
z/OS
Cryptographic Services
Integrated Cryptographic Service Facility

Writing PKCS #11 Applications

SA23-2231-04

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
69.

This edition applies to Version 1 Release 13 of z/OS (5694–A01) and to all subsequent releases and modifications
until otherwise indicated in new editions. This edition applies to ICSF FMID HCR7790.

This edition replaces SA23-2231-03.

© Copyright IBM Corporation 2007, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . v

Tables . vii

About this document . ix
Who should read this document ix
How this document is organized ix
How to use this document . ix
Where to find more information x

How to send your comments to IBM xi
If you have a technical problem xi

Chapter 1. Overview of z/OS support for PKCS #11 1
Tokens . 1

The token data set (TKDS) . 2
Controlling access to tokens 4
Managing tokens . 7
Sample scenario for setting up z/OS PKCS #11 tokens 8

Auditing PKCS #11 functions . 10
Component trace for PKCS #11 functions 10
Object types . 10

Session objects . 10
Token objects . 11

Operating in compliance with FIPS 140-2 11
Requiring signature verification for ICSF module CSFINPV2 12
Requiring FIPS 140-2 compliance from all z/OS PKCS #11 applications . . . 14
Requiring FIPS 140-2 compliance from select z/OS PKCS #11 applications 14

Preparing to use PKCS #11 applications 16
Tasks for the system programmer 17
Tasks for the security administrator 17
Tasks for the auditor . 17
Tasks for application programmers. 18

Chapter 2. The C API . 19
Using the C API . 19

Deleting z/OS PKCS #11 tokens 19
Environment . 19
Cross memory considerations 20

Key types and mechanisms supported 21
Objects and attributes supported 27
Library, slot, and token information 40
Functions supported . 41

Standard functions supported 41
Non-standard functions supported 47

Function return codes . 47
Troubleshooting PKCS #11 applications 48

Chapter 3. The testpkcs11 program 51
Running the pre-compiled version of testpkcs11 51

Steps for running the pre-compiled version of testpkcs11 51
Building testpkcs11 from source code 52

Steps for building testpkcs11 from source code 52

© Copyright IBM Corp. 2007, 2011 iii

Chapter 4. ICSF PKCS #11 callable services 55

SMP/E installation data sets, directories, and files 57

Source code for the testpkcs11 sample program 59

Accessibility . 67
Using assistive technologies . 67
Keyboard navigation of the user interface 67
z/OS information . 67

Notices . 69
Programming interface information. 70
Trademarks . 70

Index . 71

iv z/OS V1R13 ICSF Writing PKCS #11 Applications

Figures

1. Sample job to define the TKDS . 4

© Copyright IBM Corp. 2007, 2011 v

vi z/OS V1R13 ICSF Writing PKCS #11 Applications

Tables

1. Token access levels . 5
2. Resources in the CSFSERV class for token services 6
3. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO) 21
4. Mechanisms supported by specific cryptographic hardware 25
5. Restricted algorithms and uses when running in compliance with FIPS 140-2 26
6. Common footnotes for object attribute tables . 27
7. Data object attributes that ICSF supports . 28
8. X.509 certificate object attributes that ICSF supports. 28
9. Secret key object attributes that ICSF supports. 30

10. Public key object attributes that ICSF supports . 33
11. RSA public key object attributes that ICSF supports 34
12. DSA public key object attributes that ICSF supports 35
13. Diffie-Hellman public key object attributes that ICSF supports 35
14. Elliptic Curve public key object attributes that ICSF supports 35
15. Private key object attributes that ICSF supports 35
16. RSA private key object attributes that ICSF supports. 38
17. DSA private key object attributes that ICSF supports. 38
18. Diffie-Hellman private key object attributes that ICSF supports 39
19. Elliptic Curve private key object attributes that ICSF supports 39
20. Domain parameter object attributes that ICSF supports. 39
21. DSA domain parameter object attributes that ICSF supports 39
22. Diffie-Hellman domain parameter object attributes that ICSF supports 40
23. Standard PKCS #11 functions that ICSF supports 41
24. Syntax of the CK_RV CSN_FindALLObjects() function 47
25. Environment variables for capturing trace data . 49

© Copyright IBM Corp. 2007, 2011 vii

viii z/OS V1R13 ICSF Writing PKCS #11 Applications

About this document

This document supports z/OS® (5694-A01). This document describes the support
for PKCS #11 provided by the z/OS Integrated Cryptographic Service Facility
(ICSF). ICSF is a component of z/OS Cryptographic Services, which includes the
following components:
v z/OS Integrated Cryptographic Service Facility (ICSF)
v z/OS Open Cryptographic Services Facility (OCSF)
v z/OS System Secure Socket Level Programming (SSL)
v z/OS Public Key Infrastructure Services (PKI Services)

ICSF is a software element of z/OS that works with the hardware cryptographic
feature and the Security Server (RACF®) to provide secure, high-speed
cryptographic services. ICSF provides the application programming interfaces by
which applications request the cryptographic services.

PKCS #11 is an industry-accepted standard provided by RSA Laboratories of RSA
Security Inc. It specifies an application programming interface (API) to devices,
referred to as tokens, that hold cryptographic information and perform cryptographic
functions. PKCS #11 provides an alternative to IBM®'s Common Cryptographic
Architecture (CCA).

Who should read this document
This document is primarily intended for application programmers who want to write
PKCS #11 applications for z/OS. It also contains information for security
administrators, system programmers, and auditors in installations that use PKCS
#11 applications.

How this document is organized
v Chapter 1, “Overview of z/OS support for PKCS #11,” on page 1 provides an

overview of ICSF support for PKCS #11. It discusses tokens, the token data set
(TKDS), auditing and tracing PKCS #11 functions, session objects, and tasks that
must be performed before using PKCS #11 applications.

v Chapter 2, “The C API,” on page 19 discusses the PKCS #11 C API provided by
ICSF, highlighting differences between the z/OS implementation and the PKCS
#11 standard.

v Chapter 3, “The testpkcs11 program,” on page 51 discusses how to build and run
the testpkcs11 sample.

v Chapter 4, “ICSF PKCS #11 callable services,” on page 55 provides a brief
introduction to the PKCS #11 callable services, which are documented in z/OS
Cryptographic Services ICSF Application Programmer's Guide.

How to use this document
Application programmers should read the entire book.

Security administrators should read the section “Tasks for the security administrator”
on page 17 and the information that it references.

System programmers should read the section “Tasks for the system programmer”
on page 17 and the information that it references.

© Copyright IBM Corp. 2007, 2011 ix

Auditors should read the section “Tasks for the auditor” on page 17 and the
information that is references.

Where to find more information
Before using this document, application programmers must be familiar with the
PKCS #11 specification. The PKCS #11 standard is defined on the RSA
Laboratories Web site at http://www.rsa.com/rsalabs/. Application programmers
should also be familiar with the ICSF library and C programming.

Security administrators should be familiar with z/OS Security Server RACF Security
Administrator's Guide.

Auditors should be familiar with z/OS Security Server RACF Auditor's Guide.

The callable services for PKCS #11 functions are documented in z/OS
Cryptographic Services ICSF Application Programmer's Guide.

The format of the token data set is documented in z/OS Cryptographic Services
ICSF System Programmer's Guide.

x z/OS V1R13 ICSF Writing PKCS #11 Applications

http://www.rsa.com/rsalabs/

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:

1. Send an e-mail to mhvrcfs@us.ibm.com

2. Visit the Contact z/OS Web page at http://www.ibm.com/servers/eserver/zseries/
zos/webqs.html

3. Mail the comments to the following address:
IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Mail Station P181
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

4. Fax the comments to us as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address
v Your e-mail address
v Your telephone or fax number
v The publication title and order number:

z/OS Cryptographic Services Writing PKCS #11 Applications
SA23-2231-04

v The topic and page number related to your comment
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations will only use the personal information that you
supply to contact you about the issues that you submit.

If you have a technical problem
Do not use the feedback methods listed above. Instead, do one of the following:

v Contact your IBM service representative

v Call IBM technical support

v Visit the IBM zSeries support Web page at http://www.ibm.com/servers/eserver/
support/zseries/.

© Copyright IBM Corp. 2007, 2011 xi

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xii z/OS V1R13 ICSF Writing PKCS #11 Applications

Chapter 1. Overview of z/OS support for PKCS #11

RSA Laboratories of RSA Security Inc. offers its Public Key Cryptography Standards
(PKCS) to developers of computers that use public key and related technology.
PKCS #11, also known as Cryptoki, is the cryptographic token interface standard. It
specifies an application programming interface (API) to devices, referred to as
tokens, that hold cryptographic information and perform cryptographic functions.
The PKCS #11 API is an industry-accepted standard commonly used by
cryptographic applications. ICSF supports PKCS #11, providing an alternative to
IBM's Common Cryptographic Architecture (CCA) and broadening the scope of
cryptographic applications that can make use of zSeries® cryptography. PKCS #11
applications developed for other platforms can be recompiled and run on z/OS.

The PKCS #11 standard is defined on the RSA Laboratories Web site at
http://www.rsa.com/rsalabs/. This document describes how ICSF supports that
standard. The support includes the following:

v A token data set (TKDS) that serves as a repository for persistent cryptographic
keys and certificates used by PKCS #11 applications.

v Instore memory that serves as a repository for temporary (session-only)
cryptographic keys and certificates used by PKCS #11 applications.

v A C application programming interface (API) that supports a subset of the V2.20
level of the PKCS #11 specification

v PKCS #11 specific ICSF callable services. The C API uses these callable
services.

Tokens
On most single-user systems, a token is a smart card or other plug-installed
cryptographic device, accessed through a card reader or slot. The PKCS #11
specification assigns numbers to slots, known as slot IDs. An application identifies
the token that it wants to access by specifying the appropriate slot ID. On systems
that have multiple slots, it is the application's responsibility to determine which slot
to access.

z/OS must support multiple users, each potentially needing a unique key store. In
this multiuser environment, the system does not give users direct access to the
cryptographic cards installed as if they were personal smart cards. Instead, z/OS
PKCS #11 tokens are virtual, conceptually similar to RACF (SAF) key rings. An
application can have one or more z/OS PKCS #11 tokens, depending on its needs.

Typically, PKCS #11 tokens are created in a factory and initialized either before they
are installed or upon their first use. In contrast, z/OS PKCS #11 tokens can be
created using system software such as RACF, the gskkyman utility, or by
applications using the C API. Each token has a unique token name, or label, that is
specified by the end user or application at the time that the token is created.

Rules: A token name must follow these rules:

v Up to 32 characters in length

v Permitted characters are:
– Alphanumeric
– National: @ (X'5B'), # (X'7B'), or $ (X'7C')
– Period: . (X'4B')

v The first character must be alphabetic or national

© Copyright IBM Corp. 2007, 2011 1

http://www.rsa.com/rsalabs/

v Lowercase letters can be used, but are folded to uppercase

v The IBM1047 code page is assumed

In addition to any tokens your installation may create, ICSF will also create a token
that will be available to all applications. This "omnipresent" token is created by ICSF
in order to enable PKCS #11 services when no other token has been created. This
token supports session objects only. Session objects are objects that do not persist
beyond the life of a PKCS #11 session. The omnipresent token is always mapped
to slot ID #0, and its token label is SYSTOK-SESSION-ONLY.

Tip: To reference the omnipresent token by label, use the constant
SESS_ONLY_TOK, which is defined in csnpdefs.h.

Because PKCS #11 tokens are typically physical hardware devices, the PKCS #11
specification provides no mechanism to delete tokens. However, because z/OS
PKCS #11 tokens are virtual, z/OS must provide a way to delete them. For
information on how to delete tokens using the C API, see “Deleting z/OS PKCS #11
tokens” on page 19.

The token data set (TKDS)
The token data set (TKDS) is a VSAM data set that serves as the repository for
persistent cryptographic keys and certificates used by PKCS #11 applications. The
system programmer creates the TKDS and updates the ICSF installation options
data set to identify the data set name of the TKDS.

As of ICSF FMID HCR7770, a TKDS is no longer required in order to run PKCS
#11 applications. If ICSF is started without a TKDS, however, only the omnipresent
token will be available.

Rules: The token data set must follow these rules:

v It must be a key-sequenced VSAM data set with spanned variable length
records.

v It must be allocated on a permanently resident volume.

Keys in the token data set are not encrypted. Therefore, it is important that the
security administrator create a RACF profile to protect the token data set from
unauthorized access.

For a sample job to define the TKDS data set, see “Sample job to define the TKDS”
on page 3. For the format of the TKDS, see z/OS Cryptographic Services ICSF
System Programmer's Guide.

To optimize performance, ICSF utilizes in-storage copy of the TKDS.

Options for the TKDS in the ICSF installation options data set
The ICSF installation options data set contains two options related to the token data
set:
v TKDSN
v SYSPLEXTKDS

The TKDSN option: The TKDSN option identifies the VSAM data set that
contains the token data set. The format of this option is:
TKDSN(data_set_name)

2 z/OS V1R13 ICSF Writing PKCS #11 Applications

data_set_name is the name of an existing token data set or an empty VSAM data
set to be used as the token data set.

The SYSPLEXTKDS option: The SYSPLEXTKDS option specifies whether the
token data set should have sysplex-wide data consistency. The SYSPLEXTKDS
option is in effect only if the TKDSN option has also been specified. The format of
this option is:
SYSPLEXTKDS(YES|NO,FAIL(YES|NO))

The SYSPLEXTKDS option can be YES or NO. The default value is NO.

v If SYSPLEXTKDS(NO,FAIL(fail-option)) is specified, no XCF signalling is
performed when an update to a TKDS record occurs.

v If SYSPLEXTKDS(YES,FAIL(fail-option)) is specified, the system is notified of
updates made to the TKDS by other members of the sysplex who have also
specified SYSPLEXTKDS(YES,FAIL(fail-option)).

The value of FAIL can be YES or NO.

v If FAIL(YES) is specified, ICSF initialization terminates abnormally if there is a
failure creating the TKDS latch set.

v If FAIL(NO) is specified, ICSF initialization processing continues even if the
request to create a TKDS latch set fails with an environment failure. The system
is not notified of updates to the TKDS by other members of the ICSF sysplex
group.

The default is SYSPLEXTKDS(NO,FAIL(NO)).

Sample job to define the TKDS
A sample job illustrating the definition of the TKDS data set is shipped in
SYS1.SAMPLIB, member CSFTKDS.

Chapter 1. Overview of z/OS support for PKCS #11 3

Controlling access to tokens
The PKCS #11 standard was designed for systems that grant access to token
information based on a PIN. The standard defines two types of users, the standard
user (User) and the security officer (SO), each having its own personal identification
number (PIN). The SO can initialize a token (zero the contents) and set the User's
PIN. The SO can also access the public objects on the token, but not the private
ones. The User has access to the private objects on a token and has the power to
change his or her own PIN. The User cannot reinitialize a token. The PIN that a
user enters determines which role that user takes. A user can fill both roles by
having knowledge of both PINs.

z/OS does not use PINs. Instead, profiles in the SAF CRYPTOZ class control
access to tokens. For each token, there are two resources in the CRYPTOZ class
for controlling access to tokens:

v The resource USER.token-name controls the access of the User role to the token.

v The resource SO.token-name controls the access of the SO role to the token.

In addition to these two resources for controlling access to tokens, each token also
has a FIPSEXEMPT.token-name resource for identifying applications that are

//CSFTKDS JOB <JOB CARD PARAMETERS>
///**
//* Licensed Materials - Property of IBM *
//* 5694-A0l *
//* (C) Copyright IBM Corp. 2007 *
//* *
//* THIS JCL DEFINES A VSAM TKDS TO USE FOR PKCS #11 TOKENS *
//* AND OBJECTS *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) The TKDS needs to be on a permanently resident volume. *
//* *
//***
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER(NAME(CSF.CSFTKDS) -
VOLUMES(XXXXXXX) -
RECORDS(100 50) -
RECORDSIZE(2200 32756) -
KEYS(72 0) -
FREESPACE(0 0) -
SPANNED -
SHAREOPTIONS(2 3)) -

DATA (NAME(CSF.CSFTKDS.DATA) -
BUFFERSPACE(100000) -
ERASE -
WRITECHECK) -

INDEX (NAME(CSF.CSFTKDS.INDEX))
/*

Figure 1. Sample job to define the TKDS

4 z/OS V1R13 ICSF Writing PKCS #11 Applications

subject to FIPS 140 restrictions when ICSF is running in FIPS compatibility mode.
Refer to “Operating in compliance with FIPS 140-2” on page 11 for more
information.

A user's access level to each of these resources (read, update, or control)
determines the user's access level to the token.

There are six possible token access levels. Three are defined by the PKCS #11
standard, and three are unique to z/OS. The PKCS #11 token access levels are:
v User R/O: Allows the user to read the token including its private objects, but the

user cannot create new token or session objects or alter existing ones.
v User R/W: Allows the user read/write access to the token object including its

private objects.
v SO R/W: Allows the user to act as the security officer for the token and to read,

create, and alter public objects on the token.

The token access levels unique to z/OS are:

v Weak SO: A security officer that can modify the CA certificates contained in a
token but not initialize the token. (For example, a system administrator who
determines the trust policy for all applications on the system.)

v Strong SO: A security officer that can add, generate or remove private objects in
a token. (For example, a server administrator.)

v Weak User: A User that cannot change the trusted CAs contained in a token.
(For example, to prevent an end-user from changing the trust policy of his or her
token.)

Table 1 shows how a user's access level to a token is derived from the user's
access level to a resource in the SAF CRYPTOZ class.

Table 1. Token access levels

SAF access level

CRYPTOZ resource READ UPDATE CONTROL

SO.token-label Weak SO

Can read, create,
delete, modify, and
use public objects

SO R/W

Same ability as Weak
SO plus can create
and delete tokens

Strong SO

Same ability as SO
R/W plus can read
but not use (see
Note2 on page 6)
private objects;
create, delete, and
modify private objects

USER.token-label User R/O

Can read and use
(see Note 2 on page
6) public and private
objects

Weak User

Same ability as User
R/O plus can create,
delete, and modify
private and public
objects. Cannot add,
delete, or modify
certificate authority
objects

User R/W

Same ability as Weak
User plus can add,
delete, and modify
certificate authority
objects

Notes:

1. The USER.token-name and SO.token-name profiles will not be checked to
determine access to the omnipresent token SYSTOK-SESSION-ONLY. ICSF

Chapter 1. Overview of z/OS support for PKCS #11 5

creates this token to provide PKCS #11 support even if no other token is
available to an application. All users will always by considered to have R/W
access to this token.

2. “Use” is defined as any of the following:

v Performing any cryptographic operation involving the key object; for example
C_Encrypt

v Searching for key objects using sensitive search attributes

v Retrieving sensitive key object attributes.

The sensitive attribute for a secret key is CKA_VALUE. The sensitive attribute
for Diffie Hellman, DSA, and Elliptic Curve private key objects is CKA_VALUE.
The sensitive attributes for RSA private key objects are
CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT_2, and CKA_COEFFICIENT.

3. The CRYPTOZ resources can be defined as “RACF-DELEGATED” if required.
For information about delegated resources, see the section on delegated
resources in z/OS Security Server RACF Security Administrator's Guide.

4. Although the use of generic profiles in the CRYPTOZ class is permitted, we
recommend that you do not use a single generic profile to cover both the
SO.token-label and USER.token-label resources. You should not do this,
because another resource (FIPSEXEMPT.token-label, which is described in
more detail in “Operating in compliance with FIPS 140-2” on page 11) can be
used to specify compliance with the FIPS 140-2 standard. Creating a generic
profile that uses generic characters to match both the SO and USER portion of
the resource name (for example *.token-label) will also inadvertently match the
FIPSEXEMPT.token-label resource and can have unintended consequences.

5. If the CSFSERV class is active, ICSF performs access control checks on the
underlying callable services. The user must have READ access to the
appropriate CSFSERV class resource. Table 2 lists the resources in the
CSFSERV class for token services.

Table 2. Resources in the CSFSERV class for token services

Name of resource Service Called by

CSF1TRC Token or object creation C_InitToken, C_CreateObject,
C_CopyObject

CSF1TRD Token or object deletion C_InitToken,
C_DestroyObject

CSF1TRL Token or object find C_Initialize, C_FindObjects,
CSN_FindALLObjects

CSF1SAV Set object attributes C_SetAttributeValue

CSF1GAV Get object attributes C_GetAttributeValue

CSF1GSK Generate secret key C_GenerateKey

CSF1GKP Generate key pair C_GenerateKeyPair

CSF1PKS Private key sign C_Decrypt,
C_DecryptUpdate,
C_DecryptFinal, C_Sign,
C_SignFinal

CSF1PKV Public key verify C_Encrypt,
C_EncryptUpdate,
C_EncryptFinal, C_Verify,
C_VerifyFinal

6 z/OS V1R13 ICSF Writing PKCS #11 Applications

Table 2. Resources in the CSFSERV class for token services (continued)

Name of resource Service Called by

CSF1SKD Secret key decrypt C_Decrypt,
C_DecryptUpdate,
C_DecryptFinal

CSF1SKE Secret key encrypt C_Encrypt,
C_EncryptUpdate,
C_EncryptFinal

CSFOWH One-way hash C_Digest, C_DigestUpdate,
C_DigestFinal, C_Sign,
C_SignUpDate, C_SignFinal,
C_Verify, C_VerifyUpdate,
C_VerifyFinal

CSF1WPK Wrap key C_Wrapkey

CSF1UWK Unwrap key C_Unwrapkey

CSF1HMG Generate HMAC C_Sign

CSF1HMV Verify HMAC C_Verify

CSF1DVK Derive key C_DeriveKey

CSF1DMK Derive multiple keys C_DeriveKey

CSFIQA PKCS #11 initialization C_Initialize

CSFRNG Random number generate C_GenerateRandom

Guidelines:

1. If your organization controls access to ICSF callable services using the
CSFSERV class, define the resources listed in Table 2 on page 6 and grant
access accordingly.

Tip: Define generic profiles. For example, a profile named CSF* covers all the
ICSF services. A profile named CSF1* covers the PKCS #11 subset of the ICSF
services, with the exception of those covered by the CSFOWH, CSFIQF, and
CSFRNG resources.

2. The CRYPTOZ class supports generic profiles. Take advantage of this by
creating a token naming convention for your organization and enforce it with
generic profiles. For example, require users and applications to prefix their
token names with their user IDs, as with data set names. (See “Sample
scenario for setting up z/OS PKCS #11 tokens” on page 8.)

3. For server applications, grant security officers (server administrators) Strong SO
access and their end-users (server daemon user IDs) Weak User or User R/W
access.

4. For applications for which you do not wish to separate the security officer and
end-user roles, grant the appropriate user IDs access to both the SO and USER
profiles.

Managing tokens
z/OS provides several facilities to manage tokens:

v A C language application programming interface (API) that implements a subset
of the PKCS #11 specification. For a description of this API, see Chapter 2, “The
C API,” on page 19.

v PKCS #11 specific ICSF callable services. The C API uses these callable
services. For information about these callable services, see Chapter 4, “ICSF
PKCS #11 callable services,” on page 55.

Chapter 1. Overview of z/OS support for PKCS #11 7

v ISPF panels. The ICSF ISPF panels provide the capability to see a formatted
view of TKDS objects, and make limited updates to them.

v The RACF RACDCERT command supports the certificate, public key, and private
key objects, and provides the following subfunctions to manage these objects:

– ADDTOKEN - creates a new empty token

– DELTOKEN - deletes an existing token and everything in it

– LISTTOKEN - displays information on the certificate objects in a token and
whether associated public and private key objects exist

– BIND - connects a RACF certificate, its public key, and potentially its private
key to an existing token

– UNBIND - removes a certificate and its keys from a token

– IMPORT - defines a token certificate to RACF

For information about the RACDCERT command, see z/OS Security Server
RACF Command Language Reference and z/OS Security Server RACF Security
Administrator's Guide.

v The SAF CRYPTOZ class controls access to tokens. For information about this
class, see “Controlling access to tokens” on page 4.

v The RACF R_Datalib callable service (IRRSDL00) allows applications to read
tokens by providing a user ID of *TOKEN* to indicate that the key ring name is
really a token name. For information about R_Datalib, see z/OS Security Server
RACF Callable Services.

Note: IRRSDL00 was originally created to allow applications to read RACF
(SAF) key rings, but has been enhanced to read PKCS #11 tokens as
well. Thus applications written to read key rings can also read tokens
without being modified.

Sample scenario for setting up z/OS PKCS #11 tokens
The following examples show how to control access to z/OS PKCS #11 tokens. In
this scenario, a company wants to use z/OS PKCS #11 tokens as the key stores for
its FTP and Web servers. The company has established a naming convention for
their tokens requiring that all tokens have the owning user ID as the high-level
qualifier. The owning user IDs for the FTP and Web server tokens are the daemons
FTPSRV and WEBSRV, respectively. User ABIGAIL is the administrator for the
servers.

The security administrator, who has the RACF SPECIAL attribute, creates the
protection profiles for the tokens. The security administrator's goal is to give user
ABIGAIL the Security Officer role for these profiles, and to give the daemon user
IDs the User role. To do this, the security administrator issues RACF TSO
commands. First, the security administrator activates the CRYPTOZ class with
generics and RACLISTs it:
SETROPTS CLASSACT(CRYPTOZ) GENERIC(CRYPTOZ) RACLIST(CRYPTOZ)

Next, the security administrator creates profiles for the security officer's access to
the FTP and Web Server tokens:
RDEFINE CRYPTOZ SO.FTPSRV.* UACC(NONE)
RDEFINE CRYPTOZ SO.WEBSRV.* UACC(NONE)

Then, the security administrator creates profiles for the standard user's access to
the FTP and Web Server tokens:
RDEFINE CRYPTOZ USER.FTPSRV.* UACC(NONE)
RDEFINE CRYPTOZ USER.WEBSRV.* UACC(NONE)

8 z/OS V1R13 ICSF Writing PKCS #11 Applications

The security administrator now gives user ABIGAIL Strong SO power for the tokens
by giving her CONTROL access to the profiles that protect the tokens. The Strong
SO power does not allow ABIGAIL to use the private objects in the tokens:
PERMIT SO.FTPSRV.* CLASS(CRYPTOZ) ID(ABIGAIL) ACC(CONTROL)
PERMIT SO.WEBSRV.* CLASS(CRYPTOZ) ID(ABIGAIL) ACC(CONTROL)

Next, the security administrator gives the users FTPSRV and WEBSRV Weak User
power for their respective tokens. This power allows them to use the private objects
within the tokens, but not change the set of trusted CA certificates.
PERMIT USER.FTPSRV.* CLASS(CRYPTOZ) ID(FTPSRV) ACC(UPDATE)
PERMIT USER.WEBSRV.* CLASS(CRYPTOZ) ID(WEBSRV) ACC(UPDATE)

Finally, the security administrator refreshes the in-storage profiles for the CRYPTOZ
class, so that the changes he just made take effect:
SETROPTS RACLIST(CRYPTOZ) REFRESH

Now the set up is complete: ABIGAIL has Strong SO power over the tokens for the
FTP server and the Web server, and can create the required tokens. FTPSRV and
WEBSRV have User power over their respective tokens, and can use them as key
stores after ABIGAIL has created them.

The task now is to create and populate the tokens for the servers with RACF
certificates. The following certificates exist:

1. A root CA certificate installed under CERTAUTH with label 'Local Root CA for
Servers'

2. An end-entity certificate and private key installed under user FTPSRV with label
'FTP Key'. This certificate was signed by the first certificate.

3. An end-entity certificate and private key installed under user WEBSRV with
label 'Web Key'. This certificate was also signed by the first certificate.

User ABIGAIL issues the following TSO commands to create the tokens, using the
company's naming conventions:
RACDCERT ADDTOKEN(ftpsrv.ftp.server.pkcs11.token)
RACDCERT ADDTOKEN(websrv.web.server.pkcs11.token)

Next, issue the commands that bind the root CA certificate to the two tokens:
RACDCERT BIND(CERTAUTH LABEL(’Local Root CA for Servers’)
TOKEN(ftpsrv.ftp.server.pkcs11.token)
RACDCERT BIND(CERTAUTH LABEL(’Local Root CA for Servers’)
TOKEN(websrv.web.server.pkcs11.token)

Now, bind the end-entity certificates to their respective tokens. Each should be the
default in the token.
RACDCERT BIND(ID(FTPSRV) LABEL("FTP key")
TOKEN(ftpsrv.ftp.server.pkcs11.token) DEFAULT)
RACDCERT BIND(ID(WEBSRV) LABEL("Web key")
TOKEN(websrv.web.server.pkcs11.token) DEFAULT)

The final step is for the user (ABIGAIL) to configure both servers to use their
respective tokens: add directives to the servers' configuration files.

For the web server (IBM HTTP Server), the keyfile directive in the httpd.conf file is
set as follows:
keyfile *TOKEN*/WEBSRV.WEB.SERVER.PKCS11.TOKEN SAF

Chapter 1. Overview of z/OS support for PKCS #11 9

The SAF keyword indicates to SSL that this is a key ring and is controlled by SAF;
it is not a KDB file. The TOKEN keyword indicates that the key ring is a token. The
FTP server configuration file also requires a token-qualified key ring name:
keyfile *TOKEN*/FTPSRV.FTP.SERVER.PKCS11.TOKEN

Auditing PKCS #11 functions
PKCS #11 functions are audited in the following ways:

v The SMF type 82 subtype 1 record that is written during ICSF initialization
contains the data set name of the token data set (TKDS).

v The SMF type 82 subtype 21 record that is written when a member joins or
leaves a sysplex group contains the cryptographic keys data set (CKDS) data set
name if the member joined or left the ICSF CKDS sysplex group, or the TKDS
data set name if the member joined or left the ICSF TKDS sysplex group.

v ICSF writes SMF type 82 subtype 23 records whenever a TKDS record for a
token or token object is created, modified, or deleted. ICSF does not write SMF
records for changes to session objects.

For descriptions of the SMF records that ICSF writes, see z/OS MVS System
Management Facilities (SMF).

Component trace for PKCS #11 functions
The following ICSF component trace entries trace events related to the token data
set (TKDS):

v Type 16 (XCFTMSGS) traces the broadcast of an XCF message related to TKDS
I/O.

v Type 17 (XCFTMSGR) traces the receipt of an XCF message related to TKDS
I/O.

v Type 18 (XCFTENQ) traces the return of control to the TKDS I/O subtask
following the request for an exclusive ENQ on the SYSZTKDS.TKDSdsn
resource.

These trace entry types are always traced.

When viewed via IPCS, these entries show the ASCB address, the TCB address,
the ASID, the general purpose registers, the GPR length, and the CSS address. For
more information about IPCS, see z/OS MVS IPCS User's Guide.

Object types
ICSF supports PKCS #11 session objects and token objects. The following classes
of objects can be associated with these object types:
v Certificate
v Public key
v Private key
v Secret key
v Data objects
v Domain parameters

Session objects
A session object exists for the life of a PKCS #11 session. ICSF allocates session
object memory areas to hold session objects; they are not maintained on DASD.
ICSF associates a session object memory area with the application that requested

10 z/OS V1R13 ICSF Writing PKCS #11 Applications

the creation of a session object. There is only one session object memory area for
an application, even if the application spawns multiple PKCS #11 sessions. The
same session objects are available to all PKCS #11 sessions within an application.

ICSF creates a session object memory area the first time a session object is
created, if there is currently no session object memory area associated with the
application. The session object memory area exists as long as the PKCS #11
application's address space and job step TCB exist. ICSF deletes the memory area
if either the address space or job step TCB terminates. If ICSF terminates, all
session object memory areas are destroyed.

ICSF creates one session-object token, the omnipresent token, to provide PKCS
#11 support even if no other token is available to an application. For example, no
other token is available when a TKDS is not identified using the TKDSN option in
the ICSF installation options data set, or when the SAF CRYPTOZ class has not
been activated. This session object token (labeled SYSTOK-SESSION-ONLY) is
write protected, cannot be used to store persistent attributes, and cannot be
deleted.

On z/OS, an application can be running in either single address space mode, or in
cross memory mode. The PKCS #11 standard has no concept of cross memory
mode, so there is no predefined expected behavior for a PKCS #11 application
running in cross memory mode. If running in cross memory mode, you should be
aware of the guidelines pertaining to session objects described in “Cross memory
considerations” on page 20.

Token objects
Token objects are stored in the token data set, with one record per object. They are
visible to all applications that have sufficient permission to the token. They are
persistent: they remain associated with the token even after a session is closed.

Operating in compliance with FIPS 140-2
The National Institute of Standards and Technology (NIST) is the US federal
technology agency that works with industry to develop and apply technology,
measurements, and standards. One of the standards published by NIST is the
Federal Information Processing Standard Security Requirements for Cryptographic
Modules, referred to as FIPS 140-2. FIPS 140-2 provides a standard that can be
required by organizations who specify that cryptographic-based security systems
are to be used to provide protection for sensitive or valuable data.

z/OS PKCS #11 cryptography is designed to meet FIPS 140-2 Level 1 criteria, and
can be configured to operate in compliance with FIPS 140-2 specifications.
Applications that need to comply with the FIPS 140-2 standard can therefore use
the z/OS PKCS #11 services in a way that allows only the cryptographic algorithms
(including key sizes) approved by the standard and restricts access to the
algorithms that are not approved. There are two modes of FIPS operation:

v The services can be configured so that all z/OS PKCS #11 applications are
forced to comply with the FIPS 140-2 standard. This is called FIPS standard
mode.

v For installations where only certain z/OS PKCS #11 applications need to comply
with the FIPS 140-2 standard, the services can be configured so that only the
necessary applications are restricted from using the non-approved algorithms and
key sizes, while other applications are not. This is called FIPS compatibility
mode.

Chapter 1. Overview of z/OS support for PKCS #11 11

You can also use FIPS compatibility mode to test individual applications to ensure
FIPS compliance before switching to FIPS standard mode.

ICSF installation options are described in the z/OS Cryptographic Services ICSF
System Programmer's Guide. The installation option FIPSMODE indicates one of
the following:

v the z/OS PKCS #11 services will operate in FIPS standard mode. The installation
option to specify this is FIPSMODE(YES, FAIL(fail-option)) and is described in
more detail in “Requiring FIPS 140-2 compliance from all z/OS PKCS #11
applications” on page 14.

v the z/OS PKCS #11 services will operate in FIPS compatibility mode. The
installation option to specify this is FIPSMODE(COMPAT, FAIL(fail-option)). When
operating in FIPS compatibility mode, it is expected that further specifications will
be made to identify which applications must comply with the FIPS 140-2
standard, and which applications do not need to comply. These further
specifications can be made:

– at the PKCS #11 token and application level, using FIPSEXEMPT.token-name
resource profiles in the CRYPTOZ class.

– within applications themselves for individual keys. When an application
creates a key, the application can specify that the key must be used in a FIPS
140-2 compliant fashion. The application can specify this by setting the
Boolean key attribute CKA_IBM_FIPS140 to TRUE.

The FIPSMODE(COMPAT, FAIL(fail-option)) installation option,
FIPSEXEMPT.token-name resource profiles, and the CKA_IBM_FIPS140 key
attribute, are described in more detail in “Requiring FIPS 140-2 compliance from
select z/OS PKCS #11 applications” on page 14.

v no FIPS 140-2 compliance is required by any application. This is the default
behavior if the FIPSMODE installation option is not used, but can be set explicitly
using the FIPSMODE(NO, FAIL(fail-option)) installation option.

If any z/OS PKCS #11 application intends to use the services in compliance with
the FIPS 140-2 standard, then, in accordance with that standard, the integrity of the
load module containing the z/OS PKCS #11 services must be checked when ICSF
is started. This load module is digitally signed, and, in order for applications using
its services to be FIPS 140-2 compliant, the signature must be verified when ICSF
is started. For more information, refer to “Requiring signature verification for ICSF
module CSFINPV2.”

If any application will use PKCS #11 objects for AES Galois/Counter Mode (GCM)
encryption or GMAC generation, and will have ICSF generate the initialization
vectors, then you need to set ECVTSPLX or CVTSNAME to a unique value. Refer
to z/OS Cryptographic Services ICSF System Programmer's Guide for more
information.

Requiring signature verification for ICSF module CSFINPV2
If your installation needs to operate z/OS PKCS #11 in compliance with the FIPS
140-2 standard, then the integrity of the cryptographic functions shipped by IBM
must be verified at your installation during ICSF startup. The load module that
contains the software cryptographic functions is SYS1.SIEALNKE(CSFINPV2), and
this load module is digitally signed when it is shipped from IBM. Using RACF, you
can verify that the module has remained unchanged from the time it was built and
installed on your system. To do this, you create a profile in the PROGRAM class for
the CSFINPV2 module, and use this profile to indicate that signature verification is
required before the module can be loaded.

12 z/OS V1R13 ICSF Writing PKCS #11 Applications

To require signature verification for ICSF module CSFINPV2:

1. Make sure that RACF has been prepared to verify signed programs. As
described in z/OS Security Server RACF Security Administrator's Guide, a
security administrator prepares RACF to verify signed programs by creating a
key ring for signature verification, and adding the code-signing CA certificate
that is supplied with RACF to the key ring. If RACF has been prepared to verify
signed programs, there will be a key ring dedicated to signature verification, the
code-signing CA certificate will be attached to the key ring, and the PROGRAM
class will be active.

a. If RACF has been prepared to verify signed programs, the discrete profile
IRR.PROGRAM.SIGNATURE.VERIFICATION in the FACILITY class will
specify the name of the signature-verification key ring. To determine if a
signature key ring is already active, enter the command:
RLIST FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION

If there is no discrete profile with this name, have your security administrator
prepare RACF to verify signed programs using the information in z/OS
Security Server RACF Security Administrator's Guide.

b. If the signature verification key ring exists, the RLIST command will display
information for the discrete profile
IRR.PROGRAM.SIGNATURE.VERIFICATION in the FACILITY class. The
name of the signature verification key ring and the name of the key ring
owner will be included in the APPLICATION DATA field of the RLIST
command output. Using this information, enter the RACDCERT LISTRING
command to make sure the code-signing CA certificate is attached to the
key ring:
RACDCERT ID(key-ring-owner) LISTRING(key-ring-name)

The label of the code-signing CA certificate is 'STG Code Signing CA'. If this
label is not shown in the RACDCERT LISTRING command output, have
your security administrator prepare RACF to verify signed programs using
the information in z/OS Security Server RACF Security Administrator's
Guide.

c. Program control must be active in order for RACF to perform signature
verification processing. To make sure the PROGRAM class is active, enter
the SETROPTS LIST command.
SETROPTS LIST

The ACTIVE CLASSES field of the command output should include the
PROGRAM class. If it does not, have your security administrator prepare
RACF to verify signed programs using the information in z/OS Security
Server RACF Security Administrator's Guide.

2. Create a profile for the CSFINPV2 program module in the PROGRAM class,
indicating that the program must be signed. The following command specifies
that the program should fail to load if the signature cannot be verified for any
reason. This command also specifies that all signature verification failures
should be logged.

Note: Due to space constraints, this command example appears on two lines.
However, the RDEFINE command should be entered completely on one
line.

RDEFINE PROGRAM CSFINPV2 ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

Chapter 1. Overview of z/OS support for PKCS #11 13

You will need to activate your profile changes in the PROGRAM class.
SETROPTS WHEN(PROGRAM) REFRESH

Requiring FIPS 140-2 compliance from all z/OS PKCS #11 applications
If all z/OS PKCS #11 applications running on your system must comply with the
FIPS 140-2 standard, your installation's system programmer should configure ICSF
so that z/OS PKCS #11 operates in FIPS standard mode. To do this:

1. Make sure the integrity of the cryptographic functions shipped by IBM in the
ICSF module CSFINPV2 will be verified by RACF before the module is loaded.
This is done by following the instructions in “Requiring signature verification for
ICSF module CSFINPV2” on page 12. If the these steps are not followed to
verify the digital signature of the module, no application calling the z/OS PKCS
#11 services can be considered FIPS 140-2 compliant.

2. To specify FIPS standard mode, have you installation's system programmer
include the installation option FIPSMODE(YES, FAIL(fail-option)) in the ICSF
installation options data set.

When this option is used, ICSF will operate in FIPS standard mode. In this
mode, ICSF initialization will test that it is running on an IBM System z model
type, and a version and release of z/OS, that supports FIPS. If so, then ICSF
will perform a series of cryptographic known answer tests as required by the
FIPS 140-2 standard. If the tests succeed, then all applications calling z/OS
PKCS services will be restricted from using the PKCS #11 algorithms and key
sizes that are prohibited by the FIPS 140-2 standard (as outlined in Table 5 on
page 26).

If any of the installation tests should fail, the action ICSF initialization takes
depends on the fail-option specified. The fail-option within the FIPSMODE(YES,
FAIL(fail-option)) installation option can be either:

v YES (which indicates that ICSF should terminate abnormally if there is a
failure in any of the tests that are performed).

v NO (which indicates that ICSF initialization processing should continue even
if there is a failure in one or more of the tests that are performed). If an
initialization test does fail, however, PKCS #11 support will be limited or
nonexistent depending on the test that failed.

– If ICSF is running on an IBM system z model type or with a version of
z/OS that does not support FIPS, most FIPS processing is bypassed.
PKCS #11 callable services will be available, but ICSF will not adhere to
FIPS 140 restrictions. Requests to generate or use a key with
CKA_IBM_FIPS140=TRUE will result in a failure return code.

– If a known answer test failed, all ICSF PKCS #11 callable services will be
unavailable.

For more information on this on other ICSF installation options, refer to z/OS
Cryptographic Services ICSF System Programmer's Guide.

Requiring FIPS 140-2 compliance from select z/OS PKCS #11
applications

If only certain z/OS PKCS #11 applications running on your system must comply
with the FIPS 140-2 standard, while other z/OS PKCS #11 applications do not, your
system programmer should configure ICSF so that z/OS PKCS #11 operates in
FIPS compatibility mode. In FIPS compatibility mode, you can use resource profiles
in the CRYPTOZ class to specify, at a token level, the applications that are exempt

14 z/OS V1R13 ICSF Writing PKCS #11 Applications

from FIPS 140-2 compliance and, for that reason, should not be subject to FIPS
restrictions. To configure the z/OS PKCS #11 services to operate in FIPS
compatibility mode:

1. Make sure the integrity of the cryptographic functions shipped by IBM in the
module ICSF module CSFINPV2 will be verified by RACF before the module is
loaded. This is done by following the instructions in “Requiring signature
verification for ICSF module CSFINPV2” on page 12. If the these steps are not
followed to verify the digital signature of the module, no application calling the
z/OS PKCS #11 services can be considered FIPS 140-2 compliant.

2. To specify FIPS compatibility mode, have you installation's system programmer
include the installation option FIPSMODE(COMPAT, FAIL(fail-option)) in the
ICSF installation options data set.

When this option is used, ICSF will operate in FIPS compatibility mode. In this
mode, ICSF initialization will test that it is running on a IBM System z model
type, and a version and release of z/OS, that supports FIPS. If so, then ICSF
will perform a series of cryptographic known answer tests as required by the
FIPS 140-2 standard. If the tests are successful, then, by default, all
applications calling z/OS PKCS services will be restricted from using the PKCS
#11 algorithms and key sizes that are prohibited by the FIPS 140-2 standard (as
outlined in Table 5 on page 26). Using profiles in the CRYPTOZ class, however,
you can identify applications that are exempt from FIPS 140-2 compliance (as
described in the next step).

If any of the installation tests should fail, the action ICSF initialization takes
depends on the fail-option specified. The fail-option within the
FIPSMODE(COMPAT, FAIL(fail-option)) installation option can be either:

v YES (which indicates that ICSF should terminate abnormally if there is a
failure in any of the tests that are performed).

v NO (which indicates that ICSF initialization processing should continue even
if there is a failure in one or more of the tests that are performed). If an
initialization test does fail, however, PKCS #11 support will be limited or
nonexistent depending on the test that failed.

– If ICSF is running on an IBM system z model type or with a version of
z/OS that does not support FIPS, most FIPS processing is bypassed.
PKCS #11 callable services will be available, but ICSF will not adhere to
FIPS 140 restrictions. Requests to generate or use a key with
CKA_IBM_FIPS140=TRUE will result in a failure return code.

– If a known answer test failed, all ICSF PKCS #11 callable services will be
unavailable.

For more information on this on other ICSF installation options, refer to z/OS
Cryptographic Services ICSF System Programmer's Guide.

3. To specify which applications must comply with FIPS 140-2 restrictions and
which applications do not need to comply, create FIPSEXEMPT.token-label
resource profiles in the CRYPTOZ class. If no FIPSEXEMPT.token-label
resource profiles are created, then all z/OS PKCS #11 applications will be
subject to FIPS restrictions. By creating a FIPSEXEMPT.token-label resource
profile for a particular token, however, you can specify whether or not a
particular user ID should be considered exempt from FIPS restrictions when
using that token.

v If a user ID has access authority NONE to the FIPSEXEMPT.token-label
resource, ICSF will enforce FIPS 140-2 compliance for that user ID.

v If a user ID has access authority READ to the FIPSEXEMPT.token-label
resource, that user ID is exempt from FIPS 140-2 restrictions.

Chapter 1. Overview of z/OS support for PKCS #11 15

To specify which applications must comply with the FIPS 140-2 restrictions, and
which do not, the security administrator must:

a. If it is not already activated, activate the CRYPTOZ class with generics and
RACLIST it:
SETROPTS CLASSACT(CRYPTOZ) GENERIC(CRYPTOZ) RACLIST(CRYPTOZ)

b. Create the FIPSEXEMPT.token-label resource profile for each z/OS PKCS
#11 token. The following command creates the profile for the omnipresent
session-object token SYSTOK-SESSION-ONLY.
RDEF CRYPTOZ FIPSEXEMPT.SYSTOK-SESSION-ONLY UACC(NONE)

Although the use of generic profiles in the CRYPTOZ class is permitted, we
recommend you begin the profile name with “FIPSEXEMPT”. Failure to do
this could result in generic characters unintentionally matching the
SO.token-label or USER.token-label resources for token access, and so
could have unintended consequences.

c. Using the PERMIT command, specify READ access authority for user IDs
that are exempt from FIPS 140-2 restrictions, and NONE access authority
for user IDs that must comply with FIPS 140-2. The following command
indicates that all user IDs are exempt, except for the daemon user ID
BOGD.
PERMIT FIPSEXEMPT.SYSTOK-SESSION-ONLY CLASS(CRYPTOZ) ID(*) ACC(READ)
PERMIT FIPSEXEMPT.SYSTOK-SESSION-ONLY CLASS(CRYPTOZ) ID(BOGD) ACC(NONE)

d. Refresh the CRYPTOZ class in common storage:
SETROPTS RACLIST(CRYPTOZ) REFRESH

Specifying FIPS 140-2 compliance from within a z/OS PKCS #11
application
When running in FIPS compatability mode, a PKCS #11 application can, when
creating a key, specify that generation and subsequent use of the key must adhere
to FIPS 140-2 restrictions. An application specifies this by setting the Boolean
attribute CKA_IBM_FIPS140 to TRUE when creating the key. If an application does
this, the FIPS 140-2 restrictions (as outlined in Table 5 on page 26) will be enforced
for the key regardless of any specifications made at the token level using
FIPSEXEMPT.token-label resource profiles.

An application controls FIPS 140-2 compliance for a key when in FIPS compatibility
mode as specified by the FIPSMODE(COMPAT, FAIL(fail-option)) installation option.
If the installation option FIPSMODE(NO, FAIL(fail-option)), which indicates no FIPS
140-2 compliance for any application, is specified (or defaulted to), an application
that sets the Boolean attribute CKA_IBM_FIPS140 to TRUE will fail with
return/reason code 8/3069. If the FIPSMODE(YES, FAIL(fail-option)) installation
option is specified, indicating FIPS 140-2 compliance is required by all applications,
setting the Boolean attribute CKA_IBM_FIPS140 to TRUE is merely redundant and
does not result in an error.

Preparing to use PKCS #11 applications
Before an installation can use PKCS #11 applications, some preparation is required
on the part of the system programmer, security administrator, auditor, and
application programmers. This section describes the preparation required.

16 z/OS V1R13 ICSF Writing PKCS #11 Applications

Tasks for the system programmer
If persistent PKCS #11 tokens and objects are needed, the system programmer
allocates a token data set (TKDS) for use by PKCS #11 functions, and specifies the
data set name of the TKDS in the TKDSN option of the ICSF installation options
data set.

The system programmer must decide whether or not sysplex-wide consistency of
the TKDS is required, and must specify the SYSPLEXTKDS option in the ICSF
installation options data set to define the processing of TKDS updates in a sysplex
environment.

For information on the TKDSN and SYSPLEXTKDS options of the ICSF installation
options data set, see “Options for the TKDS in the ICSF installation options data
set” on page 2. For a sample job to create the token data set, see “Sample job to
define the TKDS” on page 3.

If any application must comply with the FIPS 140-2 standard, the system
programmer must configure ICSF to run PKCS #11 services in compliance with
FIPS 140-2. To do this, the system administrator uses the FIPSMODE option to
specify either FIPS standard mode or FIPS compatibility mode as required. For
more information on the FIPSMODE option, refer to “Operating in compliance with
FIPS 140-2” on page 11, and the z/OS Cryptographic Services ICSF System
Programmer's Guide.

The system programmer should run the testpkcs11 utility program to test the PKCS
#11 configuration. For information about running the testpkcs11 program, see
“Running the pre-compiled version of testpkcs11” on page 51.

Tasks for the security administrator
The security administrator should create a RACF profile to protect the data set that
contains the token data set. It is important to protect this data set, because keys in
the token data set are not encrypted.

The security administrator needs to grant the appropriate access authority to users
for accessing tokens and objects, by defining profiles in the CRYPTOZ class. For
more information, see “Controlling access to tokens” on page 4.

The security administrator controls access to the PKCS #11 callable services by
defining profiles in the CSFSERV class. For information about defining profiles in
the CSFSERV class, see z/OS Cryptographic Services ICSF Administrator's Guide.
For a list of the resource names for token services, see Table 2 on page 6.

If PKCS #11 services must run in compliance with the FIPS 140-2 standard, then
the security administrator must ensure that the digital signature of the load module
containing the z/OS PKCS #11 services is verified when ICSF starts. This must be
done to satisfy FIPS 140-2 requirements. Refer to “Requiring signature verification
for ICSF module CSFINPV2” on page 12, and z/OS Security Server RACF Security
Administrator's Guide for more information.

Tasks for the auditor
Auditors should become familiar with the data in SMF records that is related to
PKCS #11 functions. For more information, see “Auditing PKCS #11 functions” on
page 10.

Chapter 1. Overview of z/OS support for PKCS #11 17

Tasks for application programmers
Application programmers can write applications using the PKCS #11 API provided
by ICSF. They should become familiar with the PKCS #11 specification, and with
the information in this book. The PKCS #11 standard is defined on the RSA
Laboratories Web site at http://www.rsa.com/rsalabs/.

Application programmers can use the sample program, testpkcs11, to learn about
building and running PKCS #11 applications, and to troubleshoot problems. For
information about the sample program, see Chapter 3, “The testpkcs11 program,”
on page 51.

18 z/OS V1R13 ICSF Writing PKCS #11 Applications

http://www.rsa.com/rsalabs/

Chapter 2. The C API

ICSF provides a PKCS #11 C language application program interface (API). This
chapter highlights the differences between the z/OS API and the PKCS #11 V2.20
specification. To use this API, you must be familiar with both the PKCS #11
specification and the information in this chapter.

All manifest constants specified in this chapter can be found in the csnpdefs.h
include file and (with the exceptions noted) in the PKCS #11 specification.

Using the C API
To create or use a z/OS PKCS #11 token, an application needs to do the following:

1. Implicitly or explicitly load the PKCS #11 API DLL (CSNPCAPI for applications
running in 31-bit addressing mode not using XPLINK, CSNPCA3X for
applications running in 31-bit addressing mode using XPLINK, CSNPCA64 for
64-bit addressing mode).

2. Locate the functions within that DLL, using the C_GetFunctionList function.

3. Call C_Initialize, which enables the application to call other functions in the API.

4. Determine the slots present, using the C_GetSlotList function. This function
returns a slot number for each existing token to which the application has
access.

5. To use an existing token, the application iterates through the slots using
C_GetTokenInfo to find the token wanted.

To create a new token, the application uses the C_WaitForSlotEvent function to
add a new slot containing an uninitialized token. The application then uses the
C_InitToken function to initialize the new token and save it in the TKDS.

Deleting z/OS PKCS #11 tokens
Because PKCS #11 tokens are typically physical hardware devices, the PKCS #11
specification provides no mechanism to delete tokens. However, for z/OS PKCS
#11 tokens, which are virtual, there must be a capability to delete tokens. An
application does this by calling the C_InitToken function with a special label value
$$DELETE-TOKEN$$ (assuming code page IBM1047), left justified and padded on the
right to 32 characters.

Tip: Use the constant DEL_TOK defined in csnpdefs.h.

You cannot delete the omnipresent token SYSTOK-SESSION-ONLY (created by
ICSF to provide PKCS #11 support even if no other token is available to an
application). If an application attempts to delete the omnipresent token, the
C_InitToken function will fail with a return value of
CKR_TOKEN_WRITE_PROTECTED.

Environment
Restriction: The calling program must be running as a Language-Environment-
enabled (LE-enabled) application in TCB mode only. SRB mode is not supported.

Guideline: To use PKCS #11 in SRB mode, you must call the PKCS #11 ICSF
callable services directly.

© Copyright IBM Corp. 2007, 2011 19

Cross memory considerations
On z/OS, an application can be running in either single address space mode, or in
cross memory mode. The PKCS #11 standard has no concept of cross memory
mode, so there is no predefined expected behavior for a PKCS #11 application
running in cross memory mode.

When running in cross memory mode, the unit of work is running with PRIMARY set
to an address space that differs from HOME. This PRIMARY space may be another
address space that is logically part of the overall application (for example, if the
application was designed to be cross memory aware) or it may be a daemon or
subsystem address space dedicated to some system service that the calling
application has invoked using a Program Call (PC). Either way, you should be
aware of the following z/OS PKCS #11 application behaviors and associated
guidelines.

v The C API invokes Language Environment (LE) services that are not supported
in cross memory mode.

Guideline: To use PKCS #11 in cross memory mode, you must call the PKCS
#11 ICSF callable services directly.

v Tokens, token objects, and session objects belonging to installation-defined
PKCS #11 tokens (but not to the omnipresent token) are protected by RACF
access control. Additionally, the ICSF callable services themselves may also be
protected by RACF access control. In both cases, the user ID that is used for the
access check is always associated with the unit of work. This is either the user
ID assigned to the HOME ASCB or the user ID assigned to the Task Control
Block (TCB) or System Request Block (SRB).

Guideline: If the PRIMARY address space function invoked by a PC uses PKCS
#11 services, the user ID associated with the caller’s unit of work must be
appropriately permitted to the CRYPTOZ or CSFSERV resource being checked.
If this is a system service, then all such callers must have access.

v FIPS140 compatibility mode behavior is also controlled by resources in the
CRYPTOZ Class.

Guideline: If the system is configured for FIPS140 compatibility mode and the
PRIMARY address space function invoked by a PC is expected to adhere to
FIPS 140-2 restrictions, the user ID associated with the caller’s unit of work
should not be permitted to the CRYPTOZ FIPSEXEMPT resource being checked.
If this is a system service, then all such callers should not to be given access.

v By definition, session objects (including those belonging to the omnipresent
token) are scoped to a single address space. For session objects belonging to
installation defined PKCS #11 tokens, the scoping is to the HOME address space
at the time of object creation, even if PRIMARY does not equal HOME. These
objects are accessible to all units of work belonging to the HOME address space
only, even if the PRIMARY address space function invoked by a PC is intended
to be the logical owner of the PKCS #11 object.

In contrast, session objects belonging to the omnipresent token are scoped to the
PRIMARY address space at the time of object creation and are addressable by
all units of work running with that address space set as PRIMARY. For session
objects created by system services invoked by a PC, such session objects would
not be addressable by the caller once returning from the service call.

Guideline: System services invoked by a PC should use the omnipresent token
instead of an installation defined PKCS #11 token when creating session objects
that are to be owned by the system service.

v For certain multipart PKCS #11 cryptographic operations, ICSF will save
session-state information across calls. This state information is scoped to the

20 z/OS V1R13 ICSF Writing PKCS #11 Applications

PRIMARY address space, similar to the scoping for omnipresent token objects.
Such state objects are only addressable to units of work running with that
address space set as PRIMARY.

Guideline: If you begin a multipart PKCS #11 cryptographic operation, you must
remain running in the same PRIMARY address space in order to continue the
operation.

Key types and mechanisms supported
ICSF supports the following PKCS #11 key types (CK_KEY_TYPE). All of these key
types are supported in software. Whether they are also supported in hardware will
depend on the limitations of your cryptographic hardware configuration.

v CKK_AES - key lengths 128, 192, and 256 bits

v CKK_BLOWFISH - key lengths 8 up to 448 bits (in increments of 8 bits)

v CKK_DES

v CKK_DES2

v CKK_DES3

v CKK_DH - key lengths 512 up to 2048 bits (in increments of 64 bits)

v CKK_DSA - key lengths 512 up to 2048 bit prime lengths (in increments of 64
bits)

v CKK_EC (CKK_ECDSA) - key lengths 160 up to 521 bits

v CKK_GENERIC_SECRET - key lengths 8 up to 2048 bits, unless further
restricted by the generation mechanism:

– CKM_DH_PKCS_DERIVE - key lengths 512 up to 2048 bits

– CKM_SSL3_MASTER_KEY_DERIVE - 384-bit key lengths

– CKM_SSL3_MASTER_KEY_DERIVE_DH - 384-bit key lengths

– CKM_SSL3_PRE_MASTER_KEY_GEN - 384-bit key lengths

– CKM_TLS_MASTER_KEY_DERIVE - 384-bit key lengths

– CKM_TLS_MASTER_KEY_DERIVE_DH - 384-bit key lengths

– CKM_TLS_PRE_MASTER_KEY_GEN - 384-bit key lengths

v CKK_RC4 - key lengths 8 up to 2048 bits

v CKK_RSA - key lengths 512 up to 4096 bits

The following table shows the mechanisms supported by different hardware
configurations. All the mechanisms are supported in software, and some may be
available in hardware. If the mechanism is available in hardware, ICSF will use the
hardware mechanism. If the mechanism is not available in hardware, ICSF will use
the software mechanism. The following table also shows the flags returned by the
C_GetMechanismInfo function in the CK_MECHANISM_INFO structure. Whether or
not the CKF_HW flag is returned in the CK_MECHANISM_INFO structure indicates
whether or not the mechanism is supported in the hardware.

Table 3. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO)

Type (CK_MECHANISM_TYPE) Size factor Flags

CKM_RSA_PKCS_KEY_PAIR_GEN Bits [CKF_HW] CKF_GENERATE_KEY_PAIR

CKM_DES_KEY_GEN not applicable [CKF_HW] CKF_GENERATE

CKM_DES2_KEY_GEN not applicable [CKF_HW] CKF_GENERATE

CKM_DES3_KEY_GEN not applicable [CKF_HW] CKF_GENERATE

Chapter 2. The C API 21

|

Table 3. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO) (continued)

Type (CK_MECHANISM_TYPE) Size factor Flags

CKM_RSA_PKCS6 Bits [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP CKF_SIGN
CKF_VERIFY CKF_SIGN_RECOVER
CKF_VERIFY_RECOVER

CKM_RSA_X_5096, 7 Bits [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_SIGN CKF_VERIFY
CKF_SIGN_RECOVER
CKF_VERIFY_RECOVER

CKM_MD2_RSA_PKCS6, 7 Bits CKF_SIGN CKF_VERIFY

CKM_MD5_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA1_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA224_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA256_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA384_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA512_RSA_PKCS6, 7 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_DES_ECB3 not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES_CBC not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES_CBC_PAD not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP

CKM_DES3_ECB3, 4 not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES3_CBC4 not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES3_CBC_PAD4 not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP

CKM_SHA_1 not applicable [CKF_HW] CKF_DIGEST

CKM_SHA224 not applicable [CKF_HW] CKF_DIGEST

CKM_SHA256 not applicable [CKF_HW] CKF_DIGEST

CKM_SHA384 not applicable [CKF_HW] CKF_DIGEST

CKM_SHA512 not applicable [CKF_HW] CKF_DIGEST

CKM_RIPEMD160 not applicable CKF_DIGEST

CKM_MD2 not applicable CKF_DIGEST

CKM_MD5 not applicable [CKF_HW] CKF_DIGEST

CKM_AES_KEY_GEN Bytes [CKF_HW] CKF_GENERATE

CKM_AES_ECB4 Bytes [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_AES_CBC4 Bytes [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_AES_CBC_PAD4 Bytes [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP

CKM_AES_GCM4 Bytes CKF_ENCRYPT CKF_DECRYPT

CKM_DSA_KEY_PAIR_GEN Bits CKF_GENERATE_KEY_PAIR

CKM_DH_PKCS_KEY_PAIR_GEN Bits CKF_GENERATE_KEY_PAIR

CKM_EC_KEY_PAIR_GEN Bits CKF_GENERATE_KEY_PAIR CKF_EC_F_P1

CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_DSA_PARAMETER_GEN Bits CKF_GENERATE

22 z/OS V1R13 ICSF Writing PKCS #11 Applications

Table 3. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO) (continued)

Type (CK_MECHANISM_TYPE) Size factor Flags

CKM_DH_PKCS_PARAMETER_GEN Bits CKF_GENERATE

CKM_BLOWFISH_KEY_GEN Bytes [CKF_HW] CKF_GENERATE

CKM_RC4_KEY_GEN Bits [CKF_HW] CKF_GENERATE

CKM_SSL3_PRE_MASTER_KEY_GEN Bytes [CKF_HW] CKF_GENERATE

CKM_TLS_PRE_MASTER_KEY_GEN Bytes [CKF_HW] CKF_GENERATE

CKM_GENERIC_SECRET_KEY_GEN Bits [CKF_HW] CKF_GENERATE

CKM_BLOWFISH_CBC5 Bytes CKF_ENCRYPT CKF_DECRYPT

CKM_RC45 Bits CKF_ENCRYPT CKF_DECRYPT

CKM_DSA_SHA1 Bits CKF_SIGN CKF_VERIFY

CKM_DSA Bits CKF_SIGN CKF_VERIFY

CKM_ECDSA_SHA1 Bits CKF_SIGN CKF_VERIFY CKF_EC_F_P1

CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_ECDSA Bits CKF_SIGN CKF_VERIFY CKF_EC_F_P1

CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_MD5_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA_1_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA224_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA256_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA384_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SHA512_HMAC not applicable CKF_SIGN CKF_VERIFY

CKM_SSL3_MD5_MAC Bits CKF_SIGN CKF_VERIFY

CKM_SSL3_SHA1_MAC Bits CKF_SIGN CKF_VERIFY

CKM_DH_PKCS_DERIVE Bits CKF_DERIVE

CKM_ECDH1_DERIVE Bits CKF_DERIVE CKF_EC_F_P1

CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_SSL3_MASTER_KEY_DERIVE Bytes CKF_DERIVE

CKM_SSL3_MASTER_KEY_DERIVE_DH Bytes CKF_DERIVE

CKM_SSL3_KEY_AND_MAC_DERIVE not applicable CKF_DERIVE

CKM_TLS_MASTER_KEY_DERIVE Bytes CKF_DERIVE

CKM_TLS_MASTER_KEY_DERIVE_DH Bytes CKF_DERIVE

CKM_TLS_KEY_AND_MAC_DERIVE not applicable CKF_DERIVE

CKM_TLS_PRF not applicable CKF_DERIVE

Footnotes for table Table 3 on page 21.

1 The PKCS11 standard designates two ways of implementing Elliptic Curve
Cryptography, nicknamed Fp and F2

m. z/OS PKCS11 supports the Fp variety only.

2 ANSI X9.62 has the following ASN.1 definition for Elliptic Curve domain
parameters:

Chapter 2. The C API 23

Parameters ::= CHOICE {
ecParameters ECParameters,
namedCurve OBJECT IDENTIFIER,
implicitlyCA NULL }

z/OS PKCS11 supports the specification of CKA_EC_PARAMS attribute using the
namedCurved CHOICE. The following NIST-recommended named curves are
supported:

v secp192r1 – { 1 2 840 10045 3 1 1 }

v secp224r1 – { 1 3 132 0 33 }

v secp256r1 – { 1 2 840 10045 3 1 7 }

v secp384r1 – { 1 3 132 0 34 }

v secp521r1 – { 1 3 132 0 35 }

The following Brainpool-defined named curves are supported:

v brainpoolP160r1 – { 1 3 36 3 3 2 8 1 1 1 }

v brainpoolP192r1 – { 1 3 36 3 3 2 8 1 1 3 }

v brainpoolP224r1 – { 1 3 36 3 3 2 8 1 1 5 }

v brainpoolP256r1 – { 1 3 36 3 3 2 8 1 1 7 }

v brainpoolP320r1 – { 1 3 36 3 3 2 8 1 1 9 }

v brainpoolP384r1 – { 1 3 36 3 3 2 8 1 1 11 }

v brainpoolP512r1 – { 1 3 36 3 3 2 8 1 1 13 }

In addition, z/OS PKCS11 has limited support for the ecParameters CHOICE. When
specified, the DER encoding must contain the optional cofactor field and must not
contain the optional Curve.seed field. Also, calls to C_GetAttributeValue to retrieve
the CKA_EC_PARAMS attribute will always return the value in the namedCurve
form regardless of how the attribute was specified when the object was created.
Due to these limitations, the CKF_EC_ECPARAMETERS flag is not turned on for
the applicable mechanisms.

3 Mechanism not present on a CCF system.

4 Mechanism not present on a system that is export controlled.

5 Mechanism limited to 56-bit on a system that is export controlled.

6 In general, z/OS PKCS #11 expects RSA private keys to be in Chinese Remainder
Theorem (CRT) format. However, for Decrypt, Sign, or UnwrapKey (z890, z990 or
higher only) where one of the following is true, the shorter Modulus Exponent (ME)
is permitted:

v There is an accelerator present and the key is less than or equal to 2048 bits in
length.

v There is a coprocessor present and the key is less than or equal to 1024 bits in
length and FIPS restrictions don’t apply.

7 RSA public or private keys that have a public exponent greater than 8 bytes in
length, or a modulus that has an odd number of bits, can only be used when an
accelerator is present or a coprocessor is present and FIPS restrictions don’t apply.
If only an accelerator is present, the key must be less than or equal to 2048 bits in
length.

24 z/OS V1R13 ICSF Writing PKCS #11 Applications

The following table lists the mechanisms supported by specific cryptographic
hardware. When a particular mechanism is not available in hardware, ICSF will use
the software implementation of the mechanism.

Table 4. Mechanisms supported by specific cryptographic hardware

Machine type and
cryptographic hardware Mechanisms supported Notes

z900 - CCF CKM_DES_KEY_GEN
CKM_DES2_KEY_GEN
CKM_DES3_KEY_GEN
CKM_RSA_PKCS
CKM_RSA_X_509
CKM_MD5_RSA_PKCS
CKM_SHA1_RSA_PKCS
CKM_DES_CBC
CKM_DES_CBC_PAD
CKM_DES3_CBC
CKM_DES3_CBC_PAD
CKM_SHA_1
CKM_BLOWFISH_KEY_GEN
CKM_RC4_KEY_GEN
CKM_AES_KEY_GEN
CKM_SSL3_PRE_MASTER_KEY_GEN
CKM_TLS_PRE_MASTER_KEY_GEN
CKM_GENERIC_SECRET_KEY_GEN

This is the base set.

RSA private key operations limited
to 1024 bits in length (maximum)
and no key pair generation
capability.

z900 - PCICC Base set plus:
CKM_RSA_PKCS_KEY_PAIR_GEN

RSA private key operations limited
to 2048 bits in length (maximum).

z890, z990 - PCIXCC Base set plus:
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_DES_ECB
CKM_DES3_ECB

RSA private key operations limited
to 2048 bits in length (maximum).

z890, z990 - CEX2C Base set plus:
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_DES_ECB
CKM_DES3_ECB

RSA private key operations limited
to 2048 bits in length (maximum).

z9® - CEX2C Base set plus:
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_DES_ECB
CKM_DES3_ECB
CKM_SHA224_RSA_PKCS
CKM_SHA256_RSA_PKCS
CKM_SHA224
CKM_SHA256
CKM_AES_CBC
CKM_AES_CBC_PAD
CKM_AES_ECB

AES key operations limited to 128
bits in length (maximum).

RSA private key operations limited
to 4096 bits in length (maximum).

z10 - CEX2C or CEX3C z9 CEX2C set plus:
CKM_SHA384_RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM_SHA384
CKM_SHA512

AES key operations limited to 256
bits in length (maximum).

RSA private key operations limited
to 4096 bits in length (maximum).

z196 - CEX3C z9 CEX2C set plus:
CKM_SHA384_RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM_SHA384
CKM_SHA512

AES key operations limited to 256
bits in length (maximum).

RSA private key operations limited
to 4096 bits in length (maximum).

Chapter 2. The C API 25

The following table lists the algorithms and uses (by mechanism) that are not
allowed when operating in compliance with FIPS 140-2. For more information about
how the z/OS PKCS #11 services can be configured to operate in compliance with
the FIPS 140-2 standard, refer to “Operating in compliance with FIPS 140-2” on
page 11.

Table 5. Restricted algorithms and uses when running in compliance with FIPS 140-2

Algorithm Mechanisms Usage disallowed

RIPEMD CKM_RIPEMD160 All

MD2 CKM_MD2, CKM_MD2_RSA_PKCS All

MD5 CKM_MD5, CKM_MD5_RSA_PKCS,
CKM_MD5_HMAC

All

SSL3 CKM_SSL3_MD5_MAC,
CKM_SSL3_SHA1_MAC,
CKM_SSL3_MASTER_KEY_DERIVE,
CKM_SSL3_MASTER_KEY_DERIVE_DH,
CKM_SSL3_KEY_AND_MAC_DERIVE

All

TLS CKM_TLS_MASTER_KEY_DERIVE,
CKM_TLS_MASTER_KEY_DERIVE_DH,
CKM_TLS_KEY_AND_MAC_DERIVE

Base key sizes less than 10 bytes

Diffie Hellman CKM_DH_PKCS_DERIVE Prime size less than 1024 bits

CKM_DH_PKCS_PARAMETER_GEN Prime sizes other than 1024 or
2048 bits

DSA CKM_DSA_SHA1, CKM_DSA Prime sizes less than 1024 bits

CKM_DSA_PARAMETER_GEN,
CKM_DSA_KEY_PAIR_GEN or Sign

Combinations other than the
following:

v Prime size = 1024 bits,
subprime size = 160 bits

v Prime size = 2048 bits,
subprime size = 224 bits, or 256
bits

Single DES CKM_DES_ECB, CKM_DES_CBC,
CKM_DES_CBC_PAD

All

Triple DES CKM_DES3_ECB, CKM_DES3_CBC,
CKM_DES3_CBC_PAD

Two key Triple DES

Blowfish CKM_BLOWFISH_KEY_GEN,
CKM_BLOWFISH_CBC

All

RC4 CKM_RC4 All

RSA CKM_RSA_X_509 All

CKM_RSA_PKCS Key sizes less than 1024 bits

CKM_RSA_PKCS_KEY_PAIR_GEN or Sign
without an active accelerator

Key sizes that are less than 1024
bits or not a multiple of 256 bits or
public key exponents less than
0x010001

ECC CKM_ECDSA, CKM_ECDSA_SHA1,
CKM_ECDH1_DERIVE

Brainpool curves

HMAC CKM_SHA_1, CKM_SHA224, CKM_SHA256,
CKM_SHA384, CKM_SHA512

Base key sizes less than one half
the output size

26 z/OS V1R13 ICSF Writing PKCS #11 Applications

|||

||
|

|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

Table 5. Restricted algorithms and uses when running in compliance with FIPS 140-2 (continued)

Algorithm Mechanisms Usage disallowed

AES GCM CKM_AES_GCM GCM encryption or GMAC
generation with externally
generated initialization vectors.
Initialization vector lengths other
than 12 bytes. Tag byte sizes 4
and 8

Objects and attributes supported
ICSF supports the following PKCS #11 object types (CK_OBJECT_CLASS):

v CKO_DATA

v CKO_CERTIFICATE - CKC_X_509 only

v CKO_DOMAIN_PARAMETERS - CKK_DSA and CKK_DH only

v CKO_PUBLIC_KEY - CKK_RSA, CKK_EC (CKK_ECDSA), CKK_DSA, and
CKK_DH only

v CKO_PRIVATE_KEY - CKK_RSA, CKK_EC (CKK_ECDSA), CKK_DSA, and
CKK_DH only

v CKO_SECRET_KEY - CKK_DES, CKK_DES2, CKK_DES3, CKK_AES,
CKK_BLOWFISH, and CKK_RC4, CKK_GENERIC_SECRET only

The footnotes described in Table 6 are taken from the PKCS #11 specification and
apply to the attribute tables that follow.

Table 6. Common footnotes for object attribute tables

Footnote
number Footnote meaning

1 Must be specified when object is created with C_CreateObject.

2 Must not be specified when object is created with C_CreateObject.

3 Must be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

4 Must not be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

5 Must be specified when object is unwrapped with C_UnwrapKey.

6 Must not be specified when object is unwrapped with C_UnwrapKey.

7 Cannot be revealed if object has its CKA_SENSITIVE attribute set to TRUE or its
CKA_EXTRACTABLE attribute set to FALSE.

8 May be modified after object is created with a C_SetAttributeValue call, or in the process of copying
object with a C_CopyObject call. However, it is possible that a particular token may not permit
modification of the attribute, or may not permit modification of the attribute during the course of a
C_CopyObject call.

9 Default value is token-specific, and may depend on the values of other attributes.

10 Can only be set to TRUE by the SO user.

11 May be changed during a C_CopyObject call but not on a C_SetAttributeValue call

Chapter 2. The C API 27

Table 7. Data object attributes that ICSF supports. For the meanings of the footnotes, see Table 6 on page 27.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the object
is created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened
to the TKDS if TRUE.

An application can specify the value when the object
is created (or generated) only.

CKA_PRIVATE11 CK_BBOOL Default value on create is TRUE.

An application can specify the value when the object
is created (or generated) only.

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the object
is created (or generated) only.

CKA_LABEL Printable EBCDIC string Application-specific nickname. Limited to 32
characters. Default is empty. The string is assumed
to come from the IBM1047 code page.

An application can set or change the value at any
time.

CKA_ID Byte array Key or other identifier. Default is empty.

An application can set or change the value at any
time.

CKA_VALUE Byte array Any value. Default is empty.

An application can set or change the value at any
time.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come
from the IBM1047 code page.

An application can set or change the value at any
time.

CKA_OBJECT_ID Byte array DER-encoded OID. Default is empty.

An application can set or change the value at any
time.

Table 8. X.509 certificate object attributes that ICSF supports. For the meanings of the footnotes, see Table 6 on
page 27.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the object
is created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened
to the TKDS if TRUE.

An application can specify the value when the object
is created (or generated) only.

28 z/OS V1R13 ICSF Writing PKCS #11 Applications

Table 8. X.509 certificate object attributes that ICSF supports (continued). For the meanings of the footnotes, see
Table 6 on page 27.

Attribute Data type Notes

CKA_PRIVATE11 CK_BBOOL Default value on create is FALSE.

An application can specify the value when the object
is created (or generated) only.

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the object
is created (or generated) only.

CKA_LABEL Printable EBCDIC string Application-specific nickname. Limited to 32
characters. Default is empty. The string is assumed
to come from the IBM1047 code page.

An application can set or change the value at any
time.

CKA_CERTIFICATE_TYPE CK_CERTIFICATE_TYPE Always CKC_X_509.

An application can specify the value when the object
is created (or generated) only.

CKA_TRUSTED CK_BBOOL Always set to TRUE.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_SUBJECT Byte array DER-encoding as found in certificate. If not
specified, ICSF sets it from the certificate. If
specified, ICSF enforces that it matches the subject
in the certificate.

An application can specify the value when the object
is created (or generated) only.

CKA_ID Byte array Key identifier. Default is empty.

An application can set or change the value at any
time.

CKA_ISSUER Byte array DER-encoding as found in certificate. If not
specified, ICSF sets from the certificate. If specified,
ICSF enforces that it matches the issuer in the
certificate

An application can specify the value when the object
is created (or generated) only.

CKA_SERIAL_NUMBER Byte array DER-encoding as found in certificate. If not
specified, ICSF sets from the certificate. If specified,
ICSF enforces that it matches the serial number in
the certificate.

An application can specify the value when the object
is created (or generated) only.

CKA_VALUE Byte array This is the DER-encoding of the certificate.
(Required.)

An application can specify the value when the object
is created (or generated) only.

Chapter 2. The C API 29

Table 8. X.509 certificate object attributes that ICSF supports (continued). For the meanings of the footnotes, see
Table 6 on page 27.

Attribute Data type Notes

CKA_CERTIFICATE_CATEGORY CK_ULONG Categorization of the certificate:
1 Token user
2 Certificate authority
3 Other entity
If not specified, ICSF sets it to 2 if the certificate has
the BasicConstraints CA flag on. Otherwise it is not
set.
Note: If specified (or defaulted) to 2, the certificate
is considered a CA certificate. The user must have
appropriate authority.

An application can set or change the value at any
time.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come
from the IBM1047 code page.

An application can specify the value when the object
is created (or generated) only.

CKA_IBM_DEFAULT (vendor
specific attribute - 0x80000002)

CK_BBOOL Default flag. Default is FALSE.

An application can set or change the value at any
time.

Table 9. Secret key object attributes that ICSF supports. For the meanings of the footnotes, see Table 6 on page 27.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the object
is created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened
to the TKDS if TRUE.

An application can specify the value when the object
is created (or generated) only.

CKA_PRIVATE11 CK_BBOOL Default value on create is TRUE.

An application can specify the value when the object
is created (or generated) only.

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the object
is created (or generated) only.

CKA_LABEL Printable EBCDIC string Application-specific nickname. Limited to 32
characters. Default is empty. The string is assumed
to come from the IBM1047 code page.

An application can set or change the value at any
time.

CKA_ID Byte array Default is empty.

An application can set or change the value at any
time.

30 z/OS V1R13 ICSF Writing PKCS #11 Applications

Table 9. Secret key object attributes that ICSF supports (continued). For the meanings of the footnotes, see Table 6
on page 27.

Attribute Data type Notes

CKA_KEY_TYPE1, 5 CK_KEY_TYPE Type of key: CKK_DES, CKK_DES2, CKK_DES3,
CKK_BLOWFISH, CKK_RC4,
CKK_GENERIC_SECRET, or CKK_AES.

An application can specify the value when the object
is created (or generated) only.

CKA_START_DATE8 CK_DATE Start date for the key. Default is empty.

An application can set or change the value at any
time.

CKA_END_DATE8 CK_DATE End date for the key. Default is empty.

An application can set or change the value at any
time.

CKA_DERIVE8 CK_BBOOL TRUE if key supports key derivation (other keys can
be derived from this one). Default is TRUE.

An application can set or change the value at any
time.

CKA_LOCAL2, 4, 6 CK_BBOOL TRUE only if key was generated locally.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_GEN_MECHANISM2, 4, 6 CK_MECHANISM_TYPE Identifier of the mechanism used to generate the
key. Always CK_UNAVAILABLE_INFORMATION.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_ENCRYPT8 CK_BBOOL TRUE if key supports encryption9. Default is TRUE.

An application can set or change the value at any
time.

CKA_VERIFY8 CK_BBOOL TRUE if key supports verification where the
signature is an appendix to the data. Default is
TRUE.

An application can set or change the value at any
time.

CKA_WRAP8 CK_BBOOL TRUE if key supports wrapping (can be used to wrap
other keys).9 Default is TRUE.

An application can set or change the value at any
time.

CKA_DECRYPT8 CK_BBOOL TRUE if key supports decryption.9 Default is TRUE.

An application can set or change the value at any
time.

CKA_SIGN8 CK_BBOOL TRUE if key supports signatures where the signature
is an appendix to the data.9 Default is TRUE.

An application can set or change the value at any
time.

Chapter 2. The C API 31

Table 9. Secret key object attributes that ICSF supports (continued). For the meanings of the footnotes, see Table 6
on page 27.

Attribute Data type Notes

CKA_UNWRAP8 CK_BBOOL TRUE if key supports unwrapping (can be used to
unwrap other keys)9. Default is TRUE.

An application can set or change the value at any
time.

CKA_EXTRACTABLE8 CK_BBOOL TRUE if key is extractable. Caller can change from
TRUE to FALSE only. Default is TRUE.

An application can set or change the value, as per
PKCS #11 restrictions.

CKA_SENSITIVE8 CK_BBOOL TRUE if key is sensitive. Caller can change from
FALSE to TRUE only. Default is FALSE.

An application can set or change the value, as per
PKCS #11 restrictions.

CKA_ALWAYS_SENSITIVE2, 4, 6 CK_BBOOL TRUE if key has always had the CKA_SENSITIVE
attribute set to TRUE.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_NEVER_EXTRACTABLE2, 4,

6

CK_BBOOL TRUE if key has never had the
CKA_EXTRACTABLE attribute set to TRUE.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_VALUE1, 4, 6, 7 Byte array The key.

Sensitive key part.

An application can specify the value when the object
is created (or generated) only.

CKA_VALUE_LEN2, 3 CK_ULONG Length of the key in bytes (AES, Blowfish, RC4, and
Generic secret keys only).

An application can specify the value when the object
is generated only.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come
from the IBM1047 code page.

An application can specify the value when the object
is created (or generated) only.

CKA_IBM_FIPS140 (vendor
specific attribute 0x80000005)

CK_BBOOL TRUE if the key must only be used in a FIPS 140-2
compliant fashion. The default value is FALSE.

An application can specify the value when the object
is created (or generated) only.

32 z/OS V1R13 ICSF Writing PKCS #11 Applications

Table 10. Public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 6 on page
27.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the object
is created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened
to the TKDS if TRUE.

An application can specify the value when the object
is created (or generated) only.

CKA_PRIVATE11 CK_BBOOL Default value on create is FALSE.

An application can specify the value when the object
is created (or generated) only.

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the object
is created (or generated) only.

CKA_LABEL Printable EBCDIC string Application-specific nickname. Limited to 32
characters. Default is empty. The string is assumed
to come from the IBM1047 code page.

An application can set or change the value at any
time.

CKA_TRUSTED CK_BBOOL Always set to TRUE.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_SUBJECT Byte array DER-encoding. Default empty.

An application can set or change the value at any
time.

CKA_ID Byte array Key identifier. Default empty.

An application can set or change the value at any
time.

CKA_KEY_TYPE1, 5 CK_KEY_TYPE Type of key. CKK_RSA, CKK_EC, CKK_DSA, and
CKK_DH only.

An application can specify the value when the object
is created (or generated) only.

CKA_START_DATE8 CK_DATE Start date for the key. Default empty.

An application can set or change the value at any
time.

CKA_END_DATE8 CK_DATE End date for the key. Default empty.

An application can set or change the value at any
time.

CKA_DERIVE8 CK_BBOOL TRUE if key supports key derivation (if other keys
can be derived from this one). Default is TRUE.

An application can set or change the value at any
time.

Chapter 2. The C API 33

Table 10. Public key object attributes that ICSF supports (continued). For the meanings of the footnotes, see Table 6
on page 27.

Attribute Data type Notes

CKA_LOCAL2, 4, 6 CK_BBOOL TRUE only if key was generated locally.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_KEY_GEN_MECHANISM2,

4, 6

CK_MECHANISM_TYPE Identifier of the mechanism used to generate the key.
Always CK_UNAVAILABLE_INFORMATION.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_ENCRYPT8 CK_BBOOL TRUE if key supports encryption.9 Default is TRUE.

An application can set or change the value at any
time.

CKA_VERIFY8 CK_BBOOL TRUE if key supports verification where the signature
is an appendix to the data. Default is TRUE.

An application can set or change the value at any
time.

CKA_VERIFY_RECOVER8 CK_BBOOL TRUE if key supports verification where the data is
recovered from the signature.9 Default is TRUE.

An application can set or change the value at any
time.

CKA_WRAP8 CK_BBOOL TRUE if key supports wrapping (can be used to wrap
other keys).9 Default is TRUE.

An application can set or change the value at any
time.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come from
the IBM1047 code page.

An application can specify the value when the object
is created (or generated) only.

CKA_IBM_FIPS140 (vendor
specific attribute 0x80000005)

CK_BBOOL TRUE if the key must only be used in a FIPS 140-2
compliant fashion. The default value is FALSE.

An application can specify the value when the object
is created (or generated) only.

Table 11. RSA public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 6 on
page 27.

Attribute Data type Notes

CKA_MODULUS1, 4 Big integer Modulus n

An application can specify the value when the object
is created (or generated) only.

CKA_MODULUS_BITS2, 3 CK_ULONG Length in bits of modulus n

An application can specify the value when the object
is created (or generated) only.

34 z/OS V1R13 ICSF Writing PKCS #11 Applications

Table 11. RSA public key object attributes that ICSF supports (continued). For the meanings of the footnotes, see
Table 6 on page 27.

Attribute Data type Notes

CKA_PUBLIC_EXPONENT1 Big integer Public exponent e

An application can specify the value when the object
is created (or generated) only.

Table 12. DSA public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 6 on
page 27.

Attribute Data type Notes

CKA_PRIME1,3 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_SUBPRIME1,3 Big integer Subprime q (160 bits for p <= 1024 bits, 224 bits or
256 bits for p > 1024 bits)

CKA_BASE1,3 Big integer Base g

CKA_VALUE1,4 Big integer Public value y

Table 13. Diffie-Hellman public key object attributes that ICSF supports. For the meanings of the footnotes, see
Table 6 on page 27.

Attribute Data type Notes

CKA_PRIME1,3 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_BASE1,3 Big integer Base g

CKA_VALUE1,4 Big integer Public value y

Table 14. Elliptic Curve public key object attributes that ICSF supports. For the meanings of the footnotes, see
Table 6 on page 27.

Attribute Data type Notes

CKA_EC_PARAMS1,3

(CKA_ECDSA_PARAMS)

Byte Array DER-encoding of an ANSI X9.62 Parameters value

CKA_EC_POINT1,4 Byte Array DER-encoding of an ANSI X9.62 ECPoint value Q

Table 15. Private key object attributes that ICSF supports. For the meanings of the footnotes, see Table 6 on page
27.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the object
is created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened
to the TKDS if TRUE.

An application can specify the value when the object
is created (or generated) only.

CKA_PRIVATE11 CK_BBOOL Default value on create is TRUE.

An application can specify the value when the object
is created (or generated) only.

Chapter 2. The C API 35

|

|||
|

Table 15. Private key object attributes that ICSF supports (continued). For the meanings of the footnotes, see
Table 6 on page 27.

Attribute Data type Notes

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the object
is created (or generated) only.

CKA_LABEL Printable EBCDIC string Application-specific nickname. Limited to 32
characters. Default is empty. The string is assumed
to come from the IBM1047 code page.

An application can set or change the value at any
time.

CKA_SUBJECT Byte array DER-encoding.

An application can set or change the value at any
time.

CKA_ID Byte array Default is empty.

An application can set or change the value at any
time.

CKA_KEY_TYPE1, 5 CK_KEY_TYPE Type of key. CKK_EC, CKK_RSA, CKK_DSA, and
CKK_DH only.

An application can specify the value when the object
is created (or generated) only.

CKA_START_DATE8 CK_DATE Start date for the key. Default empty.

An application can set or change the value at any
time.

CKA_END_DATE8 CK_DATE End date for the key. Default empty.

An application can set or change the value at any
time.

CKA_DERIVE8 CK_BBOOL TRUE if key supports key derivation (if other keys
can be derived from this one). Default is TRUE.

An application can set or change the value at any
time.

CKA_LOCAL2, 4 ,6 CK_BBOOL TRUE only if key was generated locally.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_KEY_GEN_ MECHANISM2,

4, 6

CK_MECHANISM_TYPE Identifier of the mechanism used to generate the key
material. Always
CK_UNAVAILABLE_INFORMATION.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_DECRYPT8 CK_BBOOL TRUE if key supports decryption.9 Default is TRUE.

An application can set or change the value at any
time.

36 z/OS V1R13 ICSF Writing PKCS #11 Applications

Table 15. Private key object attributes that ICSF supports (continued). For the meanings of the footnotes, see
Table 6 on page 27.

Attribute Data type Notes

CKA_SIGN8 CK_BBOOL TRUE if key supports signatures where the signature
is an appendix to the data.9 Default is TRUE.

An application can set or change the value at any
time.

CKA_SIGN_RECOVER8 CK_BBOOL TRUE if key supports signatures where the data can
be recovered from the signature.9 Default is TRUE.

An application can set or change the value at any
time.

CKA_UNWRAP8 CK_BBOOL TRUE if key supports unwrapping (can be used to
unwrap other keys).9 Default is TRUE.

An application can set or change the value at any
time.

CKA_EXTRACTABLE8 CK_BBOOL TRUE if key is extractable. Default is TRUE.

An application can set or change the value, as per
PKCS #11 restrictions. Caller can change from
TRUE to FALSE only.

CKA_SENSITIVE8 CK_BBOOL TRUE if key is sensitive. Default is FALSE.

An application can set or change the value, as per
PKCS #11 restrictions. Caller can change from
FALSE to TRUE only.

CKA_ALWAYS_SENSITIVE2,4, 6 CK_BBOOL TRUE if key has always had the CKA_SENSITIVE
attribute set to TRUE.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_NEVER_EXTRACTABLE2,4,

6

CK_BBOOL TRUE if key has never had the
CKA_EXTRACTABLE attribute set to TRUE.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come
from the IBM1047 code page.

An application can specify the value when the object
is created (or generated) only.

CKA_IBM_FIPS140 (vendor
specific attribute 0x80000005)

CK_BBOOL TRUE if the key must only be used in a FIPS 140-2
compliant fashion. The default value is FALSE.

An application can specify the value when the object
is created (or generated) only.

Chapter 2. The C API 37

Table 16. RSA private key object attributes that ICSF supports. For the meanings of the footnotes, see Table 6 on
page 27.

Attribute Data type Notes

CKA_MODULUS1, 4, 6 Big integer Modulus n

An application can specify the value when the object
is created (or generated) only.

CKA_PUBLIC_EXPONENT4, 6 Big integer Public exponent e

An application can specify the value when the object
is created (or generated) only.

CKA_PRIVATE_EXPONENT1, 4,6 ,7 Big integer Private exponent d

Sensitive key part.

An application can specify the value when the object
is created (or generated) only.

CKA_PRIME_14, 6, 7 Big integer Prime p

Sensitive key part.

An application can specify the value when the object
is created (or generated) only.

CKA_PRIME_24, 6, 7 Big integer Prime q

Sensitive key part.

An application can specify the value when the object
is created (or generated) only.

CKA_EXPONENT_14, 6, 7 Big integer Private exponent d modulo p-1

Sensitive key part.

An application can specify the value when the object
is created (or generated) only.

CKA_EXPONENT_24, 6, 7 Big integer Private exponent d modulo q-1

Sensitive key part.

An application can specify the value when the object
is created (or generated) only.

CKA_COEFFICIENT4, 6, 7 Big integer CRT coefficient q-1 mod p

Sensitive key part.

An application can specify the value when the object
is created (or generated) only.

Table 17. DSA private key object attributes that ICSF supports. For the meanings of the footnotes, see Table 6 on
page 27.

Attribute Data type Notes

CKA_PRIME1,4,6 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_SUBPRIME1,4,6 Big integer Subprime q (160 bits for p <= 1024 bits, 224 bits or
256 bits for p > 1024 bits)

CKA_BASE1,4,6 Big integer Base g

CKA_VALUE1,4,6,7 Big integer Private value x

38 z/OS V1R13 ICSF Writing PKCS #11 Applications

|

|||
|

Table 18. Diffie-Hellman private key object attributes that ICSF supports. For the meanings of the footnotes, see
Table 6 on page 27.

Attribute Data type Notes

CKA_PRIME1,4,6 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_BASE1,4,6 Big integer Base g

CKA_VALUE1,4,6,7 Big integer Private value x

CKA_VALUE_BITS2,6 CK_ULONG Length in bits of private value x. For non-FIPS or
when prime bit size = 1024, the default is 160. For
FIPS prime bit size = 2048, the default is 256

Table 19. Elliptic Curve private key object attributes that ICSF supports. For the meanings of the footnotes, see
Table 6 on page 27.

Attribute Data type Notes

CKA_EC_PARAMS1,4,6

(CKA_ECDSA_PARAMS)

Byte Array DER-encoding of an ANSI X9.62 Parameters value

CKA_VALUE1,4,6,7 Big integer ANSI X9.62 private value d

Table 20. Domain parameter object attributes that ICSF supports. For the meanings of the footnotes, see Table 6 on
page 27.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the object
is created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened
to the TKDS if TRUE.

CKA_PRIVATE11 CK_BBOOL Default value on create is FALSE

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE

CKA_LABEL Printable EBCDIC string Application specific nickname. Limit to 32 chars.
Default is empty. The string is assumed to come
from the IBM1047 code page.

CKA_KEY_TYPE1 CK_KEY_TYPE Type of key the domain parameters can be used to
generate. CKK_DSA and CKK_DH only in this
release

CKA_LOCAL2,4 CK_BBOOL TRUE only if the parameters were generated locally

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come
from the IBM1047 code page.

Table 21. DSA domain parameter object attributes that ICSF supports. For the meanings of the footnotes, see
Table 6 on page 27.

Attribute Data type Notes

CKA_PRIME1,4 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_SUBPRIME1,4 Big integer Subprime q (160 bits for p <= 1024 bits, 224 bits or
256 bits for p > 1024 bits)

CKA_BASE1,4 Big integer Base g

Chapter 2. The C API 39

|||
|
|

|

|||
|

Table 21. DSA domain parameter object attributes that ICSF supports (continued). For the meanings of the
footnotes, see Table 6 on page 27.

Attribute Data type Notes

CKA_PRIME_BITS2,3 CK_ULONG Length of the prime value

Table 22. Diffie-Hellman domain parameter object attributes that ICSF supports. For the meanings of the footnotes,
see Table 6 on page 27.

Attribute Data type Notes

CKA_PRIME1,4 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_BASE1,4 Big integer Base g

CKA_PRIME_BITS2,3 CK_ULONG Length of the prime value

Library, slot, and token information
PKCS #11 maintains information about the library code, slots, and tokens, which
can be set and queried by calling the library functions. For z/OS this information is
as follows:

CK_INFO - Returned by C_GetInfo. not modifiable by applications.

v cryptokiVersion - 2.20

v manufacturerID - “IBM Corp. ”

v libraryDescription - “z/OS PKCS11 library ”

v libraryVersion - 7.70

CK_SLOT_INFO - Returned by C_GetSlotInfo. not modifiable by applications

v slotDescription - “z/OS PKCS11 - virtual smart card ”

v manufacturerID - “IBM Corp. ”

v flags - for any slot returned by C_GetSlotList the following flags are set:
– CKF_TOKEN_PRESENT=ON
– CKF_REMOVABLE_DEVICE=ON
– CKF_HW_SLOT=OFF

v hardwareVersion - 7.70

v firmwareVersion - 7.70

CK_TOKEN_INFO - Set by C_InitToken . Returned by C_GetTokenInfo

v label - As specified

v manufacturerID - “z/OS PKCS11 API ” (Might be set to other
values if the token was initialized outside of the C API.)

v model - “HCR7770 ” (coincides with the release that the token was
created) (Might be set to other values if the token was initialized outside of the C
API.)

v serialNumber - “0 ” (Might be set to other values if the token was
initialized outside of the C API.)

v flags - the following flags are set ON for any initialized token. All others are OFF:

– CKF_RNG

– CKF_PROTECTED_AUTHENTICATION_PATH

– CKF_TOKEN_INITIALIZED

– CKF_USER_PIN_INITIALIZED

40 z/OS V1R13 ICSF Writing PKCS #11 Applications

v ulMaxSessionCount - CK_UNAVAILABLE_INFORMATION

v ulSessionCount - CK_UNAVAILABLE_INFORMATION

v ulMaxRwSessionCount - CK_UNAVAILABLE_INFORMATION

v ulRwSessionCount - CK_UNAVAILABLE_INFORMATION

v ulMaxPinLen - CK_UNAVAILABLE_INFORMATION

v ulMinPinLen - 0

v ulTotalPublicMemory - CK_UNAVAILABLE_INFORMATION

v ulFreePublicMemory - CK_UNAVAILABLE_INFORMATION

v ulTotalPrivateMemory - CK_UNAVAILABLE_INFORMATION

v ulFreePrivateMemory - CK_UNAVAILABLE_INFORMATION

v hardwareVersion - 7.70

v firmwareVersion - 7.70

v utcTime - GMT date and time that the token was last updated

CK_SESSION_INFO - Returned by C_GetSessionInfo

v slotId - The slot in question

v state - CK_UNAVAILABLE_INFORMATION

v flags - As defined by the PKCS #11 specification

v ulDeviceError - A mapping of the last failing ICSF return and reason code values
related to this session. For more information see “Function return codes” on page
47.

Functions supported
ICSF supports a subset of the standard PKCS #11 functions, and several
non-standard functions.

Standard functions supported
Table 23 lists the standard PKCS #11 functions that ICSF supports. Any function not
listed is not supported and returns the CKR_FUNCTION_NOT_SUPPORTED return
code.

Table 23. Standard PKCS #11 functions that ICSF supports

Function Usage notes

General purpose functions

C_Initialize() v The library always uses OS locking for thread
serialization. Therefore, if C_Initialize is called with the
CreateMutex, DestroyMutex, LockMutex, and
UnlockMutex function pointer arguments set and the
CKF_OS_LOCKING_OK flag is not set, C_Initialize fails
and returns the value CKR_CANT_LOCK.

v When C_Initialize is called, the application-specific set of
(virtual) slot IDs is allocated, one for each preexisting
token that the application is authorized to use. (See the
descriptions of C_GetSlotList and C_WaitForSlotEvent for
information on how this set can increase in size.) The one
exception to this occurs when C_Initialize is called by a
child process after fork. If the PKCS #11 environment is
inherited by the child process, the slot list and token state
is not refreshed.

Chapter 2. The C API 41

Table 23. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_Finalize() dlclose() cannot be used as an implicit C_Finalize(). If an
application uses dlclose() without calling C_Finalize(), and
reinitializes PKCS #11, a subsequent call to C_Initialize() will
result in error CKR_FUNCTION_FAILED being returned.

C_GetInfo()

C_GetFunctionList()

Slot and token management functions

C_GetSlotList() v If the pSlotList argument is NULL, this function returns
only the number of allocated slots. In the process of
returning this number C_GetSlotList searches for new
tokens to which the application has access. If new tokens
are found, slot IDs are allocated for them. This search is
only performed if at least 5 seconds has passed since the
last search was made.

v If the pSlotList argument is non-NULL, this function
returns the current list of virtual slot IDs. No attempt is
made to discover new tokens created by other
applications.

v The tokenPresent argument flag is meaningless as all
allocated slots have a token present.

C_GetSlotInfo()

C_GetTokenInfo()

C_WaitForSlotEvent() v This function is used to dynamically allocate an additional
slot in order to create a new token. There are no other
slot events. The newly allocated slot ID is returned as the
pSlot argument.

v The CKF_DONT_BLOCK argument flag is meaningless
because this function never blocks. The dynamic slot
allocation occurs synchronously.

C_GetMechanismList() The list of functions returned reflects the capabilities of the
current cryptographic hardware configuration.
Note: The loss or addition of hardware on the fly is not
detected or reflected. (For example, on a z9-109, if the only
CEX2C present is deactivated, this function still returns the
mechanisms that require an active CEX2C to function.)

C_GetMechanismInfo() The output of this function reflects the capabilities of the
current cryptographic hardware configuration.

C_InitToken() Tokens are protected by the security manager through
profiles in the CRYPTOZ class. PINs are not used. The pPin
and ulPinLen arguments are ignored.

C_InitPIN() Tokens are protected by the security manager through
profiles in the CRYPTOZ class. PINs are not used. This
function performs no operation and always returns CKR_OK.

C_SetPIN() Tokens are protected by the security manager through
profiles in the CRYPTOZ class. PINs are not used. This
function performs no operation and always returns CKR_OK.

Session management functions

C_OpenSession() The Notify and pApplication arguments are ignored.

C_CloseSession()

42 z/OS V1R13 ICSF Writing PKCS #11 Applications

Table 23. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_CloseAllSessions()

C_GetSessionInfo() The state field returned is meaningless. It is always set to
CK_UNAVAILABLE_INFORMATION .

C_GetOperationState() Returns CKR_STATE_UNSAVEABLE if a find is active or
more than one cryptographic operation is active.

C_SetOperationState()

C_Login() Tokens are protected by the security manager through
profiles in the CRYPTOZ class. Applications are always
logged in to the security manager. PINs are not used. This
function has no effect on the session state and always
returns CKR_OK.

C_Logout() Tokens are protected by the security manager through
profiles in the CRYPTOZ class. Applications are always
logged in to the security manager. PINs are not used. This
function has no effect on the session state and always
returns CKR_OK.

Object management functions

C_CreateObject()

C_CopyObject()

C_DestroyObject()

C_GetObjectSize()

C_GetAttributeValue()

C_SetAttributeValue()

C_FindObjectsInit()

C_FindObjects() Sensitive attributes cannot be used as search criteria when
the object is marked sensitive or not exportable. Doing so
results in no match found.

C_FindObjectsFinal()

Encryption functions

C_EncryptInit() The following mechanisms are supported:
v CKM_DES_ECB
v CKM_DES_CBC
v CKM_DES_CBC_PAD
v CKM_DES3_ECB
v CKM_DES3_CBC
v CKM_DES3_CBC_PAD
v CKM_RSA_PKCS
v CKM_RSA_X_509
v CKM_AES_CBC
v CKM_AES_ECB
v CKM_AES_CBC_PAD
v CKM_AES_GCM (Limited to single part encryption only

and for no more than 1048576 bytes of clear text.)
v CKM_BLOWFISH_CBC
v CKM_RC4

C_Encrypt()

C_EncryptUpdate() Multiple-part encryption is not supported for the
CKM_RSA_PKCS and CKM_RSA_X_509 mechanisms

Chapter 2. The C API 43

Table 23. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_EncryptFinal() Multiple-part encryption is not supported for the
CKM_RSA_PKCS and CKM_RSA_X_509 mechanisms.

Decryption functions

C_DecryptInit() The following mechanisms are supported:
v CKM_DES_ECB
v CKM_DES_CBC
v CKM_DES_CBC_PAD
v CKM_DES3_ECB
v CKM_DES3_CBC
v CKM_DES3_CBC_PAD
v CKM_RSA_PKCS
v CKM_RSA_X_509
v CKM_AES_CBC
v CKM_AES_ECB
v CKM_AES_CBC_PAD
v CKM_AES_GCM (Limited to single part decryption only

and for no more than 1048576 bytes of clear text.)
v CKM_BLOWFISH_CBC
v CKM_RC4

C_Decrypt()

C_DecryptUpdate() Multiple-part decryption is not supported for the
CKM_RSA_PKCS and CKM_RSA_X_509 mechanisms.

C_DecryptFinal() Multiple-part decryption is not supported for the
CKM_RSA_PKCS and CKM_RSA_X_509 mechanisms.

Message digesting functions

C_DigestInit() The following mechanisms are supported:
v CKM_MD2
v CKM_MD5
v CKM_SHA_1
v CKM_SHA224
v CKM_SHA256
v CKM_SHA384
v CKM_SHA512
v CKM_RIPEMD160

C_Digest()

C_DigestUpdate()

C_DigestFinal()

Signing and message authentication coding (MACing) functions

44 z/OS V1R13 ICSF Writing PKCS #11 Applications

Table 23. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_SignInit() The following mechanisms are supported:
v CKM_RSA_X_509
v CKM_RSA_PKCS
v CKM_MD5_RSA_PKCS
v CKM_SHA1_RSA_PKCS
v CKM_SHA224_RSA_PKCS
v CKM_SHA256_RSA_PKCS
v CKM_SHA384_RSA_PKCS
v CKM_SHA512_RSA_PKCS
v CKM_DSA
v CKM_DSA_SHA1
v CKM_MD5_HMAC
v CKM_SHA_1_HMAC
v CKM_SHA224_HMAC
v CKM_SHA256_HMAC
v CKM_SHA384_HMAC
v CKM_SHA512_HMAC
v CKM_SSL3_MD5_MAC
v CKM_SSL3_SHA1_MAC
v CKM_MD2_RSA_PKCS
v CKM_ECDSA
v CKM_ECDSA_SHA1

C_Sign()

C_SignUpdate() Multiple-part signature is not supported for the
CKM_RSA_PKCS and CKM_RSA_X_509 mechanisms.

C_SignFinal() Multiple-part signature is not supported for the
CKM_RSA_PKCS and CKM_RSA_X_509 mechanisms.

Functions for verifying signatures and message authentication codes (MACs)

C_VerifyInit() The following mechanisms are supported:
v CKM_RSA_X_509
v CKM_RSA_PKCS
v CKM_MD5_RSA_PKCS
v CKM_SHA1_RSA_PKCS
v CKM_SHA224_RSA_PKCS
v CKM_SHA256_RSA_PKCS
v CKM_SHA384_RSA_PKCS
v CKM_SHA512_RSA_PKCS
v CKM_DSA
v CKM_DSA_SHA1
v CKM_MD5_HMAC
v CKM_SHA_1_HMAC
v CKM_SHA224_HMAC
v CKM_SHA256_HMAC
v CKM_SHA384_HMAC
v CKM_SHA512_HMAC
v CKM_SSL3_MD5_MAC
v CKM_SSL3_SHA1_MAC
v CKM_MD2_RSA_PKCS
v CKM_ECDSA
v CKM_ECDSA_SHA1

C_Verify()

C_VerifyUpdate() Multiple-part verify is not supported for the
CKM_RSA_PKCS and CKM_RSA_X_509 mechanisms.

Chapter 2. The C API 45

Table 23. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_VerifyFinal() Multiple-part verify is not supported for the
CKM_RSA_PKCS and CKM_RSA_X_509 mechanisms.

Key management functions

C_DeriveKey() The following mechanisms are supported:
v CKM_DH_PKCS_DERIVE
v CKM_SSL3_MASTER_KEY_DERIVE
v CKM_SSL3_MASTER_KEY_DERIVE_DH
v CKM_SSL3_KEY_AND_MAC_DERIVE
v CKM_TLS_MASTER_KEY_DERIVE
v CKM_TLS_MASTER_KEY_DERIVE_DH
v CKM_TLS_KEY_AND_MAC_DERIVE
v CKM_TLS_PRF (It is the caller’s responsibility to supply

an ASCII value for the seed)
v CKM_ECDH1_DERIVE

C_GenerateKey() The following mechanisms are supported:
v CKM_DES_KEY_GEN
v CKM_DES2_KEY_GEN
v CKM_DES3_KEY_GEN
v CKM_AES_KEY_GEN
v CKM_DSA_PARAMETER_GEN
v CKM_DH_PKCS_PARAMETER_GEN
v CKM_BLOWFISH_KEY_GEN
v CKM_RC4_KEY_GEN
v CKM_GENERIC_SECRET_KEY_GEN
v CKM_SSL3_PRE_MASTER_KEY_GEN
v CKM_TLS_PRE_MASTER_KEY_GEN

C_GenerateKeyPair() The following mechanisms are supported:
v CKM_RSA_PKCS_KEY_PAIR_GEN
v CKM_DSA_KEY_PAIR_GEN
v CKM_DH_PKCS_KEY_PAIR_GEN
v CKM_EC_KEY_PAIR_GEN

C_WrapKey() The following mechanism is supported for wrapping secret
keys:

v CKM_RSA_PKCS

The following mechanisms are supported for wrapping
private keys:

v CKM_DES_CBC_PAD

v CKM_DES3_CBC_PAD

v CKM_AES_CBC_PAD

C_UnwrapKey() The following mechanism is supported for unwrapping secret
keys:

v CKM_RSA_PKCS

The following mechanisms are supported for unwrapping
private keys:
v CKM_DES_CBC_PAD
v CKM_DES3_CBC_PAD
v CKM_AES_CBC_PAD

Random number generation functions

C_SeedRandom() This function always returns the value
CKR_RANDOM_SEED_NOT_SUPPORTED because the
z/OS hardware random number generator is self-seeding.

46 z/OS V1R13 ICSF Writing PKCS #11 Applications

Table 23. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_GenerateRandom()

Non-standard functions supported
The following non-standard function is also supported. Because it is non-standard, it
does not appear in the PKCS #11 CK_FUNCTION_LIST structure returned by
C_GetFunctionList(). To invoke this function, the caller must either locate the
function in the main DLL using dlsym(), or link the application program with the
main DLL’s sidedeck.

Table 24. Syntax of the CK_RV CSN_FindALLObjects() function

CSN_FindALLObjects (
CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE_PTR phObject,
CK_ULONG ulMaxObjectCount
CK_ULONG_PTR pulObjectCount

);

CSN_FindALLObjects() is identical to C_FindObjects(), except that it uses the ALL
rule array keyword when invoking the ICSF CSFPTRL callable service. This can
result in CSN_FindALLObjects() returning handles to private objects even if the
caller has insufficient SAF authority to view such objects. CSN_FindALLObjects()
returns a private key handle (and C_FindObjects does not) when the following
conditions are all met:

1. The private object matches the search criteria.

2. No sensitive attributes were specified in the search criteria. The sensitive values
for this service are:

v For a secret key object: CKA_VALUE

v For Diffie Hellman, DSA, and Elliptic Curve private key objects: CKA_VALUE

v For an RSA private key object: CKA_PRIVATE_EXPONENT, CKA_PRIME_1,
CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT_2,
CKA_COEFFICIENT

3. The caller has only Weak SO or SO R/W permission to the token.

For more information about CSFPTRL processing with respect to the ALL rule array
keyword, see z/OS Cryptographic Services ICSF Application Programmer's Guide.

Function return codes
In general, the PKCS #11 function return codes are defined in the PKCS #11
specification. However, the following function return codes have a meaning specific
to z/OS:

CKR_TOKEN_NOT_PRESENT
ICSF is not running or the TKDS is not properly configured. Note
that this return code has no relationship to the slot flag
CKF_TOKEN_PRESENT.

CKR_TOKEN_NOT_RECOGNIZED
The caller is not authorized to perform the action requested.

Chapter 2. The C API 47

CKR_MECHANISM_INVALID
The specified mechanism is either unknown or not supported by the
current cryptographic hardware configuration.

CKR_DEVICE_REMOVED
The token no longer exists. When this error is detected, the token
flags are cleared indicating that the token is no longer initialized. It
can be re-initialized as a new token, if desired.

Other ICSF-related errors are returned as vendor-defined error codes
(CKR_VENDOR_DEFINED). The ICSF return and reason codes are combined into
the single return code as follows:
#define CKR_IBM_ICSF_ERROR 0xC0000000 /* High order byte mask indicating ICSF error */
#define CKR_IBM_ICSF_ERROR_RET 0x00FF0000 /* Second byte is the return code */
#define CKR_IBM_ICSF_ERROR_RSN 0x0000FFFF /* low order half word is reason code */

This mapping is also used to store the ICSF return and reason code values in the
CK_SESSION_INFO ulDeviceError field.

The following constants are defined for select ICSF return reason codes:
/* ICSF not configured for FIPS mode OR system does not
support FIPS mode */
#define CKR_IBM_ICSF_NOT_FIPS_MODE 0xC0080BFD

/* Algorithm or key size is not valid in FIPS mode */
#define CKR_IBM_ICSF_NOT_VALID_FIPS 0xC0080BFE

/* FIPS known answer tests failed */
#define CKR_IBM_ICSF_FIPS_KAT_FAILED 0xC00C8D3C

/* Service or algorithm not available on current system */
#define CKR_IBM_ICSF_SERV_NOTAVAIL 0xC00C0008

Troubleshooting PKCS #11 applications

Note: The information and techniques described in this section are for use primarily
by IBM service personnel in determining the cause of a problem with the
ICSF PKCS #11 C API.

You can capture trace data using environment variables. To do this, the trace
environment variables CSN_PKCS11_TRACE and CSN_PKCS11_TRACE_FILE
must be exported prior to the application’s first call to any of the PKCS #11
functions.

48 z/OS V1R13 ICSF Writing PKCS #11 Applications

Table 25. Environment variables for capturing trace data

Environment variable Usage Valid values

CSN_PKCS11_TRACE Specifies the level of tracing
to be performed.

An integer value, 1-7. The
higher the value, the greater
the number of conditions
traced. Each level includes
the conditions of the levels
below it:

7 Debug information

6 Informational conditions

5 Normal but significant
conditions

4 Warning conditions

3 Error conditions

2 Critical conditions

1 Immediate action required
Any other value causes
tracing to be inactive (the
default).

CSN_PKCS11_TRACE_FILE Specifies the name of the
trace file. Defaults to
/tmp/csnpkcs11.%.trc.

The current process identifier
is included as part of the
trace file name when the
name contains a percent sign
(%). For example, if
CSN_PKCS11_TRACE_FILE
is set to:

/tmp/csnpkcs11.%.trc

and the current process
identifier is 247, the trace file
name is

/tmp/csnpkcs11.247.trc

Must be set to the full path
name of an HFS file in a
directory for which the
executing application has
write permission. The
maximum length for the path
name is 255 bytes. Values
longer than 255 bytes are
truncated.

You can also use the utility program, testpkcs11, for troubleshooting. For information
about running testpkcs11, see “Running the pre-compiled version of testpkcs11” on
page 51.

Chapter 2. The C API 49

50 z/OS V1R13 ICSF Writing PKCS #11 Applications

Chapter 3. The testpkcs11 program

IBM provides a sample PKCS #11 program called testpkcs11 . The program is
passed the name of a PKCS #11 token, and performs the following tasks:

1. Creates a token that has the name passed

2. Generates an RSA key-pair

3. Encrypts some test data using the public part of the key-pair

4. Decrypts the data using the private part of the key-pair

5. Deletes the key-pair and the token

You can use this program in several ways:

v As a utility program to test the system configuration for PKCS #11 and
troubleshoot problems

v As a sample application to learn how to build and run a PKCS #11 application

IBM provides a pre-compiled version of this program installed in
/usr/lpp/pkcs11/bin. IBM also provides the C source code for this program in the
samples subdirectory, along with three Makefiles:

v Makefile - for 31-bit addressing mode

v Makefile3X - for 31-bit addressing mode with high performance (XPLINK) linkage

v Makefile64 - for 64-bit addressing mode with high performance (XPLINK) linkage

For the source code for this program, see “Source code for the testpkcs11 sample
program” on page 59.

Running the pre-compiled version of testpkcs11
If you are testing the system configuration for PKCS #11, or troubleshooting
problems with the configuration, you can run the pre-compiled version of
testpkcs11.

Steps for running the pre-compiled version of testpkcs11
Before you begin: You need to know how to use z/OS UNIX shells.

Perform the following steps to run the pre-compiled version of testpkcs11.

1. Change to the PKCS #11 bin directory by entering the following command:

cd /usr/lpp/pkcs11/bin

__

2. Choose a temporary token name to use. If you need to review the rules for
token names, see “Tokens” on page 1.

__

3. Run testpkcs11, passing it your token name on the -t option. For example, to
use a temporary token name of my.temp.token, enter the following command:
./testpkcs11 -t my.temp.token

If z/OS PKCS #11 has been set up properly and the you have sufficient authority to
the token label specified, you should see the following output:
Getting the PKCS11 function list...
Initializing the PKCS11 environment...
Creating the temporary token...

© Copyright IBM Corp. 2007, 2011 51

Opening a session...
Generating keys. This may take a while...
Enciphering data...
Deciphering data...
Destroying keys...
Closing the session...
Deleting the temporary token...
Test completed successfully!

If you see different messages, there is an error in either your PKCS #11 set up or in
the token label that you specified.

The most common user error is specifying token label that is unacceptable to ICSF
or already in use. In that case the following is displayed:
Getting the PKCS11 function list...
Initializing the PKCS11 environment...
Creating the temporary token...

C_InitToken #1 returned 7 (0x07) CKR_ARGUMENTS_BAD
Make sure your the token name you specified meets ICSF rules:
Contains only alphanumeric characters, nationals (@#$), and periods.
The first character cannot be a numeric or a period.

If you see other error messages, there is probably an error in the setup for the
PKCS #11 environment. Determine the error represented by the PKCS #11 error
code returned. For information about error codes, see “Function return codes” on
page 47.

To display the help text for the testpkcs11 program, run the program with the -h
option:
cd /usr/lpp/pkcs11/bin
./testpkcs11 -h

Building testpkcs11 from source code
If you are learning how to build and run a PKCS #11 application, you can use the
source code for testpkcs11 to build and run a sample application.

Steps for building testpkcs11 from source code
Before you begin: You need to know in which directory the PKCS #11 header file
is located. By default it is located in the standard include subdirectory under /usr. If
your standard include subdirectory it in a different location, you will need to modify
the Makefile in step 2. You also need to know how to use z/OS UNIX shells.

Perform the following steps to build the sample application, testpkcs11. Issue the
commands from the z/OS UNIX command shell.

1. Copy the testpkcs11.c program and appropriate Makefile to the current
directory. For example, for 64-bit addressing enter the following commands:
cp /usr/lpp/pkcs11/samples/testpkcs11.c testpkcs11.c
cp /usr/lpp/pkcs11/samples/Makefile64 Makefile

__

2. If the standard include subdirectory is not located under /usr, edit the Makefile
copied in step 1 and change the PKCS11_INSTALL_DIR variable as required.

__

3. Enter the following command to compile and link and produce the executable,
testpkcs11:

52 z/OS V1R13 ICSF Writing PKCS #11 Applications

make

__

4. Update your C/C++ environment variable _CEE_RUNOPTS to include
XPLINK(ON) if it does not already include it. For example, execute the
following command from a UNIX shell:
export _CEE_RUNOPTS=$_CEE_RUNOPTS’ XPLINK(ON)’

__

When you are done, you have built the testpkcs1164 application and can run it in
your directory. For example, to run testpkcs1164 in your directory and display its
help text, enter the following command:
./testpkcs1164 -h

To run a test, choose a temporary token name and enter it with the -t option. If you
need to review the rules for token names, see “Tokens” on page 1. For example, to
use a temporary token name of my.temp.token, enter the following command:
./testpkcs1164 -t my.temp.token

For the output that should appear, see “Steps for running the pre-compiled version
of testpkcs11” on page 51.

Chapter 3. The testpkcs11 program 53

54 z/OS V1R13 ICSF Writing PKCS #11 Applications

Chapter 4. ICSF PKCS #11 callable services

The PKCS #11 C language API (described in Chapter 2, “The C API,” on page 19)
requires a Language Environment (LE) runtime to operate. Although an LE is
normally provided with C application programs, if you are coding your application in
some other language (for example, Assembler), acquiring an LE runtime may not be
desirable. For these situations, ICSF provides a base set of PKCS #11 callable
services that you can use. (In fact, the C API itself uses these services.) These
callable services do not require an LE runtime. The ICSF PKCS #11 callable
services include:

v Derive key (CSFPDVK)

v Derive multiple keys (CSFPDMK)

v Generate HMAC (CSFPHMG)

v Generate key pair (CSFPGKP)

v Generate secret key (CSFPGSK)

v Get attribute value (CSFPGAV)

v One-way hash generate (CSFPOWH)

v Private key sign (CSFPPKS)

v Pseudo-random function (CSFPPRF)

v Public key verify (CSFPPKV)

v Secret key decrypt (CSFPSKD)

v Secret key encrypt (CSFPSKE)

v Set attribute value (CSFPSAV)

v Token record create (CSFPTRC)

v Token record delete (CSFPTRD)

v Token record list (CSFPTRL)

v Unwrap key (CSFPUWK)

v Verify HMAC (CSFPHMV)

v Wrap key (CSFPWPK)

Calls to the system authorization facility (SAF) determine access authorization for
the callable services. The CSFSERV class controls access to the PKCS #11
callable services.

For details about the PKCS #11 callable services, see z/OS Cryptographic Services
ICSF Application Programmer's Guide.

© Copyright IBM Corp. 2007, 2011 55

56 z/OS V1R13 ICSF Writing PKCS #11 Applications

SMP/E installation data sets, directories, and files

The following dynamic link libraries (DLLs) are linked into SYS1.SIEALNKE:

CSNPCAPI
The main DLL invoked by applications to use PKCS #11 functions. Also
shipped as an HFS file at /usr/lpp/pkcs11/lib/csnpcapi.so.

CSNPCA64
64-bit addressing mode version of CSNPCAPI. Also shipped as an HFS file
at /usr/lpp/pkcs11/lib/csnpca64.so.

CSNPCA3X
31-bit addressing mode version of CSNPCAPI with XPLINK. Also shipped
as an HFS file at /usr/lpp/pkcs11/lib/csnpca3x.so

CSNPCINT
An internal DLL loaded by CSNPCAPI.

CSNPCI64
64-bit addressing mode version of CSNPCINT.

CSNPCI3X
31-bit addressing mode version of CSNPCINT with XPLINK.

CSNPCUTL
An internal DLL implicitly loaded for utilities.

CSNPCU64
64-bit addressing mode version of CSNPCUTL.

CSNPCU3X
31-bit addressing mode version of CSNPCUTL with XPLINK.

CSFDLL31
CSFDLL in 31-bit addressing mode

CSFDLL64
CSFDLL in 64-bit addressing mode.

CSFDLL3X
31-bit addressing mode version of CSFDLL31 with XPLINK.

SMP/E installs the product files into the HFS directory /usr/lpp/pkcs11. This directory
contains the following subdirectories and files:

v /usr/lpp/pkcs11/include subdirectory (members are symbolically linked to
/usr/include)

csnpdefs.h
A header file that applications must include to use PKCS #11 functions.
Also copied to SYS1.SIEAHDR.H(CSNPDEFS).

csfbext.h
A header file that applications must include to use the CSFDLLs. Also
copied to SYS1.SIEAHDR.H(CSFBEXT).

v /usr/lpp/pkcs11/lib subdirectory (members are symbolically linked to /usr/lib)

CSNPCAPI.x
Side deck for CSNPCAPI. Also copied to SYS1.SIEASID(CSNPCAPI).

CSNPCA64.x
Side deck for CSNPCA64. Also copied to SYS1.SIEASID(CSNPCA64).

© Copyright IBM Corp. 2007, 2011 57

CSNPCA3X.x
Side deck for CSNPCA3X. Also copied to SYS1.SIEASID(CSNPCA3X).

csnpcapi.so

csnpca64.so

csnpca3x.so

CSFDLL31.x
Side deck for CSFDLL31. Also copied to SYS1.SIEASID(CSFDLL31).

CSFDLL64.x
Side deck for CSFDLL64. Also copied to SYS1.SIEASID(CSFDLL64).

CSFDLL3X.x
Side deck for CSFDLL3X. Also copied to SYS1.SIEASID(CSFDLL3X).

v usr/lpp/pkcs11/bin subdirectory

testpkcs11
Program to test system configuration for PKCS #11.

v /usr/lpp/pkcs11/samples subdirectory

testpkcs11.c
Source code for the testpkcs11 program.

Makefile
Makefile for the testpkcs11 program.

Makefile64
Makefile for 64-bit addressing mode version of the testpkcs11 program.

Makefile3X
Makefile for 31-bit addressing mode version of the testpkcs11 program
with XPLINK.

58 z/OS V1R13 ICSF Writing PKCS #11 Applications

Source code for the testpkcs11 sample program

For information about building and using the testpkcs11 sample program, see
Chapter 3, “The testpkcs11 program,” on page 51.

/***/
/* */
/* COMPONENT_NAME: testpkcs11.c */
/* */
/* Licensed Materials - Property of IBM */
/* 5694-A01 */
/* Copyright IBM Corp. 2007, 2009 */
/* Status = HCR7770 */
/* */
/***/
/***/
/* */
/* This file contains sample code. IBM PROVIDES THIS CODE ON AN */
/* ’AS IS’ BASIS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR */
/* IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES */
/* OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. */
/* */
/***/
/* */
/* Change Activity: */
/* $L0=P11C1 ,HCR7740, 060124,PDJS: PKCS11 initial release */
/* $D1=MG08269 ,HCR7740, 061114,PDJS: Misc fixes */
/* $D2=MG08740 ,HCR7740, 070302,PDGL: XPLINK */
/* $P1=MG13406 ,HCR7770, 090812,PDGL: fix XPLINK define */
/* $P2=MG13431 ,HCR7770, 090826,PDER: update prolog */
/* */
/***/

#ifdef IBM
/* Customers may remove this copyright statement */
#pragma comment (copyright,"\
Licensed Materials - Property of IBM \
5694-A01 Copyright IBM Corp. 2007, 2009 \
All Rights Reserved \
US Government Users Restricted Rights - \
Use, duplication or disclosure restricted by \
GSA ADP Schedule Contract with IBM Corp.")
#endif

/* Install verification test for PKCS #11 */

#define _UNIX03_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <memory.h>
#include <dlfcn.h>
#include <sys/timeb.h>
#include <csnpdefs.h>

int skip_token_obj;

CK_FUNCTION_LIST *funcs;
CK_SLOT_ID slotID = CK_UNAVAILABLE_INFORMATION;
CK_BYTE tokenName[32];

void ProcessRetCode(CK_RV rc)
{

switch (rc) {
case CKR_OK: printf(" CKR_OK"); break;
case CKR_CANCEL: printf(" CKR_CANCEL"); break;
case CKR_HOST_MEMORY: printf(" CKR_HOST_MEMORY"); break;
case CKR_SLOT_ID_INVALID: printf(" CKR_SLOT_ID_INVALID"); break;
case CKR_GENERAL_ERROR: printf(" CKR_GENERAL_ERROR"); break;
case CKR_FUNCTION_FAILED: printf(" CKR_FUNCTION_FAILED"); break;
case CKR_ARGUMENTS_BAD: printf(" CKR_ARGUMENTS_BAD"); break;

© Copyright IBM Corp. 2007, 2011 59

case CKR_NO_EVENT: printf(" CKR_NO_EVENT"); break;
case CKR_NEED_TO_CREATE_THREADS: printf(" CKR_NEED_TO_CREATE_THREADS"); break;
case CKR_CANT_LOCK: printf(" CKR_CANT_LOCK"); break;
case CKR_ATTRIBUTE_READ_ONLY: printf(" CKR_ATTRIBUTE_READ_ONLY"); break;
case CKR_ATTRIBUTE_SENSITIVE: printf(" CKR_ATTRIBUTE_SENSITIVE"); break;
case CKR_ATTRIBUTE_TYPE_INVALID: printf(" CKR_ATTRIBUTE_TYPE_INVALID"); break;
case CKR_ATTRIBUTE_VALUE_INVALID: printf(" CKR_ATTRIBUTE_VALUE_INVALID"); break;
case CKR_DATA_INVALID: printf(" CKR_DATA_INVALID"); break;
case CKR_DATA_LEN_RANGE: printf(" CKR_DATA_LEN_RANGE"); break;
case CKR_DEVICE_ERROR: printf(" CKR_DEVICE_ERROR"); break;
case CKR_DEVICE_MEMORY: printf(" CKR_DEVICE_MEMORY"); break;
case CKR_DEVICE_REMOVED: printf(" CKR_DEVICE_REMOVED"); break;
case CKR_ENCRYPTED_DATA_INVALID: printf(" CKR_ENCRYPTED_DATA_INVALID"); break;
case CKR_ENCRYPTED_DATA_LEN_RANGE: printf(" CKR_ENCRYPTED_DATA_LEN_RANGE"); break;
case CKR_FUNCTION_CANCELED: printf(" CKR_FUNCTION_CANCELED"); break;
case CKR_FUNCTION_NOT_PARALLEL: printf(" CKR_FUNCTION_NOT_PARALLEL"); break;
case CKR_FUNCTION_NOT_SUPPORTED: printf(" CKR_FUNCTION_NOT_SUPPORTED"); break;
case CKR_KEY_HANDLE_INVALID: printf(" CKR_KEY_HANDLE_INVALID"); break;
case CKR_KEY_SIZE_RANGE: printf(" CKR_KEY_SIZE_RANGE"); break;
case CKR_KEY_TYPE_INCONSISTENT: printf(" CKR_KEY_TYPE_INCONSISTENT"); break;
case CKR_KEY_NOT_NEEDED: printf(" CKR_KEY_NOT_NEEDED"); break;
case CKR_KEY_CHANGED: printf(" CKR_KEY_CHANGED"); break;
case CKR_KEY_NEEDED: printf(" CKR_KEY_NEEDED"); break;
case CKR_KEY_INDIGESTIBLE: printf(" CKR_KEY_INDIGESTIBLE"); break;
case CKR_KEY_FUNCTION_NOT_PERMITTED: printf(" CKR_KEY_FUNCTION_NOT_PERMITTED"); break;
case CKR_KEY_NOT_WRAPPABLE: printf(" CKR_KEY_NOT_WRAPPABLE"); break;
case CKR_KEY_UNEXTRACTABLE: printf(" CKR_KEY_UNEXTRACTABLE"); break;
case CKR_MECHANISM_INVALID: printf(" CKR_MECHANISM_INVALID"); break;
case CKR_MECHANISM_PARAM_INVALID: printf(" CKR_MECHANISM_PARAM_INVALID"); break;
case CKR_OBJECT_HANDLE_INVALID: printf(" CKR_OBJECT_HANDLE_INVALID"); break;
case CKR_OPERATION_ACTIVE: printf(" CKR_OPERATION_ACTIVE"); break;
case CKR_OPERATION_NOT_INITIALIZED: printf(" CKR_OPERATION_NOT_INITIALIZED"); break;
case CKR_PIN_INCORRECT: printf(" CKR_PIN_INCORRECT"); break;
case CKR_PIN_INVALID: printf(" CKR_PIN_INVALID"); break;
case CKR_PIN_LEN_RANGE: printf(" CKR_PIN_LEN_RANGE"); break;
case CKR_PIN_EXPIRED: printf(" CKR_PIN_EXPIRED"); break;
case CKR_PIN_LOCKED: printf(" CKR_PIN_LOCKED"); break;
case CKR_SESSION_CLOSED: printf(" CKR_SESSION_CLOSED"); break;
case CKR_SESSION_COUNT: printf(" CKR_SESSION_COUNT"); break;
case CKR_SESSION_HANDLE_INVALID: printf(" CKR_SESSION_HANDLE_INVALID"); break;
case CKR_SESSION_PARALLEL_NOT_SUPPORTED: printf(" CKR_SESSION_PARALLEL_NOT_SUPPORTED"); break;
case CKR_SESSION_READ_ONLY: printf(" CKR_SESSION_READ_ONLY"); break;
case CKR_SESSION_EXISTS: printf(" CKR_SESSION_EXISTS"); break;
case CKR_SESSION_READ_ONLY_EXISTS: printf(" CKR_SESSION_READ_ONLY_EXISTS"); break;
case CKR_SESSION_READ_WRITE_SO_EXISTS: printf(" CKR_SESSION_READ_WRITE_SO_EXISTS"); break;
case CKR_SIGNATURE_INVALID: printf(" CKR_SIGNATURE_INVALID"); break;
case CKR_SIGNATURE_LEN_RANGE: printf(" CKR_SIGNATURE_LEN_RANGE"); break;
case CKR_TEMPLATE_INCOMPLETE: printf(" CKR_TEMPLATE_INCOMPLETE"); break;
case CKR_TEMPLATE_INCONSISTENT: printf(" CKR_TEMPLATE_INCONSISTENT"); break;
case CKR_TOKEN_NOT_PRESENT:

printf(" CKR_TOKEN_NOT_PRESENT - ICSF is not active or not configured for TKDS operations"); break;
case CKR_TOKEN_NOT_RECOGNIZED:

printf(" CKR_TOKEN_NOT_RECOGNIZED - You are not authorized to perform the token operation"); break;
case CKR_TOKEN_WRITE_PROTECTED: printf(" CKR_TOKEN_WRITE_PROTECTED"); break;
case CKR_UNWRAPPING_KEY_HANDLE_INVALID: printf(" CKR_UNWRAPPING_KEY_HANDLE_INVALID"); break;
case CKR_UNWRAPPING_KEY_SIZE_RANGE: printf(" CKR_UNWRAPPING_KEY_SIZE_RANGE"); break;
case CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT: printf(" CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT"); break;
case CKR_USER_ALREADY_LOGGED_IN: printf(" CKR_USER_ALREADY_LOGGED_IN"); break;
case CKR_USER_NOT_LOGGED_IN: printf(" CKR_USER_NOT_LOGGED_IN"); break;
case CKR_USER_PIN_NOT_INITIALIZED: printf(" CKR_USER_PIN_NOT_INITIALIZED"); break;
case CKR_USER_TYPE_INVALID: printf(" CKR_USER_TYPE_INVALID"); break;
case CKR_USER_ANOTHER_ALREADY_LOGGED_IN: printf(" CKR_USER_ANOTHER_ALREADY_LOGGED_IN"); break;
case CKR_USER_TOO_MANY_TYPES: printf(" CKR_USER_TOO_MANY_TYPES"); break;
case CKR_WRAPPED_KEY_INVALID: printf(" CKR_WRAPPED_KEY_INVALID"); break;
case CKR_WRAPPED_KEY_LEN_RANGE: printf(" CKR_WRAPPED_KEY_LEN_RANGE"); break;
case CKR_WRAPPING_KEY_HANDLE_INVALID: printf(" CKR_WRAPPING_KEY_HANDLE_INVALID"); break;
case CKR_WRAPPING_KEY_SIZE_RANGE: printf(" CKR_WRAPPING_KEY_SIZE_RANGE"); break;
case CKR_WRAPPING_KEY_TYPE_INCONSISTENT: printf(" CKR_WRAPPING_KEY_TYPE_INCONSISTENT"); break;
case CKR_RANDOM_SEED_NOT_SUPPORTED: printf(" CKR_RANDOM_SEED_NOT_SUPPORTED"); break;
case CKR_RANDOM_NO_RNG: printf(" CKR_RANDOM_NO_RNG"); break;
case CKR_BUFFER_TOO_SMALL: printf(" CKR_BUFFER_TOO_SMALL"); break;
case CKR_SAVED_STATE_INVALID: printf(" CKR_SAVED_STATE_INVALID"); break;
case CKR_INFORMATION_SENSITIVE: printf(" CKR_INFORMATION_SENSITIVE"); break;
case CKR_STATE_UNSAVEABLE: printf(" CKR_STATE_UNSAVEABLE"); break;
case CKR_CRYPTOKI_NOT_INITIALIZED: printf(" CKR_CRYPTOKI_NOT_INITIALIZED"); break;
case CKR_CRYPTOKI_ALREADY_INITIALIZED: printf(" CKR_CRYPTOKI_ALREADY_INITIALIZED"); break;

60 z/OS V1R13 ICSF Writing PKCS #11 Applications

case CKR_MUTEX_BAD: printf(" CKR_MUTEX_BAD"); break;
case CKR_MUTEX_NOT_LOCKED: printf(" CKR_MUTEX_NOT_LOCKED"); break;
/* Otherwise - Value does not match a known PKCS11 return value */

}
}

void showError(char *str, CK_RV rc)
{

printf("%s returned: %d (0x%0x)", str, rc, rc);
ProcessRetCode(rc);
printf("\n");

}

CK_RV createToken(void)
{

CK_VOID_PTR p = NULL; // @D1C
CK_RV rc;
CK_FLAGS flags = 0;

printf("Creating the temporary token... \n");
/* wait for slot event. On z/OS this creates a new slot synchronously */
rc = funcs->C_WaitForSlotEvent(flags, &slotID, p);
if (rc != CKR_OK) {

showError(" C_WaitForSlotEvent #1", rc);
return !CKR_OK;

}
/* The slot has been created. Now initialize the token in the slot */
/* On z/OS no PIN is required, so we will pass NULL. */
rc= funcs->C_InitToken(slotID, NULL, 0, tokenName);
if (rc != CKR_OK) {

showError(" C_InitToken #1", rc);
if (rc == CKR_ARGUMENTS_BAD) {

printf(" Make sure your the token name you specified meets ICSF rules:\n");
printf(" Contains only alphanumeric characters, nationals (@#$), and periods.\n");
printf(" The first character cannot be a numeric or a period.\n");

}
return !CKR_OK;

}

return CKR_OK;
}

CK_RV deleteToken(void)
{

CK_VOID_PTR p;
CK_RV rc;
CK_FLAGS flags = 0;

if (slotID != CK_UNAVAILABLE_INFORMATION) {
printf("Deleting the temporary token... \n");
/* C_InitToken with the reserved label $$DELETE-TOKEN$$ is the way to delete a token */
/* on z/OS */
memset(tokenName, ’ ’, sizeof(tokenName));
memcpy(tokenName, DEL_TOK, sizeof(DEL_TOK));
rc= funcs->C_InitToken(slotID, NULL, 0, tokenName);
if (rc != CKR_OK) {

showError(" C_InitToken #2 (for delete)", rc);
return !CKR_OK;

}
}

return CKR_OK;
}

CK_RV encryptRSA(void)
{

CK_BYTE data1[100];
CK_BYTE data2[256];
CK_BYTE cipher[256];
CK_SLOT_ID slot_id;
CK_SESSION_HANDLE session;
CK_MECHANISM mech;
CK_OBJECT_HANDLE publ_key, priv_key;
CK_FLAGS flags;

Source code for the testpkcs11 sample program 61

CK_ULONG i;
CK_ULONG len1, len2, cipherlen;
CK_RV rc;
static CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
static CK_KEY_TYPE type= CKK_RSA;
static CK_OBJECT_CLASS privclass = CKO_PRIVATE_KEY;
static CK_BBOOL true = TRUE;
static CK_BBOOL false = FALSE;

static CK_ULONG bits = 1024;
static CK_BYTE pub_exp[] = { 0x01, 0x00, 0x01 };

/* Attributes for the public key to be generated */
CK_ATTRIBUTE pub_tmpl[] = {

{CKA_MODULUS_BITS, &bits, sizeof(bits) },
{CKA_ENCRYPT, &true, sizeof(true) },
{CKA_VERIFY, &true, sizeof(true) },
{CKA_PUBLIC_EXPONENT, &pub_exp, sizeof(pub_exp) }

};

/* Attributes for the private key to be generated */
CK_ATTRIBUTE priv_tmpl[] =
{

{CKA_DECRYPT, &true, sizeof(true) },
{CKA_SIGN, &true, sizeof(true) }

};

slot_id = slotID;
flags = CKF_SERIAL_SESSION | CKF_RW_SESSION;
printf("Opening a session... \n");
rc = funcs->C_OpenSession(slot_id, flags, (CK_VOID_PTR) NULL, NULL, &session);
if (rc != CKR_OK) {

showError(" C_OpenSession #1", rc);
return !CKR_OK;

}

printf("Generating keys. This may take a while... \n");
mech.mechanism = CKM_RSA_PKCS_KEY_PAIR_GEN;
mech.ulParameterLen = 0;
mech.pParameter = NULL;

rc = funcs->C_GenerateKeyPair(session, &mech,
pub_tmpl, 4,
priv_tmpl, 2,
&publ_key, &priv_key);

if (rc != CKR_OK) {
showError(" C_GenerateKeyPair #1", rc);
return !CKR_OK;

}

/* now, encrypt some data */
len1 = sizeof(data1);
len2 = sizeof(data2);
cipherlen = sizeof(cipher);

for (i=0; i < len1; i++)
data1[i] = (i) % 255;

mech.mechanism = CKM_RSA_PKCS;
mech.ulParameterLen = 0;
mech.pParameter = NULL;

printf("Enciphering data... \n");
rc = funcs->C_EncryptInit(session, &mech, publ_key);
if (rc != CKR_OK) {

showError(" C_EncryptInit #1", rc);
funcs->C_CloseSession(session);
return !CKR_OK;

}

rc = funcs->C_Encrypt(session, data1, len1, cipher, &cipherlen);
if (rc != CKR_OK) {

showError(" C_Encrypt #1", rc);
funcs->C_CloseSession(session);

62 z/OS V1R13 ICSF Writing PKCS #11 Applications

return !CKR_OK;
}

/* now, decrypt the data */
printf("Deciphering data... \n");
rc = funcs->C_DecryptInit(session, &mech, priv_key);
if (rc != CKR_OK) {

showError(" C_DecryptInit #1", rc);
funcs->C_CloseSession(session);
return !CKR_OK;

}

rc = funcs->C_Decrypt(session, cipher, cipherlen, data2, &len2);
if (rc != CKR_OK) {

showError(" C_Decrypt #1", rc);
funcs->C_CloseSession(session);
return !CKR_OK;

}

/* PKCS - returns clear data as is */
if (len1 != len2) {

printf(" ERROR: lengths don’t match\n");
printf(" Length of original data = %d, after decryption = %d\n",len1, len2);
funcs->C_CloseSession(session);
return !CKR_OK;

}

for (i=0; i <len1; i++) {
if (data1[i] != data2[i]) {

printf(" ERROR: mismatch at byte %d\n", i);
funcs->C_CloseSession(session);
return !CKR_OK;

}
}

printf("Destroying keys... \n");
rc = funcs->C_DestroyObject(session, priv_key);
if (rc != CKR_OK) {

showError(" C_DestroyObject #1", rc);
funcs->C_CloseSession(session);
return !CKR_OK;

}

rc = funcs->C_DestroyObject(session, publ_key);
if (rc != CKR_OK) {

showError(" C_DestroyObject #2", rc);
funcs->C_CloseSession(session);
return !CKR_OK;

}

printf("Closing the session... \n");
rc = funcs->C_CloseSession(session);
if (rc != CKR_OK) {

showError(" C_CloseSession #1", rc);
return !CKR_OK;

}

return CKR_OK;
}

CK_RV getFunctionList(void)
{

CK_RV rc;
CK_RV (*pFunc)();
void *d;

#ifdef _LP64
char e[]="CSNPCA64";

#elif __XPLINK__ /* @P1C */
char e[]="CSNPCA3X"; /* @D2A */

#else
char e[]="CSNPCAPI";

#endif

Source code for the testpkcs11 sample program 63

printf("Getting the PKCS11 function list...\n");

d = dlopen(e,RTLD_NOW);
if (d == NULL) {

printf("%s not found in linklist or LIBPATH\n",e); // @D1A
return !CKR_OK;

}

pFunc = (CK_RV (*)())dlsym(d,"C_GetFunctionList");
if (pFunc == NULL) {

printf("C_GetFunctionList() not found in module %s\n",e); // @D1A
return !CKR_OK;

}
rc = pFunc(&funcs);

if (rc != CKR_OK) {
showError(" C_GetFunctionList", rc);
return !CKR_OK;

}

return CKR_OK;

}

void displaySyntax(char *pgm) {
printf("usage: %s { -t <token-name> | -h }\n\n", pgm);
printf(" -t <token-name> = The name of a temporary token to create for the test. The\n");
printf(" name must be less than 33 characters in length and contains only alphanumeric\n");
printf(" characters, nationals (@#$), and periods. The first character cannot be a\n");
printf(" numeric or a period. The token will be deleted when the test is complete.\n\n");
printf(" -h = Displays this help.\n\n");

}

void main(int argc, char **argv)
{

CK_C_INITIALIZE_ARGS cinit_args;
CK_RV rc, i;

memset(tokenName, ’ ’, sizeof(tokenName)); /* Token name is left justified, padded with blanks */

if (argc == 3) {
if (strcmp(argv[1], "-t") == 0)

if (strlen(argv[2]) > 0 && strlen(argv[2]) < 33) {
memcpy(tokenName, argv[2], strlen(argv[2]));

}
else {

displaySyntax(argv[0]);
return;

}
else {

displaySyntax(argv[0]);
return;

}
}
else {

displaySyntax(argv[0]);
return;

}

rc = getFunctionList();
if (rc != CKR_OK) {

printf("getFunctionList failed!\n"); // @D1C
return;

}

memset(&cinit_args, 0x0, sizeof(cinit_args));
cinit_args.flags = CKF_OS_LOCKING_OK;

printf("Initializing the PKCS11 environment...\n");
rc = funcs->C_Initialize(&cinit_args);
if (rc != CKR_OK) {

showError(" C_Initialize", rc);
return;

64 z/OS V1R13 ICSF Writing PKCS #11 Applications

}

rc = createToken();
if (rc != CKR_OK) {

funcs->C_Finalize(NULL);
return;

}

rc = encryptRSA();
if (rc != CKR_OK) {

deleteToken();
funcs->C_Finalize(NULL);
return;

}

rc = deleteToken();
if (rc != CKR_OK) {

funcs->C_Finalize(NULL);
return;

}

rc = funcs->C_Finalize(NULL);
if (rc != CKR_OK) {

showError(" C_Initialize", rc);
return;

}
printf("Test completed successfully!\n");

}

Source code for the testpkcs11 sample program 65

66 z/OS V1R13 ICSF Writing PKCS #11 Applications

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

z/OS information
z/OS information is accessible using screen readers with the BookServer/Library
Server versions of z/OS books in the Internet library at:
http://www.ibm.com/systems/z/os/zos/bkserv/

© Copyright IBM Corp. 2007, 2011 67

http://www.ibm.com/systems/z/os/zos/bkserv/

68 z/OS V1R13 ICSF Writing PKCS #11 Applications

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2007, 2011 69

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Programming interface information
This publication documents intended programming interfaces that allow the
customer to write programs to obtain the services of z/OS Integrated Cryptographic
Services Facility (ICSF).

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation
in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

70 z/OS V1R13 ICSF Writing PKCS #11 Applications

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Index

A
accessibility 67
auditing PKCS #11 functions 10

C
C application program interface (API), using 19
CCA (Common Cryptographic Architecture) 1
CK_RV CSN_FindALLObjects() function 47
Common Cryptographic Architecture (CCA) 1
component trace entries for TKDS events 10
constants, manifest

where defined 19
Cryptoki 1
CRYPTOZ class 4
CSFSERV class

resources for token services 6

D
data object

attributes that ICSF supports 28
decryption functions supported 44
deleting token 19
Diffie-Hellman domain parameter object

attributes that ICSF supports 40
Diffie-Hellman private key object

attributes that ICSF supports 39
Diffie-Hellman public key object

attributes that ICSF supports 35
disability 67
DLLs provided by ICSF 57
domain parameter object

attributes that ICSF supports 39
DSA domain parameter object

attributes that ICSF supports 39
DSA private key object

attributes that ICSF supports 38
DSA public key object

attributes that ICSF supports 35
dynamic link libraries (DLLs) provided by ICSF 57

E
Elliptic Curve private key object

attributes that ICSF supports 39
Elliptic Curve public key object

attributes that ICSF supports 35
encryption functions supported 43
environment variables for tracing 48

F
FIPS 140-2

algorithms restricted when complying with 26
operating in compliance with 11

function
non-standard PKCS #11 supported by ICSF 47
standard PKCS #11 supported by ICSF 41

function return code
unique to z/OS, list of 47

G
general purpose functions supported 41

H
header file for C API 57

I
installation options data set

options for the TKDS 2
SYSPLEXTKDS option 3
TKDSN option 2

J
job to define TKDS 3

K
key management functions supported 46
key types supported 21
keyboard 67

L
Language Environment 19
library

information that can be set and queried 40

M
MAC verification functions supported 45
MACing functions supported 44
manifest constants

where defined 19
mechanism

information returned by C_GetMechanismInfo 21
which cryptographic hardware supports 25

message authentication code verification functions
supported 45

message authentication coding functions supported 44
message digesting functions supported 44

N
Notices 69

© Copyright IBM Corp. 2007, 2011 71

O
object

data
attributes that ICSF supports 28

Diffie-Hellman domain parameter
attributes that ICSF supports 40

Diffie-Hellman private key
attributes that ICSF supports 39

Diffie-Hellman public key
attributes that ICSF supports 35

domain parameter
attributes that ICSF supports 39

DSA domain parameter
attributes that ICSF supports 39

DSA private key
attributes that ICSF supports 38

DSA public key
attributes that ICSF supports 35

Elliptic Curve private key
attributes that ICSF supports 39

Elliptic Curve public key
attributes that ICSF supports 35

private key
attributes that ICSF supports 35

RSA private key
attributes that ICSF supports 38

RSA public key
attributes that ICSF supports 34

secret key
attributes that ICSF supports 30

X.509 certificate
attributes that ICSF supports 28

object management functions supported 43
object type

supported by ICSF, list of 27

P
PIN 4
PKCS (Public Key Cryptography Standards) 1
private key object

attributes that ICSF supports 35
program, sample

building and using 51
source code for 59

Public Key Cryptography Standards (PKCS) 1
public key object

attributes that ICSF supports 33

R
random number generation functions supported 46
RSA private key object

attributes that ICSF supports 38
RSA public key object

attributes that ICSF supports 34

S
sample program, testpkcs11

building and using 51
source code for 59

secret key object
attributes that ICSF supports 30

session management functions supported 42
session object 10
shortcut keys 67
signature verification functions supported 45
signing functions supported 44
slot 1

information that can be queried 40
slot functions supported 42
slot ID 1
SMF records written for PKCS #11 functions 10
SO R/W

description 5
SO role 4
SRB mode 19
Strong SO

description 5
SYSPLEXTKDS option in the installation options data

set 3

T
tasks

building testpkcs11 application
steps 52

running the sample program
steps 51

TCB mode 19
testpkcs11 program

building and using 51
source code for 59

TKDS (token data set)
description 2
sample job to define 3

TKDSN option in the installation options data set 2
token

access levels 5
deleting 19
information that can be set and queried 40
managing, interfaces for 7

token data set (TKDS)
description 2
sample job to define 3

token management functions supported 42
token object 11
token, on z/OS

description 1
rules for name 1

trace data 48
trace entries for TKDS events 10
troubleshooting applications 48

72 z/OS V1R13 ICSF Writing PKCS #11 Applications

U
User R/O

description 5
User R/W

description 5
User role 4

W
Weak SO

description 5
Weak User

description 5

X
X.509 certificate object

attributes that ICSF supports 28

Z
z/OS PKCS #11 token

deleting 19
description 1
rules for name 1

Index 73

74 z/OS V1R13 ICSF Writing PKCS #11 Applications

����

Product Number: 5694-A01

Printed in USA

SA23-2231-04

	Contents
	Figures
	Tables
	About this document
	Who should read this document
	How this document is organized
	How to use this document
	Where to find more information

	How to send your comments to IBM
	If you have a technical problem

	Chapter 1. Overview of z/OS support for PKCS #11
	Tokens
	The token data set (TKDS)
	Options for the TKDS in the ICSF installation options data set
	Sample job to define the TKDS

	Controlling access to tokens
	Managing tokens
	Sample scenario for setting up z/OS PKCS #11 tokens

	Auditing PKCS #11 functions
	Component trace for PKCS #11 functions
	Object types
	Session objects
	Token objects

	Operating in compliance with FIPS 140-2
	Requiring signature verification for ICSF module CSFINPV2
	Requiring FIPS 140-2 compliance from all z/OS PKCS #11 applications
	Requiring FIPS 140-2 compliance from select z/OS PKCS #11 applications
	Specifying FIPS 140-2 compliance from within a z/OS PKCS #11 application

	Preparing to use PKCS #11 applications
	Tasks for the system programmer
	Tasks for the security administrator
	Tasks for the auditor
	Tasks for application programmers

	Chapter 2. The C API
	Using the C API
	Deleting z/OS PKCS #11 tokens
	Environment
	Cross memory considerations

	Key types and mechanisms supported
	Objects and attributes supported
	Library, slot, and token information
	Functions supported
	Standard functions supported
	Non-standard functions supported

	Function return codes
	Troubleshooting PKCS #11 applications

	Chapter 3. The testpkcs11 program
	Running the pre-compiled version of testpkcs11
	Steps for running the pre-compiled version of testpkcs11

	Building testpkcs11 from source code
	Steps for building testpkcs11 from source code

	Chapter 4. ICSF PKCS #11 callable services
	SMP/E installation data sets, directories, and files
	Source code for the testpkcs11 sample program
	Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming interface information
	Trademarks

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X
	Z

