalabs/node.asp?id=2132
http://www.rsa.com/rsalabs/node.asp?id=2132

[CMSERR_FIPS_KEY_PAIR_CONSISTENCY]
FIPS mode key generation failed pair-wise consistency check.

[CMSERR_ICSF_CLEAR_KEY_SUPPORT_NOT_AVAILABLE]
Clear key support not available due to ICSF key policy.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certification requests.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update or update attempted on a FIPS mode
database while in non-FIPS mode.

Usage

The gsk_create_certification_request() routine creates a PKCS #10 certification
request. The request is then stored in the request database. The
gsk_export_certification_request() routine can be called to create an export file
containing the request for transmission to the certification authority.

The gsk_create_certification_request() routine is similar to the
gsk_create_renewal_request() routine. Both routines create a PKCS #10 certification
request. The difference is the gsk_create_certification_request() routine generates a
new public/private key pair while the gsk_create_renewal_request() routine uses
the public/private key pair provided by the application.

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

gsk_create_certification_request()

178 z/OS V2R1.0 System SSL Programming

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest – {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest – {2.16.840.1.101.3.4.3.2}

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest -
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest -
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest -
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest -
{1.2.840.10045.4.3.3}

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest -
{1.2.840.10045.4.3.4}

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

If not in FIPS mode, an RSA key size must be between 512 and 4096 bits and will
be rounded up to a multiple of 16 bits. A DSA key size must be between 512 and
2048 bits. Key sizes of between 512 and 1024 bits are rounded up to a multiple of
64, key size 2048 must be explicitly specified as such. A key size of 1024 or less
should specify signature algorithm x509_alg_dsaWithSha1, while a key size of 2048
bits should specify either x509_alg_dsaWithSha224 or x509_alg_dsaWithSha256 as
the signature algorithm.

In FIPS mode, an RSA key size must be between 1024 and 4096 bits and will be
rounded up to a multiple of 16 bits. A DSA key size must be either 1024 bits or
2048 bits. A key size of 1024 bits should specify signature algorithm
x509_alg_dsaWithSha1, while a key size of 2048 bits should specify either
x509_alg_dsaWithSha224 or x509_alg_dsaWithSha256 as the signature algorithm.

For an ECC key the key size will determine the default named curve that will be
used for the public/private key pair, as specified in Table 3 on page 15. In FIPS
mode, only NIST recommended that curves are supported. To specify a specific
supported elliptic curve, use gsk_construct_renewal_request() to create a certificate
request.

gsk_create_certification_request()

Chapter 8. Certificate Management Services (CMS) API reference 179

The record label is used as a friendly name for the database entry. It can be any
value and consists of characters which can be represented using 7-bit ASCII
(letters, numbers, and punctuation). It may not be an empty string.

The extensions parameter can be used to provide certificate extensions for inclusion
in the certification request. Whether or not a particular certificate extension will be
included in the new certificate is determined by the certification authority.

The database must be open for update in order to add the new request. The
database file is updated as part of the gsk_create_certification_request()
processing. A temporary database file is created using the same name as the
database file with ".new" appended to the name. The database file is then
overwritten and the temporary database file is deleted. The temporary database
file will not be deleted if an error occurs while rewriting the database file.

gsk_create_certification_request()

180 z/OS V2R1.0 System SSL Programming

gsk_create_database()
Creates a key or request database.

Format
#include <gskcms.h>

gsk_status gsk_create_database (
char * filename,
char * password,
gskdb_database_type db_type,
gsk_size record_length,
gsk_time pwd_expiration,
gsk_handle * db_handle)

Parameters

filename
Specifies the database file name in the local code page. The length of the
fully-qualified file name cannot exceed 251.

password
Specifies the database password in the local code page. The password must
consist of characters which can be represented using 7-bit ASCII (letters,
numbers, and punctuation). It may not be an empty string. The user will be
prompted to enter the password if NULL is specified for this parameter.

db_type
Specifies the database type and must be gskdb_dbtype_key for a key database
or gskdb_dbtype_request for a certification request database.

record_length
Specifies the database record length. The default record length will be used if
zero is specified for this parameter. All records in the database will have this
length. The minimum record length is 2500. The default record length is 5000.

pwd_expiration
Specifies the database password expiration time as the number of seconds
since the POSIX epoch. A value of 0 indicates that the password does not
expire.

db_handle
Returns the database handle. The application should call the
gsk_close_database() routine when it no longer needs access to the database.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_FILENAME]
The database file name is not valid.

[CMSERR_DB_EXISTS]
The database already exists.

[CMSERR_INCORRECT_DBTYPE]
The database type is not valid.

[CMSERR_IO_CANCELED]
The user canceled the password prompt.

gsk_create_database()

Chapter 8. Certificate Management Services (CMS) API reference 181

[CMSERR_IO_ERROR]
An input/output request failed.

[CMSERR_LENGTH_TOO_SMALL]
The record length is less than the minimum value.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_OPEN_FAILED]
Unable to open the key database.

Usage

The gsk_create_database() routine will create a key or request database. The
database must not already exist. A new key database will contain an initial set of
Certificate Authority certificates for use in validating certificate signatures.

If this function is called while executing in FIPS mode, the new database will meet
FIPS 140-2 criteria. Such a database:
v Can be read while executing in FIPS mode and when not in FIPS mode.
v Can be updated only when executing in FIPS mode.

A database created while not executing in FIPS mode:
v Can be updated or read when not in FIPS mode
v Cannot be used while executing in FIPS mode

gsk_create_database()

182 z/OS V2R1.0 System SSL Programming

gsk_create_database_renewal_request()
Creates a PKCS #10 certification renewal request.

Format
#include <gskcms.h>

gsk_status gsk_create_database_renewal_request (
gsk_handle db_handle,
const char * label,
x509_public_key_info * public_key,
pkcs_private_key_info * private_key,
x509_algorithm_type signature_algorithm,
const char * subject_name,
x509_extensions * extensions)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or
the gsk_open_database() routine. This must be a request database and not a
key database.

label
Specifies the label for the request database record. The label is specified in the
local code page.

public_key
Specifies the public key for the certification request.

private_key
Specifies the private key for the certification request.

signature_algorithm
Specifies the signature algorithm to be used for the request signature.

subject_name
Specifies the distinguished name for the certificate subject. The distinguished
name is specified in the local code page and consists of one or more relative
distinguished name components separated by commas.

extensions
Specifies certificate extensions to be included in the certification request.
Specify NULL for this parameter if no certificate extensions are provided.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not valid.

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

gsk_create_database_renewal_request()

Chapter 8. Certificate Management Services (CMS) API reference 183

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certification requests.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_KEY_MISMATCH]
The supplied private key cannot be used to sign a certificate or the private
key type is not supported for the requested signature algorithm.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_PRIVATE_KEY_INFO_NOT_SUPPLIED]
Private key information not supplied.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update or update attempted on a FIPS mode
database while in non-FIPS mode.

Usage

The gsk_create_database_renewal_request() routine creates a certification request
as described in PKCS #10, Version 1.7: Certification Request. The request is then
stored in the request database. The gsk_export_certification_request() routine can
be called to create an export file containing the request for transmission to the
certification authority.

The gsk_create_database_renewal_request() routine is similar to the
gsk_create_certification_request() routine. Both routines create a PKCS #10
certification request. The difference is the gsk_create_certification_request() routine

gsk_create_database_renewal_request()

184 z/OS V2R1.0 System SSL Programming

http://www.rsa.com/rsalabs/node.asp?id=2132

generates a new public/private key pair while the
gsk_create_database_renewal_request() routine uses the public/private key pair
provided by the application.

The renewal request will be signed using the key specified by the private_key
parameter and the signature algorithm specified by the signature_algorithm
parameter.

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest – {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest – {2.16.840.1.101.3.4.3.2}

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest -
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest -
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest -
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest -
{1.2.840.10045.4.3.3}

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest -
{1.2.840.10045.4.3.4}

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

gsk_create_database_renewal_request()

Chapter 8. Certificate Management Services (CMS) API reference 185

gsk_create_database_signed_certificate()
Creates a signed certificate as part of a set of certificates.

Format
#include <gskcms.h>

gsk_status gsk_create_database_signed_certificate (
gsk_handle db_handle,
const char * ca_label,
const char * record_label,
x509_algorithm_type key_algorithm,
int key_size,
gsk_buffer * key_parameters,
x509_algorithm_type signature_algorithm,
const char * subject_name,
int num_days,
gsk_boolean ca_certificate,
x509_extensions * extensions)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or
the gsk_open_database() routine. This must be a key database and not a
request database.

ca_label
Specifies the label of the certificate to be used to sign the new certificate. The
key usage for the certificate must allow certificate signing. The label is
specified in the local code page.

record_label
Specifies the label for the new database record. The label is specified in the
local code page.

key_algorithm
Specifies the certificate key algorithm.

key_size
Specifies the certificate key size in bits.

key_parameters
Specifies the key generation parameters. Specify NULL for this parameter if the
key algorithm does not require any key parameters.

signature_algorithm
Specifies the signature algorithm used for the certificate signature.

subject_name
Specifies the distinguished name for the certificate subject. The distinguished
name is specified in the local code page and consists of one or more relative
distinguished name components separated by commas.

num_days
Specifies the number of days for the certificate validity period as a value
between 1 and 9999 (the maximum of 9999 will be used if a larger value is
specified and the minimum of 1 will be used if a smaller value is specified).

ca_certificate
Specify TRUE if this is a certification authority certificate or FALSE if this is an
end user certificate.

gsk_create_database_signed_certificate()

186 z/OS V2R1.0 System SSL Programming

extensions
Specifies the certificate extensions for the new certificate. Specify NULL for this
parameter if no certificate extensions are supplied.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The key algorithm or the signature algorithm is not valid.

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_LABEL]
The record label or CA certificate label is not valid.

[CMSERR_BAD_SUBJECT_NAME]
The subject name is not valid.

[CMSERR_DUPLICATE_EXTENSION]
Supplied extensions contain a duplicate extension.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_EXPIRED]
The signer certificate is expired.

[CMSERR_FIPS_KEY_PAIR_CONSISTENCY]
FIPS mode key generation failed pair-wise consistency check.

[CMSERR_ICSF_CLEAR_KEY_SUPPORT_NOT_AVAILABLE]
Clear key support not available due to ICSF key policy.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

gsk_create_database_signed_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 187

[CMSERR_INCORRECT_KEY_TYPE]
Incorrect key algorithm

[CMSERR_INCORRECT_KEY_USAGE]
The signer certificate key usage does not allow signing certificates.

[CMSERR_IO_ERROR]
Unable to read or write a database record.

[CMSERR_ISSUER_NOT_CA]
The signer certificate is not for a certification authority.

[CMSERR_KEY_MISMATCH]
The signer certificate key cannot be used to sign a certificate.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
The signer certificate does not have a private key.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_SUBJECT_IS_CA]
The requested subject name is the same as the signer name.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update or update attempted on a FIPS mode
database while in non-FIPS mode.

Usage

The gsk_create_database_signed_certificate() routine will generate an X.509
certificate as described in RFC 5280: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. The certificate will be signed
using an existing certificate as specified by the ca_label parameter and the signature
algorithm specified by the signature_algorithm parameter.
v If the specified certificate key is a Diffie-Hellman key, the signature_algorithm

must specify either an RSA or a DSA signature.
v If the specified certificate key is an ECC key, the signature_algorithm cannot

specify a DSA signature.

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

gsk_create_database_signed_certificate()

188 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest – {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest – {2.16.840.1.101.3.4.3.2}

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest –
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest –
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest –
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest –
{1.2.840.10045.4.3.3}

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest –
{1.2.840.10045.4.3.4}

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

A certification authority (CA) certificate will have basic constraints and key usage
extensions which allow the certificate to be used to sign other certificates and
certificate revocation lists. An end user certificate will have basic constraints and
key usage extensions as follows:
v An RSA key can be used for authentication, digital signature, and data

encryption.
v A DSS key can be used for authentication and digital signature.
v A Diffie-Hellman key can be used for key agreement.
v An ECC key can be used for authentication, digital signature, and key

agreement.

The new certificate will be stored in the key database using the supplied record
label. The gsk_export_certificate() routine can be called to create an export file
containing the certificate for transmission to another system.

The following key algorithms are supported:

x509_alg_rsaEncryption
RSA encryption - {1.2.840.113549.1.1.1}

gsk_create_database_signed_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 189

x509_alg_idDsa
Digital Signature Standard (DSS) - {1.2.840.10040.4.1}

x509_alg_dhPublicNumber
Diffie-Hellman (DH) - {1.2.840.10046.2.1}

x509_alg_ecPublicKey
Elliptic Curve Public Key (ECC) - {1.2.840.10045.2.1}

RSA keys
v Can be used for both CA certificates and end user certificates
v Key size when not in FIPS mode is between 512 and 4096 bits rounded up to a

multiple of 16
v Key size in FIPS mode is between 1024 and 4096 bits rounded up to a multiple

of 16
v No key parameters

DSS keys
v Can be used for both CA certificates and end user certificates.
v Key sizes of between 512 and 1024 bits when in non-FIPS mode are rounded up

to a multiple of 64.
v Key sizes less than 1024 bits can only be generated in non-FIPS mode and are

generated according to FIPS 186-2.
v Key sizes of 1024 or 2048 bits are generated according to FIPS 186-3 in both FIPS

mode and non-FIPS mode. These are the only valid key sizes in FIPS mode.
v A key size of 1024 or less should specify x509_alg_dsaWithSha1 as the signature

algorithm, while a key size of 2048 bits should specify either
x509_alg_dsaWithSha224 or x509_alg_dsaWithSha256 as the signature algorithm.

v Key parameters encoded as an ASN.1 sequence consisting of the prime p, the
prime divisor q, and the generator g. For 1024-bit and 2048-bit keys, see FIPS
186-3: Digital Signature Standard (DSS) for more information about the key
parameters, for smaller key sizes see FIPS 186-2: Digital Signature Standard (DSS).
Note that key parameters that contain a p of 2048 bits and a q of 160 bits do not
conform to FIPS 186-3 and are not supported. The
gsk_generate_key_parameters() routine can be used to generate the key
parameters.

DH keys
v Can be used only for end user certificates
v Can only be signed using a certificate containing either an RSA or DSA key
v Key size when not in FIPS mode is between 512 and 2048 bits rounded up to a

multiple of 64
v Key size in FIPS mode of 2048 bits
v Key parameters encoded as an ASN.1 sequence consisting of the prime P, the

base G, and optionally the subprime Q and the subgroup factor J. See RFC 2631:
Diffie-Hellman Key Agreement Method for more information about the key
parameters for non-FIPS mode, and see z/OS Cryptographic Services ICSF Writing
PKCS #11 Applications for FIPS mode. The gsk_generate_key_parameters()
routine can be used to generate the key parameters.

ECC keys
v Can be used for both CA certificates and end user certificates.

gsk_create_database_signed_certificate()

190 z/OS V2R1.0 System SSL Programming

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf

v The ECC named curve used to generate the ECC key pair can be specified using
either the key_parameters buffer or the key_size parameter. If the key_parameters
buffer is supplied the key_size parameter will be ignored.

v The key_parameters buffer must contain ASN.1 encoded ECC parameters, or be
NULL.

v If the key_parameters buffer is not supplied, the key_size parameter will be
rounded up to the nearest supported key size and the default EC named curve
for that key size will be used, as specified in Table 3 on page 15.

v In FIPS mode, only NIST recommended curves are supported.

The record label is used as a friendly name for the database entry. It can be any
value and consists of characters which can be represented using 7-bit ASCII
(letters, numbers, and punctuation). It may not be an empty string.

A CA certificate will have SubjectKeyIdentifier, KeyUsage, and BasicConstraints
extensions while an end user certificate will have SubjectKeyIdentifier and
KeyUsage extensions. An AuthorityKeyIdentifier extension will be created if the
signing certificate has a SubjectKeyIdentifier extension. The application can supply
additional extensions through the extensions parameter. An AuthorityKeyIdentifier,
KeyUsage, or BasicConstraints extension provided by the application will replace
the default extension constructed for the certificate, however a SubjectKeyIdentifier
extension provided by the application will be ignored.

The database must be open for update in order to add the new certificate. The
database file is updated as part of the gsk_create_database_signed_certificate()
processing. A temporary database file is created using the same name as the
database file with ".new" appended to the name. The database file is then
overwritten and the temporary database file is deleted. The temporary database
file will not be deleted if an error occurs while rewriting the database file.

gsk_create_database_signed_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 191

gsk_create_renewal_request()
Creates a PKCS #10 certification renewal request.

This function is deprecated. Use gsk_create_database_renewal_request() instead.

Format
#include <gskcms.h>

gsk_status gsk_create_renewal_request (
gsk_handle db_handle,
const char * label,
x509_public_key_info * public_key,
pkcs_private_key_info * private_key,
const char * subject_name,
x509_extentions * extensions)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or
the gsk_open_database() routine. This must be a request database and not a
key database.

label
Specifies the label for the request database record. The label is specified in the
local code page.

public_key
Specifies the public key for the certification request.

private_key
Specifies the private key for the certification request.

subject_name
Specifies the distinguished name for the certificate subject. The distinguished
name is specified in the local code page and consists of one or more relative
distinguished name components separated by commas.

extensions
Specifies certificate extensions to be included in the certification request.
Specify NULL for this parameter if no certificate extensions are provided.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

gsk_create_renewal_request()

192 z/OS V2R1.0 System SSL Programming

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certification requests.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_PRIVATE_KEY_INFO_NOT_SUPPLIED]
Private key information not supplied.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update or update attempted on a FIPS mode
database while in non-FIPS mode.

Usage

The gsk_create_renewal_request() routine creates a certification request as
described in PKCS #10, Version 1.7: Certification Request. The request is then stored
in the request database. The gsk_export_certification_request() routine can be
called to create an export file containing the request for transmission to the
certification authority.

The gsk_create_renewal_request() routine is similar to the
gsk_create_certification_request() routine. Both routines create a PKCS #10
certification request. The difference is the gsk_create_certification_request() routine
generates a new public/private key pair while the gsk_create_renewal_request()
routine uses the public/private key pair provided by the application.

The record label is used as a friendly name for the database entry. It can be any
value and consists of characters which can be represented using 7-bit ASCII
(letters, numbers, and punctuation). It may not be an empty string.

The extensions parameter can be used to provide certificate extensions for
inclusion in the certification request. Whether or not a particular certificate
extension will be included in the new certificate is determined by the certification
authority.

gsk_create_renewal_request()

Chapter 8. Certificate Management Services (CMS) API reference 193

http://www.rsa.com/rsalabs/node.asp?id=2132

gsk_create_self_signed_certificate()
Creates a self-signed certificate.

Format
#include <gskcms.h>

gsk_status gsk_create_self_signed_certificate (
gsk_handle db_handle,
const char * label,
x509_algorithm_type signature_algorithm,
int key_size,
const char * subject_name,
int num_days,
gsk_boolean ca_certificate,
x509_extensions * extensions)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or
the gsk_open_database() routine. This must be a key database and not a
request database.

label
Specifies the label for the new database record. The label is specified in the
local code page.

signature_algorithm
Specifies the certificate signature algorithm.

key_size
Specifies the key size in bits.

subject_name
Specifies the distinguished name for the certificate subject. The distinguished
name is specified in the local code page and consists of one or more relative
distinguished name components separated by commas.

num_days
Specifies the number of days for the certificate validity period as a value
between 1 and 9999 (the maximum of 9999 will be used if a larger value is
specified and the minimum of 1 will be used if a smaller value is specified).

ca_certificate
Specify TRUE if this is a certification authority certificate or FALSE if this is an
end user certificate.

extensions
Specifies the certificate extensions for the new certificate. Specify NULL for this
parameter if no certificate extensions are supplied.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not valid.

gsk_create_self_signed_certificate()

194 z/OS V2R1.0 System SSL Programming

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_BAD_SUBJECT_NAME]
The subject name is not valid.

[CMSERR_DUPLICATE_EXTENSION]
Supplied extensions contain a duplicate extension.

[CMSERR_ICSF_CLEAR_KEY_SUPPORT_NOT_AVAILABLE]
Clear key support not available due to ICSF key policy.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_FIPS_KEY_PAIR_CONSISTENCY]
FIPS mode key generation failed pair-wise consistency check.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_KEY_MISMATCH]
The signer certificate key cannot be used to sign a certificate.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update or update attempted on a FIPS mode
database while in non-FIPS mode.

Usage

The gsk_create_self_signed_certificate() routine will generate a self-signed X.509
certificate as described in RFC 5280: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. A certification authority
certificate will have basic constraints and key usage extensions which allow the
certificate to be used to sign other certificates and certificate revocation lists. An

gsk_create_self_signed_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 195

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

end user certificate will have no basic constraints or key usage limitations. The
new certificate is then stored in the key database. The gsk_export_certificate()
routine can be called to create an export file containing the certificate for
transmission to another system.

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest - {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest - {2.16.840.1.101.3.4.3.2}

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest -
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest -
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest -
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest -
{1.2.840.10045.4.3.3}

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest -
{1.2.840.10045.4.3.4}

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

If not in FIPS mode, an RSA key size must be between 512 and 4096 bits and will
be rounded up to a multiple of 16 bits. A DSA key size must be between 512 and

gsk_create_self_signed_certificate()

196 z/OS V2R1.0 System SSL Programming

2048 bits. Key sizes of between 512 and 1024 bits are rounded up to a multiple of
64. A key size of 2048 must be explicitly specified as such. A key size of 1024 or
less should specify signature algorithm x509_alg_dsaWithSha1, while a key size of
2048 bits should specify either x509_alg_dsaWithSha224 or
x509_alg_dsaWithSha256 as the signature algorithm.

In FIPS mode, an RSA key size must be between 1024 and 4096 bits and will be
rounded up to a multiple of 16 bits. A DSA key size must be either 1024 bits or
2048 bits. A key size of 1024 bits should specify signature algorithm
x509_alg_dsaWithSha1, while a key size of 2048 bits should specify either
x509_alg_dsaWithSha224 or x509_alg_dsaWithSha256 as the signature algorithm.

For an ECC key, the key size will determine the default namedCurve that will be
used for the public/private key pair, as specified in Table 3 on page 15. In FIPS
mode, only NIST recommended curves are supported. To specify a specific
supported elliptic curve, use gsk_construct_self_signed_certificate() to create a
self-signed certificate.

The record label is used as a friendly name for the database entry. It can be any
value and consists of characters which can be represented using 7-bit ASCII
(letters, numbers, and punctuation). It may not be an empty string.

Both a CA certificate and an end user certificate will have SubjectKeyIdentifier,
AuthorityKeyIdentifier, KeyUsage and BasicConstraints extensions. The application
can supply additional extensions through the extensions parameter. An
AuthorityKeyIdentifier, KeyUsage or BasicContraints extension provided by the
application will replace the default extension created for the certificate, however a
SubjectKeyIdentifier extension provided by the application will be ignored.

The database must be open for update in order to add the new certificate. The
database file is updated as part of the gsk_create_self_signed_certificate()
processing. A temporary database file is created using the same name as the
database file with ".new" appended to the name. The database file is then
overwritten and the temporary database file is deleted. The temporary database
file will not be deleted if an error occurs while rewriting the database file.

Note: A self-signed end-entity certificate (server or client certificate) is not
recommended for use in production environments and should only be used to
facilitate test environments before production. Self-signed certificates do not imply
any level of security or authenticity of the certificate because, as their name
implies, they are signed by the same key that is contained in the certificate.
However, certificates that are signed by a certificate authority indicate that, at least
at the time of signature, the certificate authority approved the information
contained in the certificate.

gsk_create_self_signed_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 197

gsk_create_signed_certificate()
Creates a signed certificate.

This function is deprecated. Use gsk_create_signed_certificate_record() instead.

Format
#include <gskcms.h>

gsk_status gsk_create_signed_certificate (
gsk_handle db_handle,
const char * label,
int num_days,
gsk_boolean ca_certificate,
x509_extensions * extensions,
gsk_buffer * cert_request,
gsk_buffer * signed_certificate)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine. This
must be a key database and not a request database.

label
Specifies the label for the certificate to be used to sign the new certificate. The
label is specified in the local code page.

num_days
Specifies the number of days for the certificate validity period as a value
between 1 and 9999 (the maximum of 9999 will be used if a larger value is
specified and the minimum of 1 will be used if a smaller value is specified).

ca_certificate
Specify TRUE if this is a certification authority certificate or FALSE if this is an
end user certificate.

extensions
Specifies the certificate extensions for the new certificate. Specify NULL for this
parameter if no certificate extensions are supplied.

cert_request
Specifies the PKCS #10 certification request stream in either binary
DER-encoded format or in Base64 format. A Base64 stream is in the local code
page.

signed_certificate
Returns the signed certificate in Base64 format. The Base64 stream will be in
the local code page. The application should call the gsk_free_buffer() routine
to release the certificate stream when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not valid.

gsk_create_signed_certificate()

198 z/OS V2R1.0 System SSL Programming

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_ENCODING]
The certificate request stream is not valid.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_BAD_SIGNATURE]
The request signature is not correct.

[CMSERR_DUPLICATE_EXTENSION]
Supplied extensions contain a duplicate extension.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_EXPIRED]
The signer certificate is expired.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_TYPE]
Incorrect key algorithm

[CMSERR_INCORRECT_KEY_USAGE]
The signer certificate key usage does not allow signing certificates.

[CMSERR_ISSUER_NOT_CA]
The signer certificate is not for a certification authority.

[CMSERR_KEY_MISTMATCH]
The signer certificate key cannot be used to sign a certificate.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
The signer certificate does not have a private key.

[CMSERR_RECORD_NOT_FOUND]
The signer certificate is not found in the key database.

[CMSERR_SUBJECT_IS_CA]
The requested subject name is the same as the signer name.

gsk_create_signed_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 199

Usage

The gsk_create_signed_certificate() routine will generate an X.509 certificate as
described in RFC 5280: Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. The new certificate will be signed using the
certificate specified by the label parameter.

If the certificate request contains an ECC key, the signing certificate cannot contain
a DSA key.

A certification authority certificate will have basic constraints and key usage
extensions which allow the certificate to be used to sign other certificates and
certificate revocation lists. An end user certificate will have basic constraints and
key usage extensions which allow the certificate to be used as follows:
v An RSA key can be used for authentication, digital signature, and data

encryption.
v A DSS key can be used for authentication and digital signature.
v A Diffie-Hellman key can be used for key agreement.
v An ECC key can be used for authentication, digital signature and key

agreement.

The certificate expiration date will be set to the earlier of the requested expiration
date and the expiration date of the signing certificate.

The signing certificate must have an associated private key, the BasicConstraints
extension must either be omitted or must have the CA indicator set, and the
KeyUsage extension must either be omitted or must allow signing certificates.

A CA certificate will have SubjectKeyIdentifier, KeyUsage, and BasicConstraints
extensions while an end user certificate will have SubjectKeyIdentifier and
KeyUsage extensions. An AuthorityKeyIdentifier extension will be created if the
signing certificate has a SubjectKeyIdentifier extension. The application can supply
additional extensions through the extensions parameter. An AuthorityKeyIdentifier,
KeyUsage, or BasicConstraints extension provided by the application will replace
the default extension created for the certificate, however a SubjectKeyIdentifier
extension provided by the application will be ignored.

Certificate extensions can also be contained within the certification request. A
certificate extension supplied by the application will override a certificate extension
of the same type contained in the certification request. The certificate extensions
found in the certification request will be copied unmodified to the new certificate
with these exceptions:
v The AuthorityInfoAccess, AuthorityKeyIdentifier, BasicConstraints,

CrlDistributionPoints, IssuerAltName, NameConstraints, PolicyConstraints,
PolicyMappings, and PrivateKeyUsagePeriod extensions will not be copied

v The keyCertSign and crlSign flags in the KeyUsage extension will be modified
based upon the value of the ca_certificate parameter.

No certification path validation is performed by the gsk_create_signed_certificate()
routine. An error will be returned if the requested subject name is the same as the
subject name in the signing certificate.

gsk_create_signed_certificate()

200 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

gsk_create_signed_certificate_record()
Creates a signed certificate.

Format
#include <gskcms.h>

gsk_status gsk_create_signed_certificate_record (
gsk_handle db_handle,
const char * label,
int num_days,
gsk_boolean ca_certificate,
x509_algorithm_type signature_algorithm,
x509_extensions * extensions,
gsk_buffer * cert_request,
gsk_buffer * signed_certificate)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine. This
must be a key database and not a request database.

label
Specifies the label for the certificate to be used to sign the new certificate. The
label is specified in the local code page.

num_days
Specifies the number of days for the certificate validity period as a value
between 1 and 9999 (the maximum of 9999 will be used if a larger value is
specified and the minimum of 1 will be used if a smaller value is specified).

ca_certificate
Specify TRUE if this is a certification authority certificate or FALSE if this is an
end user certificate.

signature_algorithm
Specifies the signature algorithm to be used for the certificate signature.

extensions
Specifies the certificate extensions for the new certificate. Specify NULL for this
parameter if no certificate extensions are supplied.

cert_request
Specifies the PKCS #10 certification request stream in either binary
DER-encoded format or in Base64 format. A Base64 stream is in the local code
page.

signed_certificate
Returns the signed certificate in Base64 format. The Base64 stream will be in
the local code page. The application should call the gsk_free_buffer() routine
to release the certificate stream when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not valid.

gsk_create_signed_certificate_record()

Chapter 8. Certificate Management Services (CMS) API reference 201

[CMSERR_BACKUP EXISTS]
The backup file already exists.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_BAD_SUBJECT_NAME]
The subject name is not valid.

[CMSERR_DUPLICATE_EXTENSION]
Supplied extensions contain a duplicate extension.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_TYPE]
Incorrect key algorithm.

[CMSERR_INCORRECT_KEY_USAGE]
The signer certificate key usage does not allow signing certificates

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_KEY_MISMATCH]
The signer certificate key cannot be used to sign a certificate or the signers
key type is not supported for the requested signature algorithm.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

gsk_create_signed_certificate_record()

202 z/OS V2R1.0 System SSL Programming

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update or update attempted on a FIPS mode
database while in non-FIPS mode.

Usage

The gsk_create_signed_certificate_record() routine will generate an X.509
certificate as described in RFC 5280: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. The new certificate will be
signed using the certificate specified by the label parameter and the signature
algorithm specified by the signature_algorithm parameter.

If the certificate request contains an ECC key, the signing certificate cannot contain
a DSA key.

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest – {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest – {2.16.840.1.101.3.4.3.2}

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest –
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest –
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest –
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest –
{1.2.840.10045.4.3.3}

gsk_create_signed_certificate_record()

Chapter 8. Certificate Management Services (CMS) API reference 203

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest –
{1.2.840.10045.4.3.4}

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

If not in FIPS mode, an RSA key size must be between 512 and 4096 bits. A DSA
key size must be between 512 and 2048 bits. A key size of 1024 or less should
specify signature algorithm x509_alg_dsaWithSha1, and a key size of 2048 bits
should specify either x509_alg_dsaWithSha224 or x509_alg_dsaWithSha256 as the
signature algorithm.

In FIPS mode, an RSA key size must be between 1024 and 4096 bits. A DSA key
size must be either 1024 bits or 2048 bits. A key size of 1024 bits should specify
signature algorithm x509_alg_dsaWithSha1, and a key size of 2048 bits should
specify either x509_alg_dsaWithSha224 or x509_alg_dsaWithSha256 as the signature
algorithm. An ECC key must use a NIST recommended EC named curve.

A certification authority certificate will have basic constraints and key usage
extensions which allow the certificate to be used to sign other certificates and
certificate revocation lists. An end user certificate will have basic constraints and
key usage extensions which allow the certificate to be used as follows:
v An RSA key can be used for authentication, digital signature, and data

encryption.
v A DSA key can be used for authentication and digital signature.
v A Diffie-Hellman key can be used for key agreement.
v An ECC key can be used for authentication, digital signature and key

agreement.

The certificate expiration date will be set to the earlier of the requested expiration
date and the expiration date of the signing certificate.

The signing certificate must have an associated private key, the BasicConstraints
extension must either be omitted or must have the CA indicator set, and the
KeyUsage extension must either be omitted or must allow signing certificates.

A CA certificate will have SubjectKeyIdentifier, KeyUsage, and BasicConstraints
extensions while an end user certificate will have SubjectKeyIdentifier and
KeyUsage extensions. An AuthorityKeyIdentifier extension will be created if the
signing certificate has a SubjectKeyIdentifier extension. The application can supply
additional extensions through the extensions parameter. An AuthorityKeyIdentifier,
KeyUsage, or BasicConstraints extension provided by the application will replace
the default extension created for the certificate, however a SubjectKeyIdentifier
extension provided by the application will be ignored.

Certificate extensions can also be contained within the certification request. A
certificate extension supplied by the application will override a certificate extension
of the same type contained in the certification request. The certificate extensions
found in the certification request will be copied unmodified to the new certificate
with these exceptions:
v The AuthorityInfoAccess, AuthorityKeyIdentifier, BasicConstraints,

CrlDistributionPoints, IssuerAltName, NameConstraints, PolicyConstraints,
PolicyMappings, and PrivateKeyUsagePeriod extensions will not be copied

gsk_create_signed_certificate_record()

204 z/OS V2R1.0 System SSL Programming

v The keyCertSign and crlSign flags in the KeyUsage extension will be modified
based upon the value of the ca_certificate parameter.

No certification path validation is performed by the
gsk_create_signed_certificate_record() routine. An error will be returned if the
requested subject name is the same as the subject name in the signing certificate.

gsk_create_signed_certificate_record()

Chapter 8. Certificate Management Services (CMS) API reference 205

gsk_create_signed_certificate_set()
Creates a signed certificate as part of a set of certificates.

This function is deprecated. Use gsk_create_database_signed_certificate() instead.

Format
#include <gskcms.h>

gsk_status gsk_create_signed_certificate_set (
gsk_handle db_handle,
const char * ca_label,
const char * record_label,
x509_algorithm_type key_algorithm,
int key_size,
gsk_buffer * key_parameters,
const char * subject_name,
int num_days,
gsk_boolean ca_certificate,
x509_extensions extensions)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine. This must be a key database and not a
request database.

ca_label
Specifies the label of the certificate to be used to sign the new certificate. The
key usage for the certificate must allow certificate signing. The label is
specified in the local code page.

record_label
Specifies the label for the new database record. The label is specified in the
local code page.

key_algorithm
Specifies the certificate key algorithm.

key_size
Specifies the certificate key size in bits.

key_parameters
Specifies the key generation parameters. Specify NULL for this parameter if the
key algorithm does not require any key parameters.

subject_name
Specifies the distinguished name for the certificate subject. The distinguished
name is specified in the local code page and consists of one or more relative
distinguished name components separated by commas.

num_days
Specifies the number of days for the certificate validity period as a value
between 1 and 9999 (the maximum of 9999 will be used if a larger value is
specified and the minimum of 1 will be used if a smaller value is specified).

ca_certificate
Specify TRUE if this is a certification authority certificate or FALSE if this is an
end user certificate.

gsk_create_signed_certificate_set()

206 z/OS V2R1.0 System SSL Programming

extensions
Specifies the certificate extensions for the new certificate. Specify NULL for this
parameter if no certificate extensions are supplied.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The key algorithm or the signature algorithm is not valid.

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_LABEL]
The record label or CA certificate label is not valid.

[CMSERR_BAD_SUBJECT_NAME]
The subject name is not valid.

[CMSERR_DUPLICATE_EXTENSION]
Supplied extensions contain a duplicate extension.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_EXPIRED]
The signer certificate is expired.

[CMSERR_ICSF_CLEAR_KEY_SUPPORT_NOT_AVAILABLE]
Clear key support not available due to ICSF key policy.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_TYPE]
Incorrect key algorithm

gsk_create_signed_certificate_set()

Chapter 8. Certificate Management Services (CMS) API reference 207

[CMSERR_INCORRECT_KEY_USAGE]
The signer certificate key usage does not allow signing certificates.

[CMSERR_IO_ERROR]
Unable to read or write a database record.

[CMSERR_ISSUER_NOT_CA]
The signer certificate is not for a certification authority.

[CMSERR_KEY_MISMATCH]
The signer certificate key cannot be used to sign a certificate.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
The signer certificate does not have a private key.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_SUBJECT_IS_CA]
The requested subject name is the same as the signer name.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update or update attempted on a FIPS mode
database while in non-FIPS mode.

Usage

The gsk_create_signed_certificate_set() routine will generate an X.509 certificate as
described in RFC 5280: Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. The certificate will be signed using an
existing certificate as specified by the ca_label parameter.
v If the specified certificate key is a Diffie-Hellman key, the signing certificate

must contain either an RSA or a DSA key.
v If the specified certificate key is an ECC key, the signing certificate cannot

contain a DSA key.

A certification authority (CA) certificate will have basic constraints and key usage
extensions which allow the certificate to be used to sign other certificates and
certificate revocation lists. An end user certificate will have basic constraints and
key usage extensions as follows:
v An RSA key can be used for authentication, digital signature, and data

encryption
v A DSS key can be used for authentication and digital signature
v A Diffie-Hellman key can be used for key agreement
v An ECC key can be used for authentication, digital signature, and key

agreement.

The new certificate will be stored in the key database using the supplied record
label. The gsk_export_certificate() routine can be called to create an export file
containing the certificate for transmission to another system.

These key algorithms are supported:

gsk_create_signed_certificate_set()

208 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

x509_alg_rsaEncryption
RSA encryption - {1.2.840.113549.1.1.1}

x509_alg_idDsa
Digital Signature Standard (DSS) - {1.2.840.10040.4.1}

x509_alg_dhPublicNumber
Diffie-Hellman (DH) - {1.2.840.10046.2.1}

x509_alg_ecPublicKey
Elliptic Curve Public Key (ECC) - {1.2.840.10045.2.1}

RSA keys
v Can be used for both CA certificates and end user certificates
v Key size when not in FIPS mode is between 512 and 4096 bits rounded up to a

multiple of 16
v Key size in FIPS mode is between 1024 and 4096 bits rounded up to a multiple

of 16
v No key parameters

DSS keys
v Can be used for both CA certificates and end user certificates.
v Key sizes of between 512 and 1024 bits when in non-FIPS mode are rounded up

to a multiple of 64.
v Key sizes less than 1024 bits can only be generated in non-FIPS mode and are

generated according to FIPS 186-2.
v Key sizes of 1024 or 2048 bits are generated according to FIPS 186-3 in both FIPS

mode and non-FIPS mode. These are the only valid key sizes in FIPS mode.
v A key size of 1024 bits or less will use SHA1 digest, while a key size of 2048 bits

will use SHA256 digest.
v Key parameters encoded as an ASN.1 sequence consisting of the prime p, the

prime divisor q, and the generator g. For 1024-bit and 2048-bit keys, see FIPS
186-3: Digital Signature Standard (DSS) for more information about the key
parameters. For smaller key sizes, see FIPS 186-2: Digital Signature Standard
(DSS). Note that key parameters that contain a p of 2048 bits and a q of 160 bits
do not conform to FIPS 186-3 and are not supported. The
gsk_generate_key_parameters() routine can be used to generate the key
parameters.

DH keys
v Can be used only for end user certificates
v Can only be signed using a certificate containing either an RSA or a DSA key
v Key size when not in FIPS mode is between 512 and 2048 bits rounded up to a

multiple of 64
v Key size in FIPS mode of 2048 bits
v Key parameters encoded as an ASN.1 sequence consisting of the prime P, the

base G, the subprime Q and the subgroup factor J. See RFC 2631: Diffie-Hellman
Key Agreement Method for more information about the key parameters for
non-FIPS mode, and see z/OS Cryptographic Services ICSF Writing PKCS #11
Applications for FIPS mode. The gsk_generate_key_parameters() routine can be
used to generate the key parameters.

ECC keys

gsk_create_signed_certificate_set()

Chapter 8. Certificate Management Services (CMS) API reference 209

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf

v Can be used for both CA certificates and end user certificates.
v The ECC named curve used to generate the ECC key pair can be specified using

either the key_parameters buffer or the key_size parameter. If the key_parameters
buffer is supplied the key_size parameter will be ignored.

v The key_parameters buffer must contain ASN.1 encoded EC domain parameters,
or be NULL.

v If the key_parameters buffer is not supplied, the key_size parameter will be
rounded up to the nearest supported key size and the default EC named curve
for that key size will be used, as specified in Table 3 on page 15.

v In FIPS mode only NIST recommended curves are supported.

The record label is used as a friendly name for the database entry. It can be any
value and consists of characters which can be represented using 7-bit ASCII
(letters, numbers, and punctuation). It may not be an empty string.

A CA certificate will have SubjectKeyIdentifier, KeyUsage and BasicConstraints
extensions while an end user certificate will have SubjectKeyIdentifier and
KeyUsage extensions. An AuthorityKeyIdentifier extension will be created if the
signing certificate has a SubjectKeyIdentifier extension. The application can supply
additional extensions through the extensions parameter. An AuthorityKeyIdentifier,
KeyUsage or BasicConstraints extension provided by the application will replace
the default extension created for the certificate, however a SubjectKeyIdentifier
extension provided by the application will be ignored.

The database must be open for update in order to add the new certificate. The
database file is updated as part of the gsk_create_signed_certificate_set()
processing. A temporary database file is created using the same name as the
database file with ".new" appended to the name. The database file is then
overwritten and the temporary database file is deleted. The temporary database
file will not be deleted if an error occurs while rewriting the database file.

gsk_create_signed_certificate_set()

210 z/OS V2R1.0 System SSL Programming

gsk_create_signed_crl()
Creates a signed certificate revocation list.

This function is deprecated. Use gsk_create_signed_crl_record() instead.

Format
#include <gskcms.h>

gsk_status gsk_create_signed_crl (
gsk_handle db_handle,
const char * label,
gsk_int32 crl_number,
int num_days,
x509_revoked_certificates * revoked_certificates,
x509_extensions * extensions,
gsk_buffer * signed_crl)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine. This
must be a key database and not a request database.

label
Specifies the label for the certificate to be used to sign the certificate revocation
list. The label is specified in the local code page.

crl_number
Specifies the CRL number. Each CRL is numbered with each successive
revocation list having a larger CRL number than all previous revocation lists.

num_days
Specifies the number of days until the next CRL will be issued and is specified
as a value between 1 and 9999 (the maximum of 9999 will be used if a larger
value is specified and the minimum of 1 will be used if a smaller value is
specified).

revoked_certificates
Specifies the revoked list of certificates to be included in the CRL. This list
consists of the certificate serial numbers and not the actual certificates.

extensions
Specifies the CRL extensions for the new CRL. Specify NULL for this
parameter if no CRL extensions are supplied.

signed_crl
Returns the signed certificate revocation list in Base64 format. The Base64
stream will be in the local code page. The application should call the
gsk_free_buffer() routine to release the stream when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

gsk_create_signed_crl()

Chapter 8. Certificate Management Services (CMS) API reference 211

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_BAD_SIGNATURE]
The request signature is not correct.

[CMSERR_DUPLICATE_EXTENSION]
Supplied extensions contain a duplicate extension.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_EXPIRED]
The signer certificate is expired.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_USAGE]
The signer certificate key usage does not allow signing a CRL.

[CMSERR_ISSUER_NOT_CA]
The signer certificate is not for a certification authority.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
The signer certificate does not have a private key.

[CMSERR_RECORD_NOT_FOUND]
The signer certificate is not found in the key database.

Usage

The gsk_create_signed_crl() routine will generate an X.509 certificate revocation
list (CRL) as described in RFC 5280: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. The new CRL will be signed
using the certificate specified by the label parameter. The number of days until the
next CRL is issued will be set to the earlier of the requested date and the
expiration of the signing certificate.

The signing certificate must have an associated private key, the BasicConstraints
extension must either be omitted or must have the CA indicator set, and the
KeyUsage extension must either be omitted or must allow signing certificate
revocation lists.

gsk_create_signed_crl()

212 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

The CRL will have a CRLNumber extension containing the value specified by the
crl_number parameter. It will also have an AuthorityKeyIdentifier extension if the
signing certificate has a SubjectKeyIdentifier extension. The application can supply
additional extensions through the extensions parameter. An AuthorityKeyIdentifier
or CRLNumber extension provided by the application will replace the default
extension created for the CRL.

No certification path validation is performed by the gsk_create_signed_crl()
routine.

gsk_create_signed_crl()

Chapter 8. Certificate Management Services (CMS) API reference 213

gsk_create_signed_crl_record()
Creates a signed certificate revocation list.

Format
#include <gskcms.h>

gsk_status gsk_create_signed_crl_record (
gsk_handle db_handle,
const char * label,
x509_algorithm_type signature_algorithm,
gsk_int32 crl_number,
int num_days,
x509_revoked_certificates * revoked_certificates,
x509_extensions * extensions,
gsk_buffer * signed_crl)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine. This
must be a key database and not a request database.

label
Specifies the label for the certificate to be used to sign the certificate revocation
list. The label is specified in the local code page.

signature_algorithm
Specifies the signature algorithm to be used for the crl signature.

crl_number
Specifies the CRL number. Each CRL is numbered with each successive
revocation list having a larger CRL number than all previous revocation lists.

num_days
Specifies the number of days until the next CRL will be issued and is specified
as a value between 1 and 9999 (the maximum of 9999 will be used if a larger
value is specified and the minimum of 1 will be used if a smaller value is
specified).

revoked_certificates
Specifies the revoked list of certificates to be included in the CRL. This list
consists of the certificate serial numbers and not the actual certificates.

extensions
Specifies the CRL extensions for the new CRL. Specify NULL for this
parameter if no CRL extensions are supplied.

signed_crl
Returns the signed certificate revocation list in Base64 format. The Base64
stream will be in the local code page. The application should call the
gsk_free_buffer() routine to release the stream when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

gsk_create_signed_crl_record()

214 z/OS V2R1.0 System SSL Programming

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_BAD_SIGNATURE]
The request signature is not correct.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_EXPIRED]
The signer certificate is expired.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_USAGE]
The signer certificate key usage does not allow signing a CRL.

[CMSERR_ISSUER_NOT_CA]
The signer certificate is not for a certification authority.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
The signer certificate does not have a private key.

[CMSERR_RECORD_NOT_FOUND]
The signer certificate is not found in the key database.

Usage

The gsk_create_signed_crl_record() routine will generate an X.509 certificate
revocation list (CRL) as described in RFC 5280: Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile. The new CRL
will be signed using the certificate specified by the label parameter and the
signature algorithm specified by the signature_algorithm parameter.

The following signature algorithms are supported:

gsk_create_signed_crl_record()

Chapter 8. Certificate Management Services (CMS) API reference 215

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest - {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest - {2.16.840.1.101.3.4.3.2}

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest –
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest –
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest –
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest –
{1.2.840.10045.4.3.3}

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest –
{1.2.840.10045.4.3.4}

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

The number of days until the next CRL is issued will be set to the earlier of the
requested date and the expiration of the signing certificate.

The signing certificate must have an associated private key, the BasicConstraints
extension must either be omitted or must have the CA indicator set, and the
KeyUsage extension must either be omitted or must allow signing certificate
revocation lists.

gsk_create_signed_crl_record()

216 z/OS V2R1.0 System SSL Programming

The CRL will have a CRLNumber extension containing the value specified by the
crl_number parameter. It will also have an AuthorityKeyIdentifier extension if the
signing certificate has a SubjectKeyIdentifier extension. The application can supply
additional extensions through the extensions parameter. An AuthorityKeyIdentifier
or CRLNumber extension provided by the application will replace the default
extension created for the CRL.

No certification path validation is performed by the gsk_create_signed_crl_record()
routine.

gsk_create_signed_crl_record()

Chapter 8. Certificate Management Services (CMS) API reference 217

gsk_decode_base64()
Decodes a Base64-encoded stream.

Format
#include <gskcms.h>

gsk_status gsk_decode_base64 (
gsk_buffer * encoded_stream,
gsk_buffer * decoded_stream)

Parameters

encoded_stream
Specifies the Base64-encoded stream. The encoded data must be in the local
code page.

decoded_stream
Returns the decoded stream. The application should call the gsk_free_buffer()
routine to release the decoded stream when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_BASE64_ENCODING]
Incorrect Base64 encoding.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_decode_base64() routine will decode a Base64-encoded stream created by
the gsk_encode_base64() routine. The encoded stream must be in the local code
page and must not include any header or trailer lines added by the application to
identify the stream contents (such as '-----BEGIN CERTIFICATE-----' or '-----END
CERTIFICATE-----'). New line characters and whitespace characters (tabs and
spaces) are ignored.

gsk_decode_base64()

218 z/OS V2R1.0 System SSL Programming

gsk_decode_certificate()
Decodes an X.509 certificate.

Format
#include <gskcms.h>

gsk_status gsk_decode_certificate (
gsk_buffer * stream,
x509_certificate * certificate)

Parameters

stream
Specifies the encoded certificate.

certificate
Returns the decoded certificate information. The application should call the
gsk_free_certificate() routine to release the decoded certificate when it is no
longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[ASN_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_decode_certificate() routine decodes an X.509 certificate and returns the
decoded information to the application. The certificate must have been encoded as
described in RFC 5280: Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. The derCertificate field will contain the
undecoded TBSCertificate ASN.1 sequence for use in verifying the certificate
signature, the tbsCertificate field will contain the decoded TBSCertificate ASN.1
sequence, and the signatureAlgorithm and signatureValue fields will contain the
certificate signature. The gsk_encode_signature() routine can be used to recreate
the encoded certificate from the x509_certificate structure returned by the
gsk_decode_certificate() routine.

Character strings contained in the certificate will be returned using UTF-8
encoding. The application can call iconv() to convert the string to a different
encoding as needed.

The certificate extensions will be returned with the extension values in ASN.1
encoded format. The gsk_decode_certificate_extension() routine can be called to
decode a particular certificate extension. This allows all of the certificate extensions
to be returned even when one or more extensions cannot be processed by the
System SSL runtime.

gsk_decode_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 219

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

gsk_decode_certificate_extension()
Decodes an X.509 certificate extension.

Format
#include <gskcms.h>

gsk_status gsk_decode_certificate_extension (
x509_extension * encoded_extension,
x509_decoded_extension * decoded_extension)

Parameters

encoded_extension
Specifies the encoded X.509 extension as returned by the
gsk_decode_certificate() or gsk_decode_crl() routine.

decoded_extension
Returns the decoded extension data. The application should call the
gsk_free_decoded_extension() routine to release the decoded extension when
it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_NO_MEMORY]
Insufficient memory is available.

[CMSERR_EXT_NOT_SUPPORTED]
The certificate extension is not supported.

[CMSERR_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_decode_certificate() and gsk_decode_crl() routines returns all of the
certificate extensions in the x509_extensions structure with the extension values
still in ASN.1 encoded format. The application then calls the
gsk_decode_certificate_extension() routine to decode a specific certificate
extension.

The gsk_decode_certificate_extension() routine returns character strings using
UTF-8 encoding. If necessary, the application can call the iconv() routine to convert
the strings to a different encoding.

These certificate extensions are supported:
v AuthorityInfoAccess
v AuthorityKeyIdentifier
v BasicConstraints
v CertificateIssuer
v CertificatePolicies
v CrlDistributionPoints
v CrlNumber
v CrlReasonCode

gsk_decode_certificate_extension()

220 z/OS V2R1.0 System SSL Programming

v DeltaCrlIndicator
v ExtKeyUsage
v FreshestCRL
v HoldInstructionCode
v HostIDMapping (z/OS specific extension 1.3.18.0.2.18.1)
v InhibitAnyPolicy
v InvalidityDate
v IssuerAltName
v IssuingDistributionPoint
v KeyUsage
v NameConstraints
v PolicyConstraints
v PolicyMappings
v PrivateKeyUsagePeriod (not supported in RFC 5280)
v SubjectAltName
v SubjectDirectoryAttributes
v SubjectInfoAccess
v SubjectKeyIdentifier

These general name types are supported:
v DirectoryName
v DnsName
v IpAddress
v RegisteredId
v Rfc822Name
v UniformResourceIdentifier

These general name types are not supported and will be copied to the decoded
extension data as an ASN.1-encoded sequence:
v otherName
v x400Address
v ediPartyName

See RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile for more information about the various certificate
extensions.

gsk_decode_certificate_extension()

Chapter 8. Certificate Management Services (CMS) API reference 221

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

gsk_decode_certification_request()
Decodes a PKCS #10 certification request.

Format
#include <gskcms.h>

gsk_status gsk_decode_certification_request (
gsk_buffer * stream,
pkcs_cert_request * request)

Parameters

stream
Specifies the encoded certification request.

request
Returns the decoded certification request. The application should call the
gsk_free_certification_request() routine to release the decoded certification
request when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[ASN_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_decode_certification_request() routine decodes a Public Key
Cryptography Standards (PKCS) certification request and returns the decoded
information to the application. The request must have been encoded as described
in PKCS #10, Version 1.7: Certification Request. The derRequestInfo field will contain
the undecoded CertificationRequestInfo ASN.1 sequence for use in verifying the
request signature, the certificationRequestInfo field will contain the decoded
CertificationRequestInfo ASN.1 sequence, and the signatureAlgorithm and
signatureValue fields will contain the request signature. The gsk_encode_signature()
routine can be used to recreate the encoded certification request from the
pkcs_cert_request structure returned by the gsk_decode_certification_request()
routine.

Character strings contained in the request will be returned using UTF-8 encoding.
If necessary, the application can call iconv() to convert the string to a different
encoding.

gsk_decode_certification_request()

222 z/OS V2R1.0 System SSL Programming

http://www.rsa.com/rsalabs/node.asp?id=2132

gsk_decode_crl()
Decodes an X.509 certificate revocation list.

Format
#include <gskcms.h>

gsk_status gsk_decode_crl (
gsk_buffer * stream,
x509_crl * crl)

Parameters

stream
Specifies the encoded certificate revocation list.

crl
Returns the decoded information. The application should call the gsk_free_crl()
routine to release the decoded certificate revocation list when it is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[ASN_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_decode_crl() routine decodes an X.509 certificate revocation list (CRL) and
returns the decoded information to the application. The CRL must have been
encoded as described in RFC 5280: Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile. The derCertList field will contain the
undecoded TBSCertList ASN.1 sequence for use in verifying the certificate
signature, the tbsCertList field will contain the decoded TBSCertList ASN.1
sequence, and the signatureAlgorithm and signatureValue fields will contain the
certificate signature. The gsk_encode_signature() routine can be used to recreate
the encoded CRL from the x509_crl structure returned by the gsk_decode_crl()
routine.

Character strings will be returned using UTF-8 encoding. If necessary, the
application can call iconv() to convert the string to a different encoding.

The certificate extensions will be returned with the extension values in ASN.1
encoded format. The gsk_decode_certificate_extension() routine can be called to
decode a particular certificate extension. This allows all of the certificate extensions
to be returned even when one or more extensions cannot be processed by the
System SSL runtime.

gsk_decode_crl()

Chapter 8. Certificate Management Services (CMS) API reference 223

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

gsk_decode_import_certificate()
Decodes certificate from DERencoded or PKCS #7encoded data stream.

Format
#include <gskcms.h>

gsk_status gsk_decode_import_certificate (
gsk_buffer * stream,
pkcs_certificate * subject_certificate,
pkcs_certificates * issuer_certificates)

Parameters

stream
Specifies the byte stream of the encoded certificate.

subject_certificate
Returns the decoded certificate.

issuer_certificates
Returns the decoded certificate chain for the subject certificate.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_BASE64_ENCODING]
The Base64 encoding of the import stream is not correct.

[CMSERR_BAD_ENCODING]
The certificate request stream is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_IMPORT_CERTIFICATE]
No certificate in import file.

Usage

The gsk_decode_import_certificate() function decodes a data stream into a
pkcs_certificate structure. The pkcs_certificate structure subject_certificate returns the
subject certificate, and the pkcs_certificates structure issuer_certificates returns the
certificate chain for the subject certificate (all other certificates not part of the
subject certificates chain are discarded). The root certificate for the chain is the final
entry in the array.

The supplied stream can represent either the ASN.1 DER encoding for the
certificate or the Cryptographic Message Syntax (PKCS #7) encoding for the
certificate. This can be either the binary value or the Base64 encoding of the binary
value. A Base64 Encoded stream must be in the local code page and must include
the encoding header and footer lines.

The gsk_decode_import_certificate() function decodes a single certificate. If the
PKCS #7 message contains multiple certificates, only the first certificate and its
certificate chain will be decoded.

gsk_decode_import_certificate()

224 z/OS V2R1.0 System SSL Programming

gsk_decode_import_key()
Decodes certificate and key from PKCS #12-encoded data stream.

Format
#include <gskcms.h>

gsk_status gsk_decode_import_key (
gsk_buffer * stream,
const char * password,
pkcs_cert_key * subject_certificate,
pkcs_certificates * issuer_certificates)

Parameters

stream
Specifies the byte stream of the encoded certificate.

password
Specifies the password for the import file. The password is single-byte EBCDIC
in the local code page and must consist of characters which can be represented
using 7-bit ASCII (letters, numbers, and punctuation). It may not be an empty
string.

subject_certificate
Returns the decoded certificate and key.

issuer_certificates
Returns the decoded certificate chain for the subject certificate.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The decryption algorithm is not valid.

[CMSERR_BAD_ENCODING]
The certificate request stream is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_IMPORT_CERTIFICATE]
No certificate in input stream.

[CMSERR_PW_INCORRECT]
The password is not correct.

Usage

The gsk_decode_import_key() function decodes a data stream into a pkcs_cert_key
structure. The pkcs_cert_key structure subject_certificate returns the subject
certificate and key, while the pkcs_certificates structure issuer_certificates returns the
certificate chain for the subject certificate (all other certificates not part of the
subject certificates chain are discarded). The root certificate for the chain is the final
entry in the array.

gsk_decode_import_key()

Chapter 8. Certificate Management Services (CMS) API reference 225

The certificate and key must have been encoded according to the Personal
Information Exchange Syntax (PKCS #12). The supplied stream can be the binary
ASN.1 sequence or the Base64 encoding of the ASN.1 sequence. A Base64 encoded
stream is assumed to be in the local code page and must include the encoding
header and footer lines.

In FIPS mode, the only supported decryption algorithm for the import file is:
v x509_alg_pbeWithSha1And3DesCbc - Triple DES with SHA-1 digest.

gsk_decode_import_key()

226 z/OS V2R1.0 System SSL Programming

gsk_decode_name()
Decodes an X.509 name.

Format
#include <gskcms.h>

gsk_status gsk_decode_name (
gsk_buffer * stream,
x509_name * name)

Parameters

stream
Specifies the ASN.1 stream for the name.

name
Returns the decoded X.509 name. The application should release the name
when it is no longer needed by calling the gsk_free_name() routine.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[ASN_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_decode_name() routine will decode an ASN.1 DER-encoded X.509 name.
The name must have been encoded as described in RFC 5280: Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. Character
strings will be stored in UTF-8 format and the stringType field in the
x509_rdn_attribute structure will be set to indicate the ASN.1 encoded string type.

gsk_decode_name()

Chapter 8. Certificate Management Services (CMS) API reference 227

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

gsk_decode_private key()
Decodes a private key.

Format
#include <gskcms.h>

gsk_status gsk_decode_private_key (
gsk_buffer * stream,
pkcs_private_key_info * private_key)

Parameters

stream
Specifies the ASN.1 stream for the encoded private key.

private_key
Returns the decoded private key. The application should release the private
key when it is no longer needed by calling the gsk_free_private_key_info()
routine.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[ASN_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_decode_private_key() routine will decode an ASN.1 DER-encoded private
key. The private key must have been encoded as described in PKCS #8, Version 1.2:
Private Key Information Syntax.

gsk_decode_private_key()

228 z/OS V2R1.0 System SSL Programming

http://www.rsa.com/rsalabs/node.asp?id=2130
http://www.rsa.com/rsalabs/node.asp?id=2130

gsk_decode_public key()
Decodes a public key.

Format
#include <gskcms.h>

gsk_status gsk_decode_public_key (
gsk_buffer * stream,
x509_public_key_info * public_key)

Parameters

stream
Specifies the ASN.1 stream for the encoded public key.

public_key
Returns the decoded public key. The application should release the public key
when it is no longer needed by calling the gsk_free_public_key_info() routine.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[ASN_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_decode_public_key() routine will decode an ASN.1 DER-encoded public
key. The public key must have been encoded as described in RFC 5280: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

gsk_decode_public key()

Chapter 8. Certificate Management Services (CMS) API reference 229

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

gsk_delete_record()
Deletes a record from a key or request database.

Format
#include <gskcms.h>

gsk_status gsk_delete_record (
gsk_handle db_handle,
gsk_int32 record_id)

Parameters

db_handle
Specifies the database handle return by the gsk_create_database() routine or
the gsk_open_database() routine.

record_id
Specifies the database record to be deleted.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
Record is not found.

[CMSERR_SIGNED_CERTS]
The database contains records signed using the certificate.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update or update attempted on a FIPS mode
database while in non-FIPS mode.

Usage

The gsk_delete_record() routine deletes a record from a key or request database.
The database must be open for update in order to delete records. The unique
record identifier identifies the record to be deleted. A certificate record cannot be
deleted from a key database if the database contains records that were signed
using the certificate.

The database file is updated as part of the gsk_delete_record() processing. A
temporary database file is created using the same name as the database file with
".new" appended to the name. The database file is then overwritten and the
temporary database file is deleted. The temporary database file will not be deleted
if an error occurs while rewriting the database file.

gsk_delete_record()

230 z/OS V2R1.0 System SSL Programming

gsk_dn_to_name()
Converts a DN string to an X.509 name.

Format
#include <gskcms.h>

gsk_status gsk_dn_to_name (
const char * dn,
x509_name * name)

Parameters

dn
Specifies the distinguished name in the local code page.

name
Returns the X.509 name. The X.509 strings use UTF-8 encoding. The application
should call the gsk_free_name() routine to release the name when it is no
longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_ATTR_NOT_FOUND]
An attribute type is not recognized.

[ASN_CANT_CONVERT]
An encoded attribute value contains characters from the wrong character
set.

[ASN_INVALID_VALUE]
An attribute value is not valid.

[ASN_NO_MEMORY]
Insufficient storage is available.

[ASN_WRONG_TYPE]
An encoded attribute value does not represent a character string.

[ASN_X500_NO_AVA_SEP]
An attribute value separator is missing.

[ASN_X500_OID_SYNTAX_ERROR]
An object identifier is not valid.

[ASN_X500_SYNTAX_ERROR]
The DN string format is not valid.

Usage

The gsk_dn_to_name() routine converts a distinguished name (DN) string to an
X.509 name in accordance with RFC 2253: UTF-8 String Representation of
Distinguished Names. The input string consists of single-byte characters in the local
code page. A double-byte character is represented using the escaped UTF-8
encoding of the double-byte character in the Unicode character set.

gsk_dn_to_name()

Chapter 8. Certificate Management Services (CMS) API reference 231

http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf

Attribute types may be specified using either attribute names or numeric object
identifiers. Attribute values must represent string values.

These DN attribute names are recognized by the System SSL run time. An error is
returned if the DN contains an unrecognized attribute name.

Table 11. DN attribute names

Name

C Country

CN Common name

DC Domain component

DNQUALIFIER Distinguished name qualifier

E E-mail address

EMAIL E-mail address (preferred)

EMAILADDRESS E-mail address

GENERATIONQUALIFIER Generation qualifier

GIVENNAME Given name

INITIALS Initials

L Locality

MAIL RFC 822 style address

NAME Name

O Organization name

OU Organizational unit name

PC Postal code

S State or province

SERIALNUMBER Serial number

SN Surname

SP State or province

ST State or province (preferred)

STREET Street

T Title

This is an example of a DN using attribute names and string values:
CN=Ronald Hoffman,OU=Endicott,O=IBM,C=US

This is the same DN using object identifiers and encoded string values. The
encoded string values represent the ASN.1 DER encoding of the string. The System
SSL run time supports these ASN.1 string types: PRINTABLE, VISIBLE, TELETEX,
IA5, UTF8, BMP, and UCS.
2.5.4.3=#130E526F6E616C6420486F66666D616E,2.5.4.11=#1308456E6469636F7474,
2.5.4.10=#130349424D,2.5.4.6=13025553

Individual characters can be represented using escape sequences. This is useful
when the character cannot be represented in a single-byte character set. The
hexadecimal value for the escape sequence is the UTF-8 encoding of the character
in the Unicode character set.

gsk_dn_to_name()

232 z/OS V2R1.0 System SSL Programming

Unicode Letter Description 10646 code UTF-8 Quoted
=============================== ========== ====== =======
LATIN CAPITAL LETTER L U0000004C 0x4C L
LATIN SMALL LETTER U U00000075 0x75 u
LATIN SMALL LETTER C WITH CARON U0000010D 0xC48D \C4\8D
LATIN SMALL LETTER I U00000069 0x69 i
LATIN SMALL LETTER C WITH ACUTE U00000107 0xC487 \C4\87

SN=Lu\C4\8Di\C4\87

An escape sequence can also be used for special characters which are part of the
name and are not to be interpreted as delimiters. For example:
CN=L. Eagle,OU=Jones\, Dale and Mian,O=IBM,C=US

gsk_dn_to_name()

Chapter 8. Certificate Management Services (CMS) API reference 233

gsk_encode_base64()
Encodes binary data using Base64 encoding.

Format
#include <gskcms.h>

gsk_status gsk_encode_base64 (
gsk_buffer * input_data,
gsk_buffer * encoded_data)

Parameters

input_data
Specifies the data to be encoded.

encoded_data
Returns the encoded stream in the local code page. The application should call
the gsk_free_buffer() routine to release the encoded stream when it is no
longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_encode_base64() routine will encode binary data using Base64 encoding.
The encoded stream will consist of printable characters in the local code page. A
new line will be inserted after each group of 64 encoded characters with a final
new line at the end of the encoded stream. The gsk_decode_base64() routine can
be used to decode the data.

gsk_encode_base64()

234 z/OS V2R1.0 System SSL Programming

gsk_encode_certificate_extension()
Encodes an X.509 certificate extension.

Format
#include <gskcms.h>

gsk_status gsk_encode_certificate_extension (
x509_decoded_extension * decoded_extension,
gsk_boolean critical,
x509_extension * encoded_extension)

Parameters

decoded_extension
Specifies the decoded extension data.

critical
Specify TRUE if this is a critical extension or FALSE if it is not a critical
extension.

encoded_extension
Returns the encoded X.509 extension. The application should call the
gsk_free_certificate_extension() routine to release the extension when it is no
longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_NO_MEMORY]
Insufficient memory is available.

[CMSERR_EXT_NOT_SUPPORTED]
The certificate extension is not supported.

[CMSERR_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_encode_certificate_extension() routine encodes a certificate extension and
returns the encoded extension in a format that can be used as input to the
gsk_encode_certificate() routine.

The gsk_encode_certificate_extension() routine assumes character strings use
UTF-8 encoding. The application is responsible for providing character data in this
format.

These certificate extensions are supported:
v AuthorityInfoAccess
v AuthorityKeyIdentifier
v BasicConstraints
v CertificateIssuer
v CertificatePolicies
v CrlDistributionPoints
v CrlNumber

gsk_encode_certificate_extension()

Chapter 8. Certificate Management Services (CMS) API reference 235

v CrlReasonCode
v DeltaCrlIndicator
v ExtKeyUsage
v FreshestCRL
v HoldInstructionCode
v HostIDMapping (z/OS specific extension 1.3.18.0.2.18.1)
v InhibitAnyPolicy
v InvalidityDate
v IssuerAltName
v IssuingDistributionPoint
v KeyUsage
v NameConstraints
v PolicyConstraints
v PolicyMappings
v PrivateKeyUsagePeriod (not supported in RFC 5280)
v SubjectAltName
v SubjectDirectoryAttributes
v SubjectInfoAccess
v SubjectKeyIdentifier

These general name types are supported:
v DirectoryName
v DnsName
v IpAddress
v RegisteredId
v Rfc822Name
v UniformResourceIdentifier

See RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile for more information about the various certificate
extensions.

gsk_encode_certificate_extension()

236 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

gsk_encode_ec_parameters()
Encodes the EC domain parameters for an ECC key

Format
#include <gskcms.h>

gsk_status gsk_encode_ec_parameters (
int arg_count,
x509_ecurve_type ec_curve,
gsk_buffer * key_params,
...)

Parameters

arg_count
Specifies the number of parameters following the arg_count parameter.
Currently, arg_count must be set to 2.

ec_curve
Specifies the EC named curve

key_params
Returns the ASN.1 stream for the EC domain parameters. The application
should call the gsk_free_buffer function to release the storage when it is no
longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_NO_MEMORY]
Insufficient memory is available.

[CMSERR_BAD_ARG_COUNT]
Variable argument count is not valid.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported

Usage

The gsk_encode_ec_parameters() routine will encode the EC domain parameters of
an elliptic curve as an ASN.1 stream. The EC domain parameters will be encoded
as described in SEC1 (Elliptic Curve Cryptography).

gsk_encode_ec_parameters()

Chapter 8. Certificate Management Services (CMS) API reference 237

gsk_encode_export_certificate()
Encodes an X.509 certificate into a DER or PKCS #7 data stream.

Format
#include <gskcms.h>

gsk_status gsk_encode_export_certificate (
pkcs_certificate * subject_certificate,
pkcs_certificates * issuer_certificates,
gskdb_export_format format,
gsk_buffer * stream)

Parameters

subject_certificate
Specifies the certificate.

issuer_certificates
Specifies the certificate chain for the subject certificate.

format
Specifies the export format. These values may be specified:

gskdb_export_der_binary
Binary ASN.1 DER-encoded

gskdb_export_der_base64
Base64 ASN.1 DER-encoded

gskdb_export_pkcs7_binary
Binary PKCS #7 Cryptographic Message Syntax

gskdb_export_pkcs7_base64
Base64 PKCS #7 Cryptographic Message Syntax

stream
Returns the byte stream for the encoded certificate. The application should call
the gsk_free_buffer function to release the storage when it is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_RNG_OUTPUT]
In FIPS mode, random bytes generation produced duplicate output.

[CMSERR_FMT_NOT_SUPPORTED]
An unsupported export file stream format is specified.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_encode_export_certificate() function encodes an X.509 certificate using
either the ASN.1 DER encoding for the certificate or the Cryptographic Message
Syntax (PKCS #7) encoding for the certificate. This can be either the binary value

gsk_encode_export_certificate()

238 z/OS V2R1.0 System SSL Programming

or the Base64 encoding of the binary value. A Base64 encoded stream will be in the
local code page and will include the encoding header and footer lines.

The export data stream contains just the requested certificate when the DER format
is selected. The export data stream contains the requested certificate and its
certification chain when the PKCS #7 format is selected. The certificate chain for
the subject certificate is supplied from the pkcs_certificates structure
issuer_certificates with the root certificate being the final entry in the array. A partial
certification chain will be exported if the complete chain is not supplied in
issuer_certificates.

gsk_encode_export_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 239

gsk_encode_export_key()
Encodes an X.509 certificate and its private key into a PKCS #12 data stream.

Format
#include <gskcms.h>

gsk_status gsk_encode_export_key (
pkcs_cert_key * subject_certificate,
pkcs_certificates * issuer_certificates,
gskdb_export_format format,
x509_algorithm_type algorithm,
const char * password,
const char * nickname,
gsk_buffer * stream)

Parameters

subject_certificate
Specifies the certificate and key.

issuer_certificates
Specifies the certificate chain for the subject certificate.

format
Specifies the export format. These values may be specified:

gskdb_export_pkcs12v1_binary
Binary PKCS #12 Version 1.

gskdb_export_pkcs12v1_base64
Base64 PKCS #12 Version 1.

gskdb_export_pkcs12v3_binary
Binary PKCS #12 Version 3.

gskdb_export_pkcs12v3_base64
Base64 PKCS #12 Version 3.

algorithm
Specifies the encryption algorithm for the export file. The strong encryption
algorithms may not be available depending upon government export
regulations. These values may be specified:

x509_alg_pbeWithSha1And40BitRc2Cbc
40bit RC2 with SHA-1 digest.

x509_alg_pbeWithSha1And128BitRc2Cbc
128-bit RC2 with SHA-1 digest.

x509_alg_pbeWithSha1And40BitRc4
40bit RC4 with SHA-1 digest.

x509_alg_pbeWithSha1And128BitRc4
128-bit RC4 with SHA-1 digest.

x509_alg_pbeWithSha1And3DesCbc
Triple DES with SHA-1 digest.

In FIPS mode, the only supported encryption algorithm for the export file is:

x509_alg_pbeWithSha1And3DesCbc
Triple DES with SHA-1 digest.

gsk_encode_export_key()

240 z/OS V2R1.0 System SSL Programming

password
Specifies the password for the export file. The password is in the local code
page and must consist of characters which can be represented using 7-bit
ASCII (letters, numbers, and punctuation). It may not be an empty string. The
user is prompted to enter the password if NULL is specified for this parameter.
If the key that is being encoded for export is a secure private key in the TKDS,
the maximum password length is 63 bytes.

nickname
Specifies the nickname assigned to the exported key in the bagAttributes field
for a PKCS #12 Version 1 format file. The nickname is in the local code page. It
may not be an empty string. If a PKCS #12 Version 3 export file format is
specified, this parameter is ignored.

stream
Returns the byte stream for the encoded certificate. The application should call
the gsk_free_buffer() function to release the storage when it is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not valid.

[CMSERR_CRYPTO_HARDWARE_NOT_AVAILABLE]
Cryptographic hardware does not support service or algorithm.

[CMSERR_FMT_NOT_SUPPORTED]
An unsupported export file format is specified.

[CMSERR_ICSF_FIPS_BAD_ALG_OR_KEY_SIZE]
The algorithm or key size is not supported by ICSF in FIPS mode.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_FIPS]
ICSF is not operating in FIPS mode.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_ATTRIBUTE]
Parameter contents or key attribute value is incorrect.

[CMSERR_KEY_CANNOT_BE_EXTRACTED]
PKCS #11 key cannot be extracted.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
The signer certificate does not have a private key.

[CMSERR_PW_INCORRECT]
The password is not correct.

gsk_encode_export_key()

Chapter 8. Certificate Management Services (CMS) API reference 241

Usage

The gsk_encode_export_key() function encodes an X.509 certificate and its private
key into a PKCS #12 data stream. The certificate chain for the subject certificate is
supplied from the pkcs_certificates structure issuer_certificates, with the root
certificate being the final entry in the array.

The export byte stream contains the requested certificate, its private key, and the
certification chain. A partial certification chain is exported if the complete chain is
not supplied in issuer_certificates.

If the certificate's private key is stored as a secure TKDS private key label:
v Only formats gskdb_export_pkcs12v3_binary and

gskdb_export_pkcs12v3_base64, along with algorithm
x509_alg_pbeWithSha1And3DesCbc, are supported.

v When the private key was created in the TKDS, it was created with the
extractable attribute.

v When using this API, you must have the correct access to the CRYPTOZ class.
See Chapter 3, “Using cryptographic features with System SSL,” on page 11 for
more information.

gsk_encode_export_key()

242 z/OS V2R1.0 System SSL Programming

gsk_encode_export_request()
Encodes a certification renewal request as described in PKCS #10, Version 1.7:
Certification Request.

Format
#include <gskcms.h>

gsk_status gsk_encode_export_request (
pkcs_cert_request * request,
gskdb_export_format format,
gsk_buffer * stream)

Parameters

request
Specifies the certification renewal request.

format
Specifies the export format. These values may be specified:

gskdb_export_der_binary
Binary ASN.1 DERencoded.

gskdb_export_der_base64
Base64 ASN.1 DERencoded.

stream
Returns the byte stream for the encoded certification request. The application
should call the gsk_free_buffer() routine to release the storage when it is no
longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_encode_export_request() routine exports a PKCS #10 certification request.
The request can be exported using either the ASN.1 DER encoding for the request
or the Base64 encoding of the binary value. A Base64 encoded stream will be in the
local code page and will include the encoding header and footer lines.

gsk_encode_export_request()

Chapter 8. Certificate Management Services (CMS) API reference 243

http://www.rsa.com/rsalabs/node.asp?id=2132
http://www.rsa.com/rsalabs/node.asp?id=2132

gsk_encode_name()
Encodes an X.509 name.

Format
#include <gskcms.h>

gsk_status gsk_encode_name (
x509_name * name,
gsk_buffer * stream)

Parameters

name
Specifies X.509 name.

stream
Returns the ASN.1 stream for the name. The application should release the
stream when it is no longer needed by calling the gsk_free_buffer() routine.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_CANT_CONVERT]
A character string contains characters not allowed for the string type.

[ASN_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_encode_name() routine will encode an X.509 name as an ASN.1 stream.
The name will be encoded as described in RFC 5280: Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

The stringType field in the x509_rdn_attribute structure will be used to determine
the format for an encoded directory string. If it is set to x509_string_unknown, the
gsk_encode_name() routine attempts to encode the string as an ASN.1 printable
string. If the string contains characters not included in the printable string set, the
string will be encoded as an ASN.1 UTF-8 string. There are a couple of mandatory
exceptions:
v The countryName attribute is always encoded as a printable string
v The dnQualifier attribute is always encoded as a printable string
v The emailAddress attribute is always encoded as an IA5 string
v The domainComponent attribute is always encoded as an IA5 string

gsk_encode_name()

244 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

gsk_encode_private_key()
Encode a private key.

Format
#include <gskcms.h>

gsk_status gsk_encode_private_key (
pkcs_private_key_info * private_key,
gsk_buffer * stream)

Parameters

private_key
Specifies the private key.

stream
Returns the ASN.1 stream for the private key. The application should release
the stream when it is no longer needed by calling the gsk_free_buffer()
routine.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_encode_private_key() routine will encode a private key as an ASN.1
stream. The name will be encoded as described in PKCS #8, Version 1.2: Private Key
Information Syntax. The encoded private key will not be usable on another system if
the private key information contains an ICSF key token.

gsk_encode_private_key()

Chapter 8. Certificate Management Services (CMS) API reference 245

http://www.rsa.com/rsalabs/node.asp?id=2130
http://www.rsa.com/rsalabs/node.asp?id=2130

gsk_encode_public_key()
Encode a public key.

Format
#include <gskcms.h>

gsk_status gsk_encode_public_key (
x509_public_key_info * public_key,
gsk_buffer * stream)

Parameters

public_key
Specifies the public key.

stream
Returns the ASN.1 stream for the public key. The application should release the
stream when it is no longer needed by calling the gsk_free_buffer() routine.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_encode_public_key() routine will encode a public key as an ASN.1
stream. The name will be encoded as described in RFC 5280: Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

gsk_encode_public_key()

246 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

gsk_encode_signature()
Encodes an ASN.1 stream and the accompanying signature.

Format
#include <gskcms.h>

gsk_status gsk_encode_signature (
gsk_buffer * unsigned_stream,
x509_algorithm_identifier * algorithm,
gsk_bitstring * signature,
gsk_buffer * signed_stream)

Parameters

unsigned_stream
Specifies the unsigned ASN.1 stream.

algorithm
Specifies the algorithm used to compute the signature.

signature
Specifies the signature for the ASN.1 stream.

signed_stream
Returns the encoded signature stream. The application should call the
gsk_free_buffer() routine to release the encoded stream when it is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. This is a possible error:

[ASN_NO_MEMORY]
Insufficient memory is available.

Usage

The gsk_encode_signature() routine is used to encode an unsigned ASN.1 stream
and the digital signature generated for the stream. The signature is encoded using
ASN.1 DER (Distinguished Encoding Rules). The application is responsible for
ensuring the validity of the supplied information.

gsk_encode_signature()

Chapter 8. Certificate Management Services (CMS) API reference 247

gsk_export_certificate()
Exports a certificate.

Format
#include <gskcms.h>

gsk_status gsk_export_certificate (
gsk_handle db_handle,
const char * label,
gskdb_export_format format,
gsk_buffer * stream)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine. The
database must be a key database and not a request database.

label
Specifies the label for the database record. The label is specified in the local
code page.

format
Specifies the export format. These values may be specified:

gskdb_export_der_binary
Binary ASN.1 DER-encoded

gskdb_export_der_base64
Base64 ASN.1 DER-encoded

gskdb_export_pkcs7_binary
Binary PKCS #7 Cryptographic Message Syntax

gskdb_export_pkcs7_base64
Base64 PKCS #7 Cryptographic Message Syntax

stream
Return the byte stream for the encoded certificate. The application should call
the gsk_free_buffer() routine to release the storage when it is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
No database record label is supplied.

[CMSERR_FMT_NOT_SUPPORTED]
An unsupported export file format is specified.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

gsk_export_certificate()

248 z/OS V2R1.0 System SSL Programming

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested record is not found.

Usage

The gsk_export_certificate() routine exports an X.509 certificate. The certificate can
be exported using either the ASN.1 DER encoding for the certificate or the
Cryptographic Message Syntax (PKCS #7) encoding for the certificate. This can be
either the binary value or the Base64 encoding of the binary value. A Base64
encoded stream will be in the local code page and will include the encoding
header and footer lines.

The export file will contain just the requested certificate when the DER format is
selected. The export file will contain the requested certificate and its certification
chain when the PKCS #7 format is selected. A partial certification chain will be
exported if the complete chain is not in the database.

gsk_export_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 249

gsk_export_certification_request()
Exports a PKCS #10 certification request.

Format
#include <gskcms.h>

gsk_status gsk_export_certification_request (
gsk_handle db_handle,
const char * label,
gskdb_export_format format,
gsk_buffer * stream)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or
the gsk_open_database() routine. The database must be a request database and
not a key database.

label
Specifies the label for the database record. The label is specified in the local
code page.

format
Specifies the export format. These values may be specified:

gskdb_export_der_binary
Binary ASN.1 DER-encoded

gskdb_export_der_base64
Base64 ASN.1 DER-encoded

stream
Return the byte stream for the encoded certificatation request. The application
should call the gsk_free_buffer() routine to release the storage when it is no
longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
No database record label is supplied.

[CMSERR_FMT_NOT_SUPPORTED]
An unsupported export file format is specified.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certification requests.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested record is not found.

gsk_export_certification_request()

250 z/OS V2R1.0 System SSL Programming

Usage

The gsk_export_certification_request() routine exports a PKCS #10 certification
request. The request can be exported using either the ASN.1 DER encoding for the
request or the Base64 encoding of the binary value. A Base64 encoded stream will
be in the local code page and will include the encoding header and footer lines.

gsk_export_certification_request()

Chapter 8. Certificate Management Services (CMS) API reference 251

gsk_export_key()
Exports a certificate and the associated private key.

Format
#include <gskcms.h>

gsk_status gsk_export_key (
gsk_handle db_handle,
const char * label,
gskdb_export_format format,
x509_algorithm_type algorithm,
const char * password,
gsk_buffer * stream,)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine. The
database must be a key database and not a request database. For a SAF key
ring database, the private key must be stored in the SAF database and not in
ICSF.

label
Specifies the label for the database record. The label is specified in the local
code page.

format
Specifies the export format. These values may be specified:

gskdb_export_pkcs12v1_binary
Binary PKCS #12 Version 1

gskdb_export_pkcs12v1_base64
Base64 PKCS #12 Version 1

gskdb_export_pkcs12v3_binary
Binary PKCS #12 Version 3

gskdb_export_pkcs12v3_base64
Base64 PKCS #12 Version 3

algorithm
Specifies the encryption algorithm for the export file. The strong encryption
algorithms may not be available depending upon government export
regulations.

These values may be specified for the PKCS #12 Version 1 format:

x509_alg_pb1WithSha1And40BitRc2Cbc
40-bit RC2 with SHA-1 digest

x509_alg_pb1WithSha1And128 BitRc2Cbc
128bit RC2 with SHA-1 digest

x509_alg_pb1WithSha1And40BitRc4
40-bit RC4 with SHA-1 digest

x509_alg_pb1WithSha1And128BitRc4
128-bit RC4 with SHA-1 digest

x509_alg_pb1WithSha1And3DesCbc
Triple DES with SHA-1 digest

gsk_export_key()

252 z/OS V2R1.0 System SSL Programming

These values may be specified for the PKCS #12 Version 3 format:

x509_alg_pbeWithSha1And40BitRc2Cbc
40-bit RC2 with SHA-1 digest

x509_alg_pbeWithSha1And128 BitRc2Cbc
128bit RC2 with SHA-1 digest

x509_alg_pbeWithSha1And40BitRc4
40-bit RC4 with SHA-1 digest

x509_alg_pbeWithSha1And128BitRc4
128-bit RC4 with SHA-1 digest

x509_alg_pbeWithSha1And3DesCbc
Triple DES with SHA-1 digest

In FIPS mode, there is only one supported encryption algorithm for the export
file.

For PKCS #12 Version 3:

x509_alg_pbeWithSha1And3DesCbc
Triple DES with SHA-1 digest.

password
Specifies the password for the export file. The password is in the local code
page and must consist of characters which can be represented using 7-bit
ASCII (letters, numbers, and punctuation). It may not be an empty string. The
user is prompted to enter the password if NULL is specified for this parameter.
If the key that is being exported is a secure private key in the TKDS, the
maximum password length is 63 bytes.

stream
Return the byte stream for the encoded certificate. The application should call
the gsk_free_buffer() routine to release the storage when it is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

CMSERR_ALG_NOT_SUPPORTED]
The encryption algorithm is not supported.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
The record label or CA certificate label is not valid.

[CMSERR_BAD_RNG_OUTPUT]
In FIPS mode, random bytes generation produced duplicate output.

[CMSERR_CRYPTO_HARDWARE_NOT_AVAILABLE]
Cryptographic hardware does not support service or algorithm.

[CMSERR_FMT_NOT_SUPPORTED]
An unsupported export file format is specified.

[CMSERR_ICSF_FIPS_BAD_ALG_OR_KEY_SIZE]
The algorithm or key size is not supported by ICSF in FIPS mode.

gsk_export_key()

Chapter 8. Certificate Management Services (CMS) API reference 253

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_FIPS]
ICSF is not operating in FIPS mode.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_ATTRIBUTE]
Parameter contents or key attribute value is incorrect.

[CMSERR_KEY_CANNOT_BE_EXTRACTED]
PKCS #11 key cannot be extracted.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
The signer certificate does not have a private key.

[CMSERR_RECORD_NOT_FOUND]
The requested record is not found.

Usage

The gsk_export_key() routine exports an X.509 certificate and the associated
private key. The certificate can be exported using either the PKCS #12 Version 1
format or the PKCS #12 Version 3 format. This can be either the binary value or
the Base64 encoding of the binary value. A Base64 encoded stream will be in the
local code page and will include the encoding header and footer lines.

The PKCS #12 Version 1 format is obsolete. However, it is the only format
supported by some SSL implementations and must be used when moving a
certificate and key to one of those systems. If not running in FIPS mode, you
should use either x509_alg_pb1WithSha1And40BitRc2Cbc or
x509_alg_pb1withSha1And3DesCbc for interoperability with these older SSL
implementations.

The export file will contain the requested certificate, its private key, and the
certification chain. A partial certification chain will be exported if the complete
chain is not in the database.

If the certificate's private key is stored as a secure TKDS private key label:
v Only formats gskdb_export_pkcs12v3_binary and

gskdb_export_pkcs12v3_base64, along with algorithm
x509_alg_pbeWithSha1And3DesCbc, are supported.

v When the private key was created in the TKDS, it was created with the
extractable attribute.

v When using this API, you must have the correct access to the CRYPTOZ class.
See Chapter 3, “Using cryptographic features with System SSL,” on page 11 for
more information.

gsk_export_key()

254 z/OS V2R1.0 System SSL Programming

gsk_factor_private_key()
Factorizes a private key into its component values.

Format
#include <gskcms.h>

gsk_status gsk_factor_private_key(
pkcs_private_key_info * private_key,
gsk_private_key * private_key_factors)

Parameters

private_key
Specifies the private key.

private_key_factors
Returns the private key components.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_ELEMENTS_MISSING]
Required data element is missing.

[CMSERR_ALG_NOT_SUPPORTED]
Cryptographic algorithm is not supported.

[CMSERR_PRIVATE_KEY_INFO_NOT_SUPPLIED]
Private key information not supplied.

[CMSERR_PRIVATE_KEY_NOT_SUPPLIED]
Private key structure not supplied.

[CMSERR_STRUCTURE_TOO_SMALL]
Size specified for supplied structure is too small.

Usage

The gsk_factor_private_key() function deconstructs the private key into its private
key components, formatted for use with ICSF PKCS #11 tokens.

Before calling the function, the application must initialize the size field in
private_key_factors to the size of the gsk_private_key structure. It must also prime
private_key with the appropriate private key to be factorized before calling the
routine.

The routine will return the factorized components of the private key in
private_key_factors. The x509_algorithm_identifier is set with the appropriate value
for the private key type when returned.

gsk_factor_private_key()

Chapter 8. Certificate Management Services (CMS) API reference 255

gsk_factor_private_key_rsa()
Factorizes an RSA private key into its component values.

Note: This function is deprecated. Use gsk_factor_private_key() instead.

Format
#include <gskcms.h>

gsk_status gsk_factor_private_key_rsa (
pkcs_private_key_info * private_key,
gsk_buffer * modulus,
gsk_buffer * public_exponent,
gsk_buffer * private_exponent,
gsk_buffer * prime1,
gsk_buffer * prime2,
gsk_buffer * prime_exponent1,
gsk_buffer * prime_exponent2,
gsk_buffer * coefficient)

Parameters

private_key
Specifies the private key.

modulus
Returns the modulus (n).

public_exponent
Returns the public exponent (e).

private_exponent
Returns the private exponent (d).

prime1
Returns the 1st prime (p).

prime2
Returns the 2nd prime (q).

prime_exponent1
Returns the private exponent d modulo p-1.

prime_exponent2
Returns the private exponent d modulo q-1.

coefficient
Returns the CRT coefficient q-1 mod p.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_ELEMENTS_MISSING]
Required data element is missing.

Usage

The gsk_factor_private_key_rsa() function deconstructs the pkcs_private_key_info
into its RSA private key components.

gsk_factor_private_key_rsa()

256 z/OS V2R1.0 System SSL Programming

gsk_factor_public_key()
Factorizes a public key into its component values.

Format
#include <gskcms.h>

gsk_status gsk_factor_public_key(
x509_public_key_info * public_key,
gsk_public_key * public_key_factors)

Parameters

public_key
Specifies the public key.

public_key_factors
Returns the public key components.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_ELEMENTS_MISSING]
Required data element is missing.

[CMSERR_ALG_NOT_SUPPORTED]
Cryptographic algorithm not supported.

[CMSERR_PUBLIC_KEY_INFO_NOT_SUPPLIED]
Public key information not supplied.

[CMSERR_PUBLIC_KEY_NOT_SUPPLIED]
Public key structure not supplied.

[CMSERR_STRUCTURE_TOO_SMALL]
Size specified for supplied structure is too small.

Usage

The gsk_factor_public_key() function deconstructs the public key into its public
key components, formatted for use with ICSF PKCS #11 tokens.

Before calling the function, the application must initialize the size field in
public_key_factors to the size of the gsk_public_key structure. It must also prime
public_key with the appropriate public key to be factorized before calling the
routine.

The routine will return the factorized component of the public key in
public_key_factors. The x509_algorithm_identifier is set with the appropriate value
for the public key type when returned.

gsk_factor_public_key()

Chapter 8. Certificate Management Services (CMS) API reference 257

gsk_factor_public_key_rsa()
Factorizes an RSA public key into its component values.

Note: This function is deprecated. Use gsk_factor_public_key() instead.

Format
#include <gskcms.h>

gsk_status gsk_factor_public_key_rsa (
x509_public_key_info * public_key,
gsk_uint32 * modulus_bits,
gsk_buffer * modulus,
gsk_buffer * exponent)

Parameters

public_key
Specifies the public key.

modulus_bits
Returns the length of the modulus in bits.

modulus
Returns the modulus (n).

exponent
Returns the public exponent (e).

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_ELEMENTS_MISSING]
Required data element is missing.

Usage

The gsk_factor_public_key_rsa() function deconstructs the pkcs_public_key_info
into its RSA public key components.

gsk_factor_public_key_rsa()

258 z/OS V2R1.0 System SSL Programming

gsk_fips_state_query()
Queries the current state of FIPS mode.

Format

gsk_status gsk_fips_state_query(
GSK_FIPS_STATE_ENUM_VALUE * enum_value)

Parameters

enum_value
Returns the FIPS state enumeration value.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file.

Usage

The gsk_fips_state query function returns an enumerated value indicating the
current FIPS mode state of System SSL. One of the following enumerated values
will be returned:

GSK_FIPS_STATE_NOTSET
FIPS mode state has not yet been set.

GSK_FIPS_STATE_ON
FIPS mode state has been set to FIPS mode.

GSK_FIPS_STATE_OFF
FIPS mode state has been set to non-FIPS mode.

gsk_fips_state_query()

Chapter 8. Certificate Management Services (CMS) API reference 259

gsk_fips_state_set()
Sets the state of FIPS mode for System SSL.

Format

gsk_status gsk_fips_state_set(
GSK_FIPS_STATE_ENUM_VALUE enum_value)

Parameters

enum_value
Specifies the FIPS state enumeration value.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. The following are some
possible errors:

[CMSERR_ATTRIBUTE_INVALID_ENUMERATION]
The enumeration value is not valid or it cannot be set because of the
current state.

[CMSERR_FIPS_MODE_EXECUTE_FAILED]
The request to execute in FIPS mode failed because the Cryptographic
Services Security Level 3 FMID is not installed so that the required System
SSL DLLs could not be loaded.

[CMSERR_FIPS_MODE_SWITCH]
The System SSL FIPS mode state cannot be changed to FIPS mode because
it is currently not in FIPS mode.

[CMSERR_KATPW_FAILED]
The power-on known answer tests failed. FIPS mode cannot be set.

[CMSERR_KATPW_ICSF_FAILED]
The power-on known answer tests failed. Either ICSF was not available or
FIPS mode was disabled. FIPS mode cannot be set.

Usage

The gsk_fips_state_set() routine sets the enumerated value for the System SSL FIPS
mode state.

The FIPS mode setting applies to the entire process. Once set, then all threads of
the same process execute in FIPS mode. If any thread switches to non-FIPS mode,
then all threads in the same process execute in non-FIPS mode.

In order to set FIPS mode, this function must be executed before all other System
SSL API functions except for gsk_get_cms_vector(), gsk_get_ssl_vector(), and
gsk_fips_state_query(). It is possible to switch to a non-FIPS mode at a later time.
It is not possible to switch from non-FIPS mode to FIPS mode at any time.

The following enumerated values are supported:

GSK_FIPS_STATE_ON
FIPS mode state has been set to FIPS mode.

gsk_fips_state_set()

260 z/OS V2R1.0 System SSL Programming

GSK_FIPS_STATE_OFF
FIPS mode state has been set to non-FIPS mode.

gsk_fips_state_set()

Chapter 8. Certificate Management Services (CMS) API reference 261

gsk_free_attributes_signers()
Releases storage allocated for gsk_attributes_signers structure.

Format
#include <gskcms.h>

void gsk_free_attributes_signers (
gsk_attributes_signers * attributesSigners)

Parameters

attributesSigners
Specifies the gsk_attributes_signers structure to be released. The
gsk_attributes_signers structure will be initialized to zero upon completion.

Usage

The gsk_free_attributes_signers() routine is used to release storage allocated for
gsk_attributes_signers structure.

gsk_free_attributes_signers()

262 z/OS V2R1.0 System SSL Programming

gsk_free_buffer()
Releases storage allocated for a buffer.

Format
#include <gskcms.h>

void gsk_free_buffer (
gsk_buffer * buffer)

Parameters

buffer
Specifies the buffer to be released. The gsk_buffer structure will be initialized
to zero upon completion.

Usage

The gsk_free_buffer() routine is used to release storage allocated for a buffer.

gsk_free_buffer()

Chapter 8. Certificate Management Services (CMS) API reference 263

gsk_free_certificate()
Releases storage allocated for an X.509 certificate.

Format
#include <gskcms.h>

void gsk_free_certificate (
x509 certificate * certificate)

Parameters

certificate
Specifies the certificate to be released. The x509_certificate structure will be
initialized to zero upon completion.

Usage

The gsk_free_certificate() routine is used to release storage allocated for an X.509
certificate.

gsk_free_certificate()

264 z/OS V2R1.0 System SSL Programming

gsk_free_certificates()
Releases storage allocated for an array of certificates.

Format
#include <gskcms.h>

void gsk_free_certificates (
pkcs_certificates * certificates)

Parameters

certificates
Specifies the certificates to be released. The pkcs_certificates structure will be
initialized to zero upon completion.

Usage

The gsk_free_certificates() routine is used to release storage allocated for an array
of certificates.

gsk_free_certificates()

Chapter 8. Certificate Management Services (CMS) API reference 265

gsk_free_certificate_extension()
Releases storage allocated for an X.509 certificate extension.

Format
#include <gskcms.h>

void gsk_free_certificate_extension (
x509_extension * extension)

Parameters

extension
Specifies the certificate extension to be released. The x509_extension structure
will be initialized to zero upon completion.

Usage

The gsk_free_certificate_extension() routine is used to release storage allocated for
an X.509 certificate extension.

gsk_free_certificate_extension()

266 z/OS V2R1.0 System SSL Programming

gsk_free_certification_request()
Releases storage allocated for a PKCS certification request.

Format
#include <gskcms.h>

void gsk_free_certification_request (
pkcs_cert_request * request)

Parameters

request
Specifies the certification request to be released. The pkcs_cert_request
structure will be initialized to zero upon completion.

Usage

The gsk_free_certification_request() routine is used to release storage allocated for
a Public Key Cryptography Standards (PKCS) certification request.

gsk_free_certification_request()

Chapter 8. Certificate Management Services (CMS) API reference 267

gsk_free_content_info()
Releases storage allocated for PKCS #7 content information.

Format
#include <gskcms.h>

void gsk_free_content_info (
pkcs_content_info * content_info)

Parameters

content_info
Specifies the content information to be released. The pkcs_content_info
structure will be initialized to zero upon completion.

Usage

The gsk_free_content_info() routine is used to release storage allocated for a
Public Key Cryptography Standards (PKCS) content information.

gsk_free_content_info()

268 z/OS V2R1.0 System SSL Programming

gsk_free_crl()
Releases storage allocated for an X.509 certificate revocation list.

Format
#include <gskcms.h>

void gsk_free_crl (
x509_crl * crl)

Parameters

crl
Specifies the certificate revocation list to be released. The x509_crl structure will
be initialized to zero upon completion.

Usage

The gsk_free_crl() routine is used to release storage allocated for an X.509
certificate revocation list.

gsk_free_crl()

Chapter 8. Certificate Management Services (CMS) API reference 269

gsk_free_crls()
Releases storage allocated for an array of X.509 certificate revocation lists.

Format
#include <gskcms.h>

void gsk_free_crls (
x509_crls * crls)

Parameters

crls
Specifies the array of certificate revocation lists to be released. The x509_crls
structure will be initialized to zero upon completion.

Usage

The gsk_free_crls() routine is used to release storage allocated for an array of
X.509 certificate revocation lists.

gsk_free_crls()

270 z/OS V2R1.0 System SSL Programming

gsk_free_decoded_extension()
Frees a decoded certificate extension.

Format
#include <gskcms.h>

void gsk_free_decoded_extension (
x509_decoded_extension * decoded_extension)

Parameters

decoded_extension
Specifies the certificate extension to be released. The x509_decoded_extension
structure will be initialized to zero upon completion.

Usage

The gsk_free_decoded_extension() routine is used to release storage allocated for a
decoded X.509 certificate extension.

gsk_free_decoded_extension()

Chapter 8. Certificate Management Services (CMS) API reference 271

gsk_free_name()
Releases storage allocated for an X.509 name.

Format
#include <gskcms.h>

void gsk_free_name (
x509_name * name)

Parameters

name
Specifies the name to be released. The x509_name structure will be initialized
to zero upon completion.

Usage

The gsk_free_name() routine is used to release storage allocated for an X.509
name.

gsk_free_name()

272 z/OS V2R1.0 System SSL Programming

gsk_free_private_key()
Releases storage allocated for private key information.

Format
#include <gskcms.h>

gsk_status gsk_free_private_key(
gsk_private_key * private_key_factors)

Parameters

private_key_factors
Specifies the private key components. The gsk_private_key structure will
be initialized to zero upon completion.

Usage

The gsk_free_private_key() routine is used to release storage allocated for private
key component information.

gsk_free_private_key()

Chapter 8. Certificate Management Services (CMS) API reference 273

gsk_free_private_key_info()
Releases storage allocated for private key information.

Format
#include <gskcms.h>

void gsk_free_private_key_info (
pkcs_private_key_info * info)

Parameters

info
Specifies the private key information to be released. The pkcs_private_key_info
structure will be initialized to zero upon completion.

Usage

The gsk_free_private_key_info() routine is used to release storage allocated for
private key information.

gsk_free_private_key_info()

274 z/OS V2R1.0 System SSL Programming

gsk_free_public_key()
Releases storage allocated for public key information.

Format
#include <gskcms.h>

gsk_status gsk_free_public_key(
gsk_public_key * public_key_factors)

Parameters

public_key_factors
Specifies the public key components. The gsk_free_public_key structure
will be initialized to zero upon completion.

Usage

The gsk_free_public_key() routine is used to release storage allocated for public
key component information.

gsk_free_public_key()

Chapter 8. Certificate Management Services (CMS) API reference 275

gsk_free_public_key_info()
Releases storage allocated for public key information.

Format
#include <gskcms.h>

void gsk_free_public_key_info (
x509_public_key_info * info)

Parameters

info
Specifies the public key information to be released. The x509_public_key_info
structure will be initialized to zero upon completion.

Usage

The gsk_free_public_key_info() routine is used to release storage allocated for
public key information.

gsk_free_public_key_info()

276 z/OS V2R1.0 System SSL Programming

gsk_free_record()
Releases storage allocated for a database record.

Format
#include <gskcms.h>

void gsk_free_record (
gskdb_record * record)

Parameters

record
Specifies the database record to be released. The gskdb_record structure is
released in addition to the record data.

Usage

The gsk_free_record() routine is used to release storage allocated for a database
record.

gsk_free_record()

Chapter 8. Certificate Management Services (CMS) API reference 277

gsk_free_records()
Releases storage allocated for an array of database records.

Format
#include <gskcms.h>

void gsk_free_records (
int num_records,
gskdb_record ** records)

Parameters

num_records
Specifies the number of records in the array.

records
Specifies the database record array to be released. The gskdb_record structures
are released in addition to the record data.

Usage

The gsk_free_records() routine is used to release storage allocated for an array of
database records.

gsk_free_records()

278 z/OS V2R1.0 System SSL Programming

gsk_free_string()
Releases storage allocated for a string.

Format
#include <gskcms.h>

void gsk_free_string (
char * string)

Parameters

string
Specifies the string to be released.

Usage

The gsk_free_string() routine is used to release storage allocated for a string.

gsk_free_string()

Chapter 8. Certificate Management Services (CMS) API reference 279

gsk_free_strings()
Releases storage allocated for an array of strings.

Format
#include <gskcms.h>

void gsk_free_strings (
int num_strings,
char ** strings)

Parameters

num_strings
Specifies the number of strings in the array.

strings
Specifies the array of strings to be released.

Usage

The gsk_free_strings() routine is used to release storage allocated for an array of
strings.

gsk_free_strings()

280 z/OS V2R1.0 System SSL Programming

gsk_generate_key_agreement_pair()
Generates a Diffie-Hellman public/private key pair.

Format
#include <gskcms.h>

gsk_status gsk_generate_key_agreement_pair (
gsk_buffer * key_params,
gsk_buffer * public_value,
gsk_buffer * private_value)

Parameters

key_params
Specifies the Diffie-Hellman key parameters as an ASN.1-encoded sequence.

public_value
Returns the generated public value as a binary byte string. The application
should call the gsk_free_buffer() routine to release the public value when it is
no longer needed.

private_value
Returns the generated private value as a binary byte string. The application
should call the gsk_free_buffer() routine to release the private value when it is
no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_DH_PARAMS]
The Diffie-Hellman group parameters are not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_RNG_OUTPUT]
In FIPS mode, random bytes generation produced duplicate output.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_generate_key_agreement_pair() routine will generate a Diffie-Hellman
public/private key pair using ICSF when executing in FIPS mode, and as
recommended by PKCS #3 (Diffie-Hellman Key Agreement Standard) and RFC
2631: Diffie-Hellman Key Agreement Method when in non-FIPS mode. The required
key parameters P and G and the optional key parameters Q and J are supplied as
an ASN.1-encoded sequence as defined in either PKCS #3 or RFC 5280: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
The return values will be the binary values for Y and X. The key size is
determined by the size of the modulus P and must be between 512 and 2048 bits if
not executing in FIPS mode, and must be 2048 bits if executing in FIPS mode. The
private value X will be less than Q-1 if Q is present in the key parameters,
otherwise the private value X will be less than P-1.

gsk_generate_key_agreement_pair()

Chapter 8. Certificate Management Services (CMS) API reference 281

http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

Multiple Diffie-Hellman Key Agreement key pairs can share the same group
parameters (P and G). This is useful when generating multiple keys of the same
type since it is very time-consuming to compute values for P and G. In addition,
the Diffie-Hellman key agreement algorithm requires both parties to use the same
group parameters when computing the shared secret value.

gsk_generate_key_agreement_pair()

282 z/OS V2R1.0 System SSL Programming

gsk_generate_key_pair()
Generates a public/private key pair.

Format
#include <gskcms.h>

gsk_status gsk_generate_key_pair (
x509_algorithm_type key_algorithm,
int key_size,
gsk_buffer * key_params,
x509_public_key_info * public_key,
pkcs_private_key_info * private_key,
gsk_buffer * key_identifier)

Parameters

key_algorithm
Specifies the key algorithm.

key_size
Specifies the key size in bits.

key_params
Specifies the key parameters as an ASN.1-encoded sequence. Specify NULL for
this parameter if the key algorithm does not require any parameters.

public_key
Returns the generated public key. The application should call the
gsk_free_public_key_info() routine to release the public key when it is no
longer needed.

private_key
Returns the generated private key. The application should call the
gsk_free_private_key_info() routine to release the private key when it is no
longer needed.

key_identifier
Returns the key identifier for the generated public key. The application should
call the gsk_free_buffer() routine to release the key identifier when it is no
longer needed. Specify NULL for this parameter if the key identifier is not
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The key algorithm is not supported.

[CMSERR_BAD_DH_PARAMS]
The Diffie-Hellman group parameters are not valid.

[CMSERR_BAD_DSA_PARAMS]
The DSS parameters are not valid.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

gsk_generate_key_pair()

Chapter 8. Certificate Management Services (CMS) API reference 283

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_FIPS_KEY_PAIR_CONSISTENCY]
FIPS mode key generation failed pair-wise consistency check.

[CMSERR_ICSF_CLEAR_KEY_SUPPORT_NOT_AVAILABLE]
Clear key support not available due to ICSF key policy.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_generate_key_pair() routine will generate a public/private key pair. The
format of the public and private key values returned by the
gsk_generate_key_pair() routine is defined in RFC 5280: Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

These key algorithms are supported:
v x509_alg_rsaEncryption - RSA Encryption - {1.2.840.113549.1.1.1}

The key size must be between 512 and 4096 bits if not executing in FIPS mode,
and must be between 1024 and 4096 bits if executing in FIPS mode, and will be
rounded up to a multiple of 16 bits if necessary. No key parameters are used.
The key size determines the size of the modulus N.

v x509_alg_idDsa - Digital Signature Standard - {1.2.840.10040.4.1}

The key size can be between 512 and 1024 bits, which will be rounded up to a
multiple of 64 bits, or precisely 2048 bits. Key sizes less than 1024 bits can only
be generated in non-FIPS mode and are generated according to FIPS 186-2:
Digital Signature Standard (DSS). Keys sizes 1024 and 2048 are generated
according to FIPS 186-3: Digital Signature Standard (DSS). The key parameters are
the prime p, the prime divisor q, and the generator g. The requested key size
must be the same as the size of the prime p. Note that key parameters that
contain a p of 2048 bits and a q of 160 bits do not conform to FIPS 186-3 and are
not supported. The gsk_generate_key_parameters() routine can be used to
generate the key parameters.

v x509_alg_dhPublicNumber - Diffie-Hellman Key Exchange - {1.2.840.10046.2.1}

The key size must be between 512 and 2048 bits if not executing in FIPS mode,
and must be 2048 bits if executing in FIPS mode, and will be rounded up to a
multiple of 64 bits if necessary. The key parameters are the prime P, the base G,
the subprime Q, and the subgroup factor J. The requested key size must be the
same as the size of the prime P. The gsk_generate_key_parameters() routine can
be used to generate the key parameters.

gsk_generate_key_pair()

284 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

In non-FIPS mode, the subprime Q and the subgroup factor J are optional key
parameters. This allows the gsk_generate_key_pair() routine to accept key
parameters generated in accordance with PKCS #3 (Diffie-Hellman Key
Agreement Standard) including key parameters generated in accordance with
RFC 2631: Diffie-Hellman Key Agreement Method. The private value X will be less
than Q-1 if Q is present in the key parameters, otherwise the private value X
will be less than P-1.
Multiple Digital Signature Standard keys or Diffie-Hellman Key Exchange keys
can share the same group parameters (P, Q, and G). This is useful when
generating multiple keys of the same type since it is very time-consuming to
compute values for P, Q, and G. In addition, the Diffie-Hellman key agreement
algorithm requires both parties to use the same group parameters when
computing the secret value.

v x509_alg_ecPublicKey – ECDSA and ECDH Public Key - {1.2.840.10045.2.1}

The EC named curve used to generate the ECC key pair can be specified using
either the key_params buffer or the key_size parameter. If the key_params buffer is
supplied, the key_size parameter will be ignored. The key_params buffer must
contain ASN.1 encoded EC domain parameters, or be NULL. If the key_params
buffer is NULL, the key_size parameter will be rounded up to the nearest
supported key size and the default EC named curve for that key size will be
used, as specified in Table 3 on page 15. In FIPS mode, only NIST recommended
curves are supported.

gsk_generate_key_pair()

Chapter 8. Certificate Management Services (CMS) API reference 285

http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf

gsk_generate_key_parameters()
Generates ASN.1 encoded key parameters.

Format
#include <gskcms.h>

gsk_status gsk_generate_key_parameters(
x509_algorithm_type key_algorithm,
int key_size,
gsk_buffer * key_params)

Parameters

key_algorithm
Specifies the key algorithm.

key_size
Specifies the key size in bits.

key_params
Specifies the key parameters as an ASN.1-encoded sequence. The application
should call the gsk_free_buffer() routine to release the key parameters when
they are no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The key algorithm is not supported.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_generate_key_parameters() routine will generate key parameters that can
then be used with the gsk_generate_key_pair() routine to generate one or more
public/private key pairs.

These key algorithms are supported:
v x509_alg_idDsa - Digital Signature Standard - {1.2.840.10040.4.1}

The key size can be between 512 and 1024 bits, which will be rounded up to a
multiple of 64 bits, or precisely 2048 bits. Key sizes less than 1024 bits can only
be generated in non-FIPS mode and are generated according to FIPS 186-2. Keys
sizes 1024 and 2048 are generated according to FIPS 186-3. The generated ASN.1
sequence will consist of the prime P, the subprime Q, and the base G. For
2048-bit key size, the size of the subprime Q will be 256. See FIPS 186-3: Digital
Signature Standard (DSS) for more information about the generation of the key
parameters for 1024-bit and greater key sizes. See FIPS 186-2: Digital Signature
Standard (DSS) for smaller key sizes.

v x509_alg_dhPublicNumber - Diffie-Hellman Key Exchange - {1.2.840.10046.2.1}

gsk_generate_key_parameters()

286 z/OS V2R1.0 System SSL Programming

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf

The key size must be between 512 and 2048 bits if not executing in FIPS mode,
and must be 2048 bits if executing in FIPS mode, and will be rounded up to a
multiple of 64 bits if necessary. In non-FIPS mode, the generated ASN.1 sequence
will consist of the prime P, the base G, the subprime Q, and the subgroup factor
J. In FIPS mode, the generated ASN.1 sequence will consist of the prime P and
the base G. See RFC 2631: Diffie-Hellman Key Agreement Method for more
information about the generation of the key parameters, and RFC 5280: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile for more information about the ASN.1 encoding.
Multiple Digital Signature Standard keys or Diffie-Hellman Key Exchange keys
can share the same group parameters (P, Q, and G). This is useful when
generating multiple keys of the same type since it is very time-consuming to
compute values for P, Q, and G. In addition, the Diffie-Hellman key agreement
algorithm requires both parties to use the same group parameters when
computing the secret value (an SSL client will generate temporary
Diffie-Hellman values if the group parameters in the client certificate are not the
same as the group parameters in the server certificate).

v x509_alg_ecPublicKey – ECDSA and ECDH Public Key - {1.2.840.10045.2.1}

The key size must be between 0 and 521 bits. The key size value will be
rounded up to the nearest supported key size, and the default EC named curve
for that key size will be used, as specified in Table 3 on page 15. In FIPS mode,
only NIST recommended curves are supported.

gsk_generate_key_parameters()

Chapter 8. Certificate Management Services (CMS) API reference 287

http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

gsk_generate_random_bytes()
Generates a random byte stream.

Format
#include <gskcms.h>

gsk_status gsk_generate_random_bytes (
gsk_buffer * buffer)

Parameters

buffer
Specifies the buffer for the random byte stream. The application is responsible
for providing the buffer and setting the length and data fields appropriately.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_RNG]
Generate random bytes input buffer not valid.

[CMSERR_BAD_RNG_OUTPUT]
Generate random bytes produced duplicate output.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

Usage

The gsk_generate_random_bytes() routine will return a random byte stream. The
application provides the buffer for the byte stream. The length value determines
how many bytes will be generated.

System SSL attempts to use the ICSF PKCS #11 pseudo-random callable service
(CSFPPRF) to generate a random byte stream. If ICSF is unavailable or returns an
error and System SSL is in non-FIPS mode, an internal RNG will be used to
generate the random data. If System SSL is in FIPS mode, the API call will fail.

The contents of the generated byte stream can be modified by setting the
GSK_RNG_ALLOW_ZERO_BYTES environment variable. A
GSK_RNG_ALLOW_ZERO_BYTES setting of “TRUE”, “ON” or “1” will retain
bytes with a zero value in the random byte stream. A setting of “FALSE”, “OFF” or
“0” will remove bytes with a zero value from the random byte stream. The default
setting is "TRUE".

Note: The GSK_RNG_ALLOW_ZERO_BYTES environment variable is processed
during System SSL initialization and is not checked afterward.

gsk_generate_random_bytes()

288 z/OS V2R1.0 System SSL Programming

gsk_generate_secret()
Generates the Diffie-Hellman shared secret.

Format
#include <gskcms.h>

gsk_status gsk_generate_secret (
gsk_buffer * key_params,
gsk_buffer * public_value,
gsk_buffer * private_value
gsk_buffer * secret_value)

Parameters

key_params
Specifies the Diffie-Hellman key parameters as an ASN.1-encoded sequence.

public_value
Specifies the public value for the partner application as a binary byte string.

private_value
Specifies the private value for the local application as a binary byte string.

secret_value
Returns the secret value as a binary byte string. The application should call the
gsk_free_buffer() routine to release the secret value when it is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_DH_PARAMS]
The Diffie-Hellman group parameters are not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_generate_secret() routine will generate the Diffie-Hellman shared secret
value as defined in PKCS #3 (Diffie-Hellman Key Agreement Standard) and RFC
2631: Diffie-Hellman Key Agreement Method. The required key parameters P and G,
and, in non-FIPS mode, the optional key parameters Q and J are supplied as an
ASN.1-encoded sequence as defined in either PKCS #3 or RFC 5280: Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. The
return value will be the binary value for Z. The key size is determined by the size
of the modulus P, and must be between 512 and 2048 bits if not executing in FIPS
mode, or it must be 2048 bits if in FIPS mode.

gsk_generate_secret()

Chapter 8. Certificate Management Services (CMS) API reference 289

http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

gsk_get_certificate_algorithms()
Get the public key and certificate signature algorithms for a database record.

Format
#include <gskcms.h>

gsk_status gsk_get_certificate_algorithms (
gsk_handle * db_handle,
const char * label,
x509_algorithm_type * public_key_algorithm,
x509_algorithm_type * signature_algorithm,
x509_algorithm_type * signature_key_algorithm)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine. The
database must be a key database, SAF key ring or z/OS PKCS #11 token.

label
Specifies the label for the database record. The label is specified in the local
code page.

public_key_algorithm
Returns the key algorithm for the subject public key in the certificate.

signature_algorithm
Returns the signature algorithm used to sign the certificate.

signature_key_algorithm
Returns the signature key algorithm used to sign the certificate.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_INCORRECT_DBTYPE]
The database does not support this operation.

[CMSERR_MULTIPLE_LABEL]
Multiple certificates exist for label.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_DELETED]
The requested record is deleted.

[CMSERR_RECORD_NOT_FOUND]
The request record is not found.

Usage

The gsk_get_certificate_algorithms() routine returns the public key algorithm,
certificate signature algorithm, and signature key algorithm for the database record
specified by the label parameter.

gsk_get_certificate_algorithms()

290 z/OS V2R1.0 System SSL Programming

gsk_get_certificate_info()
Returns requested certificate information for an X.509 certificate.

Format
#include <gskcms.h>

gsk_status gsk_get_certificate_info(
gsk_buffer * cert_stream,
x509_cert_info_id cert_info_id,
gsk_buffer * cert_info)

Parameters

cert_stream
Specifies either a DER-encoded X.509 certificate or a non-decoded
TBSCertificate ASN.1 sequence.

cert_info_id
The X.509 certificate information identifier specifying the certificate information
to be returned.

cert_info
Returns the requested certificate information. The application should call the
gsk_free_buffer() routine to release the certificate information when it is no
longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_NO_MEMORY]
Insufficient storage is available.

[ASN_ELEMENTS_MISSING]
Required data element is missing.

[ASN_UNSUPPORTED_VERSION]
Version is not supported.

[CMSERR_BAD_ISSUER_NAME]
Issuer name is not valid.

[CMSERR_BAD_SUBJECT_NAME]
Subject name is not valid.

[CMSERR_ATTRIBUTE_INVALID_ENUMERATION]
The enumeration value is not valid.

Usage

The gsk_get_certificate_info() routine returns information about an X.509
certificate. The certificate stream may be either:
v An X.509 certificate encoded as described in RFC 5280: Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
v The derCertificate field of the x509_certificate structure, which contains the

non-decoded TBSCertificate ASN.1 sequence.

gsk_get_certificate_info()

Chapter 8. Certificate Management Services (CMS) API reference 291

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

The application may request certificate information by using one of the following
enumeration identifiers.

x509_cert_info_subject_dn_der
The subject distinguished name for the X.509 certificate in binary ASN.1
DER-encoded format.

x509_cert_info_issuer_dn_der
The issuer distinguished name for the X.509 certificate in binary ASN.1
DER-encoded format.

gsk_get_certificate_info()

292 z/OS V2R1.0 System SSL Programming

gsk_get_cms_vector()
Obtains the address of the Certificate Management Services function vector.

Format
#include <gskcms.h>

void gsk_get_cms_vector (
gsk_uint32 * function_mask,
gsk_cms_vector ** function_vector)

Parameters

function_mask
Returns a bit mask indicating the Certificate Management Services level.

function_vector
Returns the address of the Certificate Management Services function vector.

Usage

Certificate Management Services (CMS) functions can be called using either static
binding or runtime binding. Static binding is performed when the application is
compiled while runtime binding is performed when the application is run.

In order to use static binding, the CMS sidefile is specified as input to the binder.
This causes all CMS functions to be resolved at bind time and will cause the CMS
DLL to be implicitly loaded when the application is run.

In order to use runtime binding, the CMS DLL must be explicitly loaded by the
application and the CMS functions must be called using indirect addresses. The
gsk_get_cms_vector() routine allows an application to obtain the address of the
CMS function vector containing an entry for each CMS API routine. This eliminates
the need for the application to build the function vector through repeated calls to
the dllqueryfn() routine.

The function mask indicates the capabilities of the version of the CMS DLL. These
values have been defined:

GSKCMS_API_LVL1
CMS functions provided as part of z/OS Version 1 Release 4 are available.

GSKCMS_API_LVL2
CMS functions provided as part of z/OS Version 1 Release 6 are available.

GSKCMS_API_LVL3
CMS functions provided as part of z/OS Version 1 Release 8 are available.

GSKCMS_API_LVL4
CMS functions provided as part of z/OS Version 1 Release 9 are available.

GSKCMS_API_LVL5
CMS functions provided as part of z/OS Version 1 Release 10 are available.

GSKCMS_API_LVL6
CMS functions provided as part of z/OS Version 1 Release 11 are available.

GSKCMS_API_LVL7
CMS functions provided as part of z/OS Version 1 Release 12 are available.

gsk_get_cms_vector()

Chapter 8. Certificate Management Services (CMS) API reference 293

GSKCMS_API_LVL8
CMS functions provided as part of z/OS Version 1 Release 13 are available.

GSKCMS_API_LVL9
CMS functions provided as part of z/OS Version 2 Release 1 are available.

gsk_get_cms_vector()

294 z/OS V2R1.0 System SSL Programming

gsk_get_default_key()
Gets the default key record.

Format
#include <gskcms.h>

gsk_status gsk_get_default_key (
gsk_handle db_handle,
gskdb_record ** record)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine.

record
Returns the database record. The application should call the gsk_free_record()
routine to release the record when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_INCORRECT_DBTYPE]
The database does not support this operation.

[CMSERR_MULTIPLE_DEFAULT]
Multiple keys are marked as the default.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_DELETED]
The requested record is deleted.

[CMSERR_RECORD_NOT_FOUND]
There is no default key for the database.

Usage

The gsk_get_default_key() routine retrieves the record for the default key. An error
will be returned if there is no default key.

gsk_get_default_key()

Chapter 8. Certificate Management Services (CMS) API reference 295

gsk_get_default_label()
Gets the label of the default key record.

Format
#include <gskcms.h>

gsk_status gsk_get_default_label (
gsk_handle db_handle,
char ** label)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine.

label
Returns the label of the default key record. The application should call the
gsk_free_string() routine to release the label when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_INCORRECT_DBTYPE]
The database does not support this operation.

[CMSERR_MULTIPLE_DEFAULT]
Multiple keys are marked as the default.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_DELETED]
The requested record is deleted.

[CMSERR_RECORD_NOT_FOUND]
There is no default key for the database.

Usage

The gsk_get_default_label() routine returns the label of the default key record. An
error will be returned if there is no default key.

gsk_get_default_label()

296 z/OS V2R1.0 System SSL Programming

gsk_get_directory_certificates()
Gets the certificates stored in the LDAP directory for the subject.

Format
#include <gskcms.h>

gsk_status gsk_get_directory_certificates (
gsk_handle directory_handle,
x509_name * subject_name,
gsk_boolean ca_certificates,
pkcs_certificates * certificates)

Parameters

directory_handle
Specifies the directory handle returned by the gsk_open_directory() routine.

subject_name
Specifies the certificate subject.

ca_certificates
Specify TRUE if the subject is a certification authority or FALSE if the subject is
an end entity.

certificates
Returns the certificates for the subject. The application should call the
gsk_free_certificates() routine to release the certificates when they are no
longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The directory handle is not valid.

[CMSERR_LDAP]
An error is detected by the LDAP runtime support.

[CMSERR_LDAP_NOT_AVAILABLE]
The LDAP server is not available.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested certificate is not found.

Usage

The gsk_get_directory_certificates() routine retrieves the certificates that are stored
in the LDAP directory for the specified subject name. When matching UTF-8
encoded attribute values in the subject name, System SSL uses a case sensitive
(exact match) comparison. The directory schema is defined by RFC 2587: PKIX
LDAP Version 2 Schema. The certificates are stored as attributes of the subject
directory entry. Each certificate is encoded as defined by RFC 5280: Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. The
userCertificate attribute is used to retrieve end-entity certificates while the
caCertificate attribute is used to retrieve certification authority certificates.

gsk_get_directory_certificates()

Chapter 8. Certificate Management Services (CMS) API reference 297

http://www.rfc-editor.org/rfc/pdfrfc/rfc2587.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2587.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

Retrieved certificates are cached so that it is not necessary to contact the LDAP
server for subsequent requests for the same certificates. The cached certificates are
released when the gsk_close_directory() routine is called to close the directory
handle.

gsk_get_directory_certificates()

298 z/OS V2R1.0 System SSL Programming

gsk_get_directory_crls()
Gets the certificate revocation lists stored in the LDAP directory for the issuer.

Format
#include <gskcms.h>

gsk_status gsk_get_directory_crls (
gsk_handle directory_handle,
x509_name * dist_point_name,
x509_name * issuer_name,
gsk_boolean ca_lists,
x509_crls * crls)

Parameters

directory_handle
Specifies the directory handle returned by the gsk_open_directory() routine.

dist_point_name
Specifies the CRL distribution point name.

issuer_name
Specifies the CRL issuer name.

ca_lists
Specify TRUE to retrieve the revocation lists for CA certificates or FALSE to
retrieve the revocation list for end entity certificates.

crls
Returns the certificate revocation lists. The application should call the
gsk_free_crls() routine to release the lists when they are no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The directory handle is not valid.

[CMSERR_LDAP]
An error is detected by the LDAP runtime support.

[CMSERR_LDAP_NOT_AVAILABLE]
The LDAP server is not available.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested CRL is not found.

Usage

The gsk_get_directory_crls() routine retrieves the certificate revocation lists (CRLs)
stored in the LDAP directory for the specified issuer name. When matching UTF-8
encoded attribute values (gsk_string_utf8) in the issuer name, System SSL uses a
case sensitive (exact match) comparison. The directory schema is defined by RFC
2587: PKIX LDAP Version 2 Schema. The revocation lists are stored as attributes of
the issuer directory entry. Each CRL is encoded as defined by RFC 5280: Internet

gsk_get_directory_crls()

Chapter 8. Certificate Management Services (CMS) API reference 299

http://www.rfc-editor.org/rfc/pdfrfc/rfc2587.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2587.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
The certificateRevocationList attribute is used to retrieve revocation lists for
end-entity certificates while the authorityRevocationList attribute is used to retrieve
revocation lists for certification authority certificates.

The dist_point_name parameter specifies the CRL distribution point name. This
name is used as the distinguished name for the LDAP directory entry. The
issuer_name parameter specifies the CRL issuer name. This name must match the
issuer name stored in the CRL.

Retrieved certificate revocation lists are cached so that it is not necessary to contact
the LDAP server for subsequent requests for the same issuer. The cached
revocation lists will be released when the gsk_close_directory() routine is called to
close the directory handle. The cached entries will also be discarded at the end of
the cache timeout specified by the GSK_CRL_CACHE_TIMEOUT environment
variable (the default timeout is 24 hours).

gsk_get_directory_crls()

300 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

gsk_get_directory_enum()
Gets an enumerated value from an LDAP directory.

Format
#include <gskcms.h>

gsk_status gsk_get_directory_enum (
gsk_handle directory_handle,
GSKCMS_DIRECTORY_ENUM_ID enum_id,
GSKCMS_DIRECTORY_ENUM_VALUE * enum_value)

Parameters

directory_handle
Specifies an LDAP directory handle returned by gsk_open_directory().

enum_id
Specifies the directory enumeration identifier.

enum_value
Specifies the directory enumeration value.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskcms.h include file. These are some
possible errors:

[CMSERR_ATTRIBUTE_INVALID_ID]
The enumeration identifier is not valid or cannot be used with the
specified handle.

[CMSERR_ATTRIBUTE_INVALID_ENUMERATION]
The enumeration value is not valid or cannot be used with the specified
enumeration ID.

[CMSERR_BAD_HANDLE]
The handle is not valid.

Usage

The gsk_get_directory_enum() routine returns an enumerated value for an LDAP
directory.

These enumeration identifiers are supported:

GSKCMS_CRL_SECURITY_LEVEL
Returns the level of security set for the LDAP directory when contact is
attempted between the application and an LDAP server that may contain a
Certificate Revocation List (CRL).

One of three possible settings for GSKCMS_CRL_SECURITY_LEVEL will
be returned:
v GSKCMS_CRL_SECURITY_LEVEL_LOW - Certificate validation will not

fail if the LDAP server cannot be contacted.
v GSKCMS_CRL_SECURITY_LEVEL_MEDIUM - Certificate validation

requires the LDAP server to be contactable, but does not require a CRL
to be defined. This is the default setting.

gsk_get_directory_enum()

Chapter 8. Certificate Management Services (CMS) API reference 301

v GSKCMS_CRL_SECURITY_LEVEL_HIGH - Certificate validation
requires the LDAP server to be contactable, and a CRL to be defined.

gsk_get_directory_enum()

302 z/OS V2R1.0 System SSL Programming

gsk_get_ec_parameters_info()
Get the named curve type and key size for EC domain parameters.

Format
#include <gskcms.h>

gsk_status gsk_get_ec_parameters_info (
gsk_buffer * ec_parameters,
x509_ec_parameters_info * key_info)

Parameters

ec_parameters
Specifies the ASN.1-encoded EC domain parameters to be analyzed.

key_info
Returns the elliptic curve information.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CSMERR_EC_PARAMETERS_NOT_SUPPLIED]
EC parameters not supplied.

[CMSERR_STRUCTURE_TOO_SMALL]
Size specified for supplied structure is too small.

Usage

The gsk_get_ec_parameters_info() routine returns the elliptic curve type and key
size of the supplied EC domain parameters. Before calling the function, the
application must initialize the size field in key_info to the size of the
x509_ec_parameters_info structure.

gsk_get_ec_parameters_info()

Chapter 8. Certificate Management Services (CMS) API reference 303

gsk_get_record_by_id()
Gets a database record using the record identifier.

Format
#include <gskcms.h>

gsk_status gsk_get_record_by_id (
gsk_handle db_handle,
gsk_int32 record_id,
gskdb_record ** record)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine.

record_id
Specifies the record identifier.

record
Returns the database record. The application should call the gsk_free_record()
routine to release the record when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested record is not found.

Usage

The gsk_get_record_by_id() routine retrieves a record from a key or request
database based upon the unique record identifier. The record identifier is assigned
when the record is added to the database and does not change as records are
added and deleted.

gsk_get_record_by_id()

304 z/OS V2R1.0 System SSL Programming

gsk_get_record_by_index()
Gets a database record using a sequential index.

Format
#include <gskcms.h>

gsk_status gsk_get_record_by_index (
gsk_handle db_handle,
int index,
gskdb_record ** record)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine.

index
Specifies the sequential index of the record. The first record in the database is
record 1.

record
Returns the database record. The application should call the gsk_free_record()
routine to release the record when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested record is not found.

Usage

The gsk_get_record_by_index() routine retrieves a record from a key or request
database based upon a sequential index number. The first record in the database is
record 1. The index numbers will change as records are added and deleted.

gsk_get_record_by_index()

Chapter 8. Certificate Management Services (CMS) API reference 305

gsk_get_record_by_label()
Gets a database record using the record label.

Format
#include <gskcms.h>

gsk_status gsk_get_record_by_label (
gsk_handle db_handle,
const char * label,
gskdb_record ** record)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine.

label
Specifies the label of the database record. The label is specified in the local
code page.

record
Returns the database record. The application should call the gsk_free_record()
routine to release the record when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
No label specified.

[CMSERR_MULTIPLE_LABEL]
Multiple certificates exist for label.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested record is not found.

Usage

The gsk_get_record_by_label() routine retrieves a record from a key or request
database based upon the record label. The record label is a character string
assigned when the record is added to the database. The label comparison is
case-sensitive.

gsk_get_record_by_label()

306 z/OS V2R1.0 System SSL Programming

gsk_get_record_by_subject()
Gets one or more database records using the certificate subject.

Format
#include <gskcms.h>

gsk_status gsk_get_record_by_subject (
gsk_handle db_handle,
x509_name * name,
int * num_records,
gskdb_record *** records)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine.

name
Specifies the certificate subject.

num_records
Returns the number of records in the array.

records
Returns the array of database records. The application should call the
gsk_free_records() routine to release the array when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_INCORRECT_DBTYPE]
The database does not support this operation.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECORD_NOT_FOUND]
The requested record is not found.

Usage

The gsk_get_record_by_subject() routine retrieves all records from a key database
with the specified subject name. When matching UTF-8 encoded attribute values
(gsk_string_utf8) in the subject name, System SSL uses a case sensitive (exact
match) comparison.

gsk_get_record_by_subject()

Chapter 8. Certificate Management Services (CMS) API reference 307

gsk_get_record_labels()
Gets the record labels for a key or request database.

Format
#include <gskcms.h>

gsk_status gsk_get_record_labels (
gsk_handle db_handle,
gsk_boolean private_key,
int * num_labels,
char *** labels)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine.

private_key
Specify TRUE if labels for records containing a private key are to be returned.
Specify FALSE if labels for records without a private key are to be returned.

num_labels
Returns the number of record labels.

labels
Returns an array of string addresses. The labels are returned using the local
code page. The application should call the gsk_free_strings() routine to release
the record labels when they are no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_get_record_labels() routine returns all of the record labels for a key or
request database. The gsk_get_record_by_label() routine can then be used to
retrieve a specific database record. The array address will be set to NULL and the
number of labels will be set to 0 if there are no records in the database.

gsk_get_record_labels()

308 z/OS V2R1.0 System SSL Programming

gsk_get_update_code()
Gets the database update code.

Format
#include <gskcms.h>

gsk_status gsk_get_update_code (
gsk_handle db_handle,
gsk_uint32 * update_code)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine.

update_code
Returns the current update code for the database.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_get_update_code() routine returns the current update code for the
database. For a file-based database or z/OS PKCS #11 token, this is the
modification timestamp. For a SAF key ring, this is the ring sequence number. If
an update has occurred, the application can close and then re-open the database to
pick up the updates.

gsk_get_update_code()

Chapter 8. Certificate Management Services (CMS) API reference 309

gsk_import_certificate()
Imports a certificate.

Format
#include <gskcms.h>

gsk_status gsk_import_certificate (
gsk_handle db_handle,
const char * label,
gsk_buffer * stream)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or
the gsk_open_database() routine.

label
Specifies the label for the new database record. The label is specified in the
local code page.

stream
Specifies the byte stream of the encoded certificate.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The key algorithm or signature algorithm is not supported.

[CMSERR_BAD_KEY_SIZE]
The algorithm key size is not valid.

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_BASE64_ENCODING]
The Base64 encoding of the import file is not correct.

[CMSERR_BAD_ENCODING]
The import file format is not recognized.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_BAD_SIGNATURE]
The certificate signature is not correct.

[CMSERR_DUPLICATE_CERTIFICATE]
The database already contains the certificate.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

gsk_import_certificate()

310 z/OS V2R1.0 System SSL Programming

[CMSERR_EXPIRED]
The certificate is expired.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_USAGE]
The issuer certificate does not allow signing certificates.

[CMSERR_ISSUER_NOT_CA]
The certificate issuer is not a certification authority.

[CMSERR_ISSUER_NOT_FOUND]
The issuer certificate is not in the key database.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NOT_YET_VALID]
The certificate is not yet valid.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update or update attempted on a FIPS mode
database while in non-FIPS mode.

Usage

The gsk_import_certificate() routine imports an X.509 certificate and creates a new
database record. An error will be returned if the certificate is already in the
database. The database must be a key database and must be open for update in
order to import certificates.

The supplied stream can represent either the ASN.1 DER encoding for the
certificate or the Cryptographic Message Syntax (PKCS #7) encoding for the
certificate. This can be either the binary value or the Base64 encoding of the binary
value. A Base64 encoded stream must be in the local code page and must include
the encoding header and footer lines.

The gsk_import_certificate() routine imports a single certificate. If the PKCS #7
message contains multiple certificates, only the first certificate and its certificate
chain will be imported. The certificate subject name will be used as the label for

gsk_import_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 311

certificates added from the certification chain. A chain certificate will not be added
to the database if the label is not unique or if the certificate is already in the
database.

A unique record identifier is assigned when the record is added to the database.
The certificate signature will be verified using the certificate of the issuer. An error
will be returned if the issuer certificate is not already in the key database and is
not contained in the PKCS #7 message stream. The certificate will be marked as a
trusted certificate when it is added to the database.

The record label is used as a friendly name for the database entry. It can be any
value and consists of characters which can be represented using 7-bit ASCII
(letters, numbers, and punctuation). It may not be an empty string.

An existing certificate can be replaced by specifying the label of the existing
certificate. The issuer name, subject name, and subject public key in the new
certificate must be the same as the existing certificate. If the existing certificate has
a private key, the private key is not changed when the certificate is replaced.

The database file is updated as part of the gsk_import_certificate() processing. A
temporary database file is created using the same name as the database file with
".new" appended to the name. The database file is then overwritten and the
temporary database file is deleted. The temporary database file will not be deleted
if an error occurs while rewriting the database file.

gsk_import_certificate()

312 z/OS V2R1.0 System SSL Programming

gsk_import_key()
Imports a certificate and associated private key.

Format
#include <gskcms.h>

gsk_status gsk_import_key (
gsk_handle db_handle,
const char * label,
const char * password,
gsk_buffer * stream)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or
the gsk_open_database() routine.

label
Specifies the label for the new database record. The label is specified in the
local code page.

password
Specifies the password for the import file. The password is in the local code
page and must consist of characters which can be represented using 7-bit
ASCII (letters, numbers, and punctuation). It may not be an empty string. The
user will be prompted to enter the password if NULL is specified for this
parameter.

stream
Specifies the byte stream for the encoded certificate and private key.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The key algorithm or signature algorithm is not supported.

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_BASE64_ENCODING]
The Base64 encoding of the import file is not correct.

[CMSERR_BAD_ENCODING]
The import file format is not recognized.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_BAD_SIGNATURE]
The certificate signature is not correct.

gsk_import_key()

Chapter 8. Certificate Management Services (CMS) API reference 313

[CMSERR_DUPLICATE_CERTIFICATE]
The database already contains the certificate.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_EXPIRED]
The certificate is expired.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_USAGE]
The issuer certificate does not allow signing certificates.

[CMSERR_ISSUER_NOT_CA]
The certificate issuer is not a certification authority.

[CMSERR_ISSUER_NOT_FOUND]
The issuer certificate is not in the key database.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NOT_YET_VALID]
The certificate is not yet valid.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update or update attempted on a FIPS mode
database while in non-FIPS mode.

Usage

The gsk_import_key() routine imports an X.509 certificate and its private key and
creates a new database record. An error will be returned if the database already
contains the certificate. The database must be open for update in order to import
certificates.

The certificate and key must have been encoded according to the Personal
Information Exchange Syntax (PKCS #12). If executing in FIPS mode, the only

gsk_import_key()

314 z/OS V2R1.0 System SSL Programming

supported encryption is the x509_alg_pbeWithSha1And3DesCbc algorithm. The
supplied stream can be the binary ASN.1 sequence or the Base64 encoding of the
ASN.1 sequence. A Base64 encoded stream is assumed to be in the local code page
and must include the encoding header and footer lines.

The record label is used as a friendly name for the database entry. It can be any
value and consists of characters which can be represented using 7-bit ASCII
(letters, numbers, and punctuation). It may not be an empty string. An error will
be returned if the certificate already exists in the key database or the record label is
not unique.

A unique record identifier is assigned when the record is added to the database.
The certificate signature will be verified using the certificate of the issuer. The
certificate will be marked as a trusted certificate when it is added to the database.

Each certificate in the certification chain will be imported if it is present in the
import file. The certificate subject name will be used as the label for certificates
added from the certification chain. A chain certificate will not be added to the
database if the label is not unique or if the certificate is already in the database.

The database file is updated as part of the gsk_import_key() processing. A
temporary database file is created using the same name as the database file with
".new" appended to the name. The database file is then overwritten and the
temporary database file is deleted. The temporary database file will not be deleted
if an error occurs while rewriting the database file.

gsk_import_key()

Chapter 8. Certificate Management Services (CMS) API reference 315

gsk_make_content_msg()
Creates a PKCS #7 content information message.

Format
#include <gskcms.h>

gsk_status gsk_make_content_msg (
pkcs_content_info * content_info,
gsk_buffer * stream)

Parameters

content_info
Specifies the content information for the message.

stream
Returns the ASN.1 DER-encoded stream. The application should call the
gsk_free_buffer() routine to release the stream when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported

[CMSERR_NO_MEMORY]
Insufficient storage is available

Usage

The gsk_make_content_msg() routine creates a PKCS #7 (Cryptographic Message
Syntax) message using the supplied content information and returns the ASN.1
DER-encoded ContentInfo sequence. The message content type can be any of the
types defined by the PKCS #7 specification. The gsk_read_content_msg() routine
can be used to extract the content information from the stream.

gsk_make_content_msg()

316 z/OS V2R1.0 System SSL Programming

gsk_make_data_content()
Creates PKCS #7 Data content information from application data.

Format
#include <gskcms.h>

gsk_status gsk_make_data_content (
gsk_buffer * data,
pkcs_content_info * content_info)

Parameters

data
Specifies the application data.

content_info
Returns the Data content information. The application should call the
gsk_free_content_info() routine to release the content information when it is
no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_NO_CONTENT_DATA]
The application data length is zero

[CMSERR_NO_MEMORY]
Insufficient storage is available

Usage

The gsk_make_data_content() routine creates PKCS #7 (Cryptographic Message
Syntax) Data content information. The gsk_read_data_content() routine can be
used to extract the application data from the content information.

gsk_make_data_content()

Chapter 8. Certificate Management Services (CMS) API reference 317

gsk_make_data_msg()
Creates a PKCS #7 Data message from application data.

Format
#include <gskcms.h>

gsk_status gsk_make_data_msg (
gsk_buffer * data,
gsk_buffer * stream)

Parameters

data
Specifies the application data.

stream
Returns the ASN.1 DER-encoded stream. The application should call the
gsk_free_buffer() routine to release the stream when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_NO_CONTENT_DATA]
The application data length is zero

[CMSERR_NO_MEMORY]
Insufficient storage is available

Usage

The gsk_make_data_msg() routine creates a PKCS #7 (Cryptographic Message
Syntax) Data message and returns the ASN.1 DER-encoded ContentInfo sequence.
The message content type will be Data. The gsk_read_data_msg() routine can be
used to extract the application data from the stream.

Calling the gsk_make_data_msg() routine is equivalent to calling the
gsk_make_data_content() routine followed by the gsk_make_content_msg()
routine.

gsk_make_data_msg()

318 z/OS V2R1.0 System SSL Programming

gsk_make_encrypted_data_content()
Creates PKCS #7 EncryptedData content information.

Format
#include <gskcms.h>

gsk_status gsk_make_encrypted_data_content (
int version,
x509_algorithm_type pbe_algorithm,
const char * password,
int iterations,
pkcs_content_info * content_data,
pkcs_content_info * content_info)

Parameters

version
Specifies the PKCS #7 EncryptedData version number. This must be 0.

pbe_algorithm
Specifies the password-based encryption algorithm.

password
Specifies the encryption password as a null-terminated string in the local code
page. The user will be prompted to enter the password if NULL is specified for
this parameter.

iterations
Specifies the number of iterations used to derive the encryption key from the
password. It is recommended that iterations be specified as 1024 or greater.

content_data
Specifies the EncryptedData content. This must be one of the content
information types defined in PKCS #7.

content_info
Returns the EncryptedData content information. The application should call the
gsk_free_content_info() routine to release the content information when it is
no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_AVAILABLE]
Encryption algorithm is not available

[CMSERR_ALG_NOT_SUPPORTED]
Encryption algorithm is not supported

[CMSERR_API_NOT_SUPPORTED]
The API is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported

[CMSERR_NO_CONTENT_DATA]
The content data length is zero

gsk_make_encrypted_data_content()

Chapter 8. Certificate Management Services (CMS) API reference 319

[CMSERR_NO_MEMORY]
Insufficient storage is available

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid

Usage

The gsk_make_encrypted_data_content() routine creates PKCS #7 (Cryptographic
Message Syntax) EncryptedData content information. The data content type must
be one of the types defined by PKCS #7. The gsk_read_encrypted_data_content()
routine can be used to extract the content data from the content information.

gsk_make_encrypted_data_content() is not supported when executing in FIPS
mode and will return CMSERR_API_NOT_SUPPORTED.

The encryption key is derived from the password as described in PKCS #5, Version
2.0: Password-based Encryption and PKCS #12, Version 1.0: Personal Information
Exchange. The selected algorithm determines how the key is derived from the
password.

These password-based encryption algorithms are supported. The strong encryption
algorithms may not be available depending upon government export regulations.
v x509_alg_pbeWithMd2AndDesCbc - 56-bit DES encryption with MD2 digest -

{1.2.840.113549.1.5.1}

v x509_alg_pbeWithMd5AndDesCbc - 56-bit DES encryption with MD5 digest -
{1.2.840.113549.1.5.3}

v x509_alg_pbeWithSha1AndDesCbc - 56-bit DES encryption with SHA-1 digest
- {1.2.840.113549.1.5.10}

v x509_alg_pbeWithMd2AndRc2Cbc - 64-bit RC2 encryption with MD2 digest -
{1.2.840.113549.1.5.4}

v x509_alg_pbeWithMd5AndRc2Cbc - 64-bit RC2 encryption with MD5 digest -
{1.2.840.113549.1.5.6}

v x509_alg_pbeWithSha1AndRc2Cbc - 64-bit RC2 encryption with SHA-1 digest
- {1.2.840.113549.1.5.11}

v x509_alg_pbeWithSha1And40BitRc2Cbc - 40-bit RC2 encryption with SHA-1
digest - {1.2.840.113549.1.12.1.6}

v x509_alg_pbeWithSha1And128BitRc2Cbc - 128-bit RC2 encryption with SHA-1
digest - {1.2.840.113549.1.12.1.5}

v x509_alg_pbeWithSha1And40BitRc4 - 40-bit RC4 encryption with SHA-1 digest
- {1.2.840.113549.1.12.1.2}

v x509_alg_pbeWithSha1And128BitRc4 - 128-bit RC4 encryption with SHA-1
digest - {1.2.840.113549.1.12.1.1}

v x509_alg_pbeWithSha1And3DesCbc - 168-bit 3DES encryption with SHA-1
digest - {1.2.840.113549.1.12.1.3}

gsk_make_encrypted_data_content()

320 z/OS V2R1.0 System SSL Programming

http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2138
http://www.rsa.com/rsalabs/node.asp?id=2138

gsk_make_encrypted_data_msg()
Creates a PKCS #7 EncryptedData message from application data.

Format
#include <gskcms.h>

gsk_status gsk_make_encrypted_data_msg (
int version,
x509_algorithm_type pbe_algorithm,
const char * password,
int iterations,
gsk_buffer * data,
gsk_buffer * stream)

Parameters

version
Specifies the PKCS #7 EncryptedData version number. This must be 0.

pbe_algorithm
Specifies the password-based encryption algorithm.

password
Specifies the encryption password as a null-terminated string in the local code
page. The user will be prompted to enter the password if NULL is specified for
this parameter.

iterations
Specifies the number of iterations used to derive the encryption key from the
password. It is recommended that iterations be specified as 1024 or greater.

data
Specifies the application data for the EncryptedData message.

stream
Returns the ASN.1 DER-encoded stream. The application should call the
gsk_free_buffer() routine to release the stream when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_AVAILABLE]
Encryption algorithm is not available

[CMSERR_ALG_NOT_SUPPORTED]
Encryption algorithm is not supported

[CMSERR_API_NOT_SUPPORTED]
The API is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported

[CMSERR_NO_CONTENT_DATA]
The content data length is zero

[CMSERR_NO_MEMORY]
Insufficient storage is available

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid

gsk_make_encrypted_data_msg()

Chapter 8. Certificate Management Services (CMS) API reference 321

Usage

The gsk_make_encrypted_data_msg() routine creates a PKCS #7 (Cryptographic
Message Syntax) EncryptedData message and returns the ASN.1 DER-encoded
ContentInfo sequence. The encrypted data content type will be Data. The
gsk_read_encrypted_data_msg() routine can be used to extract the application data
from the stream.

gsk_make_encrypted_data_msg() is not supported when executing in FIPS mode
and will return CMSERR_API_NOT_SUPPORTED.

Calling the gsk_make_encrypted_data_msg() routine is equivalent to calling the
gsk_make_data_content() routine, the gsk_make_encrypted_data_content() routine,
and the gsk_make_content_msg() routine.

The encryption key is derived from the password as described in PKCS #5, Version
2.0: Password-based Encryption and PKCS #12, Version 1.0: Personal Information
Exchange. The selected algorithm determines how the key is derived from the
password.

These password-based encryption algorithms are supported. The strong encryption
algorithms may not be available depending upon government export regulations.
v x509_alg_pbeWithMd2AndDesCbc - 56-bit DES encryption with MD2 digest -

{1.2.840.113549.1.5.1}

v x509_alg_pbeWithMd5AndDesCbc - 56-bit DES encryption with MD5 digest -
{1.2.840.113549.1.5.3}

v x509_alg_pbeWithSha1AndDesCbc - 56-bit DES encryption with SHA-1 digest
- {1.2.840.113549.1.5.10}

v x509_alg_pbeWithMd2AndRc2Cbc - 64-bit RC2 encryption with MD2 digest -
{1.2.840.113549.1.5.4}

v x509_alg_pbeWithMd5AndRc2Cbc - 64-bit RC2 encryption with MD5 digest -
{1.2.840.113549.1.5.6}

v x509_alg_pbeWithSha1AndRc2Cbc - 64-bit RC2 encryption with SHA-1 digest
- {1.2.840.113549.1.5.11}

v x509_alg_pbeWithSha1And40BitRc2Cbc - 40-bit RC2 encryption with SHA-1
digest - {1.2.840.113549.1.12.1.6}

v x509_alg_pbeWithSha1And128BitRc2Cbc - 128-bit RC2 encryption with SHA-1
digest - {1.2.840.113549.1.12.1.5}

v x509_alg_pbeWithSha1And40BitRc4 - 40-bit RC4 encryption with SHA-1 digest
- {1.2.840.113549.1.12.1.2}

v x509_alg_pbeWithSha1And128BitRc4 - 128-bit RC4 encryption with SHA-1
digest - {1.2.840.113549.1.12.1.1}

v x509_alg_pbeWithSha1And3DesCbc - 168-bit 3DES encryption with SHA-1
digest - {1.2.840.113549.1.12.1.3}

gsk_make_encrypted_data_msg()

322 z/OS V2R1.0 System SSL Programming

http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2138
http://www.rsa.com/rsalabs/node.asp?id=2138

gsk_make_enveloped_data_content()
Create PKCS #7 EnvelopedData content information

Format
#include <gskcms.h>

gsk_status gsk_make_enveloped_data_content (
int version,
pkcs_session_key * session_key,
pkcs_certificates * recipient_certificates,
pkcs_content_info * content_data,
pkcs_content_info * content_info)

Parameters

version
Specifies the PKCS #7 EnvelopedData version number. Specify 0 to create
EnvelopedData content as described in PKCS #7 Version 1.5. Specify 1 to create
EnvelopedData content as described in PKCS #7 Version 1.6.

session_key
Specifies the session encryption key as follows:
v The encryptionType field specifies the encryption algorithm.
v The encryptionKey.length field specifies the encryption key length in bytes.
v The encryptionKey.data field specifies the address of the encryption key. A

new key will be generated and returned in this parameter if the key address
is NULL. If a new key is generated, the application should call the
gsk_free_buffer() routine to release the key when it is no longer needed.
Note that the encryptionType and encryptionKey.length fields must be set by
the application even when a new session key is to be generated.

recipient_certificates
Specifies the certificates for the message recipients. There must be at least one
recipient.

content_data
Specifies the EnvelopedData content. This must be one of the content
information types defined in PKCS #7.

content_info
Returns the EnvelopedData content information. The application should call
the gsk_free_content_info() routine to release the content information when it
is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_AVAILABLE]
The encryption algorithm is not available

[CMSERR_ALG_NOT_SUPPORTED]
The encryption algorithm is not supported

[CMSERR_BAD_KEY_SIZE]
The encryption key size is not supported

[CMSERR_BAD_RNG_OUTPUT]
In FIPS mode, random bytes generation produced duplicate output.

gsk_make_enveloped_data_content()

Chapter 8. Certificate Management Services (CMS) API reference 323

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_INCORRECT_KEY_USAGE]
A recipient certificate does not allow key encipherment

[CMSERR_KEY_MISMATCH]
A recipient public key does not support data encryption

[CMSERR_NO_CONTENT_DATA]
The content data length is zero

[CMSERR_NO_MEMORY]
Insufficient storage is available

[CMSERR_RECIPIENT_NOT_FOUND]
No recipient certificates provided

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid

Usage

The gsk_make_enveloped_data_content() routine creates PKCS #7 (Cryptographic
Message Syntax) EnvelopedData content information. The data content type must
be one of the types defined by PKCS #7. The gsk_read_enveloped_data_content()
routine can be used to extract the content data from the EnvelopedData content
information. No validity checking is performed on the recipient certificates. It is
assumed that the application has already validated the recipient certificates.

The session key is used to encrypt the message content. A new session key is
generated and returned to the application if no key is provided. For each recipient,
the session key is encrypted with the recipient's public key and stored in the
EnvelopedData message. This means the public key algorithm must support data
encryption. Currently, only RSA public keys support data encryption. In addition,
the certificate key usage must allow key encipherment.

These encryption algorithms are supported. Strong encryption may not be available
depending upon government export regulations.
v x509_alg_rc2CbcPad - 40-bit and 128-bit RC2 - Key lengths 5 and 16 -

{1.2.840.113549.3.2}

v x509_alg_rc4 - 40-bit and 128-bit RC4 - Key lengths 5 and 16 -
{1.2.840.113549.3.4}

v x509_alg_desCbcPad - 56-bit DES - Key length 8 - {1.3.14.3.2.7}

v x509_alg_desEde3CbcPad - 168-bit 3DES - Key length 24 - {1.2.840.113549.3.7}

v x509_alg_aesCbc128 - 128-bit AES CBC - Key length 16 - {2.16.840.1.101.3.4.1.2}

v x509_alg_aesCbc256 - 256-bit AES CBC - Key length 32 - {2.16.840.1.101.3.4.1.42}

When executing in FIPS mode, encryption algorithms x509_alg_rc2CbcPad,
x509_alg_rc4 and x509_alg_desCbcPad are not supported.

gsk_make_enveloped_data_content()

324 z/OS V2R1.0 System SSL Programming

gsk_make_enveloped_data_content_extended()
Create PKCS #7 EnvelopedData content information

Format
#include <gskcms.h>

gsk_status gsk_make_enveloped_data_content_extended (
gsk_process_option option_flag,
int version,
pkcs_session_key * session_key,
pkcs_certificates * recipient_certificates,
pkcs_content_info * content_data,
pkcs_content_info * content_info)

Parameters

option_flag
Specifies process options to customize process behavior:
v Enforce recipient certificate has key encipherment capabilities. That is, the

purpose of the certificate key as reflected by the key usage extension must
indicate keyEnchiperment.

version
Specifies the PKCS #7 EnvelopedData version number. Specify 0 to create
EnvelopedData content as described in PKCS #7 Version 1.5. Specify 1 to create
EnvelopedData content as described in PKCS #7 Version 1.6.

session key
Specifies the session encryption key as follows:
v The encryptionType field specifies the encryption algorithm.
v The encryptionKey.length field specifies the encryption key length in bytes.
v The encryptionKey.data field specifies the address of the encryption key. A

new key will be generated and returned in this parameter if the key address
is NULL. If a new key is generated, the application should call the
gsk_free_buffer() routine to release the key when it is no longer needed.
Note that the encryptionType and encryptionKey.length fields must be set by
the application even when a new session key is to be generated.

recipient_certificates
Specifies the certificates for the message recipients. There must be at least one
recipient.

content_data
Specifies the EnvelopedData content. This must be one of the content
information types defined in PKCS #7.

content_info
Returns the EnvelopedData content information. The application should call
the gsk_free_content_info() routine to release the content information when it
is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_AVAILABLE]
The encryption algorithm is not available

gsk_make_enveloped_data_content_extended()

Chapter 8. Certificate Management Services (CMS) API reference 325

[CMSERR_ALG_NOT_SUPPORTED]
The encryption algorithm is not supported

[CMSERR_BAD_KEY_SIZE]
The encryption key size is not supported

[CMSERR_BAD_RNG_OUTPUT]
In FIPS mode, random bytes generation produced duplicate output.

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_INCORRECT_KEY_USAGE]
A recipient certificate does not allow key encipherment

[CMSERR_KEY_MISMATCH]
A recipient public key does not support data encryption

[CMSERR_NO_CONTENT_DATA]
The content data length is zero

[CMSERR_NO_MEMORY]
Insufficient storage is available

[CMSERR_RECIPIENT_NOT_FOUND]
No recipient certificates provided

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid

Usage

The gsk_make_enveloped_data_content_extended() routine creates PKCS #7
(Cryptographic Message Syntax) EnvelopedData content information. Processing is
equivalent to gsk_make_enveloped_data_content(), except that the recipient
certificate key usage need not assert key encipherment. The data content type must
be one of the types defined by PKCS #7. The gsk_read_enveloped_data_content()
routine or the gsk_read_enveloped_data_content_extended() routine can be used
to extract the content data from the EnvelopedData content information. No
validity checking is performed on the recipient certificates. It is assumed that the
application has already validated the recipient certificates.

The session key is used to encrypt the message content. A new session key is
generated and returned to the application if no key is provided. For each recipient,
the session key is encrypted with the recipient's public key and stored in the
EnvelopedData message. This means the public key algorithm must support data
encryption. Currently, only RSA public keys support data encryption. In addition,
if option_flag specifies that key encipherment is to be enforced, then the certificate
key usage must allow key encipherment.

These encryption algorithms are supported. Strong encryption may not be available
depending upon government export regulations.
v x509_alg_rc2CbcPad - 40-bit and 128-bit RC2 - Key lengths 5 and 16 -

{1.2.840.113549.3.2}

v x509_alg_rc4 - 40-bit and 128-bit RC4 - Key lengths 5 and 16 -
{1.2.840.113549.3.4}

v x509_alg_desCbcPad - 56-bit DES - Key length 8 - {1.3.14.3.2.7}

gsk_make_enveloped_data_content_extended()

326 z/OS V2R1.0 System SSL Programming

v x509_alg_desEde3CbcPad - 168-bit 3DES - Key length 24 - {1.2.840.113549.3.7}

v x509_alg_aesCbc128 - 128-bit AES CBC - Key length 16 - {2.16.840.1.101.3.4.1.2}

v x509_alg_aesCbc256 - 256-bit AES CBC - Key length 32 - {2.16.840.1.101.3.4.1.42}

When executing in FIPS mode, encryption algorithms x509_alg_rc2CbcPad,
x509_alg_rc4 and x509_alg_desCbcPad are not supported.

gsk_make_enveloped_data_content_extended()

Chapter 8. Certificate Management Services (CMS) API reference 327

gsk_make_enveloped_data_msg()
Creates a PKCS #7 EnvelopedData message from application data.

Format
#include <gskcms.h>

gsk_status gsk_make_enveloped_data_msg (
int version,
pkcs_session_key * session_key,
pkcs_certificates * recipient_certificates,
gsk_buffer * data,
gsk_buffer * stream)

Parameters

version
Specifies the PKCS #7 EnvelopedData version number. Specify 0 to create an
EnvelopedData message as described in PKCS #7 Version 1.5. Specify 1 to
create an EnvelopedData message as described in PKCS #7 Version 1.6.

session_key
Specifies the session encryption key as follows:
v The encryptionType field specifies the encryption algorithm.
v The encryptionKey.length field specifies the encryption key length in bytes.
v The encryptionKey.data field specifies the address of the encryption key. A

new key will be generated and returned in this parameter if the key address
is NULL. If a new key is generated, the application should call the
gsk_free_buffer() routine to release the key when it is no longer needed.
Note that the encryptionType and encryptionKey.length fields must be set by
the application even when a new session key is to be generated.

recipient_certificates
Specifies the certificates for the message recipients. There must be at least one
recipient.

data
Specifies the application data for the EnvelopedData message.

stream
Returns the ASN.1 DER-encoded stream. The application should call the
gsk_free_buffer() routine to release the stream when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_AVAILABLE]
The encryption algorithm is not available.

[CMSERR_ALG_NOT_SUPPORTED]
The encryption algorithm is not supported.

[CMSERR_BAD_KEY_SIZE]
The encryption key size is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported.

[CMSERR_INCORRECT_KEY_USAGE]
A recipient certificate does not allow key encipherment.

gsk_make_enveloped_data_msg()

328 z/OS V2R1.0 System SSL Programming

[CMSERR_KEY_MISMATCH]
A recipient public key does not support data encryption.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECIPIENT_NOT_FOUND]
No recipient certificates provided.

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid.

Usage

The gsk_make_enveloped_data_msg() routine creates a PKCS #7 (Cryptographic
Message Syntax) EnvelopedData message and returns the ASN.1 DER-encoded
ContentInfo sequence. The enveloped data content type will be Data. The
gsk_read_enveloped_data_msg() routine can be used to extract the application
data from the stream. No validity checking is performed on the recipient
certificates. It is assumed that the application has already validated the recipient
certificates.

Calling the gsk_make_enveloped_data_msg() routine is equivalent to calling the
gsk_make_data_content() routine, the gsk_make_enveloped_data_content()
routine, and the gsk_make_content_msg() routine.

The session key is used to encrypt the message content. A new session key is
generated and returned to the application if no key is provided. For each recipient,
the session key is encrypted with the recipient's public key and stored in the
EnvelopedData message. This means the public key algorithm must support data
encryption. Currently, only RSA public keys support data encryption. In addition,
the certificate key usage must allow key encipherment.

These encryption algorithms are supported. Strong encryption may not be available
depending upon government export regulations.
v x509_alg_rc2CbcPad - 40-bit and 128-bit RC2 - Key lengths 5 and 16 -

{1.2.840.113549.3.2}

v x509_alg_rc4 - 40-bit and 128-bit RC4 - Key lengths 5 and 16 -
{1.2.840.113549.3.4}

v x509_alg_desCbcPad - 56-bit DES - Key length 8 - {1.3.14.3.2.7}

v x509_alg_desEde3CbcPad - 168-bit 3DES - Key length 24 - {1.2.840.113549.3.7}

v x509_alg_aesCbc128 - 128-bit AES CBC - Key length 16 - {2.16.840.1.101.3.4.1.2}

v x509_alg_aesCbc256 - 256-bit AES CBC - Key length 32 - {2.16.840.1.101.3.4.1.42}

When executing in FIPS mode, encryption algorithms x509_alg_rc2CbcPad,
x509_alg_rc4 and x509_alg_desCbcPad are not supported.

gsk_make_enveloped_data_msg()

Chapter 8. Certificate Management Services (CMS) API reference 329

gsk_make_enveloped_data_msg_extended()
Creates a PKCS #7 EnvelopedData message from application data.

Format
#include <gskcms.h>

gsk_status gsk_make_enveloped_data_msg_extended (
gsk_process_option option_flag,
int version,
pkcs_session_key * session_key,
pkcs_certificates * recipient_certificates,
gsk_buffer * data,
gsk_buffer * stream)

Parameters

option_flag
Specifies process options to customize process behavior:
v Enforce recipient certificate has key encipherment capabilities. That is, the

purpose of the certificate key as reflected by the key usage extension must
indicate keyEncipherment.

version
Specifies the PKCS #7 EnvelopedData version number. Specify 0 to create an
EnvelopedData message as described in PKCS #7 Version 1.5. Specify 1 to
create an EnvelopedData message as described in PKCS #7 Version 1.6.

session_key
Specifies the session encryption key as follows:
v The encryptionType field specifies the encryption algorithm.
v The encryptionKey.length field specifies the encryption key length in bytes.
v The encryptionKey.data field specifies the address of the encryption key. A

new key will be generated and returned in this parameter if the key address
is NULL. If a new key is generated, the application should call the
gsk_free_buffer() routine to release the key when it is no longer needed.
Note that the encryptionType and encryptionKey.length fields must be set by
the application even when a new session key is to be generated.

recipient_certificates
Specifies the certificates for the message recipients. There must be at least one
recipient.

data
Specifies the application data for the EnvelopedData message.

stream
Returns the ASN.1 DER-encoded stream. The application should call the
gsk_free_buffer() routine to release the stream when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_AVAILABLE]
The encryption algorithm is not available.

[CMSERR_ALG_NOT_SUPPORTED]
The encryption algorithm is not supported.

gsk_make_enveloped_data_msg_extended()

330 z/OS V2R1.0 System SSL Programming

[CMSERR_BAD_KEY_SIZE]
The encryption key size is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported.

[CMSERR_INCORRECT_KEY_USAGE]
A recipient certificate does not allow key encipherment.

[CMSERR_KEY_MISMATCH]
A recipient public key does not support data encryption.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_RECIPIENT_NOT_FOUND]
No recipient certificates provided.

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid.

Usage

The gsk_make_enveloped_data_msg_extended() routine creates a PKCS #7
(Cryptographic Message Syntax) EnvelopedData message and returns the ASN.1
DER-encoded ContentInfo sequence. Processing is equivalent to
gsk_make_enveloped_data_msg(), except that the recipient certificate key usage
need not assert key encipherment. The enveloped data content type will be Data.
The gsk_read_enveloped_data_msg() routine or the
gsk_read_enveloped_data_msg_extended() routine can be used to extract the
application data from the stream. No validity checking is performed on the
recipient certificates. It is assumed that the application has already validated the
recipient certificates.

Calling the gsk_make_enveloped_data_msg_extended() routine is equivalent to
calling the gsk_make_data_content() routine, the
gsk_make_enveloped_data_content_extended() routine, and the
gsk_make_content_msg() routine.

The session key is used to encrypt the message content. A new session key is
generated and returned to the application if no key is provided. For each recipient,
the session key is encrypted with the recipient's public key and stored in the
EnvelopedData message. This means the public key algorithm must support data
encryption. Currently, only RSA public keys support data encryption. In addition,
if option_flag specifies that key encipherment is to be enforced, then the certificate
key usage must allow key encipherment.

These encryption algorithms are supported. Strong encryption may not be available
depending upon government export regulations.
v x509_alg_rc2CbcPad - 40-bit and 128-bit RC2 - Key lengths 5 and 16 -

{1.2.840.113549.3.2}

v x509_alg_rc4 - 40-bit and 128-bit RC4 - Key lengths 5 and 16 -
{1.2.840.113549.3.4}

v x509_alg_desCbcPad - 56-bit DES - Key length 8 - {1.3.14.3.2.7}

v x509_alg_desEde3CbcPad - 168-bit 3DES - Key length 24 - {1.2.840.113549.3.7}

gsk_make_enveloped_data_msg_extended()

Chapter 8. Certificate Management Services (CMS) API reference 331

v x509_alg_aesCbc128 - 128-bit AES CBC - Key length 16 - {2.16.840.1.101.3.4.1.2}

v x509_alg_aesCbc256 - 256-bit AES CBC - Key length 32 - {2.16.840.1.101.3.4.1.42}

When executing in FIPS mode, encryption algorithms x509_alg_rc2CbcPad,
x509_alg_rc4 and x509_alg_desCbcPad are not supported.

gsk_make_enveloped_data_msg_extended()

332 z/OS V2R1.0 System SSL Programming

gsk_make_enveloped_private_key_msg()
Creates a PKCS #7 EnvelopedData message from application data. The application
data passed in is the PKCS #11 secure key label name.

Format
#include <gskcms.h>

gsk_status gsk_make_enveloped_private_key_msg (
gsk_uint32 option_flag,
int version,
x509_algorithm_type encryption_algorithm,
pkcs_certificates * recipient_certificates,
gsk_buffer * secure_key_label,
gsk_buffer * stream)

Parameters

option_flag
Specifies process options to customize process behavior. Specify execution
options using bit setting.
v GSK_PROCESS_OPTION_ENFORCE_KEYUSAGE - Enforce recipient

certificate has key encipherment capabilities. That is, the purpose of the
certificate key as reflected by the key usage extension must indicate
keyEncipherment is supported.

v Any other bit values are ignored.

version
Specify PKCS #7 EnvelopedData version number. Only version 0, PKCS #7
Version 1.5, is supported.

encryption_algorithm
Specifies the algorithm to be used:
v x509_alg_aesCbc128 for AES with Key length 16.
v x509_alg_aesCbc256 for AES with Key length 32.
v x509_alg_desEde3CbcPad for 3DES with Key length 24.

recipient_certificates
Specifies the certificates for the message recipients. There must be at least one
recipient.

secure_key_label
Specifies a PKCS #11 secure private key label object. No other type of object is
supported.

stream
Returns the ASN.1 DER-encoded stream. The application calls the
gsk_free_buffer() routine to release the stream when it is no longer needed.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskcms.h include file. These are some
possible errors:

[CMSERR_ALG_NOT_AVAILABLE]
The encryption algorithm is not available.

[CMSERR_ALG_NOT_SUPPORTED]
The encryption algorithm is not supported.

gsk_make_enveloped_private_key_msg()

Chapter 8. Certificate Management Services (CMS) API reference 333

[CMSERR_BAD_KEY_SIZE]
The recipient key size is not supported.

[CMSERR_CRYPTO_HARDWARE_NOT_AVAILABLE]
Cryptographic hardware does not support service or algorithm.

[CMSERR_ICSF_FIPS_BAD_ALG_OR_KEY_SIZE]
A recipient algorithm or key size is not FIPS approved for an ICSF
operation.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_FIPS]
ICSF is not operating in FIPS mode.

[CMSERR_INCORRECT_KEY_ATTRIBUTE]
Key attributes do not support envelope operation.

[CMSERR_INCORRECT_KEY_USAGE]
A recipient certificate does not allow key encipherment.

[CMSERR_KEY_MISMATCH]
A recipient public key does not support data encryption.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PKCS11_OBJECT_NOT_FOUND]
A PKCS #11 key label is either missing or not valid.

[CMSERR_NO_PRIVATE_KEY]
No private key.

[CMSERR_PKCS11_LABEL_INVALID]
PKCS #11 label is not valid.

[CMSERR_RECIPIENT_NOT_FOUND]
No recipient certificates provided.

Usage

The gsk_make_enveloped_private_key_msg() routine creates a PKCS #7
(Cryptographic Message Syntax) EnvelopedData message using a TKDS secure
private key label and returns the ASN.1 DER-encoded ContentInfo sequence. The
gsk_read_enveloped_data_content() routine or the
gsk_read_enveloped_data_content_extended() routine can be used to extract the
content data from the EnvelopedData content information. No validity checking is
performed on the recipient certificates. It is assumed that the application validated
the recipient certificates.

A session key is used to encrypt the message content. A new session key is
generated but is not returned to the application. For each recipient, the session key
is encrypted with the public key of the recipient and stored in the EnvelopedData
message. Each recipient's public key must be type RSA.

In addition, if option_flag specifies that key usage is to be enforced, then each
recipient certificate key usage must allow key encipherment.

These encryption algorithms are supported. Strong encryption might not be
available, depending upon government export regulations.
v x509_alg_desEde3CbcPad - 168-bit 3DES - Key length 24 - {1.2.840.113549.3.7}

gsk_make_enveloped_private_key_msg()

334 z/OS V2R1.0 System SSL Programming

v x509_alg_aesCbc128 - 128-bit AES CBC - Key length 16 - {2.16.840.1.101.3.4.1.2}

v x509_alg_aesCbc256 - 256-bit AES CBC - Key length 32 - {2.16.840.1.101.3.4.1.42}

gsk_make_enveloped_private_key_msg()

Chapter 8. Certificate Management Services (CMS) API reference 335

gsk_make_signed_data_content()
Creates PKCS #7 SignedData content information.

Format
#include <gskcms.h>

gsk_status gsk_make_signed_data_content (
int version,
x509_algorithm_type digest_algorithm,
gsk_boolean include_certificates,
pkcs_cert_keys * signer_certificates,
pkcs_certificates * ca_certificates,
pkcs_content_info * content_data,
pkcs_content_info * content_info)

Parameters

version
Specifies the PKCS #7 SignedData version number. Specify 0 to create
SignedData content information as described in PKCS #7 Version 1.4, specify 1
to create SignedData content information as described in PKCS #7 Version 1.5,
or specify 2 to create SignedData content information as described in PKCS #7
Version 1.6.

digest_algorithm
Specifies the digest algorithm.

include_certificates
Specify TRUE if the signer and certification authority certificates are to be
included in the SignedData content information. Specify FALSE if the
certificates are not to be included.

signer_certificates
Specifies the certificates and associated private keys for the message signers.
There must be at least one signer.

ca_certificates
Specifies the certification authority certificates. Zero or more certification
authority certificates can be included in the SignedData content information.
This parameter is ignored if the include_certificates parameter is set to FALSE.
NULL can be specified for this parameter if no CA certificates are to be
included in the message.

content_data
Specifies the SignedData content. This must be one of the content information
types defined in PKCS #7.

content_info
Returns the SignedData content information. The application should call the
gsk_free_content_info() routine to release the content information when it is
no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The digest algorithm is not supported.

gsk_make_signed_data_content()

336 z/OS V2R1.0 System SSL Programming

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported.

[CMSERR_DIGEST_KEY_MISMATCH]
The digest algorithm is not supported for the private key type.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_KEY_USAGE]
A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
Private key does not exist or is not accessible.

[CMSERR_SIGNER_NOT_FOUND]
No signer certificate provided or the certificate is not valid.

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid

Usage

The gsk_make_signed_data_content() routine creates PKCS #7 (Cryptographic
Message Syntax) SignedData content information. The data content type must be
one of the types defined by PKCS #7. The gsk_read_signed_data_content() routine
can be used to extract the content data from the SignedData content information.
The key usage for the signer certificates must allow digital signature. No validity
checking will be performed on the signer certificates. It is assumed that the
application has already validated the signer certificates.

A signature is included for each signer provided by the signer_certificates parameter.
The X.509 certificates used to sign the message will be included in the SignedData
content information if the include_certificates parameter is set to TRUE. The message
receiver will need to provide the signer certificates if the include_certificates
parameter is set to FALSE.

You can optionally include certification authority certificates in the SignedData
content information. These certificate can then be used by the message receiver to
validate the signer certificates.

gsk_make_signed_data_content()

Chapter 8. Certificate Management Services (CMS) API reference 337

These digest algorithms are supported:

x509_alg_md2Digest
MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest
MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

x509_alg_sha1Digest
SHA-1 digest (RSA, DSA, and ECDSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest
SHA-224 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest
SHA-256 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest
SHA-384 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest
SHA-512 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.3}

When executing in FIPS mode, digest algorithms x509_alg_md2Digest and
x509_alg_md5Digest are not supported.

gsk_make_signed_data_content()

338 z/OS V2R1.0 System SSL Programming

gsk_make_signed_data_content_extended()
Creates PKCS #7 SignedData content information.

Format
#include <gskcms.h>

gsk_status gsk_make_signed_data_content_extended (
gsk_process_option option_flag,
int version,
x509_algorithm_type digest_algorithm,
gsk_boolean include_certificates,
pkcs_cert_keys * signer_certificates,
pkcs_certificates * ca_certificates,
pkcs_content_info * content_data,
gsk_attributes_signers * attributes_signers,
pkcs_content_info * content_info)

Parameters

option_flag
Specifies process options to customize process behavior.
v Enforce signing certificate has digital signing capabilities. That is, the

purpose of the certificate key as reflected by the key usage extension must
indicate digitalSignature.

v Do not allow zero-length content data

version
Specifies the PKCS #7 SignedData version number. Specify 0 to create
SignedData content information as described in PKCS #7 Version 1.4, specify 1
to create SignedData content information as described in PKCS #7 Version 1.5,
or specify 2 to create SignedData content information as described in PKCS #7
Version 1.6.

digest_algorithm
Specifies the digest algorithm.

include_certificates
Specify TRUE if the signer and certification authority certificates are to be
included in the SignedData content information. Specify FALSE if the
certificates are not to be included.

signer_certificates
Specifies the certificates and associated private keys for the message signers.
There must be at least one signer.

ca_certificates
Specifies the certification authority certificates. Zero or more certification
authority certificates can be included in the SignedData content information.
This parameter is ignored if the include_certificates parameter is set to FALSE.
NULL can be specified for this parameter if no CA certificates are to be
included in the message.

content_data
Specifies the SignedData content. This must be one of the content information
types defined in PKCS #7.

attributes_signers
Specifies the authenticated attributes per signer to be added to the message.
Specify NULL for this parameter if there are no authenticated attributes to be
included in the message. If specified, the set of authenticated attributes must
NOT include content-type or message-digest authenticated attributes as these
are automatically provided by gsk_make_signed_data_content_extended(). If

gsk_make_signed_data_content_extended()

Chapter 8. Certificate Management Services (CMS) API reference 339

the set of authenticated attributes includes signing-time, then this will override
the signing-time attribute generated by
gsk_make_signed_data_content_extended(). The digestAlgorithm field within
each gsk_attributes_signer structure is ignored - the digest algorithm is specified
by the digest_algorithm parameter.

content_info
Returns the SignedData content information. The application should call the
gsk_free_content_info() routine to release the content information when it is
no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The digest algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported.

[CMSERR_DIGEST_KEY_MISMATCH]
The digest algorithm is not supported for the private key type.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_KEY_USAGE]
A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
Private key does not exist or is not accessible.

[CMSERR_SIGNER_NOT_FOUND]
No signer certificate provided or the certificate is not valid.

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid

[CMSERR_CONTENTTYPE_NOT_ALLOWED]
The content-type authenticated attribute is not allowed in attributes_signers.

gsk_make_signed_data_content_extended()

340 z/OS V2R1.0 System SSL Programming

[CMSERR_MESSAGEDIGEST_NOT_ALLOWED]
The message-digest authenticated attribute is not allowed in
attributes_signers

Usage

The gsk_make_signed_data_content_extended() routine creates PKCS #7
(Cryptographic Message Syntax) SignedData content information. The data content
type must be one of the types defined by PKCS #7. Processing is similar to
gsk_make_signed_data_content() except for the presence of the option_flag and
authenticated_attributes parameters. The gsk_read_signed_data_content() routine or
the gsk_read_signed_data_content_extended() routine can be used to extract the
content data from the SignedData content information. The key usage for the
signer certificates can be optionally specified as to whether digital signature must
be allowed. No validity checking is performed on the signer certificates. It is
assumed that the application has already validated the signer certificates.

A signature is included for each signer provided by the signer_certificates parameter.
The X.509 certificates used to sign the message will be included in the SignedData
content information if the include_certificates parameter is set to TRUE. The message
receiver will need to provide the signer certificates if the include_certificates
parameter is set to FALSE.

You can optionally include certification authority certificates in the SignedData
content information. These certificates can then be used by the message receiver to
validate the signer certificates.

These digest algorithms are supported:

x509_alg_md2Digest
MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest
MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

x509_alg_sha1Digest
SHA-1 digest (RSA, DSA, and ECDSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest
SHA-224 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest
SHA-256 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest
SHA-384 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest
SHA-512 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.3}

If authenticated attributes are provided from the attributes_signers parameter, then
signing certificates for all signers represented within the gsk_attributes_signers
structure must be provided from the signer_certificates parameter.

When executing in FIPS mode, digest algorithms x509_alg_md2Digest and
x509_alg_md5Digest are not supported.

gsk_make_signed_data_content_extended()

Chapter 8. Certificate Management Services (CMS) API reference 341

gsk_make_signed_data_msg()
Creates a PKCS #7 SignedData message from application data.

Format
#include <gskcms.h>

gsk_status gsk_make_signed_data_msg (
int version,
x509_algorithm_type digest_algorithm,
gsk_boolean include_certificates,
pkcs_cert_keys * signer_certificates,
pkcs_certificates * ca_certificates,
gsk_buffer * data,
gsk_buffer * stream)

Parameters

version
Specifies the PKCS #7 SignedData version number. Specify 0 to create a
SignedData message as described in PKCS #7 Version 1.4, specify 1 to create a
SignedData message as described in PKCS #7 Version 1.5, or specify 2 to create
a SignedData message as described in PKCS #7 Version 1.6.

digest_algorithm
Specifies the digest algorithm.

include_certificates
Specify TRUE if the signer and certification authority certificates are to be
included in the SignedData message. Specify FALSE if the certificates are not to
be included.

signer_certificates
Specifies the certificates and associated private keys for the message signers.
There must be at least one signer.

ca_certificates
Specifies the certification authority certificates. Zero or more certification
authority certificates can be included in the SignedData message. This
parameter is ignored if the include_certificates parameter is set to FALSE.
NULL can be specified for this parameter if no CA certificates are to be
included in the message.

data
Specifies the application data for the SignedData message.

stream
Returns the ASN.1 DER-encoded stream. The application should call the
gsk_free_buffer() routine to release the stream when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The digest algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported.

gsk_make_signed_data_msg()

342 z/OS V2R1.0 System SSL Programming

[CMSERR_DIGEST_KEY_MISMATCH]
The digest algorithm is not supported for the private key type.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_KEY_USAGE]
A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
Private key does not exist or is not accessible.

[CMSERR_SIGNER_NOT_FOUND]
No signer certificate provided or the certificate is not valid.

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid.

Usage

The gsk_make_signed_data_msg() routine creates a PKCS #7 (Cryptographic
Message Syntax) SignedData message and returns the ASN.1 DER-encoded
ContentInfo sequence. The signed data content type will be Data. The
gsk_read_signed_data_msg() routine can be used to extract the application data
from the stream. The key usage for the signer certificates must allow digital
signature. No validity checking will be performed on the signer certificates. It is
assumed that the application has already validated the signer certificates.

Calling the gsk_make_signed_data_msg() routine is equivalent to calling the
gsk_make_data_content() routine, the gsk_make_signed_data_content() routine,
and the gsk_make_content_msg() routine.

A signature is included for each signer provided by the signer_certificates parameter.
The X.509 certificates used to sign the message will be included in the SignedData
message if the include_certificates parameter is set to TRUE. The message receiver
will need to provide the signer certificates if the include_certificates parameter is set
to FALSE.

You can optionally include certification authority certificates in the SignedData
message. These certificates can then be used by the message receiver to validate
the signer certificates.

gsk_make_signed_data_msg()

Chapter 8. Certificate Management Services (CMS) API reference 343

These digest algorithms are supported:

x509_alg_md2Digest
MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest
MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

x509_alg_sha1Digest
SHA-1 digest (RSA, DSA, and ECDSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest
SHA-224 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest
SHA-256 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest
SHA-384 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest
SHA-512 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.3}

When executing in FIPS mode, digest algorithms x509_alg_md2Digest and
x509_alg_md5Digest are not supported.

gsk_make_signed_data_msg()

344 z/OS V2R1.0 System SSL Programming

gsk_make_signed_data_msg_extended()
Creates a PKCS #7 SignedData message from application data.

Format
#include <gskcms.h>

gsk_status gsk_make_signed_data_msg_extended (
gsk_process_option option_flag,
int version,
x509_algorithm_type digest_algorithm,
gsk_boolean include_certificates,
pkcs_cert_keys * signer_certificates,
pkcs_certificates * ca_certificates,
gsk_buffer * data,
gsk_attributes_signers * attributes_signers,
gsk_buffer * stream)

Parameters

option_flag
Specifies process options to customize process behavior.
v Enforce signing certificate has digital signing capabilities. That is, the

purpose of the certificate key as reflected by the key usage extension must
indicate digitalSignature.

v Do not allow zero-length content data

version
Specifies the PKCS #7 SignedData version number. Specify 0 to create a
SignedData message as described in PKCS #7 Version 1.4, specify 1 to create a
SignedData message as described in PKCS #7 Version 1.5, or specify 2 to create
a SignedData message as described in PKCS #7 Version 1.6.

digest_algorithm
Specifies the digest algorithm.

include_certificates
Specify TRUE if the signer and certification authority certificates are to be
included in the SignedData message. Specify FALSE if the certificates are not to
be included.

signer_certificates
Specifies the certificates and associated private keys for the message signers.
There must be at least one signer.

ca_certificates
Specifies the certification authority certificates. Zero or more certification
authority certificates can be included in the SignedData message. This
parameter is ignored if the include_certificates parameter is set to FALSE.
NULL can be specified for this parameter if no CA certificates are to be
included in the message.

data
Specifies the application data for the SignedData message.

attributes_signers
Specifies the authenticated attributes per signer to be added to the message.
Specify NULL for this parameter if there are no authenticated attributes to be
included in the message. If specified, then the set of authenticated attributes
must NOT include content-type or message-digest authenticated attributes as
these are automatically provided by gsk_make_signed_data_msg_extended().

gsk_make_signed_data_msg_extended()

Chapter 8. Certificate Management Services (CMS) API reference 345

If the set of authenticated attributes includes signing-time, then this will
override the signing-time attribute generated by
gsk_make_signed_data_msg_extended(). The digest_algorithm field within each
gsk_attributes_signer structure is ignored - the digest algorithm is specified by
the digest_algorithm parameter.

stream
Returns the ASN.1 DER-encoded stream. The application should call the
gsk_free_buffer() routine to release the stream when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The digest algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported.

[CMSERR_DIGEST_KEY_MISMATCH]
The digest algorithm is not supported for the private key type.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_KEY_USAGE]
A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
Private key does not exist or is not accessible.

[CMSERR_SIGNER_NOT_FOUND]
No signer certificate provided or the certificate is not valid.

[CMSERR_VERSION_NOT_SUPPORTED]
The version is not valid.

[CMSERR_CONTENTTYPE_NOT_ALLOWED]
The content-type authenticated attribute is not allowed in attributes_signers.

gsk_make_signed_data_msg_extended()

346 z/OS V2R1.0 System SSL Programming

[CMSERR_MESSAGEDIGEST_NOT_ALLOWED]
The message-digest authenticated attribute is not allowed in
attributes_signers

Usage

The gsk_make_signed_data_msg_extended() routine creates a PKCS #7
(Cryptographic Message Syntax) SignedData message and returns the ASN.1
DER-encoded ContentInfo sequence. The signed data content type will be Data.
The gsk_read_signed_data_msg() or the gsk_read_signed_data_msg_extended()
routine can be used to extract the application data from the stream. The key usage
for the signer certificates can be optionally specified as to whether digital signature
must be allowed. No validity checking will be performed on the signer certificates.
It is assumed that the application has already validated the signer certificates.

Calling the gsk_make_signed_data_msg_extended() routine is equivalent to calling
the gsk_make_data_content() routine, the
gsk_make_signed_data_content_extended() routine, and the
gsk_make_content_msg() routine.

A signature is included for each signer provided by the signer_certificates parameter.
The X.509 certificates used to sign the message will be included in the SignedData
message if the include_certificates parameter is set to TRUE. The message receiver
will need to provide the signer certificates if the include_certificates parameter is set
to FALSE.

You can optionally include certification authority certificates in the SignedData
message. These certificates can then be used by the message receiver to validate
the signer certificates.

These digest algorithms are supported:

x509_alg_md2Digest
MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest
MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

x509_alg_sha1Digest
SHA-1 digest (RSA, DSA, and ECDSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest
SHA-224 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest
SHA-256 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest
SHA-384 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest
SHA-512 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.3}

If authenticated attributes are provided from the attributes_signers parameter, then
signing certificates for all signers represented within the gsk_attributes_signers
structure must be provided from the signer_certificates parameter.

When executing in FIPS mode, digest algorithms x509_alg_md2Digest and
x509_alg_md5Digest are not supported.

gsk_make_signed_data_msg_extended()

Chapter 8. Certificate Management Services (CMS) API reference 347

gsk_make_wrapped_content()

Format
#include <gskcms.h>

gsk_status gsk_make_wrapped_content (
pkcs_content_info * content_info,
pkcs_content_info * wrapped_content)

Parameters

content_info
Specifies the content information to be wrapped.

wrapped_content
Returns the wrapped content information. The application should call the
gsk_free_content_info() routine to release the content information when it is
no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_make_wrapped_content() routine wraps the supplied content information
in an ASN.1 sequence and returns a new content information containing the
wrapped data. The type of the wrapped content information is the same as the
type of the original content information. The gsk_read_wrapped_content() routine
can be used to extract the original content information.

gsk_make_wrapped_content()

348 z/OS V2R1.0 System SSL Programming

gsk_mktime()
Converts year/month/day time value to number of seconds since the POSIX epoch

Format
#include <gskcms.h>

gsk_time gsk_mktime (
gsk_timeval * ts)

Parameters

ts Specifies the time to be converted. The tm_year, tm_mon, tm_mday, tm_hour,
tm_min, and tm_sec fields are used to generate the converted time.

Results

The return value is the number of seconds since January 1, 1970. Leap seconds are
not included in the computation.

Usage

The gsk_mktime() routine converts the time specified in year/month/day format
to the number of seconds since the POSIX epoch (January 1, 1970). The
gsk_mktime() routine differs from the mktime() routine in that the time is UTC
and is not adjusted for the local timezone or for daylight savings time.

The year value must be between 1970 and 2106 and is the actual year minus 1900,
so tm_year must be between 70 and 206, tm_mon must be between 0 and 11,
tm_mday must be between 1 and 31, tm_hour must be between 0 and 23, tm_min
must be between 0 and 59, and tm_sec must be between 0 and 59.

gsk_mktime()

Chapter 8. Certificate Management Services (CMS) API reference 349

gsk_modify_pkcs11_key_label()
Return a gsk_buffer that adds or removes the equals sign (=) from the first position
of an input TKDS key token label.

Format
#include <gskcms.h>

gsk_status gsk_modify_pkcs11_key_label (
gsk_buffer * in_buffer,
gsk_boolean add_preface,
gsk_buffer * out_buffer)

Parameters

in_buffer
Specifies the gsk_buffer containing the TKDS key token label.

add_preface
Specify TRUE if you want an equal sign (=) prefaced at the beginning of
the TKDS key token label. This shifts the original string to the right one
position.

Specify FALSE if you want the equal sign (=) removed from the beginning
of the TKDS key token label. This shifts the original string to the left one
position.

out_buffer
Returns a new gsk_buffer with the TKDS key token label in its new form.

Results

The function return value is 0 (GSK_OK) if no error is detected. Otherwise, it is
one of the return codes that are listed in the gskcms.h include file. These are some
possible errors:

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_PKCS11_LABEL_INVALID]
The input did not have a label.

If add_preface is FALSE and the calculated length of the output string minus
the equal sign (=) is zero.

Usage

The gsk_modify_pkcs11_key_label() routine creates gsk_buffer of the TKDS key
label either with or without the equal sign (=) in the first position of the string.
v A TKDS key label without the equals sign is always 44 characters long.
v A TKDS key label with an equal sign is always 45 characters long.
v The caller is responsible for freeing the storage that is allocated to create the

returned out_buffer.
– If the returned out_buffer does not become the keyToken field of structure

pkcs_private_key_info, call gsk_free_buffer() to free out_buffer.
– If the returned out_buffer is used as the keyToken field of structure

pkcs_private_key_info, the returned out_buffer is freed when calling
gsk_free_private_key_info().

gsk_modify_pkcs11_key_label()

350 z/OS V2R1.0 System SSL Programming

v If the supplied TKDS key token label already has the equal sign in the first
position and add_preface is TRUE, a copy of the original string is returned.

v If the supplied TKDS key token label already does not have the equal sign in the
first position and add_preface is FALSE, a copy of the original string is returned.

gsk_modify_pkcs11_key_label()

Chapter 8. Certificate Management Services (CMS) API reference 351

gsk_name_compare()
Compares two X.509 names.

Format
#include <gskcms.h>

gsk_boolean gsk_name_compare (
x509_name * name1,
x509_name * name2)

Parameters

name1
Specifies the first name to be compared.

name2
Specifies the second name to be compared.

Results

Returns TRUE if the two x.509 names are the same and FALSE if the two x.509
names are different.

Usage

The gsk_name_compare() routine compares two X.509 names and return TRUE if
the names are the same and FALSE if they are not the same.

Two names are considered equal if they contain the same sequence of attribute
types and attribute values. Attribute values are considered equal if they represent
the same character string. If a relative distinguished name (RDN) contains multiple
attributes, the attributes must be specified in ascending order based on their ASN.1
DER encoding. Strings are always stored using UTF-8 encoding.When matching
UTF-8 encoded attribute values (x509_string_utf8) in the X.509 names, System SSL
uses a case sensitive (exact match) comparison.

Printable strings (gsk_string_printable) are a special case. Multiple spaces are
treated as a single space and the comparison is not case-sensitive. Case-sensitive
comparisons are used for all other string types.

gsk_name_compare()

352 z/OS V2R1.0 System SSL Programming

gsk_name_to_dn()
Converts an X.509 name to a DN string.

Format
#include <gskcms.h>

gsk_status gsk_name_to_dn (
x509_name * name,
char ** dn)

Parameters

name
Specifies the X.509 name to be converted to a distinguished name string. The
X.509 strings use UTF-8 encoding.

dn Returns the distinguished name in the local code page. The application should
call the gsk_free_string() routine to release the string when it is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_CANT_CONVERT]
The X.509 name is not a distinguished name.

[ASN_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_name_to_dn() routine converts an X.509 name to a distinguished name
(DN) string in accordance with RFC 2253: UTF-8 String Representation of
Distinguished Names. The DN string will consist of single-byte characters in the
local code page. A double-byte character will be represented using the escaped
UTF-8 encoding of the double-byte character in the UCS-2 or UCS-4 character set.

These DN attribute names are generated by the System SSL runtime. Unrecognized
attribute types will be encoded using the numeric object identifier followed by the
DER-encoded representation of the attribute value.
v C - Country
v CN - Common name
v DC - Domain component
v DNQUALIFIER - Distinguished name qualifier
v EMAIL - E-mail address
v GENERATIONQUALIFIER - Generation qualifier
v GIVENNAME - Given name
v INITIALS - Initials
v L - Locality
v MAIL - Mail RFC 822 style address
v NAME - Name

gsk_name_to_dn()

Chapter 8. Certificate Management Services (CMS) API reference 353

http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf

v O - Organization name
v OU - Organizational unit name
v PC - Postal code
v SERIALNUMBER - Serial number
v SN - Surname
v ST - State or province
v STREET - Street
v T - Title

gsk_name_to_dn()

354 z/OS V2R1.0 System SSL Programming

gsk_open_database()
Opens a key or request database.

Format
#include <gskcms.h>

gsk_status gsk_open_database (
const char * filename,
const char * password,
gsk_boolean update_mode,
gsk_handle * db_handle,
gskdb_database_type * db_type,
int * num_records)

Parameters

filename
Specifies the database file name in the local code page. The length of the
fully-qualified filename cannot exceed 251.

password
Specifies the database password in the local code page. The user will be
prompted to enter the password if NULL is specified for this parameter.

update_mode
Specifies the file access mode. Specify TRUE if the database will be updated
and FALSE if the database will not be updated. The application must have
write access to the file if TRUE is specified.

db_handle
Returns the database handle. The application should call the
gsk_close_database() routine when it no longer needs access to the database.

db_type
Returns the database type.

num_records
Returns the number of records in the database.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ACCESS_DENIED]
The file permissions do not allow access.

[CMSERR_BAD_FILENAME]
The database file name is not valid.

[CMSERR_BAD_RNG_OUTPUT]
In FIPS mode, random bytes generation produced duplicate output.

[CMSERR_DB_CORRUPTED]
The database file is not valid.

[CMSERR_DB_FIPS_MODE_ONLY]
Key database can only be opened for update if running in FIPS mode.

[CMSERR_DB_LOCKED]
The database is open for update by another process.

gsk_open_database()

Chapter 8. Certificate Management Services (CMS) API reference 355

[CMSERR_DB_NOT_FIPS]
Key database is not a FIPS mode database.

[CMSERR_FILE_NOT_FOUND]
The database file is not found.

[CMSERR_IO_CANCELED]
The user canceled the password prompt.

[CMSERR_IO_ERROR]
An input/output request failed.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_OPEN_FAILED]
Unable to open the database.

Usage

The gsk_open_database() routine will open a key or request database file for either
read-only or read/write access. The database must already exist. The database
integrity will be verified and the open will fail if the database has been incorrectly
modified. Only one process at a time may open a database in update mode. The
database may be accessed by multiple concurrent threads in the same process if the
same database handle is used by all of the threads.

A FIPS database file may only be opened for update while executing in FIPS mode.
A FIPS database may be opened read-only while executing in non-FIPS mode. A
non-FIPS database file cannot be opened for read or update while executing in
FIPS mode.

gsk_open_database()

356 z/OS V2R1.0 System SSL Programming

gsk_open_database_using_stash_file()
Opens a key or request database using a stash file for the database password.

Format
#include <gskcms.h>

gsk_status gsk_open_database_using_stash_file (
const char * database_filename,
const char * stash_filename,
gsk_boolean update_mode,
gsk_handle * db_handle,
gskdb_database_type * db_type,
int * num_records)

Parameters

database_filename
Specifies the database file name in the local code page. The length of the
fully-qualified filename cannot exceed 251.

stash_filename
Specifies the stash file name in the local code page. The length of the
fully-qualified filename cannot exceed 251. The stash file name always has an
extension of ".sth" and the supplied name will be changed if it does not have
the correct extension.

update_mode
Specifies the file access mode. Specify TRUE if the database will be updated
and FALSE if the database will not be updated. The application must have
write access to the file if TRUE is specified.

db_handle
Returns the database handle. The application should call the
gsk_close_database() routine when it no longer needs access to the database.

db_type
Returns the database type.

num_records
Returns the number of records in the database.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ACCESS_DENIED]
The file permissions do not allow access.

[CMSERR_BAD_FILENAME]
The database file name is not valid.

[CMSERR_DB_CORRUPTED]
The database file is not valid.

[CMSERR_DB_FIPS_MODE_ONLY]
Key database can only be opened for update if running in FIPS mode.

[CMSERR_DB_LOCKED]
The database is open for update by another process.

gsk_open_database_using_stash_file()

Chapter 8. Certificate Management Services (CMS) API reference 357

[CMSERR_NOT_FIPS]
Key database is not a FIPS mode database.

[CMSERR_FILE_NOT_FOUND]
The database file is not found.

[CMSERR_IO_ERROR]
An input/output request failed.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_OPEN_FAILED]
Unable to open the database.

Usage

The gsk_open_database_using_stash_file() routine is the same as the
gsk_open_database() routine except the database password is obtained from the
password stash file instead of being specified as a call parameter. The key or
request database can be opened for read-only access or for read/write access. The
database must already exist. The database integrity will be verified and the open
will fail if the database has been incorrectly modified. Only one process at a time
may open a database in update mode. The database may be accessed by multiple
concurrent threads in the same process if the same database handle is used by all
of the threads.

A FIPS database file may only be opened for update while executing in FIPS mode.
A FIPS database may be opened read-only while executing in non-FIPS mode. A
non-FIPS database file cannot be opened for read or update while executing in
FIPS mode.

gsk_open_database_using_stash_file()

358 z/OS V2R1.0 System SSL Programming

gsk_open_directory()
Opens an LDAP directory.

Format
#include <gskcms.h>

gsk_status gsk_open_directory (
const char * server_name,
int server_port,
const char * user_name,
const char * user_password,
int crl_cache_timeout,
gsk_handle * directory_handle)

Parameters

server_name
Specifies one or more blank-separated LDAP server host names. Each host
name can contain an optional port number separated from the host name by a
colon.

server_port
Specifies the port assigned to the LDAP server. The default port will be used if
zero is specified.

user_name
Specifies the distinguished name to be used when binding to the LDAP server.
An unauthenticated bind will be done if NULL is specified for this parameter.

user_password
Specifies the password to be used when binding to the LDAP server. NULL
may be specified for this parameter when NULL is also specified for the
user_name parameter.

crl_cache_timeout
Specifies the CRL cache timeout interval in hours. Specify 0 to disable CRL
caching.

directory_handle
Returns the directory handle. The application should call the
gsk_close_directory() routine when it no longer needs access to the LDAP
directory.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_LDAP]
Error reported by the LDAP client

[CMSERR_LDAP_NOT_AVAILABLE]
LDAP server is not available.

[CMSERR_NO_MEMORY]
Insufficient storage is available

gsk_open_directory()

Chapter 8. Certificate Management Services (CMS) API reference 359

Usage

The gsk_open_directory() routine will open an LDAP directory and return a
directory handle.

gsk_open_directory()

360 z/OS V2R1.0 System SSL Programming

gsk_open_keyring()
Opens a SAF digital certificate key ring or z/OS PKCS #11 token.

Format
#include <gskcms.h>

gsk_status gsk_open_keyring (
const char * ring_name,
gsk_handle * db_handle,
int * num_records)

Parameters

ring_name
Specifies the SAF key ring or z/OS PKCS #11 token name in the local code
page. When using a key ring owned by the current user, specify the ring name
as "name". When using a key ring owned by another user, specify the ring
name as "userid/name". The maximum user ID length is 8 and the maximum
name length is 237. The z/OS PKCS #11 token name is specified as
TOKEN/token-name. *TOKEN* indicates that the specified key ring is
actually a token name.

db_handle
Returns the database handle. The application should call the
gsk_close_database() routine when it no longer needs access to the key ring.

num_records
Returns the number of records in the key ring or token.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ACCESS_DENIED]
The access permissions do not allow access.

[CMSERR_BAD_FILENAME]
The key ring or token name is not valid.

[CMSERR_BAD_RNG_OUTPUT]
In FIPS mode, random bytes generation produced duplicate output.

[CMSERR_FILE_NOT_FOUND]
The key ring or token does not exist

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_IO_ERROR]
An error occurred while listing the key ring or token.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_open_keyring() routine will open a key ring maintained by the System
Authorization Facility (SAF) and construct a read-only key database. Only trusted

gsk_open_keyring()

Chapter 8. Certificate Management Services (CMS) API reference 361

certificates connected to the specified key ring are included in the key database.
The GSKDB_RECFLAG_DEFAULT flag will be set if the certificate is the default
certificate for the key ring or token.

The user must have READ access to the IRR.DIGTCERT.LISTRING resource in the
FACILITY class when using a SAF key ring owned by the user. The user must
have UPDATE access to the IRR.DIGTCERT.LISTRING resource in the FACILITY
class when using a SAF key ring owned by another user.

Note:

Certificate private keys are not available when using a SAF key ring owned by
another user, except for SITE certificates where CONTROL authority is given to
IRR.DIGTCERT.GENCERT in the FACILITY class or for user certificates where
READ or UPDATE authority is given to ringOwner.ringName.LST resource in the
RDATALIB class.

The application user ID must have READ access to resource USER.tokenname in
the CRYPTOZ class in order for the certificates and their private keys, if present, to
be read from a z/OS PKCS #11 token.

gsk_open_keyring()

362 z/OS V2R1.0 System SSL Programming

gsk_perform_kat()
Conducts a set of known answer tests for the System SSL algorithms validated by
NIST. The caller must set FIPS mode (see “gsk_fips_state_set()” on page 260) before
calling this function.

Format
#include <gskcms.h>

gsk_status gsk_perform_kat ()

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_API_NOT_SUPPORTED]
The API is not supported in non-FIPS mode.

[CMSERR_KATPW_FAILED]
A known answer test has failed. This is a severe error and the application
should terminate.

[CMSERR_KATPW_ICSF_FAILED]
A known answer test failed because ICSF was not available or ICSF
encountered an error.

Usage

The gsk_perform_kat() routine can be used whenever an application, in order to
meet security requirements, needs to check the correctness of cryptographic
algorithms that are part of the product. The routine performs Known Answer Tests
on the following cryptographic algorithms:
v AES CBC 128-bit and AES CBC 256-bit encryption and decryption
v TripleDES encryption and decryption
v RSA signature generation/verification and encryption/decryption
v RSA encrypt and decrypt
v DSA signature generation and verification
v SHA Digest Algorithms: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512,

HMAC-SHA-1, HMAC-SHA-256, and HMAC-SHA-384

If an error is encountered during testing, the gsk_perform_kat() routine will
terminate and return the appropriate error code.

The gsk_perform_kat() routine will test software or hardware cryptographic
algorithms depending on the value of the GSK_HW_CRYPTO environment
variable at the time the CMS DLL (GSKCMS31 or GSKCMS64) is loaded.

gsk_perform_kat()

Chapter 8. Certificate Management Services (CMS) API reference 363

gsk_query_crypto_level()
Returns the available cryptographic levels.

Format
#include <gskcms.h>

void gsk_query_crypto_level (
int * cms_version,
int * cms_release,
gsk_uint32 * crypto_level)

Parameters

cms_version
Returns the runtime version number.

cms_release
Returns the runtime release number.

crypto_level
Returns the available cryptographic levels.

Results

The gsk_query_crypto_level() routine returns the System SSL runtime version,
release, and available cryptographic levels. The current System SSL runtime is
Version 4 Release 1. The cryptographic level is a bit mask as follows:

[GSK_CRYPTO_64]
Set if 64-bit encryption keys are supported.

[GSK_CRYPTO_128]
Set if 128-bit encryption keys are supported.

[GSK_CRYPTO_168]
Set if 168-bit encryption keys are supported.

gsk_query_crypto_level()

364 z/OS V2R1.0 System SSL Programming

gsk_query_database_label()
Determines if a database label exists

Format
#include <gskcms.h>

gsk_status gsk_query_database_label (
gsk_handle db_handle,
const char * label)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine,
the gsk_open_database() routine, or the gsk_open_keyring() routine.

label
Specifies the database label. The label is specified in the local code page.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_LABEL]
No label specified.

[CMSERR_MULTIPLE_LABEL]
Multiple certificates exist for label.

[CMSERR_RECORD_NOT_FOUND]
The label does not exist in the database.

Usage

The gsk_query_database_label() routine will check the database for the requested
label.

gsk_query_database_label()

Chapter 8. Certificate Management Services (CMS) API reference 365

gsk_query_database_record_length()
Queries the database record length.

Format
#include <gskcms.h>

gsk_status gsk_query_database_record_length (
gsk_handle db_handle,
gsk_size * record_length)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or
the gsk_open_database() routine.

record_length
Returns the current database record length. All records in the database have
this length.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_HANDLE]
The database handle is not valid.

Usage

The gsk_query_database_record_length() routine will return the record length for
the database. All records in the database have the same length and a database
entry cannot span records. The gsk_change_database_record_length() routine can
be called to change the database record length.

gsk_query_database_record_length()

366 z/OS V2R1.0 System SSL Programming

gsk_rdtime()
Converts the number of seconds since the POSIX epoch to year/month/day.

Format
#include <gskcms.h>

gsk_timeval * gsk_rdtime (
gsk_time secs,
gsk_timeval * ts)

Parameters

secs
Specifies the time value to be converted.

ts Returns the converted time in the tm_year, tm_mon, tm_mday, tm_hour,
tm_min, and tm_sec fields.

Usage

The gsk_rdtime() routine converts the number of seconds since the POSIX epoch
(January 1, 1970) to year/month/day format. The year value is the actual year
minus 1900 and the month value is the actual month minus 1 (that is, January is 0
and December is 11). The return value is the same as the second parameter (the
address of the struct tm).

gsk_rdtime()

Chapter 8. Certificate Management Services (CMS) API reference 367

gsk_read_content_msg()
Processes a PKCS #7 message.

Format
#include <gskcms.h>

gsk_status gsk_read_content_msg (
gsk_buffer * stream,
pkcs_content_info * content_info)

Parameters

stream
Specifies the ASN.1 DER-encoded stream to be processed.

content_info
Returns the content information for the message. The application should call
the gsk_free_content_info() routine to release the content information when it
is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_NO_MEMORY]
Insufficient storage is available

Usage

The gsk_read_content_msg() routine processes a PKCS #7 (Cryptographic Message
Syntax) content information message and returns the content information. The
message content type can be any of the types defined by the PKCS #7 specification.

gsk_read_content_msg()

368 z/OS V2R1.0 System SSL Programming

gsk_read_data_content()
Processes PKCS #7 Data content information.

Format
#include <gskcms.h>

gsk_status gsk_read_data_content (
pkcs_content_info * content_info,
gsk_buffer * data)

Parameters

content_info
Specifies the content information to be processed.

data
Returns the application data. The application should call the gsk_free_buffer()
routine to release the data when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not Data.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_read_data_content() routine processes PKCS #7 (Cryptographic Message
Syntax) Data content information created by the gsk_make_data_content() routine
and returns the application data.

gsk_read_data_content()

Chapter 8. Certificate Management Services (CMS) API reference 369

gsk_read_data_msg()
Processes a PKCS #7 Data message.

Format
#include <gskcms.h>

gsk_status gsk_read_data_msg (
gsk_buffer * stream,
gsk_buffer * data)

Parameters

stream
Specifies the ASN.1 DER-encoded stream to be processed.

data
Returns the application data. The application should call the gsk_free_buffer()
routine to release the data when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not Data.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_read_data_msg() routine processes a PKCS #7 (Cryptographic Message
Syntax) Data message created by the gsk_make_data_msg() routine and returns the
application data. The message content type must be Data.

Calling the gsk_read_data_msg() routine is equivalent to calling the
gsk_read_content_msg() routine followed by the gsk_read_data_content() routine.

gsk_read_data_msg()

370 z/OS V2R1.0 System SSL Programming

gsk_read_encrypted_data_content()
Processes PKCS #7 EncryptedData content information.

Format
#include <gskcms.h>

gsk_status gsk_read_encrypted_data_content (
const char * password,
pkcs_content_info * content_info,
pkcs_content_info * content_data)

Parameters

password
Specifies the encryption password as a null-terminated string in the local code
page. The user will be prompted to enter the password if NULL is specified for
this parameter.

content_info
Specifies the content information to be processed

content_data
Returns the decrypted content data. The application should call the
gsk_free_content_info() routine to release the content information when it is
no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_AVAILABLE]
Encryption algorithm is not available.

[CMSERR_ALG_NOT_SUPPORTED]
Encryption algorithm is not supported.

[CMSERR_API_NOT_SUPPORTED]
The API is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not EncryptedData or the content of the
EncryptedData message is not supported.

[CMSERR_NO_CONTENT_DATA]
The encrypted data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_read_encrypted_data_content() routine processes PKCS #7 (Cryptographic
Message Syntax) EncryptedData content information created by the
gsk_make_encrypted_data_content() routine and returns the decrypted content
data.

gsk_read_encrypted_data_content() is not supported when executing in FIPS mode
and will return CMSERR_API_NOT_SUPPORTED.

gsk_read_encrypted_data_content()

Chapter 8. Certificate Management Services (CMS) API reference 371

The decryption key is derived from the password as described in PKCS #5, Version
2.0: Password-based Encryption and PKCS #12, Version 1.0: Personal Information
Exchange. The selected algorithm determines how the key is derived from the
password.

These password-based encryption algorithms are supported. The strong encryption
algorithms might not be available depending upon government export regulations.
v x509_alg_pbeWithMd2AndDesCbc - 56-bit DES encryption with MD2 digest -

{1.2.840.113549.1.5.1}

v x509_alg_pbeWithMd5AndDesCbc - 56-bit DES encryption with MD5 digest -
{1.2.840.113549.1.5.3}

v x509_alg_pbeWithSha1AndDesCbc - 56-bit DES encryption with SHA-1 digest
- {1.2.840.113549.1.5.10}

v x509_alg_pbeWithMd2AndRc2Cbc - 64-bit RC2 encryption with MD2 digest -
{1.2.840.113549.1.5.4}

v x509_alg_pbeWithMd5AndRc2Cbc - 64-bit RC2 encryption with MD5 digest -
{1.2.840.113549.1.5.6}

v x509_alg_pbeWithSha1AndRc2Cbc - 64-bit RC2 encryption with SHA-1 digest
- {1.2.840.113549.1.5.11}

v x509_alg_pbeWithSha1And40BitRc2Cbc - 40-bit RC2 encryption with SHA-1
digest - {1.2.840.113549.1.12.1.6}

v x509_alg_pbeWithSha1And128BitRc2Cbc - 128-bit RC2 encryption with SHA-1
digest - {1.2.840.113549.1.12.1.5}

v x509_alg_pbeWithSha1And40BitRc4 - 40-bit RC4 encryption with SHA-1 digest
- {1.2.840.113549.1.12.1.2}

v x509_alg_pbeWithSha1And128BitRc4 - 128-bit RC4 encryption with SHA-1
digest - {1.2.840.113549.1.12.1.1}

v x509_alg_pbeWithSha1And3DesCbc - 168-bit 3DES encryption with SHA-1
digest - {1.2.840.113549.1.12.1.3}

gsk_read_encrypted_data_content()

372 z/OS V2R1.0 System SSL Programming

http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2138
http://www.rsa.com/rsalabs/node.asp?id=2138

gsk_read_encrypted_data_msg()
Processes a PKCS #7 EncryptedData message.

Format
#include <gskcms.h>

gsk_status gsk_read_encrypted_data_msg (
const char * password,
gsk_buffer * stream,
gsk_buffer * data)

Parameters

password
Specifies the encryption password as a null-terminated string in the local code
page. The user will be prompted to enter the password if NULL is specified for
this parameter.

stream
Specifies the ASN.1 DER-encoded stream to be processed.

data
Returns the decrypted content of the EncryptedData message. The application
should call the gsk_free_buffer() routine to release the data when it is no
longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_AVAILABLE]
Encryption algorithm is not available.

[CMSERR_ALG_NOT_SUPPORTED]
Encryption algorithm is not supported.

[CMSERR_API_NOT_SUPPORTED]
The API is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not EncryptedData or the content of the
EncryptedData message is not Data.

[CMSERR_NO_CONTENT_DATA]
The encrypted data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_read_encrypted_data_msg() routine processes a PKCS #7 (Cryptographic
Message Syntax) EncryptedData message created by the
gsk_make_encrypted_data_msg() routine and returns the decrypted message
content. The encrypted data content type must be Data.

gsk_read_encrypted_data_msg() is not supported when executing in FIPS mode
and will return CMSERR_API_NOT_SUPPORTED.

gsk_read_encrypted_data_msg()

Chapter 8. Certificate Management Services (CMS) API reference 373

Calling the gsk_read_encrypted_data_msg() routine is equivalent to calling the
gsk_read_content_msg() routine, the gsk_read_encrypted_data_content() routine,
and the gsk_read_data_content() routine.

The decryption key is derived from the password as described in PKCS #5, Version
2.0: Password-based Encryption and PKCS #12, Version 1.0: Personal Information
Exchange. The selected algorithm determines how the key is derived from the
password.

These password-based encryption algorithms are supported. The strong encryption
algorithms might not be available depending upon government export regulations.
v x509_alg_pbeWithMd2AndDesCbc - 56-bit DES encryption with MD2 digest -

{1.2.840.113549.1.5.1}

v x509_alg_pbeWithMd5AndDesCbc - 56-bit DES encryption with MD5 digest -
{1.2.840.113549.1.5.3}

v x509_alg_pbeWithSha1AndDesCbc - 56-bit DES encryption with SHA-1 digest
- {1.2.840.113549.1.5.10}

v x509_alg_pbeWithMd2AndRc2Cbc - 64-bit RC2 encryption with MD2 digest -
{1.2.840.113549.1.5.4}

v x509_alg_pbeWithMd5AndRc2Cbc - 64-bit RC2 encryption with MD5 digest -
{1.2.840.113549.1.5.6}

v x509_alg_pbeWithSha1AndRc2Cbc - 64-bit RC2 encryption with SHA-1 digest
- {1.2.840.113549.1.5.11}

v x509_alg_pbeWithSha1And40BitRc2Cbc - 40-bit RC2 encryption with SHA-1
digest - {1.2.840.113549.1.12.1.6}

v x509_alg_pbeWithSha1And128BitRc2Cbc - 128-bit RC2 encryption with SHA-1
digest - {1.2.840.113549.1.12.1.5}

v x509_alg_pbeWithSha1And40BitRc4 - 40-bit RC4 encryption with SHA-1 digest
- {1.2.840.113549.1.12.1.2}

v x509_alg_pbeWithSha1And128BitRc4 - 128-bit RC4 encryption with SHA-1
digest - {1.2.840.113549.1.12.1.1}

v x509_alg_pbeWithSha1And3DesCbc - 168-bit 3DES encryption with SHA-1
digest - {1.2.840.113549.1.12.1.3}

gsk_read_encrypted_data_msg()

374 z/OS V2R1.0 System SSL Programming

http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.rsa.com/rsalabs/node.asp?id=2138
http://www.rsa.com/rsalabs/node.asp?id=2138

gsk_read_enveloped_data_content()
Processes PKCS #7 EnvelopedData content information.

Format
#include <gskcms.h>

gsk_status gsk_read_enveloped_data_content (
pkcs_cert_keys * recipient_keys,
pkcs_content_info * content_info,
x509_algorithm_type * encryption_algorithm,
gsk_size * key_size,
pkcs_content_info * content_data)

Parameters

recipient_keys
Specifies one or more certificates and associated private keys.

content_info
Specifies the content information to be processed.

encryption_algorithm
Returns the encryption algorithm used to encrypt the message content.

key_size
Returns the encryption key size in bytes.

content_data
Returns the EnvelopedData content data. The application should call the
gsk_free_content_info() routine to release the content information when it is
no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_AVAILABLE]
The encryption algorithm is not available.

[CMSERR_ALG_NOT_SUPPORTED]
The encryption algorithm is not supported.

[CMSERR_BAD_KEY_SIZE]
The encryption key size is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not EnvelopedData or the content of the
EnvelopedData message is not supported.

[CMSERR_CRYPTO_HARDWARE_NOT_AVAILABLE]
Cryptographic hardware does not support service or algorithm.

[CMSERR_INCORRECT_KEY_USAGE]
The recipient certificate does not allow key encipherment.

[CMSERR_KEY_MISMATCH]
A recipient private key does not support data decryption.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

gsk_read_enveloped_data_content()

Chapter 8. Certificate Management Services (CMS) API reference 375

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
Private key does not exist or is not accessible.

[CMSERR_RECIPIENT_NOT_FOUND]
No matching recipient certificate provided.

Usage

The gsk_read_enveloped_data_content() routine processes PKCS #7
(Cryptographic Message Syntax) EnvelopedData content information created by the
gsk_make_enveloped_data_content() routine.

The recipient_keys parameter supplies one or more recipient certificates and
associated private keys. The gsk_read_enveloped_data_content() routine will
search for a certificate matching one of the message recipients. The private key will
be used to decrypt the session key and the session key will then be used to
decrypt the enveloped data. The certificate key usage must allow key
encipherment.

No certificate validation is performed by the gsk_read_enveloped_data_content()
routine. It is assumed that the application has already validated the recipient
certificates.

These encryption algorithms are supported. Strong encryption might not be
available depending upon government export regulations.
v x509_alg_rc2CbcPad - 40-bit and 128-bit RC2 - {1.2.840.113549.3.2}

v x509_alg_rc4 - 40-bit and 128-bit RC4 - {1.2.840.113549.3.4}

v x509_alg_desCbcPad - 56-bit DES - {1.3.14.3.2.7}

v x509_alg_desEde3CbcPad - 168-bit 3DES - {1.2.840.113549.3.7}

v x509_alg_aesCbc128 - 128-bit AES CBC - {2.16.840.1.101.3.4.1.2}

v x509_alg_aesCbc256 - 256-bit AES CBC - {2.16.840.1.101.3.4.1.42}

When executing in FIPS mode, encryption algorithms x509_alg_rc2CbcPad,
x509_alg_rc4 and x509_alg_desCbcPad are not supported.

gsk_read_enveloped_data_content()

376 z/OS V2R1.0 System SSL Programming

gsk_read_enveloped_data_content_extended()
Processes PKCS #7 EnvelopedData content information.

Format
#include <gskcms.h>

gsk_status gsk_read_enveloped_data_content_extended (
gsk_process_option option_flag
pkcs_cert_keys * recipient_keys,
pkcs_content_info * content_info,
x509_algorithm_type * encryption_algorithm,
gsk_size * key_size,
pkcs_content_info * content_data)

Parameters

option_flag
Specifies process options to customize process behavior.
v Enforce recipient certificate has key encipherment capabilities. That is, the

purpose of the certificate key as reflected by the key usage extension must
indicate keyEncipherment.

v Enforce key parity when using DES or 3DES session keys.

recipient_keys
Specifies one or more certificates and associated private keys.

content_info
Specifies the content information to be processed.

encryption_algorithm
Returns the encryption algorithm used to encrypt the message content.

key_size
Returns the encryption key size in bytes.

content_data
Returns the EnvelopedData content data. The application should call the
gsk_free_content_info() routine to release the content information when it is
no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it is one of
the return codes listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_AVAILABLE]
The encryption algorithm is not available.

[CMSERR_ALG_NOT_SUPPORTED]
The encryption algorithm is not supported.

[CMSERR_BAD_KEY_SIZE]
The encryption key size is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not EnvelopedData or the content of the
EnvelopedData message is not supported.

[CMSERR_CRYPTO_HARDWARE_NOT_AVAILABLE]
Cryptographic hardware does not support service or algorithm.

[CMSERR_INCORRECT_KEY_USAGE]
The recipient certificate does not allow key encipherment.

gsk_read_enveloped_data_content_extended()

Chapter 8. Certificate Management Services (CMS) API reference 377

[CMSERR_KEY_MISMATCH]
A recipient private key does not support data decryption.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
Private key does not exist or is not accessible.

[CMSERR_RECIPIENT_NOT_FOUND]
No matching recipient certificate provided.

Usage

The gsk_read_enveloped_data_content_extended() routine processes PKCS #7
(Cryptographic Message Syntax) EnvelopedData content information that is created
by the gsk_make_enveloped_data_content() routine, the
gsk_make_enveloped_data_content_extended(), or the
gsk_make_enveloped_private_key_msg() routine. Processing is equivalent to
gsk_read_enveloped_data_content(), except that the recipient certificate key usage
need not assert key encipherment.

The recipient_keys parameter supplies one or more recipient certificates and
associated private keys. The gsk_read_enveloped_data_content_extended() routine
searches for a certificate matching one of the message recipients. The private key
will be used to decrypt the session key and the session key will then be used to
decrypt the enveloped data. In addition, if option_flag specifies that key
encipherment is to be enforced, then the certificate key usage must allow key
encipherment and session keys need not be odd parity.

No certificate validation is performed by the
gsk_read_enveloped_data_content_extended() routine. It is assumed that the
application has already validated the recipient certificates.

These encryption algorithms are supported. Strong encryption might not be
available depending upon government export regulations.
v x509_alg_rc2CbcPad - 40-bit and 128-bit RC2 - {1.2.840.113549.3.2}

v x509_alg_rc4 - 40-bit and 128-bit RC4 - {1.2.840.113549.3.4}

v x509_alg_desCbcPad - 56-bit DES - {1.3.14.3.2.7}

v x509_alg_desEde3CbcPad - 168-bit 3DES - {1.2.840.113549.3.7}

v x509_alg_aesCbc128 - 128-bit AES CBC - {2.16.840.1.101.3.4.1.2}

v x509_alg_aesCbc256 - 256-bit AES CBC - {2.16.840.1.101.3.4.1.42}

When executing in FIPS mode, encryption algorithms x509_alg_rc2CbcPad,
x509_alg_rc4 and x509_alg_desCbcPad are not supported.

gsk_read_enveloped_data_content_extended()

378 z/OS V2R1.0 System SSL Programming

gsk_read_enveloped_data_msg()
Processes a PKCS #7 EnvelopedData message.

Format
#include <gskcms.h>

gsk_status gsk_read_enveloped_data_msg (
pkcs_cert_keys * recipient_keys,
gsk_buffer * stream,
x509_algorithm_type * encryption_algorithm,
gsk_size * key_size,
gsk_buffer * data)

Parameters

recipient_keys
Specifies one or more certificates and associated private keys.

stream
Specifies the ASN.1 DER-encoded stream to be processed.

encryption_algorithm
Returns the encryption algorithm used to encrypt the message content.

key_size
Returns the encryption key size in bytes.

data
Returns the content of the EnvelopedData message. The application should call
the gsk_free_buffer() routine to release the data when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
Encryption algorithm is not supported.

[CMSERR_BAD_ENCODING]
The message content type is not EnvelopedData or the message content is
not Data.

[CMSERR_BAD_KEY_SIZE]
The encryption key size is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not EnvelopedData or the content of the
EnvelopedData message is not Data.

[CMSERR_CRYPTO_HARDWARE_NOT_AVAILABLE]
Cryptographic hardware does not support service or algorithm.

[CMSERR_INCORRECT_KEY_USAGE]
The recipient certificate does not allow key encipherment.

[CMSERR_KEY_MISMATCH]
A recipient private key does not support data decryption.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

gsk_read_enveloped_data_msg()

Chapter 8. Certificate Management Services (CMS) API reference 379

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
Private key does not exist or is not accessible.

[CMSERR_RECIPIENT_NOT_FOUND]
No matching recipient certificate provided.

Usage

The gsk_read_enveloped_data_msg() routine processes a PKCS #7 (Cryptographic
Message Syntax) EnvelopedData message created by the
gsk_make_enveloped_data_msg() routine and returns the message content. The
enveloped data content type must be Data.

Calling the gsk_read_enveloped_data_msg() routine is equivalent to calling the
gsk_read_content_msg() routine, the gsk_read_enveloped_data_content() routine,
and the gsk_read_data_content() routine.

The recipient_keys parameter supplies one or more recipient certificates and
associated private keys. The gsk_read_enveloped_data_msg() routine will search
for a certificate matching one of the message recipients. The private key will be
used to decrypt the session key and the session key will then be used to decrypt
the enveloped data. The certificate key usage must allow key encipherment.

No certificate validation is performed by the gsk_read_enveloped_data_msg()
routine. It is assumed that the application has already validated the recipient
certificates.

These encryption algorithms are supported. Strong encryption might not be
available depending upon government export regulations.
v x509_alg_rc2CbcPad - 40-bit and 128-bit RC2 - {1.2.840.113549.3.2}

v x509_alg_rc4 - 40-bit and 128-bit RC4 - {1.2.840.113549.3.4}

v x509_alg_desCbcPad - 56-bit DES - {1.3.14.3.2.7}

v x509_alg_desEde3CbcPad - 168-bit 3DES - {1.2.840.113549.3.7}

v x509_alg_aesCbc128 - 128-bit AES CBC - {2.16.840.1.101.3.4.1.2}

v x509_alg_aesCbc256 - 256-bit AES CBC - {2.16.840.1.101.3.4.1.42}

When executing in FIPS mode, encryption algorithms x509_alg_rc2CbcPad,
x509_alg_rc4 and x509_alg_desCbcPad are not supported.

gsk_read_enveloped_data_msg()

380 z/OS V2R1.0 System SSL Programming

gsk_read_enveloped_data_msg_extended()
Processes a PKCS #7 EnvelopedData message.

Format
#include <gskcms.h>

gsk_status gsk_read_enveloped_data_msg_extended (
gsk_process_option option_flag,
pkcs_cert_keys * recipient_keys,
gsk_buffer * stream,
x509_algorithm_type * encryption_algorithm,
gsk_size * key_size,
gsk_buffer * data)

Parameters

option_flag
Specifies process options to customize process behavior.
v Enforce recipient certificate has key encipherment capabilities. That is, the

purpose of the certificate key as reflected by the key usage extension must
indicate keyEncipherment.

v Enforce key parity when using DES or 3DES session keys.

recipient_keys
Specifies one or more certificates and associated private keys.

stream
Specifies the ASN.1 DER-encoded stream to be processed.

encryption_algorithm
Returns the encryption algorithm used to encrypt the message content.

key_size
Returns the encryption key size in bytes.

data
Returns the content of the EnvelopedData message. The application should call
the gsk_free_buffer() routine to release the data when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
Encryption algorithm is not supported.

[CMSERR_BAD_ENCODING]
The message content type is not EnvelopedData or the message content is
not Data.

[CMSERR_BAD_KEY_SIZE]
The encryption key size is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not EnvelopedData or the content of the
EnvelopedData message is not Data.

[CMSERR_CRYPTO_HARDWARE_NOT_AVAILABLE]
Cryptographic hardware does not support service or algorithm.

gsk_read_enveloped_data_msg_extended()

Chapter 8. Certificate Management Services (CMS) API reference 381

[CMSERR_INCORRECT_KEY_USAGE]
The recipient certificate does not allow key encipherment.

[CMSERR_KEY_MISMATCH]
A recipient private key does not support data decryption.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
Private key does not exist or is not accessible.

[CMSERR_RECIPIENT_NOT_FOUND]
No matching recipient certificate provided.

Usage

The gsk_read_enveloped_data_msg_extended() routine processes a PKCS #7
(Cryptographic Message Syntax) EnvelopedData message created by the
gsk_make_enveloped_data_content() routine or the
gsk_make_enveloped_data_msg_extended() routine and returns the message
content. Processing is equivalent to gsk_read_enveloped_data_content(), except
that the recipient certificate key usage need not assert key encipherment and
session keys need not be odd parity. The enveloped data content type must be
Data.

Calling the gsk_read_enveloped_data_msg_extended() routine is equivalent to
calling the gsk_read_content_msg() routine, the
gsk_read_enveloped_data_content_extended() routine, and the
gsk_read_data_content() routine.

The recipient_keys parameter supplies one or more recipient certificates and
associated private keys. The gsk_read_enveloped_data_msg_extended() routine
will search for a certificate matching one of the message recipients. The private key
will be used to decrypt the session key and the session key will then be used to
decrypt the enveloped data. If option_flag specifies that key encipherment is to be
enforced, then the certificate key usage must allow key encipherment.

No certificate validation is performed by the
gsk_read_enveloped_data_msg_extended() routine. It is assumed that the
application has already validated the recipient certificates.

These encryption algorithms are supported. Strong encryption might not be
available depending upon government export regulations.
v x509_alg_rc2CbcPad - 40-bit and 128-bit RC2 - {1.2.840.113549.3.2}

v x509_alg_rc4 - 40-bit and 128-bit RC4 - {1.2.840.113549.3.4}

v x509_alg_desCbcPad - 56-bit DES - {1.3.14.3.2.7}

v x509_alg_desEde3CbcPad - 168-bit 3DES - {1.2.840.113549.3.7}

v x509_alg_aesCbc128 - 128-bit AES CBC - {2.16.840.1.101.3.4.1.2}

v x509_alg_aesCbc256 - 256-bit AES CBC - {2.16.840.1.101.3.4.1.42}

When executing in FIPS mode, encryption algorithms x509_alg_rc2CbcPad,
x509_alg_rc4 and x509_alg_desCbcPad are not supported.

gsk_read_enveloped_data_msg_extended()

382 z/OS V2R1.0 System SSL Programming

gsk_read_signed_data_content()
Processes PKCS #7 SignedData content information.

Format
#include <gskcms.h>

gsk_status gsk_read_signed_data_content (
pkcs_certificates * local_certificates,
pkcs_content_info * content_info,
gsk_boolean * used_local,
pkcs_certificates * msg_certificates,
pkcs_certificates * signer_certificates,
pkcs_content_info * content_data)

Parameters

local_certificates
Specifies zero or more X.509 certificates to use when verifying the message
signatures. NULL can be specified for this parameter if no local certificates are
provided.

content_info
Specifies the content information to be processed.

used_local
This parameter will be set to TRUE if the signatures were verified using just
the certificates supplied by the local_certificates parameter. This parameter will
be set to FALSE if any of the signatures were verified using certificates
contained within the message.

msg_certificates
Returns the X.509 certificates contained within the message. The application
should call the gsk_free_certificates() routine to release the certificates when
they are no longer needed. Specify NULL for this parameter if the message
certificates are not needed.

signer_certificates
Returns the certificates used to sign the message. The application should call
the gsk_free_certificates() routine to release the certificates when they are no
longer needed. Specify NULL for this parameter if the signer certificates are
not needed.

content_data
Returns the SignedData content data. The application should call the
gsk_free_content_info() routine to release the data when it is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The digest algorithm is not supported.

[CMSERR_BAD_SIGNATURE]
Signature is not correct.

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not SignedData.

gsk_read_signed_data_content()

Chapter 8. Certificate Management Services (CMS) API reference 383

[CMSERR_DIGEST_KEY_MISMATCH]
The digest algorithm is not supported for the private key type.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_KEY_USAGE]
A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]
Signer certificate not found.

Usage

The gsk_read_signed_data_content() routine processes PKCS #7 (Cryptographic
Message Syntax) SignedData message created by the
gsk_make_signed_data_content() routine and returns the content data.

The local_certificates parameter can supply the signer certificates used to verify the
message signatures. If a certificate is not found for a message signer, the
gsk_read_signed_data_content() routine attempts to locate the signer certificate in
the SignedData message. An error will be returned if the signer certificate cannot
be found or if the certificate key usage does not allow digital signature.

No certificate validation is performed by the gsk_read_signed_data_content()
routine. It is assumed that the application has already validated the local
certificates. The certificates contained in the SignedData message will be returned
in the msg_certificates parameter and the used_local parameter will be set to FALSE
if any of these certificates were used to verify the message signatures. It is the
responsibility of the application to validate the message certificates (for example,
by calling the gsk_validate_certificate() routine for each of the signer certificates).

These digest algorithms are supported:

x509_alg_md2Digest
MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest
MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

gsk_read_signed_data_content()

384 z/OS V2R1.0 System SSL Programming

x509_alg_sha1Digest
SHA-1 digest (RSA, DSA, and ECDSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest
SHA-224 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest
SHA-256 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest
SHA-384 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest
SHA-512 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.3}

When executing in FIPS mode, digest algorithms x509_alg_md2Digest and
x509_alg_md5Digest are not supported.

gsk_read_signed_data_content()

Chapter 8. Certificate Management Services (CMS) API reference 385

gsk_read_signed_data_content_extended()
Processes PKCS #7 SignedData content information.

Format
#include <gskcms.h>

gsk_status gsk_read_signed_data_content_extended (
gsk_process_option option_flag
pkcs_certificates * local_certificates,
pkcs_content_info * content_info,
gsk_boolean * used_local,
pkcs_certificates * msg_certificates,
pkcs_certificates * signer_certificates,
gsk_attributes_signers * attributes_signers,
pkcs_content_info * content_data)

Parameters

option_flag
Specifies process options to customize process behavior.
v Enforce signing certificate has digital signing capabilities. That is, the

purpose of the certificate key as reflected by the key usage extension must
indicate digitalSignature.

v Do not allow zero-length content data.

local_certificates
Specifies zero or more X.509 certificates to use when verifying the message
signatures. NULL can be specified for this parameter if no local certificates are
provided.

content_info
Specifies the content information to be processed.

used_local
This parameter will be set to TRUE if the signatures were verified using just
the certificates supplied by the local_certificates parameter. This parameter will
be set to FALSE if any of the signatures were verified using certificates
contained within the message.

msg_certificates
Returns the X.509 certificates contained within the message. The application
should call the gsk_free_certificates() routine to release the certificates when
they are no longer needed. Specify NULL for this parameter if the message
certificates are not needed.

signer_certificates
Returns the certificates used to sign the message. The application should call
the gsk_free_certificates() routine to release the certificates when they are no
longer needed. Specify NULL for this parameter if the signer certificates are
not needed.

attributes_signers
Returns the authenticated attributes per signer contained within the message.
The application should call the gsk_free_attributes_signers() routine to release
the gsk_attributes_signers structure when it is no longer needed. Specify NULL
for this parameter if the authenticated attributes per signer are not needed. The
set of authenticated attributes returned, omits the content-type and
message-digest authenticated attributes as these authenticated attributes must
always be present, if any authenticated attributes are present, and are
automatically verified by gsk_read_signed_data_content_extended(). The

gsk_read_signed_data_content_extended()

386 z/OS V2R1.0 System SSL Programming

digestAlgorithm field within each gsk_attributes_signer structure returns the
digest algorithm originally used for the signer.

content_data
Returns the SignedData content data. The application should call the
gsk_free_content_info() routine to release the data when it is no longer
needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The digest algorithm is not supported.

[CMSERR_BAD_SIGNATURE]
Signature is not correct.

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not SignedData.

[CMSERR_DIGEST_KEY_MISMATCH]
The digest algorithm is not supported for the private key type.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_KEY_USAGE]
A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]
Signer certificate not found.

Usage

The gsk_read_signed_data_content_extended() routine processes PKCS #7
(Cryptographic Message Syntax) SignedData message created by the
gsk_make_signed_data_content_extended() routine and returns the content data
and authenticated attributes per signed (if present).

gsk_read_signed_data_content_extended()

Chapter 8. Certificate Management Services (CMS) API reference 387

Processing is equivalent to gsk_read_signed_data_content(), with these differences:
v The signing certificate key usage need not assert digital signing capabilities

depending on option_flag.
v Zero length content is acceptable depending on option_flag.
v Authenticated attributes and the digest algorithm used to create the signed data

per signer, if present, are returned.

The local_certificates parameter can supply the signer certificates used to verify the
message signatures. If a certificate is not found for a message signer, the
gsk_read_signed_data_content_extended() routine attempts to locate the signer
certificate in the SignedData message. An error will be returned if the signer
certificate cannot be found. An error may optionally be returned if the certificate
key usage does not allow digital signature.

No certificate validation is performed by the
gsk_read_signed_data_content_extended() routine. It is assumed that the
application has already validated the local certificates. The certificates contained in
the SignedData message will be returned in the msg_certificates parameter and the
used_local parameter will be set to FALSE if any of these certificates were used to
verify the message signatures. It is the responsibility of the application to validate
the message certificates (for example, by calling the gsk_validate_certificate()
routine for each of the signer certificates).

These digest algorithms are supported:

x509_alg_md2Digest
MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest
MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

x509_alg_sha1Digest
SHA-1 digest (RSA, DSA, and ECDSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest
SHA-224 digest (RSA DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest
SHA-256 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest
SHA-384 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest
SHA-512 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.3}

If authenticated attributes are returned from the attributes_signers parameter, then it
is recommended that signing certificates for all signers represented within the
gsk_attributes_signers structure should be requested from the signer_certificates
parameter.

When executing in FIPS mode, digest algorithms x509_alg_md2Digest and
x509_alg_md5Digest are not supported.

gsk_read_signed_data_content_extended()

388 z/OS V2R1.0 System SSL Programming

gsk_read_signed_data_msg()
Processes a PKCS #7 SignedData message.

Format
#include <gskcms.h>

gsk_status gsk_read_signed_data_msg (
pkcs_certificates * local_certificates,
gsk_buffer * stream,
gsk_boolean * used_local,
pkcs_certificates * msg_certificates,
pkcs_certificates * signer_certificates,
gsk_buffer * data)

Parameters

local_certificates
Specifies zero or more X.509 certificates to use when verifying the message
signatures. NULL can be specified for this parameter if no local certificates are
provided.

stream
Specifies the ASN.1 DER-encoded stream to be processed.

used_local
This parameter will be set to TRUE if the signatures were verified using just
the certificates supplied by the local_certificates parameter. This parameter will
be set to FALSE if any of the signatures were verified using certificates
contained within the message.

msg_certificates
Returns the X.509 certificates contained within the message. The application
should call the gsk_free_certificates() routine to release the certificates when
they are no longer needed. Specify NULL for this parameter if the message
certificates are not needed.

signer_certificates
Returns the certificates used to sign the message. The application should call
the gsk_free_certificates() routine to release the certificates when they are no
longer needed. Specify NULL for this parameter if the signer certificates are
not needed.

data
Returns the content of the SignedData message. The application should call the
gsk_free_buffer() routine to release the data when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[ASN_NO_MEMORY]
Insufficient storage is available.

[ASN_SELECTION_OUT_OF_RANGE]
Certificate type or version number is not valid.

[CMSERR_ALG_NOT_SUPPORTED]
The digest algorithm is not supported.

gsk_read_signed_data_msg()

Chapter 8. Certificate Management Services (CMS) API reference 389

[CMSERR_BAD_SIGNATURE]
Signature is not correct.

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not SignedData or the content of the
SignedData message is not Data.

[CMSERR_DIGEST_KEY_MISMATCH]
The digest algorithm is not supported for the private key type.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_KEY_USAGE]
A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]
Signer certificate not found.

Usage

The gsk_read_signed_data_msg() routine processes a PKCS #7 (Cryptographic
Message Syntax) SignedData message created by the gsk_make_signed_data_msg()
routine and returns the message content. The signed data content type must be
Data.

Calling the gsk_read_signed_data_msg() routine is equivalent to calling the
gsk_read_content_msg() routine, the gsk_read_signed_data_content() routine, and
the gsk_read_data_content() routine.

The local_certificates parameter can supply the signer certificates used to verify the
message signatures. If a certificate is not found for a message signer, the
gsk_read_signed_data_msg() routine attempts to locate the signer certificate in the
SignedData message. An error will be returned if the signer certificate cannot be
found or if the certificate key usage does not allow digital signature.

No certificate validation is performed by the gsk_read_signed_data_msg() routine.
It is assumed that the application has already validated the local certificates. The
certificates contained in the SignedData message will be returned in the
msg_certificates parameter and the used_local parameter will be set to FALSE if any
of these certificates were used to verify the message signatures. It is the

gsk_read_signed_data_msg()

390 z/OS V2R1.0 System SSL Programming

responsibility of the application to validate the message certificates (for example,
by calling the gsk_validate_certificate() routine for each of the signer certificates).

These digest algorithms are supported:

x509_alg_md2Digest
MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest
MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

x509_alg_sha1Digest
SHA-1 digest (RSA, DSA, and ECDSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest
SHA-224 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest
SHA-256 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest
SHA-384 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest
SHA-512 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.3}

When executing in FIPS mode, digest algorithms x509_alg_md2Digest and
x509_alg_md5Digest are not supported.

gsk_read_signed_data_msg()

Chapter 8. Certificate Management Services (CMS) API reference 391

gsk_read_signed_data_msg_extended()
Processes a PKCS #7 SignedData message.

Format
#include <gskcms.h>

gsk_status gsk_read_signed_data_msg_extended (
gsk_process_option option_flag
pkcs_certificates * local_certificates,
gsk_buffer * stream,
gsk_boolean * used_local,
pkcs_certificates * msg_certificates,
pkcs_certificates * signer_certificates,
gsk_attributes_signers * attributes_signers,
gsk_buffer * data)

Parameters

option_flag
Specifies process options to customize process behavior.
v Enforce signing certificate has digital signing capabilities. That is, the

purpose of the certificate key as reflected by the key usage extension must
indicate digitalSignature.

v Do not allow zero-length content data.

local_certificates
Specifies zero or more X.509 certificates to use when verifying the message
signatures. NULL can be specified for this parameter if no local certificates are
provided.

stream
Specifies the ASN.1 DER-encoded stream to be processed.

used_local
This parameter is set to TRUE if the signatures were verified by using just the
certificates that are supplied by the local_certificates parameter. This parameter
is set to FALSE if any of the signatures were verified by using certificates that
are contained within the message.

msg_certificates
Returns the X.509 certificates that are contained within the message. The
application should call the gsk_free_certificates() routine to release the
certificates when they are no longer needed. Specify NULL for this parameter
if the message certificates are not needed.

signer_certificates
Returns the certificates that are used to sign the message. The application
should call the gsk_free_certificates() routine to release the certificates when
they are no longer needed. Specify NULL for this parameter if the signer
certificates are not needed.

attributes_signers
Returns the authenticated attributes per signer that is contained within the
message. The application should call the gsk_free_attributes_signers() routine
to release the gsk_attributes_signers structure when it is no longer needed.
Specify NULL for this parameter if the authenticated attributes per signer are
not needed. The set of authenticated attributes returned, omits the content-type
and message-digest authenticated attributes as these authenticated attributes
must always be present, if any authenticated attributes are present, and are
automatically verified by gsk_read_signed_data_msg_extended(). The

gsk_read_signed_data_msg_extended()

392 z/OS V2R1.0 System SSL Programming

digestAlgorithm field within each gsk_attributes_signer structure returns the
digest algorithm that is originally used for the signer.

data
Returns the content of the SignedData message. The application should call the
gsk_free_buffer() routine to release the data when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it is one of
the return codes listed in the gskcms.h include file. These are some possible errors:

[ASN_NO_MEMORY]
Insufficient storage is available.

[ASN_SELECTION_OUT_OF_RANGE]
Certificate type or version number is not valid.

[CMSERR_ALG_NOT_SUPPORTED]
The digest algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]
The message content type is not SignedData or the content of the
SignedData message is not Data.

[CMSERR_BAD_SIGNATURE]
Signature is not correct.

[CMSERR_DIGEST_KEY_MISMATCH]
The digest algorithm is not supported for the private key type.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_KEY_USAGE]
A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]
The content data length is zero.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]
Signer certificate not found.

gsk_read_signed_data_msg_extended()

Chapter 8. Certificate Management Services (CMS) API reference 393

Usage

The gsk_read_signed_data_msg_extended() routine processes a PKCS #7
(Cryptographic Message Syntax) SignedData message that is created by the
gsk_make_signed_data_msg_extended() routine and returns the message content
and all authenticated attributes (if present). The signed data content type must be
Data.

Processing is equivalent to gsk_read_signed_data_msg(), with these differences:
v The signing certificate key usage need not assert digital signing capabilities

depending on option_flag.
v Zero length content is acceptable depending on option_flag.
v Authenticated attributes and the digest algorithm that is used to create the

signed data per signer, if present, are returned.

Calling the gsk_read_signed_data_msg_extended() routine is equivalent to calling
the gsk_read_content_msg() routine, the
gsk_read_signed_data_content_extended() routine, and the
gsk_read_data_content() routine.

The local_certificates parameter can supply the signer certificates that are used to
verify the message signatures. If a certificate is not found for a message signer, the
gsk_read_signed_data_msg_extended() routine attempts to locate the signer
certificate in the SignedData message. An error is returned if the signer certificate
cannot be found. An error may optionally be returned if the certificate key usage
does not allow digital signature.

No certificate validation is performed by the
gsk_read_signed_data_msg_extended() routine. It is assumed that the application
validated the local certificates. The certificates that are contained in the SignedData
message are returned in the msg_certificates parameter and the used_local parameter
is set to FALSE if any of these certificates were used to verify the message
signatures. It is the responsibility of the application to validate the message
certificates (for example, by calling the gsk_validate_certificate_mode() routine for
each of the signer certificates).

These digest algorithms are supported:

x509_alg_md2Digest
MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest
MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

x509_alg_sha1Digest
SHA-1 digest (RSA, DSA, and ECDSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest
SHA-224 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest
SHA-256 digest (RSA, DSA, and ECDSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest
SHA-384 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest
SHA-512 digest (RSA and ECDSA keys only) - {2.16.840.1.101.3.4.2.3}

gsk_read_signed_data_msg_extended()

394 z/OS V2R1.0 System SSL Programming

If authenticated attributes are returned from the attributes_signers parameter, then it
is recommended that signing certificates for all signers represented within the
gsk_attributes_signers structure should be requested from the signer_certificates
parameter.

When executing in FIPS mode, digest algorithms x509_alg_md2Digest and
x509_alg_md5Digest are not supported.

gsk_read_signed_data_msg_extended()

Chapter 8. Certificate Management Services (CMS) API reference 395

gsk_read_wrapped_content()
Processes wrapped content information.

Format
#include <gskcms.h>

gsk_status gsk_read_wrapped_content (
pkcs_content_info * wrapped_content,
pkcs_content_info * content_info)

Parameters

wrapped_content
Specifies the wrapped content information.

content_info
Returns the content information. The application should call the
gsk_free_content_info() routine to release the content information when it is
no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_CONTENT_NOT_SUPPORTED]
The content type is not supported.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_read_wrapped_content() routine processes an ASN.1 sequence containing
encoded content information and returns the unwrapped content information.

gsk_read_wrapped_content()

396 z/OS V2R1.0 System SSL Programming

gsk_receive_certificate()
Receives one or more certificates.

Format
#include <gskcms.h>

gsk_status gsk_receive_certificate (
gsk_buffer * stream,
pkcs_certificates * certificates)

Parameters

stream
Specifies the byte stream of the encoded certificate.

certificate
Returns the decoded certificates. The application should call the
gsk_free_certificates() routine to release the certificates when they are no
longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BAD_BASE64_ENCODING]
The Base64 encoding of the import file is not correct.

[CMSERR_BAD_ENCODING]
The import file format is not recognized.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

Usage

The gsk_receive_certificate() routine receives one or more X.509 certificates and
returns the decoded certificates to the caller.

The supplied stream can represent either the ASN.1 DER encoding for the
certificate or the Cryptographic Message Syntax (PKCS #7) encoding for the
certificate. This can be either the binary value or the Base64 encoding of the binary
value. A Base64 encoded stream must be in the local code page and must include
the encoding header and footer lines.

A Base64 DER-encoded sequence must start with the encoding header '-----BEGIN
CERTIFICATE-----' and end with the encoding footer '----END CERTIFICATE-----'.
A Base 64 PKCS #7 signed data message must start with the encoding header
'-----BEGIN CERTIFICATE-----' and end with the encoding footer '----END
CERTIFICATE-----' or must start with the encoding header '----BEGIN PKCS #7
SIGNED DATA-----' and end with the encoding footer '-----END PKCS #7 SIGNED
DATA-----'.

A DER-encoded certificate stream contains a single X.509 certificate while a PKCS
#7 message stream contains one or more certificates. All of the certificates in a
PKCS #7 message will be returned to the application for processing.

gsk_receive_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 397

gsk_replace_record()
Replaces a record in a key or request database.

Format
#include <gskcms.h>

gsk_status gsk_replace_record (
gsk_handle db_handle,
gskdb_record * record)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or
the gsk_open_database() routine.

record
Specifies the database record.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_LABEL]
The record label is not valid.

[CMSERR_BAD_RNG_OUTPUT]
In FIPS mode, random bytes generation produced duplicate output.

[CMSERR_DEFAULT_KEY_CHANGED]
The default key cannot be changed.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

gsk_replace_record()

398 z/OS V2R1.0 System SSL Programming

[CMSERR_INCORRECT_DBTYPE]
The record type is not supported for the database type.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_LABEL_NOT_UNIQUE]
The record label is not unique.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
No private key is provided for a record type that requires a private key.

[CMSERR_PUBLIC_KEY_CHANGED]
The subject public key cannot be changed.

[CMSERR_RECORD_NOT_FOUND]
Record is not found.

[CMSERR_RECORD_TOO_BIG]
The record is larger than the database record length.

[CMSERR_RECTYPE_NOT_VALID]
The record type is not valid.

[CMSERR_SUBJECT_CHANGED]
The subject name cannot be changed.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update or update attempted on a FIPS mode
database while in non-FIPS mode.

Usage

The gsk_replace_record() routine replaces a record in a key or request database.
The database must be open for update in order to replace records. The unique
record identifier identifies the record to be replaced. Unused and reserved fields in
the gskdb_record structure must be initialized to zero. If the record has a private
key, the encrypted private key will be generated from the private key supplied in
the database record.

The recordType field identifies the database record type as follows:

gskdb_rectype_certificate
The record contains an X.509 certificate.

gskdb_rectype_certKey
The record contains an X.509 certificate and private key.

gskdb_rectype_keyPair
The record contains a PKCS #10 certification request and private key.

The recordFlags field is a bit field with these values:

GSKDB_RECFLAG_TRUSTED
The certificate is trusted.

GSKDB_RECFLAG_DEFAULT
This is the default key

gsk_replace_record()

Chapter 8. Certificate Management Services (CMS) API reference 399

The record label is used as a friendly name for the database entry and is in the
local code page. It can be set to any value and consists of characters which can be
represented using 7-bit ASCII (letters, numbers, and punctuation). It may not be set
to an empty string.

If the record contains a certificate, the certificate will be validated and the record
will not be replaced in the database if the validation check fails. If executing in
FIPS mode, only FIPS-approved algorithms and key sizes are supported.

With the exception of the record label, all character strings are specified using
UTF-8.

The record type, subject name, and subject public key cannot be changed when
replacing a record. In addition, the GSKDB_RECFLAG_DEFAULT flag cannot be
changed when replacing a record (call the gsk_set_default_key() routine to change
the default record for the database).

The database file is updated as part of the gsk_replace_record() processing. A
temporary database file is created using the same name as the database file with
".new" appended to the name. The database file is then overwritten and the
temporary database file is deleted. The temporary database file will not be deleted
if an error occurs while rewriting the database file.

gsk_replace_record()

400 z/OS V2R1.0 System SSL Programming

gsk_set_default_key()
Sets the default key.

Format
#include <gskcms.h>

gsk_status gsk_set_default_key (
gsk_handle db_handle,
gsk_int32 record_id)

Parameters

db_handle
Specifies the database handle returned by the gsk_create_database() routine or
the gsk_open_database() routine.

record_id
Specifies the unique record identifier of the new default key.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_BACKUP_EXISTS]
The backup file already exists.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support a default key.

[CMSERR_IO_ERROR]
Unable to write record.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
The database record does not contain a private key.

[CMSERR_RECORD_NOT_FOUND]
Record is not found.

[CMSERR_UPDATE_NOT_ALLOWED]
Database is not open for update or update attempted on a FIPS mode
database while in non-FIPS mode.

Usage

The gsk_set_default_key() routine sets the default key for a key database. If the
key database already has a default key, the record for the old default key is
updated to remove the GSKDB_RECFLAG_DEFAULT flag. The record for the new
default key is then updated to add the GSKDB_RECFLAG_DEFAULT flag. The
database must be open for update in order to set the default key. An error will be
returned if the specified database record does not contain a private key.

gsk_set_default_key()

Chapter 8. Certificate Management Services (CMS) API reference 401

The database file is updated as part of the gsk_set_default_key() processing. A
temporary database file is created using the same name as the database file with
".new" appended to the name. The database file is then overwritten and the
temporary database file is deleted. The temporary database file will not be deleted
if an error occurs while rewriting the database file.

gsk_set_default_key()

402 z/OS V2R1.0 System SSL Programming

gsk_set_directory_enum()
Sets an enumerated value for an LDAP directory.

Format
#include <gskcms.h>

gsk_status gsk_set_directory_enum (
gsk_handle directory_handle,
GSKCMS_DIRECTORY_ENUM_ID enum_id,
GSKCMS_DIRECTORY_ENUM_VALUE enum_value)

Parameters

directory_handle
Specifies an LDAP directory handle returned by gsk_open_directory().

enum_id
Specifies the directory enumeration identifier.

enum_value
Specifies the directory enumeration value.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskcms.h include file. These are some
possible errors:

[CMSERR_ATTRIBUTE_INVALID_ID]
The enumeration identifier is not valid or cannot be used with the
specified handle.

[CMSERR_ATTRIBUTE_INVALID_ENUMERATION]
The enumeration value is not valid or cannot be used with the specified
enumeration ID.

[CMSERR_BAD_HANDLE]
The handle is not valid.

Usage

The gsk_set_directory_enum() routine sets the enumerated value for an LDAP
directory vector. The LDAP directory must have a valid LDAP handle as initialized
using gsk_open_directory()

These enumeration identifiers are supported:

GSKCMS_CRL_SECURITY_LEVEL
Specifies the level of security to be used when contacting an LDAP server
in order to check for revoked certificates in a Certificate Revocation List
(CRL). CRLs located will be cached according to the
GSK_CRL_CACHE_TIMEOUT setting of the SSL environment. To enforce
contact with the LDAP server for each CRL check, CRL caching must be
disabled. See “gsk_attribute_set_numeric_value()” on page 85 and
Appendix A, “Environment variables,” on page 605 for additional
information about the GSK_CRL_CACHE_TIMEOUT setting.

Three levels of security are available:

gsk_set_directory_enum()

Chapter 8. Certificate Management Services (CMS) API reference 403

v GSKCMS_CRL_SECURITY_LEVEL_LOW - Certificate validation will not
fail if the LDAP server cannot be contacted.

v GSKCMS_CRL_SECURITY_LEVEL_MEDIUM - Certificate validation
requires the LDAP server to be contactable, but does not require a CRL
to be defined. This is the default setting.

v GSKCMS_CRL_SECURITY_LEVEL_HIGH - Certificate validation
requires the LDAP server to be contactable, and a CRL to be defined.

gsk_set_directory_enum()

404 z/OS V2R1.0 System SSL Programming

gsk_sign_certificate()
Signs an X.509 certificate.

Format
#include <gskcms.h>

gsk_status gsk_sign_certificate (
x509_certificate * certificate,
pkcs_private_key_info * private_key)

Parameters

certificate
Specifies the X.509 certificate.

private_key
Specifies the private key.

Results

The return status will be zero if the signature is successfully generated. Otherwise,
it will be one of the return codes listed in the gskcms.h include file. These are
some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_KEY_MISMATCH]
The supplied key does not match the signature algorithm.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
Private key does not exist or is not accessible.

gsk_sign_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 405

Usage

The gsk_sign_certificate() routine will sign an X.509 certificate using the supplied
private key. The private key can be an RSA key, DSA key, or an ECDSA key. If
executing in FIPS mode, the minimum key size for RSA and DSA keys is 1024 bits,
and the minimum key size for ECDSA keys is 160 bits. The private key can be an
ASN.1-encoded value contained in the privateKey field or an ICSF key label
contained in the keyToken field. In either case, the key type must be specified by
the privateKeyAlgorithm field.

The signature algorithm is obtained from the signature field of the
x509_tbs_certificate structure contained within the x509_certificate structure. The
generated signature will be placed in the signatureAlgorithm and signatureValue
fields of the x509_certificate structure.

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest – {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest – {2.16.840.1.101.3.4.3.2}

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest –
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest –
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest –
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest –
{1.2.840.10045.4.3.3}

gsk_sign_certificate()

406 z/OS V2R1.0 System SSL Programming

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest –
{1.2.840.10045.4.3.4}

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

gsk_sign_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 407

gsk_sign_crl()
Signs an X.509 certificate revocation list.

Format
#include <gskcms.h>

gsk_status gsk_sign_crl (
x509_crl * crl,
pkcs_private_key_info * private_key)

Parameters

crl
Specifies the X.509 certificate revocation list.

private_key
Specifies the private key.

Results

The return status will be zero if the signature is successfully generated. Otherwise,
it will be one of the return codes listed in the gskcms.h include file. These are
some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_KEY_MISMATCH]
The supplied key does not match the signature algorithm.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]
Private key does not exist or is not accessible.

gsk_sign_crl()

408 z/OS V2R1.0 System SSL Programming

Usage

The gsk_sign_crl() routine will sign an X.509 certificate revocation list using the
supplied private key. The private key can be an RSA key, a DSA key, or an ECDSA
key. If executing in FIPS mode, the minimum key size for RSA and DSA keys is
1024 bits, and the minimum key size for ECDSA keys is 160 bits. The private key
can be an ASN.1-encoded value contained in the privateKey field or an ICSF key
label contained in the keyToken field. In either case, the key type must be specified
by the privateKeyAlgorithm field.

The signature algorithm is obtained from the signature field of the x509_tbs_crl
structure contained within the x509_crl structure. The generated signature will be
placed in the signatureAlgorithm and signatureValue fields of the x509_crl
structure.

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest – {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest – {2.16.840.1.101.3.4.3.2}

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest –
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest –
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest –
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest –
{1.2.840.10045.4.3.3}

gsk_sign_crl()

Chapter 8. Certificate Management Services (CMS) API reference 409

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest –
{1.2.840.10045.4.3.4}

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

gsk_sign_crl()

410 z/OS V2R1.0 System SSL Programming

gsk_sign_data()
Signs a data stream.

Format
#include <gskcms.h>

gsk_status gsk_sign_data (
x509_algorithm_type sign_algorithm,
pkcs_private_key_info * private_key,
gsk_boolean is_digest,
gsk_buffer * data,
gsk_buffer * signature)

Parameters

sign_algorithm
Specifies the signature algorithm.

private_key
Specifies the private key.

is_digest
Specify TRUE if the data stream digest has been computed or FALSE if the
data stream digest needs to be computed.

data
Specifies either the data stream digest (is_digest is TRUE) or the data stream
(is_digest is FALSE).

signature
Returns the generated signature. The caller should release the signature buffer
when it is no longer needed by calling the gsk_free_buffer() routine.

Results

The return status will be zero if the signature is successfully generated. Otherwise,
it will be one of the return codes listed in the gskcms.h include file. These are
some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_BAD_DIGEST_SIZE]
The digest size is not correct.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_RNG_OUTPUT]
In FIPS mode, random bytes generation produced duplicate output.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

gsk_sign_data()

Chapter 8. Certificate Management Services (CMS) API reference 411

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INVALID_KEY_ATTRIBUTE]
Key does not have required PKCS #11 attributes to perform signing.

[CMSERR_KEY_MISMATCH]
The supplied key does not match the signature algorithm.

[CMSERR_NO_MEMORY]
Insufficient storage is available.

[CMSERR_NO_PKCS11_KEY_LABEL]
A TKDS secure key label is either invalid or missing.

[CMSERR_NO_PRIVATE_KEY]
Private key does not exist, is not accessible, or the PKCS #11 TKDS secure
key is not a supported algorithm type.

Usage

The gsk_sign_data() routine will generate the signature for a data stream using the
supplied private key. The private key can be an RSA key, a DSA key, or an ECDSA
key. If executing in FIPS mode, the minimum key size for RSA and DSA keys is
1024 bits, and the minimum size for ECDSA keys is 160 bits. The private key can
be an ASN.1-encoded value contained in the privateKey field or an ICSF key label
contained in the keyToken field. In either case, the key type must be specified by
the privateKeyAlgorithm field.

The application can either provide the message digest or have the gsk_sign_data()
routine compute the message digest.

When the application provides the message digest, the digest length must be
correct for the specified signature algorithm. Digest lengths: MD2 and MD5 are 16
bytes; SHA-1 is 20 bytes; SHA-224 is 28 bytes; SHA-256 is 32 bytes; SHA-384 is 48
bytes and SHA-512 is 64 bytes. The supplied digest will be used as-is without any
further processing (specifically, for an RSA encryption key, the digest will not be
encoded as an ASN.1 DigestInfo sequence before generating the signature).

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

gsk_sign_data()

412 z/OS V2R1.0 System SSL Programming

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest – {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest – {2.16.840.1.101.3.4.3.2}

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest –
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest –
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest –
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest –
{1.2.840.10045.4.3.3}

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest –
{1.2.840.10045.4.3.4}

x509_alg_md5Sha1WithRsaEncryption
RSA encryption with combined MD5 and SHA-1 digests

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

gsk_sign_data()

Chapter 8. Certificate Management Services (CMS) API reference 413

gsk_validate_certificate()
Validates an X.509 certificate.

This function is deprecated. Use gsk_validate_certificate_mode() instead.

Format
#include <gskcms.h>

gsk_status gsk_validate_certificate (
gskdb_data_sources * data_sources,
x509_certificate * subject_certificate,
gsk_boolean accept_root,
gsk_int32 * issuer_record_id)

Parameters

data_sources
Specifies the data sources for CA certificates and revocation lists. The data
sources are searched in the order they occur in the data source array, so trusted
sources should be included before untrusted sources and local sources should
be included before remote sources.

subject_certificate
Specifies the certificate to be validated.

accept_root
Specify TRUE if a self-signed root certificate is to be accepted without checking
the data sources. Specify FALSE if a self-signed root certificate must be found
in one of the trusted data sources in order to be accepted.

issuer_record_id
Returns the record identifier for the issuer certificate used to validate the
certificate. The record identifier will be 0 if the issuer certificate is found in a
non-database source. Specify NULL for this parameter if the issuer record
identifier is not needed.

Results

The return status will be zero if the validation is successful. Otherwise, it will be
one of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_ISSUER_NAME]
The certificate issuer name is not valid.

[CMSERR_BAD_SIGNATURE]
The signature is not correct.

[CMSERR_CERT_CHAIN_NOT_TRUST]
The certification chain is not trusted

[CMSERR_CERTIFICATE_REVOKED]
The certificate is revoked.

gsk_validate_certificate()

414 z/OS V2R1.0 System SSL Programming

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_EXPIRED]
The certificate is expired.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_USAGE]
The issuer certificate does not allow signing certificates

[CMSERR_ISSUER_NOT_CA]
The certificate issuer is not a certification authority.

[CMSERR_ISSUER_NOT_FOUND]
The issuer certificate is not found in one of the data sources.

[CMSERR_NAME_CONSTRAINTS_VIOLATED]
The certificate name is not consistent with the name constraints.

[CMSERR_NAME_NOT_SUPPORTED]
The AuthorityKeyIdentifier extension name is not a directory name.

[CMSERR_NOT_YET_VALID]
The certificate is not yet valid.

[CMSERR_PATH_TOO_LONG]
The certification chain exceeds the maximum allowed by the CA.

[CMSERR_SELF_SIGNED_NOT_FOUND]
A self-signed certificate is not found in a trusted data source

Usage

The gsk_validate_certificate() routine validates an X.509 certificate by performing
these checks on the subject certificate:
v The certificate subject name must be either a non-empty distinguished name or

an empty distinguished name with a SubjectAltName certificate extension
v An empty subject name is not allowed for a CA certificate
v The certificate issuer name must not be an empty distinguished name
v The CertificatePolicy extension, if present, must not be a critical extension
v The current time must not be earlier than the start of the certificate validity

period
v The current time must not be later than the end of the certificate validity period
v The issuer certificate must be a valid CA certificate

gsk_validate_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 415

v The certificate signature must be correct
v The certificate must not be revoked
v The certification chain must lead to a certificate obtained from a trusted data

source
v No certificate in the certification chain can be revoked or expired.

If executing in FIPS mode, only FIPS-approved algorithms and key sizes are
supported (see Chapter 4, “System SSL and FIPS 140-2,” on page 19 for more
details).

The gsk_validate_certificate() routine will obtain any necessary CA certificates
from the supplied data sources. The CA certificate will be validated as described if
it is obtained from an untrusted data source. In addition, these checks will be
performed on CA certificates when validating the certification chain:
v The BasicConstraints extension, if present, must have the CA indicator set and

the path length constraint must not be violated by subordinate certificates in the
certification chain

v The NameConstraints extension, if present, must not be violated by the subject
certificate

A root certificate is a self-signed certificate and its signature is verified using the
public key in the certificate. If accept_root is FALSE, the root certificate must be
found in a trusted data source in order to be accepted. If accept_root is TRUE, the
self-signed certificate is accepted if the signature is correct.

An intermediate certificate or an end-entity certificate is a certificate signed by
another entity. Its signature is verified using the public key in the issuer's
certificate. The issuer certificate must be found in one of the supplied data sources.
When intermediate CA certificates are used, the certificate chain is validated until
the root certificate for the chain is found in one of the trusted data sources. If a
sole intermediate certificate is found in a SAF key ring and the next issuer is not
found in the same SAF key ring, the intermediate certificate will be allowed to act
as a trust anchor and the chain will be considered complete. It is strongly
recommended that a SAF key ring containing an intermediate certificate also has
the rest of the certificate chain connected to the key ring, including the root
certificate.

The data sources must contain at least one LDAP directory source or CRL source
in order to check for revoked certificates. The CRL distribution point name (or the
certificate issuer name if the certificate does not have a CrlDistributionPoints
extension) is used as the distinguished name of the LDAP directory entry
containing the certificate revocation list (CRL). The CRL distribution point name
and CRL issuer name must be X.500 directory names. The BasicConstraints
certificate extension determines whether the CA revocation list or the user
revocation list is used. An error will be returned if a CRL obtained from an
untrusted source cannot be validated.

Security levels for connecting to LDAP directories are based on the
GSKCMS_CRL_SECURITY_LEVEL setting. When using the CMS APIs, the
GSKCMS_CRL_SECURITY_LEVEL setting can be specified using the
gsk_set_directory_enum() routine. Security levels can be set to LOW, MEDIUM or
HIGH. See “gsk_attribute_set_enum()” on page 79, “gsk_set_directory_enum()” on
page 403 and Appendix A, “Environment variables,” on page 605 for more
information about CRL security level settings.

gsk_validate_certificate()

416 z/OS V2R1.0 System SSL Programming

These data sources are supported:
v gskdb_source_key_database - The source is a key database. The handle must be

a database handle returned by the gsk_create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine. This is a
trusted data source.

v gskdb_source_directory - The source is an LDAP directory. The handle must be
the directory handle returned by the gsk_open_directory() routine. This is an
untrusted data source. Any certificate or revocation list obtained from this source
will be validated before being accepted. See the gsk_get_directory_certificates()
and gsk_get_directory_crls() routines for more information concerning the use of
LDAP directory entries.

v gskdb_source_trusted_certs - The source is an array of certificates. This is a
trusted data source.

v gskdb_source_untrusted_certs - The source is an array of certificates. This is an
untrusted data source. Any certificate used from this list will be validated before
being accepted.

v gskdb_source_trusted_crls - The source is an array of certificate revocation lists.
This is a trusted data source.

v gskdb_source_untrusted_crls - The source is an array of certificate revocation
lists. This is an untrusted data source. Any CRL used from this list will be
validated before being accepted.

v gskdb_source_cert_callback - The source is the address of a callback routine
which will receive control when an issuer certificate is needed. This is a trusted
data source. The subject name is passed as an input parameter and the
certCallback routine returns an array of one or more certificates with that subject
name. The gsk_validate_certificate() routine will call the freeCallback routine to
release the certificates. The return status should be 0 if no errors are detected.
Otherwise it should be one of the error code listed in the gskcms.h include file.
The return status should be 0 and the certificate count should be 0 if there are
no certificates matching the supplied subject name.

v gskdb_source_crl_callback - The source is the address of a callback routine
which will receive control when a certificate needs to be checked to see if it has
been revoked. This is a trusted source. The return value should be 0 if the
certificate is not revoked. If the callback routine is unable to check the certificate
for revocation and processing should continue to the next data source, the return
value should be -1. Otherwise it should be one of the error codes defined in the
gskcms.h include file.

gsk_validate_certificate()

Chapter 8. Certificate Management Services (CMS) API reference 417

gsk_validate_certificate_mode()
Validates an X.509 certificate.

Format
#include <gskcms.h>

gsk_status gsk_validate_certificate_mode (
gskdb_data_sources * data_sources,
x509_certificate * subject_certificate,
gsk_boolean accept_root,
gsk_int32 * issuer_record_id,
GSKCMS_CERT_VALIDATION_MODE validation_mode,
gsk_uint32 arg_count,
[GSKCMS_CERT_VALIDATE_KEYRING_ROOT validate_root]
...)

Parameters

data_sources
Specifies the data sources for CA certificates and revocation lists. The data
sources are searched in the order they occur in the data source array, so trusted
sources should be included before untrusted sources and local sources should
be included before remote sources.

subject_certificate
Specifies the certificate to be validated.

accept_root
Specify TRUE if a self-signed root certificate is to be accepted without checking
the data sources. Specify FALSE if a self-signed root certificate must be found
in one of the trusted data sources to be accepted.

issuer_record_id
Returns the record identifier for the issuer certificate that is used to validate
the certificate. The record identifier is 0 if the issuer certificate is found in a
non-database source. Specify NULL for this parameter if the issuer record
identifier is not needed.

validation_mode
Specifies certificate validation mode to customize the policy that is used for
certificate validation.

arg_count
Specifies the number of optional parameters following the arg_count parameter.
The arg_count parameter can be set to either 0 or 1. If set to 1, the validate_root
parameter must be specified.

validate_root
Specifies how certificates in a SAF key ring are validated. Specify
GSKCMS_CERT_VALIDATE_KEYRING_ROOT_ON if SAF key ring certificates
are validated to the root CA certificate. Specify
GSKCMS_CERT_VALIDATE_KEYRING_ROOT_OFF if SAF key ring certificates
are validated only to the trust anchor certificate when a sole intermediate
certificate exists in the SAF key ring. By default, SAF key ring certificates are
only validated to the trust anchor certificate. This setting does not affect the
validation of SSL key database file and PKCS #11 token certificates as these
certificates are always validated to the root CA certificate.

gsk_validate_certificate_mode()

418 z/OS V2R1.0 System SSL Programming

Results

The return status is zero if the validation is successful. Otherwise, it is one of the
return codes that are listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_BAD_ARG_COUNT]
Variable argument count is not valid.

[CMSERR_BAD_CRL]
Certificate revocation list cannot be found.

[CMSERR_BAD_EXT_DATA]
Certificate extension data is incorrect.

[CMSERR_BAD_HANDLE]
The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_ISSUER_NAME]
The certificate issuer name is not valid.

[CMSERR_BAD_SIGNATURE]
The signature is not correct.

[CMSERR_BAD_SUBJECT_NAME]
Subject name is not valid.

[CMSERR_BAD_VALIDATE_ROOT_ARG]
Variable argument validate root is not valid.

[CMSERR_BAD_VALIDATION_OPTION]
Validation option is not valid.

[CMSERR_CERT_CHAIN_NOT_TRUSTED]
The certification chain is not trusted.

[CMSERR_CERTIFICATE_REVOKED]
The certificate is revoked.

[CMSERR_CRITICAL_EXT_INCORRECT]
Certificate extension has an incorrect critical indicator.

[CMSERR_DISTRIBUTION_POINTS]
Cannot match CRL distribution points.

[CMSERR_DUPLICATE_EXTENSION]
Supplied extensions contain a duplicate extension.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_EXPIRED]
The certificate is expired.

[CMSERR_EXT_NOT_SUPPORTED]
Certificate extension is not supported.

gsk_validate_certificate_mode()

Chapter 8. Certificate Management Services (CMS) API reference 419

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_INCORRECT_DBTYPE]
The database type does not support certificates.

[CMSERR_INCORRECT_KEY_USAGE]
The issuer certificate does not allow signing certificates

[CMSERR_ISSUER_NOT_CA]
The certificate issuer is not a certification authority.

[CMSERR_ISSUER_NOT_FOUND]
The issuer certificate is not found in one of the data sources.

[CMSERR_LDAP_NOT_AVAILABLE]
LDAP is not available.

[CMSERR_NAME_CONSTRAINTS_VIOLATED]
The certificate name is not consistent with the name constraints.

[CMSERR_NAME_NOT_SUPPORTED]
The AuthorityKeyIdentifier extension name is not a directory name.

[CMSERR_NO_ACCEPTABLE_POLICIES]
Acceptable policy intersection cannot be found.

[CMSERR_NOT_YET_VALID]
The certificate is not yet valid.

[CMSERR_PATH_TOO_LONG]
The certification chain exceeds the maximum that is allowed by the CA.

[CMSERR_RECORD_NOT_FOUND]
Record not found.

[CMSERR_REQUIRED_EXT_MISSING]
Required certificate extension is missing.

Usage

The gsk_validate_certificate_mode() routine validates an X.509 certificate
according to the standards defined in RFC 2459: X.509 certificate, certificate revocation
list, and certificate extensions, RFC 3280: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile, or RFC 5280: Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. Any
necessary CA or issuer certificates are obtained from the supplied data sources.
The CA certificate is also validated according to the previously mentioned Internet
standards.

The validation_mode parameter determines the Internet standard that the certificate
and certificate chain are validated against. The following validation modes are
supported:

gsk_validate_certificate_mode()

420 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc2459.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2459.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

v GSKCMS_CERT_VALIDATION_MODE_2459 – validate the certificate against
RFC 2459 only.

v GSKCMS_CERT_VALIDATION_MODE_3280 – validate the certificate against
RFC 3280 only.

v GSKCMS_CERT_VALIDATION_MODE_5280 – validate the certificate against
RFC 5280 only.

v GSKCMS_CERT_VALIDATION_MODE_ANY – attempt to validate the certificate
against RFC 2459 initially. If that fails, validate against RFC 3280. If that fails,
validate against RFC 5280.

Note: The z/OS specific HostIDMapping certificate extension is supported by
System SSL and can be validated as a critical extension in any validation mode.

A root certificate is a self-signed certificate and its signature is verified by using the
public key in the certificate. If accept_root is FALSE, the root certificate must be
found in a trusted data source to be accepted. If accept_root is TRUE, the self-signed
certificate is accepted if the signature is correct.

An intermediate certificate or an end-entity certificate is a certificate that is signed
by another entity. Its signature is verified by using the public key in the issuer's
certificate. The issuer certificate must be found in one of the supplied data sources.
When intermediate CA certificates are used, the certificate chain is validated until
the root certificate for the chain is found in one of the trusted data sources. If a
sole intermediate certificate is found in a SAF key ring and the next issuer is not
found in the same SAF key ring, and validate_root is not specified or is set to
GSKCMS_CERT_VALIDATE_KEYRING_ROOT_OFF, the intermediate certificate is
allowed to act as a trust anchor, and the chain is considered complete. By default,
SAF key ring certificates are only validated to the trust anchor certificate. If
validate_root is set to GSKCMS_CERT_VALIDATE_KEYRING_ROOT_ON, an
intermediate certificate in a SAF key ring is not allowed to be established as a trust
anchor and full certificate validation to the root CA must occur. Make sure that a
SAF key ring containing an intermediate certificate also has the rest of the
certificate chain that is connected to the key ring, including the root certificate. The
validate_root setting does not affect the validation of SSL key database file and
PKCS #11 token certificates because these certificates are always validated to the
root CA certificate.

The data sources must contain at least one LDAP directory source or CRL source
to check for revoked certificates. The CRL distribution point name (or the
certificate issuer name if the certificate does not have a CrlDistributionPoints
extension) is used as the distinguished name of the LDAP directory entry
containing the certificate revocation list (CRL). The CRL distribution point name
and CRL issuer name must be X.500 directory names. The BasicConstraints
certificate extension determines whether the CA revocation list or the user
revocation list is used. An error is returned if a CRL obtained from an untrusted
source cannot be validated.

Security levels for connecting to LDAP directories are based on the
GSKCMS_CRL_SECURITY_LEVEL setting. When using the CMS APIs, the
GSKCMS_CRL_SECURITY_LEVEL setting can be specified by using the
gsk_set_directory_enum() routine. Security levels can be set to LOW, MEDIUM or
HIGH. See “gsk_attribute_set_enum()” on page 79, “gsk_set_directory_enum()” on
page 403 and Appendix A, “Environment variables,” on page 605 for more
information about CRL security level settings.

gsk_validate_certificate_mode()

Chapter 8. Certificate Management Services (CMS) API reference 421

These data sources are supported:
v gskdb_source_key_database - The source is a key database. The handle must be

a database handle that is returned by the gsk_create_database() routine, the
gsk_open_database() routine, or the gsk_open_keyring() routine. This is a
trusted data source.

v gskdb_source_directory - The source is an LDAP directory. The handle must be
the directory handle that is returned by the gsk_open_directory() routine. This is
an untrusted data source. Any certificate or revocation list that is obtained from
this source is validated before it is accepted. See the
gsk_get_directory_certificates() and gsk_get_directory_crls() routines for more
information about the use of LDAP directory entries.

v gskdb_source_trusted_certs - The source is an array of certificates. This is a
trusted data source.

v gskdb_source_untrusted_certs - The source is an array of certificates. This is an
untrusted data source. Any certificate that is used from this list is validated
before it is accepted.

v gskdb_source_trusted_crls - The source is an array of certificate revocation lists.
This is a trusted data source.

v gskdb_source_untrusted_crls - The source is an array of certificate revocation
lists. This is an untrusted data source. Any CRL used from this list is validated
before it is accepted.

v gskdb_source_cert_callback - The source is the address of a callback routine that
receives control when an issuer certificate is needed. This is a trusted data
source. The subject name is passed as an input parameter and the certCallback
routine returns an array of one or more certificates with that subject name. The
gsk_validate_certificate_mode() routine calls the freeCallback routine to release
the certificates. The return status should be 0 if no errors are detected.
Otherwise, it should be one of the error codes that are listed in the gskcms.h
include file. The return status should be 0 and the certificate count should be 0 if
there are no certificates matching the supplied subject name.

v gskdb_source_crl_callback - The source is the address of a callback routine that
receives control when a certificate must be checked to see if it has been revoked.
This is a trusted source. The return value should be 0 if the certificate is not
revoked. If the callback routine is unable to check the certificate for revocation
and processing should continue to the next data source, the return value should
be -1. Otherwise, it should be one of the error codes that are defined in the
gskcms.h include file.

The validate_root optional parameter must be specified when arg_count is set to 1. If
validate_root is not specified and arg_count is set to 1, an error of
CMSERR_BAD_VALIDATE_ROOT_ARG is returned.

If the arg_count parameter is 0, any additional parameters that are specified are
ignored.

If executing in FIPS mode, only FIPS-approved algorithms and key sizes are
supported. See Chapter 4, “System SSL and FIPS 140-2,” on page 19 for more
details.

gsk_validate_certificate_mode()

422 z/OS V2R1.0 System SSL Programming

gsk_validate_hostname()
Validates a host certificate against the supplied hostname.

Format
#include <gskcms.h>

gsk_status gsk_validate_hostname (
x509_certificate * host_certificate,
const char * host_name,
GSKCMS_VALIDATE_HOSTNAME val_option)

Parameters

host_certificate
Specifies the host certificate to be validated.

host_name
Specifies the fully-qualified host name in the local code page.

val_option
Specifies validation option to customize the order of the validation process.

Results

The function return value will be 0 (GSK_OK) if the validation is successful.
Otherwise, it will be one of the return codes listed in the gskcms.h include file.
These are some possible errors:

[CMSERR_HOST_NOT_VALID]
The certificate is not valid for the specified host name.

[CMSERR_BAD_VALIDATION_OPTION]
Validation option is not valid.

Usage

The gsk_validate_hostname() routine validates the certificate against the specified
host name. For successful validation the certificate must contain the specified host
name as either the common name (CN) element of the subject name or as a DNS
entry for the subject alternate name as indicated by the validation option.A
case-sensitive (exact match) comparison is used for comparison with the common
name (CN) element of the subject name when the common name attribute value is
encoded as UTF-8 data (x509_string_utf8).

The val_option parameter determines the composition and order of the validation
process. A value of:
v GSKCMS_VALIDATE_HOSTNAME_CN validates the host name against the

common name (CN) of the certificate first and then against the DNS entry for
the subject alternate name extension if no match is found in the CN.

v GSKCMS_VALIDATE_HOSTNAME_CN_ONLY validates the host name against
the common name (CN) of the certificate only.

v GSKCMS_VALIDATE_HOSTNAME_DNS validates the host name against the
DNS entry in the subject alternate name extension first and, only if that is not
present, validate the host name against the common name.

v GSKCMS_VALIDATE_HOSTNAME_DNS_ONLY validates the host name against
the DNS entry in the subject alternate name extension only.

gsk_validate_hostname()

Chapter 8. Certificate Management Services (CMS) API reference 423

The host name in the certificate can be a fully-qualified name (for example,
'dcesec4.endicott.ibm.com), a domain suffix (for example, '.endicott.ibm.com) or a
wildcard name beginning with an asterisk (for example, '*.endicott.ibm.com). A
case-sensitive comparison is performed between the supplied host name and the
host name in the certificate. A fully-qualified name must be the same as the
supplied host name. A domain suffix matches any host name with the same suffix
but does not match the suffix itself. For example, '*.endicott.ibm.com matches
ldap.dcesec4.endicott.ibm.com and 'dcesec4.endicott.ibm.com but does not match
'endicott.ibm.com. A wildcard name matches any name ending with the characters
that follow the asterisk. A trailing period in a host name is ignored (for example,
'dcesec4.endicott.ibm.com.' is the same as dcesec4.endicott.ibm.com).

No other certificate validation is performed. The gsk_validate_certificate_mode()
routine should be called if the certificate itself must be validated.

gsk_validate_hostname()

424 z/OS V2R1.0 System SSL Programming

gsk_validate_server()
Validate a server certificate.

Format
#include <gskcms.h>

gsk_status gsk_validate_server (
x509_certificate * server_certificate,
const char * host_name)

Parameters

server_certificate
Specifies the server certificate to be validated.

host_name
Specifies the fully-qualified server host name in the local code page.

Results

The return status is zero if the validation is successful. Otherwise, it will be one of
the return codes listed in the gskcms.h include file. These are some possible errors:

[CMSERR_HOST_NOT_VALID]
The server certificate is not valid for the specified host name.

Usage

The gsk_validate_server() routine validates a server certificate by verifying the
host name that is associated with the server. The server certificate must contain the
specified host name as either the common name (CN) element of the subject name
or as a DNS entry for the subject alternate name. A case-sensitive (exact match)
comparison is used for comparison with the common name (CN) element of the
subject name when the common name attribute value is encoded as UTF-8 data
(x509_string_utf8). For other combinations of host name verification options use
gsk_validate_hostname().

The host name in the server certificate can be a fully-qualified name (for example,
'dcesec4.endicott.ibm.com'), a domain suffix (for example, '.endicott.ibm.com') or a
wildcard name beginning with an asterisk (for example, '*.endicott.ibm.com'). A not
case-sensitive comparison is performed between the supplied host name and the
host name in the server certificate. A fully-qualified name must be the same as the
supplied host name. A domain suffix matches any host name with the same suffix
but does not match the suffix itself. For example, '*.endicott.ibm.com' matches
'ldap.dcesec4.endicott.ibm.com' and 'dcesec4.endicott.ibm.com' but does not match
'endicott.ibm.com'. A wildcard name matches any name ending with the characters
that follow the asterisk. A trailing period in a host name is ignored (for example,
'dcesec4.endicott.ibm.com.' and is the same as 'dcesec4.endicott.ibm.com').

No other certificate validation is performed. The gsk_validate_certificate_mode()
routine should be called if the certificate itself must be validated.

gsk_validate_server()

Chapter 8. Certificate Management Services (CMS) API reference 425

gsk_verify_certificate_signature()
Verifies the signature for an X.509 certificate.

Format
#include <gskcms.h>

gsk_status gsk_verify_certificate_signature (
x509_certificate * certificate,
x509_public_key_info * key)

Parameters

certificate
Specifies the decoded certificate returned by the gsk_decode_certificate()
routine.

key
Specifies the public key for the Certification Authority that signed the
certificate.

Results

The return status will be zero if the signature is correct. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_SIGNATURE]
The signature is not correct.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_KEY_MISMATCH]
The supplied key does not match the signature algorithm.

[CMSERR_PRIVATE_KEY_INFO_NOT_SUPPLIED]
Private key information not supplied.

[CMSERR_SIGNATURE_NOT_SUPPLIED]
Signature not supplied.

gsk_verify_certificate_signature()

426 z/OS V2R1.0 System SSL Programming

Usage

The gsk_verify_certificate_signature() routine validates an X.509 certificate by
computing its signature and then comparing the result to the signature contained
in the certificate.

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest – {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest – {2.16.840.1.101.3.4.3.2}

x509_alg_md5Sha1WithRsaEncryption
RSA encryption with combined MD5 and SHA-1 digests

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest –
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest –
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest –
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest –
{1.2.840.10045.4.3.3}

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest –
{1.2.840.10045.4.3.4}

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

gsk_verify_certificate_signature()

Chapter 8. Certificate Management Services (CMS) API reference 427

gsk_verify_crl_signature()
Verifies the signature for an X.509 certificate revocation list.

Format
#include <gskcms.h>

gsk_status gsk_verify_crl_signature (
x509_crl * crl,
x509_public_key_info * key)

Parameters

crl
Specifies the decoded certificate revocation list returned by the
gsk_decode_crl() routine.

key
Specifies the public key for the Certification Authority that signed the
certificate revocation list.

Results

The return status will be zero if the signature is correct. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_SIGNATURE]
The signature is not correct.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_KEY_MISMATCH]
The supplied key does not match the signature algorithm.

[CMSERR_PRIVATE_KEY_INFO_NOT_SUPPLIED]
Private key information not supplied.

gsk_verify_crl_signature()

428 z/OS V2R1.0 System SSL Programming

[CMSERR_SIGNATURE_NOT_SUPPLIED]
Signature not supplied.

Usage

The gsk_verify_crl_signature() routine validates an X.509 certificate revocation list
(CRL) by computing its signature and then comparing the result to the signature
contained in the CRL.

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest – {2.16.840.1.101.3.4.3.1}

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest – {2.16.840.1.101.3.4.3.2}

x509_alg_md5Sha1WithRsaEncryption
RSA encryption with combined MD5 and SHA-1 digests

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest –
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest –
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest –
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest –
{1.2.840.10045.4.3.3}

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest –
{1.2.840.10045.4.3.4}

gsk_verify_crl_signature()

Chapter 8. Certificate Management Services (CMS) API reference 429

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

gsk_verify_crl_signature()

430 z/OS V2R1.0 System SSL Programming

gsk_verify_data_signature()
Verifies the signature for a data stream.

Format
#include <gskcms.h>

gsk_status gsk_verify_data_signature (
x509_algorithm_type sign_algorithm,
x509_public_key_info * key,
gsk_boolean is_digest,
gsk_buffer * data,
gsk_buffer * signature)

Parameters

sign_algorithm
Specifies the signature algorithm.

key
Specifies the public key.

is_digest
Specify TRUE if the data stream digest has been computed or FALSE if the
data stream digest needs to be computed.

data
Specifies either the data stream digest (is_digest is TRUE) or the data stream
(is_digest is FALSE).

signature
Specifies the data stream signature.

Results

The return status will be zero if the signature is correct. Otherwise, it will be one
of the return codes listed in the gskcms.h include file. These are some possible
errors:

[CMSERR_ALG_NOT_SUPPORTED]
The signature algorithm is not supported.

[CMSERR_BAD_DIGEST_SIZE]
The digest size is not correct.

[CMSERR_BAD_EC_PARAMS]
Elliptic Curve parameters are not valid.

[CMSERR_BAD_KEY_SIZE]
The key size is not valid.

[CMSERR_BAD_SIGNATURE]
The signature is not correct.

[CMSERR_ECURVE_NOT_FIPS_APPROVED]
Elliptic Curve not supported in FIPS mode.

[CMSERR_ECURVE_NOT_SUPPORTED]
Elliptic Curve is not supported.

[CMSERR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

gsk_verify_data_signature()

Chapter 8. Certificate Management Services (CMS) API reference 431

[CMSERR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[CMSERR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[CMSERR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[CMSERR_KEY_MISMATCH]
The supplied key does not match the signature algorithm.

[CMSERR_PRIVATE_KEY_INFO_NOT_SUPPLIED]
Private key information not supplied.

[CMSERR_SIGNATURE_NOT_SUPPLIED]
Signature not supplied.

Usage

The gsk_verify_data_signature() routine validates the signature for a data stream.
The public key can be an RSA key, a DSA key, or an ECDSA key.

The application can either provide the message digest or have the
gsk_verify_signed_data() routine compute the message digest.

When the application provides the message digest, the digest length must be
correct for the specified signature algorithm. Digest lengths: MD2 and MD5 are 16
bytes; SHA-1 is 20 bytes; SHA-224 is 28 bytes; SHA-256 is 32 bytes; SHA-384 is 48
bytes and SHA-512 is 64 bytes. The supplied digest will be used as-is without any
further processing (specifically, for an RSA encryption key, the digest will not be
encoded as an ASN.1 DigestInfo sequence before comparing it with the digest in
the signature)

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption
RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption
RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption
RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption
RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption
RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption
RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption
RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1
Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_dsaWithSha224
Digital Signature Standard with SHA-224 digest – {2.16.840.1.101.3.4.3.1}

gsk_verify_data_signature()

432 z/OS V2R1.0 System SSL Programming

x509_alg_dsaWithSha256
Digital Signature Standard with SHA-256 digest – {2.16.840.1.101.3.4.3.2}

x509_alg_md5Sha1WithRsaEncryption
RSA encryption with combined MD5 and SHA-1 digests

x509_alg_ecdsaWithSha1
Elliptic Curve Digital Signature Algorithm with SHA-1 digest –
{1.2.840.10045.4.1}

x509_alg_ecdsaWithSha224
Elliptic Curve Digital Signature Algorithm with SHA-224 digest –
{1.2.840.10045.4.3.1}

x509_alg_ecdsaWithSha256
Elliptic Curve Digital Signature Algorithm with SHA-256 digest –
{1.2.840.10045.4.3.2}

x509_alg_ecdsaWithSha384
Elliptic Curve Digital Signature Algorithm with SHA-384 digest –
{1.2.840.10045.4.3.3}

x509_alg_ecdsaWithSha512
Elliptic Curve Digital Signature Algorithm with SHA-512 digest –
{1.2.840.10045.4.3.4}

The x509_alg_md5Sha1WithRsaEncryption algorithm is a special algorithm used by
the SSL protocol. The data signature consists of the MD5 digest over the data
followed by the SHA-1 digest over the data for a total digest length of 36 bytes.
The digest is encrypted as-is without any further processing.

When executing in FIPS mode, signature algorithms
x509_alg_md2WithRSAEncryption and x509_alg_md5WithRsaEncryption are not
supported.

gsk_verify_data_signature()

Chapter 8. Certificate Management Services (CMS) API reference 433

gsk_verify_data_signature()

434 z/OS V2R1.0 System SSL Programming

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs

These application programming interfaces, or APIs, are superseded by the APIs
defined in Chapter 7, “API reference,” on page 49.
v gsk_free_memory() (see “gsk_free_memory()” on page 436)
v gsk_get_cipher_info() (see “gsk_get_cipher_info()” on page 437)
v gsk_get_dn_by_label() (see “gsk_get_dn_by_label()” on page 438)
v gsk_initialize() (see “gsk_initialize()” on page 439)
v gsk_secure_soc_close() (see “gsk_secure_soc_close()” on page 445)
v gsk_secure_soc_init() (see “gsk_secure_soc_init()” on page 446)
v gsk_secure_soc_read() (see “gsk_secure_soc_read()” on page 454)
v gsk_secure_soc_reset() (see “gsk_secure_soc_reset()” on page 457)
v gsk_secure_soc_write() (see “gsk_secure_soc_write()” on page 458)
v gsk_srb_initialize() (see “gsk_srb_initialize()” on page 460)
v GSKSRBRD() (see “GSKSRBRD” on page 462)
v GSKSRBWT() (see “GSKSRBWT” on page 463)
v gsk_uninitialize() (see “gsk_uninitialize()” on page 464)
v gsk_user_set() (see “gsk_user_set()” on page 465)

Although use of the deprecated set of APIs in this topic is still supported in z/OS
Version 2 Release 1, make sure that new applications be developed using the set of
APIs defined in Chapter 7, “API reference,” on page 49.

The deprecated APIs are not being explicitly updated to allow utilization of new
functionality to be added to System SSL. If an application wants to use new
functionality to be added, for example TLS V1.2 protocol, the application must be
coded to the SSL APIs in Chapter 7, “API reference,” on page 49.

In addition, make sure that existing applications are modified to use the set of
APIs defined in Chapter 7, “API reference,” on page 49. Those modified
applications should only use the new APIs, and not a mix of the new APIs and
these deprecated APIs. Information about migrating your existing application
programs to use the new API set can be found in Chapter 6, “Migrating from
deprecated SSL interfaces,” on page 47.

© Copyright IBM Corp. 1999, 2013 435

gsk_free_memory()
Releases storage allocated by the SSL run time.

Format
#include <gskssl.h>

void gsk_free_memory(
void * address,
void * reserved)

Parameters

address
Specifies the address of the storage to be released.

reserved
Reserved for future use. Specify NULL for this parameter.

Usage

The gsk_free_memory() routine releases storage allocated by the SSL run time.

Related Topics

“gsk_get_dn_by_label()” on page 438

gsk_free_memory()

436 z/OS V2R1.0 System SSL Programming

gsk_get_cipher_info()
Returns the supported cipher specifications.

Format
#include <gskssl.h>

gsk_status gsk_get_cipher_info(
int level
gsk_sec_level * sec_level,
void * rsvd)

Parameters

level
Specifies GSK_LOW_SECURITY to return just the export cipher specifications
or GSK_HIGH_SECURITY to return the United States only cipher
specifications including the export cipher specifications.

sec_level
Returns the cipher specifications.

rsvd
Reserved for future use. Specify NULL for this parameter.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. This is a possible
error:

[GSK_BAD_PARAMETER]
The level value is not valid or a NULL address is specified for sec_level.

Usage

The gsk_get_cipher_info() routine returns the available cipher specifications. Both
United States only and export ciphers will be included if GSK_HIGH_SECURITY is
specified while only export ciphers will be included if GSK_LOW_SECURITY is
specified. The gsk_get_cipher_info() routine can be called at any time and does
not require the gsk_initialize() routine to be called first.

The SSL V2 cipher specifications returned for GSK_HIGH_SECURITY are "713642"
while the SSL V3 cipher specifications are
"050435363738392F303132330A1613100D0915120F0C0306020100" if not in FIPS
mode, and "35363738392F303132330A1613100D" in FIPS mode. If the Security Level
3 FMID is not installed, the SSL V2 cipher specifications are "642", the SSL V3
cipher specifications are "0915120F0C0306020100" and FIPS mode is not supported.

The SSL V2 cipher specifications returned for GSK_LOW SECURITY are "642"
while the SSL V3 cipher specifications are "0915120F0C0306020100" in non-FIPS
mode and "" in FIPS mode.

Related Topics

“gsk_initialize()” on page 439

“gsk_secure_soc_init()” on page 446

gsk_get_cipher_info()

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 437

gsk_get_dn_by_label()
Gets the distinguished name for a certificate.

Format
#include <gskssl.h>

char * gsk_get_dn_by_label(
const char * label)

Parameters

label
Specifies the key label.

Usage

The gsk_get_dn_by_label() routine returns the distinguished name for the
certificate associated with the key label. The gsk_initialize() routine must be called
before the gsk_get_dn_by_label() routine can be called. The application should
release the returned name when it is no longer needed by calling the
gsk_free_memory() routine. The return value will be NULL if an error occurred
while accessing the key database or when using z/OS PKCS #11 token and
multiple certificates exist for the specified label.

Related Topics

“gsk_free_memory()” on page 436

“gsk_initialize()” on page 439

“gsk_secure_soc_init()” on page 446

gsk_get_dn_by_label()

438 z/OS V2R1.0 System SSL Programming

gsk_initialize()
Initializes the System SSL runtime environment.

Format
#include <gskssl.h>

gsk_status gsk_initialize(
gsk_init_data * init_data)

Parameters

init_data
Specifies the data used to initialize the SSL runtime environment.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
is one of the return codes that are listed in the gskssl.h include file. These are
some possible errors:

[GSK_ERR_INIT_PARM_NOT_VALID]
An initialization parameter is not valid.

[GSK_ERROR_BAD_MALLOC]
Insufficient storage is available.

[GSK_ERROR_CRYPTO]
Cryptographic error detected.

[GSK_ERROR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[GSK_ERROR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[GSK_ERROR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[GSK_ERROR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

[GSK_ERROR_LDAP]
Unable to initialize the LDAP client.

[GSK_ERROR_MULTIPLE_LABEL]
Multiple certificates exist for label.

[GSK_ERROR_MULTIPLE_DEFAULT]
Multiple keys are marked as the default.

[GSK_ERROR_PERMISSION_DENIED]
Not authorized to access the key database, key ring or token.

[GSK_INIT_SEC_TYPE_NOT_VALID]
The security type is not valid.

[GSK_INIT_V2_TIMEOUT_NOT_VALID]
The SSL V2 timeout is not valid.

[GSK_INIT_V3_TIMEOUT_NOT_VALID]
The SSL V3 timeout is not valid.

gsk_initialize()

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 439

[GSK_KEYFILE_BAD_FORMAT]
Key database or key ring format is not valid.

[GSK_KEYFILE_BAD_PASSWORD]
Key database password is not correct.

[GSK_KEYFILE_IO_ERROR]
Unable to read the key database, key ring or token.

[GSK_KEYFILE_NO_CERTIFICATES]
The key database, key ring or token does not contain any certificates.

[GSK_KEYFILE_OPEN_FAILED]
Unable to open the key database, key ring or token.

[GSK_KEYFILE_PW_EXPIRED]
Key database password is expired.

Usage

The gsk_initialize() routine initializes the System SSL runtime environment for the
current process. The gsk_uninitialize() routine should be called to release the SSL
environment when it is no longer needed. Multiple calls to gsk_initialize() causes
the existing environment to be released before creating the new environment.

Environment variables are processed along with the gsk_initialize data structures.
Information passed in the key database, key ring or token is read as part of the
environment initialization. Upon successful completion of gsk_initialize(), the
application is ready to begin creating and using secure socket connections.

The gsk_init_data structure contains these fields:

sec_types
Specifies one of these null-terminated character strings:
v "SSLV2" or "SSL20" to use the SSL V2 protocol
v "SSLV3" or "SSL30" to use the SSL V3 protocol
v "TLSV1" or "TLS10" to use the TLS V1.0 protocol
v "SSLV2_OFF" to allow either TLS V1.0 or SSL V3 to be used
v "ALL" to use any supported protocol (SSL V2, SSL V3, and TLS V1.0).

When "SSLV2_OFF" is specified the SSL client/server attempts first to use
the TLS V1.0 protocol, before falling back to the most secure protocol
supported by its SSL partner, excluding the SSL V2 protocol.

When "ALL" is specified for an SSL client, the client attempts first to use
the TLS V1.0 protocol and falls back to the most secure protocol that the
server supports, excluding the SSL V2 protocol (the client must explicitly
request the SSL V2 protocol if it wants to use this protocol).

When "ALL" is specified for an SSL server, the server accepts any of the
supported protocols.

When running in FIPS mode, the minimum requirement is TLS V1.0
protocol. If only the SSL V2 or the SSL V3 protocol is enabled, then a FIPS
mode SSL connection is not possible.

keyring
Specifies the name of the key database, SAF key ring, or z/OS PKCS #11
token as a null-terminated character string. When both the password and
stash file name are NULL, a SAF key ring or PKCS #11 token is used.

gsk_initialize()

440 z/OS V2R1.0 System SSL Programming

The SAF key ring name is specified as "userid/keyring". The current user
ID is used if the user ID is omitted. The user must have READ access to
the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using
a SAF key ring owned by the user. The user must have UPDATE access to
the IRR.DIGTCERT.LISTRING resource in the FACILITY class when using
a SAF key ring owned by another user.

Note: Certificate private keys are not available when using a SAF key ring
owned by another user, except for SITE certificates where CONTROL
authority is given to IRR.DIGTCERT.GENCERT in the FACILITY class or
for user certificates where READ or UPDATE authority is given to
ringOwner.ringName.LST resource in the RDATALIB class.

The z/OS PKCS #11 token name is specified as *TOKEN*/token-name.
TOKEN indicates that the specified key ring is actually a token name.
The application user ID must have READ access to resource
USER.token-name in the CRYPTOZ class in order for the certificate and
their private keys, if present, to be read.

keyring_pw
Specifies the password for the key database as a null-terminated character
string. Specify NULL to indicate that no password is provided.

keyring_stash
Specifies the name of the password stash file as a null-terminated character
string. Specify NULL to indicate no stash file is provided. The password
stash file is used if the keyring_pw value is NULL.

V2_session_timeout
Specifies the SSL V2 session cache timeout value in seconds. The valid
range is 0 to 100. A short SSL handshake is performed when a cached
session exists since the session parameters have already been negotiated
between the client and the server.

V3_session_timeout
Specifies the SSL V3 session cache timeout value in seconds. The valid
range is 0 to 86400. A short SSL handshake is performed when a cached
session exists since the session parameters have already been negotiated
between the client and the server.

LDAP_server
Specifies one or more blank-separated LDAP server host names as a
null-terminated character string. Each host name can contain an optional
port number separated from the host name by a colon. The LDAP server is
used for certificate validation . The LDAP server is used only when
LDAP_CA_roots is set to GSK_CA_ROOTS_LOCAL_AND_X500 and
auth_type is not set to GSK_CLIENT_AUTH_LOCAL or
GSK_CLIENT_AUTH_PASSTHRU.

LDAP_port
Specifies the LDAP server port. The default LDAP port will be used if 0 is
specified.

LDAP_user
Specifies the distinguished name to use when connecting to the LDAP
server and is a null-terminated character string. An anonymous bind is
done if NULL is specified for this field.

gsk_initialize()

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 441

LDAP_password
Specifies the password to use when connecting to the LDAP server and is
a null-terminated character string. This field is ignored if NULL is specified
for LDAP_user.

LDAP_CA_roots
Specifies the location of CA certificates and certificate revocation lists used
to validate certificates. When GSK_CA_ROOTS_LOCAL_ONLY is specified,
the CA certificates and certificate revocation lists are obtained from the
local database. When GSK_CA_ROOTS_LOCAL_AND_X500 is specified,
the CA certificates and certificate revocation lists are obtained from the
LDAP server if they are not found in the local database. Even when an
LDAP server is used, root CA certificates must be found in the local
database since the LDAP server is not a trusted data source.

auth_type
Specifies the client authentication type. This field is ignored unless
LDAP_CA_roots is set to GSK_CA_ROOTS_LOCAL_AND_X500. The client
certificate is not validated when GSK_CLIENT_AUTH_PASSTHRU is
specified. The client certificate is validated using just the local database
when GSK_CLIENT_AUTH_LOCAL is specified. CA certificates and
certificate revocation lists not found in the local database are obtained from
the LDAP server when GSK_CLIENT_AUTH_STRONG or
GSK_CLIENT_AUTH_STRONG_OVER_SSL is specified (the local database
must still contain the root CA certificates). There is no difference between
GSK_CLIENT_AUTH_STRONG and
GSK_CLIENT_AUTH_STRONG_OVER_SSL.

gsk_initialize() Supported environment variables:

Environment variables are processed along with the information passed in the
gsk_init_data structure during environment initialization. Also, during
environment initialization, the key database, key ring, or token is read.

The gsk_initialize() routine supports these environment variables:

GSK_CERT_VALIDATE_KEYRING_ROOT
Specifies the setting of how certificates in a SAF key ring are validated.
Specify GSK_CERT_VALIDATE_KEYRING_ROOT "ON" or "1" if SAF key
ring certificates must be validated to the root CA certificate. Specify "OFF"
or "0" if SAF key ring certificates are only validated to the trust anchor
certificate. If a sole intermediate certificate is found in a SAF key ring and
the next issuer is not found in the same SAF key ring, the intermediate
certificate acts as a trust anchor and the certificate chain is considered
complete. By default, SAF key ring certificates are only validated to the
trust anchor certificate. This setting does not affect the validation of SSL
key database file and PKCS #11 token certificates as these certificates are
always validated to the root CA certificate.

GSK_EXTENDED_RENEGOTIATION_INDICATOR
Specifies the level of enforcement of renegotiation indication as specified
by RFC 5746 during the initial handshake.

Specify "OPTIONAL" to not require the renegotiation indicator during
initial handshake. This is the default.

Specify "CLIENT" to allow the client initial handshake to proceed only if
the server indicates support for RFC 5746 Renegotiation.

gsk_initialize()

442 z/OS V2R1.0 System SSL Programming

Specify "SERVER" to allow the server initial handshake to proceed only if
the client indicates support for RFC 5746 Renegotiation.

Specify "BOTH" to allow the server and client initial handshakes to
proceed only if partner indicates support for RFC 5746 Renegotiation.

GSK_RENEGOTIATION
Specifies the type of session renegotiation that is allowed for an SSL
environment.

Specify "NONE" to disable SSL V3 and TLS handshake renegotiation as a
server and allow RFC 5746 renegotiation. This is the default.

Specify "DISABLED" to disable SSL V3 and TLS handshake renegotiation
as a server and also disable RFC 5746 renegotiation.

Specify "ALL" to allow SSL V3 and TLS handshake renegotiation as a
server while also allowing RFC 5746 renegotiation.

Specify "ABBREVIATED" to allow SSL V3 and TLS abbreviated handshake
renegotiation as a server for resuming the current session only, while
disabling SSL V3 and TLS full handshake renegotiation as a server. With
this value specified, the System SSL session ID cache is not checked when
resuming the current session. RFC 5746 renegotiation is allowed.

GSK_RENEGOTIATION_PEER_CERT_CHECK
Specifies if the peer certificate is allowed to change during renegotiation.

Specify "OFF" or "0" to not perform an identity check against the peer's
certificate during renegotiation. This allows the peer certificate to change
during renegotiation. This is the default.

Specify "ON" or "1" to perform a comparison against the peer's certificate
to ensure that certificate does not change during renegotiation.

GSKV2CACHESIZE
Specifies the number of entries in the SSL V2 session cache with a range of
0 to 32000. The value that is specified by the GSK_V2_SIDCACHE_SIZE
environment variable is used if the GSKV2CACHESIZE variable is not
defined. The default value is 256 if neither environment variable is defined.

GSKV3CACHESIZE
Specifies the number of entries in the SSL V3 session cache with a range of
0 to 64000. The value that is specified by the GSK_V3_SIDCACHE_SIZE
environment variable is used if the GSKV3CACHESIZE variable is not
defined. The default value is 512 if neither environment variable is defined.
The SSL V3 session cache is used for both the SSL V3 and TLS V1.0
protocols.

The environment variables that are overridden with information passed in the
gsk_init_data structure are:
v GSK_KEYRING_FILE
v GSK_KEYRING_PW
v GSK_KEYRING_STASH
v GSK_LDAP_SERVER
v GSK_LDAP_PASSWORD
v GSK_LDAP_PORT
v GSK_LDAP_USER
v GSK_PROTOCOL_SSLV2

gsk_initialize()

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 443

v GSK_PROTOCOL_SSLV3
v GSK_PROTOCOL_TLSV1
v GSK_V2_SESSION_TIMEOUT
v GSK_V3_SESSION_TIMEOUT

Related Topics

“gsk_secure_soc_close()” on page 445

“gsk_secure_soc_init()” on page 446

“gsk_secure_soc_read()” on page 454

“gsk_secure_soc_write()” on page 458

“gsk_uninitialize()” on page 464

gsk_initialize()

444 z/OS V2R1.0 System SSL Programming

gsk_secure_soc_close()
Closes a secure socket connection.

Format
#include <gskssl.h>

void gsk_secure_soc_close(
gsk_soc_data * handle)

Parameters

handle
Specifies the connection handle returned by the gsk_secure_soc_init() routine.

Usage

The gsk_secure_soc_close() routine closes a secure connection created by the
gsk_secure_soc_init() routine. The socket itself is not closed (the application is
responsible for closing the socket). The connection can no longer be used for secure
communications after calling the gsk_secure_soc_close() routine.

Related Topics

“gsk_initialize()” on page 439

“gsk_secure_soc_init()” on page 446

“gsk_secure_soc_read()” on page 454

“gsk_secure_soc_write()” on page 458

gsk_secure_soc_close

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 445

gsk_secure_soc_init()
Initializes a secure socket connection.

Format
#include <gskssl.h>

gsk_soc_data * gsk_secure_soc_init(
gsk_soc_init_data * init_data)

Parameters

init_data
Specifies the socket connection initialization data.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
is one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ERR_INIT_PARM_NOT_VALID]
A connection initialization parameter is not valid.

[GSK_ERROR_BAD_CERT]
A certificate is not valid.

[GSK_ERROR_BAD_DATE]
A certificate is not valid yet or is expired.

[GSK_ERROR_BAD_MAC]
Message verification failed.

[GSK_ERROR_BAD_MALLOC]
Insufficient storage is available.

[GSK_ERROR_BAD_MESSAGE]
Incorrectly-formatted message received from peer application.

[GSK_ERROR_BAD_PEER]
Peer application has violated the SSL protocol.

[GSK_ERROR_BAD_STATE]
The SSL environment has not been initialized.

[GSK_ERROR_CRYPTO]
Cryptographic error detected.

[GSK_ERROR_ICSF_CLEAR_KEY_SUPPORT_NOT_AVAILABLE]
ICSF clear key support not available.

[GSK_ERROR_ICSF_FIPS_DISABLED]
ICSF PKCS #11 services are disabled.

[GSK_ERROR_ICSF_NOT_AVAILABLE]
ICSF services are not available.

[GSK_ERROR_ICSF_NOT_FIPS]
ICSF PKCS #11 not operating in FIPS mode.

[GSK_ERROR_ICSF_SERVICE_FAILURE]
ICSF callable service returned an error.

gsk_secure_soc_init()

446 z/OS V2R1.0 System SSL Programming

[GSK_ERROR_INCOMPATIBLE_KEY]
The certificate key is not compatible with the negotiated cipher suite.

[GSK_ERROR_IO]
I/O error communicating with peer application.

[GSK_ERROR_LDAP]
An LDAP error is detected.

[GSK_ERROR_LDAP_NOT_AVAILABLE]
The LDAP server is not available.

[GSK_ERROR_NO_CIPHERS]
No cipher specifications.

[GSK_ERROR_NO_PRIVATE_KEY]
Certificate does not contain a private key or the private key is unusable.

[GSK_ERROR_RNG]
Error encountered when generating random bytes.

[GSK_ERROR_SELF_SIGNED]
A self-signed certificate cannot be validated.

[GSK_ERROR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_ERROR_UNKNOWN_CA]
A certification authority certificate is missing.

[GSK_ERROR_UNSUPPORTED_CERTIFICATE_TYPE]
The certificate type is not supported by System SSL.

[GSK_ERROR_VALIDATION]
Certificate validation error.

[GSK_KEYFILE_BAD_DNAME]
The specified key is not found in the key database or the key is not
trusted.

[GSK_KEYFILE_BAD_LABEL]
The DName field of the gsk_soc_init_data structure is an empty string. If
the default key is to be used, the DName field must be NULL.

[GSK_KEYFILE_DUPLICATE_NAME]
The key database contains multiple certificates with the same subject name
as the distinguished name specified in the connection initialization data.

[GSK_SOC_BAD_V2_CIPHER]
SSL V2 cipher is not valid.

[GSK_SOC_BAD_V3_CIPHER]
SSL/TLS V3 cipher is not valid.

[GSK_SOC_NO_READ_FUNCTION]
No read function is specified in the connection initialization data.

[GSK_SOC_NO_WRITE_FUNCTION]
No write function is specified in the connection initialization data.

Usage

The gsk_secure_soc_init() routine initializes a secure socket connection. The
gsk_initialize() routine must be called before any secure socket connections can be
initialized. After the connection has been initialized, it can be used for secure data

gsk_secure_soc_init()

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 447

transmission using the gsk_secure_soc_read() and gsk_secure_soc_write() routines.
The gsk_secure_soc_close() routine should be called to close the connection when
it is no longer needed. The gsk_secure_soc_close() routine should not be called if
an error is returned by the gsk_secure_soc_init() routine.

Before calling the gsk_secure_soc_init() routine, the application must create a
connected socket. For a client, this means calling the socket() and connect()
routines. For a server, this means calling the socket(), listen(), and accept()
routines. However, SSL does not require the use of TCP/IP for the communications
layer. The socket descriptor can be any integer value that is meaningful to the
application. The application must provide its own socket routines if it is not using
TCP/IP.

An SSL handshake is performed as part of the processing of the
gsk_secure_soc_init() routine. This establishes the server identity and optionally
the client identity. It also negotiates the cryptographic parameters to be used for
the connection.

The server certificate can use either RSA or DSA as the public/private key
algorithm. In FIPS mode, the RSA or DSA key size must be at least 1024 bits. An
RSA certificate can be used with an RSA, fixed Diffie-Hellman, or ephemeral
Diffie-Hellman key exchange. A DSA certificate can be used with either a fixed or
ephemeral Diffie-Hellman key exchange. In FIPS mode, the Diffie-Hellman key size
must be at least 2048 bits. If the servers certificate contains a key usage extension
during the SSL handshake, it must allow key usage as follows:
v RSA certificates using export restricted ciphers (40-bit RC4 encryption and 40-bit

RC2 encryption) with a public key size greater than 512 bits must allow digital
signature. If operating in FIPS mode, export restricted ciphers cannot be selected.

v RSA or DSA certificates using fixed Diffie-Hellman key exchange must allow key
agreement.

v Other RSA certificates must allow key encipherment.
v DSA certificates using ephemeral Diffie-Hellman key exchange must allow

digital signature.

System SSL does not accept Verisign Global Server ID certificates. When specified,
System SSL uses these certificates as any other certificate when determining the
encryption cipher to be used for the SSL session.

The client certificate must support digital signatures. This means the certificate key
usage extension (if any) must allow digital signature. The key algorithm can be
either the RSA encryption algorithm or the Digital Signature Standard algorithm
(DSA).

The SSL server always provides its certificate to the SSL client as part of the
handshake. Depending upon the server handshake type, the server may ask the
client to provide its certificate. The key label that is stored in the connection is
used to retrieve the certificate from the key database, key ring, or token. The
default key will be used if no label is set. The key record must contain both an
X.509 certificate and a private key.

These SSL V2 cipher specifications are supported in non-FIPS mode only:
v "1" = 128-bit RC4 encryption with MD5 message authentication (128-bit secret

key)

gsk_secure_soc_init()

448 z/OS V2R1.0 System SSL Programming

v "2" = 128-bit RC4 export encryption with MD5 message authentication (40-bit
secret key)

v "3" = 128-bit RC2 encryption with MD5 message authentication (128-bit secret
key)

v "4" = 128-bit RC2 export encryption with MD5 message authentication (40-bit
secret key)

v "6" = 56-bit DES encryption with MD5 message authentication (56-bit secret key)
v "7" = 168-bit Triple DES encryption with MD5 message authentication (168-bit

secret key)

These SSL V3 cipher specifications are supported in non-FIPS mode only:
v "00" = No encryption or message authentication and RSA key exchange
v "01" = No encryption with MD5 message authentication and RSA key exchange
v "02" = No encryption with SHA-1 message authentication and RSA key exchange
v "03" = 40-bit RC4 encryption with MD5 message authentication and RSA key

exchange
v "04" = 128-bit RC4 encryption with MD5 message authentication and RSA key

exchange
v "05" = 128-bit RC4 encryption with SHA-1 message authentication and RSA key

exchange
v "06" = 40-bit RC2 encryption with MD5 message authentication and RSA key

exchange
v "09" = 56-bit DES encryption with SHA-1 message authentication and RSA key

exchange
v "0C" = 56-bit DES encryption with SHA-1 message authentication and fixed

Diffie-Hellman key exchange signed with a DSA certificate
v "0F" = 56-bit DES encryption with SHA-1 message authentication and fixed

Diffie-Hellman key exchange signed with an RSA certificate
v "12" = 56-bit DES encryption with SHA-1 message authentication and ephemeral

Diffie-Hellman key exchange signed with a DSA certificate
v "15" = 56-bit DES encryption with SHA-1 message authentication and ephemeral

Diffie-Hellman key exchange signed with an RSA certificate

These SSL V3 cipher specifications are supported in FIPS mode and non-FIPS
mode:
v "0A" = 168-bit Triple DES encryption with SHA-1 message authentication and

RSA key exchange
v "0D" = 168-bit Triple DES encryption with SHA-1 message authentication and

fixed Diffie-Hellman key exchange signed with a DSA certificate
v "10" = 168-bit Triple DES encryption with SHA-1 message authentication and

fixed Diffie-Hellman key exchange signed with an RSA certificate
v "13" = 168-bit Triple DES encryption with SHA-1 message authentication and

ephemeral Diffie-Hellman key exchange signed with a DSA certificate
v "16" = 168-bit Triple DES encryption with SHA-1 message authentication and

ephemeral Diffie-Hellman key exchange signed with an RSA certificate
v "2F" = 128-bit AES encryption with SHA-1 message authentication and RSA key

exchange
v "30" = 128-bit AES encryption with SHA-1 message authentication and fixed

Diffie-Hellman key exchange signed with a DSA certificate

gsk_secure_soc_init()

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 449

v "31" = 128-bit AES encryption with SHA-1 message authentication and fixed
Diffie-Hellman key exchange signed with an RSA certificate

v "32" = 128-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with a DSA certificate

v "33" = 128-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with an RSA certificate

v "35" = 256-bit AES encryption with SHA-1 message authentication and RSA key
exchange

v "36" = 256-bit AES encryption with SHA-1 message authentication and fixed
Diffie-Hellman key exchange signed with a DSA certificate

v "37" = 256-bit AES encryption with SHA-1 message authentication and fixed
Diffie-Hellman key exchange signed with an RSA certificate

v "38" = 256-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with a DSA certificate

v "39" = 256-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with an RSA certificate

The client sends a list of ciphers it supports during the SSL handshake. The server
application uses this list, and the defined ciphers supported by the server, to
determine the cipher to be used during the SSL handshake. This selection is done
by looking through the servers cipher list for a match in the clients list. The first
matching cipher is used.

Environment variables are processed along with the information passed in the
gsk_init_data structure during environment initialization. Also during environment
initialization, the key database, key ring or token is read.

The environment variables that are overridden by non-NULL values in the
gsk_soc_init_data structure are:
v GSK_KEY_LABEL
v GSK_V2_CIPHER_SPECS
v GSK_V3_CIPHER_SPECS

The gsk_soc_init_data structure contains these fields:

fd Specifies the socket descriptor for the secure connection. The socket must
remain open until after the gsk_secure_soc_close() routine has been called
to close the secure connection.

hs_type
Specifies the intended handshake type as follows:

GSK_AS_CLIENT
Performs a client SSL handshake

GSK_AS_CLIENT_NO_AUTH
Performs a client SSL handshake but do not provide a client
certificate to the SSL server

GSK_AS_SERVER
Performs a server SSL handshake

GSK_AS_SERVER_WITH_CLIENT_AUTH
Performs a server SSL handshake with client authentication

gsk_secure_soc_init()

450 z/OS V2R1.0 System SSL Programming

DName
Specifies either the distinguished name or the key label of the local
certificate. Specify NULL to use the default key for the key database, key
ring or token.

sec_type
Returns the selected security protocol as "SSLV2", "SSLV3", or "TLSV1".
This is a static string and must not be modified or freed by the application.

cipher_specs
Specifies the SSL V2 cipher specifications as a null-terminated string
consisting of 1 or more 1-character values. Specify NULL to use the default
cipher specifications ("713642" if Security Level 3 FMID encryption is
enabled and "642" otherwise). Valid cipher specifications that are not
supported because of the installed cryptographic level will be skipped
when the connection is initialized. The SSL V2 protocol can only be used
when executing in non-FIPS mode.

v3cipher_specs
Specifies the SSL V3 cipher specifications as a null-terminated string
consisting of 1 or more 2-character values. Specify NULL to use the default
cipher specifications
("050435363738392F303132330A1613100D0915120F0C0306020100" if Security
Level 3 FMID is installed and in non-FIPS mode,
"35363738392F303132330A1613100D" if Security Level 3 FMID is installed
and in FIPS mode, and "0915120F0C0306020100" otherwise). The SSL V3
cipher specifications are used for both the SSL V3 and TLS V1.0 protocols.
Valid cipher specifications that are not supported because of the installed
cryptographic level are skipped when the connection is initialized. The SSL
V3 protocol can only be used when executing in non-FIPS mode.

skread Specifies the address of the read routine used during the SSL handshake.
See “gsk_attribute_set_callback()” on page 74 for additional information
about the I/O callback routines.

skwrite Specifies the address of the write routine used during the SSL handshake.
See “gsk_attribute_set_callback()” on page 74 for additional information
about the I/O callback routines.

cipherSelected
Returns the selected cipher for the SSL V2 protocol as a 3-byte binary
value:
v 0x010080 - 128-bit RC4 encryption with MD5 message authentication
v 0x020080 = 128-bit RC4 export encryption with MD5 message

authentication
v 0x030080 = 128-bit RC2 encryption with MD5 message authentication
v 0x040080 = 128-bit RC2 export encryption with MD5 message

authentication
v 0x060040 = 56-bit DES encryption with MD5 message authentication
v 0x0700c0 = 168-bit Triple DES encryption with MD5 message

authentication

v3cipherSelected
Returns the selected cipher for the SSL V3 or TLS V1.0 protocol as a 2-byte
character value with no string delimiter:
v "00" = No encryption or message authentication

gsk_secure_soc_init()

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 451

v "01" = No encryption with MD5 message authentication and RSA key
exchange

v "02" = No encryption with SHA-1 message authentication and RSA key
exchange

v "03" = 40-bit RC4 encryption with MD5 message authentication and RSA
key exchange

v "04" = 128-bit RC4 encryption with MD5 message authentication and
RSA key exchange

v "05" = 128-bit RC4 encryption with SHA-1 message authentication and
RSA key exchange

v "06" = 40-bit RC2 encryption with MD5 message authentication and RSA
key exchange

v "09" = 56-bit DES encryption with SHA-1 message authentication and
RSA key exchange

v "0A" = 168-bit Triple DES encryption with SHA-1 message authentication
and RSA key exchange

v "0C" = 56-bit DES encryption with SHA-1 message authentication and
fixed Diffie-Hellman key exchange signed with a DSS certificate

v "0D" = 168-bit Triple DES encryption with SHA-1 message authentication
and fixed Diffie-Hellman key exchange signed with a DSS certificate

v "0F" = 56-bit DES encryption with SHA-1 message authentication and
fixed Diffie-Hellman key exchange signed with an RSA certificate

v "10" = 168-bit Triple DES encryption with SHA-1 message authentication
and fixed Diffie-Hellman key exchange signed with an RSA certificate

v "12" = 56-bit DES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with a DSS certificate

v "13" = 168-bit Triple DES encryption with SHA-1 message authentication
and ephemeral Diffie-Hellman key exchange signed with a DSS
certificate

v "15" = 56-bit DES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with an RSA certificate

v "16" = 168-bit Triple DES encryption with SHA-1 message authentication
and ephemeral Diffie-Hellman key exchange signed with an RSA
certificate

v "2F" = 128-bit AES encryption with SHA-1 message authentication and
RSA key exchange

v "30" = 128-bit AES encryption with SHA-1 message authentication and
fixed Diffie-Hellman key exchange signed with a DSS certificate

v "31" = 128-bit AES encryption with SHA-1 message authentication and
fixed Diffie-Hellman key exchange signed with an RSA certificate

v "32" = 128-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with a DSS certificate

v "33" = 128-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with an RSA certificate

v "35" = 256-bit AES encryption with SHA-1 message authentication and
RSA key exchange

v "36" = 256-bit AES encryption with SHA-1 message authentication and
fixed Diffie-Hellman key exchange signed with a DSS certificate

v "37" = 256-bit AES encryption with SHA-1 message authentication and
fixed Diffie-Hellman key exchange signed with an RSA certificate

gsk_secure_soc_init()

452 z/OS V2R1.0 System SSL Programming

v "38" = 256-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with a DSS certificate

v "39" = 256-bit AES encryption with SHA-1 message authentication and
ephemeral Diffie-Hellman key exchange signed with an RSA certificate

failureReasonCode
Returns the gsk_secure_soc_init() error code.

cert_info
Returns peer certificate information. The application must not modify or
free this information.

gsk_data
This field is ignored. The key database information is set when
gsk_initialize() is called.

Related Topics

“gsk_get_cipher_info()” on page 437

“gsk_get_dn_by_label()” on page 438

“gsk_initialize()” on page 439

“gsk_secure_soc_close()” on page 445

“gsk_secure_soc_read()” on page 454

“gsk_secure_soc_reset()” on page 457

“gsk_secure_soc_write()” on page 458

gsk_secure_soc_init()

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 453

gsk_secure_soc_read()
Reads data using a secure socket connection.

Format
#include <gskssl.h>

int gsk_secure_soc_read(
gsk_soc_data * soc_handle,
void * buffer,
int size)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_soc_init() routine.

buffer
Specifies the buffer to receive the data read from the secure socket connection.
The maximum amount of data returned by gsk_secure_soc_read() is 16384
(16K) bytes. If the SSL V2 protocol is used, then the maximum length is 16384
minus the length of the SSL protocol headers.

size
Specifies the size of the supplied buffer.

Results

The function return value will be the number of bytes read if no error is detected.
Otherwise, it will be a negative value representing one of the return codes listed in
the gskssl.h include file. These are some possible errors:

[GSK_ERROR_BAD_BUFFER_SIZE]
The buffer address or buffer size is not valid.

[GSK_ERROR_BAD_MAC]
Message verification failed.

[GSK_ERROR_BAD_MALLOC]
Insufficient storage is available.

[GSK_ERROR_BAD_MESSAGE]
Incorrectly-formatted message received from peer application.

[GSK_ERROR_BAD_PEER]
Peer application has violated the SSL protocol.

[GSK_ERROR_BAD_SSL_HANDLE]
The connection handle is not valid.

[GSK_ERROR_CONNECTION_ACTIVE]
A read request is already active for the connection.

[GSK_ERROR_CRYPTO]
Cryptographic error detected.

[GSK_ERROR_IO]
I/O error communicating with peer application.

[GSK_ERROR_NO_NEGOTIATION]
An attempt was made to renegotiate a session when renegotiation is
disabled or the peer rejected an attempted session renegotiation.

gsk_secure_soc_read()

454 z/OS V2R1.0 System SSL Programming

[GSK_ERROR_RENEGOTIATION_INDICATION]
Peer did not signal support for TLS Renegotiation Indication.

[GSK_ERROR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_ERROR_WOULD_BLOCK]
A complete SSL record is not available.

[GSK_ERROR_WOULD_BLOCK_WRITE]
An SSL handshake is in progress but data cannot be written to the socket.

Usage

The gsk_secure_soc_read() routine reads data from a secure socket connection and
returns it in the application buffer. SSL is a record-based protocol and a single call
will never return more than a single SSL record. The maximum amount of data
returned by gsk_secure_soc_read() is 16384 (16K) bytes. If the SSL V2 protocol is
used, then the maximum length is 16384 minus the length of the SSL protocol
headers. The application can read an entire SSL record in a single call by supplying
a buffer large enough to contain the record. Otherwise, multiple calls will be
required to retrieve the entire SSL record.

SSL supports multiple threads but only one thread at a time can call the
gsk_secure_soc_read() routine for a given connection handle. Multiple concurrent
threads can call gsk_secure_soc_read() if each thread has its own connection
handle.

SSL supports sockets in blocking mode and in non-blocking mode. When a socket
is in non-blocking mode and a complete SSL record is not available,
gsk_secure_soc_read() will return with GSK_ERROR_WOULD_BLOCK. No data
will be returned in the application buffer when GSK_ERROR_WOULD_BLOCK is
returned. The application should call gsk_secure_soc_read() again when there is
data available to be read from the socket.

The peer application can initiate an SSL handshake sequence after the connection is
established. If this is done and the socket is in non-blocking mode, it is possible for
gsk_secure_soc_read() to return with GSK_ERROR_WOULD_BLOCK_WRITE. This
indicates that an SSL handshake is in progress and the application should call
gsk_secure_soc_read() again when data can be written to the socket. No data will
be returned in the application buffer when GSK_ERROR_WOULD_BLOCK_WRITE
is returned.

The application should not read data directly from the socket since this can cause
SSL protocol errors if the application inadvertently reads part of an SSL record. If
the application must read data from the socket, it is responsible for synchronizing
this activity with the peer application so that no SSL records are sent while the
application is performing its own read operations.

Related Topics

“gsk_initialize()” on page 439

“gsk_secure_soc_close()” on page 445

“gsk_secure_soc_init()” on page 446

gsk_secure_soc_read()

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 455

“gsk_secure_soc_write()” on page 458

gsk_secure_soc_read()

456 z/OS V2R1.0 System SSL Programming

gsk_secure_soc_reset()
Resets the session keys for a secure connection.

Format
#include <gskssl.h>

gsk_status gsk_secure_soc_reset(
gsk_soc_data * soc_handle)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_soc_init() routine.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ERR_NO_NEGOTIATION]
An attempt was made to renegotiate a session when renegotiation is
disabled.

[GSK_ERROR_BAD_MALLOC]
Insufficient storage is available.

[GSK_ERROR_BAD_SSL_HANDLE]
The connection handle is not valid.

[GSK_ERROR_CONNECTION_CLOSED]
The connection was closed by the peer application.

[GSK_ERROR_IO]
I/O error communicating with peer application.

[GSK_ERROR_NOT_SSLV3]
The session is not using the SSL V3 or TLS V1.0 protocol.

[GSK_ERROR_SOCKET_CLOSED]
Socket connection closed by peer application.

Usage

The gsk_secure_soc_reset() routine generates new session keys for the connection.
A full SSL handshake will be performed if the session has expired. Otherwise a
short SSL handshake will be performed. The gsk_secure_soc_reset() routine can be
called only for a session using the SSL V3 or TLS V1.0 protocol. The
gsk_secure_soc_reset() routine initiates the SSL handshake but does not wait for it
to complete. Any pending handshake messages will be processed when the
gsk_secure_soc_read() routine is called to process incoming data.

Related Topics

“gsk_secure_soc_init()” on page 446

gsk_secure_soc_reset()

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 457

gsk_secure_soc_write()
Writes data using a secure socket connection.

Format
#include <gskssl.h>

int gsk_secure_soc_write(
gsk_soc_data * soc_handle,
void * buffer,
int length)

Parameters

soc_handle
Specifies the connection handle returned by the gsk_secure_soc_init() routine.

buffer
Specifies the buffer containing the data to write to the secure socket
connection.

length
Specifies the amount to write.

Results

The function return value will be the number of bytes written if no error is
detected. Otherwise, it will be a negative value representing one of the return
codes listed in the gskssl.h include file. These are some possible errors:

[GSK_ERROR_BAD_BUFFER_SIZE]
The buffer address or buffer size is not valid.

[GSK_ERROR_BAD_MALLOC]
Insufficient storage is available.

[GSK_ERROR_BAD_SSL_HANDLE]
The connection handle is not valid.

[GSK_ERROR_CONNECTION_ACTIVE]
A write request is already active for the connection.

[GSK_ERROR_CONNECTION_CLOSED]
A close notification alert has been sent for the connection.

[GSK_ERROR_CRYPTO]
Cryptographic error detected.

[GSK_ERROR_IO]
I/O error communicating with peer application.

[GSK_ERROR_SOCKET_CLOSED]
Socket connection closed by peer application.

[GSK_ERROR_WOULD_BLOCK]
The SSL record cannot be written to the socket because of an
EWOULDBLOCK condition.

Usage

The gsk_secure_soc_write() routine writes data to a secure socket connection. SSL
is a record-based protocol with a maximum record length of 16384 bytes. If the SSL

gsk_secure_soc_write()

458 z/OS V2R1.0 System SSL Programming

V2 protocol is used, then the maximum length is 16384 minus the length of the
SSL protocol headers. Application data larger than the size of an SSL record will be
sent using multiple records.

SSL supports multiple threads but only one thread at a time can call the
gsk_secure_soc_write() routine for a given connection handle. Multiple concurrent
threads can call gsk_secure_soc_write() if each thread has its own connection
handle.

SSL supports sockets in blocking mode and in non-blocking mode. When a socket
is in non-blocking mode and the SSL record cannot be written to the socket,
gsk_secure_soc_write() will return with GSK_ERROR_WOULD_BLOCK. The
application must call gsk_secure_soc_write() again when the socket is ready to
accept more data, specifying the same buffer address and buffer size as the original
request. A new write request must not be initiated until the pending write request
has been completed as indicated by a return value of 0.

The application should not write data directly to the socket since this can cause
SSL protocol errors if the application inadvertently intermixes its data with SSL
protocol data. If the application must write data to the socket, it is responsible for
synchronizing this activity with the peer application so that application data is not
intermixed with SSL data.

Related Topics

“gsk_initialize()” on page 439

“gsk_secure_soc_close()” on page 445

“gsk_secure_soc_init()” on page 446

“gsk_secure_soc_read()” on page 454

gsk_secure_soc_write()

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 459

gsk_srb_initialize()
Initializes SRB support.

Format
#include <gskssl.h>

gsk_status gsk_srb_initialize (
int num_tasks)

Parameters

num_tasks
Specifies the maximum number of service tasks and must be greater than 0.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_ERR_INIT_PARM_NOT_VALID]
The number of tasks parameter is not valid.

[GSK_ERROR_BAD_STATE]
The SSL environment is not initialized.

[GSK_SRB_INIT_ESTAEX]
Unable to establish ESTAE exit.

[GSK_SRB_INIT_NOT_APF]
The application is not APF-authorized.

[GSK_SRB_INIT_THREAD_CREATE]
Unable to create a thread.

Usage

The gsk_srb_initialize() routine will initialize the SRB (Service Request Block)
support. The application must be APF-authorized in order to use SRB mode. The
gsk_srb_initialize() routine must be called after the gsk_initialize() routine and
before any calls to the GSKSRBRD and GSKSRBWT routines.

The SRB support provided by System SSL is a mode converter which allows an
SSL read or write operation to be initiated in SRB mode but processed in TASK
mode. This is necessary because SRB mode is not supported by many of the
functions invoked by System SSL while processing a read or write request.

The gsk_srb_initialize() routine creates a monitor thread and the first service
thread. Additional threads are created as needed up to the maximum number of
threads specified by the num_tasks parameter. The threads run in FIPS mode if
FIPS mode was set by a call to gsk_fips_state_set(). These threads will be
destroyed and SRB mode support will be terminated when the gsk_uninitialize()
routine is called.

See z/OS MVS Programming: Authorized Assembler Services Guide for more
information about service request blocks.

gsk_srb_initialize()

460 z/OS V2R1.0 System SSL Programming

Related Topics

“GSKSRBRD” on page 462

“GSKSRBWT” on page 463

gsk_srb_initialize()

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 461

GSKSRBRD
Reads from a secure connection in SRB mode.

Format
LOAD EP=GSKSRBRD

LR 15,0

CALL (15), (SOCHNDLE, BUFPTR, BUFSIZE, RSNCODE)

Parameters

SOCHNDLE
Specifies a 4-byte word containing the gsk_soc_data address returned by the
gsk_secure_soc_init() routine.

BUFPTR
Specifies a 4-byte word containing the address of the data buffer.

BUFSIZE
Specifies a 4-byte word containing the length of the data buffer.

RSNCODE
Specifies a 4-byte word which will contain the reason code if an error is
detected. In most cases, this will be the errno value at the completion of the
read request.

Results

The return value will be the number of bytes read if no error is detected.
Otherwise, it will be a negative value representing one of the return codes listed in
the gskssl.h include file. See the description of the gsk_secure_soc_read() routine
for more information.

Usage

The GSKSRBRD routine is called to read from a secure connection in SRB mode.
The gsk_srb_initialize() routine must have been called previously to initialize the
SRB support. All of the parameters must be in the application storage key and
must reside in the primary address space. The GSKSRBRD routine will pass the
read request to one of the SRB service tasks. The service task will then call the
gsk_secure_soc_read() routine. The GSKSRBRD routine will not return until the
gsk_secure_soc_read() routine has completed.

Related Topics

“GSKSRBWT” on page 463

“gsk_initialize()” on page 439

“gsk_secure_soc_close()” on page 445

“gsk_secure_soc_init()” on page 446

“gsk_secure_soc_write()” on page 458

“gsk_srb_initialize()” on page 460

GSKSRBRD

462 z/OS V2R1.0 System SSL Programming

GSKSRBWT
Writes to a secure connection in SRB mode.

Format
LOAD EP=GSKSRBRD

LR 15,0

CALL (15), (SOCHNDLE, BUFPTR, BUFSIZE, RSNCODE)

Parameters

SOCHNDLE
Specifies a 4-byte word containing the gsk_soc_data address returned by the
gsk_secure_soc_init() routine.

BUFPTR
Specifies a 4-byte word containing the address of the data buffer.

BUFSIZE
Specifies a 4-byte word containing the length of the data buffer.

RSNCODE
Specifies a 4-byte word which will contain the reason code if an error is
detected. In most cases, this will be the errno value at the completion of the
read request.

Results

The return value will be the number of bytes written if no error is detected.
Otherwise, it will be a negative value representing one of the return codes listed in
the gskssl.h include file. See the description of the gsk_secure_soc_write() routine
for more information.

Usage

The GSKSRBWT routine is called to write to a secure connection in SRB mode. The
gsk_srb_initialize() routine must have been called previously to initialize the SRB
support. All of the parameters must be in the application storage key and must
reside in the primary address space. The GSKSRBWT routine will pass the write
request to one of the SRB service tasks. The service task will then call the
gsk_secure_soc_write() routine. The GSKSRBWT routine will not return until the
gsk_secure_soc_write() routine has completed.

Related Topics

“GSKSRBRD” on page 462

“gsk_initialize()” on page 439

“gsk_secure_soc_close()” on page 445

“gsk_secure_soc_init()” on page 446

“gsk_secure_soc_write()” on page 458

“gsk_srb_initialize()” on page 460

GSKSRBWT

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 463

gsk_uninitialize()
Terminates the SSL environment.

Format
#include <gskssl.h>

gsk_status gsk_uninitialize (void)

Parameters

There are no parameters.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. This is a possible
error:

[GSK_ERROR_CLOSE_FAILED]
An error occurred while closing the environment.

Usage

The gsk_uninitialize() routine will close the SSL environment created by the
gsk_initialize() routine. New SSL connections cannot be initiated after calling the
gsk_uninitialize() routine until the gsk_initialize() routine is called to initialize a
new SSL environment. All resources allocated for the environment will be released
unless there are active SSL connections still using the environment. If there are
active connections, the environment is not closed until the last connection is closed.

Related Topics

“gsk_initialize()” on page 439

“gsk_secure_soc_init()” on page 446

gsk_uninitialize()

464 z/OS V2R1.0 System SSL Programming

gsk_user_set()
Sets an application callback.

Format
#include <gskssl.h>

gsk_status gsk_user_set(
gsk_user_set_fid set_id,
void * set_data,
void * reserved)

Parameters

set_id
Specifies the set function identifier.

set_data
Specifies the address of the set data.

reserved
Specify NULL for this parameter.

Results

The function return value will be 0 (GSK_OK) if no error is detected. Otherwise, it
will be one of the return codes listed in the gskssl.h include file. These are some
possible errors:

[GSK_BAD_PARAMETER]
A parameter is not valid.

[GSK_ERROR_BAD_STATE]
The SSL environment has not been initialized.

Usage

The gsk_user_set() routine will set or reset an application callback. The
gsk_initialize() routine must be called before the gsk_user_set() routine can be
called.

These set function identifiers are supported:

[GSK_SET_SIDCACHE_CALLBACK]
This function sets the session identifier cache callback. The set data is the
address of the gsk_sidcache_callback structure. The application session
identifier cache is used only for SSL servers (the internal cache is always
used for SSL clients). This sets the session identifier cache for existing
connections including new connections created by the
gsk_secure_soc_init() routine.

The routine specified by the Get entry is called to retrieve an entry from
the session identifier cache. The session_id parameter is the session
identifier, the session_id_length parameter is the length of the session
identifier, and the ssl_version parameter is the SSL protocol version number
(GSK_SSLVERSION_V2 or GSK_SSLVERSION_V3). The function return
value is the address of the session data buffer or NULL if an error is
detected. The FreeDataBuffer routine will be called to release the session
data buffer when it is no longer needed by the SSL runtime.

gsk_user_set()

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 465

gsk_data_buffer * Get (
const unsigned char * session_id,
unsigned int session_id_length,
gsk_sslversion ssl_version)

The routine specified by the Put entry is called to store an entry in the
session identifier cache. The ssl_session_data parameter is the session data,
the session_id parameter is the session identifier, the session_id_length
parameter is the length of the session identifier, and the ssl_version
parameter is the SSL protocol version number (GSK_SSLVERSION_V2 or
GSK_SSLVERSION_V3). The function return value is ignored and can be a
NULL address. The callback routine must make its own copy of the session
data since the SSL structure will be released when the connection is closed.
gsk_data_buffer * Put (

gsk_data_buffer * ssl_session_data,
const unsigned char * session_id,
unsigned int session_id_length,
gsk_sslversion ssl_version)

The routine specified by the Delete entry is called to remove an entry from
the session identifier cache. The session_id parameter is the session
identifier, the session_id_length parameter is the length of the session
identifier, and the ssl_version parameter is the SSL protocol version number
(GSK_SSLVERSION_V2 or GSK_SSLVERSION_V3).
void Delete (

const unsigned char * session_id,
unsigned int session_id_length,
gsk_sslversion ssl_version)

The routine specified by the FreeDataBuffer entry is called to release the
data buffer returned by the Get routine.
void FreeDataBuffer (

gsk_data_buffer * ssl_session_data)

[GSK_RESET_SIDCACHE_CALLBACK]
This function resets the session identifier cache callback. The internal
session identifier cache is used instead of an application session identifier
cache. This resets the session identifier cache for existing connections
including new connections created by the gsk_secure_soc_init() routine.

[GSK_SET_GETPEER_CALLBACK]
This function sets the peer identification callback. The peer identification
callback returns the 32-bit network identifier for the remote partner. The fd
parameter is the socket descriptor specified when the connection was
initialized. The peer identification routine will be called for new
connections created by gsk_secure_soc_init() but will not be called for
existing connections.
unsigned long io_getpeerid (

int fd)

[GSK_RESET_GETPEER_CALLBACK]
This function resets the peer identification callback. The internal peer
identification routine will be used instead of the application routine. This
applies to new connections created by gsk_secure_soc_init() and does not
affect existing connections.

gsk_user_set()

466 z/OS V2R1.0 System SSL Programming

Related Topics

“gsk_initialize()” on page 439

“gsk_secure_soc_init()” on page 446

gsk_user_set()

Chapter 9. Deprecated Secure Socket Layer (SSL) APIs 467

gsk_user_set()

468 z/OS V2R1.0 System SSL Programming

Chapter 10. Certificate/Key management

This topic discusses the use of the z/OS shell-based gskkyman utility to manage
private keys, certificates, and tokens. In addition, see “gskkyman command line
mode examples” on page 528 for more detailed examples using the gskkyman
utility.

Introduction
SSL connections use public/private key mechanisms for authenticating each side of
the SSL session and agreeing on bulk encryption keys to be used for the SSL
session. To use public/private key mechanisms (termed PKI), public/private key
pairs must be generated. In addition, X.509 certificates (which contain public keys)
might need to be created, or certificates must be requested, received, and managed.

System SSL supports these two methods for managing PKI private keys and
certificates:
v A z/OS shell-based program called gskkyman. gskkyman creates, completes,

and manages either a z/OS file or z/OS PKCS #11 token that contains PKI
private keys, certificate requests, and certificates. The z/OS file is called a key
database and, by convention, has a file extension of .kdb.

v The z/OS Security Server (RACF) RACDCERT command. RACDCERT installs
and maintains PKI private keys and certificates in RACF. See z/OS Security Server
RACF Command Language Reference for details about the RACDCERT command.
RACF supports multiple PKI private keys and certificates to be managed as a
group. These groups are called key rings or z/OS PKCS #11 tokens.

v RACF key rings or z/OS PKCS #11 tokens are the preferred method for
managing PKI private keys and certificates for System SSL.

The System SSL application uses the GSK_KEYRING_FILE parameter of the
gsk_attribute_set_buffer() API or the GSK_KEYRING_FILE environment variable
to specify the locations of the PKI private keys and certificates to System SSL. If
you are using a z/OS key database, the key database file name is passed in this
parameter. If you are using a RACF key ring or z/OS PKCS #11 token, the name of
the key ring or token is passed in this parameter.

gskkyman Overview
gskkyman is a z/OS shell-based program that creates, completes, and manages a
z/OS file or z/OS PKCS #11 token that contains PKI private keys, certificate
requests, and certificates. The z/OS file is called a key database and, by
convention, has a file extension of .kdb. There is also an .rdb file that is a
counterpart to the .kdb file.

The gskkyman utility only supports clear key operations.

The gskkyman utility only supports certificates that conform to RFC 2459: X.509
certificate, certificate revocation list, and certificate extensions or RFC 3280: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile certificates can be used with gskkyman provided they conform to

© Copyright IBM Corp. 1999, 2013 469

http://www.rfc-editor.org/rfc/pdfrfc/rfc2459.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2459.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

RFC 3280 rules for the certificate issuer name and subject name comparisons.
Specifically, RFC 3280 indicates that UTF-8 values in the distinguished names must
pass a case-sensitive (exact match) comparison to be considered equal. The
gskkyman utility uses the issuer name and subject name values in the certificate to
determine if a certificate is self-signed, and to perform certificate chaining.
Therefore, gskkyman expects distinguished name attribute values to match
according to a case-sensitive comparison when they are encoded as UTF-8 strings.
Certificates that contain distinguished names with UTF-8 encoded attribute values
for the issuer name, and subject name, or both that match through a comparison
not case-sensitive and can be created according to RFC 5280. Such certificates cause
the gskkyman utility to fail checking for self-signed certificates and fail to correctly
build certificate chains. Therefore, these certificates cannot be used with gskkyman.

The interface to gskkyman, while command-line based, is an interactive dialog
between you (the user) and the utility. At each step, the interactive gskkyman
utility prompts you with one or more lines of output and expects a numeric choice
to be supplied as input at the prompt. When a choice is made, the gskkyman
utility prompts you for the individual pieces of information that is needed to fulfill
the request. You are prompted for each piece of information. Many times there is a
default choice that is listed between parentheses at the end of the command
prompt. If the default choice is acceptable, press Enter to select the default. If you
want other than the default, enter the value at the prompt and press Enter. If a
value is entered that is outside of the acceptable range of inputs, you are prompted
again for the information.

Note: For a description of command-line mode functions and options, see
“gskkyman command line mode syntax” on page 525.

Setting up the environment to run gskkyman
gskkyman uses the DLLs that are installed with System SSL and must have access
to these at run time. gskkyman must also have access to the message catalogs. The
/bin directory includes a symbolic link to gskkyman, therefore, if your PATH
environment variable contains this directory, gskkyman is located. If your PATH
environment variable does not contain this directory, add /usr/lpp/gskssl/bin to
your PATH using:

PATH=$PATH:/usr/lpp/gskssl/bin

/usr/lib/nls/msg/En_US.IBM-1047 (and /usr/lib/nls/msg/Ja_JP.IBM-939 for
JCPT41J installations) include symbolic links to the message catalogs for
gskkyman. If they do not include these links, add /usr/lpp/gskssl/lib/nls/msg to
your NLSPATH using this command:

export NLSPATH=$NLSPATH:/usr/lpp/gskssl/lib/nls/msg/%L/%N

This setting assumes that your environment has the LANG environment variable set
to En_US.IBM-1047 (or Ja_JP.IBM-939 for JCPT41J installations that expect Japanese
messages and prompts). If LANG is not set properly, set the NLSPATH environment
variable using this command:

export NLSPATH=/usr/lpp/gskssl/lib/nls/msg/En_US.IBM-1047/%N:$NLSPATH

or for JCPT41J installations that expect Japanese messages and prompts:
export NLSPATH=/usr/lpp/gskssl/lib/nls/msg/Ja_JP.IBM-939/%N:$NLSPATH

470 z/OS V2R1.0 System SSL Programming

The DLLs for System SSL are installed into a partitioned data set (PDSE) in
HLQ.SIEALNKE. These DLLs are not installed in SYS1.LPALIB by default. If
System SSL is to execute in FIPS mode, the DLLs in the HLQ.SIEALNKE data set
cannot be put into the LPA.

If the System SSL DLLs are not in either the dynamic LPA or system link list, you
must set the STEPLIB environment variable to find the DLLs. For example:

export STEPLIB=$STEPLIB:<HLQ>.SIEALNKE

During installation, the sticky bit is set on for the gskkyman utility. If the sticky is
turned off, attempts to invoke the gskkyman utility results in message GSK00009E
indicating that a problem exists with the installation of the SSL utility, gskkyman.

To check the sticky bit setting, issue:
ls -l /usr/lpp/gskssl/bin/gskkyman

The first part of the output should be:
-rwxr-xr-t

The t indicates that the sticky bit is on.

To set the sticky bit on, from an authorized id, issue:
chmod +t /usr/lpp/gskssl/bin/gskkyman

If access to the ICSF callable services are protected with CSFSERV class profiles on
your system, the user ID issuing the gskkyman utility might need to be given
READ authority to call ICSF callable services CSFIQA, CSFPPRF, CSFPGKP,
CSFPGSK, CSFPGAV, CSFPTRD, CSFPTRC, CSFPPKS, and CSFPPKV. If these
callable services are protected with a generic CSF* profile in the CSFSERV class,
access can be granted by entering:
PERMIT CSF* CLASS(CSFSERV) ID(user-ID) ACCESS(READ)
SETROPTS RACLIST(CSFSERV) REFRESH

Key database files
Key database files are password protected because they contain the private keys
that are associated with some of the certificates that are contained in the key
database. Private keys, as their name implies, should be protected because their
value is used in verifying the authenticity of requests made during PKI operations.

It is suggested that key database files be set with these string file permissions:
-rw------- (600) (read-write for only the owner of the key database)

The owner of the key database should be the user managing the key database. The
program using System SSL (and the key database) must have at least read
permission to the key database file at run time. If the program is a server program
that runs under a different user ID than the administrator of the key database file,
you should set up a group to control access to the key database file. In this case, it
is suggested that you set the permissions on the key database file to:
-rw-r---- (640) (read-write for owner and read-only for group)

The owner of the key database file is set to the administrator user ID and the
group owner of the key database file is set to the group that contains the server
that is using the key database file.

Chapter 10. Certificate/Key management 471

A key database that is created as a FIPS mode database, can only be updated by
gskkyman or by using the CMS APIs executing in FIPS mode. Such a database,
however, may be opened as read-only when executing in non-FIPS mode. Key
databases created while in non-FIPS mode cannot be opened when executing in
FIPS mode.

z/OS PKCS #11 tokens
z/OS PKCS #11 tokens are managed and protected by ICSF. ICSF uses the
CRYPTOZ SAF class to determine if the issuer of gskkyman is permitted to
perform the operation against a z/OS PKCS #11 token. The resources for this class
are:
v USER.tokenname
v SO.tokenname

The gskkyman utility provides limited functionality for PKCS #11 token certificates
that have secure private keys. If a PKCS #11 certificate has a secure private key, the
following functions are allowed:
v Showing certificate and key information.
v Setting the key as default.
v Exporting a certificate to a file.
v Deleting a certificate and key.
v Changing the label.

If a PKCS #11 token certificate has a secure private key, the following functions are
not allowed:
v Copying certificate and key to another token.
v Exporting certificate and key to a file.
v Creating a signed certificate and key.
v Creating a certificate renewal request.

A PKCS #11 token certificate with a clear private key is allowed full gskkyman
functionality.

When displaying token key information for a PKCS #11 certificate's private key, the
private key type indicates the private key is either clear or secure.

Table 12 illustrates the SAF access levels required to perform certain functions. The
3 SAF levels in order of increasing accessibility are READ, UPDATE, and
CONTROL. The higher levels each retain all the permissions of the previous level
including gaining additional capability. For more information, see the Token Access
Levels table under Overview of z/OS support for PKCS #11 in z/OS Cryptographic
Services ICSF Writing PKCS #11 Applications.

Table 12. SAF access levels

USER.token-name CRYPTOZ resource:

Function SAF access level

Create/delete/modify CA certificate and
private key

Control

Create/delete/modify user certificate and
private key

Update

Read certificate and private key Read

472 z/OS V2R1.0 System SSL Programming

Table 12. SAF access levels (continued)

USER.token-name CRYPTOZ resource:

Function SAF access level

Set default key Update

SO.token-name CRYPTOZ resource:

Function SAF access level

Create or delete token Update

Read/create/delete/modify certificate (but
not the private key)

Read

Read/create/delete/modify private key Control

Set default key Read

gskkyman interactive mode descriptions
Interactive mode is entered when the gskkyman utility is entered without any
parameters. A series of menus are presented to allow you to select the database
functions to be performed. Leading and trailing blanks are removed from data
entries but embedded blanks are retained. Blanks are not removed from
passwords.

Database menu
This is the top-level menu and is displayed when the gskkyman utility starts:

Create new database

This option creates a new key database and the associated request
database. You are prompted to enter the key database name, the database
password, the password expiration interval, and the database record length
and choose either a FIPS or non-FIPS database (see “Key database files” on
page 471 for a discussion of FIPS mode databases).

The fully-qualified key database name must be between 2 and 251
characters. The file can contain an extension consisting of 1 to 3 characters.

Database Menu

1 - Create new database
2 - Open database
3 - Change database password
4 - Change database record length
5 - Delete database
6 - Create key parameter file
7 - Display certificate file (Binary or Base64 ASN.1 DER)

11 - Create new token
12 - Delete token
13 - Manage token
14 - Manage token from list of tokens

0 - Exit program

Enter option number:

Figure 2. Database menu

Chapter 10. Certificate/Key management 473

The suggested extension is ".kdb". The maximum database name is 247
characters if the name does not end with an extension to allow for the
addition of an extension when creating the request database or the
password stash file. The key database name may not end with ".rdb" or
".sth" as these extensions are reserved for the request and the password
stash file.

The database password must be between 1 and 128 characters. A password
exceeding 128 characters will be truncated to 128 characters.

The password expiration interval must be between 0 and 9999 days (a
value of 0 indicates that the password does not expire).

The record length must be large enough to contain the largest certificate to
be stored in the database and must be between 2500 and 65536.

Two files will be created: the key database and the request database. The
request database has an extension of '.rdb'. The file access permissions will
be set so only the owner has access to the files.

Open database

This option will open an existing database. You will be prompted to enter
the key database name and the database password.

The fully-qualified key database name must be between 2 and 251
characters and should either have no extension or an extension of '.kdb'
(the maximum database name is 247 characters if the name does not end
with an extension of 1-3 characters to allow for the addition of an
extension when accessing the request database or the password stash file).
The key database name may not end with '.rdb' or '.sth' as these extensions
are reserved for the request database and the password stash file.

Change database password

This option will change the database password. You can change the
password at any time but you must change it once it has expired in order
to access the database once more. You will be prompted to enter the key
database name, the current database password, the new database
password, and the new password expiration interval.

The new database password must be between 1 and 128 characters.

The password expiration interval must be between 0 and 9999 days (a
value of 0 indicates that the password does not expire).

Change database record length

This option will change the database record length. All database records
have the same length and database entries cannot span records. You can
increase the record length if you find it is too small to store a new
certificate. You can decrease the record length to reduce the database size if
the original record length is too large. You cannot reduce the record length
to a value smaller than the largest certificate currently in the database. You
will be prompted to enter the key database name, the database password,
and the new record length.

The new record length must be between 2500 and 65536.

Delete database

This option will delete the key database, the associated request database,
and the database password stash file. You will be prompted to enter the
key database name.

474 z/OS V2R1.0 System SSL Programming

Create key parameter file
This option will create a file containing a set of key generation parameters.
Key generation parameters are used when generating Digital Signature
Standard (DSS) and Diffie-Hellman (DH) keys. The parameters will be
stored in the specified file as an ASN.1-encoded sequence in Base64 format.
This file can then be used when creating a signed certificate. The same key
generation parameters can be used to generate multiple public/private key
pairs. Using the same key generation parameters significantly reduces the
time required to generate a public/private key pair. In addition, the
Diffie-Hellman key agreement method requires both sides to use the same
group parameters in order to compute the key exchange value. See FIPS
186-3: Digital Signature Standard (DSS) and RFC 2631: Diffie-Hellman Key
Agreement Method for more information about the key generation
parameters. The key parameter generation process can take from 1 to 10
minutes depending upon key size, processor speed, and system load.

Display certificate file (Binary or Base64 ASN.1 DER)
This option displays information about an X.509 certificate file. You will be
prompted to enter the certificate file name. The fully-qualified certificate
file name must be between 2 and 251 characters. The specified file must
contain either a binary ASN.1 DER-encoded certificate or the
Base64-encoding of a binary ASN.1 stream. A Base64-encoded certificate
must be in the local code page.

Note: Information retrieved for z/OS PKCS #11 tokens is not cached. Each time a
menu is displayed, the information is retrieved from the ICSF TKDS (token key
dataspace). This is also true when displaying the list of available z/OS PKCS #11
tokens. On return from displaying a subordinate menu, the current list of tokens is
retrieved and the menu refreshed.

Create new token

This option will create a new token. You will be prompted to enter the
token name.

The name must be a unique non-empty string and consist of characters
that are alphanumeric, national (@ -x5B, # -x7B, $ -x7C) and period (x4B).

The name is specified in the local code page.

The first character must be alphabetic or national. Lowercase letters are
permitted but will be folded to uppercase.

Once the token is created the Database menu is displayed.

Delete token

This option will delete the key token. You will be prompted to enter the
token name. If the token exists, the user is prompted again to re-enter the
full token name as confirmation before deletion of the specified token.

Note: If name consists of lowercase characters it will be uppercased when
processed.

Manage token
This option manages the token. You will be prompted to enter the token
name. The token that matches the entered name is then used in the Token
Management Menu that is subsequently displayed.

Note: If name consists of lowercase characters it will be uppercased when
processed.

Chapter 10. Certificate/Key management 475

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf

Manage token from list of tokens
This option displays a list of existing tokens by name from which an entry
can be chosen for use in the Token Management Menu that is subsequently
displayed.

Note: If name consists of lowercase characters it will be uppercased when
processed.

Key/Token management
The Key/Token Management menus allow for the creation/deletion/management
of certificates within a key database file or z/OS PKCS #11 token. Once the key
database or token is created, the management of the certificates within the
repository is very similar. This is illustrated throughout this topic by the key
database menu, which is always on the left, and token menu, which is always on
the right, being displayed side by side in the figures.

Key Management menu/Token management menu
The Key Management Menu is displayed once the key database has been created
or opened. The key database and the associated request database are opened for
update and remain open until you return to the Database Menu.

The Token Management Menu is displayed once a z/OS PKCS #11 token has been
opened.

Key Management Menu

Database: Database_name
Expiration Date: Expiration Date

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal

certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key
10 - Store database password
11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to
previous menu):
===>

Figure 3. Key Management Menu

Token Management Menu

Token: Token_name

Manufacturer: z/OS PKCS11 API
Model: HCR77A0
Flags: 0x00000509 (INITIALIZED,PROT AUTH

PATH,USER PIN INIT,RNG)

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal

certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key

10 - Delete token

0 - Exit program

Enter option number (press ENTER to return to
previous menu):
===>

Figure 4. Token Management Menu

Manage Keys and Certificates: This option manages certificates with private
keys. A list of key labels is displayed. Pressing the ENTER key without making a
selection will display the next set of labels. Selecting one of the label numbers will
display this menu:

476 z/OS V2R1.0 System SSL Programming

Key and Certificate Menu

Label: Certificate_label_name

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another

database/token
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label
10 - Create a signed certificate and key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to
previous menu):
===>

Figure 5. Key and Certificate Menus

Token Key and Certificate Menu

Label: Certificate_label_name

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another

database/token
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label

10 - Create a signed certificate and key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to
previous menu):
===>

Figure 6. Token Key and Certificate Menu

Show certificate information
This option displays information about the X.509 certificate associated with
the private key.

Show key information
This option displays information about the private key.

Set key as default
This option makes the current key the default key for the database.

Set certificate trust status
This option sets or resets the trusted status for the X.509 certificate. A
certificate cannot be used for authentication unless it is trusted.

Note: All z/OS PKCS #11 token certificates are automatically created with
the status set to trusted. Changing of the trust status is not supported for
z/OS PKCS #11 token certificates.

Copy certificate and key to another database/token
This option copies the certificate and key to another token or a database.
An error is returned if the certificate is already in the token/database or if
the label is not unique. A certificate and key may only be copied into a
FIPS mode database from another FIPS mode database. A certificate and
key may not be copied from a non-FIPS mode database or a PKCS #11
token to a FIPS mode database.

Export certificate to a file
This option exports just the X.509 certificate to a file. The supported export
formats are ASN.1 Distinguished Encoding Rules (DER) and PKCS #7
(Cryptographic Message Syntax)

Export certificate and key to a file
This option exports the X.509 certificate and its private key to a file. The
private key is encrypted when it is written to the file. The password you
select will be needed when you import the file. The supported export
formats for a key database file are PKCS #12 Version 1 (obsoleted) and
PKCS #12 Version 3. For z/OS PKCS #11 tokens and FIPS mode databases,
the export format supported is PKCS #12 Version 3. The strong encryption
option uses Triple DES to encrypt the private key while the export
encryption option uses 40-bit RC2. Strong encryption is the only supported

Chapter 10. Certificate/Key management 477

option when exporting from a FIPS database. The export file will contain
the requested certificate and its certification chain.

Delete certificate and key
The certificate and its associated private key are deleted.

Change label
This option will change the label for the database record.

Create a signed certificate and key
This option will create a new certificate and associated public/private key
pair. The new certificate will be signed using the certificate in the current
record and then stored in either the key database file or z/OS PKCS #11
token.

DSS and DH key generation parameters must be compatible with the
requested key type and key size.

Keys are in the same domain if they have the same set of key generation
parameters. See FIPS 186-2: DIGITAL SIGNATURE STANDARD (DSS) and
RFC 2631: Diffie-Hellman Key Agreement Method for more information about
the key generation parameters. The subject name and one or more subject
alternate names can be specified for the new certificate.

The subject name is always an X.500 directory name while a subject
alternate name can be an X.500 directory name, a domain name, an email
address, an IP address, or a uniform resource identifier. An X.500 directory
name consists of common name, organization, and country attributes with
optional organizational unit, city/locality, and state/province attributes. A
domain name is one or more tokens separated by periods. An email
address consists of a user name and a domain name separated by '@'. An
IP address is an IPv4 address (nnn.nnn.nnn.nnn) or an IPv6 address
(nnnn:nnnn:nnnn:nnnn:nnnn:nnnn:nnnn:nnnn). A uniform resource
identifier consists of a scheme name, a domain name, and a
scheme-specific portion.

The signature algorithm used when signing the certificate is derived from
the key algorithm of the signing certificate and the following digest type:
v For RSA signatures, the digest type matches that used in the signature

algorithm of the signing certificate. If the digest type is not a SHA-based
digest, then SHA-1 is used.

v For DSA signatures using a 1024-bit DSA key, the digest type is SHA-1.
When using a 2048-bit DSA key, the user is offered a choice of SHA-2
digest algorithms.

v For ECC Signatures, the digest type is the suggested digest for the key
size of the ECC private key, as specified in Table 2 on page 15.

Possible signature algorithms are:
v x509_alg_sha1WithRsaEncryption
v x509_alg_sha224WithRsaEncryption
v x509_alg_sha256WithRsaEncryption
v x509_alg_sha384WithRsaEncryption
v x509_alg_sha512WithRsaEncryption
v x509_alg_dsaWithSha1
v x509_alg_dsaWithSha224
v x509_alg_dsaWithSha256
v x509_alg_ecdsaWithSha256

478 z/OS V2R1.0 System SSL Programming

http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf

v x509_alg_ecdsaWithSha384
v x509_alg_ecdsaWithSha512

Create a certificate renewal request
This option will create a certification request using the subject name and
public/private key pair from an existing certificate. The certificate request
will be exported to a file in Base64 format. This file can then be sent to a
certification authority for processing. The certificate returned by the
certification authority can then be processed using option 5 (Receive
requested certificate or a renewal certificate) on the Key Management
Menu or Token Management Menu. The new certificate will replace the
existing certificate.

Manage certificates: This option manages certificates without private keys. A list
of key labels is displayed. Pressing the ENTER key without making a selection will
display the next set of labels. Selecting one of the label numbers will display this
menu:

Certificate Menu

Label: Certificate_label_name

1 - Show certificate information
2 - Set certificate trust status
3 - Copy certificate to another database/token
4 - Export certificate to a file
5 - Delete certificate
6 - Change label

0 - Exit program

Enter option number (press ENTER to return to
previous menu):

Figure 7. Certificate Menu

Token Certificate Menu

Label: Certificate_label_name

1 - Show certificate information
2 - Set certificate trust status
3 - Copy certificate to another database/token
4 - Export certificate to a file
5 - Delete certificate
6 - Change label

0 - Exit program

Enter option number (press ENTER to return to the
previous menu):
===>

Figure 8. Token Certificate Menus

Show certificate information
This option displays information about the X.509 certificate.

Set certificate trust status
This option sets or resets the trusted status for the X.509 certificate. A
certificate cannot be used for authentication unless it is trusted.

Note: All z/OS PKCS #11 token certificates are automatically created with
the status set to trusted. Changing of the trust status is not supported for
z/OS PKCS #11 token certificates.

Copy certificate to another database/token
This option copies the certificate to another token or a key database. An
error is returned if the certificate is already in the token/database or if the
label is not unique. A certificate may only be copied into a FIPSmode
database from another FIPSmode database. A certificate may not be copied
from a non-FIPSmode database or a PKCS #11 token to a FIPSmode
database.

Export certificate to a file
This option exports the X.509 certificate to a file. The supported export
formats are ASN.1 DER (Distinguished Encoding Rules) and PKCS #7
(Cryptographic Message Syntax). The export file will contain just the
requested certificate when the DER format is selected. The export file will
contain the requested certificate and its certification chain when the PKCS
#7 format is selected.

Chapter 10. Certificate/Key management 479

Delete certificate
The certificate is deleted.

Change label
This option will change the label for the certificate.

Manage certificate requests: This option manages certificate requests. A list of
request labels is displayed. Pressing the ENTER key without making a selection
displays the next set of labels. Selecting one of the label numbers will display this
menu:

Request Menu

Label: label_name

1 - Show key information
2 - Export certificate request to a file
3 - Delete certificate request and key
4 - Change label

0 - Exit program

Enter option number (press ENTER to return to
previous menu):

Figure 9. Request Menu

Token Certificate Request Menu

Label: label_name

1 - Show key information
2 - Export certificate request to a file
3 - Delete certificate request and key
4 - Change label

0 - Exit program

Enter option number (press ENTER to return to
previous menu):
===>

Figure 10. Token Certificate Request Menu

Show key information
This option displays information about the private key associated with the
certificate request.

Export certificate request to a file
This option exports the certificate request to a file in Base64 format. This
file can then be sent to a certification authority for processing.

Delete certificate request and key
The certificate request and its associated private key are deleted.

Change label
This option will change the label for the certificate request.

Create new certificate request: This option creates a certificate request using
either RSA or DSA encryption for the public and private keys. The certificate
request is exported to a file in Base64 format. This file can then be sent to a
certification authority for processing.

For key databases:
The label has a maximum length of 127 characters and is used to reference
the certificate in the request database. The label is also used when the
certificate is received, so it must be unique in both the request and key
databases. It must consist of characters that can be represented as 7-bit
ASCII characters (letters, numbers, and punctuation) in the ISO8859-1 code
page.

For tokens:
The label has a maximum length of 32 characters and is used to reference
the certificate request. The label is also used when the certificate is
received, so it must be unique in the token. It must consist of characters
that can be represented in the IBM1047 code page.

The subject name and one or more subject alternate names can be specified for the
new certificate. The subject name is always an X.500 directory name while a subject
alternate name can be an X.500 directory name, a domain name, an email address,

480 z/OS V2R1.0 System SSL Programming

an IP address, or a uniform resource identifier. An X.500 directory name consists of
common name, organization, and country attributes with optional organizational
unit, city/locality, and state/province attributes. A domain name is one or more
tokens that are separated by periods. An email address consists of a user name and
a domain name that is separated by '@'. An IP address is an IPv4 address
(nnn.nnn.nnn.nnn) or an IPv6 address
(nnnn:nnnn:nnnn:nnnn:nnnn:nnnn:nnnn:nnnn). A uniform resource identifier
consists of a scheme name, a domain name, and a scheme-specific portion (for
example:
http://www.endicott.ibm.com/main.html

).

Receive requested certificate or a renewal certificate: This option receives the
signed certificate returned by the certification authority. The certificate can be
either a new or renewal certificate issued in response to a certificate request or a
renewal of an existing certificate without a corresponding certificate request. If the
certificate was issued in response to a certificate request, the certificate request
must still be in the request database or token. If this is a renewal certificate
without a certificate request, the old certificate must still be in the key database or
token and must have the same issuer name and public key. If the key database or
token does not contain the private key of the old certificate or contains certificates
signed by the old certificate, then the subject name must also be the same when
renewing the certificate.

The certificate file must contain either an ASN.1 DER-encoded sequence as defined
in RFC 2459: X.509 certificate, certificate revocation list, and certificate extensions, RFC
3280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile, RFC 5280: Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile, or a signed data message as defined in PKCS
#7 (Cryptographic Message Syntax). The data can either be the binary value or the
Base64 encoding of the binary value.

If the import file is in PKCS #7 format, the first certificate in the file must be the
request certificate, otherwise the request will fail with 'unable to locate matching
request'. The certification chain will be imported if it is contained in the import
file. The certificate subject name will be used as the label for certificates added
from the certification chain. A chain certificate will not be added if the label is not
unique or if the certificate is already in the database or token.

Base64 data is in the local code page. A DER-encoded sequence must start with the
encoding header '-----BEGIN CERTIFICATE-----' and end with the encoding footer
'-----END CERTIFICATE-----'. A PKCS #7 signed data message must start with the
encoding header '-----BEGIN CERTIFICATE-----' and end with the encoding footer
'-----END CERTIFICATE-----' or start with the encoding header '-----BEGIN PKCS #7
SIGNED DATA-----' and end with the encoding footer '-----END PKCS #7 SIGNED
DATA-----'.

An intermediate CA or end-entity certificate is a certificate signed by another
entity. The key database or token must already contain a certificate for the issuer.
The certificate will not be imported if the certificate authenticity cannot be
validated or if the database or token already contains the certificate.

The certificate request entry will be deleted once the certificate has been received.

Chapter 10. Certificate/Key management 481

http://www.rfc-editor.org/rfc/pdfrfc/rfc2459.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

Create a self-signed certificate: This option creates a self-signed certificate using
either RSA, DSA, or ECC encryption for the public and private keys, and a
certificate signature that is based on a SHA digest algorithm. The SHA digest
algorithm that is used depends on the key algorithm that is chosen for the
certificate:
v If an RSA certificate is requested, the user is prompted to choose the SHA digest

algorithm required.
v An ECC certificate uses the suggested digest for the key size of the ECC key, as

specified in Table 2 on page 15.
v A 1024-bit DSA certificate uses SHA-1. For a 2048-bit DSA certificate, the user is

prompted to choose the SHA digest algorithm required.

Possible signature algorithms are:
v x509_alg_sha1WithRsaEncryption
v x509_alg_sha224WithRsaEncryption
v x509_alg_sha256WithRsaEncryption
v x509_alg_sha384WithRsaEncryption
v x509_alg_sha512WithRsaEncryption
v x509_alg_dsaWithSha1
v x509_alg_dsaWithSha224
v x509_alg_dsaWithSha256
v x509_alg_ecdsaWithSha256
v x509_alg_ecdsaWithSha384
v x509_alg_ecdsaWithSha512

The certificate can be created for use by a certification authority or an end user. A
CA certificate can be used to sign other certificates and certificate revocation lists
while an end user certificate can be used for authentication, digital signatures, and
data encryption.

For key databases:
The label has a maximum length of 127 characters and is used to reference
the certificate in the request database. The label is also used when the
certificate is received, so it must be unique in both the request and key
databases. It must consist of characters that can be represented as 7-bit
ASCII characters (letters, numbers, and punctuation) in the ISO8859-1 code
page.

For tokens:
The label has a maximum length of 32 characters and is used to reference
the certificate request. The label is also used when the certificate is
received, so it must be unique in the token. It must consist of characters
that can be represented in the IBM1047 code page.

The number of days until the certificate expires must be between 1 and 9999.

The subject name and one or more subject alternate names can be specified for the
new certificate. The subject name is always an X.500 directory name while a subject
alternate name can be an X.500 directory name, a domain name, an email address,
an IP address, or a uniform resource identifier. An X.500 directory name consists of
common name, organization, and country attributes with optional organizational
unit, city/locality, and state/province attributes. A domain name is one or more
tokens separated by periods. An email address consists of a user name and a
domain name that is separated by '@'. An IP address is an IPv4 address

482 z/OS V2R1.0 System SSL Programming

(nnn.nnn.nnn.nnn) or an IPv6 address
(nnnn:nnnn:nnnn:nnnn:nnnn:nnnn:nnnn:nnnn). A uniform resource identifier
consists of a scheme name, a domain name, and a scheme-specific portion (for
example:
http://www.endicott.ibm.com/main.html

).

Note: A self-signed end-entity certificate (server or client certificate) is not
suggested for use in production environments and should only be used to facilitate
test environments before production. Self-signed certificates do not imply any level
of security or authenticity of the certificate because, as their name implies, they are
signed by the same key that is contained in the certificate. However, certificates
that are signed by a certificate authority indicate that, at least at the time of
signature, the certificate authority approved the information that is contained in
the certificate.

Import a certificate: This option will add the contents of the import file to a key
database file or z/OS PKCS #11 token. The import file may contain one or more
certificates without private keys. When each certificate is added to the key
database, it is marked as trusted. The expiration date associated with each
certificate cannot exceed February 6, 2106.

When adding certificates from the import file to a FIPS key database file only
certificates signed with FIPS signature algorithms using FIPS-approved key sizes
may be imported. When processing a chain of certificates, processing of the chain
will terminate if a non-FIPS certificate is encountered. Certificates processed before
the failing certificate will be added to the key database file. It is the responsibility
of the importer to ensure that the file came from a FIPS source in order to maintain
meeting FIPS 140- 2 criteria.

The import file must contain either an ASN.1 DER-encoded sequence as defined in
RFC 2459: X.509 certificate, certificate revocation list, and certificate extensions, RFC
3280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile, RFC 5280: Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile, or a signed data message as defined in PKCS
#7 (Cryptographic Message Syntax). The data can either be the binary value or the
Base64 encoding of the binary value.

If the import file is in PKCS #7 format, only the first certificate and its certification
chain will be imported. The certificate subject name will be used as the label for
certificates added from the certification chain. A certification chain certificate will
not be added to the database or z/OS PKCS #11 token if the label is not unique or
if the certificate is already in the database or z/OS PKCS #11 token.

Base64 data is in the local code page. A DER-encoded sequence must start with the
encoding header '-----BEGIN CERTIFICATE-----' and end with the encoding footer
'-----END CERTIFICATE-----'. A PKCS #7 signed data message must start with the
encoding header '-----BEGIN CERTIFICATE-----' and end with the encoding footer
'-----END CERTIFICATE-----' or start with the encoding header '-----BEGIN PKCS #7
SIGNED DATA-----' and end with the encoding footer '-----END PKCS #7 SIGNED
DATA-----'.

A root certificate is a self-signed certificate and is imported if the certificate is not
already in the key database or z/OS PKCS #11 token.

Chapter 10. Certificate/Key management 483

http://www.rfc-editor.org/rfc/pdfrfc/rfc2459.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc3280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

An intermediate CA or end-entity certificate is a certificate signed by another
entity. The key database or z/OS PKCS #11 token must already contain a certificate
for the issuer. The certificate will not be imported if the certificate authenticity
cannot be validated or if the database already contains the certificate.

An existing certificate can be replaced by specifying the label of the existing
certificate. The issuer name, subject name, and subject public key in the new
certificate must be the same as the existing certificate. If the existing certificate has
a private key, the private key is not changed when the certificate is replaced.

Import a certificate and a private key: This option imports a certificate and the
associated private key and adds it to the key database or z/OS PKCS #11 token.
The certificate will be marked as trusted when it is added. When importing a
certificate, the expiration date cannot exceed February 6, 2106.

The import file must contain an ASN.1 DER-encoded sequence as defined in PKCS
#12 (Personal Information Exchange Syntax). The data can be either the binary
value or the Base64 encoding of the binary value. Base64 data is in the local code
page and must start with the encoding header '-----BEGIN CERTIFICATE-----' and
end with the encoding footer '-----END CERTIFICATE-----'.

A root certificate is a self-signed certificate and is imported if the certificate is not
already in the key database or z/OS PKCS #11 token.

An intermediate CA or end-entity certificate is a certificate signed by another
entity. The key database or z/OS PKCS #11 token must already contain a certificate
for the issuer. The certificate will not be imported if the certificate authenticity
cannot be validated or if the database or z/OS PKCS #11 token already contains
the certificate.

Each certificate in the certification chain will be imported if it is present in the
import file. The certificate subject name will be used as the label for certificates
added from the certification chain. A certification chain certificate will not be
added to the database or z/OS PKCS #11 token if the label is not unique or if the
certificate is already in the database or z/OS PKCS #11 token.

Only certificates and keys encoded according to PKCS #12 Version 3 and protected
with strong encryption can be imported into a FIPS database. Furthermore, only
certificates and keys comprising FIPS signature algorithms and using
FIPS-approved key sizes may be imported into a FIPS database.

Show the default key: The private key information for the default key is
displayed.

Store database password: The database password is masked and written to the
key stash file. The file name is the same as the key database file name but has an
extension of '.sth'.

Show database record length: The database record length is displayed. All
records in the database have the same length and a database entry cannot span a
database record.

484 z/OS V2R1.0 System SSL Programming

gskkyman interactive mode examples
gskkyman can be run from either a rlogin z/OS shell environment or from the
OMVS shell command-line environment. The examples that follow were performed
from the rlogin environment. If you use the OMVS shell command-line
environment, the only difference is that all input will be done at the command
prompt at the bottom of the screen.

These tasks will be performed in this topic:
v Creating, opening, and deleting a key database file
v Changing a key database password
v Storing an encrypted key database password
v Creating, opening, and deleting a z/OS PKCS #11 token
v Creating a self-signed server or client certificate
v Creating a certificate request and processing the signed request
v Creating a certificate to be used with Diffie-Hellman key exchange (key database

only)
v Managing keys and certificates:

– Show certificate/key information
– Marking a certificate (and private key) as the default certificate for the key

database
– Copying a certificate (and private key) to a different key database or z/OS

PKCS #11 Token:
- Copying a certificate without its private key
- Copying a certificate with its private key
- Copying a certificate with its private key to a key database on the same

system
- Copying a certificate with its private key to another z/OS PKCS #11 token

or key database on the same system
– Removing a certificate (and private key) from a key database or z/OS PKCS

#11 token
– Changing a certificate label

v Importing a certificate from a file as a trusted CA certificate
v Importing a certificate from a file with its private key
v Using gskkyman to be your own certificate authority (CA) (key database only)
v Migrating key database files to RACF key rings (key database only)
v Migrating key database files to z/OS PKCS #11 Tokens

Starting gskkyman
To start gskkyman, enter gskkyman at the command prompt (see Figure 11 on
page 486).

Note: In the examples that follow, your input is shown in bold, and places where
you press the Enter key are noted with enter.
Figure 11 on page 486 shows the gskkyman start menu.

Chapter 10. Certificate/Key management 485

From the Database Menu for gskkyman, you can create a new key database, open
an existing key database, display the contents of a certificate file, change a
database password, change a database record length, delete a database, create,
delete, and manage a z/OS PKCS #11 token, or exit gskkyman.

Creating, opening, and deleting a key database file
To create a new key database, enter 1 at the command prompt on the Database
Menu:

gskkyman <enter>

Database Menu

1 - Create new database
2 - Open database
3 - Change database password
4 - Change database record length
5 - Delete database
6 - Create key parameter file
7 - Display certificate file (Binary or Base64 ASN.1 DER)

11 - Create new token
12 - Delete token
13 - Manage token
14 - Manage token from list of tokens

0 - Exit program

Enter option number:
===>

Figure 11. Starting Menu for gskkyman

Database Menu

1 - Create new database
2 - Open database
3 - Change database password
4 - Change database record length
5 - Delete database
6 - Create key parameter file
7 - Display certificate file (Binary or Base64 ASN.1 DER)

11 - Create new token
12 - Delete token
13 - Manage token
14 - Manage token from list of tokens

0 - Exit program

Enter option number: 1 <enter>
Enter key database name (press ENTER to return to menu): mykey.kdb <enter>
Enter database password (press ENTER to return to menu): <enter password>
Re-enter database password: <enter password>
Enter password expiration in days (press ENTER for no expiration): 35 <enter>
Enter database record length (press ENTER to use 5000): <enter>

Enter 1 for FIPS mode database or 0 to continue: 0 <enter>

Key database /home/sufwl1/ssl_cmd/mykey.kdb created.

Press ENTER to continue.
===>

Figure 12. Creating a New Key Database

486 z/OS V2R1.0 System SSL Programming

Figure 12 on page 486 shows the input prompts that gskkyman produces when
you choose 1 to create a new key database. As you can see, default choices are
listed in parentheses. In the example, by pressing the Enter key at the Enter
database record length prompt, the default of 5000 was chosen.

Note:

1. When dealing with certificates which may be large or have large key sizes, for
example 2048 or 4096, an initial key record length of 5000 may be required.

2. The maximum length of the password specified for a key database file is 128
characters.

3. When creating a new key database file, you will be prompted whether you
want a FIPS or non-FIPS database file created. For more information about FIPS
mode databases, see “Key database files” on page 471.

After entering the database record length, a message displays confirming that your
database was created (see Figure 12 on page 486). You are prompted to press Enter
to continue. Doing so displays the Key Management Menu for the database you
have created:

Figure 13 shows the Key Management Menu. Entering 0 at this prompt exits the
gskkyman program. Pressing Enter at the prompt returns you to the Database
Menu.

To open an existing key database file, on the Database Menu, enter option number
2 (see Figure 14 on page 488). You are then prompted for the key database name
and password.

Note: Do not lose the key database password. There is no method to reset this
password if you lose or forget the password. If the password is lost, the private
keys stored in the key database are inaccessible, therefore, unusable.

Key Management Menu

Database: /home/sufwl1/ssl_cmd/mykey.kdb
Expiration Date: 2025/12/02 10:11:12

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key
10 - Store database password
11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to previous menu):
===>

Figure 13. Key Management Menu for gskkyman

Chapter 10. Certificate/Key management 487

The key database name is the file name of the key database. The input file name is
interpreted relative to the current directory when gskkyman is invoked. You may
also specify a fully qualified key database name.

After you enter the key database name and password, the Key Management Menu
displays for the database you have selected to open, (see Figure 15).

To delete an existing database, from the Database Menu, select option 5 (see
Figure 16 on page 489):

Database Menu

1 - Create new database
2 - Open database
3 - Change database password
4 - Change database record length
5 - Delete database
6 - Create key parameter file
7 - Display certificate file (Binary or Base64 ASN.1 DER)

11 - Create new token
12 - Delete token
13 - Manage token
14 - Manage token from list of tokens

0 - Exit program

Enter option number: 2 <enter>
Enter key database name (press ENTER to return to menu): mykey.kdb <enter>
Enter database password (press ENTER to return to menu): <enter password>

===>

Figure 14. Opening an Existing Key Database File

Key Management Menu

Database: /home/sufwl1/ssl_cmd/mykey.kdb
Expiration Date: 2025/12/02 10:11:12

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key
10 - Store database password
11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to previous menu):
===>

Figure 15. Key Management Menu

488 z/OS V2R1.0 System SSL Programming

You are prompted to enter the key database name that you want to delete. Then
you must enter 1 to confirm the delete, or 0 to cancel the delete. If you choose 1, a
message displays to confirm the file has been deleted.

Note: If you delete an existing key database, the associated request database and
database password stash file (if existent) is also deleted. It's important to note that
anyone with write access to a key database can delete that database either by
removing it with the rm command or by using gskkyman subcommand.

Changing a key database password
You can change a key database password. From the Database Menu, select option
3:

Database Menu

1 - Create new database
2 - Open database
3 - Change database password
4 - Change database record length
5 - Delete database
6 - Create key parameter file
7 - Display certificate file (Binary or Base64 ASN.1 DER)

11 - Create new token
12 - Delete token
13 - Manage token
14 - Manage token from list of tokens

0 - Exit program

Enter option number: 5 <enter>
Enter key database name (press ENTER to return to menu): mykey.kdb <enter>

Enter 1 to confirm delete, 0 to cancel delete: 1 <enter>

Key database /home/sufwl1/ssl_cmd/mykey.kdb deleted.

Press ENTER to continue.
===>

Figure 16. Deleting an Existing Key Database

Chapter 10. Certificate/Key management 489

Figure 17 displays the prompts you are given. You first enter your current
password. Then you select a new password, and enter it again to confirm. You can
choose your password expiration in days or press Enter to have no expiration. A
message displays to confirm the transaction.

Storing an encrypted key database password
In order for applications to use the key database file, the application must specify
both the file name and its associated password. The password can either be
specified directly or through a stash file containing the encrypted password. The
stash file provides a level of security where the password does not have to be
explicitly specified. To save the encrypted key database password, enter option 10
from the Key Management Menu:

Note: In these task descriptions, it is assumed that you opened the key database
and are displaying the Key Management Menu panel.

Database Menu

1 - Create new database
2 - Open database
3 - Change database password
4 - Change database record length
5 - Delete database
6 - Create key parameter file
7 - Display certificate file (Binary or Base64 ASN.1 DER)

11 - Create new token
12 - Delete token
13 - Manage token
14 - Manage token from list of tokens

0 - Exit program

Enter option number: 3 <enter>
Enter key database name (press ENTER to return to menu): mykey.kdb <enter>
Enter database password (press ENTER to return to menu): <enter current password>
Enter new database password (press ENTER to return to menu): <enter new password>
Re-enter database password: <enter new password>
Enter password expiration in days (press ENTER for no expiration): <enter>

Database password changed.

Press ENTER to continue.
===>

Figure 17. Changing a Key Database Password

490 z/OS V2R1.0 System SSL Programming

Figure 18 shows the message you receive after entering option 10 to store the
database password. In this example, the database password was stored in a file
called mykey.sth.

Creating, opening, and deleting a z/OS PKCS #11 token
To create a new z/OS PKCS #11 token, enter 11 at the command prompt on the
Database Menu:

The only input required when creating a new z/OS PKCS #11 token is the token
name.

Key Management Menu

Database: /home/sufw1/ssl_cmd/mykey.kdb
Expiration Date: 2025/12/02 10:11:12

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key
10 - Store database password
11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to previous menu): 10 <enter>

Database password stored in /home/sufwl1/ssl_cmd/mykey.sth.

Press ENTER to continue.
===>

Figure 18. Key Management Menu

Database Menu

1 - Create new database
2 - Open database
3 - Change database password
4 - Change database record length
5 - Delete database
6 - Create key parameter file
7 - Display certificate file (Binary or Base64 ASN.1 DER)

11 - Create new token
12 - Delete token
13 - Manage token
14 - Manage token from list of tokens

0 - Exit program

Enter option number: 11 <enter>
Enter token name (press ENTER to return to menu): TOKEN1 <enter>

Token successfully created

Press ENTER to continue.

Figure 19. Creating a New z/OS PKCS #11 Token

Chapter 10. Certificate/Key management 491

Note: Only users with SAF access level of UPDATE or CONTROL to the
CRYPTOZ resource "so.tokenname" have the authority to create the z/OS PKCS
#11 token with the name "tokenname".

Note: A z/OS PKCS #11 token contains no certificates or keys when first created.

After entering the token name, a message displays confirming that the z/OS PKCS
#11 token was created (see Figure 19 on page 491). You are prompted to press Enter
to continue. Doing so redisplays the Database Menu.

To open an existing z/OS PKCS #11 token, enter either option 13 or option 14 on
the Database Menu. If option 13 is used:

If option 14 is used:

Database Menu

1 - Create new database
2 - Open database
3 - Change database password
4 - Change database record length
5 - Delete database
6 - Create key parameter file
7 - Display certificate file (Binary or Base64 ASN.1 DER)

11 - Create new token
12 - Delete token
13 - Manage token
14 - Manage token from list of tokens

0 - Exit program

Enter option number: 13 <enter>
Enter token name (press ENTER to return to menu): TOKEN1 <enter>

Figure 20. Opening a z/OS PKCS #11 Token from token name

492 z/OS V2R1.0 System SSL Programming

After either entering the token name (if option 13 used) or selecting the token from
a list of tokens (if option 14 is used), the Token Management Menu displays the
z/OS PKCS #11 token selected (see Figure 28 on page 498).

Note: Only users with SAF access level of READ, UPDATE, or CONTROL to the
CRYPTOZ resource "so.tokenname" or "user.token.name" have the authority to
open the z/OS PKCS #11 token with the name "tokenname".

Database Menu

1 - Create new database
2 - Open database
3 - Change database password
4 - Change database record length
5 - Delete database
6 - Create key parameter file
7 - Display certificate file (Binary or Base64 ASN.1 DER)

11 - Create new token
12 - Delete token
13 - Manage token
14 - Manage token from list of tokens

0 - Exit program

Enter option number: 14 <enter>

Token List

1 - TOKEN1

0 - Return to selection menu

Enter list-entry number (press ENTER to return to previous menu): 1 <enter>

Figure 21. Opening a z/OS PKCS #11 Token from token list

Token Management Menu

Token: TOKEN1

Manufacturer: z/OS PKCS11 API
Model: HCR77A0
Flags: 0x00000509 (INITIALIZED,PROT AUTH PATH,USER PIN INIT,RNG)

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key
10 - Delete token

0 - Exit program

Enter option number (press ENTER to return to previous menu):
===>

Figure 22. Token Management Menu

Chapter 10. Certificate/Key management 493

To delete an existing z/OS PKCS #11 token, enter either option 12 on the Database
Menu, or select option 10 from the Token Management Menu.

If option 12 on the Database Menu is used:

If option 10 on the Token Management Menu is used:

Database Menu

1 - Create new database
2 - Open database
3 - Change database password
4 - Change database record length
5 - Delete database
6 - Create key parameter file
7 - Display certificate file (Binary or Base64 ASN.1 DER)

11 - Create new token
12 - Delete token
13 - Manage token
14 - Manage token from list of tokens

0 - Exit program

Enter option number:12 <enter>
Enter token name (press ENTER to return to menu):TOKEN1 <enter>
To confirm token delete, enter token name again (press ENTER to cancel delete):TOKEN1 <enter>

Token successfully deleted

Press ENTER to continue.

===>

Figure 23. Deleting an existing z/OS PKCS #11 Token

Token Management Menu

Token: TOKEN1

Manufacturer: z/OS PKCS11 API
Model: HCR77A0
Flags: 0x00000509 (INITIALIZED, PROT AUTH PATH, USER PIN INIT, RNG)

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key

10 - Delete token

0 - Exit program

Enter option number (press ENTER to return to previous menu): 10 <enter>
To confirm token delete, enter token name again (press ENTER to cancel delete): TOKEN1 <enter>

Token successfully deleted

Press ENTER to continue.
===>

Figure 24. Deleting an existing z/OS PKCS #11 Token

494 z/OS V2R1.0 System SSL Programming

Using either approach you are prompted to enter the token name in order to
confirm the correct token is deleted. A message is displayed to confirm that the
z/OS PKCS #11 token has been deleted. The token does not have to be empty
before performing the delete.

Note: Only users with SAF access level of UPDATE or CONTROL to the
CRYPTOZ resource "so.tokenname" have the authority to delete the z/OS PKCS
#11 token with the name "tokenname".

Creating a self-signed server or client certificate
If your organization does not use a certificate authority (within the organization or
outside the organization), a self-signed certificate can be generated for use by the
program acting as an SSL server or client. In addition, since root CA certificates are
also self-signed certificates that are permitted to be used to sign other certificates
(certificate requests), these procedures can also be used to create a root CA
certificate. See “Marking a certificate (and private key) as the default certificate” on
page 506.

Programs acting as SSL servers (i.e. acting as the server side of the SSL handshake
protocol) must have a certificate to use during the handshake protocol. A program
acting as an SSL client requires a certificate when the SSL server requests client
authentication as part of the SSL handshake.

Note: This is not suggested for production environments and should only be used
to facilitate test environments before production. Self-signed certificates do not
imply any level of security or authenticity of the certificate because, as their name
implies, they are signed by the same key that is contained in the certificate.
However, certificates that are signed by a certificate authority indicate that, at least
at the time of signature, the certificate authority approved the information
contained in the certificate.

Note: gskkyman supports the creation of X.509 Version 3 certificates.

When creating a self-signed certificate to be used to identify a server or client,
from the Key Management Menu or Token Management Menu, enter 6. You are
prompted for a number of items to define the certificate, including the intended
use of the certificate, the key algorithm and key size, and possibly the digest
algorithm for the certificate signature.

Chapter 10. Certificate/Key management 495

Key Management Menu

Database: /home/sufwl1/ssl_cmd/mykey.kdb
Expiration Date: 2025/12/02 10:11:12

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a

renewal certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key
10 - Store database password
11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to
previous menu): 6 <enter>
===>

Figure 25. Creating a Self-Signed
Certificate-Key Management Menu

Token Management Menu

Token: TOKEN1

Manufacturer: z/OS PKCS11 API
Model: HCR77A0
Flags: 0x00000509 (INITIALIZED,PROT AUTH

PATH,USER PIN INIT,RNG)

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal

certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key

10 - Delete token

0 - Exit program

Enter option number (press ENTER to return to
previous menu): 6 <enter>

Figure 26. Creating a Self-Signed
Certificate-Token Management Menu

Certificates that are intended to be used directly by a server or client are
considered to be end user certificates. Certificates intended to be used to sign other
certificates are considered to be CA certificates. RSA key certificates are the most
common. DSA key certificates represent certificates that follow the FIPS-186
government standard. ECC key certificates represent certificates that use Elliptic
Curve Cryptography. The larger the key size, the more secure the generated key
will be. Note that CPU usage increases as the key size increases.

If an RSA-based certificate is selected, you will be prompted to select the key size
and the digest type for the signature algorithm. See Figure 27 on page 497 for an
example of selecting the key size and digest type.

If a 1024-bit DSA certificate is selected, SHA-1 will be used for the signature
algorithm. If a 2048-bit DSA certificate is selected, you will be prompted to select
the digest type for the signature algorithm from a list of SHA-based digest types.

If an ECC certificate is selected, you will be prompted to select the ECC key type
and curve type. The suggested digest for the key size of the ECC key will be used
for the signature algorithm, as specified in Table 2 on page 15. See “Creating a
signed ECC certificate and key” on page 514 for more information.

Once the certificate type and signature algorithm is determined, you will be
prompted to enter:
v a label to uniquely identify the key and certificate within the key database
v the individual fields within the subject name
v certificate expiration. The valid expiration range is 1 to 9999 days. The default

value is 365 days.
v the subject alternate names (optional)

Figure 27 on page 497 shows the creation of a self-signed certificate to be used as a
server or client certificate in a key database file or z/OS PKCS #11 token.

496 z/OS V2R1.0 System SSL Programming

Once the certificate is created, the next step is to determine whether the certificate
should be marked as the database's or z/OS PKCS #11 tokens default certificate.
Setting the certificate as the default certificate allows the certificate to be used by
the SSL APIs without having to specify its label. For more information about
setting the default certificate, see “Marking a certificate (and private key) as the
default certificate” on page 506.

In order for the SSL handshake to successfully validate the use of the self-signed
certificates, the partner application needs to know about the signer of the
certificate. For self-signed certificates, this means that the self-signed certificate
must be imported into the partner's database or z/OS PKCS #11 token. For more
information about importing certificates, see “Importing a certificate from a file as
a trusted CA certificate” on page 519.

Certificate Usage

1 - CA certificate
2 - User or server certificate

Select certificate usage (press ENTER to return to menu): 2 <enter>

Certificate Key Algorithm

1 - Certificate with an RSA key
2 - Certificate with a DSA key
3 - Certificate with an ECC key

Select certificate key algorithm (press ENTER to return to menu): 1 <enter>

RSA Key Size

1 - 1024-bit key
2 - 2048-bit key
3 - 4096-bit key

Select RSA key size (press ENTER to return to menu): 1 <enter>

Signature Digest Type

1 - SHA-1
2 - SHA-224
3 - SHA-256
4 - SHA-384
5 - SHA-512

Select digest type (press ENTER to return to menu): 1 <enter>
Enter label (press ENTER to return to menu): Server Cert <enter>
Enter subject name for certificate

Common name (required): My Server Certificate <enter>
Organizational unit (optional): ID <enter>
Organization (required): IBM <enter>
City/Locality (optional): Endicott <enter>
State/Province (optional): NY <enter>
Country/Region (2 characters - required): US <enter>

Enter number of days certificate will be valid (default 365): 244 <enter>

Enter 1 to specify subject alternate names or 0 to continue: 0 <enter>

Please wait

Certificate created.

Press ENTER to continue.
===>

Figure 27. Creating a Self-Signed Certificate

Chapter 10. Certificate/Key management 497

Creating a certificate request
A program may require a certificate, associated with itself, depending on what side
of the SSL connection the program is running. This requirement also depends on
whether client authentication is requested as part of the SSL handshake. Programs
acting as SSL servers (act as the server side of the SSL handshake protocol) must
have a certificate to use during the handshake protocol. A program acting as an
SSL client requires a certificate in the key database if the SSL server requests client
authentication as part of the SSL handshake operation. The way in which
certificates are used within an organization will determine whether you need to
create a certificate request. If the organization chooses to use a certificate authority
(within the organization or outside of the organization), then you must generate a
certificate request.

To create a certificate request, enter 4 from the Key Management Menu or Token
Management Menu.

Key Management Menu

Database: /home/sufwl1/ssl_cmd/mykey.kdb
Expiration Date: 2025/12/02 10:11:12

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal

certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key
10 - Store database password
11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to
previous menu): 4 <enter>
===>

Figure 28. Creating a certificate request-Key
Management Menu

Token Management Menu

Token: TOKENABC

Manufacturer: z/OS PKCS11 API
Model: HCR77A0
Flags: 0x00000509 (INITIALIZED,PROT AUTH

PATH,USER PIN INIT,RNG)

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal

certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key

10 - Delete token

0 - Exit program

Enter option number (press ENTER to return to
previous menu): 4 <enter>
===>

Figure 29. Creating a certificate
request-Token Management Menu

When creating a certificate request, you are prompted to select the key algorithm
and the key size for the certificate to be requested. RSA key certificates are the
most common. DSA key certificates represent certificates that follow the FIPS-186
government standard. ECC key certificates represent certificates that use Elliptic
Curve Cryptography. The larger the key size, the more secure the
encryption/decryption generated key is.

If an RSA-based certificate is selected, you are prompted to select the digest type
for the signature algorithm from a list of SHA-based digest types.

If a 1024-bit DSA certificate is selected, SHA-1 is used for the signature algorithm.
If a 2048-bit DSA certificate is selected, you are prompted to select the digest type
for the signature algorithm from a list of SHA-based digest types.

If an ECC certificate is selected, you will be prompted to select the ECC key type
and curve type. The suggested digest for the key size of the ECC key is used for
the signature algorithm, as specified in Table 2 on page 15.

498 z/OS V2R1.0 System SSL Programming

After the certificate type is determined, you will be prompted to enter:
v a request file name to store the certificate request
v a label to uniquely identify the certificate request within the key database
v the individual fields within the subject name
v the individual fields within the subject alternate name (optional).

The Certificate Key Algorithm menu appears:

Enter option 0 to continue or option 1 to specify the subject alternate names. If
option 1 is selected, the Subject Alternate Name Type menu appears:

Certificate Key Algorithm

1 - Certificate with an RSA key
2 - Certificate with a DSA key
3 - Certificate with an ECC key

Select certificate key algorithm (press ENTER to return to menu): 1 <enter>

RSA Key Size

1 – 1024-bit key
2 – 2048-bit key
3 – 4096-bit key

Select RSA key size (press ENTER to return to menu): 1 <enter>

Signature Digest Type

1 - SHA-1
2 - SHA-224
3 - SHA-256
4 - SHA-384
5 - SHA-512

Select digest type (press ENTER to return to menu): 3 <enter>
Enter request file name (press ENTER to return to menu): certreq.arm <enter>
Enter label (press ENTER to return to menu): Test Server Cert <enter>
Enter subject name for certificate
Common name (required): Test Server <enter>
Organizational unit (optional): ID <enter>
Organization (required): IBM <enter>
City/Locality (optional): Endicott <enter>
State/Province (optional): NY <enter>
Country/Region (2 characters - required): US <enter>

Enter 1 to specify subject alternate names or 0 to continue: 0 <enter>

Please wait

Certificate request created.

Press ENTER to continue.
===>

Figure 30. Creating a Certificate Request

Chapter 10. Certificate/Key management 499

When specifying subject alternate names, you are prompted for the type of the
alternate name. After the alternate name type is determined, you will be prompted
to enter:
v the individual fields within the subject name.

After the individual fields are completed, press enter to continue or select one of
the subject alternate name types. Repeat the process.

Once the certificate request (and associated subject alternate names) is created, a
file with the name you specified will exist in the current working directory or
directory specified in the file name. If you choose to exit gskkyman, the program
ends. Otherwise, the Key Management Menu or the Token Management Menu
(see Figure 15 on page 488) displays, allowing additional operations to be
performed.

The certificate request created is stored in a file that is in base64-encoded format.
This format is what is typically required by certificate authorities that create
certificates. This is the contents of the file created by the steps performed in
Figure 30 on page 499:

Subject Alternate Name Type

1 - Directory name (DN)
2 - Domain name (DNS)
3 - E-mail address (SMTP)
4 - Network address (IP)
5 - Uniform resource identifier (URI)

Select subject alternate name type (press ENTER if name is complete): 1 <enter>
Enter subject name for certificate
Common name (required): Test server <enter>
Organizational unit (optional): IBM <enter>
Organization (required): IBM <enter>
City/Locality (optional): Endicott <enter>
State/Province (optional): NY <enter>
Country/Region (2 characters - required): US <enter>

Subject Alternate Name Type

1 - Directory name (DN)
2 - Domain name (DNS)
3 - E-mail address (SMTP)
4 - Network address (IP)
5 - Uniform resource identifier (URI)

Select subject alternate name type (press ENTER if name is complete): <enter>

Please wait

Figure 31. Specifying subject alternate names

500 z/OS V2R1.0 System SSL Programming

Sending the certificate request
The certificate request file can either be transferred to another system (for example,
FTP as an ASCII text file) and then transferred to the certificate authority or placed
directly into a mail message sent to a certificate authority using cut-and-paste
methods.

In addition to the certificate request file that is generated, a request database (.rdb)
file is also created or altered. The request database is named the same as the key
database file, except it has an extension of .rdb. For example, a key database file of
key.kdb causes a request database file of key.rdb to be created. This request
database file must be saved along with the key database in order for the response
for the certificate request to be successfully processed.

The certificate request must not be deleted from the database while the request is
being processed by the signing certificate authority. The database certificate request
is required for applicable processing when the signed certificate from the certificate
authority is received. The removal of the certificate request from the database
causes the private key associated with the certificate request to be lost.

Receiving the signed certificate or renewal certificate
When a certificate is signed by the certificate authority in response to the certificate
request, you must receive it into the key database or z/OS PKCS #11 token. This is
for new certificates and renewal certificates.

To receive the certificate, you must store the Base64-encoded certificate in a file on
the z/OS system to be read in by the gskkyman utility. This file should be in the
current working directory when gskkyman is started. If this file is on another
working directory, you must specify the fully qualified name.

Note: To receive the certificate, the CA certificate must also exist in the key
database or z/OS PKCS #11 token. To store a CA certificate, see “Importing a
certificate from a file as a trusted CA certificate” on page 519.

To receive a certificate that is issued on your behalf, from the Key Management
Menu or Token Management Menu, see Figure 15 on page 488 and enter option 5.

$ cat certreq.arm<enter>
-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBnjCCAQcCAQAwXjELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk5ZMREwDwYDVQQH
EwhFbmRpY290dDEMMAoGA1UEChMDSUJNMQswCQYDVQQLEwJJRDEUMBIGA1UEAxML
VGVzdCBTZXJ2ZXIwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMFb+u7rmqdN
vgk0p43Wn4/KNZayCOvaOjBjxZXT79IddhzTxg16YL3AclxEanNe+sA4jB9FBjgP
Uh3oAn6tS7FiB47Nv0w+ALK+3iv8UVjhwxxBe5Ebh4j6ZNeX2kJRvgwITfUSyF8t
nXNmavsBk8dAcaozdho7D/GwiFxRLzr7AgMBAAGgADANBgkqhkiG9w0BAQsFAAOB
gQB0kJIC5u8FSLaVJv++n96bP1NyMEdzH/3sOZ9CzIM/Z2YSSuhoB8SL+y0BSvtj
sbnEcoS3+nXj1yTobgAdkXQixDRjLialmauqAdgjEeazSV9/FMM1IPxTGZjG7bou
pfY4UtKXFAEg5TcZdSaCUv95qkopg8mDNoHg8NX9cpvoRg==
-----END NEW CERTIFICATE REQUEST-----
$

Figure 32. Contents of certreq.arm after Certificate Request Generation

Chapter 10. Certificate/Key management 501

Key Management Menu

Database: /home/sufwl1/ssl_cmd/mykey.kdb
Expiration Date: 2025/12/02 10:11:12

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal

certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key
10 - Store database password
11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to
previous menu): 5 <enter>

Enter certificate file name (press ENTER to return
to menu): signed.arm <enter>

Certificate received.

Press ENTER to continue.
===>

Figure 33. Receiving a Certificate Issued for
your Request-Key Management Menu

Token Management Menu

Token: TOKENABC

Manufacturer: z/OS PKCS11 API
Model: HCR77A0
Flags: 0x00000509 (INITIALIZED,PROT AUTH

PATH,USER PIN INIT,RNG)

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal

certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key

10 - Delete token

0 - Exit program

Enter option number (press ENTER to return to
previous menu): 5 <enter>

Enter certificate file name (press ENTER to return
to menu): signed.arm <enter>

Certificate received.

Press ENTER to continue.
===>

Figure 34. Receiving a Certificate Issued for
your Request-Token Management Menu

You are prompted for the name of the file that contains the Base64-encoded
certificate that was returned to you by the certificate authority in response to a
previously submitted certificate request (See “Creating a certificate request” on
page 498). After you receive the certificate, press Enter to continue working with
the Key Management Menu or Token Management Menu. Upon completion of
this step and before the System SSL APIs using the certificate during the SSL
handshake processing, you must determine whether the certificate should be
marked as the database's default certificate. Setting the certificate as the default
certificate allows the certificate to be used by the SSL APIs without having to
specify its label. For more information about setting the default certificate, see
“Marking a certificate (and private key) as the default certificate” on page 506.

When received into a key database file, the certificate's expiration date should be
monitored. When the expiration date is nearing (do not wait until it is expired), a
new certificate should be obtained to replace the existing certificate. The new
certificate can be a brand new certificate with new public/private keys or a
renewal certificate where existing keys and certificate information is used. See
Figure 29 on page 498 for more information about a new or renewal certificate.

Managing keys and certificates
When certificates are added to the key database or z/OS PKCS #11 token, these are
some common operations that can be performed with the certificates:
v Show certificate/key information
v Mark a certificate (and private key) as the default certificate for the key database

or z/OS PKCS #11 token
v Export a certificate to a file, key database, or z/OS PKCS #11 token
v Remove a certificate (and private key) from a key database or z/OS PKCS #11

token
v Change a certificate label

502 z/OS V2R1.0 System SSL Programming

v Create a signed ECC certificate and key
v Create a certificate to be used with a fixed Diffie-Hellman key exchange
v Create a certificate renewal request

Showing certificate/key information
It is sometimes useful to display the information contained in the certificates that
are stored in the key database. The information displayed includes, among others,
the label, issuer/subject name, the version number of the certificate, the key size
for the public/private key pair, and the expiration date.

To list information about certificates that contain private keys, from the Key
Management Menu or Token Management Menu (see Figure 15 on page 488)
select 1, (Manage keys and certificates). This displays the Key and Certificate List.

Key and Certificate List

Database: /home/sufwl1/ssl_cmd/mykey.kdb
Expiration Date: 2025/12/02 10:11:12

1 - Test Server Cert
2 - Server Cert

0 - Return to selection menu

Enter label number (ENTER to return to selection
menu, p for previous list): 2 <enter>
===>

Figure 35. Key and Certificate List

Token Key and Certificate List

Token: TOKENABC

1 - Test Server Cert
2 - Server Cert

0 - Return to selection menu

Enter label number (ENTER to return to selection
menu, p for previous list): 2 <enter>
===>

Figure 36. Token Key and Certificate List

Select the number corresponding to the label for which you would like to display
certificate/key information. The Key and Certificate Menu for the label you chose
displays next (see Figure 37).

Key and Certificate Menu

Label: Server Cert

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another

database/token
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label
10 - Create a signed certificate and key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to
previous menu): 1 <enter>
===>

Figure 37. Key and Certificate Menu

Token Key and Certificate Menu

Label: Server Cert

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another

database/token
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label

10 - Create a signed certificate and key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to
previous menu): 1 <enter>
===>

Figure 38. Token Key and Certificate Menu

On the Key and Certificate Menu or the Token Key and Certificate Menu, you
could choose 1 to display certificate information. This accesses the Certificate
Information menu (see Figure 39 on page 504):

Chapter 10. Certificate/Key management 503

Note: For a z/OS PKCS #11 certificate, the Record ID and Issuer Record ID is
N/A.

From the Certificate Information screen, you can also enter 1 to display certificate
extensions:

Enter 3 on the Certificate Extensions List to show key usage information:

Certificate Information

Label: Server Cert
Record ID: 13

Issuer Record ID: 13
Trusted: Yes
Version: 3

Serial number: 3c73c6d0000e8076
Issuer name: My Server Certificate

ID
IBM
Endicott
NY
US

Subject name: My Server Certificate
ID
IBM
Endicott
NY
US

Effective date: 2010/02/20
Expiration date: 2015/10/22

Signature algorithm: shalWithRsaEncryption
Issure unique ID: None
Subject unique ID: None

Public key algorithm: rsaEncryption
Public key size: 1024

Public key: 30 81 89 02 81 81 00 E5 19 BF 6D A3 56 61 2D 99
48 71 F6 67 DE B9 8D EB B7 9E 86 80 0A 91 0E FA
38 25 AF 46 88 82 E5 73 A8 A0 9B 24 5D 0D 1F CC
65 6E 0C B0 D0 56 84 18 87 9A 06 9B 10 A1 73 DF
B4 58 39 6B 6E C1 F6 15 D5 A8 A8 3F AA 12 06 8D
31 AC 7F B0 34 D7 8F 34 67 88 09 CD 14 11 E2 4E
45 56 69 1F 78 02 80 DA Dc 47 91 29 BB 36 C9 63
5C C5 E0 D7 2D 87 7B A1 B7 32 B0 7B 30 BA 2A 2F
31 AA EE A3 67 DA DB 02 03 01 00 01

Number of extensions: 4

Enter 1 to display extensions, 0 to return to menu: 1 <enter>
===>

Figure 39. Certificate Information

Certificate Extensions List

1 - subjectKeyIdentifier
2 - authorityKeyIdentifier
3 - keyUsage (critical)
4 - basicConstraints (critical)

Enter extension number (press ENTER to return to previous menu): 3 <enter>
===>

Figure 40. Certificate extensions list

504 z/OS V2R1.0 System SSL Programming

To display key information, from the Key and Certificate Menu or Token Key and
Certificate Menu, choose 2, Show Key Information. This accesses the Key
Information menu (see Figure 42) or the Token key information menu (see
Figure 43 or Figure 44 on page 506 :

Certificate signature
CRL signature

Press ENTER to continue.
===>

Figure 41. Key usage information

Key Information

Label: Server Cert
Record ID: 13

Issuer Record ID: 13
Default key: Yes

Private key algorithm: rsaEncryption
Private key size: 1024

Subject name: My Server Certificate
ID
IBM
Endicott
NY
US

Press ENTER to continue.
===>

Figure 42. Key information menu

Token key information

Label: Sample RSA Certificate 1
Record ID: N/A

Issuer Record ID: N/A
Default key: Yes

Private key algorithm: rsaEncryption
Private key size: 1024
Private key type: Secure

Subject name: Certificate with secure private key
ID
IBM
Endicott
NY
US

Press ENTER to continue.
===>

Figure 43. Token key information menu of a certificate with a secure private key

Chapter 10. Certificate/Key management 505

Note: For a z/OS PKCS #11 certificate, the Record ID and Issuer Record ID is
N/A.

Marking a certificate (and private key) as the default certificate
Once a certificate has been added to the key database or z/OS PKCS #11 token
through either a certificate request or as a self-signed certificate, it can be marked
as the default certificate. Marking a certificate as the default certificate allows it to
be used by the programs that are calling the System SSL APIs without having to
explicitly supply the certificate's label.

To mark a certificate as the default certificate for the key database, from the Key
Management Menu or Token Management Menu (see Figure 15 on page 488),
choose 1, (Manage keys and certificates), and on the Key and Certificate List (see
Figure 35 on page 503, choose the label number you want to work with. The Key
and Certificate Menu or Token Key and Certificate Menu displays:

Key and Certificate Menu

Label: My Server Certificate

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label
10 - Create a signed certificate and key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to
previous menu): 3 <enter>

Default key set.

Press ENTER to continue.
===>

Figure 45. Marking a certificate (and private
key) as the default certificate-Key and
Certificate Menu

Token Key and Certificate Menu

Label: My Server Certificate

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another

database/token
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label

10 - Create a signed certificate and key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to the
previous menu): 3 <enter>

Default key set.

Press ENTER to continue.
===>

Figure 46. Marking a certificate (and private
key) as the default certificate-Token Key and
Certificate Menu

Choose 3 to set the certificate and private key as the default certificate for the key
database or z/OS PKCS #11 token.

Token key information

Label: Sample RSA Certificate 2
Record ID: N/A

Issuer Record ID: N/A
Default key: Yes

Private key algorithm: rsaEncryption
Private key size: 1024
Private key type: Clear

Subject name: Certificate with clear private key
ID
IBM
Endicott
NY
US

Press ENTER to continue.
===>

Figure 44. Token key information menu of a certificate with a clear private key

506 z/OS V2R1.0 System SSL Programming

Copying a certificate (and private key) to a different key database
or z/OS PKCS #11 token
Once your certificates are created, it might be necessary for you to transfer a
certificate to another key database or z/OS PKCS #11 token on your system or a
remote system. This transfer maybe necessary for these reasons:
v The remote system requires the signing certificate to be in its key database or

z/OS PKCS #11 token for validation purposes. The certificate does not need to
contain the private key information. These certificates are normally certificate
authority (CA) certificates but might also be a self-signed certificate.

v The server or client certificate is being used by another application in a separate
key database file or z/OS PKCS #11 token.

Note: The source key database file or z/OS PKCS #11 token, and the target key
database file or z/OS PKCS #11 token must exist before the certificate can be
copied. If the target is a FIPS database, then only a FIPS database can be the
source.

Copying a certificate without its private key: To copy a certificate to a different
platform or to a different system without its private key (certificate validation),
from the Key Management Menu or the Token Management Menu, select 1 -
Manage keys and certificates to display the Key and Certificate List or the Token
Key and Certificate List respectively. Find the label of the certificate to be copied
and enter the number associated with the label. In the Key and Certificate Menu
or the Token Key and Certificate Menu, enter option 6 to export the certificate to
a file. The Export File Format menu appears:

You are then prompted for what file format you would like for the exported
certificate information.

The file format is determined by the support on the receiving system. When the
receiving system implementation is z/OS System SSL V1R2 or earlier, the selected
format must be one of the ASN.1 DER formats.

After selecting the export format, you will be asked for a file name. You can now
transfer this file to the system and import the certificate. If copying to a remote
system, this file can now be transferred (in binary if option 1 or 3 has been selected
or in ASCII (TEXT) if option 2 or 4 has been selected) to the remote system. For
information about receiving the certificate into the key database file or z/OS PKCS
#11 token, see “Importing a certificate from a file as a trusted CA certificate” on
page 519). Upon successfully receiving the certificate, the certificate can now be
used to validate the SSL's partner certificate. This means that a client with the

Export File Format

1 - Binary ASN.1 DER
2 - Base64 ASN.1 DER
3 - Binary PKCS #7
4 - Base64 PKCS #7

Select export format (press ENTER to return to menu): 1 <enter>
Enter export file name (press ENTER to return to menu): expfile.der <enter>

Certificate exported.

Press ENTER to continue.
===>

Figure 47. Copying a Certificate Without its Private Key

Chapter 10. Certificate/Key management 507

imported certificate can now validate the servers certificate, while a server with the
imported certificate can validate the clients certificate when client authentication is
requested.

You must also determine if the certificate should be marked as the default
certificate. Setting the certificate as the default certificate allows the certificate to be
used by the SSL APIs without having to specify its label. For more information
about setting the default certificate, see “Marking a certificate (and private key) as
the default certificate” on page 506.

Copying a certificate with its private key: To copy a certificate to a different key
database format or to a different system with its private key, the certificate must be
exported to a PKCS #12 formatted file. PKCS #12 files are password-protected to
allow encryption of the private key information. From the Key Management Menu
or Token Management Menu, select 1 - Manage keys and certificates to display a
list of certificates with private keys. Find the label of the certificate to be copied
and enter the number associated with the label. In the Key and Certificate Menu
or Token Key and Certificate Menu, enter option 7 to export the certificate and
private key to a file.

The Export File Format menu appears:

Export File Format

1 - Binary PKCS #12 Version 1
2 - Base64 PKCS #12 Version 1
3 - Binary PKCS #12 Version 3
4 - Base64 PKCS #12 Version 3

Select export format (press ENTER to return to menu): 3 <enter>
Enter export file name (press ENTER to return to menu): expfile.p12 <enter>
Enter export file password (press ENTER to return to menu): <enter password>
Re-enter export file password: <enter password>
Enter 1 for strong encryption, 0 for export encryption: 1 <enter>

Certificate and key exported.

Press ENTER to continue.
===>

Figure 48. Copying a Certificate and Private key to a
Different Key Database-Export File Format

Export File Format

1 - Binary PKCS #12 Version 3
2 - Base64 PKCS #12 Version 3

Select export format (press ENTER to return to menu): 1 <enter>
Enter export file name (press ENTER to return to menu): expfile.p12 <enter>
Enter export file password (press ENTER to return to menu): <enter password>
Re-enter export file password: <enter password>
Enter 1 for strong encryption, 0 for export encryption: 1 <enter>

Certificate and key exported.

Press ENTER to continue.
===>

Figure 49. Copying a Certificate and Private key to a
Different Key Database-Export File Format

The second display applies to z/OS PKCS #11 tokens.

You are then prompted for what file format you would like for the exported
certificate information.

The file format is determined by the support on the receiving system. In most
cases the format to be used is Binary PKCS #12 Version 3. When the receiving
system implementation is z/OS System SSL V1R2 or earlier, the selected format
must be Binary PKCS #12 Version 1. z/OS PKCS #11 tokens only support Version 3
PKCS #12 export. Export from a FIPS database must be PKCS #12 Version 3 using
strong encryption.

After selecting the export format, you are asked for a file name and password. You
then receive a message indicating that the certificate was exported. You can now
transfer this file to the system and import the certificate into the key database file
or z/OS PKCS #11 token. If copying to a remote system, this file can now be
transferred (in binary) to the remote system. For information about receiving the
certificate into the key database file, see “Importing a certificate from a file with its
private key” on page 521). Upon successfully receiving the certificate, the certificate

508 z/OS V2R1.0 System SSL Programming

can now be used to identify the program. For example, the certificate can be used
as the SSL server program's certificate or it can be used as the SSL client program's
certificate.

Copying a certificate and its private key from a key database on the same
system: To copy a certificate and its private key from one key database to another
key database or z/OS PKCS #11 token on the same system, you need to know the
target key database file name and password, or the z/OS PKCS #11 token name. If
the target database is a FIPS database, then the source database must also be a
FIPS database. Copying into a FIPS database from a non-FIPS database or z/OS
PKCS #11 token is not supported. If the target database is a non-FIPS database or
z/OS PKCS #11 token, then the source may be a non-FIPS database, a FIPS
database, or a z/OS PKCS #11 token. From the Key Management Menu, select 1 -
Manage keys and certificates to display the Key and Certificate Menu. Find the
label of the certificate to be copied and enter the number associated with the label.
From the Key and Certificate Menu, enter 5 to copy a certificate and key to
another database or z/OS PKCS #11 token.

You will then be prompted for the target key database name, and the target key
database password. Once the certificate is copied to the other key database file,
you will receive a message indicating that the certificate has been successfully
copied.

Note: When a certificate with a key marked as default is copied from a key
database into another token or database, it is not marked as the default key in that
token or database.

Copying a certificate and its private key from a z/OS PKCS #11 token on the
same system: To copy a certificate and its private key from a z/OS PKCS #11
token to another z/OS PKCS #11 token or key database file on the same system,

Key and Certificate Menu

Label: newimp

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database/token
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label
10 - Create a signed certificate and key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press Enter to return to previous menu): 5 <enter>
Enter 1 to specify token name or

2 to specify database name
(press ENTER to return to menu): 2 <enter>

Enter key database name (press Enter to return to previous menu): target.kdb <enter>
Enter database password (press Enter to return to previous menu): <enter password>

Record copied.

Press ENTER to continue.
===>

Figure 50. Copying a Certificate with its Private Key to a Key Database on the Same System

Chapter 10. Certificate/Key management 509

from the Token Management Menu, select 1 - Manage Keys and Certificates to
display the Token Key and Certificate List. Find the label of the certificate to be
copied and enter the number associated with the label. From the Token Key and
Certificate Menu enter 5 to copy a certificate and key to another token or a key
database file. If the target is a key database on the same system, you need to know
the targets file name and password.

You will then be prompted to choose either a z/OS PKCS #11 token or a key
database as the target of the copy. Figure 51 shows the prompts if a z/OS PKCS
#11 token is chosen as the target. Once the certificate is copied, you will receive a
message indicating that the certificate has been successfully copied.

Note: When a certificate with a key marked as default is copied from a key
database into another token or database, it is not marked as the default key in that
token or database.

Removing a certificate (and private key)
You may want to remove a certificate if:
v The certificate has expired and is no longer useful.
v The certificate has been exported to a different key database or z/OS PKCS #11

token and is no longer needed in the current database or token.

Caution: Once you delete a certificate/private key pair, it cannot be recovered
unless it has previously been stored somewhere else (another key database file,
z/OS PKCS #11 token, a PKCS #12 file for certificate/private key pairs, or a
DER-encoded or Base64-encoded file for certificates). Be sure that you no longer
require the certificate (and private key if one is associated with the certificate)
before you remove it.

Token Key and Certificate Menu

Label: newimp

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database/token
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label
10 - Create a signed certificate and key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to previous menu): 5 <enter>

Enter 1 to specify token name or
2 to specify database name
(press ENTER to return to menu): 1 <enter>

Enter token name (press ENTER to return to menu): TOKENDEF <enter>

Record copied.

Press ENTER to continue.
===>

Figure 51. Copying a Certificate with its Private Key to a z/OS PKCS #11 Token on the Same
System

510 z/OS V2R1.0 System SSL Programming

From the Key Management Menu or Token Management Menu, select 1 -
Manage keys and certificates to display the Key and Certificate List or Token
Key and Certificate List respectively. Find the label of the certificate and key to be
deleted and enter the number associated with the label. From the Key and
Certificate Menu or Token Key and Certificate Menu (see Figure 52), choose 8 to
delete the certificate and key.

Key and Certificate Menu

Label: newimp

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label
10 - Create a signed certificate and key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to previous menu): 8 <enter>

Enter 1 to confirm delete, 0 to cancel delete: 1 <enter>

Record deleted.

Press ENTER to continue.
===>

Figure 52. Delete Certificate and Key-Key and Certificate
Menu

Token Key and Certificate Menu

Label: newimp

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database/token
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label

10 - Create a signed certificate and key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to previous menu): 8 <enter>

Enter 1 to confirm delete, 0 to cancel delete: 1 <enter>

Record deleted.

Press ENTER to continue.
===>

Figure 53. Delete Certificate and Key-Token Key and
Certificate Menu

Enter 1 to confirm the deletion of the certificate and key. A message appears,
confirming that the record has been deleted. Once the certificate has been deleted,
it can no longer be used for identification or verification purposes by the System
SSL APIs during SSL handshake processing.

Changing a certificate label
Find the certificate label to be changed and enter the number associated with the
label. In the Key and Certificate Menu or Token Key and Certificate Menu (see
Figure 54), choose 9 to change the label:

Key and Certificate Menu

Label: cacert

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label

10 - Create a signed certificate key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to previous menu): 9 <enter>
Enter label (press ENTER to return to menu): cacert2 <enter>

Label changed.

Press ENTER to continue.
===>

Figure 54. Changing a Certificate Label-Key and
Certificate Menu

Token and Certificate Menu

Label: cacert

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database/token
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label

10 - Create a signed certificate key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to previous menu): 9 <enter>
Enter label (press ENTER to return to menu): cacert2 <enter>

Label changed.

Press ENTER to continue.
===>

Figure 55. Changing a Certificate Label-Token and
Certificate Menu

Chapter 10. Certificate/Key management 511

Enter the new label name and press Enter. A message confirms that the label name
has been changed.

Creating a signed certificate and key
Creating a signed certificate and key allows for a fast path method for creating a
signed certificate that resides in the same key database file or z/OS PKCS #11
token as the displayed signing Certificate Authority certificate. From the Key
Management Menu or Token Management Menu, select 1 - Manage keys and
certificates to display the Key and Certificate List or Token Key and Certificate
List respectively. Find the label of the signing Certificate Authority certificate and
enter the number associated with the label. From the Key and Certificate Menu or
Token Key and Certificate Menu (see Figure 56), choose option 10 to create a
signed certificate and key.

Note: This requires the displayed certificate to have signing capability.

Key and Certificate Menu

Label: cacert

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label
10 - Create a signed certificate and key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to
previous menu): 10 <enter>

===>

Figure 56. Select 10 to Create a Signed
Certificate and Key-Key and Certificate Menu

Token Key and Certificate Menu

Label: cacert

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database/token
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label

10 - Create a signed certificate and key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to
previous menu): 10 <enter>

===>

Figure 57. Select 10 to Create a Signed
Certificate and Key-Token Key and Certificate
Menu

The Certificate Usage menu appears, followed by menus to select the certificate
key algorithm and key size (or ECC key type and EC named curve if ECC is
selected as the certificate key algorithm. See “Creating a signed ECC certificate and
key” on page 514.) Once these details are determined, you will be prompted to
enter:
v a label to uniquely identify the key and certificate within the key database or

z/OS PKCS #11 token
v the individual fields within the subject name
v certificate expiration. The valid range for a self-signed certificate is 1 to 9999

days. The default is 365 days.

512 z/OS V2R1.0 System SSL Programming

Press option 0 to continue or option 1 to specify the subject alternate names. If
option 1 is selected, the Subject Alternate Name Type menu appears.

Certificate Usage

1 – CA certificate
2 – User or server certificate

Select certificate usage (press ENTER to return to menu): 2 <enter>

Certificate Key Algorithm

1 - Certificate with an RSA key
2 - Certificate with a DSA key
3 - Certificate with an ECC key
4 - Certificate with a Diffie-Hellman key

Select certificate key algorithm (press ENTER to return to menu): 1 <enter>

RSA Key Size

1 – 1024-bit key
2 – 2048-bit key
3 – 4096-bit key

Select RSA key size (press ENTER to return to menu): 1 <enter>
Enter label (press ENTER to return to menu): signedcert <enter>
Enter subject name for certificate

Common name (required): My signed Certificate <enter>
Organizational unit (optional): ID <enter>
Organization (required): IBM <enter>
City/Locality (optional): Endicott <enter>
State/Province (optional): NY <enter>
Country/Region (2 characters - required): US <enter>

Enter number of days certificate will be valid (default 365): 300 <enter>

Enter 1 to specify subject alternate names or 0 to continue: 1

Please wait

Figure 58. Enter Certificate Details

Chapter 10. Certificate/Key management 513

When specifying subject alternate names, you are prompted for the type of the
alternate name. After the alternate name type is determined, you will be prompted
to enter:
v the individual fields within the subject name.

After the individual fields are completed, enter option 0 to continue or option 1 to
specify another subject alternate name (repeat the process).

Creating a signed ECC certificate and key
If ECC is selected as the certificate key algorithm in the Certificate Key Algorithm
menu, you are prompted to choose the ECC key type (for user or server certificates
only) to be set in the new certificate and the EC named curve to be used when
generating the ECC key. Supported EC named curves are outlined in “Elliptic
Curve Cryptography support” on page 14.

The following example creates an end-entity certificate with an ECDSA key using a
256-bit NIST suggested named curve.

Subject Alternate Name Type

1 - Directory name (DN)
2 - Domain name (DNS)
3 - E-mail address (SMTP)
4 - Network address (IP)
5 - Uniform resource identifier (URI)

Select subject alternate name type (press ENTER if name is complete): 1 <enter>
Enter subject name for certificate

Common name (required): Test server <enter>
Organizational unit (optional): ID <enter>
Organization (required): IBM <enter>
City/Locality (optional): Endicott <enter>
State/Province (optional): NY <enter>
Country/Region (2 characters - required): US <enter>

Subject Alternate Name Type

1 - Directory name (DN)
2 - Domain name (DNS)
3 - E-mail address (SMTP)
4 - Network address (IP)
5 - Uniform resource identifier (URI)

Select subject alternate name type (press ENTER if name is complete): <enter>

Please wait

Figure 59. Subject Alternate Name Type

514 z/OS V2R1.0 System SSL Programming

The selected key type determines the setting of the keyUsage extension in the new
certificate. A general ECC key allows Digital Signature, Non-repudiation and Key
Agreement. An ECDSA key allows Digital Signature and Non-repudiation. An
ECDH key allows Key Agreement only.

If option 1 is selected in the Certificate Usage menu, requesting a CA certificate,
the ECC Key Type menu does not appear. The keyUsage extension of the new
certificate is set to allow the certificate to be used to sign certificates and certificate
revocation lists.

Once the key type has been selected, you are prompted to select the ECC curve
type. For a FIPS database, Brainpool standard curves are not supported and, for
this reason, the ECC Curve Type menu may not appear.

Certificate Usage

1 – CA certificate
2 – User or server certificate

Select certificate usage (press ENTER to return to menu): 2 <enter>

Certificate Key Algorithm

1 - Certificate with an RSA key
2 - Certificate with a DSA key
3 - Certificate with an ECC key
4 - Certificate with a Diffie-Hellman key

Select certificate key algorithm (press ENTER to return to menu): 3 <enter>

ECC Key Type

1 – General ECC key
2 – ECDSA Key
3 - ECDH key

Select ECC key type (press ENTER to return to menu): 2 <enter>

Figure 60. Selecting the ECC Key Type

Chapter 10. Certificate/Key management 515

For a FIPS database, some curves may not be recommended for use and may not
appear in the ECC Curve Type menu. After selecting the curve type you are
prompted to enter the certificate label, subject name, expiration and (optionally)
subject alternate names. See “Creating a signed certificate and key” on page 512 for
more information.

Creating a certificate to be used with a fixed Diffie-Hellman key
exchange
Create a server certificate to be used during an SSL handshake using a fixed
Diffie-Hellman key exchange. Fixed Diffie-Hellman requires the certificates being
used by both sides of the exchange to be based off the same generation
parameters. In order for each side to use the same generation parameters, a key
parameter file must be created to be used as input to the certificate being signed.

To create a key parameter file, from the Database Menu, enter 6. You are asked to
select the key type and key size. Only 1024-bit DSA keys, 2048-bit DSA keys, or
2048-bit fixed Diffie-Hellman keys are valid for use in a FIPS database. When the
key type is determined, you are prompted to enter a key parameter file name. The
file name is interpreted relative to the current directory when gskkyman is
invoked. You may also specify a fully qualified file name.

ECC Curve Type

1 - NIST recommended curve
2 - Brainpool standard curve

Select ECC curve type (press ENTER to return to menu): 1 <enter>

NIST Recommended Curve Type

1 - secp192r1
2 - secp224r1
3 - secp256r1
4 - secp384r1
5 - secp521r1

Select NIST recommended curve (press ENTER to return to menu): 3 <enter>

Enter label (press ENTER to return to menu): signedECCcert <enter>
Enter subject name for certificate

Common name (required): My signed ECC Certificate <enter>
Organizational unit (optional): ID <enter>
Organization (required): IBM <enter>
City/Locality (optional): Endicott <enter>
State/Province (optional): NY <enter>
Country/Region (2 characters - required): US <enter>

Enter number of days certificate will be valid (default 365): 300 <enter>

Enter 1 to specify subject alternate names or 0 to continue: 0 <enter>

Please wait

Certificate created.

Press ENTER to continue.

Figure 61. Selecting the ECC Curve Type

516 z/OS V2R1.0 System SSL Programming

When the key parameter file is created, the next step is to create the signed
certificate by using an existing certificate in the key database file or z/OS PKCS
#11 token to sign the server certificate. From the Key Management Menu or Token
Management Menu, select 1 - Manage keys and certificates to display the Key
and Certificate List. From the Key and Certificate List, select a CA certificate by
entering the appropriate selection number, and then choose option 10 to create a
signed certificate and key. This requires the displayed certificate to contain an RSA
or a DSA key and have signing capability.

Select "User or server certificate" by choosing option 2 in the Certificate Usage
menu, followed by option 4 - Certificate with a Diffie-Hellman key in the
Certificate Key Algorithm menu, and then select the Diffie-Hellman key size. The
key size must match the key size of the key parameters created previously.

When the certificate type is determined, you are prompted to enter:
v Key parameter file created previously.
v A label to uniquely identify the key and certificate within the key database.

Database Menu

1 - Create new database
2 - Open database
3 - Change database password
4 - Change database record length
5 - Delete database
6 - Create key parameter file
7 - Display certificate file (Binary or Base64 ASN.1 DER)

11 - Create new token
12 - Delete token
13 - Manage token
14 - Manage token from list of tokens

0 - Exit program

Enter option number: 6 <enter>

Key Type

1 - DSA key
2 - Diffie-Hellman key

Select key type (press ENTER to return to menu: 2 <enter>

Diffie-Hellman Key Size

1 - 1024-bit key
2 - 2048-bit key

Select Diffie-Hellman key size (press ENTER to return to menu): 1 <enter>
Enter key parameter file name (press ENTER to return to menu): dh_key_1024.keyfile <enter>

Please wait

Key parameter file created.

Press ENTER to continue

Figure 62. Creating a key parameter file to be used with Diffie-Hellman

Chapter 10. Certificate/Key management 517

v The individual fields within the subject name.
v Certificate expiration (Valid expiration range is 1 to 9999 days. Default value is

365 days).
v The subject alternate names (optional).

When the certificate is created, the next step is to determine if the certificate must
be transferred to another database. If the certificate does not need to reside
elsewhere, you must determine whether the certificate should be marked as the
database's default certificate. Setting the certificate as the default certificate allows
the certificate to be used by the SSL APIs without having to specify its label. For
more information about setting the default certificate, see “Marking a certificate
(and private key) as the default certificate” on page 506. If the certificate must be
transferred, see “Copying a certificate (and private key) to a different key database
or z/OS PKCS #11 token” on page 507 for more information.

Creating a certificate renewal request
Certificate renewal requests allow for existing signed certificates that have expired
or are nearing their expiration dates to be renewed without having to create a
brand new certificate request. The renewed certificate continues to contain the
same subject name, public/private key pair. From the Key Management Menu or
Token Management Menu , select 1 - Manage keys and certificates to display the
Key and Certificate List or Token Key and Certificate List respectively. Find the
label of the certificate to be renewed and enter the number associated with the

Certificate Usage

1 – CA certificate
2 – User or server certificate

Select certificate usage (press ENTER to return to menu): 2 <enter>

Certificate Key Algorithm

1 - Certificate with an RSA key
2 - Certificate with a DSA key
3 - Certificate with an ECC key
4 - Certificate with a Diffie-Hellman key

Select certificate key algorithm (press ENTER to return to menu): 4 <enter>

Diffie-Hellman Key Size

1 – 1024-bit key
2 – 2048-bit key

Select key size (press ENTER to return to menu): 1 <enter>
Enter key parameter file name (press ENTER to return to menu): dh_key_1024.keyfile <enter>
Enter label (press ENTER to return to menu): DSA_cert_with_DH_1024_key <enter>
Enter subject name for certificate:

Common name (required): DSA cert with DH 1024 key <enter>
Organizational unit (optional): Test <enter>
Organization (required): Test <enter>
City/Locality (optional): Poughkeepsie <enter>
State/Province (optional): NY <enter>
Country/Region (2 characters - required): US <enter>

Enter number of days certificate will be valid (default 365): 5000 <enter>

Enter 1 to specify subject alternate names or 0 to continue: 0 <enter>

Please wait

Certificate created.

Press ENTER to continue.

Figure 63. Creating a certificate to be used with Diffie_Hellman

518 z/OS V2R1.0 System SSL Programming

label. From the Key and Certificate Menu or Token Key and Certificate Menu
(see Figure 64) choose option 11 to create a certificate renewal request.

Key and Certificate Menu

Label: cacert

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label

10 - Create a signed certificate key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to previous menu): 11 <enter>
Enter request filename (press ENTER to return to menu): renewal.arm <enter>

Certificate request created.

Press ENTER to continue.
===>

Figure 64. Select 11 to Create a Certificate Renewal
Request-Key and Certificate Menu

Token Key and Certificate Menu

Label: cacert

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database/token
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label

10 - Create a signed certificate key
11 - Create a certificate renewal request

0 - Exit program

Enter option number (press ENTER to return to previous menu): 11 <enter>
Enter request filename (press ENTER to return to menu): renewal.arm <enter>

Certificate request created.

Press ENTER to continue.
===>

Figure 65. Select 11 to Create a Certificate Renewal
Request-Token Key and Certificate Menu

Enter the request file name (press ENTER to return to menu). The certificate
request is created. Press enter to continue. After creating the certificate renewal
request, perform the following steps:
1. If you want a certificate authority (CA) to sign the certificate, send the

certificate request to the CA. See “Sending the certificate request” on page 501.
If you are acting as your own CA, use the gskkyman command line interface
to sign the certificate. See “Using gskkyman to be your own certificate
authority (CA)” on page 522.

2. Receive the renewed certificate into your key database. See “Receiving the
signed certificate or renewal certificate” on page 501.

Importing a certificate from a file as a trusted CA certificate
If you are using a certificate authority for generating your certificates that are not
one of the default certificate authorities for which certificates are already stored in
the key database, or if you are using a z/OS PKCS #11 token for which no default
certificates exist, then you must import the certificate authority's certificate into
your key database file or z/OS PKCS #11 token before you use the System SSL
APIs. If you are using client authentication, then the CA certificate must be
imported into the key database or z/OS PKCS #11 token of the server program.
The client program's key database file or z/OS PKCS #11 token must have the CA
certificate that is imported regardless of whether the SSL connection uses client
authentication.

If you are using a self-signed certificate as the SSL server program's certificate and
your SSL client program is also using the System SSL APIs, then you must import
the server's self-signed certificate without its private key into the client program's
key database file or z/OS PKCS #11 token.

If you are using a self-signed certificate as the SSL client program's certificate and
your SSL server program is also using the System SSL APIs with client

Chapter 10. Certificate/Key management 519

authentication requested, then you must import the client's self-signed certificate
without its private key into the server program's key database file or z/OS PKCS
#11 token.

If the CA certificate that is being imported was signed by another CA certificate,
the complete chain must be present in the key database file or z/OS PKCS #11
token before the import. If the CA certificates chain consists of more than one
certificate and the certificates exist in individual files, you must import the
certificates starting with the root CA certificate.

If you are using a key database file, a number of well-known certificate authority
(CA) certificates are stored in the key database when the key database is created.
To get a certificate list, select 2 - Manage certificates from the Key Management
Menu. The following figures contain lists of CAs for which certificates are stored
on key database creation:

Certificate List

Database: /home/sufwl1/ssl_cmd/mykey.kdb

1 - VeriSign Class 1 Public Primary CA
2 - VeriSign Class 2 Public Primary CA
3 - VeriSign Class 3 Public Primary CA
4 - Thawte Server CA
5 - Thawte Premium Server CA
6 - Thawte Personal Basic CA
7 - Thawte Personal Freemail CA
8 - Thawte Personal Premium CA
9 - Equifax Secure Certificate Authority

0 - Return to selection menu

Enter label number (ENTER for more labels, p for previous list):
===>

Figure 66. Certificate List (part 1)

Certificate List

Database: /home/sufwl1/ssl_cmd/mykey.kdb

1 - Equifax Secure eBusiness CA-1
2 - Equifax Secure eBusiness CA-2
3 - Equifax Secure Global eBusiness CA-1
4 - VeriSign Class 1 Public Primary CA - G2
5 - VeriSign Class 2 Public Primary CA - G2
6 - VeriSign Class 3 Public Primary CA - G2
7 - VeriSign Class 4 Public Primary CA - G2
8 - VeriSign Class 1 Public Primary CA - G3
9 - VeriSign Class 2 Public Primary CA - G3

0 - Return to selection menu

Enter label number (ENTER to return to selection menu, p for previous list):
===>

Figure 67. Certificate List (part 2)

520 z/OS V2R1.0 System SSL Programming

To import a certificate without a private key into your key database file or z/OS
PKCS #11 token, first get the certificate in a file with the file in either
Base64-encoded, Binary encoded or PKCS #7 format. From the Key Management
Menu or the Token Management Menu enter 7 to import a certificate:

Key Management Menu

Database: /home/sufwl1/ssl_cmd/mykey.kdb
Expiration Date: 2025/12/02 10:11:12

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key

10 - Store database password
11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to previous menu): 7 <enter>
Enter import file name (press ENTER to return to menu): cert.arm <enter>
Enter label (press ENTER to return to menu): cacert2 <enter>

Certificate imported.

Press ENTER to continue.
====>

Figure 69. Importing a Certificate from a File-Key
Management Menu

Token Management Menu

Token: TOKENABC

Manufacturer: z/OS PKCS11 API
Model: HCR77A0
Flags: x00000509 (INITIALIZED, PROT AUTH PATH, USER PIN INIT, RNG)

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key

10 - Delete Token

0 - Exit program

Enter option number (press ENTER to return to previous menu): 7 <enter>
Enter import file name (press ENTER to return to menu): cert.arm <enter>
Enter label (press ENTER to return to menu): cacert2 <enter>

Certificate imported.

Press ENTER to continue.
====>

Figure 70. Importing a Certificate from a File-Token
Management Menu

You are prompted to enter the certificate file name and your choice of a unique
label that are assigned to the certificate.

When the certificate is imported, you receive a message that indicates the import
was successful. The certificate is treated as "trusted" so that it can be used in
verifying incoming certificates. For a program that is acting as an SSL server, this
certificate is used during the verification of a client's certificate. For a program that
is acting as an SSL client, this certificate is used to verify the server's certificate that
is sent to the client during SSL handshake processing.

Importing a certificate from a file with its private key
To store a certificate into a different key database format or to a different system
with its private key, the certificate must be exported from the source system into a
PKCS #12 format file (See “Copying a certificate with its private key” on page 508

Certificate List

Database: /home/sufwl1/ssl_cmd/mykey.kdb

1 - VeriSign Class 3 Public Primary CA - G3
2 - VeriSign Class 4 Public Primary CA - G3
3 - VeriSign Class 3 Public Primary CA - G5

0 - Return to selection menu

Enter label number (ENTER to return to selection menu, p for previous list):
===>

Figure 68. Certificate List (part 3)

Chapter 10. Certificate/Key management 521

for more information). PKCS #12 files are password-protected to allow encryption
of the private key information. If the CA certificate that is being imported was
signed by another CA certificate, the complete chain must be present in the key
database file or z/OS PKCS #11 token before the import. From the Key
Management Menu or Token Management Menu , enter 8 to import a certificate
and a private key:

Key Management Menu

Database: /home/sufwl1/ssl_cmd/anne.kdb
Expiration Date: 2025/12/02 10:11:12

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key
10 - Store database password
11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to previous menu): 8 <enter>
Enter import file name (press ENTER to return to menu): cert.p12 <enter>
Enter import file password (press ENTER to return to menu): <enter password>
Enter label (press ENTER to return to menu): newcert <enter>

Certificate and key imported.

Press ENTER to continue.
===>

Figure 71. Importing a Certificate and Private Key from a
File-Key Management Menu

Token Management Menu

Token: TOKENABC

Manufacturer: z/OS PKCS11 API
Model: HCR77A0
Flags: x00000509 (INITIALIZED, PROT AUTH PATH, USER PIN INIT, RNG)

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive requested certificate or a renewal certificate
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key

10 - Delete Token

0 - Exit program

Enter option number (press ENTER to return to previous menu): 8 <enter>
Enter import file name (press ENTER to return to menu): cert.p12 <enter>
Enter import file password (press ENTER to return to menu): <enter password>
Enter label (press ENTER to return to menu): newcert <enter>

Certificate and key imported.

Press ENTER to continue.
====>

Figure 72. Importing a Certificate and Private Key from a
File-Token Management Menu

You are prompted to enter the certificate file name, password, and your choice of a
unique label to be assigned to the certificate.

Once the certificate is imported, you receive a message indicating that import was
successful. The next step is to determine whether the certificate should be marked
as the database's or tokens default certificate. Setting the certificate as the default
certificate allows the certificate to be used by the SSL APIs without having to
specify its label. For more information about setting the default certificate, see
“Marking a certificate (and private key) as the default certificate” on page 506).

A certificate and key can be imported into a FIPS key database providing it is a
PKCS #12 Version 3 with strong encryption format. When adding certificates from
the import file to a FIPS key database file only certificates signed with FIPS
signature algorithms using FIPS-approved key sizes may be imported. When
processing a chain of certificates, processing of the chain terminates if a non-FIPS
certificate is encountered. Certificates that are processed before the failing
certificate is added to the key database file. It is the responsibility of the importer
to ensure that the file came from a source meeting FIPS 140-2 criteria to maintain
adherence to the FIPS criteria.

Using gskkyman to be your own certificate authority (CA)
The gskkyman utility provides the capability for you to act as your own Certificate
Authority (CA). If your own CA, you are authorized to sign certificate requests for
yourself or others. This is convenient if you need certificates within your private
web network and not for outside Internet commerce.

To be your own CA in a web network, you must create a CA database and
self-signed CA certificate using gskkyman. A server or client that wants you to

522 z/OS V2R1.0 System SSL Programming

sign a certificate must supply you with their certificate request. After signing the
certificate, the server or client must receive the CA certificate and the newly signed
certificate. The CA-signed certificate must then be received into either the client or
server key database.

This table describes the steps that are needed to become your own CA to allow
secure communication between a client and a server. This example reflects the
steps that are followed when the CA is on a different system or is a different user
than the issuer of the certificate request.

Certificate Authority (System A) Server or Client (System B)

Step 1 - Create a key database

Create a key database using the gskkyman
utility:

v From the Database Menu, select option 1 -
Create new database

See “Creating, opening, and deleting a key
database file” on page 486 for details.

Create a key database using the
gskkyman utility:

v From the Database Menu, select option
1 - Create new database

See “Creating, opening, and deleting a
key database file” on page 486 for details.

Step 2 - Create a Root Certificate Authority certificate

Create a Certificate Authority certificate:

v From the Key Management Menu, select
option 6 - Create a self-signed certificate

v From the Certificate Usage menu, select
option 1 - CA certificate

See “Creating a self-signed server or client
certificate” on page 495 for details.

No action required.

Step 3 - Create a certificate request

No action required. Create a certificate request:

v From the Key Management Menu,
select option 4 - Create new certificate
request

See “Creating a certificate request” on
page 498 for details.

Step 4 - Send the certificate request to the CA

No action required. Send the certificate request to the CA:

See “Sending the certificate request” on
page 501.

Step 5 - Sign the certificate request

Chapter 10. Certificate/Key management 523

Certificate Authority (System A) Server or Client (System B)

Before signing a certificate for a client or server,
you must make sure that the requester has a
legitimate claim to request the certificate. After
verifying the claim, you can create a signed
certificate.

To sign the certificate request, the gskkyman
utility must be issued using command-line
options (see “gskkyman command line mode
syntax” on page 525 for a description of the
options). The gskkyman utility must be issued
with these parameters:

gskkyman -g -x num-of-valid-days
-cr certificate-request-file-name
-ct signed-certificate-file-name
-k CA-key-database-file-name
-l label

Example: This command allows you to sign a
request certificate and allow the certificate to be
valid for 360 days.

gskkyman -g -x 360 -cr server_request.arm
-ct server_signed_cert.arm -k CA.kdb
-l labelname

After you entered the command, you are
prompted to enter the database password.
Note:

1. The signed certificate is an end user
certificate unless the -ca option is specified.

2. The file name that is specified on the -ct
option is created for you by the utility, and
is the actual signed certificate file.

3. The valid certificate lifetime range is
between 1 and 9999 days. The certificate
end date is set to the end date for the CA
certificate if the requested certificate lifetime
exceeds the CA certificate lifetime.

No action required.

Step 6 - Send the signed CA certificate and the newly signed certificate to the requester

Export the signed CA certificate (created in
Step 2) to a Base64 file (DER or PKCS #7) See
“Copying a certificate without its private key”
on page 507. Send (for example, without its
private key FTP) the Base64 file and the newly
signed certificate (created in Step 4) to the
requester.

No action required.

Step 7 - Import the CA certificate

No action required. Import the CA certificate. See “Importing
a certificate from a file as a trusted CA
certificate” on page 519.

Step 8 - Receive the signed certificate

524 z/OS V2R1.0 System SSL Programming

Certificate Authority (System A) Server or Client (System B)

No action required. Receive the signed certificate. See
“Receiving the signed certificate or
renewal certificate” on page 501.
Note: Depending upon the SSL
application, you might have to either
send the CA certificate to the client, or the
server application might present the
certificate to the client for them during
SSL session setup.

Migrating from key database files to z/OS PKCS #11 token
If you need to migrate keys and certificates stored in an existing key database into
a z/OS PKCS #11 token, follow these steps
1. Export the certificate/private key to a password protected PKCS #12 file using

gskkyman. See “Copying a certificate with its private key” on page 508 for
details about the steps for exporting certificates/private keys to a PKCS #12
file.

2. Import the certificate/private key from the PKCS #12 file into the z/OS PKCS
#11 token using gskkyman. See “Importing a certificate from a file with its
private key” on page 521 for more information.

Migrating key database files to RACF key rings
If you need to migrate keys and certificates stored in an existing key database into
a RACF key ring, follow these steps:
1. Export the certificate/private key to a password protected PKCS #12 file using

gskkyman. See “Copying a certificate with its private key” on page 508 for
details on the steps for exporting certificates/private keys to a PKCS #12 file.

2. Copy the newly created PKCS #12 file to a z/OS data set.
3. Use the RACDCERT command with the ADD operand and the data set name

created in step 2 to add the certificate/private key to the RACF database. The
certificate should be added as TRUSTED. If the private key is to be stored in
the ICSF PKDS, the ICSF keyword also needs to be specified on the
RACDCERT command.

4. Use the RACDCERT command with the ADDRING operand to create a new
key ring in RACF. Use the RACDCERT command with the CONNECT operand
to add the certificate/private key to one or more existing RACF key rings.

gskkyman command line mode syntax
This topic describes the format and options of the gskkyman command.

gskkyman

The gskkyman utility is used for key database management and z/OS PKCS #11
token management.

Format
gskkyman
gskkyman -dc|-dcv [-k filename|-t tokenname] [-l label]
gskkyman -dk [-k filename]
gskkyman -e|-i [-k filename|-t tokenname] [-l label] [-p filename]

Chapter 10. Certificate/Key management 525

gskkyman -g [-x days] [-cr filename] [-ct filename] [-k filename|-t tokenname] [-l label] [-kt
{ecgen|ecdsa|ecdh}] [-ca] [-ic]
gskkyman -h|-?
gskkyman -s [-k filename]

Parameters

function
The function to be performed. It must follow the command name. The
acceptable values are:

-dc
Display certificate details

-dcv
Display certificate verbose details

-dk
Display key database expiration and record length

-e Export a certificate and its associated private key

-g Sign a certificate for a certificate request

-h Display the command syntax

-i Import a certificate and its associated private key

-s Store the database password in the stash file

-? Display the command syntax

option
The parameters necessary to accomplish the function. If the option provides a
value, then the value must follow the option:

The acceptable values are:

-ca
A certification authority certificate is generated if -ca is specified. An end
user certificate is generated if -ca is not specified.

-cr
Specifies the name of the certificate request file. You are prompted for the
file name if this option is not specified.

-ct
Specifies the name of the output generated signed certificate file. You are
prompted for the file name if this option is not specified. You may specify
any name. If you specify an existing file name, the file is overwritten.

-ic
The certification chain certificates are included in the certificate file if -ic is
specified. Otherwise, just the signed certificate is included in the certificate
file.

-k Specifies the name of the key database. This option is mutually exclusive
with the -t option. You are prompted for the key database file name if
either this option or the -t option is specified. The length of the fully
qualified file name cannot exceed 251 characters. If the file name does not
end with an extension of 1-3 characters, the length of the fully qualified file
name cannot exceed 247 characters. Finally, the key database name cannot
end with .rdb or .sth.

-kt
Specifies the key type of the certificate to be created. This option is valid

526 z/OS V2R1.0 System SSL Programming

when signing an end user certificate or certificate request containing an
ECC public key and affects the settings of the keyUsage extension of the
certificate created. Valid key type options are ecgen, ecdsa and ecdh. ecgen
creates a certificate with digitalSignature, nonRepudiation and
keyAgreement set, ecdsa creates a certificate with digitalSignature and
nonRepudiation set, and ecdh creates a certificate with keyAgreement set.
If the -kt option is not specified for an end user ECC certificate or
certificate request, the default option is ecgen. For other certificate types
the -kt option is ignored.

-l Specifies the certificate label. The label must be enclosed in double
quotation marks if it contains one or more spaces. If the certificate is being
used to sign a certificate request (sign function), the certificate must be a
CA. The label for the default key is used if this option is not specified
(export or sign function) or you are prompted for the label (import
function). If more than one certificate with the specified label exists (can
occur for tokens), the user is prompted to either cancel or choose the
required certificate from a list that summarizes significant fields in the
certificate.

-p Specifies the name of the PKCS #12 file. You are prompted for the file
name if this option is not specified.

-t Specifies the name of the token to be managed. This option is mutually
exclusive with the -k option. The name must consist of characters that are
alphanumeric, national (@ x5B, # x7B, $ x7C) or period (.x4B). The first
character must be alphabetic or national. Lowercase letters areallowed but
are folded to uppercase.

-x Specifies the number of days until the signed certificate expires and must
be between 1 and 9999 days. The certificate expires in 365 days if this
option is not specified.

Results

If gskkyman is specified with no arguments the interactive menu-driven interface
is used.

Usage

The gskkyman utility is used to manage a token or a key database and its
associated request database. Interactive menus are displayed if no command
options are specified. Otherwise, the requested token/database function is
performed and the gskkyman utility exits.

If the command specifies the -t (token name) option, then the requested function is
performed for the identified token. If the specified PKCS #11 token certificate
contains a secure private key, then only display functions -dc and -dcv are
supported. If the gskkyman utility supplies both the -t and -l (label name) options,
then only the PKCS #11 certificate with the matching label is checked for a secure
private key. If the certificate does not have a secure private key, then both the -e
(export) or -g (sign) functions can be processed.

If the command does not specify the -t option, then it is assumed that the function
is to be performed for a key database. If the -k option and the -t option are not
supplied, the user is prompted for a key database file name.

Chapter 10. Certificate/Key management 527

If both -k and -t are specified, the command is rejected and an error message is
displayed.

For commands applied to a key database:

The key database contains certificates and private keys and normally has a file
name extension of '.kdb'. The request database contains requests for new
certificates and always has a file name extension of '.rdb'. The database stash file
contains the masked database password and always has a file name extension of
'.sth'. Access to these files should be restricted to the database owner.

A certificate or request database consists of fixed-length records. The record length
is specified when the database is created and must be large enough to contain the
largest certificate entry. A record length of 5000 should be sufficient for most
applications. The record length can be increased if necessary after the database is
created.

A temporary database file is created when a database is updated during gskkyman
processing. The temporary database file is created using the same name as the
database file with ".new" appended to the name. The database file is then rewritten
and the temporary database file is deleted upon successful completion of the
rewrite operation. The temporary database file is not deleted if an error occurs
while rewriting the database file. If this happens, you can replace the database file
with the temporary database file to recover from the error. If an error does occur
and you do not rename or delete the temporary file, you receive an error on the
next database update operation indicating the backup file exists.

If all certificates in a key database are displayed with the -dc or -dcv command,
then all certificates with private keys are outputted, followed by all certificates
without private keys. When displaying all certificates in a token, the certificates are
displayed in the order that is returned from the token so that certificates with
private keys might be interspersed with certificates without private keys.

gskkyman command line mode examples
Command mode is entered when the gskkyman utility is entered with parameters.
The requested token/database function is performed and then the utility exits.
v Store the database password in the stash file

gskkyman -s -k filename

The database password is masked and written to the key stash file. The file
name is the same as the key database file name but has an extension of '.sth'.
You are prompted for the key database file name if the '-k' option is not
specified. The '-t' option is invalid for the '-s' function.

v Export a certificate and the associated private key
gskkyman -e -k filename -l label -p filename

The certificate and associated private key that is identified by the record label
are exported to a file in PKCS #12 Version 3 format using strong encryption. The
default key is exported if the '-l' option is not specified. You are prompted for
the key database file name if the '-k' and the '-t' option is not specified. You are
prompted for the export file name if the '-p' option is not specified.

v Import a certificate and associated private key
gskkyman -i -t token-name -l label -p filename

A certificate and associated private key are imported from a file in PKCS #12
format. You are prompted for the label if the '-l' option is not specified. You are

528 z/OS V2R1.0 System SSL Programming

prompted for the key database file name if the '-k' and the '-t' option is not
specified. You are prompted for the import file name if the '-p' option is not
specified.

v Create a signed certificate for a certificate request
gskkyman -g -x days -cr filename -ct filename -k filename -l label -kt keytype -ca -ic

The certificate request that is identified by the -cr parameter is processed and a
signed certificate is created and written to the certificate file identified by the -ct
parameter. The -x parameter specifies the number of days until the certificate
expires and defaults to 365 days. The certificate is signed using the default key if
the -l parameter is not specified. You are prompted for the key database file
name if the '-k' option is not specified. You are prompted for the certificate
request file name if the '-cr' option is not specified. You are prompted for the
signed certificate file name if the '-ct' option is not specified.
The signed certificate is an end user certificate unless the -ca option is specified.
A certification authority certificate has basic constraints and key usage
extensions that allow the certificate to be used to sign other certificates and
certificate revocation lists. An end user certificate has basic constraints and key
usage extensions that allow the certificate to be used as follows:
– An RSA key can be used for authentication, digital signature, and data

encryption.
– A DSS key can be used for authentication and digital signature.
– An ECC key depends on the keytype option supplied. A general ECC key (-kt

ecgen) can be used for authentication, digital signature, and key agreement.
An ECDSA key (-kt ecdsa) can be used for authentication and digital
signature. An ECDH key (-kt ecdh) can be used for key agreement. The
default option is ecgen.

Any certificate can be used to sign the new certificate if the certificate has a
private key, the basic constraints certificate extension (if present) has the CA
indicator set, and the key usage certificate extension (if present) allows signing
certificates. However, depending upon how the new certificate is then used, it
might fail the validation checking if the signing certificate is not a valid
certification authority certificate.
The signature algorithm that are used to sign the new certificate is based on the
key algorithm of the signing certificate. An RSA signature uses the most secure
and compatible SHA-based hash in use in the signature algorithm of either the
signing certificate or the certificate request. A DSA signature with a 1024-bit DSA
key uses SHA-1. A DSA signature with a 2048-bit DSA key uses SHA-256. An
ECC signature uses the suggested digest for the key size of the ECC private key,
as specified in Table 2 on page 15.
Possible signature algorithms are:
– x509_alg_sha1WithRsaEncryption
– x509_alg_sha224WithRsaEncryption
– x509_alg_sha256WithRsaEncryption
– x509_alg_sha384WithRsaEncryption
– x509_alg_sha512WithRsaEncryption
– x509_alg_dsaWithSha1
– x509_alg_dsaWithSha256
– x509_alg_ecdsaWithSha256
– x509_alg_ecdsaWithSha384
– x509_alg_ecdsaWithSha512

Chapter 10. Certificate/Key management 529

The certificate file contains the generated X.509 certificate in DER-encoded
Base64 format if the -ic option is not specified. The certificate file contains the
generated X.509 certificate and the certification chain certificates as a PKCS #7
message in Base64 format if the -ic option is specified.

v Display all certificates in a key database
gskkyman -dc -k filename

After you are prompted for the key database password, the certificates will be
displayed. You are prompted for the key database file name if the -k option is
not specified. Because of the number of certificates that can exist in a key
database file, it is suggested that you redirect the output to a file. This allows for
easy review of the certificates and any post-processing of the certificate output.

v Display key database expiration date:
gskkyman -dk -k filename

After you are prompted for the key database password, the full key database
path and file name, expiration date and record length are displayed. You are
prompted for the key database file name if the -k option is not specified.

gskkyman command line mode displays
Command mode is entered when gskkyman is entered with parameters. The
requested token/database function is performed and then the utility exits.
v gskkyman command-mode key database file display

When the key database password is correctly entered:
Command:
gskkyman -dk -k example.kdb

Output:
Database: /home/sufwl1/ssl_cmd/example.kdb
Expiration Date: 2025/12/02 10:11:12
Record length: 5000

v gskkyman command-mode certificate display
Command:
gskkyman -dc -k example.kdb -l ’Test User’

Output for a single certificate:
Label:

<Test User>
Trusted:

Yes
Version:

3
Serial number:

45ac4d23000a6023
Issuer’s Name:

<CN=Test CA,OU=Test unit,O=IBM, L=Endicott, ST=NY, C=US>
Subject’s Name:

<CN=Test User,OU=Test unit,O=IBM, L=Endicott, ST=NY, C=US>
Effective date:

2010/01/16 21:02:02
Expiration date:

2015/01/16 21:02:02
Signature algorithm:

sha1WithRsaEncryption
Issuer unique ID:

None
Subject unique ID:

None
Public key algorithm:

rsaEncryption

530 z/OS V2R1.0 System SSL Programming

Public key size:
1024

Public key:
30 81 89 02 81 81 00 9A 9A BC 53 49 50 8B AF F9
AF 00 A1 F3 A6 80 3A DA 2C A5 7C 65 A0 00 96 FA
1A 71 74 74 B4 2A 95 92 AC 1D 76 F1 97 37 D3 BC
06 8B DC 83 2F 7F 08 B0 EA 1F F8 71 AC 8F 96 3E
6E DA F5 F8 D0 A6 51 A4 AF E6 21 F5 50 AC B7 06
83 BF 88 48 DF 51 DB 18 BF EC 7C 72 DA ED 6C 82
28 93 7C AE 12 E8 CD 55 16 E1 05 53 63 C1 84 D1
91 AD 3E E5 70 87 00 0C 14 40 92 D9 6E DD ED 07
81 9D 93 34 DC 1F 05 02 03 01 00 01

Private key:
Yes

Default key:
No

Certificate extensions:
4

v gskkyman command-mode PKCS #11 token certificate display
Command:
gskkyman -dc -t my.token -l rsa1024CASecure

Output:
Label:

<rsa1024CASecure>
Trusted:

Yes
Version:

3
Serial number:

00
Issuer’s Name:

<CN=rsa CA linecmd 1,OU=ibm,O=stg,C=US>
Subject’s Name:

<CN=rsa CA linecmd 1,OU=ibm,O=stg,C=US>
Effective Date:

2012/06/06 04:00:00
Expiration Date:

2025/11/01 03:59:59
Signature algorithm:

sha1WithRsaEncryption
Issuer unique ID:

None
Subject unique ID:

None
Public key algorithm:

rsaEncryption
Public key size:

1024
Public key:

30 81 89 02 81 81 00 A8 CF 98 A5 EE A9 F3 FD 59
A6 6F F8 F1 CF 85 00 26 DA D3 04 52 EA E0 94 62
B4 DB 32 FC A7 AE E8 BF 1C 0B 6B A8 78 25 BF D4
9C BE 1E 15 8C 37 36 F2 94 E9 5F 58 8B CB CB BB
FA AF 47 BD 5D BA 77 C2 B6 8B 15 91 C7 5A B1 28
62 BB 23 80 80 50 DB 2F 49 38 9C B6 4D 0E 2F EC
87 63 E5 AE 99 EC 9D 87 A7 94 D4 BF EA A1 0E F0
00 56 C7 A6 9E 25 18 BF F6 2F 7B D4 E1 C4 91 E4
9F F0 50 DE 3D 94 3D 02 03 01 00 01

Private key:
Yes

Private key type:
Secure

Chapter 10. Certificate/Key management 531

Default key:
Yes

Certificate extensions:
3

v gskkyman command-mode certificate display (verbose)
Command:
gskkyman -dcv -k example.kdb -l ’Test User’

Verbose output for a single certificate:
Label:

<Test User>
Trusted:

Yes
Version:

3
Serial number:

45ac4d23000a6023
Issuer’s Name:

<CN=Test CA,OU=Test unit,O=IBM, L=Endicott, ST=NY, C=US>
Subject’s Name:

<CN=Test User,OU=Test unit,O=IBM, L=Endicott, ST=NY, C=US>
Effective date:

2010/01/16 21:02:02
Expiration date:

2015/01/16 21:02:02
Signature algorithm:

sha1WithRsaEncryption
Issuer unique ID:

None
Subject unique ID:

None
Public key algorithm:

rsaEncryption
Public key size:

1024
Public key:

30 81 89 02 81 81 00 9A 9A BC 53 49 50 8B AF F9
AF 00 A1 F3 A6 80 3A DA 2C A5 7C 65 A0 00 96 FA
1A 71 74 74 B4 2A 95 92 AC 1D 76 F1 97 37 D3 BC
06 8B DC 83 2F 7F 08 B0 EA 1F F8 71 AC 8F 96 3E
6E DA F5 F8 D0 A6 51 A4 AF E6 21 F5 50 AC B7 06
83 BF 88 48 DF 51 DB 18 BF EC 7C 72 DA ED 6C 82
28 93 7C AE 12 E8 CD 55 16 E1 05 53 63 C1 84 D1
91 AD 3E E5 70 87 00 0C 14 40 92 D9 6E DD ED 07
81 9D 93 34 DC 1F 05 02 03 01 00 01

Private key:
Yes

Default key:
No

Critical Extension:
keyUsage:

Digital signature
Non-repudiation
Key encipherment
Data encipherment

Non-critical Extension: 1
subjectAltName:

EMAIL:
<test@ibm.com>

Non-critical Extension: 2
subjectKeyIdentifier:

91 DA 60 24 00 31 0A 75 39 F4 F6 56 D5 AD 35 35
86 2D C6 F8

Non-critical Extension: 3

532 z/OS V2R1.0 System SSL Programming

authorityKeyIdentifier:
Key ID:

19 6E 03 37 AB 8B 0F 7B 9D A3 A6 8F CC B4 A2 CA
AC FA B6 E8

Chapter 10. Certificate/Key management 533

534 z/OS V2R1.0 System SSL Programming

Chapter 11. SSL started task

The SSL started task (GSKSRVR) provides sysplex session cache support, dynamic
trace support, and notification when changing from hardware to software
cryptography. The SSL started task is an optional component of System SSL and
does not need to be configured and started in order to use System SSL.

The default home directory for the SSL started task is /etc/gskssl/server. A
different home directory can be specified by changing the definition of the HOME
environment variable in the GSKSRVR procedure. The SSL started task reads the
envar file in the home directory to set the environment variables. This file is a
variable-length file where each line consists of a variable name and variable value
separated by '='. Trailing blanks are removed from the variable value. Blanks lines
and lines beginning with '#' are ignored.

GSKSRVR environment variables
These environment variables are processed by the System SSL started task:

GSK_LOCAL_THREADS
Specifies the maximum number of threads which is used to handle
program call requests from SSL applications running on the same system
as the GSKSRVR started task. The default value is 5 and the minimum
value is 2. The default of 5 is used if a valid value is not specified.

GSK_SIDCACHE_SIZE
Specifies the size of the sysplex session cache in megabytes and is between
1 and 512 with a default of 20. The default of 20 is used if a valid value is
not specified.

GSK_SIDCACHE_TIMEOUT
Specifies the sysplex session cache entry timeout in minutes and is
between 1 and 1440 with a default of 60. The default of 60 is used if a
valid value is not specified.

GSK_FIPS_STATE
Specifies that the System SSL started task is to execute in FIPS mode. The
only value that is supported is GSK_FIPS_STATE_ON. If any other value
is specified, message GSK01054E is issued with a status code of zero, and
GSKSRVR executes in non-FIPS mode.

In order for the started task to perform sysplex session ID caching for FIPS
mode application servers, the envar file must contain
GSK_FIPS_STATE=GSK_FIPS_STATE_ON. If the started task executes in
FIPS mode, then message GSK01057I is output to STDOUT. See Chapter 4,
“System SSL and FIPS 140-2,” on page 19 for setup requirements necessary
to execute in FIPS mode.

To have GSKSRVR execute in non-FIPS mode and provide sysplex session
ID caching for non-FIPS application servers, remove or comment out this
environment variable. GSKSRVR starts in non-FIPS mode without issuing
GSK01054E or GSK01057I messages.

© Copyright IBM Corp. 1999, 2013 535

Configuring the SSL started task
1. Create the home directory for the SSL started task (the default is

/etc/gskssl/server)
2. Copy the sample envar file (gsksrvr.envar) from /usr/lpp/gskssl/examples/ to

/etc/gskssl/server/ with a new file name of "envar". By default, the full path
is /etc/gskssl/server/envar (change the directory name to match the home
directory created). Modify the LANG, TZ, and NLSPATH values to meet local
installation requirements.

3. Copy the sample started procedure from GSK.SGSKSAMP(GSKSRVR) to
SYS1.PROCLIB(GSKSRVR)

Note: The sample started task procedure routes informational messages, such
as GSK01001I, to standard out, while error messages, such as GSK01015E are
routed to standard error. If you want to route informational and error messages
to the same place in the job log, change:
// / 1>DD:STDOUT 2>DD:STDERR’)

to
// / >DD:STDOUT 2>&1’)

4. Create the GSKSRVR user and associate it with the GSKSRVR started
procedure. Replace 'nnnnnn' in the ADDUSER command with a non-zero value
which is not assigned to another user.
ADDUSER GSKSRVR DFLTGRP(SYS1) NOPASSWORD OMVS(UID(nnnnnn) PROGRAM(/bin/sh) HOME(/etc/gskssl/server))

RDEFINE STARTED GSKSRVR.** STDATA(USER(GSKSRVR) GROUP(SYS1) TRUSTED)

SETROPTS RACLIST(STARTED) REFRESH

5. Ensure that the pdsename.SIEALNKE and CEE.SCEERUN data sets are
APF-authorized and are either in the link list concatenation or are specified as a
STEPLIB for the GSKSRVR procedure.

6. Optionally, set up a message processing exit to automatically start the
GSKSRVR started task. The GSK.SGSKSAMP(GSKMSGXT) program is a sample
message processing exit for this purpose. To activate the exit, add this to the
appropriate MPFLSTxx member in SYS1.PARMLIB.
BPXI004I,SUP(NO),USEREXIT(STARTSSL)

This starts GSKSRVR when OMVS initialization is complete, assuming the
GSKMSGXT program was linked as STARTSSL and placed in a LNKLST data
set.

7. Optionally, set up an automatic restart management (ARM) policy for the
GSKSRVR started task if the default ARM policy values are not appropriate.
The element type is SYSSSL and should be assigned to restart level 2. The
element name is GSKSRVR_sysname. For example, the element name for the
GSKSRVR started task on system DCESEC4 would be GSKSRVR_DCESEC4.
Since the normal operating mode is to run the GSKSRVR started task on each
system in the sysplex, the GSKSRVR started task registers with ARM to be
restarted only if the started task fails and not if the current system fails. The
TERMTYPE parameter of the ARM policy can be used to override this
registration if you want.

8. If access to the ICSF callable services are protected with CSFSERV class profiles
on your system, the GSKSRVR user ID might need to be given READ authority
to call the ICSF CSFIQA and CSFPPRF callable services. These services are
protected by the CSFIQA and CSFRNG profiles. If these callable services are
protected with a generic CSF* profile in the CSFSERV class, access can be
granted by entering:

536 z/OS V2R1.0 System SSL Programming

PERMIT CSF* CLASS(CSFSERV) ID(GSKSRVR) ACCESS(READ)
SETROPTS RACLIST(CSFSERV) REFRESH

Server operator commands
These operator commands are supported by the System SSL server:

STOP GSKSRVR or P GSKSRVR
Causes an orderly shutdown of the server.

MODIFY GSKSRVR,parameters or F GSKSRVR,parameters
Causes a command to be executed by the server. Some parameters are:

DISPLAY CRYPTO
Displays the available encryption algorithms, whether hardware
cryptographic support is available and the maximum encryption
key size. '' is displayed if the encryption algorithm is not available.

This command can be abbreviated as 'D CRYPTO'

DISPLAY LEVEL
Displays the current System SSL service level.

This command can be abbreviated as 'D LEVEL'

DISPLAY SIDCACHE
Displays the current and maximum data space sizes in megabytes
followed by the session cache users and the number of cache
entries for each user. The count includes expired cache entries until
they are removed from the cache during an update to the hash list
containing the expired entry. Each GSKSRVR started task maintains
its own session cache for sessions created on that system. The
'DISPLAY SIDCACHE' command must be issued for each started
task to display the cache entries for the entire sysplex. This can be
done by issuing 'RO *ALL,F GSKSRVR,D SIDCACHE'.

This command can be abbreviated as 'D SIDCACHE'

DISPLAY XCF
Displays the status of all instances of the GSKSRVR started task in
the sysplex.

This command can be abbreviated as 'D XCF'

STOP Causes an orderly shutdown of the server. This is the same as
entering the "STOP GSKSRVR" command.

TRACE OFF
Turns off tracing for the System SSL started task.

TRACE ON,level
Turns on tracing for the System SSL started task. The trace output
is written to the file specified by the GSK_TRACE_FILE
environment variable or to the default trace file if the
GSK_TRACE_FILE environment variable is not defined. The level
value specifies the trace level. See the descriptions of the
GSK_TRACE and GSK_TRACE_FILE environment variables for
more information about SSL tracing.

Chapter 11. SSL started task 537

Sysplex session cache support
The sysplex session cache support makes SSL server session information available
across the sysplex. An SSL session established with a server on one system in the
sysplex can be resumed using a server on another system in the sysplex if the SSL
client presents the session identifier obtained for the first session when initiating
the second session. A server executing in FIPS mode cannot resume a session
cached in non-FIPS mode. SSL V3, TLS V1.0 and higher TLS protocol server
session information can be stored in the sysplex session cache while SSL V2 server
session information and all client session information is stored only in the local
SSL cache for the application process.

A client which established a TLS V1.0 or higher TLS protocol session with
negotiated TLS extensions to a server can only be resumed on a server which
supports the same set of TLS extensions established in the original session. For
example, if the original session negotiates the use of the maximum fragment length
TLS extension, but the session is later resumed with a server that does not support
the maximum fragment length TLS extension, a full rehandshake occurs.

In order to use the sysplex session cache, each system in the sysplex must be using
the same external security manager (for example, z/OS Security Server RACF) and
a user ID on one system in the sysplex must represent the same user on all other
systems in the sysplex (that is, user ID ZED on System A has the same access
rights as user ID ZED on System B). The external security manager must support
the RACROUTE REQUEST=EXTRACT,TYPE=ENVRXTR and RACROUTE
REQUEST=FASTAUTH functions.

The sysplex session cache must be enabled for each application server that is to
use the support. This can be done by defining the GSK_SYSPLEX_SIDCACHE
environment variable or by calling the gsk_attribute_set_enum() routine to set the
GSK_SYSPLEX_SIDCACHE attribute. The session information for each new SSL
V3, TLS V1.0, TLS V1.1, or TLS V1.2 session created by the SSL server is then
stored in the sysplex session cache and can be referenced by other SSL servers in
the sysplex. The RACF user associated with the SSL server becomes the owner of
the session information. Any SSL server running with the same RACF user can
access the session information. SSL servers running with a different RACF user can
access the session information if they have at least READ access to the
GSK.SIDCACHE.<owner> profile in the FACILITY class.

For example, session information created by RACF user APPLSRV1 can be
accessed by RACF user APPLSRV2 if APPLSRV2 has READ access to the
GSK.SIDCACHE.APPLSRV1 profile in the FACILITY class. These RACF commands
grant this access:
RDEFINE FACILITY GSK.SIDCACHE.APPLSRV1 UACC(NONE)
PERMIT GSK.SIDCACHE.APPLSRV1 CLASS(FACILITY) ID(APPLSRV2) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Component trace support
For information about component trace support, see “Component trace support”
on page 540.

Hardware cryptography failure notification
For information about cryptographic hardware failure notification, see Chapter 3,
“Using cryptographic features with System SSL,” on page 11.

538 z/OS V2R1.0 System SSL Programming

Chapter 12. Obtaining diagnostic information

All of the information and techniques described in this topic are for use primarily
by IBM service personnel in determining the cause of a System SSL problem. If
you encounter a problem and call the IBM Support Center, you might be asked to
obtain trace information or enable one or more of the diagnostic messages
described here.

Any environment variables described in this topic are usually set from the UNIX
System Services export shell command. For usage information about this
command, see the z/OS UNIX System Services Command Reference. For information
about setting environment variables outside of the shell, see z/OS XL C/C++
Programming Guide and the z/OS Language Environment Programming Guide.

The facilities described below are not intended for use in a production
environment and are for diagnostic purposes only.

Obtaining System SSL trace information
You can enable the System SSL trace by using the environment variable
GSK_TRACE_FILE to specify the name of the trace file, and the GSK_TRACE
environment variable to set the trace level. A single trace file is created, and there
is no limit on the size of the trace file.

In order to create a readable copy of the trace information, use the System SSL
gsktrace command as follows:
gsktrace input_trace_file > output_trace_file

Capturing trace data through environment variables
In order to capture trace information using environment variables, the trace
environment variables GSK_TRACE and GSK_TRACE_FILE must be exported
before the start of the SSL application.
v GSK_TRACE

Specifies a bit mask enabling System SSL trace options. No trace option is
enabled if the bit mask is 0 and all trace options are enabled if the bit mask is
0xffff. The bit mask can be specified as a decimal (nnn), octal (0nnnn) or
hexadecimal (0xhh) value.
These trace options are available:

0x01 = Trace function entry
0x02 = Trace function exit
0x04 = Trace errors
0x08 = Include informational messages
0x10 = Include EBCDIC data dumps
0x20 = Include ASCII data dumps

v GSK_TRACE_FILE

Specifies the name of the trace file and defaults to /tmp/gskssl.%.trc. The trace
file is not used if the GSK_TRACE environment variable is not defined or is set
to 0.

© Copyright IBM Corp. 1999, 2013 539

The current process identifier is included as part of the trace file name when the
name contains a percent sign (%). For example, if GSK_TRACE_FILE is set to
/tmp/gskssl.%.trc and the current process identifier is 247, then the trace file
name is /tmp/gskssl.247.trc.

Note: Care needs to be taken if the application being traced is multi-processed. If
multiple processes write to the same trace file, file corruption might occur. To
allow trace information to be obtained, the trace file name specified should contain
a '%' character in the file name. This allows the process identifier to be placed
within the file name and each process to write to its own trace file.

It is suggested that if the default trace file value is not being used, the trace file
name always contain a '%' character. This eliminates the need to know whether the
application being traced is multi-processed or not.

Once the trace file is produced, it must be formatted. To format the file, use the
System SSL gsktrace command as follows:
gsktrace input_trace_file > output_trace_file

Component trace support
The System SSL started task provides component trace support for any SSL
application running on the same system as the GSKSRVR started task. The trace
records can be written to a trace external writer or they can be kept in an
in-storage trace buffer which is part of the GSKSRVR address space. IPCS is used
to format and display the trace records from either a trace data set or an SVC
dump of the GSKSRVR address space. Data set hlq.SIEAMIGE containing the SSL
trace record format routine to be used by IPCS must be accessible through either a
steplib or in the lnklst.

Note: The System SSL started task provides component trace support only for SSL
applications, therefore, component trace of the System SSL started task itself is not
supported. Therefore, the jobname for the System SSL started task should not be
used as one of the jobnames in the MVS TRACE command. Tracing for the System
SSL started task can be accomplished by setting the GSK_TRACE environment
variable.

The Component Trace input command supports the option JOBSUFFIX to enable
wildcarding. JOBSUFFIX can be specified as ANY or NONE with NONE being the
default. If you specify JOBSUFFIX=ANY, any specified jobnames of seven letters or
less are considered to be a wildcard entry and tracing is started for jobs whose
names match those entries for the length of the entry.

Seez/OS MVS Diagnosis: Tools and Service Aids for more information about setting
up and using component trace. See z/OS MVS System Commands for more
information about the TRACE command. See z/OS MVS IPCS User's Guide for
more information about using IPCS to view a component trace.

Capturing component trace data
The component trace can be started before the job to be traced is started or while
the job is running. The trace is active for the first instance of the job. For example,
if the same job name is used for multiple jobs, only the first job with that name is
traced. Subsequent jobs with the same name are not traced unless the component
trace is stopped and then restarted.

Obtaining diagnostic information

540 z/OS V2R1.0 System SSL Programming

A trace external writer is required if the trace records are to be written to a data
set. A sample started procedure is shipped as GSK.SGSKSAMP(GSKWTR). Copy
this procedure to SYS1.PROCLIB(GSKWTR) and modify as necessary to meet your
installation requirements. This MVS operator command starts the trace external
writer:
TRACE CT,WTRSTART=GSKWTR

A single SSL component trace may be active at a time and the trace can include
from 1 to 16 separate jobs. The trace buffer size must be between 64K and 512K
and defaults to 64K.

System SSL supports these options for CTRACE:
OPTIONS=([LEVEL={nnn | 15}][,JOBSUFFIX={NONE | ANY}])

LEVEL
A bit mask specifying the types of events that System SSL is to trace. At least
one of these indicators must be specified in the supplied bit mask. All trace
options are enabled if the bit mask is 0xffff. The bit mask can be specified as a
decimal (nnn), octal (0nnnn) or hexadecimal (0xhh) value. The SSL trace level
is set to decimal 15 if level is not specified in the CTRACE options.

These trace options are available:
v 0x01 = Trace function entry
v 0x02 = Trace function exit
v 0x04 = Trace errors
v 0x08 = Include informational messages
v 0x10 = Include EBCDIC data dumps
v 0x20 = Include ASCII data dumps

JOBSUFFIX
A switch specifying how the list of jobnames provided from the JOBNAME
parameter are to be filtered:

ANY
Any specified jobnames of 7 letters or less are considered to be wildcard
entries and tracing is started for jobs whose names match those entries for
the length of the entry.

NONE
Only jobs whose names match precisely one of the entries supplied in the
JOBNAME parameter are traced. This is the default value.

For example, to start an SSL component trace for jobs CS390IP and DB1G which
includes all non-dump trace entries and writes the trace records using the
GSKWTR trace writer:
TRACE CT,ON,COMP=GSKSRVR
R n,JOBNAME=(CS390IP,DB1G),OPTIONS=(LEVEL=15),WTR=GSKWTR,END

To start an SSL component trace for job CICS1 which includes all trace entries and
writes the trace records using the GSKWTR trace writer:
TRACE CT,ON,COMP=GSKSRVR
R n,JOBNAME=(CICS1),OPTIONS=(LEVEL=255),WTR=GSKWTR,END

These commands stop the SSL component trace and close the trace writer data set:
TRACE CT,OFF,COMP=GSKSRVR
TRACE CT,WTRSTOP=GSKWTR

Obtaining diagnostic information

Chapter 12. Obtaining diagnostic information 541

System SSL does not require a default trace member in SYS1.PARMLIB since SSL
component trace is not activated until the operator enters the TRACE command.
SYS1.PARMLIB members can be created for frequently used trace commands and
the member name can then be specified on the TRACE command to avoid the
operator prompt for trace options.

Starting and stopping the in-storage trace is done the same way as the external
writer trace except the external writer name on the trace command should not be
specified.

These commands start the SSL component trace using the in-storage trace table:
TRACE CT,ON,COMP=GSKSRVR
R n,JOBNAME=(CS390IP,DB1G),OPTIONS=(LEVEL=15,JOBSUFFIX=ANY),END

This command stops the SSL component trace using the in-storage trace table:
TRACE CT,OFF,COMP=GSKSRVR

See z/OS MVS System Commands for more details on using in-storage trace.

Displaying the trace data
The trace records are displayed using the IPCS CTRACE command.

The CTRACE ENTIDLIST parameter specifies the trace entries to be included in
the display. The trace entry type is the same as the SSL trace level. For example,
SSL function entry trace records have entry type 1, SSL function exit trace records
have entry type 2, SSL error records have entry type 4, and so on. All trace entries
are included if the ENTIDLIST parameter is not specified.

The CTRACE OPTIONS parameter specifies additional filtering for the trace
records. The JOB(name), PID(hexid), and TID(hexid) options can be specified to
filter the trace entries based on job name, process identifier, or thread identifier. All
trace entries are included if the OPTIONS parameter is not specified.

Note that the JOBNAME parameter on the CTRACE command is used to select the
address space in a dump. Since the address space is always the GSKSRVR address
space, this parameter cannot be used to filter the trace entries. Instead, you must
use the OPTIONS((JOB(name))) parameter to select the component trace entries for
a specific job.

For example, to display SSL function entry and SSL function exit trace records for
job KRBSRV48 thread 6:
IPCS CTRACE COMP(GSKSRVR) ENTIDLIST(1,2) OPTIONS((JOB(KRBSRV48),TID(6))) FULL

A range can be specified for the entry identifiers. For example, to display just the
non-dump trace records:
IPCS CTRACE COMP(GSKSRVR) ENTIDLIST(1:15) FULL

Event trace records for System SSL
The FULL format of a component trace report is as follows:

COMPONENT TRACE FULL FORMAT
SYSNAME(C01)
COMP(GSKSRVR)
**** 11/14/2005

Obtaining diagnostic information

542 z/OS V2R1.0 System SSL Programming

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

1 C01 MESSAGE 00000004 20:43:45.522449 SSL_ERROR

2 Job TCP341 Process 00020032 Thread 00000002 gsk_read_v3_record
3 Socket closed by 192.168.50.80.1360.

1. Standard IPCS header line, which includes the system name (C01), System SSL
trace entry format (MESSAGE or DUMP), entry ID, time stamp, and record
description.

2. System SSL header line with job name, process id, thread id, and function name
information.

3. System SSL detail information. The format of this area's content is determined
according to the System SSL record description located on line 1. Trace records
may have 0 or more detail lines.

The standard IPCS header line MNEMONIC, ENTRY ID, and DESCRIPTION
combinations are as follows:

MNEMONIC ENTRY ID DESCRIPTION EXPLANATION
MESSAGE 00000001 SSL_ENTRY Entry into the function named in the following System SSL

header line (i.e. line 2) occurred
MESSAGE 00000002 SSL_EXIT Exit from the function named in the following System SSL

header line occurred
MESSAGE 00000004 SSL_ERROR Error was detected by the function named in following line 2

with error description in line 3
MESSAGE 00000008 SSL_INFO Information generated by the function named in following line 2

- for example, supplied parameters
DUMP 00000010 SSL_EBCDIC_DUMP Dump of buffer contents formatted in EBCDIC, by the function

named in following line 2
DUMP 00000020 SSL_ASCII_DUMP Dump of buffer contents formatted in ASCII, by the function name

in following line 2

The System SSL header line contains the Job name, Process ID (in hex), Thread ID
(in hex), and the name of the System SSL function that created the trace entry. If
the trace entry is output while in SRB mode, then the Thread ID is FFFFFFFF .

The format of the System SSL detail line is similar for record descriptions
SSL_ENTRY, SSL_EXIT, SSL_ERROR and SSL_INFO.

1 C01 MESSAGE 00000001 20:43:46.694762 SSL_ENTRY

2 Job TCP341 Process 00020032 Thread 00000004 gsk_secure_socket_read
3 Handle 7E828198, Size 1

4 C01 MESSAGE 00000008 20:43:46.695013 SSL_INFO

5 Job TCP341 Process 00020032 Thread 00000004 gsk_read_v3_record
6 Calling read routine for 5 bytes

7 C01 MESSAGE 00000004 20:43:46.695317 SSL_ERROR

8 Job TCP341 Process 00020032 Thread 00000004 gsk_read_v3_record
9 Socket closed by 192.168.50.80.1472.

10 C01 MESSAGE 00000004 20:43:46:695478 SSL_ERROR

11 Job TCP341 Process 00020032 Thread 00000004 gsk_secure_socket_read
12 SSL V3 data read failed with 192.168.50.80.1472.

13 C01 MESSAGE 00000002 20:43:46.695599 SSL_EXIT

14 Job TCP341 Process 00020032 Thread 00000004 gsk_secure_socket_read
15 Exit status 000001A4 (420)
16 Length 0

Obtaining diagnostic information

Chapter 12. Obtaining diagnostic information 543

1. The start of a trace record reporting that a function is entered. Not all functions
create a trace record. If a function creates an SSL_ENTRY record, then it also
creates a corresponding SSL_EXIT record.

2. The System SSL header record describing the job, process, thread, and function
creating the record.

3. The detail for the SSL_ENTRY record. Not all trace records create a detail line.
Trace records may have multiple detail lines.

4. The start of a trace record for function gsk_read_v3_record. The fact that an
SSL_EXIT record is not encountered for function gsk_secure_socket_read (the
previous trace record), indicates that gsk_read_v3_record is invoked either by
gsk_secure_socket_read or another function invoked by gsk_secure_socket_read.

7. The start of an error trace record created by gsk_read_v3_record.

10. An error trace record created by gsk_secure_socket_read. The error occurred
because of the error detected in gsk_read_v3_record.

13. The start of the trace record created by gsk_secure_socket_read on exit. It
corresponds with the trace entry record on Line 1.

15. The first detail line and reports the return code returned by
gsk_secure_socket_read.

16. The second detail line for the trace record. It is an example of a trace record
with multiple detail lines.

The format of the System SSL detail for record descriptions SSL_EBCDIC_DUMP
and SSL_ASCII_DUMP is as follows:
1 C01 DUMP 00000020 20:43:45.724056 SSL_ASCII_DUMP

2 Job TCP341 Process 00020032 Thread 00000004 send_v3_server_messages
3 SERVER-HELLO message
4 00000000: 02000046 03014373 B1011649 3E508E04 *...F..Cs...I>P..*

00000010: A620B42C 8422C287 8015BC54 7850C435 *. .,.".....TxP.5*
00000020: 540B6864 A4702000 020032C0 A8325005 *T.hd.p ...2..2P.*
00000030: E9000000 00000000 00000000 00000043 *...............C*
00000040: 73B10100 00051A00 0500 *s......... *

1. Standard IPCS header line.
2. System SSL header line.
3. The first line of the System SSL detail area. It describes the contents that are

dumped in the detail lines. In this example, the SERVER_HELLO message sent
to the client is output in the detail lines.

4. The first line of the contents dump. Each dump line consists of offset, 16 bytes
of data in hex, and the same 16 bytes of data output in either ASCII or EBCDIC
enclosed in asterisks.

Capturing component trace data without an external writer
If there is not an external writer, you can dump the GSKSRVR address space.

To use a dump:
v Dump the GSKSRVR address space with the command:

DUMP COMM=(title of dump)

Obtaining diagnostic information

544 z/OS V2R1.0 System SSL Programming

v Reply with:
R x,JOBNAME=(GSKSRVR),SDATA=(RGN,LSQA,ALLNUC,PSA,TRT,CSA,SQA),END

v Issue
TRACE CT,OFF,COMP=GSKSRVR

to turn off the trace.

Note: You need to take the dump before you turn off the CTRACE.

Obtaining diagnostic information

Chapter 12. Obtaining diagnostic information 545

Obtaining diagnostic information

546 z/OS V2R1.0 System SSL Programming

Chapter 13. Messages and codes

This topic lists the messages and codes issued by System SSL:
v SSL function return codes (“SSL function return codes”)
v Deprecated SSL function return codes (“Deprecated SSL function return codes”

on page 561)
v ASN.1 status codes (014CExxx) (“ASN.1 status codes (014CExxx)” on page 571)
v CMS status codes (03353xxx) (“CMS status codes (03353xxx)” on page 575)
v SSL started task messages (GSK01nnn) (“SSL started task messages (GSK01nnn)”

on page 593)
v Utility messages (GSK00nnn) (“Utility messages (GSK00nnn)” on page 602)

SSL function return codes
System SSL functions return the value 0 (GSK_OK) if no error is detected.
Otherwise, one of the return codes listed in the gskssl.h include file is returned.

1 Handle is not valid.

Explanation: The environment or SSL handle specified on a System SSL function call is not valid.

User response: Call the gsk_environment_open() function to create an environment handle or the
gsk_secure_socket_open() function to create an SSL handle.

3 An internal error has occurred.

Explanation: The System SSL runtime library detected an internal processing error.

User response: Collect a System SSL trace containing the error and then contact your service representative.

4 Insufficient storage is available

Explanation: The System SSL runtime library is unable to obtain storage for an internal control block.

User response: Increase the storage available to the application and then retry the failing operation.

5 Handle is in the incorrect state.

Explanation: The SSL handle is in the incorrect state for the requested operation.

User response: Correct the application to request SSL functions in the proper sequence.

6 Key label is not found.

Explanation: The requested key label is not found in the key database, SAF key ring, or z/OS PKCS #11 token.

User response: Specify a label that exists in the key database, SAF key ring, or z/OS PKCS #11 token.

7 No certificates available.

Explanation: The key database, SAF key ring, or z/OS PKCS #11 token does not contain any certificates, or the SSL
client application does not have a certificate available when authentication is requested by the server.

User response: Check for available certificates and add the user certificate and any necessary certification authority
certificates to the key database, SAF key ring, or z/OS PKCS #11 token if necessary. If using RACF key rings and the
DIGTCERT and DIGTRING classes are RACLIST'ed, issue the SETROPTS RACLIST (DIGTCERT, DIGTRING)

© Copyright IBM Corp. 1999, 2013 547

REFRESH command to refresh the profiles to ensure that the latest changes are available. Specify a certificate for the
client application to use.

8 Certificate validation error.

Explanation: An error is detected while validating a certificate. This error can occur if a root CA certificate is not
found in the key database, SAF key ring, or z/OS PKCS #11 token or if the certificate is not marked as a trusted
certificate or if the certificate requires an algorithm or key size that is non-FIPS while executing in FIPS mode.

User response: Verify that the root CA certificate is in the key database, SAF key ring, or z/OS PKCS #11 token and
is marked as trusted. Check all certificates in the certification chain and verify that they are trusted and are not
expired. If the error occurred while executing in FIPS mode, check that only FIPS algorithms and key sizes are used
by the certificate. If using RACF key rings and the DIGTCERT and DIGTRING classes are RACLIST'ed, issue the
SETROPTS RACLIST (DIGTCERT, DIGTRING) REFRESH command to refresh the profiles to ensure that the latest
changes are available. Collect a System SSL trace that contains the error and then contact your service representative
if the problem persists.

For more information, see Chapter 4, “System SSL and FIPS 140-2,” on page 19.

9 Cryptographic processing error.

Explanation: An error is detected by a cryptographic function. This error might also occur if key sizes that are
non-FIPS are used during an SSL handshake while operating in FIPS mode.

User response: If the error occurred while executing in FIPS mode, check that only FIPS key sizes are used. Collect
a System SSL trace containing the error and then contact your service representative.

For more information, see Chapter 4, “System SSL and FIPS 140-2,” on page 19.

10 ASN processing error.

Explanation: An error is detected while processing a certificate field. This error can also occur when a TLS client or
server received a message containing a TLS extension that was not correctly formed. The TLS extension data may
contain a length field that has an incorrect value.

User response: If using TLS extensions, ensure that the TLS extension data is correct for both the TLS server and
client. If the error persists, collect a System SSL trace containing the error and then contact your service
representative.

11 LDAP processing error.

Explanation: An error is detected while setting up the LDAP environment or retrieving an LDAP directory entry.

User response: Ensure that the LDAP server is running and that there are no network errors. Collect a System SSL
trace containing the error and then contact your service representative if the error persists.

12 An unexpected error has occurred.

Explanation: An unexpected error is detected by the System SSL run time.

User response: Collect a System SSL trace containing the error and then contact your service representative.

13 Size specified for supplied structure is too small

Explanation: The value of the size field in the structure indicates that the size of the structure is insufficient.

User response: Ensure that the size field in the structure that is being used is initialized to the size of structure.

14 Required gsk_all_cipher_suites structure not supplied

Explanation: A gsk_all_cipher_suites structure required by the API was not supplied on the function call.

User response: Ensure that all parameters required by the API are specified on the function call

8 • 14

548 z/OS V2R1.0 System SSL Programming

102 Error detected while reading certificate database

Explanation: An error is detected while reading the key database or retrieving entries on the SAF key ring or z/OS
PKCS #11 token.

User response: Collect a System SSL trace containing the error and then contact your service representative.

103 Incorrect key database record format.

Explanation: The record format for a key database entry is not correct. This error can occur if the name of a request
database is provided instead of the name of a key database.

User response: Ensure that the correct database name is used. Collect a System SSL trace containing a dump of the
keyfile entry and then contact your service representative if the error persists.

106 Incorrect key database password.

Explanation: The System SSL run time is unable to decrypt a key database entry. Either the supplied database
password is incorrect or the database is damaged.

User response: Ensure that the correct key database password is used. Re-create the database if the error persists.

109 No certification authority certificates.

Explanation: The key database, SAF key ring, or z/OS PKCS #11 token does not contain any valid certification
authority certificates. The SSL run time needs at least one CA or self-signed certificate to perform client
authentication.

User response: Add the necessary certificates to the key database, SAF key ring, or z/OS PKCS #11 token and
ensure that existing certificates are valid, have not expired, and are marked as trusted certificates. If using RACF key
rings and the DIGTCERT and DIGTRING classes are RACLIST'ed, issue the SETROPTS RACLIST (DIGTCERT,
DIGTRING) REFRESH command to refresh the profiles to ensure that the latest changes are available.

201 No key database password supplied.

Explanation: A password stash file is specified but the SSL run time is unable to read the password from the stash
file.

User response: Verify that the password stash file exists and both the file and directory path are accessible to the
application. Re-create the password stash file if the error persists.

202 Error detected while opening the certificate database.

Explanation: An error is detected while opening the key database, SAF key ring, or z/OS PKCS #11 token. This
error can occur if no name is supplied or the database, key ring, or token does not exist.

User response: Verify that the key database, SAF key ring, or z/OS PKCS #11 token exists and is accessible by the
application. This value is case-sensitive. Ensure that the case is preserved with your request. Collect a System SSL
trace containing the error and then contact your service representative if the error persists.

203 Unable to generate temporary key pair

Explanation: An error is detected while generating a temporary key pair.

User response: Collect a System SSL trace containing the error and then contact your service representative.

204 Key database password is expired.

Explanation: The key database password is expired.

User response: Use the gskkyman utility to assign a new password for the key database.

102 • 204

Chapter 13. Messages and codes 549

302 Connection is active.

Explanation: An SSL secure connection operation cannot be completed because of an active request for the
connection.

User response: Retry the failing request when the currently active request completed.

401 Certificate is expired or is not valid yet.

Explanation: The current time is either before the certificate start time or after the certificate end time.

User response: Obtain a new certificate if the certificate is expired or wait until the certificate becomes valid if it is
not valid yet.

402 No SSL cipher specifications.

Explanation: This error can occur if:

v The client and server cipher specifications do not contain at least one value in common. Client and server cipher
specifications might be limited depending on which System SSL FMIDs are installed. See Appendix C, “Cipher
suite definitions,” on page 619 for more information. Server cipher specifications are dependent on the type of
algorithms that are used by the server certificate (RSA, DSA, ECDSA and/or Diffie-Hellman), which might limit
the options available during cipher negotiation.

v No SSL protocols are enabled or if all of the enabled protocols have empty cipher specifications or if the TLS
protocol is not enabled while executing in FIPS mode.

v Attempting to use a certificate with its ECC private key in the ICSF PKDS and only fixed ECDH ciphers are
specified.

v Using the TLS V1.1 or higher protocol and only the 40-bit export ciphers are specified.

v Using the TLS V1.2 or higher protocol and only 56-bit DES ciphers are specified.

v Using the TLS V1.2 or higher protocol and none of the server cipher specifications use key algorithms that are
listed in the signature algorithms pairs sent by the client.

v An attempt was made to use a certificate with its DH secure private key in the ICSF PKDS. Only clear private keys
are supported.

v An attempt was made to use a certificate with its ECC secure private key in the ICSF PKDS. Only clear private
keys are supported.

v Using Suite B mode and no required Suite B ciphers were specified.

User response: Ensure that the client and the server have at least one cipher specification in common.

403 No certificate received from partner.

Explanation: The required certificate was not received from the communication partner.

User response: Ensure that the remote application is sending the certificate. Collect a System SSL trace containing
the error and then contact your service representative if the error persists.

405 Certificate format is not supported.

Explanation: The certificate received from the communication partner is not supported by the current version of the
System SSL run time.

User response: Collect a System SSL trace that contains a dump with the unsupported certificate and then contact
your service representative.

406 Error while reading or writing data.

Explanation: An I/O error was reported while the System SSL run time was reading or writing data.

User response: Ensure that there are no network errors. Collect a System SSL trace containing the error and then
contact your service representative if the error persists.

302 • 406

550 z/OS V2R1.0 System SSL Programming

407 Key label does not exist.

Explanation: The supplied label or the default key is not found in the key database or the certificate is not trusted
or the certificate uses algorithms or key sizes that are non-FIPS while executing in FIPS mode.

User response: Supply a valid label or define a default key in the key database or specify a label for a certificate
that uses FIPS algorithms or key sizes if executing in FIPS mode.

For more information about FIPS, see Chapter 4, “System SSL and FIPS 140-2,” on page 19.

408 Key database password is not correct.

Explanation: The System SSL run time is unable to decrypt a keyfile entry. Either the supplied keyfile password is
incorrect or the keyfile is damaged.

User response: Ensure that the correct keyfile password is used. Re-create the keyfile if the error persists.

410 SSL message format is incorrect.

Explanation: An incorrectly formatted SSL message is received from the communication partner.

User response: Collect a System SSL trace containing a dump of the SSL message and then contact your service
representative.

411 Message authentication code is incorrect.

Explanation: The message authentication code (MAC) for a message is not correct. This indicates that the message
was modified during transmission.

User response: Collect a System SSL trace containing a dump of the message and then contact your service
representative if the error persists.

412 SSL protocol or certificate type is not supported.

Explanation: The SSL handshake is not successful because of an unsupported protocol or certificate type. This error
can occur if there is no enabled SSL protocol shared by both the client and the server. When executing in FIPS mode,
specifying the SSL V2 or SSL V3 protocol is ignored.

User response: Ensure that the SSL protocol you want is enabled on both the client and the server. Collect a System
SSL trace containing a dump of the failing handshake and then contact your service representative if the problem
persists.

413 Certificate signature is incorrect.

Explanation: The certificate signature is not correct for a certificate received from the communication partner.

User response: Ensure that a valid certificate is being sent by the communication partner. Collect a System SSL trace
containing a dump of the incorrect certificate and then contact your service representative if the error persists.

414 Certificate is not valid.

Explanation: Either the local certificate or the peer certificate is not valid.

User response: Ensure that a valid certificate is being sent by the communication partner. Collect a System SSL trace
containing a dump of the incorrect certificate and then contact your service representative if the error persists.

415 SSL protocol violation.

Explanation: The communication partner violated the SSL protocol by sending a message out of sequence or by
omitting a required field from a message.

User response: Collect a System SSL trace and then contact your service representative.

407 • 415

Chapter 13. Messages and codes 551

416 Permission denied.

Explanation: The System SSL run time is unable to access a file or system facility.

User response: Ensure that the application is authorized to access the file or facility. Collect a System SSL trace and
then contact your service representative if the error persists.

417 Self-signed certificate cannot be validated.

Explanation: A self-signed certificate cannot be validated because it is not in the key database, SAF key ring, or
z/OS PKCS #11 token.

User response: Add the self-signed certificate to the key database, SAF key ring, or z/OS PKCS #11 token. If using
RACF key rings and the DIGTCERT and DIGTRING classes are RACLIST'ed, issue the SETROPTS RACLIST
(DIGTCERT, DIGTRING) REFRESH command to refresh the profiles to ensure that the latest changes are available.

420 Socket closed by remote partner.

Explanation: The remote partner closed the socket. This error is also reported if the remote partner sent a close
notification alert.

User response: None.

421 SSL V2 cipher is not valid.

Explanation: The SSL V2 cipher is not valid.

User response: Specify a valid cipher.

422 SSL V3 cipher is not valid.

Explanation: The SSL V3 cipher is not valid.

User response: Specify a valid cipher. See Table 16 on page 619 for more information about supported 2-character
ciphers.

427 LDAP is not available.

Explanation: The System SSL run time is unable to access the LDAP server.

User response: Ensure that the LDAP server is running and that there are no network problems. Collect a System
SSL trace and then contact your service representative if the error persists.

428 Key entry does not contain a private key.

Explanation: The key entry does not contain a private key or the private key is not usable. This error can also occur
if the private key is stored in ICSF and ICSF services are not available, if using a SAF key ring that is owned by
another user, if the private key size is greater than the supported configuration limit or the application is executing in
FIPS mode. Certificates that are meant to represent a server or client must be connected to a SAF key ring with a
USAGE value of PERSONAL and either be owned by the user ID of the application or be SITE certificates. This error
can occur when using z/OS PKCS #11 tokens if the user ID of the application does not have appropriate access to the
CRYPTOZ class. This error can occur when using private keys associated with user certificates in a SAF key ring that
is owned by another user if the user ID of the application does not have appropriate access to the
ringOwner.ringName.LST resource in the RDATALIB class.

User response: Ensure that the ICSF started task is started before the application if the private key is stored in ICSF.
When using z/OS PKCS #11 tokens, ensure that the user ID has appropriate access to the CRYPTOZ class.

If executing in FIPS mode, ensure that the certificate that is being used does not have its private key stored in ICSF.

416 • 428

552 z/OS V2R1.0 System SSL Programming

429 SSL V2 header is not valid.

Explanation: The received message does not start with a valid SSL V2 header. This error can occur if an SSL V3
client attempts to establish a secure connection with an SSL V2 server.

User response: Enable the SSL V2 protocol on the client and then retry the request.

431 Certificate is revoked.

Explanation: The certificate is revoked by the certification authority.

User response: Obtain a new certificate.

432 Session renegotiation is not allowed.

Explanation: An attempt to renegotiate the session parameters for an active connection is rejected. This code occurs
if renegotiation is disabled, or if the client or server rejects the renegotiation. If using the TLS protocol, and a no
renegotiation alert is sent to the peer or received from the peer, then SSL processing continues using the current
session parameters. If using the TLS or the SSL V3 protocol, and a handshake failure alert is sent to the peer or
received from the peer, then the SSL connection is closed.

User response: If the session parameters are expected to be successfully reset, then the connection must be closed.

433 Key exceeds allowable export size.

Explanation: The key size that is used for an export cipher suite exceeds the allowable maximum size. For RSA and
DSA keys, the maximum export key size is 512 bits. If the certificate key is larger than 512 bits, the SSL run time uses
a temporary 512-bit key for the connection.

User response: Collect a System SSL trace and then contact your service representative.

434 Certificate key is not compatible with cipher suite.

Explanation: The certificate key is not compatible with the negotiated cipher suite. The negotiated cipher suite is
dependent on the type of algorithms used by the server certificate (RSA, DSA and/or Diffie-Hellman) and those
available for the client to use. This error can also occur if the client certificate uses an algorithm that is incompatible
with the server certificate.

User response: Specify a certificate with the appropriate key type.

435 Certification authority is unknown.

Explanation: The key database does not contain a certificate for the certification authority.

User response: Obtain the certificate for the certification authority and add it to the key database. When using a
SAF key ring, the CA certificate must be TRUSTed. If using RACF key rings and the DIGTCERT and DIGTRING
classes are RACLIST'ed, issue the SETROPTS RACLIST (DIGTCERT, DIGTRING) REFRESH command to refresh the
profiles to ensure that the latest changes are available.

436 Certificate revocation list cannot be found.

Explanation: A certificate revocation list (CRL) cannot be found in the specified LDAP server.

User response: Contact the certification authority and obtain the required CRL.

437 Connection closed.

Explanation: For gsk_secure_socket_read(), a close notification is received from the peer application. For
gsk_secure_socket_write(), a close notification is sent to the peer application. A close notification is sent when the
gsk_secure_socket_shutdown() routine is called or when a close notification is received from the peer application.
Additional data may not be sent by the application after the close notification is sent to the peer application.

User response: None

429 • 437

Chapter 13. Messages and codes 553

438 Internal error reported by remote partner.

Explanation: The peer application detected an internal error while performing an SSL operation and sent an alert to
close the secure connection.

User response: Check the error log for the remote application to determine the nature of the processing error.

439 Unknown alert received from remote partner.

Explanation: The peer application sent an alert message that is not recognized by the System SSL run time.

User response: Collect a System SSL trace and then contact your service representative.

440 Incorrect key usage.

Explanation: The key usage certificate extension does not permit the requested key operation. This error can occur if
the key usage extension of a client or server certificate (if any) does not allow the appropriate key usage.

v RSA server certificates using 40-bit export ciphers with a public key size greater than 512 bits must allow digital
signature.

v RSA or DSA server certificates using fixed Diffie-Hellman key exchange must allow key agreement.

v Other RSA server certificates must allow key encipherment.

v DSA server certificates using ephemeral Diffie-Hellman key exchange must allow digital signature.

v Client certificates using fixed Diffie-Hellman key exchange must allow key agreement.

v ECC client and server certificates using fixed EC Diffie-Hellman (ECDH) key exchange must allow key agreement.

v Otherwise, client certificates must allow digital signature.

User response: Specify a certificate with the appropriate key usage.

If the gskkyman utility was used to create either the client (user) or server end-entity certificate, ensure that the
appropriate option was selected from the Certificate Usage menu to create a client (user) or server certificate. The
Certificate Usage menu consists of options for creating certificate authority and client (user) / server end-entity
certificates.

442 Multiple certificates exist for label.

Explanation: Access of certificate/key from label could not be resolved because multiple certificates/keys exist with
the label.

User response: Correct certificate/key store so that label specifies a unique record.

443 Multiple keys are marked as the default.

Explanation: Access of key from default status could not be resolved because multiple keys are marked as the
default key.

User response: Correct the certificate/key store so that only one key is marked as the default key.

444 Error encountered generating random bytes.

Explanation: The SSL/TLS handshake encountered an error while generating random bytes.

User response: Retry the secure connection. Contact your service representative if the error persists.

445 Key database is not a FIPS mode database.

Explanation: While executing in FIPS mode, an attempt was made to open a key database that does not meet FIPS
criteria.

User response: Specify a key database that meets FIPS criteria if running in FIPS mode.

438 • 445

554 z/OS V2R1.0 System SSL Programming

446 TLS extension mismatch has been encountered.

Explanation: The TLS client received a message from the TLS server containing a TLS extension that was not
requested. The TLS server must only respond to an extension that was sent by the TLS client.

User response: Ensure that the TLS server is operating correctly. If the problem persists, collect a System SSL trace
and contact your service representative.

447 Required TLS extension has been rejected.

Explanation: The TLS server or client encountered a communicating partner that does not support a TLS extension
that is defined as required.

User response: Ensure that the TLS extension data is correctly defined, and that both the TLS server and client
support the required extension. If the problem persists collect a System SSL trace and contact your service
representative.

448 Requested server name is not recognized.

Explanation: The TLS server is unable to match the server names that are supplied in a "Server Name Indication"
type TLS extension, and either the TLS server or TLS client determined this scenario to be fatal.

User response: Ensure that the TLS extension data is correct for both the TLS server and client.

449 Unsupported fragment length was received.

Explanation: The TLS server received a Maximum Fragment Length TLS extension request from the TLS client that
specifies an unsupported maximum fragment length. Supported maximum fragment lengths are 512 bytes, 1024
bytes, 2048 bytes, and 4096 bytes.

User response: Ensure that the TLS extension data is correct for the TLS server and the communicating partner. If
the problem persists collect a System SSL trace and contact your service representative.

450 TLS extension length field is not valid.

Explanation: The TLS client or server received a message containing a TLS extension that was not correctly formed.
The TLS extension data contains a length field that has an incorrect value.

User response: Ensure that the TLS extension data is correct for both the TLS server and client. If the problem
persists collect a System SSL trace and contact your service representative.

451 Elliptic Curve is not supported.

Explanation: The EC domain parameters that are defined for the elliptic curve public or private key are not
supported.

User response: Ensure the elliptic curve public/private key pair uses a supported elliptic curve. See Chapter 3,
“Using cryptographic features with System SSL,” on page 11 for the list of elliptic curves that are supported by
System SSL.

452 EC Parameters not supplied

Explanation: A gsk_buffer structure containing the EC domain parameters was not supplied on the call.

User response: Supply a gsk_buffer structure containing the EC domain parameters on the function call.

453 Signature not supplied

Explanation: A gsk_buffer structure containing the signature was not supplied on the call.

User response: Supply a gsk_buffer structure containing the signature on the function call.

446 • 453

Chapter 13. Messages and codes 555

454 Elliptic Curve parameters are not valid

Explanation: The EC domain parameters that are defined for the elliptic curve public or private key are not valid.
Either no parameters could be found or the parameters could not be successfully decoded.

User response: Ensure the elliptic curve public/private key pair uses a valid elliptic curve.

455 ICSF services are not available

Explanation: A cryptographic process cannot be completed because of ICSF callable services being unavailable. This
error might also occur when attempting to use a cipher suite that uses ICSF to perform a United States only
encryption algorithm (such as AES-GCM) when ICSF is only able to use US export restricted encryption algorithms.

User response: Ensure that ICSF is running and operating correctly. If ICSF is running correctly, ensure that ICSF is
able to use United States only encryption algorithms.

456 ICSF callable service returned an error

Explanation: An ICSF callable service that is employed to facilitate a cryptographic process returned an error
condition. This error can occur if the user ID of the application does not have appropriate access to the RACF
CSFSERV class resource profiles.

User response: Ensure that ICSF is operating correctly and that the user ID of the application has appropriate access
to the RACF CSFSERV class resource profiles. See Table 4 on page 17 or Table 5 on page 17 for information about
resource profiles. Collect a System SSL trace and verify the ICSF return code and reason code relating to the error.
See z/OS Cryptographic Services ICSF Application Programmer's Guide for more information about ICSF return and
reason codes. If the problem persists contact your service representative.

457 ICSF PKCS #11 not operating in FIPS mode

Explanation: While running in FIPS mode, an attempt was made to use ICSF PKCS #11 services, which were not
operating in FIPS mode.

User response: Ensure that ICSF is configured to run in FIPS mode.

458 The SSL V3 expanded cipher is not valid

Explanation: The SSL V3 4-character cipher is not valid.

User response: Specify a valid 4-character cipher. See Table 17 on page 623 for more information about supported
4-character ciphers.

459 Elliptic Curve is not supported in FIPS mode.

Explanation: The EC domain parameters that are defined for the elliptic curve public or private key are not
approved in FIPS mode.

User response: Ensure the elliptic curve for the public or private key is valid in FIPS mode. See Chapter 4, “System
SSL and FIPS 140-2,” on page 19 for a list of elliptic curves that are supported by System SSL when running in FIPS
mode.

460 Required TLS Renegotiation Indication not received

Explanation: TLS Renegotiation Indication was not received on the initial handshake with peer as required by the
GSK_EXTENDED_RENEGOTIATION_INDICATOR environment variable or the gsk_attribute_set_enum enumeration
ID GSK_EXTENDED_RENEGOTIATION_INDICATOR. If a server receives this code, then the
GSK_EXTENDED_RENEGOTIATION_INDICATOR is set to either SERVER or BOTH and the client did not signal
TLS Renegotiation Indication on the initial client hello. If a client receives this code, then the
GSK_EXTENDED_RENEGOTIATION_INDICATOR is set to either CLIENT or BOTH and the server did not signal
TLS Renegotiation Indication on the initial server hello.

User response: Ensure that the peer is configured to signal TLS Renegotiation Indication. If the peer does not
support TLS Renegotiation Indication, and connection is required, then adjust the local setting of the environment
variable GSK_EXTENDED_RENEGOTIATION_INDICATOR to “OPTIONAL” or the gsk_attribute_set_enum

454 • 460

556 z/OS V2R1.0 System SSL Programming

enumeration ID GSK_EXTENDED_RENEGOTIATION_INDICATOR to
GSK_EXTENDED_RENEGOTIATION_INDICATOR_ OPTIONAL.

461 EC domain parameter format is not supported.

Explanation: The server key exchange message contains an elliptic curve parameter format or named curve
specification that is not supported

User response: For ephemeral ECDH cipher suites, ensure that only the named curve EC domain parameter format
is used in the server key exchange message, with a named curve that is supported by System SSL.

462 Elliptic Curve point format is not supported.

Explanation: The elliptic curve public value is specified using an EC point format that is not supported.

User response: Ensure the elliptic curve public value is specified using a supported EC point format. System SSL
supports only the uncompressed EC points format.

463 Cryptographic hardware does not support service or algorithm

Explanation: A call requiring cryptographic hardware was made to ICSF. The current installation hardware does not
support the service or algorithm that is being used.

User response: Ensure that the correct protocol is in use for your installation, and that the cryptographic hardware
required for this service or algorithm is available to ICSF.

464 Elliptic curve list is not valid.

Explanation: The supported elliptic curve list is not formatted correctly.

User response: Ensure the value that is supplied for GSK_CLIENT_ECURVE_LIST contains only entries for elliptic
curves that are supported by System SSL. See Table 19 on page 627 for a list of supported elliptic curve definitions.
Ensure that each entry uses 4 decimal digits.

When operating in Suite B mode, ensure that the value supplied contains the elliptical curves that are required by the
Suite B profile in use. See “Suite B cryptography support” on page 45 for a list of required elliptical curves for each
Suite B profile.

465 ICSF PKCS #11 services are disabled

Explanation: An attempt was made to use ICSF PKCS #11 services, which are disabled because of an ICSF FIPS
self-test failure.

User response: Stop and restart ICSF. System SSL might need restarting to regain the full hardware benefit from
ICSF. Contact your service representative if the error persists.

466 Signature algorithm pairs list is not valid.

Explanation: The supported signature algorithm pairs list is not correctly formatted.

User response: Ensure the value that is supplied for GSK_TLS_SIG_ALG_PAIRS contains only valid entries for hash
and signature algorithm pairs that are supported by System SSL, and that each entry is defined using 4 digits. See
Table 20 on page 627 for a list of valid 4-character signature algorithm pair definitions.

467 Signature algorithm not in signature algorithm pairs list.

Explanation: A signature algorithm that is used to sign a local or peer certificate is not included in the signature
algorithm pairs list. The server certificate chain must use signature algorithms included in the signature algorithm
pairs that are presented by the client during the TLS handshake. The client certificate chain must use signature
algorithms included in the signature algorithm pairs that are presented by the server during the TLS handshake.

User response: Ensure that the signatures of the local and peer certificates in the certificate chain use signature
algorithms that are present in the signature algorithm pairs list that is presented by the session partner. If the
certificate chain is correct, then configure the client or server or both to specify all necessary signature algorithms

461 • 467

Chapter 13. Messages and codes 557

pairs in the environment variable GSK_TLS_SIG_ALG_PAIRS to allow use of the certificate chain. See Table 20 on
page 627 for a list of valid 4-character signature algorithm pair definitions.

468 Certificate key algorithm not in signature algorithm pairs list.

Explanation: The certificate key algorithm of the local certificate cannot be used to generate digital signatures as it is
not included in the signature algorithm pairs list. The server certificate must use a key algorithm included in the
signature algorithm pairs list that is presented by the client during the TLS handshake. The client certificate must use
a key algorithm included in the signature algorithm pairs list that is presented by the server during the TLS
handshake.

User response: Ensure that the key algorithm of the certificate is present in the signature algorithm pairs list that is
presented by the session partner. If the certificate is correct, then configure the client or server or both to specify all
necessary signature algorithm pairs in the environment variable GSK_TLS_SIG_ALG_PAIRS that allows the use of the
certificate's key for generating digital signatures. See Table 20 on page 627 for a list of valid 4-character signature
algorithm pair definitions.

469 Incorrect key attribute.

Explanation: One or more PKCS #11 attributes or parameters for a key are missing or incorrect for a requested
function that is being performed. For example, a signing operation requires that for the key that is being used, the
PKCS #11 sign attribute is to be TRUE. Verify that the correct key is being used for the requested function, and that
all required attributes are set for that key. If you are using gsk_make_enveloped_private_key_msg(), ensure that a
recipient certificate's RSA public key is valid.

User response: Verify that a certificate's PKCS #11 key attributes are correct for the function that is being performed.

470 Certificate does not meet Suite B requirements.

Explanation: The certificate in use does not meet the requirements for the Suite B profile that is selected for the
environment.

User response: Ensure that the certificate used for the connection satisfies the requirements for the chosen Suite B
profile. See “Suite B cryptography support” on page 45 for more information about Suite B certificate requirements.

471 Secure private key cannot be used with a fixed ECDH key exchange.

Explanation: A handshake attempted to perform an ECDH key exchange. The certificate's private key is a label that
is pointing to a secure key. This is not a supported operation.

User response: Choose a certificate that does not have a secure private key or a cipher that does not perform an
ECDH key exchange.

472 Clear key support not available due to ICSF key policy.

Explanation: Unable to generate clear keys or PKCS #11 objects because of the caller's RACF access to CRYPTOZ
class resource CLEARKEY.SYSTOK-SESSION-ONLY that does not allow the generation of non-secure (clear) PKCS
#11 keys.

User response: Ensure that the user ID of the application has appropriate access to the RACF CRYPTOZ class
resource CLEARKEY.SYSTOK-SESSION-ONLY.

501 Buffer size is not valid.

Explanation: The socket buffer or buffer size is not valid.

User response: Specify a valid buffer and buffer size.

468 • 501

558 z/OS V2R1.0 System SSL Programming

502 Socket request would block.

Explanation: The socket is in non-blocking mode and the socket request returned the EWOULDBLOCK error.

User response: Retry the gsk_secure_socket_read() or gsk_secure_socket_write() request when the socket is ready
to send or receive data.

503 Socket read request would block.

Explanation: A socket read request that is issued as part of an SSL handshake returned the EWOULDBLOCK error.

User response: Retry the failing request when the socket is ready to receive data.

504 Socket write request would block.

Explanation: A socket write request that is issued as part of an SSL handshake return the EWOULDBLOCK error.

User response: Retry the failing request when the socket is ready to send data.

505 Record overflow.

Explanation: An SSL protocol record has a plain text record length greater than 16384 or an encrypted text record
length greater than 18432.

User response: Ensure that data is not being corrupted during transmission. Obtain a System SSL trace containing a
dump of the failing record and contact your service representative if the error persists.

601 Protocol is not SSL V3, TLS V1.0, TLS V1.1, or TLS V1.2.

Explanation: The requested function requires the SSL V3, TLS V1.0, TLS V1.1, or TLS V1.2 protocol.

User response: Ensure that the correct protocol is in use before issuing the request.

602 Function identifier is not valid.

Explanation: The function identifier that is specified for gsk_secure_socket_misc() is not valid.

User response: Specify a valid function identifier.

603 Specified function enumerator is not valid.

Explanation: The value that is specified is not a value that is enumerated as a function for the API.

User response: Ensure that the correct function enumerator is coded for the function.

604 Send sequence number is near maximum value

Explanation: While using TLS V1.1 or higher protocol, the send sequence number is near the maximum value before
which it wraps. For TLS V1.1 and higher, an SSL handshake must occur to reset the send sequence number before the
sequence number wrapping. System SSL is unable to automatically initiate a handshake on the current function call.
This code is not returned again until after a handshake for the connection resets the send sequence number and the
send sequence number is again near the maximum value.

User response: The caller should initiate a handshake by calling gsk_secure_socket_misc, specifying
GSK_RESET_CIPHER.When the handshake is initiated, the previous function call that returned this code can be
called again.

701 Attribute identifier is not valid.

Explanation: The attribute identifier is not valid.

User response: Specify a valid attribute identifier.

502 • 701

Chapter 13. Messages and codes 559

702 Attribute length is not valid.

Explanation: The attribute length is not valid.

User response: Specify a valid attribute length.

703 Enumeration is not valid.

Explanation: The enumeration value is not valid.

User response: Specify a valid enumeration value.

704 Session identifier cache callback is not valid.

Explanation: The session identifier cache callback values are not valid. All callback routines must be provided to use
an application session identifier cache.

User response: Specify valid session identifier cache callback values.

705 Numeric value is not valid.

Explanation: The numeric value is not valid.

User response: Specify a valid numeric value.

706 Attribute parameter is not valid.

Explanation: The attribute parameter value is not valid.

User response: Specify a valid attribute parameter value.

707 TLS extension type is not valid.

Explanation: The TLS extension type is not valid or not supported.

User response: Specify a valid or supported TLS extension type value.

708 Supplied TLS extension data is not valid.

Explanation: TLS extension data that is submitted to the SSL environment or connection is incorrectly defined.

User response: Ensure that the TLS extension data is correctly defined. If the problem persists collect a System SSL
trace and contact your service representative.

702 • 708

560 z/OS V2R1.0 System SSL Programming

Deprecated SSL function return codes
The deprecated System SSL functions return the value 0 (GSK_OK) if no error is
detected. Otherwise, one of the return codes listed in the gskssl.h include file is
returned.

1 Error detected while reading certificate database

Explanation: An error is detected while reading the key database or retrieving entries on the SAF key ring or z/OS
PKCS #11 token.

User response: Collect a System SSL trace containing the error and then contact your service representative.

2 Error detected while opening the certificate database.

Explanation: An error is detected while opening the key database, SAF key ring, or z/OS PKCS #11 token. This
error can occur if no name is supplied or the database, key ring, or token does not exist.

User response: Verify that the key database, SAF key ring, or z/OS PKCS #11 token exists and is accessible by the
application. This value is case-sensitive. Ensure that the case is preserved with your request. Collect a System SSL
trace containing the error and then contact your service representative if the error persists.

3 Incorrect key database record format.

Explanation: The record format for a key database entry is not correct. This error can occur if the name of a request
database is provided instead of the name of a key database.

User response: Ensure that the correct database name is used. Collect a System SSL trace containing a dump of the
keyfile entry and then contact your service representative if the error persists.

4 Key database password is not correct.

Explanation: The System SSL run time is unable to decrypt a keyfile entry. Either the supplied keyfile password is
incorrect or the keyfile is damaged.

User response: Ensure that the correct keyfile password is used and both the file and directory path are accessible to
the application

9 Key label does not exist.

Explanation: The supplied label or the default key is not found in the key database or the certificate is not trusted.

User response: Supply a valid label or define a default key in the key database.

12 Key label is not found.

Explanation: The requested key label is not found in the key database, SAF key ring, or z/OS PKCS #11 token.

User response: Specify a label that exists in the key database, SAF key ring, or z/OS PKCS #11 token.

13 Duplicate subject names.

Explanation: The key database, SAF key ring, or z/OS PKCS #11 token contains multiple certificates with the same
subject name as the DN specified in the gsk_secure_soc_init() initialization data.

User response: Either remove the duplicate certificates or specify a label instead of a DN in the
gsk_secure_soc_init() initialization data.

1 • 13

Chapter 13. Messages and codes 561

16 Incorrect key database password.

Explanation: The System SSL run time is unable to decrypt a key database entry. Either the supplied database
password is incorrect or the database is damaged.

User response: Ensure that the correct key database password is used. Re-create the database if the error persists.

17 Key database password is expired.

Explanation: The key database password is expired.

User response: Use the gskkyman utility to assign a new password for the key database.

18 No certification authority certificates.

Explanation: The key database, SAF key ring, or z/OS PKCS #11 token does not contain any valid certification
authority certificates. The SSL run time needs at least one CA or self-signed certificate to perform client
authentication.

User response: Add the necessary certificates to the key database, SAF key ring, or z/OS PKCS #11 token and
ensure that existing certificates are valid and have not expired. If using RACF key rings and the DIGTCERT and
DIGTRING classes are RACLIST'ed, issue the SETROPTS RACLIST (DIGTCERT, DIGTRING) REFRESH command to
refresh the profiles to ensure that the latest changes are available.

19 No certificates available.

Explanation: The key database, SAF key ring, or z/OS PKCS #11 token does not contain any certificates, or the SSL
client application does not have a certificate available when authentication is requested by the server.

User response: Check for available certificates and add the user certificate and any necessary certification authority
certificates to the key database, SAF key ring, or z/OS PKCS #11 token, if necessary. Specify a certificate for the client
application to use. If using RACF key rings and the DIGTCERT and DIGTRING classes are RACLIST'ed, issue the
SETROPTS RACLIST (DIGTCERT, DIGTRING) REFRESH command to refresh the profiles to ensure that the latest
changes are available.

70 Application is not APF-authorized.

Explanation: The gsk_srb_initialize() routine is called but the program is not APF-authorized. SRB mode cannot be
used by unauthorized applications.

User response: Contact your system programmer to get your application authorized.

71 Unable to establish ESTAE environment.

Explanation: The gsk_srb_initialize() routine is unable to establish the ESTAE error recovery environment.

User response: Contact your service representative.

72 Unable to create service thread.

Explanation: The gsk_srb_initialize() routine is unable to create a thread to handle SRB processing.

User response: Ensure that POSIX thread support is available to the application environment. Contact your service
representative if the error persists.

100 Initialization parameter is not valid

Explanation: An initialization parameter for gsk_initialize() or gsk_secure_soc_init() is not valid.

User response: Ensure that all of the parameters are correct. Contact your service representative if the error persists.

16 • 100

562 z/OS V2R1.0 System SSL Programming

102 Security type is not valid

Explanation: The security type that is specified in the initialization data for the gsk_initialize() routine is not valid.

User response: Specify a valid security type for the sec_types parameter.

103 SSL V2 session timeout is not valid.

Explanation: The SSL V2 session timeout that is specified in the initialization data for the gsk_initialize() routine is
not valid.

User response: Specify a valid SSL V2 session timeout value.

104 SSL V3 session timeout is not valid.

Explanation: The SSL V3 session timeout that is specified in the initialization data for the gsk_initialize() routine is
not valid.

User response: Specify a valid SSL V3 session timeout value.

-1 No SSL cipher specifications.

Explanation: The client and server cipher specifications do not contain at least one value in common. Client and
server cipher specification may be limited depending on which System SSL FMIDs are installed. See Appendix C,
“Cipher suite definitions,” on page 619 for more information. Server cipher specifications are dependent on the type
of algorithms that are used by the server certificate (RSA, DSA and/or Diffie-Hellman), which may limit the options
available during cipher negotiation. This error can also occur if no SSL protocols are enabled or if all of the enabled
protocols have empty cipher specifications.

User response: Ensure that the client and the server have at least one cipher specification in common.

-2 No certificate received from partner.

Explanation: The required certificate was not received from the communication partner.

User response: Ensure that the remote application is sending the certificate. Collect a System SSL trace containing
the error and then contact your service representative if the error persists.

-3 Certificate key is not compatible with cipher suite.

Explanation: The certificate key is not compatible with the negotiated cipher suite. The negotiated cipher suite is
dependent on the type of algorithms that are used by the server certificate (RSA, DSA, and/or Diffie-Hellman) and
those available for the client to use. This error can occur if the client certificate uses an algorithm that is incompatible
with the server certificate.

User response: Specify a certificate with the appropriate key type.

-5 SSL V2 header is not valid.

Explanation: The received message does not start with a valid SSL V2 header. This error can occur if an SSL V3
client attempts to establish a secure connection with an SSL V2 server.

User response: Enable the SSL V2 protocol on the client and then retry the request.

-6 Certificate format is not supported.

Explanation: The certificate received from the communication partner is not supported by the current version of the
System SSL run time.

User response: Collect a System SSL trace containing a dump that contains the unsupported certificate and then
contact your service representative.

102 • -6

Chapter 13. Messages and codes 563

-7 Session renegotiation is not allowed.

Explanation: An attempt to renegotiate the session parameters for an active connection is rejected. This code occurs
if renegotiation is disabled or if the client or server rejects the renegotiation. If using the TLS protocol, and a no
renegotiation alert is sent to the peer or received from the peer, then SSL processing continues using the current
session parameters. If using the TLS or the SSL V3 protocol, and a handshake failure alert is sent to the peer or
received from the peer, then the SSL connection is closed.

User response: If the session parameters are expected to be successfully reset, then the connection must be closed.

-9 Certificate is revoked.

Explanation: The certificate is revoked by the certification authority.

User response: Obtain a new certificate.

-10 Error while reading or writing data.

Explanation: An I/O error was reported while the System SSL run time was reading or writing data.

User response: Ensure that there are no network errors. Collect a System SSL trace containing the error and then
contact your service representative if the error persists.

-11 SSL message format is incorrect.

Explanation: An incorrectly formatted SSL message is received from the communication partner.

User response: Collect a System SSL trace containing a dump of the SSL message and then contact your service
representative.

-12 Message authentication code is incorrect.

Explanation: The message authentication code (MAC) for a message is not correct. This indicates that the message
was modified during transmission.

User response: Collect a System SSL trace containing a dump of the message and then contact your service
representative if the error persists.

-13 SSL protocol or certificate type is not supported.

Explanation: The SSL handshake is not successful because of an unsupported protocol or certificate type. This error
can occur if there is no enabled SSL protocol shared by both the client and the server.

User response: Ensure that the SSL protocol you want is enabled on both the client and the server. Collect a System
SSL trace containing a dump of the failing handshake and then contact your service representative if the problem
persists.

-14 Certificate signature is incorrect

Explanation: The certificate signature is not correct for a certificate received from the communication partner.

User response: Ensure that a valid certificate is being sent by the communication partner. Collect a System SSL trace
containing a dump of the incorrect certificate and then contact your service representative if the error persists.

-15 Certificate is not valid

Explanation: Either the local certificate or the peer certificate is not valid. In order for a certificate to be valid, the
complete certificate chain must be present in the key database file, SAF key ring, or z/OS PKCS #11 token. Verify
that the certificate in the certificate chain is marked trusted.

User response: Ensure that a valid certificate is being sent by the communication partner. Collect a System SSL trace
containing a dump of the incorrect certificate and then contact your service representative if the error persists. If
using RACF key rings and the DIGTCERT and DIGTRING classes are RACLIST'ed, issue the SETROPTS RACLIST
(DIGTCERT, DIGTRING) REFRESH command to refresh the profiles to ensure that the latest changes are available.

-7 • -15

564 z/OS V2R1.0 System SSL Programming

-16 SSL protocol violation.

Explanation: The communication partner violated the SSL protocol by sending a message out of sequence or by
omitting a required field from a message.

User response: Collect a System SSL trace and then contact your service representative.

-17 Permission denied.

Explanation: The System SSL run time is unable to access a file or system facility.

User response: Ensure that the application is authorized to access the file or facility. Collect a System SSL trace and
then contact your service representative if the error persists.

-18 Self-signed certificate cannot be validated.

Explanation: A self-signed certificate cannot be validated because it is not in the key database, SAF key ring, or
z/OS PKCS #11 token.

User response: Add the self-signed certificate to the key database, SAF key ring, or z/OS PKCS #11 token. If using
RACF key rings and the DIGTCERT and DIGTRING classes are RACLIST'ed, issue the SETROPTS RACLIST
(DIGTCERT, DIGTRING) REFRESH command to refresh the profiles to ensure that the latest changes are available.

-19 Certification authority is unknown

Explanation: The key database does not contain a certificate for the certification authority.

User response: Obtain the certificate for the certification authority and add it to the key database. When using a
SAF key ring, the CA certificate must be TRUSTed. If using RACF key rings and the DIGTCERT and DIGTRING
classes are RACLIST'ed, issue the SETROPTS RACLIST (DIGTCERT, DIGTRING) REFRESH command to refresh the
profiles to ensure that the latest changes are available.

-20 Insufficient storage is available.

Explanation: The System SSL runtime library is unable to obtain storage for an internal control block.

User response: Increase the storage available to the application and then retry the failing operation.

-21 Handle is in the incorrect state.

Explanation: The SSL connection handle is in the incorrect state for the requested operation.

User response: Correct the application to request SSL functions in the proper sequence.

-22 Socket closed by remote partner.

Explanation: The remote partner closed the socket.

User response: None.

-25 Certificate is expired or is not valid yet.

Explanation: The current time is either before the certificate start time or after the certificate end time.

User response: Obtain a new certificate if the certificate is expired or wait until the certificate becomes valid if it is
not valid yet.

-26 Key exceeds allowable export size.

Explanation: The key size used for an export cipher suite exceeds the allowable maximum size. For RSA and DSA
keys, the maximum export key size is 512 bits. If the certificate key is larger than 512 bits, the SSL run time uses a
temporary 512-bit key for the connection.

User response: Collect a System SSL trace and then contact your service representative.

-16 • -26

Chapter 13. Messages and codes 565

-27 Key entry does not contain a private key.

Explanation: The key entry does not contain a private key or the private key is not usable. This error can also occur
if the private key is stored in ICSF and ICSF services are not available, if using a SAF key ring that is owned by
another user, if the private key size is greater than the supported configuration limit or the application is executing in
FIPS mode. Certificates that are meant to represent a server or client must be connected to a SAF key ring with a
USAGE value of PERSONAL and either be owned by the user ID of the application or be SITE certificates. This error
can occur when using z/OS PKCS #11 tokens if the user ID of the application does not have appropriate access to the
CRYPTOZ class. This error can occur when using private keys associated with user certificates in a SAF key ring
owned by another user if the user ID of the application does not have appropriate access to the
ringOwner.ringName.LST resource in the RDATALIB class.

User response: Specify a key entry containing a private key value. Ensure that the ICSF started task is running if
the private key is stored in ICSF. When using z/OS PKCS #11 tokens ensure that the user ID has appropriate access
to the CRYPTOZ class.

If executing in FIPS mode, ensure that the certificate being used does not have its private key stored in ICSF.

-28 Function parameter is not valid.

Explanation: A parameter specified on an SSL function call is not valid.

User response: Ensure that the parameters on the failing function call are correct. Contact your service
representative if the error persists.

-30 Socket request would block.

Explanation: The socket is in non-blocking mode and the socket request returned the EWOULDBLOCK error.

User response: Retry the gsk_secure_soc_read() or gsk_secure_soc_write() request when the socket is ready to send
or receive data.

-34 Certificate revocation list cannot be found.

Explanation: A certificate revocation list (CRL) cannot be found in the specified LDAP server.

User response: Contact the certification authority and obtain the required CRL.

-35 Certificate validation error.

Explanation: An error is detected while validating a certificate. This error can occur if a root CA certificate is not
found in the key database, SAF key ring, or z/OS PKCS #11 token or if the certificate is not marked as a trusted
certificate or if the certificate requires an algorithm or key size that is non-FIPS while executing in FIPS mode.

User response: Verify that the root CA certificate is in the key database, SAF key ring, or z/OS PKCS #11 token and
is marked as trusted. Check all certificates in the certification chain and verify that they are trusted and are not
expired. Collect a System SSL trace containing the error and then contact your service representative if the problem
persists. If using RACF key rings and the DIGTCERT and DIGTRING classes are RACLIST'ed, issue the SETROPTS
RACLIST (DIGTCERT, DIGTRING) REFRESH command to refresh the profiles to ensure that the latest changes are
available.

For more information, see Chapter 4, “System SSL and FIPS 140-2,” on page 19.

-36 Cryptographic processing error.

Explanation: An error is detected by a cryptographic function. This error might also occur if key sizes that are
non-FIPS are used during an SSL handshake while operating in FIPS mode.

User response: If the error occurred while executing in FIPS mode, check that only FIPS key sizes are used. Collect
a System SSL trace containing the error and then contact your service representative.

For more information, see Chapter 4, “System SSL and FIPS 140-2,” on page 19.

-27 • -36

566 z/OS V2R1.0 System SSL Programming

-37 ASN processing error.

Explanation: An error is detected while processing a certificate field.

User response: Collect a System SSL trace containing the error and then contact your service representative.

-38 LDAP processing error.

Explanation: An error is detected while setting up the LDAP environment or retrieving an LDAP directory entry.

User response: Ensure that the LDAP server is running and that there are no network errors. Collect a System SSL
trace containing the error and then contact your service representative if the error persists.

-39 LDAP is not available.

Explanation: The System SSL run time is unable to access the LDAP server.

User response: Ensure that the LDAP server is running and that there are no network problems. Collect a System
SSL trace and then contact your service representative if the error persists.

-40 SSL V2 cipher is not valid.

Explanation: The SSL V2 cipher is not valid.

User response: Specify a valid cipher.

-41 SSL V3 cipher is not valid.

Explanation: The SSL V3 cipher is not valid.

User response: Specify a valid cipher.

-42 Bad handshake specification.

Explanation: The handshake specification for the gsk_secure_soc_init() routine is not valid.

User response: Specify a valid value for the hs_type field in the gsk_secure_soc_init() initialization data.

-43 No read function.

Explanation: No read function is provided for the gsk_secure_soc_init() routine.

User response: Specify a read function for the skread field in the gsk_secure_soc_init() initialization data.

-44 No write function.

Explanation: No write function is provided for the gsk_secure_soc_init() routine.

User response: Specify a write function for the skwrite field in the gsk_secure_soc_init() initialization data.

-46 Socket write request would block.

Explanation: A socket write request that is issued as part of an SSL handshake return the EWOULDBLOCK error.

User response: Retry the failing request when the socket is ready to send data.

-47 Connection is active.

Explanation: An SSL secure connection operation cannot be completed because of an active request for the
connection.

User response: Retry the failing request when the currently active request has completed.

-37 • -47

Chapter 13. Messages and codes 567

-48 Connection closed.

Explanation: For gsk_secure_soc_read(), a close notification has been received from the peer application. For
gsk_secure_soc_write(), a close notification has been sent to the peer application. A close notification is sent when a
close notification is received from the peer application. Additional data may not be sent by the application after the
close notification has been sent to the peer application.

User response: None.

-51 Protocol is not SSL V3 or TLS V1.0.

Explanation: The requested function requires the SSL V3 or TLS V1.0 protocol.

User response: Ensure that the correct protocol is in use before issuing the request.

-53 Internal error reported by remote partner.

Explanation: The peer application detected an internal error while performing an SSL operation and sent an alert to
close the secure connection.

User response: Check the error log for the remote application to determine the nature of the processing error.

-54 Unknown alert received from remote partner.

Explanation: The peer application sent an alert message that is not recognized by the System SSL run time.

User response: Collect a System SSL trace and then contact your service representative.

-55 Incorrect key usage.

Explanation: The key usage certificate extension does not permit the requested key operation. This error can occur if
the key usage extension of a client or server certificate (if any) does not allow the appropriate key usage.

v RSA server certificates using 40-bit export ciphers with a public key size greater than 512 bits must allow digital
signature.

v RSA or DSA server certificates using fixed Diffie-Hellman key exchange must allow key agreement.

v Other RSA server certificates must allow key encipherment.

v DSA server certificates using ephemeral Diffie-Hellman key exchange must allow digital signature.

v Client certificates using Diffie-Hellman key exchange must allow key agreement.

v Otherwise client certificates must allow digital signature.

User response: Specify a certificate with the appropriate key usage.

If the gskkyman utility was used to create either the client or server end-entity certificate, ensure that the appropriate
option was selected from the Certificate Usage menu to create a user or server certificate.

-56 Multiple certificates exist for label.

Explanation: Access of certificate/key from label could not be resolved because multiple certificates/keys exist with
the label.

User response: Correct certificate/key store so that label specifies a unique record.

-57 Multiple keys are marked as the default.

Explanation: Access of key from default status could not be resolved because multiple keys are marked as the
default key.

User response: Correct certificate/key store so that only one key is marked as the default key.

-48 • -57

568 z/OS V2R1.0 System SSL Programming

-70 SRB processing is not initialized.

Explanation: The gsk_srb_initialize() routine has not been called to initialize the SRB support.

User response: Call gsk_srb_initialize() before making any calls to GSKSRBRD or GSKSRBWT.

-71 SRB lock timeout.

Explanation: The GSKSRBRD or GSKSRBWT routine is unable to obtain the lock for the SRB control area.

User response: Ensure that the SRB processing threads are not suspended (for example, a synchronous dump
suspends thread execution while the dump is processed). Contact your service representative if the error persists.

-72 SRB suspend failed.

Explanation: The GSKSRBRD or GSKSRBWT routine is unable to suspend execution while waiting for the
completion of the read or write request.

User response: Contact your service representative.

-73 Unknown SRB service request.

Explanation: The SRB service task does not recognize the function request.

User response: Contact your service representative.

-99 An unexpected error has occurred.

Explanation: An unexpected error is detected by the System SSL run time.

User response: Collect a System SSL trace containing the error and then contact your service representative.

-100 Buffer size is not valid.

Explanation: The socket buffer or buffer size is not valid.

User response: Specify a valid buffer and buffer size.

-101 Handle is not valid.

Explanation: The SSL connection handle specified on a System SSL function call is not valid.

User response: Call the gsk_secure_soc_init() function to create an SSL connection handle.

-104 Error encountered generating random bytes.

Explanation: The SSL/TLS handshake encountered an error while generating random bytes.

User response: Retry the secure connection. Contact your service representative if the error persists.

-105 Key database is not a FIPS mode database.

Explanation: While executing in FIPS mode, an attempt was made to open a key database that does not meet FIPS
criteria.

User response: Specify a key database that meets FIPS criteria if running in FIPS mode.

-106 Required TLS Renegotiation Indication not received

Explanation: TLS Renegotiation Indication was not received on the initial handshake with the peer as required by
the GSK_EXTENDED_RENEGOTIATION_INDICATOR environment variable. If a server receives this code, then the
GSK_EXTENDED_RENEGOTIATION_INDICATOR is set to either SERVER or BOTH and the client did not signal
TLS Renegotiation Indication on the initial client hello. If a client receives this code, then the

-70 • -106

Chapter 13. Messages and codes 569

GSK_EXTENDED_RENEGOTIATION_INDICATOR is set to either CLIENT or BOTH and the server did not signal
TLS Renegotiation Indication on the initial server hello.

User response: Ensure that the peer is configured to signal TLS Renegotiation Indication. If the peer does not
support TLS Renegotiation Indication, and connection is required, then adjust the local setting of the environment
variable GSK_EXTENDED_RENEGOTIATION_INDICATOR to "OPTIONAL".

-107 ICSF services are unavailable

Explanation: A cryptographic process cannot complete because ICSF callable services are unavailable.

User response: Ensure that ICSF is running and operating correctly.

-108 ICSF callable service returned an error

Explanation: An ICSF callable service that is employed to facilitate a cryptographic process returned an error
condition. This error can occur if the user ID of the application does not have appropriate access to the RACF
CSFSERV class resource profiles.

User response: Ensure that ICSF is operating correctly and that the user ID of the application has appropriate access
to the RACF CSFSERV class resource profiles. See Table 4 on page 17 or Table 5 on page 17 for information about
resource profiles. Collect a System SSL trace and verify the ICSF return code and reason code relating to the error.
See z/OS Cryptographic Services ICSF Application Programmer's Guide for more information about ICSF return and
reason codes. If the problem persists, contact your service representative.

-109 ICSF PKCS #11 not operating in FIPS mode

Explanation: While running in FIPS mode, an attempt was made to use ICSF PKCS #11 services that were not
operating in FIPS mode.

User response: Ensure that ICSF is configured to run in FIPS mode.

-110 ICSF PKCS #11 services are disabled

Explanation: An attempt was made to use ICSF PKCS #11 services, which are disabled because of an ICSF FIPS self
test failure.

User response: Stop and restart ICSF. System SSL might need restarting to regain the full hardware benefit from
ICSF. Contact your service representative if the error persists.

-111 ICSF clear key support not available

Explanation: Unable to generate clear keys or PKCS #11 objects because of the caller's RACF access to CRYPTOZ
class resource CLEARKEY.SYSTOK-SESSION-ONLY that does not allow the generation of non-secure (clear) PKCS
#11 keys.

User response: Ensure that the user ID of the application has appropriate access to the RACF CRYPTOZ class
resource CLEARKEY.SYSTOK-SESSION-ONLY.

-107 • -111

570 z/OS V2R1.0 System SSL Programming

ASN.1 status codes (014CExxx)
ASN.1 status codes have the prefix "014CE". These status codes identify ASN.1
encoding and decoding errors.

014CE001 No more data.

Explanation: The end of an ASN.1 encoded stream is reached prematurely. This error can occur if an encoded
stream is truncated.

User response: Verify that the encoded certificate is not modified. Contact your service representative if the error
persists.

014CE002 Data value overflow.

Explanation: A decoded data value is too large to be represented as the specified data type.

User response: Contact your service representative.

014CE003 Length value is not valid.

Explanation: The length of an encoded item is not valid. This error can occur if an encoded stream is truncated.

User response: Verify that the encoded certificate is not modified. Contact your service representative if the error
persists.

014CE004 Data encoding is not valid.

Explanation: The encoded data violates the ASN.1 encoding rules.

User response: Contact your service representative.

014CE005 Parameter is not valid

Explanation: An application parameter is not valid.

User response: Correct the application to specify valid parameters for the failing function call. Contact your service
representative if the error persists.

014CE006 Insufficient memory is available.

Explanation: There is not enough memory available to allocate a required control block or data element.

User response: Increase the memory available to the application and then retry the request. Contact your service
representative if the error persists.

014CE007 Indefinite-length encoding is not allowed

Explanation: An indefinite-length encoding is encountered for a data element that requires a length value.

User response: Contact your service representative.

014CE008 Data element must be an ASN.1 primitive.

Explanation: A constructed element is encountered instead of an ASN.1 primitive.

User response: Contact your service representative.

014CE009 Data element must be constructed.

Explanation: An ASN.1 primitive is encountered instead of a constructed element.

User response: Contact your service representative.

014CE001 • 014CE009

Chapter 13. Messages and codes 571

014CE00A Data value is not present

Explanation: An ASN.1 element has no value and does not have a default value.

User response: Contact your service representative.

014CE00B Indefinite-length encoding is not supported.

Explanation: Indefinite-length encoding is not supported for the current structure. An X.509 certificate is encoded
using ASN.1 DER (Distinguished Encoding Rules) which does not allow the use of indefinite-length encodings.

User response: Contact your service representative.

014CE00C Unused bit count is not valid

Explanation: The unused bit count for a bit string must be between 0 and 7.

User response: Contact your service representative if this error occurs while decoding a bit string. Correct the
application if this error occurs while encoding a bit string.

014CE00D Unused bit count is not valid for a segmented bit string.

Explanation: The unused bit count must be zero for each segment other than the final segment of a bit string.

User response: Contact your service representative.

014CE00E Data type is not correct.

Explanation: An unexpected data type is encountered while decoding a data element.

User response: Contact your service representative.

014CE00F Excess data found at end of data element

Explanation: There is unprocessed encoded data after decoding a data element.

User response: Contact your service representative.

014CE010 Required data element is missing.

Explanation: A required data element is not found when decoding an encoded structure.

User response: Contact your service representative.

014CE011 Selection is not within the valid range.

Explanation: The selection for an ASN.1 element is not within the valid range for that element.

User response: Contact your service representative.

014CE012 No selection found

Explanation: No selection found for an ASN.1 element.

User response: Contact your service representative.

014CE013 Syntax already set.

Explanation: The decoding syntax is already set for an ASN.1 element.

User response: Contact your service representative.

014CE00A • 014CE013

572 z/OS V2R1.0 System SSL Programming

014CE014 Character string cannot be converted.

Explanation: A character string cannot be converted to the target code page. This error can occur when a character
string contains characters which cannot be represented in the target code page.

User response: Ensure that the character string uses characters which are valid for the target code page. Contact
your service representative if the error persists.

014CE015 Codeset is not allowed

Explanation: The requested code set is not valid for the current data element.

User response: Contact your service representative.

014CE016 Attribute value is not valid.

Explanation: An attribute value is not valid.

User response: Contact your service representative.

014CE017 Attribute value separator is missing.

Explanation: An X.500 attribute value separator is missing.

User response: Ensure that the name string is correctly formed. Each attribute consists of an attribute type and an
attribute value separated by an equal sign. Contact your service representative if the error persists.

014CE018 Attribute value is missing

Explanation: An X.500 attribute value is missing.

User response: Correct the application to specify an attribute for each relative distinguished name.

014CE019 Object identifier syntax error

Explanation: The syntax of an object identifier is not valid. The object identifier consists of one or more decimal
numbers separated by periods.

User response: Correct the application to specify a valid object identifier.

014CE01A PKCS #12 version is not correct.

Explanation: The PKCS #12 version is not correct.

User response: Contact your service representative.

014CE01B Interval is not valid.

Explanation: The certificate interval is not valid.

User response: Contact your service representative.

014CE01C Object identifier element count is not valid

Explanation: An object identifier must have at least three elements.

User response: Correct the application to provide a valid object identifier.

014CE01D Incorrect value for the first object identifier element.

Explanation: The first element of an object identifier must be 0, 1, or 2.

User response: Correct the application to provide a valid object identifier.

014CE014 • 014CE01D

Chapter 13. Messages and codes 573

014CE01E Incorrect value for the second object identifier element.

Explanation: The second element of an object identifier must be between 0 and 39 if the first element is 0 or 1.

User response: Correct the application to provide a valid object identifier.

014CE01F Unknown attribute identifier.

Explanation: An unrecognized attribute identifier is encountered while decoding a certificate extension or an X.509
name. As a result, the attribute value cannot be decoded.

User response: Ensure that the name string is correctly formed. Each attribute consists of an attribute type and an
attribute value separated by an equal sign. Contact your service representative if the error persists.

014CE020 Unknown critical certificate extension.

Explanation: The X.509 certificate contains a critical extension that is not recognized by the System SSL run time.
The certificate cannot be processed.

User response: Obtain a new certificate without the unknown critical certificate extension.

014CE021 X.500 name syntax error.

Explanation: The syntax of an X.500 distinguished name is not valid. See RFC 2253: UTF-8 String Representation of
Distinguished Names for more information about the format of a distinguished name.

User response: Correct the application to specify a valid distinguished name.

014CE022 Version is not supported.

Explanation: The version number in a certificate, certificate request, or certificate revocation list is not supported by
the current level of System SSL.

User response: Obtain a new certificate, certificate request, or certificate revocation list with a supported version
number.

014CE01E • 014CE022

574 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2253.txt.pdf

CMS status codes (03353xxx)
Certificate Management Services (CMS) status codes have the prefix "03353". These
status codes include informational messages, including errors that require a user
response.

03353001 Insufficient memory is available.

Explanation: There is not enough memory available to allocate a required control block or data element.

User response: Increase the memory available to the application and then retry the request. Contact your service
representative if the error persists.

03353002 Certificate extension is not supported.

Explanation: An X.509 certificate extension is either not supported by the current level of the System SSL run time
or is not supported by the certificate version. The certificate extension is not processed. If the extension is marked as
a critical extension, the X.509 certificate cannot be processed.

User response: Upgrade the System SSL run time if a later software level supports the certificate extension.

03353003 Cryptographic algorithm is not supported.

Explanation: An X.509 cryptographic algorithm is not supported by the current level of the System SSL run time.
This error can also occur if the current operation does not support the specified cryptographic algorithm. When
running in FIPS mode, this error may occur if an attempt is made to use an algorithm that is not supported in FIPS
mode.

User response: Ensure that the cryptographic algorithm is supported for the requested operation or that it is
supported if executing in FIPS mode. Upgrade the System SSL run time if a later software level supports the
cryptographic algorithm.

03353004 Signature is not correct

Explanation: The signature is incorrect for an X.509 certificate or certificate revocation list. This usually means that
the certificate has been modified since it was signed by the issuing Certificate Authority.

User response: Verify that the certificate has not been modified. Collect a System SSL trace containing the error and
then contact your service representative if the error persists.

03353005 Cryptographic request failed.

Explanation: A cryptographic request failed with an unexpected error. This error can occur if the hardware
cryptographic support becomes unavailable after the application has been initialized.

User response: Collect a System SSL trace containing the error and then contact your service representative.

03353006 Input/Output request canceled.

Explanation: An input/output operation is canceled by the user. This can occur if the user cancels a terminal read
request by pressing an attention key or by pressing the enter key without entering any data.

User response: None

03353007 Input/Output request failed.

Explanation: An input/output operation fails.

User response: Verify that the file or key ring can be accessed and is not damaged. If creating or updating a file,
verify that the file system containing the file is not full. Collect a System SSL trace containing the error and then
contact your service representative if the error persists.

03353001 • 03353007

Chapter 13. Messages and codes 575

03353008 Verification password does not match.

Explanation: The user is prompted to verify the password by entering it a second time. The user did not enter the
same password both times.

User response: Enter the same password when prompted.

03353009 File or keyring not found

Explanation: A file or key ring cannot be opened because it is not found.

User response: Verify that the correct name is specified. This value is case-sensitive. Ensure that the case is
preserved with your request. Contact your service representative if the error persists.

0335300A Database is not valid.

Explanation: The key database or the request database is not valid. This error can occur if the wrong database
password is used when opening the database or if the database format is not supported by the current level of the
System SSL run time.

User response: Verify that the database has not been modified or truncated. Collect a System SSL trace containing
the error and then contact your service representative if the error persists.

0335300B Message not found.

Explanation: The System SSL run time is unable to locate a message in the message catalog.

User response: Verify that the message catalog can be accessed by the application and can be located using the
NLSPATH environment variable. Contact your service representative if the error persists.

0335300C Handle is not valid.

Explanation: The handle that is passed to the System SSL run time is not valid. This error can occur if the handle is
closed or is not the proper type for the requested function.

User response: Pass a valid handle to the System SSL routine.

0335300D Record deleted.

Explanation: The requested record is deleted.

User response: None

0335300E Record not found.

Explanation: The requested record is not found.

User response: None

0335300F Incorrect database type

Explanation: The database does not support the requested operation. This error can occur if the database type is not
valid. It can also occur if an attempt is made to add a request record to a key database or a key record to a request
database.

User response: Specify an operation supported by the database.

03353010 Database is not open for update.

Explanation: A request to modify the key or request database cannot be completed because update mode was not
requested when the database was opened or an update was requested on a FIPS mode database while in non-FIPS
mode.

User response: Request update mode when opening a database for modification.

03353008 • 03353010

576 z/OS V2R1.0 System SSL Programming

03353011 Mutex request failed.

Explanation: A mutex operation failed.

User response: Contact your service representative.

03353012 Backup file already exists.

Explanation: Before updating a database file, the System SSL run time creates a backup file with the same name
with ".new" appended to the name. This file is then deleted after the database file has been rewritten. The file is not
deleted if an error occurs while rewriting the database file.

User response: Correct the problem that caused the database update to fail. Then copy the backup file to the
database file and delete the backup file.

03353013 Database already exists.

Explanation: A request to create a new database cannot be completed because the database file already exists.

User response: Choose a different name for the new database or delete the existing database.

03353014 Record is too big.

Explanation: A new record cannot be added to the database because it is larger than the database record length.

User response: If using the gskkyman utility, use option 4 from the Database Menu to enlarge the database record
length. Applications using the System SSL APIs can use the gsk_change_database_record_length API to enlarge the
database record length.

03353015 Database password is expired.

Explanation: The database password is expired.

User response: Change the database password.

03353016 The password is not correct.

Explanation: The wrong password is specified for a key database, an encrypted private key, or an import file. This
error can also occur if the file has been modified. Also, this error can occur if the key that is being exported is a
secure private key in the TKDS and the specified password length is greater than 63 bytes.

User response: Specify the correct password.

03353017 Access denied.

Explanation: The database or key ring cannot be opened because the permissions do not allow access by the current
user.

User response: Ensure that the user has read/write access to the database if opening the database for update mode;
otherwise ensure that the user has read access to the database or key ring.

03353018 Database is locked for update.

Explanation: Another process has opened the database in update mode. Only one process may have the database
open for update at a time.

User response: Wait until the database has been closed by the other process and then retry the request.

03353019 Record length is too small.

Explanation: The database record length is less than the minimum value of 2500.

User response: Specify a record length of 2500 or greater.

03353011 • 03353019

Chapter 13. Messages and codes 577

0335301A No private key.

Explanation: The key entry does not contain a private key or the private key is not usable. This error might also
occur if:

v The private key is stored in ICSF, and ICSF services are not available.

v If the private key size is greater than the supported configuration limit or the application is executing in FIPS
mode.

v This error can occur when using a SAF key ring if:

– The key ring is owned by another user.

– Using a private key that is associated with a user certificate in a SAF key ring that is owned by another user,
and if the user ID of the application does not have appropriate access to the ringOwner.ringName.LST resource
in the RDATALIB class.

– Certificates meant to represent a server or client must be connected to a SAF key ring with a USAGE value of
PERSONAL, and either owned by the user ID of the application or SITE certificates.

v This error can occur when using z/OS PKCS #11 tokens if:

– The user ID of the application does not have appropriate access to the CRYPTOZ class.

– The label name is not valid for a certificate's PKCS #11 TKDS secure key.

– The PKCS #11 key object does not exist.

– The certificate's PKCS #11 TKDS secure key algorithm is not supported.

– Using gsk_make_enveloped_private_key_msg() and the PKCS #11 secure key object that is used as input exists
in the PKDS instead of the TKDS.

User response: Verify that the ICSF started task is running if the private key is stored in ICSF. Otherwise, repeat the
failing request by using a database entry containing a private key. If using z/OS PKCS #11 tokens, ensure that the
user ID has appropriate access to the CRYPTOZ class.

If executing in FIPS mode, ensure that the certificate that is being used does not have its private key stored in ICSF.

If using PKCS # 11 tokens:

v Verify that the certificate's PKCS #11 secure key label name is valid within the TKDS.

v Verify that the PKCS #11 TKDS secure key algorithm is supported.

v If you are using gsk_make_enveloped_private_key_msg(), verify that the input PKCS #11 key object exists in the
TKDS.

0335301B Record label is not valid.

Explanation: The record label is not valid. A label may contain letters, numbers, and punctuation. A record label
may not be an empty string.

User response: Provide a valid record label.

0335301C Record label is not unique.

Explanation: A record label must be unique within a key database file and its associated request database.

User response: Verify the labels already in use by a key database file and its associated request database and
provide a unique record label.

0335301D Record type is not valid.

Explanation: The database record type is not valid.

User response: Provide a valid database record type.

0335301A • 0335301D

578 z/OS V2R1.0 System SSL Programming

0335301E Duplicate certificate.

Explanation: An attempt is made to add a certificate to a key database but the database already contains the
certificate. A certificate is a duplicate if the issuer name and certificate serial number are the same.

User response: Delete the existing certificate before adding the new certificate.

0335301F Incorrect Base64 encoding.

Explanation: An encoded stream cannot be decoded because it contains an incorrect Base64 encoding. A Base64
encoding consists of a header line (for example, -----BEGIN CERTIFICATE-----), encoded text, and a footer line (for
example, -----END CERTIFICATE-----). The encoded text is encoded using a 64-character subset in groups of 4
characters.

User response: Ensure that the encoded stream has not been truncated or modified. Base64 encoding uses text data
and must be in the local code page. Contact your service representative if the error persists.

03353020 Unrecognized file or message encoding.

Explanation: A file or message cannot be imported because the format is not recognized.

System SSL supports X.509 DER-encoded certificates, PKCS #7 signed data messages, and PKCS #12 personal
information exchange messages for certificate import files. The import file data may be the binary data or the
Base64-encoding of the binary data.

System SSL supports PKCS #7 data, encrypted data, signed data, and enveloped data for messages. This error can
also occur if the message is not constructed properly.

User response: Ensure that the import file or message has not been modified. A Base64-encoded import file must be
converted to the local code page when it is moved to another system while a binary import file must not be modified
when it is moved to another system.

If importing a certificate from a Base64 file, the first and last lines contain readable data. The first line in the file
contains '-----BEGIN CERTIFICATE-----' and the last line in the file contains '----END CERTIFICATE-----'. If data is not
correct, ensure that the file was transferred successfully.

03353021 Certificate is not yet valid.

Explanation: The current time is earlier than the beginning of the certificate validity.

User response: Either wait until the certificate is valid or request a new certificate with an earlier starting date from
the certification authority.

03353022 Certificate is expired

Explanation: The current time is after the end of the certificate validity.

User response: Request a new certificate from the certification authority.

03353023 Name format is not supported.

Explanation: An unsupported name format is encountered while validating a certificate.

User response: Contact your service representative.

03353024 Issuer certificate not found.

Explanation: An issuer certificate is not found while validating a certificate. This error can occur if the issuer
certificate required for a new certificate is not in the key database or if the required issuer certificate is not trusted or
has expired.

User response: Ensure that the key database contains the required issuer certificate and that the certificate is marked
as trusted. See “Database menu” on page 473 for information about displaying the contents of an external certificate
file to verify which issuer certificate is required. Contact your service representative if the error persists.

0335301E • 03353024

Chapter 13. Messages and codes 579

03353025 Certification path is too long.

Explanation: The certification path length exceeds the maximum that is specified in the certification authority
certificate.

User response: Report the problem to the certification authority.

03353026 Incorrect key usage.

Explanation: The key usage certificate extension does not permit the requested key operation.

User response: Obtain a certificate, which allows the requested key operation.

03353027 Issuer is not a certification authority.

Explanation: The issuer of an X.509 certificate is not a certification authority. This indicates that the basic constraints
certificate extension in the issuer certificate does not contain the certification authority indicator.

User response: Report the problem to the issuer of the certificate.

03353028 Export file format is not supported.

Explanation: The requested export file format is not supported for the specified database record. Certificates can be
exported using the DER and PKCS #7 formats. Certificates and keys can be exported using the PKCS #12 formats.

User response: Select an appropriate export file format.

03353029 Cryptographic algorithm is not available.

Explanation: An X.509 cryptographic algorithm is not available. Because of government export regulations, strong
encryption is not available on the local system.

User response: Select an algorithm that is available.

0335302A Record type cannot be changed.

Explanation: The record type cannot be changed when replacing a database record.

User response: Create a new database entry for the record.

0335302B Subject name cannot be changed.

Explanation: The subject name cannot be changed when replacing a database record where the database record has
no private key or is used as a signing certificate for other user or server certificates.

User response: Create a new database entry for the record.

0335302C Public key cannot be changed.

Explanation: The subject public key cannot be changed when replacing a database record.

User response: Create a new database entry for the record.

0335302D Default key cannot be changed

Explanation: The default key for the database cannot be changed using the gsk_replace_record()routine.

User response: Use the gsk_set_default_key() routine to change the default key for the database.

03353025 • 0335302D

580 z/OS V2R1.0 System SSL Programming

0335302E Database contains certificates signed by the certificate.

Explanation: A CA certificate cannot be deleted because the database still contains certificates that were signed
using that certificate. A certificate renewal for a signing certificate fails with this error code if the certificates subject
name has changed.

User response: Delete all certificates that are signed by the CA certificate before deleting the certificate. To renew a
signing certificate with a changed subject name all dependent certificates must be resigned with the new certificate:

v Create certificate renewal requests for each dependent certificate and delete the dependent certificates and keys.

v Receive the new signing certificate.

v Sign any dependent certificate requests with the new signing certificate.

v Receive the signed dependent certificate renewals.

0335302F Certificate chain is not trusted.

Explanation: A certification authority (CA) certificate in the certification chain is not trusted.

User response: Set the trust status for the CA certificate if the certificate can be used for authentication purposes.

03353030 Key not supported by encryption or signature algorithm.

Explanation: The supplied key is not supported by the requested encryption or signature algorithm. For example,
an RSA key cannot be used to verify that a DSA signature and a DSA key cannot be used to encrypt data.

User response: Provide the appropriate key for the encryption or signature algorithm.

03353031 Signer certificate not found.

Explanation: A signer certificate is not found while creating or processing a signed message,

User response: Provide a certificate for each signer, including signers of authenticated attributes.

03353032 Content type is not supported.

Explanation: An unsupported PKCS #7 content type is encountered.

User response: See the Programming Reference for the failing routine to determine the supported content types.

03353033 Recipient certificate not found.

Explanation: A recipient certificate is not found while creating or processing an enveloped message.

User response: Provide at least one recipient certificate.

03353034 Encryption key size is not supported.

Explanation: The encryption key size is not supported by the System SSL run time.

User response: See the System SSL information to determine which key sizes are supported. In general, when
executing in non-FIPS mode, 40-bit keys and 128-bit keys are supported for RC2 and RC4, 56-bit keys are supported
for DES, 168-bit keys are supported for Triple DES, and 128-bit keys and 256-bit keys are supported for AES. RSA
keys must be between 512 and 4096 bits, DSS keys must be between 512 and 2048 bits, and Diffie-Hellman keys must
be between 512 and 2048 bits.

When executing in FIPS mode, 168-bit keys are supported for Triple DES, and 128-bit keys and 256-bit keys are
supported for AES. RSA keys must be between 1024 and 4096 bits, DSS keys must be between 1024 and 2048 bits,
and Diffie-Hellman keys must be 2048 bits.

This error can also occur if the requested key size is not compatible with the supplied key generation parameters. See
the System SSL information to determine which key sizes are supported.

0335302E • 03353034

Chapter 13. Messages and codes 581

03353035 Encryption key parity is not correct.

Explanation: DES and Triple DES encryption keys must have odd parity for each key byte.

User response: Verify that the key is generated correctly. Contact your service representative if the error persists.

03353036 Encryption key is weak.

Explanation: A small subset of the possible DES and Triple DES encryption keys are weak and can be broken more
easily than the rest of the keys. For this reason, the weak keys should be avoided when generating a DES or Triple
DES key.

User response: Contact your service representative.

03353037 Initial vector size is not correct.

Explanation: The initial vector that is used by the encryption routine is not the correct length.

User response: Contact your service representative.

03353038 Encryption data size is not correct.

Explanation: The length of the encryption data is not correct. For symmetric key algorithms using cipher block
chaining, the encryption data must be a multiple of the cipher block size. For asymmetric key algorithms, the
encryption data must be the same length as the cipher key modulus.

User response: Verify that the encryption data has not been truncated. Contact your service representative if the
error persists.

03353039 Encryption block format is not correct.

Explanation: The encryption block format is not correct following decryption. This error can occur if the wrong key
is used to decrypt the block.

User response: Verify that the correct key is being used to decrypt the data. Contact your service representative if
the error persists.

0335303A Number does not have a modular inverse.

Explanation: The cryptographic support is unable to find an inverse for a number.

User response: Contact your support representative.

0335303B LDAP processing error.

Explanation: An error is detected while setting up the LDAP environment or retrieving an LDAP directory entry.

User response: Ensure that the LDAP server is running and that there are no network errors. Collect a System SSL
trace containing the error and then contact your service representative if the error persists.

0335303C LDAP is not available.

Explanation: The System SSL run time is unable to access the LDAP server.

User response: Ensure that the LDAP server is running and that there are no network problems. Collect a System
SSL trace and then contact your service representative if the error persists.

0335303D Digest data size is not correct.

Explanation: The length of the digest data is not correct. Digest data size by algorithm is:

v MD2 – 16 bytes

v MD5 – 16 bytes

v SHA-1 – 20 bytes

03353035 • 0335303D

582 z/OS V2R1.0 System SSL Programming

v SHA-224 – 28 bytes

v SHA-256 – 32 bytes

v SHA-384 – 48 bytes

v SHA-512 – 64 bytes

User response: Verify that the data has not been truncated. Contact your service representative if the error persists.

0335303E Database name is not valid.

Explanation: The database file name or SAF key ring name is not valid. The length of the fully-qualified database
file name must be between 1 and 251 while the length of the SAF key ring must be between 1 and 237.

User response: Provide a valid database name.

0335303F Database open failed.

Explanation: The System SSL run time is unable to open the database file, SAF key ring or z/OS PKCS #11 token.

User response: Verify that the database file, SAF key ring, or z/OS PKCS #11 token exists and is accessible by the
application. Collect a System SSL trace and then contact your service representative if the error persists.

03353040 Self-signed certificate not in database.

Explanation: A self-signed certificate cannot be validated because it is not in the key database, SAF key ring or
z/OS PKCS #11 token.

User response: Add the self-signed certificate to the key database, SAF key ring or z/OS PKCS #11 token.

This code may also occur if the intermediate certificate on the key ring was not marked Trusted. If using RACF key
rings and the DIGTCERT and DIGTRING classes are RACLIST'ed, issue the SETROPTS RACLIST (DIGTCERT,
DIGTRING) REFRESH command to refresh the profiles to ensure that the latest changes are available.

03353041 Certificate is revoked.

Explanation: A certificate is revoked and cannot be used.

User response: Obtain a new certificate from the certification authority.

03353042 Issuer name is not valid.

Explanation: The certificate issuer name must be a non-empty X.509 distinguished name.

User response: Obtain a new certificate with a valid issuer name.

03353043 Subject name is not valid.

Explanation: The certificate subject name must be either a non-empty distinguished name or an empty
distinguished name with a SubjectAltName certificate extension.

User response: Obtain a new certificate with a valid subject name.

03353044 Name constraints violated.

Explanation: The certificate name is not allowed by the certification path name constraints.

User response: Report the problem to the certification authority.

03353045 No content data.

Explanation: The PKCS #7 content information does not contain any content data.

User response: Change the application to provide content data for the content information.

0335303E • 03353045

Chapter 13. Messages and codes 583

03353046 Version is not supported.

Explanation: An unsupported version is encountered.

User response: See the Programming Reference for the failing routine to determine the supported versions.

03353047 Subject name is same as signer name.

Explanation: A request to create a new certificate cannot be processed because the requested subject name is the
same as the subject name of the signing certificate.

User response: Choose a different subject name for the new certificate.

03353048 Diffie-Hellman group parameters are not valid.

Explanation: The Diffie-Hellman group parameters are not valid. The subprime Q must be greater than 1 and less
than the prime P. The base G must be greater than 1 and less than the prime P. See RFC 2631: Diffie-Hellman Key
Agreement Method for more information about how the Diffie-Hellman parameters are generated.

User response: Verify that the correct parameters are supplied when calling the failing routine. Contact the
certification authority if the Diffie-Hellman group parameters are obtained from an X.509 certificate. Otherwise,
collect a System SSL trace and then contact your service representative.

03353049 Diffie-Hellman values are not valid.

Explanation: The Diffie-Hellman values are not valid. The private value X must be greater than 1 and less than the
prime P. The public value Y must be greater than 1 and less than the prime P. In addition, the result of raising the
public value Y to the power of the subprime Q modulo the prime P must be equal to 1. See RFC 2631: Diffie-Hellman
Key Agreement Method for more information about how the Diffie-Hellman values are generated.

User response: Contact the certification authority if the Diffie-Hellman values are obtained from an X.509 certificate.
Otherwise, collect a System SSL trace and then contact your service representative.

0335304A Digital Signature Standard parameters are not valid.

Explanation: The Digital Signature Standard parameters are not valid. The subprime Q must be greater than 1 and
less than the prime P. The base G must be greater than 1 and less than the prime P. See FIPS 186-2: DIGITAL
SIGNATURE STANDARD (DSS) for more information about how the parameters are generated.

User response: Verify that the correct parameters are supplied when calling the failing routine. Contact the
certification authority if the DSS parameters are obtained from an X.509 certificate. Otherwise, collect a System SSL
trace and then contact your service representative.

0335304B Certificate not valid for host.

Explanation: A server certificate does not contain the current host name as either the common name (CN) element
of the subject name or as a DNS entry for the subject alternate name.

User response: Obtain a new certificate containing the host name you want.

0335304C No certificate in import file.

Explanation: The import file does not contain an X.509 certificate.

User response: Specify a valid certificate import file.

0335304D The content-type authenticated attribute is not allowed.

Explanation: The set of authenticated attributes that are supplied within the attributes_signers parameter must NOT
include the content-type authenticated attribute as this is automatically provided by
gsk_make_signed_data_content_extended() and gsk_make_signed_data_msg_extended().

User response: Do not include content-type or message-digest in the set of authenticated attributes that are supplied
to gsk_make_signed_data_content_extended() or gsk_make_signed_data_msg_extended().

03353046 • 0335304D

584 z/OS V2R1.0 System SSL Programming

http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc2631.txt.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf

0335304E The message-digest authenticated attribute is not allowed.

Explanation: The set of authenticated attributes that are supplied from the attributes_signers parameter must NOT
include the message-digest authenticated attribute as this is automatically provided by
gsk_make_signed_data_content_extended() and gsk_make_signed_data_msg_extended().

User response: Do not include content-type or message-digest in the set of authenticated attributes that are supplied
to gsk_make_signed_data_content_extended() or gsk_make_signed_data_msg_extended().

0335304F Attribute identifier is not valid.

Explanation: The attribute identifier is not valid.

User response: Specify a valid attribute identifier.

03353050 Enumeration is not valid.

Explanation: The enumeration value is not valid.

User response: Specify a valid enumeration value.

03353051 CA certificate not supplied

Explanation: A signing CA certificate was not supplied on the call.

User response: Supply a CA certificate on the function call.

03353052 Validation option is not valid.

Explanation: The specified validation option is not valid.

User response: Specify a valid validation option.

03353053 Certificate request not supplied.

Explanation: A certificate request structure was not supplied on the call.

User response: Supply a certificate request structure on the function call.

03353054 Public key info not supplied.

Explanation: A pkcs_public_key_info structure was not supplied on the call.

User response: Supply a pkcs_public_key_info structure on the function call.

03353055 Modulus bits not supplied.

Explanation: The number of modulus bits was not supplied on the call.

User response: Supply the number of modulus bits on the function call.

03353056 Exponent not supplied.

Explanation: A gsk_buffer structure containing the exponent was not supplied on the call.

User response: Supply a gsk_buffer structure containing the exponent on the function call.

03353057 Private key info not supplied.

Explanation: A pkcs_private_key_info structure was not supplied on the call.

User response: Supply a pkcs_private_key_info on the function call.

0335304E • 03353057

Chapter 13. Messages and codes 585

03353058 Modulus not supplied.

Explanation: A gsk_buffer structure containing the modulus for the RSA key was either not supplied on the call or
not supplied in the gsk_private_key or gsk_public_key structure.

User response: Ensure that a gsk_buffer structure containing the modulus for the RSA key is supplied on the
function call, or is defined in the gsk_private_key or gsk_public_key structure.

03353059 Public exponent not supplied.

Explanation: A gsk_buffer structure containing the public exponent for the RSA key was not supplied on the call or
not supplied in the gsk_private_key or gsk_public_key structure.

User response: Ensure that a gsk_buffer structure containing the public exponent for the RSA key is supplied on the
function call, or is defined in the gsk_private_key or gsk_public_key structure.

0335305A Private exponent not supplied.

Explanation: A gsk_buffer structure containing the private exponent for the RSA key was not supplied on the call,
or not supplied in the gsk_private_key structure.

User response: Ensure that a gsk_buffer structure containing the private exponent for the RSA key is supplied on
the function call, or is defined in the gsk_private_key structure.

0335305B First prime not supplied.

Explanation: A gsk_buffer structure containing the first prime for the RSA key was not supplied on the call, or not
supplied in the gsk_private_key structure.

User response: Ensure that a gsk_buffer structure containing the first prime exponent for the RSA key is supplied
on the function call, or is defined in the gsk_private_key structure.

0335305C Second prime not supplied.

Explanation: A gsk_buffer structure containing the second prime for the RSA key was not supplied on the call, or
not supplied in the gsk_private_key structure.

User response: Ensure that a gsk_buffer structure containing the second prime for the RSA key is supplied on the
function call, or is defined in the gsk_private_key structure.

0335305D First prime exponent not supplied.

Explanation: A gsk_buffer structure containing the first prime exponent for the RSA key was not supplied on the
call, or not supplied in the gsk_private_key structure.

User response: Ensure that a gsk_buffer structure containing the prime exponent for the RSA key is supplied on the
function call, or is defined in the gsk_private_key structure.

0335305E Second prime exponent not supplied.

Explanation: A gsk_buffer structure containing the second prime exponent for the RSA key was not supplied on the
call, or not supplied in the gsk_private_key structure.

User response: Ensure that a gsk_buffer structure containing the second prime exponent for the RSA key is supplied
on the function call, or is defined in the gsk_private_key structure.

0335305F CRT coefficient not supplied.

Explanation: A gsk_buffer structure containing the CRT coefficient for the RSA key was not supplied on the call, or
not supplied in the gsk_private_key structure.

User response: Ensure that a gsk_buffer structure containing the CRT coefficient for the RSA key is supplied on the
function call, or is defined in the gsk_private_key structure.

03353058 • 0335305F

586 z/OS V2R1.0 System SSL Programming

03353060 Certificate revocation list cannot be found.

Explanation: The security setting for gsk_crl_security_level is set to HIGH and the required certificate revocation
list (CRL) cannot be found in the specified LDAP server.

User response: Contact the certification authority and obtain the required CRL.

03353061 Multiple certificates exist for label.

Explanation: Access of certificate/key from label could not be resolved because multiple certificates/keys exist with
the label.

User response: Correct certificate/key store so that label specifies a unique record.

03353062 Multiple keys are marked as the default.

Explanation: Access of key from default status could not be resolved because multiple keys are marked as the
default key.

User response: Correct the certificate/key store so that only one key is marked as the default key.

03353064 Digest type and key type are incompatible.

Explanation: The specified digest algorithm and the key algorithm are incompatible.

User response: Specify a digest algorithm that is compatible with the signing key algorithm.

03353065 Generate random bytes input buffer not valid.

Explanation: The input buffer to gsk_generate_random_bytes is not valid.

User response: Ensure a valid gsk_buffer structure has been supplied to the gsk_generate_random_bytes API.
Contact your service representative if the error persists.

03353066 Generate random bytes produced duplicate output.

Explanation: The Random Number Generator produced identical consecutive blocks of output data. If in FIPS
mode, any further attempts to use System SSL continues to fail until the application is restarted or the executing
process is reinitialized.

User response: Restart the SSL application or process to reinitialize the SSL DLLs. If the problem persists, collect a
System SSL trace containing the error and contact your service representative.

03353067 Known Answer Test has failed.

Explanation: A Known Answer Test failed to match the expected results. Any further attempts to use System SSL
continues to fail until the application is restarted or the executing process is reinitialized.

User response: Restart the SSL application or process to reinitialize the SSL DLLs. If the problem persists, collect a
System SSL trace containing the error and contact your service representative.

03353068 API is not supported.

Explanation: The API is not supported. An attempt was made to use an API that is not supported in the current
mode of operation (FIPS or non-FIPS).

User response: Ensure that the API being used is supported in the mode in which the application is executing. If
you are invoking a FIPSonly API, you must restart your application in FIPS mode.

03353060 • 03353068

Chapter 13. Messages and codes 587

03353069 Key database is not a FIPS mode database.

Explanation: While executing in FIPS mode, an attempt was made to open a key database that is non-FIPS.

User response: Specify a key database that meets FIPS 140-2 criteria, if running in FIPS mode.

0335306A Key database can only be opened for update if running in FIPS mode.

Explanation: While executing in non-FIPS mode, an attempt was made to open a FIPS key database for update.

User response: To open a FIPS key database for update, you must be executing in FIPS mode.

0335306B Cannot switch from non-FIPS mode to FIPS mode.

Explanation: While executing in non-FIPS mode, an attempt was made to switch to FIPS mode.

User response: Once executing in non-FIPS mode it is not possible to switch to FIPS mode.

0335306C Attempt to execute in FIPS mode failed.

Explanation: A request to execute in FIPS mode failed because the required System SSL DLLs could not be loaded.

User response: Ensure that the Cryptographic Services Security Level 3 FMID is installed.

0335306D Acceptable policy intersection cannot be found.

Explanation: The Certificate Policies extension of the certificate does not contain an acceptable policy as required by
the application or an issuing certificate.

User response: Ensure that the certificate chain is valid and the user certificate is intended to be used for the
required purpose.

0335306E Variable argument count is not valid.

Explanation: The specified variable argument count is not valid.

User response: Specify a valid variable argument count.

0335306F Required certificate extension is missing.

Explanation: A certificate extension that is mandatory for the certificate to be used for the required purpose has not
been found.

User response: Ensure that the certificate chain is correct and complies with the validation mode defined for the
connection. Collect a System SSL trace containing the error and then contact your service representative if the error
persists.

03353070 Certificate extension data is incorrect.

Explanation: A certificate extension has incorrect data or has a necessary field missing.

User response: Ensure that the certificate chain is correct and complies with the validation mode defined for the
connection. Collect a System SSL trace containing the error and then contact your service representative if the error
persists.

03353071 Certificate extension data has an incorrect critical indicator.

Explanation: A critical indicator for a certificate extension is incorrect. Either the extension is required to be marked
critical and is marked non-critical or is required to be marked non-critical and is marked critical.

User response: Ensure that the certificate chain is correct and complies with the validation mode defined for the
connection. Collect a System SSL trace containing the error and then contact your service representative if the error
persists.

03353069 • 03353071

588 z/OS V2R1.0 System SSL Programming

03353072 Certificate contains a duplicate extension.

Explanation: The certificate or CRL undergoing validation contains multiple certificates or CRL extensions of the
same type.

User response: Ensure that the certificate chain is correct and complies with the validation mode defined for the
connection. Collect a System SSL trace containing the error and then contact your service representative if the error
persists.

03353073 Cannot match CRL distribution points.

Explanation: The DN in the Issuing Distribution Point extension of the CRL does not match a suitable DN in the
certificate undergoing validation. The DN in the Issuing Distribution Point extension must match either:

v A DN of type fullName in the Distribution Point of the CRL Distribution Points extension of the certificate
undergoing validation

v The CRLIssuer field in the Distribution Point of the CRL Distribution Points extension of the certificate undergoing
validation

v The Certificate Issuer name, if no CRL Distribution Point extension exists in the certificate undergoing validation

User response: Ensure that the certificate chain is correct and complies with the validation mode defined for the
connection. Collect a System SSL trace containing the error and then contact your service representative if the error
persists.

03353074 FIPS mode key generation failed pair-wise consistency check.

Explanation: While executing in FIPS mode, a key pair was generated that failed a pair-wise consistency check. Any
further attempts to use System SSL continues to fail until the application is restarted or the executing process is
reinitialized.

User response: Restart the SSL application or process to reinitialize the SSL DLLs. If the problem persists, collect a
System SSL trace containing the error and then contact your service representative.

03353076 Prime not supplied.

Explanation: A gsk_buffer structure containing the prime for the DSA or Diffie-Hellman key was not supplied in the
gsk_private_key or gsk_public_key structure.

User response: Ensure that the prime value for the DSA or Diffie-Hellman key is defined in the gsk_private_key or
gsk_public_key structure.

03353077 Subprime not supplied.

Explanation: A gsk_buffer structure containing the sub_prime for the DSA key was not supplied in the
gsk_private_key or gsk_public_key structure.

User response: Ensure that the sub prime value for the DSA key is defined in the gsk_private_key or
gsk_public_key structure.

03353078 Base not supplied.

Explanation: A gsk_buffer structure containing the base for the DSA or Diffie-Hellman key was not supplied in the
gsk_private_key or gsk_public_key structure.

User response: Ensure that the base value for the DSA or Diffie-Hellman key is defined in the gsk_private_key or
gsk_public_key structure.

03353079 Private value not supplied.

Explanation: A gsk_buffer structure containing the private value for the DSA or Diffie-Hellman key was not
supplied in the gsk_private_key structure.

User response: Ensure that the private value for the DSA or Diffie-Hellman key is defined in the gsk_private_key
structure.

03353072 • 03353079

Chapter 13. Messages and codes 589

0335307A Public value not supplied.

Explanation: A gsk_buffer structure containing the public value for the DSA or Diffie-Hellman key was not supplied
in the gsk_public_key structure.

User response: Ensure that the public value for the DSA or Diffie-Hellman key is defined in the gsk_public_key
structure.

0335307B Private key structure not supplied.

Explanation: The structure containing the private key components was not supplied on the call.

User response: Supply the structure containing the private key components on the function call.

0335307C Public key structure not supplied.

Explanation: The structure containing the public key components was not supplied on the call.

User response: Supply the structure containing the public key components on the function call.

0335307D Size specified for supplied structure is too small.

Explanation: The value of the size field in the structure indicates that the size of the structure is insufficient.

User response: Ensure that the size field in the structure being used is initialized to the size of structure.

0335307E Elliptic Curve is not supported.

Explanation: The elliptic curve domain parameters that are defined for the elliptic curve public or private key are
not supported.

User response: Ensure the elliptic curve public/private key pair uses a supported elliptic curve. See Chapter 3,
“Using cryptographic features with System SSL,” on page 11 for the list of elliptic curves that are supported by
System SSL.

0335307F EC Parameters not supplied.

Explanation: A gsk_buffer structure containing the EC domain parameters was not supplied on the call.

User response: Supply a gsk_buffer structure containing the EC domain parameters on the function call.

03353080 Signature not supplied.

Explanation: A gsk_buffer structure containing the signature was not supplied on the call.

User response: Supply a gsk_buffer structure containing the signature on the function call.

03353081 Elliptic Curve parameters are not valid.

Explanation: The EC domain parameters that are defined for the elliptic curve public or private key are not valid.
Either no parameters could be found or the parameters could not be successfully decoded.

User response: Ensure the elliptic curve public/private key pair uses a valid elliptic curve.

03353082 Elliptic Curve not supported in FIPS mode.

Explanation: The EC domain parameters that are defined for the elliptic curve public or private key are not
approved in FIPS mode.

User response: Ensure the elliptic curve for the public or private key is valid in FIPS mode. See Chapter 4, “System
SSL and FIPS 140-2,” on page 19 for a list of elliptic curves that are supported by System SSL when running in FIPS
mode.

0335307A • 03353082

590 z/OS V2R1.0 System SSL Programming

03353083 ICSF services are unavailable.

Explanation: A cryptographic process cannot be completed because of ICSF callable services being unavailable.

User response: Ensure that ICSF is running and operating correctly.

03353084 ICSF callable service returned an error.

Explanation: Ensure that ICSF is operating correctly and if access to the ICSF callable services are protected with
CSFSERV class profiles that the user ID of the application has READ access to the profiles protecting the ICSF
callable services CSFPPRF, CSFPKE, CSFPKD, and CSFDSV. See table 4 and 5 for information about the required
resource profile access. If the problem persists, collect a System SSL trace and contact your service representative.

User response: Ensure that ICSF is operating correctly and that the user ID of the application has appropriate access
to the CSFSERV class RACF resource profiles. See Table 4 on page 17 or Table 5 on page 17 for information about
required resource profile access. Collect a System SSL trace and verify the ICSF return code and reason code relating
to the error. See z/OS Cryptographic Services ICSF Application Programmer's Guide for more information about ICSF
return and reason codes. If the problem persists contact your service representative.

03353085 ICSF PKCS #11 not operating in FIPS mode.

Explanation: While running in FIPS mode, an attempt was made to use ICSF PKCS #11 services, which were not
operating in FIPS mode.

User response: Ensure that ICSF is configured to run in FIPS mode.

03353086 Incorrect key algorithm.

Explanation: A supplied key uses an algorithm type that is not suitable for the requested function. This error can
occur if a non-ECC key has been supplied to an ECC related function, or if incompatible keys are supplied for
certificate creation, such as a certificate containing a Diffie-Hellman key to be signed with an ECDSA key.

User response: Ensure the key supplied uses a suitable key algorithm type. Collect a System SSL trace containing
the error to verify the key algorithms. Contact your service representative if the error persists.

03353087 Certificate revocation list is expired.

Explanation: The current time is after the nextUpdate time specified in the CRL.

User response: Obtain the latest copy of the CRL from the certification authority.

03353088 Cryptographic hardware does not support service or algorithm.

Explanation: A call requiring cryptographic hardware was made to ICSF. The current installation hardware does not
support the service or algorithm being used.

User response: Ensure that the correct protocol is in use for your installation or that cryptographic hardware that is
required for this service or algorithm is available to ICSF.

03353089 ICSF PKCS #11 services are disabled.

Explanation: An attempt was made to use ICSF PKCS #11 services, which are disabled because of an ICSF FIPS
self-test failure.

User response: Stop and restart ICSF. System SSL may need restarting to regain the full hardware benefit from ICSF.
Contact your service representative if the error persists.

0335308A Known Answer Test has failed when attempting to use ICSF.

Explanation: A Known Answer Test failed because of ICSF returning an error. Any further attempts to use System
SSL continues to fail until the application is restarted or the executing process is reinitialized.

User response: Ensure that ICSF is running and operating correctly and that the user ID of the application has
appropriate access to the CSFSERV class RACF resource profiles. See Table 4 on page 17 for information about

03353083 • 0335308A

Chapter 13. Messages and codes 591

required resource profile access. Collect a System SSL trace and verify the ICSF return code and reason code relating
to the error. See z/OS Cryptographic Services ICSF Application Programmer's Guide for more information about ICSF
return and reason codes. If the problem persists contact your service representative.

0335308B Variable argument validate root is not valid.

Explanation: The specified variable argument validate root is not valid.

User response: Specify a valid variable argument validate root.

0335308C PKCS #11 label name not valid.

Explanation: The PKCS #11 secure key label name is not valid. This might be because the label is NULL, an empty
string, or has only an equal sign (=).

User response: Verify that input label is correct.

0335308D Incorrect key attribute.

Explanation: One or more PKCS #11 attributes or parameters for a key are missing or incorrect for a requested
function that is being performed. For example, a signing operation requires that for the key that is being used, the
PKCS #11 sign attribute is to be TRUE. Verify that the correct key is being used for the requested function, and that
all required attributes are set for that key. If using gsk_make_enveloped_private_key_msg(), ensure that a recipient
certificate's RSA public key is valid.

User response: Verify that a certificate's PKCS #11 key attributes are correct for the function that is being performed.

0335308E PKCS #11 object was not found.

Explanation: PKCS #11 token, token object, or session object are not found.

User response: Verify that a PKCS #11 token or token object is in the TKDS data set. Also, verify that the session
object is not lost because of ICSF restarting after the object is created.

0335308F An algorithm or key size is not FIPS approved for an ICSF operation.

Explanation: ICSF is in FIPS mode. A call to ICSF for cryptographic or signing support failed because the input key
algorithm or size is not supported in FIPS mode. For example, an RSA key size of 512 is not supported in FIPS mode.

User response: Verify that the certificate key that is being used is a supported algorithm and size when ICSF is in
FIPS mode. See Table 6 on page 19 for more information about supported algorithms and key sizes.

03353090 PKCS #11 key cannot be extracted.

Explanation: An attempt to export a PKCS #11 secure key failed because PKCS #11 attribute CKA_EXTRACTABLE
is set to CK_FALSE.

User response: Verify that input label is correct. If it is correct, then the key cannot be exported.

03353093 Clear key support not available due to ICSF key policy.

Explanation: Unable to generate clear keys or PKCS #11 objects because of the caller's RACF access to CRYPTOZ
class resource CLEARKEY.SYSTOK-SESSION-ONLY or CLEARKEY.token_name not permitting the generation of
non-secure (clear) PKCS #11 keys.

User response: Ensure that the user ID of the application has appropriate access to the RACF CRYPTOZ class
resource CLEARKEY.SYSTOK-SESSION-ONLY. If using gskkyman, ensure issuer also has access to resource
CLEARKEY.token_name. token_name is the name of the PKCS #11 token that is being managed by gskkyman.

0335308B • 03353093

592 z/OS V2R1.0 System SSL Programming

SSL started task messages (GSK01nnn)
Messages from the SSL started task (GSKSRVR) have the prefix "GSK01". These
status codes include informational messages, including errors that require a user
response.

GSK01001I System SSL version version.release Service level level.

Explanation: This message displays the System SSL version, release, and service level.

User response: None

GSK01002E Insufficient storage available.

Explanation: The SSL server is unable to obtain storage for an internal control block.

User response: Increase the storage available to the GSKSRVR started task and then try the request again.

GSK01003I SSL server initialization complete.

Explanation: The server initialization is complete.

User response: None

GSK01004I SSL server shutdown requested.

Explanation: The system operator entered a STOP command for the SSL server.

User response: None

GSK01005E Unrecognized SSL server command: Specify DISPLAY, TRACE, or STOP.

Explanation: An unrecognized command name is specified on a MODIFY operator command. The valid SSL server
commands are DISPLAY, TRACE, and STOP.

User response: Specify a valid SSL server command.

GSK01006E Incorrect command option specified.

Explanation: An incorrect SSL server command option is specified.

The valid DISPLAY command options are:
v CRYPTO - Display the available encryption algorithms.
v LEVEL - Display the System SSL version, release, and service level.
v SIDCACHE - Display the sysplex session cache status.
v XCF - Display SSL sysplex status.

The valid TRACE command options are:
v OFF - Turn off SSL tracing
v ON,level - Enable SSL tracing using the specified trace level.

User response: Specify a valid command option.

GSK01007E Missing command option.

Explanation: An SSL server command is entered which requires a command option but no command option is
entered.

User response: Enter a complete SSL server command.

GSK01001I • GSK01007E

Chapter 13. Messages and codes 593

GSK01008I Sysplex status.

Explanation: This message is displayed in response to the SSL server DISPLAY XCF command. The remaining lines
in this multi-line message display the status of each SSL server in the sysplex. A server is ACTIVE if the GSKSRVR
started task is running. A security server is INACTIVE if the GSKSRVR started task has been stopped. No entry is
displayed for a system where the GSKSRVR started task has not been started.

User response: None

GSK01009I Cryptographic status.

Explanation: This message is displayed in response to the SSL server DISPLAY CRYPTO command. The remaining
lines in this multi-line message display the available encryption algorithms.

User response: None

GSK01010A The SSL server is already running.

Explanation: The GSKSRVR started task is already running. Only one instance of the SSL server may be active in
the same system.

User response: Stop the GSKSRVR started task before starting a new instance of the SSL server.

GSK01011A The SSL server is not APF-authorized.

Explanation: The GSKSRVR started task is not running with APF authorization.

User response: Add the pdsename.SIEALNKE data set to the list of APF-authorized data sets and then restart the
GSKSRVR started task. If you are using a STEPLIB or JOBLIB for the GSKSRVR started task, verify that all data sets
in the concatenation are APF-authorized.

GSK01012A Unable to make address space non-swappable: Error error-code.

Explanation: The SSL server is unable to make its address space non-swappable. The error code is the value that is
returned by the SYSEVENT system service.

User response: Verify that the GSKSRVR started task is APF-authorized. See the SYSEVENT description in z/OS
MVS Programming: Authorized Assembler Services Reference SET-WTO for more information. Contact your service
representative if the error persists.

GSK01013I SSL server restart registration complete on system.

Explanation: The GSKSRVR started task successfully registered with ARM (Automatic Restart Management) on the
indicated system. The GSKSRVR started task is automatically restarted if it fails unexpectedly (it does not restart if it
detects an error and stops). The ARM element type is SYSSSL and the ARM element name is GSKSRVR_system-
name. The ARM policy can be used to override the default registration values if needed.

User response: None

GSK01014I SSL server restarting on system.

Explanation: The GSKSRVR started task is being restarted following an unexpected failure. The
RESTART_ATTEMPTS value in the ARM policy determines the number of restarts that are attempted.

User response: None

GSK01015E Unable to register for restart: Error error-code, Reason reason-code.

Explanation: The GSKSRVR started task is unable to register with ARM (Automatic Restart Management). The
IXCARM request failed with the indicated error and reason codes.

User response: See the IXCARM description in z/OS MVS Programming: Sysplex Services Reference for more
information. Contact your service representative if the error persists.

GSK01008I • GSK01015E

594 z/OS V2R1.0 System SSL Programming

GSK01016E Unable to unregister for restart: Error error-code, Reason reason-code.

Explanation: The GSKSRVR started task is unable to unregister with ARM (Automatic Restart Management). The
IXCARM request failed with the indicated error and reason codes.

User response: See the IXCARM description in z/OS MVS Programming: Sysplex Services Reference for more
information. Contact your service representative if the error persists.

GSK01017I SSL server restart deregistration complete on system.

Explanation: The GSKSRVR started task successfully deregistered with ARM (Automatic Restart Management) on
the indicated system. The SSL server is no longer automatically restarted if it fails unexpectedly.

User response: None

GSK01018I Trace option processed: trace-option.

Explanation: The indicated trace request has been processed by the SSL server.

User response: None

GSK01019E Unable to create mutex: error-text.

Explanation: The GSKSRVR started task is unable to create a mutex for the indicated reason.

User response: See the pthread_mutex_init() description in z/OS XL C/C++ Runtime Library Reference for more
information. Contact your service representative if the error persists.

GSK01020E Unable to lock mutex: error-text.

Explanation: The GSKSRVR started task is unable to lock a mutex for the indicated reason.

User response: See the pthread_mutex_lock() description in z/OS XL C/C++ Runtime Library Reference for more
information. Contact your service representative if the error persists.

GSK01021E Unable to create thread: error-text.

Explanation: The GSKSRVR started task is unable to create a thread for the indicated reason.

User response: See the pthread_create() description in z/OS XL C/C++ Runtime Library Reference for more
information. Contact your service representative if the error persists.

GSK01022E Unable to initialize local services: Error error-code, Reason reason-code.

Explanation: The GSKSRVR started task is unable to initialize the local services support. The error code indicates
that the failing system function and the reason code are the error code that is returned by the system function.

These error codes are defined:
v 1 = The job step is not APF-authorized.
v 2 = The security server is already running.
v 3 = The ESTAEX request failed.
v 5 = The LXRES request failed.
v 6 = The ETCRE request failed.
v 7 = The ETCON request failed.
v 8 = The IEANTCR request failed.
v 9 = The CTRACE DEFINE request failed.

User response: Verify that the GSKSRVR started task is APF-authorized. See the system function description in z/OS
MVS Programming: Authorized Assembler Services Reference EDT-IXG for more information. Contact your service
representative if the error persists.

GSK01016E • GSK01022E

Chapter 13. Messages and codes 595

GSK01023E Unable to create session cache data space: Error error-code, Reason reason-code.

Explanation: The GSKSRVR started task is unable to create the session cache data space.

These error codes are defined:
1 = DSPSERV CREATE failed.

The reason code contains the DSPSERV return code in the upper halfword and bits 8-23 of the DSPSERV
reason code in the lower halfword.

2 = ALESERV ADD failed.
The reason code is the ALESERV return code.

User response: See the DSPSERV or ALESERV description in z/OS MVS Programming: Authorized Assembler Services
Reference ALE-DYN for more information. Contact your service representative if the error persists.

GSK01024E Unable to initialize cross-system services: Error error-code, Reason reason-code.

Explanation: The GSKSRVR started task is unable to initialize cross-system services.

These error codes are defined:
1 = The job step is not APF-authorized.
3 = IXCJOIN failed.

The reason code contains the IXCJOIN return code in the upper halfword and the IXCJOIN reason code in
the lower halfword.

4 = IXCQUERY failed.
The reason code contains the IXCQUERY return code in the upper halfword and the IXCQUERY reason code
in the lower halfword.

User response: See the IXCJOIN or IXCQUERY description in z/OS MVS Programming: Sysplex Services Reference for
more information. Contact your service representative if the error persists.

GSK01025I System name has joined the GSKSRVR group.

Explanation: The GSKSRVR started task completed initialization on the indicated system and is now a member of
the GSKSRVGP cross-system group.

User response: None

GSK01026I System name has left the GSKSRVR group.

Explanation: The GSKSRVR started task is stopping on the indicated system and left the GSKSRVGP cross-system
group.

User response: None

GSK01027I Cross-system services ended due to sysplex partitioning.

Explanation: The local system is leaving the sysplex. As a result, GSKSRVR cross-system services are no longer
available.

User response: None

GSK01028E Local program call request failed: Error error-code.

Explanation: The GSKSRVR started task is unable to process a local program call request.

These error codes are defined:
v 8 = Parameter buffer overflow.
v 12 = Unable to allocate storage.
v 16 = Local service support is not enabled.
v 20 = Program call task abended.
v 24 = Unable to obtain control lock.
v 28 = Requested function is not supported.

User response: Contact your service representative.

GSK01023E • GSK01028E

596 z/OS V2R1.0 System SSL Programming

GSK01029I Cross-system services are not available.

Explanation: The DISPLAY XCF command cannot be processed because cross-system services are not available.

User response: None

GSK01030I Maximum number of lines displayed.

Explanation: The maximum number of lines that are allowed for a multi-line write-to-operator message is reached.

User response: None

GSK01031I No session cache users.

Explanation: The DISPLAY SIDCACHE command was issued but there are no session cache users to display.

User response: None

GSK01032I Session cache status

Explanation: This message is displayed in response to the SSL server DISPLAY SIDCACHE command. The
remaining lines in this multi-line message display the cache users.

User response: None

GSK01033E Unable to extend the session cache data space: Error error-code, Reason reason-code.

Explanation: The GSKSRVR started task is unable to increase the size of the session cache data space.

The error codes have these values:
1 = DSPSERV EXTEND failed.

The reason code contains the DSPSERV return code in the upper halfword and bits 8-23 of the DSPSERV
reason code in the lower halfword.

User response: The new session cache entry is not stored in the session cache data space. See the DSPSERV
description in z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN for more information. Contact
your service representative if the error persists.

GSK01034E Unable to send cross-system message: Error error-code, Reason reason-code.

Explanation: The GSKSRVR started task is unable to send a message to another member of the GSKSRVGP group.

The error codes have these values:

v 1 = Unable to obtain XCF control lock on target system.

v 2 = Cross-system services are not available.

v 3 = Requested token that is not found on target system.

v 4 = User not authorized to access token data.

v 5 = Unable to allocate storage on the target system.

v 6 = Target replica is not a member of the GSKSRVGP group.

v 7 = Target replica is not active.

v 8 = IXCMSGO failed. The reason code contains the IXCMSGO return code in the upper halfword and the
IXCMSGO reason code in the lower halfword.

v 9 = IXCMSGI failed on the target system. The reason code contains the IXCMSGI return code in the upper
halfword and the IXCMSGI reason code in the lower halfword.

v 10 = Request function code is not supported.

v 11 = Request canceled.

v 12 = Unknown notification message.

v 13 = No response received from target system.

v 14 = Unable to allocate storage on the local system.

GSK01029I • GSK01034E

Chapter 13. Messages and codes 597

v 15 = IXCMSGI failed on the local system. The reason code contains the IXCMSGI return code in the upper
halfword and the IXCMSGI reason code in the lower halfword.

User response: The request is not processed. See the IXCMSGI or IXCMSGO description in z/OS MVS Programming:
Sysplex Services Reference for more information. Contact your service representative if the error persists.

GSK01035E SSL server is not available.

Explanation: The SSL server task is not available. This error occurs if the GSKSRVR started task is not running, has
not completed initialization, or is stopping.

User response: Wait until the GSKSRVR started task is available and then try the failing request again.

GSK01036E No job name specified.

Explanation: No job name was specified on the TRACE CT command when starting a component trace.

User response: Specify at least one job name when starting a component trace.

GSK01037E Unable to call SSL server: Error errorcode, Reason reasoncode.

Explanation: The command processor for the TRACE CT command is unable to call the GSKSRVR started task.

These error codes are defined:
v 8 = Parameter buffer overflow
v 12 = Unable to allocate storage
v 16 = Local service support is not enabled
v 20 = Program call task abended (the reason is the abend code)
v 24 = Unable to obtain control lock
v 28 = Requested function is not supported

User response: Verify that the GSKSRVR started task is running on the local system. Contact your service
representative if the error persists.

GSK01038E Incorrect trace option specified.

Explanation: The OPTIONS parameter on the TRACE CT command does not specify a valid SSL trace option. The
only valid option is LEVEL=n where n is the requested SSL trace level. See Appendix A, “Environment variables,” on
page 605 for the description of the GSK_TRACE environment variable for more information about setting the SSL
trace level.

User response: Specify a valid SSL trace option.

GSK01039E The trace buffer size must be between 64K and 512K.

Explanation: The trace buffer size that is specified on the TRACE CT command must be between 64K and 512K.

User response: Specify a valid trace buffer size.

GSK01040I SSL component trace started.

Explanation: The SSL component trace has been started. The jobs that are specified on the TRACE CT command
may be already running or may be started after the TRACE CT command is processed. However, any jobs that are
already running must have been started after the GSKSRVR started task was started.

User response: None

GSK01041I SSL component trace ended.

Explanation: The SSL component trace has ended.

User response: None

GSK01035E • GSK01041I

598 z/OS V2R1.0 System SSL Programming

GSK01042E Incorrect OPTIONS syntax

Explanation: The OPTIONS parameter syntax on the IPCS CTRACE command is not correct for an SSL component
trace. SSL supports three options: JOB, PID, and TID. The CTRACE OPTIONS parameter is specified as CTRACE
COMP(GSKSRVR) OPTIONS((JOB(name),PID(hexid),TID(hexid))).

User response: Specify a valid OPTIONS parameter.

GSK01043E Incorrect trace option.

Explanation: An incorrect trace option was specified on the IPCS CTRACE command for an SSL component trace.
SSL supports three options: JOB, PID, and TID. The CTRACE OPTIONS parameter is specified as CTRACE
COMP(GSKSRVR) OPTIONS((JOB(name),PID(hexid),TID(hexid))). The job name must be 1-8 characters. The
hexadecimal identifier for PID and TID must be 1-8 hexadecimal digits.

User response: Specify a valid OPTIONS parameter.

GSK01044E Duplicate trace option.

Explanation: An SSL trace option is specified more than once on the IPCS CTRACE command.

User response: Do not specify the same trace option more than once.

GSK01045E Incorrect hexadecimal value.

Explanation: The value for the PID and TID trace options for the IPCS CTRACE command must be a hexadecimal
value consisting of 1-8 hexadecimal digits.

User response: Specify a valid hexadecimal value.

GSK01046I Trace filter options: option list

Explanation: The IPCS CTRACE command specifies one or more trace entry filter options.

User response: None

GSK01047I SSL component trace started for jobname/JobID.

Explanation: The SSL component trace has started for the indicated job. This message is displayed once for each job
that matches the jobnames that are specified in the TRACE CT command. Tracing is started and the message is
displayed when SSL component trace has been started and activation has been detected by the System SSL APIs.

User response: None

GSK01048W Component trace buffer overflow.

Explanation: Both of the SSL component trace buffers are full and additional trace entries cannot be added until the
trace writer has written the current data to the trace data set. Trace entries are discarded until the trace writer
emptied one of the trace buffers.

User response: Increase the trace buffer size that is specified on the TRACE command and restart the component
trace.

GSK01049A The SSL server must be started as a started task.

Explanation: The GSKSRVR was not started as a started task. The user ID of the GSKSRVR started task must be
defined to the started procedure. See “Configuring the SSL started task” on page 536 for more information.

User response: Start GSKSRVR as a started task.

GSK01042E • GSK01049A

Chapter 13. Messages and codes 599

GSK01050I SSL Component trace started for Jobname/JobID/ProcessID

Explanation: The SSL component trace started for the indicated process. This message is displayed each time
component trace is started for each SSL process whose job name matches one of the job names that are specified in
the TRACE CT command. Tracing is started and the message is displayed when SSL component trace has been
started and activation has been detected by the System SSL APIs. This message is written to the system log only.

User response: None.

GSK01051E Jobname/ASID Hardware encryption error. ICSF hardware encryption processing is unavailable

Explanation: The specified job encountered a severe hardware encryption error during ICSF hardware processing.
Encryption functions are processed in software. See message GSK01052W in the system log for algorithm-specific
detail.

User response: Ensure that ICSF hardware encryption services are installed and functioning correctly. Restart the
SSL application or process to reinitialize the SSL DLLs.

GSK01052W Jobname/ASID Hardware encryption error. Algorithm encryption processing switched to software

Explanation: The specified job encountered a severe hardware encryption error. Hardware processing for the
specified algorithm has been disabled. Any future encryption or decryption using this algorithm is performed in
software for the particular SSL application or process.

User response: Ensure that ICSF hardware encryption services are installed and functioning correctly. Restart the
SSL application or process to reinitialize the SSL DLLs.

GSK01053E Known Answer Tests failed with status status-code

Explanation: The FIPS power-on known answer tests failed with the reported CMS status code. System SSL is
unable to execute in FIPS mode.

User response: See “CMS status codes (03353xxx)” on page 575 for information about the reported status code.
Collect a System SSL trace of the failing application and contact your service representative if the error persists.

GSK01054E SSL server starting in non-FIPS mode. Status status-code

Explanation: The environment variable GSK_FIPS_STATE was specified in the envar file in the GSKSRVR home
directory, yet the started task was unable to execute in FIPS mode. The started task is started in non-FIPS mode.

If the indicated CMS status code is zero, then the value that is specified for the environment variable was not
GSK_FIPS_STATE_ON, so FIPS mode was not attempted. If the indicated CMS status code is non-zero, an attempt
was made to set FIPS mode but failed.

The System SSL started task continues to execute in non-FIPS mode. In non-FIPS mode, GSKSRVR does not provide
sysplex session ID caching for FIPS mode application servers. Sysplex session ID caching is provided only for
non-FIPS mode application servers.

User response: If the indicated status is zero, correct the environment variable GSK_FIPS_STATE so that it either
specifies the value 'GSK_FIPS_STATE_ON' or remove the environment variable if FIPS mode is not required for the
started task. If the indicated status is non-zero, see “CMS status codes (03353xxx)” on page 575 for information about
the reported status code.

Collect a System SSL trace of the failing application and contact your service representative if the error persists.

GSK01057I SSL server starting in FIPS mode.

Explanation: GSK_FIPS_STATE=GSK_FIPS_STATE_ON was specified in the envar file in the GSKSRVR home
directory.

The System SSL started task has initialized successfully and executes in FIPS mode. In FIPS mode, GSKSRVR
provides sysplex session ID caching for both FIPS mode and non-FIPS mode application servers.

User response: None

GSK01050I • GSK01057I

600 z/OS V2R1.0 System SSL Programming

GSK01064I GSK_FIPS_ICSF_TRACKING environment variable is no longer supported.

Explanation: The GSK_FIPS_ICSF_TRACKING environment variable is not supported after z/OS V1R13, and the
setting that is specified in the SSL started task environment variable file is ignored.

User response: Remove the GSK_FIPS_ICSF_TRACKING environment variable from the SSL started task
environment variable file.

GSK01064I

Chapter 13. Messages and codes 601

Utility messages (GSK00nnn)
System SSL utility messages have the prefix "GSK00". These messages identify
conditions from utilities (such as gsktrace and System SSL run time) that require a
system operator response.

GSK00001E Unable to open trace file name: error-message

Explanation: The gsktrace command is unable to open the trace file.

User response: Verify that the trace file exists and can be accessed by the user issuing the gsktrace command.
Contact your service representative if the error persists.

GSK00002E Unable to read trace file name: error-message

Explanation: The gsktrace command is unable to read the trace file.

User response: Verify that there are no file system errors and that the trace file has not been modified. Contact your
service representative if the error persists.

GSK00003E Trace record length size exceeds the maximum length.

Explanation: A record in the trace file is longer than the maximum length for a trace record. This probably means
that the trace file has been modified.

User response: Verify that the trace file has not been modified and was created by a compatible level of the System
SSL run time.

GSK00004R Enter password:

Explanation: The System SSL run time needs a database or certificate password.

User response: Enter the requested password.

GSK00005R Re-enter password:

Explanation: The System SSL run time is verifying the password.

User response: Enter the same password you entered for the first password prompt.

GSK00006E File name is not a valid SSL trace file.

Explanation: The gsktrace command is unable to process the file because it is not in the proper format. This error
can occur if the trace file was created by an earlier level of the System SSL run time.

User response: Process the trace file using the gsktrace command that is at the same level as the System SSL run
time which created the trace file.

GSK00007R Enter new password:

Explanation: The System SSL run time is needs a new database password.

User response: Enter the requested password.

GSK00008E z/OS PKCS #11 function function-name failed with return code return-code

Explanation: The indicated z/OS PKCS #11 function failed with the reported return code. The return code is
displayed in hexadecimal with its decimal value in parentheses. See z/OS Cryptographic Services ICSF Writing PKCS
#11 Applications for more information about the function and return code value.

User response: See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for more information about the
reported function and return code. If the problem cannot be resolved, contact your service representative.

GSK00001E • GSK00008E

602 z/OS V2R1.0 System SSL Programming

GSK00009E Problem encountered with the installation of the gskkyman utility.

Explanation: During installation, the sticky bit is set on for the gskkyman utility. If the sticky bit is turned off,
attempts to invoke gskkyman fails.

User response: Verify that the sticky bit is set. If not set, set the sticky bit.

To check the sticky bit setting, issue:

ls -l /usr/lpp/gskssl/bin/gskkyman

The first part of the output should be:

-rwxr-xr-t

The t indicates that the sticky bit is on.

To set the sticky bit on, issue the following command from an authorized ID:

chmod +t /usr/lpp/gskssl/bin/gskkyman

GSK00009E

Chapter 13. Messages and codes 603

604 z/OS V2R1.0 System SSL Programming

Appendix A. Environment variables

These tables contain all the environment variables used by the system application
and read during the startup of the application.

Table 13. SSL-Specific environment variables

Environment variables Usage Valid values

GSK_CERT_VALIDATE_KEYRING_ROOT Specifies how certificates in a SAF
key ring are validated.

A value of 'ON' or '1' specifies that SAF key
ring certificates must be validated to the
root CA certificate.

Specify 'OFF' or '0' if SAF key ring
certificates are only validated to the trust
anchor certificate. If a sole intermediate
certificate is found in a SAF key ring and
the next issuer is not found in the same SAF
key ring, the intermediate certificate acts as
a trust anchor and the certificate chain is
considered complete. By default, SAF key
ring certificates are only validated to the
trust anchor certificate. This setting does not
affect the validation of SSL key database file
and PKCS #11 token certificates because
these certificates are always validated to the
root CA certificate. The default value is
'OFF'.

GSK_CERT_VALIDATION_MODE Specifies which Internet standard is
to be used for certificate validation.

A value of '2459' specifies certificate
validation against RFC 2459 only. A value of
'3280' specifies certificate validation against
RFC 3280 only. A value of '5280' specifies
certificate validation against RFC 5280 only.
A value of 'ANY' specifies certificate
validation against RFC 2459 initially - if that
fails, validate against RFC 3280 - if that fails,
validate against RFC 5280. The default value
is 'ANY'.

GSK_CLIENT_AUTH_NOCERT_ALERT Specifies whether the SSL server
application accepts a connection from
a client where client authentication is
requested and the client fails to
supply an X.509 certificate.

A value of 'OFF' or '0' allows connections
with clients where client authentication is
requested and the client fails to supply an
X.509 certificate. A value of 'ON' or '1'
terminates connections with clients where
client authentication is requested and the
client fails to supply an X.509 certificate. The
default value is 'OFF'.

© Copyright IBM Corp. 1999, 2013 605

Table 13. SSL-Specific environment variables (continued)

Environment variables Usage Valid values

GSK_CLIENT_ECURVE_LIST Specifies the list of elliptic curves that
are supported by the client as a
string consisting of 1 or more
4-character values in order of
preference for use. The list is used by
the client to guide the server as to
which elliptic curves are preferred
when using ECC-based cipher suites
for TLS V1.0 and higher protocols.

Only NIST recommended curves can
be specified. To use Brainpool
standard curves for an SSL
environment or connection, set
GSK_CLIENT_ECURVE_LIST to "" or
use gsk_attribute_set_buffer() to
re-initialize the
GSK_CLIENT_ECURVE_LIST buffer
to NULL.

See Table 19 on page 627 for a list of
valid 4-character elliptic curve
specifications.

The default specification is
"00210023002400250019".

GSK_CRL_CACHE_TIMEOUT Specifies the number of hours that a
cached CRL remains valid.

The valid timeout values are 0 through 720
and defaults to 24. A value of 0 disables the
CRL cache.

GSK_CRL_SECURITY_LEVEL Specifies the level of security SSL
applications use when contacting
LDAP servers to check CRLs for
revoked certificates during certificate
validation.

CRLs located are cached according to
the GSK_CRL_CACHE_TIMEOUT
setting of the SSL environment. To
enforce contact with the LDAP server
for each CRL check, CRL caching
must be disabled. If a CRL is not
defined, an empty CRL is placed in
the CRL cache to prevent repeated
calls to the LDAP server. This entry is
not cleared until the CRL cache
timeout is reached. See
“gsk_attribute_set_numeric_value()”
on page 85 and Appendix A,
“Environment variables,” on page 605
for more information about the
GSK_CRL_CACHE_TIMEOUT
setting.

LOW - Certificate validation does not fail if
the LDAP server cannot be contacted.

MEDIUM - Certificate validation requires
the LDAP server to be contactable, but does
not require a CRL to be defined. This is the
default.

HIGH - Certificate validation requires the
LDAP server to be contactable and a CRL to
be defined.

GSK_EXC_ABEND_DUMP Specifies whether the SSL condition
handler should call the cdump()
service to dump the current thread
before resuming the failing routine.
The dump is placed in the current
directory unless LE is instructed to
use a different directory by the
_CEE_DMPTARG environment
variable. See z/OS Language
Environment Programming Guide for
more information about LE callable
services.

A value of '1' enables SSL dumps and a
value of '0' disables SSL dumps. The default
is '0'. The export file contains just the
requested certificate when the DER format is
selected.

Environment variables

606 z/OS V2R1.0 System SSL Programming

Table 13. SSL-Specific environment variables (continued)

Environment variables Usage Valid values

GSK_EXTENDED_RENEGOTIATION_
INDICATOR

Specifies the level of enforcement of
renegotiation indication as specified
by RFC 5746 during the initial
handshake.

A value of “OPTIONAL” does not require
the renegotiation indicator during initial
handshake. This is the default.

A value of “CLIENT” allows the client initial
handshake to proceed only if the server
indicates support for RFC 5746
Renegotiation.

A value of “SERVER” allows the server
initial handshake to proceed only if the
client indicates support for RFC 5746
Renegotiation.

A value of “BOTH” will allow the server
and client initial handshakes to proceed only
if partner indicates support for RFC 5746
Renegotiation.

Environment variables

Appendix A. Environment variables 607

Table 13. SSL-Specific environment variables (continued)

Environment variables Usage Valid values

GSK_HW_CRYPTO Specifies whether the hardware
cryptographic support is used. Note
that ICSF (Integrated Cryptographic
Service Facility) must be configured
and running in order for System SSL
to use the hardware cryptographic
support that is available in the
cryptographic cards.

SHA-1, SHA-2, DES, Triple DES, and
AES hardware functions can be used
without ICSF if the zArchitecture
message-security assist is installed.

For more information about
hardware cryptographic support, see
Chapter 3, “Using cryptographic
features with System SSL,” on page
11.

Selected hardware cryptographic
functions can be disabled by setting
the appropriate bits to zero in the
GSK_HW_CRYPTO value. The
corresponding software algorithms
are used when a hardware function is
disabled. These bit assignments are
defined:

1 = SHA-1 digest generation

2 = 56-bit DES
encryption/decryption

4 = 168-bit Triple DES
encryption/decryption

8 = Public key
encryption/decryption

16 = AES 128-bit
encryption/decryption

32 = SHA-256 digest generation

64 = AES-256-bit
encryption/decryption

128 = SHA-224 digest generation

256 = SHA-384 digest generation

512 = SHA-512 digest generation

Note: If a hardware function bit is
set on and the hardware function is
unavailable, processing takes place in
software.

A value of '0' disables the use of hardware
support while a value of '65535' enables the
use of hardware support. The default value
is '65535' and only available hardware
support is used.

GSK_KEY_LABEL Specifies the label of the key that is
used to authenticate the application.

Any key label. The default key is used if a
key label is not specified.

Environment variables

608 z/OS V2R1.0 System SSL Programming

Table 13. SSL-Specific environment variables (continued)

Environment variables Usage Valid values

GSK_KEYRING_FILE Specifies the name of the key
database file, SAF key ring, or z/OS
PKCS #11 token. A key database is
used if the GSK_KEYRING_PW or
GSK_KEYRING_STASH environment
variable is also specified. Otherwise,
a SAF key ring or z/OS PKCS #11
token is used.

Note that certificate private keys are
not available when using a SAF key
ring owned by another user.

The user must have READ access to
resource USER.tokenname in the
CRYPTOZ class.

The SAF key ring name is specified as
"userid/keyring". The current user ID is
used if the user ID is omitted.

The z/OS PKCS #11 token name is specified
as "*TOKEN*/token-name".

If no certificate source is specified, defaults
to NULL.

GSK_KEYRING_PW Specifies the password for the key
database.

NULL or value consisting of up to 128
characters.

The default value is NULL

GSK_KEYRING_STASH Specifies the name of the key
database password stash file.

The stash file name always has an extension
of ".sth" and the supplied name is changed
if it does not have the correct extension. The
GSK_KEYRING_PW environment variable is
used instead of the GSK_KEYRING_STASH
environment variable if it is also specified.

The default value is NULL.

GSK_LDAP_PASSWORD Specifies the password to use when
connecting to the LDAP server.

The default value is NULL.

GSK_LDAP_PORT Specifies the LDAP server port. Port must be between 1 and 65535. Port 389
is used if no LDAP server port is specified.

GSK_LDAP_SERVER Specifies one or more blank-separated
LDAP server host names. The LDAP
server is used to obtain CA
certificates when validating a
certificate and the local database does
not contain the required certificate.
The local database must contain the
required certificates if no LDAP
server is specified. Even when an
LDAP server is used, root CA
certificates must be found in the local
database since the LDAP server is not
a trusted data source. The LDAP
server is also used to obtain
certificate revocation lists.

Each host name can contain an optional port
number that is separated from the host
name by a colon.

The default value is NULL.

GSK_LDAP_USER Specifies the distinguished name to
use when connecting to the LDAP
server.

The default value is NULL.

GSK_PROTOCOL_SSLV2 Specifies whether the SSL V2 protocol
is supported. The SSL V2 protocol
should be disabled whenever
possible since the SSL V3 protocol
provides significant security
enhancements. This variable has no
effect when operating in FIPS mode.

A value of "0", "OFF" or "DISABLED"
disables the SSL V2 protocol while a value
of "1", "ON" or "ENABLED" enables the SSL
V2 protocol. The default value is 'ON'.

GSK_PROTOCOL_SSLV3 Specifies whether the SSL V3 protocol
is supported. This variable has no
effect when operating in FIPS mode.

A value of "0", "OFF" or "DISABLED"
disables the SSL V3 protocol while a value
of "1", "ON" or "ENABLED" enables the SSL
V3 protocol. The default value is 'ON'.

Environment variables

Appendix A. Environment variables 609

Table 13. SSL-Specific environment variables (continued)

Environment variables Usage Valid values

GSK_PROTOCOL_TLSV1 Specifies whether the TLS V1.0
protocol is supported.

A value of "0", "OFF" or "DISABLED"
disables the TLS V1.0 protocol while a value
of "1", "ON" or "ENABLED" enables the TLS
V1.0 protocol. The default value is 'ON'.

GSK_PROTOCOL_TLSV1_1 Specifies whether the TLS V1.1
protocol is supported.

A value of "0", "OFF" or "DISABLED"
disables the TLS V1.1 protocol while a value
of "1", "ON" or "ENABLED" enables the TLS
V1.1 protocol. The default value is 'OFF'.

GSK_PROTOCOL_TLSV1_2 Specifies whether the TLS V1.2
protocol is supported.

A value of "0", "OFF" or "DISABLED"
disables the TLS V1.2 protocol. A value of
"1", "ON" or "ENABLED" enables the TLS
V1.2 protocol. The default value is 'OFF'.

GSK_RENEGOTIATION Specifies the type of session
renegotiation allowed for an SSL
environment.

A value of "NONE" disables SSL V3 and
TLS handshake renegotiation as a server and
allow RFC 5746 renegotiation. This is the
default.

A value of "DISABLED" disables SSL V3 and
TLS handshake renegotiation as a server and
also disable RFC 5746 renegotiation.

A value of "ALL" allows SSL V3 and TLS
handshake renegotiation as a server while
also allowing RFC 5746 renegotiation.

A value of "ABBREVIATED" allows SSL V3
and TLS abbreviated handshake
renegotiation as a server for resuming the
current session only, while disabling SSL V3
and TLS full handshake renegotiation as a
server. With this value specified, the System
SSL session ID cache is not checked when
resuming the current session. RFC 5746
renegotiation is allowed if this value is
specified.

GSK_RENEGOTIATION_PEER_CERT_
CHECK

Specifies if the peer certificate is
allowed to change during
renegotiation.

A value of "OFF" or "0" does not perform an
identity check against the peer's certificate
during renegotiation. This allows the peer
certificate to change during renegotiation.
This is the default.

A value of "ON" or "1" performs a
comparison against the peer's certificate to
ensure that certificate does not change
during renegotiation.

GSK_RNG_ALLOW_ZERO_BYTES Specifies whether the SSL random
number generator,
gsk_generate_random_bytes includes
bytes with a zero value in the
random byte output stream, or
remove them.

The
GSK_RNG_ALLOW_ZERO_BYTES
environment variable is processed
during System SSL initialization and
is not checked afterward.

A value of “TRUE”, “ON” or “1” sets the
random number generator to retain bytes
with a zero value in the output stream. A
value of “FALSE”, “OFF” or “0” results in
bytes with a zero value being removed. The
default setting is "TRUE".

Environment variables

610 z/OS V2R1.0 System SSL Programming

Table 13. SSL-Specific environment variables (continued)

Environment variables Usage Valid values

GSK_SSL_HW_DETECT_MESSAGE Setting this environment variable to 1
causes a series of messages to be
written to stderr during System SSL
initialization. These messages
displays the current status of the
hardware cryptographic support.
These messages are intended for
diagnostic use only and are not
translated based on the setting of the
LANG environment variable.

Specify "1” to have messages written. Any
other value is ignored, which is the default.

GSK_SSL_ICSF_ERROR_MESSAGE Setting this environment variable to 1
causes a message to be written to
stderr when an ICSF callable service
returns an error. These messages are
intended for diagnostic use only and
are not translated based on the
setting of the LANG environment
variable.

Specify "1” to have messages written. Any
other value is ignored, which is the default.

GSK_STDERR_FILE Specifies the fully-qualified name of
the file to receive standard error
messages generated using SSL
message services. Messages displayed
from externally documented
messages is written to stderr if this
environment variable is not defined.

If fully qualified file not specified, the
default action is to write standard errors to
stderr.

GSK_STDOUT_FILE Specifies the fully-qualified name of
the file to receive standard output
messages generated using SSL
message services. Messages displayed
from externally documented
messages is written to stdout if this
environment variable is not defined.

If fully qualified file not specified, the
default action is to write standard output to
stdout.

Environment variables

Appendix A. Environment variables 611

Table 13. SSL-Specific environment variables (continued)

Environment variables Usage Valid values

GSK_SUITE_B_PROFILE Specifies the Suite B profile to be
applied to TLS sessions.

A Suite B compliant TLS V1.2 or later
client must offer only the following
cipher suites when conversing with a
TLS V1.2 Suite B compliant server.

128-bit security level:

v C023 = 128-bit AES encryption
with SHA-256 message
authentication and ephemeral
ECDH key exchange signed with
an ECDSA certificate.

v C02B = 128-bit AES in Galois
Counter Mode encryption with
SHA-256 message authentication
and ephemeral ECDH key
exchange signed with an ECDSA
certificate.

192-bit security level:

v C024 = 256-bit AES encryption
with SHA-384 message
authentication and ephemeral
ECDH key exchange signed with
an ECDSA certificate.

v C02C = 256-bit AES in Galois
Counter Mode encryption with
SHA-384 message authentication
and ephemeral ECDH key
exchange signed with an ECDSA
certificate.

A value of "OFF" specifies that Suite B
compliant profiles are not in use for TLS
sessions. This is the default value.

A value of "128" specifies that only ciphers
defined within 128-bit Suite B compliant
profile can be used for a TLS session.

A value of "192" specifies that only ciphers
defined within 192-bit Suite B compliant
profile can be used for a TLS session.

A value of "ALL" specifies that ciphers
defined within both the 128-bit and 192-bit
Suite B compliant profiles can be used for a
TLS session.

GSK_SYSPLEX_SIDCACHE Specifies whether sysplex session
caching is supported for this
application.

A value of "0", "OFF" or "DISABLED"
disables sysplex session caching while a
value of "1", "ON" or "ENABLED" enables
sysplex session caching. The default value is
"OFF".

GSK_T61_AS_LATIN1 Specifies the character set for ASN.1
TELETEXSTRING conversions. The
T.61 character set is supposed to be
used for strings tagged as
TELETEXSTRING. The X.690 ASN.1
definition specifies the 7-bit
T.61character set (ISO IR-102).
However, many certificate authorities
issue certificates using the 8-bit
ISO8859-1 character set (ISO IR-100)
instead of the 7-bit T.61 character set.
This causes conversion errors when
the certificate is decoded. To add to
the confusion, the 8-bit T.61 character
set (ISO IR-103) is also used by some
implementations.

If the GSK_T61_AS_LATIN1 environment
variable is set to YES or 1, the 8-bit
ISO8859-1 character set is used when
processing a TELETEX string. If the
GSK_T61_AS_LATIN1 environment variable
is set to NO or 0, the 8-bit T.61 character set
is used. The default is to use the ISO8859-1
character set. The GSK_T61_AS_LATIN1
environment variable is processed during
System SSL initialization and is not checked
afterward. Note that selecting the incorrect
character set can cause strings to be
converted incorrectly.

Environment variables

612 z/OS V2R1.0 System SSL Programming

Table 13. SSL-Specific environment variables (continued)

Environment variables Usage Valid values

GSK_TLS_SIG_ALG_PAIRS Specifies the list of hash and
signature algorithm pair
specifications supported by the client
or server as a string consisting of 1 or
more 4-character values in order of
preference for use.

The signature algorithm pair
specifications are sent by either the
client or server to the session partner
to indicate which signature/hash
algorithm combinations are
supported for digital signatures.

The signature algorithm pair
specification only has relevance for
sessions using TLS V1.2 or higher
protocols.

See Table 20 on page 627 for a list of
valid 4-character signature algorithm
pairs specifications.

If executing in non-FIPS mode, the default
is:
"060106030501050304010403
030103030201020302020101"

If executing in FIPS mode, the default is:

"060106030501050304010403
03010303020102030202"

GSK_TRACE Specifies a bit mask enabling System
SSL trace options. No trace option is
enabled if the bit mask is 0 and all
trace options are enabled if the bit
mask is 0xffff. The bit mask can be
specified as a decimal (nnn), octal
(0nnnn) or hexadecimal (0xhh) value.

These trace options are available:

0x01 = Trace function entry

0x02 = Trace function exit

0x04 = Trace errors

0x08 = Include informational messages

0x10 = Include EBCDIC data dumps

0x20 = Include ASCII data dumps

The default value is 0x00.

GSK_TRACE_FILE Specifies the name of the trace file.
The gsktrace command is used to
format the trace file. The trace file is
not used if the GSK_TRACE
environment variable is not defined
or is set to 0.

The current process identifier is
included as part of the trace file
name when the name contains a
percent sign (%). For example, if
GSK_TRACE_FILE is set to
/tmp/gskssl.%.trc and the current
process identifier is 247, then the
trace file name is /tmp/gskssl.247.trc.

Must be set to the name of an UNIX System
Services file in a directory for which the
executing application has write permission.

The default trace file is /tmp/gskssl.%.trc.

GSK_V2_CIPHER_SPECS Specifies the SSL V2 cipher
specifications in order of preference
as a string consisting of 1 or more
1-character values.

See Table 15 on page 619 for the list
of the supported ciphers.

If Security Level 3 is installed, the default is
"713642", otherwise, the default is "642".

GSK_V2_SESSION_TIMEOUT Specifies the session timeout value in
seconds for the SSL V2 protocol.

The valid timeout values are 0 through 100,
default value is 100.

GSK_V2_SIDCACHE_SIZE Specifies the number of session
identifiers that can be contained in
the SSL V2 cache.

The valid cache sizes are 0 through 32000
and defaults to 256. The SSL V2 cache is
disabled if 0 is specified. The session
identifier cache is allocated using the
requested size rounded up to a power of 2
with a minimum size of 16.

Environment variables

Appendix A. Environment variables 613

Table 13. SSL-Specific environment variables (continued)

Environment variables Usage Valid values

GSK_V3_CIPHER_SPECS Specifies the SSL V3 cipher
specifications in order of preference
as a string consisting of 1 or more
2-character values. The SSL V3 cipher
specifications are used for the SSL
V3, TLS V1.0, and higher protocols.

For protocols TLS V1.1 and above,
export cipher suites is not used.
40-bit ciphers are ignored if these
security protocols are negotiated.

For protocols TLS V1.2 and above,
56-bit DES cipher suites are not used.
DES ciphers are ignored if these
communications protocols are
negotiated.

Any ciphers that use SHA-256 or
greater message authentication or use
AES-GCM encryption can only be
used if TLS V1.2 or higher is the
negotiated protocol.

See Table 16 on page 619 for the list
of the supported 2-character ciphers.

If executing in non-FIPS mode and Security
Level 3 is installed, the default is:
"050435363738392F30313233
0A1613100D0915120F0C
0306020100"

If executing in non-FIPS mode and Security
Level 3 is not installed, the default is:

"0915120F0C0306020100"

If executing in FIPS mode, the default is:

"35363738392F303132330A16
13100D"

GSK_V3_CIPHER_SPECS_EXPANDED Specifies the SSL V3 cipher
specifications in order of preference
as a string consisting of 1 or more
4-character values. The SSL V3 cipher
specifications are used for the SSL
V3, TLS V1.0, and higher protocols.

For protocols TLS V1.1 and above
export cipher suites are not used.
40-bit ciphers are ignored if these
security protocols are negotiated.

For protocols TLS V1.2 and above,
56-bit DES cipher suites are not used.
DES ciphers are ignored if these
communications protocols are
negotiated.

Any ciphers that use SHA-256 or
greater message authentication or use
AES-GCM encryption can only be
used if TLS V1.2 or higher is the
negotiated protocol.

See Table 17 on page 623 for the list
of the supported 4-character ciphers.

If executing in non-FIPS mode and Security
Level 3 is installed, the default is:
"000500040035003600370038
0039002F0030003100320033
000A001600130010000D0009
00150012000F000C00030006
000200010000"

If executing in non-FIPS mode and Security
Level 3 is not installed, the default is:

"000900150012000F000C0003
0006000200010000"

If executing in FIPS mode, the default is:

"00350036003700380039002F
0030003100320033000A0016
00130010000D"

GSK_V3_SESSION_TIMEOUT Specifies the session timeout value in
seconds for the SSL V3, TLS V1.0 and
higher protocols.

The valid timeout values are 0 through
86400 and defaults to 86400. The timeout is
disabled if 0 is specified.

GSK_V3_SIDCACHE_SIZE Specifies the number of session
identifiers that can be contained in
the SSL V3 cache. The SSL V3 session
cache is used for the SSL V3, TLS
V1.0 and higher protocols.

The valid cache sizes are 0 through 64000
and defaults to 512. The SSL V3 cache is
disabled if 0 is specified. The session
identifier cache is allocated by using the
requested size rounded up to a power of 2
with a minimum size of 16.

GSKV2CACHESIZE Used to control the size limit for a V2
session cache. This variable is for use
only with the deprecated API set.

The valid cache sizes are 0 through 32000
and defaults to 256.

Environment variables

614 z/OS V2R1.0 System SSL Programming

Table 13. SSL-Specific environment variables (continued)

Environment variables Usage Valid values

GSKV3CACHESIZE Used to control the size limit for a V3
session cache. This variable is for use
only with the deprecated API set.

The valid cache sizes are 0 through 64000
and defaults to 512 entries.

Table 14 contains system environment variables used by SSL. For more
information, see the topic on shell variables in the z/OS UNIX System Services
Command Reference.

Table 14. System environment variables used by SSL

System environment variables Usage Valid values

LIBPATH Used to specify the directory to search for a DLL
(Dynamic Link Library) file name. If it is not set,
the working directory is searched.

NLSPATH Specifies where the message catalogs are to be
found.

The default location is
/usr/lib/nls/msg/%L/%N:/
usr/lib/nls/msg/
En_US.IBM-1047/%N

PATH Contains a list of directories that the system
searches to find executable commands. Directories
in this list are separated with colons. Searches each
directory in the order specified in the list until it
finds a matching executable. If you want the shell
to search the working directory, put a null string
in the list of directories (for example, to tell the
shell to search the working directory first, start the
list with a colon or semicolon).

STEPLIB Identifies a STEPLIB variable to be used in
building a process image for running an
executable file. A STEPLIB is a set of private
libraries used to store a new or test version of an
application program, such as a new version of a
runtime library.

STEPLIB can be set to the
values CURRENT or NONE
or to a list of MVS data set
names. The default is
CURRENT, which passes on
the TASKLIB, STEPLIB, or
JOBLIB allocations that are
part of the invoker's MVS
program search order
environment to the process
image created for an
executable file. The value
NONE indicates that you do
not want a STEPLIB
environment for executable
files. You can specify up to
255 MVS data set names,
separated by colons, as a list
of data sets used to build a
STEPLIB variable.

Environment variables

Appendix A. Environment variables 615

Environment variables

616 z/OS V2R1.0 System SSL Programming

Appendix B. Sample C++ SSL files

A sample set of files is shipped to provide an example of what is needed to build a
C++ System SSL application. These files build one DLL (SECURES) and three
programs: client, server, and display_certificate. These sample files are in
/usr/lpp/gskssl/examples:
v Makefile
v client.cpp
v server.cpp
v common.hpp
v common.cpp
v secures.h
v secures.cpp
v utils.hpp
v utils.cpp
v display_certificate.c

Note: Reference the sample source for SSL environment and connection attributes.
File name and password attributes are hard-coded in the kdb file.

server (source file: server.cpp) is a multithreaded program that opens a socket on
IP address 127.0.0.1, port 4321 and listens for client requests. server can run in
either secure (using SSL) mode or nonsecure (using normal socket reads and
writes) mode. By default, server runs with one socket listen thread and 20 work
threads. The socket listen thread listens for connections from clients and puts each
request onto the work list. The work threads check the work list for work and then
perform the work. The number of work threads can be specified using the
-numthreads parameter when starting server.

To get information about the parameters accepted when invoking the server
program, issue server -?

client (source file: client.cpp) is a single threaded program that connects to the
server program and exchanges one or more data packets. client can also run in
secure or nonsecure mode, but its mode must match the mode of the server to
which it is connecting. The number of connections, the number of read/write
packets per connection, the number of bytes in each write packet, and the number
of bytes in each read packet can be specified. Multiple clients can be run
simultaneously to the same server.

To get information about the parameters accepted when invoking the client
program, issue client -?

display_certificate (source file: display_certificate.c) is a program that can display
an X.509 certificate stored in a file. The display_certificate program is only
supported as a 31-bit application.

The files included in the examples are:

© Copyright IBM Corp. 1999, 2013 617

Makefile
This file builds the example programs and DLLs. The resulting executable
DLLs are client, server and display_certificate.

To build the examples as a 31-bit application (default), issue:
/bin/make

To build the client and server examples as a 64-bit application, issue:
/bin/make AMODE=64

Remove all compiled .o and .x artifacts, issue:
/bin/make clean

Remove all compiled .o, .x and DLL artifacts, issue:
/bin/make clobber

client.cpp
This file contains the routines that implement the client function.

server.cpp
This file contains the routines that implement the server function.

common.hpp
This contains the prototypes and defines for the routines in common.cpp.

common.cpp
This file contains a set of routines called by client and server to set up,
accept, open, and close connections, and to read and write data. All data
that is read or written in the form of packets that contain a header
containing a command, length, and cookie. This implements a higher level
communication protocol used between the client and server programs. For
example, this higher level protocol allows the client to send a "STOP"
request to the server, which stops the server program.

secures.h
This file contains prototypes and defines for the routines in secures.cpp.

secures.cpp
This file implements a set of APIs that are similar to the normal sockets
APIs, except that the routines work in either secure (SSL) or nonsecure
mode. These routines are called by code in client.cpp, server.cpp, and
common.cpp.

utils.hpp
This file contains the prototype for the routine in utils.cpp, some structure
definitions, and several defined constants.

utils.cpp
This file contains routines that server and client programs use to check
command line options.

display_certificate.c
This file is a sample program to decode and display an X.509 certificate.

Sample C++ SSL files

618 z/OS V2R1.0 System SSL Programming

Appendix C. Cipher suite definitions

The following tables outline:
v Cipher suite definitions for SSL V2
v 2-character and 4-character cipher suite definitions for SSL V3, TLS V1.0, TLS

V1.1, and TLS V1.2.
v Cipher suite definitions for SSL V3, TLS V1.0, TLS V1.1, and TLS V1.2 by

supported protocol, symmetric algorithm, and message authentication algorithm
v Cipher suite definitions for SSL V3, TLS V1.0, TLS V1.1, and TLS V1.2 by

key-exchange method and signing certificate
v Supported elliptic curve definitions for TLS V1.0, TLS V1.1, and TLS V1.2.

Table 15. Cipher suite definitions for SSL V2

Cipher
number Description FIPS 140-2

Base
security
level FMID
HCPT410

Security
level 3
FMID
JCPT411

1 128-bit RC4 encryption with MD5 message authentication (128-bit secret key) X

2 128-bit RC4 export encryption with MD5 message authentication (40-bit secret key) X X

3 128-bit RC2 encryption with MD5 message authentication (128-bit secret key) X

4 128-bit RC2 export encryption with MD5 message authentication (40-bit secret key) X X

6 56-bit DES encryption with MD5 message authentication (56-bit secret key) X X

7 168-bit Triple DES encryption with MD5 message authentication (168-bit secret key) X

Table 16. 2-character and 4-character cipher suite definitions for SSL V3, TLS V1.0, TLS V1.1, and TLS V1.2

2-
character
cipher
number

4-character
cipher
number Short name Description 1

FIPS
140-2

Base
security
level
FMID
HCPT410

Security
level 3
FMID
JCPT411

00 0000 TLS_NULL_WITH_NULL_NULL No encryption or message authentication and
RSA key exchange

X X

01 0001 TLS_NULL_WITH_NULL_MD5 No encryption with MD5 message
authentication and RSA key exchange

X X

02 0002 TLS_RSA_WITH_NULL_SHA No encryption with SHA-1 message
authentication and RSA key exchange

X X

03 0003 TLS_RSA_WITH_RC4_40_MD5 40-bit RC4 encryption with MD5 message
authentication and RSA key exchange

X X

04 0004 TLS_RSA_WITH_RC4_128_MD5 128-bit RC4 encryption with MD5 message
authentication and RSA key exchange

X

05 0005 TLS_RSA_WITH_RC4_128_MD5 128-bit RC4 encryption with SHA-1 message
authentication and RSA key exchange

X

06 0006 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 40-bit RC2 encryption with MD5 message
authentication and RSA key exchange

X X

09 0009 TLS_RSA_WITH_DES_CBC_SHA 56-bit DES encryption with SHA-1 message
authentication and RSA key exchange

X X

0A 000A TLS_RSA_WITH_3DES_EDE_CBC_SHA 168-bit Triple DES encryption with SHA-1
message authentication and RSA key exchange

X X

0C 000C TLS_DH_DSS_WITH_DES_CBC_SHA 56-bit DES encryption with SHA-1 message
authentication and fixed Diffie-Hellman key
exchange signed with a DSA certificate

X X

0D 000D TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA 168-bit Triple DES encryption with SHA-1
message authentication and fixed
Diffie-Hellman key exchange signed with a
DSA certificate

X X

0F 000F TLS_DH_RSA_WITH_DES_CBC_SHA 56-bit DES encryption with SHA-1 message
authentication and fixed Diffie-Hellman key
exchange signed with an RSA certificate

X X

10 0010 TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA 168-bit Triple DES encryption with SHA-1
message authentication and fixed
Diffie-Hellman key exchange signed with an
RSA certificate

X X

© Copyright IBM Corp. 1999, 2013 619

Table 16. 2-character and 4-character cipher suite definitions for SSL V3, TLS V1.0, TLS V1.1, and TLS
V1.2 (continued)

2-
character
cipher
number

4-character
cipher
number Short name Description 1

FIPS
140-2

Base
security
level
FMID
HCPT410

Security
level 3
FMID
JCPT411

12 0012 TLS_DHE_DSS_WITH_DES_CBC_SHA 56-bit DES encryption with SHA-1message
authentication and ephemeral Diffie-Hellman
key exchange signed with a DSA certificate

X X

13 0013 TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA 168-bit Triple DES encryption with SHA-1
message authentication and ephemeral
Diffie-Hellman key exchange signed with a
DSA certificate

X X

15 0015 TLS_DHE_RSA_WITH_DES_CBC_SHA 56-bit DES encryption with SHA-1 message
authentication and ephemeral Diffie-Hellman
key exchange signed with an RSA certificate

X X

16 0016 TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA 168-bit Triple DES encryption with SHA-1
message authentication and ephemeral
Diffie-Hellman key exchange signed with an
RSA certificate

X X

2F 002F TLS_RSA_WITH_AES_128_CBC_SHA 128-bit AES encryption with SHA-1 message
authentication and RSA key exchange

X X

30 0030 TLS_DH_DSS_WITH_AES_128_CBC_SHA 128-bit AES encryption with SHA-1 message
authentication and fixed Diffie-Hellman key
exchange signed with a DSA certificate

X X

31 0031 TLS_DH_RSA_WITH_AES_128_CBC_SHA 128-bit AES encryption with SHA-1 message
authentication and fixed Diffie-Hellman key
exchange signed with an RSA certificate

X X

32 0032 TLS_DHE_DSS_WITH_AES_128_CBC_SHA 128-bit AES encryption with SHA-1 message
authentication and ephemeral Diffie-Hellman
key exchange signed with a DSA certificate

X X

33 0033 TLS_DHE_RSA_WITH_AES_128_CBC_SHA 128-bit AES encryption with SHA-1 message
authentication and ephemeral Diffie-Hellman
key exchange signed with an RSA certificate

X X

35 0035 TLS_RSA_WITH_AES_256_CBC_SHA 256-bit AES encryption with SHA-1 message
authentication and RSA key exchange

X X

36 0036 TLS_DH_DSS_WITH_AES_256_CBC_SHA 256-bit AES encryption with SHA-1 message
authentication and fixed Diffie-Hellman key
exchange signed with a DSA certificate

X X

37 0037 TLS_DH_RSA_WITH_AES_256_CBC_SHA 256-bit AES encryption with SHA-1 message
authentication and fixed Diffie-Hellman key
exchange signed with an RSA certificate

X X

38 0038 TLS_DHE_DSS_WITH_AES_256_CBC_SHA 256-bit AES encryption with SHA-1 message
authentication and ephemeral Diffie-Hellman
key exchange signed with a DSA certificate

X X

39 0039 TLS_DHE_RSA_WITH_AES_256_CBC_SHA 256-bit AES encryption with SHA-1 message
authentication and ephemeral Diffie-Hellman
key exchange signed with an RSA certificate

X X

3B 003B TLS_RSA_WITH_NULL_SHA256 No encryption with SHA-256 message
authentication and RSA key exchange

X X

3C 003C TLS_RSA_WITH_AES_128_CBC_SHA256 128-bit AES encryption with SHA-256 message
authentication and RSA key exchange

X X

3D 003D TLS_RSA_WITH_AES_256_CBC_SHA256 256-bit AES encryption with SHA-256 message
authentication and RSA key exchange

X X

3E 003E TLS_DH_DSS_WITH_AES_128_CBC_SHA256 128-bit AES encryption with SHA-256 message
authentication and fixed Diffie-Hellman key
exchange signed with a DSA certificate

X X

3F 003F TLS_DH_RSA_WITH_AES_128_CBC_SHA256 128-bit AES encryption with SHA-256 message
authentication and fixed Diffie-Hellman key
exchange signed with an RSA certificate

X X

40 0040 TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 128-bit AES encryption with SHA-256 message
authentication and ephemeral Diffie-Hellman
key exchange signed with a DSA certificate

X X

67 0067 TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 128-bit AES encryption with SHA-256 message
authentication and ephemeral Diffie-Hellman
key exchange signed with an RSA certificate

X X

68 0068 TLS_DH_DSS_WITH_AES_256_CBC_SHA256 256-bit AES encryption with SHA-256 message
authentication and fixed Diffie-Hellman key
exchange signed with a DSA certificate

X X

69 0069 TLS_DH_RSA_WITH_AES_256_CBC_SHA256 256-bit AES encryption with SHA-256 message
authentication and fixed Diffie-Hellman key
exchange signed with an RSA certificate

X X

6A 006A TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 256-bit AES encryption with SHA-256 message
authentication and ephemeral Diffie-Hellman
key exchange signed with a DSA certificate

X X

Cipher suite definitions

620 z/OS V2R1.0 System SSL Programming

Table 16. 2-character and 4-character cipher suite definitions for SSL V3, TLS V1.0, TLS V1.1, and TLS
V1.2 (continued)

2-
character
cipher
number

4-character
cipher
number Short name Description 1

FIPS
140-2

Base
security
level
FMID
HCPT410

Security
level 3
FMID
JCPT411

6B 006B TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 256-bit AES encryption with SHA-256 message
authentication and ephemeral Diffie-Hellman
key exchange signed with an RSA certificate

X X

9C 009C TLS_RSA_WITH_AES_128_GCM_SHA256 128-bit AES in Galois Counter Mode
encryption with 128-bit AEAD authentication
and RSA key exchange

X X

9D 009D TLS_RSA_WITH_AES_256_GCM_SHA384 256-bit AES in Galois Counter Mode
encryption with 128-bit AEAD authentication
and RSA key exchange

X X

9E 009E TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 128-bit AES in Galois Counter Mode
encryption with 128-bit AEAD authentication
and ephemeral Diffie-Hellman key exchange
signed with an RSA certificate

X X

9F 009F TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 256-bit AES in Galois Counter Mode
encryption with 128-bit AEAD authentication
and ephemeral Diffie-Hellman key exchange
signed with an RSA certificate

X X

A0 00A0 TLS_DH_RSA_WITH_AES_128_GCM_SHA256 128-bit AES in Galois Counter Mode
encryption with 128-bit AEAD authentication
and fixed Diffie-Hellman key exchange signed
with an RSA certificate

X X

A1 00A1 TLS_DH_RSA_WITH_AES_256_GCM_SHA384 256-bit AES in Galois Counter Mode
encryption with 128-bit AEAD authentication
and fixed Diffie-Hellman key exchange signed
with an RSA certificate

X X

A2 00A2 TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 128-bit AES in Galois Counter Mode
encryption with 128-bit AEAD authentication
and ephemeral Diffie-Hellman key exchange
signed with a DSA certificate

X X

A3 00A3 TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 256-bit AES in Galois Counter Mode
encryption with 128-bit AEAD authentication
and ephemeral Diffie-Hellman key exchange
signed with a DSA certificate

X X

A4 00A4 TLS_DH_DSS_WITH_AES_128_GCM_SHA256 128-bit AES in Galois Counter Mode
encryption with 128-bit AEAD authentication
and fixed Diffie-Hellman key exchange signed
with a DSA certificate

X X

A5 00A5 TLS_DH_DSS_WITH_AES_256_GCM_SHA384 256-bit AES in Galois Counter Mode
encryption with 128-bit AEAD authentication
and fixed Diffie-Hellman key exchange signed
with a DSA certificate

X X

C001 TLS_ECDH_ECDSA_WITH_NULL_SHA NULL encryption with SHA-1 message
authentication and fixed ECDH key exchange
signed with an ECDSA certificate

X X

C002 TLS_ECDH_ECDSA_WITH_RC4_128_SHA 128-bit RC4 encryption with SHA-1 message
authentication and fixed ECDH key exchange
signed with an ECDSA certificate

X

C003 TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA 168-bit Triple DES encryption with SHA-1
message authentication and fixed ECDH key
exchange signed with an ECDSA certificate

X X

C004 TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA 128-bit AES encryption with SHA-1 message
authentication and fixed ECDH key exchange
signed with an ECDSA certificate

X X

C005 TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA 256-bit AES encryption with SHA-1 message
authentication and fixed ECDH key exchange
signed with an ECDSA certificate

X X

C006 TLS_ECDHE_ECDSA_WITH_NULL_SHA NULL encryption with SHA-1 message
authentication and ephemeral ECDH key
exchange signed with an ECDSA certificate

X X

C007 TLS_ECDHE_ECDSA_WITH_RC4_128_SHA 128-bit RC4 encryption with SHA-1 message
authentication and ephemeral ECDH key
exchange signed with an ECDSA certificate

X

C008 TLS_ECDHE_ECDSA_WITH_3DES_EDE_
CBC_SHA

168-bit Triple DES encryption with SHA-1
message authentication and ephemeral ECDH
key exchange signed with an ECDSA
certificate

X X

C009 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 128-bit AES encryption with SHA-1 message
authentication and ephemeral ECDH key
exchange signed with an ECDSA certificate

X X

C00A TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 256-bit AES encryption with SHA-1 message
authentication and ephemeral ECDH key
exchange signed with an ECDSA certificate

X X

Cipher suite definitions

Appendix C. Cipher suite definitions 621

Table 16. 2-character and 4-character cipher suite definitions for SSL V3, TLS V1.0, TLS V1.1, and TLS
V1.2 (continued)

2-
character
cipher
number

4-character
cipher
number Short name Description 1

FIPS
140-2

Base
security
level
FMID
HCPT410

Security
level 3
FMID
JCPT411

C00B TLS_ECDH_RSA_WITH_NULL_SHA NULL encryption with SHA-1 message
authentication and fixed ECDH key exchange
signed with an RSA certificate

X X

C00C TLS_ECDH_RSA_WITH_RC4_128_SHA 128-bit RC4 encryption with SHA-1 message
authentication and fixed ECDH key exchange
signed with an RSA certificate

X

C00D TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA 168-bit Triple DES encryption with SHA-1
message authentication and fixed ECDH key
exchange signed with an RSA certificate

X X

C00E TLS_ECDH_RSA_WITH_AES_128_CBC_SHA 128-bit AES encryption with SHA-1 message
authentication and fixed ECDH key exchange
signed with an RSA certificate

X X

C00F TLS_ECDH_RSA_WITH_AES_256_CBC_SHA 256-bit AES encryption with SHA-1 message
authentication and fixed ECDH key exchange
signed with an RSA certificate

X X

C010 TLS_ECDHE_RSA_WITH_NULL_SHA NULL encryption with SHA-1 message
authentication and ephemeral ECDH key
exchange signed with an RSA certificate

X X

C011 TLS_ECDHE_RSA_WITH_RC4_128_SHA 128-bit RC4 encryption with SHA-1 message
authentication and ephemeral ECDH key
exchange signed with an RSA certificate

X

C012 TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 168-bit Triple DES encryption with SHA-1
message authentication and ephemeral ECDH
key exchange signed with an RSA certificate

X X

C013 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 128-bit AES encryption with SHA-1 message
authentication and ephemeral ECDH key
exchange signed with an RSA certificate

X X

C014 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 256-bit AES encryption with SHA-1 message
authentication and ephemeral ECDH key
exchange signed with an RSA certificate

X X

C023 TLS_ECDHE_ECDSA_WITH_AES_128_
CBC_SHA256

128-bit AES encryption with SHA-256 message
authentication and ephemeral ECDH key
exchange signed with an ECDSA certificate

X X

C024 TLS_ECDHE_ECDSA_WITH_AES_256_
CBC_SHA384

256-bit AES encryption with SHA-384 message
authentication and ephemeral ECDH key
exchange signed with an ECDSA certificate

X X

C025 TLS_ECDH_ECDSA_WITH_AES_128_
CBC_SHA256

128-bit AES encryption with SHA-256 message
authentication and fixed ECDH key exchange
signed with an ECDSA certificate

X X

C026 TLS_ECDH_ECDSA_WITH_AES_256_
CBC_SHA384

256-bit AES encryption with SHA-384 message
authentication and fixed ECDH key exchange
signed with an ECDSA certificate

X X

C027 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 128-bit AES encryption with SHA-256 message
authentication and ephemeral ECDH key
exchange signed with an RSA certificate

X X

C028 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 256-bit AES encryption with SHA-384 message
authentication and ephemeral ECDH key
exchange signed with an RSA certificate

X X

C029 TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 128-bit AES encryption with SHA-256 message
authentication and fixed ECDH key exchange
signed with an RSA certificate

X X

C02A TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 256-bit AES encryption with SHA-384 message
authentication and fixed ECDH key exchange
signed with an RSA certificate

X X

C02B TLS_ECDHE_ECDSA_WITH_AES_128_
GCM_SHA256

128-bit AES in Galois Counter Mode
encryption with 128-bit AEAD authentication
and ephemeral ECDH key exchange signed
with an ECDSA certificate

X X

C02C TLS_ECDHE_ECDSA_WITH_AES_256_
GCM_SHA384

256-bit AES in Galois Counter Mode
encryption with 128-bit AEAD message
authentication and ephemeral ECDH key
exchange signed with an ECDSA certificate

X X

C02D TLS_ECDH_ECDSA_WITH_AES_128_
GCM_SHA256

128-bit AES in Galois Counter Mode
encryption with 128-bit AEAD message
authentication and fixed ECDH key exchange
signed with an ECDSA certificate

X X

C02E TLS_ECDH_ECDSA_WITH_AES_256_
GCM_SHA384

256-bit AES in Galois Counter Mode
encryption with 128-bit AEAD message
authentication and fixed ECDH key exchange
signed with an ECDSA certificate

X X

Cipher suite definitions

622 z/OS V2R1.0 System SSL Programming

Table 16. 2-character and 4-character cipher suite definitions for SSL V3, TLS V1.0, TLS V1.1, and TLS
V1.2 (continued)

2-
character
cipher
number

4-character
cipher
number Short name Description 1

FIPS
140-2

Base
security
level
FMID
HCPT410

Security
level 3
FMID
JCPT411

C02F TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 128-bit AES in Galois Counter Mode
encryption with 128-bit AEAD message
authentication and ephemeral ECDH key
exchange signed with an RSA certificate

X X

C030 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 256-bit AES in Galois Counter Mode
encryption with 128-bit AEAD message
authentication and ephemeral ECDH key
exchange signed with an RSA certificate

X X

C031 TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 128-bit AES in Galois Counter Mode
encryption with 128-bit AEAD message
authentication and fixed ECDH key exchange
signed with an RSA certificate

X X

C032 TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 256-bit AES in Galois Counter Mode
encryption with 128-bit AEAD message
authentication and fixed ECDH key exchange
signed with an RSA certificate

X X

1 See Table 18 on page 625 for more information about the signing algorithm required for the key exchanges.

Table 17. Cipher suite definitions for SSL V3, TLS V1.0, TLS V1.1, and TLS V1.2 by supported protocol, symmetric
algorithm, and message authentication algorithm

Cipher suite Protocol support Symmetric algorithm Message MAC

4 Char 2 Char
SSL
V3

TLS
V1.0

TLS
V1.1

TLS
V1.2

RC2 or
RC4

DES
or
3DES

AES-
CBC
128

AES-
CBC
256

AES-
GCM
128

AES-
GCM
256 MD5

SHA
1

SHA
256

SHA
384 AEAD

0000 00 X X X X

0001 01 X X X X X

0002 02 X X X X X

0003 03 X X RC4 X

0004 04 X X X X RC4 X

0005 05 X X X X RC4 X

0006 06 X X RC2 X

0009 09 X X X DES X

000A 0A X X X X 3DES X

000C 0C X X X DES X

000D 0D X X X X 3DES X

000F 0F X X X DES X

0010 10 X X X X 3DES X

0012 12 X X X DES X

0013 13 X X X X 3DES X

0015 15 X X X DES X

0016 16 X X X X 3DES X

002F 2F X X X X X X

0030 30 X X X X X X

0031 31 X X X X X X

0032 32 X X X X X X

0033 33 X X X X X X

0035 35 X X X X X X

0036 36 X X X X X X

0037 37 X X X X X X

0038 38 X X X X X X

0039 39 X X X X X X

003B 3B X X

003C 3C X X X

003D 3D X X X

Cipher suite definitions

Appendix C. Cipher suite definitions 623

Table 17. Cipher suite definitions for SSL V3, TLS V1.0, TLS V1.1, and TLS V1.2 by supported protocol, symmetric
algorithm, and message authentication algorithm (continued)

Cipher suite Protocol support Symmetric algorithm Message MAC

4 Char 2 Char
SSL
V3

TLS
V1.0

TLS
V1.1

TLS
V1.2

RC2 or
RC4

DES
or
3DES

AES-
CBC
128

AES-
CBC
256

AES-
GCM
128

AES-
GCM
256 MD5

SHA
1

SHA
256

SHA
384 AEAD

003E 3E X X X

003F 3F X X X

0040 40 X X X

0067 67 X X X

0068 68 X X X

0069 69 X X X

006A 6A X X X

006B 6B X X X

009C 9C X X X

009D 9D X X X

009E 9E X X X

009F 9F X X X

00A0 A0 X X X

00A1 A1 X X X

00A2 A2 X X X

00A3 A3 X X X

00A4 A4 X X X

00A5 A5 X X X

C001 X X X X

C002 X X X RC4 X

C003 X X X 3DES X

C004 X X X X X

C005 X X X X X

C006 X X X X

C007 X X X RC4 X

C008 X X X 3DES X

C009 X X X X X

C00A X X X X X

C00B X X X X

C00C X X X RC4 X

C00D X X X 3DES X

C00E X X X X X

C00F X X X X X

C010 X X X X

C011 X X X RC4 X

C012 X X X 3DES X

C013 X X X X X

C014 X X X X X

C023 X X X

C024 X X X

C025 X X X

C026 X X X

C027 X X X

C028 X X X

C029 X X X

C02A X X X

C02B X X X

Cipher suite definitions

624 z/OS V2R1.0 System SSL Programming

Table 17. Cipher suite definitions for SSL V3, TLS V1.0, TLS V1.1, and TLS V1.2 by supported protocol, symmetric
algorithm, and message authentication algorithm (continued)

Cipher suite Protocol support Symmetric algorithm Message MAC

4 Char 2 Char
SSL
V3

TLS
V1.0

TLS
V1.1

TLS
V1.2

RC2 or
RC4

DES
or
3DES

AES-
CBC
128

AES-
CBC
256

AES-
GCM
128

AES-
GCM
256 MD5

SHA
1

SHA
256

SHA
384 AEAD

C02C X X X

C02D X X X

C02E X X X

C02F X X X

C030 X X X

C031 X X X

C032 X X X

Table 18. Cipher suite definitions for SSL V3, TLS V1.0, TLS V1.1, and TLS V1.2 by key-exchange method and
signing certificate

Cipher suite

RSA key
exchange Fixed Diffie-Hellman

key exchange

Ephemeral
Diffie-Hellman key
exchange

Fixed EC Diffie-Hellman
key exchange

Ephemeral EC
Diffie-Hellman key
exchange

4 Char 2 Char
Signed by
RSA1

Signed by
DSA1

Signed by
RSA1

Signed by
DSA1

Signed by
RSA1

Signed by
ECDSA1

Signed by
RSA1

Signed by
ECDSA1

0000 00 X

0001 01 X

0002 02 X

0003 03 X

0004 04 X

0005 05 X

0006 06 X

0009 09 X

000A 0A X

000C 0C X

000D 0D X

000F 0F X

0010 10 X

0012 12 X

0013 13 X

0015 15 X

0016 16 X

002F 2F X

0030 30 X

0031 31 X

0032 32 X

0033 33 X

0035 35 X

0036 36 X

0037 37 X

0038 38 X

0039 39 X

003B 3B X

003C 3C X

003D 3D X

003E 3E X

003F 3F X

0040 40 X

Cipher suite definitions

Appendix C. Cipher suite definitions 625

Table 18. Cipher suite definitions for SSL V3, TLS V1.0, TLS V1.1, and TLS V1.2 by key-exchange method and
signing certificate (continued)

Cipher suite

RSA key
exchange Fixed Diffie-Hellman

key exchange

Ephemeral
Diffie-Hellman key
exchange

Fixed EC Diffie-Hellman
key exchange

Ephemeral EC
Diffie-Hellman key
exchange

4 Char 2 Char
Signed by
RSA1

Signed by
DSA1

Signed by
RSA1

Signed by
DSA1

Signed by
RSA1

Signed by
ECDSA1

Signed by
RSA1

Signed by
ECDSA1

0067 67 X

0068 68 X

0069 69 X

006A 6A X

006B 6B X

009C 9C X

009D 9D X

009E 9E X

009F 9F X

00A0 A0 X

00A1 A1 X

00A2 A2 X

00A3 A3 X

00A4 A4 X

00A5 A5 X

C001 X

C002 X

C003 X

C004 X

C005 X

C006 X

C007 X

C008 X

C009 X

C00A X

C00B X

C00C X

C00D X

C00E X

C00F X

C010 X

C011 X

C012 X

C013 X

C014 X

C023 X

C024 X

C025 X

C026 X

C027 X

C028 X

C029 X

C02A X

C02B X

C02C X

C02D X

Cipher suite definitions

626 z/OS V2R1.0 System SSL Programming

Table 18. Cipher suite definitions for SSL V3, TLS V1.0, TLS V1.1, and TLS V1.2 by key-exchange method and
signing certificate (continued)

Cipher suite

RSA key
exchange Fixed Diffie-Hellman

key exchange

Ephemeral
Diffie-Hellman key
exchange

Fixed EC Diffie-Hellman
key exchange

Ephemeral EC
Diffie-Hellman key
exchange

4 Char 2 Char
Signed by
RSA1

Signed by
DSA1

Signed by
RSA1

Signed by
DSA1

Signed by
RSA1

Signed by
ECDSA1

Signed by
RSA1

Signed by
ECDSA1

C02E X

C02F X

C030 X

C031 X

C032 X
1 SSL V3, TLS V1.0, and TLS V1.1 imposed restrictions on the signing algorithm that must be used to sign a server certificate when using any cipher
suites that use a Diffie-Hellman based key-exchange. The TLS V1.2 protocol does not impose such restriction. If the server certificate signing
algorithm is listed in the signature algorithm pairs that are specified by the client, the certificate can be used.

Table 19. Supported elliptic curve definitions for TLS V1.0, TLS V1.1, and TLS V1.2

I.A.N.A Elliptic curve
enumerator (decimal)

Named curve by standards organizations

SECG ANSI X9.62 NIST

0019 secp192r1 prime192v1 NIST P-192

0021 secp224r1 NIST P-224

0023 secp256r1 prime256v1 NIST P-256

0024 secp384r1 NIST P-384

0025 secp521r1 NIST P-521

Table 20. Signature algorithm pair definitions for TLS V1.2

Signature algorithm
enumerator Hash and signature algorithm

0101 MD5 with RSA

0201 SHA-1 with RSA

0202 SHA-1 with DSA

0203 SHA-1 with ECDSA

0301 SHA-224 with RSA

0302 SHA-224 with DSA

0303 SHA-224 with ECDSA

0401 SHA-256 with RSA

0402 SHA-256 with DSA

0403 SHA-256 with ECDSA

0501 SHA-384 with RSA

0503 SHA-384 with ECDSA

0601 SHA-512 with RSA

0603 SHA-512 with ECDSA

Cipher suite definitions

Appendix C. Cipher suite definitions 627

Cipher suite definitions

628 z/OS V2R1.0 System SSL Programming

Appendix D. Object identifiers

The following table shows the object identifiers (OIDS) supported by System SSL.

Table 21. System SSL supported object identifiers (OIDS)

Type Description OID

Digest Algorithms MD2
MD5
SHA-1
SHA-224
SHA-256
SHA-394
SHA-512

1.2.840.113549.2.2
1.2.840.113549.2.5
1.3.14.3.2.26
2.16.840.1.101.3.4.2.4
2.16.840.1.101.3.4.2.1
2.16.840.1.101.3.4.2.2
2.16.840.1.101.3.4.2.3

Asymmetric Encryption Algorithms RSA Encryption
DSA
Diffie-Hellman (dhPublicNumber)
ECC (ecPublicKey)

1.2.840.113549.1.1.1
1.2.840.10040.4.1
1.2.840.10046.2.1
1.2.840.10045.2.1

Signature Algorithms md2WithRsaEncryption
md5WithRsaEncryption
sha1WithRsaEncryption
sha224WithRsaEncryption
sha256WithRsaEncryption
sha384WithRsaEncryption
sha512WithRsaEncryption
dsaWithSha1
dsaWithSha224
dsaWithSha256
ecdsaWithSha1
ecdsaWithSha224
ecdsaWithSha256
ecdsaWithSha384
ecdsaWithSha512

1.2.840.113549.1.1.2
1.2.840.113549.1.1.4
1.2.840.113549.1.1.5
1.2.840.113549.1.1.14
1.2.840.113549.1.1.11
1.2.840.113549.1.1.12
1.2.840.113549.1.1.13
1.2.840.10040.4.3
2.16.840.1.101.3.4.3.1
2.16.840.1.101.3.4.3.2
1.2.840.10045.4.1
1.2.840.10045.4.3.1
1.2.840.10045.4.3.2
1.2.840.10045.4.3.3
1.2.840.10045.4.3.4

Password Base Encryption Algorithms pbeWithMd2AndDesCbc
pbeWithMd5AndDesCbc
pbeWithSha1AndDesCbc
pbeWithMd2AndRc2Cbc
pbeWithMd5AndRc2Cbc
pbeWithSha1AndRc2Cbc
pbeWithSha1And40BitRc2Cbc
pbeWithSha1And128BitRc2Cbc
pbeWithSha1And40BitRc4
pbeWithSha1And128BitRc4
pbeWithSha1And3DesCbc

1.2.840.113549.1.5.1
1.2.840.113549.1.5.3
1.2.840.113549.1.5.10
1.2.840.113549.1.5.4
1.2.840.113549.1.5.6
1.2.840.113549.1.5.11
1.2.840.113549.1.12.1.6
1.2.840.113549.1.12.1.5
1.2.840.113549.1.12.1.2
1.2.840.113549.1.12.1.1
1.2.840.113549.1.12.1.3

Deprecated Password Based Encryption
Algorithms

pb1WithSha1And128BitRc4
pb1WithSha1And40BitRc4
pb1WithSha1And3DesCbc
pb1WithSha1And128BitRc2Cbc
pb1WithSha1And40BitRc2Cbc

1.2.840.113549.1.12.5.1.1
1.2.840.113549.1.12.5.1.2
1.2.840.113549.1.12.5.1.3
1.2.840.113549.1.12.5.1.4
1.2.840.113549.1.12.5.1.5

Symmetric Encryption Algorithms DES CBC
3DES CBC
RC2
ArcFour
AES CBC 128
AES CBC 256

1.3.14.3.2.7
1.2.840.113549.3.7
1.2.840.113549.3.2
1.2.840.113549.3.4
2.16.840.1.101.3.4.1.2
2.16.840.1.101.3.4.1.42

© Copyright IBM Corp. 1999, 2013 629

Table 21. System SSL supported object identifiers (OIDS) (continued)

Type Description OID

x.500 Distinguished Name Attributes name
surname
given name
initials
generation qualifier
common name
locality name
state or province name
organization name
organizational unit name
title
dnQualifier
country name
email address
domain component
street address
postal code
mail
serial number

2.5.4.41
2.5.4.4
2.5.4.42
2.5.4.43
2.5.4.44
2.5.4.3
2.5.4.7
2.5.4.8
2.5.4.10
2.5.4.11
2.5.4.12
2.5.4.46
2.5.4.6
1.2.840.113549.1.9.1
0.9.2342.19200300.100.1.25
2.5.4.9
2.5.4.17
0.9.2342.19200300.100.1.3
2.5.4.5

ECC Name Curves secp192r1
secp224r1
secp256r1
secp384r1
secp521r1
brainpoolP160r1
brainpoolP192r1
brainpoolP224r1
brainpoolP256r1
brainpoolP320r1
brainpoolP384r1
brainpoolP512r1

1.2.840.10045.3.1.1
1.3.132.0.33
1.2.840.10045.3.1.7
1.3.132.0.34
1.3.132.0.35
1.3.36.3.3.2.8.1.1.1
1.3.36.3.3.2.8.1.1.3
1.3.36.3.3.2.8.1.1.5
1.3.36.3.3.2.8.1.1.7
1.3.36.3.3.2.8.1.1.9
1.3.36.3.3.2.8.1.1.11
1.3.36.3.3.2.8.1.1.13

Object identifiers

630 z/OS V2R1.0 System SSL Programming

Appendix E. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1999, 2013 631

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

632 z/OS V2R1.0 System SSL Programming

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix E. Accessibility 633

634 z/OS V2R1.0 System SSL Programming

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1999, 2013 635

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

Notices

636 z/OS V2R1.0 System SSL Programming

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
z/OS Cryptographic Services System SSL Programming primarily documents intended
Programming Interfaces that allow the customer to write programs to obtain
services of System SSL.

z/OS Cryptographic Services System SSL Programming also documents information
that is NOT intended to be used as Programming Interfaces of System SSL. This
information is identified where it occurs, by an introductory statement to a chapter
or section.

Programming interface information

End Programming interface information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).

Notices

Notices 637

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

638 z/OS V2R1.0 System SSL Programming

Index

A
accepting a secure socket connection 446
accessibility 631

contact IBM 631
features 631

accessing DLLs 471
APIs

gsk_attribute_get_buffer() 52
gsk_attribute_get_cert_info() 56
gsk_attribute_get_data() 61
gsk_attribute_get_enum() 63
gsk_attribute_get_numeric_value() 68
gsk_attribute_set_buffer() 70
gsk_attribute_set_callback() 74
gsk_attribute_set_enum() 79
gsk_attribute_set_numeric_value() 85
gsk_attribute_set_tls_extension() 87
gsk_construct_private_key() 149
gsk_construct_public_key() 153
gsk_environment_close() 90
gsk_environment_init() 91
gsk_environment_open() 93
gsk_factor_private_key() 255
gsk_factor_public_key() 257
gsk_free_cert_data() 100
gsk_free_memory() 436
gsk_free_private_key() 273
gsk_free_public_key() 275
gsk_get_all_cipher_suites() 101
gsk_get_cert_by_label() 102
gsk_get_cipher_info 437
gsk_get_dn_by_label() 438
gsk_get_ec_parameters_info() 303
gsk_get_update() 109
gsk_initialize() 439
gsk_list_free() 110
gsk_secure_soc_close() 445
gsk_secure_soc_init() 446
gsk_secure_soc_read() 454
gsk_secure_soc_reset() 457
gsk_secure_soc_write() 458
gsk_secure_socket_close() 111
gsk_secure_socket_init() 112
gsk_secure_socket_misc() 119
gsk_secure_socket_open() 121
gsk_secure_socket_read() 122
gsk_secure_socket_write() 127
gsk_uninitialize() 464
gsk_user_set() 465
GSKSRBRD() 462
GSKSRBWT() 463, 525
using in an System SSL program 6

assistive technologies 631

B
building a z/OS System SSL application 29
building an System SSL application 35

C
callback routine for I/O 39
certificate

removing 510
self-signed, creating 495

certificate management
introduction 469

Certificate Management Services (CMS) API reference 131
Certificate/Key management 469
cipher information

querying 437
Cipher suite definitions 619
client, authentication certificate selection 38
compiling an System SSL application 35
component trace support 538
Configuring the SSL started task 536
creating

SSL environment 29

D
diagnostic information 539
Diffie-Hellman key agreement 16
distinguished name

returning pointer for 438
DLLS, accessing 471

E
elements of an System SSL program 6
Elliptic Curve cryptography support 14
ending secure socket connection 445
environment variables 605
establishing System SSL environment 439
examples

parts shipped in UNIX system services file system 2

F
FIPS 140-2 19
FIPS mode

algorithms and key sizes 19
application changes 25
certificate stores 25
certificates 20
SAF key rings and PKCS #11 tokens 25
SSL started task 26
SSL/TLS protocol 21
system setup and requirements 21

FMID
Cryptographic Services Security Level 3 1
Cryptographic Services System SSL 1
Japanese 1

G
gsk_add_record() 137
gsk_attribute_get_buffer() 52
gsk_attribute_get_cert_info() 56

© Copyright IBM Corp. 1999, 2013 639

gsk_attribute_get_data() 61
gsk_attribute_get_enum() 63
gsk_attribute_get_numeric_value() 68
gsk_attribute_set_buffer() 70
gsk_attribute_set_callback() 74
gsk_attribute_set_enum() 79
gsk_attribute_set_numeric_value() 85
gsk_attribute_set_tls_extension() 87
gsk_change_database_password() 140
gsk_change_database_record_length() 142
gsk_close_database() 143
gsk_close_directory() 144
gsk_construct_certificate() 145
gsk_construct_private_key_rsa() 151
gsk_construct_private_key() 149
gsk_construct_public_key_rsa() 155
gsk_construct_public_key() 153
gsk_construct_renewal_request() 156
gsk_construct_self_signed_certificate() 159
gsk_construct_signed_certificate() 162
gsk_copy_attributes_signers() 166
gsk_copy_buffer() 167
gsk_copy_certificate_extension() 169
gsk_copy_certificate() 168
gsk_copy_certification_request() 170
gsk_copy_content_info() 171
gsk_copy_crl() 172
gsk_copy_name() 173
gsk_copy_private_key_info() 174
gsk_copy_public_key_info() 175
gsk_copy_record() 176
gsk_create_certification_request() 177
gsk_create_database_renewal_request()) 183
gsk_create_database_signed_certificate() 186
gsk_create_database() 181
gsk_create_renewal_request() 192
gsk_create_self_signed_certificate() 194
gsk_create_signed_certificate_record() 201
gsk_create_signed_certificate_set() 206
gsk_create_signed_certificate() 198
gsk_create_signed_crl_record() 214
gsk_create_signed_crl() 211
gsk_decode_base64() 218
gsk_decode_certificate_extension() 220
gsk_decode_certificate() 219
gsk_decode_certification_request() 222
gsk_decode_crl() 223
gsk_decode_import_certificate() 224
gsk_decode_import_key() 225
gsk_decode_name() 227
gsk_decode_private key() 228
gsk_decode_public key() 229
gsk_delete_record() 230
gsk_dn_to_name() 231
gsk_encode_base64() 234
gsk_encode_certificate_extension() 235
gsk_encode_ec_parameters() 237
gsk_encode_export_certificate() 238
gsk_encode_export_key() 240
gsk_encode_export_request() 243
gsk_encode_name() 244
gsk_encode_private_key() 245
gsk_encode_public_key() 246
gsk_encode_signature() 247
gsk_environment_close() 90
gsk_environment_init() 91
gsk_environment_open() 93

gsk_export_certificate() 248
gsk_export_certification_request() 250
gsk_export_key() 252
gsk_factor_private_key_rsa() 256
gsk_factor_private_key() 255
gsk_factor_public_key_rsa() 258
gsk_factor_public_key() 257
gsk_fips_state_query() 259
gsk_fips_state_set() 260
gsk_free_attributes_signers() 262
gsk_free_buffer() 263
gsk_free_cert_data() 100
gsk_free_certificate_extension() 266
gsk_free_certificate() 264
gsk_free_certificates() 265
gsk_free_certification_request() 267
gsk_free_content_info() 268
gsk_free_crl() 269
gsk_free_crls() 270
gsk_free_decoded_extension() 271
gsk_free_memory() API 436
gsk_free_name() 272
gsk_free_private_key_info() 274
gsk_free_private_key() 273
gsk_free_public_key_info() 276
gsk_free_public_key() 275
gsk_free_record() 277
gsk_free_records() 278
gsk_free_string() 279
gsk_free_strings() 280
gsk_generate_key_agreement_pair() 281
gsk_generate_key_pair() 283
gsk_generate_key_parameters() 286
gsk_generate_random_bytes() 288
gsk_generate_secret() 289
gsk_get_all_cipher_suites() 101
gsk_get_cert_by_label() 102
gsk_get_certificate_algorithms() 290
gsk_get_certificate_info() 291
gsk_get_cipher_info() API 437
gsk_get_cms_vector() 293
gsk_get_default_key() 295
gsk_get_default_label() 296
gsk_get_directory_certificates() 297
gsk_get_directory_crls() 299
gsk_get_directory_enum() 301
gsk_get_dn_by_label() API 438
gsk_get_ec_parameters_info() 303
gsk_get_record_by_id() 304
gsk_get_record_by_index() 305
gsk_get_record_by_label() 306
gsk_get_record_by_subject() 307
gsk_get_record_labels() 308
gsk_get_update_code() 309
gsk_get_update() 109
gsk_import_certificate() 310
gsk_import_key() 313
gsk_initialize()API 439

Environment variables supported 442
gsk_list_free() 110
gsk_make_content_msg() 316
gsk_make_data_content() 317
gsk_make_data_msg() 318
gsk_make_encrypted_data_content() 319
gsk_make_encrypted_data_msg() 321
gsk_make_enveloped_data_content_extended() 325
gsk_make_enveloped_data_content() 323

640 z/OS V2R1.0 System SSL Programming

gsk_make_enveloped_data_msg_extended() 330
gsk_make_enveloped_data_msg() 328
gsk_make_signed_data_content_extended() 339
gsk_make_signed_data_content() 336
gsk_make_signed_data_msg_extended() 345
gsk_make_signed_data_msg() 342
gsk_make_wrapped_content() 348
gsk_mktime() 349
gsk_name_compare() 352
gsk_name_to_dn() 353
gsk_open_database_using_stash_file() 357
gsk_open_database() 355
gsk_open_directory() 359
gsk_open_keyring() 361
gsk_perform_kat() 363
gsk_query_crypto_level() 364
gsk_query_database_label() 365
gsk_query_database_record_length() 366
gsk_rdtime() 367
gsk_read_content_msg() 368
gsk_read_data_content() 369
gsk_read_data_msg() 370
gsk_read_encrypted_data_content() 371
gsk_read_encrypted_data_msg() 373
gsk_read_enveloped_data_content_extended() 377
gsk_read_enveloped_data_content() 375
gsk_read_enveloped_data_msg_extended() 381
gsk_read_enveloped_data_msg() 379
gsk_read_signed_data_content_extended() 386
gsk_read_signed_data_content() 383
gsk_read_signed_data_msg_extended() 392
gsk_read_signed_data_msg() 389
gsk_read_wrapped_content() 396
gsk_receive_certificate() 397
gsk_replace_record() 398
gsk_secure_soc_close API 445
gsk_secure_soc_init() API 446
gsk_secure_soc_read() API 454
gsk_secure_soc_reset() API 457
gsk_secure_soc_write()API 458
gsk_secure_socket_close() 111
gsk_secure_socket_init() 112
gsk_secure_socket_misc() 119
gsk_secure_socket_open() 121
gsk_secure_socket_read() 122
gsk_secure_socket_write() 127
gsk_set_default_key() 401
gsk_set_directory_enum() 403
gsk_sign_certificate() 405
gsk_sign_crl() 408
gsk_sign_data() 411
gsk_soc_init_data structure 446
gsk_uninitialize() API 464
gsk_user_set() API 465
gsk_validate_certificate_mode() 418
gsk_validate_certificate() 414
gsk_validate_hostname() 423
gsk_validate_server() 425
gsk_verify_certificate_signature() 426
gsk_verify_crl_signature() 428
gsk_verify_data_signature() 431
gskkyman utility

accessing DLLs 471
being your own certificate authority 522
certificate, self signed

creating 495

gskkyman utility (continued)
certificates

removing 510
database menu 473
key database files 471
key management menu 476
overview 469
private key

removing 510
setting LANG environment variable 470
setting NLSPATH environment variable 470
setting PATH environment variable 470
setting STEPLIB environment variable 471
setting up the environment 470
token management menu 476
UNIX system services file system location 2
using 469
z/OS PKCS #11 tokens 472

GSKSRBRD() 462
GSKSRBWT() 463, 525
GSKSRVR environment variables 535
gskssl.h header file

gsk_soc_init_data structure 446

H
handshake process 446
hardware cryptographic features and System SSL 12
hardware cryptography failure notification 538
header file, gskssl.h 2

I
initializing data areas for System SSL 446
initiating a secure socket connection 446
installation information 2
installation PDS and PDSE

members of 2
name of 1

K
key database file

reading 439
uninitialize 464

key management 469
key ring 469
keyboard

navigation 631
PF keys 631
shortcut keys 631

L
LANG environment variable, setting 470

M
managing PKI private keys and certificates 469
Messages and codes 547

ASN.1 status codes (014CExxx) 571
CMS status codes (03353xxx) 575
Deprecated SSL function return codes 561
SSL function return codes 547
SSL started task messages (GSK01nnn) 593

Index 641

Messages and codes (continued)
Utility messages (GSK00nnn) 602

migrating from deprecated SSL interfaces 47

N
navigation

keyboard 631
NLSPATH environment variable, setting 470
Notices 635

O
object identifiers 629
obtaining System SSL trace information 539

P
PATH environment variable, setting 470
PDS

identified in STEPLIB 35
PDS and PDSE, installation

members of 2
name of 1

PKCS #11 and Setting CLEARKEY resource within CRYPTOZ
class 18

PKCS #11 Cryptographic operations using ICSF handles 18
private keys

removing 510
programming interfaces

using in an System SSL program 6

Q
querying cipher information 437

R
RACDCERT command 469
RACF CSFSERV resource requirements 16
RACF key ring

reading 439
uninitialize 464

Random byte generation support 14
receiving data on secure socket connection 454
refreshing security parameters 457
removing

certificate/private key from key database 510
removing settings for the System SSL environment 464
returning distinguished name 438
running an System SSL application 35

S
SAF

access levels 472
sample files

list of 617
secure socket connection

accepting 446
ending 445
initiating 446
receiving data 454
sending data 458

Secure Sockets Layer (SSL) 1
sending comments to IBM xv
sending data on secure socket connection 458
Server operator commands 537
server, System SSL program 31
session ID (SID) 40
session ID cache replacement 41
session renegotiation notification 42
setting

gskkyman environment 470
LANG environment variable 470
NLSPATH environment variable 470
PATH environment variable 470
STEPLIB environment variable 471

shortcut keys 631
software dependencies 1
SSL (Secure Sockets Layer)

description 1
SSL environment

creating 29
SSL started task 535
SSL System

callback routine for I/O 39
STEPLIB environment variable, setting 471
structure

gsk_soc_init_data 446
structure of a System SSL program 6
Summary of changes xvii
Sysplex session cache support 538
System SSL

APIs 49
client authentication certificate selection 38
elements of a program 6
environment variables 605
establishing environment 439
FIPS 140-2 19
how it works 5
migrating 47
object identifiers 629
obtaining trace information 539
parts shipped in PDS and PDSE 2
parts shipped in UNIX file system 2
refreshing security parameters 457
removing settings for the environment 464
session ID (SID) cache 40
using hardware cryptographic features 11

System SSL application
building 35
overview 6
writing a server program 31
writing a source program 29
writing and building 29

System SSL application programming considerations 35
System SSL client program 33

T
trademarks 637

U
UNIX file system

parts shipped 2
user interface

ISPF 631
TSO/E 631

642 z/OS V2R1.0 System SSL Programming

using hardware cryptographic features with System SSL 11

W
writing

system SSL server program 31
system SSL source program 29
z/OS System SSL application 29

Index 643

644 z/OS V2R1.0 System SSL Programming

����

Product Number: 5650-ZOS

Printed in USA

SC14-7495-00

	Contents
	Figures
	Tables
	About this document
	Intended audience
	How this information is organized
	Conventions used in this information
	Where to find more information
	Internet sources

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Introduction
	Software dependencies
	Installation information
	System SSL parts shipped in the UNIX System Services file system
	System SSL parts shipped in PDS and PDSE

	Chapter 2. How System SSL works for secure socket communication
	Using System SSL on z/OS
	System SSL application overview

	Chapter 3. Using cryptographic features with System SSL
	Guidelines for using hardware cryptographic features
	Overview of hardware cryptographic features and System SSL
	Random byte generation support
	Elliptic Curve Cryptography support
	Diffie-Hellman key agreement
	RACF CSFSERV resource requirements
	PKCS #11 and Setting CLEARKEY resource within CRYPTOZ class
	PKCS #11 Cryptographic operations using ICSF handles

	Chapter 4. System SSL and FIPS 140-2
	Algorithms and key sizes
	Random byte generation
	Diffie-Hellman key agreement
	Certificates
	SSL/TLS protocol
	System SSL module verification setup
	Performance guideline

	Certificate stores
	SAF key rings and PKCS #11 tokens
	Key database files

	Application changes
	SSL started task
	Sysplex session ID cache

	Chapter 5. Writing and building a z/OS System SSL application
	Writing a System SSL source program
	Create an SSL environment
	System SSL server program
	System SSL client program

	Building a z/OS System SSL application
	Running a z/OS System SSL application
	System SSL application programming considerations
	Non-Blocking I/O
	Non-Blocking socket primer
	Affected SSL functions

	Client authentication certificate selection
	I/O routine replacement
	Callback routine for I/O

	Use of user data
	Session ID (SID) cache
	Session ID (SID)
	Session ID cache replacement

	Session renegotiation notification
	TLS extensions
	Setting server side extensions
	Setting client side extensions

	Suite B cryptography support

	Chapter 6. Migrating from deprecated SSL interfaces
	Chapter 7. API reference
	gsk_attribute_get_buffer()
	gsk_attribute_get_cert_info()
	gsk_attribute_get_data()
	gsk_attribute_get_enum()
	gsk_attribute_get_numeric_value()
	gsk_attribute_set_buffer()
	gsk_attribute_set_callback()
	gsk_attribute_set_enum()
	gsk_attribute_set_numeric_value()
	gsk_attribute_set_tls_extension()
	gsk_environment_close()
	gsk_environment_init()
	gsk_environment_open()
	gsk_free_cert_data()
	gsk_get_all_cipher_suites()
	gsk_get_cert_by_label()
	gsk_get_cipher_suites()
	gsk_get_ssl_vector()
	gsk_get_update()
	gsk_list_free()
	gsk_secure_socket_close()
	gsk_secure_socket_init()
	gsk_secure_socket_misc()
	gsk_secure_socket_open()
	gsk_secure_socket_read()
	gsk_secure_socket_shutdown()
	gsk_secure_socket_write()
	gsk_strerror()

	Chapter 8. Certificate Management Services (CMS) API reference
	gsk_add_record()
	gsk_change_database_password()
	gsk_change_database_record_length()
	gsk_close_database()
	gsk_close_directory()
	gsk_construct_certificate()
	gsk_construct_private_key()
	gsk_construct_private_key_rsa()
	gsk_construct_public_key()
	gsk_construct_public_key_rsa()
	gsk_construct_renewal_request()
	gsk_construct_self_signed_certificate()
	gsk_construct_signed_certificate()
	gsk_copy_attributes_signers()
	gsk_copy_buffer()
	gsk_copy_certificate()
	gsk_copy_certificate_extension()
	gsk_copy_certification_request()
	gsk_copy_content_info()
	gsk_copy_crl()
	gsk_copy_name()
	gsk_copy_private_key_info()
	gsk_copy_public_key_info()
	gsk_copy_record()
	gsk_create_certification_request()
	gsk_create_database()
	gsk_create_database_renewal_request()
	gsk_create_database_signed_certificate()
	gsk_create_renewal_request()
	gsk_create_self_signed_certificate()
	gsk_create_signed_certificate()
	gsk_create_signed_certificate_record()
	gsk_create_signed_certificate_set()
	gsk_create_signed_crl()
	gsk_create_signed_crl_record()
	gsk_decode_base64()
	gsk_decode_certificate()
	gsk_decode_certificate_extension()
	gsk_decode_certification_request()
	gsk_decode_crl()
	gsk_decode_import_certificate()
	gsk_decode_import_key()
	gsk_decode_name()
	gsk_decode_private key()
	gsk_decode_public key()
	gsk_delete_record()
	gsk_dn_to_name()
	gsk_encode_base64()
	gsk_encode_certificate_extension()
	gsk_encode_ec_parameters()
	gsk_encode_export_certificate()
	gsk_encode_export_key()
	gsk_encode_export_request()
	gsk_encode_name()
	gsk_encode_private_key()
	gsk_encode_public_key()
	gsk_encode_signature()
	gsk_export_certificate()
	gsk_export_certification_request()
	gsk_export_key()
	gsk_factor_private_key()
	gsk_factor_private_key_rsa()
	gsk_factor_public_key()
	gsk_factor_public_key_rsa()
	gsk_fips_state_query()
	gsk_fips_state_set()
	gsk_free_attributes_signers()
	gsk_free_buffer()
	gsk_free_certificate()
	gsk_free_certificates()
	gsk_free_certificate_extension()
	gsk_free_certification_request()
	gsk_free_content_info()
	gsk_free_crl()
	gsk_free_crls()
	gsk_free_decoded_extension()
	gsk_free_name()
	gsk_free_private_key()
	gsk_free_private_key_info()
	gsk_free_public_key()
	gsk_free_public_key_info()
	gsk_free_record()
	gsk_free_records()
	gsk_free_string()
	gsk_free_strings()
	gsk_generate_key_agreement_pair()
	gsk_generate_key_pair()
	gsk_generate_key_parameters()
	gsk_generate_random_bytes()
	gsk_generate_secret()
	gsk_get_certificate_algorithms()
	gsk_get_certificate_info()
	gsk_get_cms_vector()
	gsk_get_default_key()
	gsk_get_default_label()
	gsk_get_directory_certificates()
	gsk_get_directory_crls()
	gsk_get_directory_enum()
	gsk_get_ec_parameters_info()
	gsk_get_record_by_id()
	gsk_get_record_by_index()
	gsk_get_record_by_label()
	gsk_get_record_by_subject()
	gsk_get_record_labels()
	gsk_get_update_code()
	gsk_import_certificate()
	gsk_import_key()
	gsk_make_content_msg()
	gsk_make_data_content()
	gsk_make_data_msg()
	gsk_make_encrypted_data_content()
	gsk_make_encrypted_data_msg()
	gsk_make_enveloped_data_content()
	gsk_make_enveloped_data_content_extended()
	gsk_make_enveloped_data_msg()
	gsk_make_enveloped_data_msg_extended()
	gsk_make_enveloped_private_key_msg()
	gsk_make_signed_data_content()
	gsk_make_signed_data_content_extended()
	gsk_make_signed_data_msg()
	gsk_make_signed_data_msg_extended()
	gsk_make_wrapped_content()
	gsk_mktime()
	gsk_modify_pkcs11_key_label()
	gsk_name_compare()
	gsk_name_to_dn()
	gsk_open_database()
	gsk_open_database_using_stash_file()
	gsk_open_directory()
	gsk_open_keyring()
	gsk_perform_kat()
	gsk_query_crypto_level()
	gsk_query_database_label()
	gsk_query_database_record_length()
	gsk_rdtime()
	gsk_read_content_msg()
	gsk_read_data_content()
	gsk_read_data_msg()
	gsk_read_encrypted_data_content()
	gsk_read_encrypted_data_msg()
	gsk_read_enveloped_data_content()
	gsk_read_enveloped_data_content_extended()
	gsk_read_enveloped_data_msg()
	gsk_read_enveloped_data_msg_extended()
	gsk_read_signed_data_content()
	gsk_read_signed_data_content_extended()
	gsk_read_signed_data_msg()
	gsk_read_signed_data_msg_extended()
	gsk_read_wrapped_content()
	gsk_receive_certificate()
	gsk_replace_record()
	gsk_set_default_key()
	gsk_set_directory_enum()
	gsk_sign_certificate()
	gsk_sign_crl()
	gsk_sign_data()
	gsk_validate_certificate()
	gsk_validate_certificate_mode()
	gsk_validate_hostname()
	gsk_validate_server()
	gsk_verify_certificate_signature()
	gsk_verify_crl_signature()
	gsk_verify_data_signature()

	Chapter 9. Deprecated Secure Socket Layer (SSL) APIs
	gsk_free_memory()
	gsk_get_cipher_info()
	gsk_get_dn_by_label()
	gsk_initialize()
	gsk_secure_soc_close()
	gsk_secure_soc_init()
	gsk_secure_soc_read()
	gsk_secure_soc_reset()
	gsk_secure_soc_write()
	gsk_srb_initialize()
	GSKSRBRD
	GSKSRBWT
	gsk_uninitialize()
	gsk_user_set()

	Chapter 10. Certificate/Key management
	Introduction
	gskkyman Overview
	Setting up the environment to run gskkyman
	Key database files
	z/OS PKCS #11 tokens
	gskkyman interactive mode descriptions
	Database menu
	Key/Token management
	Key Management menu/Token management menu

	gskkyman interactive mode examples
	Starting gskkyman
	Creating, opening, and deleting a key database file
	Changing a key database password
	Storing an encrypted key database password
	Creating, opening, and deleting a z/OS PKCS #11 token
	Creating a self-signed server or client certificate
	Creating a certificate request
	Sending the certificate request
	Receiving the signed certificate or renewal certificate
	Managing keys and certificates
	Showing certificate/key information
	Marking a certificate (and private key) as the default certificate
	Copying a certificate (and private key) to a different key database or z/OS PKCS #11 token
	Removing a certificate (and private key)
	Changing a certificate label
	Creating a signed certificate and key
	Creating a signed ECC certificate and key
	Creating a certificate to be used with a fixed Diffie-Hellman key exchange
	Creating a certificate renewal request

	Importing a certificate from a file as a trusted CA certificate
	Importing a certificate from a file with its private key
	Using gskkyman to be your own certificate authority (CA)
	Migrating from key database files to z/OS PKCS #11 token
	Migrating key database files to RACF key rings

	gskkyman command line mode syntax
	gskkyman
	gskkyman command line mode examples
	gskkyman command line mode displays

	Chapter 11. SSL started task
	GSKSRVR environment variables
	Configuring the SSL started task
	Server operator commands
	Sysplex session cache support
	Component trace support
	Hardware cryptography failure notification

	Chapter 12. Obtaining diagnostic information
	Obtaining System SSL trace information
	Capturing trace data through environment variables

	Component trace support
	Capturing component trace data
	Displaying the trace data
	Event trace records for System SSL
	Capturing component trace data without an external writer

	Chapter 13. Messages and codes
	SSL function return codes
	Deprecated SSL function return codes
	ASN.1 status codes (014CExxx)
	CMS status codes (03353xxx)
	SSL started task messages (GSK01nnn)
	Utility messages (GSK00nnn)

	Appendix A. Environment variables
	Appendix B. Sample C++ SSL files
	Appendix C. Cipher suite definitions
	Appendix D. Object identifiers
	Appendix E. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

