
z/OS
Cryptographic Services
Integrated Cryptographic Service Facility

Application Programmer's Guide

SA22-7522-15

���

Note!
Before using this information and the product it supports, be sure to read the general information in the “Notices” on page
911.

This edition applies to Version 1, Release 13 of IBM z/OS (product number 5694-A01) and all subsequent releases
and modifications until otherwise indicated in new editions. This edition applies to ICSF FMID HCR7790.

This edition replaces SA22-7522-14

© Copyright IBM Corporation 1997, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . xxi

Tables . xxiii

About this information . xxxi
Who should use this information xxxi
How to use this information . xxxi
Where to find more information xxxiii

Related Publications . xxxiii

How to send your comments to IBM xxxv
If you have a technical problem xxxv

Summary of changes . xxxvii
Changes made in z/OS Version 1 Release 13 xxxvii
Changes made in z/OS Version 1 Release 12 xxxix
Changes made in z/OS Version 1 Release 11 xlii

Part 1. IBM CCA Programming . 1

Chapter 1. Introducing Programming for the IBM CCA 3
ICSF Callable Services Naming Conventions 3
Callable Service Syntax . 3

Callable Services with ALET Parameters 4
Rules for Defining Parameters and Attributes 5
Parameter Definitions . 6
Invocation Requirements. 9
Security Considerations . 9

Performance Considerations . 10
Special Secure Mode . 10
Using the Callable Services . 11

When the Call Succeeds . 11
When the Call Does Not Succeed 12

Linking a Program with the ICSF Callable Services 12

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric
Key Callable Services . 15

Functions of the Symmetric Cryptographic Keys. 15
Key Separation . 16
Master Key Variant for Fixed-length Tokens 16
Transport Key Variant for Fixed-length Tokens 16
Key Forms . 17
Key Token . 17
Key Wrapping . 19
Control Vector for DES Keys 19
Types of Keys . 19

Generating and Managing Symmetric Keys 25
Key Generator Utility Program 25
Common Cryptographic Architecture DES Key Management Services. . . . 25
Common Cryptographic Architecture AES Key Management Services 29
Common Cryptographic Architecture HMAC Key Management Services . . . 31
ECC Diffie-Hellman Key Agreement Models 32
Improved remote key distribution 32

© Copyright IBM Corp. 1997, 2011 iii

||
||

||

Diversifying keys . 46
Callable Services for Dynamic CKDS Update. 46
Callable Services that Support Secure Sockets Layer (SSL) 48
System Encryption Algorithm 49
ANSI X9.17 Key Management Services 50

Enciphering and Deciphering Data. 52
Encoding and Decoding Data (CSNBECO, CSNEECO, CSNBDCO, and

CSNEDCO) . 53
Translating Ciphertext (CSNBCTT or CSNBCTT1 and CSNECTT or

CSNECTT1) . 53
Managing Data Integrity and Message Authentication 53

Message Authentication Code Processing 53
Hashing Functions . 55

Managing Personal Authentication 56
Verifying Credit Card Data. 57

ANSI TR-31 key block support 59
TR-31 Export Callable Service (CSNBT31X and CSNET31X) 59
TR-31 Import Callable Service (CSNBT31I and CSNET31I) 59
TR-31 Parse Callable Service (CSNBT31P and CSNET31P) 60
TR-31 Optional Data Read Callable Service (CSNBT31R and CSNET31R) 60
TR-31 Optional Data Build Callable Service (CSNBT31O and CSNET31O) 60

Secure Messaging . 60
Trusted Key Entry (TKE) Support 60
Utilities . 61

Character/Nibble Conversion Callable Services (CSNBXBC and CSNBXCB) 61
Code Conversion Callable Services (CSNBXEA and CSNBXAE) 61
X9.9 Data Editing Callable Service (CSNB9ED) 61
ICSF Query Algorithm Callable Service (CSFIQA) 61
ICSF Query Facility Callable Service (CSFIQF) 61

Typical Sequences of ICSF Callable Services 62
Key Forms and Types Used in the Key Generate Callable Service 63

Generating an Operational Key 63
Generating an Importable Key 63
Generating an Exportable Key 63
Examples of Single-Length Keys in One Form Only 63
Examples of OPIM Single-Length, Double-Length, and Triple-Length Keys in

Two Forms . 64
Examples of OPEX Single-Length, Double-Length, and Triple-Length Keys in

Two Forms . 64
Examples of IMEX Single-Length and Double-Length Keys in Two Forms 65
Examples of EXEX Single-Length and Double-Length Keys in Two Forms 65
Generating AKEKs . 65

Using the Ciphertext Translate Callable Service 66
Summary of Callable Services 67

Chapter 3. Introducing PKA Cryptography and Using PKA Callable
Services . 79

PKA Key Algorithms . 79
PKA Master Keys . 79

Operational private keys . 80
PKA Callable Services . 81

Callable Services Supporting Digital Signatures 81
Callable Services for PKA Key Management 82
Callable Services to Update the Public Key Data Set (PKDS) 83
Callable Services for Working with Retained Private Keys 84
Callable Services for SET Secure Electronic Transaction 85

iv z/OS V1R13 ICSF Application Programmer's Guide

||
||
||
||
||
||

||

PKA Key Tokens . 85
PKA Key Management . 86
Security and Integrity of the Token. 87
Key Identifier for PKA Key Token 88

Key Label . 88
Key Token . 88

The Transaction Security System and ICSF Portability 89
Summary of the PKA Callable Services 89

Chapter 4. Introducing PKCS #11 and using PKCS #11 callable services 93
PKCS #11 Management Services 93
Attribute List . 94
Handles . 95

Part 2. CCA Callable Services . 97

Chapter 5. Managing Symmetric Cryptographic Keys 99
Clear Key Import (CSNBCKI and CSNECKI) 100

Format . 100
Parameters . 100
Usage Notes . 101

Control Vector Generate (CSNBCVG and CSNECVG) 102
Format . 102
Parameters . 102
Usage Notes . 105

Control Vector Translate (CSNBCVT and CSNECVT) 105
Format . 106
Parameters . 106
Restrictions. 108
Usage Notes . 108

Cryptographic Variable Encipher (CSNBCVE and CSNECVE) 109
Format . 109
Parameters . 109
Restrictions . 111
Usage Notes . 111

Data Key Export (CSNBDKX and CSNEDKX) 111
Format . 112
Parameters . 112
Restrictions . 113
Usage Notes . 113

Data Key Import (CSNBDKM and CSNEDKM) 114
Format . 114
Parameters . 114
Restrictions . 116
Usage Notes . 116

Diversified Key Generate (CSNBDKG and CSNEDKG) 117
Format . 117
Parameters . 118
Restrictions. 121
Usage Notes . 121

ECC Diffie-Hellman (CSNDEDH and CSNFEDH) 123
Format . 124
Parameters . 124
Restrictions. 128
Usage Notes . 129

Key Export (CSNBKEX and CSNEKEX) 130

Contents v

||
||
||
||
||

Format . 131
Parameters . 131
Restrictions. 132
Usage Notes . 133

Key Generate (CSNBKGN and CSNEKGN) 135
Format . 135
Parameters . 135
Restrictions. 143
Usage Notes . 143

Key Generate2 (CSNBKGN2 and CSNEKGN2) 147
Format . 148
Parameters . 148
Usage Notes . 153

Key Import (CSNBKIM and CSNEKIM) 155
Format . 156
Parameters . 156
Restrictions. 158
Usage Notes . 158

Key Part Import (CSNBKPI and CSNEKPI) 160
Format . 161
Parameters . 161
Restrictions. 163
Usage Notes . 164
Related Information . 165

Key Part Import2 (CSNBKPI2 and CSNEKPI2). 165
Format . 166
Parameters . 166
Usage Notes . 168

Key Test (CSNBKYT and CSNEKYT) 169
Format . 170
Parameters . 170
Restrictions. 172
Usage Notes . 172

Key Test2 (CSNBKYT2 and CSNEKYT2) 173
Format . 174
Parameters . 174
Usage Notes . 177

Key Test Extended (CSNBKYTX and CSNEKTX) 178
Format . 178
Parameters . 178
Restrictions. 180
Usage Notes . 180

Key Token Build (CSNBKTB and CSNEKTB) 181
Format . 182
Parameters . 182
Restrictions. 188
Usage Notes . 188
Related Information . 190

Key Token Build2 (CSNBKTB2 and CSNEKTB2) 191
Format . 191
Parameters . 191
Usage Notes . 197

Key Translate (CSNBKTR and CSNEKTR) 197
Format . 197
Parameters . 198
Restrictions. 199

vi z/OS V1R13 ICSF Application Programmer's Guide

Usage Notes . 199
Key Translate2 (CSNBKTR2 and CSNEKTR2) 199

Format . 200
Parameters . 200
Restrictions. 204
Usage Notes . 204

Multiple Clear Key Import (CSNBCKM and CSNECKM) 205
Format . 206
Parameters . 206
Usage Notes . 208

Multiple Secure Key Import (CSNBSKM and CSNESKM) 209
Format . 210
Parameters . 210
Usage Notes . 213

PKA Decrypt (CSNDPKD and CSNFPKD) 215
Format . 216
Parameters . 216
Restrictions. 218
Usage Notes . 218

PKA Encrypt (CSNDPKE and CSNFPKE) 220
Format . 221
Parameters . 221
Restrictions. 223
Usage Notes . 223

Prohibit Export (CSNBPEX and CSNEPEX) 225
Format . 225
Parameters . 225
Usage Notes . 226

Prohibit Export Extended (CSNBPEXX and CSNEPEXX) 226
Format . 227
Parameters . 227
Restrictions. 228
Usage Notes . 228

Random Number Generate (CSNBRNG, CSNERNG, CSNBRNGL and
CSNERNGL) . 228
Format . 229
Parameters . 229
Usage Notes . 231

Remote Key Export (CSNDRKX and CSNFRKX) 232
Format . 232
Parameters . 232
Usage Notes . 238

Restrict Key Attribute (CSNBRKA and CSNERKA) 239
Format . 239
Parameters . 239
Usage Notes . 243

Secure Key Import (CSNBSKI and CSNESKI) 243
Format . 244
Parameters . 244
Usage Notes . 246

Secure Key Import2 (CSNBSKI2 and CSNESKI2) 247
Format . 248
Parameters . 248
Usage Notes . 251

Symmetric Key Export (CSNDSYX and CSNFSYX) 251
Format . 252

Contents vii

Parameters . 252
Restrictions. 254
Usage Notes . 254

Symmetric Key Generate (CSNDSYG and CSNFSYG). 258
Format . 259
Parameters . 259
Restrictions. 262
Usage Notes . 263

Symmetric Key Import (CSNDSYI and CSNFSYI). 266
Format . 266
Parameters . 266
Restrictions. 269
Usage Notes . 269

Symmetric Key Import2 (CSNDSYI2 and CSNFSYI2) 272
Format . 273
Parameters . 273
Restrictions. 275
Usage Notes . 275

Transform CDMF Key (CSNBTCK and CSNETCK) 277
Format . 277
Parameters . 277
Restrictions. 279
Usage Notes . 279

Trusted Block Create (CSNDTBC and CSNFTBC) 279
Format . 280
Parameters . 280
Usage Notes . 282

TR-31 Export (CSNBT31X and CSNET31X). 283
Format . 283
Parameters . 283
Restrictions. 288
Usage Notes . 288

TR-31 Import (CSNBT31I and CSNET31I) 298
Format . 298
Parameters . 298
Restrictions. 303
Usage Notes . 303

TR-31 Optional Data Build (CSNBT31O and CSNET31O). 311
Format . 311
Parameters . 311
Restrictions. 313
Usage Notes . 313

TR-31 Optional Data Read (CSNBT31R and CSNET31R) 314
Format . 314
Parameters . 314
Restrictions. 317
Usage Notes . 317

TR-31 Parse (CSNBT31P and CSNET31P) 318
Format . 318
Parameters . 318
Restrictions. 320
Usage Notes . 320

User Derived Key (CSFUDK and CSFUDK6) 321
Format . 322
Parameters . 322
Usage Notes . 324

viii z/OS V1R13 ICSF Application Programmer's Guide

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

Chapter 6. Protecting Data 325
Modes of Operation. 325

Electronic Code Book (ECB) Mode 326
Cipher Block Chaining (CBC) Mode 326
Cipher Feedback (CFB) Mode 326
Output Feedback (OFB) Mode. 326
Galois/Counter Mode (GCM) 327
Triple DES Encryption . 327

Ciphertext Translate (CSNBCTT or CSNBCTT1 and CSNECTT or CSNECTT1) 328
Choosing Between CSNBCTT and CSNBCTT1 328
Format . 329
Parameters . 329
Restrictions. 331
Usage Notes . 331

Decipher (CSNBDEC or CSNBDEC1 and CSNEDEC or CSNEDEC1) 331
Choosing Between CSNBDEC and CSNBDEC1 333
Format . 333
Parameters . 333
Restrictions. 337
Usage Notes . 337
Related Information . 337

Decode (CSNBDCO and CSNEDCO) 338
Considerations . 338
Format . 338
Parameters . 339
Restrictions. 339
Usage Notes . 339

Encipher (CSNBENC or CSNBENC1 and CSNEENC or CSNEENC1) 340
Choosing between CSNBENC and CSNBENC1 342
Format . 342
Parameters . 342
Restrictions. 346
Usage Notes . 346
Related Information . 347

Encode (CSNBECO and CSNEECO) 348
Considerations . 348
Format . 348
Parameters . 348
Restrictions. 349
Usage Notes . 349

Symmetric Algorithm Decipher (CSNBSAD or CSNBSAD1 and CSNESAD or
CSNESAD1) . 350
Choosing Between CSNBSAD and CSNBSAD1 or CSNESAD and

CSNESAD1. 350
Format . 351
Parameters . 351
Usage Notes . 355

Symmetric Algorithm Encipher (CSNBSAE or CSNBSAE1 and CSNESAE or
CSNESAE1) . 356
Choosing between CSNBSAE and CSNBSAE1 or CSNESAE and

CSNESAE1 . 356
Format . 357
Parameters . 357
Usage Notes . 361

Symmetric Key Decipher (CSNBSYD or CSNBSYD1 and CSNESYD or
CSNESYD1) . 362

Contents ix

Choosing Between CSNBSYD and CSNBSYD1 364
Format . 364
Parameters . 365
Usage Notes . 370
Related Information . 371

Symmetric Key Encipher (CSNBSYE or CSNBSYE1 and CSNESYE or
CSNESYE1) . 371
Choosing between CSNBSYE and CSNBSYE1 373
Format . 374
Parameters . 374
Usage Notes . 379
Related Information . 380

Chapter 7. Verifying Data Integrity and Authenticating Messages 383
How MACs are Used . 383
How Hashing Functions Are Used 384

How MDCs Are Used . 384
HMAC Generate (CSNBHMG or CSNBHMG1 and CSNEHMG or CSNEHMG1) 385

Choosing Between CSNBHMG and CSNBHMG1 385
Format . 386
Parameters . 386
Usage Notes . 389

HMAC Verify (CSNBHMV or CSNBHMV1 and CSNEHMV or CSNEHMV1) 389
Choosing Between CSNBHMV and CSNBHMV1 389
Format . 390
Parameters . 390
Usage Notes . 393

MAC Generate (CSNBMGN or CSNBMGN1 and CSNEMGN or CSNEMGN1) 393
Choosing Between CSNBMGN and CSNBMGN1 394
Format . 394
Parameters . 394
Usage Notes . 397
Related Information . 398

MAC Verify (CSNBMVR or CSNBMVR1 and CSNEMVR or CSNEMVR1) 398
Choosing Between CSNBMVR and CSNBMVR1 399
Format . 399
Parameters . 400
Usage Notes . 403
Related Information . 404

MDC Generate (CSNBMDG or CSNBMDG1 and CSNEMDG or CSNEMDG1) 404
Choosing Between CSNBMDG and CSNBMDG1 404
Format . 405
Parameters . 405
Usage Notes . 407

One-Way Hash Generate (CSNBOWH or CSNBOWH1 and CSNEOWH or
CSNEOWH1) . 408
Format . 409
Parameters . 409
Usage Notes . 412

Symmetric MAC Generate (CSNBSMG or CSNBSMG1 and CSNESMG or
CSNESMG1) . 413
Choosing Between CSNBSMG and CSNBSMG1 or CSNESMG and

CSNESMG1 . 413
Format . 413
Parameters . 414
Usage Notes . 417

x z/OS V1R13 ICSF Application Programmer's Guide

Symmetric MAC Verify (CSNBSMV or CSNBSMV1 and CSNESMV or
CSNESMV1) . 417
Choosing Between CSNBSMV and CSNBSMV1 or CSNESMV and

CSNESMV1. 417
Format . 418
Parameters . 418
Usage Notes . 421

Chapter 8. Financial Services 423
How Personal Identification Numbers (PINs) are Used 423
How VISA Card Verification Values Are Used 423
Translating Data and PINs in Networks 424
Working with Europay–MasterCard–Visa smart cards 424
PIN Callable Services . 425

Generating a PIN . 425
Encrypting a PIN. 425
Generating a PIN Validation Value from an Encrypted PIN Block 425
Verifying a PIN . 425
Translating a PIN . 425
Algorithms for Generating and Verifying a PIN 425
Using PINs on Different Systems 426
PIN-Encrypting Keys . 426

ANSI X9.8 PIN Restrictions . 427
ANSI X9.8 PIN - Enforce PIN block restrictions 427
ANSI X9.8 PIN - Allow modification of PAN 428
ANSI X9.8 PIN - Allow only ANSI PIN blocks 428
ANSI X9.8 PIN – Use stored decimalization tables only 428

The PIN Profile . 429
PIN Block Format . 429
Enhanced PIN Security Mode 431
Format Control . 432
Pad Digit . 432
Current Key Serial Number 433
Decimalization Tables . 434

Clear PIN Encrypt (CSNBCPE and CSNECPE) 434
Format . 435
Parameters . 435
Restrictions. 437
Usage Notes . 437

Clear PIN Generate (CSNBPGN and CSNEPGN) 438
Format . 438
Parameters . 438
Restrictions. 441
Usage Notes . 441
Related Information . 442

Clear PIN Generate Alternate (CSNBCPA and CSNECPA) 442
Format . 443
Parameters . 443
Restrictions. 446
Usage Notes . 447

CVV Key Combine (CSNBCKC and CSNECKC) 448
Format . 449
Parameters . 449
Restrictions. 451
Usage Notes . 451

Encrypted PIN Generate (CSNBEPG and CSNEEPG) 453

Contents xi

||

||

||
||
||
||
||

Format . 454
Parameters . 454
Restrictions. 457
Usage Notes . 457

Encrypted PIN Translate (CSNBPTR and CSNEPTR) 458
Format . 459
Parameters . 459
Restrictions. 463
Usage Notes . 463

Encrypted PIN Verify (CSNBPVR and CSNEPVR) 466
Format . 466
Parameters . 466
Restrictions. 470
Usage Notes . 470
Related Information . 472

PIN Change/Unblock (CSNBPCU and CSNEPCU) 473
Format . 474
Parameters . 474
Usage Notes . 478

Secure Messaging for Keys (CSNBSKY and CSNESKY) 479
Format . 479
Parameters . 479
Usage Notes . 482

Secure Messaging for PINs (CSNBSPN and CSNESPN) 482
Format . 483
Parameters . 483
Usage Notes . 486

SET Block Compose (CSNDSBC and CSNFSBC) 487
Format . 487
Parameters . 487
Restrictions. 491
Usage Notes . 491

SET Block Decompose (CSNDSBD and CSNFSBD) 492
Format . 492
Parameters . 493
Restrictions. 496
Usage Notes . 496

Transaction Validation (CSNBTRV and CSNETRV) 498
Format . 498
Parameters . 499
Usage Notes . 501

VISA CVV Service Generate (CSNBCSG and CSNECSG) 502
Format . 502
Parameters . 502
Restrictions. 505
Usage Notes . 505

VISA CVV Service Verify (CSNBCSV and CSNECSV) 506
Format . 507
Parameters . 507
Restrictions. 510
Usage Notes . 510

Chapter 9. Using Digital Signatures 511
Digital Signature Generate (CSNDDSG and CSNFDSG) 511

Format . 512
Parameters . 512

xii z/OS V1R13 ICSF Application Programmer's Guide

Restrictions. 515
Usage Notes . 515

Digital Signature Verify (CSNDDSV and CSNFDSV). 518
Format . 519
Parameters . 519
Restrictions. 521
Usage Notes . 522

Chapter 10. Managing PKA Cryptographic Keys 525
PKA Key Generate (CSNDPKG and CSNFPKG) 525

Format . 526
Parameters . 526
Restrictions. 530
Usage Notes . 530

PKA Key Import (CSNDPKI and CSNFPKI) 531
Format . 532
Parameters . 532
Restrictions. 534
Usage Notes . 534

PKA Key Token Build (CSNDPKB and CSNFPKB) 535
Format . 536
Parameters . 537
Usage Notes . 547

PKA Key Token Change (CSNDKTC and CSNFKTC) 548
Format . 548
Parameters . 548
Usage Notes . 550

PKA Key Translate (CSNDPKT and CSNFPKT) 551
Format . 552
Parameters . 552
Restrictions. 554
Usage Notes . 554

PKA Public Key Extract (CSNDPKX and CSNFPKX) 555
Format . 556
Parameters . 556
Usage Notes . 557

Retained Key Delete (CSNDRKD and CSNFRKD) 558
Format . 558
Parameters . 558
Usage Notes . 559

Retained Key List (CSNDRKL and CSNFRKL) 560
Format . 561
Parameters . 561
Usage Notes . 563

Chapter 11. Key Data Set Management 565
CKDS Key Record Create (CSNBKRC and CSNEKRC) 565

Format . 565
Parameters . 565
Restrictions. 566
Usage Notes . 566

CKDS Key Record Create2 (CSNBKRC2 and CSNEKRC2) 567
Format . 567
Parameters . 567
Usage Notes . 568

CKDS Key Record Delete (CSNBKRD and CSNEKRD) 569

Contents xiii

||

||

||

Format . 569
Parameters . 569
Restrictions. 570
Usage Notes . 570

CKDS Key Record Read (CSNBKRR and CSNEKRR) 571
Format . 571
Parameters . 571
Restrictions. 572
Usage Notes . 572

CKDS Key Record Read2 (CSNBKRR2 and CSNEKRR2) 573
Format . 573
Parameters . 573
Usage Notes . 574

CKDS Key Record Write (CSNBKRW and CSNEKRW) 575
Format . 575
Parameters . 575
Restrictions. 576
Usage Notes . 576
Related Information . 577

CKDS Key Record Write2 (CSNBKRW2 and CSNEKRW2) 577
Format . 578
Parameters . 578
Usage Notes . 579

Coordinated KDS Administration (CSFCRC and CSFCRC6) 580
Format . 580
Parameters . 580
Usage Notes . 582

PKDS Key Record Create (CSNDKRC and CSNFKRC) 583
Format . 583
Parameters . 583
Usage Notes . 584

PKDS Key Record Delete (CSNDKRD and CSNFKRD) 585
Format . 585
Parameters . 585
Restrictions. 586
Usage Notes . 587

PKDS Key Record Read (CSNDKRR and CSNFKRR) 587
Format . 587
Parameters . 588
Usage Notes . 589

PKDS Key Record Write (CSNDKRW and CSNFKRW). 589
Format . 590
Parameters . 590
Restrictions. 591
Usage Notes . 591

Chapter 12. Utilities . 593
Character/Nibble Conversion (CSNBXBC and CSNBXCB) 593

Format . 593
Parameters . 593
Usage Notes . 594

Code Conversion (CSNBXEA and CSNBXAE) 595
Format . 595
Parameters . 595
Usage Notes . 596

ICSF Query Algorithm (CSFIQA and CSFIQA6) 597

xiv z/OS V1R13 ICSF Application Programmer's Guide

||

||

||

||
||
||
||
||

||

||

||

Format . 597
Parameters . 598
Usage Notes . 601

ICSF Query Facility (CSFIQF and CSFIQF6) 602
Format . 602
Parameters . 603
Usage Notes . 620

X9.9 Data Editing (CSNB9ED). 621
Format . 621
Parameters . 622
Usage Notes . 622

Chapter 13. Trusted Key Entry Workstation Interfaces 625
PCI Interface Callable Service (CSFPCI and CSFPCI6) 625

Format . 625
Parameters . 625
Usage Notes . 629

PKSC Interface Callable Service (CSFPKSC) 629
Format . 630
Parameters . 630
Usage Notes . 631

Chapter 14. Managing Keys According to the ANSI X9.17 Standard . . . 633
ANSI X9.17 EDC Generate (CSNAEGN and CSNGEGN) 633

Format . 633
Parameters . 633
Usage Notes . 635

ANSI X9.17 Key Export (CSNAKEX and CSNGKEX) 635
Format . 636
Parameters . 636
Usage Notes . 640

ANSI X9.17 Key Import (CSNAKIM and CSNGKIM) 640
Format . 641
Parameters . 641
Usage Notes . 644

ANSI X9.17 Key Translate (CSNAKTR and CSNGKTR) 645
Format . 646
Parameters . 646
Usage Notes . 649

ANSI X9.17 Transport Key Partial Notarize (CSNATKN and CSNGTKN) . . . 650
Format . 650
Parameters . 650
Usage Notes . 652

Part 3. PKCS #11 Callable Services . 653

Chapter 15. Using PKCS #11 Tokens and Objects 655
PKCS #11 Derive multiple keys (CSFPDMK and CSFPDMK6) 655

Format . 656
Parameters . 656
Authorization . 661
Usage Notes . 661

PKCS #11 Derive key (CSFPDVK and CSFPDVK6) 663
Format . 663
Parameters . 663
Authorization . 667

Contents xv

||

||

Usage Notes . 667
PKCS #11 Get attribute value (CSFPGAV and CSFPGAV6) 668

Format . 668
Parameters . 668
Authorization . 670
Usage Notes . 671

PKCS #11 Generate key pair (CSFPGKP and CSFPGKP6) 671
Format . 671
Parameters . 671
Authorization . 673
Usage Notes . 673

PKCS #11 Generate secret key (CSFPGSK and CSFPGSK6) 673
Format . 673
Parameters . 673
Authorization . 675
Usage Notes . 675

PKCS #11 Generate HMAC (CSFPHMG and CSFPHMG6) 675
Format . 676
Parameters . 676
Authorization . 678
Usage Notes . 678

PKCS #11 Verify HMAC (CSFPHMV and CSFPHMV6). 679
Format . 679
Parameters . 679
Authorization . 682
Usage Notes . 682

PKCS #11 One-way hash, sign, or verify (CSFPOWH and CSFPOWH6) . . . 682
Format . 683
Parameters . 683
Authorization . 686
Usage Notes . 687

PKCS #11 Private key sign (CSFPPKS and CSFPPKS6) 687
Format . 687
Parameters . 688
Authorization . 689
Usage Notes . 689

PKCS #11 Public key verify (CSFPPKV and CSFPPKV6) 689
Format . 690
Parameters . 690
Authorization . 692
Usage Notes . 692

PKCS #11 Pseudo-random function (CSFPPRF and CSFPPRF6) 692
Format . 692
Parameters . 692
Authorization . 694
Usage Notes . 694

PKCS #11 Set attribute value (CSFPSAV and CSFPSAV6) 695
Format . 695
Parameters . 695
Authorization . 696
Usage Notes . 696

PKCS #11 Secret key decrypt (CSFPSKD and CSFPSKD6) 697
Format . 697
Parameters . 697
Authorization . 701
Usage Notes . 701

xvi z/OS V1R13 ICSF Application Programmer's Guide

||

||

||

||

||

||

||

||

||

||

PKCS #11 Secret key encrypt (CSFPSKE and CSFPSKE6) 701
Format . 702
Parameters . 702
Authorization . 706
Usage Notes . 706

PKCS #11 Token record create (CSFPTRC and CSFPTRC6) 707
Format . 707
Parameters . 708
Authorization . 709
Usage Notes . 710

PKCS #11 Token record delete (CSFPTRD and CSFPTRD6) 711
Format . 711
Parameters . 711
Authorization . 712
Usage Notes . 712

PKCS #11 Token record list (CSFPTRL and CSFPTRL6) 713
Format . 713
Parameters . 713
Authorization . 715
Usage Notes . 716

PKCS #11 Unwrap key (CSFPUWK and CSFPUWK6) 717
Format . 717
Parameters . 717
Authorization . 719

PKCS #11 Wrap key (CSFPWPK and CSFPWPK6) 720
Format . 720
Parameters . 720
Authorization . 722

Part 4. Appendixes . 723

Appendix A. ICSF and TSS Return and Reason Codes 725
Return Codes and Reason Codes 725

Return Codes . 725
Reason Codes for Return Code 0 (0) 726
Reason Codes for Return Code 4 (4) 727
Reason Codes for Return Code 8 (8) 730
Reason Codes for Return Code C (12) 765
Reason Codes for Return Code 10 (16) 776

Appendix B. Key Token Formats 777
AES Key Token Formats . 777

AES Internal Key Token . 777
Token Validation Value . 778

DES Key Token Formats . 778
DES Internal Key Token . 778
DES External Key Token . 780
External RKX DES Key Token 781
DES Null Key Token . 782

Variable-length Symmetric Key Token Formats 782
Variable-length Symmetric Key Token 782
Variable-length Symmetric Null Key Token 792

PKA Key Token Formats . 793
PKA Null Key Token . 793
RSA Key Token Formats . 793
DSS Key Token Formats . 803

Contents xvii

||

||

||

||

||

||

||
||
||

ECC Key Token Format . 807
Trusted Block Key Token . 811

Appendix C. Control Vectors and Changing Control Vectors with the CVT
Callable Service . 827

Control Vector Table . 827
Specifying a Control-Vector-Base Value 832

Changing Control Vectors with the Control Vector Translate Callable Service 837
Providing the Control Information for Testing the Control Vectors 837
Mask Array Preparation . 837
Selecting the Key-Half Processing Mode 839
When the Target Key Token CV Is Null 841
Control Vector Translate Example 841

Appendix D. Coding Examples 843
C . 843
COBOL . 846
Assembler H . 848
PL/1 . 850

Appendix E. Using ICSF with BSAFE 855
Some BSAFE Basics . 855

Computing Message Digests and Hashes 855
Generating Random Numbers 855
Encrypting and Decrypting with DES 856
Generating and Verifying RSA Digital Signatures 856

Encrypting and Decrypting with RSA 857
Using the New Function Calls in Your BSAFE Application 857
Using the BSAFE KI_TOKEN 859
ICSF Triple DES via BSAFE 859
Retrieving ICSF Error Information 860

Appendix F. Cryptographic Algorithms and Processes 863
PIN Formats and Algorithms 863

PIN Notation . 863
PIN Block Formats . 863
PIN Extraction Rules . 865
IBM PIN Algorithms. 866
VISA PIN Algorithms . 872

Cipher Processing Rules . 874
CBC and ANSI X3.106 . 874
ANSI X9.23 and IBM 4700 875
CUSP. 876
The Information Protection System (IPS) 876
PKCS Padding Method . 877

Wrapping Methods for Symmetric Key Tokens 879
ECB Wrapping of DES Keys (Original Method). 879
CBC Wrapping of AES Keys 879
Enhanced CBC Wrapping of DES Keys (Enhanced Method). 879
Wrapping key derivation for enhanced wrapping of DES keys 880
Variable length token (AESKW method) 881

PKA92 Key Format and Encryption Process. 881
ANSI X9.17 Partial Notarization Method 883

Partial Notarization . 883
Transform CDMF Key Algorithm 884
Formatting Hashes and Keys in Public-Key Cryptography. 885

xviii z/OS V1R13 ICSF Application Programmer's Guide

ANSI X9.31 Hash Format 886
PKCS #1 Formats . 886

Visa and EMV-related smart card formats and processes 887
Deriving the smart-card-specific authentication code. 887
Constructing the PIN-block for transporting an EMV smart-card PIN 888
Deriving the CCA TDES-XOR session key 888
Deriving the EMV TDESEMVn tree-based session key 889
PIN-block self-encryption . 889

Key Test Verification Pattern Algorithms 889
DES Algorithm (single- and double-length keys) 889
SHAVP1 Algorithm . 889

Appendix G. EBCDIC and ASCII Default Conversion Tables 891

Appendix H. Access Control Points and Callable Services 893
Callable Service Access Control Points 898

Appendix I. Accessibility . 909
Using assistive technologies 909
Keyboard navigation of the user interface. 909
z/OS information . 909

Notices . 911
Programming Interface Information 912
Trademarks. 912

Glossary . 913

Index . 923

Contents xix

xx z/OS V1R13 ICSF Application Programmer's Guide

Figures

1. Overview of trusted block contents . 35
2. Simplified RKX key-token structure . 39
3. Trusted block creation . 39
4. Exporting keys using a trusted block . 40
5. Generating keys using a trusted block . 43
6. Typical flow of callable services for remote key export 44
7. PKA Key Management. 87
8. Control Vector Base Bit Map (Common Bits and Key-Encrypting Keys) 829
9. Control Vector Base Bit Map (Data Operation Keys) 830

10. Control Vector Base Bit Map (PIN Processing Keys and Cryptographic Variable-Encrypting Keys) 831
11. Control Vector Base Bit Map (Key Generating Keys) 832
12. Control Vector Translate Callable Service Mask_Array Processing 839
13. Control Vector Translate Callable Service . 840
14. 3624 PIN Generation Algorithm . 867
15. GBP PIN Generation Algorithm . 868
16. PIN-Offset Generation Algorithm. 869
17. PIN Verification Algorithm . 871
18. GBP PIN Verification Algorithm . 872
19. PVV Generation Algorithm . 873
20. The CDMF Key Transformation Algorithm . 885

© Copyright IBM Corp. 1997, 2011 xxi

xxii z/OS V1R13 ICSF Application Programmer's Guide

Tables

1. ICSF Callable Services Naming Conventions . 3
2. Standard Return Code Values From ICSF Callable Services 7
3. Descriptions of Key Types . 23
4. Summary of Data Encryption Standard Bits . 50
5. Combinations of the Callable Services . 62
6. Summary of ICSF Callable Services. 67
7. Summary of PKA Key Token Sections . 86
8. Summary of PKA Callable Services . 90
9. Summary of PKCS #11 callable services . 93

10. Clear key import required hardware . 101
11. Control vector generate required hardware . 105
12. Keywords for Control Vector Translate . 107
13. Control vector translate required hardware . 109
14. Cryptographic variable encipher required hardware 111
15. Required access control points for Data key export 113
16. Data key export required hardware . 114
17. Required access control points for Data key import 116
18. Data key import required hardware . 116
19. Rule Array Keywords for Diversified Key Generate 118
20. Required access control points for Diversified Key Generate 122
21. Diversified key generate required hardware . 122
22. Keywords for ECC Diffie-Hellman . 125
23. Valid key bit lengths and minimum curve size required for the supported output key types. 129
24. ECC Diffie-Hellman required hardware . 130
25. Required access control points for Key Export 134
26. Key export required hardware . 134
27. Key Form Values for the Key Generate Callable Service 136
28. Key Length Values for the Key Generate Callable Service 137
29. Key lengths for DES keys - CCF systems . 138
30. Key lengths for DES keys - PCIXCC/CEX2C/CEX3C systems 139
31. Key lengths for AES keys - CEX2C/CEX3C systems 140
32. Required access control points for Key Generate 143
33. Key Generate Valid Key Types and Key Forms for a Single Key 144
34. Key Generate Valid Key Types and Key Forms for a Key Pair 144
35. Key generate required hardware. 146
36. Keywords for Key Generate2 Control Information 149
37. Keywords and associated algorithms for key_type_1 parameter 150
38. Keywords and associated algorithms for key_type_2 parameter 150
39. Key Generate2 valid key type and key form for one key 154
40. Key Generate2 Valid key type and key forms for two keys 154
41. AES KEK strength required for generating an HMAC key under an AES KEK 154
42. Required access control points for Key Generate2 154
43. Key Generate2 required hardware . 155
44. Required access control points for Key Import 159
45. Key import required hardware . 160
46. Keywords for Key Part Import Control Information 162
47. Required access control points for Key Part Import 164
48. Key part import required hardware . 164
49. Keywords for Key Part Import2 Control Information 167
50. Required access control points for Key Part Import2 168
51. Key Part Import2 required hardware . 168
52. Keywords for Key Test Control Information . 171
53. Key test required hardware . 173

© Copyright IBM Corp. 1997, 2011 xxiii

||

||

||

||
||
||
||

||

||
||
||
||
||
||
||

||

||

54. Keywords for Key Test2 Control Information . 175
55. Key Test2 required hardware . 177
56. Keywords for Key Test Extended Control Information 179
57. Key test extended required hardware . 181
58. Key type keywords for key token build . 183
59. Keywords for Key Token Build Control Information 184
60. Key types and field lengths for AES keys . 186
61. Control Vector Generate and Key Token Build Control Vector Keyword Combinations 188
62. Key token build required hardware . 190
63. Keywords for Key Token Build2 Control Information 192
64. Key Token Build2 required hardware . 197
65. Key translate required hardware. 199
66. Key Translate2 Access Control Points. 205
67. Key Translate2 required hardware . 205
68. Keywords for Multiple Clear Key Import Rule Array Control Information 207
69. Required access control points for Multiple Clear Key Import 208
70. Multiple clear key import required hardware . 208
71. Keywords for Multiple Secure Key Import Rule Array Control Information 211
72. Required access control points for Multiple Secure Key Import 213
73. Multiple secure key import required hardware . 214
74. Keywords for PKA Decrypt . 217
75. PKA decrypt required hardware . 219
76. Keywords for PKA Encrypt . 222
77. PKA encrypt required hardware . 224
78. Prohibit export required hardware . 226
79. Prohibit export extended required hardware . 228
80. Keywords for the Form Parameter . 230
81. Keywords for Random Number Generate Control Information 230
82. Random number generate required hardware . 231
83. Structure of values used by RKX . 234
84. Values defined for hash algorithm identifier at offset 24 in the structure for remote key export 235
85. Transport_key_identifer used by RKX . 235
86. Examination of key token for source_key_identifier 236
87. Remote key export required hardware . 238
88. Keywords for Restrict Key Attribute Control Information 240
89. Restrict Key Attribute required hardware . 243
90. Required access control points for Secure Key Import. 246
91. Secure key import required hardware . 247
92. Keywords for Secure Key Import2 Control Information. 249
93. Required access control points for Secure Key Import2 251
94. Secure Key Import2 required hardware . 251
95. Keywords for Symmetric Key Export Control Information 253
96. AES EXPORTER strength required for exporting an HMAC key under an AES EXPORTER 255
97. Minimum RSA modulus strength required to contain a PKOAEP2 block when exporting an AES

key . 255
98. Minimum RSA modulus length to adequately protect an AES key 255
99. Required access control points for Symmetric Key Export 256

100. Symmetric key export required hardware . 257
101. Keywords for Symmetric Key Generate Control Information. 260
102. Required access control points for Symmetric Key Generate 263
103. Symmetric key generate required hardware . 264
104. Keywords for Symmetric Key Import Control Information 267
105. Required access control points for Symmetric Key Import 269
106. Symmetric key import required hardware . 270
107. Keywords for Symmetric Key Import2 Control Information 274
108. PKCS#1 OAEP encoded message layout (PKOAEP2) 275

xxiv z/OS V1R13 ICSF Application Programmer's Guide

||

||

||

||

||

||

||
|
||
||
||

||

||

||

109. Symmetric Key Import2 Access Control Points 276
110. Symmetric key import2 required hardware . 276
111. Transform CDMF key required hardware . 279
112. Rule_array keywords for Trusted Block Create (CSNDTBC) 281
113. Required access control points for Trusted Block Create 282
114. Trusted Block Create required hardware . 282
115. Keywords for TR-31 Export Rule Array Control Information 284
116. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) 289
117. TR-31 export required hardware. 297
118. Keywords for TR-31 Import Rule Array Control Information 299
119. Export attributes of an imported CCA token . 304
120. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) 305
121. TR-31 export required hardware. 310
122. TR-31 Optional Data Build required hardware . 314
123. Keywords for TR-31 Optional Data Read Rule Array Control Information 315
124. TR-31 Optional Data Read required hardware. 317
125. TR-31 Parse required hardware . 321
126. Keywords for User Derived Key Control Information 323
127. User derived key required hardware . 324
128. Ciphertext translate required hardware . 331
129. Keywords for the Decipher Rule Array Control Information 335
130. Decipher required hardware . 338
131. Decode required hardware . 340
132. Keywords for the Encipher Rule Array Control Information 344
133. Encipher required hardware . 347
134. Encode required hardware . 349
135. Symmetric Algorithm Decipher Rule Array Keywords 352
136. Symmetric Algorithm Decipher required hardware 355
137. Symmetric Algorithm Encipher Rule Array Keywords 358
138. Symmetric Algorithm Encipher required hardware 361
139. Symmetric Key Decipher Rule Array Keywords 366
140. Required access control points for Symmetric Key Decipher 370
141. Symmetric Key Decipher required hardware . 371
142. Symmetric Key Encipher Rule Array Keywords 375
143. Required access control points for Symmetric Key Encipher 380
144. Symmetric Key Encipher required hardware . 380
145. Keywords for HMAC Generate Control Information 387
146. HMAC Generate Access Control Points . 389
147. HMAC generate required hardware . 389
148. Keywords for HMAC Verify Control Information 391
149. HMAC Verify Access Control Points . 393
150. HMAC generate required hardware . 393
151. Keywords for MAC generate Control Information. 396
152. MAC generate required hardware . 398
153. Keywords for MAC verify Control Information . 401
154. MAC verify required hardware . 403
155. Keywords for MDC Generate Control Information 406
156. MDC generate required hardware . 408
157. Keywords for One-Way Hash Generate Rule Array Control Information 410
158. One-way hash generate required hardware. 412
159. Keywords for symmetric MAC generate control information 415
160. Symmetric MAC generate required hardware . 417
161. Keywords for symmetric MAC verify control information 420
162. Symmetric MAC verify required hardware . 421
163. ANSI X9.8 PIN - Allow only ANSI PIN blocks . 428
164. Format of a PIN Profile . 429

Tables xxv

||

||

||
||
||
||
||
||
||
||
||
||
||

||

||

165. Format Values of PIN Blocks . 429
166. PIN Block Format and PIN Extraction Method Keywords 430
167. Callable Services Affected by Enhanced PIN Security Mode 431
168. Format of a Pad Digit. 433
169. Pad Digits for PIN Block Formats . 433
170. Format of the Current Key Serial Number Field 434
171. Process Rules for the Clear PIN Encryption Callable Service 436
172. Clear PIN encrypt required hardware . 437
173. Process Rules for the Clear PIN Generate Callable Service 439
174. Array Elements for the Clear PIN Generate Callable Service 440
175. Array Elements Required by the Process Rule 441
176. Required access control points for Clear PIN Generate 441
177. Clear PIN generate required hardware . 442
178. Rule Array Elements for the Clear PIN Generate Alternate Service 445
179. Rule Array Keywords (First Element) for the Clear PIN Generate Alternate Service 445
180. Data Array Elements for the Clear PIN Generate Alternate Service (IBM-PINO) 446
181. Data Array Elements for the Clear PIN Generate Alternate Service (VISA-PVV) 446
182. PIN Block Variant Constants (PBVCs) . 447
183. Required access control points for Clear PIN Generate Alternate. 447
184. Clear PIN generate alternate required hardware 448
185. Keywords for CVV Key Combine Rule Array Control Information 450
186. Key type combinations for the CVV key combine callable service 452
187. Wrapping combinations for the CVV Combine Callable Service 452
188. TR-31 export required hardware. 453
189. Process Rules for the Encrypted PIN Generate Callable Service 455
190. Array Elements for the Encrypted PIN Generate Callable Service 456
191. Array Elements Required by the Process Rule 456
192. Required access control points for Encrypted PIN Generate 457
193. Encrypted PIN generate required hardware. 457
194. Keywords for Encrypted PIN Translate . 461
195. Additional Names for PIN Formats . 463
196. PIN Block Variant Constants (PBVCs) . 463
197. Required access control points for Encrypted PIN Translate 464
198. Encrypted PIN translate required hardware . 465
199. Keywords for Encrypted PIN Verify . 468
200. Array Elements for the Encrypted PIN Verify Callable Service 469
201. Array Elements Required by the Process Rule 470
202. PIN Block Variant Constants (PBVCs) . 471
203. Required access control points for Encrypted PIN Verify 471
204. Encrypted PIN verify required hardware . 472
205. Rule Array Keywords for PIN Change/Unblock 475
206. Required access control points for PIN Change/Unblock 478
207. PIN Change/Unblock hardware . 478
208. Rule Array Keywords for Secure Messaging for Keys 480
209. Secure messaging for keys required hardware 482
210. Rule Array Keywords for Secure Messaging for PINs 484
211. Secure messaging for PINs required hardware 486
212. Keywords for SET Block Compose Control Information 488
213. SET block compose required hardware . 492
214. Keywords for SET Block Compose Control Information 493
215. Required access control points for PIN-block encrypting key 497
216. SET block decompose required hardware . 497
217. Rule Array Keywords for Transaction Validation 499
218. Output description for validation values . 501
219. Required access control points for Transaction Validation 501
220. Transaction validation required hardware . 501

xxvi z/OS V1R13 ICSF Application Programmer's Guide

||

||

||
||
||
||

||

||

||

||

||

||

221. CVV Generate Rule Array Keywords . 503
222. VISA CVV service generate required hardware 506
223. CVV Verify Rule Array Keywords . 508
224. VISA CVV service verify required hardware . 510
225. Keywords for Digital Signature Generate Control Information 513
226. Digital signature generate required hardware . 516
227. Keywords for Digital Signature Verify Control Information 520
228. Digital signature verify required hardware . 522
229. Keywords for PKA Key Generate Rule Array . 527
230. Required access control points for PKA Key Generate rule array keys 530
231. PKA key generate required hardware . 530
232. Keywords for PKA Key Import . 533
233. PKA key import required hardware . 535
234. Keywords for PKA Key Token Build Control Information 537
235. Key Value Structure Length Maximum Values for Key Types 539
236. Key Value Structure Elements for PKA Key Token Build 539
237. PKA key token build required hardware . 548
238. Rule Array Keywords for PKA Key Token Change 549
239. PKA key token change required hardware . 551
240. Keywords for PKA Key Generate Rule Array . 553
241. Required access control points for PKA Key Translate 554
242. Required access control points for source/target transport key combinations 555
243. PKA key translate required hardware . 555
244. PKA public key extract build required hardware 557
245. Retained key delete required hardware . 560
246. Retained key list required hardware . 563
247. CKDS record create required hardware . 567
248. CKDS Key Record Create2 required hardware 569
249. CKDS record delete required hardware . 571
250. CKDS record read required hardware . 572
251. CKDS key record read2 required hardware. 575
252. CKDS record write required hardware. 577
253. CKDS key record write2 required hardware . 579
254. Coordinated CKDS administration required hardware 583
255. PKDS key record create required hardware . 585
256. Keywords for PKDS Key Record Delete . 586
257. PKDS key record delete required hardware . 587
258. PKDS key record read required hardware . 589
259. Keywords for PKDS Key Record Write . 591
260. PKDS key record write required hardware . 592
261. Character/Nibble conversion required hardware 595
262. Code conversion required hardware . 597
263. Keywords for ICSF Query Algorithm . 598
264. Output for ICSF Query Algorithm . 599
265. ICSF Query Algorithm required hardware . 601
266. Keywords for ICSF Query Service . 603
267. Output for option ICSFSTAT . 605
268. Output for option ICSFST2. 607
269. Output for option NUM-DECT. 612
270. Output for option STATAES . 612
271. Output for option STATCCA . 613
272. Output for option STATCCAE . 613
273. Output for option STATCARD . 614
274. Output for option STATDECT . 615
275. Output for option STATDIAG . 616
276. Output for option STATEID . 617

Tables xxvii

||

||
||

|

|
||

||

||

277. Output for option STATEXPT . 617
278. Output for option STATAPKA . 619
279. Output for option WRAPMTHD . 619
280. ICSF Query Service required hardware . 620
281. X9.9 data editing required hardware . 623
282. Keywords for PCI Interface Callable Service . 626
283. PCI Interface required hardware. 629
284. PKSC Interface required hardware . 631
285. ANSI X9.17 EDC generate required hardware. 635
286. Keywords for ANSI X9.17 Key Export Rule Array 637
287. ANSI X9.17 key export required hardware . 640
288. Keywords for ANSI X9.17 Key Import Rule Array 642
289. ANSI X9.17 key import required hardware . 645
290. Keywords for ANSI X9.17 Key Translate Rule Array 647
291. ANSI X9.17 key translate required hardware . 650
292. ANSI X9.17 transport key partial notarize required hardware 652
293. Keywords for derive multiple keys . 657
294. parms_list parameter format for SSL-KM and TLS-KM mechanisms. 659
295. parms_list parameter format for IKE1PHA1 mechanism 660
296. parms_list parameter format for IKE2PHA1 mechanism 660
297. parms_list parameter format for IKE1PHA2 and IKE2PHA2 mechanisms 660
298. Keywords for derive key. 664
299. parms_list parameter format for PKCS-DH mechanism 666
300. parms_list parameter format for SSL-MS, SSL-MSDH, TLS-MS, and TLS-MSDH mechanisms 666
301. parms_list parameter format for EC-DH mechanism 666
302. parms_list parameter format for IKESEED, IKESHARE, and IKEREKEY mechanisms 667
303. Get attribute value processing for objects possessing sensitive attributes. 670
304. Keywords for generate secret key . 674
305. parms_list parameter format for SSL and TLS mechanism 675
306. Keywords for generate HMAC . 677
307. chain_data parameter format . 678
308. Keywords for verify HMAC . 680
309. chain_data parameter format . 681
310. Keywords for one-way hash generate . 684
311. chain_data parameter format . 685
312. Keywords for private key sign. 688
313. Keywords for public key verify . 691
314. Keywords for derive multiple keys . 693
315. parms_list parameter format for TLS-PRF mechanism. 694
316. Authorization requirements for the set attribute value callable service 696
317. Keywords for secret key decrypt. 698
318. initialization_vector parameter format for GCM mechanism 699
319. chain_data parameter format . 700
320. Keywords for secret key encrypt. 703
321. initialization_vector parameter format for GCM mechanism 704
322. initialization_vector parameter format for GCMIVGEN mechanism 705
323. chain_data parameter format . 705
324. Authorization requirements for the token record create callable service 709
325. Authorization requirements for the token record delete callable service 712
326. Keywords for unwrap key . 718
327. Keywords for wrap key . 721
328. Return Codes . 725
329. Reason Codes for Return Code 0 (0) . 726
330. Reason Codes for Return Code 4 (4) . 727
331. Reason Codes for Return Code 8 (8) . 730
332. Reason Codes for Return Code C (12) . 766

xxviii z/OS V1R13 ICSF Application Programmer's Guide

||
||
||

||

333. Reason Codes for Return Code 10 (16) . 776
334. Internal Key Token Format . 777
335. Internal Key Token Format . 778
336. Format of External Key Tokens . 780
337. External RKX DES key-token format, version X'10' 781
338. Format of Null Key Tokens . 782
339. Variable-length Symmetric Key Token . 783
340. HMAC Algorithm Key-usage fields . 788
341. AES Algorithm KEK Key-usage fields . 789
342. AES Algorithm Cipher Key Associated Data . 792
343. Variable-length Symmetric Null Token . 792
344. Format of PKA Null Key Tokens . 793
345. RSA Public Key Token . 793
346. RSA Private External Key Token Basic Record Format 794
347. RSA Private Key Token, 1024-bit Modulus-Exponent External Format 795
348. RSA Private Key Token, 4096-bit Modulus-Exponent External Format 796
349. RSA Private Key Token, 4096-bit Chinese Remainder Theorem External Format 797
350. RSA Private Internal Key Token Basic Record Format 798
351. RSA Private Internal Key Token, 1024-bit ME Form for Cryptographic Coprocessor Feature 799
352. RSA Private Internal Key Token, 1024-bit ME Form for PCICC, PCIXCC, CEX2C, or CEX3C 800
353. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format 801
354. DSS Public Key Token . 803
355. DSS Private External Key Token . 804
356. DSS Private Internal Key Token . 805
357. ECC Key Token Format . 807
358. Associated Data Format for ECC Private Key Token 810
359. AESKW Wrapped Payload Format for ECC Private Key Token 811
360. Trusted block header . 814
361. Trusted block trusted RSA public-key section (X'11') 815
362. Trusted block rule section (X'12') . 816
363. Summary of trusted block rule subsection . 817
364. Transport key variant subsection (X'0001' of trusted block rule section (X'12') 818
365. Transport key rule reference subsection (X'0002') of trusted block rule section (X'12') 818
366. Common export key parameters subsection (X'0003') of trusted block rule section (X'12') 819
367. Source key rule reference subsection (X'0004' of trusted block rule section (X'12') 821
368. Export key CCA token parameters subsection (X'0005') of trusted block rule section (X'12') 821
369. Trusted block key label (name) section X'13' . 823
370. Trusted block information section X'14' . 823
371. Summary of trusted block information subsections 824
372. Protection information subsection (X'0001') of trusted block information section (X'14') 824
373. Activation and expiration dates subsection (X'0002') of trusted block information section (X'14') 825
374. Trusted block application-defined data section X'15' 826
375. Default Control Vector Values. 827
376. PKA96 Clear DES Key Record . 881
377. EBCDIC to ASCII Default Conversion Table . 891
378. ASCII to EBCDIC Default Conversion Table . 892
379. Callable service access control points. 898

Tables xxix

||
||
||
||
||

xxx z/OS V1R13 ICSF Application Programmer's Guide

About this information

This information supports z/OS (5694-A01). It describes how to use the callable
services provided by the Integrated Cryptographic Service Facility (ICSF). The z/OS
Cryptographic Services includes these components:

v z/OS Integrated Cryptographic Service Facility (ICSF)

v z/OS Open Cryptographic Services Facility (OCSF)

v z/OS System Secure Socket Level Programming (SSL)

v z/OS Public Key Infrastructure Services (PKI)

ICSF is a software element of z/OS that works with the hardware cryptographic
feature and the Security Server RACF to provide secure, high-speed cryptographic
services. ICSF provides the application programming interfaces by which
applications request the cryptographic services.

Note: References to the IBM Eserver zSeries 800 (z800) do not appear in this
information. Be aware that the documented notes and restrictions for the IBM
Eserver zSeries 900 (z900) also apply to the z800. References to the IBM
zEnterprise 114 (z114) do not appear in this information. Be aware that the
documented notes and restrictions for the IBM zEnterprise 196 (z196) also
apply to the z114.

Who should use this information
This information is intended for application programmers who:

v Are responsible for writing application programs that use the security application
programming interface (API) to access cryptographic functions.

v Want to use ICSF callable services in high-level languages such as C, COBOL,
FORTRAN, and PL/I, as well as in assembler.

How to use this information
ICSF includes Advanced Encryption Standard (AES), Data Encryption Standard
(DES) and public key cryptography. These are very different cryptographic systems.

These topics focus on IBM CCA programming and include:

v Chapter 1, “Introducing Programming for the IBM CCA” describes the
programming considerations for using the ICSF callable services. It also explains
the syntax and parameter definitions used in callable services.

v Chapter 2, “Introducing Symmetric Key Cryptography and Using Symmetric Key
Callable Services” gives an overview of AES and DES cryptography and provides
general guidance information on how the callable services use different key types
and key forms. It also discusses how to write your own callable services called
installation-defined callable services and provides suggestions on what to do if
there is a problem.

v Chapter 3, “Introducing PKA Cryptography and Using PKA Callable Services”
introduces Public Key Algorithm (PKA) support and describes programming
considerations for using the ICSF PKA callable services, such as the PKA key
token structure and key management.

v Chapter 4, “Introducing PKCS #11 and using PKCS #11 callable services” gives
an overview of PKCS #11 support and management services.

© Copyright IBM Corp. 1997, 2011 xxxi

|
|
|
|
|
|

These topics focus on CCA callable services and include:

v Chapter 5, “Managing Symmetric Cryptographic Keys” describes the callable
services for generating and maintaining cryptographic keys and the random
number generate callable service. It also presents utilities to build AES and DES
tokens and generate and translate control vectors and describes the PKA callable
services that support AES and DES key distribution.

v Chapter 6, “Protecting Data” describes the callable services for deciphering
ciphertext from one key and enciphering it under another key. It also describes
enciphering and deciphering data with encrypted keys and encoding and
decoding data with clear keys.

v Chapter 7, “Verifying Data Integrity and Authenticating Messages” describes the
callable services for generating and verifying message authentication codes
(MACs), generating modification detection codes (MDCs) and generating hashes
(SHA-1, SHA-2, MD5, RIPEMD-160).

v Chapter 8, “Financial Services” describes the callable services for generating,
verifying, and translating personal identification numbers (PINs). It also describes
the callable services that support the Secure Electronic Transaction (SET)
protocol and those that and generate and verify VISA card verification values and
American Express card security codes.

v Chapter 9, “Using Digital Signatures” describes the PKA callable services that
support using digital signatures to authenticate messages.

v Chapter 10, “Managing PKA Cryptographic Keys” describes the PKA callable
services that generate and manage PKA keys.

v Chapter 11, “Key Data Set Management,” on page 565 describes the callable
services that manage key tokens in the Cryptographic Key Data Set (CKDS) and
the PKA Key Data Set (PKDS).

v Chapter 12, “Utilities” describes callable services that convert data between
EBCDIC and ASCII format, convert between binary strings and character strings,
and query ICSF services and algorithms.

v Chapter 13, “Trusted Key Entry Workstation Interfaces” describes the PCI
interface (PCI) and the Public Key Secure Cable (PKSC) interface that supports
Trusted Key Entry (TKE), an optional feature available with ICSF.

v Chapter 14, “Managing Keys According to the ANSI X9.17 Standard” describes
the callable services that support the ANSI X9.17 key management standard 1,
which defines a process for protecting and exchanging DES keys.

v Chapter 15, “Using PKCS #11 Tokens and Objects” describes the callable
services for managing the PKCS #11 tokens and objects in the TKDS.

The appendixes include this information:

v Appendix A, “ICSF and TSS Return and Reason Codes” explains the return and
reason codes returned by the callable services.

v Appendix B, “Key Token Formats” describes the formats for AES key tokens,
DES internal, external, and null key tokens and for PKA public, private external,
and private internal key tokens containing either Rivest-Shamir-Adleman (RSA)
or Digital Signature Standard (DSS) information. This appendix also describes
the PKA null key token.

v Appendix C, “Control Vectors and Changing Control Vectors with the CVT
Callable Service,” on page 827 contains a table of the default control vector
values that are associated with each key type and describes the control

1. ANSI X9.17-1985: Financial Institution Key Management (Wholesale)

xxxii z/OS V1R13 ICSF Application Programmer's Guide

|

|
|
|

information for testing control vectors, mask array preparation, selecting the
key-half processing mode, and an example of Control Vector Translate.

v Appendix D, “Coding Examples” provides examples for COBOL, assembler, and
PL/1.

v Appendix E, “Using ICSF with BSAFE” explains how to access ICSF services
from applications written using RSA's BSAFE cryptographic toolkit.

v Appendix F, “Cryptographic Algorithms and Processes,” on page 863 describes
the PIN formats and algorithms, cipher processing and segmenting rules, multiple
encipherment and decipherment and their equations, the PKA92 encryption
process, partial notarization of an ANSI key-encrypting key (AKEK), and the
algorithm for transforming a Commercial Data Masking Facility (CDMF) key.

v Appendix G, “EBCDIC and ASCII Default Conversion Tables” presents EBCDIC
to ASCII and ASCII to EBCDIC conversion tables.

v Appendix H, “Access Control Points and Callable Services” lists which access
control points correspond to which callable services.

v Appendix I, “Accessibility,” on page 909 contains information on accessibility
features in z/OS.

v Notices contains notices, programming interface information, and trademarks.

Where to find more information
The publications in the z/OS ICSF library include:

v z/OS Cryptographic Services ICSF Overview

v z/OS Cryptographic Services ICSF Administrator's Guide

v z/OS Cryptographic Services ICSF System Programmer's Guide

v z/OS Cryptographic Services ICSF Application Programmer's Guide

v z/OS Cryptographic Services ICSF Messages

v z/OS Cryptographic Services ICSF Writing PKCS #11 Applications

Other publications referenced in this publication are:

v IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface Reference, SC40-1675

Related Publications
v z/OS Cryptographic Services ICSF TKE Workstation User's Guide, SA23-2211

v z/OS MVS Programming: Callable Services for High-Level Languages,
SA22-7613

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU,
SA22-7611

v BSAFE User's Manual

v BSAFE Library Reference Manual

v z/OS Security Server RACF Command Language Reference

v z/OS Security Server RACF Security Administrator's Guide

v IBM Common Cryptographic Architecture (CCA) Basic Services API, Release
2.53

This publication can be obtained in PDF format from the Library page at
http://www.ibm.com/security/cryptocards.

v IBM Distributed Key Management System, Installation and Customization Guide,
GG24-4406

About this information xxxiii

xxxiv z/OS V1R13 ICSF Application Programmer's Guide

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:

1. Send an e-mail to mhvrcfs@us.ibm.com

2. Visit the Contact z/OS Web page at http://www.ibm.com/servers/eserver/zseries/
zos/webqs.html

3. Mail the comments to the following address:
IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Mail Station P181
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

4. Fax the comments to us as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address
v Your e-mail address
v Your telephone or fax number
v The publication title and order number:

z/OS Cryptographic Services Application Programmer's Guide
SA22-7522-15

v The topic and page number related to your comment
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations will only use the personal information that you
supply to contact you about the issues that you submit.

If you have a technical problem
Do not use the feedback methods listed above. Instead, do one of the following:

v Contact your IBM service representative

v Call IBM technical support

v Visit the IBM zSeries support Web page at http://www.ibm.com/servers/eserver/
support/zseries/.

© Copyright IBM Corp. 1997, 2011 xxxv

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xxxvi z/OS V1R13 ICSF Application Programmer's Guide

Summary of changes

Changes made in z/OS Version 1 Release 13
This document contains information previously presented in z/OS ICSF Application
Programmer's Guide, SA22-7522-14, which supports z/OS Version 1 Release 12.

This document is for ICSF FMID HCR7790. This release of ICSF runs on z/OS
V1R11, z/OS V1R12, and z/OS V1R13 and only on zSeries hardware.

New information:

v Added support for the TR-31 key block format defined by the American National
Standards Institute (ANSI). ICSF enables applications to convert a CCA token to
a TR-31 key block for export to another party, and to convert an imported TR-31
key block to a CCA token. This enables you to securely exchange keys and their
attributes with non-CCA systems. The following callable services have been
added to provide this support:

– TR-31 Export (CSNBT31X and CSNET31X)

– TR-31 Import (CSNBT31I and CSNET31I) TR-31

– TR-31 Parse (CSNBT31P and CSNET31P) TR-31

– TR-31 Optional Data Read (CSNBT31R and CSNET31R)

– TR-31 Optional Data Build (CSNBT31O and CSNET31O)

v Added new callable service, CVV key combine (CSNBCKC and CSNECKC). This
callable service combines 2 single-length CCA internal key tokens into 1
double-length CCA key token containing a CVVKEY-A key type for use with the
VISA CVV Service Generate or VISA CVV Service Verify callable services. This
combined double-length key satisfies current VISA requirements and eases
translation between TR-31 and CCA formats for CVV keys. See “CVV Key
Combine (CSNBCKC and CSNECKC)” on page 448 for more information.

v Added support for coordinated and dynamic update of a CKDS. The new callable
service Coordinated KDS Administration (CSFCRC and CSFCRC6) which
performs a CKDS refresh or reencipher operation while allowing applications to
update the CKDS. In a sysplex environment, this callable service enables an
application to perform a coordinated sysplex-wide refresh or reencipher operation
from a single ICSF instance.

v Added new callable service ECC Diffie-Hellman (CSNDEDH and CSNFEDH),
which applications can use to create symmetric key material from a pair of ECC
keys using the Elliptic Curve Diffie-Hellman protocol and the static unified model
key agreement scheme.

v A new health check, ICSFMIG_DEPRECATED_SERV_WARNINGS, has been
added to the Health Checker to detect the use of services that will not be
supported in subsequent releases: The deprecated services checked in this
release are listed below. These are not supported on post zSeries 900 hardware,
and will not be supported in subsequent releases of ICSF.

– ANSI X9.17 EDC Generate

– ANSI X9.17 Key Export

– ANSI X9.17 Key Import

– ANSI X9.17 Key Translate

– ANSI X9.17 Transport Key Partial Notarize

– Ciphertext Translate

– Ciphertext Translate with ALET

© Copyright IBM Corp. 1997, 2011 xxxvii

– Transform CDMF Key

– User Derived Key

– PKSC Interface Callable Service

You should use the ICSFMIG_DEPRECATED_SERV_WARNINGS check to
determine if these services are being used. For more information on this health
check, refer to z/OS Cryptographic Services ICSF Administrator's Guide.

Changed information:

v CKDS Key Record Write2 (CSNBKRW2 and CSNEKRW2)

v Clear PIN Generate (CSNBPGN and CSNEPGN)

v Clear PIN Generate Alternate (CSNBCPA and CSNECPA)

v Control Vector Generate (CSNBCVG and CSNECVG)

v Digital Signature Verify (CSNDDSV and CSNFDSV)

v Encrypted PIN Generate (CSNBEPG and CSNEEPG)

v Encrypted PIN Verify (CSNBPVR and CSNEPVR)

v ICSF Query Facility (CSFIQF and CSFIQF6)

v Key Generate2 (CSNBKGN2 and CSNEKGN2)

v Key Part Import2 (CSNBKPI2 and CSNEKPI2)

v Key Test2 (CSNBKYT2 and CSNEKYT2)

v Key Token Build (CSNBKTB and CSNEKTB)

v Key Token Build2 (CSNBKTB2 and CSNEKTB2)

v Key Translate2 (CSNBKTR2 and CSNEKTR2)

v PKDS Key Record Create (CSNDKRC and CSNFKRC)

v PKDS Key Record Delete (CSNDKRD and CSNFKRD)

v PKDS Key Record Read (CSNDKRR and CSNFKRR)

v PKDS Key Record Write (CSNDKRW and CSNFKRW)

v PKA Decrypt (CSNDPKD and CSNFPKD)

v PKA Encrypt (CSNDPKE and CSNFPKE)

v PKA Key Generate (CSNDPKG and CSNFPKG)

v PKA Key Import (CSNDPKI and CSNFPKI)

v PKA Key Token Change (CSNDKTC and CSNFKTC)

v Restrict Key Attribute (CSNBRKA and CSNERKA)

v Secure Key Import2 (CSNBSKI2 and CSNESKI2)

v Symmetric Algorithm Decipher (CSNBSAD or CSNBSAD1 and CSNESAD or
CSNESAD1)

v Symmetric Algorithm Encipher (CSNBSAE or CSNBSAE1 and CSNESAE or
CSNESAE1)

v Symmetric Key Import2 (CSNDSYI2 and CSNFSYI2)

v Symmetric Key Generate (CSNDSYG and CSNFSYG)

v Symmetric Key Import (CSNDSYI and CSNFSYI)

v Symmetric Key Export (CSNDSYX and CSNFSYX)

v VISA CVV Service Generate (CSNBCSG and CSNECSG)

v VISA CVV Service Verify (CSNBCSV and CSNECSV)

For clarity:

xxxviii z/OS V1R13 ICSF Application Programmer's Guide

v CSNBKRC and CSNEKRC, which had been referred to as the "Key Record
Create" service, are now referred to as the "CKDS Key Record Create" service

v CSNBKRC2 and CSNEKRC2, which had been referred to as the "Key Record
Create2" service, are now referred to as the "CKDS Key Record Create2" service

v CSNBKRD and CSNEKRD, which had been referred to as the "Key Record
Delete" service, are now referred to as the "CKDS Key Record Delete" service

v CSNBKRR and CSNEKRR, which had been referred to as the "Key Record
Read" service, are now referred to as the "CKDS Key Record Read" service

v CSNBKRR2 and CSNEKRR2, which had been referred to as the "Key Record
Read2" service, are now referred to as the "CKDS Key Record Read2" service

v CSNBKRW and CSNEKRW, which had been referred to as the "Key Record
Write" service, are now referred to as the "CKDS Key Record Write" service

v CSNBKRW2 and CSNEKRW2, which had been referred to as the "Key Record
Write2" service, are now referred to as the "CKDS Key Record Write2" service

v CSNDKRC and CSNFKRC, which had been referred to as the "PKDS Record
Create" service, are now referred to as the "PKDS Key Record Create" service

v CSNDKRD and CSNFKRD, which had been referred to as the "PKDS Record
Delete" service, are now referred to as the "PKDS Key Record Delete" service

v CSNDKRR and CSNFKRR, which had been referred to as the "PKDS Record
Read" service, are now referred to as the "PKDS Key Record Read" service

v CSNDKRW and CSNFKRW, which had been referred to as the "PKDS Record
Write" service, are now referred to as the "PKDS Key Record Write" service

References to the IBM Eserver zSeries 800 (z800) do not appear in this
information. Be aware that the documented notes and restrictions for the IBM
Eserver zSeries 900 (z900) also apply to the z800.

Changes made in z/OS Version 1 Release 12
This document contains information previously presented in z/OS ICSF Application
Programmer's Guide, SA22-7522-13, which supports z/OS Version 1 Release 11.

This document is for ICSF FMID HCR7780. This release of ICSF runs on z/OS
V1R10, z/OS V1R11, and z/OS V1R12 and only on zSeries hardware.

New information:

v All ICSF callable services now support invocation in AMODE(64). Previously, only
certain callable services had this support. Applications that are written for
AMODE(64) operation must be linked with the ICSF 64-bit service stubs.

v Added information for HMAC key support. This support is to be enabled with the
PTF for APAR OA33260, planned for February 2011 availability.

– Added the following services to support CCA key management of HMAC keys:

- Key Generate2 (CSNBKGN2 and CSNEKGN2)

- Key Part Import2 (CSNBKPI2 and CSNEKPI2)

- Key Test2 (CSNBKYT2 and CSNEKYT2)

- Key Token Build2 (CSNBKTB2 and CSNEKTB2)

- Restrict Key Attribute (CSNBRKA and CSNERKA)

- Secure Key Import2 (CSNBSKI2 and CSNESKI2)

- Symmetric Key Import2 (CSNDSYI2 and CSNFSYI2)

Summary of changes xxxix

|
|
|

– The following services for Dynamic CKDS update were added for use with
HMAC tokens. These services must be used with HMAC tokens, but also
support existing DES and AES tokens.

- Key Record Create2 (CSNBKRC2 and CSNEKRC2)

- Key Record Read2 (CSNBKRR2 and CSNEKRR2)

- Key Record Write2 (CSNBKRW2 and CSNEKRW2)

– Added the following services to support the generation and verification of
MACs using keyed-HMAC algorithm:

- HMAC Generate (CSNBHMG or CSNBHMG1 and CSNEHMG or
CSNEHMG1)

- HMAC Verify (CSNBHMV or CSNBHMV1 and CSNEHMV or CSNEHMV1)

v Added the following modes of operation for protecting data to the Symmetric Key
Encipher and Symmetric Key Decipher callable services:

– Cipher Block Chaining with Ciphertext Stealing (CBC-CS) Mode

– Cipher Feedback (CFB) Mode

– Output Feedback (OFB) Mode

– Galois/Counter Mode (GCM)

v Added an enhanced method of key wrapping that is ANSI X9.24 compliant. See
“Key Wrapping” on page 19 for more information.

v Added Elliptic Curve Cryptography (ECC) support to the following callable
services:

– Digital Signature Generate (CSNDDSG and CSNFDSG)

– Digital Signature Verify (CSNDDSV and CSNFDSV)

– PKA Key Generate (CSNDPKG and CSNFPKG)

– PKA Key Import (CSNDPKI and CSNFPKI)

– PKA Key Token Build (CSNDPKB and CSNFPKB)

– PKA Key Token Change (CSNDKTC and CSNFKTC)

– PKA Public Key Extract (CSNDPKX and CSNFPKX)

– PKDS Record Create (CSNDKRC and CSNFKRC)

– PKDS Record Delete (CSNDKRD and CSNFKRD)

– PKDS Record Read (CSNDKRR and CSNFKRR)

– PKDS Record Write (CSNDKRW and CSNFKRW)

Changed information

v ANSI X9.17 EDC Generate - CSNGEGN

v ANSI X9.17 Key Export - CSNGKEX

v ANSI X9.17 Key Import - CSNGKIM

v ANSI X9.17 Key Translate - CSNGKTR

v ANSI X9.17 Transport Key Partial Notarize - CSNGTKN

v Ciphertext Translate - CSNECTT and CSNECTT1

v Clear PIN Encrypt - CSNECPE

v Clear PIN Generate - CSNEPGN

v Clear PIN Generate Alternate - CSNECPA

v Control Vector Generate - CSNECVG

v Control Vector Translate - CSNECVT

v Cryptographic Veriable Enciper - CSNECVE

v Data Key Export - CSNEDKX

xl z/OS V1R13 ICSF Application Programmer's Guide

v Data Key Import - CSNEDKM

v Decipher - CSNEDEC and CSNEDEC1

v Decode - CSNEDCO

v Diversified Key Generate - CSNEDKG

v Encipher - CSNEENC and CSNEENC1

v Encode - CSNEECO

v Encrypted PIN Generate - CSNEEPG

v Encrypted PIN Translate - CSNEPTR

v Encrypted PIN Verify - CSNEPVR

v HMAC Generate - CSNEHMG and CSFEHMG1

v HMAC Verify - CSNEHMV and CSFEHMV1

v Key Export - CSNEKEX

v Key Generate2 - CSNEKGN2

v Key Import - CSNEKIM

v Key Part Import - CSNEKPI

v Key Part Import2 - CSNEKPI2

v Key Record Create - CSNEKRC

v Key Record Create2 - CSNEKRC2

v Key Record Delete - CSNEKRD

v Key Record Read - CSNEKRR

v Key Record Read2 - CSNEKRR2

v Key Record Write - CSNEKRW

v Key Record Write2 - CSNEKRW2

v Key Test - CSNEKYT

v Key Test2 - CSNEKYT2

v Key Test Extended - CSNEKYTX

v Key Token Build - CSNEKTB

v Key Token Build2 - CSNEKTB2

v Key Translate - CSNEKTR

v MAC Generate - CSNEMGN and CSNEMGN1

v MAC Verify - CSNEMVR and CSNEMVR1

v MDC Generate - CSNEMDG and CSNEMDG1

v Multiple Secure Key Import - CSNESKM

v PCI Interface - CSFPCI and CSFPCI6

v PIN Change/Unblock - CSNEPCU

v PKA Key Token Change - CSNDKTC

v PKDS Record Read - CSNFKRR

v PKDS Record Write - CSNFKRW

v Prohibit Export - CSNEPEX

v Prohibit Export Extended - CSNEPEXX

v Remote Key Export - CSNFRKX

v Restrict Key Attribute - CSNBRKA and CSNERKA

v Secure Key Import - CSNESKI

v Secure Key Import2 - CSNESKI2

v Secure Messaging for Keys - CSNESKY

Summary of changes xli

v Secure Messaging for PINS - CSNESPN

v SET Block Compose - CSNFSBC

v SET Block Decompose - CSNFSBD

v Symmetric Key Generate - CSNFSYG

v Transaction Validation - CSNETRV

v Transform CDMF Key - CSNETCK

v Trusted Block Create - CSNFTBC

v User Derived Key - CSFUDK6

v VISA CVV Service Generate - CSNECSG

v VISA CVV Service Verify - CSNECSV

v PKCS #11 Secret Key Encrypt (CSFPSKE)

v PKCS #11 One-way hash, sign, or verify (CSFPOWH). This was previously
referred to as PKCS #11 One-way hash generate (CSFPOWH).

Changes made in z/OS Version 1 Release 11
This document contains information previously presented in z/OS ICSF Application
Programmer's Guide, SA22-7522-12, which supports z/OS Version 1 Release 10.

This document is for ICSF FMID HCR7770. This release of ICSF runs on z/OS
V1R9 and z/OS V1R10 and only on zSeries hardware.

New information:

v Added new callable service PKA Key Translate (CSNDPKT and CSNFPKT).
Using this callable service, applications can translate a source CCA RSA key
token into a target external smart card key token.

v Added new callable services for managing PKCS #11 tokens and objects. These
additional services are:

– PKCS #11 Derive key (CSFPDVK)

– PKCS #11 Derive multiple keys (CSFPDMK)

– PKCS #11 Generate HMAC (CSFPHMG)

– PKCS #11 Generate key pair (CSFPGKP)

– PKCS #11 Generate secret key (CSFPGSK)

– PKCS #11 One-way hash generate (CSFPOWH)

– PKCS #11 Private key sign (CSFPPKS)

– PKCS #11 Pseudo-random function (CSFPPRF)

– PKCS #11 Public key verify (CSFPPKV)

– PKCS #11 Secret key decrypt (CSFPSKD)

– PKCS #11 Secret key encrypt (CSFPSKE)

– PKCS #11 Unwrap key (CSFPUWK)

– PKCS #11 Verify HMAC (CSFPHMV)

– PKCS #11 Wrap key (CSFPWPK)

v Added information for the Crypto Express3 Coprocessor.

Changed information:

v The Symmetric Key Export and Symmetric Key Import callable services now
support invocation in AMODE(64).

xlii z/OS V1R13 ICSF Application Programmer's Guide

The Symmetric Key Encipher and Symmetric Key Decipher callable services now
support an encrypted key in the CKDS. This enables applications to leverage the
performance capabilities of CPACF when enciphering/deciphering data using
encrypted symmetric keys.

v The ICSF Query Algorithm (CSFIQA and CSFIQA6) utility and ICSF Query
Facility (CSFIQF and CSFIQF6) updated to return additional data.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of changes xliii

xliv z/OS V1R13 ICSF Application Programmer's Guide

Part 1. IBM CCA Programming

IBM CCA Programming introduces programming for the IBM CCA, AES
cryptography, DES cryptography and PKA cryptography. It explains how to use
DES, AES and PKA callable services.

Note: References to the IBM Eserver zSeries 800 (z800) do not appear in this
information. Be aware that the documented notes and restrictions for the IBM
Eserver zSeries 900 (z900) also apply to the z800. References to the IBM
zEnterprise 114 (z114) do not appear in this information. Be aware that the
documented notes and restrictions for the IBM zEnterprise 196 (z196) also
apply to the z114.

© Copyright IBM Corp. 1997, 2011 1

|
|
|
|
|
|

2 z/OS V1R13 ICSF Application Programmer's Guide

Chapter 1. Introducing Programming for the IBM CCA

ICSF provides access to cryptographic functions through callable services, which
are also known as verbs. A callable service is a routine that receives control using a
CALL statement in an application language.

Prior to invoking callable services in an application program, you must link them into
the application program. See “Linking a Program with the ICSF Callable Services”
on page 12.

To invoke the callable service, the application program must include a procedure
call statement that has the entry point name and parameters for the callable
service. The parameters that are associated with a callable service provide the only
communication between the application program and ICSF.

ICSF Callable Services Naming Conventions
The ICSF callable services generally follow the naming conventions outlined in the
following table.

There are five exceptions where the CSFzzz names would collide and in those
cases, the CSFzzz alias is CSFPzzz instead: PKDS Key Record Create
(CSFPKRC), PKDS Key Record Delete (CSFPKRD), PKDS Key Record Read
(CSFPKRR), PKDS Key Record Write (CSFPKRW), PKA Key Token Change
(CSFPKTC),

In the following table, zzz is a 3- or 4-letter service name, such as ENC for the
Encipher service or PKG for the PKA Key Generate service. Not all
CSNBzzz/CSNEzzz services have ALET-qualified entry points (where certain
parameters can be in a dataspace or an address space other than the caller's). See
each specific service for details.

Table 1. ICSF Callable Services Naming Conventions

This callable service
prefix: Identifies:

CSNBzzz / CSFzzz 31-bit

Symmetric Key Services and Hashing Services
CSNBzzz1 / CSFzzz1 31-bit ALET-qualified

CSNEzzz / CSFzzz6 64-bit

CSNEzzz1 / CSFzzz16 64-bit ALET-qualified

CSNDzzz / CSFzzz 31-bit
Asymmetric Key Services

CSNFzzz / CSFzzz6 64-bit

CSNAzzz / CSFAzzz 31-bit
ANSI X9.17 Services

CSNGzzz / CSFAzzz6 64-bit

CSFPzzz 31-bit
PKCS #11 Services

CSFPzzz6 64-bit

CSFzzz 31-bit
Utility Services and TKE Workstation Interfaces

CSFzzz6 64-bit

Callable Service Syntax
This publication uses a general call format to show the name of the ICSF callable
service and its parameters. An example of that format is shown here:

© Copyright IBM Corp. 1997, 2011 3

|
|
|

CALL CSNBxxx (return_code,
reason_code,
exit_data_length,
exit_data,
parameter_5,
parameter_6,
.
.
.
parameter_N)

where CSNBxxx is the name of the callable service. The return code, reason code,
exit data length, exit data, parameter 5 through parameter N represent the
parameter list. The call generates a fixed length parameter list. You must supply the
parameters in the order shown in the syntax diagrams. “Parameter Definitions” on
page 6 describes the parameters in more detail.

ICSF callable services can be called from application programs written in a number
of high-level languages as well as assembler. The high-level languages are:
v C
v COBOL
v FORTRAN
v PL/I

The ICSF callable services comply with the IBM Common Cryptographic
Architecture: Cryptographic Application Programming Interface. The services can be
invoked using the generic format, CSNBxxx. Use the generic format if you want
your application to work with more than one cryptographic product. The format
CSFxxxx can be used in place of CSNBxxx. Otherwise, use the CSFxxxx format.

Specific formats for the languages that can invoke ICSF callable services are as
follows:

C
CSNBxxxx (return_code,reason_code,exit_data_length,exit_data,
parameter_5,...parameter_N)
COBOL
CALL 'CSNBxxxx' USING return_code,reason_code,exit_data_length,
exit_data,parameter_5,...parameter_N
FORTRAN
CALL CSNBxxxx (return_code,reason_code,exit_data_length,exit_data,
parameter_5,...parameter_N)
PL/I
DCL CSNBxxxx ENTRY OPTIONS(ASM);
CALL CSNBxxxx return_code,reason_code,exit_data_length,exit_data,
parameter_5,...parameter_N;
Assembler language programs must use standard linkage conventions when
invoking ICSF callable services. An example of how an assembler language
program can invoke a callable service is shown as follows:
CALL CSNBxxxx,(return_code,reason_code,exit_data_length,exit_data,
parameter_5,...parameter_N)

Coding examples using the high-level languages are shown in Appendix D, “Coding
Examples.”

Callable Services with ALET Parameters
Some callable services have an alternate entry point (with ALET parameters—for
data that resides in data spaces). They are in the format of CSNBxxx1 as shown in

4 z/OS V1R13 ICSF Application Programmer's Guide

the following table. For the associated 64-bit versions of the callable services
(CSNExxx), the ALET-qualified versions are in the format CSNExxx1.

Verb
Callable Service without
ALET

Callable Service with
ALET

Ciphertext translate CSNBCTT CSNBCTT1

Decipher CSNBDEC CSNBDEC1

Encipher CSNBENC CSNBENC1

HMAC Generate CSNBHMG CSNBHMG1

HMAC Verify CSNBHMV CSNBHMV1

MAC generate CSNBMGN CSNBMGN1

MAC verify CSNBMVR CSNBMVR1

MDC generate CSNBMDG CSNBMDG1

One way hash generate CSNBOWH CSNBOWH1

Symmetric algorithm decipher CSNBSAD CSNBSAD1

Symmetric algorithm encipher CSNBSAE CSNBSAE1

Symmetric key decipher CSNBSYD CSNBSYD1

Symmetric key encipher CSNBSYE CSNBSYE1

Symmetric MAC generate CSNBSMG CSNBSMG1

Symmetric MAC verify CSNBSMV CSNBSMV1

When choosing which service to use, consider the fact that:

v Callable services that do not have an ALET parameter require data to reside in
the caller's primary address space. A program using these services adheres to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface.

v Callable services that have an ALET parameter allow data to reside either in the
caller's primary address space or in a data space. This can allow you to encipher
more data with one call. However, a program using these services does not
adhere to the IBM Common Cryptographic Architecture: Cryptographic
Application Programming Interface, and may need to be modified prior to running
with other cryptographic products that follow this programming interface.

Rules for Defining Parameters and Attributes
These rules apply to the callable services:

v Parameters are required and positional.

v Each parameter list has a fixed number of parameters.

v Each parameter is defined as an integer or a character string. Null pointers are
not acceptable for any parameter.

v Keywords passed to the callable services, such as TOKEN, CUSP, and FIRST
can be in lower, upper, or mixed case. The callable services fold them to
uppercase prior to using them.

Each callable service defines its own list of parameters. The entire list must be
supplied on every call. If you do not use a specific parameter, you must supply that
parameter with hexadecimal zeros or binary zeros.

Chapter 1. Introducing Programming for the IBM CCA 5

Parameters are passed to the callable service. All information that is exchanged
between the application program and the callable service is through parameters
passed on the call.

Each parameter definition begins with the direction that the data flows and the
attributes that the parameter must possess (called “type”). This describes the
direction.

Direction Meaning

Input The application sends (supplies) the parameter to the callable
service. The callable service does not change the value of the
parameter.

Output The callable service returns the parameter to the application
program. The callable service may have changed the value of the
parameter on return.

Input/Output The application sends (supplies) the parameter to the callable
service. The callable service may have changed the value of the
parameter on return.

This describes the attributes or type.

Type Meaning

Integer (I) A 4-byte (32-bit), twos complement, binary number that has sign
significance.

String A series of bytes where the sequence of the bytes must be
maintained. Each byte can take on any bit configuration. The string
consists only of data bytes. No string terminators, field-length
values, or type-casting parameters are included. The maximum size
of a string is X'7FFFFFFF' or 2 gigabytes. In some of the callable
services, the length of some string data has an upper bound
defined by the installation. The upper bound of a string can also be
defined by the service.

Alphanumeric character string
A string of bytes in which each byte represents characters from this
set:

EBCDIC EBCDIC EBCDIC
Character Value Character Value Character Value

A-Z (X'4D' / X'61'
a-z) X'5D' , X'6B'
0-9 + X'4E' % X'6C'
Blank X'40' & X'50' ? X'6F'
* X'5C' . X'4B' : X'7A'
< X'4C' ; X'5E' = X'7E'
> X'6E' - X'60' ’ X'7D'

Parameter Definitions
This topic describes these parameters, which are used by most of the callable
services:
v Return_code
v Reason_code
v Exit_data_length
v Exit_data
v Key_identifier

6 z/OS V1R13 ICSF Application Programmer's Guide

Note: The return_code parameter, the reason_code parameter, the
exit_data_length parameter, and the exit_data parameter are required with
every callable service.

Return and Reason Codes
Return_code and reason_code parameters return integer values upon completion of
the call.

Return_code
The return code parameter contains the general results of processing as an
integer.

Table 2 shows the standard return code values that the callable services return.
A complete list of return codes is shown in Appendix A, “ICSF and TSS Return
and Reason Codes.”

Table 2. Standard Return Code Values From ICSF Callable Services

Value Hex (Decimal) Meaning

00 (00) Successful. Normal return.

04 (04) A warning. Execution was completed with a minor, unusual
event encountered.

08 (08) An application error occurred. The callable service was
stopped due to an error in the parameters. Or, another
condition was encountered that needs to be investigated.

0C (12) Error. ICSF is not active or an environment error was
detected.

10 (16) System error. The callable service was stopped due to a
processing error within the software or hardware.

Generally, PCF macros will receive identical error return codes if they execute
on PCF or on ICSF. A single exception has been noted: if a key is installed on
the ICSF CKDS with the correct label but with the wrong key type, PCF issues
a return code of 8, indicating that the key type was incorrect. ICSF issues a
return code of 12, indicating that the key could not be found.

Reason_code
The reason code parameter contains the results of processing as an integer.
You can specify which set of reason codes (ICSF or TSS) are returned from
callable services. The default value is ICSF. For more information about the
REASONCODES installation option, see z/OS Cryptographic Services ICSF
System Programmer's Guide. Different results are assigned to unique reason
code values under a return code.

A list of reason codes is shown in Appendix A, “ICSF and TSS Return and
Reason Codes.”

Exit Data Length and Exit Data
The exit_data_length and exit_data parameters are described here. The parameters
are input to all callable services. Although all services require these parameters,
several services ignore them.

Exit_data_length
The integer that has the string length of the data passed to the exit. The data is
identified in the exit_data parameter.

Exit_data
The installation exit data string that is passed to the callable service's
preprocessing exit. The installation exit can use the data for its own processing.

Chapter 1. Introducing Programming for the IBM CCA 7

ICSF provides two installation exits for each callable service. The preprocessing exit
is invoked when an application program calls a callable service, but prior to when
the callable service starts processing. For example, this exit is used to check or
change parameters passed on the call or to stop the call. It can also be used to
perform additional security checks.

The post-processing exit is invoked when the callable service has completed
processing, but prior to when the callable service returns control to the application
program. For example, this exit can be used to check and change return codes
from the callable service or perform clean-up processing.

For more information about the exits, see z/OS Cryptographic Services ICSF
System Programmer's Guide.

Key Identifier for Key Token
A key identifier for a key token is an area that contains one of these:

v Key label identifies keys that are in the CKDS or PKDS. Ask your ICSF
administrator for the key labels that you can use.

v Key token can be either an internal key token, an external key token, or a null
key token. Key tokens are generated by an application (for example, using the
key generate callable service), or received from another system that can produce
external key tokens.

An internal key token can be used only on ICSF because the master key
encrypts the key value. Internal key tokens contain keys in operational form only.

An external key token can be exchanged with other systems because a
transport key that is shared with the other system encrypts the key value.
External key tokens contain keys in either exportable or importable form.

A null key token can be used to import a key from a system that cannot
produce external key tokens. A null key token contains a key encrypted under an
importer key-encrypting key but does not contain the other information present in
an external key token.

The term key identifier is used to indicate that different inputs are possible for a
parameter. One or more of the previously described items may be accepted by the
callable service.

Key Label: If the first byte of the key identifier is greater than X'40', the field is
considered to be holding a key label. The contents of a key label are interpreted as
a pointer to a CKDS or PKDS key entry. The key label is an indirect reference to an
internal key token.

A key label is specified on callable services with the key_identifier parameter as a
64-byte character string, left-justified, and padded on the right with blanks. In most
cases, the callable service does not check the syntax of the key label beyond the
first byte. One exception is the CKDS key record create callable service which
enforces the KGUP rules for key labels unless syntax checking is bypassed by a
preprocessing exit.

A key label has this form:

Offset Length Data
00-63 64 Key label name

There are some general rules for creating labels for CKDS key records.

8 z/OS V1R13 ICSF Application Programmer's Guide

|

v Each label can consist of up to 64 characters. The first character must be
alphabetic or a national character (#, $, @). The remaining characters can be
alphanumeric, a national character (#, $, @), or a period (.).

v All alphabetic characters must be upper case (A-Z). All labels in the key data
sets are created with upper case characters.

v Labels must be unique for DATA, DATAXLAT, MAC, MACVER, DATAM, and
DATAMV keys.

v For compatibility with Version 1 Release 1 function, transport and PIN keys can
have duplicate labels for different key types. Keys that use the dynamic CKDS
update services to create or update, however, must have unique key labels.

v Labels must be unique for any key record, including transport and PIN keys,
created or updated using the dynamic CKDS update services.

Invocation Requirements
Applications that use ICSF callable services must meet these invocation
requirements:
v All output parameters must be in storage that the caller is allowed to modify in

their execution key.
v All input parameters must be in storage that the caller is allowed to read in their

execution key.
v Data can be located higher or lower than 16Mb but must be 31-bit addressable.

Data can be located above 2Gb if the service is invoked in AMODE(64)
v Problem or supervisor state
v Any PSW key
v Task mode or Service Request Block (SRB) mode
v No mode restrictions
v Enabled for interrupts
v No locks held

The exceptions to this list are documented with the individual callable services.

All ICSF callable services support invocation in AMODE(64). Applications which are
written for AMODE(64) operation must be linked with the ICSF 64-bit service stubs,
and must invoke the service with the appropriate service name. (Refer to the
description of the individual callable service to determine the service name to be
used.)

Security Considerations
Your installation can use the Security Server RACF or an equivalent product to
control who can use ICSF callable services or key labels. Prior to using an ICSF
callable service or a key label, ask your security administrator to ensure that you
have the necessary authorization. For more information, see z/OS Security Server
RACF Security Administrator's Guide.

HCR7751 and later supports a key store policy using the RACF XFACILIT class.
See z/OS Security Server RACF Security Administrator's Guide.

RACF does not control all services. The usage notes topic in the callable service
description will highlight those services which are not controlled.

Chapter 1. Introducing Programming for the IBM CCA 9

|
|

|
|
|
|

Performance Considerations
In most cases, the z/OS operating system dispatcher provides optimum
performance. However, if your application makes extensive use of ICSF functions,
you should consider using one or both of these:

v CCF Systems Only: If your application runs in SRB mode, use the SCHEDULE
macro or IEAAFFN callable service. You should consider scheduling an SRB to
run on a processor with the cryptographic feature installed (using the
FEATURE=CRYPTO keyword on the SCHEDULE macro). For more information
on the SCHEDULE macro, refer to z/OS MVS Programming: Authorized
Assembler Services Reference LLA-SDU.

Restriction: The FEATURE=CRYPTO keyword should not be specified when
running on an IBM Eserver zSeries 990.

v Use the IEAAFFN callable service (processor affinity) to avoid system overhead
in selecting which processor your program (specifically, a particular TCB in the
application) runs in. Note that you do not have to use the IEAAFFN service to
ensure that the system runs a program on a processor with a cryptographic
feature; the system ensures that automatically. However, you can avoid some of
the system overhead involved in the selection process by using the IEAAFFN
service, thus improving the program's performance. For more information on
using the IEAAFFN callable service, refer to z/OS MVS Programming: Callable
Services for High-Level Languages.

IBM recommends that you run applications first without using these options.
Consider these options when you are tuning your application for performance. Use
these options only if they improve the performance of your application.

Special Secure Mode
Special secure mode is a special processing mode in which:

v The Secure Key Import, Secure Key Import2, and Multiple Secure Key Import
callable services, which work with clear keys, can be used.

v The Clear PIN Generate callable service, which works with clear PINs, can be
used.

v The Symmetric Key Generate callable service with the "IM" keyword (the DES
enciphered key is enciphered by an IMPORTER key) can be used (CCF
Systems Only).

v The key generator utility program (KGUP) can be used to enter clear keys into
the CKDS.

To use special secure mode, several conditions must be met.

v The installation options data set must specify YES for the SSM installation
option.

For information about specifying installation options, see z/OS Cryptographic
Services ICSF System Programmer's Guide.

This is required for all systems.

v The environmental control mask (ECM) must be configured to permit special
secure mode.

The ECM is a 32-bit mask defined for each cryptographic domain during
hardware installation. The second bit in this mask must have been turned on to
enable special secure mode. The default is to have this bit turned on in the ECM.
The bit can only be turned off/on through the optional TKE Workstation.

This is required for systems with the Cryptographic Coprocessor Feature.

10 z/OS V1R13 ICSF Application Programmer's Guide

|

v If you are running in LPAR mode, special secure mode must be enabled.

On the IBM Eserver zSeries 900, you enable special secure mode during
activation using the Crypto page of the Customize Activation Profiles task. When
activated, you can enable or disable special secure mode on the Change LPAR
Crypto task. Both of these tasks can be accessed from the Hardware
Management Console.

This is required for systems with the Cryptographic Coprocessor Feature.

For the IBM Eserver zSeries 900 with TKE, TKE can disable/enable special
secure mode.

Using the Callable Services
This topic discusses how ICSF callable services use the different key types and key
forms. It also provides suggestions on what to do if there is a problem.

ICSF provides callable services that perform cryptographic functions. You call and
pass parameters to a callable service from an application program. Besides the
callable services ICSF provides, you can write your own callable services called
installation-defined callable services. Note that only an experienced system
programmer should attempt to write an installation-defined callable service.

To write an installation-defined callable service, you must first write the callable
service and link-edit it into a load module. Then define the service in the installation
options data set.

You must also write a service stub. To execute an installation-defined callable
service, you call a service stub from your application program. In the service stub,
you specify the service number that identifies the callable service.

For more information about installation-defined callable services, see z/OS
Cryptographic Services ICSF System Programmer's Guide.

When the Call Succeeds
If the return code is 0, ICSF has successfully completed the call. If a reason code
other than 0 is included, refer to Appendix A, “ICSF and TSS Return and Reason
Codes,” on page 725, for additional information. For instance, reason code 10000
indicates the key in the key identifier (or more than one key identifier, for services
that use two internal key identifiers) has been reenciphered from encipherment
under the old master key to encipherment under the current master key. Keys in
external tokens are not affected by this processing because they contain keys
enciphered under keys other than the host master key. If you manage your key
identifiers on disk, then reason code 10000 should be a “trigger” to store these
updated key identifiers back on disk.

Your program can now continue providing its function, but you may want to
communicate the key that you used to another enterprise. This process is exporting
a key.

If you want to communicate the key that you are using to a cryptographic partner,
there are several methods to use:

v For DATA keys only, call the data key export callable service. You now have a
DATA key type in exportable form.

Chapter 1. Introducing Programming for the IBM CCA 11

v Call the key export callable service. You now have the key type in exportable
form.

v When you use the key generate callable service to create your operational or
importable key form, you can create an exportable form, at the same time, and
you now have the key type, in exportable form, at the same time as you get the
operational or importable form.

When the Call Does Not Succeed
Now you have planned your use of the ICSF callable services, made the call, but
the service has completed with a return and reason codes other than zero.

If the return code is 4, there was a minor problem. For example, reason code 8004
indicates the trial MAC that was supplied does not match the message text
provided.

If the return code is 8, there was a problem with one of your parameters. Check the
meaning of the reason code value, correct the parameter, and call the service
again. You may go through this process several times prior to succeeding.

If the return code is 12, ICSF is not active, or has no access to cryptographic units,
or has an environmental problem. Check with your ICSF administrator.

If the return code is 16, the service has a serious problem that needs the help of
your system programmer.

There are several reason codes that can occur when you have already fully
debugged and tested your program. For example:

v Reason code 10004 indicates that you provided a key identifier that holds a key
enciphered under a host master key. The host master key is not installed in the
cryptographic unit. If this happens, you have to go back and import your
importable key form again and call the service again. You need to build this flow
into your program logic.

v Reason code 10012 indicates a key corresponding to the label that you specified
is not in the CKDS or PKDS. Check with your ICSF administrator to see if the
label is correct.

v Reason code 3063 indicates RACF failed your request to use a token.

v Reason code 16000 indicates RACF failed your request to use a service.

v Reason code 16004 indicates RACF failed your request to use the key label.
Examine your CSFKEYS profiles and key store policies for possible errors.

Return and reason codes are described in Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 725.

Linking a Program with the ICSF Callable Services
To link the ICSF callable services into an application program, you can use these
sample JCL statements.In the SYSLIB concatenation, include the CSF.SCSFMOD0
module in the link edit step. This provides the application program access to all
ICSF callable services (those that can be invoked in AMODE(24)/AMODE(31) as
well as those that can be invoked in AMODE(64)).
//LKEDENC JOB
//*---*
//* *
//* The JCL links the ICSF encipher callable service, CSNBENC, *

12 z/OS V1R13 ICSF Application Programmer's Guide

//* into an application called ENCIPHER. *
//* *
//*---*
//LINK EXEC PGM=IEWL,
// PARM=’XREF,LIST,LET’
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,10))
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=CSF.SCSFMOD0,DISP=SHR * SERVICES ARE IN HERE
//SYSLMOD DD DSN=MYAPPL.LOAD,DISP=SHR * MY APPLICATION LIBRARY
//SYSLIN DD DSN=MYAPPL.ENCIPHER.OBJ,DISP=SHR * MY ENCIPHER PROGRAM
// DD *

ENTRY ENCIPHER
NAME ENCIPHER(R)

/*

Chapter 1. Introducing Programming for the IBM CCA 13

14 z/OS V1R13 ICSF Application Programmer's Guide

Chapter 2. Introducing Symmetric Key Cryptography and
Using Symmetric Key Callable Services

The Integrated Cryptographic Service Facility protects data from unauthorized
disclosure or modification. ICSF protects data stored within a system, stored in a
file off a system on magnetic tape, and sent between systems. ICSF also
authenticates the identity of customers in the financial industry and authenticates
messages from originator to receiver. It uses cryptography to accomplish these
functions.

ICSF provides access to cryptographic functions through callable services. A
callable service is a routine that receives control using a CALL statement in an
application language. Each callable service performs one or more cryptographic
functions, including:

v Generating and managing cryptographic keys

v Enciphering and deciphering data with encrypted keys using the U.S. National
Institute of Standards and Technology (NIST) Data Encryption Standard (DES),
Advanced Encryption Standard (AES) or the Commercial Data Masking Facility
(CDMF)

v Enciphering and deciphering data with clear keys using either the NIST Data
Encryption Standard (DES), or Advanced Encryption Standard (AES)

v Transforming a CDMF DATA key to a transformed shortened DES key

v Reenciphering text from encryption under one key to encryption under another
key

v Encoding and decoding data with clear keys

v Generating random numbers

v Ensuring data integrity and verifying message authentication

v Generating, verifying, and translating personal identification numbers (PINs) that
identify a customer on a financial system

This topic provides an overview of the symmetric key cryptographic functions
provided in ICSF, explains the functions of the cryptographic keys, and introduces
the topic of building key tokens. Many services have hardware requirements. See
each service for details.

Functions of the Symmetric Cryptographic Keys
ICSF provides functions to create, import, and export AES, DES, and HMAC keys.
This topic gives an overview of these cryptographic keys. Detailed information about
how ICSF organizes and protects keys is in z/OS Cryptographic Services ICSF
Administrator's Guide.

ICSF supports two types of symmetric key tokens: fixed-length and variable-length.
In fixed-length key tokens, key type and usage are defined by the control vector. In
variable-length key tokens, the key type and usage are defined in the associated
data section. The control vector and associated data section are cryptographically
bound to the encrypted key value in the token.

© Copyright IBM Corp. 1997, 2011 15

|
|
|
|

|
|
|
|
|

Key Separation
The cryptographic feature controls the use of keys by separating them into unique
types, allowing you to use a specific type of key only for its intended purpose. For
example, a key used to protect data cannot be used to protect a key.

An ICSF system has only one DES master key and one AES master key. However,
to provide for key separation, the cryptographic feature automatically encrypts each
type of key in a fixed-length token under a unique variation of the master key. Each
variation of the master key encrypts a different type of key. Although you enter only
one master key, you have a unique master key to encrypt all other keys of a certain
type.

Note: In PCF, key separation applies only to keys enciphered under the master key
(keys in operational form). In ICSF, key separation also applies to keys
enciphered under transport keys (keys in importable or exportable form).
This allows the creator of a key to transmit the key to another system and to
enforce its use at the other system.

Master Key Variant for Fixed-length Tokens
Whenever the master key is used to encipher a key, the cryptographic coprocessor
produces a variation of the master key according to the type of key the master key
will encipher. These variations are called master key variants. The cryptographic
coprocessor creates a master key variant by exclusive ORing a fixed pattern, called
a control vector, onto the master key. A unique control vector is associated with
each type of key. For example, all the different types of data-encrypting, PIN, MAC,
and transport keys each use a unique control vector which is exclusive ORed with
the master key in order to produce the variant. The different key types are
described in “Types of Keys” on page 19.

Each master key variant protects a different type of key. It is similar to having a
unique master key protect all the keys of a certain type.

The master key, in the form of master key variants, protects keys operating on the
system. A key can be used in a cryptographic function only when it is enciphered
under a master key. When systems want to share keys, transport keys are used to
protect keys sent outside of systems. When a key is enciphered under a transport
key, the key cannot be used in a cryptographic function. It must first be brought on
to a system and enciphered under the system's master key, or exported to another
system where it will then be enciphered under that system's master key.

Transport Key Variant for Fixed-length Tokens
Like the master key, ICSF creates variations of a transport key to encrypt a key
according to its type. This allows for key separation when a key is transported off
the system. A transport key variant, also called key-encrypting key variant, is
created the same way a master key variant is created. The transport key's clear
value is exclusive ORed with a control vector associated with the key type of the
key it protects.

Note: To exchange keys with systems that do not recognize transport key variants,
ICSF allows you to encrypt selected keys under a transport key itself, not
under the transport key variant. For more information, see the 'Transport
keys (or key-encrypting keys)' list item in “Types of Keys” on page 19.

16 z/OS V1R13 ICSF Application Programmer's Guide

|

|

|

Key Forms
A key that is protected under the master key is in operational form, which means
ICSF can use it in cryptographic functions on the system.

When you store a key with a file or send it to another system, the key is enciphered
under a transport key rather than the master key because, for security reasons, the
key should no longer be active on the system. When ICSF enciphers a key under a
transport key, the key is not in operational form and cannot be used to perform
cryptographic functions.

When a key is enciphered under a transport key, the sending system considers the
key in exportable form. The receiving system considers the key in importable form.
When a key is reenciphered from under a transport key to under a system's master
key, it is in operational form again.

Enciphered keys appear in three forms. The form you need depends on how and
when you use a key.

v Operational key form is used at the local system. Many callable services can
use an operational key form.

The key token build, key generate, key import, data key import, clear key import,
multiple clear key import, secure key import, and multiple secure key import
callable services can create an operational key form.

v Exportable key form is transported to another cryptographic system. It can only
be passed to another system. The ICSF callable services cannot use it for
cryptographic functions. The key generate, data key export, and key export
callable services produce the exportable key form.

v Importable key form can be transformed into operational form on the local
system. The key import callable service (CSNBKIM) and the Data key import
callable service (CSNBDKM) can use an importable key form. Only the key
generate callable service (CSNBKGN) can create an importable key form. The
secure key import (CSNBSKI) and multiple secure key import (CSNBSKM)
callable services can convert a clear key into an importable key form.

For more information about the key types, see either “Functions of the Symmetric
Cryptographic Keys” on page 15 or the z/OS Cryptographic Services ICSF
Administrator's Guide. See “Key Forms and Types Used in the Key Generate
Callable Service” on page 63 for more information about key form.

DES Key Flow
The conversion from one key to another key is considered to be a one-way flow. An
operational key form cannot be turned back into an importable key form. An
exportable key form cannot be turned back into an operational or importable key
form. The flow of ICSF key forms can only be in one direction:
IMPORTABLE —to→ OPERATIONAL —to→ EXPORTABLE

Key Token
ICSF supports two types of symmetric key tokens: fixed-length and variable-length.
The fixed-length token is a 64-byte field composed of a key value and control
information in the control vector. The variable-length token is composed of a key
value and control information in the associated data section of the token. The
control information is assigned to the key when ICSF creates the key. The key
token can be either an internal key token, an external key token, or a null key
token. Through the use of key tokens, ICSF can:
v Support continuous operation across a master key change

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 17

|
|
|
|
|
|
|

v Control use of keys in cryptographic services

If the first byte of the key identifier is X'01', the key identifier is interpreted as an
internal key token. An internal key token is a token that can be used only on the
ICSF system that created it (or another ICSF system with the same host master
key). It contains a key that is encrypted under the master key.

An application obtains an internal key token by using one of the callable services
such as those listed here. The callable services are described in detail in Chapter 5,
“Managing Symmetric Cryptographic Keys.”
v CKDS Key record read and CKDS key record read2
v Clear key import
v Data key import
v Key generate and Key generate2
v Key import
v Key part import and Key part import2
v Key token build and Key token build2
v Multiple secure key import
v Multiple clear key import
v Secure key import and secure key import2
v Symmetric key import2

The master key may be dynamically changed between the time that you invoke a
service, such as the key import callable service to obtain a key token, and the time
that you pass the key token to the encipher callable service. When a change to the
master key occurs, ICSF reenciphers the caller's key from under the old master key
to under the new master key. A Return Code of 0 with a reason code of 10000
notifies you that ICSF reenciphered the key. For information on reenciphering the
CKDS or the PKDS, see z/OS Cryptographic Services ICSF Administrator's Guide.

Attention: If an internal key token held in user storage is not used while the
master key is changed twice, the internal key token is no longer usable. (See
“Other Considerations” on page 22 for additional information.)

For debugging information, see Appendix B, “Key Token Formats” for the format of
an internal key token.

If the first byte of the key identifier is X'02', the key identifier is interpreted as an
external key token. By using the external key token, you can exchange keys
between systems. It contains a key that is encrypted under a key-encrypting key.

An external key token contains an encrypted key and control information to allow
compatible cryptographic systems to:
v Have a standard method of exchanging keys
v Control the use of keys through the control vector
v Merge the key with other information needed to use the key

An application obtains the external key token by using one of the callable services
such as these listed. They are described in detail in Chapter 5, “Managing
Symmetric Cryptographic Keys.”
v Key generate
v Key export
v Data key export
v Symmetric key export

18 z/OS V1R13 ICSF Application Programmer's Guide

|

|

|

For debugging information, see Appendix B, “Key Token Formats” for the format of
an external key token.

If the first byte of the key identifier is X'00', the key identifier is interpreted as a null
key token. Use the null key token to import a key from a system that cannot
produce external key tokens. That is, if you have an 8- to 16-byte key that has been
encrypted under an importer key, but is not imbedded within a token, place the
encrypted key in a null key token and then invoke the key import callable service to
get the key in operational form.

For debugging information, see Appendix B, “Key Token Formats” for the format of
a null key token.

Key Wrapping
ICSF supports two methods of wrapping the key value in a fixed-length symmetric
key token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant.

The key value in a symmetric key token may be wrapped in two ways. The original
method has been used by ICSF since it was first released. The key value in DES
key tokens are encrypted using triple DES encryption and key parts are encrypted
separately. The key value in AES tokens are encrypted using AES encryption and
cipher block chaining mode.

The enhanced method of key wrapping, introduced in HCR7780, is ANSI X9.24
compliant. The key value of all keys are bundled with other token data and
encrypted using triple DES or AES encryption and cipher block chaining mode. The
enhanced method requires a z196 with a CEX3C.

Your installation's system programmer can, while customizing installation options
data set as described in the z/OS Cryptographic Services ICSF System
Programmer's Guide, use the DEFAULTWRAP parameter to specify the default key
wrapping for symmetric keys. Application programs can override this default method
using the WRAP-ENH (use enhanced method) and WRAP-ECB (use original ECB
key-wrapping method) rule array keywords.

Note: Variable-length tokens are wrapped using the AESKW wrapping method
defined in ANSI X9.102 and are not affected by the DEFAULTWRAP setting.

Control Vector for DES Keys
For DES keys, a unique control vector exists for each type of key the master key
enciphers. The cryptographic feature exclusive ORs the master key with the control
vector associated with the type of key the master key will encipher. The control
vector ensures that an operational key is only used in cryptographic functions for
which it is intended. For example, the control vector for an input PIN-encrypting key
ensures that such a key can be used only in the Encrypted PIN translate and
Encrypted PIN verify functions.

Types of Keys
The cryptographic keys are grouped into these categories based on the functions
they perform.

v DES master key. The DES master key is a double-length (128 bits) key used
only to encrypt other keys. The ICSF administrator installs and changes the DES
master key (see z/OS Cryptographic Services ICSF Administrator's Guide for

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 19

|
|
|

|
|

details). The administrator does this by using the Master Key Entry panels or the
optional Trusted Key Entry (TKE) workstation.

The master key always remains in a secure area in the cryptographic facility.

It is used only to encipher and decipher keys. Other keys also encipher and
decipher keys and are mostly used to protect cryptographic keys you transmit on
external links. These keys, while on the system, are also encrypted under the
master key.

v AES master key. The AES master key is a 32–byte (256 bits) key used only to
encrypt other keys. The ICSF administrator installs and changes the AES master
key (see z/OS Cryptographic Services ICSF Administrator's Guide for details).
The administrator does this by using the Master Key Entry panels or the optional
Trusted Key Entry (TKE) workstation (TKE V5.3).

The master key always remains in a secure area in the cryptographic facility.

It is used only to encipher and decipher keys. Other keys also encipher and
decipher keys and are mostly used to protect cryptographic keys you transmit on
external links. These keys, while on the system, are also encrypted under the
master key.

v AES Data-encrypting keys. The AES data-encrypting keys are 128-, 192- and
256-bits keys that protect data privacy. If you intend to use a data-encrypting key
for an extended period, you can store it in the CKDS so that it will be
reenciphered if the master key is changed.

v AES Cipher keys. The AES cipher keys are 128-, 192- and 256-bit keys that
protect data privacy. If you intend to use a cipher key for an extended period, you
can store it in the CKDS so that it will be reenciphered if the master key is
changed.

v DES Data-encrypting keys. The DES data-encrypting keys are single-length
(64-bit), double-length (128-bit), or triple-length (192-bit) keys that protect data
privacy. Single-length data-encrypting keys can also be used to encode and
decode data and authenticate data sent in messages. If you intend to use a
data-encrypting key for an extended period, you can store it in the CKDS so that
it will be reenciphered if the master key is changed.

You can use single-length data-encrypting keys in the encipher, decipher,
encode, and decode callable services to manage data and also in the MAC
generation and MAC verification callable services. Double-length and triple-length
data-encrypting keys can be used in the encipher and decipher callable services
for more secure data privacy. DATAC is also a double-length data encrypting key.

Single-length data-encrypting keys can be exported and imported using the ANSI
X9.17 key management callable services.

v Data-translation keys. The data-translation keys are single-length (64 bits) keys
used for the ciphertext translate callable service as either the input or the output
data-transport key.

Restriction: Data-translation keys are only supported on the IBM Eserver

zSeries 900.

v CIPHER keys. These consist of CIPHER, ENCIPHER and DECIPHER keys.
They are single and double length keys for enciphering and deciphering data.

Note: Double-length CIPHER, ENCIPHER and DECIPHER keys are only
supported on the IBM Eserver zSeries 990, IBM Eserver zSeries 890,
z9 EC, z9 BC, z10 EC and z10 BC with a PCIXCC, CEX2C, or CEX3C.

v HMAC keys. HMAC keys are variable-length (80 - 2048 bits) keys used to
generate and verify MACs using the key-hash MAC algorithm.

20 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|

v MAC keys. The MAC keys are single- and double-length (64 and 128 bits) keys
used for the callable services that generate and verify MACs.

With a PCIXCC, CEX2C, or CEX3C, MAC and MACVER can be single or double
length keys.

v PIN keys. The personal identification number (PIN) is a basis for verifying the
identity of a customer across financial industry networks. PIN keys are used in
cryptographic functions to generate, translate, and verify PINs, and protect PIN
blocks. They are all double-length (128 bits) keys. PIN keys are used in the Clear
PIN generate, Encrypted PIN verify, and Encrypted PIN translate callable
services.

For installations that do not support double-length 128-bit keys, effective
single-length keys are provided. For a single-length key, the left key half of the
key equals the right key half.

“Managing Personal Authentication” on page 56 gives an overview of the PIN
algorithms you need to know to write your own application programs.

v AES Transport keys (or key-encrypting keys). Transport keys are also known
as key-encrypting keys. They are used to protect AES and HMAC keys when you
distribute them from one system to another.

There are two types of AES transport keys:

– Exporter key-encrypting key protects keys of any type that are sent from your
system to another system. The exporter key at the originator is the same key
as the importer key of the receiver.

– Importer key-encrypting key protects keys of any type that are sent from
another system to your system. It also protects keys that you store externally
in a file that you can import to your system at another time. The importer key
at the receiver is the same key as the exporter key at the originator.

Note: A key-encrypting key should be as strong or stronger than the key it is
wrapping.

v DES Transport keys (or key-encrypting keys). Transport keys are also known
as key-encrypting keys. They are double-length (128 bits) DES keys used to
protect keys when you distribute them from one system to another.

There are several types of transport keys:

– Exporter or OKEYXLAT key-encrypting key protects keys of any type that are
sent from your system to another system. The exporter key at the originator is
the same key as the importer key of the receiver.

– Importer or IKEYXLAT key-encrypting key protects keys of any type that are
sent from another system to your system. It also protects keys that you store
externally in a file that you can import to your system at another time. The
importer key at the receiver is the same key as the exporter key at the
originator.

– NOCV Importers and Exporters are key-encrypting keys used to transport
keys with systems that do not recognize key-encrypting key variants. There
are some requirements and restrictions for the use of NOCV key-encrypting
keys:

- On CCF systems, installation of NOCV enablement keys on the CKDS is
required.

- On PCIXCC, CEX2C, and CEX3C systems, use of NOCV IMPORTERs and
EXPORTERs is controlled by access control points.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 21

|
|

|
|

|
|
|

|

|
|
|

|
|
|
|

|
|

|

- Only programs in system or supervisor state can use the NOCV
key-encrypting key in the form of tokens in callable services. Any problem
program may use NOCV key-encrypting key with labelnames from the
CKDS.

- NOCV key-encrypting key on the CKDS should be protected by RACF.

- NOCV key-encrypting key can be used to encrypt single or double length
keys with standard CVs for key types DATA, DATAC, DATAM ,DATAMV,
DATAXLAT, EXPORTER, IKEYXLAT, IMPORTER, IPINENC, single-length
MAC, single-length MACVER, OKEYXLAT, OPINENC, PINGEN and
PINVER .

- With PCIXCCs, CEX2Cs, and CEX3Cs, NOCV key-encrypting keys can be
used with triple length DATA keys. Since DATA keys have 0 CVs,
processing will be the same as if the key-encrypting keys are standard
key-encrypting keys (not the NOCV key-encrypting key).

Note: Transport keys replace local, remote, and cross keys used by PCF.

You use key-encrypting keys to protect keys that are transported using any of
these services: data key export, key export, key import, clear key import, multiple
clear key import, secure key import, multiple secure key import, key generate,
and key translate.

For installations that do not support double-length key-encrypting keys, effective
single-length keys are provided. For an effective single-length key, the clear key
value of the left key half equals the clear key value of the right key half.

v ANSI X9.17 key-encrypting keys. These bidirectional key-encrypting keys are
used exclusively in ANSI X9.17 key management. They are either single-length
(64 bits) or double-length (128 bits) keys used to protect keys when you
distribute them from one system to another according to the ANSI X9.17 protocol.

Note: ANSI X9.17 keys are only supported on the IBM Eserver zSeries 900.

v Key-Generating Keys. Key-generating keys are double-length keys used to
derive unique-key-per-transaction keys.

Other Considerations
These are considerations for keys held in the cryptographic key data set (CKDS) or
by applications.

v ICSF ensures that keys held in the CKDS are reenciphered during the master
key change. Keys with a long life span (more than one master key change)
should be stored in the CKDS.

v Keys enciphered under the host DES master key and held by applications are
automatically reenciphered under a new master key as they are used. Keys with
a short life span (for example, VTAM SLE data keys) do not need to be stored in
the CKDS. However, if you have keys with a long life span and you do not store
them in the CKDS, they should be enciphered under the importer key-encrypting
key. The importer key-encrypting key itself should be stored in the CKDS.

Table 3 on page 23 describes the key types.

You can build, generate, import, or export key types DECIPHER, ENCIPHER,
CIPHER, CVARDEC, and CVARPINE on a CCF system, but they are not usable on
CCF systems.They will be usable by ICSF if running on a z990, z890, z9 EC, z9
BC, z10 EC and z10 BC with a PCIXCC, CEX2C, or CEX3C.

22 z/OS V1R13 ICSF Application Programmer's Guide

Table 3. Descriptions of Key Types

Key Type Meaning

AESDATA Data encrypting key. Use the AES 128-, 192- or 256-bit key to encipher
and decipher data.

AESTOKEN May contain an AES key.

AKEK Single-length or double-length, bidirectional key-encrypting key used for the
ANSI X9.17 key management callable services. AKEK keys are only
supported on the IBM Eserver zSeries 900.

CIPHER v DES: This single or double-length key is used to encrypt or decrypt
data. It can be used in the Encipher and Decipher callable services.

z900 only: This is a single-length key and cannot be used in the
Encipher and Decipher services.

v AES: This 128-, 192- or 256-bit key is used to encrypt or decrypt data. It
can be used in the Symmmetric Algorithm Decipher and Symmetric
Algorithm Encipher callable services.

CLRAES Data encrypting key. The key value is not encrypted. Use this AES 128-,
192- or 256-bit key to encipher and decipher data.

CLRDES Data encrypting key. The key value is not encrypted. Use this DES
single-length, double-length, or triple-length key to encipher and decipher
data.

CVARDEC The TSS Cryptographic variable decipher verb uses a CVARDEC key to
decrypt plaintext by using the Cipher Block Chaining (CBC) method. This is
a single-length key.

CVARENC Cryptographic variable encipher service uses a CVARENC key to encrypt
plaintext by using the Cipher Block Chaining (CBC) method. This is a
single-length key.

CVARPINE Used to encrypt a PIN value for decryption in a PIN-printing application.
This is a single-length key.

CVARXCVL Used to encrypt special control values in DES key management. This is a
single-length key.

CVARXCVR Used to encrypt special control values in DES key management. This is a
single-length key.

DATA Data encrypting key. Use this DES single-length, double-length, or
triple-length key to encipher and decipher data. Use the AES 128-, 192- or
256-bit key to encipher and decipher data.

DATAC Used to specify a DATA-class key that will perform in the Encipher and
Decipher callable services, but not in the MAC Generate or MAC Verify
callable services. This is a double-length key. Only available with a
PCIXCC/CEX2C/CEX3C.

DATAM Double-length MAC generation key. Used to generate a message
authentication code.

DATAMV Double-length MAC verification key. Used to verify a message
authentication code.

DATAXLAT Data translation key. Use this single-length key to reencipher text from one
DATA key to another. DATAXLAT keys are only supported on the IBM
Eserver zSeries 900.

DECIPHER This single or double-length DES key is used to decrypt data. It can be
used in the Decipher callable service.

z900 only: This is a single-length key and cannot be used in the Decipher
service.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 23

|
|

|
|

|
|
|

Table 3. Descriptions of Key Types (continued)

Key Type Meaning

DKYGENKY Used to generate a diversified key based on the key-generating key. This
is a double-length key.

ENCIPHER This single or double-length DES key is used to encrypt data. It can be
used in the Encipher callable service.

z900 only: This is a single-length key and cannot be used in the Encipher
service.

EXPORTER Exporter key-encrypting key. Use this double-length DES key or 128-, 192-,
or 256-bit AES key to convert a key from the operational form into
exportable form.

IKEYXLAT Used to decrypt an input key in the Key Translate callable service. This is
a double-length key.

IMPORTER Importer key-encrypting key. Use this double-length DES key or 128-, 192-
or 256-bit AES key to convert a key from importable form into operational
form.

IMP-PKA Double-length limited-authority importer key used to encrypt PKA private
key values in PKA external tokens.

IPINENC Double-length input PIN-encrypting key. PIN blocks received from other
nodes or automatic teller machine (ATM) terminals are encrypted under
this type of key. These encrypted PIN blocks are the input to the Encrypted
PIN translate, Encrypted PIN verify, and Clear PIN Generate Alternate
services. If an encrypted PIN block is contained in the output of the SET
Block Decompose service, it may be encrypted by an IPINENC key.

KEYGENKY Used to generate a key based on the key-generating key. This is a
double-length key.

MAC Single, double-length, or variable-length MAC generation key. Use this key
to generate a message authentication code.

z900 only: This is a single-length key.

MACVER Single, double-length, or variable-length MAC verification key. Use this key
to verify a message authentication code.

z900 only: This is a single-length key.

OKEYXLAT Used to encrypt an output key in the Key Translate callable service. This is
a double-length key.

OPINENC Output PIN-encrypting key. Use this double-length output key to translate
PINs. The output PIN blocks from the Encrypted PIN translate, Encrypted
PIN generate, and Clear PIN generate alternate callable services are
encrypted under this type of key. If an encrypted PIN block is contained in
the output of the SET Block Decompose service, it may be encrypted by
an OPINENC key.

PINGEN PIN generation key. Use this double-length key to generate PINs.

PINVER PIN verification key. Use this double-length key to verify PINs.

SECMSG Used to encrypt PINs or keys in a secure message. This is a double-length
key.

TOKEN A key token that may contain a key.

Clear Keys
A clear key is the base value of a key, and is not encrypted under another key.
Encrypted keys are keys whose base value has been encrypted under another key.

24 z/OS V1R13 ICSF Application Programmer's Guide

||
|
|

||
|
|

||
|

|

||
|

|

There are four callable services you can use to convert a clear key to an encrypted
key:

v To convert a clear key to an encrypted data key in operational form, use either
the Clear Key Import callable service or the Multiple Clear Key Import callable
service.

v To convert a clear key to an encrypted key of any type, in operational or
importable form, use either the Secure Key Import callable service or the Multiple
Secure Key Import callable service.

Note: The Secure Key Import and Multiple Secure Key Import callable services can
only execute in special secure mode.

Clear key DATA tokens can be stored in the CKDS. These tokens can only be used
by symmetric key decipher and symmetric key encipher callable services for the
DES and AES algorithms.

Generating and Managing Symmetric Keys
Using ICSF, you can generate keys using either the key generator utility program or
the key generate callable service. The dynamic CKDS update callable services
allow applications to directly manipulate the CKDS. ICSF provides callable services
that support DES and AES key management as defined by the IBM Common
Cryptographic Architecture (CCA) and by the ANSI X9.17 standard.

The next few topics describe the key generating and management options ICSF
provides.

Key Generator Utility Program
The key generator utility program generates data, data-translation, MAC, PIN, and
key-encrypting keys, and enciphers each type of key under a specific master key
variant. When the KGUP generates a key, it stores it in the cryptographic key data
set (CKDS).

Note: If you specify CLEAR, KGUP uses the random number generate and secure
key import callable services rather than the key generate service.

You can access KGUP using ICSF panels. The KGUP path of these panels helps
you create the JCL control statements to control the key generator utility program.
When you want to generate a key, you can enter the ADD control statement and
information, such as the key type on the panels. For a detailed description of the
key generator utility program and how to use it to generate keys, see z/OS
Cryptographic Services ICSF Administrator's Guide.

Common Cryptographic Architecture DES Key Management Services
ICSF provides callable services that support CCA key management for DES keys.

Clear Key Import Callable Service (CSNBCKI and CSNECKI)
This service imports a clear DATA key that is used to encipher or decipher data. It
accepts a clear key and enciphers the key under the host master key, returning an
encrypted DATA key in operational form in an internal key token.

Control Vector Generate Callable Service (CSNBCVG and
CSNECVG)
The control vector generate callable service builds a control vector from keywords
specified by the key_type and rule_array parameters.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 25

Control Vector Translate Callable Service (CSNBCVT and
CSNECVT)
The control vector translate callable service changes the control vector used to
encipher an external key. Use of this service requires the optional PCI
Cryptographic Coprocessor.

Cryptographic Variable Encipher Callable Service (CSNBCVE and
CSNECVE)
The cryptographic variable encipher callable service uses a CVARENC key to
encrypt plaintext by using the Cipher Block Chaining (CBC) method. You can use
this service to prepare a mask array for the control vector translate service. The
plaintext must be a multiple of eight bytes in length.

Data Key Export Callable Service (CSNBDKX and CSNEDKX)
This service reenciphers a DATA key from encryption under the master key to
encryption under an exporter key-encrypting key, making it suitable for export to
another system.

Data Key Import Callable Service (CSNBDKM and CSNEDKM)
This service imports an encrypted source DES DATA key and creates or updates a
target internal key token with the master key enciphered source key.

Diversified Key Generate Callable Service (CSNBDKG and
CSNEDKG)
The diversified key generate service generates a key based on the key-generating
key, the processing method, and the parameter supplied. The control vector of the
key-generating key also determines the type of target key that can be generated.

Key Export Callable Service (CSNBKEX and CSNEKEX)
This service reenciphers any type of key (except an AKEK or IMP-PKA key) from
encryption under a master key variant to encryption under the same variant of an
exporter key-encrypting key, making it suitable for export to another system.

Key Generate Callable Service (CSNBKGN and CSNEKGN)
The key generate callable service generates data, data-translation, MAC, PIN, and
key-encrypting keys. It generates a single key or a pair of keys. Unlike the key
generator utility program, the key generate service does not store the keys in the
CKDS where they can be saved and maintained. The key generate callable service
returns the key to the application program that called it. The application program
can then use a dynamic CKDS update service to store the key in the CKDS.

When you call the key generate callable service, include parameters specifying
information about the key you want generated. Because the form of the key restricts
its use, you need to choose the form you want the generated key to have. You can
use the key_form parameter to specify the form. The possible forms are:

v Operational, if the key is used for cryptographic operations on the local system.
Operational keys are protected by master key variants and can be stored in the
CKDS or held by applications in internal key tokens.

v Importable, if the key is stored with a file or sent to another system. Importable
keys are protected by importer key-encrypting keys.

v Exportable, if the key is transported or exported to another system and imported
there for use. Exportable keys are protected by exporter key-encrypting keys and
cannot be used by ICSF callable service.

Importable and exportable keys are contained in external key tokens. For more
information on key tokens, refer to “Key Token” on page 17.

26 z/OS V1R13 ICSF Application Programmer's Guide

|
|

Key Import Callable Service (CSNBKIM and CSNEKIM)
This service reenciphers a key (except an AKEK) from encryption under an importer
key-encrypting key to encryption under the master key. The reenciphered key is in
the operational form.

Key Part Import Callable Service (CSNBKPI and CSNEKPI)
This service combines clear key parts of any key type and returns the combined
key value either in an internal token or as an update to the CKDS.

Key Test Callable Service (CSNBKYT, CSNEKYT, CSNBKYTX, and
CSNEKYTX)
This service generates or verifies a secure cryptographic verification pattern for
keys. A parameter indicates the action you want to perform.

The key to test can be in the clear or encrypted under a master key. The key test
extended callable service works on keys encrypted under a KEK.

For generating a verification pattern, the service creates and returns a random
number with the verification pattern. For verifying a pattern, you supply the random
number from the call to the service that generated the pattern.

Key Token Build Callable Service (CSNBKTB and CSNEKTB)
The key token build callable service is a utility you can use to create skeleton key
tokens for AKEKs as input to the key generate or key part import callable service.
You can also use this service to build CCA key tokens for all key types ICSF
supports. You can also use this service to build CCA key tokens for all key types
ICSF supports.

Key Translate Callable Service (CSNBKTR and CSNEKTR)
This service uses one key-encrypting key to decipher an input key and then
enciphers this key using another key-encrypting key within the secure environment.

Key Translate2 Callable Service (CSNBKTR2 and CSNEKTR2)
This service uses one key-encrypting key to decipher an input key and then
enciphers this key using another key-encrypting key within the secure environment.

Multiple Clear Key Import Callable Service (CSNBCKM and
CSNECKM)
This service imports a single-length, double-length, or triple-length clear DATA key
that is used to encipher or decipher data. It accepts a clear key and enciphers the
key under the host master key, returning an encrypted DATA key in operational form
in an internal key token.

Multiple Secure Key Import Callable Service (CSNBSKM and
CSNESKM)
This service enciphers a single-length, double-length, or triple-length clear key
under the host master key or under an importer key-encrypting key. The clear key
can then be imported as any of the possible key types. Triple-length keys can only
be imported as DATA keys. This service can be used only when ICSF is in special
secure mode and does not allow the import of an AKEK.

Prohibit Export Callable Service (CSNBPEX and CSNEPEX)
This service modifies an operational key so that it cannot be exported. This callable
service does not support NOCV key-encrypting keys, DATA, MAC, or MACVER
keys with standard control vectors (for example, control vectors supported by the
Cryptographic Coprocessor Feature).

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 27

Prohibit Export Extended Callable Service (CSNBPEXX and
CSNEPEXX)
This service updates the control vector in the external token of a key in exportable
form so that the receiver node can import the key but not export it. When the key
import callable service imports such a token, it marks the token as non-exportable.
The key export callable service does not allow export of this token.

Random Number Generate Callable Service (CSNBRNG,
CSNERNG, CSNBRNGL, and CSNERNGL)
The random number generate callable service creates a random number value to
use in generating a key. The callable service uses cryptographic hardware to
generate a random number for use in encryption.

Remote Key Export Callable Service (CSNDRKX and CSNFRKX)
The remote key export callable service uses the trusted block to generate or export
DES keys for local use and for distribution to an ATM or other remote device.

Restrict Key Attribute Callable Service (CSNBRKA and
CSNERKA)
This service modifies an AES operational key so that it cannot be exported.

Secure Key Import Callable Service (CSNBSKI and CSNESKI)
This service enciphers a clear key under the host master key or under an importer
key-encrypting key. The clear key can then be imported as any of the possible key
types. This service can be used only when ICSF is in special secure mode and
does not allow the import of an AKEK.

Note: The PKA encrypt, PKA decrypt, symmetric key generate, symmetric key
import, and symmetric key export callable services provide a way of
distributing DES DATA keys protected under a PKA key. See Chapter 3,
“Introducing PKA Cryptography and Using PKA Callable Services,” on page
79 for additional information.

Symmetric Key Export Callable Service (CSNDSYX and
CSNFSYX)
This service transfers an application-supplied symmetric key (a DATA key) from
encryption under the DES host master key to encryption under an
application-supplied RSA public key. (There are two types of PKA public key tokens:
RSA and DSS. This callable service can use only the RSA type.) The
application-supplied DATA key must be an ICSF DES internal key token or the label
of such a token in the CKDS. The symmetric key import callable service can import
the PKA-encrypted form at the receiving node.

Symmetric Key Generate Callable Service (CSNDSYG and
CSNFSYG)
This service generates a symmetric key (that is, a DATA key) and returns it
encrypted using DES and encrypted under an RSA public key token. (There are two
types of PKA public key tokens: RSA and DSS. This callable service can use only
the RSA type.)

The DES-encrypted key can be an internal token encrypted under a host DES
master key, or an external form encrypted under a KEK. (You can use the
symmetric key import callable service to import the PKA-encrypted form.)

28 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|

Symmetric Key Import Callable Service (CSNDSYI and CSNFSYI)
This service imports a symmetric (DES) DATA key enciphered under an RSA public
key. (There are two types of PKA private key tokens: RSA and DSS. This callable
service can use only the RSA type.) This service returns the key in operational
form, enciphered under the DES master key.

Transform CDMF Key Callable Service (CSNBTCK and CSNETCK)
Restriction: This service is only available on the IBM Eserver zSeries 900.

It changes a CDMF DATA key in an internal or external token to a transformed
shortened DES key. It ignores the input internal DES token markings and marks the
output internal token for use in the DES. You need to use this service only if you
have a CDMF or DES-CDMF system that needs to send CDMF-encrypted data to a
DES-only system. The CDMF or DES-CDMF system must generate the key,
shorten it, and pass it to the DES-only system.

If the input DATA key is in an external token, the operational KEK must be marked
as DES or SYS-ENC. The service fails for an external DATA key encrypted under a
KEK that is marked as CDMF.

Trusted Block Create Callable Service (CSNDTBC and CSNFTBC)
This service creates and activates a trusted block under two step process.

User Derived Key Callable Service (CSFUDK and CSFUDK6)
Restriction: This service is only available on the IBM Eserver zSeries 900.

This service generates a single-length or double-length MAC key, or updates an
existing user-derived key. A single-length MAC key can be used to compute a
Message Authentication Code (MAC) following the ANSI X9.9, ANSI X9.19, or the
Europay, MasterCard, Visa (EMV) Specification MAC processing rules. A
double-length MAC key can be used to compute a MAC following the ANSI X9.19
optional double MAC processing rule or the EMV rules.

Common Cryptographic Architecture AES Key Management Services
ICSF provides callable services that support CCA key management for AES keys.

Key Generate Callable Service (CSNBKGN and CSNEKGN)
The key generate callable service generates AES data keys. It generates a single
operational key. Unlike the key generator utility program, the key generate service
does not store the keys in the CKDS where they can be saved and maintained. The
key generate callable service returns the key to the application program that called
it. The application program can then use a dynamic CKDS update service to store
the key in the CKDS.

Key Generate2 Callable Service (CSNBKGN2 and CSNEKGN2)
The service generates AES keys. It generates one operational key or an operational
key pair. The key generate callable service returns the key to the application
program that called it. The application program can then use a dynamic CKDS
update service to store the key in the CKDS.

Key Part Import2 Callable Service (CSNBKPI2 and CSNEKPI2)
This service combines clear key parts of any AES key type and returns the
combined key value either in an internal token or as an update to the CKDS.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 29

|
|
|
|
|

|
|
|

Key Test2 Callable Service (CSNBKYT2 and CSNEKYT2)
This service generates or verifies a secure cryptographic verification pattern for AES
keys. A parameter indicates the action you want to perform.

Key Token Build Callable Service (CSNBKTB and CSNEKTB)
The key token build callable service is a utility you can use to create clear AES key
tokens, secure AES key tokens and skeleton secure AES key tokens for use with
other callable services. You can also use this service to build CCA key tokens for all
key types ICSF supports. You can also use this service to build CCA key tokens for
all key types ICSF supports.

Multiple Clear Key Import Callable Service (CSNBCKM and
CSNECKM)
This service imports a a 128-, 192- or 256-bit clear DATA key that is used to
encipher or decipher data. It accepts a clear key and enciphers the key under the
host master key, returning an encrypted DATA key in operational form in an internal
key token.

Multiple Secure Key Import Callable Service (CSNBSKM and
CSNESKM)
This service enciphers 128-, 192- or 256-bit clear DATA key under the host master
key. This service can be used only when ICSF is in special secure mode.

Restrict Key Attribute Callable Service (CSNBRKA and
CSNERKA)
This service modifies an AES operational key so that it cannot be exported.

Secure Key Import2 Callable Service (CSNBSKI2 and CSNESKI2)
This service enciphers a variable length clear AES key under the host master key.
This service can be used only when ICSF is in special secure mode.

Symmetric Key Export Callable Service (CSNDSYX and
CSNFSYX)
Use the symmetric key export callable service to transfer an application-supplied
AES DATA key from encryption under a master key to encryption under an
application-supplied RSA public key or AES EXPORTER key. The
application-supplied key must be an ICSF AES internal key token or the label of
such a token in the CKDS. The Symmetric Key Import or Symmetric Key Import2
callable services can import the key encrypted under the RSA public key or AES
EXPORTER at the receiving node.

Symmetric Key Generate Callable Service (CSNDSYG and
CSNFSYG)
This service generates a symmetric DATA key and returns it encrypted under the
host AES master key and encrypted under an RSA public key token. (There are two
types of PKA public key tokens: RSA and DSS. This callable service can use only
the RSA type.)

The AES-encrypted key can only be an internal token encrypted under a host AES
master key. You can use the symmetric key import callable service to import the
PKA-encrypted form.

Symmetric Key Import Callable Service (CSNDSYI and CSNFSYI)
This service imports a symmetric (AES) DATA key enciphered under an RSA public
key. (There are two types of PKA private key tokens: RSA and DSS. This callable

30 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

service can use only the RSA type.) This service returns the key in operational
form, enciphered under the AES master key.

Symmetric Key Import2 Callable Service (CSNDSYI2 and
CSNFSYI2)
This service imports an AES key enciphered under an RSA public key. (There are
two types of PKA private key tokens: RSA and DSS. This callable service can use
only the RSA type.) This service returns the key in operational form, enciphered
under the AES master key.

Common Cryptographic Architecture HMAC Key Management Services
ICSF provides callable services that support CCA key management for HMAC keys.
HMAC keys are stored in the cryptographic key data set (CKDS).

Key Generate2 callable service (CSNBKGN2 and CSNEKGN2)
The service generates HMAC keys. It generates operational key or operational key
pair. The key generate callable service returns the key to the application program
that called it. The application program can then use a dynamic CKDS update
service to store the key in the CKDS.

Key Part Import2 callable service (CSNBKPI2 and CSNEKPI2)
This service combines clear key parts of any HMAC key type and returns the
combined key value either in an internal token or as an update to the CKDS.

Key Test2 callable service (CSNBKYT2 and CSNEKYT2)
This service generates or verifies a secure cryptographic verification pattern for
HMAC keys. A parameter indicates the action you want to perform.

Key Token Build2 callable service (CSNBKTB2 and CSNEKTB2)
This service is a utility you can use to create skeleton HMAC key tokens for use
with other callable services.

Restrict Key Attribute callable service (CSNBRKA and CSNERKA)
This service modifies an HMAC operational key so that it cannot be exported.

Secure Key Import2 callable service (CSNBSKI2 and CSNESKI2)
This service enciphers a variable length clear HMAC key under the host master
key. This service can be used only when ICSF is in special secure mode.

Symmetric Key Export Callable Service (CSNDSYX and
CSNFSYX)
This service transfers an application-supplied symmetric key (HMAC key) from
encryption under the AES host master key to encryption under an
application-supplied RSA public key. (There are two types of PKA public key tokens:
RSA and DSS. This callable service can use only the RSA type.) The
application-supplied key must be an ICSF internal key token or the label of such a
token in the CKDS. The symmetric key import callable service can import the
PKA-encrypted form at the receiving node.

Symmetric Key Import2 Callable Service (CSNDSYI2 and
CSNFSYI2)
This service imports an HMAC key enciphered under an RSA public key. (There are
two types of PKA private key tokens: RSA and DSS. This callable service can use
only the RSA type.) This service returns the key in operational form, enciphered
under the AES master key.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 31

|
|
|
|
|
|

ECC Diffie-Hellman Key Agreement Models

Token Agreement Scheme
The caller must have both the required key tokens and both Parties identifiers
including a randomly generated nonce. Combine the exchanged nonce and Party
Info into the party identifier. (Both parties must combine this information in the same
format.) Then call the ECC Diffie-Hellman callable service. Specify a skeleton token
or the label of a skeleton token as the output key identifier as a container for the
computed symmetric key material. Note, both parties must specify the same key
type in their skeleton key tokens.

v Specify rule array keyword DERIV01 to denote the Static Unified Model key
agreement scheme.

v Specify an ECC token as the private key identifier containing this party's ECC
public-private key pair.

v Optionally specify a private KEK key identifier, if the key pair is in an external key
token.

v Specify an ECC token as the public key identifier containing other party's ECC
public key part.

v Specify a skeleton token as the output key identifier as a container for the
computed symmetric key material.

v Optionally specify an output KEK key identifier, if the output key is to be in an
external key token.

v Specify the combined party info (including nonce) as the party identifier.

v Specify the desired size of the key to be derived (in bits) as the key bit length.

Obtaining the Raw “Z” value
To use a key agreement scheme that differs from the above, one may obtain the
raw shared secret "Z" and skip the key derivation step. The caller must then derive
the final key material using a method of their choice. Do not specify any party info.

v Specify rule array keyword “PASSTHRU" to denote no key agreement scheme.

v Specify an ECC token as the private key identifier containing this party's ECC
public-private key pair.

v Optionally specify a private KEK key identifier, if the key pair is in an external key
token.

v Specify an ECC token as the public key identifier containing other party's ECC
public key part.

v The output key identifier be populated with the resulting shared secret material.

Improved remote key distribution

Note: This improved remote key distribute support is only available on the z9 EC,
z9 BC, z10 EC and z10 BC servers.

New methods have been added for securely transferring symmetric encryption keys
to remote devices, such as Automated Teller Machines (ATMs), PIN-entry devices,
and point of sale terminals. These methods can also be used to transfer symmetric
keys to another cryptographic system of any type, such as a different kind of
Hardware Security Module (HSM) in an IBM or non-IBM computer server. This
change is especially important to banks, since it replaces expensive human
operations with network transactions that can be processed quickly and
inexpensively. This method supports a variety of requirements, fulfilling the new

32 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|
|
|

|

|
|

|
|

|
|

|

needs of the banking community while simultaneously making significant
interoperability improvements to related cryptographic key-management functions.

For the purposes of this description, the ATM scenario will be used to illustrate
operation of the new methods. Other uses of this method are also valuable.

Remote Key Loading
Remote key loading refers to the process of installing symmetric encryption keys
into a remotely located device from a central administrative site. This encompasses
two phases of key distributions.

v Distribution of initial key encrypting keys (KEKs) to a newly installed device. A
KEK is a type of symmetric encryption key that is used to encrypt other keys so
they can be securely transmitted over unprotected paths.

v Distribution of operational keys or replacement KEKs, enciphered under a KEK
currently installed in the device.

Old remote key loading example: Use an ATM as an example of the remote key
loading process. A new ATM has none of the bank's keys installed when it is
delivered from the manufacturer. The process of getting the first key securely
loaded is difficult. This has typically been done by loading the first KEK into each
ATM manually, in multiple cleartext key parts. Using dual control for key parts, two
separate people must carry key part values to the ATM, then load each key part
manually. Once inside the ATM, the key parts are combined to form the actual KEK.
In this manner, neither of the two people has the entire key, protecting the key
value from disclosure or misuse. This method is labor-intensive and error-prone,
making it expensive for the banks.

New remote key loading methods: New remote key loading methods have been
developed to overcome some of the shortcomings of the old manual key loading
methods. These new methods define acceptable techniques using public key
cryptography to load keys remotely. Using these new methods, banks will be able to
load the initial KEKs without sending people to the remote device. This will reduce
labor costs, be more reliable, and be much less expensive to install and change
keys. The new cryptographic features added provide new methods for the creation
and use of the special key forms needed for remote key distribution of this type. In
addition, they provide ways to solve long-standing barriers to secure key exchange
with non-IBM cryptographic systems.

Once an ATM is in operation, the bank can install new keys as needed by sending
them enciphered under a KEK installed previously. This is straightforward in
concept, but the cryptographic architecture in ATMs is often different from that of the
host system sending the keys, and it is difficult to export the keys in a form
understood by the ATM. For example, cryptographic architectures often enforce
key-usage restrictions in which a key is bound to data describing limitations on how
it can be used - for encrypting data, for encrypting keys, for operating on message
authentication codes (MACs), and so forth. The encoding of these restrictions and
the method used to bind them to the key itself differs among cryptographic
architectures, and it is often necessary to translate the format to that understood by
the target device prior to a key being transmitted. It is difficult to do this without
reducing security in the system; typically it is done by making it possible to
arbitrarily change key-usage restrictions. The methods described here provide a
mechanism through which the system owner can securely control these
translations, preventing the majority of attacks that could be mounted by modifying
usage restrictions.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 33

A new data structure called a trusted block is defined to facilitate the remote key
loading methods. The trusted block is the primary vehicle supporting these new
methods.

Trusted block
The trusted block is the central data structure to support all remote key loading
functions. It provides great power and flexibility, but this means that it must be
designed and used with care in order to have a secure system. This security is
provided through several features of the design.

v A two step process is used to create a trusted block.

v The trusted block includes cryptographic protection that prevents any modification
when it is created.

v A number of fields in the rules of a trusted block offer the ability to limit how the
block is used, reducing the risk of it being used in unintended ways or with
unintended keys.

The trusted block is the enabler which requires secure approval for its creation,
then enables the export or generation of DES and TDES keys in a wide variety of
forms as approved by the administrators who created the trusted block. For added
security, the trusted blocks themselves can be created on a separate system, such
as an xSeries server with an IBM 4764 Cryptographic Coprocessor, locked in a
secure room. The trusted block can subsequently be imported into the zSeries
server where they will be used to support applications.

There are two CCA callable services to manage and use trusted blocks: Trusted
Block Create (CSNDTBC and CSNETBC) and Remote Key Export (CSNDRKX and
CSNFRKX). The Trusted Block Create service creates a trusted block, and the
Remote Key Export service uses a trusted block to generate or export DES keys
according to the parameters in the trusted block. The trusted block consists of a
header followed by several sections. Some elements are required, while others are
optional.

Figure 1 on page 35 shows the contents of a trusted block. The elements shown in
the table give an overview of the structure and do not provide all of the details of a
trusted block.

34 z/OS V1R13 ICSF Application Programmer's Guide

Here is a brief description of the elements that are depicted.

Structure version information - This identifies the version of the trusted block
structure. It is included so that code can differentiate between this trusted block
layout and others that may be developed in the future.

Public key - This contains the RSA public key and its attributes. For distribution of
keys to a remote ATM, this will be the root certification key for the ATM vendor, and
it will be used to verify the signature on public-key certificates for specific individual
ATMs. In this case, the Trusted Block will also contain Rules that will be used to
generate or export symmetric keys for the ATMs. It is also possible for the Trusted
Block to be used simply as a trusted public key container, and in this case the
Public Key in the block will be used in general-purpose cryptographic functions such
as digital signature verification. The public key attributes contain information on key
usage restrictions. This is used to securely control what operations will be permitted
to use the public key. If desired, the public key can be restricted to use for only
digital signature operations, or for only key management operations.

Trusted block protection information - This topic contains information that is
used to protect the Trusted Block contents against modification. According to the
method in ISO 16609, a CBC-mode MAC is calculated over the Trusted Block using
a randomly-generated triple-DES (TDES) key, and the MAC key itself is encrypted

Modulus

Exponent

Attributes

MAC key

MAC

Flags

MKVP

Activation/Expiration dates

Label

Rule 1

Rule 2

Rule 3

...

Rule N

Data defined and understood
only by the application using the

trusted block

Public key

Trusted block protection information

Public key name (optional)

Rules

Application defined data

Structure version information

Figure 1. Overview of trusted block contents

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 35

and embedded in the block. For the internal form of the block, the MAC key is
encrypted with a randomly chosen fixed-value variant of the PKA master key. For
the external form, the MAC key is encrypted with a fixed variant of a key-encrypting
key. The MKVP field contains the master key verification pattern for the PKA master
key that was used, and is filled with binary zeros if the trusted block is in external
format. Various flag fields contain these boolean flags.

v Active flag - Contained within the flags field of the required trusted block
information section, this flag indicates whether the trusted block is active and
ready for use by other callable services. Combined with the use of two separate
access control points, the active flag is used to enforce dual control over creation
of the block. A person whose active role is authorized to create a trusted block in
inactive form creates the block and defines its parameters. An inactive trusted
block can only be used to make it active. A person whose active role is
authorized to activate an inactive trusted block must approve the block by
changing its status to active. See Figure 3 on page 39. The Remote_Key_Export
callable service can only use an internal active trusted block to generate or
export DES keys according to the parameters defined in the trusted block.

v Date checking flag - Contained within the optional activation and expiration date
subsection of the required trusted block information subsection, this flag indicates
whether the coprocessor checks the activation and expiration dates for the
trusted block. If the date checking flag is on, the coprocessor compares the
activation and expiration dates in the optional subsection to the coprocessor
internal real time clock, and processing terminates if either date is out of range. If
this flag is off or the activation and expiration dates subsection is not defined, the
device does no date checking. If this flag is off and the activation and expiration
dates subsection is defined, date checking can still be performed outside of the
device if required. The date checking flag enables use of the trusted block in
systems where the coprocessor clock is not set.

Trusted block name - This field optionally contains a text string that is a name (key
label) for the trusted block. It is included in the block for use by an external system
such as a host computer, and not by the card itself. In the zSeries system, the label
can be checked by RACF to determine if use of the block is authorized. It is
possible to disable use of trusted blocks that have been compromised or need to be
removed from use for other reasons by publishing a revocation list containing the
key names for the blocks that must not be used. Code in the host system could
check each trusted block prior to it being used in the cryptographic coprocessor, to
ensure that the name from that block is not in the revocation list.

Expiration date and activation dates - The trusted block can optionally contain an
expiration date and an activation date. The activation date is the first day on which
the block can be used, and the expiration date is the last day when the block can
be used. If these dates are present, the date checking flag in the trusted block will
indicate whether the coprocessor should check the dates using its internal real-time
clock. In the case of a system that does set the coprocessor clock, checking would
have to be performed by an application program prior to using the trusted block.
This is not quite as secure, but it is still valuable, and storing the dates in the block
itself is preferable to making the application store it somewhere else and maintain
the association between the separate trusted block and activation and expiration
dates.

Application-defined data - The trusted block can hold data defined and
understood only by the host application program. This data is included in the
protected contents of the trusted block, but it is not used or examined in any way by

36 z/OS V1R13 ICSF Application Programmer's Guide

the coprocessor. By including its own data in the trusted block, an application can
guarantee that the data is not changed in any way, since it is protected in the same
way as the other trusted block contents.

Rules - A variable number of rules can be included in the block. Each rule contains
information on how to generate or export a symmetric key, including values for
variants to be used in order to provide keys in the formats expected by systems
with differing cryptographic architectures. Use of the rules are described in the
topics covering key generation and export using the RKX function. This table
summarizes the required and optional values of each rule.

Field name Required
field

Description

Rule ID Yes Specifies the 8-character name of the rule

Operation Yes Indicates whether this rule generates a new key or
exports an existing key

Generated key
length

Yes Specifies the length of the key to be generated

Key-check
algorithm ID

Yes Specifies which algorithm to use to compute the optional
key-check value (KCV). Options are

v No KCV

v Encrypt zeros with the key

v Compute MDC-2 hash of the key

Symmetric-
encrypted output
format

Yes Specifies the format of the required symmetric-encrypted
key output. Options are:

v CCA key token

v RKX key token

Asymmetric-
encrypted output
format

Yes Specifies the format of the optional asymmetric-
encrypted key output (key is encrypted with RSA).
Options are:

v No asymmetric-encrypted key output

v Encrypt in PKCS1.2 format

v Encrypt in RSAOAEP format

Transport-key
variant

No Specifies the variant to apply to the transport key prior to
it being used to encrypt the key being generated or
exported

Export key CV No Specifies the CCA CV to apply to the transport key prior
to it being used to encrypt the key being generated or
exported. The CV defines permitted uses for the
exported key.

Export key length
limits

No Defines the minimum and maximum lengths of the key
that can be exported with this rule.

Output key variant No Specifies the variant to apply to the generated or
exported key prior to it being encrypted.

Export-key rule
reference

No Specifies the rule ID for the rule that must have been
used to generate the key being exported, if that key is an
RKX key token.

Export-key CV
restrictions

No Defines masks and templates to use to restrict the
possible CV values that a source key can have when
being exported with RKX. Only applies if the key is a
CCA key token. This can control the types of CCA keys
that can be processed using the rule.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 37

Field name Required
field

Description

Export-key label
template

No Specifies the key label of the key token that contains the
source key to be exported. A key label is a name used to
identify a key. The rule can optionally contain a key label
template, which will be matched against the
host-supplied key label, using a wildcard (*) so that the
template can match a set of related key labels. The
operation will only be accepted if the supplied label
matches the wildcard template in the rule.

Changes to the CCA API
These changes have been made to the CCA API to support remote key loading
using trusted blocks:

v A new Trusted Block Create (CSNDTBC and CSNETBC) callable service has
been developed to securely create trusted blocks under dual control.

v A new Remote Key Export (CSNDRKX and CSNFRKX) callable service has been
developed to generate or export DES and TDES keys under control of the rules
contained in a trusted block.

v The Digital Signature Verify (CSNDDSV) callable service has been enhanced so
that, in addition to verifying ordinary CCA RSA keys, it can use the RSA public
key contained in a trusted block to verify digital signatures.

v The PKA Key Import (CSNDPKI) callable service has been enhanced so it can
import an RSA key into the CCA domain. In addition, the verb can import an
external format trusted block into an internal format trusted block, ready to be
used in the local system.

v The PKA Key Token Change (CSNDKTC and CSNFKTC) callable service has
been enhanced so that it can update trusted blocks to the current PKA master
key when the master key is changed. A trusted block contains an embedded
MAC key enciphered under the PKA master key. When the PKA master key is
changed, the outdated MAC key and the trusted block itself need to be updated
to reflect the current PKA master key.

v The MAC Generate (CSNBMGN) and MAC Verify (CSNBMVR) callable services
have been enhanced to add ISO 16609 TDES MAC support in which the text will
be CBC-TDES encrypted using a double-length key and the MAC will be
extracted from the last block.

v The PKA key storage callable services support trusted blocks.

The RKX key token
CCA normally uses key tokens that are designed solely for the purposes of
protecting the key value and carrying metadata associated with the key to control its
use by CCA cryptographic functions. The remote key loading design introduces a
new type of key token called an RKX key token. The purpose of this token is
somewhat different, and its use is connected directly with the Remote Key Export
callable service added to CCA of the remote key loading design.

The RKX key token uses a special structure that binds the token to a specific
trusted block, and allows sequences of Remote Key Export calls to be bound
together as if they were an atomic operation. This allows a series of related
key-management operations to be performed using the Remote Key Export callable
service. These capabilities are made possible by incorporating these three features
into the RKX key token structure:

38 z/OS V1R13 ICSF Application Programmer's Guide

v The key is enciphered using a variant of the MAC key that is in the trusted block.
A fixed, randomly-derived variant is applied to the key prior to it being used. As a
result, the enciphered key is protected against disclosure since the trusted block
MAC key is itself protected at all times.

v The structure includes the rule ID contained in the trusted block rule that was
used to create the key. A subsequent call to the Remote Key Export callable
service can use this key with a trusted block rule that references this rule ID,
effectively chaining use of the two rules together securely.

v A MAC is computed over the encrypted key and the rule ID, using the same
MAC key that is used to protect the trusted block itself. This MAC guarantees
that the key and the rule ID cannot be modified without detection, providing
integrity and binding the rule ID to the key itself. In addition, the MAC will only
verify if the RKX key token is used with the same trusted block that created the
token, thus binding the key to that specific trusted block.

This figure shows a simplified conceptual view of the RKX key token structure.

Using trusted blocks
These examples illustrate how trusted blocks are used with the new and enhanced
CCA callable services.

Creating a trusted block: This figure illustrates the steps used to create a trusted
block.

Enciphered key
MAC covers these areas

Rule ID

MAC

Figure 2. Simplified RKX key-token structure

External trusted block

Administrator 1

Inactive

TBC External trusted block

Administrator 2

Active

TBC

Figure 3. Trusted block creation

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 39

A two step process is used to create a trusted block. Trusted blocks are structures
that could be abused to circumvent security if an attacker could create them with
undesirable settings, and the requirement for two separate and properly authorized
people makes it impossible for a single dishonest employee to create such a block.
A trusted block cannot be used for any operations until it is in the active state. Any
number of trusted blocks can be created in order to meet different needs of
application programs.

Exporting keys with Remote_Key_Export: This figure shows the process for
using a trusted block in order to export a DES or TDES key. This representation is
at a very high level in order to illustrate the basic flow.

Internal trusted
block

Active

Transport key

Source key

Importer key

Certificate

RXK

Validate
trusted block

Symmetric
encrypted key

RSA-encrypted key
(optional)

Key check value
(optional)

Validate parameter
against rules in
trusted block

Apply rules in trusted
block to build output key

value from source key

Compute key check value
(KCV) on source key, if

specified by rule

Apply rules to encrypt key
value with transport key

and optionally with public
key in certificate

Note: Importer key is only used if
source key is an external CCA token.

Figure 4. Exporting keys using a trusted block

40 z/OS V1R13 ICSF Application Programmer's Guide

The Remote Key Export callable service is called with these main parameters:

v A trusted block, in the active state, defines how the export operation is to be
processed, including values to be used for things such as variants to apply to the
keys.

v The key to be exported, shown previously as the source key. The source key
takes one of two forms:

1. A CCA DES key token

2. An RKX key token

v A key-encrypting key, shown in the figure as the importer key. This is only used if
the source key is an external CCA DES key token, encrypted under a KEK. In
this case, the KEK is the key needed to obtain the cleartext value of the source
key.

v A transport key, either an exporter KEK or an RKX key token, used to encrypt the
key being exported.

v An optional public key certificate which, if included, contains the certified public
key for a specific ATM. The certificate is signed with the ATM vendor's private
key, and its corresponding public key must be contained in the trusted block so
that this certificate can be validated. The public key contained in the certificate
can be used to encrypt the exported key.

The processing steps are simple at a high level, but there are many options and
significant complexity in the details.

v The trusted block itself is validated. This includes several types of validation.

– Cryptographic validation using the MAC that is embedded in the block, in
which the MAC key is decrypted using the coprocessor's master key, and the
MAC is then verified using that key. This verifies the block has not been
corrupted or tampered with, and it also verifies that the block is for use with
this coprocessor since it will only succeed if the master key is correct.

– Consistency checking and field validation, in which the validity of the structure
itself is checked, and all values are verified to be within defined ranges.

– Fields in the trusted block are checked to see if all requirements are met for
use of this trusted block. One check which is always required is to ensure that
the trusted block is in the active state prior to continuing. Another check,
which is optional based on the contents of the trusted block, is to ensure the
operation is currently allowed by comparing the date of the coprocessor
real-time clock to the activation and expiration dates defined in the trusted
block.

v Input parameters to the Remote Key Export callable service are validated against
rules defined for them within the trusted block. For example:

– The rule can restrict the length of the key to be exported.

– The rule can restrict the control vector values for the key to be exported, so
only certain key types can be exported with that rule.

v When the export key is decrypted, the rules embedded in the trusted block are
then used to modify that key to produce the desired output key value. For
example, the trusted block can contain a variant to be exclusive-ORed with the
source key prior to when that key is encrypted. Many non-IBM cryptographic
systems use variants to provide key separation to restrict a key from improper
use.

v A key check value (KCV) can be optionally computed for the source key. If the
KCV is computed, the trusted block allows for one of two key check algorithms to

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 41

be used: (1) encrypting binary zeros with the key, or (2) computing an MDC-2
hash of the key. The KCV is returned as output from the Remote Key Export
function.

v The export key, which could possibly be modified with a variant according to the
rules in the trusted block, is enciphered with the transport key. The rules can
specify that the key be created in one of two formats: (1) a CCA key token, or (2)
the new RKX key token, described previously. With proper selection of rule
options, the CCA key token can create keys that can be used in non-CCA
systems. The key value can be extracted from the CCA key token resulting in a
generic encrypted key, with variants and other options as defined in the rule.

Two optional fields in the trusted block may modify the transport key prior to it
being used to encrypt the source key:

– The trusted block can contain a CCA control vector (CV) to be
exclusive-ORed with the transport key prior to it being used to encrypt the
export key. This exclusive-OR process is the standard way CCA applies a CV
to a key.

– In addition to the CV described previously, the trusted block can also contain
a variant to be exclusive-ORed with the transport key prior to its use.

If a variant and CV are both present in the trusted block, the variant is applied
first, then the CV.

v The export key can optionally be encrypted with the RSA public key identified by
the certificate parameter of the Remote Key Export callable service, in addition to
encrypting it with the transport key as described previously. These two encrypted
versions of the export key are provided as separate outputs of the Remote Key
Export callable service. The trusted block allows a choice of encrypting the key in
either PKCS1.2 format or PKCSOAEP format.

Generating keys with Remote_Key_Export: This figure shows the process for
using a trusted block to generate a new DES or TDES key. This representation is at
a very high level in order to illustrate the basic flow.

42 z/OS V1R13 ICSF Application Programmer's Guide

For key generation, the Remote Key Export callable service is called with these
main parameters:

v A trusted block, in the internal active state, which defines how the key generation
operation is to be processed, including values to be used for things such as
variants to apply to the keys. The generated key is encrypted by a variant of the
MAC key contained in a trusted block.

v An optional public key certificate which, if included, contains the certified public
key for a specific ATM. The certificate is signed with the ATM vendor's private
key, and its corresponding public key must be contained in the trusted block so
that this certificate can be validated. The public key contained in the certificate
can be used to encrypt the generated key.

Symmetric
encrypted key

RSA-encrypted
key (optional)

Key check vlaue
(optional)

Apply rules to encrypt key
value with transport key

and optionally with public
key in certificate.

Compute key check
value (KCV) on key K

if specified by rule.

Apply rules in trusted
block to build output

key value from key K.

Generate random key
K based on rules in

trusted block.

Validate parameter
against rules in
trusted block.

Validate trusted block.

RKX

Certificate

Transport key

Active

Internal trusted
block

Figure 5. Generating keys using a trusted block

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 43

The processing steps are simple at a high level, but there are many options and
significant complexity in the details. Most of the processing steps are the same as
those described previously for key export. Therefore, only those processing steps
that differ are described here in detail.

v Validation of the trusted block and input parameters is done as described for
export previously.

v The DES or TDES key to be returned by the Remote Key Export callable service
is randomly generated. The trusted block indicates the length for the generated
key.

v The output key value is optionally modified by a variant as described previously
for export, and then encrypted in the same way as for export using the Transport
key and optionally the public key in the certificate parameter.

v The key check value (KCV) is optionally computed for the generated key using
the same method as for an exported key.

Remote key distribution scenario
The new and modified CCA functions for remote key loading are used together to
create trusted blocks, and then generate or export keys under the control of those
trusted blocks. This figure summarizes the flow of the CCA functions to show how
they are used:

TBC

TBC

PKI

Trusted block parameters

Transport key

Option=INACTIVE

Trusted block

Transport key

Option=ACTIVATE

Trusted block

Transport key

Trusted block

Transport key

Source key

Certificate

Importer key (if needed)

Trusted block

Transport key

Source key

Certificate

Importer key (if needed)

RKX

RKX

Trusted block (external, inactive)

Trusted block (external, active)

Trusted block (internal, active)

Symmetric-encrypted key

Asymmetric-encrypted key

Key check value

Symmetric-encrypted key

Asymmetric-encrypted key

Key check value

Possible to do one of these
if key format is an RKX token

Figure 6. Typical flow of callable services for remote key export

44 z/OS V1R13 ICSF Application Programmer's Guide

Usage example: The scenario described shows how these functions might be
combined in a real-life application to distribute a key to an ATM and keep a copy for
local use. Some of the terminology used reflects typical terms used in ATM
networks. The example illustrates a fairly complex real-world key distribution
scenario, in which these values are produced.

v A TMK (Terminal Master Key), which is the root KEK used by the ATM to
exchange other keys, is produced in two forms: (1) encrypted under the ATM
public key, so it can be sent to the ATM, and (2) as an RKX key token that will be
used in subsequent calls to the Remote Key Export callable service to produce
other keys.

v A key-encrypting key KEK1 that is encrypted under the TMK in a form that can
be understood by the ATM.

v A PIN-encrypting key PINKEY be used by the ATM to encrypt customer-entered
PINs and by the host to verify those PINs. The PINKEY is produced in two forms:
(1) encrypted under KEK1 in a form that can be understood by the ATM, and (2)
as a CCA internal DES key token with the proper PIN-key CV, encrypted under
the CCA DES master key and suitable for use with the coprocessor.

It takes seven steps to produce these keys using the Remote Key Export callable
service. These steps use a combination of five rules contained in a single trusted
block. The rules in this example are referred to as GENERAT1, GENERAT2,
EXPORT1, EXPORT2, and EXPORT3.

1. Use the Remote Key Export callable service with rule ID "GENERAT1" to
generate a TMK for use with the ATM. The key will be output in two forms:

a. ePu(TMK): Encrypted under the ATM public key, supplied in the certificate
parameter, CERT

b. RKX(TMK): As an RKX key token, suitable for subsequent input to the
CSNDRKX callable service

2. Use the Remote Key Export callable service with rule ID "GENERAT2" to
generate a key-encrypting key (KEK1) as an RKX key token, RKX(KEK1)

3. Use the Remote Key Export callable service with rule ID "GENERAT2" to
generate a PIN key (PINKEY) as an RKX key token: RKX(PINKEY).

4. Use the Remote Key Export callable service with rule ID "EXPORT1 " to export
KEK1 encrypted under the TMK as a CCA DES key token using a variant of
zeros applied to the TMK. This produces eTMK(KEK1).

5. Use the Remote Key Export callable service with rule ID "EXPORT2 " to export
PINKEY encrypted under KEK1 as a CCA token using a variant of zeros applied
to KEK1. This produces eKEK1(PINKEY).

6. Use the Remote Key Export callable service with rule ID "EXPORT3 " to export
PINKEY under KEK2, an existing CCA key-encrypting key on the local server.
This produces eKEK2(PINKEY), with the CCA control vector for a PIN key.

7. Use the Key Import callable service to import the PINKEY produced in step 6
into the local system as an operational key. This produces eMK(PINKEY), a copy
of the key encrypted under the local DES master key (MK) and ready for use by
CCA PIN API functions.

Remote key distribution benefits
CCA support for remote key loading solves one new problem, and one
long-standing problem. This support allows the distribution of initial keys to ATMs
and other remote devices securely using public-key techniques, in a flexible way
that can support a wide variety of different cryptographic architectures. They also
make it far easier and far more secure to send keys to non-CCA systems when

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 45

those keys are encrypted with a triple-DES key-encrypting key. These changes
make it easier for customers to develop more secure systems.

Diversifying keys
CCA supports several methods for diversifying a key using the diversified key
generate callable service. Key-diversification is a technique often used in working
with smart cards. In order to secure interactions with a population of cards, a
"key-generating key" is used with some data unique to a card to derive ("diversify")
keys for use with that card. The data is often the card serial number or other
quantity stored on the card. The data is often public, and therefore it is very
important to handle the key-generating key with a high degree of security lest the
interactions with the whole population of cards be placed in jeopardy.

In the current implementation, several methods of diversifying a key are supported:
CLR8-ENC, TDES-ENC, TDES-DEC, SESS-XOR, TDES-XOR, TDESEMV2 and
TDESEMV4. The first two methods triple-encrypt data using the generating_key to
form the diversified key. The diversified key is then multiply-enciphered by the
master key modified by the control vector for the output key. The TDES-DEC
method is similar except that the data is triple-decrypted.

The SESS-XOR method provides a means for modifying an existing DATA, DATAC,
MAC, DATAM, or MACVER, DATAMV single- or double-length key. The provided
data is exclusive-ORed into the clear value of the key. This form of key
diversification is specified by several of the credit card associations.

The TDES-ENC and TDES-DEC methods permit the production of either another
key-generating key, or a final key. Control-vector bits 19 – 22 associated with the
key-generating key specify the permissible type of final key. (See DKYGENKY in
Figure 11 on page 832.) Control-vector bits 12 – 14 associated with the
key-generating key specify if the diversified key is a final key or another in a series
of key-generating keys. Bits 12 – 14 specify a counter that is decreased by one
each time the diversified key generate service is used to produce another
key-generating key. For example, if the key-generating key that you specify has this
counter set to B'010', then you must specify the control vector for the
generated_key with a DKYGENKY key type having the counter bits set to B'001'
and specifying the same final key type in bits 19 – 22. Use of a generating_key with
bits 12 – 14 set to B'000' results in the creation of the final key. Thus you can
control both the number of diversifications required to reach a final key, and you
can closely control the type of the final key.

The TDESEMV2, TDESEMV4, and TDES-XOR methods also derive a key by
encrypting supplied data including a transaction counter value received from an
EMV smart card. The processes are described in detail at “Visa and EMV-related
smart card formats and processes” on page 887. Refer to “Working with
Europay–MasterCard–Visa smart cards” on page 424 to understand the various
verbs you can use to operate with EMV smart cards.

Callable Services for Dynamic CKDS Update
ICSF provides the dynamic CKDS update services that allow applications to directly
manipulate both the DASD copy and in-storage copy of the current CKDS.

Note: Applications using the dynamic CKDS update callable services can run
concurrently with other operations that affect the CKDS, such as KGUP,
CKDS conversion, REFRESH, and dynamic master key change. An
operation can fail if it needs exclusive or shared access to the same DASD

46 z/OS V1R13 ICSF Application Programmer's Guide

copy of the CKDS that is held shared or exclusive by another operation.
ICSF provides serialization to prevent data loss from attempts at concurrent
access, but your installation is responsible for the effective management of
concurrent use of competing operations. Consult your system administrator
or system programmer for your installation guidelines.

The syntax of the CKDS key record create, CKDS key record read, and CKDS key
record write services is identical with the same services provided by the Transaction
Security System security application programming interface. Key management
applications that use these common interface verbs can run on both systems
without change.

Additional versions of CKDS key record create, CKDS key record read, and CKDS
key record write (introduced in HCR7780) must be used for variable-length key
tokens. These are the CKDS Key Record Create2, CKDS Key Record Read2, and
CKDS Key Record Write2 callable services. These services also support existing
DES and AES tokens.

CKDS Key Record Create Callable Service (CSNBKRC and
CSNEKRC)
This service accepts a key label and creates a null key record in both the DASD
copy and in-storage copy of the CKDS. The record contains a key token set to
binary zeros and is identified by the key label passed in the call statement. The key
label must be unique.

Prior to updating a key record using either the dynamic CKDS update services or
KGUP, that record must already exist in the CKDS. You can use either the CKDS
key record create service, KGUP, or your key entry hardware to create the initial
record in the CKDS.

CKDS Key Record Create2 Callable Service (CSNBKRC2 and
CSNEKRC2)
This service accepts a key label and optionally, a symmetric key token, and creates
a key record in both the DASD copy and in-storage copy of the CKDS. The record
contains the supplied key token or a null key token and is identified by the key label
passed in the call statement. The key label must be unique.

This service must be used with variable-length key tokens. This service supports
existing DES and AES key tokens.

CKDS Key Record Delete Callable Service (CSNBKRD and
CSNEKRD)
This service accepts a unique key label and deletes the associated key record from
both the in-storage and DASD copies of the CKDS. This service deletes the entire
record, including the key label from the CKDS.

CKDS Key Record Read Callable Service (CSNBKRR and
CSNEKRR)
This service copies an internal key token from the in-storage CKDS to the
application storage, where it may be used directly in other cryptographic services.
Key labels specified with this service must be unique.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 47

|

|
|
|
|

|
|

|

|

|
|

|
|

CKDS Key Record Read2 Callable Service (CSNBKRR2 and
CSNEKRR2)
This service copies an internal key token from the in-storage CKDS to the
application storage, where it may be used directly in other cryptographic services.
Key labels specified with this service must be unique.

This service must be used with variable-length key tokens. This service supports
existing DES and AES key tokens.

CKDS Key Record Write Callable Service (CSNBKRW and
CSNEKRW)
This service accepts an internal key token and a label and writes the key token to
the CKDS record identified by the key label. The key label must be unique.
Application calls to this service write the key token to both the DASD copy and
in-storage copy of the CKDS, so the record must already exist in both copies of the
CKDS.

CKDS Key Record Write2 Callable Service (CSNBKRW2 and
CSNEKRW2)
This service accepts an internal key token and a label and writes the key token to
the CKDS record identified by the key label. The key label must be unique.
Application calls to this service write the key token to both the DASD copy and
in-storage copy of the CKDS, so the record must already exist in both copies of the
CKDS.

This service must be used with variable-length key tokens. This service supports
existing DES and AES key tokens.

Coordinated KDS Administration Callable Service (CSFCRC and
CSFCRC6)
This service performs a dynamic CKDS refresh or a dynamic CKDS reencipher
operation. This callable service performs the refresh or reencipher operation while
allowing applications to update the CKDS. In a sysplex environment, this callable
service enables an application to perform a coordinated sysplex-wide refresh or
reencipher operation from a single ICSF instance.

Callable Services that Support Secure Sockets Layer (SSL)
The Secure Sockets Layer (SSL) protocol, developed by Netscape Development
Corporation, provides communications privacy over the Internet. Client/server
applications can use the SSL protocol to provide secure communications and
prevent eavesdropping, tampering, or message forgery.

ICSF provides callable services that support the RSA-encryption and
RSA-decryption of PKCS 1.2-formatted symmetric key data to produce symmetric
session keys. These session keys can then be used to establish an SSL session
between the sender and receiver.

PKA Decrypt Callable Service (CSNDPKD)
The PKA decrypt callable service uses the corresponding private RSA key to
unwrap the RSA-encrypted key and deformat the key value. This service then
returns the clear key value to the application.

PKA Encrypt Callable Service (CSNDPKE)
The PKA encrypt callable service encrypts a supplied clear key value under an RSA
public key. Currently, the supplied key can be formatted using the PKCS 1.2 or
ZERO-PAD methods prior to encryption.

48 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|

|
|

|

|
|
|
|
|
|
|

System Encryption Algorithm
Note: This topic only applies to systems with the Cryptographic Coprocessor
Feature.

ICSF uses either the DES or AES algorithm or the Commercial Data Masking
Facility (CDMF) to encipher and decipher data. The CDMF defines a scrambling
technique for data confidentiality. It is a substitute for those customers prohibited
from receiving IBM products that support DES data confidentiality services. The
CDMF data confidentiality algorithm is composed of two processes: a key
shortening process and a standard DES process to encipher and decipher data.

Your system can be one of these:
v DES
v CDMF
v DES-CDMF

A DES system protects data using a single-length, double-length, or triple-length
DES data-encrypting key and the DES algorithm.

A CDMF system protects data using a single-length DES data-encrypting key and
the CDMF. You input a standard single-length data-encrypting key to the encipher
(CSNBENC) and decipher (CSNBDEC) callable services. The single-length
data-encrypting key that is intended to be passed to the CDMF is called a CDMF
key. Cryptographically, it is indistinguishable from a DES data-encrypting key. Prior
to the key being used to encipher or decipher data, however, the Cryptographic
Coprocessor Feature hardware cryptographically shortens the key of the CDMF
process. This transformed, shortened data-encrypting key can be used only in the
DES. (It must never be used in the CDMF; this would result in a double shortening
of the key.) When used with the DES, a transformed, shortened data-encrypting key
produces results identical to those that the CDMF would produce using the original
single-length key.

A DES-CDMF system protects data using either the DES or the CDMF. The default
is DES.

ICSF provides functions to mark internal IMPORTER, EXPORTER, and DATA key
tokens with data encryption algorithm bits. IMPORTER and EXPORTER KEKs
are marked when they are installed in operational form in ICSF. Your cryptographic
key administrator does this. (See z/OS Cryptographic Services ICSF Administrator's
Guide for details.) Whenever a DATA key is imported or generated in concert with a
marked KEK, this marking is transferred to the DATA key token, unless the token
copying function of the callable service is used to override the KEK marking with
the marking of the key token passed. These data encryption algorithm bits internally
drive the DES or CDMF for the ICSF encryption services. External key tokens are
not marked with these data encryption algorithm bits.

IMPORTER and EXPORTER KEKs can have data encryption algorithm bit markings
of CDMF (X'80'), DES (X'40'), or SYS-ENC (X'00'). DATA keys generated or
imported with marked KEKs will also be marked. A CDMF-marked KEK will transfer
a data encryption algorithm bit marking of CDMF (X'80') to the DATA key token. A
DES-marked KEK will transfer a data encryption algorithm bit marking of DES
(X'00') to the DATA key token. A SYS-ENC-marked KEK will transfer a CDMF
(X'80') marking to the DATA key token on a CDMF system, and a DES (X'00')
marking to the DATA key token on DES-CDMF and DES systems.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 49

To accomplish token copying of data encryption algorithm marks, a valid internal
token of the same key type must be provided in the target key identifier field of the
service. The token must have the proper token mark to be copied.

Notes:

1. For the multiple secure key import callable service the token markings on the
KEK are ignored. In this case, the algorithm choice specified in the rule array
determines the markings on the DATA key.

2. Propagation of data encryption algorithm bits and token copying are only
performed when the ICSF callable service is performed on the Cryptographic
Coprocessor Feature. The PCI Cryptographic Coprocessor, PCI X Cryptographic
Coprocessor, Crypto Express2 Coprocessor, and Crypto Express3 Coprocessor
do not perform these functions.

Table 4 summarizes the data encryption algorithm bits by key type, and the
algorithm they drive in the ICSF encryption services.

Table 4. Summary of Data Encryption Standard Bits

Algorithm Key Type Bits

CDMF DATA X'80'

KEK X'80'

DES DATA X'00'

KEK X'40'

System Default Algorithm KEK X'00'

For PCF users, your system programmer specifies a default encryption mode of
DES or CDMF when installing ICSF. (See z/OS Cryptographic Services ICSF
System Programmer's Guide for details.)

ANSI X9.17 Key Management Services
Restriction: ANSI X9.17 keys and ANSI key management services are only
supported on the IBM Eserver zSeries 900.

The ANSI X9.17 key management standard defines a process for protecting and
exchanging DES keys. The ANSI X9.17 standard defines methods for generating,
exchanging, using, storing, and destroying these keys. ANSI X9.17 keys are
protected by the processes of notarization and offsetting, instead of control vectors.
In addition to providing services to support these processes, ICSF also defines and
uses an optional process of partial notarization.

Offsetting involves exclusive-ORing a key-encrypting key with a counter. The
counter, a 56-bit binary number that is associated with a key-encrypting key and
contained in certain ANSI X9.17 messages, prevents either a replay or an
out-of-sequence transmission of a message. When the associated AKEK is first
used, the application initializes the counter. With each additional use, the application
increments the counter.

Notarization associates the identities of a pair of communicating parties with a
cryptographic key. The notarization process cryptographically combines a key with
two 16-byte quantities, the origin identifier and the destination identifier, to produce
a notarized key. The notarization process is completed by offsetting the AKEK with
a counter.

50 z/OS V1R13 ICSF Application Programmer's Guide

ICSF makes it possible to divide the AKEK notarization process into two steps. In
the first step, partial notarization, the AKEK is cryptographically combined with the
origin and destination identifiers and returned in a form that can be stored in the
CKDS or application storage. In the second step, the partially notarized AKEK is
exclusive OR-ed with a binary counter to complete the notarization process. Partial
notarization improves performance when you use an AKEK for many cryptographic
service messages, each with a different counter. For details of the partial
notarization calculations, refer to “ANSI X9.17 Partial Notarization Method” on page
883.

ICSF provides these callable services to support the ANSI X9.17 key management
standard. Except where noted, these callable services have the identical syntax as
the Transaction Security System verbs of the same name. With few exceptions, key
management applications that use these common callable services, or verbs, can
be executed on either system without change. Internal tokens cannot be
interchanged; external tokens can be.

Key Generate Callable Service Used to Generate an AKEK
(CSNBKGN)
The key generate callable service, described in “Key Generate Callable Service
(CSNBKGN and CSNEKGN)” on page 26, can also be used to generate an AKEK
in the operational form. It generates either an 8-byte or 16-byte AKEK and places it
in a skeleton key token created by the key token build callable service. The length
of the AKEK is determined by the key length keyword specified when building the
key token.

ANSI X9.17 EDC Generate Callable Service (CSNAEGN and
CSNGEGN)
This service generates an ANSI X9.17 error detection code on an arbitrary length
string.

ANSI X9.17 Key Export Callable Service (CSNAKEX and
CSNGKEX)
This service uses the ANSI X9.17 protocol to export a DATA key or a pair of DATA
keys, with or without an AKEK. It also provides the ability to convert a single
supplied DATA key or combine two supplied DATA keys into a MAC key.

ANSI X9.17 Key Import Callable Service (CSNAKIM and
CSNGKIM)
This service uses the ANSI X9.17 protocol to import a DATA key or a pair of DATA
keys, with or without an AKEK. It also provides the ability to convert a single
supplied DATA key or combine two supplied DATA keys into a MAC key. The syntax
is identical to the Transaction Security System verb, with these exceptions:

v Keys cannot be imported directly into the CKDS.

ANSI X9.17 Key Translate Callable Service (CSNAKTR and
CSNGKTR)
This service translates one or two DATA keys or an AKEK from encryption under
one AKEK to encryption under another AKEK, using the ANSI X9.17 protocol.

ANSI X9.17 Transport Key Partial Notarize Callable Service
(CSNATKN and CSNGTKN)
This service preprocesses or partially notarizes an AKEK with origin and destination
identifiers. The partially notarized key is supplied to the ANSI X9.17 key export,

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 51

ANSI X9.17 key import, or ANSI X9.17 key translate callable service to complete
the notarization process. The syntax is identical to the Transaction Security System
verb except that:

v The callable service does not update the CKDS.

Enciphering and Deciphering Data
The encipher and decipher callable services protect data off the host. ICSF protects
sensitive data from disclosure to people who do not have authority to access it.
Using algorithms that make it difficult and expensive for an unauthorized user to
derive the original clear data within a practical time period assures privacy.

To protect data, ICSF can use the Data Encryption Standard (DES) algorithm to
encipher or decipher data or keys. The algorithm is documented in the Federal
Information Processing Standard #46. On z900 systems, ICSF also supports the
CDMF encryption mode. See “System Encryption Algorithm” on page 47 for more
information. The Advanced Encryption Standard (AES) algorithm can also be used
to encipher or decipher data or keys. The algorithm is documented in the Federal
Information Processing Standard #192.

These services can be used to protect data.

v Decipher Callable Service (CSNBDEC, CSNBDEC1, CSNEDEC and
CSNEDEC1)

The decipher callable service uses encrypted DES data-encrypting keys to
decipher data.

v Encipher Callable Service (CSNBENC, CSNBENC1, CSNEENC and
CSNEENC1)

The encipher callable service uses encrypted DES data-encrypting keys to
encipher data.

v Symmetric Algorithm Decipher Callable Service (CSNBSAD, CSNBSAD1,
CSNESAD and CSNESAD1)

The symmetric algorithm decipher callable service uses encrypted AES
data-encrypting keys to decipher data.

v Symmetric Algorithm Encipher Callable Service (CSNBSAE, CSNBSAE1,
CSNESAE and CSNESAE1)

The symmetric algorithm Encipher callable service uses encrypted AES
data-encrypting keys to encipher data.

v Symmetric Key Decipher Callable Service (CSNBSYD, CSNBSYD1, CSNESYD
and CSNESYD1)

The symmetric key decipher callable service uses clear and encrypted AES and
DES data-encrypting keys to decipher data.

v Symmetric Key Encipher Callable Service (CSNBSYE, CSNBSYE1, CSNESYE
and CSNESYE1)

The symmetric key encipher callable service uses clear and encrypted AES and
DES data-encrypting keys to encipher data.

52 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Encoding and Decoding Data (CSNBECO, CSNEECO, CSNBDCO, and
CSNEDCO)

The encode and decode callable services perform functions with clear keys. Encode
enciphers 8 bytes of data using the electronic code book (ECB) mode of the DES
and a clear key. Decode does the inverse of the encode service. These services
are available only on a DES-capable system. (See “System Encryption Algorithm”
on page 49 for more information.)

Translating Ciphertext (CSNBCTT or CSNBCTT1 and CSNECTT or
CSNECTT1)

Restriction: These services are only available on the IBM Eserver zSeries 900.

ICSF also provides a ciphertext translate callable service. It deciphers encrypted
data (ciphertext) under one encryption key and reenciphers it under another key
without having the data appear in the clear outside the cryptographic feature. Such
a function is useful in a multiple node network, where sensitive data is passed
through multiple nodes prior to it reaching its final destination. Different nodes use
different keys in the process. For more information about different nodes, see
“Using the Ciphertext Translate Callable Service” on page 66.

The keys cannot be used for the encipher and decipher callable services. (See
“System Encryption Algorithm” on page 49 for more information.)

Managing Data Integrity and Message Authentication
To ensure the integrity of transmitted messages and stored data, ICSF provides:
v Message authentication code (MAC)
v Several hashing functions, including modification detection code (MDC), SHA-1,

SHA-224, SHA-256, SHA-384, SHA-512, RIPEMD-160 and MD5.

(See Chapter 9, “Using Digital Signatures,” on page 511 for an alternate method of
message authentication using digital signatures.)

The choice of callable service depends on the security requirements of the
environment in which you are operating. If you need to ensure the authenticity of
the sender and also the integrity of the data, consider message authentication code
processing. If you need to ensure the integrity of transmitted data in an environment
where it is not possible for the sender and the receiver to share a secret
cryptographic key, consider hashing functions, such as the modification detection
code process.

Message Authentication Code Processing
The process of verifying the integrity and authenticity of transmitted messages is
called message authentication. Message authentication code (MAC) processing
allows you to verify that a message was not altered or a message was not
fraudulently introduced onto the system. You can check that a message you have
received is the same one sent by the message originator. The message itself may
be in clear or encrypted form. The comparison is performed within the cryptographic
feature. Since both the sender and receiver share a secret cryptographic key used
in the MAC calculation, the MAC comparison also ensures the authenticity of the
message.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 53

In a similar manner, MACs can be used to ensure the integrity of data stored on the
system or on removable media, such as tape.

ICSF provides support for both single-length and double-length MAC generation
and MAC verification keys. With the ANSI X9.9-1 single key algorithm, use the
single-length MAC and MACVER keys.

ICSF provides support for the use of data-encrypting keys in the MAC generation
and verification callable services, and also the use of a MAC generation key in the
MAC verification callable service. This support permits ICSF MAC services to
interface more smoothly with non-CCA key distribution system, including those
implementing the ANSI X9.17 protocol.

HMAC Generation Callable Service (CSNBHMG or CSNBHMG1
and CSNEHMG or CSNEHMG1)
When a message is sent, an application program can generate an authentication
code for it using the HMAC generation callable service. The callable service
computes the message authentication code using FIPS-198 Keyed-Hash Message
Authentication Code method.

HMAC Verification Callable Service (CSNBHMV or CSNBHMV1
and CSNEHMV or CSNEHMV1)
When the receiver gets the message, an application program calls the HMAC
verification callable service. The callable service verifies a MAC by generating
another MAC and comparing it with the MAC received with the message. If the two
codes are the same, the message sent was the same one received. A return code
indicates whether the MACs are the same.

The MAC verification callable service can use FIPS-198 Keyed-Hash Message
Authentication Code method.

MAC Generation Callable Service (CSNBMGN or CSNBMGN1 and
CSNEMGN or CSNEMGN1)
When a message is sent, an application program can generate an authentication
code for it using the MAC generation callable service. The callable service
computes the message authentication code using one of these methods:

v Using the ANSI X9.9-1 single key algorithm, a single-length MAC generation key
or data-encrypting key, and the message text.

v Using the ANSI X9.19 optional double key algorithm, a double-length MAC
generation key and the message text.

v Using Europay, MasterCard and Visa (EMV) padding rules with a single-length
MAC key or double-length MAC key and the message text.

v Using ISO 16609 algorithm with a double-length MAC or a double-length DATA
key and the message text.

ICSF allows a MAC to be the leftmost 32 or 48 bits of the last block of the
ciphertext or the entire last block (64 bits) of the ciphertext. The originator of the
message sends the message authentication code with the message text.

MAC Verification Callable Service (CSNBMVR or CSNBMVR1 and
CSNEMVR or CSNEMVR1)
When the receiver gets the message, an application program calls the MAC
verification callable service. The callable service verifies a MAC by generating
another MAC and comparing it with the MAC received with the message. If the two

54 z/OS V1R13 ICSF Application Programmer's Guide

codes are the same, the message sent was the same one received. A return code
indicates whether the MACs are the same.

The MAC verification callable service can use either of these methods to generate
the MAC for authentication:

v The ANSI X9.9-1 single key algorithm, a single-length MAC verification or MAC
generation key (or a data-encrypting key), and the message text.

v The ANSI X9.19 optional double key algorithm, a double-length MAC verification
or MAC generation key and the message text.

v Using Europay, MasterCard and Visa (EMV) padding rules with a single-length
MAC key or double-length MAC key and the message text.

v Using ISO 16609 algorithm with a double-length MAC or a double-length DATA
key and the message text.

The method used to verify the MAC should correspond with the method used to
generate the MAC.

Symmetric MAC Generate Callable Service (CSNBSMG,
CSNBSMG1, CSNESMG and CSNESMG1)
This service supports generating a MAC using a clear AES key. The algorithms
supported are CBC-MAC and XCBC-MAC (AES-XCBC-MAC-96 and
AES-XCBC-PRF-128)

Symmetric MAC Verify Callable Service (CSNBSMV, CSNBSMV1,
CSNESMV and CSNESMV1)
This service supports verifying a MAC using a clear AES key. The algorithms
supported are CBC-MAC and XCBC-MAC (AES-XCBC-MAC-96 and
AES-XCBC-PRF-128)

Hashing Functions
Hashing functions include one-way hash generation and modification detection code
(MDC) processing.

One-Way Hash Generate Callable Service (CSNBOWH or
CSNBOWH1 and CSNEOWH or CSNEOWH1)

This service hashes a supplied message. Supported hashing methods include:
v SHA-12

v SHA-224
v SHA-256
v SHA-384
v SHA-512
v RIPEMD-160
v MD5

MDC Generation Callable Service (CSNBMDG or CSNBMDG1 and
CSNEMDG or CSNEMDG1)
The modification detection code (MDC) provides a form of support for data integrity.
The MDC allows you to verify that data was not altered during transmission or while
in storage. The originator of the data ensures that the MDC is transmitted with
integrity to the intended receiver of the data. For instance, the MDC could be
published in a reliable source of public information. When the receiver gets the

2. The Secure Hash Algorithm (SHA) is also called the Secure Hash Standard (SHS), which Federal Information Processing Standard
(FIPS) Publication 180 defines.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 55

data, an application program can generate an MDC, and compare it with the
original MDC value. If the MDC values are equal, the data is accepted as unaltered.
If the MDC values differ the data is assumed to be bogus.

Supported hashing methods through the MDC generation callable service are:
v MDC-2
v MDC-4
v PADMDC-2
v PADMDC-4

In a similar manner, MDCs can be used to ensure the integrity of data stored on the
system or on removable media, such as tape.

When data is sent, an application program can generate a modification detection
code for it using the MDC generation callable service. The callable service
computes the modification detection code by encrypting the data using a
publicly-known cryptographic one-way function. The MDC is a 128-bit value that is
easy to compute for specific data, yet it is hard to find data that will result in a given
MDC.

Once an MDC has been established for a file, the MDC generate service can be
run at any other time on the file. The resulting MDC can then be compared with the
previously established MDC to detect deliberate or inadvertent modification.

Managing Personal Authentication
The process of validating personal identities in a financial transaction system is
called personal authentication. The personal identification number (PIN) is the basis
for verifying the identity of a customer across the financial industry networks. ICSF
checks a customer-supplied PIN by verifying it using an algorithm. The financial
industry needs functions to generate, translate, and verify PINs. These functions
prevent unauthorized disclosures when organizations handle personal identification
numbers.

ICSF supports these algorithms for generating and verifying personal identification
numbers:
v IBM 3624
v IBM 3624 PIN offset
v IBM German Bank Pool
v IBM German Bank Pool PIN Offset (GBP-PINO)
v VISA PIN validation value
v Interbank

With ICSF, you can translate PIN blocks from one format to another. ICSF supports
these formats:
v ANSI X9.8
v ISO formats 0, 1, 2, 3
v VISA formats 1, 2, 3, 4
v IBM 4704 Encrypting PINPAD format
v IBM 3624 formats
v IBM 3621 formats
v ECI formats 1, 2, 3

With the capability to translate personal identification numbers into different PIN
block formats, you can use personal identification numbers on different systems.

56 z/OS V1R13 ICSF Application Programmer's Guide

Verifying Credit Card Data
The Visa International Service Association (VISA) and MasterCard International,
Incorporated have specified a cryptographic method to calculate a value that relates
to the personal account number (PAN), the card expiration date, and the service
code. The VISA card-verification value (CVV) and the MasterCard card-verification
code (CVC) can be encoded on either track 1 or track 2 of a magnetic striped card
and are used to detect forged cards. Because most online transactions use track-2,
the ICSF callable services generate and verify the CVV3 by the track-2 method.

The VISA CVV generate callable service calculates a 1- to 5-byte value through the
DES-encryption of the PAN, the card expiration date, and the service code using
two data-encrypting keys or two MAC keys. The VISA CVV service verify callable
service calculates the CVV by the same method, compares it to the CVV supplied
by the application (which reads the credit card's magnetic stripe) in the CVV_value,
and issues a return code that indicates whether the card is authentic.

Clear PIN Encrypt Callable Service (CSNBCPE and CSNECPE)
To format a PIN into a PIN block format and encrypt the results, use the Clear PIN
Encrypt callable service. You can also use this service to create an encrypted PIN
block for transmission. With the RANDOM keyword, you can have the service
generate random PIN numbers. Use of this service requires the optional PCIXCC,
CEX2C, or CEX3C. An enhanced PIN security mode, on PCICC, PCIXCC, CEX2C,
and CEX3C, is available for formatting an encrypted PIN block into IBM 3621
format or IBM 3624 format. See “Clear PIN Encrypt (CSNBCPE and CSNECPE)”
on page 434 for more information.

Clear PIN Generate Alternate Callable Service (CSNBCPA and
CSNECPA)
To generate a clear VISA PIN validation value from an encrypted PIN block, call the
clear PIN generate alternate callable service. This service also supports the
IBM-PINO algorithm to produce a 3624 offset from a customer selected encrypted
PIN.

An enhanced PIN security mode is available for extracting PINs from encrypted PIN
blocks. This mode only applies on PCICC, PCIXCC, CEX2C, or CEX3C, when
specifying a PIN-extraction method for an IBM 3621 or an IBM 3624 PIN-block. See
“Clear PIN Generate Alternate (CSNBCPA and CSNECPA)” on page 442 for more
information.

Note: The PIN block must be encrypted under either an input PIN-encrypting key
(IPINENC) or output PIN-encrypting key (OPINENC). Using an IPINENC key
requires NOCV keys to be enabled in the CKDS. Functions other than VISA
PIN validation value generation require the optional PCICC, PCIXCC,
CEX2C, or CEX3C.

Clear PIN Generate Callable Service (CSNBPGN and CSNEPGN)
To generate personal identification numbers, call the Clear PIN generate callable
service. Using a PIN generation algorithm, data used in the algorithm, and the PIN
generation key, the callable service generates a clear PIN, a PIN verification value,
or an offset. The callable service can only execute in special secure mode, which is
described in “Special Secure Mode” on page 10.

3. The VISA CVV and the MasterCard CVC refer to the same value. CVV is used here to mean both CVV and CVC.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 57

CVV Key Combine Callable Service (CSNBCKC and CSNECKC)
This callable service combines 2 single-length CCA internal key tokens into 1
double-length CCA key token containing a CVVKEY-A key type. This combined
double-length key satisfies current VISA requirements and eases translation
between TR-31 and CCA formats for CVV keys.

The callable service name for AMODE(64) is CSNECKC.

Encrypted PIN Generate Callable Service (CSNBEPG and
CSNEEPG)
To generate personal identification numbers, call the Encrypted PIN generation
callable service. Using a PIN generation algorithm, data used in the algorithm, and
the PIN generation key, the callable service generates a PIN and using a PIN block
format and the PIN encrypting key, formats and encrypts the PIN. Use of this
service requires the optional PCICC, PCIXCC, CEX2C, or CEX3C. An enhanced
PIN security mode, on PCICC, PCIXCC, CEX2C, and CEX3C, is available for
formatting an encrypted PIN block into IBM 3621 format or IBM 3624 format. See
“Encrypted PIN Generate (CSNBEPG and CSNEEPG)” on page 453 for more
information.

Encrypted PIN Translate Callable Service (CSNBPTR and
CSNEPTR)
To translate a PIN from one PIN-encrypting key to another or from one PIN block
format to another or both, call the Encrypted PIN translation callable service. You
must identify the input PIN-encrypting key that originally enciphers the PIN. You
also need to specify the output PIN-encrypting key that you want the callable
service to use to encipher the PIN. If you want to change the PIN block format,
specify a different output PIN block format from the input PIN block format. An
enhanced PIN security mode, on PCICC, PCIXCC, CEX2C, and CEX3C, is
available for formatting an encrypted PIN block into IBM 3621 format or IBM 3624
format. The enhanced security mode is also available for extracting PINs from
encrypted PIN blocks. This mode only applies when specifying a PIN-extraction
method for an IBM 3621 or an IBM 3624 PIN-block. See “Encrypted PIN Translate
(CSNBPTR and CSNEPTR)” on page 458 for more information.

Encrypted PIN Verify Callable Service (CSNBPVR and CSNEPVR)
To verify a supplied PIN, call the Encrypted PIN verify callable service. You need to
specify the supplied enciphered PIN, the PIN-encrypting key that enciphers it, and
other relevant data. You must also specify the PIN verification key and PIN
verification algorithm. It compares the two personal identification numbers; if they
are the same, it verifies the supplied PIN. See Chapter 8, “Financial Services,” on
page 423 for additional information.

An enhanced PIN security mode, on PCICC, PCIXCC, CEX2C, and CEX3C, is
available for extracting PINs from encrypted PIN blocks. This mode only applies
when specifying a PIN-extraction method for an IBM 3621 or an IBM 3624
PIN-block. See “Encrypted PIN Verify (CSNBPVR and CSNEPVR)” on page 466 for
more information.

PIN Change/Unblock Callable Service (CSNBPCU and CSNEPCU)
To support PIN change algorithms specified in the VISA Integrated Circuit Card
Specification, call the PIN change/unblock callable service. The service can be
executed on z890/z990 and later machines.

An enhanced PIN security mode, on PCICC, PCIXCC, CEX2C, and CEX3C, is
available for extracting PINs from encrypted PIN blocks. This mode only applies

58 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|
|

|

when specifying a PIN-extraction method for an IBM 3621 or an IBM 3624
PIN-block. See “PIN Change/Unblock (CSNBPCU and CSNEPCU)” on page 473 for
more information.

Transaction Validation Callable Service (CSNBTRV and
CSNETRV)
To support generation and validation of American Express card security codes, call
the transaction validation callable service. The service can be executed on
z890/z990 and later machines.

ANSI TR-31 key block support
A TR-31 key block is a format defined by the American National Standards Institute
(ANSI) to support the interchange of keys in a secure manner with key attributes
included in the exchanged data. The TR-31 key block format has a set of defined
key attributes that are securely bound to the key so that they can be transported
together between any two systems that both understand the TR-31 format. ICSF
enables applications to convert a CCA token to a TR-31 key block for export to
another party, and to convert an imported TR-31 key block to a CCA token. This
enables you to securely exchange keys and their attributes with non-CCA systems.

Although there is often a one-to-one correspondence between TR-31 key attributes
and the attributes defined by CCA, there are also cases where the correspondence
is many-to-one or one-to-many. Because there is not always a one-to-one mapping
between the key attributes defined by TR-31 and those defined by CCA, the TR-31
Export callable service and the TR-31 Import callable service provide rule array
keywords that enable an application to specify the attributes to attach to the
exported or imported key.

The TR-31 key block format defines a header section. The header contains
metadata about the key, including its usage attributes. The header can also be
extended with optional blocks, which can either have standardized content or
proprietary information. Callable services are also provided for retrieving standard
header or optional block information from a TR-31 key block without importing the
key and for building an optional block.

The TR-31 key block support requires a z196 with a CEX3C and the the Sept. 2011
or later LIC. Only DES/TDES keys can be transported in TR-31 key blocks. There is
no support for transporting AES keys.

TR-31 Export Callable Service (CSNBT31X and CSNET31X)
The TR-31 Export callable service converts a CCA token to TR-31 format for export
to another party. Since there is not always a one-to-one mapping between the key
attributes defined by TR-31 and those defined by CCA, the caller may need to
specify the attributes to attach to the exported key through the rule array.

TR-31 Import Callable Service (CSNBT31I and CSNET31I)
The TR-31 Import callable service converts a TR-31 key block to a CCA token.
Since there is not always a one-to-one mapping between the key attributes defined
by TR-31 and those defined by CCA, the caller may need to specify the attributes
to attach to the imported key through the rule array.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 59

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|
|

|

|
|
|
|

TR-31 Parse Callable Service (CSNBT31P and CSNET31P)
The TR-31 Parse callable service retrieves standard header information from a
TR-31 key block without importing the key. This callable service can be used with
the TR-31 Optional Data Read callable service to obtain both the standard header
fields and any optional data blocks from the key block.

TR-31 Optional Data Read Callable Service (CSNBT31R and
CSNET31R)

A TR-31 key block can hold optional fields which are securely bound to the key
block using the integrated MAC. The optional blocks may either contain information
defined in the TR-31 standard, or they may contain proprietary data. A separate
range of optional block identifiers is reserved for use with proprietary blocks.
Applications can call the TR-31 Optional Data Read callable service to obtain lists
of the optional block identifiers and optional block lengths, and to obtain the data for
a particular optional block. This callable service is often used in conjunction with the
TR-31 Parse Callable Service which can be used to determine the number of
optional blocks in the TR-31 token.

TR-31 Optional Data Build Callable Service (CSNBT31O and
CSNET31O)

The TR-31 Optional Data Build callable service constructs the optional block data
structure for a TR-31 key block. It builds the structure by adding one optional block
with each call, until your entire set of optional blocks have been added. With each
call, the application program provides a single optional block by specifying its ID, its
length, and its data. Each subsequent call appends the current optional block to any
pre-existing blocks.

Secure Messaging

These services will assist applications in encrypting secret information such as clear
keys and PIN blocks in a secure message. These services will execute within the
secure boundary of the PCICC, PCIXCC, CEX2C, or CEX3C.

The Secure Messaging for Keys callable service encrypts a text block, including a
clear key value decrypted from an internal or external DES token.

The Secure Messaging for PINs callable service encrypts a text block, including a
clear PIN block recovered from an encrypted PIN block.

Trusted Key Entry (TKE) Support

The Trusted Key Entry (TKE) workstation is an optional feature. It offers an
alternative to clear key entry. You can use the TKE workstation to load:

v DES master key, AES master key, PKA master keys, and operational keys in a
secure way. CCF only supports Operational Transport and PIN keys. On the
PCIXCC/CEX2C, all operational keys may be loaded with TKE V4.1 or higher.
AES master key and AES operational keys may be loaded with TKE V5.3. On
the CEX3C, all operational keys may be loaded with TKE 6.0 or later.

v DES-MK and ASYM-MK master keys on the PCICC, PCIXCC, CEX2C, or
CEX3C.

v AES master keys are only on z9 and z10 systems running with the Nov. 2008 or
later licensed internal code (LIC).

60 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|

You can load keys remotely and for multiple PCICCs, PCIXCCs, CEX2Cs, or
CEX3Cs. The TKE workstation eases the administration for using one
Cryptographic Coprocessor Feature or PCIXCC/CEX2C/CEX3C as a production
machine and as a test machine at the same time, while maintaining security and
reliability.

The TKE workstation can be used for enabling/disabling access control points for
callable services executed on PCICCs, PCIXCCs, CEX2Cs, and CEX3Cs. See
Appendix H, “Access Control Points and Callable Services,” on page 893 for
additional information.

For complete details about the TKE workstation see z/OS Cryptographic Services
ICSF TKE Workstation User's Guide.

TKE Version 4.0 or higher is required if using a PCIXCC/CEX2C.

TKE Version 6.0 or higher is required is using a CEX3C.

On z890, z990 z9 EC, z9 BC, z10 EC and z10 BC systems running with May 2004
or higher version of Licensed Internal Code or an z9 EC, z9 BC, z10 EC and z10
BC with MCL 029 Stream J12220 or higher of Licensed Internal Code, you must
enable TKE commands for each PCIXCC/CEX2C/CEX3C card from the Support
Element. This is true for new TKE users and those upgrading from TKE V4.0 to
V4.1, V4.2 or V5.x when the new LIC is installed. See Support Element Operations
Guide and z/OS Cryptographic Services ICSF TKE Workstation User's Guide,
SA23-2211 for more information.

Utilities
ICSF provides these utilities.

Character/Nibble Conversion Callable Services (CSNBXBC and
CSNBXCB)

The character/nibble conversion callable services are utilities that convert a binary
string to a character string and vice versa.

Code Conversion Callable Services (CSNBXEA and CSNBXAE)
The code conversion callable services are utilities that convert EBCDIC data to
ASCII data and vice versa.

X9.9 Data Editing Callable Service (CSNB9ED)
The data editing callable service is a utility that edits an ASCII text string according
to the editing rules of ANSI X9.9-4.

ICSF Query Algorithm Callable Service (CSFIQA)
The callable service provides information regarding the cryptographic and hash
algorithms available.

ICSF Query Facility Callable Service (CSFIQF)
The callable service provides ICSF status information, as well as PCICC, PCIXCC,
CEX2C, and CEX3C information.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 61

Typical Sequences of ICSF Callable Services
Sample sequences in which the ICSF callable services might be called are shown
in Table 5.

Table 5. Combinations of the Callable Services

Combination A (DATA keys only) Combination B

1. Random number generate 1. Random number generate
2. Clear key import or 2. Secure key import or

multiple clear key import multiple secure key import
3. Encipher/decipher 3. Any service
4. Data key export or key export 4. Data key export for DATA keys, or

(optional step) key export in the general case
(optional step)

Combination C Combination D

1. Key generate (OP form only) 1. Key generate (OPEX form)
2. Any service 2. Any service
3. Key export (optional)

Combination E Combination F

1. Key generate (IM form only) 1. Key generate (IMEX form)
2. Key import 2. Key import
3. Any service 3. Any service
4. Key export (optional)

Combination G Combination H

1. Key generate 1. Key import
2. Key record create 2. Key record create
3. Key record write 3. Key record write
4. Any service (passing label 4. Any service (passing label

of the key just generated) of the key just generated)

Combination I

1. Key token build to create
key token skeleton

2. Key generate to OP form of
AKEK using key token skeleton

3. Use AKEK in any ANSI X9.17
service

Notes:

1. An example of “any service” is CSNBENC.

2. These combinations exclude services that can be used on their own; for example, key export or encode, or using
key generate to generate an exportable key.

3. These combinations do not show key communication, or the transmission of any output from an ICSF callable
service.

4. Combination I is not available on the IBM Eserver zSeries 990.

The key forms are described in “Key Generate (CSNBKGN and CSNEKGN)” on
page 135.

62 z/OS V1R13 ICSF Application Programmer's Guide

Key Forms and Types Used in the Key Generate Callable Service
The key generate callable service is the most complex of all the ICSF callable
services. This topic provides examples of the key forms and key types used in the
key generate callable service.

Generating an Operational Key
To generate an operational key, choose one of these methods:

v For operational keys, call the key generate callable service (CSNBKGN).
Table 33 on page 144 and Table 34 on page 144 show the key type and key form
combinations for a single key and for a key pair.

v For operational keys, call the random number generate callable service
(CSNBRNG) and specify the form parameter as RANDOM. Specify ODD parity
for a random number you intend to use as a key. Then pass the generated value
to the secure key import callable service (CSNBSKI) with a required key type.
The required key type is now in operational form.

This method requires a cryptographic unit to be in special secure mode. For
more information about special secure mode, see “Special Secure Mode” on
page 10.

v For data-encrypting keys, call the random number generate callable service
(CSNBRNG) and specify the form parameter as ODD. Then pass the generated
value to the clear key import callable service (CSNBCKI) or the multiple clear key
import callable service (CSNBCKM). The DATA key type is now in operational
form.

You cannot generate a PIN verification (PINVER) key in operational form because
the originator of the PIN generation (PINGEN) key generates the PINVER key in
exportable form, which is sent to you to be imported.

Generating an Importable Key
To generate an importable key form, call the key generate callable service
(CSNBKGN).

If you want a DATA, MAC, PINGEN, DATAM, or DATAC key type in importable
form, obtain it directly by generating a single key. If you want any other key type in
importable form, request a key pair where either the first or second key type is
importable (IM). Discard the generated key form that you do not need.

Generating an Exportable Key
To generate an exportable key form, call the key generate callable service
(CSNBKGN).

If you want a DATA, MAC, PINGEN, DATAM, or DATAC key type in exportable
form, obtain it directly by generating a single key. If you want any other key type in
exportable form, request a key pair where either the first or second key type is
exportable (EX). Discard the generated key form that you do not need.

Examples of Single-Length Keys in One Form Only
Key Key
Form 1

OP DATA Encipher or decipher data. Use data key export or key export
to send encrypted key to another cryptographic partner. Then
communicate the ciphertext.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 63

OP MAC MAC generate. Because no MACVER key exists, there is no
secure communication of the MAC with another cryptographic
partner.

IM DATA Key Import, and then encipher or decipher. Then key export
to communicate ciphertext and key with another cryptographic
partner.

EX DATA You can send this key to a cryptographic partner, but you
can do nothing with it directly. Use it for the key
distribution service. The partner could then use key import
to get it in operational form, and use it as in OP DATA
above.

Examples of OPIM Single-Length, Double-Length, and Triple-Length
Keys in Two Forms

The first two letters of the key form indicate the form that key type 1 parameter is
in, and the second two letters indicate the form that key type 2 parameter is in.
Key Type Type
Form 1 2

OPIM DATA DATA Use the OP form in encipher. Use key export with the
OP form to communicate ciphertext and key with
another cryptographic partner. Use key import at a
later time to use encipher or decipher with the same
key again.

OPIM MAC MAC Single-length MAC generation key. Use the OP form in
MAC generation. You have no corresponding MACVER key,
but you can call the MAC verification service with
the MAC key directly. Use the key import callable
service and then compute the MAC again using the MAC
verification callable service, which compares the MAC
it generates with the MAC supplied with the message
and issues a return code indicating whether they
compare.

Examples of OPEX Single-Length, Double-Length, and Triple-Length
Keys in Two Forms

Key Type Type
Form 1 2

OPEX DATA DATA Use the OP form in encipher. Send the EX form and
the ciphertext to another cryptographic partner.

OPEX MAC MAC Single-length MAC generation key. Use the OP form in
both MAC generation and MAC verification. Send the
EX form to a cryptographic partner to be used in the
MAC generation or MAC verification services.

OPEX MAC MACVER Single-length MAC generation and MAC verification
keys. Use the OP form in MAC generation. Send the EX
form to a cryptographic partner where it will be put
into key import, and then MAC verification, with the
message and MAC that you have also transmitted.

OPEX PINGEN PINVER Use the OP form in Clear PIN generate. Send the
EX form to a cryptographic partner where it is put
into key import, and then Encrypted PIN verify,
along with an IPINENC key.

OPEX IMPORTER EXPORTER
Use the OP form in key import, key generate,
or secure key import. Send the EX form to a
cryptographic partner where it is used in key
export, data key export, or key generate, or put in
the CKDS.

OPEX EXPORTER IMPORTER
Use the OP form in key export, data key export,

64 z/OS V1R13 ICSF Application Programmer's Guide

or key generate. Send the EX form to a cryptographic
partner where it is put into the CKDS or used in key
import, key generate or secure key import.

When you and your partner have the OPEX IMPORTER EXPORTER, OPEX
EXPORTER IMPORTER pairs of keys in “Examples of OPEX Single-Length,
Double-Length, and Triple-Length Keys in Two Forms” on page 64 installed, you
can start key and data exchange.

Examples of IMEX Single-Length and Double-Length Keys in Two
Forms

Key Type Type
Form 1 2

IMEX DATA DATA Use the key import callable service to import
IM form and use the OP form in encipher. Send
the EX form to a cryptographic partner.

IMEX MAC MACVER Use the key import callable service to import
the IM form and use the OP form in MAC
generate. Send the EX form to a cryptographic
partner who can verify the MAC.

IMEX IMPORTER EXPORTER Use the key import callable service to import
the IM form and send the EX form to a
cryptographic partner. This establishes a new
IMPORTER/EXPORTER key between you and your
partner.

IMEX PINGEN PINVER Use the key import callable service to import
the IM form and send the EX form to a
cryptographic partner. This establishes a new
PINGEN/PINVER key between you and your partner.

Examples of EXEX Single-Length and Double-Length Keys in Two
Forms

For the keys shown in this list, you are providing key distribution services for other
nodes in your network, or other cryptographic partners. Neither key type can be
used in your installation.

Key Type Type
Form 1 2

EXEX DATA DATA Send the first EX form to a cryptographic
EXEX MAC MACVER partner with the corresponding IMPORTER and
EXEX IMPORTER EXPORTER send the second EX form to another
EXEC OPINENC IPINENC cryptographic partner with the corresponding

IMPORTER. This exchange establishes a key
between two partners.

Generating AKEKs
Restriction: AKEKs are only supported on the IBM Eserver zSeries 800 and the
IBM Eserver zSeries 900.

AKEKs are bidirectional and are OP-form-only keys that can be used in both import
and export. Prior to using the key generate callable service to create an AKEK, you
need to use the key token build callable service to create a key token for receiving
the AKEK. The steps involved in this process are:

1. Use the key token build callable service with these parameter values:

Parameter Value

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 65

Key_type AKEK
Rule_array INTERNAL NO-KEY {SINGLE or DOUBLE-O}

2. Use the key generate callable service with these parameter values:

Parameter Value
Key_form OP
Key_type_1 TOKEN
Generated_key_identifier_1

The skeleton key token created in step 1

Using the Ciphertext Translate Callable Service
Restriction: The ciphertext translate callable service does not work in CDMF-only
systems (see “System Encryption Algorithm” on page 49). The ciphertext translate
callable service does not work on the PCI X Cryptographic Coprocessor, Crypto
Express2 Coprocessor, or Crypto Express3 Coprocessor.

This topic describes a scenario using the encipher, ciphertext translate, and
decipher callable services with four network nodes: A, B, C, and D. You want to
send data from your network node A to a destination node D. You cannot
communicate directly with node D, and nodes B and C are situated between you.
You do not want nodes B and C to decipher your data.

At node A, you use the Encipher callable service. Node D uses the Decipher
callable service.

Node B and C will use the ciphertext translate callable service. Consider the keys
that are needed to support this process:

1. At your node, generate one key in two forms: OPEX DATA DATAXLAT

2. Send the exportable DATAXLAT key to node B.

3. Node B and C need to share a DATAXLAT key, so generate a different key in
two forms: EXEX DATAXLAT DATAXLAT.

4. Send the first exportable DATAXLAT key to node B.

5. Send the second exportable DATAXLAT key to node C.

6. Node C and node D need to share a DATAXLAT key and a DATA key. Node D
can generate one key in two forms: OPEX DATA DATAXLAT.

7. Node D sends the exportable DATAXLAT key to node C.

The communication process is shown as:
Node: A B C D

Callable
Service: Encipher Ciphertext Translate Ciphertext Translate Decipher

Keys: DATA DATAXLAT DATAXLAT DATAXLAT DATAXLAT DATA

Key Pairs: |____ = ____| |____ = ____| |____ = ____|

Therefore, you need three keys, each in two different forms. You can generate two
of the keys at node A, and node D can generate the third key. Note that the key
used in the decipher callable service at node D is not the same key used in the
encipher callable service at node A.

66 z/OS V1R13 ICSF Application Programmer's Guide

Summary of Callable Services
Table 6 lists the callable services described in this publication, and their
corresponding verbs. The figure also references the topic that describes the callable
service.

Table 6. Summary of ICSF Callable Services

Verb Service Name Function

Chapter 5, “Managing Symmetric Cryptographic Keys”

CSNBCKI
CSNECKI

Clear key import Imports an 8-byte clear DATA key, enciphers it
under the master key, and places the result into
an internal key token. CSNBCKI converts the
clear key into operational form as a DATA key.

CSNBCVG
CSNECVG

Control vector generate Builds a control vector from keywords specified
by the key_type and rule_array parameters.

CSNBCVT
CSNECVT

Control vector translate Changes the control vector used to encipher an
external key.

CSNBCVE
CSNECVE

Cryptographic variable encipher Uses a CVARENC key to encrypt plaintext by
using the Cipher Block Chaining (CBC)
method. The plaintext must be a multiple of
eight bytes in length.

CSNBDKX
CSNEDKX

Data key export Converts a DATA key from operational form
into exportable form.

CSNBDKM
CSNEDKM

Data key import Imports an encrypted source DES single- or
double-length DATA key and creates or
updates a target internal key token with the
master key enciphered source key.

CSNBDKG
CSNEDKG

Diversified key generate Generates a key based upon the
key-generating key, the processing method,
and the parameter data that is supplied.

CSNBEDH
CSNEEDH

ECC Diffie-Hellman Creates symmetric key material from a pair of
ECC keys using the Elliptic Curve
Diffie-Hellman protocol and the static unified
model key agreement scheme or “Z” data (the
“secret” material output from D-H process).

CSNBKEX
CSNEKEX

Key export Converts any key from operational form into
exportable form. (However, this service does
not export a key that was marked
non-exportable when it was imported.)

CSNBKGN
CSNEKGN

Key generate Generates a 64-bit, 128-bit, or 192-bit odd
parity key, or a pair of keys; and returns them
in encrypted forms (operational, exportable, or
importable). CSNBKGN does not produce keys
in plaintext.

CSNBKGN2
CSNEKGN2

Key generate2 Generates a variable-length HMAC or AES key
or a pair of keys; and returns them in
encrypted forms (operational, exportable, or
importable).

CSNBKIM
CSNEKIM

Key import Converts any key from importable form into
operational form.

CSNBKPI
CSNEKPI

Key part import Combines the clear key parts of any key type
and returns the combined key value in an
internal key token or an update to the CKDS.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 67

|
|
||
|
|
|
|

|

Table 6. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBKPI2
CSNEKPI2

Key part import2 Combines the clear key parts of an HMAC or
AES key and returns the combined key value
in an internal key token or an update to the
CKDS.

CSNBKYT
CSNEKYT
CSNBKYTX
CSNEKYTX

Key test Generates or verifies (depending on keywords
in the rule array) a secure verification pattern
for keys. CSNBKYT and CSNEKYT require the
tested key to be in the clear or encrypted under
the master key. CSNBKYTX and CSNEKYTX
also allow the tested key to be encrypted under
a key-encrypting key.

CSNBKYT2
CSNEKYT2

Key test2 Generates or verifies (depending on keywords
in the rule array) a secure verification pattern
for keys. CSNBKYT2 and CSNEKYT2 allow the
tested key to be in the clear or encrypted under
the master key or a key-encrypting key.

CSNBKTB
CSNEKTB

Key token build Builds an internal or external token from the
supplied parameters. You can use this callable
service to build an internal token for an AKEK
for input to the key generate and key part
import callable services. You can also use this
service to build CCA key tokens for all key
types ICSF supports. You can also use this
service to build CCA key tokens for all key
types ICSF supports.

CSNBKTB2
CSNEKTB2

Key token build2 Builds an internal clear key or skeleton token
from the supplied parameters. You can use this
callable service to build an internal clear key
token for any key type for input to the key test2
callable service. You can use this callable
service to build a skeleton token for input to the
key generate2 and key part import2 callable
services.

CSNBKTR
CSNEKTR

Key translate Uses one key-encrypting key to decipher an
input key and then enciphers this key using
another key-encrypting key within the secure
environment.

CSNBKTR2
CSNEKTR2

Key translate2 Uses one key-encrypting key to decipher an
input key and then enciphers this key using
another key-encrypting key within the secure
environment.

CSNBCKM
CSNECKM

Multiple clear key import Imports a single-, double-, or triple-length clear
DATA key, enciphers it under the master key,
and places the result into an internal key token.
CSNBCKM converts the clear key into
operational form as a DATA key.

68 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|

Table 6. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBSKM
CSNESKM

Multiple secure key import Enciphers a single-, double-, or triple-length
clear key under the master key or an input
importer key, and places the result into an
internal or external key token as any key type.
Triple-length keys can only be imported as
DATA keys.

This service executes only in special secure
mode.

CSNDPKD
CSNFPKD

PKA decrypt Uses an RSA private key to decrypt the
RSA-encrypted key value and return the clear
key value to the application.

CSNDPKE
CSNFPKE

PKA encrypt Encrypts a supplied clear key value under an
RSA public key.

CSNBPEX
CSNEPEX

Prohibit export Modifies an operational key so that it cannot be
exported.

CSNBPEXX
CSNEPEXX

Prohibit export extended Changes the external token of a key in
exportable form so that it can be imported at
the receiver node but not exported from that
node.

CSNBRKA
CSNERKA

Restrict Key Attribute Modifies an operational variable-length key so
that it cannot be exported.

CSNBRNG
CSNERNG
CSNBRNGL
CSNERNGL

Random number generate Generates an 8-byte random number or a
random number with a user-specified length.
The output can be specified in three forms of
parity: RANDOM, ODD, and EVEN.

CSNDRKX
CSNFRKX

Remote key export Generates or exports DES keys for local use
and for distribution to an ATM or other remote
device. RKX uses a special structure to hold
encrypted symmetric keys in a way that binds
them to the trusted block and allows
sequences of RKX calls to be bound together
as if they were an atomic operation.

CSNBSKI
CSNESKI

Secure key import Enciphers a clear key under the master key,
and places the result into an internal or
external key token as any key type.

This service executes only in special secure
mode.

CSNBSKI2
CSNESKI2

Secure key import2 Enciphers a variable-length clear HMAC or
AES key under the master key and places the
result into an internal key token.

This service executes only in special secure
mode.

CSNDSYX
CSNFSYX

Symmetric key export Transfers an application-supplied symmetric
key from encryption under the host master key
to encryption under an application-supplied
RSA public key or AES EXPORTER key. The
application-supplied key must be an internal
key token or the label in the CKDS of a DES
DATA, AES DATA, or variable-length symmetric
key token.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 69

|
|

|

|

Table 6. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNDSYG
CSNFSYG

Symmetric key generate Generates a symmetric DATA key and returns
the key in two forms: enciphered under the
DES master key or KEK and under a PKA
public key.

CSNDSYI
CSNFSYI

Symmetric key import Imports a symmetric key enciphered under an
RSA public key into operational form
enciphered under a host master key.

CSNDSYI2
CSNFSYI2

Symmetric key import2 Imports a symmetric key enciphered under an
RSA public key or AES EXPORTER key into
operational form enciphered under a host
master key.

CSNBTCK
CSNETCK

Transform CDMF key Changes a CDMF DATA key in an internal or
external token to a transformed shortened DES
key.

CSNDTBC
CSNETBC

Trusted block create Creates a trusted block in a two step process.
The block will be in external form, encrypted
under an IMP-PKA transport key. This means
that the MAC key contained within the trusted
block will be encrypted under the IMP-PKA key.

CSNBT31X
CSNET31X

TR-31 Export Converts a CCA token to TR-31 format for
export to another party.

CSNBT31I
CSNET31I

TR-31 Import Converts a TR-31 key block to a CCA token.

CSNBT31P
CSNET31P

TR-31 Parse Retrieves standard header information from a
TR-31 key block without importing the key.

CSNBT31R
CSNET31R

TR-31 Optional Data Read Obtains lists of the optional block identifiers
and optional block lengths, and obtains the
data for a particular optional block.

CSNBT31O
CSNET31O

TR-31 Optional Data Build Constructs the optional block data structure for
a TR-31 key block.

CSFUDK
CSFUDK6

User Derived Key Generates single-length or double-length MAC
keys, or updates an existing user derived key.

Chapter 6, “Protecting Data”

CSNBCTT
CSNECTT
CSNBCTT1
CSNECTT1

Ciphertext translate Translates the user-supplied ciphertext from
one key and enciphers the ciphertext to
another key. (This is for DES encryption only.)

CSNBCTT and CSNECTT require the
ciphertext to reside in the caller's primary
address space.

CSNBCTT1 and CSNECCT1 allow the
ciphertext to reside in the caller's primary
address space or in a z/OS data space.

70 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|
||
|

|
|
||

|
|
||
|

|
|
||
|
|

|
|
||
|

Table 6. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBDEC
CSNEDEC
CSNBDEC1
CSNEDEC1

Decipher Deciphers data using either the CDMF or the
cipher block chaining mode of the DES. (The
method depends on the token marking or
keyword specification.) The result is called
plaintext.

CSNBDEC and CSNEDEC require the plaintext
and ciphertext to reside in the caller's primary
address space.

CSNBDEC1 and CSNEPEC1 allow the
plaintext and ciphertext to reside in the caller's
primary address space or in a z/OS data
space.

CSNBDCO
CSNEDCO

Decode Decodes an 8-byte string of data using the
electronic code book mode of the DES. (This is
for DES encryption only.)

CSNBENC
CSNEENC
CSNBENC1
CSNEENC1

Encipher Enciphers data using either the CDMF or the
cipher block chaining mode of the DES. (The
method depends on the token marking or
keyword specification.) The result is called
ciphertext.

CSNBENC and CSNEENC require the plaintext
and ciphertext to reside in the caller's primary
address space.

CSNBENC1 and CSNEENC1 allow the
plaintext and ciphertext to reside in the caller's
primary address space or in a z/OS data
space.

CSNBECO
CSNEECO

Encode Encodes an 8-byte string of data using the
electronic code book mode of the DES. (This is
for DES encryption only.)

CSNBSAD
CSNESAD
CSNBSAD1
CSNESAD1

Symmetric algorithm decipher Deciphers data using the AES algorithm in an
address space or a data space using the
cipher block chaining or electronic code book
modes.

CSNBSAD and CSNESAD require the plaintext
and ciphertext to reside in the caller's primary
address space.

CSNBSAD1 and CSNESAD1 allows the
plaintext and ciphertext to reside in the caller's
primary address space or in a z/OS data
space.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 71

Table 6. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBSAE
CSNESAE
CSNBSAE1
CSNESAE1

Symmetric algorithm encipher Enciphers data using the AES algorithm in an
address space or a data space using the
cipher block chaining or electronic code book
modes.

CSNBSAE and CSNESAE require the plaintext
and ciphertext to reside in the caller's primary
address space.

CSNBSAE1 and CSNESAE1 allows the
plaintext and ciphertext to reside in the caller's
primary address space or in a z/OS data
space.

CSNBSYD
CSNBSYD1
CSNESYD
CSNESYD1

Symmetric key decipher Deciphers data using the AES or DES
algorithm in an address space or a data space
using the cipher block chaining or electronic
code book modes. Only clear keys are
supported.

CSNBSYD and CSNESYD require the plaintext
and ciphertext to reside in the caller's primary
address space.

CSNBSYD1 and CSNESYD1 allow the
plaintext and ciphertext to reside in the caller's
primary address space or in a z/OS data
space.

CSNBSYE
CSNBSYE1
CSNESYE
CSNESYE1

Symmetric key encipher Enciphers data using the AES or DES
algorithm in an address space or a data space
using the cipher block chaining or electronic
code book modes. Only clear keys are
supported.

CSNBSYE and CSNESYE require the plaintext
and ciphertext to reside in the caller's primary
address space.

CSNBSYE1 and CSNESYE1 allows the
plaintext and ciphertext to reside in the caller's
primary address space or in a z/OS data
space.

Chapter 7, “Verifying Data Integrity and Authenticating Messages”

CSNBHMG
CSNEHMG
CSNBHMG1
CSNEHMG1

HMAC generation Generates message authentication code (MAC)
for a text string that the application program
supplies. The MAC is computed using the
FIPS-198 Keyed-Hash Message Authentication
Code algorithm.

CSNBHMG and CSNEHMG require data to
reside in the caller’s primary address space.

CSNBHMG1 and CSNEHMG1 allow data to
reside in the caller’s primary address space or
in a z/OS data space.

72 z/OS V1R13 ICSF Application Programmer's Guide

Table 6. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBHMV
CSNEHMV
CSNBHMV1
CSNEHMV1

HMAC verification Verifies message authentication code (MAC)
for a text string that the application program
supplies. The MAC is computed using the
FIPS-198 Keyed-Hash Message Authentication
Code algorithm.

CSNBHMV and CSNEHMV requires data to
reside in the caller’s primary address space.

CSNBHMV1 and CSNEHMV1 allows data to
reside in the caller’s primary address space or
in a z/OS data space.

CSNBMGN
CSNEMGN
CSNBMGN1
CSNEMGN1

MAC generate Generates a 4-, 6-, or 8-byte message
authentication code (MAC) for a text string that
the application program supplies. The MAC is
computed using the ANSI X9.9-1 algorithm,
ANSI X9.19 optional double key algorithm the
EMV padding rules or the ISO 16609 TDES
algorithm.

CSNBMGN and CSNEMGN require data to
reside in the caller's primary address space.

CSNBMGN1 and CSNEMGN1 allow data to
reside in the caller's primary address space or
in a z/OS data space.

CSNBMVR
CSNEMVR
CSNBMVR1
CSNEMVR1

MAC verify Verifies a 4-, 6-, or 8-byte message
authentication code (MAC) for a text string that
the application program supplies. The MAC is
computed using the ANSI X9.9-1 algorithm,
ANSI X9.19 optional double key algorithmthe
EMV padding rules or the ISO 16609 TDES
algorithm.

CSNBMVR and CSNEMVR require data to
reside in the caller's primary address space.

CSNBMVR1 and CSNEMVR1 allow data to
reside in the caller's primary address space or
in a z/OS data space.

CSNBMDG
CSNEMDG
CSNBMDG1
CSNEMDG1

MDC generate Generates a 128-bit modification detection
code (MDC) for a text string that the application
program supplies.

CSNBMDG and CSNEMDG require data to
reside in the caller's primary address space.

CSNBMDG1 and CSNEMDG1 allow data to
reside in the caller's primary address space or
in a z/OS data space.

CSNBOWH
CSNEOWH
CSNBOWH1
CSNEOWH1

One way hash generate Generates a one-way hash on specified text.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 73

Table 6. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBSMG,
CSNESMG
CSNBSMG1
CSNESMG1

Symmetric MAC Generate Use the symmetric MAC generate callable
service to generate a 96- or 128-bit message
authentication code (MAC) for an
application-supplied text string using a clear
AES key.

CSNBSMG1 allows data to reside in the
caller's primary address space or in a z/OS
data space.

CSNBSMV,
CSNESMV
CSNBSMV1
CSNESMV1

Symmetric MAC Verify Use the symmetric MAC verify callable service
to verify a 96- or 128-bit message
authentication code (MAC) for an
application-supplied text string using a clear
AES key.

CSNBSMV1 allows data to reside in the caller's
primary address space or in a z/OS data
space.

Chapter 8, “Financial Services”

CSNBCPE
CSNECPE

Clear PIN encrypt Formats a PIN into a PIN block format and
encrypts the results.

CSNBPGN
CSNEPGN

Clear PIN generate Generates a clear personal identification
number (PIN), a PIN verification value (PVV),
or an offset using one of these algorithms:

IBM 3624 (IBM-PIN or IBM-PINO)
IBM German Bank Pool (GBP-PIN or
GBP-PINO)
VISA PIN validation value (VISA-PVV)
Interbank PIN (INBK-PIN)

This service executes only in special secure
mode.

CSNBCPA
CSNECPA

Clear PIN generate alternate Generates a clear VISA PIN validation value
(PVV) from an input encrypted PIN block. The
PIN block may have been encrypted under
either an input or output PIN encrypting key.
The IBM-PINO algorithm is supported to
produce a 3624 offset from a customer
selected encrypted PIN.

CSNBCKC
CSNECKC

CVV Key Combine Combines two single-length CCA internal key
tokens into 1 double-length CCA key token
containing a CVVKEY-A key type.

CSNBEPG
CSNEEPG

Encrypted PIN generate Generates and formats a PIN and encrypts the
PIN block.

CSNBPTR
CSNEPTR

Encrypted PIN translate Reenciphers a PIN block from one
PIN-encrypting key to another and, optionally,
changes the PIN block format. UKPT keywords
are supported.

74 z/OS V1R13 ICSF Application Programmer's Guide

|
|
||
|
|

Table 6. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBPVR
CSNEPVR

Encrypted PIN verify Verifies a supplied PIN using one of these
algorithms:

IBM 3624 (IBM-PIN or IBM-PINO)
IBM German Bank Pool (GBP-PIN or
GBP-PINO)
VISA PIN validation value (VISA-PVV)
Interbank PIN (INBK-PIN)

UKPT keywords are supported.

CSNBPCU
CSNEPCU

PIN Change/Unblock Supports the PIN change algorithms specified
in the VISA Integrated Circuit Card
Specification; only available on a z890 or
Requires May 2004 or later version of Licensed
Internal Code (LIC).

CSNBSKY
CSNESKY

Secure messaging for keys Encrypts a text block, including a clear key
value decrypted from an internal or external
DES token.

CSNBSPN
CSNESPN

Secure messaging for PINs Encrypts a text block, including a clear PIN
block recovered from an encrypted PIN block.

CSNDSBC
CSNFSBC

SET block compose Composes the RSA-OAEP block and the
DES-encrypted block in support of the SET
protocol.

CSNDSBD
CSNFSBD

SET block decompose Decomposes the RSA-OAEP block and the
DES-encrypted block to provide unencrypted
data back to the caller.

CSNBTRV
CSNETRV

Transaction Validation Supports the generation and validation of
American Express card security codes; only
available on a z890 or Requires May 2004 or
later version of Licensed Internal Code (LIC).

CSNBCSG
CSNECSG

VISA CVV service generate Generates a VISA Card Verification Value
(CVV) or a MasterCard Card Verification Code
(CVC).

CSNBCSV
CSNECSV

VISA CVV service verify Verifies a VISA Card Verification Value (CVV)
or a MasterCard Card Verification Code (CVC).

Chapter 11, “Key Data Set Management”

CSNBKRC
CSNEKRC

CKDS key record create Adds a key record containing a key token set
to binary zeros to both the in-storage and
DASD copies of the CKDS.

CSNBKRC2
CSNEKRC2

CKDS key record create2 Adds a key record containing a key token to
both the in-storage and DASD copies of the
CKDS.

CSNBKRD
CSNEKRD

CKDS key record delete Deletes a key record from both the in-storage
and DASD copies of the CKDS.

CSNBKRR
CSNEKRR

CKDS key record read Copies an internal key token from the
in-storage copy of the CKDS to application
storage.

CSNBKRR2
CSNEKRR2

CKDS key record read2 Copies an internal key token from the
in-storage copy of the CKDS to application
storage.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 75

|

|

|

|

|

Table 6. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNBKRW
CSNEKRW

CKDS key record write Writes an internal key token to the CKDS
record specified in the key label parameter.
Updates both the in-storage and DASD copies
of the CKDS currently in use.

CSNBKRW2
CSNEKRW2

CKDS key record write2 Writes an internal key token to the CKDS
record specified in the key label parameter.
Updates both the in-storage and DASD copies
of the CKDS currently in use.

CSFCRC
CSFCRC6

Coordinated KDS Administration Performs a CKDS refresh or CKDS reencipher
and change master key operation while
allowing applications to update the CKDS. In a
sysplex environment, this callable service
performs a coordinated sysplex-wide refresh or
change master key operation from a single
ICSF instance.

Chapter 12, “Utilities”

CSNBXBC or CSNBXCB Character/nibble conversion Converts a binary string to a character string or
vice versa.

CSNBXEA or CSNBXAE Code conversion Converts EBCDIC data to ASCII data or vice
versa.

CSFIQA
CSFIQA6

ICSF Query Algorithm Use this utility to retrieve information about the
cryptographic and hash algorithms available.
You can control the amount of data that is
returned by passing in different rule_array
keywords.

CSFIQF
CSFIQF6

ICSF Query Service Provides ICSF status, as well as PCICC,
PCIXCC, CEX2C, and CEX3C information.

CSNB9ED X9.9 data editing Edits an ASCII text string according to the
editing rules of ANSI X9.9–4.

Chapter 13, “Trusted Key Entry Workstation Interfaces”

CSFPCI PCI interface Puts a request to a specific PCI Cryptographic
Coprocessor / PCI X Cryptographic
Coprocessor / Crypto Express2 Coprocessor /
Crypto Express3 Coprocessor queue and
removes the corresponding response when
complete. Only the Trusted Key Entry (TKE)
workstation uses this service.

CSFPKSC PKSC interface Puts a request to a specific cryptographic
module and removes the corresponding
response when complete. Only the Trusted Key
Entry (TKE) workstation uses this service.

Chapter 14, “Managing Keys According to the ANSI X9.17 Standard”

CSNAEGN
CSNGEGN

ANSI X9.17 EDC generate Generates an ANSI X9.17 error detection code
on an arbitrary length string using the special
MAC key (x'0123456789ABCDEF').

CSNAKEX
CSNGKEX

ANSI X9.17 key export Uses the ANSI X9.17 protocol to export a
DATA key or a pair of DATA keys with or
without an AKEK. Supports the export of a
CCA IMPORTER or EXPORTER KEK.
Converts a single DATA key or combines two
DATA keys into a single MAC key.

76 z/OS V1R13 ICSF Application Programmer's Guide

|

|

|
|
||
|
|
|
|
|
|

Table 6. Summary of ICSF Callable Services (continued)

Verb Service Name Function

CSNAKIM
CSNGKIM

ANSI X9.17 key import Uses the ANSI X9.17 protocol to import a
DATA key or a pair of DATA keys with or
without an AKEK. Supports the import of a
CCA IMPORTER or EXPORTER KEK.
Converts a single DATA key or combines two
DATA keys into a single MAC key.

CSNAKTR
CSNGKTR

ANSI X9.17 key translate Uses the ANSI X9.17 protocol to translate, in a
single service call, either one or two DATA keys
or a single KEK from encryption under one
AKEK to encryption under another AKEK.
Converts a single DATA key or combines two
DATA keys into a single MAC key.

CSNATKN
CSNGTKN

ANSI X9.17 transport key partial
notarize

Permits the preprocessing of an AKEK with
origin and destination identifiers to create a
partially notarized AKEK.

Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services 77

78 z/OS V1R13 ICSF Application Programmer's Guide

Chapter 3. Introducing PKA Cryptography and Using PKA
Callable Services

The preceding topic focused on DES cryptography or secret-key cryptography. This
is symmetric—senders and receivers use the same key (which must be exchanged
securely in advance) to encipher and decipher data.

Public key cryptography does not require exchanging a secret key. It is
asymmetric—the sender and receiver each have a pair of keys, a public key and a
different but corresponding private key.

You can use PKA support to exchange symmetric secret keys securely and to
compute digital signatures for authenticating messages to users. You can also use
public key cryptography in support of secure electronic transactions over open
networks, using SET protocols.

PKA Key Algorithms
Public key cryptography uses a key pair consisting of a public key and a private
key. The PKA public key uses one of the following algorithms:

v Rivest-Shamir-Adleman (RSA)

The RSA algorithm is the most widely used and accepted of the public key
algorithms. It uses three quantities to encrypt and decrypt text: a public exponent
(PU), a private exponent (PR), and a modulus (M). Given these three and some
cleartext data, the algorithm generates ciphertext as follows:
ciphertext = cleartextPU (modulo M)

Similarly, this operation recovers cleartext from ciphertext:
cleartext = ciphertextPR (modulo M)

An RSA key consists of an exponent and a modulus. The private exponent must
be secret, but the public exponent and modulus need not be secret.

v Digital Signature Standard (DSS)

The U.S. National Institute of Standards and Technology (NIST) defines DSS in
Federal Information Processing Standard (FIPS) Publication 186.

v Elliptic Curve Digital Signature Algorithm (ECDSA)

The ECDSA algorithm uses elliptic curve cryptography (an encryption system
based on the properties of elliptic curves) to provide a variant of the Digital
Signature Algorithm.

PKA Master Keys

PKA master keys protect private keys.

v On the Cryptographic Coprocessor Feature, there are two PKA master keys: the
Signature Master Key (SMK) and the RSA Key Management Master Key
(KMMK). The SMK protects PKA private keys used only in digital signature
services. The KMMK protects PKA private keys used in digital signature services
and in the DES DATA key distribution functions.

v On the PCI Cryptographic Coprocessor, PKA keys are protected by the
Asymmetric-Keys Master Key (ASYM-MK). The ASYM-MK is a triple-length DES
key used to protect PKA keys.

© Copyright IBM Corp. 1997, 2011 79

|

In order for the PCI Cryptographic Coprocessor to function, the hash pattern of
the ASYM-MK must match the hash pattern of the SMK on the Cryptographic
Coprocessor Feature. The ICSF administrator installs the PKA master keys on
the Cryptographic Coprocessor Feature and the ASYM-MK on the PCI
Cryptographic Coprocessor by using either the pass phrase initialization routine,
the Clear Master Key Entry panels, or the optional Trusted Key Entry (TKE)
workstation.

Prior to PKA services being enabled on the PCI Cryptographic Coprocessor,
these conditions must be met:

– The Symmetric-Keys Master Key (SYM-MK) must be installed on the PCI
Cryptographic Coprocessor. It must match the Cryptographic Coprocessor
Feature DES master key and match the master key that the CKDS was
enciphered with.

– The PKA master keys (SMK and KMMK) on the Cryptographic Coprocessor
Feature must be installed and valid.

– The ASYM-MK PKA master key on the PCI Cryptographic Coprocessor must
be installed and valid.

– The hash pattern of the ASYM-MK on the PCI Cryptographic Coprocessor
must match the hash pattern of the SMK on the Cryptographic Coprocessor
Feature.

– The PKDS must be initialized with the PKA master keys installed on the
Cryptographic Coprocessor Feature.

v On the PCI X Cryptographic Coprocessor, Crypto Express2 Coprocessor, or
Crypto Express3 Coprocessor, PKA keys are protected by the Asymmetric-Keys
Master Key (ASYM-MK). The ASYM-MK is a triple-length DES key used to
protect PKA private keys. On the PCIXCC, CEX2C and CEX3C, the ASYM-MK
protects RSA private keys. On the z196 with a CEX3C, there are two PKA
master keys: RSA and ECC. The RSA master key is the same as the ASYM-MK.
The ECC master key is a 256-bit AES key used to protect ECC private keys.

v In order for PKA services to function on the PCIXCC, CEX2C, or CEX3C, the
Asymmetric-Keys/RSA and/or ECC master keys must be installed. The ICSF
administrator installs the master keys on the PCIXCC, CEX2C, or CEX3C by
using either the pass phrase initialization routine, the Clear Master Key Entry
panels, or the optional Trusted Key Entry (TKE) workstation.

Prior to PKA services being enabled on the PCIXCC, CEX2C, or CEX3C, these
conditions must be met:

– The ASYM-MK/RSA and/or ECC master keys on the PCIXCC, CEX2C, or
CEX3C must be installed.

– The PKDS must be initialized with the ASYM-MK/RSA and/or ECC master
keys installed on the PCIXCC, CEX2C, or CEX3C.

Operational private keys
RSA and DSS operational private keys are protected under two layers of DES
encryption. They are encrypted under an Object Protection Key (OPK) that in turn is
encrypted under the SMK/ASYM-MK/RSA or KMMK. ECC operational private keys
are protected under two layers of AES encryption. They are encrypted under an
AES OPK that in turn is encrypted under the ECC master key. You dynamically
generate the OPK for each private key at import time or when the private key is
generated on a PCI Cryptographic Coprocessor, PCI X Cryptographic Coprocessor,
Crypto Express2 Coprocessor, or Crypto Express3 Coprocessor. ICSF provides a
public key data set (PKDS) for the storage of application PKA keys.

80 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|
|

|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|

On systems with the Cryptographic Coprocessor Feature, the PKA master keys
can't be changed dynamically. The PKA callable services control must be disabled
when the master keys are changed. Systems with the PCI Cryptographic
Coprocessor can change the SMK/ASMY-MK by loading the new master key and
using the PKDS Reencipher utility to reencipher private keys encrypted to the new
master key. Private tokens encrypted under the KMMK will only be reenciphered if
the KMMK was equal to the SMK. When the reenciphered PKDS is refreshed to
become the active PKDS, the PKA callable services control can be enabled.

On systems with the PCI X Cryptographic Coprocessor, Crypto Express2
Coprocessor, or Crypto Express3 Coprocessor, changing the Asymmetric-keys/RSA
master key requires that the PKA callable services control be disabled. The new
master key value is loaded, the PKDS is reenciphered and the Change Asymmetric
Master Key utility makes the reenciphered PKDS the active PKDS. The PKA
callable services control will be enabled automatically.

On systems with the Crypto Express3 Coprocessor, the ECC master key is
changed in the same manner as the DES and AES master keys. On systems with
the Crypto Express3 Coprocessor with the September 2011 licensed internal code,
the RSA master key is changed in the same manner as the DES, AES and ECC
master keys.

PKA Callable Services
The Cryptographic Coprocessor Feature available on the IBM Eserver zSeries
900, provides RSA and DSS digital signature functions, key management functions,
and DES key distribution functions.

The IBM Eserver zSeries 900 provides the ability to generate RSA keys on the
PCI Cryptographic Coprocessor. ICSF provides application programming interfaces
to these functions through callable services.

The PCIXCC (available on the z890 and z990), the CEX2C (available on the z9 EC,
z9 BC, z10 EC and z10 BC), and the CEX3C (available on the z10 EC and z10
BC) provide RSA digital signature functions, key management functions, and DES
key distribution functions, PIN, MAC and data encryption functions, and application
programming interfaces to these functions through callable services. You can also
generate RSA keys on the PCIXCC/CEX2C/CEX3C.

The CEX3C on the z196 provides support for ECC. Specifically, it provides ECDSA
digital signature functions, ECC key management functions, and application
programming interfaces to these functions through callable services.

Callable Services Supporting Digital Signatures
ICSF provides these services that support digital signatures.

Restrictions:

v DSS is only supported on the IBM Eserver zSeries 900.

v ECDSA is only supported through the CEX3C cryptographic hardware on the
z196.

Digital Signature Generate Callable Service (CSNDDSG and
CSNFDSG)
This service generates a digital signature using an RSA, DSS, or ECC private key.
It supports these methods of signature generation:

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 81

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

v ANSI X9.30 (DSS)
v ANSI X9.30 (ECDSA)
v ANSI X9.31 (RSA)
v ISO 9796-1 (RSA)
v RSA DSI PKCS 1.0 and 1.1 (RSA)
v Padding on the left with zeros (RSA)

The input text must have been previously hashed using the one-way hash generate
callable service or the MDC generation service.

Digital Signature Verify Callable Service (CSNDDSV and
CSNFDSG)
This service verifies a digital signature using an RSA, DSS, or ECC public key. This
service supports these methods of signature generation:
v ANSI X9.30 (DSS)
v ANSI X9.30 (ECDSA)
v ANSI X9.31 (RSA)
v ISO 9796-1 (RSA)
v RSA DSI PKCS 1.0 and 1.1 (RSA)
v Padding on the left with zeros (RSA)

The text that is input to this service must be previously hashed using the one-way
hash generate callable service or the MDC generation service.

Callable Services for PKA Key Management
ICSF provides these services for PKA key management.

PKA Key Generate Callable Service (CSNDPKG and CSNFPKG)
This service generates a PKA internal token for use with the DSS algorithm in
digital signature services. You can then use the PKA public key extract callable
service to extract a DSS public key token from the internal key token. This service
also supports the generation of RSA keys (on the PCICC, PCIXCC, CEX2C, or
CEX3C), and ECC keys (on the CEX3C).

Input to the PKA key generate callable service is either a skeleton key token
created by the PKA key token build callable service or a valid key token. Upon
examination of the input skeleton key token, the PKA key generate service routes
the key generation request as follows:

v If the skeleton is for a DSS key token, ICSF routes the request to a
Cryptographic Coprocessor Feature.

v If the skeleton is for an RSA key, ICSF routes the request to any available
PCICC, PCIXCC, CEX2C, or CEX3C.

v If the skeleton is for a retained RSA key, ICSF routes the request to a PCICC,
PCIXCC, CEX2C, or CEX3C where the key is generated and retained for
additional security.

v If the skeleton is for an ECC key, ICSF routes the request to any available
CEX3C.

PKA Key Import Callable Service (CSNDPKI and CSNFPKI)
This service imports a PKA private key, which may be RSA or DSS.

The key token to import can be in the clear or encrypted. The PKA key token build
utility creates a clear PKA key token. The PKA key generate callable service
generates either a clear or an encrypted PKA key token.

82 z/OS V1R13 ICSF Application Programmer's Guide

PKA Key Token Build Callable Service (CSNDPKB and
CSNFPKB)
The PKA key token build callable service is a utility you can use to create an
external PKA key token containing an unenciphered private RSA or DSS key. You
can supply this token as input to the PKA key import callable service to obtain an
operational internal token containing an enciphered private key. You can also use
this service to input a clear unenciphered public ECC, RSA, or DSS key and return
the public key in a token format that other PKA services can use directly.

Use this service to build skeleton key tokens for input to the PKA key generate
callable service for creation of RSA keys (on the PCICC, PCIXCC, CEX2C, or
CEX3C), or ECC keys (on the CEX3C).

PKA Key Token Change Callable Service (CSNDKTC and
CSNFKTC)
This service changes PKA key tokens (RSA, DSS, and ECC) or trusted block key
tokens, from encipherment under the cryptographic coprocessor's old RSA master
key or ECC master key to encipherment under the current cryptographic
coprocessor's RSA master key or ECC master key. This callable service only
changes private internal tokens. An active PCICC, PCIXCC, CEX2C, or CEX3C is
required.

PKA Key Translate (CSNDPKT and CSNFPKT)
This service translates a CCA RSA key token to an external smart card key token.
An active CEX2C or CEX3C is required.

PKA Public Key Extract Callable Service (CSNDPKX and
CSNFPKX)
This service extracts a PKA public key token from a PKA internal (operational) or
external (importable) private key token. It performs no cryptographic verification of
the PKA private key token.

Callable Services to Update the Public Key Data Set (PKDS)
The Public Key Data Set (PKDS) is a repository for DSS, ECC, and RSA public and
private keys and trusted blocks. An application can store keys in the PKDS and
refer to them by label when using any of the callable services which accept public
key tokens as input. The PKDS update callable services provide support for
creating and writing records to the PKDS and reading and deleting records from the
PKDS.

PKDS Key Record Create Callable Service (CSNDKRC and
CSNFKRC)
This service accepts an RSA, DSS, or ECC private key token in either external or
internal format, or an RSA, DSS, or ECC public key token or trusted blocks and
writes a new record to the PKDS. An application can create a null token in the
PKDS by specifying a token length of zero. The key label must be unique.

PKDS Key Record Delete Callable Service (CSNDKRD and
CSNFKRD)
This service deletes a record from the PKDS. An application can specify that the
entire record be deleted, or that only the contents of the record be deleted. If only
the contents of the record are deleted, the record will still exist in the PKDS but will
contain only binary zeros. The key label must be unique.

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 83

|
|

|
|

|

|
|

Note: Retained keys cannot be deleted from the PKDS with this service. See
“Retained Key Delete (CSNDRKD and CSNFRKD)” on page 558 for
information on deleting retained keys.

PKDS Key Record Read Callable Service (CSNDKRR and
CSNFKRR)
This service reads a record from the PKDS and returns the contents of that record
to the caller. The key label must be unique.

PKDS Key Record Write Callable Service (CSNDKRW and
CSNFKRW)
This service accepts an RSA, DSS, or ECC private key token in either external or
internal format, or an RSA, DSS, or ECC public key token or trusted blocks and
writes over an existing record in the PKDS. An application can check the PKDS for
a null record with the label provided and overwrite this record if it does exist.
Alternatively, an application can specify to overwrite a record regardless of the
contents of the record.

Note: Retained keys cannot be written to the PKDS with the PKDS Key Record
Write service, nor can a retained key record in the PKDS be overwritten with
this service.

Callable Services for Working with Retained Private Keys
Private keys can be generated, retained, and used within the secure boundary of a
PCICC, PCIXCC, CEX2C, or CEX3C. Retained keys are generated by the PKA Key
Generate (CSNDPKG) callable service. The private key values of retained keys
never appear in any form outside the secure boundary. All retained keys have an
entry in the PKDS that identifies the PCICC, PCIXCC, CEX2C, or CEX3C where
the retained private key is stored. ICSF provides these callable services to list and
delete retained private keys.

Retained Key Delete Callable Service (CSNDRKD and CSNFRKD)
The retained key delete callable service deletes a key that has been retained within
a PCICC, PCIXCC, CEX2C, or CEX3C and also deletes the record containing the
key token from the PKDS.

Retained Key List Callable Service (CSNDRKL and CSNFKRL)
The retained key list callable service lists the key labels of private keys that are
retained within the boundaries of PCICC, PCIXCC, CEX2C, or CEX3C installed on
your server.

Clearing the retained keys on a coprocessor
The retained keys on a PCICC, PCIXCC, CEX2C, or CEX3C may be cleared.
These are the conditions under which the retained key will be lost:

v If the PCICC, PCIXCC, CEX2C, or CEX3C detects tampering (the intrusion latch
is tripped), ALL installation data is cleared: master keys, retained keys for all
domains, as well as roles and profiles.

v If the PCICC, PCIXCC, CEX2C, or CEX3C detects tampering (the secure
boundary of the card is compromised), it self-destructs and can no longer be
used.

v If you issue a command from the TKE workstation to zeroize a domain

This command zeroizes the data specific to a domain: master keys and retained
keys.

v If you issue a command from the Support Element panels to zeroize all domains.

84 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|
|

|

|
|

This command zeroizes ALL installation data: master keys, retained keys and
access control roles and profiles.

Callable Services for SET Secure Electronic Transaction
SET is an industry-wide open standard for securing bankcard transactions over
open networks. The SET protocol addresses the payment phase of a transaction
from the individual, to the merchant, to the acquirer (the merchant's current
bankcard processor). It can be used to help ensure the privacy and integrity of real
time bankcard payments over the Internet. In addition, with SET in place, everyone
in the payment process knows who everyone else is. The card holder, the
merchant, and the acquirer can be fully authenticated because the core protocol of
SET is based on digital certificates. Each participant in the payment transaction
holds a certificate that validates his or her identity. The public key infrastructure
allows these digital certificates to be exchanged, checked, and validated for every
transaction made over the Internet. The mechanics of this operation are transparent
to the application.

Under the SET protocol, every online purchase must be accompanied by a digital
certificate which identifies the card-holder to the merchant. The buyer's digital
certificate serves as an electronic representation of the buyer's credit card but does
not actually show the credit card number to the merchant. Once the merchant's
SET application authenticates the buyer's identity, it then decrypts the order
information, processes the order, and forwards the still-encrypted payment
information to the acquirer for processing. The acquirer's SET application
authenticates the buyer's credit card information, identifies the merchant, and
arranges settlement. With SET, the Internet becomes a safer, more secure
environment for the use of payment cards.

ICSF provides these callable services that can be used in developing SET
applications that make use of the S/390 and IBM Eserver zSeries cryptographic
hardware at the merchant and acquirer payment gateway.

SET Block Compose Callable Service (CSNDSBC and CSNFSBC)
The SET Block Compose callable service performs DES encryption of data,
OAEP-formatting through a series of SHA-1 hashing operations, and the
RSA-encryption of the Optimal Asymmetric Encryption Padding (OAEP) block.

SET Block Decompose Callable Service (CSNDSBD and
CSNFSBD)
The SET Block Decompose callable service decrypts both the RSA-encrypted and
the DES-encrypted data.

PKA Key Tokens
PKA key tokens contain RSA, DSS or ECC private or public keys. PKA tokens are
variable length because they contain either RSA, DSS, or ECC key values, which
are variable in length. Consequently, length parameters precede all PKA token
parameters. The maximum allowed size is 3500 bytes. PKA key tokens consist of a
token header, any required sections, and any optional sections. Optional sections
depend on the token type. PKA key tokens can be public or private, and private key
tokens can be internal or external. Therefore, there are three basic types of tokens,
each of which can contain either RSA, DSS, or ECC information:
v A public key token
v A private external key token
v A private internal key token

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 85

Public key tokens contain only the public key. Private key tokens contain the public
and private key pair. Table 7 summarizes the sections in each type of token.

Table 7. Summary of PKA Key Token Sections

Section
Public External Key
Token

Private External Key
Token

Private Internal Key
Token

Header X X X

RSA, DSS, or ECC private key
information

X X

RSA, DSS, or ECC public key
information

X X X

Key name (optional) X X

Internal information X

As with DES and AES key tokens, the first byte of a PKA key token contains the
token identifier which indicates the type of token.

A first byte of X'1E' indicates an external token with a cleartext public key and
optionally a private key that is either in cleartext or enciphered by a transport
key-encrypting key. An external key token is in importable key form. It can be sent
on the link.

A first byte of X'1F' indicates an internal token with a cleartext public key and a
private key that is enciphered by the PKA master key and ready for internal use. An
internal key token is in operational key form. A PKA private key token must be in
operational form for ICSF to use it. (PKA public key tokens are used directly in the
external form.)

Formats for public and private external and internal RSA, DSS, and ECC key
tokens begin in “RSA Public Key Token” on page 793.

PKA Key Management
You can also generate PKA keys in several ways.

v Using the ICSF PKA key generate callable service.

v Using the Transaction Security System PKA key generate verb, or a comparable
product from another vendor.

86 z/OS V1R13 ICSF Application Programmer's Guide

With a PCI X Cryptographic Coprocessor, Crypto Express2 Coprocessor, or Crypto
Express3 Coprocessor, you can use the ICSF PKA key generate callable service to
generate internal and external PKA tokens. You can also generate RSA keys on
another system. To input a clear RSA key to ICSF, create the token with the PKA
key token build callable service and import it using the PKA key import callable
service. To input an encrypted RSA key, generate the key on the Transaction
Security System and import it using the PKA key import callable service.

In either case, use the PKA key token build callable service to create a skeleton key
token as input (see “PKA Key Token Build (CSNDPKB and CSNFPKB)” on page
535).

You can generate DSS keys on another system or on ICSF. You need to supply
DSS network quantities to the PKA key generate callable service. If you generate
DSS keys on another system, you can import them the same way as RSA keys. If
you generate a DSS key on ICSF, you can never export it. You can use it on
another ICSF host only if the same PKA master keys are installed on both systems.

The PKA key import callable service uses the clear token from the PKA key token
build service or a clear or encrypted token from the Transaction Security System to
securely import the key token into operational form for ICSF to use. ICSF does not
permit the export of the imported PKA key.

The PKA public key extract callable service builds a public key token from a private
key token.

Application RSA, DSS, and ECC public and private keys can be stored in the public
key data set (PKDS), a VSAM data set.

Security and Integrity of the Token
PKA private key tokens may optionally have a 64-byte private_key_name field. If
private_key_name exists, ICSF uses RACROUTE REQUEST=AUTH to verify it
prior to using the token in a callable service. For additional security, the processor
also validates the entire private key token.

External encrypted
PKA token

PKA Key Import

Clear Key Values

PKA Key Token
Build Service

External unencrypted
PKA token

TSS Skeleton Key Token

PKA Key Generate
Service

Clear external
PKA token

Internal PKA
token

Figure 7. PKA Key Management

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 87

|

Key Identifier for PKA Key Token
A key identifier for a PKA key token is a variable length (maximum allowed size is
3500 bytes) area that contains one of these:

v Key label identifies keys that are in the PKDS. Ask your ICSF administrator for
the key labels that you can use.

v Key token can be either an internal key token, an external key token, or a null
key token. Key tokens are generated by an application (for example, using the
PKA key generate callable service), or received from another system that can
produce external key tokens.

An internal key token can be used only on ICSF, because a PKA master key
encrypts the key value. Internal key tokens contain keys in operational form only.

An external key token can be exchanged with other systems because a
transport key that is shared with the other system encrypts the key value.
External key tokens contain keys in either exportable or importable form.

A null key token consists of 8 bytes of binary zeros. The PKDS Key Record
Create service can be used to write a null token to the PKDS. This PKDS record
can subsequently be identified as the target token for the PKA key import or PKA
key generate service.

The term key identifier is used when a parameter could be one of the previously
discussed items and to indicate that different inputs are possible. For example, you
may want to specify a specific parameter as either an internal key token or a key
label. The key label is, in effect, an indirect reference to a stored internal key token.

Key Label
If the first byte of the key identifier is greater than X'40', the field is considered to be
holding a key label. The contents of a key label are interpreted as a pointer to a
public key data set (PKDS) key entry. The key label is an indirect reference to an
internal key token.

A key label is specified on callable services with the key_identifier parameter as a
64-byte character string, left-justified, and padded on the right with blanks. In most
cases, the callable service does not check the syntax of the key label beyond the
first byte. One exception is the CKDS key record create callable service which
enforces the KGUP rules for key labels unless syntax checking is bypassed by a
preprocessing exit.

A key label has this form:

Offset Length Data
00-63 64 Key label name

Key Token
A key token is a variable length (maximum allowed size is 3500 bytes) field
composed of key value and control information. PKA keys can be either public or
private RSA, DSS, or ECC keys. Each key token can be either an internal key
token (the first byte of the key identifier is X'1F'), an external key token (the first
byte of the key identifier is X'1E'), or a null private key token (the first byte of the
key identifier is X'00'). For the format of each token type, refer to Appendix B, “Key
Token Formats,” on page 777.

88 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|

An internal key token is a token that can be used only on the ICSF system that
created it (or another ICSF system with the same PKA master key). It contains a
key that is encrypted under the PKA master key.

An application obtains an internal key token by using one of the callable services
such as those listed. The callable services are described in detail in Chapter 10,
“Managing PKA Cryptographic Keys.”
v PKA key generate
v PKA key import

The PKA Key Token Change callable service can reencipher private internal tokens
from encryption under the old ASYM-MK to encryption under the current ASYM-MK.
PKDS Reencipher/Activate options are available to reencipher RSA, DSS and ECC
internal tokens in the PKDS when the SMK/ASYM-MK keys are changed.

PKA master keys may not be changed dynamically.

For debugging information, see Appendix B, “Key Token Formats” for the format of
an internal key token.

If the first byte of the key identifier is X'1E', the key identifier is interpreted as an
external key token. An external PKA key token contains key (possibly encrypted)
and control information. By using the external key token, you can exchange keys
between systems.

An application obtains the external key token by using one of the callable services
such as those listed. They are described in detail in Chapter 10, “Managing PKA
Cryptographic Keys.”
v PKA public key extract
v PKA key token build
v PKA key generate

For debugging information, see Appendix B, “Key Token Formats” for the format of
an external key token.

If the first byte of the key identifier is X'00', the key identifier is interpreted as a null
key token.

For debugging information, see Appendix B, “Key Token Formats” for the format of
a null key token.

The Transaction Security System and ICSF Portability
The Transaction Security System PKA verbs from releases prior to 1996 can run
only on the Transaction Security System. The PKA96 release of the Transaction
Security System PKA verbs generally runs on ICSF without change. As with DES
cryptography, you cannot interchange internal PKA tokens but can interchange
external tokens.

Summary of the PKA Callable Services
Table 8 on page 90 lists the PKA callable services, described in this publication, and
their corresponding verbs. (The PKA services start with CSNDxxx and have
corresponding CSFxxx names.) This table also references the topic that describes
the callable service.

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 89

Table 8. Summary of PKA Callable Services

Verb Service Name Function

Chapter 8, “Financial Services”

CSNDSBC
CSNFSBC

SET block compose Composes the RSA-OAEP block and the DES-encrypted
block in support of the SET protocol.

CSNDSBD SET block decompose Decomposes the RSA-OAEP block and the
DES-encrypted block to provide unencrypted data back
to the caller.

Chapter 9, “Using Digital Signatures”

CSNDDSG
CSNFDSG

Digital signature generate Generates a digital signature using a PKA private key
supporting RSA, DSS, and ECDSA algorithms.

CSNDDSV
CSNFDSV

Digital signature verify Verifies a digital signature using a PKA public key
supporting RSA, DSS, and ECDSA algorithms.

Chapter 10, “Managing PKA Cryptographic Keys”

CSNDPKG
CSNFPKG

PKA key generate Generates a DSS internal token for use in digital
signature services, RSA keys (for use on the PCICC,
PCIXCC, CEX2C, or CEX3C) and ECC keys (for use on
the CEX3C).

CSNDPKI
CSNFPKI

PKA key import Imports a PKA key token containing either a clear PKA
key or a PKA key enciphered under a limited authority
IMP-PKA KEK.

CSNDPKB
CSNFPKB

PKA key token build Creates an external PKA key token containing a clear
private RSA or DSS key. Using this token as input to the
PKA key import callable service returns an operational
internal token containing an enciphered private key.
Using CSNDPKB on a clear public RSA or DSS key,
returns the public key in a token format that other PKA
services can directly use. CSNDPKB can also be used to
create a skeleton token for input to the PKA Key
Generate service for the generation of an internal DSS
or RSA key token.

CSNDKTC
CSNFKTC

PKA key token change Changes PKA key tokens (RSA, DSS, and ECC) or
trusted block key tokens, from encipherment under the
cryptographic coprocessor's old RSA master key or ECC
master key to encipherment under the current
cryptographic coprocessor's RSA master key or ECC
master key. This callable service only changes private
internal tokens.

CSNDPKT
CSNFPKT

PKA key translate Translates a CCA RSA key token to a smart card format.

CSNDPKX PKA public key extract Extracts a PKA public key token from a supplied PKA
internal or external private key token. Performs no
cryptographic verification of the PKA private token.

CSNDRKD
CSNFRKD

Retained key delete Deletes a key that has been retained within the PCICCs,
PCIXCCs, CEX2Cs, or CEX3Cs.

CSNDRKL
CSNFRKL

Retained key list Lists key labels of keys that have been retained within all
currently active PCICCs, PCIXCCs, CEX2Cs, or
CEX3Cs.

Chapter 11, “Key Data Set Management”

CSNDKRC
CSNFKRC

PKDS key record create Writes a new record to the PKDS.

90 z/OS V1R13 ICSF Application Programmer's Guide

|

Table 8. Summary of PKA Callable Services (continued)

Verb Service Name Function

CSNDKRD
CSNFKRD

PKDS key record delete Delete a record from the PKDS.

CSNDKRR
CSNFKRR

PKDS key record read Read a record from the PKDS and return the contents of
that record.

CSNDKRW
CSNFKRW

PKDS key record write Write over an existing record in the PKDS.

Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services 91

|

|

|

92 z/OS V1R13 ICSF Application Programmer's Guide

Chapter 4. Introducing PKCS #11 and using PKCS #11 callable
services

The Integrated Cryptographic Service Facility has implemented callable service in
support of PKCS #11. A callable service is a routine that receives control using a
CALL statement in an application language. Each callable service performs one or
more functions, including:

v initializing and deleting PKCS11 tokens

v creating, reading, updating and deleting PKCS11 objects

Many services have hardware requirements. See each service for details. All new
callable services will be invocable in AMODE(24), AMODE(31), or AMODE(64).

For more information about PKCS #11 see z/OS Cryptographic Services ICSF
Writing PKCS #11 Applications.

PKCS #11 Management Services
ICSF provides callable services that support PKCS #11 token and object
management. The following table summarizes these callable services. For complete
syntax and reference information, refer to Part 3, “PKCS #11 Callable Services,” on
page 653.

Table 9. Summary of PKCS #11 callable services

Verb Service Name Function

CSFPDVK PKCS #11 Derive key Generate a new secret key object from an
existing key object

CSFPDMK PKCS #11 Derive multiple
keys

Generate multiple secret key objects and
protocol dependent keying material from an
existing secret key object

CSFPHMG PKCS #11 Generate HMAC Generate a hashed message authentication
code (MAC)

CSFPGKP PKCS #11 Generate key
pair

Generate an RSA, DSA, Elliptic Curve, or
Diffie-Hellman key pair

CSFPGSK PKCS #11 Generate secret
key

Generate a secret key or set of domain
parameters

CSFPGAV PKCS #11 Get attribute
value

List the attributes of a PKCS11 object

CSFPOWH PKCS #11 One-way hash,
sign, or verify

Generate a one-way hash on specified text,
sign specified text, or verify a signature on
specified text

CSFPPKS PKCS #11 Private key sign v Decrypt or sign data using an RSA
private key using zero-pad or PKCS #1
v1.5 formatting

v Sign data using a DSA private key

v Sign data using an Elliptic Curve private
key in combination with DSA

CSFPPRF PKCS #11 Pseudo-random
function

Generate pseudo-random output of
arbitrary length.

© Copyright IBM Corp. 1997, 2011 93

Table 9. Summary of PKCS #11 callable services (continued)

Verb Service Name Function

CSFPPKV PKCS #11 Public key verify v Encrypt or verify data using an RSA
public key using zero-pad or PKCS #1
v1.5 formatting. For encryption, the
encrypted data is returned

v Verify a signature using a DSA public
key. No data is returned

v Verify a signature using an Elliptic Curve
public key in combination with DSA. No
data is returned

CSFPSKD PKCS #11 Secret key
decrypt

Decipher data using a clear symmetric key

CSFPSKE PKCS #11 Secret key
encrypt

Encipher data using a clear symmetric key

CSFPSAV PKCS #11 Set attribute
value

Update the attributes of a PKCS11 object

CSFPTRC PKCS #11 Token record
create

Initialize or re-initialize a z/OS PKCS #11
token, creates or copies a token object in
the token data set and creates or copies a
session object for the current PKCS #11
session

CSFPTRD PKCS #11 Token record
delete

Delete a z/OS PKCS #11 token, token
object, or session object

CSFPTRL PKCS #11 Token record list Obtain a list of z/OS PKCS #11 tokens. The
caller must have SAF authority to the
token. Also obtains a list of token and
session objects for a token. Use a search
template to restrict the search for specific
attributes.

CSFPUWK PKCS #11 Unwrap key Unwrap and create a key object using
another key

CSFPHMV PKCS #11 Verify HMAC Verify a hash message authentication code
(MAC)

CSFPWPK PKCS #11 Wrap key Wrap a key with another key

Attribute List
The attributes of an object can be the input and the output of a service. The format
of the attributes is shown here and applies to all PKCS #11 callable services. For
the token record list service, the search_template has the same format as an
attribute list. The lengths in the attribute list and attribute structures are unsigned
integers.

An attribute_list is a structure in this format:

Number of
attributes Attribute Attribute ...

2 bytes 4 + 2 + length of
value bytes

4 + 2 + length of
value bytes

...

Each attribute is a structure in this format:

94 z/OS V1R13 ICSF Application Programmer's Guide

Attribute name Length of value (n) Value

4 bytes 2 bytes n bytes

Handles
A handle is a 44-byte identifier for a token or an object. The format of the handle is
as follows:

Name of token
or object Sequence number ID

32 bytes 8 bytes 4 bytes

The token name in the first 32 bytes of the handle is provided by the PKCS #11
application when the token or object is created. The first character of the name
must be alphabetic or a national character (“#”, “$”, or “@”). Each of the remaining
characters can be alphanumeric, a national character (“#”, “$”, or“ @”), or a
period(“.”)

The sequence number is a hexadecimal number stored as the EBCDIC
representation of 8 hexadecimal numbers. The sequence number field in a token is
EBCDIC blanks. The token record contains a last-used sequence number field,
which is incremented each time an object associated with the token is created. This
sequence number value is placed in the handle of the newly-created object.

The ID field is 4 characters. The first character contains an EBCDIC “T” if the
handle belongs to a token object, “S” if the handle belongs to a session object, or
blank if the handle belongs to a token. The last three characters must be EBCDIC
blanks.

Chapter 4. Introducing PKCS #11 and using PKCS #11 callable services 95

96 z/OS V1R13 ICSF Application Programmer's Guide

Part 2. CCA Callable Services

This publication introduces DES, AES and PKA callable services.

Note: References to the IBM Eserver zSeries 800 (z800) do not appear in this
information. Be aware that the documented notes and restrictions for the IBM
Eserver zSeries 900 (z900) also apply to the z800. References to the IBM
zEnterprise 114 (z114) do not appear in this information. Be aware that the
documented notes and restrictions for the IBM zEnterprise 196 (z196) also
apply to the z114.

© Copyright IBM Corp. 1997, 2011 97

|
|
|
|
|
|

98 z/OS V1R13 ICSF Application Programmer's Guide

Chapter 5. Managing Symmetric Cryptographic Keys

This topic describes the callable services that generate and maintain cryptographic
keys.

Using ICSF, you can generate keys using either the key generator utility program or
the key generate callable service. ICSF provides a number of callable services to
assist you in managing and distributing keys and maintaining the cryptographic key
data set (CKDS).

This topic describes these callable services:
v “Clear Key Import (CSNBCKI and CSNECKI)” on page 100
v “Control Vector Generate (CSNBCVG and CSNECVG)” on page 102
v “Control Vector Translate (CSNBCVT and CSNECVT)” on page 105
v “Cryptographic Variable Encipher (CSNBCVE and CSNECVE)” on page 109
v “Data Key Export (CSNBDKX and CSNEDKX)” on page 111
v “Data Key Import (CSNBDKM and CSNEDKM)” on page 114
v “Diversified Key Generate (CSNBDKG and CSNEDKG)” on page 117
v “ECC Diffie-Hellman (CSNDEDH and CSNFEDH)” on page 123
v “Key Export (CSNBKEX and CSNEKEX)” on page 130
v “Key Generate (CSNBKGN and CSNEKGN)” on page 135
v “Key Generate2 (CSNBKGN2 and CSNEKGN2)” on page 147
v “Key Import (CSNBKIM and CSNEKIM)” on page 155
v “Key Part Import (CSNBKPI and CSNEKPI)” on page 160
v “Key Part Import2 (CSNBKPI2 and CSNEKPI2)” on page 165
v “Key Test (CSNBKYT and CSNEKYT)” on page 169
v “Key Test2 (CSNBKYT2 and CSNEKYT2)” on page 173
v “Key Test Extended (CSNBKYTX and CSNEKTX)” on page 178
v “Key Token Build (CSNBKTB and CSNEKTB)” on page 181
v “Key Token Build2 (CSNBKTB2 and CSNEKTB2)” on page 191
v “Key Translate (CSNBKTR and CSNEKTR)” on page 197
v “Key Translate2 (CSNBKTR2 and CSNEKTR2)” on page 199
v “Multiple Clear Key Import (CSNBCKM and CSNECKM)” on page 205
v “Multiple Secure Key Import (CSNBSKM and CSNESKM)” on page 209
v “PKA Decrypt (CSNDPKD and CSNFPKD)” on page 215
v “PKA Encrypt (CSNDPKE and CSNFPKE)” on page 220
v “Prohibit Export (CSNBPEX and CSNEPEX)” on page 225
v “Prohibit Export Extended (CSNBPEXX and CSNEPEXX)” on page 226
v “Random Number Generate (CSNBRNG, CSNERNG, CSNBRNGL and

CSNERNGL)” on page 228
v “Remote Key Export (CSNDRKX and CSNFRKX)” on page 232
v “Restrict Key Attribute (CSNBRKA and CSNERKA)” on page 239
v “Secure Key Import (CSNBSKI and CSNESKI)” on page 243
v “Secure Key Import2 (CSNBSKI2 and CSNESKI2)” on page 247
v “Symmetric Key Export (CSNDSYX and CSNFSYX)” on page 251
v “Symmetric Key Generate (CSNDSYG and CSNFSYG)” on page 258
v “Symmetric Key Import (CSNDSYI and CSNFSYI)” on page 266
v “Symmetric Key Import2 (CSNDSYI2 and CSNFSYI2)” on page 272
v “Transform CDMF Key (CSNBTCK and CSNETCK)” on page 277
v “Trusted Block Create (CSNDTBC and CSNFTBC)” on page 279
v “TR-31 Export (CSNBT31X and CSNET31X)” on page 283
v “TR-31 Import (CSNBT31I and CSNET31I)” on page 298
v “TR-31 Optional Data Build (CSNBT31O and CSNET31O)” on page 311
v “TR-31 Optional Data Read (CSNBT31R and CSNET31R)” on page 314
v “TR-31 Parse (CSNBT31P and CSNET31P)” on page 318

© Copyright IBM Corp. 1997, 2011 99

|

|
|
|
|
|

v “User Derived Key (CSFUDK and CSFUDK6)” on page 321

Clear Key Import (CSNBCKI and CSNECKI)
Use the clear key import callable service to import a clear DATA key that is to be
used to encipher or decipher data. This callable service can import only DATA keys.
Clear key import accepts an 8-byte clear DATA key, enciphers it under the master
key, and returns the encrypted DATA key in operational form in an internal key
token.

If the clear key value does not have odd parity in the low-order bit of each byte, the
service returns a warning value in the reason_code parameter. The callable service
does not adjust the parity of the key.

Note: To import 16-byte or 24-byte DATA keys, use the multiple clear key import
callable service that is described in “Multiple Clear Key Import (CSNBCKM
and CSNECKM)” on page 205. The multiple clear key import service
supports AES DATA keys.

The callable service name for AMODE(64) invocation is CSNECKI.

Format

CALL CSNBCKI(
return_code,
reason_code,
exit_data_length,
exit_data,
clear_key,
key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

100 z/OS V1R13 ICSF Application Programmer's Guide

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

clear_key

Direction: Input Type: String

The clear_key specifies the 8-byte clear key value to import.

key_identifier

Direction: Input/Output Type: String

A 64-byte string that is to receive the internal key token. “Key Identifier for Key
Token” on page 8 describes the internal key token.

Usage Notes
These usage notes only apply to CCF systems.

This service produces an internal DATA token with a control vector which is usable
on the Cryptographic Coprocessor Feature. If a valid internal token is supplied as
input to the service in the key_identifier field, that token's control vector will not be
used in the encryption of the clear key value.

This service marks this internal key token CDMF or DES, according to the system's
default encryption algorithm, unless token copying overrides this. The service marks
this internal key token CDMF or DES, according to the system's default encryption
algorithm, unless token copying overrides this. See “System Encryption Algorithm”
on page 49 for details.

The Clear Key Import/Multiple Clear Key Import - DES access control point
controls the function of this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 10. Clear key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
890

IBM Eserver zSeries
990

PCI X Cryptographic
Coprocessor/Crypto
Express2
Coprocessor

There are no internal token markings for
CDMF or DES. There is no token copying.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

There are no internal token markings for
CDMF or DES. There is no token copying.

Clear Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 101

|
|

Table 10. Clear key import required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

There are no internal token markings for
CDMF or DES. There is no token copying.

z196 Crypto Express3
Coprocessor

There are no internal token markings for
CDMF or DES. There is no token copying.

Control Vector Generate (CSNBCVG and CSNECVG)
The Control Vector Generate callable service builds a control vector from keywords
specified by the key_type and rule_array parameters.

The callable service name for AMODE(64) is CSNECVG.

Format

CALL CSNBCVG(
return_code,
reason_code,
exit_data_length,
exit_data,
key_type,
rule_array_count,
rule_array,
reserved,
control_vector)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Clear Key Import

102 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

|
|

Direction: Ignored Type: String

This field is ignored.

key_type

Direction: Input Type: String

A string variable containing a keyword for the key type. The keyword is 8 bytes
in length, left justified, and padded on the right with space characters. It is taken
from this list:
CIPHER DATAM IKEYXLAT OPINENC
CVARDEC DATAMV IMPORTER PINGEN
CVARENC DECIPHER IPINENC PINVER
CVARPINE DKYGENKY KEYGENKY SECMSG
CVARXCVL ENCIPHER MAC
CVARXCVR EXPORTER MACVER
DATA OKEYXLAT

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter.

rule_array

Direction: Input Type: Character String

Keywords that provide control information to the callable service. Each keyword
is left justified in 8-byte fields, and padded on the right with blanks. All keywords
must be in contiguous storage. “Key Token Build (CSNBKTB and CSNEKTB)”
on page 181 illustrates the key type and key usage keywords that can be
combined in the Control Vector Generate and Key Token Build callable services
to create a control vector. The rule array keywords are:

v AMEX-CSC

v ANSIX9.9

v ANY

v ANY-MAC

v CLR8-ENC

v CPINENC

v CPINGEN

v CPINGENA

v CVVKEY-A

v CVVKEY-B

v DALL

v DATA

v DDATA

v DEXP

v DIMP

v DKYL0

v DKYL1

v DKYL2

Control Vector Generate

Chapter 5. Managing Symmetric Cryptographic Keys 103

|||
|

|

|

|

|

|

|

v DKYL3

v DKYL4

v DKYL5

v DKYL6

v DKYL7

v DMAC

v DMKEY

v DMPIN

v DMV

v DOUBLE

v DPVR

v ENH-ONLY

v EPINGEN

v EPINGENA

v EPINVER

v EXEX

v EXPORT

v GBP-PIN

v GBP-PINO

v IBM-PIN

v IBM-PINO

v IMEX

v IMIM

v IMPORT

v INBK-PIN

v KEY-PART

v KEYLN8

v KEYLN16

v LMTD-KEK

v MIXED

v NO-SPEC

v NO-XPORT

v NON-KEK

v NOOFFSET

v NOT31XPT

v OPEX

v OPIM

v REFORMAT

v SINGLE

v SMKEY

v SMPIN

v T31XPTOK

v TRANSLAT

v UKPT

v VISA-PVV

Control Vector Generate

104 z/OS V1R13 ICSF Application Programmer's Guide

|

|

v XLATE

v XPORT-OK

Note: CLR8-ENC or UKPT must be coded in rule_array when the KEYGENKY
key type is coded. When the SECMSG key_type is coded, either SMKEY
or SMPIN must be specified in the rule_array. ENH-ONLY is not
supported with key type DATA.

reserved

Direction: Input Type: String

The reserved parameter must be a variable of 8 bytes of X'00'.

control_vector

Direction: Output Type: String

A 16-byte string variable in application storage where the service returns the
generated control vector.

Usage Notes
See Table 61 on page 188 for an illustration of key type and key usage keywords
that can be combined in the Control Vector Generate and Key Token Build callable
services to create a control vector.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 11. Control vector generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

Control Vector Translate (CSNBCVT and CSNECVT)
The Control Vector Translate callable service changes the control vector used to
encipher an external key.

See “Changing Control Vectors with the Control Vector Translate Callable Service”
on page 837 for additional information about this service.

Control Vector Generate

Chapter 5. Managing Symmetric Cryptographic Keys 105

The callable service name for AMODE(64) invocation is CSNECVT.

Format

CALL CSNBCVT(
return_code,
reason_code,
exit_data_length,
exit_data,
KEK_key_identifier,
source_key_token,
array_key_left,
mask_array_left,
array_key_right,
mask_array_right,
rule_array_count,
rule_array,
target_key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

KEK_key_identifier

Direction: Input/Output Type: String

The 64-byte string variable containing an internal key token or the key label of
an internal key token record containing the key-encrypting key. The control
vector in the internal key token must specify the key type of IMPORTER,
EXPORTER, IKEYXLAT, or OKEYXLAT.

Control Vector Translate

106 z/OS V1R13 ICSF Application Programmer's Guide

source_key_token

Direction: Input Type: String

A 64-byte string variable containing the external key token with the key and
control vector to be processed.

array_key_left

Direction: Input/Output Type: String

A 64-byte string variable containing an internal key token or a key label of an
internal key token record that deciphers the left mask array. The internal key
token must contain a control vector specifying a CVARXCVL key type.

mask_array_left

Direction: Input Type: String

A string of seven 8-byte elements containing the mask array enciphered under
the left array key.

array_key_right

Direction: Input/Ouput Type: String

A 64-byte string variable containing an internal key token or a key label of an
internal key token record that deciphers the right mask array. The internal key
token must contain a control vector specifying a CVARXCVR key type.

mask_array_right

Direction: Input Type: String

A string of seven 8-byte elements containing the mask array enciphered under
the right array key.

rule_array_count

Direction: Input Type: Integer

An integer containing the number of elements in the rule array. The value of the
rule_array_count must be 0, 1, or 2 for this service. If the rule_array_count is 0,
the default keywords are used.

rule_array

Direction: Input Type: Character String

The rule_array parameter is an array of keywords. The keywords must be 8
bytes of contiguous storage with the keyword left-justified in its 8-byte location
and padded on the right with blanks. The rule_array keywords are:

Table 12. Keywords for Control Vector Translate

Keyword Meaning

Parity Adjustment Rule (optional)

Control Vector Translate

Chapter 5. Managing Symmetric Cryptographic Keys 107

Table 12. Keywords for Control Vector Translate (continued)

Keyword Meaning

ADJUST Ensures that all target key bytes have odd parity. This is
the default.

NOADJUST Prevents the parity of the target being altered.

Key-portion Rule (optional)

BOTH Causes both halves of a 16-byte source key to be
processed with the result placed into corresponding
halves of the target key. When you use the BOTH
keyword, the mask array must be able to validate the
translation of both halves.

LEFT Causes an 8-byte source key, or the left half of a 16-byte
source key, to be processed with the result placed into
both halves of the target key. This is the default.

RIGHT Causes the right half of a 16-byte source key to be
processed with the result placed into the right half of the
target key. The left half is copied unchanged (still
enciphered) from the source key.

SINGLE Causes the left half of the source key to be processed
with the result placed into the left half of the target key
token. The right half of the target key is unchanged.

target_key_token

Direction: Input/Output Type: String

A 64-byte string variable containing an external key token with the new control
vector. This key token contains the key halves with the new control vector.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output target_key_token will be wrapped in
the same manner as the input source_key_token.

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

If KEK_key_identifier is a label of an IMPORTER or EXPORTER key, the label must
be unique in the CKDS.

The Control Vector Translate access control point controls the function of this
service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Control Vector Translate

108 z/OS V1R13 ICSF Application Programmer's Guide

|
|

Table 13. Control vector translate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENC and
WRAP-ECB not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENC and
WRAP-ECB not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENC and
WRAP-ECB not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENC and
WRAP-ECB not supported.

Crypto Express3
Coprocessor

Enhanced key token wrapping not
supported.

z196 Crypto Express3
Coprocessor

Cryptographic Variable Encipher (CSNBCVE and CSNECVE)
The Cryptographic Variable Encipher callable service uses a CVARENC key to
encrypt plaintext by using the Cipher Block Chaining (CBC) method. You can use
this service to prepare a mask array for the Control Vector Translate service. The
plaintext must be a multiple of eight bytes in length.

The callable service name for AMODE(64) invocation is CSNECVE.

Format

CALL CSNBCVE(
return_code,
reason_code,
exit_data_length,
exit_data,
c-variable_encrypting_key_identifier,
text_length,
plaintext,
initialization_vector,
ciphertext)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

Control Vector Translate

Chapter 5. Managing Symmetric Cryptographic Keys 109

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

c-variable_encrypting_key_identifier

Direction: Input/Output Type: String

The 64-byte string variable containing an internal key or a key label of an
internal key token record in the CKDS. The internal key must contain a control
vector that specifies a CVARENC key type.

text_length

Direction: Input Type: Integer

An integer variable containing the length of the plaintext and the returned
ciphertext.

plaintext

Direction: Input Type: String

A string of length 8 to 256 bytes which contains the plaintext. The data must be
a multiple of 8 bytes.

initialization_vector

Direction: Input Type: String

A string variable containing the 8-byte initialization vector that the service uses
in encrypting the plaintext.

ciphertext

Direction: Output Type: String

The field which receives the ciphertext. The length of this field is the same as
the length of the plaintext.

Cryptographic Variable Encipher

110 z/OS V1R13 ICSF Application Programmer's Guide

Restrictions
v The text length must be a multiple of 8 bytes.

v The maximum length of text that the security server can process is 256 bytes.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The Cryptographic Variable Encipher access control point controls the function of
this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 14. Cryptographic variable encipher required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

z196 Crypto Express3
Coprocessor

Data Key Export (CSNBDKX and CSNEDKX)
Use the data key export callable service to reencipher a data-encrypting key (key
type of DATA only) from encryption under the master key to encryption under an
exporter key-encrypting key. The reenciphered key is in a form suitable for export to
another system.

The data key export service generates a key token with the same key length as the
input token's key.

The callable service name for AMODE(64) invocation is CSNEDKX.

Cryptographic Variable Encipher

Chapter 5. Managing Symmetric Cryptographic Keys 111

|
|

Format

CALL CSNBDKX(
return_code,
reason_code,
exit_data_length,
exit_data,
source_key_identifier,
exporter_key_identifier,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

source_key_identifier

Direction: Input/Output Type: String

A 64-byte string for an internal key token or label that contains a
data-encrypting key to be reenciphered. The data-encrypting key is encrypted
under the master key.

exporter_key_identifier

Direction: Input/Output Type: String

A 64-byte string for an internal key token or key label that contains the exporter
key_encrypting key. The data-encrypting key previously discussed will be
encrypted under this exporter key_encrypting key.

Data Key Export

112 z/OS V1R13 ICSF Application Programmer's Guide

target_key_identifier

Direction: Input/Output Type: String

A 64-byte field that is to receive the external key token, which contains the
reenciphered key that has been exported. The reenciphered key can now be
exchanged with another cryptographic system.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output target_key_identifier will be wrapped
in the same manner as the source_key_identifier.

Restrictions
For existing TKE V3.1 (or higher) users, you may have to explicitly enable new
access control points. Current applications will fail if they use an equal key halves
exporter to export a key with unequal key halves. You must have access control
point 'Data Key Export - Unrestricted' explicitly enabled.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

When the service is processed on the CCF, ICSF examines the data encryption
algorithm bits on the exporter key-encrypting key and DATA key for consistency. It
does not export a CDMF key under a DES-marked key-encrypting key or a DES
key under a CDMF-marked key-encrypting key. ICSF does not propagate the data
encryption marking on the operational key to the external token.

Token marking for DES/CDMF on DATA and key-encrypting keys is ignored on a
PCICC, PCIXCC, CEX2C, or CEX3C.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 15. Required access control points for Data key export

Access Control Point Restrictions

Data Key Export - Unrestricted None

Data Key Export Key-encrypting key may not have equal key halves

To use a NOCV key-encrypting key with the data key export service, the NOCV
KEK usage for export-related functions access control point must be enabled in
addition to one or both of the access control points listed.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Data Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 113

|
|

||

||

||

||
|

|
|
|

Table 16. Data key export required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

PCI Cryptographic
Coprocessor

ICSF routes the request to a PCI
Cryptographic Coprocessor if the control
vector of the exporter_key_identifier cannot
be processed on the Cryptographic
Coprocessor Feature.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

z196 Crypto Express3
Coprocessor

Data Key Import (CSNBDKM and CSNEDKM)
Use the data key import callable service to import an encrypted source DES
single-length, double-length or triple-length DATA key and create or update a target
internal key token with the master key enciphered source key.

The callable service name for AMODE(64) invocation is CSNEDKM.

Format

CALL CSNBDKM(
return_code,
reason_code,
exit_data_length,
exit_data,
source_key_token,
importer_key_identifier,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

Data Key Export

114 z/OS V1R13 ICSF Application Programmer's Guide

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

source_key_token

Direction: Input Type: String

64-byte string variable containing the source key to be imported. The source
key must be an external token or null token. The external key token must
indicate that a control vector is present; however, the control vector is usually
valued at zero. A double-length key that should result in a default DATA control
vector must be specified in a version X'01' external key token. Otherwise, both
single and double-length keys are presented in a version X'00' key token. For
the null token, the service will process this token format as a DATA key
encrypted by the importer key and a null (all zero) control vector.

importer_key_identifier

Direction: Input/Output Type: String

A 64-byte string variable containing the (IMPORTER) transport key or key label
of the transport key used to decipher the source key.

target_key_identifier

Direction: Input/Output Type: String

A 64-byte string variable containing a null key token or an internal key token.
The key token receives the imported key.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. If a skeleton key token is provided as input to
this parameter, the wrapping method in the skeleton token will be used.
Otherwise, the system default key wrapping method will be used to wrap the
token.

Data Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 115

Restrictions
For existing TKE V3.1 (or higher) users, you may have to explicitly enable new
access control points. Current applications will fail if they use an equal key halves
importer to import a key with unequal key halves. You must have access control
point 'Data Key Import - Unrestricted' explicitly enabled.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

This service does not adjust the key parity of the source key.

CDMF/DES token markings will be ignored.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 17. Required access control points for Data key import

Access Control Point Restrictions

Data Key Import - Unrestricted None

Data Key Import Key-encrypting key may not have equal key halves

To use a NOCV key-encrypting key with the data key import service, the NOCV
KEK usage for import-related functions access control point must be enabled in
addition to one or both of the access control points listed.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 18. Data key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

Does not support triple length DATA keys.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

z196 Crypto Express3
Coprocessor

Data Key Import

116 z/OS V1R13 ICSF Application Programmer's Guide

|
|

||

||

||

||
|

|
|
|

Diversified Key Generate (CSNBDKG and CSNEDKG)
Use the diversified key generate service to generate a key based on the
key-generating key, the processing method, and the parameter supplied. The
control vector of the key-generating key also determines the type of target key that
can be generated.

To use this service, specify:

v The rule array keyword to select the diversification process.

v The operational key-generating key from which the diversified keys are
generated. The control vector associated with this key restricts the use of this
key to the key generation process. This control vector also restricts the type of
key that can be generated.

v The data and length of data used in the diversification process.

v The generated-key may be an internal token or a skeleton token containing the
desired CV of the generated-key. The generated key CV must be one that is
permitted by the processing method and the key-generating key. The
generated-key will be returned in this parameter.

v A key generation method keyword. Some keywords require Requires May 2004
or later version of Licensed Internal Code (LIC) or a z890.

This service generates diversified keys as follows:

v Determines if it can support the process specified in rule array.

v Recovers the key-generating key and checks the key-generating key class and
the specified usage of the key-generating key.

v Determines that the control vector in the generated-key token is permissible for
the specified processing method.

v Determines that the control vector in the generated-key token is permissible by
the control vector of the key-generating key.

v Determines the required data length from the processing method and the
generated-key CV. Validates the data_length.

v Generates the key appropriate to the specific processing method. Adjusts parity
of the key to odd. Creates the internal token and returns the generated
diversified key.

The callable service name for AMODE(64) invocation is CSNEDKG.

Format

CALL CSNBDKG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
generating_key_identifier,
data_length,
data,
key_identifier,
generated_key_identifier)

Diversified Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 117

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The only
valid value is 1, 2, or 3.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. The
processing method is the algorithm used to create the generated key. The
keywords must be 8 bytes of contiguous storage with the keyword left-justified
in its 8-byte location and padded on the right with blanks.

Table 19. Rule Array Keywords for Diversified Key Generate

Keyword Meaning

Processing Method for generating or updating diversified keys (required)

Diversified Key Generate

118 z/OS V1R13 ICSF Application Programmer's Guide

Table 19. Rule Array Keywords for Diversified Key Generate (continued)

Keyword Meaning

CLR8-ENC Specifies that 8-bytes of clear data shall be multiply
encrypted with the generating key. The
generating_key_identifier must be a KEYGENKY key
type with bit 19 of the control vector set to 1. The
control vector in generated_key_identifier must specify
a single-length key. The key type may be DATA, MAC,
or MACVER.
Note: CIPHER class keys are not supported.

SESS-XOR Modifies an existing DATA, DATAC, MAC, DATAM, or
MACVER, DATAMV single- or double-length key.
Specifies the VISA method for session key generation.
Data supplied may be 8 or 16 bytes of data depending
on whether the generating_key_identifier is a single or
double length key. The 8 or 16 bytes of data is XORed
with the clear value of the generating_key_identifier.
The generated_key_identifier has the same control
vector as the generating_key_identifier. The
generating_key_identifier may be DATA/DATAC,
MAC/DATAM or MACVER/DATAMV key types.

TDES-DEC Data supplied may be 8 or 16 bytes of clear data. If the
generated_key_identifier specifies a single length key,
then 8-bytes of data is TDES decrypted under the
generating_key_identifier. If the
generated_key_identifier specifies a double length key,
then 16-bytes of data is TDES ECB mode decrypted
under the generating_key_identifier. No formating of
data is done prior to encryption. The
generating_key_identifier must be a DKYGENKY key
type, with appropriate usage bits for the desired
generated key.

TDES-ENC Data supplied may be 8 or 16 bytes of clear data. If the
generated_key_identifier specifies a single length key,
then 8-bytes of data is TDES encrypted under the
generating_key_identifier. If the
generated_key_identifier specifies a double length key,
then 16-bytes of data is TDES ECB mode encrypted
under the generating_key_identifier. No formatting of
data is done prior to encryption. The
generating_key_identifier must be a DKYGENKY key
type, with appropriate usage bits for the desired
generated key. The generated_key_identifier may be a
single or double length key with a CV that is permitted
by the generating_key_identifier.

TDES-XOR Requires Requires May 2004 or later version of
Licensed Internal Code (LIC). It combines the function
of the existing TDES-ENC and SESS-XOR into one
step.

The generating key must be a level 0 DKYGENKY and
cannot have replicated halves. The session key
generated must be double length and the allowed key
types are DATA, DATAC, MAC, MACVER, DATAM,
DATAMV, SMPIN and SMKEY. Key type must be
allowed by the generating key control vector.

Diversified Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 119

Table 19. Rule Array Keywords for Diversified Key Generate (continued)

Keyword Meaning

TDESEMV2 Requires Requires May 2004 or later version of
Licensed Internal Code (LIC): supports generation of a
session key by the EMV 2000 algorithm (This
EMV2000 algorithm uses a branch factor of 2). The
generating key must be a level 0 DKYGENKY and
cannot have replicated halves. The session key
generated must be double length and the allowed key
types are DATA, DATAC, MAC, MACVER, DATAM,
DATAMV, SMPIN and SMKEY. Key type must be
allowed by the generating key control vector.

TDESEMV4 Requires Requires May 2004 or later version of
Licensed Internal Code (LIC): supports generation of a
session key by the EMV 2000 algorithm (This
EMV2000 algorithm uses a branch factor of 4). The
generating key must be a level 0 DKYGENKY and
cannot have replicated halves. The session key
generated must be double length and the allowed key
types are DATA, DATAC, MAC, MACVER, DATAM,
DATAMV, SMPIN and SMKEY. Key type must be
allowed by the generating key control vector.

Key Wrapping Method (optional)

USECONFG Specifies that the system default configuration should
be used to determine the wrapping method. This is the
default keyword.

The system default key wrapping method can be
specified using the DEFAULTWRAP parameter in the
installation options data set. See the z/OS
Cryptographic Services ICSF System Programmer's
Guide.

WRAP-ENH Use enhanced key wrapping method, which is
compliant with the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB
wrapping for DES key tokens and CBC wrapping for
AES key tokens.

Translation Control (optional)

ENH-ONLY Restrict rewrapping of the generated_key_identifier
token. Once the token has been wrapped with the
enhanced method, it cannot be rewrapped using the
original method.

generating_key_identifier

Direction: Input/Output Type: String

The label or internal 64 byte token of a key that is a DKYLO, DKYGENKY or a
subtype appropriate to the session key to be derived. The type of
key-generating key depends on the processing method.

data_length

Direction: Input Type: Integer

Diversified Key Generate

120 z/OS V1R13 ICSF Application Programmer's Guide

The length of the data parameter that follows. Length depends on the
processing method and the generated key. The data length for TDESEMV4 or
TDESEMV2 is either 18 or 34.

data

Direction: Input Type: String

Data input to the diversified key or session key generation process. Data
depends on the processing method and the generated_key_identifier.

For TDESEMV4 or TDESEMV2 the data is either 18 bytes (36 digits) or 34
bytes 68 digits) or data comprised of:

v 16 bytes (32 digits) of card specific data used to create the card specific
intermediate key (UDK) as per the TDES-ENC method. This will typically be
the PAN and PAN Sequence number as per the EMV specifications

v 2 bytes (4 digits) of ATC (Application Transaction Count)

v (optional) 16 bytes (32 digits) of IV (Initial Value) used in the EMV

key_identifier

Direction: Input/Output Type: String

This parameter is currently not used. It must be a 64-byte null token.

generated_key_identifier

Direction: Input/Output Type: String

The internal token of an operational key, a skeleton token containing the control
vector of the key to be generated, or a null token. A null token can be supplied
if the generated_key_identifier will be a DKYGENKY with a CV derived from the
generating_key_identifier. A skeleton token or internal token is required when
generated_key_identifier will not be a DKYGENKY key type or the processing
method is not SESS-XOR. For SESS-XOR, this must be a null token. On
output, this parameter contains the generated key.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output generated_key_token will use the
default method unless a rule array keyword overriding the default is specified.

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Refer to Appendix C, “Control Vectors and Changing Control Vectors with the CVT
Callable Service,” on page 827 for information on the control vector bits for the
DKG key generating key.

For Session key algorithm (EMV Smartcard specific), an MDK can be used in two
ways:

Diversified Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 121

v To calculate the Card Specific Key (or UDK) in the personalization process, call
this service with the TDES-ENC method using an output token that has been
primed with the CV of the final session key, for instance, if the MDK is a DMPIN,
the token should have the CV of an SMPIN key; DMAC; a double length MAC;
DDATA, a double length DATA key, etc.

The result would then be exported in the personalization file. This key is not
usable in this form for any other calculations.

v To use the session key, call this service with the TDESEMV4 method. Provide,
for input, the same card data that was used to create the UDK as well as the
ATC and optionally the IV value. This is the key that will be used in EMV related
Smartcard processing.

This same processing applies to those API's the generate the session key on
your behalf, like CSNBPCU.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 20. Required access control points for Diversified Key Generate

Rule array keyword Access control point

CLR8-ENC Diversified Key Generate - CLR8-ENC

SESS-XOR Diversified Key Generate - SESS-XOR

TDES-DEC Diversified Key Generate - TDES-DEC

TDES-ENC Diversified Key Generate - TDES-ENC

TDES-XOR Diversified Key Generate - TDES-XOR

TDESEMV2 or TDESEMV4 Diversified Key Generate - TDESEMV2/TDESEMV4

WRAP-ECB or WRAP-ENH and
default key-wrapping method
setting does not match the keyword

Diversified Key Generate - Allow wrapping override
keywords

When a key-generating key of key type DKYGENKY is specified with control vector
bits (19 – 22) of B'1111', the Diversified Key Generate - DKYGENKY – DALL
access control point must also be enabled in the ICSF role.

When using the TDES-ENC or TDES-DEC modes, you can specifically enable
generation of a single-length key or a double-length key with equal key-halves by
enabling the Diversified Key Generate - Single length or same halves access
control point.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 21. Diversified key generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

Keywords TDES-XOR, TDESEMV2 and
TDESEMV4 are not supported.

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

Diversified Key Generate

122 z/OS V1R13 ICSF Application Programmer's Guide

|
|

||

||

||

||

||

||

||

||

|
|
|

|
|

|

|
|
|

|
|
|
|

Table 21. Diversified key generate required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

IBM System z9 EC

IBM System z9 BC

Cryptographic
Express2
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

Crypto Express3
Coprocessor

Enhanced key token wrapping not
supported.

z196 Crypto Express3
Coprocessor

ECC Diffie-Hellman (CSNDEDH and CSNFEDH)
Use the ECC Diffie-Hellman callable service to create:

v Symmetric key material from a pair of ECC keys using the Elliptic Curve
Diffie-Hellman protocol and the static unified model key agreement scheme.

v “Z” – The “secret” material output from D-H process.

Output may be one of the following forms:

v Internal CCA Token (DES or AES): AES keys are in the "Variable-length
Symmetric Key Token" format. DES keys are in the "DES Internal Key Token"
format.

v External CCA Token (DES or AES): AES keys are in the "Variable-length
Symmetric Key Token" format. DES keys are in the "DES External Key Token"
format.

v “Z” – The “secret” material output from D-H process.

Diversified Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 123

|

|

|
|

|

|

|
|
|

|
|
|

|

Format

CALL CSNDEDH(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
private_key_identifier_length,
private_key_identifier,
private_KEK_key_identifier_length,
private_KEK_key_identifier,
public_key_identifier_length,
public_key_identifier,
chaining_vector_length,
chaining_vector,
party_identifier_length,
party_identifier,
key_bit_length,
reserved_length,
reserved,
reserved2_length,
reserved2,
reserved3_length,
reserved3,
reserved4_length,
reserved4,
reserved5_length,
reserved5,
output_KEK_key_identifier_length,
output_KEK_key_identifier,
output_key_identifier_length,
output_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

ECC Diffie-Hellman

124 z/OS V1R13 ICSF Application Programmer's Guide

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||
|

|
|

|

|||
|

|
|
|
|

|

|||
|

|
|
|

|
|

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. Valid values
are between 1 and 5.

rule_array

Direction: Input Type: String

The rule_array parameter is an array of keywords. The keywords must be 8
bytes of contiguous storage with the keyword left-justified in its 8-byte location
and padded on the right with blanks. The rule_array keywords are:

Table 22. Keywords for ECC Diffie-Hellman

Keyword Meaning

Key agreement (one required)

DERIV01 Use the static unified model key agreement scheme.

PASSTHRU Skip Key derivation step and return raw “Z" material.

Transport Key Type (one optional if output KEK key identifier is present)

OKEK-DES The output KEK key identifier is a “DES” KEK token.

OKEK-AES The output KEK key identifier is a “AES” KEK token.

Output Key Type (one optional if output key identifier is present)

KEY-DES The output key identifier is a “DES” skeleton token.

KEY-AES The output key identifier is an “AES” skeleton token.

Key Wrapping Method (one optional, only supported when the output type is DES)

USECONFG Specifies that the configuration setting for the default
wrapping method is to be used to wrap the key. This is
the default.

WRAP-ENH Specifies that the new enhanced wrapping method is to
be used to wrap the key.

WRAP-ECB Specifies that the original wrapping method is to be used.

Translation Control (one optional, only supported when the output type is DES)

ENH-ONLY Specify this keyword to indicate that the key once
wrapped with the enhanced method cannot be wrapped
with the original method. This restricts translation to the
original method. If the keyword is not specified translation
to the original method will be allowed. This turns on bit 56
(ENH ONLY) in the control vector. This keyword is not
valid if processing a zero CV data key.

private_key_identifier_length

Direction: Input Type: Integer

The length of the private_key_identifier parameter.

private_key_identifier

ECC Diffie-Hellman

Chapter 5. Managing Symmetric Cryptographic Keys 125

|||
|

|

|

|||
|
|
|

|

|||
|

|
|
|

||

||

|

||

||

|

||

||

|

||

||

|

||
|
|

||
|

||

|

||
|
|
|
|
|
|
|

|

|||
|
|

|
|

Direction: Input Type: String

The private_key_identifier must contain an internal or an external token or a
label of an internal or external ECC key. The ECC key token must contain a
public-private key pair. Clear keys will be accepted.

private_KEK_key_identifier_length

Direction: Input Type: Integer

The length of the private_KEK_key_identifier in bytes. The maximum value is
900. If the private_key_identifier contains an internal ECC token this value must
be a zero.

private_KEK_key_identifier

Direction: Input Type: String

The private_KEK_key_identifier must contain a KEK key token, the label of a
KEK key token, or a null token. The KEK key token must be present if the
private_key_identifier contains an external ECC token.

public_key_identifier_length

Direction: Input Type: Integer

The length of the public_key_identifier.

public_key_identifier

Direction: Input Type: String

The public_key_identifier parameter must contain an ECC public token or the
label of an ECC Public token. The public_key_identifier specifies the other
party’s ECC public key which is enabled for key management functions. If the
public_key_identifier identifies a token containing a public-private key pair, no
attempt to decrypt the private part will be made.

chaining_vector_length

Direction: Input/Output Type: Integer

The chaining_vector_length parameter must be zero.

chaining_vector

Direction: Input/Output Type: String

The chaining_vector parameter is ignored.

party_identifier_length

Direction: Input/Output Type: Integer

The length of the party_identifier parameter. Valid values are 0, or between 8
and 64. The party_identifier_length must be 0 when the PASSTHRU rule array
keyword is specified.

party_identifier

Direction: Input/Output Type: String

The party_identifier parameter contains the entity identifier information. This
information should contain the both entities data according to NIST SP800-56A
Section 5.8 when the DERIV01 rule array keyword is specified.

ECC Diffie-Hellman

126 z/OS V1R13 ICSF Application Programmer's Guide

|||
|
|
|
|

|

|||
|
|
|
|

|

|||
|
|
|
|

|

|||
|
|

|

|||
|
|
|
|
|
|

|

|||
|
|

|

|||
|
|

|

|||
|
|
|
|

|

|||
|
|
|
|

key_bit_length

Direction: Input/Output Type: Integer

The key bit length parameter contains the number of bits of key material to
derive and place in the provided key token. The value must be 0 if the
PASSTHRU rule array keyword was specified. Otherwise it must be 64 - 2048.

reserved_length

Direction: Input/Output Type: Integer

The reserved_length parameter must be zero.

reserved

Direction: Input/Output Type: String

This parameter is ignored.

reserved2_length

Direction: Input/Output Type: Integer

The reserved2_length parameter must be zero.

reserved2

Direction: Input/Output Type: String

This parameter is ignored.

reserved3_length

Direction: Input/Output Type: Integer

The reserved3_length parameter must be zero.

reserved3

Direction: Input/Output Type: String

This parameter is ignored.

reserved4_length

Direction: Input/Output Type: Integer

The reserved4_length parameter must be zero.

reserved4

Direction: Input/Output Type: String

This parameter is ignored.

reserved5_length

Direction: Input/Output Type: Integer

The reserved5_length parameter must be zero.

reserved5

Direction: Input/Output Type: String

This parameter is ignored.

ECC Diffie-Hellman

Chapter 5. Managing Symmetric Cryptographic Keys 127

|

|||
|
|
|
|

|

|||
|
|

|

|||
|
|

|

|||
|
|

|

|||
|
|

|

|||
|
|

|

|||
|
|

|

|||
|
|

|

|||
|
|

|

|||
|
|

|

|||
|
|

output_KEK_key_identifier_length

Direction: Input Type: Integer

The length of the output_KEK_key_identifier. The maximum value is 900. The
output_KEK_key_identifier_length must be zero if output_key_identifier will
contain an internal token or if the PASSTHRU rule array keyword was specified.

output_KEK_key_identifier

Direction: Input Type: String

The output_KEK_key_identifier contains a KEK key token or the label of a KEK
key if the output_key_identifier will contain an external ECC token. Otherwise
this field is ignored.

If the output KEK key identifier identifies a DES KEK, then it must be an
IMPORTER or an EXPORTER key type, and have the export bit set. The
XLATE bit is not checked. If the output KEK key identifier identifies an AES
KEK, then it must be either an IMPORTER or an EXPORTER key type and
have the export/import bit set in key usage field 1 and the derivation bit set in
key usage field 4.

output_key_identifier_length

Direction: Input/Output Type: Integer

The length of the output_key_identifier. The service checks the field to ensure it
is at least equal to the size of the token to return. On return from this service,
this field is updated with the exact length of the key token created. The
maximum allowed value is 900 bytes.

output_key_identifier

Direction: Output Type: String

On input, the output_key_identifier must contain a skeleton token or a null
token.

On output, the output_key_identifier will contain:

v An internal or an external key token containing the generated symmetric key
material.

v “Z” data (in the clear) if the PASSTHRU rule array keyword was specified.

If this variable specifies an external DES key token then the output KEK key
identifier must identify a DES KEK key token. If this specifies an external key
token other than a DES key token then the output KEK key identifier must
identify an AES KEK key token.

Restrictions
The NIST security strength requirements will be enforced, with respect to ECC
Curve type (input) and derived key length.

Only the following key types will be generated, skeleton key tokens of any other
type will fail.

v DES: (Legacy DES token)

– CIPHER

– DECIPHER

– ENCIPHER

ECC Diffie-Hellman

128 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|
|
|
|

|

|||
|
|
|
|

|
|
|
|
|
|

|

|||
|
|
|
|
|

|

|||
|
|
|

|

|
|

|

|
|
|
|

|

|
|

|
|

|

|

|

|

– IMPORTER

– EXPORTER

– IMP-PKA

v AES

– DATA (Legacy AES token)

– CIPHER (Variable-length symmetric key-token)

– KEK (Variable-length symmetric key-token)

– IMPORTER (Variable-length symmetric key-token)

– EXPORTER (Variable-length symmetric key-token)

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The ECC Diffie-Hellman callable service requires the ECC Diffie-Hellman Callable
Service access control point to be enabled in the active role.

Specifying the PASSTHRU rule array keyword requires that the ECC
Diffie-Hellman – Allow PASSTHRU access control point be enabled in the active
role.

If the output_key_identifier parameter references a DES key token and the
wrapping method specified in not the default method, then the ECC Diffie-Hellman
– Allow key wrap override access control point must be enabled in the active role.

This table lists the valid key bit lengths and the minimum curve size required for
each of the supported output key types.

Table 23. Valid key bit lengths and minimum curve size required for the supported output
key types.

Output Key ID type Valid Key Bit Lengths Minimum Curve Required

DES 64 P160

128 P160

192 P224

AES 128 P256

192 P384

256 P512

The following access control points control the function of this service. Note that
each Elliptic Curve type supported has its own access control point.

v ECC Diffie-Hellman Callable Service

v ECC Diffie-Hellman – Allow PASSTHRU

v ECC Diffie-Hellman – Allow key wrap override

v ECC Diffie-Hellman – Allow Prime Curve 192

v ECC Diffie-Hellman – Allow Prime Curve 224

v ECC Diffie-Hellman – Allow Prime Curve 256

v ECC Diffie-Hellman – Allow Prime Curve 384

v ECC Diffie-Hellman – Allow Prime Curve 521

ECC Diffie-Hellman

Chapter 5. Managing Symmetric Cryptographic Keys 129

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|
|

|
|
|

|
|

||
|

|||

|||

||

||

|||

||

||
|

|
|

|

|

|

|

|

|

|

|

v ECC Diffie-Hellman – Allow BP Curve 160

v ECC Diffie-Hellman – Allow BP Curve 192

v ECC Diffie-Hellman – Allow BP Curve 224

v ECC Diffie-Hellman – Allow BP Curve 256

v ECC Diffie-Hellman – Allow BP Curve 320

v ECC Diffie-Hellman – Allow BP Curve 384

v ECC Diffie-Hellman – Allow BP Curve 512

v ECC Diffie-Hellman – Prohibit weak key generate

v Variable-length Symmetric Token - disallow weak wrap

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 24. ECC Diffie-Hellman required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

This callable service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

This callable service is not supported.

IBM System z10 EC

IBM System z10 BC

This callable service is not supported.

z196 Crypto Express3
Coprocessor

ECC Clear Key and Internal tokens support
requires the Sep. 2010 licensed internal
code (LIC).

ECC External and Diffie-Hellman support
requires Sep. 2011 licensed internal code
(LIC).

Key Export (CSNBKEX and CSNEKEX)
Use the key export callable service to reencipher any type of key (except an AKEK
or an IMP-PKA) from encryption under a master key variant to encryption under the
same variant of an exporter key-encrypting key. The reenciphered key can be
exported to another system.

If the key to be exported is a DATA key, the key export service generates a key
token with the same key length as the input token's key.

This service supports the no-export bit that the prohibit export service sets in the
internal token.

The callable service name for AMODE(64) invocation is CSNEKEX.

ECC Diffie-Hellman

130 z/OS V1R13 ICSF Application Programmer's Guide

|

|

|

|

|

|

|

|

|

|
|

||

||
|
|

|

|
|
||

|
|

|
|

||

|

|

||

|

|

||

||
|
|
|
|

|
|
|
|

|

Format

CALL CSNBKEX(
return_code,
reason_code,
exit_data_length,
exit_data,
key_type,
source_key_identifier,
exporter_key_identifier,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_type

Direction: Input Type: Character string

The parameter is an 8-byte field that contains either a key type value or the
keyword TOKEN. The keyword is left-justified and padded on the right with
blanks.

If the key type is TOKEN, ICSF determines the key type from the control vector
(CV) field in the internal key token provided in the source_key_identifier
parameter. If the control vector is invalid on the Cryptographic Coprocessor
Feature, the key export request will be routed to the PCI Cryptographic
Coprocessor.

Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 131

Key type values for the Key Export callable service are: CIPHER, DATA,
DATAC, DATAM, DATAMV, DATAXLAT, DECIPHER, ENCIPHER, EXPORTER,
IKEYXLAT, IMPORTER, IPINENC, MAC, MACD, MACVER, OKEYXLAT,
OPINENC, PINGEN and PINVER. For information on the meaning of the key
types, see Table 3 on page 23.

source_key_identifier

Direction: Input Type: String

A 64-byte string of the internal key token that contains the key to be
reenciphered. This parameter must identify an internal key token in application
storage, or a label of an existing key in the cryptographic key data set.

If you supply TOKEN for the key_type parameter, ICSF looks at the control
vector in the internal key token and determines the key type from this
information. If you supply TOKEN for the key_type parameter and supply a
label for this parameter, the label must be unique in the cryptographic key data
set.

exporter_key_identifier

Direction: Input/Output Type: String

A 64-byte string of the internal key token or key label that contains the exporter
key-encrypting key. This parameter must identify an internal key token in
application storage, or a label of an existing key in the cryptographic key data
set.

If the NOCV bit is on in the internal key token containing the key-encrypting
key, the key-encrypting key itself (not the key-encrypting key variant) is used to
encipher the generated key. For example, the key has been installed in the
cryptographic key data set through the key generator utility program or the key
entry hardware using the NOCV parameter; or you are passing the
key-encrypting key in the internal key token with the NOCV bit on and your
program is running in supervisor state or in key 0-7.

Control vectors are explained in “Control Vector for DES Keys” on page 19 and
the NOCV bit is shown in Table 335 on page 778.

target_key_identifier

Direction: Output Type: String

The 64-byte field external key token that contains the reenciphered key. The
reenciphered key can be exchanged with another cryptographic system.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output target_key_identifier will be wrapped
in the same manner as the source_key_identifier.

Restrictions
For existing TKE V3.1 (or higher) users, you may have to explicitly enable new
access control points. Current applications will fail if they use an equal key halves
exporter to export a key with unequal key halves. You must have access control
point 'Key Export - Unrestricted' explicitly enabled.

Key Export

132 z/OS V1R13 ICSF Application Programmer's Guide

This service cannot be used to export AKEKs. Refer to “ANSI X9.17 Key Export
(CSNAKEX and CSNGKEX)” on page 635 for information on exporting AKEKs.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

For key export, you can use these combinations of parameters:

v A valid key type in the key_type parameter and an internal key token in the
source_key_identifier parameter. The key type must be equivalent to the control
vector specified in the internal key token.

v A key_type parameter of TOKEN and an internal key token in the
source_key_identifier parameter. The source_key_identifier can be a label with
TOKEN only if the labelname is unique on the CKDS. The key type is extracted
from the control vector contained in the internal key token.

v A valid key type in the key_type parameter, and a label in the
source_key_identifier parameter.

If internal key tokens are supplied in the source_key_identifier or
exporter_key_identifier parameters, the key in one or both tokens can be
reenciphered. This occurs if the master key was changed since the internal key
token was last used. The return and reason codes that indicate this do not indicate
which key was reenciphered. Therefore, assume both keys have been
reenciphered.

Systems with the Cryptographic Coprocessor Feature.
ICSF examines the data encryption algorithm bits on the exporter key-encrypting
key and the key being exported for consistency. It does not export a CDMF key
under a DES-marked key-encrypting key or a DES key under a CDMF-marked
key-encrypting key. ICSF does not propagate the data encryption marking on the
operational key to the external token.

If the key type is MACD, the control vectors of the input keys must be the standard
control vectors supported by the Cryptographic Coprocessor Feature, since the key
export service will be processed on the Cryptographic Coprocessor Feature in this
case.

To use NOCV key-encrypting keys or to export double-length DATAM and DATAMV
keys, the NOCV-enablement keys must be installed in the CKDS.
NOCV-enablement keys are only needed with the Cryptographic Coprocessor
Feature.

For a double-length MAC key with a key type of DATAM, the service uses the data
compatibility control vector to create an external token. For a double-length MAC
key with a key type of MACD, the service uses the single-length control vector for
both the left and right half of the key to create an external token (MAC||MAC). For a
table of control vectors, refer to Control Vector Table.

Key Export operations which specify a NOCV key-encrypting key as the exporter
key and also specify a source or key-encrypting key which contains a control vector
not supported by the Cryptographic Coprocessor Feature will fail.

Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 133

To export a double-length MAC generation or MAC verification key, it is
recommended that a key type of TOKEN be used.

Systems with a PCI X Cryptographic Coprocessor, Crypto
Express2 Coprocessor, or Crypto Express3 Coprocessor
If running with a PCIXCC, CEX2C, or CEX3C, existing internal tokens created with
key type MACD must be exported with either a TOKEN or DATAM key type. The
external CV will be DATAM CV. The MACD key type is not supported.

To export a double-length MAC generation or MAC verification key, it is
recommended that a key type of TOKEN be used.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 25. Required access control points for Key Export

Access Control Point Restrictions

Key Export - Unrestricted None

Key Export Key-encrypting key may not have equal key halves

To use a NOCV key-encrypting key with the key export service, the NOCV KEK
usage for export-related functions access control point must be enabled in
addition to one or both of the access control points listed.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 26. Key export required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

Key_type MACD is processed on a
Cryptographic Coprocessor Feature. DATAC
key type is not supported.

PCI Cryptographic
Coprocessor

ICSF routes the request to a PCI
Cryptographic Coprocessor if:

v The key_type specified is one of these:
DECIPHER, ENCIPHER, IKEYXLAT,
OKEYXLAT or CIPHER.

v The control vector of either the
exporter_key_identifier or the
source_key_identifier cannot be
processed on the Cryptographic
Coprocessor Feature.

v Token markings for DES/CDMF on DATA
and KEKs are ignored.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Key_type MACD and DATAXLAT are not
supported. Token markings for DES/CDMF
on DATA and KEKs are ignored.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Key_type MACD and DATAXLAT are not
supported. Token markings for DES/CDMF
on DATA and KEKs are ignored.

Key Export

134 z/OS V1R13 ICSF Application Programmer's Guide

|
|

||

||

||

||
|

|
|
|

Table 26. Key export required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Key_type MACD and DATAXLAT are not
supported. Token markings for DES/CDMF
on DATA and KEKs are ignored.

z196 Crypto Express3
Coprocessor

Key_type MACD and DATAXLAT are not
supported. Token markings for DES/CDMF
on DATA and KEKs are ignored.

Key Generate (CSNBKGN and CSNEKGN)
Use the key generate callable service to generate either one or two odd parity DES
keys of any type. The keys can be single-length (8 bytes), double-length (16 bytes),
or, in the case of DATA keys, triple-length (24 bytes). The callable service does not
produce keys in clear form and all keys are returned in encrypted form. When two
keys are generated, each key has the same clear value, although this clear value is
not exposed outside the secure cryptographic feature.

Use the key generate callable service to generate an AES key of DATA type. The
callable service does not produce AES keys in clear form and all AES keys are
returned in encrypted form. Only one AES key is generated. It's clear value is not
exposed outside the secure cryptographic feature.

The callable service name for AMODE (64) invocation is CSNEKGN.

Format

CALL CSNBKGN(
return_code,
reason_code,
exit_data_length,
exit_data,
key_form,
key_length,
key_type_1,
key_type_2,
KEK_key_identifier_1,
KEK_key_identifier_2,
generated_key_identifier_1,
generated_key_identifier_2)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 135

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_form

Direction: Input Type: Character string

A 4-byte keyword that defines the type of key(s) you want to generate. This
parameter also specifies if each key should be returned for either operational,
importable, or exportable use. The keyword must be in a 4-byte field,
left-justified, and padded with blanks.

The first two characters refer to key_type_1. The next two characters refer to
key_type_2.

These keywords are allowed: OP, IM, EX, OPIM, OPEX, IMEX, EXEX, OPOP,
and IMIM. See Table 27 for their meanings.

If the key_form is OP, EX or IM, the KEK_key_identifier_2,
generated_key_identifier_1 and generated_key_identifier_2 should be set to
NULL.

Table 27. Key Form Values for the Key Generate Callable Service

Keyword Meaning

EX One key that can be sent to another system.

EXEX A key pair; both keys to be sent elsewhere, possibly for
exporting to two different systems. The key pair has the same
clear value.

IM One key that can be locally imported. The key can be
imported onto this system to make it operational at another
time.

IMEX A key pair to be imported; one key to be imported locally and
one key to be sent elsewhere. Both keys have the same clear
value.

IMIM A key pair to be imported; both keys to be imported locally at
another time.

OP One operational key. The key is returned to the caller in the
key token format. Specify the OP key form when generating
AKEKs and AES keys.

Key Generate

136 z/OS V1R13 ICSF Application Programmer's Guide

Table 27. Key Form Values for the Key Generate Callable Service (continued)

Keyword Meaning

OPEX A key pair; one key that is operational and one key to be sent
from this system. Both keys have the same clear value.

OPIM A key pair; one key that is operational and one key to be
imported to the local system. Both keys have the same clear
value. On the other system, the external key token can be
imported to make it operational.

OPOP A key pair; normally with different control vector values.

The key forms are defined as follows:

Operational (OP)
The key value is enciphered under a master key. The result is placed
into an internal key token. The key is then operational at the local
system. For AKEKs, the result is placed in a skeleton token created by
the key token build callable service. AES AKEKs are not supported.

Importable (IM)
The key value is enciphered under an importer key-encrypting key. The
result is placed into an external key token.

Exportable (EX)
The key value is enciphered under an exporter key-encrypting key. The
result is placed into an external key token. The key can then be
transported or exported to another system and imported there for use.
This key form cannot be used by any ICSF callable service.

The keys are placed into tokens that the generated_key_identifier_1 and
generated_key_identifier_2 parameters identify.

Valid key type combinations depend on the key form. See Table 34 for valid key
combinations.

key_length

Direction: Input Type: Character string

An 8-byte value that defines the length of the key. The keyword must be
left-justified and padded on the right with blanks. You must supply one of the
key length values in the key_length parameter.

Table 28. Key Length Values for the Key Generate Callable Service

Value Description Algorithm

SINGLE, SINGLE-R or
KEYLN8

The key should be a single
length (8-byte or 64-bit) key.

DES

DOUBLE or KEYLN16 The key should be a double
length (16-byte or 128-bit)
key

AES or DES

KEYLN24 The key should be a 24-byte
(192-bit) key.

AES or DES

KEYLN32 The key should be a 32-byte
(256-bit) key.

AES

DES Keys: Double-length (16-byte) keys have an 8-byte left half and an 8-byte
right half. Both halves can have identical clear values or not. If you want the

Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 137

same value to be used in both key halves (refered to as replicated key values),
specify key_length as SINGLE, SINGLE-R or KEYLN8. If you want different
values to be the basis of each key half, specify key_length as DOUBLE or
KEYLN16.

Triple-length (24-byte) keys have three 8-byte key parts. This key length is valid
for DATA keys only. To generate a triple-length DATA key with three different
values to be the basis of each key part, specify key_length as KEYLN24.

Use SINGLE/SINGLE-R if you want to create a DES transport key that you
would use to exchange DATA keys with a PCF system. Because PCF does not
use double-length transport keys, specify SINGLE so that the effects of multiple
encipherment are nullified. When generating an AKEK, the key_length
parameter is ignored. The AKEK key length (8-byte or 16-byte) is determined by
the skeleton token created by the key token build callable service and provided
in the generated_key_identifier_1 parameter.

Note: SINGLE-R is not supported on IBM Eserver zSeries 900 servers.

AES Keys: AES only allows KEYLN16, KEYLN24, KEYLN32. To generate a
128-bit AES key, specify key_length as KEYLN16. For 192-bit AES keys specify
key_length as KENLN24. A 256-bit AES key requires a key_length of KEYLN32.
All AES keys are DATA keys.

Systems with CCFs (with or without PCICCs): This table shows the valid key
lengths for each key type supported by DES keys. An X indicates that a key
length is permitted for a key type. A Y indicates that the key generated will be a
double-length key with replicated key values.

Note: When generating a double-length key with replicated key values and the
key_form parameter as IMEX, the KEK_key_identifier_1 parameter must
contain a NOCV IMPORTER key-encrypting key either as a key label or
an internal key token. Also the CKDS must contain NOCV enablement
keys.

Table 29. Key lengths for DES keys - CCF systems

Key Type Single - KEYLN8 Double - KEYLN16 KEYLN24

MAC
MACVER

X
X

DATA X X X

DATAM
DATAMV

X
X

EXPORTER
IMPORTER

Y
Y

X
X

IKEYXLAT
OKEYXLAT

Y
Y

X
X

CIPHER#
DECIPHER#
ENCIPHER#

X
X
X

IPINENC
OPINENC
PINGEN
PINVER

Y
Y
Y
Y

X
X
X
X

Key Generate

138 z/OS V1R13 ICSF Application Programmer's Guide

Table 29. Key lengths for DES keys - CCF systems (continued)

CVARDEC*#
CVARENC*#
CVARPINE*#
CVARXCVL*#
CVARXCVR*#

X
X
X
X
X

X
X
X
X
X

DKYGENKY*#
KEYGENKY*#

Y
X

X
X

Notes:

1. * — key types marked with an asterisk (*) are requested through the use of
the TOKEN keyword and specifying a proper control-vector in a key token

2. # — key types marked with a pound sign (#) require a PCICC

Systems with PCIXCCs/CEX2C/CEX3C: This table shows the valid key
lengths for each key type supported by DES keys. An X indicates that a key
length is permitted for a key type. A Y indicates that the key generated will be a
double-length key with replicated key values. It is preferred that SINGLE-R be
used for this result.

Table 30. Key lengths for DES keys - PCIXCC/CEX2C/CEX3C systems

Key Type Single -
KEYLN8

Single-R Double -
KEYLN16

KEYLN24

MAC
MACVER

X
X

X
X

DATA X X X

DATAC*
DATAM
DATAMV

X
X
X

EXPORTER
IMPORTER

Y
Y

X
X

X
X

IKEYXLAT
OKEYXLAT

Y
Y

X
X

X
X

CIPHER
DECIPHER
ENCIPHER

X
X
X

X
X
X

IPINENC
OPINENC
PINGEN
PINVER

Y
Y
Y
Y

X
X
X
X

X
X
X
X

CVARDEC*
CVARENC*
CVARPINE*
CVARXCVL*
CVARXCVR*

X
X
X
X
X

X
X
X
X
X

DKYGENKY*
KEYGENKY*

X X
X

X
X

This table shows the valid key lengths for each key type supported by AES
keys. An X indicates that a key length is permitted for that key type.

Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 139

Table 31. Key lengths for AES keys - CEX2C/CEX3C systems

Key Type 128-byte 192-byte 256-byte

AESTOKEN
AESDATA

X
X

X
X

X
X

key_type_1

Direction: Input Type: Character string

Use the key_type_1 parameter for the first, or only key, that you want
generated. The keyword must be left-justified and padded with blanks. Valid
type combinations depend on the key form.

The 8-byte keyword for the key_type_1 parameter can be one of the following:

v AESDATA, AESTOKEN, CIPHER, DATA, DATAC, DATAM, DATAMV,
DATAXLAT, DECIPHER, ENCIPHER, EXPORTER, IKEYXLAT, IMPORTER,
IPINENC, MAC, MACVER, OKEYXLAT, OPINENC, PINGEN and PINVER

v or the keyword TOKEN

For information on the meaning of the key types, see Table 3 on page 23.

If key_type_1 is TOKEN, ICSF examines the control vector (CV) field in the
generated_key_identifier_1 parameter to derive the key type. When key_type_1
is TOKEN, ICSF does not check for the length of the key for DATA keys.
Instead, ICSF uses the key_length parameter to determine the length of the
key.

To generate a DES AKEK, specify a key_type_1 of TOKEN. The
generated_key_identifier_1 parameter must be a skeleton token of an AKEK
created by the Key Token Build callable service. The token cannot be a partially
notarized AKEK or an AKEK key part.

If key_type_1 is AESDATA or AESTOKEN, the key generated will be an AES
key of type DATA. When key_type_1 is AESTOKEN, ICSF uses the key_length
parameter to determine the length of the key.

See Table 33 and Table 34 for valid key type and key form combinations.

key_type_2

Direction: Input Type: Character string

Use the key_type_2 parameter for a key pair, which is shown in Table 34 on
page 144. The keyword must be left-justified and padded with blanks. Valid type
combinations depend on the key form. key_type_2 is only used when DES keys
are generated.

key_type_2 is only use when DES keys are generated. The 8-byte keyword for
the key_type_2 parameter can be one of the following:

v CIPHER, DATA, DATAC, DATAM, DATAMV, DATAXLAT, DECIPHER,
ENCIPHER, EXPORTER, IKEYXLAT, IMPORTER, IPINENC, MAC,
MACVER, OKEYXLAT, OPINENC, PINGEN and PINVER

v or the keyword TOKEN

For information on the meaning of the key types, see Description of Key Types,
Table 3 on page 23.

If key_type_2 is TOKEN, ICSF examines the control vector (CV) field in the
generated_key_identifier_2 parameter to derive the key type. When key_type_2

Key Generate

140 z/OS V1R13 ICSF Application Programmer's Guide

is TOKEN, ICSF does not check for the length of the key for DATA keys.
Instead, ICSF uses the key_length parameter to determine the length of the
key.

If only one key is to be generated, key_type_2 and KEK_key_identifier_2 are
ignored.

See Table 33 on page 144 and Table 34 on page 144 for valid key type and key
form combinations.

KEK_key_identifier_1

Direction: Input/Output Type: String

A 64-byte string of a DES internal key token containing the importer or exporter
key-encrypting key, or a key label. If you supply a key label that is less than
64-bytes, it must be left-justified and padded with blanks. KEK_key_identifier_1
is required for a key_form of IM, EX, IMEX, EXEX, or IMIM.

When key_form OP is used, parameters KEK_key_identifier_1 and
KEK_key_identifier_2 are ignored. In this case, it is recommended that the
parameters are initialized to 64-bytes of X'00'.

If the NOCV bit is on in the internal key token containing the key-encrypting
key, the key-encrypting key itself (not the key-encrypting key variant) is used to
encipher the generated key. For example, the key has been installed in the
cryptographic key data set through the key generator utility program or the key
entry hardware using the NOCV parameter; or you are passing the
key-encrypting key in the internal key token with the NOCV bit on and your
program is running in supervisor state or key 0-7.

Control vectors are explained in “Control Vector for DES Keys” on page 19 and
the NOCV bit is shown in Table 335 on page 778.

KEK_key_identifier_1 cannot be an AES key token or label.

KEK_key_identifier_2

Direction: Input/Output Type: String

A 64-byte string of a DES internal key token containing the importer or exporter
key-encrypting key, or a key label of an internal token. If you supply a key label
that is less than 64-bytes, it must be left-justified and padded with blanks.
KEK_key_identifier_2 is required for a key_form of OPIM, OPEX, IMEX, IMIM,
or EXEX. This field is ignored for key_form keywords OP, IM and EX. When
key_form OP is used, parameter KEK_key_identifier_2 is ignored. In this case,
it is recommended that the parameter is initialized to 64-bytes of X'00'.

If the NOCV bit is on in the internal key token containing the key-encrypting
key, the key-encrypting key itself (not the key-encrypting key variant) is used to
encipher the generated key. For example, the key has been installed in the
cryptographic key data set through the key generator utility program or the key
entry hardware using the NOCV parameter; or you are passing the
key-encrypting key in the internal key token with the NOCV bit on and your
program is running in supervisor state or in key 0-7.

Control vectors are explained in “Control Vector for DES Keys” on page 19 and
the NOCV bit is shown in Table 335 on page 778.

KEK_key_identifier_2 cannot be an AES key token or label.

generated_key_identifier_1

Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 141

Direction: Input/Output Type: String

This parameter specifies either a generated:

v Internal DES or AES key token for an operational key form, or

v External DES key tokens containing a key enciphered under the
KEK_key_identifier_1 parameter.

If you specify a key_type_1 of TOKEN, then this field contains a valid DES
token of the key type you want to generate. Otherwise, on input, this parameter
must be binary zeros. See key_type_1 for a list of valid key types.

If you specify a key_type_1 of IMPORTER or EXPORTER and a key_form of
OPEX, and if the generated_key_identifier_1 parameter contains a valid DES
internal token of the SAME type, the NOCV bit, if on, is propagated to the
generated key token.

When generating an AKEK, specify the skeleton key token created by the Key
Token Build callable service as input for this parameter.

When key_type_1 parameter is AESDATA, then generated_key_identifier_1 is
ignored. In this case, it is recommended that the parameter be initialized to
64-bytes of X'00'. If you specify a key_type_1 of AESTOKEN, the
generated_key_identifier_1 parameter must be an internal AES key token or a
clear AES key token. Information in this token can be used to determine the key
type:

v The key_type_1 parameter overrides the type in the token.

v The key_length parameter overrides the length value in the generated key
token.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output generated_key_identifier_1 will use
the default wrapping method unless a skeleton token is supplied as input. If a
skeleton token is supplied as input, the wrapping method in the skeleton token
will be used.

generated_key_identifier_2

Direction: Input/Output Type: String

This parameter specifies a generated external key token containing a key
enciphered under the KEK_key_identifier_2 parameter.

When key_type_1 parameter is AESDATA or AESTOKEN, then
generated_key_identifier_2 is ignored. In this case, it is recommended that the
parameters are initialized to 64-bytes of X'00'.

If you specify a key_type_2 of TOKEN, then this field contains a valid token of
the key type you want to generate. Otherwise, on input, this parameter must be
binary zeros. See key_type_1 for a list of valid key types.

The token can be an internal or external token.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output generated_key_identifier_2 will use
the default wrapping method unless a skeleton token is supplied as input. If a
skeleton token is supplied as input, the wrapping method in the skeleton token
will be used.

Key Generate

142 z/OS V1R13 ICSF Application Programmer's Guide

|

|

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

System Encryption Algorithm Marks (CCF systems only)
This applies to requests processed on a system with CCFs and only if the request
is processed by the CCF. Processing on a PCICC does not cause tokens to be
marked.

Internal DATA, IMPORTER and EXPORTER tokens are marked with the system
encryption algorithm. No external tokens generated by this service are marked.

When the key form is OP, the token is marked with the system default algorithm.
This marking can be overridden by specifing a valid token in the
generated_key_identifer_1 parameter with the marking required.

When the key form is OPEX or OPIM, the operational token is marked with the
markings of the key-encrypting key (KEK_key_identifier_2). This marking can be
overridden by specifing a valid token in the generated_key_identifer_1 parameter
with the marking required.

It is possible to generate an operational DES-marked DATA key on a CDMF-only
system or a CDMF-marked DATA key on a DES-only system. However, the
Encipher and Decipher callable services fail when you use these keys on the
systems where they were generated unless overridden by keyword.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 32. Required access control points for Key Generate

Usage Access Control Point

The key-form and key-type
combinations shown with an 'X' in
the Key_Form OP column in
Table 33 on page 144.

Key Generate – OP

The key-form and key-type
combinations shown with an 'X' in
the Key_Form IM column in
Table 33 on page 144.

Key Generate – Key set

The key-form and key-type
combinations shown with an 'X 'in
the Key_Form EX column in
Table 33 on page 144.

Key Generate - Key set

The key-form and key-type
combinations shown with an 'X' in
Table 34 on page 144

Key Generate - Key set

The key-form and key-type
combinations shown with an 'E' in
Table 34 on page 144

Key Generate - Key set extended

Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 143

|
|

||

||

|
|
|
|

|

|
|
|
|

|

|
|
|
|

|

|
|
|

|

|
|
|

|

Table 32. Required access control points for Key Generate (continued)

Usage Access Control Point

The SINGLE-R key-length keyword
is specified

Key Generate - SINGLE-R

To use a NOCV IMPORTER key-encrypting key with the key generate service, the
NOCV KEK usage for import-related functions access control point must be
enabled in addition to one or both of the access control points listed.

To use a NOCV EXPORTER key-encrypting key with the key generate service, the
NOCV KEK usage for export-related functions access control point must be
enabled in addition to one or both of the access control points listed.

Key type and key form combinations
Table 33 shows the valid key type and key form combinations for a single DES or
AES key. Key types marked with an "*" must be requested through the specification
of a proper control vector in a key token and through the use of the TOKEN
keyword.

Note: Not all keytypes are valid on all hardware. See Table 3 on page 23.

Table 33. Key Generate Valid Key Types and Key Forms for a Single Key

Key Type 1 Key Type 2 OP IM EX

AESDATA Not applicable X

AESTOKEN Not applicable X

DATA Not applicable X X X

DATAC* Not applicable X X X

DATAM Not applicable X X X

DKYGENKY* Not applicable X X X

KEYGENKY* Not applicable X X X

MAC Not applicable X X X

PINGEN Not applicable X X X

Table 34 shows the valid key type and key form combinations for a DES key pair.
Key types marked with an "*" must be requested through the specification of a
proper control vector in a key token and through the use of the TOKEN keyword.

Table 34. Key Generate Valid Key Types and Key Forms for a Key Pair

Key Type 1 Key Type 2 OPEX EXEX OPIM,
OPOP,
IMIM

IMEX

CIPHER CIPHER X X X X

CIPHER DECIPHER X X X X

CIPHER ENCIPHER X X X X

CVARDEC* CVARENC* E E

CVARDEC* CVARPINE* E E

CVARENC* CVARDEC* E E

CVARENC* CVARXCVL* E E

Key Generate

144 z/OS V1R13 ICSF Application Programmer's Guide

|

||

|
|
|

|

|
|
|

|
|
|

||||||

||||||

||||||

||||||

Table 34. Key Generate Valid Key Types and Key Forms for a Key Pair (continued)

Key Type 1 Key Type 2 OPEX EXEX OPIM,
OPOP,
IMIM

IMEX

CVARENC* CVARXCVR* E E

CVARXCVL* CVARENC* E E

CVARXCVR* CVARENC* E E

CVARPINE* CVARDEC* E E

DATA DATA X X X X

DATA DATAXLAT X X X

DATAC* DATAC* X X X X

DATAM DATAM X X X X

DATAM DATAMV X X X X

DATAXLAT DATAXLAT X X X

DECIPHER CIPHER X X X X

DECIPHER ENCIPHER X X X X

DKYGENKY* DKYGENKY* X X X X

ENCIPHER CIPHER X X X X

ENCIPHER DECIPHER X X X X

EXPORTER IKEYXLAT X X X

EXPORTER IMPORTER X X X

IKEYXLAT EXPORTER X X X

IKEYXLAT OKEYXLAT X X X

IMPORTER EXPORTER X X X

IMPORTER OKEYXLAT X X X

IPINENC OPINENC X X E X

KEYGENKY* KEYGENKY* X X X X

MAC MAC X X X X

MAC MACVER X X X X

OKEYXLAT IKEYXLAT X X X

OKEYXLAT IMPORTER X X X

OPINENC IPINENC X X E X

OPINENC OPINENC X

PINVER PINGEN X X X

PINGEN PINVER X X X

If you are running with the Cryptographic Coprocessor Feature and the key_form is
IMEX, the key_length is SINGLE, and key_type_1 is IPINENC, OPINENC, PINGEN,
IMPORTER, or EXPORTER, you must specify the KEK_key_identifier_1 parameter
as NOCV IMPORTER

If you are running with the Cryptographic Coprocessor Feature and need to use
NOCV key-encrypting keys, NOCV-enablement keys must be installed in the CKDS.
If you running with the PCI X Cryptographic Coprocessor, Crypto Express2

Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 145

||||||

||||||

||||||

||||||

||||||

||||||

Coprocessor, or Crypto Express3 Coprocessor and need to use NOCV
key-encrypting keys, you need to enable NOCV IMPORTER and NOCV
EXPORTER access control points

If you are running with the Cryptographic Coprocessor Feature and need to
generate DATAM and DATAMV keys in the importable form, the ANSI system keys
must be installed in the CKDS.

Table 35 lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 35. Key generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

OPIM is valid on the Cryptographic
Coprocessor Feature for key forms
DATA/DATA, DATAM/DATAM and
MAC/MAC. All other OPIM key forms are
routed to the PCI Cryptographic
Coprocessor. In key_form and
generated_key_identifier_1, marking of data
encryption algorithm bits and token copying
are only performed if this service is
proccessed on a Cryptographic Coprocessor
Feature. In KEK_key_identifier_2
propagation of token markings is only
relevant when this service is processed on
the Cryptographic Coprocessor Feature. In
generated_key_identifier_1, propagation of
the NOCV bit is performed only if the
service is processed on the Cryptographic
Coprocessor Feature.

AKEKs are processed on CCFs

DATAC is not supported.

Secure AES keys are not supported.

PCI Cryptographic
Coprocessor

ICSF routes the request to a PCI
Cryptographic Coprocessor if:

v OPIM key forms are not DATA/DATA,
DATAM/DATAM or MAC/MAC.

v The key type specified in key_type_1 or
key_type_2 is not valid for the
Cryptographic Coprocessor Feature or if
the control vector in a supplied token
cannot be processed on the
Cryptographic Coprocessor Feature.

v A key length of SINGLE-R is specified, or
if a key form of OPIM, OPOP or IMIM is
specified.

v Tokens are not marked with the system
encryption algorithm. The NOCV flag is
not propagated to key-encrypting keys.

Secure AES keys are not supported.

Key Generate

146 z/OS V1R13 ICSF Application Programmer's Guide

Table 35. Key generate required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Key_type DATAXLAT is not supported.

AKEK key type is not supported.

Secure AES keys are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Key_type DATAXLAT is not supported.

AKEK key type is not supported.

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Key_type DATAXLAT is not supported.

AKEK key type is not supported.

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

z196 Crypto Express3
Coprocessor

Key_type DATAXLAT is not supported.

AKEK key type is not supported.

Key Generate2 (CSNBKGN2 and CSNEKGN2)
Use the Key Generate2 callable service to generate either one or two keys of any
type. This callable service does not produce keys in clear form and all keys are
returned in encrypted form. When two keys are generated, each key has the same
clear value, although this clear value is not exposed outside the secure
cryptographic feature.

This service returns variable-length CCA key tokens and uses the AESKW wrapping
method.

This service supports HMAC and AES keys. Operational keys will be encrypted
under the AES master key.

The callable service name for AMODE(64) is CSNEKGN2.

Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 147

|
|

Format

CALL CSNBKGN2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_bit_length,
key_type_1,
key_type_2,
key_name_1_length,
key_name_1,
key_name_2_length,
key_name_2,
user_associated_data_1_length,
user_associated_data_1,
user_associated_data_2_length,
user_associated_data_2,
key_encrypting_key_identifier_1_length,
key_encrypting_key_identifier_1,
key_encrypting_key_identifier_2_length,
key_encrypting_key_identifier_2,
generated_key_identifier_1_length,
generated_key_identifier_1,
generated_key_identifier_2_length,
generated_key_identifier_2)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

Key Generate2

148 z/OS V1R13 ICSF Application Programmer's Guide

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 2.

rule_array

Direction: Input Type: String

The rule_array contains keywords that provide control information to the callable
service. The keywords must be in contiguous storage with each of the keywords
left-justified in its own 8-byte location and padded on the right with blanks.

Table 36. Keywords for Key Generate2 Control Information

Keyword Meaning

Token algorithm (required)

HMAC Specifies to generate an HMAC key token.

AES Specifies to generate an AES key token.

Key Form (required)

The first two characters refer to key_type_1. The next two characters refer to
key_type_2. See the Usage Notes section for further details.

EX One key that can be sent to another system.

EXEX A key pair; both keys to be sent elsewhere, possibly for
exporting to two different systems. Both keys have the
same clear value.

IM One key that can be locally imported. The key can be
imported onto this system to make it operational at
another time.

IMEX A key pair to be imported; one key to be imported locally
and one key to be sent elsewhere. Both keys have the
same clear value.

IMIM A key pair to be imported; both keys to be imported locally
at another time. Both keys have the same clear value.

OP One operational key. The key is returned to the caller in
operational form to be used locally.

OPEX A key pair; one key that is operational and one key to be
sent elsewhere. Both keys have the same clear value.

OPIM A key pair; one key that is operational and one key to be
imported locally at another time. Both keys have the same
clear value.

OPOP A key pair; either with the same key type with different
associated data or complementary key types. Both keys
have the same clear value.

clear_key_bit_length

Direction: Input Type: Integer

The size (in bits) of the key to be generated.

v For the HMAC algorithm, this is a value between 80 and 2048, inclusive.

Key Generate2

Chapter 5. Managing Symmetric Cryptographic Keys 149

||

||

|

||

||

|

|
|

||

||
|
|

||
|
|

||
|
|

||
|

||
|

||
|

||
|
|

||
|
|
|

|

|||
|

|

|

v For the AES algorithm, this is a value of 128, 192, or 256.

When key_type_1 or key_type_2 is TOKEN, this value overrides the key length
contained in generated_key_identifier_1 or generated_key_identifier_2,
respectively.

key_type_1

Direction: Input Type: String

Use the key_type_1 parameter for the first, or only, key that you want
generated. The keyword must be left-justified and padded with blanks. Valid
type combinations depend on the key form, and are documented in Table 39 on
page 154 and Table 40 on page 154.

The 8-byte keyword for the key_type_1 parameter can be one of the following:

Table 37. Keywords and associated algorithms for key_type_1 parameter

Keyword Algorithm

CIPHER AES

EXPORTER AES

IMPORTER AES

MAC HMAC

MACVER HMAC

Specify the keyword TOKEN when supplying a key token in the
generated_key_identifier_1 parameter.

If key_type_1 is TOKEN, the associated data in the generated_key_identifier_1
parameter is examined to derive the key type.

key_type_2

Direction: Input Type: String

Use the key_type_2 parameter for a key pair, which is shown in Table 40 on
page 154. The keyword must be left-justified and padded with blanks. Valid type
combinations depend on the key form.

The 8-byte keyword for the key_type_2 parameter can be one of the following:

Table 38. Keywords and associated algorithms for key_type_2 parameter

Keyword Algorithm

CIPHER AES

EXPORTER AES

IMPORTER AES

MAC HMAC

MACVER HMAC

Specify the keyword TOKEN when supplying a key token in the
generated_key_identifier_2 parameter.

If key_type_2 is TOKEN, the associated data in the generated_key_identifier_2
parameter is examined to derive the key type.

When only one key is being generated, this parameter is ignored.

Key Generate2

150 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|
|

|
|
|
|

||

||

||

||

||

||

||

|
|
|

|
|

||

||

||

||

||

||

||

|
|
|

|
|

key_name_1_length

Direction: Input Type: Integer

The length of the key_name parameter for generated_key_identifier_1. Valid
values are 0 and 64 bytes.

key_name_1

Direction: Input Type: String

A 64-byte key store label to be stored in the associated data structure of
generated_key_identifier_1.

key_name_2_length

Direction: Input Type: Integer

The length of the key_name parameter for generated_key_identifier_2. Valid
values are 0 and 64 bytes.

When only one key is being generated, this parameter is ignored.

key_name_2

Direction: Input Type: String

A 64-byte key store label to be stored in the associated data structure of
generated_key_identifier_2.

When only one key is being generated, this parameter is ignored.

user_associated_data_1_length

Direction: Input Type: Integer

The length of the user-associated data parameter for
generated_key_identifier_1. The valid values are 0 to 255 bytes.

user_associated_data_1

Direction: Input Type: String

User-associated data to be stored in the associated data structure for
generated_key_identifier_1.

user_associated_data_2_length

Direction: Input Type: Integer

The length of the user-associated data parameter for
generated_key_identifier_2. The valid values are 0 to 255 bytes.

When only one key is being generated, this parameter is ignored.

user_associated_data_2

Direction: Input Type: String

Key Generate2

Chapter 5. Managing Symmetric Cryptographic Keys 151

|

|

User associated data to be stored in the associated data structure for
generated_key_identifier_2.

When only one key is being generated, this parameter is ignored.

key_encrypting_key_identifier_1_length

Direction: Input Type: Integer

The length of the buffer for key_encrypting_key_identifier_1 in bytes. When the
Key Form rule is OP, OPOP, OPIM, or OPEX, this length must be zero. When
the Key Form rule is EX, EXEX, IM, IMEX, or IMIM, the value must be between
the actual length of the token and 725 bytes when
key_encrypting_key_identifier_1 is a token.

The value must be 64 bytes when key_encrypting_key_identifier_1 is a label.

key_encrypting_key_identifier_1

Direction: Input/Output Type: String

When key_encrypting_key_identifier_1_length is zero, this parameter is ignored.
Otherwise, key_encrypting_key_identifier_1 contains an internal key token
containing the AES importer or exporter key-encrypting key, or a key label.

If the token supplied was encrypted under the old master key, the token will be
returned encrypted under the current master key.

key_encrypting_key_identifier_2_length

Direction: Input Type: Integer

The length of the buffer for key_encrypting_key_identifier_2 in bytes. When the
Key Form rule is OPOP, this length must be zero. When the Key Form rule is
EXEX, IMEX, IMIM, OPIM, or OPEX, the value must be between the actual
length of the token and 725 when key_encrypting_key_identifier_2 is a token.
The value must be 64 when key_encrypting_key_identifier_2 is a label.

When only one key is being generated, this parameter is ignored.

key_encrypting_key_identifier_2

Direction: Input/Output Type: String

When key_encrypting_key_identifier_2_length is zero, this parameter is ignored.
Otherwise, key_encrypting_key_identifier_2 contains an internal key token
containing the AES importer or exporter key-encrypting key, or a key label.

If the token supplied was encrypted under the old master key, the token will be
returned encrypted under the current master key.

When only one key is being generated, this parameter is ignored.

generated_key_identifier_1_length

Direction: Input/Output Type: Integer

On input, the length of the buffer for the generated_key_identifier_1 parameter
in bytes. The maximum value is 900 bytes.

On output, the parameter will hold the actual length of the
generated_key_identifier_1.

Key Generate2

152 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|
|
|
|
|

|

|

|||
|

|
|
|

|
|

|

|||
|

|
|
|
|
|

|

|

|||
|

|
|
|

|
|

|

|

generated_key_identifier_1

Direction: Input/Output Type: String

The buffer for the first generated key token.

On input, if you specify a key_type_1 of TOKEN, then the buffer contains a
valid key token of the key type you want to generate. The key token must be
left justified in the buffer. See key_type_1 for a list of valid key types.

On output, the buffer contains the generated key token.

generated_key_identifier_2_length

Direction: Input/Output Type: Integer

On input, the length of the buffer for the generated_key_identifier_2 in bytes.
The maximum value is 900 bytes.

On output, the parameter will hold the actual length of the
generated_key_identifier_2.

When only one key is being generated, this parameter is ignored.

generated_key_identifier_2

Direction: Input/Output Type: String

The buffer for the second generated key token.

On input, if you specify a key_type_2 of TOKEN, then the buffer contains a
valid key token of the key type you want to generate. The key token must be
left justified in the buffer. See key_type_2 for a list of valid key types.

On output, the buffer contains the generated key token.

When only one key is being generated, this parameter is ignored.

Usage Notes
The key forms are defined as follows:

Operational (OP)
The key value is enciphered under a master key. The result is placed into
an internal key token. The key is then operational at the local system.

Importable (IM)
The key value is enciphered under an importer key-encrypting key. The
result is placed into an external key token. The corresponding
key_encrypting_key_identifier_x parameter must contain an AES
IMPORTER key token or label.

Exportable (EX)
The key value is enciphered under an exporter key-encrypting key. The
result is placed into an external key token. The corresponding
key_encrypting_key_identifier_x parameter must contain an AES
EXPORTER key token or label.

These tables list the valid key type and key form combinations.

Key Generate2

Chapter 5. Managing Symmetric Cryptographic Keys 153

|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

|

Table 39. Key Generate2 valid key type and key form for one key

key_type_1 Key Form OP, IM, EX

CIPHER X

MAC X

Table 40. Key Generate2 Valid key type and key forms for two keys

key_type_1 key_type_2 Key Form OPOP,
OPIM, IMIM

Key Form OPEX,
EXEX, IMEX

CIPHER CIPHER X X

MAC MAC X X

MAC MACVER X X

MACVER MAC X X

IMPORTER EXPORTER X

EXPORTER IMPORTER X

If an AES KEK is used, the strength of the KEK expected by Key Generate2
depends on the attributes of the key being generated. The resulting return code and
reason code when using a KEK that is weaker depends on the “Variable-length
Symmetric Token - disallow weak wrap” and “Variable-length Symmetric Token -
warn when weak wrap” access control points:

v If the “disallow" access control point is disabled (the default), the key strength
requirement will not be enforced. Using a weaker key will result in return code 0
with a non-zero reason code if the “warn” access control point is enabled.
Otherwise, a reason code of zero will be returned.

v If the “disallow” access control point is enabled (using TKE), the key strength
requirement will be enforced, and attempting to use a weaker key will result in
return code 8.

For AES keys, the AES KEK must be at least as strong as the key being generated
to be considered sufficient strength.

For HMAC keys, the AES KEK must be sufficient strength as described in the
following table.

Table 41. AES KEK strength required for generating an HMAC key under an AES KEK

Key-usage field 2 in the HMAC
key contains

Minimum strength of AES KEK to adequately
protect the HMAC key

SHA-256, SHA-384, SHA-512 256 bits

SHA-224 192 bits

SHA-1 128 bits

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 42. Required access control points for Key Generate2

Access Control Point Function control

Key Generate2 – OP Key Form OP, EX, IM

Key Generate2 – Key set Key Form OPOP, OPIM, IMIM, OPEX, EXEX, IMEX

Key Generate2

154 z/OS V1R13 ICSF Application Programmer's Guide

||

||

||

||
|

||

|||
|
|
|

||||

||||

||||

||||

||||

||||
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

||

|
|
|
|

||

||

||
|

||

||

||

||

Table 42. Required access control points for Key Generate2 (continued)

Access Control Point Function control

Variable-length Symmetric Token -
disallow weak wrap

Prohibit wrapping a key with a weaker key

Variable-length Symmetric Token -
warn when weak wrap

Issue a non-zero reason code when using a weak
wrapping key

Note that both the “Variable-length Symmetric Token - disallow weak wrap” and
“Variable-length Symmetric Token - warn when weak wrap” access control points
are disabled in the default role.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 43. Key Generate2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

This service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

This service is not supported.

Crypto Express3
Coprocessor

This service is not supported.

z196 Crypto Express3
Coprocessor

AES key support require the Sep. 2011 or
later licensed internal code (LIC).

HMAC key support requires the Nov. 2010
or later licensed internal code (LIC).

Key Import (CSNBKIM and CSNEKIM)
Use the key import callable service to reencipher a key (except an AKEK) from
encryption under an importer key-encrypting key to encryption under the master
key. The reenciphered key is in operational form.

Choose one of these options:

v Specify the key_type parameter as TOKEN and specify the external key token in
the source_key_identifier parameter. The key type information is determined from
the control vector in the external key token.

v Specify a key type in the key_type parameter and specify an external key token
in the source_key_identifier parameter. The specified key type must be
compatible with the control vector in the external key token.

Key Generate2

Chapter 5. Managing Symmetric Cryptographic Keys 155

|

||

|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

v Specify a valid key type in the key_type parameter and a null key token in the
source_key_identifier parameter. The default control vector for the key_type
specified will be used to process the key.

For DATA keys, this service generates a key of the same length as that contained in
the input token.

The callable service name for AMODE(64) invocation is CSNEKIM.

Format

CALL CSNBKIM(
return_code,
reason_code,
exit_data_length,
exit_data,
key_type,
source_key_identifier,
importer_key_identifier,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_type

Direction: Input Type: Character string

Key Import

156 z/OS V1R13 ICSF Application Programmer's Guide

The type of key you want to reencipher under the master key. Specify an 8-byte
keyword or the keyword TOKEN. The keyword must be left-justified and padded
on the right with blanks.

If the key type is TOKEN, ICSF determines the key type from the control vector
(CV) field in the external key token provided in the source_key_identifier
parameter.

TOKEN is never allowed when the importer_key_identifier is NOCV.

Supported key_type values are CIPHER, DATA, DATAM, DATAMV, DATAXLAT,
DECIPHER, ENCIPHER, EXPORTER, IKEYXLAT, IMPORTER, IPINENC, MAC,
MACVER, OKEXLAT, OPINENC, PINGEN and PINVER. Use key_type TOKEN
for all other key types.

For information on the meaning of the key types, see Table 3 on page 23.

We recommend using key type of TOKEN when importing double-length MAC
and MACVER keys.

source_key_identifier

Direction: Input Type: String

The key you want to reencipher under the master key. The parameter is a
64-byte field for the enciphered key to be imported containing either an external
key token or a null key token. If you specify a null token, the token is all binary
zeros, except for a key in bytes 16-23 or 16-31, or in bytes 16-31 and 48-55 for
triple-length DATA keys. Refer to Table 338 on page 782.

If key type is TOKEN, this field may not specify a null token.

This service supports the no-export function in the CV.

importer_key_identifier

Direction: Input/Output Type: String

The importer key-encrypting key that the key is currently encrypted under. The
parameter is a 64-byte area containing either the key label of the key in the
cryptographic key data set or the internal key token for the key. If you supply a
key label that is less than 64-bytes, it must be left-justified and padded with
blanks.

Note: If you specify a NOCV importer in the importer_key_identifier parameter,
the key to be imported must be enciphered under the importer key itself.

target_key_identifier

Direction: Input/Output Type: String

This parameter is the generated reenciphered key. The parameter is a 64-byte
area that receives the internal key token for the imported key.

If the imported key TYPE is IMPORTER or EXPORTER and the token key
TYPE is the same, the target_key_identifier parameter changes direction to
both input and output. If the application passes a valid internal key token for an
IMPORTER or EXPORTER key in this parameter, the NOCV bit is propagated
to the imported key token.

Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 157

Note: Propagation of the NOCV bit is performed only if the service is
processed on a Cryptographic Coprocessor Feature or on a PCIXCC,
CEX2C, or CEX3C.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output target_key_identifier will use the
default wrapping method unless a skeleton token is supplied as input. If a
skeleton token is supplied as input, the wrapping method in the skeleton token
will be used.

Restrictions
For existing TKE V3.1 (or higher) users, you may have to explicitly enable new
access control points. Current applications will fail if they use an equal key halves
importer to import a key with unequal key halves. You must have access control
point 'Key Import - Unrestricted' explicitly enabled.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Use of NOCV keys are controlled by an access control point in the PCIXCC.
Creation of NOCV key-encrypting keys is only available for standard IMPORTERs
and EXPORTERs.

Systems with the Cryptographic Coprocessor Feature
The key import callable service cannot be used to import ANSI key-encrypting keys.
For information on importing these types of keys, refer to “ANSI X9.17 Key Import
(CSNAKIM and CSNGKIM)” on page 640. To use NOCV key-encrypting keys or to
import DATAM or DATAMV keys, NOCV-enablement keys must be installed in the
CKDS.

This service will mark an imported KEK as a NOCV-KEK by suppling a valid
IMPORTER or EXPORTER token in the target_key_identifier field with the
NOCV-KEK flag enabled. The type of the token must match the key type of the
imported key.

This service will mark DATA and key-encrypting key tokens with the system
encryption algorithm if the request is processed on the CCF. The service
propagates the data encryption algorithm mark on the operational KEK unless token
copying overrides this:

v The imported token is marked with the DES or CDMF encryption algorithm marks
of the KEK token

v The imported token is marked with the system's default encryption algorithm
when the KEK is marked SYS-ENC

v To override the encryption algorithm marks of the KEK, supply a valid token in
the target_key_identifier field of the same key type being imported. The mark of
the target_key_identifier token are used to mark the imported key token.

Key Import

158 z/OS V1R13 ICSF Application Programmer's Guide

Key Import operations which specify a NOCV key-encrypting key as either the
importer key or the target and also specify a source or key-encrypting key which
contains a control vector not supported by the Cryptographic Coprocessor Feature
will fail.

Systems with the PCI X Cryptographic Coprocessor, Crypto
Express2 Coprocessor, or Crypto Express3 Coprocessor
Use of NOCV keys are controlled by an access control point in the PCIXCC,
CEX2C, or CEX3C.

This service will mark an imported KEK as a NOCV-KEK:

v If a token is supplied in the target token field, it must be a valid importer or
exporter token. If the token fails token validation, processing continues, but the
NOCV flag will not be copied

v The source token (key to be imported) must be a importer or exporter with the
default control vector.

v If the target token is valid and the NOCV flag is on and the source token is valid
and the control vector of the target token is exactly the same as the source
token, the imported token will have the NOCV flag set on.

v If the target token is valid and the NOCV flag is on and the source token is valid
and the control vector of the target token is NOT exactly the same as the source
token, a return code will be given.

v All other scenarios will complete successfully, but the NOCV flag will not be
copied

The software bit used to mark the imported token with export prohibited is not
supported on a PCIXCC, CEX2C, or CEX3C. The internal token for an export
prohibited key will have the appropriate control vector that prohibits export.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 44. Required access control points for Key Import

Access Control Point Restrictions

Key Import - Unrestricted None

Key Import Key-encrypting key may not have equal key halves

To use a NOCV key-encrypting key with the key import service, the NOCV KEK
usage for import-related functions access control point must be enabled in
addition to one or both of the access control points listed.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 159

|
|

||

||

||

||
|

|
|
|

Table 45. Key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

Propagation of token markings is only
relevant when this service is processed on
the Cryptographic Coprocessor Feature.

If the key_type is MACD or IMP-PKA, the
control vectors of supplied internal tokens
must all be supported by the Cryptographic
Coprocessor Feature, since processing for
these key types will not be routed to a PCI
Cryptographic Coprocessor.

DATAC is not supported.

Key_type CIPHER, DECIPHER and
ENCIPHER require a PCICC.

PCI Cryptographic
Coprocessor ICSF routes the request to a PCI

Cryptographic Coprocessor if:

v The key_type cannot be processed on
the Cryptographic Coprocessor Feature.

v The control vector of the
source_key_identifier or the
importer_key_identifier cannot be
processed on the Cryptographic
Coprocessor Feature.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Key_type DATAXLAT is not supported. DES
and CDMF markings are not made on DATA
and key-encrypting keys and are ignored on
the IMPORTER key-encrypting key.
IMP-PKA keys are not supported.

IBM System z9 EC
IBM System z9 BC

Crypto Express2
Coprocessor

Key_type DATAXLAT is not supported. DES
and CDMF markings are not made on DATA
and key-encrypting keys and are ignored on
the IMPORTER key-encrypting key.
IMP-PKA keys are not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Key_type DATAXLAT is not supported. DES
and CDMF markings are not made on DATA
and key-encrypting keys and are ignored on
the IMPORTER key-encrypting key.
IMP-PKA keys are not supported.

z196 Crypto Express3
Coprocessor

Key_type DATAXLAT is not supported. DES
and CDMF markings are not made on DATA
and key-encrypting keys and are ignored on
the IMPORTER key-encrypting key.
IMP-PKA keys are not supported.

Key Part Import (CSNBKPI and CSNEKPI)
Use the key part import callable service to combine, by exclusive ORing, the clear
key parts of any key type and return the combined key value either in an internal
token or as an update to the CKDS.

Key Import

160 z/OS V1R13 ICSF Application Programmer's Guide

Prior to using the key part import service for the first key part, you must use the key
token build service to create the internal key token into which the key will be
imported. Subsequent key parts are combined with the first part in internal token
form or as a label from the CKDS.

The preferred way to specify key parts is FIRST, ADD-PART, and COMPLETE in
the rule_array. Only when the combined key parts have been marked as
COMPLETE can the key token be used in any other service. Key parts can also be
specified as FIRST, MIDDLE, or LAST in the rule_array. ADD-PART or MIDDLE can
be executed multiple times for as many key parts as necessary. Only when the
LAST part has been combined can the key token be used in any other service.

New applications should employ the ADD-PART and COMPLETE keywords in lieu
of the MIDDLE and LAST keywords in order to ensure a separation of
responsibilities between someone who can add key-part information and someone
who can declare that appropriate information has been accumulated in a key.

The key part import callable service can also be used to import a key without using
key parts. Call the key part import service FIRST with key part value X'0000...' then
call the key part import service LAST with the complete value.

Keys created via this service have odd parity. The FIRST key part is adjusted to
odd parity. All subsequent key parts are adjusted to even parity prior to being
combined.

The callable service name for AMODE(64) invocation is CSNEKPI.

Format

CALL CSNBKPI(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_part,
key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

Key Part Import

Chapter 5. Managing Symmetric Cryptographic Keys 161

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 1 or 2.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. The keywords
must be 8 bytes of contiguous storage with the keyword left-justified in its
8-byte location and padded on the right with blanks.

Table 46. Keywords for Key Part Import Control Information

Keyword Meaning

Key Part (Required)

FIRST This keyword specifies that an initial key part is being
entered. The callable service returns this key-part encrypted
by the master key in the key token that you supplied.

ADD-PART This keyword specifies that additional key-part information
is provided.

COMPLETE This keyword specifies that the key-part bit shall be turned
off in the control vector of the key rendering the key fully
operational. Note that no key-part information is added to
the key with this keyword.

MIDDLE This keyword specifies that an intermediate key part, which
is neither the first key part nor the last key part, is being
entered. Note that the command control point for this
keyword is the same as that for the LAST keyword and
different from that for the ADD-PART keyword.

LAST This keyword specifies that the last key part is being
entered. The key-part bit is turned off in the control vector.

Key Wrapping Method (optional)

Key Part Import

162 z/OS V1R13 ICSF Application Programmer's Guide

Table 46. Keywords for Key Part Import Control Information (continued)

Keyword Meaning

USECONFG Specifies that the system default configuration should be
used to determine the wrapping method. This is the default
keyword.

The system default key wrapping method can be specified
using the DEFAULTWRAP parameter in the installation
options data set. See the z/OS Cryptographic Services
ICSF System Programmer's Guide.

WRAP-ENH Use enhanced key wrapping method, which is compliant
with the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB
wrapping for DES key tokens and CBC wrapping for AES
key tokens.

key_part

Direction: Input Type: String

A 16-byte field containing the clear key part to be entered. If the key is a
single-length key, the key part must be left-justified and padded on the right with
zeros. This field is ignored if COMPLETE is specified.

key_identifier

Direction: Input/Output Type: String

A 64-byte field containing an internal token or a label of an existing CKDS
record. If rule_array is FIRST, this field is the skeleton of an internal token of a
single- or double-length key with the KEY-PART marking. If rule_array is
MIDDLE or LAST, this is an internal token or the label of a CKDS record of a
partially combined key. Depending on the input format, the accumulated partial
or complete key is returned as an internal token or as an updated CKDS
record. The returned key_identifier will be encrypted under the current master
key.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output key_identifier will use the default
method unless a rule array keyword overriding the default for the FIRST key
part is specified. When the key_identifier is an existing token, the same
wrapping method as the existing token will be used.

Restrictions
If a label is specified on key_identifier, the label must be unique. If more than one
record is found, the service fails.

For existing TKE V3.1 (or higher) users, you may have to explicitly enable new
access control points. You must have access control point 'Key Part Import -
Unrestricted' explicitly enabled. Otherwise, current applications will fail with either of
these conditions:

v the first 8 bytes of key identifier is different than the second 8 bytes AND the first
8 bytes of the combined key are the same as the last second 8 bytes

Key Part Import

Chapter 5. Managing Symmetric Cryptographic Keys 163

v the first 8 bytes of key identifier is the same as the second 8 bytes AND the first
8 bytes of the combined key are different than the second 8 bytes.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
If you are running with the Cryptographic Coprocessor Feature, this service requires
that the ANSI system keys be installed on the CKDS.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 47. Required access control points for Key Part Import

Rule array keyword Access control point

FIRST Key Part Import - first key part

MIDDLE or LAST Key Part Import - middle and last

ADD-PART Key Part Import - ADD-PART

COMPLETE Key Part Import - COMPLETE

WRAP-ECB or WRAP-ENH and
default key-wrapping method
setting does not match keyword

Key Part Import - Allow wrapping override keywords

A “replicated key-halves” key (both cleartext halves of a double-length key are
equal) is not as secure as a double-length key with key halves that are not the
same. The key part import service verb enforces the key-halves restriction
documented above when the Key Part Import - Unrestricted access control point
is disabled in the ICSF role.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 48. Key part import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

Only key type AKEK is supported

ENH-ONLY, USECONFG, WRAP-ENC and
WRAP-ECB not supported.

PCI Cryptographic
Coprocessor

ICSF routes all requests to the PCI
Cryptographic Coprocessor except for key
type of AKEK. AKEK is always processed
on the Cryptographic Coprocessor Feature.

Key type AKEK is not supported.

ENH-ONLY, USECONFG, WRAP-ENC and
WRAP-ECB not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

AKEK key types are not supported.

ENH-ONLY, USECONFG, WRAP-ENC and
WRAP-ECB not supported.

Key Part Import

164 z/OS V1R13 ICSF Application Programmer's Guide

|
|

||

||

||

||

||

||

|
|
|

|

|

|
|
|
|
|

Table 48. Key part import required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

AKEK key types are not supported.

ENH-ONLY, USECONFG, WRAP-ENC and
WRAP-ECB not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

AKEK key types are not supported.

ENH-ONLY, USECONFG, WRAP-ENC and
WRAP-ECB not supported.

Crypto Express3
Coprocessor

Enhanced key token wrapping not
supported.

z196 Crypto Express3
Coprocessor

Related Information
This service is consistent with the Transaction Security System key part import
verb.

Key Part Import2 (CSNBKPI2 and CSNEKPI2)
Use the Key Part Import2 callable service to combine, by exclusive ORing, the clear
key parts of any key type and return the combined key value either in a
variable-length internal token or as an update to the CKDS.

Prior to using the key part import2 service for the first key part, you must use the
Key Token Build2 service to create the internal key token into which the key will be
imported. Subsequent key parts are combined with the first part in internal token
form or as a label from the CKDS.

On each call to Key Part Import2 (except with the COMPLETE keyword), specify
the number of bits to use for the clear key part. Place the clear key part in the
key_part parameter, and specify the number of bits using the key_part_length
variable. Any extraneous bits of key_part data will be ignored.

Consider using the Key Test2 callable service to ensure a correct key value has
been accumulated prior to using the COMPLETE option to mark the key as fully
operational.

The callable service name for AMODE(64) is CSNEKPI2.

Key Part Import

Chapter 5. Managing Symmetric Cryptographic Keys 165

Format

CALL CSNBKPI2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_part_bit_length,
key_part,
key_identifier_length,
key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 2 or 3.

rule_array

Direction: Input Type: Integer

Key Part Import2

166 z/OS V1R13 ICSF Application Programmer's Guide

|
|

The rule_array contains keywords that provide control information to the callable
service. The keywords must be in contiguous storage with each of the keywords
left-justified in its own 8-byte location and padded on the right with blanks.

Table 49. Keywords for Key Part Import2 Control Information

Keyword Meaning

Token Algorithm (Required)

HMAC Specifies to import an HMAC key token.

AES Specifies to import an AES key token.

Key Part (One required)

FIRST This keyword specifies that an initial key part is being
entered. The callable service returns this key-part
encrypted by the master key in the key token that you
supplied.

ADD-PART This keyword specifies that additional key-part information
is provided.

COMPLETE This keyword specifies that the key-part bit shall be turned
off in the control vector of the key rendering the key fully
operational. Note that no key-part information is added to
the key with this keyword.

Split Knowledge (One required). Use only with FIRST keyword.

MIN3PART Specifies that the key must be entered in at least three
parts.

MIN2PART Specifies that the key must be entered in at least two
parts.

MIN1PART Specifies that the key must be entered in at least one
part.

key_part_bit_length

Direction: Input Type: Integer

The length of the clear key in bits. This indicates the bit length of the key
supplied in the key_part field. For FIRST and ADD-PART keywords, valid values
are 80 to 2048 for HMAC keys or 128, 192, or 256 for AES keys. The value
must be 0 for the COMPLETE keyword.

key_part

Direction: Input Type: String

This parameter is the clear key value to be applied. The key part must be
left-justified. This parameter is ignored if COMPLETE is specified.

key_identifier_length

Direction: Input/Output Type: Integer

On input, the length of the buffer for the key_identifier parameter. For labels, the
value is 64 bytes. The key_identifier must be left justified in the buffer. The
buffer must be large enough to receive the updated token. The maximum value
is 725 bytes. The output token will be longer when the first key part is imported.

Key Part Import2

Chapter 5. Managing Symmetric Cryptographic Keys 167

||

|
|

On output, the actual length of the token returned to the caller. For labels, the
value will be 64.

key_identifier

Direction: Input/Output Type: String

The parameter containing an internal token or a 64-byte label of an existing
CKDS record. If the Key Part rule is FIRST, the key is a skeleton token. If the
Key Part rule is ADD-PART, this is an internal token or the label of a CKDS
record of a partially combined key. Depending on the input format, the
accumulated partial or complete key is returned as an internal token or as an
updated CKDS record. The returned key_identifier will be encrypted under the
current master key.

Usage Notes
On each call to Key Part Import2, also specify a rule-array keyword to define the
service action: FIRST, ADD-PART, or COMPLETE.

v With the FIRST keyword, the input key-token must be a skeleton token (no key
material). Use of the FIRST keyword requires that the Load First Key Part2
access control point be enabled in the default role.

v With the ADD-PART keyword, the service exclusive-ORs the clear key-part with
the key value in the input key-token. Use of the ADD-PART keyword requires that
an Add Key Part2 access control point be enabled in the default role. The key
remains incomplete in the updated key token returned from the service.

v With the COMPLETE keyword, the KEY-PART bit is set off in the updated key
token that is returned from the service. Use of the COMPLETE keyword requires
that the Complete Key Part2 access control point be enabled in the default role.
The key_part_bit_length parameter must be set to zero.

The following table shows the access control points in the default role that control
the function of this service.

Table 50. Required access control points for Key Part Import2

Rule array keywords Access control point

ADD-PART Key Part Import2 - Add second of three or more key parts

ADD-PART Key Part Import2 - Add last required key part

ADD-PART Key Part Import2 - Add optional key part

COMPLETE Key Part Import2 - Complete key

FIRST MIN3PART Key Part Import2 - Load first key part, require 3 key parts

FIRST MIN2PART Key Part Import2 - Load first key part, require 2 key parts

FIRST MIN1PART Key Part Import2 - Load first key part, require 1 key parts

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 51. Key Part Import2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

This service is not supported.

Key Part Import2

168 z/OS V1R13 ICSF Application Programmer's Guide

|
|

Table 51. Key Part Import2 required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

This service is not supported.

Crypto Express3
Coprocessor

This service is not supported.

z196 Crypto Express3
Coprocessor

AES key support requires the Sep. 2011 or
later licensed internal code (LIC).

HMAC key support requires the Nov. 2010
or later licensed internal code (LIC).

Key Test (CSNBKYT and CSNEKYT)
Use the key test callable service to generate or verify a secure, cryptographic
verification pattern for keys. The key to test can be in the clear or encrypted under
the master key. Keywords in the rule_array specify whether the callable service
generates or verifies a verification pattern.

DES keys use the algorithm defined in “DES Algorithm (single- and double-length
keys)” on page 889 as the default algorithm (except for triple-length DATA keys).
When generating a verification pattern, the service generates a random number and
calculates the verification pattern. The random number and verification pattern are
returned to the caller. When verifying a key, the random number and key are used
to verify the verification pattern.

AES keys use the SHA-256 algorithm as the default algorithm. An 8-byte verification
pattern is generated for the key specified. The random number parameter is not
used.

The optional ENC-ZERO algorithm can be used with any key. A 4-byte verification
pattern is generated. The random number parameter is not used.

CSNBKYT is consistent with the Transaction Security System verb of the same
name. If you generate a key on the Transaction Security System, you can verify it
on ICSF and vice versa.

See “Key Test Extended (CSNBKYTX and CSNEKTX)” on page 178 to verify the
value of a DES key encrypted using a KEK.

The callable service name for AMODE(64) invocation is CSNEKYT.

Key Part Import2

Chapter 5. Managing Symmetric Cryptographic Keys 169

|
|

|
|

Format

CALL CSNBKYT(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier,
random_number,
verification_pattern)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
can be 2, 3 or 4.

rule_array

Direction: Input Type: String

Key Test

170 z/OS V1R13 ICSF Application Programmer's Guide

Keywords provide control information to the callable service. Table 52 lists the
keywords. The keywords must be in contiguous storage with each of the
keywords left-justified in its own 8-byte location and padded on the right with
blanks.

Table 52. Keywords for Key Test Control Information

Keyword Meaning

Key or key part rule (one keyword required)

CLR-A128 Process a 128–bit AES clear key.

CLR-A192 Process a 192–bit AES clear key.

CLR-A256 Process a 256–bit AES clear key.

KEY-CLR Specifies the key supplied in key_identifier is a
single-length clear key.

KEY-CLRD Specifies the key supplied in key_identifier is a
double-length clear key.

KEY-ENC Specifies the key supplied in key_identifier is a
single-length encrypted key.

KEY-ENCD Specifies the key supplied in key_identifier is a
double-length encrypted key.

TOKEN Process an AES clear or encrypted key token.

Process Rule (one keyword required)

GENERATE Generate a verification pattern for the key supplied in
key_identifier.

VERIFY Verify a verification pattern for the key supplied in
key_identifier.

Parity Adjustment - can not be specified with any of the AES keywords (optional)

ADJUST Adjust the parity of test key to odd prior to generating
or verifying the verification pattern. The key_identifier
field itself is not adjusted.

NOADJUST Do not adjust the parity of test key to odd prior to
generating or verifying the verification pattern. This is
the default.

Verification Process Rule (optional)

ENC-ZERO ENC-ZERO can be used with any of the rules. It is not
supported on systems with CCFs.

SHA-256 Use the 'SHA-256' method. Use with CLR-A128,
CLR-A192, CLR-A256, and TOKEN. SHA-256 is also
the default for the AES rules.

key_identifier

Direction: Input/Output Type: String

The key for which to generate or verify the verification pattern. The parameter is
a 64-byte string of an internal token, key label, or a clear key value left-justified.

Note: If you supply a key label for this parameter, it must be unique on the
CKDS.

random_number

Key Test

Chapter 5. Managing Symmetric Cryptographic Keys 171

Direction: Input/Output Type: String

This is an 8-byte field that contains a random number supplied as input for the
test pattern verification process and returned as output with the test pattern
generation process. random_number is only used with the default algorithm for
DES operational keys.

verification_pattern

Direction: Input/Output Type: String

This is an 8-byte field that contains a verification pattern supplied as input for
the test pattern verification process and returned as output with the test pattern
generation process.

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

You can generate the verification pattern for a key when you generate the key. You
can distribute the pattern with the key and it can be verified at the receiving node.
In this way, users can ensure using the same key at the sending and receiving
locations. You can generate and verify keys of any combination of key forms, that
is, clear, operational or external.

The parity of the key is not tested.

With a PCIXCC, CEX2C, or CEX3C, there is support for the generation and
verification of single, double and triple-length keys for the ENC-ZERO verification
process. For triple-length keys, use KEY-ENC or KEY-ENCD with ENC-ZERO. Clear
triple-length keys are not supported.

In the Transaction Security System, KEY-ENC and KEY-ENCD both support
enciphered single-length and double-length keys. They use the key-form bits in byte
5 of CV to determine the length of the key. To be consistent, in ICSF, both
KEY-ENC and KEY-ENCD handle single- and double-length keys. Both products
effectively ignore the keywords, which are supplied only for compatibility reasons.

The access control point in the ICSF role that controls the function of this service is
Key Test and Key Test 2. This access control point cannot be disabled. It is
required for ICSF master key validation.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Key Test

172 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|

Table 53. Key test required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

Triple-length DATA keys are not supported.

AES keys are not supported.

PCI Cryptographic
Coprocessor

Triple-length DATA keys are not supported.

ICSF routes the request to a PCI
Cryptographic Coprocessor if:

v ANSI enablement keys are not installed in
the CKDS.

v Verification process rule ENC-ZERO is
specified.

AES keys are not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

AES keys are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

z196 Crypto Express3
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

Key Test2 (CSNBKYT2 and CSNEKYT2)
Use this callable service to generate or verify a secure, cryptographic verification
pattern for keys. The key to test can be in the clear, encrypted under the master
key, or encrypted under a key-encrypting key. Keywords in the rule_array specify
whether the callable service generates or verifies a verification pattern.

The callable service name for AMODE(64) invocation is CSNEKYT2.

Key Test

Chapter 5. Managing Symmetric Cryptographic Keys 173

|
|
|
|

Format

CALL CSNBKYT2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_encrypting_key_identifier_length,
key_encrypting_key_identifier,
reserved_length,
reserved,
verification_pattern_length,
verification_pattern)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 2, 3, 4, or 5.

rule_array

Key Test2

174 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input Type: String

The rule_array contains keywords that provide control information to the callable
service. The keywords must be in contiguous storage with each of the keywords
left-justified in its own 8-byte location and padded on the right with blanks.

Table 54. Keywords for Key Test2 Control Information

Keyword Meaning

Token algorithm (Required)

AES Specifies the key token is an AES key token.

DES Specifies the key token is a DES token. CCA internal,
CCA external, and TR-31 token types are supported.
Clear keys are not supported for this rule.

HMAC Specifies the key token is an HMAC key token.

Process rule (One required)

GENERATE Generate a verification pattern for the specified key.

VERIFY Verify that a verification pattern matches the specified key.

Verification pattern calculation algorithm (Optional)

ENC-ZERO Verification pattern for AES and DES keys calculated by
encrypting a data block filled with 0x00 bytes.

This is the default and only method available for DES.
This method is only available for AES if Access Control
Point "Key Test2 - AES, ENC-ZERO" is enabled.

SHA-256 Verification pattern will be calculated for an AES token
using the same method as the Key Test service with the
SHA-256 rule.

This rule can be used to verify that the same key value is
present in a version 4 DATA token and version 5 AES
CIPHER token or to verify that the same key value is
present in a version 5 AES IMPORTER/EXPORTER pair.

SHA2VP1 Specifies to use the SHA-256 based verification pattern
calculation algorithm. For more information, see “SHAVP1
Algorithm” on page 889. This is the default and only
method available for HMAC.

Token type rule (Required if TR-31 token passed and Token algorithm DES is
specified; not valid otherwise)

TR-31 Specifies that key_identifier contains a TR-31 key block.

KEK identifier rules (Optional - see defaults)

IKEK-AES The wrapping KEK for the key to test is an AES KEK.
This is the default for AES and HMAC Token algorithms,
and is not allowed with DES.

IKEK-DES The wrapping KEK for the key to test is a DES KEK. This
is the default for DES Token algorithm, and is only
allowed with DES Token algorithm.

IKEK-PKA The wrapping KEK for the key to test is an RSA or (other
key stored in PKA key storage.) This is not the default for
any Token algorithm and must be specified if an RSA KEK
is used. This rule is not allowed with DES Token
algorithm.

Key Test2

Chapter 5. Managing Symmetric Cryptographic Keys 175

|||
|

||

||
|
|

|

||
|

|
|
|

||
|
|

|
|
|
|

||
|
|
|

|
|

||

|

||
|
|

||
|
|

||
|
|
|
|

key_identifier_length

Direction: Input Type: Integer

The length of the key_identifier in bytes. The maximum value is 9992.

key_identifier

Direction: Input Type: String

The key for which to generate or verify the verification pattern. This is an
internal or external token or the 64-byte label of a key in the CKDS. This token
may be a DES internal or external token, AES internal version ‘04’X token,
internal or external variable-length symmetric token, or a TR-31 key block.

Clear DES tokens are not supported.

If an internal token was supplied and was encrypted under the old master key,
the token will be returned encrypted under the current master key.

key_encrypting_key_identifier_length

Direction: Input Type: Integer

The length of the key_encrypting_key_identifier parameter. When key_identifier
is an internal token, the value must be zero.

If key_encrypting_key_identifier is a label for either the CKDS (IKEK-AES or
IKEK-DES rules) or PKDS (IKEK-PKA rule), the value must be 64. If
key_encrypting_key_identifier is an AES KEK, the value must be between the
actual length of the token and 725. If key_encrypting_key_identifier is a DES
KEK, the value must be 64. If key_encrypting_key_identifier is an RSA KEK, the
maximum length is 3500.

key_encrypting_key_identifier

Direction: Input/Output Type: String

When key_encrypting_key_identifier_length is non-zero,
key_encrypting_key_identifier contains an internal key token containing the
key-encrypting key, or a key label.

If the key identifier supplied was an AES or DES token encrypted under the old
master key, the token will be returned encrypted under the current master key.

reserved_length

Direction: Input Type: Integer

The length of the reserved parameter. The value must be zero.

reserved

Direction: Input/Output Type: String

This parameter is ignored.

verification_pattern_length

Direction: Input/Output Type: Integer

Key Test2

176 z/OS V1R13 ICSF Application Programmer's Guide

|

|

|||
|

|
|
|
|

|

|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|

The length of the verification_pattern parameter.

On input: For GENERATE, the length must be at least 8 bytes; For VERIFY, the
length must be 8 bytes.

On output for GENERATE, the length of the verification pattern returned.

verification_pattern

Direction: Input/Output Type: String

For GENERATE, the verification pattern generated for the key.

For VERIFY, the supplied verification pattern to be verified.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS.

You can generate the verification pattern for a key when you generate the key. You
can distribute the pattern with the key and it can be verified at the receiving node.
In this way, users can ensure using the same key at the sending and receiving
locations. You can generate and verify keys of any combination of key forms: clear,
operational or external.

The access control point in the ICSF role that controls the function of this service is
Key Test and Key Test 2. This access control point cannot be disabled. It is
required for ICSF master key validation.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 55. Key Test2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

This service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

This service is not supported.

Crypto Express3
Coprocessor

This service is not supported.

z196 Crypto Express3
Coprocessor

DES/AES key support requires the Sep.
2011 or later licensed internal code (LIC).

HMAC key support requires the Nov. 2010
or later licensed internal code (LIC).

Key Test2

Chapter 5. Managing Symmetric Cryptographic Keys 177

|

|
|
|

|

|
|

|
|

Key Test Extended (CSNBKYTX and CSNEKTX)
Use the key test extended service to generate or verify a secure, cryptographic
verification pattern for keys. The key to test can be in the clear or encrypted under
the master key. The callable service also supports keys encrypted under a
key-encrypting key (KEK). AES keys are not supported by this service. Keywords in
the rule array specify whether the callable service generates or verifies a verification
pattern.

This algorithm is supported for encrypted single and double length keys. Single,
double and triple length keys are also supported with the ENC-ZERO algorithm.

When the service generates a verification pattern, it creates and cryptographically
processes a random number. The service returns the random number with the
verification pattern.

When the service tests a verification pattern against a key, you must supply the
random number and the verification pattern from a previous call to key test
extended. The service returns the verification result in the return and reason codes.

The callable service name for AMODE(64) invocation is CSNEKTX.

Format

CALL CSNBKYTX(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier,
random_number,
verification_pattern,
KEK_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

Key Test Extended

178 z/OS V1R13 ICSF Application Programmer's Guide

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
can be 2, 3 or 4.

rule_array

Direction: Input Type: String

Two or three keywords that provide control information to the callable service.
Table 56 lists the keywords. The keywords must be in 16 or 24 bytes of
contiguous storage with each of the keywords left-justified in its own 8-byte
location and padded on the right with blanks.

Table 56. Keywords for Key Test Extended Control Information

Keyword Meaning

Key Rule (required)

KEY-ENC Specifies the key supplied in key_identifier is a
single-length encrypted DES key.

KEY-ENCD Specifies the key supplied in key_identifier is a
double-length encrypted DES key.

Process Rule (required)

GENERATE Generate a verification pattern for the key supplied in
key_identifier.

VERIFY Verify a verification pattern for the key supplied in
key_identifier.

Parity Adjustment (optional)

ADJUST Adjust the parity of test key to odd prior to generating
or verifying the verification pattern. The key_identifier
field itself is not adjusted.

NOADJUST Do not adjust the parity of test key to odd prior to
generating or verifying the verification pattern. This is
the default.

Verification Process Rule (optional)

ENC-ZERO Specifies use of the "encrypted zeros" method.

key_identifier

Direction: Input/Output Type: String

The key for which to generate or verify the verification pattern. The parameter is
a 64-byte string of an internal token or key label that is left-justified.

Key Test Extended

Chapter 5. Managing Symmetric Cryptographic Keys 179

Note: If you supply a key label for this parameter, it must be unique on the
CKDS.

random_number

Direction: Input/Output Type: String

This is an 8-byte field that contains a random number supplied as input for the
test pattern verification process and returned as output with the test pattern
generation process.

verification_pattern

Direction: Input/Output Type: String

This is an 8-byte field that contains a verification pattern supplied as input for
the test pattern verification process and returned as output with the test pattern
generation process.

KEK_key_identifier

Direction: Input/Output Type: String

If key_identifier is an external token, then this is a 64-byte string of an internal
token or a key label of an IMPORTER or EXPORTER used to encrypt the test
key. If key_identifier is an internal token, then the parameter is ignored.

Note: If you supply a key label for this parameter, it must be unique on the
CKDS.

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

You can generate the verification pattern for a key when you generate the key. You
can distribute the pattern with the key and it can be verified at the receiving node.
In this way, users can ensure using the same key at the sending and receiving
locations. You can generate and verify keys of any combination of key forms, that
is, clear, operational or external.

The parity of the key is not tested.

With a PCIXCC, CEX2C, or CEX3C and using the ENC-ZERO verification rule,
there is support for enciphered single and double-length DES keys. There is no
support for systems with CCF's.

The access control point in the ICSF role that controls the function of this service is
Key Test and Key Test 2. This access control point cannot be disabled. It is
required for ICSF master key validation.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Key Test Extended

180 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|

Table 57. Key test extended required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

Triple-length DATA keys are not supported.

The key test extended callable service is
processed on the Cryptographic
Coprocessor Feature. Rule_array keyword
ENC-ZERO is not valid.

AES keys are not supported.

PCI Cryptographic
Coprocessor

Triple-length DATA keys are not supported.

ICSF routes the request to a PCI
Cryptographic Coprocessor if:

v ANSI enablement keys are not installed in
the CKDS.

v Verification process rule ENC-ZERO is
specified.

AES keys are not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

AES keys are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

AES keys are not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

AES keys are not supported.

z196 Crypto Express3
Coprocessor

Clear triple-length keys are not supported.
Encrypted triple-length keys are supported
with the ENC-ZERO keyword only.

Key Token Build (CSNBKTB and CSNEKTB)
Use the key token build callable service to build an external or internal key token
from information which you supply. The token can be used as input for the key
generate and key part import callable services. You can specify a control vector or
the service can build a control vector based upon the key type you specify and the
control vector-related keywords in the rule array. ICSF supports the building of an
internal key token with the key encrypted under a master key other than the current
master key and building internal clear AES and DES tokens.

The callable service name for AMODE(64) invocation is CSNEKTB.

Key Test Extended

Chapter 5. Managing Symmetric Cryptographic Keys 181

Format

CALL CSNBKTB(
return_code,
reason_code,
exit_data_length,
exit_data,
key_token,
key_type,
rule_array_count,
rule_array,
key_value,
master_key_version_number,
key_register_number,
token_data_1,
control_vector,
initialization_vector,
pad_character,
cryptographic_period_start,
master_key_verification_pattern)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

key_token

Direction: Input/Output Type: String

If the key_type parameter is TOKEN, then this is a 64-byte internal token that is
updated as specified in the rule_array. The internal token must be a DATA,
IMPORTER or EXPORTER key type. Otherwise this field is an output-only field.

key_type

Key Token Build

182 z/OS V1R13 ICSF Application Programmer's Guide

|

Direction: Input Type: String

An 8-byte field that specifies the type of key you want to build or the keyword
TOKEN for updating a supplied token. The key types are:

Table 58. Key type keywords for key token build

Key type Description Algorithm

AKEK See Table 3 on page 23. DES

CIPHER See Table 3 on page 23. DES

CLRAES The key_token parameter is a clear AES token.
The rule_array must contain the keyword
INTERNAL and one of the optional keywords:
KEYLN16, KEYLN24 or KEYLN32. A key value
parameter must also be provided.

AES

CLRDES The key_token parameter is a clear DES token.
The rule_array must contain the keyword
INTERNAL and one of the optional keywords:
KEYLN8, KEYLN16 or KEYLN24. A key value
parameter must also be provided.

DES

CVARDEC,
CVARENC,
CVARPINE,
CVARXCVL,
CVARXCVR

See Table 3 on page 23. DES

DATA Valid for AES and DES keys and must be
specified with the rule_array keyword AES to
build an encrypted AES key token.

AES and DES

DATAC, DATAM,
DATAMV,
DATAXLAT,
DECIPHER,
DKYGENKY,
ENCIPHER

See Table 3 on page 23. DES

EXPORTER If the key_type parameter is TOKEN, then this is
a 64-byte internal token that is updated as
specified in the rule_array.

DES

IKEYXLAT See Table 3 on page 23. DES

IMPORTER If the key_type parameter is TOKEN, then this is
a 64-byte internal token that is updated as
specified in the rule_array.

DES

KEYGENKY CLR8-ENC or UKPT must be coded in
rule_array parameter

DES

IPINENC, MAC,
MACVER,
OKEYXLAT,
OPINENC,
PINGEN, and
PINVER

See Table 3 on page 23. DES

SECMSG SMKEY or SMPIN must be specified in the
rule_array parameter.

DES

If key_type is TOKEN, then the key_token field must contain a single-length
DATA key or an IMPORTER or EXPORTER key with the standard control

Key Token Build

Chapter 5. Managing Symmetric Cryptographic Keys 183

vector. The valid keywords for TOKEN are EXTERNAL, INTERNAL, DES and
SYS-ENC. The service will set the system encryption bits in the token (byte 59,
bits 0 and 1) to zero and return the token.

Key type USE-CV is used when a user-supplied control vector is specified. The
USE-CV key type specifies that the key type should be obtained from the
control vector specified in the control_vector parameter. The CV rule array
keyword should be specified if USE-CV is specified.

For information on the meaning of the key types, see Table 3 on page 23.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter.

rule_array

Direction: Input Type: String

The rule_array contains keywords that provide control information to the callable
service. See Table 59 for a list. The keywords must be in contiguous storage
with each of the keywords left-justified in its own 8-byte location and padded on
the right with blanks. For any key type, there are no more than four valid
rule_array values.

Table 59. Keywords for Key Token Build Control Information

Keyword Meaning Algorithm

Token Algorithm (optional - zero or one keyword)

AES Specifies that an AES key token will be
built. This keyword is required when
building an encrypted AES token. It is
optional when using the CLRAES key
type to build a clear AES token.

AES

DES Specifies a DES token will be built. DES

SYS-ENC Tolerated for compatibility reasons. DES

Token Type (one keyword required)

EXTERNAL Specifies that an external key token will
be built.

DES

INTERNAL Specifies that an internal key token will be
built.

AES or DES

Key Status (optional - zero or one keyword)

KEY This keyword indicates that the key token
to build will contain an encrypted key. The
key_value parameter identifies the field
that contains the key.

AES or DES

NO-KEY This keyword indicates that the key token
to build will not contain a key. This is the
default key status.

AES or DES

Key Length (one keyword required for AES keys)

KEYLN8 Single-length or 8-byte key. Default for
CLRDES.

DES

KEYLN16 Specifies that the key is 16-bytes long. AES or DES

Key Token Build

184 z/OS V1R13 ICSF Application Programmer's Guide

Table 59. Keywords for Key Token Build Control Information (continued)

Keyword Meaning Algorithm

KEYLN24 Specifies that the key is 24-bytes long. AES or DES

KEYLN32 Specifies that the key is 32-bytes long. AES

DOUBLE Double-length or 16-byte key.
Synonymous with KEYLN16. Not valid for
CLRDES.
Note: See Table 61 on page 188 for valid
key types for these key length values.

DES

MIXED Double-length key. Indicates that the key
can either be a replicated single-length
key or a double-length key with two
different 8–byte values. Not valid for
CLRDES.

DES

SINGLE Single-length or 8-byte key. Synonymous
with KEYLN8. Not valid for CLRDES.

DES

Key Part Indicator (optional) — not valid for CLRDES

KEY-PART This token is to be used as input to the
key part import service.

DES

Control vector (CV) source (optional - zero or one of these keywords is
permitted)

CV This specifies that the key token should
be built using the control_vector supplied
in the control_vector parameter.

DES

NO-CV This specifies that the key token should
be built using a control vector that is
based on the supplied key type control
vector related rule array keywords. It is
the default.

DES

Control vector on the link specification (optional) — valid only for IMPORTER and
EXPORTER.

CV-KEK This keyword indicates marking the KEK
as a CV KEK. The control vector is
applied to the KEK prior to using it in
encrypting other keys. This is the default.

DES

NOCV-KEK This keyword indicates marking the KEK
as a NOCV KEK. The control vector is not
applied to the KEK prior to its use in
encrypting other keys.

DES

Control vector keywords (optional - zero or more of these keywords are
permitted)

See Table 61 on page 188 for the key-usage keywords that can be
specified for a given key type.

DES

Master Key Verification Pattern (optional) — not valid for CLRDES or CLRAES
keywords

Key Token Build

Chapter 5. Managing Symmetric Cryptographic Keys 185

Table 59. Keywords for Key Token Build Control Information (continued)

Keyword Meaning Algorithm

MKVP This keyword indicates that the key_value
is enciphered under the master key which
corresponds to the master key verification
pattern specified in the
master_key_verification_pattern
parameter. If this keyword is not specified,
the key contained in the key_value field
must be enciphered under the current
master key.

AES and DES

Key Wrapping Method (optional)

WRAP-ENH Use enhanced key wrapping method,
which is compliant with the ANSI X9.24
standard.

DES

WRAP-ECB Use original key wrapping method, which
uses ECB wrapping for DES key tokens
and CBC wrapping for AES key tokens.
This is the default.

DES

Translation Control (optional)

ENH-ONLY Restrict rewrapping of the token. Once the
token has been wrapped with the
enhanced method, it cannot be rewrapped
using the original method. Can only be
specified with WRAP-ENH.

DES

key_value

Direction: Input Type: String

If you use the KEY keyword, this parameter is a 16-byte string that contains the
encrypted key value. Single-length keys must be left-justified in the field and
padded on the right with X'00'. If you are building a triple-length DATA key, this
parameter is a 24-byte string containing the encrypted key value. If you supply
an encrypted key value and also specify INTERNAL, the service will check for
the presence of the MKVP keyword. If MKVP is present, the service will
assume the key_value is enciphered under the master key which corresponds
to the master key verification pattern specified in the
master_key_verification_pattern parameter, and will place the key into the
internal token along with the verification pattern from the
master_key_verification_pattern parameter. If MKVP is not specified, ICSF
assumes the key is enciphered under the current host master key and places
the key into an internal token along with the verification pattern for the current
master key. In this case, the application must ensure that the master key has
not changed since the key was generated or imported to this system.
Otherwise, use of this parameter is not recommended.

For key_type CLRDES and CLRAES, this field is required to contain the clear
key value. For KEYLN8, this is an 8-byte field. For KEYLN16, this is a 16-byte
field. For KEYLN24, this a 24-byte field. For KEYLN32, this is a 32-byte field.

Table 60. Key types and field lengths for AES keys

Key type Field length

AES-128 clear text key 16-bytes

Key Token Build

186 z/OS V1R13 ICSF Application Programmer's Guide

Table 60. Key types and field lengths for AES keys (continued)

Key type Field length

AES-192 clear text key 24-bytes

AES-256 clear text key 32-bytes

AES-128, AES-192, AES-256 encrypted key 32-bytes

master_key_version_number

Direction: Input Type: Integer

This field is examined only if the KEY keyword is specified, in which case, this
field must be zero.

key_register_number

Direction: Input Type: Integer

This field is ignored.

token_data_1

Direction: Input Type: String

This parameter is ignored for DES keys.

This parameter is the LRC value for AES keys. For clear AES keys it is 8-bytes
of X'00' indicating to the service that it must compute the LRC field value. For
encrypted AES keys, you provide a 1-byte area containing the LRC value for
the key passed in the key_value parameter. The service copies it into the LRC
field of the key token.

control_vector

Direction: Input Type: String

A pointer to a 16 byte string variable. When the CV rule array keyword is used,
this parameter must point to a control vector which is copied into the key token.
This parameter is ignored for AES keys.

initialization_vector

Direction: Input Type: String

This field is ignored.

pad_character

Direction: Input Type: Integer

The only allowed value for key types MAC and MACVER is 0. This field is
ignored for all other key types.

cryptographic_period_start

Direction: Input Type: String

This field is ignored.

Key Token Build

Chapter 5. Managing Symmetric Cryptographic Keys 187

master_key_verification_pattern

Direction: Input Type: String

8-byte verification pattern of the master key used to encrypt the key value. It is
used when the KEY and INTERNAL rule_array keywords are specified. The
value is inserted into the master key verification pattern field of the key token. If
the KEY and INTERNAL keywords are specified in rule_array, the service will
check for the existence of the MKVP rule array keyword. This parameter is
ignored for any other rule_array keyword combinations.

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
No pre- or post-processing or security exits are enabled for this service. No RACF
checking is done, and no calls to RACF are issued when this service is used.

You can use this service to create skeleton key tokens with the desired data
encryption algorithm bits for use in some key management services to override the
default system specifications.

v If you are running with the Cryptographic Coprocessor Feature and need to
generate operational AKEKs, use key_type of TOKEN and provide a skeleton
AKEK key token as the generated_key_identifier_1 into the key generate service.

v If you are running with the Cryptographic Coprocessor Feature, the KEY-PART
AKEK key token can also be used as input to key part import service.

v To create an internal token with a specified KEY value, ICSF needs to supply a
valid master key verification pattern (MKVP).

NOCV keyword is only supported for the standard IMPORTERs and EXPORTERs
with the default CVs.

This illustrates the key type and key usage keywords that can be combined in the
Control Vector Generate and Key Token Build callable services to create a control
vector.

Table 61. Control Vector Generate and Key Token Build Control Vector Keyword Combinations

Key
Type

Key Usage

DATA SINGLE
KEYLN8
MIXED
DOUBLE
KEYLN16
KEYLN24

XPORT-OK
NO-XPORT

KEY-PART

CIPHER
ENCIPHER
DECIPHER

SINGLE
KEYLN8
MIXED
DOUBLE
KEYLN16

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

Key Token Build

188 z/OS V1R13 ICSF Application Programmer's Guide

||

|
|
||

||||||
|
|
|
|
|

|
|
||

|
|
|

|||||
|
|
|
|

|
|
|
|
|
|

Table 61. Control Vector Generate and Key Token Build Control Vector Keyword Combinations (continued)

Key
Type

Key Usage

MAC
MACVER

ANY-MAC
ANSIX9.9
CVVKEY-A
CVVKEY-B
AMEX-CSC

SINGLE
KEYLN8
MIXED
DOUBLE
KEYLN16

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

DATAXLAT
CVARPINE
CVARENC
CVARDEC
CVARXCVL
CVARXCVR

SINGLE
KEYLN8

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

DATAC
DATAM
DATAMV

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

KEYGENKY CLR8-ENC
UKPT

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

DKYGENKY DDATA
DMAC
DMV
DIMP
DEXP
DPVR
DMKEY
DMPIN
DALL

DKYL0
DKYL1
DKYL2
DKYL3
DKYL4
DKYL5
DKYL6
DKYL7

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

SECMSG SMKEY
SMPIN

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

IKEYXLAT
OKEYXLAT

ANY
NOT-KEK
DATA
PIN
LMTD-KEK

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

IMPORTER OPIM*
IMEX*
IMIM*
IMPORT*

XLATE ANY
NOT-KEK
DATA
PIN
LMTD-KEK

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

EXPORTER OPEX*
IMEX*
EXEX*
EXPORT*

XLATE ANY
NOT-KEK
DATA
PIN
LMTD-KEK

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

PINVER NO-SPEC**
IBM-PIN**
GBP-PIN**
IBM-PINO
GBP-PINO
VISA-PVV
INBK-PIN

NOOFFSET DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

Key Token Build

Chapter 5. Managing Symmetric Cryptographic Keys 189

|

|
|
||

|
|
|
|
|
|
|

||||
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|||||
|
|
|
|
|
|
|

|
|
|

|||||
|
|

|
|
|
|
|
|

||
|
||||
|
|

|
|
|
|
|
|

||
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|||
|
|

|
|
|
|
|
|

||
|
||||
|
|

|
|
|
|
|
|

|
|
||||
|
|
|
|

|
|
|

|
|
|
|
|
|

||
|
|
|

|||
|
|
|
|

|
|
|

|
|
|
|
|
|

||
|
|
|

|||
|
|
|
|

|
|
|

|
|
|
|
|
|

||||
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|

Table 61. Control Vector Generate and Key Token Build Control Vector Keyword Combinations (continued)

Key
Type

Key Usage

PINGEN CPINGEN*
CPINGENA*
EPINGENA*
EPINGEN*
EPINVER*

NO-SPEC**
IBM-PIN**
GBP-PIN**
IBM-PINO
GBP-PINO
VISA-PVV
INBK-PIN

NOOFFSET DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

IPINENC CPINGENA*
EPINVER*
REFORMAT*
TRANSLAT*

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

OPINENC CPINENC*
EPINGEN*
REFORMAT*
TRANSLAT*

DOUBLE
KEYLN16
MIXED

XPORT-OK
NO-XPORT

KEY-PART
ENH-ONLY

T31XPTOK
NOT31XPT

Notes: Default keys are indicated in bold.

* All keywords in the list are defaults unless one or more keywords in the list are specified

** The NOOFFSET keyword is only valid if NO-SPEC, IBM-PIN, GBP-PIN, or the default
(NO-SPEC) is specified.

A key usage keyword is required for the KEYGENKY and SECMSG key types.

v CLR8-ENC and/or UKPT must be specified for the KEYGENKY key type

v SMKEY or SMPIN must be specified for the SECMSG key type

Related Information
Attention: CDMF is no longer supported.

The ICSF key token build callable service provides a subset of the parameters and
keywords available with the Transaction Security System key token build verb.

These key types are not supported: ADATA, AMAC, CIPHERXI, CIPHERXL,
CIPHERXO, UKPTBASE.

These rule array keywords are not supported: ACTIVE, ADAPTER, CARD, CBC,
CLEAR-IV, CUSP, INACTIVE, IPS, KEY-REF, MACLEN4, MACLEN6, MACLEN8,
NO-IV, READER, X9.2, X9.9-1.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 62. Key token build required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

Key Token Build

190 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|
||

||
|
|
|
|

||
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|

||
|
|
|

||||
|
|

|
|
|
|
|
|

||
|
|
|

||||
|
|

|
|
|
|
|
|

||

|

|
|

|

|

|

|

|

Table 62. Key token build required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC
IBM System z10 BC

None.

z196 None.

Key Token Build2 (CSNBKTB2 and CSNEKTB2)
Use the Key Token Build2 callable service to build a variable-length CCA symmetric
key token in application storage from information that you supply. A clear key token
built by this service can be used as input for the Key Test2 callable service. A
skeleton token built by this service can be used as input for the Key Generate2 and
Key Part Import2 callable services.

This service will build internal or external HMAC and AES tokens, both as clear key
tokens and as skeleton tokens containing no key.

The callable service name for AMODE(64) is CSNEKTB2.

Format

CALL CSNBKTB2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_bit_length,
clear_key_value,
key_name_length,
key_name,
user_associated_data_length,
user_associated_data,
token_data_length,
token_data,
reserved_length,
reserved
target_key_token_length,
target_key_token)

Parameters
return_code

Direction: Output Type: Integer

Key Token Build

Chapter 5. Managing Symmetric Cryptographic Keys 191

|
|

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The
minimum value is 3, and the maximum value is 33.

rule_array

Direction: Input Type: Integer

The rule_array contains keywords that provide control information to the callable
service. The keywords must be in contiguous storage with each of the keywords
left-justified in its own 8-byte location and padded on the right with blanks.

Table 63. Keywords for Key Token Build2 Control Information

Keyword Meaning

Token type (one required)

EXTERNAL Specifies to build an external key token.

INTERNAL Specifies to build an internal key token.

Token algorithm (one required)

AES Specifies to build an AES key token.

HMAC Specifies to build an HMAC key token.

Key status (one, optional)

KEY-CLR Specifies to build the key token with a clear key value. This creates a key
token that can be used with the Key Test2 service to generate a verification
pattern for the key value.

NO-KEY Specifies to build the key token without a key value. This creates a skeleton
key token that can later be supplied to the Key Generate2 service. This is the
default.

Key type (one required)

Key Token Build2

192 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|

||

||

|

||

||

|

||

||

|

||
|
|

||
|
|

|

Table 63. Keywords for Key Token Build2 Control Information (continued)

Keyword Meaning

CIPHER Specifies that this key is for an AES CIPHER key. Only valid for AES
algorithm.

EXPORTER Specifies that this key is for an AES KEK EXPORTER. Only valid for AES
algorithm.

IMPORTER Specifies that this key is for an AES KEK IMPORTER. Only valid for AES
algorithm.

MAC Specifies that this key is for message authentication code operations. Only
valid for HMAC algorithm.

Key-management related keywords

Symmetric-key export control (one, optional)
Key-management field 1 for all algorithms and key types.

NOEX-SYM Prohibits the export of the key with a symmetric key.

XPRT-SYM Permits the export of the key with a symmetric key. This is the default.

Unauthenticated asymmetric-key export control (one, optional)
Key-management field 1 for all algorithms and key types.

NOEXUASY Prohibits the export of the key with an unauthenticated asymmetric key.

XPRTUASY Permits the export of the key with an unauthenticated asymmetric key. This is
the default.

Authenticated asymmetric-key export control (one, optional)
Key-management field 1 for all algorithms and key types.

NOEXAASY Prohibits the export of the key with an authenticated asymmetric key.

XPRTAASY Permits the export of the key with an authenticated asymmetric key. This is
the default.

RAW-format export control (one, optional)
Key-management field 1 for all algorithms and key types.

NOEX-RAW Prohibits the export of the key in RAW format. This is the default.

XPRT-RAW Permits the export of the key in RAW format.

DES-key export control (one, optional)
Key-management field 1 for all algorithms, all key types.

NOEX-DES Prohibits the export of the key using DES key.

XPRT-DES Permits the export of the key using DES key. This is the default.

AES-key export control (one, optional)
Key-management field 1 for all algorithms, all key types.

NOEX-AES Prohibits the export of the key using AES key.

XPRT-AES Permits the export of the key using AES key. This is the default.

RSA-key export control (one, optional)
Key-management field 1 for all algorithms, all key types.

NOEX-RSA Prohibits the export of the key using RSA key.

XPRT-RSA Permits the export of the key using RSA key. This is the default.

Key-usage keywords (these are specific to the key type specified)

Generate control (one required)
Key-usage field 1 for HMAC algorithm, MAC key type.

GENERATE Specifies that this key can be used to generate a MAC. A key that can
generate a MAC can also verify a MAC.

Key Token Build2

Chapter 5. Managing Symmetric Cryptographic Keys 193

|

||

||
|

||
|

||
|

||
|

|

|
|

||

||

|
|

||

||
|

|
|

||

||
|

|
|

||

||

|
|

||

||

|
|

||

||

|
|

||

||

|

|
|

||
|

Table 63. Keywords for Key Token Build2 Control Information (continued)

Keyword Meaning

VERIFY Specifies that this key cannot be used to generate a MAC. It can only be used
to verify a MAC.

Encrypt control (optional, any combination)
Key-usage field 1 for AES algorithm, CIPHER key type.
Note: All keywords in the list below are defaults unless one or more keywords in the list are specified.

ENCRYPT Specifies that this key can be used to encipher data using the AES algorithm.

DECRYPT Specifies that this key can be used to decipher data using the AES algorithm.

Exporter control (any combination, optional)
Key-usage field 1 for AES algorithm, EXPORTER key type.
Note: All keywords in the list below are defaults unless one or more keywords in the list are specified.

EXPORT Specifies that this key can be used for export.

TRANSLAT Specifies that this key can be used for translate.

GEN-OPEX Specifies that this key can be used for generate OPEX.

GEN-IMEX Specifies that this key can be used for generate IMEX.

GEN-EXEX Specifies that this key can be used for generate EXEX.

GEN-PUB Specifies that this key can be used for generate PUB.

Importer control (any combination, optional)
Key-usage field 1 for AES algorithm, IMPORTER key type.
Note: All keywords in the list below are defaults unless one or more keywords in the list are specified.

IMPORT Specifies that this key can be used for import.

TRANSLAT Specifies that this key can be used for translate.

GEN-OPIM Specifies that this key can be used for generate OPIM.

GEN-IMEX Specifies that this key can be used for generate IMEX.

GEN-IMIM Specifies that this key can be used for generate IMIM.

GEN-PUB Specifies that this key can be used for generate PUB.

User-defined extension control (any combination, optional)
Low-order byte of key-usage field 1 for all algorithms and key types.
Note: The default is such that the key can be used in both UDXs and CCA and none of the user-defined UDX bits
are set.

UDX-ONLY Specifies that this key can only be used in UDXs.

UDX-001 Specifies that the rightmost user-defined UDX bit is set.

UDX-010 Specifies that the middle user-defined UDX bit is set.

UDX-100 Specifies that the leftmost user-defined UDX bit is set.

Hash method control (any combination, optional)
Key-usage field 2 for HMAC algorithm, MAC key type.
Note: All keywords in the list below are defaults unless one or more keywords in the list are specified.

SHA-1 Specifies that the SHA-1 hash method is allowed for the key.

SHA-224 Specifies that the SHA-224 hash method is allowed for the key.

SHA-256 Specifies that the SHA-256 hash method is allowed for the key.

SHA-384 Specifies that the SHA-384 hash method is allowed for the key.

SHA-512 Specifies that the SHA-512 hash method is allowed for the key.

Mode control (one, optional)
Key-usage field 2 for AES algorithm, CIPHER key type.

Key Token Build2

194 z/OS V1R13 ICSF Application Programmer's Guide

|

||

||
|

|
|
|

||

||

|
|
|

||

||

||

||

||

||

|
|
|

||

||

||

||

||

||

|
|
|
|

||

||

||

||

|
|
|

||

||

||

||

||

|
|

Table 63. Keywords for Key Token Build2 Control Information (continued)

Keyword Meaning

CBC Specifies that this key can be used for cipher block chaining. This is the
default.

CFB Specifies that this key can be used for cipher feedback.

ECB Specifies that this key can be used for electronic code book.

GCM Specifies that this key can be used for Galois/counter mode.

OFB Specifies that this key can be used for output feedback.

XTS Specifies that this key can be used for Xor-Encrypt-Xor-based Tweaked
Stealing.

Key-encrypting key control (any combination, optional)
Key-usage field 2 for AES algorithm, EXPORTER or IMPORTER key type.
Note: The default is such that the key cannot export a RAW key nor wrap or unwrap a TR-31 key block.

KEK-RAW Specifies that this key-encrypting key can export a RAW key. A RAW key is a
key that is encrypted but does not have any associated data.

WR-TR31 Specifies that this key-encrypting key can wrap or unwrap a TR-31 key block

Key-usage wrap algorithm control (any combination, optional)
Key-usage field 3 for AES algorithm, EXPORTER or IMPORTER key type.
Note: Keywords WR-DES, WR-AES, and WR-HMAC are defaults unless one or more keywords are specified.

WR-DES Specifies that this key can be used to wrap DES keys.

WR-AES Specifies that this key can be used to wrap AES keys.

WR-HMAC Specifies that this key can be used to wrap HMAC keys.

WR-RSA Specifies that this key can be used to wrap RSA keys.

WR-ECC Specifies that this key can be used to wrap ECC keys.

Key-usage wrap class control (any combination, optional)
Key-usage field 4 for AES algorithm, EXPORTER or IMPORTER key type.
Note: All keywords in the list below are defaults unless one or more keywords in the list are specified.

WR-DATA Specifies that this key can be used to wrap DATA class keys.

WR-KEK Specifies that this key can be used to wrap KEK class keys.

WR-PIN Specifies that this key can be used to wrap PIN class keys.

WRDERIVE Specifies that this key can be used to wrap DERIVATION class keys.

WR-CARD Specifies that this key can be used to wrap CARD class keys.

clear_key_bit_length

Direction: Input Type: Integer

The length of the clear key in bits. Specify 0 when no key value is supplied
(Key status rule NO-KEY). Specify a valid key bit length when a key value is
supplied (Key status rule KEY-CLR):

v For HMAC algorithm, MAC key type, this is a value between 80 and 2048.

v For AES algorithm, CIPHER/EXPORTER/IMPORTER key types, this is a
value of 128, 192, or 256.

clear_key_value

Direction: Input Type: String

Key Token Build2

Chapter 5. Managing Symmetric Cryptographic Keys 195

|

||

||
|

||

||

||

||

||
|

|
|
|

||
|

||

|
|
|

||

||

||

||

||

|
|
|

||

||

||

||

||
|

|
|
|

|

|
|

This parameter is used when the KEY-CLR keyword is specified. This
parameter is the clear key value to be put into the token being built.

key_name_length

Direction: Input Type: Integer

The length of the key_name parameter. Valid values are 0 and 64.

key_name

Direction: Input Type: String

A 64-byte key store label to be stored in the associated data structure of the
token.

user_associated_data_length

Direction: Input Type: Integer

The length of the user-associated data. The valid values are 0 to 255 bytes.

user_associated_data

Direction: Input Type: String

User-associated data to be stored in the associated data structure.

token_data_length

Direction: Input Type: Integer

This parameter is reserved. The value must be zero.

token_data

Direction: Ignored Type: String

This parameter is ignored.

reserved_length

Direction: Input Type: Integer

This parameter is reserved. The value must be zero.

reserved

Direction: Ignored Type: String

This parameter is ignored because reserved_length must be zero.

target_key_token_length

Direction: Input/Output Type: Integer

On input, the length of the target_key_token parameter supplied to receive the
token. On output, the actual length of the token returned to the caller. Maximum
length is 725 bytes.

Key Token Build2

196 z/OS V1R13 ICSF Application Programmer's Guide

target_key_token

Direction: Output Type: String

The key token built by this service.

Usage Notes
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 64. Key Token Build2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None

IBM System z9 EC

IBM System z9 BC

None

IBM System z10 EC

IBM System z10 BC

None

z196 None

Key Translate (CSNBKTR and CSNEKTR)
The Key Translate callable service uses one key-encrypting key to decipher an
input key and then enciphers this key using another key-encrypting key within the
secure environment.

Note: All key labels must be unique.

The callable service name for AMODE(64) invocation is CSNEKTR.

Format

CALL CSNBKTR(
return_code,
reason_code,
exit_data_length,
exit_data,
input_key_token,
input_KEK_key_identifier,
output_KEK_key_identifier,
output_key_token)

Key Token Build2

Chapter 5. Managing Symmetric Cryptographic Keys 197

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

input_key_token

Direction: Input Type: String

A 64-byte string variable containing an external key token. The external key
token contains the key to be re-enciphered (translated).

input_KEK_key_identifier

Direction: Input/Output Type: String

A 64-byte string variable containing the internal key token or the key label of an
internal key token record in the CKDS. The internal key token contains the
key-encrypting key used to decipher the key. The internal key token must
contain a control vector that specifies an importer or IKEYXLAT key type. The
control vector for an importer key must have the XLATE bit set to 1.

output_KEK_key_identifier

Direction: Input/Output Type: String

A 64-byte string variable containing the internal key token or the key label of an
internal key token record in the CKDS. The internal key token contains the
key-encrypting key used to encipher the key. The internal key token must
contain a control vector that specifies an exporter or OKEYXLAT key type. The
control vector for an exporter key must have the XLATE bit set to 1.

Key Translate

198 z/OS V1R13 ICSF Application Programmer's Guide

output_key_token

Direction: Output Type: String

A 64-byte string variable containing an external key token. The external key
token contains the re-enciphered key.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output_key_token will be wrapped in the
same manner as the input_key_token.

Restrictions
Triple length DATA key tokens are not supported.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The Key Translate access control point controls the function of this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 65. Key translate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

z196 Crypto Express3
Coprocessor

Key Translate2 (CSNBKTR2 and CSNEKTR2)
The Key Translate2 callable service translates the input_key_token parameter in
one of several ways:

Key Translate

Chapter 5. Managing Symmetric Cryptographic Keys 199

|

|
|

v Changes an external DES or variable-length symmetric key token from
encipherment under one key-encrypting key to another

v Changes the wrapping method of an external DES key token

v Converts an operational AES DATA token (version X’04’) to an operational AES
CIPHER token (version X’05’) or converts an operational AES CIPHER token
(version X’05’) to an operational AES DATA token (version X’04’)

To reencipher a key token, specify the TRANSLAT rule array keyword (the default),
the external key token, and the input and output key-encrypting keys. If the
input_key_token is a DES key token, you can also specify which key wrapping
method to use. If no wrapping method is specified, the system default wrapping
method will be used.

To change the wrapping method of an external DES key token, specify the
REFORMAT rule array keyword, the Key Wrapping Method to use, the external key
token and the input key-encrypting key. If no wrapping method is specified, the
system default wrapping method will be used. Note that the output_KEK_identifier
will be ignored.

To convert an operational AES DATA token (version X’04’) to an operational AES
CIPHER token (version X’05’) or vice versa, specify the REFORMAT rule array
keyword, the operational key token as input_key_token, and either a NULL token or
skeleton token as output_key_token. Note that both the input_KEK_identifier and
the output_KEK_identifier will be ignored as the corresponding lengths must be
zero.

Note: All key labels must be unique.

Format

CALL CSNBKTR2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_key_length,
input_key_token,
input_KEK_length,
input_KEK_identifier,
output_KEK_length,
output_KEK_identifier,
output_key_length,
output_key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Key Translate2

200 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The count
must be between 0 and 4, inclusive.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. The keywords
must be 8 bytes of contiguous storage with the keyword left-justified in its
8-byte location and padded on the right with blanks.

Keyword Meaning

Encipherment (optional)

REFORMAT Reformat the input_key_token.

v When input_key_token is a DES key token, reformat
with the Key Wrapping Method specified.

v When input_key_token is an operational AES key
token, either reformat an AES DATA key (version X‘04’)
to an AES CIPHER key (version X‘05’) or the reverse
(version X’05’ to version X’04’).

TRANSLAT Translate the input_key_token from encipherment under
the input_KEK_identifier to encipherment under the
output_KEK_identifier. This is the default.

Key Wrapping Method (optional, valid only if input_key_token is an external DES
key token)

Key Translate2

Chapter 5. Managing Symmetric Cryptographic Keys 201

|
|

||

|
|

|
|
|
|

||
|
|

Keyword Meaning

USECONFG Specifies that the system default configuration should be
used to determine the wrapping method. This is the
default.

The system default key wrapping method can be specified
using the DEFAULTWRAP parameter in the installation
options data set. See the z/OS Cryptographic Services
ICSF System Programmer's Guide.

WRAP-ENH Use enhanced key wrapping method, which is compliant
with the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB
wrapping for DES key tokens.

Translation Control (optional, valid only with WRAP-ENH)

ENH-ONLY Restrict rewrapping of the output_key_token. Once the
token has been wrapped with the enhanced method, it
cannot be rewrapped using the original method.

Algorithm (optional)

AES Specifies that the input key is an AES key. Where used,
the key-encrypting keys will be AES transport keys.

DES Specifies that the input key is a DES key. Where used,
the key-encrypting keys will be DES transport keys. This
is the default.

HMAC Specifies that the input key is an HMAC key. Where used,
the key-encrypting keys will be AES transport keys.

input_key_length

Direction: Input Type: Integer

The length of the input_key_token in bytes. The maximum value allowed is 900.

input_key_token

Direction: Input/Output Type: String

A variable length string variable containing the key token to be translated or
reformatted.

If the REFORMAT keyword is specified and the input_key_token is an AES
CIPHER key (version X‘05’), the key must have the following characteristics:

v Key-usage field 1 allows the key to be used for encryption and decryption
and has no UDX bits set (UDX bits are not supported in version ‘04’X AES
tokens)

v Key-usage field 2 allows the key to be used for Cipher Block Chaining (CBC)
mode or Electronic Code Book (ECB) mode

v Key-management field 1 allows export using symmetric, unauthenticated
asymmetric, and authenticated asymmetric transport keys, and allows export
using DES, AES, and RSA transport keys

v Key-management field 2 indicates that the key is complete

If the REFORMAT and AES keywords are specified and input_key_token was
encrypted under the old master key, the token will be returned encrypted under
the current master key.

Key Translate2

202 z/OS V1R13 ICSF Application Programmer's Guide

||
|
|

|
|
|
|

|

|

||
|

||
|
|

||
|

|

|

|||
|

|
|

|
|

|
|
|

|
|

|
|
|

|

|
|
|

input_KEK_length

Direction: Input Type: Integer

The length of the input_KEK_identifier in bytes. When the input_KEK_identifier
is a token, the value must be between the actual length of the token and 725.
When the input_KEK_identifier is a label, the value must be 64.

If the REFORMAT keyword is specified, and input_key_token is an AES key
token, this parameter must be zero.

input_KEK_identifier

Direction: Input/Output Type: String

A variable length string variable containing the internal key token or the key
label of an internal key token record in the CKDS. The internal key token
contains the key-encrypting key used to decipher the key.

If input_KEK_length is zero, this parameter is ignored.

If the TRANSLAT keyword is specified and the input_key_token is an external
DES key, the input_KEK_identifier must be an internal DES token that contains
a control vector that specifies an IMPORTER or IKEYXLAT key type. The
control vector for an IMPORTER key must have the XLATE bit set to 1.

If the TRANSLAT keyword is specified and the input_key_token is an external
variable-length key token, the input_KEK_identifier must be an internal
variable-length key token containing an IMPORTER key-encrypting key. The
IMPORTER key must have the TRANSLAT bit on in key-usage field 1 of the
token.

If the REFORMAT keyword is specified and input_key_token is an external DES
key token, this parameter may be an IMPORTER, IKEYXLAT, EXPORTER, or
OKEYXLAT key type.

If an internal token was supplied and was encrypted under the old master key,
the token will be returned encrypted under the current master key.

output_KEK_length

Direction: Input Type: Integer

The length of the output_KEK_identifier in bytes. When the
output_KEK_identifier is a token, the value must be between the actual length
of the token and 725. When the output_KEK_identifier is a label, the value must
be 64.

If the REFORMAT keyword is specified, this value must be zero.

output_KEK_identifier

Direction: Input/Output Type: String

A variable length string variable containing the internal key token or the key
label of an internal key token record in the CKDS. The internal key token
contains the key-encrypting key used to encipher the key.

If output_KEK_length is zero, this parameter is ignored.

Key Translate2

Chapter 5. Managing Symmetric Cryptographic Keys 203

|

|||
|

|
|
|

|
|

|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|

|

If the output_key_token is an external DES key, the output_KEK_identifier must
be an internal DES token that contains a control vector that specifies an
EXPORTER or OKEYXLAT key type. The control vector for an EXPORTER key
must have the XLATE bit set to 1.

If the input_key_token is an external variable-length key token, the
output_KEK_identifier must be an internal variable-length key token containing
an EXPORTER key-encrypting key. The EXPORTER key must have the
TRANSLAT bit on in key-usage field 1 of the token.

If an internal token was supplied and was encrypted under the old master key,
the token will be returned encrypted under the current master key.

output_key_length

Direction: Input/Output Type: Integer

On input, the length of the output area provided for the output_key_token. This
must be between 64 and 900 bytes and provide sufficient space for the output
key. On output, the parameter is updated with the length of the token copied to
the output_key_token.

output_key_token

Direction: Input/Output Type: String

If the REFORMAT keyword is specified and the input_key_token is an AES
DATA key (version X‘04’), output_key_token must contain an AES CIPHER key
(version X‘05’) on input. This token must have the following characteristics:

v Algorithm is AES

v Key type CIPHER

v Key-usage field 2 either allows the key to be used for Cipher Block Chaining
(CBC) mode or allows the key to be used for Electronic Code Book (ECB)
mode

Otherwise, this field is ignored on input.

On output, a variable length string variable containing the key token that was
translated or reformatted.

If the REFORMAT keyword is specified and the input_key_token is an AES
DATA key (version X‘04’), on output, output_key_token will be updated with the
following characteristics:

v Key-usage field 1 allows the key to be used for encryption and decryption

v Key-management field 1 allows export using symmetric, unauthenticated
asymmetric, and authenticated asymmetric transport keys, and allows export
using DES, AES, and RSA transport keys

v Key-management field 2 indicates that the key is complete

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS.

Key Translate2

204 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|

|
|
|
|

|
|

|
|

|

|||
|

|
|
|

|

|

|
|
|

|

|
|

|
|
|

|

|
|
|

|

This table lists the access control points in the ICSF default role that control the
function for this service.

Table 66. Key Translate2 Access Control Points

Access Control point Function control

Key Translate2 Allows the Key Translate2 service to be
functional.

Key Translate2 – Allow use of
REFORMAT

Allows a key token to be rewrapped using one
key-encrypting key.

Key Translate2 – Allow wrapping method
override keywords

Allows the wrapping method keywords
WRAP-ECB or WRAP-ENH to be used when
the default key-wrapping method setting does
not match the keyword.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 67. Key Translate2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None. This service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None. This service is not supported.

IBM System z9 EC

IBM System z9 BC

None. This service is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

This service is not supported.

Crypto Express3
Coprocessor

This service is not supported.

z196 Crypto Express3
Coprocessor

Enhanced key token wrapping and HMAC
key support requires the Nov. 2010 or later
licensed internal code (LIC).

AES key support requires the Sep. 2011 or
later licensed internal code (LIC).

Multiple Clear Key Import (CSNBCKM and CSNECKM)
The multiple clear key import callable service imports a clear AES or DES key,
enciphers the key under the corresponding master key, and returns the enciphered
key in an internal key token. The enciphered key's type is DATA. The enciphered
key is in operational form.

The callable service name for AMODE(64) invocation is CSNECKM.

Key Translate2

Chapter 5. Managing Symmetric Cryptographic Keys 205

||
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

Format

CALL CSNBCKM(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_length,
clear_key,
key_identifier_length,
key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 0, 1, 2, or 3. If the rule_array_count is 0,
the default keywords are used.

rule_array

Direction: Input Type: String

Multiple Clear Key Import

206 z/OS V1R13 ICSF Application Programmer's Guide

Keywords that supply control information to the callable service. The keywords
must be 8 bytes of contiguous storage with the keyword left-justified in its
8-byte location and padded on the right with blanks.Refer to Table 68 for a list
of keywords.

Table 68. Keywords for Multiple Clear Key Import Rule Array Control Information

Keyword Meaning

Algorithm (optional)

CDMF The output key identifier is to be a CDMF token. For a DATA
key of length 16 or 24, you may not specify CDMF.

CDMF is only supported on CCF systems.

AES The output key identifier is to be an AES token.

DES The output key identifier is to be a DES token. This is the
default.

Key Wrapping Method (optional)

USECONFG Specifies that the system default configuration should be used
to determine the wrapping method. This is the default
keyword.

The system default key wrapping method can be specified
using the DEFAULTWRAP parameter in the installation
options data set. See the z/OS Cryptographic Services ICSF
System Programmer's Guide.

WRAP-ENH Use enhanced key wrapping method, which is compliant with
the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB wrapping
for DES key tokens and CBC wrapping for AES key tokens.

Translation Control (optional)

ENH-ONLY Restrict rewrapping of the key_identifier token. Once the token
has been wrapped with the enhanced method, it cannot be
rewrapped using the original method.

clear_key_length

Direction: Input Type: Integer

The clear_key_length specifies the length of the clear key value to import in
bytes. For DES keys, this length must be 8-, 16-, or 24-bytes. For AES keys,
this length must be 16-, 24-, or 32-bytes.

clear_key

Direction: Input Type: String

The clear_key specifies the clear key value to import.

key_identifier_length

Direction: Input/Output Type: Integer

The byte length of the key_identifier parameter. This must be exactly 64 bytes.

key_identifier

Multiple Clear Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 207

Direction: Input/Output Type: String

A 64-byte string that is to receive an internal AES or DES key token.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output key_identifier will use the default
method unless a rule array keyword overriding the default is specified.

Usage Notes
This service produces an internal DES DATA token with a control vector which is
usable on the Cryptographic Coprocessor Feature. If a valid internal DES token is
supplied as input to the service in the key_identifier field, that token's control vector
will not be used in the encryption of the clear key value.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 69. Required access control points for Multiple Clear Key Import

Key algorithm Access control point

DES Clear Key Import/Multiple Clear Key Import – DES

AES Multiple Clear Key Import/Multiple Secure Key Import
– AES

When the WRAP-ECB or WRAP-ENH keywords are specified and default
key-wrapping method setting does not match the keyword, the Multiple Clear Key
Import - Allow wrapping override keywords access control point must be
enabled.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 70. Multiple clear key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

Tokens are not marked with the system
encryption algorithm.

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

CDMF keyword is not supported. Tokens are
not marked with the system encryption
algorithm.

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

Multiple Clear Key Import

208 z/OS V1R13 ICSF Application Programmer's Guide

|
|

||

||

||

||
|
|

|
|
|
|

Table 70. Multiple clear key import required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

CDMF keyword is not supported. Tokens are
not marked with the system encryption
algorithm.

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

CDMF keyword is not supported. Tokens are
not marked with the system encryption
algorithm.

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

Crypto Express3
Coprocessor

Enhanced key token wrapping not
supported.

z196 Crypto Express3
Coprocessor

CDMF keyword is not supported. Tokens are
not marked with the system encryption
algorithm.

Multiple Secure Key Import (CSNBSKM and CSNESKM)
Use this service to encipher a single-length, double-length, or triple-length DES key
under the system master key or an importer key-encrypting key. The clear DES key
can then be imported as any of the possible key types.

In addition to DES keys, this service imports a clear AES key, enciphers the AES
key under the AES master key, and returns the enciphered key in an internal token.
The enciphered key's type is DATA. The enciphered key is in operational form.

The callable service can execute only when ICSF is in special secure mode, which
is described in “Special Secure Mode” on page 10.

The callable service name for AMODE(64) invocation is CSNESKM.

Multiple Clear Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 209

Format

CALL CSNBSKM(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_length,
clear_key,
key_type,
key_form,
key_encrypting_key_identifier,
imported_key_identifier_length,
imported_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 0, 1, 2, 3, or 4. If the rule_array_count is
0, the default keywords are used.

rule_array

Multiple Secure Key Import

210 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input Type: String

Zero, one or two keywords that supply control information to the callable
service. The keywords must be 8 bytes of contiguous storage with the keyword
left-justified in its 8-byte location and padded on the right with blanks. The
keywords are shown in Table 71.

The first keyword is the algorithm. If no algorithm is specified, the system
default algorithm is used. If no algorithm is specified on a CDMF only system
and either a double- or triple-length DATA key is specified, the token is marked
DES. The algorithm keyword applies only when the desired output token is of
key form OP and key type IMPORTER, EXPORTER, or DATA. For key form IM
or any other key type, specifying DES or CDMF causes an error.

The second keyword is optional and specifies that the output key token be
marked as an NOCV-KEK.

The third keyword is optional, and specifies whether the original key wrapping
method or the enhanced key wrapping method (which is compliant with the
ANSI X9.24 standard) should be used.

The fourth keyword enables an application to specify that the
imported_key_identifier output token can not be rewrapped using the original
wrapping method after it has been wrapped using the enhanced method.

Table 71. Keywords for Multiple Secure Key Import Rule Array Control Information

Keyword Meaning

Algorithm (optional)

CDMF The output key identifier is to be a CDMF token. For a DATA
key of length 16 or 24, you may not specify CDMF.

CDMF is only supported on CCF systems.

AES The output key identifier is to be a AES token.

DES The output key identifier is to be a DES token. This is the
default.

NOCV Choice (optional)

NOCV-KEK The output token is to be marked as an NOCV-KEK. This
keyword only applies if key form is OP and key type is
IMPORTER, EXPORTER or IMP-PKA. For key form IM or any
other key type, specifying NOCV-KEK causes an error.

Key Wrapping Method (optional)

USECONFG Specifies that the system default configuration should be used
to determine the wrapping method. This is the default
keyword.

The system default key wrapping method can be specified
using the DEFAULTWRAP parameter in the installation
options data set. See the z/OS Cryptographic Services ICSF
System Programmer's Guide.

WRAP-ENH Use enhanced key wrapping method, which is compliant with
the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB wrapping
for DES key tokens and CBC wrapping for AES key tokens.

Translation Control (optional)

Multiple Secure Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 211

Table 71. Keywords for Multiple Secure Key Import Rule Array Control
Information (continued)

Keyword Meaning

ENH-ONLY Restrict rewrapping of the imported_key_identifier token. Once
the token has been wrapped with the enhanced method, it
cannot be rewrapped using the original method.

clear_key_length

Direction: Input Type: Integer

The clear_key_length specifies the length of the clear key value to import in
bytes. For AES keys, this length must be 16-, 24-, or 32-bytes. For DES keys,
this length must be 8-, 16- or 24-bytes.

clear_key

Direction: Input Type: String

The clear_key specifies the AES or DES clear key value to import.

key_type

Direction: Input Type: 8 Character String

The type of key you want to encipher under the master key or an importer key.
Specify an 8-byte field that must contain a keyword from this list or the keyword
TOKEN. For types with fewer than 8 characters, the type should be padded on
the right with blanks. If the key type is TOKEN, ICSF determines the key type
from the control vector (CV) field in the internal key token provided in the
imported_key_identifier parameter. When key_type is TOKEN, ICSF does not
check for the length of the key but uses the clear_key_length parameter to
determine the length of the key.

Key type values for the Multiple Secure Key Import callable service are:
CIPHER, CVARDEC, CVARENC, CVARPINE, CVARXCVL, CVARXCVR, DATA,
DATAM, DATAMV, DATAXLAT, DECIPHER, ENCIPHER, EXPORTER,
IKEYXLAT, IMPORTER, IMP-PKA, IPINENC, MAC, MACVER, OKEYXLAT,
OPINENC, PINGEN and PINVER. For information on the meaning of the key
types, see Table 3 on page 23.

key_form

Direction: Input Type: 4 Character String

The key form you want to generate. Enter a 4-byte keyword specifying whether
the key should be enciphered under the master key (OP) or the importer
key-encrypting key (IM). The keyword must be left-justified and padded with
blanks. Valid DES keyword values are OP for encryption under the master key
or IM for encryption under the importer key-encrypting key. If you specify IM,
you must specify an importer key-encrypting key in the
key_encrypting_key_identifier parameter. For a key_type of IMP-PKA, this
service supports only the OP key_form.

The only valid AES keyword value is OP.

key_encrypting_key_identifier

Multiple Secure Key Import

212 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input/Output Type: String

A 64-byte string internal key token or key label of a DES importer
key-encrypting key. This parameter is ignored for AES secure keys.

imported_key_identifier_length

Direction: Input/Output Type: Integer

The byte length of the imported_key_identifier parameter. This must be at least
64.

imported_key_identifier

Direction: Input/Output Type: String

A 64-byte string that is to receive the output key token. If OP is specified in the
key_form parameter, the service returns an internal key token. If IM is specified
in the key_form parameter, the service returns an external key token. On input,
this parameter is ignored except when the key_type is TOKEN. If you specify a
key_type of TOKEN, then this field contains a valid token of the key type you
want to encipher. See key_type for a list of valid key types. Appendix B, “Key
Token Formats,” on page 777 describes the key tokens.

Note that for a DATA key of length 16 or 24, no reference will be made to the
data encryption algorithm bits or to the system's default algorithm; the token will
be marked DES.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output imported_key_identifier will use the
default method unless a rule array keyword overriding the default is specified.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

On CCF systems, to generate double-length DATAM and DATAMV keys in the
importable form, the ANSI system keys must be installed in the CKDS.

CDMF is only supported on CCF systems.

With a PCIXCC, CEX2C, or CEX3C, creation of a DES NOCV key-encrypting key is
only available for standard IMPORTERs and EXPORTERs.

On an IBM Eserver zSeries 990, if key_form of the DES key is IM and the
key_encrypting_key_identifier is a NOCV KEK, then the NOCV IMPORTER access
control point must be enabled in the PCIXCC to use the function.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 72. Required access control points for Multiple Secure Key Import

Key Algorithm and Key Form Access control point

DES OP Secure Key Import - DES, OP

DES IM Secure Key Import - DES, IM

Multiple Secure Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 213

|
|

||

||

||

||

Table 72. Required access control points for Multiple Secure Key Import (continued)

Key Algorithm and Key Form Access control point

AES OP Multiple Clear Key Import/Multiple Secure Key Import
– AES

To use a NOCV key-encrypting key with the Multiple Secure Key Import service, the
NOCV KEK usage for import-related functions access control point must be
enabled in addition to one or both of the access control points listed.

When the WRAP-ECB or WRAP-ENH keywords are specified and default
key-wrapping method setting does not match the keyword, the Multiple Secure
Key Import - Allow wrapping override keywords access control point must be
enabled.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 73. Multiple secure key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

Only control vectors and key types
supported by the Cryptographic
Coprocessor Feature will be valid when
importing a triple-length key.

ICSF routes the request to a PCI
Cryptographic Coprocessor if the control
vector of a supplied internal token cannot be
processed on the Cryptographic
Coprocessor Feature, or if the key type is
not valid for the Cryptographic Coprocessor
Feature.

DATAC is not supported.

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Key_type DATAXLAT is not supported.
CDMF keyword is not supported. DATA and
KEK tokens are not marked with the system
encryption algorithm.

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

Multiple Secure Key Import

214 z/OS V1R13 ICSF Application Programmer's Guide

|

||

||
|
|

|
|
|

|
|
|
|

Table 73. Multiple secure key import required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Key_type DATAXLAT is not supported.
CDMF keyword is not supported. DATA and
KEK tokens are not marked with the system
encryption algorithm.

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Key_type DATAXLAT is not supported.
CDMF keyword is not supported. DATA and
KEK tokens are not marked with the system
encryption algorithm.

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH and
WRAP-ECB not supported.

Enhanced key token wrapping not
supported.

Crypto Express3
Coprocessor

Key_type DATAXLAT is not supported.
CDMF keyword is not supported. DATA and
KEK tokens are not marked with the system
encryption algorithm.

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

Enhanced key token wrapping not
supported.

z196 Crypto Express3
Coprocessor

Key_type DATAXLAT is not supported.
CDMF keyword is not supported. DATA and
KEK tokens are not marked with the system
encryption algorithm.

PKA Decrypt (CSNDPKD and CSNFPKD)
Use this service to decrypt (unwrap) a formatted key value. The service unwraps
the key, deformats it, and returns the deformatted value to the application in the
clear. PKCS 1.2 and ZERO-PAD formatting is supported. For PKCS 1.2, the
decrypted data is examined to ensure it meets RSA DSI PKCS #1 block type 2
format specifications. ZERO-PAD is only supported for external RSA clear private
keys.

This service allows the use of clear or encrypted RSA private keys. If an external
clear key token is used, the master keys are not required to be installed in any
cryptographic coprocessor and PKA callable services does not have to be enabled.
Requests are routed to a PCICA if available when a clear key token is used.

Multiple Secure Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 215

The callable service name for AMODE(64) invocation is CSNFPKD.

Format

CALL CSNDPKD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PKA_enciphered_keyvalue_length,
PKA_enciphered_keyvalue,
data_structure_length,
data_structure,
PKA_key_identifier_length,
PKA_key_identifier,
target_keyvalue_length,
target_keyvalue)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1.

PKA Decrypt

216 z/OS V1R13 ICSF Application Programmer's Guide

rule_array

Direction: Input Type: String

The keyword that provides control information to the callable service. The
keyword is left-justified in an 8-byte field and padded on the right with blanks.

Table 74. Keywords for PKA Decrypt

Keyword Meaning

Recovery Method (required) specifies the method to use to recover the key value.

PKCS-1.2 RSA DSI PKCS #1 block type 02 will be used to recover the
key value.

ZERO-PAD The input PKA_enciphered_keyvalue is decrypted using the
RSA private key. The entire result (including leading zeros) will
be returned in the target_keyvalue field. The
PKA_key_identifier must be an external RSA token or the
labelname of a external token. This keyword requires requires
May 2004 or later version of Licensed Internal Code (LIC) or a
z890.

This support on the PCICA does not require LIC code
updates.

PKA_enciphered_keyvalue_length

Direction: Input Type: integer

The length of the PKA_enciphered_keyvalue parameter in bytes. The maximum
size that you can specify is 512 bytes. The length should be the same as the
modulus length of the PKA_key_identifier.

PKA_enciphered_keyvalue

Direction: Input Type: String

This field contains the key value protected under an RSA public key. This
byte-length string is left-justified within the PKA_enciphered_keyvalue
parameter.

data_structure_length

Direction: Input Type: Integer

The value must be 0.

data_structure

Direction: Input Type: String

This field is currently ignored.

PKA_key_identifier_length

Direction: Input Type: Integer

PKA Decrypt

Chapter 5. Managing Symmetric Cryptographic Keys 217

The length of the PKA_key_identifier parameter. When the PKA_key_identifier
is a key label, this field specifies the length of the label. The maximum size that
you can specify is 3500 bytes.

PKA_key_identifier

Direction: Input Type: String

An internal RSA private key token, the label of an internal RSA private key
token, or an external RSA private key token containing a clear RSA private key
in modulus-exponent or Chinese Remainder format. The corresponding public
key was used to wrap the key value.

target_keyvalue_length

Direction: Input/Output Type: Integer

The length of the target_keyvalue parameter. The maximum size that you can
specify is 512 bytes. On return, this field is updated with the actual length of
target_keyvalue.

If ZERO-PAD is specified, this length will be the same as the
PKA_enciphered_keyvalue_length which is equal to the RSA modulus byte
length.

target_keyvalue

Direction: Output Type: String

This field will contain the decrypted, deformatted key value. If ZERO-PAD is
specified, the decrypted key value, including leading zeros, will be returned.

Restrictions
The exponent of the RSA public key must be odd.

Access control checking will not be performed in the PCI Cryptographic
Coprocessor when a clear external key token is supplied.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The RSA private key must be enabled for key management functions.

The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this service will fail if the RSA key modulus bit length exceeds
this limit.

Routing of requests to coprocessors for systems with CCFs: This service
examines the RSA key specified in the PKA_key_identifier parameter to determine
how to route the request.

v If the modulus bit length is less than 512 bits, or if the key is a X'02' form
modulus-exponent private key, ICSF routes the request to the Cryptographic
Coprocessor Feature.

v If the key is a X'08' form CRT private key or a retained private key, the service
routes the request to a PCI Cryptographic Coprocessor.

PKA Decrypt

218 z/OS V1R13 ICSF Application Programmer's Guide

v In the case of a retained key, the service routes the request to the specific PCI
Cryptographic Coprocessor in which the key is retained.

v If the key is a modulus-exponent form private key with a private section ID of
X'06', then the service routes the request as follows:

– Since the key must be a key-management key, if the KMMK is equal to the
SMK on the Cryptographic Coprocessor Feature, the PKA decrypt service
uses load balancing to route the request to either a Cryptographic
Coprocessor Feature or to an available PCI Cryptographic Coprocessor.

– If the KMMK is not equal to the SMK on the Cryptographic Coprocessor
Feature, the request must be processed on a PCI Cryptographic Coprocessor.
If there is no PCI Cryptographic Coprocessor online, the request will fail.

v If the key is an external clear key, the request is routed in this order of
preference.

– PCICA

– PCICC

– CCF

The PKA Decrypt access control point controls the function of this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 75. PKA decrypt required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

ICSF routes the request to the
Cryptographic Coprocessor Feature if the
modulus bit length is less than 512 bits, or if
the key is a X'02' form modulus-exponent
private key.

The ZERO-PAD keyword is not supported.

RSA keys with moduli greater than 1024-bit
length are not supported.

PCI Cryptographic
Coprocessor

This service routes the request to the PCI
Cryptographic Coprocessor in which the key
is retained if the key is a X'08' form CRT
private key or a retained private key

The ZERO-PAD keyword is not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

PCI Cryptographic
Accelerator

Only clear RSA private keys are supported.

The ZERO-PAD keyword is not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

PKA Decrypt

Chapter 5. Managing Symmetric Cryptographic Keys 219

|

Table 75. PKA decrypt required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Old RSA private tokens encrypted under the
CCF KMMK are not usable on the
PCIXCC/CEX2C if the KMMK was not same
as the ASYM-MK.

RSA keys with moduli greater than 2048-bit
length are not supported.

PCI Cryptographic
Accelerator

Only clear RSA private keys are supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Old RSA private tokens encrypted under the
CCF KMMK are not usable on the CEX2C if
the KMMK was not same as the ASYM-MK.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express2
Accelerator

Only clear RSA private keys are supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Old RSA private tokens encrypted under the
CCF KMMK are not usable on the CEX2C
or CEX3C if the KMMK was not same as
the ASYM-MK.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express2
Accelerator

Crypto Express3
Accelerator

Only clear RSA private keys are supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

z196 Crypto Express3
Coprocessor

Old RSA private tokens encrypted under the
CCF KMMK are not usable on the CEX3C if
the KMMK was not same as the ASYM-MK.

Crypto Express3
Accelerator

Only clear RSA private keys are supported.

RSA clear key support with moduli within the
range 2048-bit to 4096-bit requires the Sep.
2011 or later licensed internal code (LIC).

PKA Encrypt (CSNDPKE and CSNFPKE)
This callable service encrypts a supplied clear key value under an RSA public key.
The rule array keyword specifies the format of the key prior to encryption.

On the z900 and if the ZERO-PAD or MRP keyword is specified, this service is
routed to a PCI Cryptographic Accelerator.

PKA Decrypt

220 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|

|

The callable service name for AMODE(64) invocation is CSNFPKE.

Format

CALL CSNDPKE(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
keyvalue_length,
keyvalue,
data_structure_length,
data_structure,
PKA_key_identifier_length,
PKA_key_identifier,
PKA_enciphered_keyvalue_length,
PKA_enciphered_keyvalue)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
can be 1 or 2.

rule_array

PKA Encrypt

Chapter 5. Managing Symmetric Cryptographic Keys 221

Direction: Input Type: String

A keyword that provides control information to the callable service. The keyword
is left-justified in an 8-byte field and padded on the right with blanks.

Table 76. Keywords for PKA Encrypt

Keyword Meaning

Formatting Method (required) specifies the method to use to format the key value
prior to encryption.

PKCS-1.2 RSA DSI PKCS #1 block type 02 format will be used to format
the supplied key value.

ZERO-PAD The key value will be padded on the left with binary zeros to
the length of the PKA key modulus. The exponent of the
public key must be odd.

MRP The key value will be padded on the left with binary zeros to
the length of the PKA key modulus. The RSA public key may
have an even or odd exponent. This keyword requires May
2004 or later version of Licensed Internal Code (LIC) or a
z890.

For PCICAs, the LIC code update is not required.

Key Rule (Optional)

KEYIDENT This indicates that the value in the keyvalue field is the label
of clear tokens in the CKDS. The keyvalue_length must be 64.

keyvalue_length

Direction: Input Type: Integer

The length of the keyvalue parameter. The maximum field size is 512 bytes.
The actual maximum size depends on the modulus length of PKA_key_identifier
and the formatting method you specify in the rule_array parameter. When key
rule KEYIDENT is specified, then the keyvalue_length parameter is required to
be 64 bytes.

keyvalue

Direction: Input Type: String

This field contains the supplied clear key value to be encrypted under the
PKA_key_identifier. When key rule KEYIDENT is specified, the keyvalue
parameter is assumed to contain a label for a valid CKDS clear key token.

data_structure_length

Direction: Input Type: Integer

This value must be 0.

data_structure

Direction: Input Type: String

This field is currently ignored.

PKA_key_identifier_length

PKA Encrypt

222 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input Type: Integer

The length of the PKA_key_identifier parameter. When the PKA_key_identifier
is a key label, this field specifies the length of the label. The maximum size that
you can specify is 3500 bytes.

PKA_key_identifier

Direction: Input Type: String

The RSA public or private key token or the label of the RSA public or private
key to be used to encrypt the supplied key value.

PKA_enciphered_keyvalue_length

Direction: Input/Output Type: integer

The length of the PKA_enciphered_keyvalue parameter in bytes. The maximum
size that you can specify is 512 bytes. On return, this field is updated with the
actual length of PKA_enciphered_keyvalue.

This length should be the same as the modulus length of the
PKA_key_identifier.

PKA_enciphered_keyvalue

Direction: Output Type: String

This field contains the key value protected under an RSA public key. This
byte-length string is left-justified within the PKA_enciphered_keyvalue
parameter.

Restrictions
The exponent for RSA public keys must be odd. When the modulus is greater than
2048, the public key exponent must be 3 or 65537.

Usage Notes
v SAF may be invoked to verify the caller is authorized to use this callable service,

the key label, or internal secure key tokens that are stored in the CKDS or
PKDS.

v For RSA DSI PKCS #1 formatting, the key value length must be at least 11 bytes
less than the modulus length of the RSA key.

v The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this service will fail if the RSA key modulus bit length
exceeds this limit.

v The key value to be encrypted must be smaller than the modulus in the
PKA_key_identifier.

The PKA Encrypt access control point controls the function of this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

PKA Encrypt

Chapter 5. Managing Symmetric Cryptographic Keys 223

|

Table 77. PKA encrypt required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

The MRP keyword is not supported.

RSA keys with moduli greater than 1024-bit
length are not supported.

PCI Cryptographic
Coprocessor

If the modulus bit length of the key specified
in the PKA_key_identifier parameter is
greater than 1024, the request is routed to
the PCICC.

The MRP keyword is not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Routed to a PCICA if one is available
(ZERO-PAD and MRP only).

RSA keys with moduli greater than 2048-bit
length are not supported.

PCI Cryptographic
Accelerator

PKCS-1.2 keyword not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Routed to a CEX2A if one is available
(ZERO-PAD and MRP only).

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express2
Accelerator

PKCS-1.2 keyword not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Routed to a CEX2A or CEX3A if one is
available (ZERO-PAD and MRP only).

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express2
Accelerator

Crypto Express3
Accelerator

PKCS-1.2 keyword not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

z196 Crypto Express3
Coprocessor

Routed to a CEX2A or CEX3A if one is
available (ZERO-PAD and MRP only).

Crypto Express3
Accelerator

PKCS-1.2 keyword not supported.

RSA clear key support with moduli within the
range 2048-bit to 4096-bit requires the Sep.
2011 or later licensed internal code (LIC).

PKA Encrypt

224 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|

Prohibit Export (CSNBPEX and CSNEPEX)
Use this service to modify an exportable internal DES key token so that it cannot be
exported.

The callable service name for AMODE(64) invocation is CSNEPEX.

Format

CALL CSNBPEX(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_identifier

Direction: Input/Output Type: String

A 64-byte string variable containing the internal key token to be modified. The
returned key_identifier will be encrypted under the current master key.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method

Prohibit Export

Chapter 5. Managing Symmetric Cryptographic Keys 225

which is ANSI X9.24 compliant. The output key_identifier will be wrapped in the
same manner as the input key_identifier.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The Prohibit Export access control point controls the function of this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 78. Prohibit export required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

On a PCI Cryptographic Coprocessor, the
Prohibit Export service does not support
NOCV key-encrypting keys, or DATA,
DATAM, DATAMV, MAC, or MACVER keys
with standard control vectors (for example,
control vectors supported by the
Cryptographic Coprocessor Feature).

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

DATA keys are not supported. Old, internal
DATAM and DATAMV keys are not
supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

DATA keys are not supported. Old, internal
DATAM and DATAMV keys are not
supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

DATA keys are not supported. Old, internal
DATAM and DATAMV keys are not
supported.

z196 Crypto Express3
Coprocessor

DATA keys are not supported. Old, internal
DATAM and DATAMV keys are not
supported.

Prohibit Export Extended (CSNBPEXX and CSNEPEXX)
Use the prohibit export extended callable service to change the external token of a
cryptographic key in exportable DES key token form so that it can be imported at
the receiver node and is non-exportable from that node. You cannot prohibit export
of DATA keys.

The inputs are an external token of the key to change in the source_key_token
parameter and the label or internal token of the exporter key-encrypting key in the
KEK_key_identifier parameter.

This service is a variation of the Prohibit Export service (CSNBPEX and
CSNEPEX), which supports changing an internal token.

The callable service name for AMODE(64) invocation is CSNEPEXX.

Prohibit Export

226 z/OS V1R13 ICSF Application Programmer's Guide

|

Format

CALL CSNBPEXX(
return_code,
reason_code,
exit_data_length,
exit_data,
source_key_token,
KEK_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

source_key_token

Direction: Input/Output Type: String

A 64-byte string of an external token of a key to change. It is in exportable form.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output source_key_token will be wrapped
in the same manner as the input source_key_token.

KEK_key_identifier

Direction: Input/Output Type: String

Prohibit Export Extended

Chapter 5. Managing Symmetric Cryptographic Keys 227

A 64-byte string of an internal token or label of the exporter KEK used to
encrypt the key contained in the external token specified in the previous
parameter.

Restrictions
This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The Prohibit Export Extended access control point controls the function of this
service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 79. Prohibit export extended required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

External MACD keys are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

External MACD keys are not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

External MACD keys are not supported.

z196 Crypto Express3
Coprocessor

External MACD keys are not supported.

Random Number Generate (CSNBRNG, CSNERNG, CSNBRNGL and
CSNERNGL)

The callable service uses the cryptographic feature to generate a random number.
The foundation for the random number generator is a time variant input with a very
low probability of recycling.

There are two forms of the Random Number Generate callable service. One version
returns an 8-byte random number. The second version allows the caller to specify
the length of the random number.

Note: Random Number Generate on a z900 server requires the symmetric-keys
master key to be set prior to using the service.

Prohibit Export Extended

228 z/OS V1R13 ICSF Application Programmer's Guide

|
|

The callable service names for AMODE(64) invocation are CSNERNG and
CSNERNGL.

Format

CALL CSNBRNG(
return_code,
reason_code,
exit_data_length,
exit_data,
form,
random_number)

CALL CSNBRNGL(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
reserved_length,
reserved,
random_number_length,
random_number)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

form

Random Number Generate

Chapter 5. Managing Symmetric Cryptographic Keys 229

Direction: Input Type: Character string

The 8-byte keyword that defines the characteristics of the random number
should be left-justify and pad on the right with blanks. The keywords are listed
in Table 80.

Table 80. Keywords for the Form Parameter

Keyword Meaning

EVEN Generate a 64-bit random number with even parity in each
byte.

ODD Generate a 64-bit random number with odd parity in each
byte.

RANDOM Generate a 64-bit random number.

Parity is calculated on the 7 high-order bits in each byte and is presented in the
low-order bit in the byte.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be one.

rule_array

Direction: Input Type: String

The keyword that provides control information to the callable service. The
recovery method is the method to use to recover the symmetric key. The
keyword is left-justified in an 8-byte field and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 81. Keywords for Random Number Generate Control Information

Keyword Meaning

Parity of the random number bytes (required)

EVEN Generate a random number with even parity in each
byte. Its length is the random_number_length.

ODD Generate a random number with odd parity in each byte.
Its length is the random_number_length.

RANDOM Generate a random number. Its length is the
random_number_length.

reserved_length

Direction: Input Type: Integer

This parameter must be zero.

reserved

Direction: Input Type: Integer

This parameter is ignored.

Random Number Generate

230 z/OS V1R13 ICSF Application Programmer's Guide

random_number_length

Direction: Input/Output Type: Integer

This parameter contains the desired length of the random_number that is
returned by the CSNBRNGL callable service. The minimum value is 1 byte; the
maximum value is 8192 bytes.

random_number

Direction: Output Type: String

The generated number returned by the CSNBRNG callable service is stored in
an 8-byte variable.

The generated number returned by the CSNBRNGL callable service is stored in
a variable that is at least random_number_length bytes long.

Usage Notes
The CSNBRNGL callable service returns a value under the following conditions:

v The server has the cryptographic coprocessor that supports CSNBRNGL and the
coprocessor creates the random number with the desired length. This requires a
CEX2C or CEX3C with a version of the licensed internal code (LIC) that supports
the RNGL verb.

v The server has the cryptographic coprocessor that processes CSNBRNG
requests. In this case, the CSNBRNGL callable service calls the processor to
create the random number with the desired length, 8 bytes at a time.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 82. Random number generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

z196 Crypto Express3
Coprocessor

Random Number Generate

Chapter 5. Managing Symmetric Cryptographic Keys 231

Remote Key Export (CSNDRKX and CSNFRKX)
This callable service uses the trusted block to generate or export DES keys for local
use and for distribution to an ATM or other remote device. RKX uses a special
structure to hold encrypted symmetric keys in a way that binds them to the trusted
block and allows sequences of RKX calls to be bound together as if they were an
atomic operation.

The callable service name for AMODE(64) invocation is CSNFRKX.

Format

CALL CSNDRKX(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
trusted_block_length,
trusted_block_identifier,
certificate_length,
certificate,
certificate_parms_length,
certificate_parms,
transport_key_length,
transport_key_identifier,
rule_id_length,
rule_id,
importer_key_length,
importer_key_identifier,
source_key_length,
source_key_identifier,
asym_encrypted_key_length,
asym_encrypted_key,
sym_encrypted_key_length,
sym_encrypted_key,
extra_data_length,
extra_data,
key_check_parameters_length,
key_check_parameters,
key_check_length,
key_check_value)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the specific results of processing. Each return code
has different reason codes that indicate specific processing problems.
Appendix A, “ICSF and TSS Return and Reason Codes” lists the reason codes.

Remote Key Export

232 z/OS V1R13 ICSF Application Programmer's Guide

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. This
number must be 0.

rule_array

Direction: Input Type: String

Specifies a string variable containing an array of keywords. Currently no
rule_array keywords are defined for this service, but you must still specify this
parameter.

trusted_block_length

Direction: Input Type: Integer

Specifies the number of bytes in the trusted_block_identifier parameter. The
maximum length is 3500 bytes.

trusted_block_identifier

Direction: Input Type: String

Specifies a trusted block label or trusted block token of an internal/complete
trusted block constructed by the service, which is used to validate the public
key certificate (certificate) and to define the rules for key generation and export.

certificate_length

Direction: Input Type: Integer

Specifies the number of bytes in the certificate parameter. The maximum is
5000 bytes.

If the certificate_length is zero and the trusted block's Asymmetric Encrypted
Output Key Format indicates no asymmetric key output, this service will not
attempt to use or validate the certificate in any way. Consequently, the output
parameter asym_encrypted_key_length will contain zero and output parameter
asym_encrypted_key will not be changed from its input content.

If the certificate length is zero and the trusted block's Asymmetric Encrypted
Output Key Format indicates PKCS1.2 output format or RSAOAEP output
format, this service will exit with an error.

Remote Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 233

If the certificate_length is non-zero and the trusted block's Asymmetric
Encrypted Output Key Format indicates no asymmetric key output, this service
will fail.

certificate

Direction: Input Type: String

Contains a public-key certificate. The certificate must contain the public key
modulus and exponent in binary_form, as well as a digital signature. The
signature in the certificate will be verified using the root public key that is in the
trusted block supplied in trusted_block_identifier parameter.

certificate_parms_length

Direction: Input Type: Integer

Contains the number of bytes in the certificate_parms parameter. The length
must be 36 bytes.

certificate_parms

Direction: Input Type: String

Contains a structure provided by the caller used for identifying the location and
length of values within the certificate in parameter certificate. For each of the
values used by RKX, the structure contains offsets from the start of the
certificate and length in bytes. It is the responsibility of the calling application
program to provide these values. This method gives the greatest flexibility to
support different certificate formats. The structure has this layout:

Table 83. Structure of values used by RKX

Offset
(bytes)

Length
(bytes) Description

0 4 Offset of modulus

4 4 Length of modulus

8 4 Offset of public exponent

12 4 Length of public exponent

16 4 Offset of digital signature

20 4 Length of digital signature

24 1 Identifier for the hash algorithm used

25 1 Identifier for the digital hash formatting method

v 01 - PKCS-1.0

v 02 - PKCS-1.1

v 03 - X9.31

v 04 - ISO-9796

v 05 - ZERO-PAD

26 2 Reserved - must be filled with 0x00 bytes

28 4 Offset of first byte of certificate data hashed to compute the
digital signature

32 4 Length of the certificate data hashed to compute the digital
signature

Remote Key Export

234 z/OS V1R13 ICSF Application Programmer's Guide

The modulus, exponent, and signature values are right-justified and padded on
the left with binary zeros if necessary.

These values are defined for the hash algorithm identifier at offset 24 in the
structure.

Table 84. Values defined for hash algorithm identifier at offset 24 in the structure for
remote key export

Identifier Algorithm

0X01 SHA-1

0X02 MD5

0X03 RIPEMD-160

transport_key_length

Direction: Input Type: Integer

Contains the number of bytes in the transport_key_identifier parameter.

transport_key_identifier

Direction: Input Type: String

Contains a label of an internal key token, or an RKX token for a Key Encrypting
Key (KEK) that is used to encrypt a key exported by the RKX service. A
transport key will not be used to encrypt a generated key.

For flag bit0=1 (export existing key) within Rule section and parameter rule_id =
Rule section ruleID, the transport_key_identifier encrypts the exported version
of the key received in parameter source_key_identifier. The service can
distinguish between the internal key token or RKX key token by virtue of the
version number at offset 0x04 contained in the key token and the flag value at
offset 0x00 as follows:

Table 85. Transport_key_identifer used by RKX

Flag Byte
Offset 00

Version
Number
Offset 04 Description

0X01 0X00 Internal DES key token version 0

0X02 0X10 RKX Key token (Flag byte 0x02 indicates external key
token)

rule_id_length

Direction: Input Type: Integer

Contains the number of bytes in the rule_id parameter. The value must be 8.

rule_id

Direction: Input Type: String

Specifies the rule in the trusted block that will be used to control key generation
or export. The trusted block can contain multiple rules, each of which is
identified by a rule ID value.

Remote Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 235

importer_key_length

Direction: Input Type: Integer

Contains the number of bytes in the importer_key_identifier parameter. It must
be zero if the Generate/Export flag in the rule section (section 0x12) of the
Trusted Block is a zero, indicating a new key is to be generated.

importer_key_identifier

Direction: Input Type: String

Contains a key token or key label for the IMPORTER key-encrypting key that is
used to decipher the key passed in parameter source_key_identifier. It is
unused if either RKX is being used to generate a key, or if the
source_key_identifier is an RKX key token.

source_key_length

Direction: Input Type: Integer

Contains the number of bytes in the source_key_identifier parameter. The
parameter must be 0 if the trusted block Rule section ruleID = rule_id
parameter and the flag bit0 = 0 (Generate new key).

The parameter must be 64 if the trusted block Rule section has a flag bit0 = 1
(Export existing key).

source_key_identifier

Direction: Input Type: String

Contains a label of a single or double length external or internal key token or an
RKX key token for a key to be exported. It must be empty
(source_key_length=0) if RKX is used to generate a new key. The service
examines the key token to determine which form has been provided. This
parameter is known as the source_key_identifier in other callable services.

Table 86. Examination of key token for source_key_identifier

Flag Byte
Offset 00

Version
Number
Offset 04 Description

0X01 0X00 Internal DES key token version 0

0X02 0X00 External DES key token version 0

0X02 0X01 External DES key token version 1

0X02 0X10 RKX Key token (Flag byte 0x02 indicates external key
token)

asym_encrypted_key_length

Direction: Input/Output Type: Integer

The length of the asym_encrypted_key parameter. On input, it is the length of
the storage to receive the output. On output, it is the length of the data returned
in the asym_encrypted_key parameter. The maximum length is 512 bytes.

asym_encrypted_key

Remote Key Export

236 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Output Type: String

The contents of this field is ignored on input. A string buffer RKX will use to
return a generated or exported key that is encrypted under the public
(asymmetric) key passed in parameter certificate. An error will be returned if the
caller's buffer is too small to hold the value that would be returned.

sym_encrypted_key_length

Direction: Input/Output Type: Integer

On input, the sym_encrypted_key_length parameter is an integer variable
containing the number of bytes in the sym_encrypted_key field. On output, that
value in sym_encrypted_key_length is replaced with the length of the key
returned in sym_encrypted_key field.

sym_encrypted_key

Direction: Output Type: String

Sym_encrypted_key is the string buffer RKX uses to return a generated or
exported key that is encrypted under the key-encrypting key passed in the
transport_key_identifier parameter. The value returned will be 64 bytes. An error
will be returned if the caller's buffer is smaller than 64 bytes, and so too small to
hold the value that would be returned. The sym_encrypted_key may be an RKX
key token or a key token depending upon the value of the Symmetric Encrypted
Output Key Format value of the Rule section within the trusted_block_identifier
parameter.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The sym_encrypted_key will be wrapped in the
same manner as the source_key_identifier.

extra_data_length

Direction: Input Type: Integer

Contains the number of bytes of data in the extra_data parameter. It must be
zero if the output format for the RSA-encrypted key in asym_encrypted_key is
anything but RSAOEAP. The maximum size is 1024 bytes.

extra_data

Direction: Input Type: String

Can be used in the OAEP key wrapping process. Extra_data is optional and is
only applicable when the output format for the RSA-encrypted key returned in
asym_encrypted_key is RSAOAEP.

Note: RSAOAEP format is specified in the rule in the trusted block.

key_check_parameters_length

Direction: Input Type: Integer

Remote Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 237

Contains the number of bytes in the key_check_parameters parameter.
Currently, none of the defined key check algorithms require any key check
parameters, so this field must specify 0.

key_check_parameters

Direction: Input Type: String

Contains parameters that are required to calculate a key check value
parameter, which will be returned in key_check_value. Currently, none of the
defined key check algorithms require any key check parameters, but you must
still specify this parameter.

key_check_length

Direction: Input/Output Type: Integer

On input this parameter contains the number of bytes in the key_check_value
parameter. On output, the value is replaced with the length of the key check
value returned in the key_check_value parameter. The length depends on the
key-check algorithm identifier. See Table 362 on page 816.

key_check_value

Direction: Output Type: String

Used by RKX to return a key check value that calculates on the generated or
exported key. Values in the rule specified with rule_id can specify a key check
algorithm that should be used to calculate this output value.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The Remote Key Export - Gen or export a non-CCA node Key access control
point controls the function of this service.

To use a NOCV IMPORTER key-encrypting key with the remote key export service,
the NOCV KEK usage for import-related functions access control point must be
enabled in addition to one or both of the access control points listed.

To use a NOCV EXPORTER key-encrypting key with the remote key export service,
the NOCV KEK usage for export-related functions access control point must be
enabled in addition to one or both of the access control points listed.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 87. Remote key export required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This callable service is not supported.

Remote Key Export

238 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|
|
|

|
|
|

Table 87. Remote key export required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

This callable service is not supported.

IBM Eserver z9 EC

IBM System z9 BC

Cryptographic
Express 2
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENC and
WRAP-ECB not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENC and
WRAP-ECB not supported.

Crypto Express3
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

z196 Crypto Express3
Coprocessor

Restrict Key Attribute (CSNBRKA and CSNERKA)
Use the Restrict Key Attribute callable service to modify an exportable internal or
external CCA symmetric key-token so that its key can no longer be exported.

The callable service name for AMODE(64) is CSNERKA.

Format

CALL CSNBRKA(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_encrypting_key_identifier_length,
key_encrypting_key_identifier,
opt_parameter1_length,
opt_parameter1,
opt_parameter2_length,
opt_parameter2)

Parameters
return_code

Direction: Output Type: Integer

Remote Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 239

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
must be between 1 and 10, inclusive.

rule_array

Direction: Input Type: String

The rule_array contains keywords that provide control information to the callable
service. The keywords must be in contiguous storage with each of the keywords
left-justified in its own 8-byte location and padded on the right with blanks.

Table 88. Keywords for Restrict Key Attribute Control Information

Keyword Meaning

Token Type (Required)

AES Specifies the key token is an AES key token.

DES Specifies the key token is a DES key token.

HMAC Specifies the key token is an HMAC key token.

Export Control (Optional)

CCAXPORT For DES internal tokens, set bit 17 of the CV to 0 to
prohibit any export of the key. This rule is only valid for
Token Type DES.

Restrict Key Attribute

240 z/OS V1R13 ICSF Application Programmer's Guide

|
|

||

||

||
|
|

Table 88. Keywords for Restrict Key Attribute Control Information (continued)

Keyword Meaning

NOEXPORT For variable-length symmetric tokens, this prohibits the
token from being exported by either a symmetric key or
an asymmetric key, as well as prohibiting it from being
exported to other formats.

For DES internal tokens, this causes the export control bit
(bit 17) to be set to 0 to indicate NO-XPORT and the
TR-31 export control bit (bit 57) to be set to 1 to indicate
no TR-31 export.

This is the default.

NOEX-AES Specifies to prohibit export using an AES key. This rule is
not valid for Token Type DES.

NOEX-DES Specifies to prohibit export using a DES key. This rule is
not valid for Token Type DES.

NOEX-RAW Specifies to prohibit export in RAW format. This rule is not
valid for Token Type DES.

NOEX-RSA Specifies to prohibit export using an RSA key. This rule is
not valid for Token Type DES.

NOEX-SYM Prohibits the key from being exported using a symmetric
key. This rule is not valid for Token Type DES.

NOEXAASY Prohibits the key from being exported using an
authenticated asymmetric key (for example, an RSA key
in a trusted block token). This rule is not valid for Token
Type DES.

NOEXUASY Prohibits the key from being exported using an
unauthenticated asymmetric key. This rule is not valid for
Token Type DES.

NOT31XPT For DES internal tokens, set bit 57 of the CV to 1 to
prohibit TR-31 export of the key. This rule is only valid for
Token Type DES.

Input Transport Key (Optional)

IKEK-AES Specifies the KEK is an AES transport key. This is the
default for Token Types AES and HMAC, and is not
allowed with Token Type DES.

IKEK-DES Specifies the KEK is a DES transport key This is the
default for Token Type DES.

IKEK-PKA Specifies the KEK is a PKA transport key. This is not
allowed with Token Type DES.

key_identifier_length

Direction: Input/Output Type: Integer

The length of the key_identifier parameter in bytes. The maximum value is 900.

key_identifier

Direction: Input/Output Type: String

Restrict Key Attribute

Chapter 5. Managing Symmetric Cryptographic Keys 241

|
|
|
|

|
|
|
|

||
|

||
|

||
|

||
|

||
|

||
|
|
|

||
|
|

||
|
|

|

||
|
|

||
|

||
|

|

|||
|

The key for which the export control is to be updated. The parameter contains
an internal or external token or the 64-byte CKDS label of an internal token. If a
label is specified, the key token will be updated in the CKDS and not returned
by this service.

If the key identifier supplied was an AES or DES token encrypted under the old
master key, the token will be returned encrypted under the current master key.

key_encrypting_key_identifier_length

Direction: Input Type: Integer

The length of the key_encrypting_key_identifier parameter. When key_identifier
is an internal token, the value must be zero.

v If key_encrypting_key_identifier is a label for either the CKDS (IKEK-AES or
IKEK-DES rules) or PKDS (IKEK-PKA rule), the value must be 64.

v If key_encrypting_key_identifier is an AES KEK, the value must be between
the actual length of the token and 725.

v If key_encrypting_key_identifier is a DES KEK, the value must be 64.

v If key_encrypting_key_identifier is an RSA KEK, the maximum length is 3500.

key_encrypting_key_identifier

Direction: Input/Output Type: String

When key_encrypting_key_identifier_length is non-zero,
key_encrypting_key_identifier contains an internal key token containing a
key-encrypting key, or a key label.

If the key identifier supplied was an AES or DES token encrypted under the old
master key, the token will be returned encrypted under the current master key.

opt_parameter1_length

Direction: Input Type: Integer

The byte length of the opt_parameter1 parameter. The value must be zero.

opt_parameter1

Direction: Input Type: String

This parameter is ignored.

opt_parameter2_length

Direction: Input Type: Integer

The byte length of the opt_parameter2 parameter. The value must be zero.

opt_parameter2

Direction: Input Type: String

This parameter is ignored.

Restrict Key Attribute

242 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|

|
|

|

|||
|

|
|

|
|

|
|

|

|

|

|||
|

|
|
|

|
|

Usage Notes
The access control points in the ICSF role that control the function of this service
are:

v Restrict Key Attribute - Export Control

v Restrict Key Attribute - Permit setting the TR-31 export bit

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 89. Restrict Key Attribute required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

This service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

This service is not supported.

Crypto Express3
Coprocessor

This service is not supported.

z196 Crypto Express3
Coprocessor

HMAC key support requires the Nov. 2010
or later licensed internal code (LIC).

DES/AES key support requires the Sep.
2011 or later licensed internal code (LIC).

Secure Key Import (CSNBSKI and CSNESKI)
Use the secure key import callable service to encipher a single-length or
double-length clear key under the system master key (DES or SYM-MK) or under
an importer key-encrypting key. The clear key can then be imported as any of the
possible key types. This service does not adjust key parity.

The callable service can execute only when ICSF is in special secure mode, which
is described in “Special Secure Mode” on page 10.

To import double-length and triple-length DATA keys, or double-length MAC,
MACVER, CIPHER, DECIPHER and ENCIPHER keys, use the Multiple Secure Key
Import callable service. See “Multiple Secure Key Import (CSNBSKM and
CSNESKM)” on page 209.

To import AES DATA keys, use the multiple secure key import service (“Multiple
Secure Key Import (CSNBSKM and CSNESKM)” on page 209).

The callable service name for AMODE(64) invocation is CSNESKI.

Restrict Key Attribute

Chapter 5. Managing Symmetric Cryptographic Keys 243

|
|

|

|

|

|
|

|
|

Format

CALL CSNBSKI(
return_code,
reason_code,
exit_data_length,
exit_data,
clear_key,
key_type,
key_form,
importer_key_identifier,
key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

clear_key

Direction: Input Type: String

The clear key to be enciphered. Specify a 16-byte string (clear key value). For
single-length keys, the value must be left-justified and padded with zeros. For
effective single-length keys, the value of the right half must equal the value of
the left half. For double-length keys, specify the left and right key values.

Note: For key types that can be single or double-length, a single length
encrypted key will be generated if a clear_key value of zeros is supplied.

key_type

Secure Key Import

244 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input Type: Character string

The type of key you want to encipher under the master key or an importer key.
Specify an 8-byte field that must contain a keyword from this list or the keyword
TOKEN. If the key type is TOKEN, ICSF determines the key type from the CV
in the key_identifier parameter.

Key type values for the Secure Key Import callable service are: CIPHER,
CVARDEC, CVARENC, CVARPINE, CVARXCVL, CVARXCVR, DATA,
DATAXLAT, DECIPHER, ENCIPHER, EXPORTER, IKEYXLAT, IMPORTER,
IMP-PKA, IPINENC, MAC, MACVER, OKEYXLAT, OPINENC, PINGEN and
PINVER. For information on the meaning of the key types, see Table 3 on page
23.

key_form

Direction: Input Type: Character string

The key form you want to generate. Enter a 4-byte keyword specifying whether
the key should be enciphered under the master key (OP) or the importer
key-encrypting key (IM). The keyword must be left-justified and padded with
blanks. Valid keyword values are OP for encryption under the master key or IM
for encryption under the importer key-encrypting key. If you specify IM, you
must specify an importer key-encrypting key in the importer_key_identifier
parameter. For a key_type of IMP-PKA, this service supports only the OP
key_form.

importer_key_identifier

Direction: Input/Output Type: String

The importer key-encrypting key under which you want to encrypt the clear key.
Specify either a 64-byte string of the internal key format or a key label. If you
specify IM for the key_form parameter, the importer_key_identifier parameter is
required.

key_identifier

Direction: Input/Output Type: String

The generated encrypted key. The parameter is a 64-byte string. The callable
service returns either an internal key token if you encrypted the clear key under
the master key (key_form was OP); or an external key token if you encrypted
the clear key under the importer key-encrypting key (key_form was IM).

If the imported key_type is IMPORTER or EXPORTER and the key_form is OP,
the key_identifier parameter changes direction to both input and output. If the
application passes a valid internal key token for an IMPORTER or EXPORTER
key in this parameter, the NOCV bit is propagated to the imported key token.

Note: Propagation of the NOCV bit is not performed if the service is processed
on the PCI Cryptographic Coprocessor.

The secure key import service does not adjust key parity.

ICSF supports two methods of wrapping the key value in a symmetric key
token: the original ECB wrapping and an enhanced CBC wrapping method
which is ANSI X9.24 compliant. The output key_identifier will use the default

Secure Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 245

wrapping method unless a skeleton token is supplied as input. If a skeleton
token is supplied as input, the wrapping method in the skeleton token will be
used.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS.

Systems with the Cryptographic Coprocessor Feature: To generate
double-length MAC and MACVER keys in the importable form, the ANSI system
keys must be installed in the CKDS.

This service will mark DATA, IMPORTER and EXPORTER key tokens with the
system encryption algorithm.

v This service marks the imported DATA key token according to the system's
default encryption algorithm, unless token copying overrides this.

v KEKs are marked SYS-ENC unless token copying overrides this.

v To override the default mark, supply a valid internal token of the same key type
in the key_identifier field. The service will copy the marks of the supplied token to
the imported token.

Systems with the PCI X Cryptographic Coprocessor, Crypto Express2
Coprocessor, or Crypto Express3 Coprocessor: If key_form is IM and the
importer_key_identifier is NOCV KEK, the NOCV IMPORTER access control point
must be enabled.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 90. Required access control points for Secure Key Import

Key Form Access control point

OP Secure Key Import - DES, OP

IM Secure Key Import - DES, IM

To use a NOCV key-encrypting key with the secure key import service, the NOCV
KEK usage for import-related functions access control point must be enabled in
addition to one or both of the access control points listed.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Secure Key Import

246 z/OS V1R13 ICSF Application Programmer's Guide

|
|

||

||

||

||
|

|
|
|

Table 91. Secure key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

Marking of data encryption algorithm bits
and token copying are performed only if the
service is processed on the Cryptographic
Coprocessor Feature.

PCI Cryptographic
Coprocessor ICSF routes the request to a PCI

Cryptographic Coprocessor if:

v The control vector of a supplied internal
token cannot be processed on the
Cryptographic Coprocessor Feature, or if
the key type is not valid for the
Cryptographic Coprocessor Feature.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Key_type DATAXLAT is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Key_type DATAXLAT is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Key_type DATAXLAT is not supported.

z196 Crypto Express3
Coprocessor

Key_type DATAXLAT is not supported.

Secure Key Import2 (CSNBSKI2 and CSNESKI2)
Use this service to encipher a variable-length symmetric key under the system
master key or an AES IMPORTER KEK, depending on the Key Form rule provided.
This service supports variable-length symmetric keys.

This service returns variable-length CCA key tokens and uses the AESKW wrapping
method.

The callable service can execute only when ICSF is in special secure mode, which
is described in “Special Secure Mode” on page 10.

The callable service name for AMODE(64) is CSNESKI2.

Secure Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 247

|
|
|

Format

CALL CSNBSKI2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_key_bit_length,
clear_key,
key_name_length,
key_name,
user_associated_data_length,
user_associated_data,
key_encrypting_key_identifier_length,
key_encrypting_key_identifier,
target_key_identifier_length,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 3.

rule_array

Secure Key Import2

248 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input Type: String

The rule_array contains keywords that provide control information to the callable
service. The keywords must be in contiguous storage with each of the keywords
left-justified in its own 8-byte location and padded on the right with blanks.

Table 92. Keywords for Secure Key Import2 Control Information

Keyword Meaning

Token algorithm (One Required)

HMAC The target key identifier is to be an HMAC key.

AES The target key identifier is to be an AES key.

Key Form (One Required)

OP Specifies the key should be enciphered under the master
key.

IM Specifies the key should be enciphered under the
key-encrypting key.

Key Type (One Required)

CIPHER The key type of the output token will be CIPHER. Only
valid for AES algorithm.

EXPORTER The key type of the output token will be EXPORTER.
Only valid for AES algorithm.

IMPORTER The key type of the output token will be IMPORTER. Only
valid for AES algorithm.

MAC MAC generation key. Only valid for HMAC algorithm.

MACVER MAC verify key. Only valid for HMAC algorithm.

TOKEN The key type will be determined from the key token
supplied in the target_key_identifier parameter. ICSF does
not check for the length of the key but uses the
clear_key_bit_length parameter to determine the length of
the key.

clear_key_bit_length

Direction: Input Type: Integer

The length of the value supplied in the clear_key parameter in bits. Valid
lengths are 80 to 2048 for HMAC keys, and 128, 192, or 256 for AES keys.

clear_key

Direction: Input Type: String

The value of the key to be imported. The value should be left justified and
padded on the right with zeros to a byte boundary if the clear_key_bit_length is
not a multiple of 8.

key_name_length

Direction: Input Type: Integer

The length of the key_name parameter. Valid values are 0 and 64.

key_name

Secure Key Import2

Chapter 5. Managing Symmetric Cryptographic Keys 249

||

||
|

||
|

||
|

||
|

||

||

|

Direction: Input Type: String

A 64-byte key store label to be stored in the associated data structure of the
token.

user_associated_data_length

Direction: Input Type: Integer

The length of the user-associated data. The valid values are 0 to 255 bytes.

user_associated_data

Direction: Input Type: String

User-associated data to be stored in the associated data structure.

key_encrypting_key_identifier_length

Direction: Input Type: Integer

The byte length of the key_encrypting_key_identifier parameter. When Key
Form is OP, the value must be zero. When Key Form is IM, the value must be
between the actual length of the token and 725 when
key_encrypting_key_identifier is a token. The value must be 64 when
key_encrypting_key_identifier is a label.

key_encrypting_key_identifier

Direction: Input/Output Type: String

When the Key Form rule is OP, key_encrypting_key_identifier is ignored. When
the Key Form rule is IM, key_encrypting_key_identifier contains an internal key
token containing the AES importer key-encrypting key or a key label.

If the token supplied was encrypted under the old master key, the token will be
returned encrypted under the current master key.

target_key_identifier_length

Direction: Input/Output Type: Integer

On input, the byte length of the buffer for the target_key_identifier parameter.
The buffer must be large enough to receive the target key token. The maximum
value is 900 bytes.

On output, the parameter will hold the actual length of the target key token.

target_key_identifier

Direction: Input/Output Type: String

The output key token. On input, this parameter is ignored except when the Key
Type keyword is TOKEN. If you specify the TOKEN keyword, then this field
contains a valid token of the key type you want to import. On output, when Key
Form is OP, this will be an internal variable-length symmetric token. When Key
Form is IM, this will be an external variable-length symmetric token. See
rule_array for a list of valid key types.

Secure Key Import2

250 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|
|
|
|
|

|

|||
|

|
|
|

|
|

|

|
|
|
|
|
|

Usage Notes
The following table shows the access control points in the ICSF role that control the
function of this service.

Table 93. Required access control points for Secure Key Import2

Key Form Access control point

OP Secure Key Import2 – OP

IM Secure Key Import2 – IM

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 94. Secure Key Import2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

This service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

This service is not supported.

Crypto Express3
Coprocessor

This service is not supported.

z196 Crypto Express3
Coprocessor

HMAC key support requires the Nov. 2010
or later licensed internal code (LIC).

AES key support requires the Sep. 2011 or
later licensed internal code (LIC).

Symmetric Key Export (CSNDSYX and CSNFSYX)
Use the symmetric key export callable service to transfer an application-supplied
AES DATA (version X‘04’), DES DATA, or variable-length symmetric key token key
from encryption under a master key to encryption under an application-supplied
RSA public key or AES EXPORTER key. The application-supplied key must be an
ICSF AES, DES, or HMAC internal key token or the label of such a token in the
CKDS. The Symmetric Key Import or Symmetric Key Import2 callable services can
import the key encrypted under the RSA public key or AES EXPORTER at the
receiving node.

The callable service name for AMODE(64) is CSNFSYX.

Secure Key Import2

Chapter 5. Managing Symmetric Cryptographic Keys 251

||

||

||

||
|

|
|

|
|

|
|
|
|
|
|
|
|

Format

CALL CSNDSYX(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier_length,
source_key_identifier,
transporter_key_identifier_length,
transporter_key_identifier,
enciphered_key_length,
enciphered_key)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. Value
may be 1, 2, or 3.

rule_array

Direction: Input Type: String

Symmetric Key Export

252 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|

Keywords that provide control information to the callable service. Table 95 lists
the keywords. Each keyword is left-justified in 8-byte fields and padded on the
right with blanks. All keywords must be in contiguous storage.

Table 95. Keywords for Symmetric Key Export Control Information

Keyword Meaning

Algorithm (One keyword, optional)

AES The key being exported is an AES key. If
source_key_identifier is a variable-length symmetric key
token or label, only the PKOAEP2 and AESKW key
formatting methods are supported.

DES The key being exported is a DES key. This is the default.

HMAC The key being exported is an HMAC key. Only the
PKOAEP2 and AESKW key formatting methods are
supported.

Key Formatting method (One required)

AESKW Specifies that the key is to be formatted using AESKW
and placed in an external variable length CCA token. The
transport_key_identifier must be an AES EXPORTER.
This rule is not valid with the DES Algorithm keyword or
with AES DATA (version X'04') keys.

PKCSOAEP Specifies to format the key according to the method in
RSA DSI PKCS #1V2 OAEP. The default hash method is
SHA-1. Use the SHA-256 keyword for the SHA-256 hash
method.

PKCS–1.2 Specifies to format the key according the method found in
RSA DSI PKCS #1 block type 02 to recover the
symmetric key.

PKOAEP2 Specifies to format the key according to the method found
in RSA DSI PKCS #1 v2.1 RSAES-OAEP documentation.
Not valid with DES algorithm or with AES DATA (version
X’04’) keys. A hash method is required.

ZERO-PAD The clear key is right-justified in the field provided, and
the field is padded to the left with zeros up to the size of
the RSA encryption block (which is the modulus length).

Hash Method (One, optional for PKCSOAEP, required for PKOAEP2. Not valid
with any other Key Formatting method)

SHA-1 Specifies to use the SHA-1 hash method to calculate the
OAEP message hash. This is the default for PKCSOAEP.

SHA-256 Specifies to use the SHA-256 hash method to calculate
the OAEP message hash.

SHA-384 Specifies to use the SHA-384 hash method to calculate
the OAEP message hash. Not valid with PKCSOAEP.

SHA-512 Specifies to use the SHA-512 hash method to calculate
the OAEP message hash. Not valid with PKCSOAEP.

source_key_identifier_length

Direction: Input Type: Integer

The length of the source_key_identifier parameter. The minimum size is 64
bytes. The maximum size is 725 bytes.

Symmetric Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 253

||
|
|
|

||
|
|

||
|
|
|
|

|
|
|

|
|

|
|

|

|

|

source_key_identifier

Direction: Input/Output Type: String

The label or internal token of a secure AES DATA (version X‘04’), DES DATA,
or variable-length symmetric key token to encrypt under the supplied RSA
public key or AES EXPORTER key. The key in the key identifier must match the
algorithm in the rule_array. DES is the default algorithm.

transporter_key_identifier_length

Direction: Input Type: Integer

The length of the transporter_key_identifier parameter. The maximum size is
3500 bytes for an RSA key token or 725 for an AES EXPORTER key token.
The length must be 64 if transporter_key_identifier is a label.

transporter_key_identifier

Direction: Input Type: String

An RSA public key token, AES EXPORTER token, or label of the key to protect
the exported symmetric key.

When the AESKW Key Formatting method is specified, this parameter must be
an AES EXPORTER key token or label with the EXPORT bit on in the
key-usage field. Otherwise, this parameter must be an RSA public key token or
label.

enciphered_key_length

Direction: Input/Output Type: Integer

The length of the enciphered_key parameter. This is updated with the actual
length of the enciphered_key generated. The maximum size you can specify in
this parameter is 900 bytes, although the actual key length may be further
restricted by your hardware configuration (as shown in Table 100 on page 257).

enciphered_key

Direction: Output Type: String

This field contains the exported key, protected by the RSA public or AES
EXPORTER key specified in the transporter_key_identifier field.

Restrictions
If you are running with the Cryptographic Coprocessor Feature, the enhanced
system keys must be present in the CKDS.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

If an RSA public key is specified as the transporter_key_identifier, the hardware
configuration sets the limit on the modulus size of keys for key management; thus,
this service will fail if the RSA key modulus bit length exceeds this limit.

Symmetric Key Export

254 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|

|

|||
|

|
|
|

|

|||
|

|
|

|
|
|
|

|

|||
|

|
|
|
|

|

|||
|

|
|

|
|
|

The strength of the exporter key expected by Symmetric Key Export depends on
the attributes of the key being exported. The resulting return code and reason code
when using an exporter KEK that is weaker depends on the “Variable-length
Symmetric Token - disallow weak wrap” and “Variable-length Symmetric Token -
warn when weak wrap” access control points:

v If the “Variable-length Symmetric Token - disallow weak wrap” access control
point is disabled (the default), the key strength requirement will not be enforced.
Using a weaker key will result in return code 0 with a non-zero reason code if the
“Variable-length Symmetric Token - warn when weak wrap” access control point
is enabled. Otherwise, a reason code of zero will be returned.

v If the “disallow” access control point is enabled (using TKE), the key strength
requirement will be enforced, and attempting to use a weaker key will result in
return code 8.

For AES DATA and AES CIPHER keys, the AES EXPORTER key must be at least
as long as the key being exported to be considered sufficient strength.

For HMAC keys, the AES EXPORTER must be sufficient strength as described in
the following table.

Table 96. AES EXPORTER strength required for exporting an HMAC key under an AES
EXPORTER

Key-usage field 2 in the
HMAC key contains:

Minimum strength of AES EXPORTER to adequately
protect the HMAC key:

SHA-256, SHA-384,
SHA-512

256 bits

SHA-224 192 bits

SHA-1 128 bits

If an RSA public key is specified as the transporter_key_identifier, the RSA key
used must have a modulus size greater than or equal to the total PKOAEP2
message bit length (key size + total overhead):

Table 97. Minimum RSA modulus strength required to contain a PKOAEP2 block when
exporting an AES key

AES key
size

Total message sizes (and therefore minimum RSA key size) when the Hash
Method is:

SHA-1 SHA-256 SHA-384 SHA-512

128 bits 736 bits 928 bits 1184 bits 1440 bits

192 bits 800 bits 992 bits 1248 bits 1504 bits

256 bits 800 bits 1056 bits 1312 bits 1568 bits

Table 98. Minimum RSA modulus length to adequately protect an AES key

AES key to be exported:
Minimum strength of RSA wrapping key to adequately
protect the AES key:

AES 128 3072

AES 192 7860

AES 256 15360

Symmetric Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 255

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

||
|

|
|
|
|

|
|
|

||

||
|

|
|
|

||
|

|
|

|
|

||||

|||||

|||||

|||||
|

||

|
|
|

||

||

||
|

Note that wrapping an AES 192-bit key or an AES 256-bit key with any RSA key will
always be considered a weak wrap.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 99. Required access control points for Symmetric Key Export

Key formatting
method Algorithm Access control point

PKCSOAEP AES Symmetric Key Export - AES,
PKCSOAEP, PKCS-1.2

DES Symmetric Key Export - DES,
PKCS-1.2

PKCS-1.2 AES Symmetric Key Export - AES,
PKCSOAEP, PKCS-1.2

DES Symmetric Key Export - DES,
PKCS-1.2

ZERO-PAD AES Symmetric Key Export - AES,
ZERO-PAD

DES Symmetric Key Export - DES,
ZERO-PAD

PKOAEP2 HMAC Symmetric Key Export - HMAC,
PKOAEP2

AES Symmetric Key Export - AES,
PKOAEP2

AESKW AES or HMAC Symmetric Key Export - AESKW

Restricted operation Access control point

Prohibit wrapping a key with a weaker key Variable-length Symmetric Token
- disallow weak wrap

Issue a non-zero reason code when using a weak
wrapping key

Variable-length Symmetric Token
- warn when weak wrap

Note that both the “Variable-length Symmetric Token - disallow weak wrap” and
“Variable-length Symmetric Token - warn when weak wrap” access control points
are disabled in the default role.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Symmetric Key Export

256 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|
|

||

|
|||

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||

|

||

||
|

|
|
|
|
|

|
|
|

Table 100. Symmetric key export required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

RSA keys with moduli greater than 1024-bit
length are not supported.

Encrypted AES keys are not supported.

The DES, HMAC, and PKOAEP2 keywords
are not supported.

PCI Cryptographic
Coprocessor

ICSF routes this service to a PCI
Cryptographic Coprocessor if one is
available on your server. This service will
not be routed to a PCI Cryptographic
Coprocessor if the modulus bit length of the
RSA public key is less than 512 bits.

Use of keyword PKCSOAEP requires the
PCI Cryptographic Coprocessor and uses
the SHA-1 hash method. The SHA-256
keyword is not supported for PKCSOAEP.

RSA keys with moduli greater than 2048-bit
length are not supported.

Encrypted AES keys are not supported.

The DES, AESKW, HMAC, and PKOAEP2
keywords are not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

RSA keys with moduli greater than 2048-bit
length are not supported.

Encrypted AES keys are not supported.

The AESKW, HMAC, and PKOAEP2
keywords are not supported.

The SHA-256 keyword is not supported for
PKCSOAEP.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Encrypted AES key support requires the
Nov. 2008 or later licensed internal code
(LIC).

The AESKW, HMAC, and PKOAEP2
keywords are not supported.

The SHA-256 keyword is not supported for
PKCSOAEP.

Symmetric Key Export

Chapter 5. Managing Symmetric Cryptographic Keys 257

|
|
|
|

|
|

|
|

|
|

|
|

|
|

Table 100. Symmetric key export required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Encrypted AES key support requires the
Nov. 2008 or later licensed internal code
(LIC).

The AESKW, HMAC, and PKOAEP2
keywords are not supported.

The SHA-256 keyword is not supported for
PKCSOAEP.

Crypto Express3
Coprocessor

The AESKW, HMAC, and PKOAEP2
keywords are not supported.

The SHA-256 keyword is not supported for
PKCSOAEP.

z196 Crypto Express3
Coprocessor

HMAC key support requires the Nov. 2010
licensed internal code (LIC).

Variable-length AES Keys, the AESKW
method, and PKCSOAEP with the SHA-256
hash method require the Sep. 2011 or later
licensed internal code (LIC).

Symmetric Key Generate (CSNDSYG and CSNFSYG)
Use the symmetric key generate callable service to generate an AES or DES DATA
key and return the key in two forms: enciphered under the master key and
encrypted under an RSA public key.

You can import the RSA public key encrypted form by using the symmetric key
import service at the receiving node.

Also use the symmetric key generate callable service to generate any DES importer
or exporter key-encrypting key encrypted under a RSA public key according to the
PKA92 formatting structure. See “PKA92 Key Format and Encryption Process” on
page 881 for more details about PKA92 formatting.

The callable service name for AMODE(64) invocation is CSNFSYG.

Symmetric Key Export

258 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|
|

|
|

|
|

|
|

|
|
|
|

Format

CALL CSNDSYG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_encrypting_key_identifier,
RSA_public_key_identifier_length,
RSA_public_key_identifier,
local_enciphered_key_token_length,
local_enciphered_key_token,
RSA_enciphered_key_length,
RSA_enciphered_key)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 1, 2, 3, 4, 5, 6, or 7.

rule_array

Direction: Input Type: String

Symmetric Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 259

|
|

Keywords that provide control information to the callable service. Table 101 lists
the keywords. The keywords must be 8 bytes of contiguous storage with the
keyword left-justified in its 8-byte location and padded on the right with blanks.

Table 101. Keywords for Symmetric Key Generate Control Information

Keyword Description Algorithm

Algorithm (one keyword, optional)

AES The key being generated is a secure
AES key.

AES

DES The key being generated is a DES
key. This is the default.

DES

Key formatting method (one keyword required)

PKA92 Specifies the key-encrypting key is
to be encrypted under a PKA96
RSA public key according to the
PKA92 formatting structure.

DES

PKCSOAEP Specifies using the method found in
RSA DSI PKCS #1V2 OAEP. The
default hash method is SHA-1. Use
the SHA-256 keyword for the
SHA-256 hash method.

AES or DES

PKCS-1.2 Specifies the method found in RSA
DSI PKCS #1 block type 02.

AES or DES

ZERO-PAD The clear key is right-justified in the
field provided, and the field is
padded to the left with zeros up to
the size of the RSA encryption block
(which is the modulus length).

AES or DES

Key Length (optional - for use with PKA92)

SINGLE-R For key-encrypting keys, this
specifies that the left half and right
half of the generated key will have
identical values. This makes the key
operate identically to a single-length
key with the same value. Without
this keyword, the left and right
halves of the key-encrypting key will
each be generated randomly and
independently.

DES

Key Length (optional - for use with PKCSOAEP, PKCS-1.2, or ZERO-PAD)

SINGLE,
KEYLN8

Specifies that the generated key
should be 8 bytes in length.

DES

DOUBLE Specifies that the generated key
should be 16 bytes in length.

DES

KEYLN16 Specifies that the generated key
should be 16 bytes in length.

AES or DES

KEYLN24 Specifies that the generated key
should be 24 bytes in length.

AES or DES

KEYLN32 Specifies that the generated key
should be 32 bytes in length.

AES

Encipherment method for the local enciphered copy of the key (optional - for use
with PKCSOAEP, PKCS-1.2, or ZERO-PAD

Symmetric Key Generate

260 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|

Table 101. Keywords for Symmetric Key Generate Control Information (continued)

Keyword Description Algorithm

OP Enciphers the key with the master
key. The DES master key is used
with DES keys and the AES master
key is used with AES keys.

AES or DES

EX Enciphers the key with the
EXPORTER key that is provided
through the
key_encrypting_key_identifier
parameter.

DES

IM Enciphers the key with the
IMPORTER key-encrypting key
specified with the
key_encrypting_key_identifier
parameter.

DES

Key Wrapping Method (optional)

USECONFG Specifies that the system default
configuration should be used to
determine the wrapping method.
This is the default keyword.

The system default key wrapping
method can be specified using the
DEFAULTWRAP parameter in the
installation options data set. See the
z/OS Cryptographic Services ICSF
System Programmer's Guide.

AES and DES

WRAP-ENH Use enhanced key wrapping
method, which is compliant with the
ANSI X9.24 standard.

DES

WRAP-ECB Use original key wrapping method,
which uses ECB wrapping for DES
key tokens and CBC wrapping for
AES key tokens.

AES or DES

Translation Control (optional)

ENH-ONLY Restrict rewrapping of the
target_key_identifier token. Once
the token has been wrapped with
the enhanced method, it cannot be
rewrapped using the original
method.

DES

Hash Method (optional - only valid with PKCSOAEP)

SHA-1 Specifies to use the SHA-1 hash
method to calculate the OAEP
message hash. This is the default.

AES or DES

SHA-256 Specifies to use the SHA-256 hash
method to calculate the OAEP
message hash.

AES or DES

key_encrypting_key_identifier

Direction: Input/Output Type: String

Symmetric Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 261

|

|

||
|
|

|

||
|
|

|

The label or internal token of a key-encrypting key. If the rule_array specifies
IM, this DES key must be an IMPORTER. If the rule_array specifies EX, this
DES key must be an EXPORTER. Otherwise, the parameter is ignored.

RSA_public_key_identifier_length

Direction: Input Type: Integer

The length of the RSA_public_key_identifier parameter. If the
RSA_public_key_identifier parameter is a label, this parameter specifies the
length of the label. The maximum size is 3500 bytes.

RSA_public_key_identifier

Direction: Input Type: String

The token, or label, of the RSA public key to be used for protecting the
generated symmetric key.

local_enciphered_key_token_length (was DES_enciphered_key_token_length)

Direction: Input/Output Type: Integer

The length in bytes of the local_enciphered_key_token. This field is updated
with the actual length of the token that is generated. The minimum length is
64-bytes and the maximum length is 128 bytes.

local_enciphered_key_token (was DES_enciphered_key_token)

Direction: Input/Output Type: String

This parameter contains the generated DATA key in the form of an internal or
external token, depending on rule_array specification. If you specify PKA92, on
input specify an internal (operational) key token of an Importer or Exporter Key.

RSA_enciphered_key_length

Direction: Input/Output Type: Integer

The length of the RSA_enciphered_key parameter. This service updates this
field with the actual length of the RSA_enciphered_key it generates. The
maximum size is 512 bytes.

RSA_enciphered_key

Direction: Input/Output Type: String

This field contains the RSA enciphered key, which is protected by the public key
specified in the RSA_public_key_identifier field.

Restrictions
If the service is executed on the Cryptographic Coprocessor Feature, and you
specify IM in the rule_array, you must enable Special Secure Mode.

Use of PKA92 or PKCSOAEP requires a PCICC, PCIXCC, CEX2C, or CEX3C.

Symmetric Key Generate

262 z/OS V1R13 ICSF Application Programmer's Guide

|
|

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

If the service is executed on the Cryptographic Coprocessor Feature, the generated
internal DATA key token is marked according to the system default algorithm.

The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this service will fail if the RSA key modulus bit length exceeds
this limit.

Specification of PKA92 with an input NOCV key-encrypting key token is not
supported.

Use the PKA92 key-formatting method to generate a key-encrypting key. The
service enciphers one key copy using the key encipherment technique employed in
the IBM Transaction Security System (TSS) 4753, 4755, and AS/400 cryptographic
product PKA92 implementations (see “PKA92 Key Format and Encryption Process”
on page 881). The control vector for the RSA-enciphered copy of the key is taken
from an internal (operational) DES key token that must be present on input in the
RSA_enciphered_key variable. Only key-encrypting keys that conform to the rules
for an OPEX case under the key generate service are permitted. The control vector
for the local key is taken from a DES key token that must be present on input in the
local_enciphered_key_token variable. The control vector for one key copy must be
from the EXPORTER class while the control vector for the other key copy must be
from the IMPORTER class.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 102. Required access control points for Symmetric Key Generate

Key algorithm Key formatting rule Access control point

DES PKCS-1.2 Symmetric Key Generate - DES,
PKCS-1.2

DES ZERO-PAD Symmetric Key Generate - DES,
ZERO-PAD

DES PKA92 Symmetric Key Generate - DES,
PKA92

AES PKCSOAEP, PKCS-1.2 Symmetric Key Generate - AES,
PKCSOAEP, PKCS-1.2

AES ZERO-PAD Symmetric Key Generate - AES,
ZERO-PAD

When the WRAP-ECB or WRAP-ENH keywords are specified and the default
key-wrapping method setting does not match the keyword, the Symmetric Key
Generate - Allow wrapping override keywords access control point must be
enabled.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Symmetric Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 263

|

|
|

||

|||

|||
|

|||
|

|||
|

|||
|

|||
|
|

|
|
|
|

Table 103. Symmetric key generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

ICSF routes this service to a PCI
Cryptographic Coprocessor if one is
available on your server. This service will
not be routed to a PCI Cryptographic
Coprocessor if the modulus bit length of the
RSA public key is less than 512 bits.

RSA keys with moduli greater than 1024-bit
length are not supported.

Secure AES keys are not supported.

DES, ENH-ONLY, USECONFG,
WRAP-ENH, WRAP-ECB, and SHA-256
keywords not supported.

PCI Cryptographic
Coprocessor

Use of keyword PKA92 or PKCSOAEP
requires the PCI Cryptographic
Coprocessor. PKCSOAEP uses the SHA-1
hash method.

RSA keys with moduli greater than 2048-bit
length are not supported.

Secure AES keys are not supported.

DES, ENH-ONLY, USECONFG,
WRAP-ENH, WRAP-ECB, SHA-1, and
SHA-256 keywords not supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

The generated internal DATA key will not
have any system encryption algorithm
markings.

RSA keys with moduli greater than 2048-bit
length are not supported.

Secure AES keys are not supported.

ENH-ONLY, USECONFG, WRAP-ENH,
WRAP-ECB, and SHA-256 keywords not
supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

Symmetric Key Generate

264 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

Table 103. Symmetric key generate required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Systems z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

The generated internal DATA key will not
have any system encryption algorithm
markings.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH,
WRAP-ECB, and SHA-256 not supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

The generated internal DATA key will not
have any system encryption algorithm
markings.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

ENH-ONLY, USECONFG, WRAP-ENH,
WRAP-ECB, and SHA-256 not supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

Crypto Express3
Coprocessor

The generated internal DATA key will not
have any system encryption algorithm
markings.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

The SHA-256 keyword is not supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

z196 Crypto Express3
Coprocessor

The generated internal DATA key will not
have any system encryption algorithm
markings.

PKCSOAEP with the SHA-256 hash method
requires the Sep. 2011 or later licensed
internal code (LIC).

Symmetric Key Generate

Chapter 5. Managing Symmetric Cryptographic Keys 265

|
|

|
|

|
|

|
|

|

|
|

|
|
|

Symmetric Key Import (CSNDSYI and CSNFSYI)
Use the symmetric key import callable service to import a symmetric AES DATA or
DES DATA key enciphered under an RSA public key. It returns the key in
operational form, enciphered under the master key.

This service also supports import of a PKA92-formatted DES key-encrypting key
under a PKA96 RSA public key.

The callable service name for AMODE(64) is CSNFSYI.

Format

CALL CSNDSYI(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
RSA_enciphered_key_length,
RSA_enciphered_key,
RSA_private_key_identifier_length,
RSA_private_key_identifier,
target_key_identifier_length,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

Symmetric Key Import

266 z/OS V1R13 ICSF Application Programmer's Guide

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 1, 2, 3, 4, or 5.

rule_array

Direction: Input Type: String

The keywords that provide control information to the callable service. Table 104
provides a list. The recovery method is the method to use to recover the
symmetric key. The keywords must be 8 bytes of contiguous storage with the
keyword left-justified in its 8-byte location and padded on the right with blanks.

Table 104. Keywords for Symmetric Key Import Control Information

Keyword Meaning

Algorithm (one keyword, optional)

AES The key being imported is an AES key.

DES The key being imported is a DES key. This is the default.

Recovery Method (required)

PKA92 Supported by the DES algorithm. Specifies the
key-encrypting key is encrypted under a PKA96 RSA
public key according to the PKA92 formatting structure.

PKCSOAEP Specifies to use the method found in RSA DSI PKCS
#1V2 OAEP. Supported by the DES and AES algorithms.
The default hash method is SHA-1. Use the SHA-256
keyword for the SHA-256 hash method.

PKCS-1.2 Specifies to use the method found in RSA DSI PKCS #1
block type 02. Supported by the DES and AES
algorithms.

ZERO-PAD The clear key is right-justified in the field provided, and
the field is padded to the left with zeros up to the size of
the RSA encryption block (which is the modulus length).
Supported by the DES and AES algorithms.

Key Wrapping Method (optional)

USECONFG Specifies that the system default configuration should be
used to determine the wrapping method. This is the
default keyword.

The system default key wrapping method can be
specified using the DEFAULTWRAP parameter in the
installation options data set. See the z/OS Cryptographic
Services ICSF System Programmer's Guide.

WRAP-ENH Use enhanced key wrapping method, which is compliant
with the ANSI X9.24 standard.

WRAP-ECB Use original key wrapping method, which uses ECB
wrapping for DES key tokens and CBC wrapping for
AES key tokens.

Translation Control (optional)

Symmetric Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 267

|
|

|
|

Table 104. Keywords for Symmetric Key Import Control Information (continued)

Keyword Meaning

ENH-ONLY Restrict rewrapping of the target_key_identifier token.
Once the token has been wrapped with the enhanced
method, it cannot be rewrapped using the original
method.

Hash Method (optional - only valid with PKCSOAEP)

SHA-1 Specifies to use the SHA-1 hash method to calculate the
OAEP message hash. This is the default.

SHA-256 Specifies to use the SHA-256 hash method to calculate
the OAEP message hash.

RSA_enciphered_key_length

Direction: Input Type: integer

The length of the RSA_enciphered_key parameter. The maximum size is 512
bytes.

RSA_enciphered_key

Direction: Input Type: String

The key to import, protected under an RSA public key. The encrypted key is in
the low-order bits (right-justified) of a string whose length is the minimum
number of bytes that can contain the encrypted key. This string is left-justified
within the RSA_enciphered_key parameter.

RSA_private_key_identifier_length

Direction: Input Type: Integer

The length of the RSA_private_key_identifier parameter. When the
RSA_private_key_identifier parameter is a key label, this field specifies the
length of the label. The maximum size is 3500 bytes.

RSA_private_key_identifier

Direction: Input Type: String

An internal RSA private key token or label whose corresponding public key
protects the symmetric key.

target_key_identifier_length

Direction: Input/Output Type: Integer

The length of the target_key_identifier parameter. This field is updated with the
actual length of the target_key_identifier that is generated. The size must be 64
bytes.

target_key_identifier

Direction: Input/Output Type: String

Symmetric Key Import

268 z/OS V1R13 ICSF Application Programmer's Guide

|

||
|

||
|

This field contains the internal token of the imported symmetric key. Except for
PKA92 processing, this service produces a DATA key token with a key of the
same length as that contained in the imported token.

Restrictions
The exponent of the RSA public key must be odd.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

If the service is executed on the Cryptographic Coprocessor Feature, the generated
internal DATA key token is marked according to the default system encryption
algorithm unless token copying overrides this. Token copying is accomplished by
supplying a valid DATA token with the desired algorithm marks in the
target_key_identifier field.

The hardware configuration sets the limit on the modulus size of keys for key
management; thus, this service will fail if the RSA key modulus bit length exceeds
this limit. The service will fail with return code 12 and reason code 11020.

Specification of PKA92 with an input NOCV key-encrypting key token is not
supported.

During initialization of a PCICC, PCIXCC, CEX2C, or CEX3C, an Environment
Identification, or EID, of zero will be set in the coprocessor. This will be interpreted
by the PKA Symmetric Key Import service to mean that environment identification
checking is to be bypassed. Thus it is possible on a OS/390 system for a
key-encrypting key RSA-enciphered at a node (EID) to be imported at the same
node.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 105. Required access control points for Symmetric Key Import

Key algorithm Key formatting rule Access control point

DES PKCS-1.2 Symmetric Key Import - DES,
PKCS-1.2

DES PKA92 KEK Symmetric Key Import - DES,
PKA92 KEK

DES ZERO-PAD Symmetric Key Import - DES,
ZERO-PAD

AES PKCSOAEP, PKCS-1.2 Symmetric Key Import - AES,
PKCSOAEP, PKCS-1.2

AES ZERO-PAD Symmetric Key Import - AES,
ZERO-PAD

When the WRAP-ECB or WRAP-ENH keywords are specified and the default
key-wrapping method setting does not match the keyword, the Symmetric Key
Import - Allow wrapping override keywords access control point must be
enabled.

Symmetric Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 269

|
|

||

|||

|||
|

|||
|

|||
|

|||
|

|||
|
|

|
|
|
|

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 106. Symmetric key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

Request routed to the CCF when -

v The RSA_private_key_identifier is a
modulus-exponent form private key with a
private section ID of X'02'

v The key modulus bit length is less than
512

RSA keys with moduli greater than 1024-bit
length are not supported.

Encrypted AES keys are not supported.

DES, ENH-ONLY, USECONFG, WRAP-ENH
and WRAP-ECB keywords not supported.

PCI Cryptographic
Coprocessor

Request routed to PCICC when

v The RSA_private_key_identifier is a
modulus-exponent form private key with a
private section ID of X'06'

v The RSA_private_key_identifier is a CRT
form private key with a private section ID
of X'08'

v The RSA_private_key_identifier is a
retained key

v PKA92 recovery method specified

v PKCSOAEP recovery method (which
uses the SHA-1 hash method) specified

RSA keys with moduli greater than 2048-bit
length are not supported.

Encrypted AES keys are not supported.

DES, ENH-ONLY, USECONFG,
WRAP-ENH, WRAP-ECB, and SHA-256
keywords not supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

Symmetric Key Import

270 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|
|

|
|
|

|
|

Table 106. Symmetric key import required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

The imported internal DATA key will not
have any system encryption markings. Old
RSA private keys encrypted under the CCF
KMMK is not usable if the KMMK is not the
same as the PCIXCC/CEX2C ASYM-MK.

RSA keys with moduli greater than 2048-bit
length are not supported.

Encrypted AES keys are not supported.

ENH-ONLY, USECONFG, WRAP-ENH,
WRAP-ECB, and SHA-256 keywords not
supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

The imported internal DATA key will not
have any system encryption markings. Old
RSA private keys encrypted under the CCF
KMMK is not usable if the KMMK is not the
same as the CEX2C ASYM-MK.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Encrypted AES keys are not supported.

ENH-ONLY, USECONFG, WRAP-ENH,
WRAP-ECB, and SHA-256 keywords not
supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

Symmetric Key Import

Chapter 5. Managing Symmetric Cryptographic Keys 271

|
|
|

|
|

|
|
|

|
|

Table 106. Symmetric key import required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

The imported internal DATA key will not
have any system encryption markings. Old
RSA private keys encrypted under the CCF
KMMK is not usable if the KMMK is not the
same as the CEX2C or CEX3C ASYM-MK.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Encrypted AES key support requires the
Nov. 2008 or later licensed internal code
(LIC).

ENH-ONLY, USECONFG, WRAP-ENH,
WRAP-ECB, and SHA-256 keywords not
supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

Crypto Express3
Coprocessor

The imported internal DATA key will not
have any system encryption markings. Old
RSA private keys encrypted under the CCF
KMMK is not usable if the KMMK is not the
same as the CEX2C or CEX3C ASYM-MK.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Encrypted AES key support requires the
Nov. 2008 or later licensed internal code
(LIC).

The SHA-256 keyword is not supported.

PKCSOAEP with the SHA-256 hash method
is not supported.

z196 Crypto Express3
Coprocessor

The imported internal DATA key will not
have any system encryption markings. Old
RSA private keys encrypted under the CCF
KMMK is not usable if the KMMK is not the
same as the CEX2C or CEX3C ASYM-MK.

PKCSOAEP with the SHA-256 hash method
requires the Sep. 2011 or later licensed
internal code (LIC).

Symmetric Key Import2 (CSNDSYI2 and CSNFSYI2)
Use the Symmetric Key Import2 callable service to import an HMAC or AES key
enciphered under an RSA public key or AES EXPORTER key. It returns the key in
operational form, enciphered under the master key.

Symmetric Key Import

272 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|

|
|

|

|
|

|
|
|

|
|

This service returns a variable-length CCA key token and uses the AESKW
wrapping method.

The callable service name for AMODE(64) is CSNFSYI2.

Format

CALL CSNDSYI2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
enciphered_key_length,
enciphered_key,
transport_key_identifier_length,
transport_key_identifier,
key_name_length,
key_name,
target_key_identifier_length,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

Symmetric Key Import2

Chapter 5. Managing Symmetric Cryptographic Keys 273

|
|
|
|

The number of keywords you supplied in the rule_array parameter. The value
must be 2.

rule_array

Direction: Input Type: String

The keywords that provide control information to the callable service. The
following table provides a list. The recovery method is the method to use to
recover the symmetric key. The keywords must be 8 bytes of contiguous
storage with the keyword left-justified in its 8-byte location and padded on the
right with blanks.

Table 107. Keywords for Symmetric Key Import2 Control Information

Keyword Meaning

Algorithm (One required)

AES The key being imported is an AES key.

HMAC The key being imported is an HMAC key.

Recovery Method (Required)

AESKW Specifies the enciphered key has been wrapped with the
AESKW formatting method.

PKOAEP2 Specifies to use the method found in RSA DSI PKCS
#1V2 OAEP.

enciphered_key_length

Direction: Input Type: integer

The length of the enciphered_key parameter. The maximum size is 900 bytes.

enciphered_key

Direction: Input Type: String

The key to import, protected under either an RSA public key or an AES KEK. If
the Recovery Method is PKOAEP2, the encrypted key is in the low-order bits
(right-justified) of a string whose length is the minimum number of bytes that
can contain the encrypted key. If the Recovery Method is AESKW, the
encrypted key is an AES key or HMAC key in the external variable length key
token.

transport_key_identifier_length

Direction: Input Type: Integer

The length of the transport_key_identifier parameter. When the
transport_key_identifier parameter is a key label, this field must be 64. The
maximum size is 3500 bytes for an RSA private key or 725 bytes for an AES
IMPORTER KEK.

transport_key_identifier

Direction: Input Type: String

Symmetric Key Import2

274 z/OS V1R13 ICSF Application Programmer's Guide

||

||

|

||

||

|

||
|

||
|
|

|

|||
|

|

|

|||
|

|
|
|
|
|
|

|

|||
|

|
|
|
|

|

|||
|

An internal RSA private key token, internal AES IMPORTER KEK, or the
64-byte label of a key token whose corresponding key protects the symmetric
key.

When the AESKW Key Formatting method is specified, this parameter must be
an AES IMPORTER with the IMPORT bit on in the key-usage field. Otherwise,
this parameter must be an RSA private key.

key_name_length

Direction: Input Type: Integer

The length of the key_name parameter for target_key_identifier. Valid values
are 0 and 64.

key_name

Direction: Input Type: String

A 64-byte key store label to be stored in the associated data structure of
target_key_identifier.

target_key_identifier_length

Direction: Input/Output Type: Integer

On input, the byte length of the buffer for the target_key_identifier parameter.
The buffer must be large enough to receive the target key token. The maximum
value is 725 bytes.

On output, the parameter will hold the actual length of the target key token.

target_key_identifier

Direction: Output Type: String

This parameter contains the internal token of the imported symmetric key.

Restrictions
The exponent of the RSA public key must be odd.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

This is the message layout used to encode the key material exported with the new
PKOAEP2 formatting method.

Table 108. PKCS#1 OAEP encoded message layout (PKOAEP2)

Field Size Value

Hash field 32 Bytes SHA-256 hash of associated data section in
the source key identifier

Key Bit Length 2 Bytes variable

Key Material Byte length of the
key material (rounded
up to the nearest
byte)

variable

Symmetric Key Import2

Chapter 5. Managing Symmetric Cryptographic Keys 275

|
|
|

|
|
|

Hash field
The associated data for the HMAC variable length token is hashed using
SHA-256. Specifically referring to vartoken.h, this is the "VarAssocData_t
AD" section of the VarKeyTkn_t structure, for the full length indicated in the
'SectLn' field of the VarAssocData_t.

Key Bit Length
A 2 Byte key bit length field.

Key Material
The key material is padded to the nearest byte with '0' bits.

This table lists the access control points in the ICSF role that control the function for
this service.

Table 109. Symmetric Key Import2 Access Control Points

Key formatting method Algorithm Access control point

PKOAEP2 HMAC, AES Symmetric Key Import2 -
HMAC/AES, PKOAEP2

AESKW HMAC, AES Symmetric Key Import2 -
HMAC/AES, AESKW

When the Symmetric Key Import2 - disallow weak import access control point is
enabled, a key token wrapped with a weaker key will not be imported. When the
Variable-length Symmetric Token - warn when weak wrap access control point
is enabled, the reason code will indicate when the wrapping key is weaker than the
key being imported.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 110. Symmetric key import2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

This service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

This service is not supported.

Crypto Express3
Coprocessor

This service is not supported.

Symmetric Key Import2

276 z/OS V1R13 ICSF Application Programmer's Guide

||

|||

|||
|

|||
|
|

|
|
|
|
|

Table 110. Symmetric key import2 required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

z196 Crypto Express3
Coprocessor

HMAC key support requires the Nov. 2010
or later licensed internal code (LIC).

AES key support and the AESKW wrapping
method require the Sep. 2011 or later
licensed internal code (LIC).

Transform CDMF Key (CSNBTCK and CSNETCK)
This callable service is only supported on an IBM Eserver zSeries 900.

Use the transform CDMF key callable service to change a CDMF DATA key in an
internal or external token to a transformed shortened DES key. You can also use
the key label of a CKDS record as input.

The Cryptographic Coprocessor Feature on IBM Eserver zSeries 900, S/390
Enterprise Servers and S/390 Multiprise is configured as either CDMF or
DES-CDMF. This callable service ignores the input internal DATA token markings,
and it marks the output internal token for use in the DES.

If the input DATA key is in an external token, the operational KEK must be marked
as DES or SYS-ENC. The service fails for an external DATA key encrypted under a
KEK that is marked as CDMF.

The callable service name for AMODE(64) invocation is CSNETCK.

Format

CALL CSNBTCK(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier,
kek_key_identifier,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

Symmetric Key Import2

Chapter 5. Managing Symmetric Cryptographic Keys 277

|
|

|
|
|

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. This
number must be 0.

rule_array

Direction: Input Type: String

Currently no rule_array keywords are defined for this service, but you still must
specify this parameter.

source_key_identifier

Direction: Input/Output Type: String

A 64-byte string of the internal token, external token or key label that contains
the DATA key to transform. Token markings on this key token are ignored.

kek_key_identifier

Direction: Input/Output Type: String

A 64-byte string of the internal token or a key label of a key encrypting key
under which the source_key_identifier is encrypted.

Note: If you supply a label for this parameter, the label must be unique in the
CKDS.

target_key_identifier

Direction: Output Type: String

A 64-byte string where the internal token or external token of the transformed
shortened DES key is returned. The internal token is marked as DES.

Transform CDMF Key

278 z/OS V1R13 ICSF Application Programmer's Guide

Restrictions
This service is available on S/390 Enterprise Servers and S/390 Multiprise with
Cryptographic Coprocessor Features. These systems may be configured as either
CDMF or DES-CDMF.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

This service transforms a CDMF DATA key to a transformed shortened DES DATA
key to allow interoperability to a DES-only capable system. The algorithm is
described in Transform CDMF Key Algorithm.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 111. Transform CDMF key required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

This callable service is not supported.

IBM System z10 EC

IBM System z10 BC

This callable service is not supported.

z196 This callable service is not supported.

Trusted Block Create (CSNDTBC and CSNFTBC)
This callable service is used to create a trusted block in a two step process. The
block will be in external form, encrypted under an IMP-PKA transport key. This
means that the MAC key contained within the trusted block will be encrypted under
the IMP-PKA key.

The callable service name for AMODE(64) invocation is CSNFTBC.

Transform CDMF Key

Chapter 5. Managing Symmetric Cryptographic Keys 279

Format

CALL CSNDTBC(
return_code,
reason_code
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_block_length
input_block_identifier
transport_key_identifier,
trusted_block_length,
trusted_block_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
ICSF and TSS Return and Reason Codes lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the specific results of processing. Each return code
has different reason codes that indicate specific processing problems.
Appendix A, “ICSF and TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. This
number must be 1.

rule_array

Direction: Input Type: String

Specifies a string variable containing an array of keywords. The keywords are 8
bytes long and must be left-justified and right padded with blanks

Trusted Block Create

280 z/OS V1R13 ICSF Application Programmer's Guide

This table lists the rule_array keywords for this callable service.

Table 112. Rule_array keywords for Trusted Block Create (CSNDTBC)

Keyword Meaning

Operational Keywords - One Required

INACTIVE Create the trusted block, but in inactive form. The MAC
key is randomly generated, encrypted with the transport
key, and inserted into the block. The ACTIVE flag is set to
False (0), and the MAC is calculated over the block and
inserted in the appropriate field. The resulting block is
fully formed and protected, but it is not usable in any
other CCA services. Use of the INACTIVE keyword is
authorized by the 0x030F access control point.

ACTIVATE This makes the trusted block usable in CCA services. Use
of the ACTIVATE keyword is authorized by the 0x0310
access control point.

input_block_length

Direction: Input/Output Type: String

Specifies the number of bytes of data in the input_block_identifier parameter.
The maximum length is 3500 bytes.

input_block_identifier

Direction: Input Type: String

Specifies a trusted block label or complete trusted block token, which will be
updated by the service and returned in trusted_block_identifier. The length is
indicated by input_block_length. Its content depends on the rule array keywords
supplied to the service.

When rule_array is INACTIVE the block is complete but typically does not have
MAC protection. If MAC protection is present due to recycling an existing
trusted block, then the MAC key and MAC value will be overlaid by the new
MAC key and MAC value. The input_block_identifier includes all fields of the
trusted block token, but the MAC key and MAC will be filled in by the service.
The Active flag will be set to False (0) in the block returned in
trusted_block_identifier.

When the rule_array is ACTIVATE the block is complete, including the MAC
protection which is validated during execution of the service. The Active flag
must be False (0) on input. On output, the block will be returned in
trusted_block_identifier provided the identifier is a token, with the Active flag
changed to True (1), and the MAC value recalculated using the same MAC key.
If the trusted_block_identifier is a label, the block will be written to the PKDS.

transport_key_identifier

Direction: Input Type: String

Specifies a key label or key token for an IMP-PKA key that is used to protect
the trusted block.

trusted_block_length

Direction: Input/Output Type: Integer

Trusted Block Create

Chapter 5. Managing Symmetric Cryptographic Keys 281

Specifies the number of bytes of data in trusted_block_identifier parameter. The
maximum length is 3500 bytes.

trusted_block_identifier

Direction: Output Type: String

Specifies a trusted block label or trusted block token for the trusted block
constructed by the service. On input, the trusted_block_length contains the size
of this buffer. On output, the trusted_block_length is updated with the actual
byte length of the trusted block written to the buffer if the
trusted_block_identifier is a token. The trusted block consists of the data
supplied in input_block_identifier, but with the MAC protection and Active flag
updated according to the rule array keyword that is provided. See Table 112 on
page 281 for details on the actions. If the trusted_block_identifier is a label
identifying a key record in key storage, the returned trusted block token will be
written to the PKDS.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 113. Required access control points for Trusted Block Create

Rule array keyword Access control point

INACTIVE Trusted Block Create - Create Block in Inactive form

ACTIVATE Trusted Block Create - Activate an Inactive Block

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 114. Trusted Block Create required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This callable service is not supported.

IBM Eserver zSeries
900

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

Cryptographic
Express2
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Trusted Block Create

282 z/OS V1R13 ICSF Application Programmer's Guide

|
|

||

||

||

||
|

Table 114. Trusted Block Create required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

z196 Crypto Express3
Coprocessor

TR-31 Export (CSNBT31X and CSNET31X)
Use the TR-31 Export callable service to convert a CCA token to TR-31 format for
export to another party. Since there is not always a one-to-one mapping between
the key attributes defined by TR-31 and those defined by CCA, the caller may need
to specify the attributes to attach to the exported key through the rule array.

The callable service name for AMODE(64) is CSNET31X.

Format

CALL CSNBT31X(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_version_number,
key_field_length,
source_key_identifier_length,
source_key_identifier,
unwrap_kek_identifier_length,
unwrap_kek_identifier,
wrap_kek_identifier_length,
wrap_kek_identifier,
opt_blks_length,
opt_blocks,
tr31_key_block_length,
tr31_key_block)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Trusted Block Create

Chapter 5. Managing Symmetric Cryptographic Keys 283

|

|
|
|
|

|

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||
|

|
|

|

|||
|

|
|
|
|

|
|

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 3, 4, or 5.

rule_array

Direction: Input Type: String

The rule_array contains keywords that provide control information to the callable
service. The keywords are 8 bytes in length and must be left-aligned and
padded on the right with space characters. The rule_array keywords for this
callable service are shown in the following table. See Table 116 on page 289 for
valid combinations of Usage and Mode

Table 115. Keywords for TR-31 Export Rule Array Control Information

Keyword Meaning

TR-31 key block protection method – one required

VARXOR-A Use the variant method corresponding to a TR-31 Key Block
Version ID of “A” (0x41)

VARDRV-B Use the key derivation method corresponding to a TR-31 Key
Block Version ID of “B” (0x42)

VARXOR-C Use the variant method corresponding to a TR-31 Key Block
Version ID of “C” (0x43)

TR-31 key usage values for output key – one required
Note: If ATTR-CV is specified from the Control Vector Transport group, then usage
keyword must not be specified. The proprietary usage ‘10’ will be used.

BDK Base Derivation Key (BDK) – (B0)

CVK Card Verification Key (CVK) – (C0)

ENC Data encryption key – (D0)

EMVACMK EMV application cryptogram master key – (E0)

EMVSCMK EMV secure messaging for confidentiality master key – (E1)

EMVSIMK EMV secure messaging for integrity master key – (E2)

EMVDAMK EMV data authentication code key – (E3)

EMVDNMK EMV dynamic numbers master key – (E4)

EMVCPMK EMV card personalization master key – (E5)

KEK Key-encrypting key – (K0)

TR-31 Export

284 z/OS V1R13 ICSF Application Programmer's Guide

|||
|

|
|
|

|

|||
|

|

|

|||
|

|
|

|

|||
|

|
|
|
|
|

||

||

|

||
|

||
|

||
|

|
|
|

||

||

||

||

||

||

||

||

||

||

Table 115. Keywords for TR-31 Export Rule Array Control Information (continued)

Keyword Meaning

KEK-WRAP Key-encrypting key for wrapping TR-31 blocks (for ‘B’ and ‘C’
TR-31 Key Block Version IDs only) – (K1)

ISOMAC0 Key for ISO 16609 MAC algorithm 1 using TDES – (M0)

ISOMAC1 Key for ISO 9797-1 MAC algorithm 1– (M1)

ISOMAC3 Key for ISO 9797-1 MAC algorithm 3– (M3)

PINENC PIN encryption key – (P0)

PINVO PIN verification key, “other” algorithm – (V0)

PINV3624 PIN verification key for IBM 3624 algorithm – (V1)

VISAPVV PIN verification key, VISA PVV algorithm – (V2)

TR-31 modes of key use – one required
Note: If ATTR-CV is specified from the Control Vector Transport group, then mode
keyword must not be specified. The proprietary mode ‘1’ will be used.

ENCDEC Encrypt and decrypt – (B)

DEC-ONLY Decrypt only – (D)

ENC-ONLY Encrypt only – (E)

GENVER MAC or PIN generate and verify – (C)

v MAC key must have Gen and Ver bits on

v PIN key must have any PINGEN bit and EPINVER bit on

GEN-ONLY MAC or PIN generate only – (G)

v MAC key must have only Gen bit on

v PIN key must have any PINGEN bit on and EPINVER bit
off

VER-ONLY MAC or PIN verify only– (V)

v MAC key must have only Ver bit on

v PIN key must have all PINGEN bits off and EPINVER bit on

DERIVE Key Derivation(for ‘B’ and ‘C’ TR-31 Key Block Version IDs
only) – (X)

ANY Any mode allowed – (N)

Export control to set export field in TR-31 key block – optional

EXP-ANY Export allowed using any key-encrypting key. This is the
default.

EXP-TRST Export allowed using a trusted key-encrypting key, as defined
in TR-31.
Note: A CCA key wrapped in the X9.24 compliant CCA key
block is considered a trusted key.

EXP-NONE Export prohibited

Control vector transport control – optional
Note: If no keyword from this group is supplied, the CV in the source_key_identifier is
still verified to agree with the ‘key usage’ and ‘mode of use’ keywords specified from
the groups above.

INCL-CV Include the CCA Control Vector as an optional field in the
TR-31 key block header. The TR-31 usage and mode of use
fields will indicate the key attributes, and those attributes
(derived from the keywords passed from the above groups)
will be verified by the callable service to be compatible with
the ones in the included control vector.

TR-31 Export

Chapter 5. Managing Symmetric Cryptographic Keys 285

|

||

||
|

||

||

||

||

||

||

||

|
|
|

||

||

||

||

|

|

||

|

|
|

||

|

|

||
|

||

|

||
|

||
|
|
|

||

|
|
|
|

||
|
|
|
|
|

Table 115. Keywords for TR-31 Export Rule Array Control Information (continued)

Keyword Meaning

ATTR-CV Include the CCA Control Vector as an optional field in the
TR-31 key block header. The TR-31 usage will be set to the
proprietary ASCII value “10” (‘3130’x) to indicate usage
information is specified in the included CV, and the mode of
use will be set to the proprietary ASCII value “1” (‘31’x) to
indicate that mode is likewise specified in the CV.
Note: If this keyword is specified, then usage and mode
keywords from the preceding groups must not be specified.
The proprietary values will be used.

key_version_number

Direction: Input Type: String

The two bytes from this parameter are copied into the Key Version Number field
of the output TR-31 key block. If no key version number is needed, the value
must be 0x3030 (“00”). If the CCA key in parameter source_key_identifier is a
key part (CV bit 44 is 1) then the key version number in the TR-31 key block is
set to “c0” (0x6330) according to the TR-31 standard, which indicates that the
TR-31 block contains a key part. In this case, the value passed to the callable
service in the key_version_number parameter is ignored.

key_field_length

Direction: Input Type: Integer

This parameter specifies the length of the key field which is encrypted in the
TR-31 block. The length must be a multiple of 8, the DES cipher block size, and
it must be greater than or equal to the length of the cleartext key passed with
parameter source_key_identifier plus the length of the 2-byte key length that
precedes this key in the TR-31 block. For example, if the source key is a
double-length TDES key of length 16 bytes, then the key field length must be
greater than or equal to (16+2) bytes, and must also be a multiple of 8. This
means that the minimum key_field_length in this case would be 24. TR-31
allows a variable number of padding bytes to follow the cleartext key, and the
caller may choose to pad with more than the minimum number of bytes needed
to form a block that is a multiple of 8. This is generally done to hide the length
of the cleartext key from those who cannot decipher that key. Most often, all
keys – single, double, or triple length – are padded to the same length so that it
is not possible to determine which length is carried in the TR-31 block by
examining the encrypted block.

Note that this parameter is not expected to allow for ASCII encoding of the
encrypted data stored in the key field according to the TR-31 specification. For
example when the user passes a value of 24 here, following the minimum
example above, the length of the final ASCII-encoded encrypted data in the key
field in the output TR-31 key block will be 48 Bytes.

source_key_identifier_length

Direction: Input Type: Integer

This parameter specifies the length of the source_key_identifier parameter, in
bytes. The value in this parameter must currently be 64, since only CCA key
tokens are supported for the source key parameter.

source_key_identifier

Direction: Input/Output Type: String

TR-31 Export

286 z/OS V1R13 ICSF Application Programmer's Guide

|

||

||
|
|
|
|
|
|
|
|
|

|

|||
|
|
|
|
|
|
|
|

|

|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|||
|
|
|
|

|

|||

This parameter contains either the label or the key token for the key that is to
be exported. The key must be a CCA internal or external token. If the source
key is an external token, an identifier for the KEK that wraps the source key
must be passed in the unwrap_kek_identifier parameter. Only DES/TDES keys
are supported. If a key token is passed which is wrapped under the old master
key, it will be updated on output so that it is wrapped under the current master
key.

unwrap_kek_identifier_length

Direction: Input Type: Integer

This parameter specifies the length of the unwrap_kek_identifier parameter, in
bytes. If the source_key_identifier is an external CCA token, then this parameter
must be 64. Otherwise, this parameter must be 0.

unwrap_kek_identifier

Direction: Input/Output Type: String

When the source_key_identifier is an external CCA token, this parameter
contains either the label or the key token for the KEK which the
source_key_identifier is currently wrapped under. It must be a CCA internal
DES KEK token of type EXPORTER or OKEYXLAT. If the source_key_identifier
is not an external CCA token, this parameter is ignored. If a key token is
passed which is wrapped under the old master key, it will be updated on output
so that it is wrapped under the current master key.

wrap_kek_identifier_length

Direction: Input Type: Integer

This parameter specifies the length of the wrap_kek_identifier parameter, in
bytes. If the unwrap_kek_identifier is also to be used to wrap the output TR-31
key block, specify 0 for this parameter. Otherwise, this parameter must be 64.

wrap_kek_identifier

Direction: Input/Output Type: String

When wrap_kek_identifier_length is 0, this parameter is ignored and the
unwrap_kek_identifier is also to be used to wrap the output TR-31 key block .
Otherwise, this parameter contains either the label or the key token for the KEK
to use for wrapping the output TR-31 key block. It must be a CCA internal token
for a KEK EXPORTER or OKEYXLAT type and must have the same clear key
as the unwrap_kek_identifier. If a key token is passed which is wrapped under
the old master key, it will be updated on output so that it is wrapped under the
current master key.

Note: ECB-mode wrapped DES keys (CCA legacy wrap mode) cannot be used
to wrap/unwrap TR-31 version ‘B’/’C’ key blocks that have/will have ‘E’
exportability, because ECB-mode does not comply with ANSI X9.24 Part
1.

This parameter exists to allow for KEK separation, it is possible that KEKs will
be restricted as to what they can wrap, such that a KEK for wrapping CCA
external keys may not be usable for wrapping TR-31 external keys, or vice
versa.

opt_blks_length

Direction: Input Type: Integer

TR-31 Export

Chapter 5. Managing Symmetric Cryptographic Keys 287

|
|
|
|
|
|
|
|

|

|||
|
|
|
|

|

|||
|
|
|
|
|
|
|
|

|

|||
|
|
|
|

|

|||
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|||
|

This parameter specifies the length of parameter opt_blocks in bytes. If no
optional data is to be included in the TR-31 key block, this parameter must be
set to zero.

opt_blocks

Direction: Input Type: String

This parameter contains optional block data which is to be included in the
output TR-31 key block. The optional block data is prepared using the TR-31
Optional Data Build callable service, and must be in ASCII. This parameter is
ignored if opt_blks_length is zero.

TR31_key_block_length

Direction: Input/Output Type: Integer

This parameter specifies the length of the TR31_key_block parameter, in bytes.
On input, it must specify the size of the buffer available for the output TR-31
key block, and on return it is updated to contain the actual length of that
returned key block. If the provided buffer is not large enough for the output
TR-31 key block an error is returned. The maximum size of the output TR-31
key block is 9992 bytes.

TR31_key_block

Direction: Output Type: String

This parameter specifies the location of the exported TR-31 key block wrapped
with the export key provided in the wrap_kek_identifier parameter.

Restrictions
This callable service only exports DES and TDES keys.

Proprietary values for the TR-31 header fields are not supported by this callable
service with the exception of the proprietary values used by IBM CCA when
carrying a control vector in an optional block in the header.

Usage Notes
Unless otherwise noted, all String parameters that are either written to, or read
from, a TR-31 key block will be in EBCDIC format. Input parameters are converted
to ASCII before being written to the TR-31 key block and output parameters are
converted to EBCDIC before being returned (see Appendix G, “EBCDIC and ASCII
Default Conversion Tables,” on page 891). TR-31 key blocks themselves are always
in printable ASCII format as required by the ANSI TR-31 specification.

If keyword INCL-CV or ATTR-CV is specified, the service inserts the CCA control
vector from the source key into an optional data field in the TR-31 header. The
TR-31 Import callable service can extract this CV and use it as the CV for the CCA
key it creates when importing the TR-31 block. This provides a way to use TR-31
for transport of CCA keys and to make the CCA key have identical control vectors
on the sending and receiving nodes. The difference between INCL-CV and
ATTR-CV is that INCL-CV is a normal TR-31 export in which the TR-31 key
attributes are set based on the supplied rule array keywords but the CV is also
included in the TR-31 block to provide additional detail. In contrast, the ATTR-CV
causes the service to include the CV but to set both the TR-31 usage and mode of
use fields to proprietary values which indicate that the usage and mode information
are specified in the CV and not in the TR-31 header. For option INCL-CV, the
export operation is still subject to the restrictions imposed by the settings of the

TR-31 Export

288 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|

|

|||
|
|
|
|
|

|

|||
|
|
|
|
|
|
|

|

|||
|
|
|

|

|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

relevant access control points. For option ATTR CV, those access control points are
not checked and any CCA key can be exported as long as the export control fields
in the CV permit it.

SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS.

Note that the optional data, if present, must not already contain a padding Block, ID
“PB”. A Padding Block of the appropriate size, if needed, will be added when
building the TR-31 key block. If this callable service encounters a padding block in
the optional block data, an error will occur.

The access control points in the ICSF role that control the general function of this
service are:

v TR31 Export – Permit version A TR-31 key blocks

v TR31 Export – Permit version B TR-31 key blocks

v TR31 Export – Permit version C TR-31 key blocks

The following table lists the valid attribute translations for export of CCA keys to
TR-31 key blocks along with the access control points which govern those
translations. Any translation not listed here will result in an error. If an individual cell
is blank, it represents the value of the cell immediately above it.

Note: In order to export a CCA key to a TR-31 key block, the appropriate key block
version ACP needs to be enabled in addition to any required translation
specific ACPs from below.

Table 116. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs)

Export CCA
Type
(CSNBCVG
keywords)

CCA
Usage in
CSNBCVG
keywords

CSNBT31X
Keywords
all ‘usage’ +
‘mode’ here,
else error T31Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

Any Exportable Key

Permit export of any CCA key (for allowable export scenarios as defined by this table) as long as the TR-31 key block will have the
CCA Control Vector (CV) included as an optional block (the INCL-CV keyword was supplied on the callable service).

Normally export of CCA keys to TR-31 key blocks is controlled by ACPs specific to the translation or a small set of translations, to
give fine control. This ACP allows any allowable export to occur as long as the CV is included, thus overriding the specific ACPs.

Notes:

1. Some target systems, produced by other vendors may not accept TR-31 key blocks with the proprietary optional CV block.

2. The ATTR-CV keyword does not require any ACPs.

DUKPT Base Derivation Keys

KEYGENKY UKPT BDK + ANY B0 A N T Permit KEYGENKY:UKPT to B0

KEYGENKY UKPT BDK +
DERIVE

B0 B,C X T

Note: These are the base keys from which DUKPT initial keys are derived for individual devices such as PIN pads

Card Verification Keys

TR-31 Export

Chapter 5. Managing Symmetric Cryptographic Keys 289

|
|
|

|
|

|
|
|
|

|
|

|

|

|

|
|
|
|

|
|
|

||

|
|
|
|

|
|
|
|

|
|
|
|
||

|
|
|
|
|
|
|
||

|

|
|

|
|

|
|
|

|

||||||||

|||
|
||||

|

|

Table 116. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) (continued)

Export CCA
Type
(CSNBCVG
keywords)

CCA
Usage in
CSNBCVG
keywords

CSNBT31X
Keywords
all ‘usage’ +
‘mode’ here,
else error T31Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

MAC AMEX-
CSC, gen
bit(20)=1

CVK +
GEN-ONLY

C0 A,B,C G D,T Permit MAC/MACVER:AMEX-CSC to
C0:G/C/V

AMEX-
CSC, gen
bit(20)=0,
ver
bit(21)=1

CVK +
VER-ONLY

A,B,C V D,T

AMEX-
CSC, gen
bit(20)=1,
ver
bit(21)=1

CVK +
GENVER

A,B,C C D,T

CVVKEY-
A, gen
bit(20)=1

CVK +
GEN-ONLY

A,B,C G T Permit MAC/MACVER:CVV-KEYA to
C0:G/C/V

CVVKEY-
A, gen
bit(20)=0,
ver
bit(21)=1

CVK +
VER-ONLY

A,B,C V T

CVVKEY-
A, gen
bit(20)=1,
ver
bit(21)=1

CVK +
GENVER

A,B,C C T

ANY-MAC,
gen
bit(20)=1

CVK +
GEN-ONLY

A,B,C G T Permit MAC/MACVER:ANY-MAC to
C0:G/C/V

ANY-MAC,
gen
bit(20)=0,
ver
bit(21)=1

CVK +
VER-ONLY

A,B,C V T

ANY-MAC,
gen
bit(20)=1,
ver
bit(21)=1

CVK +
GENVER

A,B,C C T

DATA gen
bit(20)=1
or zeroCV

CVK +
GEN-ONLY

A,B,C G T Permit DATA to C0:G/C

gen
bit(20)=1,
ver
bit(21)=1
or zeroCV

CVK +
GENVER

A,B,C C T

TR-31 Export

290 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|
|
|

|
|
|
|

|
|
|
|
||

|
|
|
|
|
|
|
||

||
|
|

|
|
|||||
|

||
|
|
|
|

|
|
||||

||
|
|
|
|

|
|
||||

||
|
|

|
|
|||||
|

||
|
|
|
|

|
|
||||

||
|
|
|
|

|
|
||||

||
|
|

|
|
|||||
|

||
|
|
|
|

|
|
||||

||
|
|
|
|

|
|
||||

||
|
|

|
|
|||||

||
|
|
|
|

|
|
||||

Table 116. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) (continued)

Export CCA
Type
(CSNBCVG
keywords)

CCA
Usage in
CSNBCVG
keywords

CSNBT31X
Keywords
all ‘usage’ +
‘mode’ here,
else error T31Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

Notes:

1. Keys for computing or verifying (against supplied value) a card verification code with the CVV, CVC, CVC2 and CVV2
algorithms. In CCA, this corresponds to keys used with two different APIs.

v Visa CVV and MasterCard CVC codes are computed with CVV_Generate and verified with CVV_Verify. Keys must be DATA
or MAC with sub-type (in bits 0-3) “ANY-MAC” , “CVVKEY-A” or “CVVKEY-B”. The GEN bit (20) or VER bit (21) must be set
appropriately.

v American Express CSC codes are generated and verified with the Transaction_Validate verb. The key must be a MAC or
MACVER key with sub-type “ANY-MAC” or “AMEX-CSC”. The GEN bit (20) or VER bit (21) must be set appropriately.

2. CCA and TR-31 represent CVV keys incompatibly. CCA represents the “A” and “B” keys as two 8 B keys, while TR-31
represents these as one 16 B key. The CVV generate and verify verbs now accept a 16 B CVV key, using left and right parts as
A and B. Current Visa standards require this.

3. Import and export of the 8 B CVVKEY-A and CVVKEY-B types will only be allowed using the proprietary TR-31 usage+mode
values to indicate encapsulation of the IBM CV in an optional block, since the 8 B CVVKEY-A is meaningless / useless as a
TR-31 C0 usage key of any mode.

4. It is possible to convert a CCA CVV key into a CSC key or vice-versa, since the translation from TR 31 usage “C0” is controlled
by rule array keywords on the import verb. This can be restricted by using ACPs, but if both of translation types are required
they cannot be disabled and control is up to the development, deployment, and execution of the applications themselves

Data Encryption Keys

ENCIPHER (none) ENC +
ENC-ONLY

D0 A,B,C E D, T Permit ENCIPHER/DECIPHER/CIPHER to
D0:E/D/B

DECIPHER (none) ENC +
DEC-ONLY

A,B,C D D, T

CIPHER (none) ENC +
ENCDEC

A,B,C B D, T

DATA enc
bit(18)=1,
dec
bit(19)=1
or zeroCV

ENC +
ENCDEC

A,B,C B D, T Permit DATA to D0:B

Note: There is asymmetry in the TR-31 to CCA and CCA to TR-31 translation. CCA keys can be exported to TR-31 ‘D0’ keys from
CCA type ENCIPHER, DECIPHER, or CIPHER, or type DATA with proper Encipher and Decipher CV bits on. A TR-31 ‘D0’ key can
only be imported to CCA types ENCIPHER, DECIPHER, or CIPHER, not the lower security DATA key type. This eliminates
conversion to the lower security DATA type by export / re-import.

Key Encrypting Keys

EXPORTER
or
OKEYXLAT

KEK +
ENC-ONLY

K0 A,B,C E T Permit EXPORTER/OKEYXLAT to K0:E

IMPORTER
or IKEYXLAT

KEK +
DEC-ONLY

K0 A,B,C D T Permit IMPORTER/IKEYXLAT to K0:D

EXPORTER
or
OKEYXLAT

KEK-WRAP
+ ENC-ONLY

K1 B,C E T Permit EXPORTER/OKEYXLAT to K1:E

IMPORTER
or IKEYXLAT

KEK-WRAP
+ DEC-ONLY

K1 B,C D T Permit IMPORTER/IKEYXLAT to K1:D

TR-31 Export

Chapter 5. Managing Symmetric Cryptographic Keys 291

|

|
|
|
|

|
|
|
|

|
|
|
|
||

|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|||
|
|||||
|

|||
|
||||

|||
|
||||

||
|
|
|
|

|
|
|||||

|
|
|
|

|

|
|
|

||
|
|||||

|
|
||
|
|||||

|
|
|

||
|
|||||

|
|
||
|
|||||

Table 116. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) (continued)

Export CCA
Type
(CSNBCVG
keywords)

CCA
Usage in
CSNBCVG
keywords

CSNBT31X
Keywords
all ‘usage’ +
‘mode’ here,
else error T31Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

Notes:

1. To be exported a KEK must have either the EXPORTER/IMPORTER bit or the XLAT bit on in the CV. A KEK with only the Key
Generate bits on will not be exportable.

2. ‘K1’ keys are not distinguished from ‘K0’ keys within CCA. The ‘K1’ key is a particular KEK for deriving keys used in the ‘B’ or
‘C’ version wrapping of TR-31 key blocks. CCA does not distinguish between targeted protocols currently and so there is no
good way to represent the difference; also note that most wrapping mechanisms now involve derivation or key variation steps

3. The CCA KEK to TR-31 K0-B transition for export will not be allowed for security reasons, even with ACP control this gives an
immediate path to turn a CCA EXPORTER to an IMPORTER and vice versa.

Export of NO-CV KEKs will be allowed, exporter keys become ‘E’ mode normal K0 keys, importer keys become ‘D’ mode K0
keys. A user can turn any KEK to a NO-CV KEK by setting the flag bit and recalculating the TVV, the flag is not bound to the
key like the CV is.

MAC Keys

MAC gen
bit(20)=1

ISOMAC0 +
GEN-ONLY

M0 A,B,C G T Permit MAC/DATA/DATAM to M0:G/C

DATA gen
bit(20)=1
or zeroCV

ISOMAC0 +
GEN-ONLY

A,B,C G T

MAC gen
bit(20)=1,
ver
bit(21)=1

ISOMAC0 +
GENVER

A,B,C C T

DATAM gen
bit(20)=1,
ver
bit(21)=1

ISOMAC0 +
GENVER

A,B,C C T

DATA gen
bit(20)=1,
ver
bit(21)=1
or zeroCV

ISOMAC0 +
GENVER

A,B,C C T

MACVER gen
bit(20)=0,
ver
bit(21)=1

ISOMAC0 +
VER-ONLY

A,B,C V T Permit MACVER/DATAMV to M0:V

DATAMV gen
bit(20)=0,
ver
bit(21)=1

ISOMAC0 +
VER-ONLY

A,B,C V T

TR-31 Export

292 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|
|
|

|
|
|
|

|
|
|
|
||

|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
|
|

|

||
|
|
|
|||||

||
|
|

|
|
||||

||
|
|
|

|
|
||||

||
|
|
|

|
|
||||

||
|
|
|
|

|
|
||||

||
|
|
|

|
|
|||||

||
|
|
|

|
|
||||

Table 116. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) (continued)

Export CCA
Type
(CSNBCVG
keywords)

CCA
Usage in
CSNBCVG
keywords

CSNBT31X
Keywords
all ‘usage’ +
‘mode’ here,
else error T31Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

MAC gen
bit(20)=1

ISOMAC1 +
GEN-ONLY

M1 A,B,C G D,T Permit MAC/DATA/DATAM to M1:G/C

DATA gen
bit(20)=1
or zeroCV

ISOMAC1 +
GEN-ONLY

A,B,C G D,T

MAC gen
bit(20)=1,
ver
bit(21)=1

ISOMAC1 +
GENVER

A,B,C C D,T

DATAM gen
bit(20)=1,
ver
bit(21)=1

ISOMAC1 +
GENVER

A,B,C C D,T

DATA gen
bit(20)=1,
ver
bit(21)=1
or zeroCV

ISOMAC1 +
GENVER

A,B,C C D,T

MACVER gen
bit(20)=0,
ver
bit(21)=1

ISOMAC1 +
VER-ONLY

A,B,C V D,T Permit MACVER/DATAMV to M1:V

DATAMV gen
bit(20)=0,
ver
bit(21)=1

ISOMAC1 +
VER-ONLY

A,B,C V D,T

MAC gen
bit(20)=1

ISOMAC3 +
GEN-ONLY

M3 A,B,C G D,T Permit MAC/DATA/DATAM to M3:G/C

DATA gen
bit(20)=1
or zeroCV

ISOMAC3 +
GEN-ONLY

A,B,C G D,T

MAC gen
bit(20)=1,
ver
bit(21)=1

ISOMAC3 +
GENVER

A,B,C C D,T

DATAM gen
bit(20)=1,
ver
bit(21)=1

ISOMAC3 +
GENVER

A,B,C C D,T

DATA gen
bit(20)=1,
ver
bit(21)=1
or zeroCV

ISOMAC3 +
GENVER

A,B,C C D,T

MACVER gen
bit(20)=0,
ver
bit(21)=1

ISOMAC3 +
VER-ONLY

A,B,C V D,T Permit MACVER/DATAMV to M3:V

DATAMV gen
bit(20)=0,
ver
bit(21)=1

ISOMAC3 +
VER-ONLY

A,B,C V D,T

TR-31 Export

Chapter 5. Managing Symmetric Cryptographic Keys 293

|

|
|
|
|

|
|
|
|

|
|
|
|
||

|
|
|
|
|
|
|
||

||
|
|
|
|||||

||
|
|

|
|
||||

||
|
|
|

|
|
||||

||
|
|
|

|
|
||||

||
|
|
|
|

|
|
||||

||
|
|
|

|
|
|||||

||
|
|
|

|
|
||||

||
|
|
|
|||||

||
|
|

|
|
||||

||
|
|
|

|
|
||||

||
|
|
|

|
|
||||

||
|
|
|
|

|
|
||||

||
|
|
|

|
|
|||||

||
|
|
|

|
|
||||

Table 116. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) (continued)

Export CCA
Type
(CSNBCVG
keywords)

CCA
Usage in
CSNBCVG
keywords

CSNBT31X
Keywords
all ‘usage’ +
‘mode’ here,
else error T31Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

Notes:

1. M0 and M1 are identical (ISO 16609 based on ISO 9797) normal DES/TDES (CBC) MAC computation, except M1 allows 8 byte
and 16 byte keys while M0 allows only 16 byte keys. Mode M3 is the X9.19 style triple-DES MAC.

2. CCA does not support M2, M4, or M5.

3. Although export of DATAM/DATAMV keys to TR-31 M0/M1/M3 key types is allowed, import to DATAM/DATAMV CCA types is
not allowed since they are obsolete types.

PIN Keys

OPINENC (none) PINENC +
ENC-ONLY

P0 A,B,C E T Permit OPINENC to P0:E

IPINENC (none) PINENC +
DEC-ONLY

A,B,C D T Permit IPINENC to P0:D

(none) (none) (none) (none) A,B,C B T (none)

PINVER NO-SPEC PINVO +
ANY

V0 A N T Permit PINVER:NO-SPEC to V0, Permit
PINGEN/PINVER to V0/V1/V2:N

[no GEN
bits on in
CV]

PINVO +
VER-ONLY

A,B,C V Permit PINVER:NO-SPEC to V0

PINGEN NO-SPEC PINVO +
ANY

A N T Permit PINGEN:NO-SPEC to V0, Permit
PINGEN/PINVER to V0/V1/V2:N

[EPINVER
bit off in
CV]

PINVO +
GEN-ONLY

A,B,C G Permit PINGEN:NO-SPEC to V0

[EPINVER
bit on in
CV]

PINVO +
GENVER

A,B,C C Permit PINGEN:NO-SPEC to V0

PINVER IBM or
NO-SPEC

PINV3624 +
ANY

V1 A N T Permit PINVER:NO-SPEC/IBM-PIN/IBM-
PINO to V1, Permit PINGEN/PINVER to
V0/V1/V2:N

[no GEN
bits on in
CV]

PINV3624 +
VER-ONLY

A,B,C V Permit PINVER:NO-SPEC/IBM-PIN/IBM-
PINO to V1

PINGEN IBM or
NO-SPEC

PINV3624 +
ANY

A N T Permit PINGEN:NO-SPEC/IBM-PIN/IBM-
PINO to V1, Permit PINGEN/PINVER to
V0/V1/V2:N

[EPINVER
bit off in
CV]

PINV3624 +
GEN-ONLY

A,B,C G Permit PINGEN:NO-SPEC/IBM-PIN/IBM-
PINO to V1

[EPINVER
bit on in
CV]

PINV3624 +
GENVER

A,B,C C Permit PINGEN:NO-SPEC/IBM-PIN/IBM-
PINO to V1

PINVER VISAPVV
or
NO-SPEC

VISAPVV +
ANY

V2 A N T Permit PINVER:NO-SPEC/VISA-PVV to
V2, Permit PINGEN/PINVER to
V0/V1/V2:N

[no GEN
bits on in
CV]

VISAPVV +
VER-ONLY

A,B,C V Permit PINVER:NO-SPEC/VISA-PVV to V2

PINGEN VISAPVV
or
NO-SPEC

VISAPVV +
ANY

A N T Permit PINGEN:NO-SPEC/VISA-PVV to
V2, Permit PINGEN/PINVER to
V0/V1/V2:N

TR-31 Export

294 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|
|
|

|
|
|
|

|
|
|
|
||

|
|
|
|
|
|
|
||

|
|
|
|
|
|

|

|||
|
|||||

|||
|
|||||

||||||||

|||
|
|||||
|

||
|
|

|
|
|||||

|||
|
|||||
|

||
|
|

|
|
|||||

||
|
|

|
|
|||||

||
|
|
|
|||||
|
|

||
|
|

|
|
|||||
|

||
|
|
|
|||||
|
|

||
|
|

|
|
|||||
|

||
|
|

|
|
|||||
|

||
|
|

|
|
|||||
|
|

||
|
|

|
|
|||||

||
|
|

|
|
|||||
|
|

Table 116. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) (continued)

Export CCA
Type
(CSNBCVG
keywords)

CCA
Usage in
CSNBCVG
keywords

CSNBT31X
Keywords
all ‘usage’ +
‘mode’ here,
else error T31Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

[EPINVER
bit off in
CV]

VISAPVV +
PINGEN

A,B,C G Permit PINGEN:NO-SPEC/VISA-PVV to V2

[EPINVER
bit on in
CV]

VISAPVV +
PINGEN

A,B,C C Permit PINGEN:NO-SPEC/VISA-PVV to V2

Note: There is a subtle difference between TR-31 V0 mode and CCA ‘NO-SPEC’ subtype. V0 mode restricts keys from 3224 or
PVV methods, while CCA ‘NO-SPEC’ allows any method.

Turning on the ACP(s) controlling export of PINVER to usage:mode V*:N and import of V*:N to PINGEN at the same time will allow
changing PINVER keys to PINGEN keys. This is not recommended. This is possible because legacy (TR-31 2005-based)
implementations used the same mode ‘N’ for PINGEN as well as PINVER keys.

EMV Chip / Issuer Master Keys

DKYGENKY DKYL0 +
DMAC

EMVACMK +
ANY

E0 A N T Permit DKYGENKY:DKYL0+DMAC to E0

EMVACMK +
DERIVE

B,C X T

DKYL0 +
DMV

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL0+DMV to E0
0x019A

EMVACMK +
DERIVE

B,C X T

DKYL0 +
DALL

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL0+DALL to E0
0x019B

EMVACMK +
DERIVE

B,C X T

DKYL1 +
DMAC

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL1+DMAC to E0

EMVACMK +
DERIVE

B,C X T

DKYL1 +
DMV

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL1+DMV to E0

EMVACMK +
DERIVE

B,C X T

DKYL1 +
DALL

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL1+DALL to E0

EMVACMK +
DERIVE

B,C X T

DKYGENKY (DKYL0 +
DDATA)

EMVSCMK +
ANY

E1 A N T Permit DKYGENKY:DKYL0+DDATA to E1

EMVSCMK +
DERIVE

B,C X T

(DKYL0 +
DMPIN)

EMVSCMK +
ANY

A N T Permit DKYGENKY:DKYL0+DMPIN to E1

EMVSCMK +
DERIVE

B,C X T

DKYL0 +
DALL

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL0+DALL to E1

EMVACMK +
DERIVE

B,C X T

TR-31 Export

Chapter 5. Managing Symmetric Cryptographic Keys 295

|

|
|
|
|

|
|
|
|

|
|
|
|
||

|
|
|
|
|
|
|
||

||
|
|

|
|
|||||

||
|
|

|
|
|||||

|
|

|
|
|

|

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||
|

|||
|
||||

||
|
|
|
|||||
|

|||
|
||||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

Table 116. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) (continued)

Export CCA
Type
(CSNBCVG
keywords)

CCA
Usage in
CSNBCVG
keywords

CSNBT31X
Keywords
all ‘usage’ +
‘mode’ here,
else error T31Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

(DKYL1 +
DDATA)

EMVSCMK +
ANY

A N Permit DKYGENKY:DKYL1+DDATA to E1

EMVSCMK +
DERIVE

B,C X

(DKYL1 +
DMPIN)

EMVSCMK +
ANY

A N Permit DKYGENKY:DKYL1+DMPIN to E1

EMVSCMK +
DERIVE

B,C X

DKYL1 +
DALL

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL1+DALL to E1

EMVACMK +
DERIVE

B,C X T

DKYGENKY DKYL0 +
DMAC

EMVSIMK +
ANY

E2 A N T Permit DKYGENKY:DKYL0+DMAC to E2

EMVSIMK +
DERIVE

B,C X T

DKYL0 +
DALL

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL0+DALL to E2

EMVACMK +
DERIVE

B,C X T

DKYL1 +
DMAC

EMVSIMK +
ANY

A N T Permit DKYGENKY:DKYL1+DMAC to E2

EMVSIMK +
DERIVE

B,C X T

DKYL1 +
DALL

EMVACMK +
ANY

A N T Permit DKYGENKY:DKYL1+DALL to E2

EMVACMK +
DERIVE

B,C X T

DATA (none) EMVDAMK +
ANY

E3 A N T Permit DATA/MAC/CIPHER/ENCIPHER to
E3

EMVDAMK +
DERIVE

B,C X

MAC (not
MACVER)

(none) EMVDAMK +
ANY

A N

EMVDAMK +
MACGEN

A G

EMVDAMK +
DERIVE

B,C X

CIPHER (none) EMVDAMK +
ANY

A N

EMVDAMK +
DERIVE

B,C X

ENCIPHER EMVDAMK +
ENC-ONLY

A E

EMVDAMK +
DERIVE

B,C X

DKYGENKY DKYL0
+DDATA

EMVDNMK +
ANY

E4 A N T Permit DKYGENKY:DKYL0+DDATA to E4

EMVDNMK +
DERIVE

B,C X

TR-31 Export

296 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|
|
|

|
|
|
|

|
|
|
|
||

|
|
|
|
|
|
|
||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

|||
|
|||||
|

|||
|
||||

|
|
||
|
||||

|||
|
||||

|||
|
||||

|||
|
||||

|||
|
||||

|||
|
||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

Table 116. Valid CCA to TR-31 Export Translations and Required Access Control Points (ACPs) (continued)

Export CCA
Type
(CSNBCVG
keywords)

CCA
Usage in
CSNBCVG
keywords

CSNBT31X
Keywords
all ‘usage’ +
‘mode’ here,
else error T31Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Required “TR31 Export” ACP

DKYL0
+DALL

EMVDNMK +
ANY

A N T Permit DKYGENKY:DKYL0+DALL to E4

EMVDNMK +
DERIVE

B,C X

DKYGENKY DKYL0 +
DEXP

EMVCPMK +
ANY

E5 A N T Permit DKYGENKY:DKYL0+DEXP to E5

EMVCPMK +
DERIVE

B,C X

DKYL0 +
DMAC

EMVCPMK +
ANY

A N Permit DKYGENKY:DKYL0+DMAC to E5

EMVCPMK +
DERIVE

B,C X

DKYL0
+DDATA

EMVCPMK +
ANY

A N Permit DKYGENKY:DKYL0+DDATA to E5

EMVCPMK +
DERIVE

B,C X

DKYL0
+DALL

EMVDNMK +
ANY

A N T Permit DKYGENKY:DKYL0+DALL to E5

EMVDNMK +
DERIVE

B,C X

Note: EMV Chip Card Master Keys are used by the chip cards to perform cryptographic operations, or in some cases to deriver
keys used to perform operations. In CCA, these are:

v Key Gen Keys of level DKYL0 or DYKL1 allowing derivation of operational keys, or

v operational keys.

EMV support in CCA is significantly different from TR-31. CCA key types do not match TR-31 types.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 117. TR-31 export required hardware

Server

Required
cryptographic
hardware Restrictions

IBM Eserver zSeries
900

This service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

This service is not supported.

z196 Crypto Express3
Coprocessor

TR-31 key support requires the Sep. 2011 or
later LIC.

TR-31 Export

Chapter 5. Managing Symmetric Cryptographic Keys 297

|

|
|
|
|

|
|
|
|

|
|
|
|
||

|
|
|
|
|
|
|
||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

||
|
|
|
|||||

|||
|
||||

|
|
|
|

|
|

|
|

||

|

|
|
||

|
|
||

|
|

|
|

||

|

|

||

|

|

||

||
|
|
|
|

TR-31 Import (CSNBT31I and CSNET31I)
Use the TR-31 Import callable service to convert a TR-31 key block to a CCA token.
Since there is not always a one-to-one mapping between the key attributes defined
by TR-31 and those defined by CCA, the caller may need to specify the attributes
to attach to the imported key through the rule array.

The callable service name for AMODE(64) is CSNET31I.

Format

CALL CSNBT31I(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
TR31_key_block_length,
TR31_key_block,
unwrap_kek_identifier_length,
unwrap_kek_identifier,
wrap_kek_identifier_length,
wrap_kek_identifier,
output_key_identifier_length,
output_key_identifier,
num_opt_blks,
cv_source,
protection_method)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

TR-31 Import

298 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|
|
|
|

|

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||
|

|
|

|

|||
|

|
|
|
|

|

|||
|

|
|
|

|

|||
|

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 1, 2, 3, 4, or 5.

rule_array

Direction: Input Type: String

The rule_array contains keywords that provide control information to the callable
service. The keywords are 8 bytes in length and must be left-aligned and
padded on the right with space characters. The rule_array keywords for this
callable service are shown in the following table. One keyword from one CCA
output key usage subgroup shown in the following table is required based on
TR-31 input key usage, unless the CV is included in the TR-31 key block as an
optional block. If the CV is included in the TR-31 key block as an optional block,
the included CV will be used in the output key block as long as it does not
conflict with the TR-31 header data.

See Table 120 on page 305 for valid combinations of Usage and Mode

Table 118. Keywords for TR-31 Import Rule Array Control Information

Keyword Meaning

Key Wrapping Method (One Required)

INTERNAL Desired output_key_identifier is a CCA internal key token,
wrapped using the card master key.

EXTERNAL Desired output_key_identifier is a CCA external key token,
wrapped using the key represented by the
unwrap_kek_identifier.

CCA Output Key Usage Subgroups (One keyword from one CCA output key
usage subgroup shown in the following table is required based on TR-31 input
key usage, unless the CV is included in the TR-31 key block as an optional block.
If the CV is included in the TR-31 key block as an optional block, the included CV
will be used in the output key block as long as it does not conflict with the TR-31
header data.)

C0 Subgroup (One Required for this TR-31 key usage)

CVK-CVV Convert TR-31 CVK to a CCA key for use with CVV/CVC. The
CCA key will be a MAC key with subtype CVVKEY-A.

CVK-CSC Convert TR-31 CVK to a CCA key for use with CSC. The CCA
key will be a MAC key with subtype AMEX CSC.

K0 Subgroup (One Required for this TR-31 key usage)

EXPORTER For TR-31 K0-E or K0-B usage+mode keys. Convert TR-31
KEK to a CCA wrapping key. The key will convert to a CCA
EXPORTER key. Note that the K0-B key import has a unique
ACP.

OKEYXLAT For TR-31 K0-E or K0-B usage+mode keys. Convert TR-31
KEK to a CCA wrapping key. The key will convert to a CCA
OKEYXLAT key. Note that the K0-B key import has a unique
ACP.

TR-31 Import

Chapter 5. Managing Symmetric Cryptographic Keys 299

|

|

|||
|

|
|

|

|||
|

|
|
|
|
|
|
|
|
|

|

||

||

|

||
|

||
|
|

|
|
|
|
|
|

|

||
|

||
|

|

||
|
|
|

||
|
|
|

Table 118. Keywords for TR-31 Import Rule Array Control Information (continued)

Keyword Meaning

IMPORTER For TR-31 K0-D or K0-B usage+mode keys. Convert TR-31
KEK to a CCA unwrapping key. The key will convert to a CCA
IMPORTER key. Note that the K0-B key import has a unique
ACP.

IKEYXLAT For TR-31 K0-D or K0-B usage+mode keys. Convert TR-31
KEK to a CCA unwrapping key. The key will convert to a CCA
IKEYXLAT key. Note that the K0-B key import has a unique
ACP.

V0/V1/V2 Subgroup (One Required for these TR-31 key usages)

PINGEN Convert a TR-31 PIN verification key to a CCA PINGEN key.

PINVER Convert a TR-31 PIN verification key to a CCA PINVER key.

E0/E2,F0/F2 Subgroup (One Required for these TR-31 key usages)

DMAC Convert TR-31 EMV master key (chip card or issuer) for
Application Cryptograms or Secure Messaging for Integrity to
CCA DKYGENKY type DMAC

DMV Convert TR-31 EMV master key (chip card or issuer) for
Application Cryptograms or Secure Messaging for Integrity to
CCA DKYGENKY type DMV

E1,F1 Subgroup (One Required for these TR-31 key usages)

DMPIN Convert TR-31 EMV master key (chip card or issuer) for
Secure Messaging for Confidentiality to CCA DKYGENKY type
DMPIN

DDATA Convert TR-31 EMV master key (chip card or issuer) for
Secure Messaging for Confidentiality to CCA DKYGENKY type
DDATA

E5 Subgroup (One Required for this TR-31 key usage)

DMAC Convert TR-31 EMV master key (issuer) for Card
Personalization to CCA DKYGENKY type DMAC.

DMV Convert TR-31 EMV master key (issuer) for Card
Personalization to CCA DKYGENKY type DMV.

DEXP Convert TR-31 EMV master key (issuer) for Card
Personalization to CCA DKYGENKY type DEXP.

Key Derivation Level (One Required with E0, E1, E2 TR-31 key usages unless the
CV is included in the TR-31 key block as an optional block. If the CV is included
in the TR-31 key block, the included CV will be used in the output key block as
long as it does not conflict with the TR-31 header data.)

DKYL0 Convert TR-31 EMV master key (chip card or issuer) to CCA
DKYGENKY at derivation level DKYL0.

DKYL1 Convert TR-31 EMV master key (chip card or issuer) to CCA
DKYGENKY at derivation level DKYL1.

Key Type Modifier (Optional)

NOOFFSET Valid only for V0/V1 TR-31 key usage values. Import the
PINGEN or PINVER key into a key token that cannot
participate in the generation or verification of a PIN when an
offset or the Visa PVV process is requested.

TR-31 Import

300 z/OS V1R13 ICSF Application Programmer's Guide

|

||

||
|
|
|

||
|
|
|

|

||

||

|

||
|
|

||
|
|

|

||
|
|

||
|
|

|

||
|

||
|

||
|

|
|
|
|

||
|

||
|

|

||
|
|
|

Table 118. Keywords for TR-31 Import Rule Array Control Information (continued)

Keyword Meaning

Key Wrapping Method (Optional)
Note: Conflicts between wrapping keywords used and a CV passed in an optional data
block of the TR-31 token will result in errors being returned. The main example of this
is a CV that indicates ‘enhanced-only’ in bit 56 when the user or configured default
specifies ECB for key wrapping.

USECONFG Specifies that the configuration setting for the default wrapping
method is to be used to wrap the key. This is the default.

WRAP-ENH Specifies that the new enhanced wrapping method is to be
used to wrap the key.

WRAP-ECB Specifies that the original wrapping method is to be used.

Translation Control (One Optional)

ENH-ONLY Specify this keyword to indicate that the key once wrapped
with the enhanced method cannot be wrapped with the
original method. This restricts translation to the original
method. If the keyword is not specified translation to the
original method will be allowed. This turns on bit 56 in the
control vector. This keyword is not valid if processing a zero
CV data key.

Notes:

1. If the TR-31 block contains a CV in the optional data block
that does not have bit 56 turned on, bit 56 will be turned
on in the output token, since with this keyword the user is
asking for this behavior. The exception to this is for CVs of
all 0x00 bytes, for this case no error will be generated but
the CV will remain all 0x00 bytes.

2. Conflicts between wrapping keywords used and a CV
passed in an optional data block of the TR-31 token will
result in errors being returned. The main example of this is
a CV that indicates ‘enhanced-only’ in bit 56 when the
user or configured default specifies ECB for key wrapping.
If the default wrapping method is ECB mode, but the
enhanced mode and the ENH-ONLY restriction are desired
for a particular key token, combine the ENH-ONLY
keyword with the WRAP-ENH keyword.

TR31_key_block_length

Direction: Input Type: Integer

This parameter specifies the length of the TR31_key_block parameter, in bytes.
The length field in the TR-31 block is a 4-digit decimal number, so the
maximum acceptable length is 9992 bytes.

TR31_key_block

Direction: Input Type: String

This parameter contains the TR-31 key block that is to be imported. The key
block is protected with the key passed in parameter unwrap_kek_identifier.

unwrap_kek_identifier_length

Direction: Input Type: Integer

This parameter specifies the length of the unwrap_kek_identifier parameter, in

TR-31 Import

Chapter 5. Managing Symmetric Cryptographic Keys 301

|

||

|
|
|
|
|

||
|

||
|

||

|

||
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|||
|
|
|
|

|

|||
|
|
|

|

|||
|
|

bytes. The value in this parameter must currently be 64, since only CCA internal
key tokens are supported for the unwrap_kek_identifier parameter.

unwrap_kek_identifier

Direction: Input/Output Type: String

This parameter contains either the label or the key token for the key that is
used to unwrap and check integrity of the imported key passed in the
TR31_key_block parameter. The key must be a CCA internal token for a KEK
IMPORTER or IKEYXLAT type. If a key token is passed which is wrapped
under the old master key, it will be updated on output so that it is wrapped
under the current master key.

Note: ECB-mode wrapped DES keys (CCA legacy wrap mode) cannot be used
to wrap/unwrap TR-31 version ‘B’/’C’ key blocks that have, or will have
,‘E’ exportability. This is because ECB-mode does not comply with ANSI
X9.24 Part 1.

wrap_kek_identifier_length

Direction: Input Type: Integer

This parameter specifies the length of the wrap_kek_identifier parameter, in
bytes. If the unwrap_kek_identifier is also to be used to wrap the output CCA
token, specify 0 for this parameter. Otherwise, this parameter must be 64.

wrap_kek_identifier

Direction: Input/Output Type: String

When wrap_kek_identifier_length is 0, this parameter is ignored and the
unwrap_kek_identifier is also to be used to wrap the output CCA token.
Otherwise, this parameter contains either the label or the key token for the KEK
to use for wrapping the output CCA token. It must be a CCA internal token for a
KEK EXPORTER or OKEYXLAT type and must have the same clear key as the
unwrap_kek_identifier. If a key token is passed which is wrapped under the old
master key, it will be updated on output so that it is wrapped under the current
master key.

Note: ECB-mode wrapped DES keys (CCA legacy wrap mode) cannot be used
to wrap/unwrap TR-31 version ‘B’/’C’ key blocks that have/will have ‘E’
exportability. This is because ECB-mode does not comply with ANSI
X9.24 Part 1.

output_key_identifier_length

Direction: Input/Output Type: Integer

This parameter specifies the length of the output_key_identifier parameter, in
bytes. On input, it specifies the length of the buffer represented by the
output_key_identifier parameter and must be at least 64 bytes long. On output,
it contains the length of the token returned in the output_key_identifier
parameter.

output_key_identifier

Direction: Output Type: String

This parameter contains the key token that is to receive the imported key. The
output token will be a CCA internal or external key token containing the key
received in the TR-31 key block.

TR-31 Import

302 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|

|||
|
|
|
|
|
|
|

|
|
|
|

|

|||
|
|
|
|

|

|||
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|||
|
|
|
|
|
|

|

|||
|
|
|
|

num_opt_blocks

Direction: Output Type: Integer

This parameter contains the number of optional blocks that are present in the
TR-31 key block.

cv_source

Direction: Output Type: String

This parameter contains information about how the control vector in the output
key token was created. It can be one of the following three values:

0x00 No CV was present in an optional block, and the output CV was
created by the callable service based on input parameters and on the
attributes in the TR-31 key block header.

0x01 A CV was obtained from an optional block in the TR-31 key block, and
the key usage and mode of use were also specified in the TR-31
header. The callable service verified compatibility of the header values
with the CV and then used that CV in the output key token.

0x02 A CV was obtained from an optional block in the TR-31 key block, and
the key usage and mode of use in the TR-31 header held the
proprietary values indicating that key use and mode should be obtained
from the included CV. The CV from the TR-31 token was used as the
CV for the output key token.

Any value other than these are reserved for future use and are currently invalid.

protection_method

Direction: Output Type: String

This parameter contains information about what method was used to protect the
input TR-31 key block. It can have one of the following values:

0x00 The TR-31 key block was protected using the variant method as
identified by a Key Block Version ID value of “A” (0x41).

0x01 The TR-31 key block was protected using the derived key method as
identified by a Key Block Version ID value of “B” (0x42).

0x02 The TR-31 key block was protected using the variant method as
identified by a Key Block Version ID value of “C” (0x43). Functionally
this method is the same as ‘A’, but to maintain consistency a different
value will be returned here for ‘C’.

Any value other than these are reserved for future use and are currently invalid.

Restrictions
This callable service only imports DES and TDES keys.

Proprietary values for the TR-31 header fields are not supported by this callable
service with the exception of the proprietary values used by IBM CCA when
carrying a control vector in an optional block in the header.

Usage Notes
Unless otherwise noted, all String parameters that are either written to, or read
from, a TR-31 key block will be in EBCDIC format. Input parameters are converted

TR-31 Import

Chapter 5. Managing Symmetric Cryptographic Keys 303

|

|||
|
|
|

|

|||
|
|
|

||
|
|

||
|
|
|

||
|
|
|
|

|

|

|||
|
|
|

||
|

||
|

||
|
|
|

|

|

|

|
|
|

|

|
|

to ASCII before being written to the TR-31 key block and output parameters are
converted to EBCDIC before being returned (see Appendix G, “EBCDIC and ASCII
Default Conversion Tables,” on page 891). TR-31 key blocks themselves are always
in printable ASCII format as required by the ANSI TR-31 specification.

If the TR-31 key block is marked as a key component, the resulting CCA key will
have the Key Part bit (bit 44) in the control vector set to 1.

The exportability attributes of the imported CCA token are set based on attributes in
the TR-31 key block as described in the following table.

Table 119. Export attributes of an imported CCA token

TR-31 export attribute
value CCA action on import

Non-exportable ("N") CCA imports the key to an internal CCA key token. CV bit 17
(export) is set to zero to indicate that the key is not exportable.
CV bit 57 (TR-31 export) is set to one to indicate that the key is
not exportable to TR-31.

Exportable under trusted
key ("E")

If the TR-31 token is wrapped with a CCA KEK in the old ECB
format, the request is rejected because that KEK is not a trusted
key. If the CCA KEK is in a newer X9.24 compliant CCA key
block, then the TR-31 key is imported to CCA in exactly the
same way as described below for keys that are exportable under
any key.

Exportable under any key
("S")

CCA imports the key to an internal CCA key token. CV bit 17
(export) is set to one to indicate that the key is exportable. CV
bit 57 (TR-31 export) is set to zero to indicate that the key is
also exportable to TR-31.

If necessary, use the Prohibit Export, Prohibit Exported Extended, or Restrict Key
Attribute callable service to alter the export attributes of the CCA token after import.

If the TR-31 key block contains an optional block with a CCA CV of
‘00007D00030000000000000000000000’ for a single length key or
‘00007D0003410000000000000000000000007D00032100000000000000000000’
for a double length key, the resulting CCA token will be a zero CV DATA token.

The TR-31 key block can contain a CCA control vector in an optional data field in
the header. If the CV is present, the service will check that CV for compatibility with
the TR-31 key attributes to ensure the CV is valid for the key and if there are no
problems it will use that CV in the CCA key token that is output by the service. If a
CV is received, the import operation is not subject to any ACP controlling the
importation of specific key types. The CV may be present in the TR-31 key block in
two different ways, depending on options used when creating that block.

v If the TR-31 Export callable service was called with option INCL-CV, the control
vector is included in the TR-31 key block and the TR-31 key usage and mode of
use fields contain attributes from the set defined in the TR-31 standard. The
TR-31 Import callable service checks that those TR-31 attributes are compatible
with the CV included in the block. It also verifies that no rule array keywords
conflict with the CV contained in the TR-31 block.

v If the TR-31 Export callable service was called with option ATTR-CV, the control
vector is included in the TR-31 key block and the TR-31 key usage and mode of
use fields contain proprietary values (ASCII “10” and “1”, respectively) to indicate
that the usage and mode information is contained in the included control vector.

TR-31 Import

304 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|

|
|

|
|

||

|
||

||
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

In this case, the TR-31 Import service uses the included CV as the control vector
for the CCA key token it produces. It also verifies that the CV does not conflict
with rule array keywords passed

SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS.

The access control points in the ICSF role that control the general function of this
service are:

v TR31 Import – Permit version A TR-31 key blocks

v TR31 Import – Permit version B TR-31 key blocks

v TR31 Import – Permit version C TR-31 key blocks

v TR31 Import – Permit override of default wrapping method

The following table lists the valid attribute translations for import of TR-31 key
blocks to CCA keys along with the access control points which govern those
translations. Any translation not listed here will result in an error. If an individual cell
is blank, it represents the value of the cell immediately above it.

Note: In order to import a TR-31 key block to a CCA key, the appropriate key block
version ACP needs to be enabled in addition to any required translation
specific ACPs from below.

Table 120. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs)

Import T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output CCA
Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

DUKPT Base Derivation Keys

B0 A N T (none) KEYGENKY UKPT (none)

B0 B,C X T (none) KEYGENKY UKPT

B1 B,C (none) (none) (none) (none) (none)

Note: These are the base keys from which DUKPT initial keys are derived for individual devices such as PIN pads.

Card Verification Keys

C0 A,B,C G, C D CVK-CSC MAC AMEX-CSC Permit C0 to
MAC/MACVER:AMEX-CSCA,B,C T CVK-CSC MAC AMEX-CSC

A,B,C V D CVK-CSC MACVER AMEX-CSC

A,B,C T CVK-CSC MACVER AMEX-CSC

A,B,C G, C T CVK-CVV MAC CVVKEY-A Permit C0 to
MAC/MACVER:CVVKEY-AA,B,C V T CVK-CVV MACVER CVVKEY-A

TR-31 Import

Chapter 5. Managing Symmetric Cryptographic Keys 305

|
|
|

|
|

|
|

|

|

|

|

|
|
|
|

|
|
|

||

|
|

|
|
|
|
|
|
|
||

|
|
|
|

|
|
|
||

|

||||||||

|||||||

|||||||

|

|

||||||||
||||||||

|||||||

|||||||

||||||||
||||||||

Table 120. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output CCA
Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

The card verification keys are keys for computing or verifying (against supplied value) a card verification code with
the CVV, CVC, CVC2 and CVV2 algorithms.

Notes:

1. In CCA, this corresponds to keys used with two different APIs.

v Visa CVV and MasterCard CVC codes are computed with CVV_Generate and verified with CVV_Verify. Keys
must be DATA or MAC with sub-type (in bits 0-3) “ANY-MAC” , “CVVKEY-A” or “CVVKEY-B”. The GEN bit (20)
or VER bit (21) must be set appropriately.

v American Express CSC codes are generated and verified with the Transaction_Validate verb. The key must be
a MAC or MACVER key with sub-type “ANY-MAC” or “AMEX-CSC”. The GEN bit (20) or VER bit (21) must be
set appropriately.

2. CCA and TR-31 represent CVV keys incompatibly. CCA represents the “A” and “B” keys as two 8 B keys, while
TR-31 represents these as one 16 B key. The CVV generate and verify verbs now accept a 16 B CVV key, using
left and right parts as A and B. Current Visa standards require this.

3. Import and export of the 8 B CVVKEY-A and CVVKEY-B types will only be allowed using the proprietary TR-31
usage+mode values to indicate encapsulation of the IBM CV in an optional block, since the 8 B CVVKEY-A is
meaningless / useless as a TR-31 C0 usage key of any mode.

4. Import of a TR-31 key of usage C0 to CCA key type ‘ANY-MAC’ will not be allowed, although the ANY-MAC key
is also usable for card verification purposes.

5. It is possible to convert a CCA CVV key into a CSC key or vice-versa, since the translation from TR-31 usage
“C0” is controlled by rule array keywords on the import verb. This can be restricted by using ACPs, but if both of
translation types are required they cannot be disabled and control is up to the development, deployment, and
execution of the applications themselves.

CCA does not have a ‘MAC GEN ONLY’ key type, so TR-31 usage of G will translate to a full MAC key.

Data Encryption Keys

D0 A,B,C E D, T (none) ENCIPHER (none) (none)

A,B,C D D, T (none) DECIPHER (none)

A,B,C B D, T (none) CIPHER (none)

Notes:

1. There is asymmetry in the TR-31 to CCA and CCA to TR-31 translation. CCA keys can be exported to TR-31 ‘D0’
keys from CCA type ENCIPHER, DECIPHER, or CIPHER, or type DATA with proper Encipher and Decipher CV
bits on. A TR-31 ‘D0’ key can only be imported to CCA types ENCIPHER, DECIPHER, or CIPHER, not the lower
security DATA key type. This eliminates conversion to the lower security DATA type by export / re-import.

2. There are no ACPs controlling import since the intent of the TR-31 key’s control is not interpreted, just directly
translated to CCA control.

Key Encrypting Keys

K0 A,B,C E T OKEYXLAT OKEYXLAT (none) Permit K0:E to
EXPORTER/OKEYXLATA,B,C EXPORTER EXPORTER (none)

A,B,C D T IKEYXLAT IKEYXLAT (none) Permit K0:D to
IMPORTER/IKEYXLATA,B,C IMPORTER IMPORTER (none)

A,B,C B T OKEYXLAT OKEYXLAT (none) Permit K0:B to
EXPORTER/OKEYXLATA,B,C EXPORTER EXPORTER (none)

A,B,C IKEYXLAT IKEYXLAT (none) Permit K0:B to
IMPORTER/IKEYXLATA,B,C IMPORTER IMPORTER (none)

TR-31 Import

306 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|

|
|
|
|
|
|
|
||

|
|
|
|

|
|
|
||

|
|

|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|

|

||||||||

|||||||

|||||||

|

|
|
|
|

|
|

|

||||||||
||||||||

||||||||
||||||||

||||||||
||||||||

||||||||
||||||||

Table 120. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output CCA
Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

K1 B,C E T OKEYXLAT OKEYXLAT (none) Permit K1:E to
EXPORTER/OKEYXLATB,C EXPORTER EXPORTER (none)

B,C D T IKEYXLAT IKEYXLAT (none) Permit K1:D to
IMPORTER/IKEYXLATB,C IMPORTER IMPORTER (none)

B,C B T OKEYXLAT OKEYXLAT (none) Permit K1:B to
EXPORTER/OKEYXLATB,C EXPORTER EXPORTER (none)

B,C IKEYXLAT IKEYXLAT (none) Permit K1:B to
IMPORTER/IKEYXLATB,C IMPORTER IMPORTER (none)

Notes:

1. K1’ keys are not distinguished from ‘K0’ keys within CCA. The ‘K1’ key is a particular KEK for deriving keys used
in the ‘B’ or ‘C’ version wrapping of TR-31 key blocks. CCA does not distinguish between targeted protocols
currently and so there is no good way to represent the difference; also note that most wrapping mechanisms now
involve derivation or key variation steps.

2. It is possible to convert a CCA EXPORTER key to an OKEYXLAT, or to convert an IMPORTER to an IKEYXLAT
by export / re-import. This can be restricted by using ACPs, but if both translations are required they cannot be
disabled and control is up to the development, deployment, and execution of the applications themselves.

3. It will not be possible to export a CCA key to TR-31 type K0-B, in order to avoid the ability to translate a CCA
EXPORTER to a CCA IMPORTER via export/import to the TR-31 token type. When a TR-31 key block does not
have an included CV as an optional block, the default CV will be used to construct the output token. For
IMPORTER / EXPORTER keys this means that the Key Generate bits will also be on in the KEK.

MAC Keys

M0 A,B,C G,C T (none) MAC ANY-MAC Permit M0/M1/M3 to
MAC/MACVER:ANY-MACA,B,C V T (none) MACVER ANY-MAC

M1 A,B,C G,C D, T (none) MAC ANY-MAC

A,B,C V D, T (none) MACVER ANY-MAC

M3 A,B,C G,C D, T (none) MAC ANY-MAC

A,B,C V D, T (none) MACVER ANY-MAC

Notes:

1. M0 and M1 are identical (ISO 16609 based on ISO 9797) normal DES/TDES (CBC) MAC computation, except
M1 allows 8 byte and 16 byte keys while M0 allows only 16 byte keys. Mode M3 is the X9.19 style triple-DES
MAC.

2. CCA does not support M2, M4, or M5.

3. Although export of DATAM/DATAMV keys to TR-31 M0/M1/M3 key types is allowed, import to DATAM/DATAMV
CCA types is not allowed since they are obsolete types

PIN Keys

P0 A,B,C E T (none) OPINENC (none) Permit P0:E to OPINENC

A,B,C D (none) IPINENC (none) Permit P0:D to IPINENC

A,B,C B –
not
supp

(none) (none) (none) (none)

TR-31 Import

Chapter 5. Managing Symmetric Cryptographic Keys 307

|

|
|

|
|
|
|
|
|
|
||

|
|
|
|

|
|
|
||

||||||||
||||||||

||||||||
||||||||

||||||||
||||||||

||||||||
||||||||

|

|
|
|
|

|
|
|

|
|
|
|

|

||||||||
||||||||

|||||||

|||||||

|||||||

|||||||

|

|
|
|

|

|
|

|

||||||||

||||||||

|||
|
|

|||||

Table 120. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output CCA
Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

V0 A N T PINGEN
[NOOFFSET]

PINGEN NO-SPEC
[+NOOFFSET]

Permit V0 to
PINGEN:NO-SPEC, Permit
V0/V1/V2:N to
PINGEN/PINVER

A,B,C G,C [NOOFFSET] PINGEN NO-SPEC
[+NOOFFSET]

Permit V0 to
PINGEN:NO-SPEC

A N PINVER
[NOOFFSET]

PINVER NO-SPEC
[+NOOFFSET]

Permit V0 to
PINVER:NO-SPEC, Permit
V0/V1/V2:N to
PINGEN/PINVER

A,B,C V [NOOFFSET] PINVER NO-SPEC
[+NOOFFSET]

Permit V0 to
PINVER:NO-SPEC

V1 A N T PINGEN
[NOOFFSET]

PINGEN IBM-PIN
/IBM-PINO

Permit V1 to
PINGEN:IBM-PIN/IBM-PINO,
Permit V0/V1/V2:N to
PINGEN/PINVER

A,B,C G,C [NOOFFSET] PINGEN IBM-PIN
/IBM-PINO

Permit V1 to
PINGEN:IBM-PIN/IBM-PINO

A N PINVER
[NOOFFSET]

PINVER IBM-PIN
/IBM-PINO

Permit V1 to
PINVER:IBM-PIN/IBM-PINO,
Permit V0/V1/V2:N to
PINGEN/PINVER

A,B,C V [NOOFFSET] PINVER IBM-PIN
/IBM-PINO

Permit V1 to
PINVER:IBM-PIN/IBM-PINO

V2 A N T PINGEN PINGEN VISA-PVV Permit V2 to
PINGEN:VISA-PVV, Permit
V0/V1/V2:N to
PINGEN/PINVER

A,B,C G,C PINGEN VISA-PVV Permit V2 to
PINGEN:VISA-PVV

A N PINVER PINVER VISA-PVV Permit V2 to
PINVER:VISA-PVV, Permit
V0/V1/V2:N to
PINGEN/PINVER

A,B,C V PINVER VISA-PVV Permit V2 to
PINVER:VISA-PVV

Notes:

1. NOOFFSET keyword may be passed to specify resultant CCA key to have NOOFFSET bit (bit 37) on in CV.
However this will be automatic if CV is included and has NOOFFSET bit set.

2. NOOFFSET keyword is not supported for V2 usage since VISA-PVV algorithm does not support that concept.

3. There is a subtle difference between TR-31 V0 mode and CCA ‘NO-SPEC’ subtype. V0 mode restricts keys from
3224 or PVV methods, while CCA ‘NO-SPEC’ allows any method.

4. Turning on the ACP(s) controlling export of PINVER to usage:mode V*:N and import of V*:N to PINGEN at the
same time will allow changing PINVER keys to PINGEN keys. This is not recommended. This is possible
because legacy (TR-31 2005-based) implementations used the same mode ‘N’ for PINGEN as well as PINVER
keys.

EMV Chip / Issuer Master Keys

TR-31 Import

308 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|

|
|
|
|
|
|
|
||

|
|
|
|

|
|
|
||

|||||
|
||
|
|
|
|
|

|||||||
|
|
|

|||||
|
||
|
|
|
|
|

|||||||
|
|
|

|||||
|
||
|
|
|
|
|

|||||||
|
|
|

|||||
|
||
|
|
|
|
|

|||||||
|
|
|

||||||||
|
|
|

||||||||
|

||||||||
|
|
|

||||||||
|

|

|
|

|

|
|

|
|
|
|

|

Table 120. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output CCA
Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

E0 A N T DKYL0
+DMAC

DKYGENKY DKYL0
+DMAC

Permit E0 to
DKYGENKY:DKYL0+DMAC

B,C X DKYL0
+DMAC

DKYL0
+DMAC

A N DKYL0 +DMV DKYL0
+DMV

Permit E0 to
DKYGENKY:DKYL0+DMV

B,C X DKYL0 +DMV DKYL0
+DMV

A N DKYL1
+DMAC

DKYL1
+DMAC

Permit E0 to
DKYGENKY:DKYL1+DMAC

B,C X DKYL1
+DMAC

DKYL1
+DMAC

A N DKYL1 +DMV DKYL1
+DMV

Permit E0 to
DKYGENKY:DKYL1+DMV

B,C X DKYL1 +DMV DKYL1
+DMV

E1 A N, E,
D, B

T DKYL0
+DMPIN

DKYGENKY DKYL0
+DMPIN

Permit E1 to
DKYGENKY:DKYL0+DMPIN

B,C X DKYL0
+DMPIN

DKYL0
+DMPIN

A N, E,
D, B

DKYL0
+DDATA

DKYL0
+DDATA

Permit E1 to
DKYGENKY:DKYL0+DDATA

B,C X DKYL0
+DDATA

DKYL0
+DDATA

A N, E,
D, B

DKYL1
+DMPIN

DKYL1
+DMPIN

Permit E1 to
DKYGENKY:DKYL1+DMPIN

B,C X DKYL1
+DMPIN

DKYL1
+DMPIN

A N, E,
D, B

DKYL1
+DDATA

DKYL1
+DDATA

Permit E1 to
DKYGENKY:DKYL1+DDATA

B,C X DKYL1
+DDATA

DKYL1
+DDATA

E2 A N T DKYL0
+DMAC

DKYGENKY DKYL0
+DMAC

Permit E2 to
DKYGENKY:DKYL0+DMAC

B,C X DKYL0
+DMAC

DKYL0
+DMAC

A N DKYL1
+DMAC

DKYL1
+DMAC

Permit E2 to
DKYGENKY:DKYL1+DMAC

B,C X DKYL1
+DMAC

DKYL1
+DMAC

E3 A N, E,
D, B,
G

T (none) ENCIPHER (none) Permit E3 to ENCIPHER

B,C X (none) (none)

TR-31 Import

Chapter 5. Managing Symmetric Cryptographic Keys 309

|

|
|

|
|
|
|
|
|
|
||

|
|
|
|

|
|
|
||

|||||
|
||
|
|
|

|||||
|
||
|

|||||||
|
|
|

|||||||
|

|||||
|
||
|
|
|

|||||
|
||
|

|||||||
|
|
|

|||||||
|

|||
|
||
|
||
|
|
|

|||||
|
||
|

|||
|
||
|
||
|
|
|

|||||
|
||
|

|||
|
||
|
||
|
|
|

|||||
|
||
|

|||
|
||
|
||
|
|
|

|||||
|
||
|

|||||
|
||
|
|
|

|||||
|
||
|

|||||
|
||
|
|
|

|||||
|
||
|

|||
|
|

|||||

|||||||

Table 120. Valid TR-31 to CCA Import Translations and Required Access Control Points (ACPs) (continued)

Import T31
Usage

T31
Key
Blk
Vers.

T31
Mode

T31
Alg’m Keywords

Output CCA
Type
(CSNBCVG
keywords)

Output CCA
Usage
(CSNBCVG
keywords) Required TR31 Import ACP

E4 A N, B T (none) DKYGENKY DKYL0
+DDATA

Permit E4 to
DKYGENKY:DKYL0+DDATA

B,C X (none) DKYL0
+DDATA

E5 A G, C,
V, E,
D, B,
N

T DKYL0
+DMAC

DKYGENKY DKYL0
+DMAC

Permit E5 to
DKYGENKY:DKYL0+DMAC

B,C X DKYL0
+DMAC

DKYL0
+DMAC

A G, C,
V, E,
D, B,
N

DKYL0
+DDATA

DKYL0
+DDATA

Permit E5 to
DKYGENKY:DKYL0+DDATA

B,C X DKYL0
+DDATA

DKYL0
+DDATA

A G, C,
V, E,
D, B,
N

DKYL0
+DEXP

DKYL0
+DEXP

Permit E5 to
DKYGENKY:DKYL0+DEXP

B,C X DKYL0
+DEXP

DKYL0
+DEXP

Note: EMV Chip Card Master Keys are used by the chip cards to perform cryptographic operations, or in some
cases to derive keys used to perform operations. In CCA, these are:

v Key Gen Keys of level DKYL0 or DKYL1 allowing derivation of operational keys, or

v operational keys.

EMV support in CCA is significantly different. CCA key types do not match TR-31 types.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 121. TR-31 export required hardware

Server

Required
cryptographic
hardware Restrictions

IBM Eserver zSeries
900

This service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

TR-31 Import

310 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|

|
|
|
|
|
|
|
||

|
|
|
|

|
|
|
||

|||||||
|
|
|

|||||||
|

|||
|
|
|

||
|
||
|
|
|

|||||
|
||
|

|||
|
|
|

||
|
||
|
|
|

|||||
|
||
|

|||
|
|
|

||
|
||
|
|
|

|||||
|
||
|

|
|

|

|

|
|

|
|

||

|

|
|
||

|
|
||

|
|

|
|

||

|

|

||

Table 121. TR-31 export required hardware (continued)

Server

Required
cryptographic
hardware Restrictions

IBM System z10 EC

IBM System z10 BC

This service is not supported.

z196 Crypto Express3
Coprocessor

TR-31 key support requires the Sept. 2011
or later LIC.

TR-31 Optional Data Build (CSNBT31O and CSNET31O)
A TR-31 key block can hold optional fields which are securely bound to the key
block using the integrated MAC. The optional blocks may either contain information
defined in the TR-31 standard, or they may contain proprietary data.

Use the TR-31 Optional Data Build callable service to construct the optional block
data structure for a TR-31 key block. It builds the structure by adding one optional
block with each call, until your entire set of optional blocks have been added.

With each call, the application program provides a single optional block by
specifying its ID, its length, and its data in parameters opt_block_id,
opt_block_length, and opt_block_data respectively. Each subsequent call appends
the current optional block to any preexisting blocks in the opt_blocks parameter. On
the first call to the callable service, opt_blocks is typically empty.

The callable service name for AMODE(64) is CSNET31O.

Format

CSNBT31O(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
opt_blocks_bfr_length,
opt_blocks_length,
opt_blocks,
num_opt_blocks,
opt_block_id,
opt_block_data_length,
opt_block_data)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

TR-31 Import

Chapter 5. Managing Symmetric Cryptographic Keys 311

|

|

|
|
||

|

|

||

||
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||
|

|
|

|
|

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 0 since no keywords are currently defined
for this callable service.

rule_array

Direction: Input Type: String

The rule_array contains keywords that provide control information to the callable
service. There are no rule_array keywords currently defined for this callable
service.

opt_blocks_bfr_length

Direction: Input Type: Integer

This parameter specifies the length of the buffer passed with the opt_blocks
parameter. This length is used to determine if it would overflow the buffer size
when adding a new optional block to the current contents of the buffer.

opt_blocks_length

Direction: Input/Output Type: Integer

This parameter specifies the actual length of the set of optional blocks currently
contained in the opt_blocks buffer. On output, it is updated with the length after
the callable service has added the new optional block.

opt_blocks

Direction: Input/Output Type: String

This parameter specifies a buffer containing the set of optional blocks being
built. In the first call, it will generally be empty. The callable service will append
one optional block to the buffer with each call. Parameter opt_blocks_bfr_length

TR-31 Optional Data Build

312 z/OS V1R13 ICSF Application Programmer's Guide

|||
|

|
|
|
|

|

|||
|

|

|

|||
|

|

|

|||
|

|
|
|

|

|||
|

|
|
|

|

|||
|

|
|
|

|

|||
|

|
|
|

|

|||
|

|
|
|

specifies the total length of this buffer, and an error will be returned if this length
would be exceeded by adding the optional block in parameter opt_block_data to
the current contents. This parameter is encoded in ASCII on both input and
output.

num_opt_blocks

Direction: Output Type: Integer

This parameter contains the number of optional blocks contained in the
structure returned in parameter opt_blocks. This is provided as an output
parameter so that it can subsequently be used as an input to the TR-31 Export
callable service.

opt_block_id

Direction: Input Type: String

This parameter specifies a two-byte value which is the identifier (ID) of the
optional block passed in parameter opt_block_data.

opt_block_data_length

Direction: Input Type: Integer

This parameter specifies the length of the data passed in parameter
opt_block_data. Note that it is valid for this length to be zero; an optional block
can have an ID and a length, but no data.

opt_block_data

Direction: Input Type: String

This parameter specifies a buffer where the application passes the data for the
optional block that is to be added to those already in the buffer in parameter
opt_blocks. The length of this data is specified in parameter
opt_block_data_length.

Restrictions
None.

Usage Notes
Unless otherwise noted, all String parameters that are either written to, or read
from, a TR-31 key block will be in EBCDIC format. Input parameters are converted
to ASCII before being written to the TR-31 key block and output parameters are
converted to EBCDIC before being returned (see Appendix G, “EBCDIC and ASCII
Default Conversion Tables,” on page 891). TR-31 key blocks themselves are always
in printable ASCII format as required by the ANSI TR-31 specification.

Note that the Padding Block, ID “PB” is not allowed to be added by the user. A
Padding Block of the appropriate size, if needed, will be added when building the
TR-31 key block in TR-31 Export. If the TR-31 Export callable service encounters a
padding block in the optional block data, an error will occur.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

TR-31 Optional Data Build

Chapter 5. Managing Symmetric Cryptographic Keys 313

|
|
|
|

|

|||
|
|
|
|
|

|

|||
|
|
|

|

|||
|
|
|
|

|

|||
|
|
|
|
|

|

|

|

|
|
|
|
|
|

|
|
|
|

|
|

Table 122. TR-31 Optional Data Build required hardware

Server

Required
cryptographic
hardware Restrictions

IBM Eserver zSeries
900

None

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None

IBM System z9 EC

IBM System z9 BC

None

IBM System z10 EC

IBM System z10 BC

None

z196 None

TR-31 Optional Data Read (CSNBT31R and CSNET31R)
A TR-31 key block can hold optional fields which are securely bound to the key
block using the integrated MAC. The optional blocks may either contain information
defined in the TR-31 standard, or they may contain proprietary data. A separate
range of optional block identifiers is reserved for use with proprietary blocks.

Note that some of the parameters are only used with keyword INFO and others are
only used with keyword DATA.

The callable service name for AMODE(64) is CSNET31R.

Format

CSNBT31R(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
TR31_key_block_length,
TR31_key_block,
opt_block_id,
num_opt_blocks,
opt_block_ids,
opt_block_lengths,
opt_block_data_length,
opt_block_data)

Parameters
return_code

Direction: Output Type: Integer

TR-31 Optional Data Build

314 z/OS V1R13 ICSF Application Programmer's Guide

||

|

|
|
||

|
|
||

|
|

|
|

||

|

|

||

|

|

||

|||
|

|
|

|
|
|
|

|
|

|

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||
|

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 1

rule_array

Direction: Input Type: String

The rule_array contains keywords that provide control information to the callable
service. The keywords are 8 bytes in length and must be left-aligned and
padded on the right with space characters. The rule_array keywords for this
callable service are shown in the following table.

Table 123. Keywords for TR-31 Optional Data Read Rule Array Control Information

Keyword Meaning

Operation – one required

INFO Return information about the optional blocks in the TR-31 key
block.

DATA Return the data contained in a specified optional block in the
TR-31 key block.

TR31_key_block_length

Direction: Input Type: Integer

This parameter specifies the length of the TR31_key_block parameter, in bytes.
The parameter may specify a length that is greater than the size of the key
block however it can never be greater than the size of the buffer where the key
block resides. This value must be between 16 and 9992 inclusive.

TR31_key_block

TR-31 Optional Data Read

Chapter 5. Managing Symmetric Cryptographic Keys 315

|
|

|

|||
|

|
|
|
|

|

|||
|

|

|

|||
|

|

|

|||
|

|
|

|

|||
|

|
|
|
|

||

||

|

||
|

||
|
|

|

|||
|
|
|
|
|

|
|

Direction: Input Type: String

This parameter contains the TR-31 key block that is to be parsed. The length of
the TR-31 block is specified using parameter TR31_key_block_length.

opt_block_id

Direction: Input Type: String

This parameter is only used with option DATA. It is ignored for others. It
specifies a 2-byte string which contains the identifier of the block from which the
application is requesting data. The callable service will locate this optional block
within the TR-31 structure and copy the data from that optional block into the
returned opt_block_data buffer. If the specified optional block is not found in the
TR-31 key block, an error will occur.

num_opt_blocks

Direction: Input Type: Integer

This parameter specifies the number of optional blocks in the TR-31 key block.
The value is compared to the corresponding value in the TR-31 block header
and if they do not match the callable service fails with an error. This parameter
is only used for option INFO and is not examined for any other options.

opt_block_ids

Direction: Output Type: String Array

This parameter contains an array of two-byte string values. Each of these
values is the identifier (ID) of one of the optional blocks contained in the TR-31
key block. The callable service returns a list containing the ID of each optional
block that is in the TR-31 block, and the list is in the order that the optional
blocks appear in the TR-31 header. The total length of the returned list will be
two times the number of optional blocks, and the caller must supply a buffer
with a length at least twice the value it passes in parameter num_opt_blocks.
This parameter is only used for option INFO and is not examined for any other
options.

opt_block_lengths

Direction: Output Type: Integer Array

This parameter contains an array of integer values. Each of these values is the
length in bytes of one of the optional blocks contained in the TR-31 key block.
The callable service returns a list containing the length of each optional block
that is in the TR-31 block, and the list is in the order that the optional blocks
appear in the TR-31 header. The total length of the returned list will be four
times the number of optional blocks and the application program must supply a
buffer with a length at least four times the value it passes in parameter
num_opt_blocks. This parameter is only used for option INFO and is not
examined or altered for any other options.

opt_block_data_length

Direction: Input/Output Type: Integer

This parameter specifies the length for parameter opt_block_data. On input it
must be set to the length of the buffer provided by the application program, and
on output it is updated to contain the length of the returned optional block data,
in bytes. It is only used for option DATA.

opt_block_data

TR-31 Optional Data Read

316 z/OS V1R13 ICSF Application Programmer's Guide

|||
|
|
|

|

|||
|
|
|
|
|
|
|

|

|||
|
|
|
|
|

|

|||
|
|
|
|
|
|
|
|
|
|

|

|||
|
|
|
|
|
|
|
|
|
|

|

|||
|
|
|
|
|

|
|

Direction: Output Type: String

This parameter contains a buffer where the callable service stores the data it
reads from the specified optional block. The buffer must have enough space for
the data, as indicated by the input value of parameter opt_block_data_length. If
not an error occurs and no changes are made to the contents of the buffer. If
the size of the buffer is sufficient, the data is copied to the buffer and its length
is stored in parameter opt_block_data_length. It is only used for option DATA
and is not examined or altered for any other options.

Restrictions
None

Usage Notes
Unless otherwise noted, all String parameters that are either written to, or read
from, a TR-31 key block will be in EBCDIC format. Input parameters are converted
to ASCII before being written to the TR-31 key block and output parameters are
converted to EBCDIC before being returned (see Appendix G, “EBCDIC and ASCII
Default Conversion Tables,” on page 891). TR-31 key blocks themselves are always
in printable ASCII format as required by the ANSI TR-31 specification.

The TR-31 Optional Data Read callable service (CSNBT31R and CSNET31R) can
be used in conjunction with the TR-31 Parse callable service (CSNBT31P and
CSNET31P) to obtain both the standard header fields and any optional data blocks
from the key block. This is generally a three-step process.

1. Use the TR-31 Parse callable service to determine how many optional blocks
are in the TR-31 token. This is returned in the num_opt_blocks parameter.

2. Use keyword INFO with the TR-31 Optional Data Read callable service to
obtain lists of the optional block identifiers and optional block lengths. Your
buffers must be large enough to hold the returned data, but the required size
can be determined from the number of blocks obtained in the step above.

3. Use keyword DATA with the TR-31 Optional Data Read callable service to
obtain the data for a particular optional block, specified by the block identifier.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 124. TR-31 Optional Data Read required hardware

Server

Required
cryptographic
hardware Restrictions

IBM Eserver zSeries
900

None

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None

IBM System z9 EC

IBM System z9 BC

None

IBM System z10 EC

IBM System z10 BC

None

TR-31 Optional Data Read

Chapter 5. Managing Symmetric Cryptographic Keys 317

|||
|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|

||

|

|
|
||

|
|
||

|
|

|
|

||

|

|

||

|

|

||

Table 124. TR-31 Optional Data Read required hardware (continued)

Server

Required
cryptographic
hardware Restrictions

z196 None

TR-31 Parse (CSNBT31P and CSNET31P)
Use the TR-31 Parse callable service to retrieve standard header information from a
TR-31 key block without importing the key.

The callable service name for AMODE(64) is CSNET31P.

Format

CALL CSNBT31P(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
TR31_key_block_length,
TR31_key_block,
key_block_version,
key_block_length,
key_usage,
algorithm,
mode,
key_version_number,
exportability,
num_opt_blocks)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

TR-31 Optional Data Read

318 z/OS V1R13 ICSF Application Programmer's Guide

|

|

|
|
||

|||
|

|
|

|
|

|

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||
|

|
|

|

|||
|

|
|
|
|

|

|||
|

|

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 0 because no keywords are currently
defined for this callable service.

rule_array

Direction: Input Type: String

A rule_array contains keywords that provide control information to the callable
service. No rule array keywords are currently defined for this callable service.

TR31_key_block_length

Direction: Input Type: Integer

This parameter specifies the length of the TR31_key_block parameter, in bytes.
The parameter may specify a length that is greater than the size of the key
block (however it can never be greater than the size of the buffer where the key
block resides). This value must be between 16 and 9992 inclusive.

TR31_key_block

Direction: Input Type: String

This parameter contains the TR-31 key block that is to be parsed.

key_block_version

Direction: Output Type: String

This parameter contains a one-byte character value that indicates the version of
the TR-31 key block, parsed from the block itself. CCA only supports versions
"A", "B", and "C" key blocks.

key_block_length

Direction: Output Type: Integer

This parameter contains the length of the key block as obtained from the TR-31
key block header. Note that this may be different from the input value in
parameter TR31_key_block_length, if the application program specifies a length
that is greater than the actual length of the key block.

key_usage

Direction: Output Type: String

This parameter contains a 2-byte string value indicating the TR-31 key usage
value for the key contained in the block. The value is obtained from the TR-31

TR-31 Parse

Chapter 5. Managing Symmetric Cryptographic Keys 319

|

|||
|

|

|

|||
|

|
|
|

|

|||
|

|
|

|

|||
|

|
|
|
|

|

|||
|

|

|

|||
|

|
|
|

|

|||
|

|
|
|
|

|

|||
|

|
|

key block header. The usage defines the type of function this key can be used
with, such as data encryption, PIN encryption, or key wrapping.

algorithm

Direction: Output Type: String

This parameter contains a one-byte string identifying the cryptographic
algorithm the wrapped key is to be used with. The value is read from the TR-31
key block header. CCA only supports "D" for a Single-DES key and "T" for a
Triple-DES key.

mode

Direction: Output Type: String

This parameter contains a one-byte string indicating the TR-31 mode of use for
the key contained in the block. The value is obtained from the TR-31 key block
header. The mode of use describes what operations the key can perform, within
the limitations specified with the key usage value. For example, a key with
usage for data encryption can have a mode to indicate it may be used for
encryption only, decryption only, or both encryption and decryption.

key_version_number

Direction: Output Type: String

This parameter contains a two-byte string obtained from the TR-31 key block
header which represents versioning information about the key contained in the
block.

exportability

Direction: Output Type: String

This parameter contains a one-byte string indicating the key exportability value
from the TR-31 key block header. This value indicates whether the key can be
exported from this system, and if so it specifies conditions under which export is
permitted.

num_opt_blocks

Direction: Output Type: Integer

This parameter contains the number of optional blocks that are part of the
TR-31 key block.

Restrictions
None

Usage Notes
Unless otherwise noted, all String parameters that are either written to, or read
from, a TR-31 key block will be in EBCDIC format. Input parameters are converted
to ASCII before being written to the TR-31 key block and output parameters are
converted to EBCDIC before being returned (see Appendix G, “EBCDIC and ASCII
Default Conversion Tables,” on page 891). TR-31 key blocks themselves are always
in printable ASCII format as required by the ANSI TR-31 specification.

TR-31 Parse

320 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|

|||
|

|
|
|
|

|

|||
|

|
|
|
|
|
|

|

|||
|

|
|
|

|

|||
|

|
|
|
|

|

|||
|

|
|

|

|

|

|
|
|
|
|
|

The TR-31 Optional Data Read callable service (CSNBT31R and CSNET31R) can
be used in conjunction with the TR-31 Parse callable service (CSNBT31P and
CSNET31P) to obtain both the standard header fields and any optional data blocks
from the key block. This is generally a three-step process.

1. Use the TR-31 Parse callable service to determine how many optional blocks
are in the TR-31 token. This is returned in the num_opt_blocks parameter.

2. Use keyword INFO with the TR-31 Optional Data Read callable service to
obtain lists of the optional block identifiers and optional block lengths. Your
buffers must be large enough to hold the returned data, but the required size
can be determined from the number of blocks obtained in the step above.

3. Use keyword DATA with the TR-31 Optional Data Read callable service to
obtain the data for a particular optional block, specified by the block identifier.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 125. TR-31 Parse required hardware

Server

Required
cryptographic
hardware Restrictions

IBM Eserver zSeries
900

None

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None

IBM System z9 EC

IBM System z9 BC

None

IBM System z10 EC

IBM System z10 BC

None

z196 None

User Derived Key (CSFUDK and CSFUDK6)
This callable service is not supported on an IBM Eserver zSeries 990, IBM
Eserver zSeries 890, z9 EC and z9 BC, z10 EC and z10 BC. Diversifed key
generate callable service can be used to perform this processing.

Use the user derived key callable service to generate a single-length or
double-length MAC key or to update an existing user derived key. A single-length
MAC key can be used to compute a MAC following the ANSI X9.9, ANSI X9.19, or
the Europay, MasterCard and VISA (EMV) Specification MAC processing rules. A
double-length MAC key can be used to compute a MAC following either the ANSI
X9.19 optional double MAC processing rule or the EMV Specification MAC
processing rule.

This service updates an existing user derived key by XORing it with data you
supply in the data_array parameter. This is called SESSION MAC key generation
by VISA.

TR-31 Parse

Chapter 5. Managing Symmetric Cryptographic Keys 321

|
|
|
|

|
|

|
|
|
|

|
|

|
|

||

|

|
|
||

|
|
||

|
|

|
|

||

|

|

||

|

|

||

|||
|

|

This service adjusts the user derived key or SESSION MAC key to odd parity. The
parity of the supplied derivation key is not tested.

The callable service name for AMODE(64) invocation is CSFUDK6.

Format

CALL CSFUDK(
return_code,
reason_code,
exit_data_length,
exit_data,
key_type,
rule_array_count,
rule_array,
derivation_key_identifier,
source_key_identifier,
data_array,
generated_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_type

Direction: Input Type: String

The 8-byte keyword of 'MAC ' or 'MACD ' that specifies the key type to be
generated. The keyword must be left-justified and padded on the right with
blanks. MAC specifies an 8-byte, single-length MAC key which is used in the

User Derived Key

322 z/OS V1R13 ICSF Application Programmer's Guide

ANSI X9.9-1 or the ANSI X9.19 basic MAC processing rules. MACD specifies a
16-byte, double-length internal MAC key that uses the single-length control
vector for both the left and right half of the key (MAC { MAC). The
double-length MAC key is used in the ANSI X9.19 optional double-key MAC
processing rules. The keyword 'TOKEN ' is also accepted. If you specify
TOKEN with a rule_array of VISA or NOFORMAT, the key type is determined by
the valid internal token of the single-length or double-length MAC key in the
generated_key_identifier parameter. If you specify TOKEN with a rule_array of
SESS-MAC, the key type is determined by the valid internal token of the
single-length or double-length MAC key in the source_key_identifier.

rule_array_count

Direction: Input Type: Integer

The number of keywords specified in the rule_array parameter. The value must
be 1.

rule_array

Direction: Input Type: Character string

The process rule for the user derived key in an 8-byte field. The keywords must
be in 8 bytes of contiguous storage, left-justified and padded on the right with
blanks.

The keywords are shown in Table 126.

Table 126. Keywords for User Derived Key Control Information

Keyword Meaning

User Derived Key Process Rules (required)

NOFORMAT For generating a user derived key with no formatting
done on the array before encryption under the
derivation_key_identifier.

SESS-MAC To update an existing user derived key supplied in the
source_key_ identifier parameter with data provided in
the data_array parameter.

VISA For generating a user derived key using the VISA
algorithm to format the data array input before
encryption under the derivation_key_identifier. For
guidance information refer to the VISA Integrated
Circuit Card Specification, V1.3 Aug 31, 1996.

derivation_key_identifier

Direction: Input/Output Type: String

For a rule_array value of VISA or NOFORMAT, this is a 64-byte key label or
internal key token of the derivation key used to generate the user derived key.
The key must be an EXPORTER key type. For any other keyword, this field
must be a null token.

source_key_identifier

Direction: Input/Output Type: String

User Derived Key

Chapter 5. Managing Symmetric Cryptographic Keys 323

For a rule_array value of SESS-MAC, this is a 64-byte internal token of a
single-length or double-length MAC key. For any other keyword, this field must
be a null token.

data_array

Direction: Input Type: String

Two 16-byte data elements required by the corresponding rule_array and
key_type parameters. The data array consists of two 16-byte hexadecimal
character fields whose specification depends on the process rule and key type.
VISA requires only one 16-byte hexadecimal character input. Both NOFORMAT
and SESS-MAC require one 16-byte input for a key type of MAC and two
16-byte inputs for a key type of MACD. If only one 16-byte field is required,
then the rest of the data array is ignored by the callable service.

generated_key_identifier

Direction: Input/Output Type: String

The 64-byte internal token of the generated single-length or double-length MAC
key. This is an input field only if TOKEN is specified for key_type.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

This service requires that the ANSI system keys be installed in the CKDS.

The following table lists the required cryptographic hardware for each server type
and describes restrictions for this callable service.

Table 127. User derived key required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This callable service is not supported.

IBM System z9 EC
and z9 BC

This callable service is not supported.

IBM System z10 EC
and z10 BC

This callable service is not supported.

z196 This callable service is not supported.

User Derived Key

324 z/OS V1R13 ICSF Application Programmer's Guide

Chapter 6. Protecting Data

Use ICSF to protect sensitive data stored on your system, sent between systems,
or stored off your system on magnetic tape. To protect data, encipher it under a key.
When you want to read the data, decipher it from ciphertext to plaintext form.

ICSF provides encipher and decipher callable services to perform these functions. If
you use a key to encipher data, you must use the same key to decipher the data.
To use clear keys directly, ICSF provides symmetric key decipher, symmetric key
encipher, encode and decode callable services. These services encipher and
decipher with clear keys. You can use clear keys indirectly by first using the clear
key import callable service, and then using the encipher and decipher callable
services.

This topic describes these services:
v “Ciphertext Translate (CSNBCTT or CSNBCTT1 and CSNECTT or CSNECTT1)”

on page 328
v “Decipher (CSNBDEC or CSNBDEC1 and CSNEDEC or CSNEDEC1)” on page

331
v “Decode (CSNBDCO and CSNEDCO)” on page 338
v “Encipher (CSNBENC or CSNBENC1 and CSNEENC or CSNEENC1)” on page

340
v “Encode (CSNBECO and CSNEECO)” on page 348
v “Symmetric Algorithm Decipher (CSNBSAD or CSNBSAD1 and CSNESAD or

CSNESAD1)” on page 350
v “Symmetric Algorithm Encipher (CSNBSAE or CSNBSAE1 and CSNESAE or

CSNESAE1)” on page 356
v “Symmetric Key Decipher (CSNBSYD or CSNBSYD1 and CSNESYD or

CSNESYD1)” on page 362
v “Symmetric Key Encipher (CSNBSYE or CSNBSYE1 and CSNESYE or

CSNESYE1)” on page 371

Modes of Operation
To encipher or decipher data or keys, ICSF uses either the U.S. National Institute of
Standards and Technology (NIST) Data Encryption Standard (DES) algorithm or the
Commercial Data Masking Facility (CDMF). The DES algorithm is documented in
Federal Information Processing Standard #46. CDMF provides DES cryptography
using an effectively shortened DATA key. See “System Encryption Algorithm” on
page 49 for more information.

To encipher or decipher data, ICSF also uses the U.S. National Institute of
Standards and Technology (NIST) Advanced Encryption Standard (AES) algorithm.
The AES algorithm is documented in Federal Information Processing Standard 197.

ICSF enciphers and deciphers using several modes of operation. Some of the
modes have variations related to padding or blocking of the data. The text in
parentheses is the processing rule associated with that mode.

The supported modes are:

v Electronic code book (ECB)

v Cipher block chaining (CBC)

– Cipher block chaining with ciphertext stealing (CBC-CS)

– Cipher block chaining compatible with CUSP/PCF (CUSP)

© Copyright IBM Corp. 1997, 2011 325

– Cipher block chaining compatible with IPS (IPS)

– Cipher block chaining using PKCS#7 padding (PKCS-PAD)

– Cipher block chaining using ANSI X9.23 padding (X9.23)

– Cipher block chaining using IBM 4700 padding (4700-PAD)

v Cipher Feedback (CFB)

– Cipher Feedback with a non-blocksize segment (CFB-LCFB)

v Output Feedback (OFB)

v Galois/Counter Mode (GCM)

Electronic Code Book (ECB) Mode
In the ECB mode, each block of plaintext is separately enciphered and each block
of the ciphertext is separately deciphered. In other words, the encipherment or
decipherment of a block is totally independent of other blocks. ICSF uses the ECB
encipherment mode for enciphering and deciphering data with clear keys using the
encode and decode callable services.

ICSF does not support ECB encipherment mode on CDMF-only systems.

Cipher Block Chaining (CBC) Mode
The CBC mode uses an initial chaining vector (ICV) in its processing. The CBC
mode only processes blocks of data in exact multiples of the blocksize. The ICV is
exclusive ORed with the first block of plaintext prior to the encryption step; the block
of ciphertext just produced is exclusive-ORed with the next block of plaintext, and
so on. You must use the same ICV to decipher the data. This disguises any pattern
that may exist in the plaintext. CBC mode is the default for encrypting and
decrypting data using the Encipher and Decipher callable services. “Cipher
Processing Rules” on page 874 describes the CBC-specific processing rules in
detail.

Cipher Feedback (CFB) Mode
The CFB mode uses an initial chaining vector (ICV) in its processing. CFB mode
performs cipher feedback encryption. CFB mode operates on segments instead of
blocks. The segment length (called s) is between one bit and the block size (called
b) for the underlying algorithm (DES or AES), inclusive. ICSF only allows segment
sizes which are a multiple of eight bits (complete bytes). Each encryption step takes
an input block, enciphers it with the key provided to generate an output block, takes
the most significant s bits of the output block, and then exclusive ORs that with the
plaintext segment. The first input block is the ICV and each subsequent input block
is formed by concatenating the (b-s) least significant bits of the previous input block
and the ciphertext (s bits) from the previous step to form a full block. The input text
can be of any length. The output text will have the same length as the input text.

Output Feedback (OFB) Mode
The OFB mode uses an initial chaining vector (ICV) in its processing. OFB mode
requires that the ICV is a nonce (the ICV must be unique for each execution of the
mode under the given key). Each encryption step takes an input block, enciphers it
with the key provided to generate an output block, and then exclusive ORs the
output block with the plaintext block. The first input block is the ICV and each
subsequent input block is the previous output block. The input text can be of any
length. The output text will have the same length as the input text.

326 z/OS V1R13 ICSF Application Programmer's Guide

Galois/Counter Mode (GCM)
The GCM mode uses an initialization vector (IV) in its processing. This mode is
used for authenticated encryption with associated data. GCM provides
confidentiality and authenticity for the encrypted data and authenticity for the
additional authenticated data (AAD). The AAD is not encrypted. GCM mode
requires that the IV is a nonce, i.e., the IV must be unique for each execution of the
mode under the given key. The steps for GCM encryption are:

1. The hash subkey for the GHASH function is generated by applying the block
cipher to the “zero” block.

2. The pre-counter block (J0) is generated from the IV. In particular, when the
length of the IV is 96 bits, then the padding string 031||1 is appended to the IV to
form the pre-counter block. Otherwise, the IV is padded with the minimum
number of ‘0’ bits, possibly none, so that the length of the resulting string is a
multiple of 128 bits (the block size); this string in turn is appended with 64
additional ‘0’ bits, followed by the 64-bit representation of the length of the IV,
and the GHASH function is applied to the resulting string to form the
pre-counter block.

3. The 32-bit incrementing function is applied to the pre-counter block to produce
the initial counter block for an invocation of the GCTR function on the plaintext.
The output of this invocation of the GCTR function is the ciphertext.

4. The AAD and the ciphertext are each appended with the minimum number of ‘0’
bits, possibly none, so that the bit lengths of the resulting strings are multiples
of the block size. The concatenation of these strings is appended with the 64-bit
representations of the lengths of the AAD and the ciphertext to produce block u.

5. The GHASH function is applied to block u to produce a single output block.

6. This output block is encrypted using the GCTR function with the pre-counter
block that was generated in Step 2, and the result is truncated to the
specified tag length to form the authentication tag.

7. The ciphertext and the tag are returned as the output.

The plaintext can be of any length. The ciphertext will have the same length as
the plaintext.

For GCM decryption, the tag is an input parameter. ICSF calculates a tag using the
same process as encryption and compares that to the parameter passed by the
caller. If they match, the decryption will proceed.

Triple DES Encryption
Triple-DES encryption uses a triple-length DATA key comprised of three 8-byte DES
keys to encipher 8 bytes of data using this method:

v Encipher the data using the first key

v Decipher the result using the second key

v Encipher the second result using the third key

The procedure is reversed to decipher data that has been triple-DES enciphered:

v Decipher the data using the third key

v Encipher the result using the second key

v Decipher the second result using the first key

ICSF uses the triple-DES encryption in the CBC encipherment mode.

Chapter 6. Protecting Data 327

A variation of the triple DES algorithm supports the use of a double-length DATA
key comprised of two 8-byte DATA keys. In this method, the first 8-byte key is
reused in the last encipherment step.

Due to export regulations, triple-DES encryption may not be available on your
processor.

Ciphertext Translate (CSNBCTT or CSNBCTT1 and CSNECTT or
CSNECTT1)

This callable service is only supported on the IBM Eserver zSeries 900.

ICSF provides a ciphertext translate callable service on DES-capable systems. The
callable service deciphers encrypted data (ciphertext) under one data translation
key and reenciphers it under another data translation key without having the data
appear in the clear outside the Cryptographic Coprocessor Feature. ICSF uses the
data translation key as either the input or the output data transport key. Such a
function is useful in a multiple node network, where sensitive data is passed
through multiple nodes prior to it reaching its final destination.

“Using the Ciphertext Translate Callable Service” on page 66 provides some tips on
using the callable service.

Use the ciphertext translate callable service to decipher text under an “input” key
and then to encipher the text under an “output” key. The callable service uses the
cipher block chaining (CBC) mode of the DES. This service is available only on a
DES-capable system.

Choosing Between CSNBCTT and CSNBCTT1
CSNBCTT and CSNBCTT1 provide identical functions. When choosing the service
to use, consider this:

v CSNBCTT requires the input text and output text to reside in the caller's primary
address space. Also, a program using CSNBCTT adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

The callable service name for AMODE(64) invocation is CSNECTT.

v CSNBCTT1 allows the input text and output text to reside either in the caller's
primary address space or in a data space. This allows you to translate more data
with one call. However, a program using CSNBCTT1 does not adhere to the IBM
Common Cryptographic Architecture: Cryptographic Application Programming
Interface, and may need to be modified prior to it running with other
cryptographic products that follow this programming interface.

The callable service name for AMODE(64) invocation is CSNECTT1.

For CSNBCTT1 and CSNECTT1, text_id_in and text_id_out are access list entry
token (ALET) parameters of the data spaces containing the input text and output
text.

328 z/OS V1R13 ICSF Application Programmer's Guide

Format

CALL CSNBCTT(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier_in,
key_identifier_out,
text_length,
text_in,
initialization_vector_in,
initialization_vector_out,
text_out)

CALL CSNBCTT1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier_in,
key_identifier_out,
text_length,
text_in,
initialization_vector_in,
initialization_vector_out,
text_out,
text_id_in,
text_id_out)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

Ciphertext Translate

Chapter 6. Protecting Data 329

The data that is passed to the installation exit.

key_identifier_in

Direction: Input/Output Type: String

The 64-byte string of the internal key token containing the data translation
(DATAXLAT) key, or the label of the CKDS record containing the DATAXLAT
key used to encipher the input string.

key_identifier_out

Direction: Input/Output Type: String

The 64-byte string of an internal key token containing the DATAXLAT key, or the
label of the CKDS record containing the DATAXLAT key, used to reencipher the
encrypted text.

text_length

Direction: Input Type: Integer

The length of the ciphertext that is to be processed. The text length must be a
multiple of 8 bytes. The maximum length of text is 2,147,836,647 bytes.

Note: The MAXLEN value may still be specified in the options data set, but
only the maximum value limit will be enforced.

text_in

Direction: Input Type: String

The text that is to be translated. The text is enciphered under the data
translation key specified in the key_identifier_in parameter.

initialization_vector_in

Direction: Input Type: String

The 8-byte initialization vector that is used to decipher the input data. This
parameter is the initialization vector used at the previous cryptographic node.

initialization_vector_out

Direction: Input Type: String

The 8-byte initialization vector that is used to encipher the input data. This is
the new initialization vector used when the callable service enciphers the
plaintext.

text_out

Direction: Output Type: String

The field where the callable service returns the translated text.

text_id_in

Direction: Input Type: Integer

Ciphertext Translate

330 z/OS V1R13 ICSF Application Programmer's Guide

For CSNBCTT1 only, the ALET of the text to be translated.

text_id_out

Direction: Input Type: Integer

For CSNBCTT1 only, the ALET of the text_out field that the application
supplies.

Restrictions
The input ciphertext length must be an exact multiple of 8 bytes. The minimum
length of the ciphertext that can be translated is 8 bytes.

You cannot use this service on a CDMF-only system.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The initialization vectors must have already been established between the
communicating applications or must be passed with the data.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 128. Ciphertext translate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

This callable service is not supported.

IBM System z10 EC

IBM System z10 BC

This callable service is not supported.

z196 This callable service is not supported.

Decipher (CSNBDEC or CSNBDEC1 and CSNEDEC or CSNEDEC1)
Use the decipher callable service to decipher data in an address space or a data
space using the cipher block chaining mode. ICSF supports these processing rules
to decipher data. You choose the type of processing rule that the decipher callable
service should use for block chaining.

Processing Rule Purpose

ANSI X9.23 For cipher block chaining. The ciphertext must be
an exact multiple of 8 bytes, but the plaintext will be

Ciphertext Translate

Chapter 6. Protecting Data 331

1 to 8 bytes shorter than the ciphertext. The
text_length will also be reduced to show the original
length of the plaintext.

CBC For cipher block chaining. The ciphertext must be
an exact multiple of 8 bytes, and the plaintext will
have the same length.

CUSP For cipher block chaining, but the ciphertext can be
of any length. The plaintext will be the same length
as the ciphertext.

IBM 4700 For cipher block chaining. The ciphertext must be
an exact multiple of 8 bytes, but the plaintext will be
1 to 8 bytes shorter than the ciphertext. The
text_length will also be reduced to show the original
length of the plaintext.

IPS For cipher block chaining, but the ciphertext can be
of any length. The plaintext will be the same length
as the ciphertext.

The cipher block chaining (CBC) mode uses an initial chaining value (ICV) in its
processing. The first 8 bytes of ciphertext is deciphered and then the ICV is
exclusive ORed with the resulting 8 bytes of data to form the first 8-byte block of
plaintext. Thereafter, the 8-byte block of ciphertext is deciphered and exclusive
ORed with the previous 8-byte block of ciphertext until all the ciphertext is
deciphered.

The selection between single-DES decryption mode and triple-DES decryption
mode is controlled by the length of the key supplied in the key_identifier parameter.
If a single-length key is supplied, single-DES decryption is performed. If a
double-length or triple-length key is supplied, triple-DES decryption is performed.

A different ICV may be passed on each call to the decipher callable service.
However, the same ICV that was used in the corresponding encipher callable
service must be passed.

Short blocks are text lengths of 1 to 7 bytes. A short block can be the only block.
Trailing short blocks are blocks of 1 to 7 bytes that follow an exact multiple of 8
bytes. For example, if the text length is 21, there are two 8-byte blocks and a
trailing short block of 5 bytes. Because the DES and CDMF process only text in
exact multiples of 8 bytes, some special processing is required to decipher such
short blocks. Short blocks and trailing short blocks of 1 to 7 bytes of data are
processed according to the Cryptographic Unit Support Program (CUSP) rules, or
by the record chaining scheme devised by and used in the Information Protection
System (IPS) in the IPS/CMS product.

These methods of treating short blocks and trailing short blocks do not increase the
length of the ciphertext over the plaintext. If the plaintext was padded during
encipherment, the length of the ciphertext will always be an exact multiple of 8
bytes.

ICSF supports these padding schemes:

v ANSI X9.23

v 4700-PAD

Decipher

332 z/OS V1R13 ICSF Application Programmer's Guide

Choosing Between CSNBDEC and CSNBDEC1
CSNBDEC and CSNBDEC1 provide identical functions. When choosing which
service to use, consider this:

v CSNBDEC requires the ciphertext and plaintext to reside in the caller's primary
address space. Also, a program using CSNBDEC adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

The callable service name for AMODE(64) invocation is CSNEDEC.

v CSNBDEC1 allows the ciphertext and plaintext to reside either in the caller's
primary address space or in a data space. This can allow you to decipher more
data with one call. However, a program using CSNBDEC1 does not adhere to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface, and may need to be modified prior to it running with
other cryptographic products that follow this programming interface.

The callable service name for AMODE(64) invocation is CSNEDEC1.

For CSNBDEC1 and CSNEDEC1, cipher_text_id and clear_text_id are access
list entry token (ALET) parameters of the data spaces containing the ciphertext
and plaintext.

Format

CALL CSNBDEC(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
cipher_text,
initialization_vector,
rule_array_count,
rule_array,
chaining_vector,
clear_text)

CALL CSNBDEC1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
cipher_text,
initialization_vector,
rule_array_count,
rule_array,
chaining_vector,
clear_text,
cipher_text_id,
clear_text_id)

Parameters
return_code

Direction: Output Type: Integer

Decipher

Chapter 6. Protecting Data 333

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_identifier

Direction: Input/Output Type: String

A 64-byte string that is the internal key token containing the data-encrypting
key, or the label of a CKDS record containing a data-encrypting key, to be used
for deciphering the data. If the key token or key label contains a single-length
key, single-DES decryption is performed. If the key token or key label contains
a double-length or triple-length key, triple-DES decryption is performed.

On the IBM Eserver zSeries 990,IBM Eserver zSeries 890, z9 EC and z9
BC single and double length CIPHER and DECIPHER keys are also supported.

text_length

Direction: Input/Output Type: Integer

On entry, you supply the length of the ciphertext. The maximum length of text is
214783647 bytes. A zero value for the text_length parameter is not valid. If the
returned deciphered text (clear_text parameter) is a different length because of
the removal of padding bytes, the value is updated to the length of the plaintext.

Note: The MAXLEN value may still be specified in the options data set, but
only the maximum value limit will be enforced.

The application program passes the length of the ciphertext to the callable
service. The callable service returns the length of the plaintext to your
application program.

cipher_text

Direction: Input Type: String

Decipher

334 z/OS V1R13 ICSF Application Programmer's Guide

The text to be deciphered.

initialization_vector

Direction: Input Type: String

The 8-byte supplied string for the cipher block chaining. The first block of the
ciphertext is deciphered and exclusive ORed with the initial chaining vector
(ICV) to get the first block of cleartext. The input block is the next ICV. To
decipher the data, you must use the same ICV used when you enciphered the
data.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supply in the rule_array parameter. The value
must be 1, 2, or 3.

rule_array

Direction: Input Type: Character string

An array of 8-byte keywords providing the processing control information. The
array is positional. See the keywords in Table 129. The first keyword in the
array is the processing rule. You choose the processing rule you want the
callable service to use for deciphering the data. The second keyword is the ICV
selection keyword. The third keyword (or the second if the ICV selection
keyword is allowed to default) is the encryption algorithm to use.

The service will fail if keyword DES is specified in the rule_array in a
CDMF-only system. The service will likewise fail if keyword CDMF is specified
in the rule_array in a DES-only system.

Table 129. Keywords for the Decipher Rule Array Control Information

Keyword Meaning

Processing Rule (required)

CBC Performs ANSI X3.102 cipher block chaining. The data
must be a multiple of 8 bytes. An OCV is produced and
placed in the chaining_vector parameter. If the ICV
selection keyword CONTINUE is specified, the CBC OCV
from the previous call is used as the ICV for this call.

CUSP Performs deciphering that is compatible with IBM's CUSP
and PCF products. The data can be of any length and
does not need to be in multiples of 8 bytes. The
ciphertext will be the same length as the plaintext. The
CUSP/PCF OCV is placed in the chaining_vector
parameter. If the ICV selection keyword CONTINUE is
specified, the CUSP/PCF OCV from the previous call is
used as the ICV for this call.

IPS Performs deciphering that is compatible with IBM's IPS
product. The data can be of any length and does not
need to be in multiples of 8 bytes. The ciphertext will be
the same length as the plaintext. The IPS OCV is placed
in the chaining_vector parameter. If the ICV selection
keyword CONTINUE is specified, the IPS OCV from the
previous call is used as the ICV for this call.

Decipher

Chapter 6. Protecting Data 335

Table 129. Keywords for the Decipher Rule Array Control Information (continued)

Keyword Meaning

X9.23 Deciphers with cipher block chaining and text length
reduced to the original value. This is compatible with the
requirements in ANSI standard X9.23. The ciphertext
length must be an exact multiple of 8 bytes. Padding is
removed from the plaintext.

4700-PAD Deciphers with cipher block chaining and text length
reduced to the original value. The ciphertext length must
be an exact multiple of 8 bytes. Padding is removed from
the plaintext.

ICV Selection (optional)

CONTINUE This specifies taking the initialization vector from the
output chaining vector (OCV) contained in the work area
to which the chaining_vector parameter points.
CONTINUE is valid only for processing rules CBC, IPS,
and CUSP.

INITIAL This specifies taking the initialization vector from the
initialization_vector parameter. INITIAL is the default
value.

Encryption Algorithm (optional)

CDMF This specifies using the Commercial Data Masking
Facility and ignoring the token marking. You cannot use
double- or triple-length keys with CDMF. The CDMF
keyword, or tokens marked as CDMF, are only supported
on an IBM Eserver zSeries 900.

DES This specifies using the data encryption standard and
ignoring the token marking.

TOKEN This specifies using the data encryption algorithm in the
DATA key token. This is the default.

“Cipher Processing Rules” on page 874 describes the cipher processing rules in
detail.

chaining_vector

Direction: Input/Output Type: String

An 18-byte field that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector holds the
output chaining vector (OCV) from the caller. The OCV is the first 8 bytes in the
18-byte string.

The direction is output if the ICV selection keyword of the rule_array parameter
is INITIAL. The direction is input/output if the ICV selection keyword of the
rule_array parameter is CONTINUE.

clear_text

Direction: Output Type: String

The field where the callable service returns the deciphered text.

cipher_text_id

Decipher

336 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input Type: Integer

For CSNBDEC1/CSNEDEC1 only, the ALET of the ciphertext to be deciphered.

clear_text_id

Direction: Input Type: Integer

For CSNBDEC1/CSNEDEC1 only, the ALET of the clear text supplied by the
application.

Restrictions
The service will fail under these conditions:

v If the keyword DES is specified in the rule_array parameter in a CDMF-only
system

v If the keyword CDMF is specified in the rule_array parameter in a DES-only
system

v If the key token contains double or triple-length keys and triple-DES is not
enabled.

v If the keyword CDMF is specified on a PCIXCC, CEX2C, or CEX3C.

v If a token is marked CDMF on a PCIXCC, CEX2C, or CEX3C.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

On a CCF system, only a DATA key token or DATA key label can be used in this
service.

Single and double length CIPHER and DECIPHER keys are supported on a
PCIXCC, CEX2C, or CEX3C.

Related Information
You cannot overlap the plaintext and ciphertext fields. For example:
pppppp

cccccc is not supported.

cccccc
pppppp is not supported.

ppppppcccccc is supported.

P represents the plaintext and c represents the ciphertext.

On z990, z890, z9 EC or z9 BC system, the PCIXCC/CEX2C will support non
destructive overlap. For example:
pppppp

cccccc is supported.

“Cipher Processing Rules” on page 874 discusses the cipher processing rules.

The Encipher callable services are described under “Encipher (CSNBENC or
CSNBENC1 and CSNEENC or CSNEENC1)” on page 340.

Decipher

Chapter 6. Protecting Data 337

The Decipher - DES access control point controls the function of this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 130. Decipher required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

If keyword CDMF is specified or if the token
is marked as CDMF, the service fails.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

If keyword CDMF is specified or if the token
is marked as CDMF, the service fails.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

If keyword CDMF is specified or if the token
is marked as CDMF, the service fails.

z196 Crypto Express3
Coprocessor

If keyword CDMF is specified or if the token
is marked as CDMF, the service fails.

Decode (CSNBDCO and CSNEDCO)
Use this callable service to decipher an 8-byte string using a clear key. The callable
service uses the electronic code book (ECB) mode of the DES. (This service is
available only on a DES-capable system.)

The callable service name for AMODE(64) invocation is CSNEDCO.

Considerations
If you have only a clear key, you are not limited to using only the encode and
decode callable services.

v You can pass your clear key to the clear key import service, and get back a
token that will allow you to use the encipher and decipher callable services.

v On an IBM Eserver zSeries 990 and subsequent releases, consider using the
Symmetric Key Decipher service (“Symmetric Key Decipher (CSNBSYD or
CSNBSYD1 and CSNESYD or CSNESYD1)” on page 362).

Format

CALL CSNBDCO(
return_code,
reason_code,
exit_data_length,
exit_data,
clear_key,
cipher_text,
clear_text)

Decipher

338 z/OS V1R13 ICSF Application Programmer's Guide

|

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

clear_key

Direction: Input Type: String

The 8-byte clear key value that is used to decode the data.

cipher_text

Direction: Input Type: String

The ciphertext that is to be decoded. Specify 8 bytes of text.

clear_text

Direction: Output Type: String

The 8-byte field where the plaintext is returned by the callable service.

Restrictions
You cannot use this service on a CDMF-only system.

Usage Notes
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Decode

Chapter 6. Protecting Data 339

Table 131. Decode required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

CP Assist for
Cryptographic
Functions

IBM System z9 EC

IBM System z9 BC

CP Assist for
Cryptographic
Functions

IBM System z10 EC

IBM System z10 BC

CP Assist for
Cryptographic
Functions

z196 CP Assist for
Cryptographic
Functions

Encipher (CSNBENC or CSNBENC1 and CSNEENC or CSNEENC1)
Use the encipher callable service to encipher data in an address space or a data
space using the cipher block chaining mode. ICSF supports these processing rules
to encipher data. You choose the type of processing rule that the encipher callable
service should use for the block chaining.

Processing Rule Purpose

ANSI X9.23 For block chaining not necessarily in exact multiples
of 8 bytes. This process rule pads the plaintext so
that ciphertext produced is an exact multiple of 8
bytes.

CBC For block chaining in exact multiples of 8 bytes.

CUSP For block chaining not necessarily in exact multiples
of 8 bytes. The ciphertext will be the same length
as the plaintext.

IBM 4700 For block chaining not necessarily in exact multiples
of 8 bytes. This process rule pads the plaintext so
that the ciphertext produced is an exact multiple of
8 bytes.

IPS For block chaining not necessarily in exact multiples
of 8 bytes. The ciphertext will be the same length
as the plaintext.

For more information about the processing rules, see Table 132 on page 344 and
“Cipher Processing Rules” on page 874.

The cipher block chaining (CBC) mode of operation uses an initial chaining vector
(ICV) in its processing. The ICV is exclusive ORed with the first 8 bytes of plaintext
prior to the encryption step, and thereafter, the 8-byte block of ciphertext just

Decode

340 z/OS V1R13 ICSF Application Programmer's Guide

produced is exclusive ORed with the next 8-byte block of plaintext, and so on. This
disguises any pattern that may exist in the plaintext.

The selection between single-DES encryption mode and triple-DES encryption
mode is controlled by the length of the key supplied in the key_identifier parameter.
If a single-length key is supplied, single-DES encryption is performed. If a
double-length or triple-length key is supplied, triple-DES encryption is performed.

To nullify the CBC effect on the first 8-byte block, supply 8 bytes of zero. However,
the ICV may require zeros.

Cipher block chaining also produces a resulting chaining value called the output
chaining vector (OCV). The application can pass the OCV as the ICV in the next
encipher call. This results in record chaining.

Note that the OCV that results is the same, whether an encipher or a decipher
callable service was invoked, assuming the same text, ICV, and key were used.

Short blocks are text lengths of 1 to 7 bytes. A short block can be the only block.
Trailing short blocks are blocks of 1 to 7 bytes that follow an exact multiple of 8
bytes. For example, if the text length is 21, there are two 8-byte blocks, and a
trailing short block of 5 bytes. Short blocks and trailing short blocks of 1 to 7 bytes
of data are processed according to the Cryptographic Unit Support Program
(CUSP) rules, or by the record chaining scheme devised by and used by the
Information Protection System (IPS) in the IPS/CMS program product. These
methods of treating short blocks and trailing short blocks do not increase the length
of the ciphertext over the plaintext.

An alternative method is to pad the plaintext and produce a ciphertext that is longer
than the plaintext. The plaintext can be padded with up to 8 bytes using one of
several padding schemes. This padding produces a ciphertext that is an exact
multiple of 8 bytes long.

If the ciphertext is to be transmitted over a network, where one or more
intermediate nodes will use the ciphertext translate callable service, the ciphertext
must be produced using one of these methods of padding:

v ANSI X9.23

v 4700

If the cleartext is already a multiple of 8, the ciphertext can be created using any
processing rule.

Because of padding, the returned ciphertext length is longer than the provided
plaintext; the text_length parameter will have been modified. The returned ciphertext
field should be 8 bytes longer than the length of the plaintext to accommodate the
maximum amount of padding. You should provide this extension in your
installation's storage because ICSF cannot detect whether the extension was done.

The minimum length of data that can be enciphered is one byte.

Attention: If you lose the data-encrypting key under which the data (plaintext) is
enciphered, the data enciphered under that key (ciphertext) cannot be recovered.

Encipher

Chapter 6. Protecting Data 341

Choosing between CSNBENC and CSNBENC1
CSNBENC and CSNBENC1 provide identical functions. When choosing which
service to use, consider this:

v CSNBENC requires the cleartext and ciphertext to reside in the caller's primary
address space. Also, a program using CSNBENC adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

The callable service name for AMODE(64) invocation is CSNEENC.

v CSNBENC1 allows the cleartext and ciphertext to reside either in the caller's
primary address space or in a data space. This can allow you to encipher more
data with one call. However, a program using CSNBENC1 does not adhere to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface, and may need to be modified prior to it running with
other cryptographic products that follow this programming interface.

The callable service name for AMODE(64) invocation is CSNEENC1.

For CSNBENC1 and CSNEENC1, clear_text_id and cipher_text_id are access
list entry token (ALET) parameters of the data spaces containing the cleartext
and ciphertext.

Format

CALL CSNBENC(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
clear_text,
initialization_vector,
rule_array_count,
rule_array,
pad_character,
chaining_vector,
cipher_text)

CALL CSNBENC1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
clear_text,
initialization_vector,
rule_array_count,
rule_array,
pad_character,
chaining_vector,
cipher_text,
clear_text_id,
cipher_text_id)

Parameters
return_code

Direction: Output Type: Integer

Encipher

342 z/OS V1R13 ICSF Application Programmer's Guide

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_identifier

Direction: Input/Output Type: String

A 64-byte string that is the internal key token containing the data-encrypting
key, or the label of a CKDS record containing the data-encrypting key, to be
used for encrypting the data. If the key token or key label contains a
single-length key, single-DES encryption is performed. If the key token or key
label contains a double-length or triple-length key, triple-DES encryption is
performed.

On an IBM Eserver zSeries 990 and subsequent releases, single and double
length CIPHER and ENCIPHER keys are also supported.

text_length

Direction: Input/Output Type: Integer

On entry, the length of the plaintext (clear_text parameter) you supply. The
maximum length of text is 2,14783647 bytes. A zero value for the text_length
parameter is not valid. If the returned enciphered text (cipher_text parameter) is
a different length because of the addition of padding bytes, the value is updated
to the length of the ciphertext.

Note: The MAXLEN value may still be specified in the options data set, but
only the maximum value limit will be enforced (2147483647).

The application program passes the length of the plaintext to the callable
service. The callable service returns the length of the ciphertext to the
application program.

clear_text

Encipher

Chapter 6. Protecting Data 343

Direction: Input Type: String

The text that is to be enciphered.

initialization_vector

Direction: Input Type: String

The 8-byte supplied string for the cipher block chaining. The first 8 bytes (or
less) block of the data is exclusive ORed with the ICV and then enciphered.
The input block is enciphered and the next ICV is created. You must use the
same ICV to decipher the data.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supply in the rule_array parameter. The value
must be 1, 2, or 3.

rule_array

Direction: Input Type: Character string

An array of 8-byte keywords providing the processing control information. The
array is positional. See the keywords in Table 132. The first keyword in the
array is the processing rule. You choose the processing rule you want the
callable service to use for enciphering the data. The second keyword is the ICV
selection keyword. The third keyword (or the second if the ICV selection
keyword is allowed to default to INITIAL) is the encryption algorithm to use.

The service will fail if keyword DES is specified in the rule_array in a
CDMF-only system. The service will likewise fail if the keyword CDMF is
specified in the rule_array in a DES-only system.

Table 132. Keywords for the Encipher Rule Array Control Information

Keyword Meaning

Processing Rule (required)

CBC Performs ANSI X3.102 cipher block chaining. The data
must be a multiple of 8 bytes. An OCV is produced and
placed in the chaining_vector parameter. If the ICV
selection keyword CONTINUE is specified, the CBC OCV
from the previous call is used as the ICV for this call.

CUSP Performs ciphering that is compatible with IBM's CUSP
and PCF products. The data can be of any length and
does not need to be in multiples of 8 bytes. The ciphertext
will be the same length as the plaintext. The CUSP/PCF
OCV is placed in the chaining_vector parameter. If the ICV
selection keyword CONTINUE is specified, the CUSP/PCF
OCV from the previous call is used as the ICV for this call.

IPS Performs ciphering that is compatible with IBM's IPS
product. The data may be of any length and does not
need to be in multiples of 8 bytes. The ciphertext will be
the same length as the plaintext. The IPS OCV is placed
in the chaining_vector parameter. If the ICV selection
keyword CONTINUE is specified, the IPS OCV from the
previous call is used as the ICV for this call.

Encipher

344 z/OS V1R13 ICSF Application Programmer's Guide

Table 132. Keywords for the Encipher Rule Array Control Information (continued)

Keyword Meaning

X9.23 Performs cipher block chaining with 1 to 8 bytes of
padding. This is compatible with the requirements in ANSI
standard X9.23. If the data is not in exact multiples of 8
bytes, X9.23 pads the plaintext so that the ciphertext
produced is an exact multiple of 8 bytes. The plaintext is
padded to the next multiple 8 bytes, even if this adds 8
bytes. An OCV is produced.

4700-PAD Performs padding by extending the user's plaintext with
the caller's specified pad character, followed by a one-byte
binary count field that contains the total number of bytes
added to the message. 4700-PAD pads the plaintext so
that the ciphertext produced is an exact multiple of 8
bytes. An OCV is produced.

ICV Selection (optional)

CONTINUE This specifies taking the initialization vector from the
output chaining vector (OCV) contained in the work area to
which the chaining_vector parameter points. CONTINUE is
valid only for processing rules CBC, IPS, and CUSP.

INITIAL This specifies taking the initialization vector from the
initialization_vector parameter. INITIAL is the default value.

Encryption Algorithm (optional)

CDMF This specifies using the Commercial Data Masking Facility
and ignoring the token marking. You cannot use
double-length or triple-length keys with CDMF. The CDMF
keyword, or tokens marked as CDMF, are only supported
on an IBM Eserver zSeries 900.

DES This specifies using the data encryption standard and
ignoring the token marking.

TOKEN This specifies using the data encryption algorithm in the
DATA key token. TOKEN is the default.

These recommendations help the caller determine which encipher processing
rule to use:

v If you are exchanging enciphered data with a specific implementation, for
example, CUSP or ANSI X9.23, use that processing rule.

v If the ciphertext translate callable service is to be invoked on the enciphered
data at an intermediate node, ensure that the ciphertext is a multiple of 8
bytes. Use CBC, X9.23, or 4700-PAD to prevent the creation of ciphertext
that is not a multiple of 8 bytes and that cannot be processed by the
ciphertext translate callable service.

v If the ciphertext length must be equal to the plaintext length and the plaintext
length cannot be a multiple of 8 bytes, use either the IPS or CUSP
processing rule.

“Cipher Processing Rules” on page 874 describes the cipher processing rules in
detail.

pad_character

Direction: Input Type: Integer

Encipher

Chapter 6. Protecting Data 345

An integer, 0 to 255, that is used as a padding character for the 4700-PAD
process rule (rule_array parameter).

chaining_vector

Direction: Input/Output Type: String

An 18-byte field that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector holds the
output chaining vector (OCV) from the caller. The OCV is the first 8 bytes in the
18-byte string.

The direction is output if the ICV selection keyword of the rule_array parameter
is INITIAL.

The direction is input/output if the ICV selection keyword of the rule_array
parameter is CONTINUE.

cipher_text

Direction: Output Type: String

The enciphered text the callable service returns. The length of the ciphertext is
returned in the text_length parameter. The cipher_text may be 8 bytes longer
than the length of the clear_text field because of the padding that is required for
some processing rules.

clear_text_id

Direction: Input Type: Integer

For CSNBENC1/CSNEENC1 only, the ALET of the clear text to be enciphered.

cipher_text_id

Direction: Input Type: Integer

For CSNBENC1/CSNEENC1 only, the ALET of the ciphertext that the
application supplied.

Restrictions
The service will fail under these conditions:

v If the keyword DES is specified in the rule_array parameter in a CDMF-only
system

v If the keyword CDMF is specified in the rule_array parameter in a DES-only
system

v If the key token contains double- or triple-length keys and triple-DES is not
enabled.

v If the keyword CDMF is specified on a PCIXCC, CEX2C, or CEX3C.

v If a token is marked CDMF on a PCIXCC, CEX2C, or CEX3C.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Encipher

346 z/OS V1R13 ICSF Application Programmer's Guide

On a CCF system, only a DATA key token or DATA key label can be used in this
service.

Single and double length CIPHER and ENCIPHER keys are supported on a
PCIXCC, CEX2C, or CEX3C.

The Encipher - DES access control point controls the function of this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 133. Encipher required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

If keyword CDMF is specified or if the token
is marked as CDMF, the service fails.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

If keyword CDMF is specified or if the token
is marked as CDMF, the service fails.

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

If keyword CDMF is specified or if the token
is marked as CDMF, the service fails.

z196 Crypto Express3
Coprocessor

If keyword CDMF is specified or if the token
is marked as CDMF, the service fails.

Related Information
You cannot overlap the plaintext and ciphertext fields. For example:
pppppp

cccccc is not supported.

cccccc
pppppp is not supported.

ppppppcccccc is supported.

P represents the plaintext and c represents the ciphertext.

On z990, z890 , z9 EC and z9 BC systems, the PCIXCC/CEX2C will support non
destructive overlap. For example:
cccccc

pppppp is supported.

The method used to produce the OCV is the same with the CBC, 4700-PAD, and
X9.23 processing rules. However, that method is different from the method used by
the CUSP and IPS processing rules.

“Cipher Processing Rules” on page 874 discusses the cipher processing rules.

Encipher

Chapter 6. Protecting Data 347

|

The Decipher callable services are described under “Decipher (CSNBDEC or
CSNBDEC1 and CSNEDEC or CSNEDEC1)” on page 331.

Encode (CSNBECO and CSNEECO)
Use the encode callable service to encipher an 8-byte string using a clear key. The
callable service uses the electronic code book (ECB) mode of the DES. (This
service is available only on a DES-capable system.)

The callable service name for AMODE(64) invocation is CSNEECO.

Considerations
If you have only a clear key, you are not limited to using just the encode and
decode callable services.

v You can pass your clear key to the clear key import service, and get back a
token that will allow you to use the encipher and decipher callable services.

v On an IBM Eserver zSeries 990 and subsequent releases, consider using the
Symmetric Key Encipher service (“Symmetric Key Encipher (CSNBSYE or
CSNBSYE1 and CSNESYE or CSNESYE1)” on page 371).

Format

CALL CSNBECO(
return_code,
reason_code,
exit_data_length,
exit_data,
clear_key,
clear_text,
cipher_text)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

Encipher

348 z/OS V1R13 ICSF Application Programmer's Guide

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

clear_key

Direction: Input Type: String

The 8-byte clear key value that is used to encode the data.

clear_text

Direction: Input Type: String

The plaintext that is to be encoded. Specify 8 bytes of text.

cipher_text

Direction: Output Type: String

The 8-byte field where the ciphertext is returned by the callable service.

Restrictions
You cannot use this service on a CDMF-only system.

Usage Notes
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 134. Encode required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

CP Assist for
Cryptographic
Functions

IBM System z9 EC

IBM System z9 BC

CP Assist for
Cryptographic
Functions

IBM System z10 EC

IBM System z10 BC

CP Assist for
Cryptographic
Functions

z196 CP Assist for
Cryptographic
Functions

Encode

Chapter 6. Protecting Data 349

Symmetric Algorithm Decipher (CSNBSAD or CSNBSAD1 and
CSNESAD or CSNESAD1)

The symmetric algorithm decipher callable service deciphers data with the AES
algorithm. Data is deciphered that has been enciphered in either CBC mode or ECB
mode.

You can specify that the clear text data was padded before encryption using the
method described in the PKCS standards. In this case, the callable service will
remove the padding bytes and return the unpaded clear text data. PKCS padding is
described in “PKCS Padding Method” on page 877.

The callable service names for AMODE(64) invocation are CSNESAD and
CSNESAD1.

Choosing Between CSNBSAD and CSNBSAD1 or CSNESAD and
CSNESAD1

CSNBSAD, CSNBSAD1, CSNESAD, and CSNESAD1 provide identical functions.
When choosing which service to use, consider this:

v CSNBSAD and CSNESAD require the cipher text and plaintext to reside in the
caller’s primary address space. Also, a program using CSNBSAD adheres to the
IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface.

v CSNBSAD1 and CSNESAD1 allow the cipher text and plaintext to reside either
in the caller’s primary address space or in a data space. This can allow you to
decipher more data with one call. However, a program using CSNBSAD1 and
CSNESAD1 does not adhere to the IBM CCA: Cryptographic API and may need
to be modified prior to it running with other cryptographic products that follow this
programming interface.

For CSNBSAD1 and CSNESAD1, cipher_text_id and clear_text_id are access list
entry token (ALET) parameters of the data spaces containing the cipher text and
plaintext.

Symmetric Algorithm Decipher

350 z/OS V1R13 ICSF Application Programmer's Guide

Format

CALL CSNBSAD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
cipher_text_length,
cipher_text,
clear_text_length,
clear_text,
optional_data_length,
optional_data)

CALL CSNBSAD1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
cipher_text_length,
cipher_text,
clear_text_length,
clear_text,
optional_data_length,
optional_data
cipher_text_id
clear_text_id)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

Symmetric Algorithm Decipher

Chapter 6. Protecting Data 351

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 2, 3 or 4.

rule_array

Direction: Input Type: String

An array of 8-byte keywords providing the processing control information. The
keywords must be in contiguous storage, left-justified and padded on the right
with blanks.

Table 135. Symmetric Algorithm Decipher Rule Array Keywords

Keyword Meaning

Algorithm (one keyword, required)

AES Specifies that the Advanced Encryption Standard (AES)
algorithm is to be used. The block size is 16 bytes. The key
length may be 16, 24, or 32 bytes.

Processing Rule (optional - zero or one keyword)

CBC Performs encryption in cipher block chaining (CBC) mode.
The text length must be a multiple of the AES block size
(16-bytes). This is the default value.

ECB Performs encryption in electronic code book (ECB) mode.
The text length must be a multiple of the AES block size
(16-bytes).

PKCS-PAD Deciphers with cipher block chaining and text length reduced
to the original value. The ciphertext length must be an exact
multiple of 16 bytes. Padding is removed from the plaintext.

Key Rule (required)

KEYIDENT This indicates that the value in the key_identifier parameter
is either an internal key token or the label of a key token in
the CKDS. The key must be a secure AES key, that is,
enciphered under the current master key.

ICV Selection (optional - zero or one keyword)

Symmetric Algorithm Decipher

352 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

|

|||
|

|

Table 135. Symmetric Algorithm Decipher Rule Array Keywords (continued)

Keyword Meaning

INITIAL This specifies that this is the first request of a sequence of
chained requests, and indicates that the initialization vector
should be taken from the initialization_vector parameter. This
is the default value.

CONTINUE This specifies that this request is part of a sequence of
chained requests, and is not the first request in that
sequence. The initialization vector will be taken from the
work area identified in the chain_data parameter. This
keyword is only valid for processing rule CBC.

key_identifier_length

Direction: Input Type: Integer

The length of the key_identifier parameter. The length must be 64 bytes for an
AES DATA Internal Key Token (version X’04’) or a CKDS label, or between the
actual length of the token and 725 for an AES CIPHER Internal Key Token
(version X’05’).

key_identifier

Direction: Input Type: String

This specifies an internal secure AES token or the labelname of a secure AES
token in the CKDS. Normal CKDS labelname syntax is required.

The AES key identifier must be an encrypted key contained in an internal key
token, where the key is enciphered under the AES master key. The key can be
128-, 192-, or 256-bits in length.

key_parms_length

Direction: Input Type: Integer

The length of the key_parms parameter. This must be 0.

key_parms

Direction: Ignored Type: String

This parameter is ignored. It is reserved for future use.

block_size

Direction: Input Type: Integer

The block size for the cryptographic algorithm. AES requires the block size to
be 16.

initialization_vector_length

Direction: Input Type: Integer

The length of the initialization_vector parameter. The length should be equal to
the block length for the algorithm specified. This parameter is ignored if the
process rule is ECB.

Symmetric Algorithm Decipher

Chapter 6. Protecting Data 353

|
|
|
|

initialization_vector

Direction: Input Type: String

This parameter contains the initialization vector (IV) for CBC mode decryption,
including CBC mode invoked using the PKCS-PAD keyword. This parameter is
ignored if the process rule is ECB. For AES CBC mode decryption, the
initialization vector length must be 16 bytes, the length of an AES block. The IV
must be the same value used when the data was encrypted.

chain_data_length

Direction: Input/Output Type: Integer

The length of the chain_data parameter. On input it contains the length of the
buffer provided with parameter chain_data. On output, it is updated with the
length of the data returned in the chain_data parameter.

chain_data

Direction: Input/Output Type: String

A buffer that is used as a work area for sequences of chained symmetric
algorithm decipher requests. When the keyword INITIAL is used, this is an
output parameter and receives data that is needed when deciphering the next
part of the input data. When the keyword CONTINUE is used, this is an
input/output parameter; the value received as output from the previous call in
the sequence is provided as input to this call, and in turn this call will return
new chain_data that will be used as input on the next call. When CONTINUE is
used, both the data (chain_data parameter) and the length (chain_data_length
parameter) must be the same values that were received in these parameters as
output on the preceding call to the service in the chained sequence.

The exact content and layout of chain_data is not described. For AES CBC
encryption, the field must be at least 32-bytes in length. For AES ECB
encryption the field is not used and any length is acceptable including zero.

cipher_text_length

Direction: Input Type: Integer

The length of the cipher text. The length must be a multiple of the algorithm
block size.

cipher_text

Direction: Input Type: String

The text to be deciphered.

clear_text_length

Direction: Input/Output Type: Integer

On input, this parameter specifies the size of the storage pointed to by the
clear_text parameter. On output, this parameter has the actual length of the text
stored in the clear_text parameter.

Symmetric Algorithm Decipher

354 z/OS V1R13 ICSF Application Programmer's Guide

If process rule PKCS-PAD is used, the clear text length will be less than the
cipher text length since padding bytes are removed.

clear_text

Direction: Output Type: String

The deciphered text the service returns.

optional_data_length

Direction: Input Type: Integer

The length of the optional_data parameter. This parameter must be 0.

optional_data

Direction: Ignored Type: String

Optional data required by a specified algorithm.

cipher_text_id

Direction: Input Type: Integer

For CSNBSAD1 and CSNESAD1 only, the ALET of the dataspace in which the
cipher_text parameter resides.

clear_text_id

Direction: Input Type: Integer

For CSNBSAD1 and CSNESAD1 only, the ALET of the dataspace in which the
clear_text parameter resides.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The Symmetric Algorithm Decipher - secure AES keys access control point
controls the function of this service.

Table 136. Symmetric Algorithm Decipher required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

This service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC)

Symmetric Algorithm Decipher

Chapter 6. Protecting Data 355

|
|

Table 136. Symmetric Algorithm Decipher required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC)

z196 Crypto Express3
Coprocessor

AES Variable-length Symmetric Internal Key
Tokens require the Sep. 2011 or later
licensed internal code (LIC).

Symmetric Algorithm Encipher (CSNBSAE or CSNBSAE1 and
CSNESAE or CSNESAE1)

The symmetric algorithm encipher callable service enciphers data with the AES
algorithm. Data is enciphered that has been deciphered in either CBC mode or ECB
mode.

The callable service names for AMODE(64) invocation are CSNESAE and
CSNESAE1

Choosing between CSNBSAE and CSNBSAE1 or CSNESAE and
CSNESAE1

CSNBSAE, CSNBSAE1, CSNESAE, and CSNESAE1 provide identical functions.
When choosing which service to use, consider this:

v CSNBSAE and CSNESAE require the cipher text and plaintext to reside in the
caller’s primary address space. Also, a program using CSNBSAE adheres to the
IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface.

v CSNBSAE1 and CSNESAE1 allow the cipher text and plaintext to reside either in
the caller’s primary address space or in a data space. This can allow you to
encipher more data with one call. However, a program using CSNBSAE1 and
CSNESAE1 does not adhere to the IBM CCA: Cryptographic API and may need
to be modified prior to it running with other cryptographic products that follow this
programming interface.

For CSNBSAE1 and CSNESAE1, cipher_text_id and clear_text_id are access list
entry token (ALET) parameters of the data spaces containing the cipher text and
plaintext.

Symmetric Algorithm Decipher

356 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|

Format

CALL CSNBSAE(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
clear_text_length,
clear_text,
cipher_text_length,
cipher_text,
optional_data_length,
optional_data)

CALL CSNBSAE1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
clear_text_length,
clear_text,
cipher_text_length,
cipher_text,
optional_data_length,
optional_data
clear_text_id
cipher_text_id)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

Symmetric Algorithm Encipher

Chapter 6. Protecting Data 357

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 2, 3 or 4.

rule_array

Direction: Input Type: String

This keyword provides control information to the callable service. The keywords
must be eight bytes of contiguous storage with the keyword left-justified in its
8-byte location and padded on the right with blanks.

Table 137. Symmetric Algorithm Encipher Rule Array Keywords

Keyword Meaning

Algorithm (one keyword, required)

AES Specifies that the Advanced Encryption Standard (AES)
algorithm will be used. The block size is 16-bytes, and the
key length may be 16-, 24-, or 32-bytes (128-, 192-,
256-bits).

Processing Rule (optional - zero or one keyword)

CBC Performs encryption in cipher block chaining (CBC) mode.
The text length must be a multiple of the AES block size
(16-bytes). This is the default value.

ECB Performs encryption in electronic code book (ECB) mode.
The text length must be a multiple of the AES block size
(16-bytes).

PKCS-PAD Performs encryption in cipher block chaining (CBC) mode,
but the data is padded using PKCS padding rules. The
length of the clear text data does not have to be a multiple of
the cipher block length. The cipher text will be longer than
the clear text by at least one byte, and up to 16-bytes. The
PKCS padding method is described in “PKCS Padding
Method” on page 877.

Key Rule (required)

Symmetric Algorithm Encipher

358 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

|

|||
|

|

Table 137. Symmetric Algorithm Encipher Rule Array Keywords (continued)

Keyword Meaning

KEYIDENT This indicates that the value in the key_identifier parameter
is either an internal key token or the label of a key token in
the CKDS. The key must be a secure AES key, that is,
enciphered under the current master key.

ICV Selection (optional - zero or one keyword)

INITIAL This specifies that this is the first request of a sequence of
chained requests, and indicates that the initialization vector
should be taken from the initialization_vector parameter. This
is the default value.

CONTINUE This specifies that this request is part of a sequence of
chained requests, and is not the first request in that
sequence. The initialization vector will be taken from the
work area identified in the chain_data parameter. This
keyword is only valid for processing rule CBC.

key_identifier_length

Direction: Input Type: Integer

The length of the key_identifier parameter. The length must be 64 bytes for an
AES DATA Internal Key Token (version X’04’) or a CKDS label, or between the
actual length of the token and 725 for an AES CIPHER Internal Key Token
(version X’05’).

key_identifier

Direction: Input Type: String

This specifies an internal secure AES token or the labelname of a secure AES
token in the CKDS. Normal CKDS labelname syntax is required.

The AES key identifier must be an encrypted key contained in an internal key
token, where the key is enciphered under the AES master key. The key can be
128-, 192-, or 256-bits in length.

key_parms_length

Direction: Input Type: Integer

The length of the key_parms parameter in bytes. It must be set to 0.

key_parms

Direction: Ignored Type: String

This parameter is ignored. It is reserved for future use.

block_size

Direction: Input Type: Integer

The block size for the cryptographic algorithm. AES requires the block size to
be 16.

initialization_vector_length

Symmetric Algorithm Encipher

Chapter 6. Protecting Data 359

|
|
|
|

Direction: Input Type: Integer

The length of the initialization_vector parameter in bytes. This parameter is
ignored if the process rule is ECB.

initialization_vector

Direction: Input Type: String

This parameter contains the initialization vector (IV) for CBC mode encryption,
including the CBC mode invoked using the PKCS-PAD keyword. This parameter
is ignored if the process rule is ECB. For AES CBC mode encryption, the
initialization vector length must be 16 bytes, the length of an AES block. The
same IV must be used when decrypting the data.

chain_data_length

Direction: Input/Output Type: Integer

The length in bytes of the chain_data parameter. On input it contains the length
of the buffer provided with parameter chain_data. On output, it is updated with
the length of the data returned in the chain_data parameter.

chain_data

Direction: Input/Output Type: String

A buffer that is used as a work area for sequences of chained symmetric
algorithm encipher requests. When the keyword INITIAL is used, this is an
output parameter and receives data that is needed when enciphering the next
part of the input data. When the keyword CONTINUE is used, this is an
input/output parameter; the value received as output from the previous call in
the sequence is provided as input to this call, and in turn this call will return
new chain_data that will be used as input on the next call. When CONTINUE is
used, both the data (chain_data parameter) and the length (chain_data_length
parameter) must be the same values that were received in these parameters as
output on the preceding call to the service in the chained sequence.

The exact content and layout of chain_data is not described. For AES CBC
encryption, the field must be at least 32-bytes in length. For AES ECB
encryption the field is not used and any length is acceptable including zero.

clear_text_length

Direction: Input Type: Integer

The length of the clear text data in the clear_text parameter. Unless process
rule PKCS-PAD is used, the length must be a multiple of the algorithm block
size. The length must be 1 or greater.

clear_text

Direction: Input Type: String

The text to be enciphered.

cipher_text_length

Symmetric Algorithm Encipher

360 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input/Output Type: Integer

On input, this parameter specifies the size of the storage pointed to by the
cipher_text parameter. On output, this parameter has the actual length of the
text stored in the buffer addressed by the cipher_text parameter.

If process rule PKCS-PAD is used, the cipher text length will exceed the clear
text length by at least one byte, and up to 16-bytes. For other process rules, the
cipher text length will be equal to the clear text length.

cipher_text

Direction: Output Type: String

The enciphered text the service returns.

optional_data_length

Direction: Input Type: Integer

The length of the optional_data parameter. This parameter is reserved for future
use. It must be set to 0.

optional_data

Direction: Ignored Type: String

The optional data used in processing the request. This parameter is ignored.

cipher_text_id

Direction: Input Type: Integer

For CSNBSAE1 and CSNESAE1 only, the ALET of the dataspace in which the
cipher_text parameter resides.

clear_text_id

Direction: Input Type: Integer

For CSNBSAE1 and CSNESAE1 only, the ALET of the dataspace in which the
clear_text parameter resides.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The Symmetric Algorithm Encipher - secure AES keys access control point
controls the function of this service.

Table 138. Symmetric Algorithm Encipher required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

This service is not supported.

Symmetric Algorithm Encipher

Chapter 6. Protecting Data 361

|
|

Table 138. Symmetric Algorithm Encipher required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Secure AES key support requires the Nov.
2008 or later licensed internal code (LIC).

z196 Crypto Express3
Coprocessor

AES Variable-length Symmetric Internal Key
Tokens require the Sep. 2011 or later
licensed internal code (LIC).

Symmetric Key Decipher (CSNBSYD or CSNBSYD1 and CSNESYD or
CSNESYD1)

Use the symmetric key decipher callable service to decipher data using one of the
supported modes. ICSF supports several processing rules to decipher data. You
choose the type of processing rule that the Symmetric Key Decipher callable
service should use for block chaining. See “Modes of Operation” on page 325 for
more information.

Processing Rule Purpose

ANSI X9.23 For cipher block chaining. The ciphertext must be
an exact multiple of the block size for the specified
algorithm (8 bytes for DES). The plaintext will be
between 1 and 8 bytes shorter than the ciphertext.
This process rule always pads the plaintext during
encryption so that ciphertext produced is an exact
multiple of the block size, even if the plaintext was
already a multiple of the blocksize.

CBC For cipher block chaining. The ciphertext must be
an exact multiple of the block size for the specified
algorithm (8 bytes for DES, 16 bytes for AES). The
plaintext will have the same length as the
ciphertext.

CBC-CS For cipher block chaining. The ciphertext can be
any length. The plaintext will have the same length
as the ciphertext.

CFB Performs cipher feedback encryption with the
segment size equal to the block size. The ciphertext
can be of any length. The plaintext will have the
same length as the ciphertext.

CFB-LCFB Performs cipher feedback encryption with the

Symmetric Algorithm Encipher

362 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|

segment size set by the caller. The ciphertext can
be of any length. The plaintext will have the same
length as the ciphertext.

CUSP For cipher block chaining. The ciphertext can be of
any length. The plaintext will have the same length
as the ciphertext.

ECB Performs electronic code book encryption. The
ciphertext must be an exact multiple of the block
size for the specified algorithm (8 bytes for DES, 16
bytes for AES). The plaintext will have the same
length as the ciphertext.

GCM Perform Galois/Counter mode decryption, which
provides both confidentiality and authentication for
the plaintext and authentication for the additional
authenticated data (AAD). The ciphertext can be
any length. The plaintext will have the same length
as the ciphertext. Additionally, the authentication tag
will be verified before any data is returned.

IPS For cipher block chaining. The ciphertext can be
any length. The plaintext will have the same length
as the ciphertext.

OFB Perform output feedback mode encryption. The
ciphertext can be any length. The plaintext will have
the same length as the ciphertext.

PKCS-PAD For cipher block chaining. The ciphertext must be
an exact multiple of the block size (8 bytes for DES
and 16 bytes for AES). The plaintext will be
between 1 and the blocksize (8 bytes for DES, 16
bytes for AES) bytes shorter than the ciphertext.
This process rule always pads the ciphertext so that
ciphertext produced is an exact multiple of the
blocksize, even if the plaintext was already a
multiple of the blocksize.

The Advanced Encryption Standard (AES) and Data Encryption Standard (DES) are
supported. AES encryption uses a 128-, 192-, or 256-bit key. DES encryption uses
a 56-, 112-, or 168-bit key. See the processing rule descriptions for limitations. For
each algorithm, certain processing rules are not allowed. See the rule_array
parameter description for more information.

All modes except ECB use an initial chaining vector (ICV) in their processing.

All modes that utilize chaining produce a resulting chaining value called the output
chaining vector (OCV). The application can pass the OCV as the ICV in the next
decipher call. This results in record chaining.

The selection between single-DES decryption mode and triple-DES decryption
mode is controlled by the length of the key supplied in the key_identifier parameter.
If a single-length key is supplied, single-DES decryption is performed. If a
double-length or triple-length key is supplied, triple-DES decryption is performed.

The key may be specified as a clear key value, an internal clear key token, or the
label name of a clear key or an encrypted key in the CKDS.

Symmetric Key Decipher

Chapter 6. Protecting Data 363

Choosing Between CSNBSYD and CSNBSYD1
CSNBSYD and CSNBSYD1 provide identical functions. When choosing which
service to use, consider this:

v CSNBSYD requires the ciphertext and plaintext to reside in the caller's primary
address space. Also, a program using CSNBSYD adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

The callable service name for AMODE(64) invocation is CSNESYD.

v CSNBSYD1 allows the ciphertext and plaintext to reside either in the caller's
primary address space or in a data space. This can allow you to decipher more
data with one call. However, a program using CSNBSYD1 does not adhere to the
IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface, and may need to be modified prior to it running with
other cryptographic products that follow this programming interface.

For CSNBSYD1, cipher_text_id and clear_text_id are access list entry token
(ALET) parameters of the data spaces containing the ciphertext and plaintext.

The callable service name for AMODE(64) invocation is CSNESYD1.

Format

CALL CSNBSYD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
cipher_text_length,
cipher_text,
clear_text_length,
clear_text,
optional_data_length,
optional_data)

Symmetric Key Decipher

364 z/OS V1R13 ICSF Application Programmer's Guide

CALL CSNBSYD1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
cipher_text_length,
cipher_text,
clear_text_length,
clear_text,
optional_data_length,
optional_data
cipher_text_id
clear_text_id)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

Symmetric Key Decipher

Chapter 6. Protecting Data 365

|

|

The number of keywords you supplied in the rule_array parameter. The value
may be 1, 2, 3 or 4.

rule_array

Direction: Input Type: String

An array of 8-byte keywords providing the processing control information. The
keywords must be in contiguous storage, left-justified and padded on the right
with blanks.

Table 139. Symmetric Key Decipher Rule Array Keywords

Keyword Meaning

Algorithm (required)

AES Specifies that the Advanced Encryption Standard (AES)
algorithm is to be used. The block size is 16 bytes. The key
length may be 16, 24, or 32 bytes. The chain_data field must
be at least 32 bytes in length. The OCV is the first 16 bytes
in the chain_data. AES does not support the CUSP, IPS, or
X9.23 processing rules.

DES Specifies that the Data Encryption Standard (DES) algorithm
is to be used. The algorithm, DES or TDES, will be
determined from the length of the key supplied. The key
length may be 8, 16, or 24. The block size is 8 bytes. The
chain_data field must be at least 16 bytes in length. The
OCV is the first eight bytes in the chain_data. DES does not
support the GCM processing rule.

Processing Rule (optional)

CBC Performs cipher block chaining. The text length must be a
multiple of the block size for the specified algorithm. CBC is
the default value.

CBC-CS CBC mode (cipher block chaining) with ciphertext stealing.
Input text may be any length.

CFB CFB mode (cipher feedback) that is compatible with IBM's
Encryption Facility product. Input text may be any length.

CFB-LCFB CFB mode (cipher feedback). This rule allows the value of s
(the segment size) to be something other than the block size
(s is set to the block size with the CFB processing rule).
key_parms_length and key_parms are used to set the value
of s. Input text may be any length.

CUSP CBC mode (cipher block chaining) that is compatible with
IBM's CUSP and PCF products. Input text may be any
length.

ECB Performs electronic code book encryption. The text length
must be a multiple of the block size for the specified
algorithm.

GCM GCM (Galois/Counter Mode). key_parms_length and
key_parms are used to indicate the length of the tag (the
value t) on input and contain the tag on output. Additional
Authenticated Data (AAD) is contained in
optional_data_length and optional_data. Input text may be
any length. GCM does not support chaining, so CONTINUE
and FINAL are not allowed for the ICV Selection rule.

IPS CBC mode (cipher block chaining) that is compatible with
IBM's IPS product. Input text may be any length.

Symmetric Key Decipher

366 z/OS V1R13 ICSF Application Programmer's Guide

|
|

Table 139. Symmetric Key Decipher Rule Array Keywords (continued)

Keyword Meaning

OFB OFB mode (output feedback). Input text may be any length.

PKCS-PAD CBC mode (cipher block chaining) but the ciphertext must be
an exact multiple of the block length (8 bytes for DES and 16
bytes for AES). The plaintext will be 1 to 8 bytes shorter for
DES and 1 to 16 bytes shorter for AES than the ciphertext.

X9.23 CBC mode (cipher block chaining) for 1 to 8 bytes of
padding dropped from the output clear text.

Key Rule (optional)

KEY-CLR This specifies that the key parameter contains a clear key
value. KEY-CLR is the default value.

KEYIDENT This specifies that the key_identifier field will be an internal
clear token, or the label name of a clear key or encrypted
key in the CKDS. Normal CKDS labelname syntax is
required.

ICV Selection (optional)

INITIAL This specifies taking the initialization vector from the
initialization_vector parameter. INITIAL is the default value.
INITIAL is not valid with processing rule GCM.

CONTINUE This specifies taking the initialization vector from the output
chaining vector contained in the work area to which the
chain_data parameter points. CONTINUE is not valid for
processing rules ECB, GCM, or X9.23.

FINAL This specifies taking the initialization vector from the output
chaining vector contained in the work area to which the
chain_data parameter points. Using FINAL indicates that this
call contains the last portion of data. FINAL is valid for
processing rules CBC-CS, CFB, CFB-LCBF, and OFB.

ONLY This specifies taking the initialization vector from the
initialization_vector parameter and that the entirety of the
data to be processed is in this single call. ONLY is valid for
processing rules CBC-CS, CFB, CFB-LCFB, GCM, and OFB.

key_identifier_length

Direction: Input Type: Integer

The length of the key_identifier parameter. For clear keys, the length is in bytes
and includes only the value of the key. The maximum size is 256 bytes.

For the KEYIDENT keyword, this parameter value must be 64.

key_identifier

Direction: Input Type: String

For the KEY-CLR keyword, this specifies the cipher key. The parameter must be
left justified.

For the KEYIDENT keyword, this specifies an internal clear token, or the label
name of a clear key or an encrypted key in the CKDS. Normal CKDS
labelname syntax is required. KEYIDENT is valid with DES and AES.

key_parms_length

Symmetric Key Decipher

Chapter 6. Protecting Data 367

Direction: Input Type: Integer

The length of the key_parms parameter.

v For the CFB-LCFB processing rule, this length must be 1.

v For the GCM processing rule, this is the length in bytes of the authentication
tag to be verified. Valid lengths are 4, 8, 12, 13, 14, 15, 16. Using a length of
4 or 8 is stringly discouraged.

v For all other processing rules, this field is ignored.

You must specify the same length used when enciphering the text.

key_parms

Direction: Input Type: String

This parameter contains key-related parameters specific to the encryption
algorithm and processing mode.

v For the CFB-LCFB processing rule, this 1-byte field specifies the segment
size in bytes. Valid values are 1 to the block size, inclusive. The block size is
eight for DES and sixteen for AES.

v For the GCM processing rule, this contains the authentication tag for the
provided ciphertext (cipher_text parameter) and additional authenticated data
(optional_data parameter).

v For all other processing rules, this field is ignored.

For the modes where key_parms is used, you must specify the same
key_parms used when enciphering the text using the Symmetric Key Encipher.

block_size

Direction: Input Type: Integer

This parameter contains the processing size of the text block in bytes. This
value will be algorithm specific. Be sure to specify the same block size as used
to encipher the text.

initialization_vector_length

Direction: Input Type: Integer

The length of the initialization_vector parameter. This parameter is ignored for
the ECB processing rule. For the GCM processing rule, NIST recommends a
length of 12, but tolerates any non-zero length. For all other processing rules,
the length should be equal to the block length for the algorithm specified.

initialization_vector

Direction: Input Type: String

This initialization chaining value. You must use the same ICV that was used to
encipher the data. This parameter is ignored for the ECB processing rule.

chain_data_length

Direction: Input/Output Type: Integer

Symmetric Key Decipher

368 z/OS V1R13 ICSF Application Programmer's Guide

The length of the chain_data parameter. On output, the actual length of the
chaining vector will be stored in the parameter. This parameter is ignored if the
ICV selection keyword is ONLY.

chain_data

Direction: Input/Output Type: String

This field is used as a system work area for the chaining vector. Your
application program must not change the data in this string. The chaining vector
holds the output chaining vector from the caller.

The direction is output if the ICV selection keyword is INITIAL. This parameter
is ignored if the ICV selection keyword is ONLY.

The mapping of the chain_data depends on the algorithm specified. For AES,
the chain_data field must be at least 32 bytes in length. The OCV is in the first
16 bytes in the chain_data. For DES, chain_data field must be at least 16 bytes
in length.

cipher_text_length

Direction: Input Type: Integer

The length of the ciphertext. A zero value in the cipher_text_length parameter is
not valid except with the GCM processing rule when performing a GMAC
operation. The length must be a multiple of the algorithm block size for the
CBC, ECB, and PKCS-PAD processing rules, but may be any length with the
other processing rules.

cipher_text

Direction: Input Type: String

The text to be deciphered.

clear_text_length

Direction: Input/Output Type: Integer

On input, this parameter specifies the size of the storage pointed to by the
clear_text parameter. On output, this parameter has the actual length of the text
stored in the clear_text parameter. The clear_text parameter must be at least
the same length as the cipher_text parameter, except for the PKCS-PAD and
X9.23 processing rules, where the padding is automatically dropped on output.

clear_text

Direction: Output Type: String

The deciphered text the service returns.

optional_data_length

Direction: Input Type: Integer

The length of the optional_data parameter. For the GCM processing rule, this
parameter contains the length of the Additional Authenticated Data (AAD). For
all other processing rules, this field is ignored.

Symmetric Key Decipher

Chapter 6. Protecting Data 369

optional_data

Direction: Input Type: String

Optional data required by a specified algorithm or processing mode. For the
GCM processing rule, this parameter contains the Additional Authenticated Data
(AAD). For all other processing rules, this field is ignored.

You must specify the same optional_data used when enciphering the text using
Symmetric Key Encipher.

cipher_text_id

Direction: Input Type: Integer

For CSNBSYD1 only, the ALET of the ciphertext to be deciphered.

clear_text_id

Direction: Input Type: Integer

For CSNBSYD1 only, the ALET of the clear text supplied by the application.

Usage Notes
v SAF may be invoked to verify the caller is authorized to use the specified key

label stored in the CKDS.

v To use a CKDS encrypted key, the ICSF segment of the CSFKEYS class general
resource profile associated with the specified key label must contain
SYMCPACFWRAP(YES).

v No pre- or post-processing exits are enabled for this service.

v The master keys need to be loaded only when using this service with encrypted
key labels.

v The AES algorithm will use hardware if it is available. Otherwise, clear key
operations will be performed in software.

v AES has the same availability restrictions as triple-DES.

v This service will fail if execution would cause destructive overlay of the
cipher_text field.

When the label of an encrypted key is specified for the key_identifier parameter, the
appropriate access control point listed below must be enabled.

Table 140. Required access control points for Symmetric Key Decipher

Key algorithm Access control point

AES Symmetric Key Encipher/Decipher - Encrypted AES
keys

DES Symmetric Key Encipher/Decipher - Encrypted DES
keys

Symmetric Key Decipher

370 z/OS V1R13 ICSF Application Programmer's Guide

|
|

||

||

||
|

||
|
|

Table 141. Symmetric Key Decipher required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

DES keyword is not supported.

CFB-LCFB, GCM, and OFB processing
rules are not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

CP Assist for
Cryptographic
Functions

CFB-LCFB, GCM, and OFB processing
rules are not supported.

IBM System z9 EC

IBM System z9 BC

CP Assist for
Cryptographic
Functions

CFB-LCFB, GCM, and OFB processing
rules are not supported.

IBM System z10 EC

IBM System z10 BC

CP Assist for
Cryptographic
Functions

Crypto Express3
Coprocessor

CFB-LCFB, GCM, and OFB processing
rules are not supported.

Encrypted keys require CEX3C with the
Nov. 2009 or later licensed internal code
(LIC).

z196 CP Assist for
Cryptographic
Functions

Crypto Express3
Coprocessor

CFB-LCFB, GCM, and OFB processing
rules are not supported.

Encrypted keys require CEX3C with the
Nov. 2009 or later licensed internal code
(LIC).

Related Information
You cannot overlap the plaintext and ciphertext fields. For example:
pppppp

cccccc is not supported.

cccccc
pppppp is not supported.

ppppppcccccc is supported.

P represents the plaintext and c represents the ciphertext.

“Cipher Processing Rules” on page 874 discusses the cipher processing rules.

Symmetric Key Encipher (CSNBSYE or CSNBSYE1 and CSNESYE or
CSNESYE1)

Use the symmetric key encipher callable service to encipher data using one of the
supported modes. ICSF supports several processing rules to encipher data. You
choose the type of processing rule that the Symmetric Key Encipher callable
service should use for the block chaining. See “Modes of Operation” on page 325
for more information.

Processing Rule Purpose

ANSI X9.23 For cipher block chaining. The ciphertext must be
an exact multiple of the block size for the specified
algorithm (8 bytes for DES). The plaintext will be

Symmetric Key Decipher

Chapter 6. Protecting Data 371

|

|

|
|
|

|
|

|
|

|
|
|

||
|
|

|
|

|
|

|
|
|

between 1 and 8 bytes shorter than the ciphertext.
This process rule always pads the plaintext during
encryption so that ciphertext produced is an exact
multiple of the block size, even if the plaintext was
already a multiple of the blocksize.

CBC For cipher block chaining. The ciphertext must be
an exact multiple of the block size for the specified
algorithm (8 bytes for DES, 16 bytes for AES). The
plaintext will have the same length as the
ciphertext.

CBC-CS For cipher block chaining. The ciphertext can be
any length. The plaintext will have the same length
as the ciphertext.

CFB Performs cipher feedback encryption with the
segment size equal to the block size. The ciphertext
can be of any length. The plaintext will have the
same length as the ciphertext.

CFB-LCFB Performs cipher feedback encryption with the
segment size set by the caller. The ciphertext can
be of any length. The plaintext will have the same
length as the ciphertext.

CUSP For cipher block chaining. The ciphertext can be of
any length. The plaintext will have the same length
as the ciphertext.

ECB Performs electronic code book encryption. The
ciphertext must be an exact multiple of the block
size for the specified algorithm (8 bytes for DES, 16
bytes for AES). The plaintext will have the same
length as the ciphertext.

GCM Perform Galois/Counter mode decryption, which
provides both confidentiality and authentication for
the plaintext and authentication for the additional
authenticated data (AAD). The ciphertext can be
any length. The plaintext will have the same length
as the ciphertext. Additionally, the authentication tag
will be verified before any data is returned.

IPS For cipher block chaining. The ciphertext can be
any length. The plaintext will have the same length
as the ciphertext.

OFB Perform output feedback mode encryption. The
ciphertext can be any length. The plaintext will have
the same length as the ciphertext.

PKCS-PAD For cipher block chaining. The ciphertext must be
an exact multiple of the block size (8 bytes for DES
and 16 bytes for AES). The plaintext will be
between 1 and the blocksize (8 bytes for DES, 16
bytes for AES) bytes shorter than the ciphertext.
This process rule always pads the ciphertext so that
ciphertext produced is an exact multiple of the
blocksize, even if the plaintext was already a
multiple of the blocksize.

Symmetric Key Encipher

372 z/OS V1R13 ICSF Application Programmer's Guide

The Advanced Encryption Standard (AES) and Data Encryption Standard (DES) are
supported. AES encryption uses a 128-, 192-, or 256-bit key. The CBC, CBC-CS,
CFB, CFB-LCFB, ECB, GCM, OFB, and XTS-AES modes are supported.

All modes except ECB and XTS-AES use an initial chaining vector (ICV) in their
processing.

All modes that tolerate chaining produce a resulting chaining value called the output
chaining vector (OCV). The application can pass the OCV as the ICV in the next
encipher call. This results in record chaining.

The selection between single-DES decryption mode and triple-DES decryption
mode is controlled by the length of the key supplied in the key_identifier parameter.
If a single-length key is supplied, single-DES decryption is performed. If a
double-length or triple-length key is supplied, triple-DES decryption is performed.

The key may be specified as a clear key value, an internal clear key token, or the
label name of a clear key or an encrypted key in the CKDS.

Choosing between CSNBSYE and CSNBSYE1
CSNBSYE and CSNBSYE1 provide identical functions. When choosing which
service to use, consider this:

v CSNBSYE requires the cleartext and ciphertext to reside in the caller's primary
address space. Also, a program using CSNBSYE adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

The callable service name for AMODE(64) invocation is CSNESYE.

v CSNBSYE1 allows the cleartext and ciphertext to reside either in the caller's
primary address space or in a data space. This can allow you to encipher more
data with one call. However, a program using CSNBSYE1 does not adhere to the
IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface, and may need to be modified prior to it running with
other cryptographic products that follow this programming interface.

For CSNBSYE1, clear_text_id and cipher_text_id are access list entry token
(ALET) parameters of the data spaces containing the cleartext and ciphertext.

The callable service name for AMODE(64) invocation is CSNESYE1.

Symmetric Key Encipher

Chapter 6. Protecting Data 373

Format

CALL CSNBSYE(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
clear_text_length,
clear_text,
cipher_text_length,
cipher_text,
optional_data_length,
optional_data)

CALL CSNBSYE1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
key_parms_length,
key_parms,
block_size,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
clear_text_length,
clear_text,
cipher_text_length,
cipher_text,
optional_data_length,
optional_data,
clear_text_id,
cipher_text_id)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

Symmetric Key Encipher

374 z/OS V1R13 ICSF Application Programmer's Guide

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 1, 2, 3 or 4.

rule_array

Direction: Input Type: String

An array of 8-byte keywords providing the processing control information. The
keywords must be in contiguous storage, left-justified and padded on the right
with blanks.

Table 142. Symmetric Key Encipher Rule Array Keywords

Keyword Meaning

Algorithm (required)

AES Specifies that the Advanced Encryption Standard (AES)
algorithm is to be used. The block size is 16 bytes. The key
length may be 16, 24, or 32 bytes. The chain_data field must
be at least 32 bytes in length. The OCV is the first 16 bytes
in the chain_data. AES does not support the CUSP, IPS, or
X9.23 processing rules.

DES Specifies that the Data Encryption Standard (DES) algorithm
is to be used. The algorithm, DES or TDES, will be
determined from the length of the key supplied. The key
length may be 8, 16, or 24. The block size is 8 bytes. The
chain_data field must be at least 16 bytes in length. The
OCV is the first eight bytes in the chain_data. DES does not
support the GCM processing rule.

Processing Rule (optional)

CBC CBC mode (cipher block chaining). The text length must be a
multiple of the block size for the specified algorithm. CBC is
the default value.

CBC-CS CBC mode (cipher block chaining) with ciphertext stealing.
Input text may be any length.

CFB CFB mode (cipher feedback) that is compatible with IBM's
Encryption Facility product. Input text may be any length.

Symmetric Key Encipher

Chapter 6. Protecting Data 375

|

|

|
|

Table 142. Symmetric Key Encipher Rule Array Keywords (continued)

Keyword Meaning

CFB-LCFB CFB mode (cipher feedback). This rule allows the value of s
(the segment size) to be something other than the block size
(s is set to the block size with the CFB processing rule). The
key_parms_length and key_parms parameters are used to
set the value of s. Input text may be any length.

CUSP CBC mode (cipher block chaining) that is compatible with
IBM's CUSP and PCF products. Input text may be any
length.

ECB ECB mode (electronic codebook). The text length must be a
multiple of the block size for the specified algorithm.

GCM GCM mode (Galois/Counter Mode). The key_parms_length
and key_parms parameters are used to indicate the length of
the tag (the value t) on input and contain the tag on output.
Additional Authenticated Data (AAD) is contained in the
optional_data_length and optional_data parameters. Input
text may be any length.

IPS CBC mode (cipher block chaining) that is compatible with
IBM's IPS product. Input text may be any length.

OFB OFB mode (output feedback). Input text may be any length.

PKCS-PAD CBC mode (cipher block chaining) not necessarily in exact
multiples of the block length (8 bytes for DES and 16 bytes
for AES). PKCS-PAD always pads the plaintext so that the
ciphertext produced is an exact multiple of the block length
and longer than the plaintext.

X9.23 CBC mode (cipher block chaining) for 1 to 8 bytes of
padding added according to ANSI X9.23. Input text may be
any length.

Key Rule (optional)

KEY-CLR This specifies that the key parameter contains a clear key
value. KEY-CLR is the default.

KEYIDENT This specifies that the key_identifier field will be an internal
clear token, or the label name of a clear key or encrypted
key in the CKDS. Normal CKDS labelname syntax is
required.

ICV Selection (optional)

INITIAL This specifies taking the initialization vector from the
initialization_vector parameter. INITIAL is the default value.
INITIAL is not valid with processing rule GCM.

CONTINUE This specifies taking the initialization vector from the output
chaining vector contained in the work area to which the
chain_data parameter points. CONTINUE is not valid for
processing rules ECB, GCM, or X9.23.

FINAL This specifies taking the initialization vector from the output
chaining vector contained in the work area to which the
chain_data parameter points. Using FINAL indicates that this
call contains the last portion of data. FINAL is valid for
processing rules CBC-CS, CFB, CFB-LCBF, and OFB.

ONLY This specifies taking the initialization vector from the
initialization_vector parameter and that the entirety of the
data to be processed is in this single call. ONLY is valid for
processing rules CBC-CS, CFB, CFB-LCFB, GCM, and OFB.

Symmetric Key Encipher

376 z/OS V1R13 ICSF Application Programmer's Guide

key_identifier_length

Direction: Input Type: Integer

The length of the key_identifier parameter. For clear keys, the length is in bytes
and includes only the value of the key.

For the KEYIDENT keyword, this parameter value must be 64.

key_identifier

Direction: Input Type: String

For the KEY-CLR keyword, this specifies the cipher key. The parameter must be
left justified.

For the KEYIDENT keyword, this specifies a internal clear token, or the label
name of a clear key or an encrypted key in the CKDS. Normal CKDS label
name syntax is required.

key_parms_length

Direction: Input Type: Integer

The length of the key_parms parameter.

v For the CFB-LCFB processing rule, this length must be 1.

v For the GCM processing rule, this is the length in bytes of the authentication
tag to be generated. Valid lengths are 4, 8, 12, 13, 14, 15, 16. Using a length
of 4 or 8 is strongly discouraged.

v For all other processing rules, this field is ignored.

When deciphering the text, you must specify this same length.

key_parms

Direction: Input/Output Type: String

This parameter contains key-related parameters specific to the encryption
algorithm and processing mode.

v For the CFB-LCFB processing rule, this 1-byte field specifies the segment
size in bytes. Valid values are 1 to the blocksize, inclusive. The blocksize is
eight for DES and sixteen for AES.

v For the GCM processing rule, this will contain the generated authentication
tag for the provided plaintext (plain_text parameter) and additional
authenticated data (optional_data parameter).

v For all other processing rules, this field is ignored.

For the modes where key_parms is used, you must specify the same
key_parms when deciphering the text using the Symmetric Key Decipher
callable service.

block_size

Direction: Input Type: Integer

This parameter contains the processing size of the text block in bytes. This
value will be algorithm specific.

Symmetric Key Encipher

Chapter 6. Protecting Data 377

initialization_vector_length

Direction: Input Type: Integer

The length of the initialization_vector parameter. This parameter is ignored for
the ECB processing rule. For the GCM processing rule, NIST recommends a
length of 12, but tolerates any non-zero length. For all other processing rules,
the length should be equal to the block length for the algorithm specified.

initialization_vector

Direction: Input Type: String

This initialization chaining value. You must use the same ICV to decipher the
data. This parameter is ignored for the ECB processing rule.

chain_data_length

Direction: Input/Output Type: Integer

The length of the chain_data parameter. On output, the actual length of the
chaining vector will be stored in the parameter. This parameter is ignored if the
ICV selection keyword in ONLY.

chain_data

Direction: Input/Output Type: String

This field is used as a system work area for the chaining vector. Your
application program must not change the data in this string. The chaining vector
holds the output chaining vector from the caller.

The direction is output if the ICV selection keyword is INITIAL. This parameter
is ignored if the ICV selection keyword in ONLY.

The mapping of the chain_data depends on the algorithm specified. For AES,
the chain_data field must be at least 32 bytes in length. The OCV is in the first
16 bytes in the chain_data. For DES, the chain_data field must be at least 16
bytes in length.

clear_text_length

Direction: Input Type: Integer

The length of the cleartext. A zero value in the clear_text_length parameter is
not valid except with the GCM processing rule when performing a GMAC
operation. The length must be a multiple of the algorithm block size for the
CBC, ECB, and PKCS-PAD processing rules, but may be any length with the
other processing rules. For the processing rules that support partial blocks (or
segments for CFB-LCFB), it is recommended that is the final block (or segment)
be the only one that is partial. Having a partial block in the middle is not a
supported operation as defined by the standards documents and may not be
portable to other encryption systems.

clear_text

Direction: Input Type: String

The text to be enciphered.

Symmetric Key Encipher

378 z/OS V1R13 ICSF Application Programmer's Guide

cipher_text_length

Direction: Input/Output Type: Integer

On input, this parameter specifies the size of the storage pointed to by the
cipher_text parameter. On output, this parameter has the actual length of the
text stored in the buffer addressed by the cipher_text parameter.

cipher_text

Direction: Output Type: String

The enciphered text the service returns.

optional_data_length

Direction: Input Type: Integer

The length of the optional_data parameter. For the GCM processing rule, this
parameter contains the length of the Additional Authenticated Data (AAD), and
may be any length, including zero. For all other processing rules, this field is
ignored.

optional_data

Direction: Input Type: String

Optional data required by a specified algorithm. Optional data required by a
specified algorithm or processing mode. For the GCM processing rule, this
parameter contains the Additional Authenticated Data (AAD). For all other
processing rules, this field is ignored.

You must specify the same optional_data when deciphering the text using
Symmetric Key Decipher.

clear_text_id

Direction: Input Type: Integer

For CSNBSYE1 only, the ALET of the clear text to be enciphered.

cipher_text_id

Direction: Input Type: Integer

For CSNBSYE1 only, the ALET of the ciphertext that the application supplied.

Usage Notes
v SAF may be invoked to verify the caller is authorized to use the specified key

label stored in the CKDS.

v To use a CKDS encrypted key, the ICSF segment of the CSFKEYS class general
resource profile associated with the specified key label must contain
SYMCPACFWRAP(YES).

v No pre- or post-processing exits are enabled for this service.

v The master keys need to be loaded only when using this service with the
encrypted key labels.

Symmetric Key Encipher

Chapter 6. Protecting Data 379

v The AES algorithm will use hardware if it is available. Otherwise, clear key
operations will be performed in software.

v AES has the same availability restrictions as triple-DES.

v This service will fail if execution would cause destructive overlay of the clear_text
field.

When the label of an encrypted key is specified for the key_identifier parameter, the
appropriate access control point listed below must be enabled.

Table 143. Required access control points for Symmetric Key Encipher

Key algorithm Access control point

AES Symmetric Key Encipher/Decipher - Encrypted AES
keys

DES Symmetric Key Encipher/Decipher - Encrypted DES
keys

Table 144. Symmetric Key Encipher required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

DES keyword is not supported.

CFB-LCFB, GCM, and OFB processing
rules are not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

CP Assist for
Cryptographic
Functions

CFB-LCFB, GCM, and OFB processing
rules are not supported.

IBM System z9 EC

IBM System z9 BC

CP Assist for
Cryptographic
Functions

CFB-LCFB, GCM, and OFB processing
rules are not supported.

IBM System z10 EC

IBM System z10 BC

CP Assist for
Cryptographic
Functions

Crypto Express3
Coprocessor

CFB-LCFB, GCM, and OFB processing
rules are not supported.

Encrypted keys require the CEX3C with the
Nov. 2009 or later licensed internal code
(LIC).

z196 CCP Assist for
Cryptographic
Functions

Crypto Express3
Coprocessor

CFB-LCFB, GCM, and OFB processing
rules are not supported.

Encrypted keys require the CEX3C with the
Nov. 2009 or later licensed internal code
(LIC).

Related Information
You cannot overlap the plaintext and ciphertext fields. For example:
pppppp

cccccc is not supported.

cccccc
pppppp is not supported.

Symmetric Key Encipher

380 z/OS V1R13 ICSF Application Programmer's Guide

|
|

||

||

||
|

||
|
|

|

|

|
|
|

|
|

|
|

|
|
|

||
|
|

|
|

|
|

|
|
|

ppppppcccccc is supported.

P represents the plaintext and c represents the ciphertext.

The method used to produce the OCV is the same with the CBC and X9.23
processing rules. However, that method is different from the method used by the
CUSP and IPS processing rules.

“Cipher Processing Rules” on page 874 discusses the cipher processing rules.

Symmetric Key Encipher

Chapter 6. Protecting Data 381

Symmetric Key Encipher

382 z/OS V1R13 ICSF Application Programmer's Guide

Chapter 7. Verifying Data Integrity and Authenticating
Messages

ICSF provides several methods to verify the integrity of transmitted messages and
stored data:
v Message authentication code (MAC)
v Hash functions, including modification detection code (MDC) processing and

one-way hash generation

Note: You can also use digital signatures (see Chapter 9, “Using Digital
Signatures,” on page 511) to authenticate messages.

The choice of callable service depends on the security requirements of the
environment in which you are operating. If you need to ensure the authenticity of
the sender as well as the integrity of the data, and both the sender and receiver
can share a secret key, consider message authentication code processing. If you
need to ensure the integrity of transmitted data in an environment where it is not
possible for the sender and the receiver to share a secret cryptographic key,
consider hashing functions, such as the modification detection code process.

The callable services are described in the following topics:
v “HMAC Generate (CSNBHMG or CSNBHMG1 and CSNEHMG or CSNEHMG1)”

on page 385
v “HMAC Verify (CSNBHMV or CSNBHMV1 and CSNEHMV or CSNEHMV1)” on

page 389
v “MAC Generate (CSNBMGN or CSNBMGN1 and CSNEMGN or CSNEMGN1)”

on page 393
v “MAC Verify (CSNBMVR or CSNBMVR1 and CSNEMVR or CSNEMVR1)” on

page 398
v “MDC Generate (CSNBMDG or CSNBMDG1 and CSNEMDG or CSNEMDG1)”

on page 404
v “One-Way Hash Generate (CSNBOWH or CSNBOWH1 and CSNEOWH or

CSNEOWH1)” on page 408
v “Symmetric MAC Generate (CSNBSMG or CSNBSMG1 and CSNESMG or

CSNESMG1)” on page 413
v “Symmetric MAC Verify (CSNBSMV or CSNBSMV1 and CSNESMV or

CSNESMV1)” on page 417

How MACs are Used
When a message is sent, an application program can generate an authentication
code for it using the MAC generation callable service. ICSF supports the ANSI
X9.9-1 basic procedure and both the ANSI X9.19 basic procedure and optional
double key MAC procedure. The service computes the text of the message
authentication code using the algorithm and a key. The ANSI X9.9-1 or ANSI X9.19
basic procedures accept either a single-length MAC generation (MAC) key or a
data-encrypting (DATA) key, and the message text. The ANSI X9.19 optional double
key MAC procedure accepts a double-length MAC key and the message text. The
message text may be in clear or encrypted form. The originator of the message
sends the MAC with the message text.

When the receiver gets the message, an application program calls the MAC
verification callable service. The callable service generates a MAC using the same
algorithm as the sender and either the single-length or double-length MAC

© Copyright IBM Corp. 1997, 2011 383

verification key, the single-length or double-length MAC generation key, or DATA
key, and the message text. The MACVER callable service compares the MAC it
generates with the one sent with the message and issues a return code that
indicates whether the MACs match. If the return code indicates that the MACs
match, the receiver can accept the message as genuine and unaltered. If the return
code indicates that the MACs do not match, the receiver can assume that the
message is either bogus or has been altered. The newly computed MAC is not
revealed outside the cryptographic feature.

In a similar manner, MACs can be used to ensure the integrity of data stored on the
system or on removable media, such as tape.

Secure use of the MAC generation and MAC verification services requires the use
of MAC and MACVER keys in these services, respectively. To accomplish this, the
originator of the message generates a MAC/MACVER key pair, uses the MAC key
in the MAC generation service, and exports the MACVER key to the receiver. The
originator of the message enforces key separation on the link by encrypting the
MACVER key under a transport key that is not an NOCV key before exporting the
key to the receiver. With this type of key separation enforced, the receiver can only
receive a MACVER key and can use only this key in the MAC verification service.
This ensures that the receiver cannot alter the message and produce a valid MAC
with the altered message. These security features are not present if DATA keys are
used in the MAC generation service, or if DATA or MAC keys are used in the MAC
verification service.

By using MACs, you get the following benefits:

v For data transmitted over a network, you can validate the authenticity of the
message as well as ensure that the data has not been altered during
transmission. For example, an active eavesdropper can tap into a transmission
line, and interject bogus messages or alter sensitive data being transmitted. If the
data is accompanied by a MAC, the recipient can use a callable service to detect
whether the data has been altered. Since both the sender and receiver share a
secret key, the receiver can use a callable service that calculates a MAC on the
received message and compares it to the MAC transmitted with the message. If
the comparison is equal, the message may be accepted as unaltered.
Furthermore, since the shared key is secret, when a MAC is verified it can be
assumed that the sender was, in fact, the other person who knew the secret key.

v For data stored on tape or DASD, you can ensure that the data read back onto
the system was the same as the data written onto the tape or DASD. For
example, someone might be able to bypass access controls. Such an access
might escape the notice of auditors. However, if a MAC is stored with the data,
and verified when the data is read, you can detect alterations to the data.

How Hashing Functions Are Used
Hashing functions include the MDC and one-way hash. You need to hash text
before submitting it to digital signature services (see Chapter 9, “Using Digital
Signatures,” on page 511).

How MDCs Are Used
When a message is sent, an application program can generate a modification
detection code for it using the MDC generation callable service. The service
computes the modification detection code, a 128-bit value, using a one-way
cryptographic function and the message text (which itself may be in clear or
encrypted form). The originator of the message ensures that the MDC is transmitted

384 z/OS V1R13 ICSF Application Programmer's Guide

with integrity to the intended receiver of the message. For example, the MDC could
be published in a reliable source of public information.

When the receiver gets the message, an application program calls the MDC
callable service. The callable service generates an MDC by using the same
one-way cryptographic function and the message text. The application program can
compare the new MDC with the one generated by the originator of the message. If
the MDCs match, the receiver knows that the message was not altered.

In a similar manner, MDCs can be used to ensure the integrity of data stored on the
system or on removable media, such as tape.

By using MDCs, you get the following benefits:

v For data transmitted over a network between locations that do not share a
secret key, you can ensure that the data has not been altered during
transmission. It is easy to compute an MDC for specific data, yet hard to find
data that will result in a given MDC. In effect, the problem of ensuring the
integrity of a large file is reduced to ensuring the integrity of a 128-bit value.

v For data stored on tape or DASD, you can ensure that the data read back onto
the system was the same as the data written onto the tape or DASD. Once an
MDC has been established for a file, the MDC generation callable service can be
run at any later time on the file. The resulting MDC can be compared with the
stored MDC to detect deliberate or inadvertent modification.

SHA-1 is a FIPS standard required for DSS. MD5 is a hashing algorithm used to
derive Message Digests in Digital Signature applications.

HMAC Generate (CSNBHMG or CSNBHMG1 and CSNEHMG or
CSNEHMG1)

Use the HMAC generate callable service to generate a keyed hash message
authentication code (MAC) for the text string provided as input.

The callable service names for AMODE(64) are CSNEHMG and CSFEHMG1.

Choosing Between CSNBHMG and CSNBHMG1
CSNBHMG and CSNBHMG1 provide identical functions. When choosing which
service to use, consider the following:

v CSNBHMG requires the application-supplied text to reside in the caller’s primary
address space.

v CSNBHMG1 allows the application-supplied text to reside either in the caller’s
primary address space or in a data space. This can allow you to process more
data with one call. For CSNBHMG1, text_id_in is an access list entry token
(ALET) parameter of the data space containing the application-supplied text.

Chapter 7. Verifying Data Integrity and Authenticating Messages 385

Format

CALL CSNBHMG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
text_length,
text,
chaining_vector_length,
chaining_vector,
mac_length,
mac)

CALL CSNBHMG1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
text_length,
text,
chaining_vector_length,
chaining_vector,
mac_length,
mac,
text_id_in)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

HMAC Generate

386 z/OS V1R13 ICSF Application Programmer's Guide

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 2 or 3.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. The following
table lists the keywords. Each keyword is left-justified in 8-byte fields and
padded on the right with blanks. All keywords must be in contiguous storage.

Table 145. Keywords for HMAC Generate Control Information

Keyword Meaning

Token algorithm (One required)

HMAC Specifies the HMAC algorithm to be used to generate the
MAC.

Hash method (One required)

SHA-1 Specifies the FIPS-198 HMAC procedure using the SHA-1
hash method, a symmetric key and text to produce a
20-byte (160-bit) MAC.

SHA-224 Specifies the FIPS-198 HMAC procedure using the
SHA-224 hash method, a symmetric key and text to
produce a 28-byte (224-bit) MAC.

SHA-256 Specifies the FIPS-198 HMAC procedure using the
SHA-256 hash method, a symmetric key and text to
produce a 32-byte (256-bit) MAC.

SHA-384 Specifies the FIPS-198 HMAC procedure using the
SHA-384 hash method, a symmetric key and text to
produce a 48-byte (384-bit) MAC.

SHA-512 Specifies the FIPS-198 HMAC procedure using the
SHA-512 hash method, a symmetric key and text to
produce a 64-byte (512-bit) MAC.

Segmenting Control (One optional)

FIRST First call, this is the first segment of data from the
application program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application
program. This is the default value.

key_identifier_length

Direction: Input Type: Integer

HMAC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 387

The length of the key_identifier parameter. The maximum value is 725.

key_identifier

Direction: Input/Output Type: String

The 64-byte label or internal token of an encrypted HMAC key.

text_length

Direction: Input Type: Integer

The length of the text you supply in the text parameter. The maximum length of
text is 214783647 bytes. For FIRST and MIDDLE calls, the text_length must be
a multiple of 64 for SHA-1, SHA-224 and SHA-256 and a multiple of 128 for
SHA-384 and SHA-512 hash methods.

text

Direction: Input Type: String

The application-supplied text for which the MAC is generated.

chaining_vector_length

Direction: Input/Output Type: Integer

The length of the chaining_vector in bytes. The value must be 128 bytes.

chaining_vector

Direction: Input/Output Type: String

An 128-byte string that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector permits
data to be chained from one invocation call to another.

On the first call, initialize this parameter as binary zeros.

mac_length

Direction: Input/Output Type: Integer

The length of the mac parameter in bytes. This parameter is updated to the
actual length of the mac parameter on output. The minimum value is 4, and the
maximum value is 64.

mac

Direction: Output Type: String

The field in which the callable service returns the MAC value if the segmenting
rule is ONLY or LAST.

text_id_in

Direction: Input Type: Integer

For CSNBHMG1 only, the ALET of the text for which the MAC is generated.

HMAC Generate

388 z/OS V1R13 ICSF Application Programmer's Guide

Usage Notes
This table lists the access control points in the ICSF role that control the function for
this service.

Table 146. HMAC Generate Access Control Points

Hash method Access control point

SHA-1 HMAC Generate - SHA-1

SHA-224 HMAC Generate - SHA-224

SHA-256 HMAC Generate - SHA-256

SHA-384 HMAC Generate - SHA-384

SHA-512 HMAC Generate - SHA-512

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 147. HMAC generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

This service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

This service is not supported.

Crypto Express3
Coprocessor

HMAC keys not supported.

z196 Crypto Express3
Coprocessor

HMAC key support requires the Nov. 2010
or later licensed internal code (LIC).

HMAC Verify (CSNBHMV or CSNBHMV1 and CSNEHMV or CSNEHMV1)
Use the HMAC verify callable service to verify a keyed hash message
authentication code (MAC) for the text string provided as input.

The callable service names for AMODE(64) are CSNEHMV and CSFEHMV1.

Choosing Between CSNBHMV and CSNBHMV1
CSNBHMV and CSNBHMV1 provide identical functions. When choosing which
service to use, consider the following:

v CSNBHMV requires the application-supplied text to reside in the caller’s primary
address space.

v CSNBHMV1 allows the application-supplied text to reside either in the caller’s
primary address space or in a data space. This can allow you to process more

HMAC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 389

|
|

data with one call. For CSNBHMV1, text_id_in is an access list entry token
(ALET) parameter of the data space containing the application-supplied text.

Format

CALL CSNBHMV(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
text_length,
text,
chaining_vector_length,
chaining_vector,
mac_length,
mac)

CALL CSNBHMV1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier,
text_length,
text,
chaining_vector_length,
chaining_vector,
mac_length,
mac,
text_id_in)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

HMAC Verify

390 z/OS V1R13 ICSF Application Programmer's Guide

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 2 or 3.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. The following
table lists the keywords. Each keyword is left-justified in 8-byte fields and
padded on the right with blanks. All keywords must be in contiguous storage.

Table 148. Keywords for HMAC Verify Control Information

Keyword Meaning

Token algorithm (One required)

HMAC Specifies the HMAC algorithm to be used to verify the
MAC.

Hash method (One required)

SHA-1 Specifies the FIPS-198 HMAC procedure using the SHA-1
hash method, a symmetric key and text to produce a
20-byte (160-bit) MAC.

SHA-224 Specifies the FIPS-198 HMAC procedure using the
SHA-224 hash method, a symmetric key and text to
produce a 28-byte (224-bit) MAC.

SHA-256 Specifies the FIPS-198 HMAC procedure using the
SHA-256 hash method, a symmetric key and text to
produce a 32-byte (256-bit) MAC.

SHA-384 Specifies the FIPS-198 HMAC procedure using the
SHA-384 hash method, a symmetric key and text to
produce a 48-byte (384-bit) MAC.

SHA-512 Specifies the FIPS-198 HMAC procedure using the
SHA-512 hash method, a symmetric key and text to
produce a 64-byte (512-bit) MAC.

Segmenting Control (optional)

FIRST First call, this is the first segment of data from the
application program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application
program. This is the default value.

HMAC Verify

Chapter 7. Verifying Data Integrity and Authenticating Messages 391

key_identifier_length

Direction: Input Type: Integer

The length of the key_identifier parameter. The maximum value is 725.

key_identifier

Direction: Input/Output Type: String

The 64-byte label or internal token of an encrypted HMAC or HMACVER key.

text_length

Direction: Input Type: Integer

The length of the text you supply in the text parameter. The maximum length of
text is 214783647 bytes. For FIRST and MIDDLE calls, the text_length must be
a multiple of 64 for SHA-1, SHA-224 and SHA-256 and a multiple of 128 for
SHA-384 and SHA-512 hash methods.

text

Direction: Input Type: String

The application-supplied text for which the MAC is generated.

chaining_vector_length

Direction: Input/Output Type: Integer

The length of the chaining_vector in bytes. The value must be 128 bytes.

chaining_vector

Direction: Input/Output Type: String

An 128-byte string that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector permits
data to be chained from one invocation call to another.

On the first call, initialize this parameter as binary zeros.

mac_length

Direction: Input Type: Integer

The length of the mac parameter in bytes. The maximum value is 64.

mac

Direction: Input Type: String

The field that contains the MAC value you want to verify.

text_id_in

Direction: Input Type: Integer

For CSNBHMV1 only, the ALET of the text for which the MAC is generated.

HMAC Verify

392 z/OS V1R13 ICSF Application Programmer's Guide

Usage Notes
This table lists the access control points in the ICSF role that control the function for
this service.

Table 149. HMAC Verify Access Control Points

Hash method Access control point

SHA-1 HMAC Generate - SHA-1

SHA-224 HMAC Generate - SHA-224

SHA-256 HMAC Generate - SHA-256

SHA-384 HMAC Generate - SHA-384

SHA-512 HMAC Generate - SHA-512

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 150. HMAC generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

This service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

This service is not supported.

Crypto Express3
Coprocessor

HMAC keys not supported.

z196 Crypto Express3
Coprocessor

HMAC key support requires the Nov. 2010
or later licensed internal code (LIC).

MAC Generate (CSNBMGN or CSNBMGN1 and CSNEMGN or
CSNEMGN1)

Use the MAC generate callable service to generate a 4-, 6-, or 8-byte message
authentication code (MAC) for an application-supplied text string. You can specify
that the callable service uses either the ANSI X9.9-1 procedure or the ANSI X9.19
optional double key MAC procedure to compute the MAC. For the ANSI X9.9-1
procedure you identify either a MAC generate key or a DATA key, and the message
text. For the ANSI X9.19 optional double key MAC procedure, you identify a
double-length MAC key and the message text.

The MAC generate callable service also supports the padding rules specified in the
EMV Specification and ISO 16609. For the EMV MAC procedure, you identify a
single- or double-length MAC key and the message text. For the ISO 16609
procedure you identify a double-length MAC or DATA key and the message text.

HMAC Verify

Chapter 7. Verifying Data Integrity and Authenticating Messages 393

|
|

Choosing Between CSNBMGN and CSNBMGN1
CSNBMGN and CSNBMGN1 provide identical functions. When choosing which
service to use, consider the following:

v CSNBMGN requires the application-supplied text to reside in the caller's primary
address space. Also, a program using CSNBMGN adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

The callable service name for AMODE(64) invocation is CSNEMGN.

v CSNBMGN1 allows the application-supplied text to reside either in the caller's
primary address space or in a data space. This can allow you to process more
data with one call. However, a program using CSNBMGN1 does not adhere to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface, and may need to be modified before it can run with other
cryptographic products that follow this programming interface.

The callable service name for AMODE(64) invocation is CSNEMGN1.

For CSNBMGN1, text_id_in is an access list entry token (ALET) parameter of the
data space containing the application-supplied text.

Format

CALL CSNBMGN(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mac)

CALL CSNBMGN1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mac,
text_id_in)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

MAC Generate

394 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_identifier

Direction: Input/Output Type: String

The 64-byte key label or internal key token that identifies a single or
double-length MAC generate key, a DATAM key, or a single-length DATA key.
The type of key depends on the MAC process rule in the rule_array parameter.

text_length

Direction: Input Type: Integer

The length of the text you supply in the text parameter. The maximum length of
text is 214783647 bytes. If the text_length is not a multiple of 8 bytes and if the
ONLY or LAST keyword of the rule_array parameter is called, the text is padded
in accordance with the processing rule specified.

Note: The MAXLEN value may still be specified in the options data set, but
only the maximum value limit will be enforced.

text

Direction: Input Type: String

The application-supplied text for which the MAC is generated.

rule_array_count

Direction: Input Type: Integer

The number of keywords specified in the rule_array parameter. The value can
be 0, 1, 2, or 3.

rule_array

Direction: Input Type: Character string

MAC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 395

Zero to three keywords that provide control information to the callable service.
The keywords are shown in Table 151. The keywords must be in 24 bytes of
contiguous storage with each of the keywords left-justified in its own 8-byte
location and padded on the right with blanks. For example,
’X9.9-1 MIDDLE MACLEN4 ’

The order of the rule_array keywords is not fixed.

You can specify one of the MAC processing rules and then choose one of the
segmenting control keywords and one of the MAC length keywords.

Table 151. Keywords for MAC generate Control Information

Keyword Meaning

MAC Process Rules (optional)

EMVMAC EMV padding rule with a single-length MAC key. The
key_identifier parameter must identify a single-length MAC or
a single-length DATA key. The text is always padded with 1
to 8 bytes so that the resulting text length is a multiple of 8
bytes. The first pad character is X'80'. The remaining 0 to 7
pad characters are X'00'.

EMVMACD EMV padding rule with a double-length MAC key. The
key_identifier parameter must identify a double-length MAC
key. The padding rules are the same as for EMVMAC.

X9.19OPT ANSI X9.19 optional double key MAC procedure. The
key_identifier parameter must identify a double-length MAC
key. The padding rules are the same as for X9.9-1.

X9.9-1 ANSI X9.9-1 and X9.19 basic procedure. The key_identifier
parameter must identify a single-length MAC or a
single-length DATA key. X9.9-1 causes the MAC to be
computed from all of the data. The text is padded only if the
text length is not a multiple of 8 bytes. If padding is required,
the pad character X'00' is used. This is the default value.

TDES-MAC ISO 16609 procedure. The key_identifier must identify a
double-length MAC or a double-length DATA key. The text is
padded only if the text length is not a multiple of 8 bytes.

Segmenting Control (optional)

FIRST First call, this is the first segment of data from the application
program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application
program. This is the default value.

MAC Length and Presentation (optional)

HEX-8 Generates a 4-byte MAC value and presents it as 8
hexadecimal characters.

HEX-9 Generates a 4-byte MAC value and presents it as 2 groups
of 4 hexadecimal characters with a space between the
groups.

MACLEN4 Generates a 4-byte MAC value. This is the default value.

MACLEN6 Generates a 6-byte MAC value.

MACLEN8 Generates an 8-byte MAC value.

MAC Generate

396 z/OS V1R13 ICSF Application Programmer's Guide

chaining_vector

Direction: Input/Output Type: String

An 18-byte string that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector permits
data to be chained from one invocation call to another.

On the first call, initialize this parameter as binary zeros.

mac

Direction: Output Type: String

The 8-byte or 9-byte field in which the callable service returns the MAC value if
the segmenting rule is ONLY or LAST. Allocate an 8-byte field for MAC values
of 4 bytes, 6 bytes, 8 bytes, or HEX-8. Allocate a 9-byte MAC field if you
specify HEX-9 in the rule_array parameter.

text_id_in

Direction: Input Type: Integer

For CSNBMGN1/CSNEMGN1 only, the ALET of the text for which the MAC is
generated.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

CCF Systems: To use a DATA key, the NOCV-enablement keys must be present in
the CKDS. Using a DATA key instead of a MAC generate key in this service
substantially increases the path length for generating the MAC.

To calculate a MAC in one call, specify the ONLY keyword for segmenting control
for the rule_array parameter. For two or more calls, specify the FIRST keyword for
the first input block, the MIDDLE keyword for intermediate blocks (if any), and the
LAST keyword for the last block.

For a given text string, the resulting MAC is the same whether the text is
segmented or not.

The MAC Generate access control point controls the function of this service.

The following table lists the required cryptographic hardware for each server type
and describes restrictions for this callable service.

MAC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 397

|

Table 152. MAC generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

ICSF routes the request to a PCI
Cryptographic Coprocessor if the control
vector in the supplied key identifier cannot
be processed on the Cryptographic
Coprocessor Feature. If no PCI
Cryptographic Coprocessor is online in this
case, the request fails. The request must
meet the following restrictions:

v The MAC Process Rule is X9.19OPT or
EMVMACD.

v The MAC key is a valid double-length
MAC generate key.

v The text_length must be less than or
equal to 4K bytes for the FIRST and
MIDDLE keywords, and the text length
must be a multiple of 8 bytes.

v The text_length on the final call (ONLY or
LAST) can not be greater than 4K
including padding.

TDES-MAC not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

TDES-MAC not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

z196 Crypto Express3
Coprocessor

Related Information
For more information about MAC processing rules and segmenting control, refer to
IBM Common Cryptographic Architecture: Cryptographic Application Programming
Interface Reference.

The MAC verification callable service is described in “MAC Verify (CSNBMVR or
CSNBMVR1 and CSNEMVR or CSNEMVR1).”

MAC Verify (CSNBMVR or CSNBMVR1 and CSNEMVR or CSNEMVR1)
Use the MAC verify callable service to verify a 4-, 6-, or 8-byte message
authentication code (MAC) for an application-supplied text string. You can specify
that the callable service uses either the ANSI X9.9-1 procedure or the ANSI X9.19
optional double key MAC procedure to compute the MAC. For the ANSI X9.9-1

MAC Generate

398 z/OS V1R13 ICSF Application Programmer's Guide

procedure you identify either a MAC verify key, a MAC generation key, or a DATA
key, and the message text. For the ANSI X9.19 optional double key MAC
procedure, you identify either a double-length MAC verify key or a double-length
MAC generation key and the message text. The cryptographic feature compares the
generated MAC with the one sent with the message. A return code indicates
whether the MACs are the same. If the MACs are the same, the receiver knows the
message was not altered. The generated MAC never appears in storage is not
revealed outside the cryptographic feature.

The MAC verify callable service also supports the padding rules specified in the
EMV Specification and ISO 16609. For the EMV MAC procedure, you identify a
single- or double-length MAC key and the message text. For the ISO 16609
procedure you identify a double-length MAC or DATA key and the message text.

Choosing Between CSNBMVR and CSNBMVR1
CSNBMVR and CSNBMVR1 provide identical functions. When choosing which
service to use, consider the following:

v CSNBMVR requires the application-supplied text to reside in the caller's primary
address space. Also, a program using CSNBMVR adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

The callable service name for AMODE(64) invocation is CSNEMVR.

v CSNBMVR1 allows the application-supplied text to reside either in the caller's
primary address space or in a data space. This can allow you to verify more data
with one call. However, a program using CSNBMVR1 does not adhere to the IBM
Common Cryptographic Architecture: Cryptographic Application Programming
Interface , and may need to be modified before it can run with other
cryptographic products that follow this programming interface.

The callable service name for AMODE(64) invocation is CSNEMVR1.

For CSNBMVR1, text_id_in is an access list entry token (ALET) parameter of the
data space containing the application-supplied text.

Format

CALL CSNBMVR(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mac)

MAC Verify

Chapter 7. Verifying Data Integrity and Authenticating Messages 399

CALL CSNBMVR1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mac,
text_id_in)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_identifier

Direction: Input/Output Type: String

The 64-byte key label or internal key token that identifies a single or
double-length MAC verify key, a single or double-length MAC verify key, a
single or double length MAC generation key, a DATAM or DATAMV key, or a
single-length DATA key. The type of key depends on the MAC process rule in
the rule_array parameter.

text_length

Direction: Input Type: Integer

MAC Verify

400 z/OS V1R13 ICSF Application Programmer's Guide

The length of the text you supply in the text parameter. The maximum length of
text is 214783647 bytes. If the text_length parameter is not a multiple of 8 bytes
and if the ONLY or LAST keyword of the rule_array parameter is called, the text
is padded in accordance with the processing rule specified.

Note: The MAXLEN value may still be specified in the options data set, but
only the maximum value limit will be enforced (2147483647).

text

Direction: Input Type: String

The application-supplied text for which the MAC is generated.

rule_array_count

Direction: Input Type: Integer

The number of keywords specified in the rule_array parameter. The value can
be 0, 1, 2, or 3.

rule_array

Direction: Input Type: String

Zero to three keywords that provide control information to the callable service.
The keywords are shown in Table 153. The keywords must be in 24 bytes of
contiguous storage with each of the keywords left-justified in its own 8-byte
location and padded on the right with blanks. For example,
’X9.9-1 MIDDLE MACLEN4 ’

The order of the rule_array keywords is not fixed.

You can specify one of the MAC processing rules and then choose one of the
segmenting control keywords and one of the MAC length keywords.

Table 153. Keywords for MAC verify Control Information

Keyword Meaning

MAC Process Rules (optional)

EMVMAC EMV padding rule with a single-length MAC key. The
key_identifier parameter must identify a single-length MAC,
MACVER, or DATA key. The text is always padded with 1
to 8 bytes so that the resulting text length is a multiple of 8
bytes. The first pad character is X'80'. The remaining 0 to
7 pad characters are X'00'.

EMVMACD EMV padding rule with a double-length MAC key. The
key_identifier parameter must identify a double-length MAC
or MACVER key. The padding rules are the same as for
EMVMAC.

X9.19OPT ANSI X9.9-1 and X9.19 basic procedure. The key_identifier
parameter must identify a single-length MAC, MACVER, or
DATA key. X9.9-1 causes the MAC to be computed from all
of the data. The text is padded only if the text length is not
a multiple of 8 bytes. If padding is required, the pad
character X'00' is used. This is the default value.

MAC Verify

Chapter 7. Verifying Data Integrity and Authenticating Messages 401

Table 153. Keywords for MAC verify Control Information (continued)

Keyword Meaning

X9.9-1 ANSI X9.9-1 and X9.19 basic procedure. The key_identifier
parameter must identify a single-length MAC, or
single-length DATA key. X9.9-1 causes the MAC to be
computed from all of the data. The text is padded only if
the text length is not a multiple of 8 bytes. If padding is
required, the pad character X'00' is used. This is the
default value.

TDES-MAC ISO 16609 procedure. The key_identifier must identify a
double-length MAC or a double-length DATA key. The text
is padded only if the text length is not a multiple of 8 bytes.

Segmenting Control (optional)

FIRST First call; this is the first segment of data from the
application program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; the application program does not employ
segmenting. This is the default value.

MAC Length and Presentation (optional)

HEX-8 Verifies a 4-byte MAC value that is represented as 8
hexadecimal characters.

HEX-9 Verifies a 4-byte MAC value that is represented as 2
groups of 4 hexadecimal characters with a space character
between the groups.

MACLEN4 Verifies a 4-byte MAC value. This is the default value.

MACLEN6 Verifies a 6-byte MAC value.

MACLEN8 Verifies an 8-byte MAC value.

chaining_vector

Direction: Input/Output Type: String

An 18-byte string that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector permits
data to be chained from one invocation call to another.

On the first call, initialize this parameter to binary zeros.

mac

Direction: Output Type: String

The 8- or 9-byte field that contains the MAC value you want to verify. The value
in the field must be left-justified and padded with zeros. If you specified the
X'09' keyword in the rule_array parameter, the input MAC is 9 bytes.

text_id_in

Direction: Input Type: Integer

For CSNBMVR1/CSNEMVR1 only, the ALET of the text for which the MAC is to
be verified.

MAC Verify

402 z/OS V1R13 ICSF Application Programmer's Guide

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

To verify a MAC in one call, specify the ONLY keyword on the segmenting rule
keyword for the rule_array parameter. For two or more calls, specify the FIRST
keyword for the first input block, MIDDLE for intermediate blocks (if any), and LAST
for the last block.

For a given text string, the MAC resulting from the verification process is the same
regardless of how the text is segmented, or how it was segmented when the
original MAC was generated.

CCF Systems only: To use a MAC generation key or a DATA key, the NOCV
enablement keys must be present in the CKDS. Using either a MAC generation key
or a DATA key instead of a MAC verify key in this service substantially increases
the path length for verifying the MAC.

The MAC Verify access control point controls the function of this service.

The following table lists the required cryptographic hardware for each server type
and describes restrictions for this callable service.

Table 154. MAC verify required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

ICSF routes the request to a PCI
Cryptographic Coprocessor if the control
vector in the supplied key identifier cannot
be processed on the Cryptographic
Coprocessor Feature. The request must
meet the following restrictions:

v The MAC Process Rule is X9.19OPT or
EMVMACD.

v The MAC key is a valid double-length
MAC generate key.

v The text_length on the final call (ONLY or
LAST) can not be greater than 4K
including padding.

v The text_length must be less than or
equal to 4K bytes for the FIRST and
MIDDLE keywords, and the text length
must be a multiple of 8 bytes.

TDES-MAC not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

TDES-MAC not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

MAC Verify

Chapter 7. Verifying Data Integrity and Authenticating Messages 403

|

Table 154. MAC verify required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC
IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

z196 Crypto Express3
Coprocessor

Related Information
For more information about MAC processing rules and segmenting control, refer to
IBM Common Cryptographic Architecture: Cryptographic Application Programming
Interface Reference.

The MAC generation callable service is described in “MAC Generate (CSNBMGN or
CSNBMGN1 and CSNEMGN or CSNEMGN1)” on page 393.

MDC Generate (CSNBMDG or CSNBMDG1 and CSNEMDG or
CSNEMDG1)

A modification detection code (MDC) can be used to provide a form of support for
data integrity.

Use the MDC generate callable service to generate a 128-bit modification detection
code (MDC) for an application-supplied text string.

The returned MDC value should be securely stored and/or sent to another user. To
validate the integrity of the text string at a later time, the MDC generate callable
service is again used to generate a 128-bit MDC. The new MDC value is compared
with the original MDC value. If the values are equal, the text is accepted as
unchanged.

Choosing Between CSNBMDG and CSNBMDG1
CSNBMDG and CSNBMDG1 provide identical functions. When choosing which
service to use, consider the following:

v CSNBMDG requires the application-supplied text to reside in the caller's primary
address space. Also, a program using CSNBMDG adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

The callable service name for AMODE(64) invocation is CSNEMDG.

v CSNBMDG1 allows the application-supplied text to reside either in the caller's
primary address space or in a data space. This can allow you to process more
data with one call. However, a program using CSNBMDG1 does not adhere to
the IBM Common Cryptographic Architecture: Cryptographic Application
Programming Interface and may need to be modified before it can run with other
cryptographic products that follow this programming interface.

The callable service name for AMODE(64) invocation is CSNEMDG1.

For CSNBMDG1, text_id_in parameter specifies the access list entry token
(ALET) for the data space containing the application-supplied text.

MAC Verify

404 z/OS V1R13 ICSF Application Programmer's Guide

Format

CALL CSNBMDG(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mdc)

CALL CSNBMDG1(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector,
mdc,
text_id_in)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 725 lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes,” on page 725 lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

text_length

MDC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 405

Direction: Input Type: Integer

The length of the text you supply in the text parameter. The maximum length of
text is 214783647 bytes.

Note: The MAXLEN value may still be specified in the options data set, but
only the maximum value limit will be enforced (2147483647).

Additional restrictions on length of the text depend on whether padding of the
text is requested, and on the segmenting control used.

v When padding is requested (by specifying a process rule of PADMDC-2 or
PADMDC-4 in the rule_array parameter), a text length of 0 is valid for any
segment control specified in the rule_array parameter (FIRST, MIDDLE,
LAST, or ONLY). When LAST or ONLY is specified, the supplied text will be
padded with X'FF's and a padding count in the last byte to bring the total text
length to the next multiple of 8 that is greater than or equal to 16,

v When no padding is requested (by specifying a process rule of MDC-2 or
MDC-4), the total length of the text provided (over a single or segmented
calls) must be at least 16 bytes, and a multiple of 8.

For segmented calls with no padding, text length of 0 is valid on any of the
calls provided the total length over the segmented calls is at least 16 and a
multiple of 8.

For a single call (that is, segment control is ONLY) with no padding, the
length the text provided must be at least 16, and a multiple of 8.

text

Direction: Input Type: String

The application-supplied text for which the MDC is generated.

rule_array_count

Direction: Input Type: Integer

The number of keywords specified in the rule_array parameter. This value must
be 2.

rule_array

Direction: Input Type: Character string

The two keywords that provide control information to the callable service are
shown in Table 155. The two keywords must be in 16 bytes of contiguous
storage with each of the two keywords left-justified in its own 8-byte location
and padded on the right with blanks. For example,
’MDC-2 FIRST ’

Choose one of the MDC process rule control keywords and one of the
segmenting control keywords from the following table.

Table 155. Keywords for MDC Generate Control Information

Keyword Meaning

MDC Process Rules (required)

MDC-2 MDC-2 specifies two encipherments per 8 bytes of input
text and no padding of the input text.

MDC Generate

406 z/OS V1R13 ICSF Application Programmer's Guide

Table 155. Keywords for MDC Generate Control Information (continued)

Keyword Meaning

MDC-4 MDC-4 specifies four encipherments per 8 bytes of input
text and no padding of the input text.

PADMDC-2 PADMDC-2 specifies two encipherments per 8 bytes of
input text and padding of the input text.

When the segment rule specifies ONLY or LAST, the input
text is padded with X'FF's and a padding count in the last
byte to bring the total text length to the next even multiple
of 8 that is greater than, or equal to, 16.

PADMDC-4 PADMDC-4 specifies four encipherments per 8 bytes of
input text and padding of the input text.

When the segment rule specifies ONLY or LAST, the input
text is padded with X'FF's and a padding count in the last
byte to bring the total text length to the next even multiple
of 8 that is greater than, or equal to, 16.

Segmenting Control (required)

FIRST First call; this is the first segment of data from the
application program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application
program.

chaining_vector

Direction: Input/Output Type: String

An 18-byte string that ICSF uses as a system work area. Your application
program must not change the data in this string. The chaining vector permits
data to be chained from one invocation call to another.

On the first call, initialize this parameter as binary zeros.

mdc

Direction: Input/Output Type: String

A 16-byte field in which the callable service returns the MDC value when the
segmenting rule is ONLY or LAST. When the segmenting rule is FIRST or
MIDDLE, the value returned in this field is an intermediate MDC value that will
be used as input for a subsequent call and must not be changed by the
application program.

text_id_in

Direction: Input Type: Integer

For CSNBMDG1/CSNEMDG1 only, the ALET for the data space containing the
text for which the MDC is to be generated.

Usage Notes
To calculate an MDC in one call, specify the ONLY keyword for segmenting control
in the rule_array parameter. For more than one call, specify the FIRST keyword for

MDC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 407

the first input block, the MIDDLE keyword for any intermediate blocks, and the
LAST keyword for the last block. For a given text string, the resulting MDC is the
same whether the text is segmented or not.

The two versions of MDC calculation (with two or four encipherments per 8 bytes of
input text) allow the caller to trade a performance improvement for a decrease in
security. Since 2 encipherments create results different from the results of 4
encipherments, ensure that you use the same number of encipherments to verify
the MDC value.

The following table lists the required cryptographic hardware for each server type
and describes restrictions for this callable service.

Table 156. MDC generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

CP Assist for
Cryptographic
Functions

IBM System z9 EC

IBM System z9 BC

CP Assist for
Cryptographic
Functions

IBM System z10 EC
IBM System z10 BC

CP Assist for
Cryptographic
Functions

z196 CP Assist for
Cryptographic
Functions

One-Way Hash Generate (CSNBOWH or CSNBOWH1 and CSNEOWH or
CSNEOWH1)

Use the one-way hash generate callable service to generate a one-way hash on
specified text. This service supports the following methods:

v MD5 - software only

v SHA-1

v RIPEMD-160 - software only

v SHA-224

v SHA-256

v SHA-384

v SHA-512

The callable service names for AMODE(64) invocation are CSNEOWH and
CSNEOWH1.

MDC Generate

408 z/OS V1R13 ICSF Application Programmer's Guide

Format

CALL CSNBOWH(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
chaining_vector_length,
chaining_vector,
hash_length,
hash)

CALL CSNBOWH1(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
chaining_vector_length,
chaining_vector,
hash_length,
hash,
text_id_in)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

One-Way Hash Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 409

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 1 or 2.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service are listed in
Table 157. The optional chaining flag keyword indicates whether calls to this
service are chained together logically to overcome buffer size limitations. Each
keyword is left-justified in an 8-byte field and padded on the right with blanks.
All keywords must be in contiguous storage.

Table 157. Keywords for One-Way Hash Generate Rule Array Control Information

Keyword Meaning

Hash Method (required)

MD5 Hash algorithm is MD5 algorithm. Use this hash method for
PKCS-1.0 and PKCS-1.1. Length of hash generated is 16
bytes.

MD5-LG Hash algorithm is similar to the MD5 algorithm. Use this hash
method for PKCS-1.0 and PKCS-1.1. Length of hash
generated is 16 bytes. Legacy hash values from release
HCR7751 and lower prior to APAR OA33657 will be
generated for verification purposes with previously archived
hash values.

RPMD-LG Hash algorithm is similar to the RIPEMD-160. Length of hash
generated is 20 bytes. Legacy hash values from release
HCR7751 and lower prior to APAR OA33657 will be
generated for verification purposes with previously archived
hash values.

RPMD-160 Hash algorithm is RIPEMD-160. Length of hash generated is
20 bytes.

SHA-1 Hash algorithm is SHA-1 algorithm. Use this hash method for
DSS. Length of hash generated is 20 bytes.

SHA-224 Hash algorithm is SHA-256 algorithm. Length of hash
generated is 28 bytes.

SHA-256 Hash algorithm is SHA-256 algorithm. Length of hash
generated is 32 bytes.

SHA-384 Hash algorithm is SHA-384 algorithm. Length of hash
generated is 48 bytes.

SHA-512 Hash algorithm is SHA-512 algorithm. Length of hash
generated is 64 bytes.

Chaining Flag (optional)

FIRST Specifies this is the first call in a series of chained calls.
Intermediate results are stored in the hash field.

LAST Specifies this is the last call in a series of chained calls.

One-Way Hash Generate

410 z/OS V1R13 ICSF Application Programmer's Guide

||
|
|
|
|
|

||
|
|
|
|

Table 157. Keywords for One-Way Hash Generate Rule Array Control
Information (continued)

Keyword Meaning

MIDDLE Specifies this is a middle call in a series of chained calls.
Intermediate results are stored in the hash field.

ONLY Specifies this is the only call and the call is not chained. This
is the default.

text_length

Direction: Input Type: Integer

The length of the text parameter in bytes.

Note: If you specify the FIRST or MIDDLE keyword, then the text length must
be a multiple of the blocksize of the hash method. For MD5, RPMD-160,
SHA-1, SHA-224 and SHA-256, this is a multiple of 64 bytes. For
SHA-384 and SHA-512, this is a multiple of 128 bytes.

For ONLY and LAST, this service performs the required padding
according to the algorithm specified.

text

Direction: Input Type: String

The application-supplied text on which this service performs the hash.

chaining_vector_length

Direction: Input Type: Integer

The byte length of the chaining_vector parameter. This must be 128 bytes.

chaining_vector

Direction: Input/Output Type: String

This field is a 128-byte work area. Your application must not change the data in
this string. The chaining vector permits chaining data from one call to another.

hash_length

Direction: Input Type: Integer

The length of the supplied hash field in bytes.

Note: For SHA-1 and RPMD-160 this must be at least 20 bytes; for MD5 this
must be at least 16 bytes. For SHA-224 and SHA-256, the length must
be at least 32 bytes long. Even though the length of the SHA-224 hash
is less than SHA-256, the extra bytes are used as a work area during
the generation of the hash value. The SHA-224 value is left-justified and
padded with zeroes.

For SHA-384 and SHA-512, the length must be at least 64 bytes long.
Even though the length of the SHA-384 hash is less than SHA-512, the

One-Way Hash Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 411

extra bytes are used as a work area during the generation of the hash
value. The SHA-384 value is left-justified and padded with zeroes.

hash

Direction: Input/Output Type: String

This field contains the hash, left-justified. The processing of the rest of the field
depends on the implementation. If you specify the FIRST or MIDDLE keyword,
this field contains the intermediate hash value. Your application must not
change the data in this field between the sequence of FIRST, MIDDLE, and
LAST calls for a specific message.

text_id_in

Direction: Input Type: Integer

For CSNBOWH1 only, the ALET for the data space containing the text for which
to generate the hash.

Usage Notes
Although MD5, SHA-1 and SHA-256 allow it, bit length text is not supported for any
hashing method.

The following table lists the required cryptographic hardware for each server type
and describes restrictions for this callable service.

Table 158. One-way hash generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

SHA-1 requires CCF

SHA-224 keyword not supported

SHA-256 keyword not supported

SHA-384 keyword not supported

SHA-512 keyword not supported

IBM Eserver zSeries
990

IBM Eserver zSeries
890

CP Assist for
Cryptographic
Functions

SHA-1 requires CPACF

SHA-224 keyword not supported

SHA-256 keyword not supported

SHA-384 keyword not supported

SHA-512 keyword not supported

IBM System z9 EC

IBM System z9 BC

CP Assist for
Cryptographic
Functions

SHA-384 keyword not supported

SHA-512 keyword not supported

IBM System z10 EC
IBM System z10 BC

CP Assist for
Cryptographic
Functions

z196 CP Assist for
Cryptographic
Functions

One-Way Hash Generate

412 z/OS V1R13 ICSF Application Programmer's Guide

Symmetric MAC Generate (CSNBSMG or CSNBSMG1 and CSNESMG
or CSNESMG1)

Use the symmetric MAC generate callable service to generate a 96- or 128-bit
message authentication code (MAC) for an application-supplied text string using an
AES key.

The callable service names for AMODE(64) invocation are CSNESMG and
CSNESMG1.

Choosing Between CSNBSMG and CSNBSMG1 or CSNESMG and
CSNESMG1

CSNBSMG, CSNBSMG1, CSNESMG, and CSNESMG1 provide identical functions.
When choosing which service to use, consider this:

v CSNBSMG and CSNESMG require the text to reside in the caller’s primary
address space. Also, a program using CSNBSMG adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

v CSNBSMG1 and CSNESMG1 allow the text to reside either in the caller’s
primary address space or in a data space. This can allow you to decipher more
data with one call. However, a program using CSNBSMG1 and CSNESMG1 do
not adhere to the IBM CCA: Cryptographic API and may need to be modified
prior to it running with other cryptographic products that follow this programming
interface.

For CSNBSMG1 and CSNESMG1, text_id_in is an access list entry token (ALET)
parameter of the data spaces containing the text.

Format

CALL CSNBSMG(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier_length,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector_length,
chaining_vector,
reserved_data_length,
reserved_data
mac_length
mac)

One-Way Hash Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 413

CALL CSNBSMG1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier_length,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector_length,
chaining_vector,
reserved_data_length,
reserved_data
mac_length
mac
text_id_in)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_identifier_length

Direction: Input Type: String

The length of the key_identifier parameter. For the KEY-CLR keyword, the
length is in bytes and includes only the value of the key length. The key length
value can be 16, 24, or 32. For the KEYIDENT keyword, the length must be 64.

key_identifier

Symmetric MAC Generate

414 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input Type: String

For the KEY-CLR keyword, this specifies the clear AES key. The parameter
must be left justified. For the KEYIDENT keyword, this specifies an internal
clear AES token or the label name of a clear AES key in the CKDS. Normal
CKDS label name syntax is required.

text_length

Direction: Input Type: Integer

The length of the text you supply in the text parameter. The maximum length of
text is 2147483647 bytes. If the text_length is not a multiple of 8 bytes and if
the ONLY or LAST keyword of the rule_array parameter is called, the text is
padded in accordance with the processing rule specified.

text

Direction: Input Type: String

The application-supplied text for which the MAC is generated.

rule_array_count

Direction: Input Type: Integer

The number of keywords specified in the rule_array parameter. The value can
be 1, 2, 3 or 4.

rule_array

Direction: Input Type: Character string

This keyword provides control information to the callable service. The keywords
must be eight bytes of contiguous storage with the keyword left-justified in its
8-byte location and padded on the right with blanks.

You can specify one of the MAC processing rules and then choose one of the
segmenting control keywords and one of the MAC length keywords.

Table 159. Keywords for symmetric MAC generate control information

Keyword Meaning

Algorithm (required)

AES Specifies that the Advanced Encryption Standard (AES)
algorithm is to be used.

MAC processing rule (optional)

CBC-MAC CBC MAC with padding for any key length. This is the
default value.

XCBC-MAC AES-XCBC-MAC-96 and AES-XCBC-PRF-128 MAC
generation with padding for 128-bit keys.

Key rule (optional)

KEY-CLR This specifies that the key parameter contains a clear key
value. This is the default value.

Symmetric MAC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 415

Table 159. Keywords for symmetric MAC generate control information (continued)

Keyword Meaning

KEYIDENT This specifies that the key_identifier field will be an internal
clear token or the label name of a clear key in the CKDS.
Normal CKDS label name syntax is required.

Segmenting Control (optional)

FIRST First call, this is the first segment of data from the application
program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application
program. This is the default value.

chaining_vector_length

Direction: Input/Output Type: Integer

The length of the chaining_vector parameter. On output, the actual length of the
chaining vector will be stored in the parameter.

chaining_vector

Direction: Input/Output Type: String

This field is used as a system work area for the chaining vector. Your
application program must not change the data in this string. The chaining vector
holds the output chaining vector from the caller.

The mapping of the chaining_vector depends on the algorithm specified. For
AES, the chaining_vector field must be at least 36 bytes in length.

reserved_data_length

Direction: Input Type: Integer

Reserved for future use. Value must be zero.

reserved_data

Direction: Ignored Type: String

Reserved for future use.

mac_length

Direction: Input Type: Integer

The length in bytes of the MAC to be returned in the mac field. The allowable
values are 12 and 16 bytes.

mac

Direction: Output Type: String

The 12-byte or 16-byte field in which the callable service returns the MAC value
if the segmenting rule is ONLY or LAST.

Symmetric MAC Generate

416 z/OS V1R13 ICSF Application Programmer's Guide

text_id_in

Direction: Input Type: Integer

For CSNBSMG1 and CSNESMG1 only, the ALET of the text for which the MAC
is generated.

Usage Notes
The following table lists the required cryptographic hardware for each server type
and describes restrictions for this callable service.

Table 160. Symmetric MAC generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

CPACF

IBM System z9 EC

IBM System z9 BC

CPACF

IBM System z10 EC
IBM System z10 BC

CPACF

z196 CPACF

Symmetric MAC Verify (CSNBSMV or CSNBSMV1 and CSNESMV or
CSNESMV1)

Use the symmetric MAC verify callable service to verify a 96- or 128-bit message
authentication code (MAC) for an application-supplied text string using an AES key.

The callable service names for AMODE(64) invocation are CSNESMV and
CSNESMV1.

Choosing Between CSNBSMV and CSNBSMV1 or CSNESMV and
CSNESMV1

CSNBSMV, CSNBSMV1, CSNESMV, and CSNESMV1 provide identical functions.
When choosing which service to use, consider this:

v CSNBSMV and CSNESMV require the text to reside in the caller’s primary
address space. Also, a program using CSNBSMV adheres to the IBM Common
Cryptographic Architecture: Cryptographic Application Programming Interface.

v CSNBSMV1 and CSNESMV1 allow the text to reside either in the caller’s primary
address space or in a data space. This can allow you to decipher more data with
one call. However, a program using CSNBSMV1 and CSNESMV1 do not adhere
to the IBM CCA: Cryptographic API and may need to be modified prior to it
running with other cryptographic products that follow this programming interface.

Symmetric MAC Generate

Chapter 7. Verifying Data Integrity and Authenticating Messages 417

For CSNBSMV1 and CSNESMV1, text_id_in is an access list entry token (ALET)
parameter of the data spaces containing the text.

Format

CALL CSNBSMV(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier_length,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector_length,
chaining_vector,
reserved_data_length,
reserved_data
mac_length
mac)

CALL CSNBSMV1(
return_code,
reason_code,
exit_data_length,
exit_data,
key_identifier_length,
key_identifier,
text_length,
text,
rule_array_count,
rule_array,
chaining_vector_length,
chaining_vector,
reserved_data_length,
reserved_data
mac_length
mac
text_id_in)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Symmetric MAC Verify

418 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_identifier_length

Direction: Input Type: Integer

The length of the key_identifier parameter. For the KEY-CLR keyword, the
length is in bytes and includes only the value of the key length. The key length
value can be 16, 24, or 32. For the KEYIDENT keyword, the length must be 64.

key_identifier

Direction: Input Type: String

For the KEY-CLR keyword, this specifies the clear AES key. The parameter
must be left justified. For the KEYIDENT keyword, this specifies an internal
clear AES token or the label name of a clear AES key in the CKDS. Normal
CKDS label name syntax is required.

text_length

Direction: Input Type: Integer

The length of the text you supply in the text parameter. The maximum length of
text is 2147483647 bytes. If the text_length parameter is not a multiple of 8
bytes and if the ONLY or LAST keyword of the rule_array parameter is called,
the text is padded in accordance with the processing rule specified.

text

Direction: Input Type: String

The application-supplied text for which the MAC is verified.

rule_array_count

Direction: Input Type: Integer

The number of keywords specified in the rule_array parameter. The value can
be 1, 2, 3 or 4.

rule_array

Direction: Input Type: String

Symmetric MAC Verify

Chapter 7. Verifying Data Integrity and Authenticating Messages 419

This keyword provides control information to the callable service. The keywords
must be eight bytes of contiguous storage with the keyword left-justified in its
8-byte location and padded on the right with blanks.The order of the rule_array
keywords is not fixed.

You can specify one of the MAC processing rules and then choose one of the
segmenting control keywords and one of the MAC length keywords.

Table 161. Keywords for symmetric MAC verify control information

Keyword Meaning

Algorithm (required)

AES Specifies that the Advanced Encryption Standard (AES)
algorithm is to be used.

MAC processing rule (optional)

CBC-MAC CBC MAC with padding for any key length. This is the
default value.

XCBC-MAC AES-XCBC-MAC-96 and AES-XCBC-PRF-128 MAC
generation with padding for 128-bit keys.

Key rule (optional)

KEY-CLR This specifies that the key parameter contains a clear key
value. This is the default value.

KEYIDENT This specifies that the key_identifier field will be an internal
clear token or the label name of a clear key in the CKDS.
Normal CKDS label name syntax is required.

Segmenting Control (optional)

FIRST First call, this is the first segment of data from the application
program.

LAST Last call; this is the last data segment.

MIDDLE Middle call; this is an intermediate data segment.

ONLY Only call; segmenting is not employed by the application
program. This is the default value.

chaining_vector_length

Direction: Input/Output Type: String

The length of the chaining_vector parameter. On output, the actual length of the
chaining vector will be stored in the parameter.

chaining_vector

Direction: Input/Output Type: String

This field is used as a system work area for the chaining vector. Your
application program must not change the data in this string. The chaining vector
holds the output chaining vector from the caller.

The mapping of the chaining_vector depends on the algorithm specified. For
AES, the chaining_vector field must be at least 36 bytes in length.

reserved_data_length

Direction: Input Type: Integer

Symmetric MAC Verify

420 z/OS V1R13 ICSF Application Programmer's Guide

Reserved for future use. Value must be zero.

reserved_data

Direction: Ignored Type: String

Reserved for future use.

mac_length

Direction: Input Type: Integer

The length in bytes of the MAC to be verified the mac field. The allowable
values are 12 and 16 bytes.

mac

Direction: Input Type: String

The 12-byte or 16-byte field that contains the MAC value you want to verify.
The value must be left-justified and padded with zeros.

text_id_in

Direction: Input Type: Integer

For CSNBSMV1 and CSNESMV1 only, the ALET of the text for which the MAC
is to be verified.

Usage Notes
The following table lists the required cryptographic hardware for each server type
and describes restrictions for this callable service.

Table 162. Symmetric MAC verify required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

CPACF

IBM System z9 EC

IBM System z9 BC

CPACF

IBM System z10 EC
IBM System z10 BC

CPACF

z196 CPACF

Symmetric MAC Verify

Chapter 7. Verifying Data Integrity and Authenticating Messages 421

Symmetric MAC Verify

422 z/OS V1R13 ICSF Application Programmer's Guide

Chapter 8. Financial Services

The process of validating personal identities in a financial transaction system is
called personal authentication. The personal identification number (PIN) is the basis
for verifying the identity of a customer across financial industry networks. ICSF
provides callable services to translate, verify, and generate PINs. You can use the
callable services to prevent unauthorized disclosures when organizations handle
PINs.

These callable services are described in these topics:
v “Clear PIN Encrypt (CSNBCPE and CSNECPE)” on page 434
v “Clear PIN Generate (CSNBPGN and CSNEPGN)” on page 438
v “Clear PIN Generate Alternate (CSNBCPA and CSNECPA)” on page 442
v “CVV Key Combine (CSNBCKC and CSNECKC)” on page 448
v “Encrypted PIN Generate (CSNBEPG and CSNEEPG)” on page 453
v “Encrypted PIN Translate (CSNBPTR and CSNEPTR)” on page 458
v “Encrypted PIN Verify (CSNBPVR and CSNEPVR)” on page 466
v “PIN Change/Unblock (CSNBPCU and CSNEPCU)” on page 473
v “Secure Messaging for Keys (CSNBSKY and CSNESKY)” on page 479
v “Secure Messaging for PINs (CSNBSPN and CSNESPN)” on page 482
v “SET Block Compose (CSNDSBC and CSNFSBC)” on page 487
v “SET Block Decompose (CSNDSBD and CSNFSBD)” on page 492
v “Transaction Validation (CSNBTRV and CSNETRV)” on page 498
v “VISA CVV Service Generate (CSNBCSG and CSNECSG)” on page 502
v “VISA CVV Service Verify (CSNBCSV and CSNECSV)” on page 506

How Personal Identification Numbers (PINs) are Used
Many people are familiar with PINs, which allow them to use an automated teller
machine (ATM). From the system point of view, PINs are used primarily in financial
networks to authenticate users — typically, a user is assigned a PIN, and enters the
PIN at automated teller machines (ATMs) to gain access to his or her accounts. It is
extremely important that the PIN be kept private, so that no one other than the
account owner can use it. ICSF allows your applications to generate PINs, to verify
supplied PINs, and to translate PINs from one format to another.

How VISA Card Verification Values Are Used
The Visa International Service Association (VISA) and MasterCard International,
Incorporated have specified a cryptographic method to calculate a value that relates
to the personal account number (PAN), the card expiration date, and the service
code. The VISA card-verification value (CVV) and the MasterCard card-verification
code (CVC) can be encoded on either track 1 or track 2 of a magnetic striped card
and are used to detect forged cards. Because most online transactions use track-2,
the ICSF callable services generate and verify the CVV4 by the track-2 method.

The VISA CVV service generate callable service calculates a 1- to 5-byte value
through the DES-encryption of the PAN, the card expiration date, and the service
code using two data-encrypting keys or two MAC keys. The VISA CVV service
verify callable service calculates the CVV by the same method, compares it to the

4. The VISA CVV and the MasterCard CVC refer to the same value. CVV is used here to mean both CVV and CVC.

© Copyright IBM Corp. 1997, 2011 423

|

CVV supplied by the application (which reads the credit card's magnetic stripe) in
the CVV_value, and issues a return code that indicates whether the card is
authentic.

Translating Data and PINs in Networks
More and more data is being transmitted across networks where, for various
reasons, the keys used on one network cannot be used on another network.
Encrypted data and PINs that are transmitted across these boundaries must be
“translated” securely from encryption under one key to encryption under another
key. For example, a traveler visiting a foreign city might wish to use an ATM to
access an account at home. The PIN entered at the ATM might need to be
encrypted at the ATM and sent over one or more financial networks to the traveler's
home bank. At the home bank, the PIN must be verified prior to access being
allowed. On intermediate systems (between networks), applications can use the
Encrypted PIN translate callable service to re-encrypt a PIN block from one key to
another. Running on ICSF, such applications can ensure that PINs never appear in
the clear and that the PIN-encrypting keys are isolated on their own networks.

Working with Europay–MasterCard–Visa smart cards
There are several services you can use in secure communications with EMV smart
cards. The processing capabilities are consistent with the specifications provided in
these documents:

v EMV 2000 Integrated Circuit Card Specification for Payment Systems Version 4.0
(EMV4.0) Book 2

v Design Visa Integrated Circuit Card Specification Manual

v Integrated Circuit Card Specification (VIS) 1.4.0 Corrections

EMV smart cards include the following processing capabilities:

v The diversified key generate (CSNBDKG and CSNEDKG) callable service with
rule-array options TDES-XOR, TDESEMV2, and TDESEMV4 enables you to
derive a key used to cipher and authenticate messages, and more particularly
message parts, for exchange with an EMV smart card. You use the derived key
with services such as encipher, decipher, MAC generate, MAC verify, secure
messaging for keys, and secure messaging for PINs. These message parts can
be combined with message parts created using the secure messaging for keys
and secure messaging for PINs services.

v The secure messaging for keys (CSNBSKY and CSNESKY) service enables you
to securely incorporate a key into a message part (generally the value portion of
a TLV component of a secure message for a card). Similarly, the secure
messaging for PINs (CSNBSPN and CSNESPN) service enables secure
incorporation of a PIN block into a message part.

v The PIN change/unblock (CSNBPCU and CSNEPCU) service enables you to
encrypt a new PIN to send to a new EMV card, or to update the PIN value on an
initialized EMV card. This verb generates both the required session key (from the
master encryption key) and the required authentication code (from the master
authentication key).

v The ZERO-PAD option of the PKA encrypt (CSNDPKE) service enables you to
validate a digital signature created according to ISO 9796-2 standard by
encrypting information you format, including a hash value of the message to be
validated. You compare the resulting enciphered data to the digital signature
accompanying the message to be validated.

424 z/OS V1R13 ICSF Application Programmer's Guide

v The MAC generate and MAC verify services post-pad a X'80'...X'00' string to a
message as required for authenticating messages exchanged with EMV smart
cards.

PIN Callable Services
You use the PIN callable services to generate, verify, and translate PINs. This topic
discusses the PIN callable services, as well as the various PIN algorithms and PIN
block formats supported by ICSF. It also explains the use of PIN-encrypting keys.

Generating a PIN
To generate personal identification numbers, call the Clear PIN Generate or
Encrypted PIN Generate callable service. Using a PIN generation algorithm, data
used in the algorithm, and the PIN generation key, the Clear PIN generate callable
service generates a clear PIN and a PIN verification value, or offset. The Clear PIN
Generate callable service can only execute in special secure mode. For a
description of this mode, see “Special Secure Mode” on page 10. Using a PIN
generation algorithm, data used in the algorithm, the PIN generation key, and an
outbound PIN encrypting key, the encrypted PIN generate callable service
generates and formats a PIN and encrypts the PIN block.

Encrypting a PIN
To format a PIN into a supported PIN block format and encrypt the PIN block, call
the Clear PIN encrypt callable service.

Generating a PIN Validation Value from an Encrypted PIN Block
To generate a clear VISA PIN validation value (PVV) from an encrypted PIN block,
call the clear PIN generate alternate callable service. The PIN block can be
encrypted under an input PIN-encrypting key (IPINENC) or an output PIN
encrypting key (OPINENC). Using an IPINENC key requires that NOCV keys are
enabled in the CKDS.

Verifying a PIN
To verify a supplied PIN, call the Encrypted PIN verify callable service. You supply
the enciphered PIN, the PIN-encrypting key that enciphers the PIN, and other data.
You must also specify the PIN verification key and PIN verification algorithm. The
callable service generates a verification PIN. The service compares the two
personal identification numbers and if they are the same, it verifies the supplied
PIN.

Translating a PIN
To translate a PIN block format from one PIN-encrypting key to another or from one
PIN block format to another, call the Encrypted PIN translate callable service. You
must identify the input PIN-encrypting key that originally enciphered the PIN. You
also need to specify the output PIN-encrypting key that you want the callable
service to use to encipher the PIN. If you want to change the PIN block format,
specify a different output PIN block format from the input PIN block format.

Algorithms for Generating and Verifying a PIN

ICSF supports these algorithms for generating and verifying personal identification
numbers:
v IBM 3624 institution-assigned PIN

Chapter 8. Financial Services 425

v IBM 3624 customer-selected PIN (through a PIN offset)
v IBM German Bank Pool PIN (verify through an institution key)
v IBM German Bank Pool PIN (verify through a pool key and a PIN offset). This

algorithm is supported when the service using the PIN is processed on the
Cryptographic Coprocessor Feature. Restriction: This algorithm is not supported
on a z990, z890, z9 EC or z9 BC.

v VISA PIN through a VISA PIN validation value
v Interbank PIN

The algorithms are discussed in detail in “PIN Formats and Algorithms” on page
863.

Using PINs on Different Systems
ICSF allows you to translate different PIN block formats, which lets you use
personal identification numbers on different systems. ICSF supports these formats:
v IBM 3624
v IBM 3621 (same as IBM 5906)
v IBM 4704 encrypting PINPAD format
v ISO 0 (same as ANSI 9.8, VISA 1, and ECI 1)
v ISO 1 (same as ECI 4)
v ISO 2
v ISO 3
v VISA 2
v VISA 3
v VISA 4
v ECI 2
v ECI 3

The formats are discussed in “PIN Formats and Algorithms” on page 863.

PIN-Encrypting Keys
A unique master key variant enciphers each type of key. For further key separation,
an installation can choose to have each PIN block format enciphered under a
different PIN-encrypting key. The PIN-encrypting keys can have a 16-byte PIN block
variant constant exclusive ORed on them prior to using to translate or verify PIN
blocks. This is specified in the format control field in the Encrypted PIN translate
and Encrypted PIN verify callable services.

You should only use PIN block variant constants when you are communicating with
another host processor with the Integrated Cryptographic Service Facility.

Derived Unique Key Per Transaction Algorithms
ICSF supports ANSI X9.24 derived unique key per transaction algorithms to
generate PIN-encrypting keys from user data. ICSF supports both single- and
double-length key generation. Keywords for single- and double-length key
generation can not be mixed. A PCICC, PCIXCC, CEX2C, or CEX3C is required for
this support. Double-length key generation is only supported on z990 with the May
2004 LIC or higher, z890, z9 EC, z9 BC and IBM System z10 EC.

Encrypted PIN Translate
The UKPTIPIN, IPKTOPIN and UKPTBOTH keywords will cause the service to
generate single-length keys. DUKPT-IP, DKPT-OP and DUKPT-BH are the
respective keywords to generate double-length keys. The input_PIN_profile and
output_PIN_profile must supply the current key serial number when these keywords
are specified.

426 z/OS V1R13 ICSF Application Programmer's Guide

Encrypted PIN Verify
The UKPTIPIN keyword will cause the service to generate single-length keys.
DUKPT-IP is the keyword for double-length key generation. The input_PIN_profile
must supply the current key serial number when these keywords are specified.

For more information about PIN-encrypting keys, see z/OS Cryptographic Services
ICSF Administrator's Guide.

ANSI X9.8 PIN Restrictions
Access control points (ACP) in the ICSF role control PIN block processing
restrictions from the X9.8 standard. These access control points are available on
the z196 with the CEX3C. These callable services are affected by these access
control points. These access control points are disabled in the default role. A TKE
Workstation is required to enable these ACPs.

v Clear PIN Generate Alternate (CSNBCPA and CSNECPA)

v Encrypted PIN Generate (CSNBEPG and CSNEEPG)

v Encrypted PIN Translate (CSNBPTR and CSNEPTR)

v Encrypted PIN Verify (CSNBPVR and CSNEPVR)

v Secure Messaging for PINs (CSNBSPN and CSNESPN)

There are four access control points:

v ANSI X9.8 PIN - Enforce PIN block restrictions

v ANSI X9.8 PIN - Allow modification of PAN

v ANSI X9.8 PIN - Allow only ANSI PIN blocks

v ANSI X9.8 PIN – Use stored decimalization tables only

PIN decimalization tables can be stored in the CEX3C coprocessors for use by
callable services. Only tables that have been activated can be used. A TKE
Workstation is required to manage the tables in the coprocessors.

Note: ICSF routes work to all active coprocessors based on work load. All
coprocessors must have the same set of active decimalization tables for the
ANSI X9.8 PIN – Use stored decimalization tables only access control
point to be effective.

ANSI X9.8 PIN - Enforce PIN block restrictions
When ANSI X9.8 PIN - Enforce PIN block restrictions access control point is
enable, the following restrictions will be enforced.

v CSNBPTR and CSNBSPN will not accept IBM 3624 PIN format in the output
profile parameter when the input profile parameter is not IBM 3624.

v CSNBPTR will not accept ISO-0 or ISO-3 formats in the input PIN profile unless
ISO-0 or ISO-3 is in the output PIN profile.

v CSNBPTR and CSNBSPN will not accept ISO-1 or ISO-2 formats in the output
profile parameter when the input profile parameter contains ISO-0, ISO-3, or
VISA4

v When the input profile parameter of CSNBPTR or CSNBSPN contains either
ISO-0 or ISO-3 formats, the decrypted PIN block will be examined to ensure that
the PAN within the PIN block is the same as the PAN which was supplied as the
input PAN parameter, and that this is the same as the PAN which was supplied
as the output PAN parameter.

Chapter 8. Financial Services 427

|
|
|
|
|

|

|

|

|

|
|
|

|
|
|
|

v The input PAN and output PAN parameters of CSNBPTR or CSNBSPN must be
equivalent.

v When the rule array for CSNBCPA contains VISA-PVV, the input PIN profile must
contain ISO-0 or ISO-3 formats.

ANSI X9.8 PIN - Allow modification of PAN
In order to enable the ANSI X9.8 PIN - Allow modification of PAN access control
point, the ANSI X9.8 PIN - Enforce PIN block restrictions must also be enabled.
The ANSI X9.8 PIN - Allow modification of PAN access control point cannot be
enabled by itself.

When the ANSI X9.8 PIN - Allow modification of PAN access control point is
enabled, the input PAN and output PAN parameters will be tested in CSNBPTR or
CSNBSPN. The input PAN will be compared to the portions of the PAN which are
recoverable from the decrypted PIN block. If the PANs compare, then the account
number will be changed in the output PIN block.

ANSI X9.8 PIN - Allow only ANSI PIN blocks
In order to enable the ANSI X9.8 PIN - Allow only ANSI PIN blocks access
control point, the ANSI X9.8 PIN - Enforce PIN block restrictions must also be
enabled. The ANSI X9.8 PIN - Allow only ANSI PIN blocks access control point
cannot be enabled by itself.

When this access control point is enable, CSNBPTR will allow reformatting of the
PIN block as shown in the following table.

Table 163. ANSI X9.8 PIN - Allow only ANSI PIN blocks

Reformat To: ISO Format 0 ISO Format 1 ISO Format 3

From:

ISO Format 0 Reformat permitted

Change of PAN not permitted

Not permitted Reformat permitted

Change of PAN not permitted

ISO Format 1 Reformat permitted Reformat permitted Reformat permitted

ISO Format 3 Reformat permitted

Change of PAN not permitted

Not permitted Reformat permitted

Change of PAN not permitted

ANSI X9.8 PIN – Use stored decimalization tables only
The ANSI X9.8 PIN – Use stored decimalization tables only access control point
may be enabled by itself.

When this access control point is enabled, CSNBPGN, CSNBCPA, CSNBEPG, and
CSNBPVR services must supply a decimalization table that matches the active
decimalization tables stored in the coprocessors. The decimalization table in the
data_array parameter will be compared against the active decimalization tables in
the coprocessor and if the supplied table matches a stored table, the request will be
processed. If the supplied table doesn’t match any of the stored tables or there are
no stored tables, the request will fail.

PIN decimalization tables can be stored in the CEX3C coprocessors for use by
callable services. Only tables that have been activated can be used. A TKE
Workstation is required to manage the tables in the coprocessors.

428 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|

|
|
|
|
|
|
|

|
|
|

Note: ICSF routes work to all active coprocessors based on work load. All
coprocessors must have the same set of decimalization tables for the
decimalization table access control point to be effective.

The PIN Profile
The PIN profile consists of:
v PIN block format (see “PIN Block Format”)
v Format control (see “Format Control” on page 432)
v Pad digit (see “Pad Digit” on page 432)
v Current Key Serial Number (for UKPT and DUKPT – see “Current Key Serial

Number” on page 433)

Table 164 shows the format of a PIN profile.

Table 164. Format of a PIN Profile

Bytes Description

0–7 PIN block format

8–15 Format control

16–23 Pad digit

24–47 Current Key Serial Number (for UKPT and DUKPT)

PIN Block Format
This keyword specifies the format of the PIN block. The 8-byte value must be
left-justified and padded with blanks. Refer to Table 165 for a list of valid values.

Table 165. Format Values of PIN Blocks

Format Value Description

ECI-2 Eurocheque International format 2

ECI-3 Eurocheque International format 3

ISO-0 ISO format 0, ANSI X9.8, VISA 1, and ECI 1

ISO-1 ISO format 1 and ECI 4

ISO-2 ISO format 2

ISO-3 ISO format 3

VISA-2 VISA format 2

VISA-3 VISA format 3

VISA-4 VISA format 4

3621 IBM 3621 and 5906

3624 IBM 3624

4704-EPP IBM 4704 with encrypting PIN pad

PIN Block Format and PIN Extraction Method Keywords
In the Clear PIN Generate Alternate, Encrypted PIN Translate and Encrypted PIN
Verify callable services, you may specify a PIN extraction keyword for a given PIN
block format. In this table, the allowable PIN extraction methods are listed for each
PIN block format. The first PIN extraction method keyword listed for a PIN block
format is the default. If you specify a PIN extraction method keyword that is not the
default, the request will be routed to the PCI Cryptographic Coprocessor on the
z900 server.

Chapter 8. Financial Services 429

|
|
|

|

|
|

Table 166. PIN Block Format and PIN Extraction Method Keywords

PIN Block Format
PIN Extraction Method
Keywords Description

ECI-2 PINLEN04 The PIN extraction method
keywords specify a PIN
extraction method for a
PINLEN04 format.

ECI-3 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

ISO-0 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

ISO-1 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

ISO-2 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

ISO-3 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

VISA-2 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

VISA-3 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

VISA-4 PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

3621 PADDIGIT, HEXDIGIT,
PINLEN04 to PINLEN12,
PADEXIST

The PIN extraction method
keywords specify a PIN
extraction method for an IBM
3621 PIN block format. The
first keyword, PADDIGIT, is
the default PIN extraction
method for the PIN block
format.

3624 PADDIGIT, HEXDIGIT,
PINLEN04 to PINLEN16,
PADEXIST

The PIN extraction method
keywords specify a PIN
extraction method for an IBM
3624 PIN block format. The
first keyword, PADDIGIT, is
the default PIN extraction
method for the PIN block
format.

430 z/OS V1R13 ICSF Application Programmer's Guide

Table 166. PIN Block Format and PIN Extraction Method Keywords (continued)

PIN Block Format
PIN Extraction Method
Keywords Description

4704-EPP PINBLOCK The PIN extraction method
keywords specify a PIN
extraction method for a
PINBLOCK format.

The PIN extraction methods operate as follows:

PINBLOCK
Specifies that the service use one of these:

v the PIN length, if the PIN block contains a PIN length field

v the PIN delimiter character, if the PIN block contains a PIN delimiter
character.

PADDIGIT
Specifies that the service use the pad value in the PIN profile to identify the
end of the PIN.

HEXDIGIT
Specifies that the service use the first occurrence of a digit in the range
from X'A' to X'F' as the pad value to determine the PIN length.

PINLENxx
Specifies that the service use the length specified in the keyword, where xx
can range from 4 to 16 digits, to identify the PIN.

PADEXIST
Specifies that the service use the character in the 16th position of the PIN
block as the value of the pad value.

Enhanced PIN Security Mode
An Enhanced PIN Security Mode is available. This optional mode is selected by
enabling the PTR Enhanced PIN Security access control point in the PCICC,
PCIXCC, CEX2C, or CEX3C default role. When active, this control point affects all
PIN callable services that extract or format a PIN using a PIN-block format of 3621
or 3624 with a PIN-extraction method of PADDIGIT.

Table 167 summarizes the callable services affected by the Enhanced PIN Security
Mode and describes the effect that the mode has when the access control point is
enabled.

Table 167. Callable Services Affected by Enhanced PIN Security Mode

PIN-block format
and PIN-extraction
method

Callable Services Affected PIN processing changes when
Enhanced PIN Security Mode
enabled

ECI-2, 3621, or 3624
formats AND
PINLENxx

PIN-block format and
PIN-extraction method

Clear_PIN_Generate_Alternate

Encrypted_PIN_Translate

Encrypted_PIN_Verify

The PINLENxx keyword in
rule_array parameter for PIN
extraction method is not allowed
if the Enhanced PIN Security
Mode is enabled.
Note: The services will fail with
return code 8 reason code
'7E0'x.

Chapter 8. Financial Services 431

|

|
|

|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

Table 167. Callable Services Affected by Enhanced PIN Security Mode (continued)

PIN-block format
and PIN-extraction
method

Callable Services Affected PIN processing changes when
Enhanced PIN Security Mode
enabled

3621 or 3624 format
and PADDIGIT

Clear_PIN_Generate_Alternate

Encrypted_PIN_Translate

Encrypted_PIN_Verify

PIN Change/Unblock

PIN extraction determines the
PIN length by scanning from
right to left until a digit, not equal
to the pad digit, is found. The
minimum PIN length is set at
four digits, so scanning ceases
one digit past the position of the
4th PIN digit in the block.

3621 or 3624 format
and PADDIGIT

Clear_PIN_Encrypt

Encrypted_PIN_Generate

Encrypted_PIN_Translate

PIN formatting does not examine
the PIN, in the output PIN block,
to see if it contains the pad digit.

3621 or 3624 format
and PADDIGIT

Encrypted_PIN_Translate Restricted to non-decimal digit
for PAD digit.

Format Control
This keyword specifies whether there is any control on the user-supplied PIN
format. The 8-byte value must be left-justified and padded with blanks. Specify one
of these values:

NONE No format control.

PBVC A PIN block variant constant (PBVC) enforces format control. Use the
PBVC value only if you have coded PBVC in the encrypted PIN translate
callable service. For the PBVC, the clear PIN key-encrypting key has been
exclusive ORed with one of the PIN block formats. The cryptographic
feature removes the pattern from the clear PIN key-encrypting key prior to it
decrypting the PIN block.

Restriction: PBVC is not supported on IBM Eserver zSeries 990 and
subsequent releases.

Notes:

1. Only control vectors and extraction methods valid for the Cryptographic
Coprocessor Feature may be used if the PBVC format control is
desired.

2. PBVC is supported for compatibility with prior releases of OS/390 ICSF
and existing ICSF applications. It is recommended that a format control
of NONE be specified for maximum flexibility to run on PCI
Cryptographic Coprocessors.

If you do not specify a value for the format control parameter, ICSF uses
hexadecimal zeros.

Table 182 on page 447 lists the PIN block variant constants.

Pad Digit
Some PIN formats require this parameter. If the PIN format does not need a pad
digit, the callable service ignores this parameter. Table 168 on page 433 shows the
format of a pad digit. The PIN profile pad digit must be specified in upper case.

432 z/OS V1R13 ICSF Application Programmer's Guide

Table 168. Format of a Pad Digit

Bytes Description

16–22 Seven space characters

23 Character representation of a hexadecimal pad digit or a space
if a pad digit is not needed. Characters must be one of these:
0–9, A–F, or a blank.

Each PIN format supports only a pad digit in a certain range. This table lists the
valid pad digits for each PIN block format.

Table 169. Pad Digits for PIN Block Formats

PIN Block Format Output PIN Profile Input PIN Profile

ECI-2 Pad digit is not used Pad digit is not used

ECI-3 Pad digit is not used Pad digit is not used

ISO-0 F Pad digit is not used

ISO-1 Pad digit is not used Pad digit is not used

ISO-2 Pad digit is not used Pad digit is not used

ISO-3 Pad digit is not used Pad digit is not used

VISA-2 0 through 9 Pad digit is not used

VISA-3 0 through F Pad digit is not used

VISA-4 F Pad digit is not used

3621 0 through F 0 through F

3624 0 through F 0 through F

4704-EPP F Pad digit is not used

The callable service returns an error indicating that the PAD digit is not valid if all of
these conditions are met:

1. The PTR Enhanced Security access control point is enabled in the active
role

2. The output PIN profile specifies 3621 or 3624 as the PIN-block format
3. The output PIN profile specifies a decimal digit (0-9) as the PAD digit

Recommendations for the Pad Digit
IBM recommends that you use a nondecimal pad digit in the range of A through F
when processing IBM 3624 and IBM 3621 PIN blocks. If you use a decimal pad
digit, the creator of the PIN block must ensure that the calculated PIN does not
contain the pad digit, or unpredictable results may occur.

For example, you can exclude a specific decimal digit from being in any calculated
PIN by using the IBM 3624 calculation procedure and by specifying a decimalization
table that does not contain the desired decimal pad digit.

Current Key Serial Number
The current key serial number is the concatenation of the initial key serial number
(a 59-bit value) and the encryption counter (a 21-bit value). The concatenation is an
80-bit (10-byte) value. Table 170 on page 434 shows the format of the current key
serial number.

Chapter 8. Financial Services 433

When UKPT or DUKPT is specified, the PIN profile parameter is extended to a
48-byte field and must contain the current key serial number.

Table 170. Format of the Current Key Serial Number Field

Bytes Description

24–47 Character representation of the current key serial number used
to derive the initial PIN encrypting key. It is left justified and
padded with 4 blanks.

Decimalization Tables
Decimalization tables can be loaded in the coprocessors to restrict attacks using
modified tables. The management of the tables requires a TKE Workstation.

Clear PIN Generate (CSNBPGN and CSNEPGN), Clear PIN Generate Alternate
(CSNBCPA and CSNECPA), Encrypted PIN Generate (CSNBEPG and CSNEEPG),
and Encrypted PIN Verify (CSNBPVR and CSNEPVR) callable services will make
use of the stored decimalization tables.

The ANSI X9.8 PIN – Use stored decimalization tables only access control point
is used to restrict the use of tables. When the access control point is enabled, the
table supplied by the callable service will be compared against the active tables
stored in the coprocessor. If the supplied table doesn’t match any of the active
tables, the request will fail.

A TKE workstation (Version 7.1 or later) is required to manage the PIN
decimalization tables. The tables must be loaded and then activated. Only active
tables are checked when the access control point is enabled.

Note: ICSF routes work to all active coprocessors based on work load. All
coprocessors must have the same set of decimalization tables for the
decimalization table access control point to be effective.

Clear PIN Encrypt (CSNBCPE and CSNECPE)
The Clear PIN Encrypt callable service formats a PIN into one of these PIN block
formats and encrypts the results. You can use this service to create an encrypted
PIN block for transmission. With the RANDOM keyword, you can have the service
generate random PIN numbers.

Note: A clear PIN is a sensitive piece of information. Ensure that your application
program and system design provide adequate protection for any clear PIN
value.
v IBM 3621 format
v IBM 3624 format
v ISO-0 format (same as the ANSI X9.8, VISA-1, and ECI formats)
v ISO-1 format (same as the ECI-4 format)
v ISO-2 format
v ISO-3 format
v IBM 4704 encrypting PINPAD (4704-EPP) format
v VISA 2 format
v VISA 3 format
v VISA 4 format
v ECI2 format
v ECI3 format

434 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

An enhanced PIN security mode, on PCICC, PCIXCC, CEX2C, or CEX3C, is
available for formatting an encrypted PIN block into IBM 3621 format or IBM 3624
format. To do this, you must enable the PTR Enhanced PIN Security access control
point in the default role. When activated, this mode limits checking of the PIN to
decimal digits. No other PIN block consistency checking will occur.

The callable service name for AMODE(64) invocation is CSNECPE.

Format

CALL CSNBCPE(
return_code,
reason_code,
exit_data_length,
exit_data,
PIN_encrypting_key_identifier,
rule_array_count,
rule_array,
clear_PIN,
PIN_profile,
PAN_data,
sequence_number
encrypted_PIN_block)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

PIN_encrypting_key_identifier

Direction: Input/Output Type: String

Clear PIN Encrypt

Chapter 8. Financial Services 435

The 64-byte string containing an internal key token or a key label of an internal
key token. The internal key token contains the key that encrypts the PIN block.
The control vector in the internal key token must specify an OPINENC key type
and have the CPINENC usage bit set to 1.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. Valid
values are 0 and 1.

rule_array

Direction: Input Type: Character string

Keywords that provide control information to the callable service. The keyword
is left-justified in an 8-byte field, and padded on the right with blanks. All
keywords must be in contiguous storage. The rule array keywords are shown as
follows:

Table 171. Process Rules for the Clear PIN Encryption Callable Service

Process Rule Description

ENCRYPT This is the default. Use of this keyword is optional.

RANDOM Causes the service to generate a random PIN value.
The length of the PIN is based on the value in the
clear_PIN variable. Set the value of the clear PIN to
zero and use as many digits as the desired random
PIN; pad the remainder of the clear PIN variable with
space characters.

clear_PIN

Direction: Input Type: String

A 16-character string with the clear PIN. The value in this variable must be
left-justified and padded on the right with space characters.

PIN_profile

Direction: Input Type: String

A 24-byte string containing three 8-byte elements with a PIN block format
keyword, the format control keyword, NONE, and a pad digit as required by
certain formats.See “The PIN Profile” on page 429 for additional information.

PAN_data

Direction: Input Type: String

A 12-byte PAN in character format. The service uses this parameter if the PIN
profile specifies the ISO-0 or VISA-4 keyword for the PIN block format.
Otherwise, ensure that this parameter is a 12-byte variable in application
storage. The information in this variable will be ignored, but the variable must
be specified.

Clear PIN Encrypt

436 z/OS V1R13 ICSF Application Programmer's Guide

|
|

Note: When using the ISO-0 keyword, use the 12 rightmost digits of the PAN
data, excluding the check digit. When using the VISA-4 keyword, use the
12 leftmost digits of the PAN data, excluding the check digit.

sequence_number

Direction: Input Type: Integer

The 4-byte character integer. The service currently ignores the value in this
variable. For future compatibility, the suggested value is 99999.

encrypted_PIN_block

Direction: Output Type: String

The field that receives the 8-byte encrypted PIN block.

Restrictions
The format control specified in the PIN profile must be NONE. If PBVC is specified
as the format control, the service will fail.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

SAF will be invoked to check authorization to use the Clear PIN encrypt service and
the label of the PIN_encrypting_key_identifier.

The Clear PIN Encrypt access control point controls the function of this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 172. Clear PIN encrypt required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

ISO-3 PIN block format is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ISO-3 PIN block format is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

z196 Crypto Express3
Coprocessor

Clear PIN Encrypt

Chapter 8. Financial Services 437

|

Clear PIN Generate (CSNBPGN and CSNEPGN)
Use the Clear PIN generate callable service to generate a clear PIN, a PIN
validation value (PVV), or an offset according to an algorithm. You supply the
algorithm or process rule using the rule_array parameter.
v IBM 3624 (IBM-PIN or IBM-PINO)
v IBM German Bank Pool (GBP-PINO) - not supported on an IBM Eserver

zSeries 990 and subsequent releases.
v VISA PIN validation value (VISA-PVV)
v Interbank PIN (INBK-PIN)

The callable service can execute only when ICSF is in special secure mode. This
mode is described in “Special Secure Mode” on page 10.

For guidance information about VISA, see their appropriate publications. The
Interbank PIN algorithm is available only on S/390 Enterprise Servers, the S/390
Multiprise, and the IBM Eserver Zseries.

The callable service name for AMODE(64) invocation is CSNEPGN.

Format

CALL CSNBPGN(
return_code,
reason_code,
exit_data_length,
exit_data,
PIN_generating_key_identifier,
rule_array_count,
rule_array,
PIN_length,
PIN_check_length,
data_array,
returned_result)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

Clear PIN Generate

438 z/OS V1R13 ICSF Application Programmer's Guide

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

PIN_generating_key_identifier

Direction: Input/Output Type: Character string

The 64-byte key label or internal key token that identifies the PIN generation
(PINGEN) key. If the PIN_generating_key_identifier identifies a key which does
not have the default PIN generation key control vector, the request will be
routed to a PCI Cryptographic Coprocessor.

rule_array_count

Direction: Input Type: Integer

The number of process rules specified in the rule_array parameter. The value
must be 1.

rule_array

Direction: Input Type: Character string

The process rule provides control information to the callable service. Specify
one of the values in Table 173. The keyword is left-justified in an 8-byte field,
and padded on the right with blanks.

Table 173. Process Rules for the Clear PIN Generate Callable Service

Process Rule Description

GBP-PIN The IBM German Bank Pool PIN, which uses the
institution PINGEN key to generate an institution PIN
(IPIN).

GBP-PINO The IBM German Bank Pool PIN offset, which uses the
pool PINGEN key to generate a pool PIN (PPIN). It
uses the institution PIN (IPIN) as input and calculates
the PIN offset, which is the output. GBP-PINO is not
supported on an IBM Eserver zSeries 990 and
subsequent releases.

IBM-PIN The IBM 3624 PIN, which is an institution-assigned PIN.
It does not calculate the PIN offset.

IBM-PINO The IBM 3624 PIN offset, which is a customer-selected
PIN and calculates the PIN offset (the output).

INBK-PIN The Interbank PIN is generated.

VISA-PVV The VISA PIN validation value. Input is the customer
PIN.

PIN_length

Direction: Input Type: Integer

Clear PIN Generate

Chapter 8. Financial Services 439

The length of the PIN used for the IBM algorithms only, IBM-PIN or IBM-PINO.
Otherwise, this parameter is ignored. Specify an integer from 4 through 16. If
the length is greater than 12, the request will be routed to the PCI
Cryptographic Coprocessor.

PIN_check_length

Direction: Input Type: Integer

The length of the PIN offset used for the IBM-PINO process rule only.
Otherwise, this parameter is ignored. Specify an integer from 4 through 16.

Note: The PIN check length must be less than or equal to the integer specified
in the PIN_length parameter.

data_array

Direction: Input Type: String

Three 16-byte data elements required by the corresponding rule_array
parameter. The data array consists of three 16-byte fields or elements whose
specification depends on the process rule. If a process rule only requires one or
two 16-byte fields, then the rest of the data array is ignored by the callable
service. Table 174 describes the array elements.

Table 174. Array Elements for the Clear PIN Generate Callable Service

Array Element Description

Clear_PIN Clear user selected PIN of 4 to 12 digits of 0 through
9. Left-justified and padded with spaces. For
IBM-PINO, this is the clear customer PIN (CSPIN).
For GBP-PINO, this is the institution PIN. For
IBM-PIN and GBP-PIN, this field is ignored.

Decimalization_table Decimalization table for IBM and GBP only. Sixteen
digits of 0 through 9.
Note: If the ANSI X9.8 PIN – Use stored
decimalization tables only access control point is
enabled in the ICSF role, this table must match one
of the active decimalization tables in the
coprocessors.

Trans_sec_parm For VISA only, the leftmost sixteen digits. Eleven
digits of the personal account number (PAN). One
digit key index. Four digits of customer selected PIN.

For Interbank only, sixteen digits. Eleven right-most
digits of the personal account number (PAN). A
constant of 6. One digit key selector index. Three
digits of PIN validation data.

Validation_data Validation data for IBM and IBM German Bank Pool
padded to 16 bytes. One to sixteen characters of
hexadecimal account data left-justified and padded
on the right with blanks.

Table 175 on page 441 lists the data array elements required by the process
rule (rule_array parameter). The numbers refer to the process rule's position
within the array.

Clear PIN Generate

440 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|
|

Table 175. Array Elements Required by the Process Rule

Process Rule IBM-PIN IBM-PINO GBP-PIN GBP-PINO VISA-PVV INBK-PIN

Decimalization_table 1 1 1 1

Validation_data 2 2 2 2

Clear_PIN 3 3

Trans_sec_parm 1 1

Note: Generate offset for GBP algorithm is equivalent to IBM offset generation
with PIN_check_length of 4 and PIN_length of 6.

returned_result

Direction: Output Type: Character string

The 16-byte generated output, left-justified and padded on the right with blanks.

Restrictions
PIN lengths of 13-16 require the optional PCI Cryptographic Coprocessor.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

If you are using the IBM 3624 PIN and IBM German Bank Pool PIN algorithms, you
can supply an unencrypted customer selected PIN to generate a PIN offset.

This table shows the access control points in the ICSF role that control the function
of this service.

Table 176. Required access control points for Clear PIN Generate

Rule array keywords Access control point

IBM-PIN
IBM-PINO

Clear PIN Generate - 3624

GBP-PIN Clear PIN Generate - GBP

VISA-PVV Clear PIN Generate - VISA PVV

INBK-PIN Clear PIN Generate - Interbank

If the ANSI X9.8 PIN – Use stored decimalization tables only access control
point is enabled in the ICSF role, any decimalization table specified must match one
of the active decimalization tables in the coprocessors.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Clear PIN Generate

Chapter 8. Financial Services 441

|
|

||

||

|
|
|

||

||

||
|

|
|
|

Table 177. Clear PIN generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

ICSF routes this service to a PCI
Cryptographic Coprocessor if the control
vector of the PIN generating key cannot be
processed on the Cryptographic
Coprocessor Feature.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Rule_array keyword GBP-PINO is not
supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Rule_array keyword GBP-PINO is not
supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Rule_array keyword GBP-PINO is not
supported.

z196 Crypto Express3
Coprocessor

Rule_array keyword GBP-PINO is not
supported.

Related Information
PIN algorithms are shown in PIN Formats and Algorithms.

Clear PIN Generate Alternate (CSNBCPA and CSNECPA)
Use the clear PIN generate alternate service to generate a clear VISA PVV (PIN
validation value) from an input encrypted PIN block, or to produce a 3624 offset
from a customer-selected encrypted PIN. The PIN block can be encrypted under
either an input PIN-encrypting key (IPINENC) or an output PIN-encrypting key
(OPINENC).

An enhanced PIN security mode, on PCICC, PCIXCC, CEX2C, or CEX3C, is
available for extracting PINs from encrypted PIN blocks. This mode only applies
when specifying a PIN-extraction method for an IBM 3621 or an IBM 3624
PIN-block. To do this, you must enable the PTR Enhanced PIN Security access
control point in the default role. When activated, this mode limits checking of the
PIN to decimal digits and a PIN length minimum of 4 is enforced. No other
PIN-block consistency checking will occur.

An enhanced PIN security mode on a CEX3C is available to implement restrictions
required by the ANSI X9.8 PIN standard. To enforce these restrictions, you must
enable the following control points in the default role.

v ANSI X9.8 PIN - Enforce PIN block restrictions

v ANSI X9.8 PIN - Allow modification of PAN

v ANSI X9.8 PIN - Allow only ANSI PIN blocks

The callable service name for AMODE(64) invocation is CSNECPA.

Clear PIN Generate

442 z/OS V1R13 ICSF Application Programmer's Guide

Format

CALL CSNBCPA(
return_code,
reason_code,
exit_data_length,
exit_data,
PIN_encryption_key_identifier,
PIN_generation_key_identifier,
PIN_profile,
PAN_data,
encrypted_PIN_block,
rule_array_count,
rule_array,
PIN_check_length,
data_array,
returned_PVV)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

PIN_encryption_key_identifier

Direction: Input/Output Type: String

A 64-byte string consisting of an internal token that contains an IPINENC or
OPINENC key or the label of an IPINENC or OPINENC key that is used to
encrypt the PIN block. If you specify a label, it must resolve uniquely to either
an IPINENC or OPINENC key. If the PIN_encryption_key_identifier identifies a

Clear PIN Generate Alternate

Chapter 8. Financial Services 443

key which does not have the default PIN encrypting control vector (either
IPINENC or OPINENC), the request will be routed to the PCI Cryptographic
Coprocessor for processing.

PIN_generation_key_identifier

Direction: Input/Output Type: String

A 64-byte string that consists of an internal token that contains a PIN generation
(PINGEN) key or the label of a PINGEN key. If the
PIN_generation_key_identifier identifies a key which does not have the default
PIN generating control vector, the request will be routed to the PCI
Cryptographic Coprocessor for processing.

PIN_profile

Direction: Input Type: Character string

The three 8-byte character elements that contain information necessary to
extract a PIN from a formatted PIN block. The pad digit is needed to extract the
PIN from a 3624 or 3621 PIN block in the clear PIN generate alternate service.
See “The PIN Profile” on page 429 for additional information.

PAN_data

Direction: Input Type: String

A 12-byte field that contains 12 characters of PAN data. The personal account
number recovers the PIN from the PIN block if the PIN profile specifies ISO-0 or
VISA-4 block formats. Otherwise it is ignored, but you must specify this
parameter.

For ISO-0, use the rightmost 12 digits of the PAN, excluding the check digit. For
VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

encrypted_PIN_block

Direction: Input Type: String

An 8-byte field that contains the encrypted PIN that is input to the VISA PVV
generation algorithm. The service uses the IPINENC or OPINENC key that is
specified in the PIN_encryption_key_identifier parameter to encrypt the block.

rule_array_count

Direction: Input Type: Integer

The number of process rules specified in the rule_array parameter. The value
may be 1, 2, or 3.

rule_array

Direction: Input Type: Character string

The process rule for the PIN generation algorithm. Specify IBM-PINO or
“VISA-PVV” (the VISA PIN verification value) in an 8-byte field, left-justified, and
padded with blanks. The rule_array points to an array of one or two 8-byte
elements as follows:

Clear PIN Generate Alternate

444 z/OS V1R13 ICSF Application Programmer's Guide

|
|

Table 178. Rule Array Elements for the Clear PIN Generate Alternate Service

Rule Array Element Function of Rule Array keyword

1 PIN calculation method

2 PIN extraction method

The first element in the rule array must specify one of the keywords that
indicate the PIN calculation method as shown:

Table 179. Rule Array Keywords (First Element) for the Clear PIN Generate Alternate
Service

PIN Calculation Method
Keyword Meaning

IBM-PINO This keyword specifies use of the IBM 3624 PIN Offset
calculation method.

VISA-PVV This keyword specifies use of the VISA PVV calculation
method.

If the second element in the rule array is provided, one of the PIN extraction
method keywords shown in Table 166 on page 430 may be specified for the
given PIN block format. See “PIN Block Format and PIN Extraction Method
Keywords” on page 429 for additional information. If the default extraction
method for a PIN block format is desired, you may code the rule array count
value as 1.

The PIN extraction methods operate as follows:

PINBLOCK
Specifies that the service use one of these:

v the PIN length, if the PIN block contains a PIN length field

v the PIN delimiter character, if the PIN block contains a PIN delimiter
character.

PADDIGIT
Specifies that the service use the pad value in the PIN profile to identify
the end of the PIN.

HEXDIGIT
Specifies that the service use the first occurrence of a digit in the range
from X'A' to X'F' as the pad value to determine the PIN length.

PINLENxx
Specifies that the service use the length specified in the keyword,
where xx can range from 4 to 16 digits, to identify the PIN.

PADEXIST
Specifies that the service use the character in the 16th position of the
PIN block as the value of the pad value.

PIN_check_length

Direction: Input Type: Integer

The length of the PIN offset used for the IBM-PINO process rule only.
Otherwise, this parameter is ignored. Specify an integer from 4 through 16.

Clear PIN Generate Alternate

Chapter 8. Financial Services 445

Note: The PIN check length must be less than or equal to the integer specified
in the PIN_length parameter. If the PIN_check_length variable is greater
than the PIN length, the PIN_check_length variable will be set to the PIN
length.

data_array

Direction: Input Type: String

Three 16-byte elements. Table 180 describes the format when IBM-PINO is
specified. Table 181 describes the format when VISA-PVV is specified.

Table 180. Data Array Elements for the Clear PIN Generate Alternate Service
(IBM-PINO)

Array Element Description

decimalization_table This element contains the decimalization table of 16
characters (0 to 9) that are used to convert hexadecimal
digits (X'0' to X'F') of the enciphered validation data to the
decimal digits X'0' to X'9').
Note: If the ANSI X9.8 PIN – Use stored decimalization
tables only access control point is enabled in the ICSF
role, this table must match one of the active decimalization
tables in the coprocessors.

validation_data This element contains one to 16 characters of account data.
The data must be left justified and padded on the right with
space characters.

Reserved-3 This field is ignored, but you must specify it.

When using the VISA-PVV keyword, identify these elements in the data array.

Table 181. Data Array Elements for the Clear PIN Generate Alternate Service
(VISA-PVV)

Array Element Description

Trans_sec_parm For VISA-PVV only, the leftmost twelve digits. Eleven digits
of the personal account number (PAN). One digit key index.
The rest of the field is ignored.

Reserved-2 This field is ignored, but you must specify it.

Reserved-3 This field is ignored, but you must specify it.

returned_PVV

Direction: Output Type: Character

A 16-byte area that contains the 4-byte PVV left-justified and padded with
blanks.

Restrictions
The IBM-PINO PIN calculation method requires the optional PCICC, PCIXCC,
CEX2C, or CEX3C.

On CCF systems, to use an IPINENC key, you must install the NOCV-enablement
keys in the CKDS.

Clear PIN Generate Alternate

446 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

Use of the Visa-PVV PIN-calculation method will always output four digits rather
than padding the output with binary zeros to the length of the PIN.

On CCF systems, to use an IPINENC key, you must install the NOCV-enablement
keys in the CKDS.

This table lists the PIN block variant constants (PBVC) to use.

Note: PBVC is supported for compatibility with prior releases of OS/390 ICSF and
existing ICSF applications. If PBVC is specified in the format control
parameter of the PIN profile, the Clear PIN Generate Alternate service will
not be routed to a PCI Cryptographic Coprocessor for processing. This
means that only control vectors and extraction methods valid for the
Cryptographic Coprocessor Feature may be used if PBVC formatting is
desired. It is recommended that a format control of NONE be used for
maximum flexibility.

Restriction: PBVC is supported only on an IBM zSeries 900.

Table 182. PIN Block Variant Constants (PBVCs)

PIN Format Name PIN Block Variant Constant (PBVC)

ECI-2 X'00000000000093000000000000009300'

ECI-3 X'00000000000095000000000000009500'

ISO-0 X'00000000000088000000000000008800'

ISO-1 X'0000000000008B000000000000008B00'

VISA-2 X'0000000000008D000000000000008D00'

VISA-3 X'0000000000008E000000000000008E00'

VISA-4 X'00000000000090000000000000009000'

3621 X'00000000000084000000000000008400'

3624 X'00000000000082000000000000008200'

4704-EPP X'00000000000087000000000000008700'

This table shows the access control points in the ICSF role that control the function
of this service.

Table 183. Required access control points for Clear PIN Generate Alternate

Rule array keywords Access control point

IBM-PINO Clear PIN Generate Alternate - 3624 Offset

VISA-PVV Clear PIN Generate Alternate - VISA PVV

If the ANSI X9.8 PIN – Use stored decimalization tables only access control
point is enabled in the ICSF role, any decimalization table specified must match one
of the active decimalization tables in the coprocessors.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Clear PIN Generate Alternate

Chapter 8. Financial Services 447

|
|

||

||

||

||
|

|
|
|

Table 184. Clear PIN generate alternate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

If PBVC is specified for format control, the
request will be routed to a Cryptographic
Coprocessor Feature.

ICSF routes the request to a PCI
Cryptographic Coprocessor if:

v The PIN_encryption_key_identifier
identifies a key which does not have the
default PIN encrypting control vector
(either IPINENC or OPINENC).

v IBM-PINO PIN calculation method is
specified.

v Anything is specified other than the
default in the PIN extraction method
keyword for the given PIN block format in
rule_array.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Format control in the PIN profile parameter
must specify NONE.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Format control in the PIN profile parameter
must specify NONE.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Format control in the PIN profile parameter
must specify NONE.

z196 Crypto Express3
Coprocessor

Format control in the PIN profile parameter
must specify NONE.

CVV Key Combine (CSNBCKC and CSNECKC)
Use this callable service to combine 2 single length CCA internal key tokens into 1
double-length CCA key token containing a CVVKEY-A key type for use with the
VISA CVV Service Generate or VISA CVV Service Verify callable services. This
combined double-length key satisfies current VISA requirements and eases
translation between TR-31 and CCA formats for CVV keys.

The callable service name for AMODE(64) is CSNECKC.

Clear PIN Generate Alternate

448 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|
|
|
|

|

Format

CALL CSNBCKC(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_a_identifier_length,
key_a_identifier,
key_b_identifier_length,
key_b_identifier,
output_key_identifier_length,
output_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
rule_array_count parameter must be 0, 1, or 2.

rule_array

Direction: Input Type: String

CVV Key Combine

Chapter 8. Financial Services 449

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||
|

|
|

|

|||
|

|
|
|
|

|

|||
|

|
|
|

|

|||
|

|

|

|||
|

|
|

|

|||
|

The rule_array contains keywords that provide control information to the callable
service. The keywords are 8 bytes in length and must be left-aligned and
padded on the right with space characters. The rule_array keywords for this
callable service are shown in the following table.

Table 185. Keywords for CVV Key Combine Rule Array Control Information

Keyword Meaning

Key Wrapping Method (One Optional)

USECONFG Specifies that the configuration setting for the default wrapping
method is to be used to wrap the key. This is the default.

WRAP-ENH Specifies that the new enhanced wrapping method is to be
used to wrap the key.

WRAP-ECB Specifies that the original wrapping method is to be used.

Translation Control (One Optional)

ENH-ONLY Specify this keyword to indicate that the key once wrapped
with the enhanced method cannot be wrapped with the
original method. This restricts translation to the original
method. If the keyword is not specified translation to the
original method will be allowed. This turns on bit 56 in the
control vector. This keyword is not valid if processing a zero
CV data key.
Note: If the default wrapping method is ECB mode, but the
enhanced mode and the ENH-ONLY restriction are desired for
a particular key token, combine the ENH-ONLY keyword with
the WRAP-ENH keyword. If this is not done, then an error will
be returned because ENH-ONLY will conflict with the default
wrapping mode if the default wrapping method is ECB mode.

key_a_identifier_length

Direction: Input Type: Integer

This parameter specifies the length of the key_a_identifier parameter, in bytes.
The value must be 64.

key_a_identifier

Direction: Input Type: String

This parameter contains a 64-byte internal key token or a label of a
single-length zero CV DATA key, a DATA key with the MAC gen and/or verify
bits on, or a CVVKEY-A key. The internal key token contains the key-A key that
encrypts information in the CVV process.

key_b_identifier_length

Direction: Input Type: Integer

This parameter specifies the length of the key_b_identifier parameter, in bytes.
The value in this parameter must be 64.

key_b_identifier

Direction: Input Type: String

This parameter contains a 64-byte internal key token or a label of a
single-length zero CV DATA key, a DATA key with the MAC gen and/or verify
bits on, or a CVVKEY-B key. The internal key token contains the key-B key that
decrypts information in the CVV process.

CVV Key Combine

450 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|

||

||

|

||
|

||
|

||

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|||
|
|
|

|

|||
|
|
|
|
|

|

|||
|
|
|

|

|||
|
|
|
|
|

output_key_identifier_length

Direction: Input Type: Integer

This parameter specifies the length of the output_key_identifier parameter, in
bytes. The value in this parameter must be 64.

output_key_identifier

Direction: Output Type: String

This parameter contains the output key token. It is either a double-length DATA
key or a MAC key with CV bits 0-3 set to 0010 to indicate a CVVKEY-A key.

Restrictions
None.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS.

The access control points in the ICSF role that control the function of this service
are:

v CVV Key Combine

v CVV Key Combine – Allow wrapping override keywords

v CVV Key Combine – Permit mixed key types

If key-A and key-B have different CV values for either the Export bit (CV bit 17) or
the TR-31 Export bit (CV bit 57), then the keys cannot be combined and an error is
returned (8 / 39).

Both key-A and key-B must be usable in the same role for either the CVV Generate
or CVV Verify service, otherwise an error occurs.

Both key-A and key-B must be usable for the same service (CVV Generate or CVV
Verify). It is not acceptable to combine a Generate and a Verify key.

If key-A or key-B is a Generate-Only key and the pair pass all criteria to be
combined as a single output key, the resulting CV in the output token will indicate a
double-length Generate-Only key capability.

The key types of the key_a_identifier and key_b_identifier must be the same unless
the CVV Key Combine – Permit mixed key types access control point is enable.
This means both key identifiers must be DATA keys or both must be MAC keys
when the access control point is disabled. When enabled, DATA keys can be used
with MAC keys.

This following table shows the action taken by the service for different combinations
of input key types.

CVV Key Combine

Chapter 8. Financial Services 451

|

|||
|
|
|

|

|||
|
|
|

|

|

|

|
|

|
|

|

|

|

|
|
|

|
|

|
|

|
|
|

|
|
|
|
|

|
|

Table 186. Key type combinations for the CVV key combine callable service

Action taken based on
key types of the 2 input

keys

8-byte input key provided as right-half (key-B) of 16 B
CVV key

CVVKEY-A CVVKEY-B DATA key
ANY-MAC
key

8-byte
input key
provided
as left-half
(key-A) of
16 B CVV
key

CVVKEY-A Always reject Always allow Conditional
allow*

Conditional
allow*

CVVKEY-B Always reject Always reject Always
reject

Always
reject

DATA key Always reject Conditional
allow*

Always allow Conditional
allow*

ANY-MAC key Always reject Conditional
allow*

Conditional
allow*

Always
allow

* – Requires Access Control Point “CVV Key Combine – Permit mixed key types” enabled

There are restrictions on the available wrapping methods for the output key derived
from the wrapping methods employed and CV restrictions of the input keys. These
are detailed in the following table.

Table 187. Wrapping combinations for the CVV Combine Callable Service

key-A OR key-B
uses
WRAP-ENH
wrapping
method

key-A OR key-B
has
enhanced-only
bit (CV bit 56)
set to 1 (implies
WRAP-ENH for
that token)

WRAP-ENH
keyword
passed or
WRAP-ENH is
default
wrapping
method

ENH-ONLY
keyword
passed

Outcome (form
of output key or
error)

no no no to both no output is ECB
wrapped

yes no no to both no error 8 / 2161

no no yes to either no output is ENH
wrapped, bit 56
not set

yes no yes to either no output is ENH
wrapped, bit 56
not set

no no yes to either yes output is ENH
wrapped, bit 56
is set

yes no yes to either yes output is ENH
wrapped, bit 56
is set

yes yes yes to either no output is ENH
wrapped, bit 56
is set

yes yes yes to either yes output is ENH
wrapped, bit 56
is set

no no no to both yes error 8 / 2111

yes no no to both yes error 8 / 2111

yes yes no to both no error 8 / 2111

CVV Key Combine

452 z/OS V1R13 ICSF Application Programmer's Guide

||

|
|
|

|
|

|||
|
|

|
|
|
|
|
|
|

||||
|
|
|

||||
|
|
|

|||
|
||
|

|||
|
|
|
|
|

|
|

|
|
|

||

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|||||
|

|||||

|||||
|
|

|||||
|
|

|||||
|
|

|||||
|
|

|||||
|
|

|||||
|
|

|||||

|||||

|||||

Table 187. Wrapping combinations for the CVV Combine Callable Service (continued)

key-A OR key-B
uses
WRAP-ENH
wrapping
method

key-A OR key-B
has
enhanced-only
bit (CV bit 56)
set to 1 (implies
WRAP-ENH for
that token)

WRAP-ENH
keyword
passed or
WRAP-ENH is
default
wrapping
method

ENH-ONLY
keyword
passed

Outcome (form
of output key or
error)

yes yes no to both yes error 8 / 2111

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 188. TR-31 export required hardware

Server

Required
cryptographic
hardware Restrictions

IBM Eserver zSeries
900

This service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This service is not supported.

IBM System z9 EC

IBM System z9 BC

This service is not supported.

IBM System z10 EC

IBM System z10 BC

This service is not supported.

z196 Crypto Express3
Coprocessor

This service requires the Sep. 2011 or later
LIC.

Encrypted PIN Generate (CSNBEPG and CSNEEPG)
The Encrypted PIN Generate callable service formats a PIN and encrypts the PIN
block. To generate the PIN, the service uses one of these PIN calculation methods:
v IBM 3624 PIN
v IBM German Bank Pool Institution PIN
v Interbank PIN

To format the PIN, the service uses one of these PIN block formats:
v IBM 3621 format
v IBM 3624 format
v ISO-0 format (same as the ANSI X9.8, VISA-1, and ECI-1 formats)
v ISO-1 format (same as the ECI-4 format)
v ISO-2 format
v ISO-3 format
v IBM 4704 encrypting PINPAD (4704-EPP) format
v VISA 2 format
v VISA 3 format
v VISA 4 format
v ECI-2 format
v ECI-3 format

CVV Key Combine

Chapter 8. Financial Services 453

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|||||
|

|
|

||

|

|
|
||

|
|
||

|
|

|
|

||

|

|

||

|

|

||

||
|
|
|
|

|

An enhanced PIN security mode, on PCICC, PCIXCC, CEX2C, and CEX3C, is
available for formatting an encrypted PIN block into IBM 3621 format or IBM 3624
format. To do this, you must enable the PTR Enhanced PIN Security access control
point in the default role. When activated, this mode limits checking of the PIN to
decimal digits. No other PIN block consistency checking will occur.

The callable service name for AMODE(64) invocation is CSNEEPG.

Format

CALL CSNBEPG(
return_code,
reason_code,
exit_data_length,
exit_data,
PIN_generating_key_identifier,
outbound_PIN_encrypting_key_identifier
rule_array_count,
rule_array,
PIN_length,
data_array,
PIN_profile,
PAN_data,
sequence_number
encrypted_PIN_block)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFFFF' (2 gigabytes). The data is defined in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

PIN_generating_key_identifier

Encrypted PIN Generate

454 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input/Output Type: String

The 64-byte internal key token or a key label of an internal key token in the
CKDS. The internal key token contains the PIN-generating key. The control
vector must specify the PINGEN key type and have the EPINGEN usage bit set
to 1.

outbound_PIN_encrypting_key_identifier

Direction: Input Type: String

A 64-byte internal key token or a key label of an internal key token in the
CKDS. The internal key token contains the key to be used to encrypt the
formatted PIN and must contain a control vector that specifies the OPINENC
key type and has the EPINGEN usage bit set to 1.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 1.

rule_array

Direction: Input Type: Character string

Keywords that provide control information to the callable service. Each keyword
is left-justified in an 8-byte field, and padded on the right with blanks. All
keywords must be in contiguous storage. The rule array keywords are shown as
follows:

Table 189. Process Rules for the Encrypted PIN Generate Callable Service

Process Rule Description

GBP-PIN This keyword specifies the IBM German Bank Pool
Institution PIN calculation method is to be used to
generate a PIN.

IBM-PIN This keyword specifies the IBM 3624 PIN calculation
method is to be used to generate a PIN.

INBK-PIN This keyword specifies the Interbank PIN calculation
method is to be used to generate a PIN.

PIN_length

Direction: Input Type: Integer

A integer defining the PIN length for those PIN calculation methods with
variable length PINs; otherwise, the variable should be set to zero.

data_array

Direction: Input Type: String

Three 16-byte character strings, which are equivalent to a single 48-byte string.
The values in the data array depend on the keyword for the PIN calculation
method. Each element is not always used, but you must always declare a

Encrypted PIN Generate

Chapter 8. Financial Services 455

complete data array. The numeric characters in each 16-byte string must be
from 1 to 16 bytes in length, uppercase, left-justified, and padded on the right
with space characters. Table 190 describes the array elements.

Table 190. Array Elements for the Encrypted PIN Generate Callable Service

Array Element Description

Decimalization_table Decimalization table for IBM and GBP only. Sixteen
characters that are used to map the hexadecimal
digits (X'0' to X'F') of the encrypted validation data to
decimal digits (X'0' to X'9').
Note: If the ANSI X9.8 PIN – Use stored
decimalization tables only access control point is
enabled in the ICSF role, this table must match one
of the active decimalization tables in the
coprocessors.

Trans_sec_parm For Interbank only, sixteen digits. Eleven right-most
digits of the personal account number (PAN). A
constant of 6. One digit key selector index. Three
digits of PIN validation data.

Validation_data Validation data for IBM and IBM German Bank Pool
padded to 16 bytes. One to sixteen characters of
hexadecimal account data left-justified and padded
on the right with blanks.

Table 191 lists the data array elements required by the process rule (rule_array
parameter). The numbers refer to the process rule's position within the array.

Table 191. Array Elements Required by the Process Rule

Process Rule IBM-PIN GBP-PIN INBK-PIN

Decimalization_table 1 1

Validation_data 2 2

Trans_sec_parm 1

PIN_profile

Direction: Input Type: String array

A 24-byte string containing the PIN profile including the PIN block format. See
“The PIN Profile” on page 429 for additional information.

PAN_data

Direction: Input Type: String

A 12-byte string that contains 12 digits of Personal Account Number (PAN) data.
The service uses this parameter if the PIN profile specifies the ISO-0 or VISA-4
keyword for the PIN block format. Otherwise, ensure that this parameter is a
4-byte variable in application storage. The information in this variable will be
ignored, but the variable must be specified.

Note: When using the ISO-0 keyword, use the 12 rightmost digit of the PAN
data, excluding the check digit. When using the VISA-4 keyword, use the
12 leftmost digits of the PAN data, excluding the check digit.

sequence_number

Encrypted PIN Generate

456 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|
|

Direction: Input Type: Integer

The 4-byte string that contains the sequence number used by certain PIN block
formats. The service uses this parameter if the PIN profile specifies the 3621 or
4704-EPP keyword for the PIN block format. Otherwise, ensure that this
parameter is a 4-byte variable in application data storage. The information in
the variable will be ignored, but the variable must be declared. To enter a
sequence number, do this:

v Enter 99999 to use a random sequence number that the service generates.

v For the 3621 PIN block format, enter a value in the range from 0 to 65535.

v For the 4704-EPP PIN block format, enter a value in the range from 0 to 255.

encrypted_PIN_block

Direction: Output Type: String

The field where the service returns the 8-byte encrypted PIN.

Restrictions
The format control specified in the PIN profile must be NONE. If PBVC is specified
as the format control, the service will fail.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

SAF will be invoked to check authorization to use the Encrypted PIN Generate
service and any key labels specified as input.

This table shows the access control points in the ICSF role that control the function
of this service.

Table 192. Required access control points for Encrypted PIN Generate

Rule array keywords Access control point

IBM-PIN Encrypted PIN Generate - 3624

GBP-PIN Encrypted PIN Generate - GBP

INBK-PIN Encrypted PIN Generate - Interbank

If the ANSI X9.8 PIN – Use stored decimalization tables only access control
point is enabled in the ICSF role, any decimalization table specified must match one
of the active decimalization tables in the coprocessors.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 193. Encrypted PIN generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

ISO-3 PIN block format is not supported.

Encrypted PIN Generate

Chapter 8. Financial Services 457

|
|

||

||

||

||

||
|

|
|
|

Table 193. Encrypted PIN generate required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ISO-3 PIN block format is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

z196 Crypto Express3
Coprocessor

Encrypted PIN Translate (CSNBPTR and CSNEPTR)
Use the encrypted PIN translate callable service to reencipher a PIN block from one
PIN-encrypting key to another and, optionally, to change the PIN block format, such
as the pad digit or sequence number.

The unique-key-per-transaction key derivation for single and double-length keys is
available for the encrypted PIN translate service. This support is available for the
input_PIN_encrypting_key_identifier and the output_PIN_encrypting_key_identifier
parameters for both REFORMAT and TRANSLAT process rules. The rule_array
keyword determines which PIN key(s) are derived key(s).

The encrypted PIN translate service can be used for unique-key-per-transaction key
derivation.

An enhanced PIN security mode, on PCICC, PCIXCC, CEX2C, and CEX3C, is
available for formatting an encrypted PIN block into IBM 3621 format or IBM 3624
format. To do this, you must enable the PTR Enhanced PIN Security access control
point in the default role. When activated, this mode limits checking of the PIN to
decimal digits. No other PIN block consistency checking will occur.

The enhanced PIN security mode also extracts PINs from encrypted PIN blocks.
This mode only applies when specifying a PIN-extraction method for an IBM 3621
or an IBM 3624 PIN-block. You must enable the Enhanced PIN Security access
control point in the default role. When activated, this mode limits checking of the
PIN to decimal digits and a PIN length minimum of 4 is enforced. As with formatting
an encrypted PIN block, no other PIN-block consistency checking will occur.

An enhanced PIN security mode on a CEX3C is available to implement restrictions
required by the ANSI X9.8 PIN standard. To enforce these restrictions, you must
enable the following control points in the default role.

v ANSI X9.8 PIN - Enforce PIN block restrictions

v ANSI X9.8 PIN - Allow modification of PAN

v ANSI X9.8 PIN - Allow only ANSI PIN blocks

Encrypted PIN Generate

458 z/OS V1R13 ICSF Application Programmer's Guide

The callable service name for AMODE(64) invocation is CSNEPTR.

Format

CALL CSNBPTR(
return_code,
reason_code,
exit_data_length,
exit_data,
input_PIN_encrypting_key_identifier,
output_PIN_encrypting_key_identifier,
input_PIN_profile,
PAN_data_in,
PIN_block_in,
rule_array_count,
rule_array,
output_PIN_profile,
PAN_data_out,
sequence_number,
PIN_block_out)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

input_PIN_encrypting_key_identifier

Direction: Input/Output Type: String

The input PIN-encrypting key (IPINENC) for the PIN_block_in parameter
specified as a 64-byte internal key token or a key label. If keyword UKPTIPIN,
UKPTBOTH, DUKPT-IP or DUKPT-BH is specified in the rule_array, then the

Encrypted PIN Translate

Chapter 8. Financial Services 459

input_PIN_encrypting_key_identifier must specify a key token or key label of a
KEYGENKY with the UKPT usage bit enabled.

output_PIN_encrypting_key_identifier

Direction: Input/Output Type: String

The output PIN-encrypting key (OPINENC) for the PIN_block_out parameter
specified as a 64-byte internal key token or a key label. If keyword UKPTOPIN,
UKPTBOTH, DUKPT-OP or DUKPT-BH is specified in the rule_array, then the
output_PIN_encrypting_key_identifier must specify a key token or key label of a
KEYGENKY with the UKPT usage bit enabled.

input_PIN_profile

Direction: Input Type: Character string

The three 8-byte character elements that contain information necessary to
either create a formatted PIN block or extract a PIN from a formatted PIN block.
A particular PIN profile can be either an input PIN profile or an output PIN
profile depending on whether the PIN block is being enciphered or deciphered
by the callable service. See “The PIN Profile” on page 429 for additional
information.

If you choose the TRANSLAT processing rule (this is not enforced on the
PCIXCC, CEX2C, or CEX3C) in the rule_array parameter, the input_PIN_profile
and the output_PIN_profile must specify the same PIN block format. If you
choose the REFORMAT processing rule in the rule_array parameter, the input
PIN profile and output PIN profile can have different PIN block formats. If you
specify UKPTIPIN/DUKPT-IP or UKPTBOTH/DUKPT-BH in the rule_array
parameter, then the input_PIN_profile is extended to a 48-byte field and must
contain the current key serial number. See “The PIN Profile” on page 429 for
additional information.

The pad digit is needed to extract the PIN from a 3624 or 3621 PIN block in the
Encrypted PIN translate callable service with a process rule (rule_array
parameter) of REFORMAT. If the process rule is TRANSLAT, the pad digit is
ignored.

PAN_data_in

Direction: Input Type: Character string

The personal account number (PAN) if the process rule (rule_array parameter)
is REFORMAT and the input PIN format is ISO-0 or VISA-4 only. Otherwise,
this parameter is ignored. Specify 12 digits of account data in character format.

For ISO-0, use the rightmost 12 digits of the PAN, excluding the check digit.

For VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

PIN_block_in

Direction: Input Type: String

The 8-byte enciphered PIN block that contains the PIN to be translated.

rule_array_count

Direction: Input Type: Integer

Encrypted PIN Translate

460 z/OS V1R13 ICSF Application Programmer's Guide

The number of process rules specified in the rule_array parameter. The value
may be 1, 2 or 3.

rule_array

Direction: Input Type: Character string

The process rule for the callable service.

Table 194. Keywords for Encrypted PIN Translate

Keyword Meaning

Processing Rules (required)

REFORMAT Changes the PIN format, the contents of the PIN block,
and the PIN-encrypting key.

TRANSLAT Changes the PIN-encrypting key only. It does not change
the PIN format and the contents of the PIN block.

PIN Block Format and PIN
Extraction Method
(optional)

See “PIN Block Format and PIN Extraction Method
Keywords” on page 429 for additional information and a
list of PIN block formats and PIN extraction method
keywords.
Note: If a PIN extraction method is not specified, the first
one listed in Table 166 on page 430 for the PIN block
format will be the default.

DUKPT Keywords - Single length key derivation (optional)

UKPTIPIN The input_PIN_encrypting_key_identifier is derived as a
single length key. The
input_PIN_encrypting_key_identifier must be a
KEYGENKY key with the UKPT usage bit enabled. The
input_PIN_profile must be 48 bytes and contain the key
serial number.

UKPTOPIN The output_PIN_encrypting_key_identifier is derived as a
single length key. The
output_PIN_encrypting_key_identifier must be a
KEYGENKY key with the UKPT usage bit enabled. The
output_PIN_profile must be 48 bytes and contain the key
serial number.

UKPTBOTH Both the input_PIN_encrypting_key_identifier and the
output_PIN_encrypting_key_identifier are derived as a
single length key. Both the
input_PIN_encrypting_key_identifier and the
output_PIN_encrypting_key_identifier must be
KEYGENKY keys with the UKPT usage bit enabled. Both
the input_PIN_profile and the output_PIN_profile must be
48 bytes and contain the respective key serial number.

DUKPT Keywords - double length key derivation (optional) - requires May 2004 or
later version of Licensed Internal Code (LIC)

DUKPT-IP The input_PIN_encrypting_key_identifier is derived as a
double length key. The
input_PIN_encrypting_key_identifier must be a
KEYGENKY key with the UKPT usage bit enabled. The
input_PIN_profile must be 48 bytes and contain the key
serial number.

Encrypted PIN Translate

Chapter 8. Financial Services 461

Table 194. Keywords for Encrypted PIN Translate (continued)

Keyword Meaning

DUKPT-OP The output_PIN_encrypting_key_identifier is derived as a
double length key. The
output_PIN_encrypting_key_identifier must be a
KEYGENKY key with the UKPT usage bit enabled. The
output_PIN_profile must be 48 bytes and contain the key
serial number.

DUKPT-BH Both the input_PIN_encrypting_key_identifier and the
output_PIN_encrypting_key_identifier are derived as a
double length key. Both the
input_PIN_encrypting_key_identifier and the
output_PIN_encrypting_key_identifier must be
KEYGENKY keys with the UKPT usage bit enabled. Both
the input_PIN_profile and the output_PIN_profile must be
48 bytes and contain the respective key serial number.

output_PIN_profile

Direction: Input Type: Character string

The three 8-byte character elements that contain information necessary to
either create a formatted PIN block or extract a PIN from a formatted PIN block.
A particular PIN profile can be either an input PIN profile or an output PIN
profile, depending on whether the PIN block is being enciphered or deciphered
by the callable service.

v If you choose the TRANSLAT processing rule in the rule_array parameter,
the input_PIN_profile and the output_PIN_profile must specify the same PIN
block format, except on a PCIXCC, CEX2C, or CEX3C.

v If you choose the REFORMAT processing rule in the rule_array parameter,
the input PIN profile and output PIN profile can have different PIN block
formats.

v If you specify UKPTOPIN or UKPTBOTH in the rule_array parameter, then
the output_PIN_profile is extended to a 48-byte field and must contain the
current key serial number. See “The PIN Profile” on page 429 for additional
information.

v If you specify DUKPT-OP or DUKPT-BH in the rule_array parameter, then the
output_PIN_profile is extended to a 48-byte field and must contain the
current key serial number. See “The PIN Profile” on page 429 for additional
information.

PAN_data_out

Direction: Input Type: Character string

The personal account number (PAN) if the process rule (rule_array parameter)
is REFORMAT and the output PIN format is ISO-0 or VISA-4 only. Otherwise,
this parameter is ignored. Specify 12 digits of account data in character format.

For ISO-0, use the rightmost 12 digits of the PAN, excluding the check digit.

For VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

sequence_number

Direction: Input Type: Integer

Encrypted PIN Translate

462 z/OS V1R13 ICSF Application Programmer's Guide

The sequence number if the process rule (rule_array parameter) is REFORMAT
and the output PIN block format is 3621 or 4704-EPP only. Specify the integer
value 99999. Otherwise, this parameter is ignored.

PIN_block_out

Direction: Output Type: String

The 8-byte output PIN block that is reenciphered.

Restrictions
Use of the ISO-2 PIN block format requires the optional PCICC, PCIXCC, CEX2C,
or CEX3C.

Use of the UKPT keywords require the optional PCICC, PCIXCC, CEX2C, or
CEX3C. Use of the DUKPT keywords require a PCIXCC, CEX2C, or CEX3C.

PAD digit restricted to non-decimal digit when Enhanced PIN Security access
control point is enabled and if the output PIN profile specifies 3624 or 3621 as the
PIN-block format.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

PIN block formats are more rigorously validated on the IBM Eserver zSeries 990
and subsequent releases than on CCF systems.

Some PIN block formats are known by several names. This table shows the
additional names.

Table 195. Additional Names for PIN Formats

PIN Format Additional Name

ISO-0 ANSI X9.8, VISA format 1, ECI format 1

ISO-1 ECI format 4

This table lists the PIN block variant constants (PBVC) to be used.

Note: PBVC is NOT supported on the IBM Eserver zSeries 990 and subsequent
releases. If PBVC is specified in the format control parameter of the PIN
profile, the Encrypted PIN translate service will not be routed to a PCI
Cryptographic Coprocessor for processing. This means that only control
vectors and extraction methods valid for the Cryptographic Coprocessor
Feature may be used if PBVC formatting is desired. It is recommended that
a format control of NONE be used for maximum flexibility.

Table 196. PIN Block Variant Constants (PBVCs)

PIN Format Name PIN Block Variant Constant (PBVC)

ECI-2 X'00000000000093000000000000009300'

ECI-3 X'00000000000095000000000000009500'

ISO-0 X'00000000000088000000000000008800'

ISO-1 X'0000000000008B000000000000008B00'

Encrypted PIN Translate

Chapter 8. Financial Services 463

Table 196. PIN Block Variant Constants (PBVCs) (continued)

PIN Format Name PIN Block Variant Constant (PBVC)

VISA-2 X'0000000000008D000000000000008D00'

VISA-3 X'0000000000008E000000000000008E00'

VISA-4 X'00000000000090000000000000009000'

3621 X'00000000000084000000000000008400'

3624 X'00000000000082000000000000008200'

4704-EPP X'00000000000087000000000000008700'

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 197. Required access control points for Encrypted PIN Translate

Processing rule Access control point

TRANSLAT Encrypted PIN Translate - Translate

REFORMAT Encrypted PIN Translate - Reformat

If any of the Unique Key per Transaction rule array keywords are specified, the
UKPT - PIN Verify, PIN Translate access control point must be enabled.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Encrypted PIN Translate

464 z/OS V1R13 ICSF Application Programmer's Guide

|
|

||

||

||

||
|

|
|

Table 198. Encrypted PIN translate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

If PBVC is specified for format control, the
request will be routed to the Cryptographic
Coprocessor Feature.

ISO-3 PIN block format is not supported.

PCI Cryptographic
Coprocessor

ICSF routes this service to a PCI
Cryptographic Coprocessor if:

v The control vector in a supplied PIN
encrypting key cannot be processed on
the Cryptographic Coprocessor Feature.

v UKPT support is requested.

v The PIN profile specifies the ISO-2 PIN
block format.

v if the input_PIN_encrypting_key_identifier
identifies a key which does not have the
default input PIN encrypting key control
vector (IPINENC)

v if the
output_PIN_encrypting_key_identifier
identifies a key which does not have the
default output PIN encrypting key control
vector (OPINENC)

v if anything is specified other than the
default in the PIN extraction method
keyword for the given PIN block format in
rule_array

DUKPT-IP, DUKPT-OP and DUKPT-BH
keywords are not supported.

ISO-3 PIN block format is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Format control in the PIN profile parameter
must specify NONE.

ISO-3 PIN block format is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Format control in the PIN profile parameter
must specify NONE.

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Format control in the PIN profile parameter
must specify NONE.

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

z196 Crypto Express3
Coprocessor

Format control in the PIN profile parameter
must specify NONE.

Encrypted PIN Translate

Chapter 8. Financial Services 465

Encrypted PIN Verify (CSNBPVR and CSNEPVR)
Use the Encrypted PIN verify callable service to verify that one of these customer
selected trial PINs is valid:
v IBM 3624 (IBM-PIN)
v IBM 3624 PIN offset (IBM-PINO)
v IBM German Bank Pool (GBP-PIN)
v IBM German Bank Pool PIN offset (GBP-PINO) - not supported on the IBM

Eserver zSeries 990
v VISA PIN validation value (VISA-PVV)
v VISA PIN validation value (VISAPVV4)
v Interbank PIN (INBK-PIN)

The unique-key-par-transaction key derivation for single and double-length keys is
available for the input_PIN_encrypting_key_identifier parameter.

An enhanced PIN security mode, on PCICC, PCIXCC, CEX2C, and CEX3C, is
available for extracting PINs from encrypted PIN blocks. This mode only applies
when specifying a PIN-extraction method for an IBM 3621 or an IBM 3624
PIN-block. To do this, you must enable the PTR Enhanced PIN Security access
control point in the default role. When activated, this mode limits checking of the
PIN to decimal digits and a PIN length minimum of 4 is enforced. No other
PIN-block consistency checking will occur.

The callable service name for AMODE(64) invocation is CSNEPVR.

Format

CALL CSNBPVR(
return_code,
reason_code,
exit_data_length,
exit_data,
input_PIN_encrypting_key_identifier,
PIN_verifying_key_identifier,
input_PIN_profile,
PAN_data,
encrypted_PIN_block,
rule_array_count,
rule_array,
PIN_check_length,
data_array)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

Encrypted PIN Verify

466 z/OS V1R13 ICSF Application Programmer's Guide

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

input_PIN_encrypting_key_identifier

Direction: Input/Output Type: String

The 64-byte key label or internal key token containing the PIN-encrypting key
(IPINENC) that enciphers the PIN block. If keyword UKPTIPIN or DUKPT-IP is
specified in the rule_array, then the input_PIN_encrypting_key_identifier must
specify a key token or key label of a KEYGENKY with the UKPT usage bit
enabled.

PIN_verifying_key_identifier

Direction: Input/Output Type: String

The 64-byte key label or internal key token that identifies the PIN verify
(PINVER) key.

input_PIN_profile

Direction: Input Type: Character string

The three 8-byte character elements that contain information necessary to
either create a formatted PIN block or extract a PIN from a formatted PIN block.
A particular PIN profile can be either an input PIN profile or an output PIN
profile depending on whether the PIN block is being enciphered or deciphered
by the callable service. If you specify UKPTIPIN in the rule_array parameter,
then the input_PIN_profile is extended to a 48-byte field and must contain the
current key serial number. See “The PIN Profile” on page 429 for additional
information.

If you specify DUKPT-IP in the rule_array parameter, then the input_PIN_profile
is extended to a 48-byte field and must contain the current key serial number.
See “The PIN Profile” on page 429 for additional information.

The pad digit is needed to extract the PIN from a 3624 or 3621 PIN block in the
encrypted PIN verify callable service.

PAN_data

Direction: Input Type: Character string

Encrypted PIN Verify

Chapter 8. Financial Services 467

The personal account number (PAN) is required for ISO-0 and VISA-4 only.
Otherwise, this parameter is ignored. Specify 12 digits of account data in
character format.

For ISO-0, use the rightmost 12 digits of the PAN, excluding the check digit.

For VISA-4, use the leftmost 12 digits of the PAN, excluding the check digit.

encrypted_PIN_block

Direction: Input Type: String

The 8-byte enciphered PIN block that contains the PIN to be verified.

rule_array_count

Direction: Input Type: Integer

The number of process rules specified in the rule_array parameter. The value
may be 1, 2 or 3.

rule_array

Direction: Input Type: Character string

The process rule for the PIN verify algorithm.

Table 199. Keywords for Encrypted PIN Verify

Keyword Meaning

Algorithm Value (required)

GBP-PIN The IBM German Bank Pool PIN. It verifies the PIN
entered by the customer and compares that PIN with the
institution generated PIN by using an institution key.

GBP-PINO The IBM German Bank Pool PIN offset. It verifies the PIN
entered by the customer by comparing with the calculated
institution PIN (IPIN) and adding the specified offset to
the pool PIN (PPIN) generated by using a pool key.

GBP-PINO is not supported on the IBM Eserver zSeries
990.

IBM-PIN The IBM 3624 PIN, which is an institution-assigned PIN.
It does not calculate the PIN offset.

IBM-PINO The IBM 3624 PIN offset, which is a customer-selected
PIN and calculates the PIN offset.

INBK-PIN The Interbank PIN verify algorithm.

VISA-PVV The VISA PIN verify value.

VISAPVV4 The VISA PIN verify value. If the length is 4 digits, normal
processing for VISA-PVV will occur. The VISAPVV4
requires a PCICC, PCIXCC, CEX2C, or CEX3C. If one is
not available, the service will fail. If the length is greater
than 4 digits, the service will fail.

Encrypted PIN Verify

468 z/OS V1R13 ICSF Application Programmer's Guide

Table 199. Keywords for Encrypted PIN Verify (continued)

Keyword Meaning

PIN Block Format and PIN
Extraction Method
(optional)

See “PIN Block Format and PIN Extraction Method
Keywords” on page 429 for additional information and a
list of PIN block formats and PIN extraction method
keywords.
Note: If a PIN extraction method is not specified, the first
one listed in Table 166 on page 430 for the PIN block
format will be the default.

DUKPT Rule (one optional)

UKPTIPIN The input_PIN_encrypting_key_identifier is derived as a
single length key.. The
input_PIN_encrypting_key_identifier must be a
KEYGENKY key with the UKPT usage bit enabled. The
input_PIN_profile must be 48 bytes and contain the key
serial number.

DUKPT-IP The input_PIN_encrypting_key_identifier is to be derived
using the DUKPT algorithm. The
input_PIN_encrypting_key_identifier must be a
KEYGENKY key with the DUKPT usage bit enabled. The
input_PIN_profile must be 48 bytes and contain the key
serial number.

PIN_check_length

Direction: Input Type: Integer

The PIN check length for the IBM-PIN or IBM-PINO process rules only.
Otherwise, it is ignored. Specify the rightmost digits, 4 through 16, for the PIN
to be verified.

data_array

Direction: Input Type: String

Three 16-byte elements required by the corresponding rule_array parameter.
The data array consists of three 16-byte fields whose specification depend on
the process rule. If a process rule only requires one or two 16-byte fields, then
the rest of the data array is ignored by the callable service. Table 200 describes
the array elements.

Table 200. Array Elements for the Encrypted PIN Verify Callable Service

Array Element Description

Decimalization_table Decimalization table for IBM and GBP only. Sixteen decimal
digits of 0 through 9.
Note: If the ANSI X9.8 PIN – Use stored decimalization
tables only access control point is enabled in the ICSF
role, this table must match one of the active decimalization
tables in the coprocessors.

PIN_offset Offset data for IBM-PINO and GBP-PINO. One to twelve
numeric characters, 0 through 9, left-justified and padded on
the right with blanks. For IBM-PINO, the PIN offset length is
specified in the PIN_check_length parameter. For
GBP-PINO, the PIN offset is always 4 digits. For IBM-PIN
and GBP-PIN, the field is ignored.

Encrypted PIN Verify

Chapter 8. Financial Services 469

|

|
|
|
|

Table 200. Array Elements for the Encrypted PIN Verify Callable Service (continued)

Array Element Description

trans_sec_parm For VISA, only the leftmost twelve digits of the 16-byte field
are used. These consist of the rightmost eleven digits of the
personal account number (PAN) and a one-digit key index.
The remaining four characters are ignored.

For Interbank only, all 16 bytes are used. These consist of
the rightmost eleven digits of the PAN, a constant of X'6', a
one-digit key index, and three numeric digits of PIN
validation data.

RPVV For VISA-PVV only, referenced PVV (4 bytes) that is
left-justified. The rest of the field is ignored.

Validation_data Validation data for IBM and GBP padded to 16 bytes. One
to sixteen characters of hexadecimal account data
left-justified and padded on the right with blanks.

Table 201 lists the data array elements required by the process rule (rule_array
parameter). The numbers refer to the process rule's position within the array.

Table 201. Array Elements Required by the Process Rule

Process Rule IBM-PIN IBM-PINO GBP-PIN GBP-PINO VISA-PVV INBK-PIN

Decimalization_table 1 1 1 1

Validation_data 2 2 2 2

PIN_offset 3 3 3 3

Trans_sec_parm 1 1

RPVV 2

Restrictions
GBP-PINO is only supported if the Encrypted PIN Verify service is processed on the
Cryptographic Coprocessor Feature. If the service is routed to a PCI Cryptographic
Coprocessor, the service request will fail if the GBP-PINO calculation method is
specified. GBP-PINO is not supported on the IBM Eserver zSeries 990, IBM
Eserver zSeries 890, z9 EC or z9 BC.

Use of the ISO-2 PIN block format requires the optional PCICC, PCIXCC, CEX2C,
or CEX3C.

Use of the UKPTIPIN keyword requires the optional PCICC, PCIXCC, CEX2C, or
CEX3C.

Use of the VISAPVV4 keyword requires the optional PCICC, PCIXCC, CEX2C, or
CEX3C.

Use of the DUKPT-IP keyword requires a PCIXCC, CEX2C, or CEX3C.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

PIN block formats are more rigorously validated on the IBM Eserver zSeries 990
than on CCF systems.

Encrypted PIN Verify

470 z/OS V1R13 ICSF Application Programmer's Guide

This table lists the PIN block variant constants (PBVC) to be used.

Restriction: PBVC is not supported on an IBM Eserver zSeries 990. If PBVC is
specified in the format control parameter of the PIN profile, the
Encrypted PIN Verify service will not be routed to a PCI Cryptographic
Coprocessor for processing. This means that only control vectors and
extraction methods valid for the Cryptographic Coprocessor Feature
may be used if PBVC formatting is desired. It is recommended that a
format control of NONE be used for maximum flexibility.

Table 202. PIN Block Variant Constants (PBVCs)

PIN Format Name PIN Block Variant Constant (PBVC)

ECI-2 X'00000000000093000000000000009300'

ECI-3 X'00000000000095000000000000009500'

ISO-0 X'00000000000088000000000000008800'

ISO-1 X'0000000000008B000000000000008B00'

VISA-2 X'0000000000008D000000000000008D00'

VISA-3 X'0000000000008E000000000000008E00'

VISA-4 X'00000000000090000000000000009000'

3621 X'00000000000084000000000000008400'

3624 X'00000000000082000000000000008200'

4704-EPP X'00000000000087000000000000008700'

This table shows the access control points in the ICSF role that control the function
of this service.

Table 203. Required access control points for Encrypted PIN Verify

Process rule Access control point

IBM-PIN
IBM-PINO

Encrypted PIN Verify - 3624

GBP-PIN
GBP-PINO

Encrypted PIN Verify - GBP

VISA-PVV Encrypted PIN Verify - VISA PVV

INBK-PIN Encrypted PIN Verify - Interbank

If any of the Unique Key per Transaction rule array keywords, the UKPT - PIN
Verify, PIN Translate access control point must be enabled.

If the ANSI X9.8 PIN – Use stored decimalization tables only access control
point is enabled in the ICSF role, any decimalization table specified must match one
of the active decimalization tables in the coprocessors.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Encrypted PIN Verify

Chapter 8. Financial Services 471

|
|

||

||

|
|
|

|
|
|

||

||
|

|
|

|
|
|

Table 204. Encrypted PIN verify required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

If PBVC is specified for format control, the
request will be routed to the Cryptographic
Coprocessor Feature.

ISO-3 PIN block format is not supported.

PCI Cryptographic
Coprocessor

ICSF routes the request to a PCI
Cryptographic Coprocessor if:

v The PIN profile specifies the ISO-2 PIN
block format.

v Anything is specified other than the
default in the PIN extraction method
keyword for the given PIN block format in
rule_array.

v The input_PIN_encrypting_key_identifier
identifies a key which does not have the
default PIN encrypting key control vector
(IPINENC).

v The PIN_verifying_key_identifier identifies
a key which does not have the default
PIN verify key control vector.

v The VISAPVV4 rule array keyword is
specified.

v You request UKPT support.

The DUKPT-IP keyword is not supported.

ISO-3 PIN block format is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Format control in the PIN profile parameter
must specify NONE. GBP-PINO rule array
parameter is not supported.

ISO-3 PIN block format is not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Format control in the PIN profile parameter
must specify NONE. GBP-PINO rule array
parameter is not supported.

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Format control in the PIN profile parameter
must specify NONE. GBP-PINO rule array
parameter is not supported.

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

z196 Crypto Express3
Coprocessor

Format control in the PIN profile parameter
must specify NONE. GBP-PINO rule array
parameter is not supported.

Related Information
PIN Formats and Algorithms discusses the PIN algorithms in detail.

Encrypted PIN Verify

472 z/OS V1R13 ICSF Application Programmer's Guide

PIN Change/Unblock (CSNBPCU and CSNEPCU)
The PIN Change/Unblock callable service is used to generate a special PIN block
to change the PIN accepted by an integrated circuit card (smartcard). The special
PIN block is based on the new PIN and the card-specific diversified key and,
optionally, on the current PIN of the smartcard. The new PIN block is encrypted with
a session key. The session key is derived in a two-step process. First, the
card-specific diversified key (ICC Master Key) is derived using the TDES-ENC
algorithm of the diversified key generation callable service. The session key is then
generated according to the rule array algorithm:

v TDES-XOR - XOR ICC Master Key with the Application Transaction Counter
(ATC)

v TDESEMV2 - use the EMV2000 algorithm with a branch factor of 2

v TDESEMV4 - use the EMV2000 algorithm with a branch factor of 4

The generating DKYGENKY cannot have replicated halves. The
encryption_issuer_master_key_identifier is a DKYGENKY that permits generation of
a SMPIN key. The authentication_ issuer_master_key_identifier is also a
DKYGENKY that permits generation of a double length MAC key.

The PIN block format is specified by the VISA ICC Card specification: two mutually
exclusive rule array keywords, VISAPCU1 and VISAPCU2. They refer to whether
the current PIN is used in the generation of the new PIN. For VISAPCU1, it is not
used, for VISAPCU2 it is used.

An enhanced PIN security mode, on PCICC, PCIXCC, CEX2C, or CEX3C is
available for extracting PINs from encrypted PIN blocks. This mode only applies
when specifying a PIN-extraction method for an IBM 3621 or an IBM 3624
PIN-block. To do this, you must enable the PTR Enhanced PIN Security access
control point in the default role. When activated, this mode limits checking of the
PIN to decimal digits and a PIN length minimum of 4 is enforced. No other
PIN-block consistency checking will occur.

The callable service name for AMODE(64) invocation is CSNEPCU.

PIN Change/Unblock

Chapter 8. Financial Services 473

Format

CALL CSNBPCU(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
authentication_issuer_master_key_length,
authentication_issuer_master_key_identifier,
encryption_issuer_master_key_length,
encryption_issuer_master_key_identifier,
key_generation_data_length,
key_generation_data,
new_reference_PIN_key_length,
new_reference_PIN_key_identifier,
new_reference_PIN_block,
new_reference_PIN_profile,
new_reference_PIN_PAN_data,
current_reference_PIN_key_length,
current_reference_PIN_key_identifier,
current_reference_PIN_block,
current_reference_PIN_profile,
current_reference_PIN_PAN_data,
output_PIN_data_length,
output_PIN_data,
output_PIN_profile,
output_PIN_message_length,
output_PIN_message)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

PIN Change/Unblock

474 z/OS V1R13 ICSF Application Programmer's Guide

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
valid values are 1 and 2.

rule_array

Direction: Input Type: String

Keywords that provides control information to the callable service. The
keywords are left-justified in an 8-byte field and padded on the right with blanks.
The keywords must be in contiguous storage. Specify one or two of these
options:

Table 205. Rule Array Keywords for PIN Change/Unblock

Keyword Meaning

Algorithm (optional)

TDES-XOR TDES encipher clear data to generate the intermediate
(card-unique) key, followed by XOR of the final 2 bytes of
each key with the ATC counter. This is the default.

TDESEMV2 Same processing as in the diversified key generate service.

TDESEMV4 Same processing as in the diversified key generate service.

PIN processing method (required)

VISAPCU1 Form the new PIN from the new reference PIN and the
smart-card-unique, intermediate key.

VISAPCU2 Form the new PIN from the new reference PIN and the
smart-card-unique, the intermediate (card-unique) key and the
current reference PIN.

authentication_issuer_master_key_length

Direction: Input Type: Integer

The length of the authentication_issuer_master_key_identifier parameter.
Currently, the value must be 64.

authentication_issuer_master_key_identifier

Direction: Input/Output Type: String

The label name or internal token of a DKYGENKY key type that is to be used to
generate the card-unique diversified key. The control vector of this key must be
a DKYL0 key that permits the generation of a double-length MAC key (DMAC).
This DKYGENKY may not have replicated key halves.

encryption_issuer_master_key_length

Direction: Input Type: Integer

The length of the encryption_issuer_master_key_identifier parameter. Currently,
the value must be 64.

PIN Change/Unblock

Chapter 8. Financial Services 475

encryption_issuer_master_key_identifier

Direction: Input/Output Type: String

The label name or internal token of a DKYGENKY key type that is to be used to
generate the card-unique diversified key and the secure messaging session key
for the protection of the output PIN block. The control vector of this key must be
a DKYL0 key that permits the generation of a DMPIN key type. This
DKYGENKY may not have replicated key halves.

key_generation_data_length

Direction: Input Type: Integer

The length of the key_generation_data parameter. This value must be 10, 18,
26 or 34 bytes.

key_generation_data

Direction: Input Type: String

The data provided to generate the card-unique session key. For TDES-XOR,
this consists of 8 or 16 bytes of data to be processed by TDES to generate the
card-unique diversified key followed by a 16 bit ATC counter to offset the
card-unique diversified key to form the session key. For TDESEMV2 and
TDESEMV4, this may be 10, 18, 26 or 34 bytes. See “Diversified Key Generate
(CSNBDKG and CSNEDKG)” on page 117 for more information.

new_reference_PIN_key_length

Direction: Input Type: Integer

The length of the new_reference_PIN_key_identifier parameter. Currently, the
value must be 64.

new_reference_PIN_key_identifier

Direction: Input/Output Type: String

The label name or internal token of a PIN encrypting key that is to be used to
decrypt the new_reference_PIN_block. This must be an IPINENC or OPINENC
key. If the label name is supplied, the name must be unique in the CKDS.

new_reference_PIN_block

Direction: Input Type: String

This is an 8-byte field that contains the enciphered PIN block of the new PIN.

new_reference_PIN_profile

Direction: Input Type: String

This is a 24-byte field that contains three 8-byte elements with a PIN block
format keyword, a format control keyword (NONE) and a pad digit as required
by certain formats.

new_reference_PIN_PAN_data

PIN Change/Unblock

476 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input Type: String

This is a 12-byte field containing PAN in character format. This data may be
needed to recover the new reference PIN if the format is ISO-0 or VISA-4. If
neither is used, this parameter may be blanks.

current_reference_PIN_key_length

Direction: Input Type: Integer

The length of the current_reference_PIN_key_identifier parameter. For the
current implementation, the value must be 64. If the rule_array contains
VISAPCU1, this value must be 0.

current_reference_PIN_key_identifier

Direction: Input/Output Type: String

The label name or internal token of a PIN encrypting key that is to be used to
decrypt the current_reference_PIN_block. This must be an IPINENC or
OPINENC key. If the labelname is supplied, the name must be unique on the
CKDS. If the rule_array contains VISAPCU1, this value is ignored.

current_reference_PIN_block

Direction: Input Type: String

This is an 8-byte field that contains the enciphered PIN block of the new PIN. If
the rule_array contains VISAPCU1, this value is ignored.

current_reference_PIN_profile

Direction: Input Type: String

This is a 24-byte field that contains three 8-byte elements with a PIN block
format keyword, a format control keyword (NONE) and a pad digit as required
by certain formats. If the rule_array contains VISAPCU1, this value is ignored.

current_reference_PIN_PAN_data

Direction: Input Type: String

This is a 12-byte field containing PAN in character format. This data may be
needed to recover the new reference PIN if the format is ISO-0 or VISA-4. If
neither is used, this parameter may be blanks. If the rule_array contains
VISAPCU1, this value is ignored.

output_PIN_data_length

Direction: Input Type: Integer

Currently this field is reserved. The value of this parameter should be 0.

output_PIN_data

Direction: Input Type: String

Currently this field is reserved.

PIN Change/Unblock

Chapter 8. Financial Services 477

output_PIN_profile

Direction: Input Type: String

This is a 24-byte field that contains three 8-byte elements with a PIN block
format keyword (VISAPCU1 or VISAPCU2), a format control keyword, NONE,
(left aligned and padded on the right with space characters) and 8 byte spaces.

output_PIN_message_length

Direction: Input/Output Type: Integer

The length of the output_PIN_message field. Currently the value must be at
least 16.

output_PIN_message

Direction: Output Type: String

The reformatted PIN block with the new reference PIN enciphered under the
SMPIN session key.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

There are additional access points for this service.

RACF will be invoked to check authorization to use the PIN change/unblock service
and any labelname specified.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 206. Required access control points for PIN Change/Unblock

PIN-block encrypting key-type Access control point

OPINENC PIN Change/Unblock - change EMV PIN with
OPINENC

IPINENC PIN Change/Unblock - change EMV PIN with
IPINENC

When the authentication_key_identifier or encryption_key_identifier is specified with
control vector bits (19 – 22) of B'1111', the Diversified Key Generate -
DKYGENKY – DALL access control point must also be enabled.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 207. PIN Change/Unblock hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Not supported

PIN Change/Unblock

478 z/OS V1R13 ICSF Application Programmer's Guide

|
|

||

||

||
|

||
|
|

|
|
|

Table 207. PIN Change/Unblock hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ISO-3 PIN block format is not supported.

IBM System z9 EC
and z9 BC

Crypto Express2
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

z196 Crypto Express3
Coprocessor

Secure Messaging for Keys (CSNBSKY and CSNESKY)
The Secure Messaging for Keys callable service will encrypt a text block including a
clear key value decrypted from an internal or external DES token. The text block is
normally a "Value" field of a secure message TLV (Tag/Length/Value) element of a
secure message. TLV is defined in ISO/IEC 7816-4.

The callable service name for AMODE(64) invocation is CSNESKY.

Format

CALL CSNBSKY(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_key_identifier,
key_encrypting_key_identifier,
secmsg_key_identifier,
text_length,
clear_text,
initialization_vector,
key_offset,
key_offset_field_length,
enciphered_text,
output_chaining_vector)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

PIN Change/Unblock

Chapter 8. Financial Services 479

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
valid values are 0 and 1.

rule_array

Direction: Input Type: Character String

Keywords that provides control information to the callable service. The
processing method is the encryption mode used to encrypt the message.

Table 208. Rule Array Keywords for Secure Messaging for Keys

Keyword Meaning

Enciphering mode (optional)

TDES-CBC Use CBC mode to encipher the message (default).

TDES-ECB Use EBC mode to encipher the message.

input_key_identifier

Direction: Input/Output Type: String

The internal token, external token, or key label of an internal token of a double
length DES key. The key is recovered in the clear and placed in the text to be
encrypted. The control vector of the DES key must not prohibit export.

key_encrypting_key_identifier

Direction: Input/Output Type: String

Secure Messaging for Keys

480 z/OS V1R13 ICSF Application Programmer's Guide

If the input_key_identifier is an external token, then this parameter is the
internal token or the key label of the internal token of IMPORTER or
EXPORTER. If it is not, it is a null token. If a key label is specified, the key
label must be unique.

secmsg_key_identifier

Direction: Input/Output Type: String

The internal token or key label of a secure message key for encrypting keys.
This key is used to encrypt the updated clear_text containing the recovered
DES key.

text_length

Direction: Input Type: Integer

The length of the clear_text parameter that follows. Length must be a multiple
of eight. Maximum length is 4K.

clear_text

Direction: Input Type: String

Clear text that contains the recovered DES key at the offset specified and is
then encrypted. Any padding or formatting of the message must be done by the
caller on input.

initialization_vector

Direction: Input Type: String

The 8-byte supplied string for the TDES-CBC mode of encryption. The
initialization_vector is XORed with the first 8 bytes of clear_text prior to
encryption. This field is ignored for TDES-ECB mode.

key_offset

Direction: Input Type: Integer

The offset within the clear_text parameter at key_offset where the recovered
clear input_key_identifier value is to be placed. The first byte of the clear_text
field is offset 0.

key_offset_field_length

Direction: Input Type: Integer

The length of the field within clear_text parameter at key_offset where the
recovered clear input_key_identifier value is to be placed. Length must be a
multiple of eight and is equal to the key length of the recovered key. The key
must fit entirely within the clear_text.

enciphered_text

Direction: Output Type: String

The field where the enciphered text is returned. The length of this field must be
at least as long as the clear_text field.

Secure Messaging for Keys

Chapter 8. Financial Services 481

output_chaining_vector

Direction: Output Type: String

This field contains the last 8 bytes of enciphered text and is used as the
initialization_vector for the next encryption call if data needs to be chained for
TDES-CBC mode. No data is returned for TDES-ECB.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

SAF will be invoked to check authorization to use the secure messaging for keys
service and any key labels specified as input.

Keys only appear in the clear within the secure boundary of the cryptographic
coprocessor and never in host storage.

The Secure Messaging for Keys access control point controls the function of this
service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 209. Secure messaging for keys required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

z196 Crypto Express3
Coprocessor

Secure Messaging for PINs (CSNBSPN and CSNESPN)
The Secure Messaging for PINs callable service will encrypt a text block including a
clear PIN block recovered from an encrypted PIN block. The input PIN block will be
reformatted if the block format in the input_PIN_profile is different than the block
format n the output_PIN_profile. The clear PIN block will only be self encrypted if
the SELFENC keyword is specified in the rule_array. The text block is normally a

Secure Messaging for Keys

482 z/OS V1R13 ICSF Application Programmer's Guide

|
|

'Value' field of a secure message TLV (Tag/Length/Value) element of a secure
message. TLV is defined in ISO/IEC 7816-4.

An enhanced PIN security mode on a CEX3C is available to implement restrictions
required by the ANSI X9.8 PIN standard. To enforce these restrictions, you must
enable the following control points in the default role.

v ANSI X9.8 PIN - Enforce PIN block restrictions

v ANSI X9.8 PIN - Allow modification of PAN

v ANSI X9.8 PIN - Allow only ANSI PIN blocks

The callable service name for AMODE(64) invocation is CSNESPN.

Format

CALL CSNBSPN(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
input_PIN_block,
PIN_encrypting_key_identifier,
input_PIN_profile,
input_PAN_data,
secmsg_key_identifier,
output_PIN_profile,
output_PAN_data,
text_length,
clear_text,
initialization_vector,
PIN_offset,
PIN_offset_field_length,
enciphered_text,
output_chaining_vector)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

Secure Messaging for PINs

Chapter 8. Financial Services 483

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
valid values are 0, 1, or 2.

rule_array

Direction: Input Type: Character String

Keywords that provide control information to the callable service. The
processing method is the algorithm used to create the generated key. The
keywords are left justified and padded on the right with blanks.

Table 210. Rule Array Keywords for Secure Messaging for PINs

Keyword Meaning

Enciphering mode (optional)

TDES-CBC Use CBC mode to encipher the message (default).

TDES-ECB Use EBC mode to encipher the message.

PIN encryption (optional)

CLEARPIN Recovered clear input PIN block (may be reformatted) is
placed in the clear in the message for encryption with the
secure message key (default).

SELFENC Recovered clear input PIN block (may be reformatted) is
self-encrypted and then placed in the message for encryption
with the secure message key.

input_PIN_block

Direction: Input Type: String

The 8-byte input PIN block that is to be recovered in the clear and perhaps
reformatted, and then placed in the clear_text to be encrypted.

PIN_encrypting_key_identifier

Direction: Input/Output Type: String

The internal token or key label of the internal token of the PIN encrypting key
used in encrypting the input_PIN_block. The key must be an IPINENC key.

input_PIN_profile

Direction: Input Type: Character String

Secure Messaging for PINs

484 z/OS V1R13 ICSF Application Programmer's Guide

The three 8-byte character elements that contain information necessary to
extract the PIN from a formatted PIN block. The valid input PIN formats are
ISO-0, ISO-1, ISO-2 and ISO-3. See “The PIN Profile” on page 429 for
additional information.

input_PAN_data

Direction: Input Type: Character String

The 12 digit personal account number (PAN) if the input PIN format is ISO-0
only. Otherwise, the parameter is ignored.

secmsg_key_identifier

Direction: Input/Output Type: String

The internal token or key label of an internal token of a secure message key for
encrypting PINs. This key is used to encrypt the updated clear_text.

output_PIN_profile

Direction: Input Type: String

The three 8-byte character elements that contain information necessary to
create a formatted PIN block. If reformatting is not required, the
input_PIN_profile and the output_PIN_profile must specify the same PIN block
format. Output PIN block formats supported are ISO-0, ISO-1, ISO-2 and ISO-3.

output_PAN_data

Direction: Input Type: String

The 12 digit personal account number (PAN) if the output PIN format is ISO-0
only. Otherwise, this parameter is ignored.

text_length

Direction: Input Type: Integer

The length of the clear_text parameter that follows. Length must be a multiple
of eight. Maximum length is 4K.

clear_text

Direction: Input Type: String

Clear text that contains the recovered and/or reformatted/encrypted PIN at
offset specified and then encrypted. Any padding or formatting of the message
must be done by the caller on input.

initialization_vector

Direction: Input Type: String

The 8-byte supplied string for the TDES-CBC mode of encryption. The
initialization_vector is XORed with the first 8 bytes of clear_text prior to
encryption. This field is ignored for TDES-ECB mode.

PIN_offset

Secure Messaging for PINs

Chapter 8. Financial Services 485

Direction: Input Type: Integer

The offset within the clear_text parameter where the reformatted PIN block is to
be placed. The first byte of the clear_text field is offset 0.

PIN_offset_field_length

Direction: Input Type: Integer

The length of the field within clear_text parameter at PIN_offset where the
recovered clear input_PIN_block value is to be placed. The PIN block may be
self-encrypted if requested by the rule array. Length must be eight. The PIN
block must fit entirely within the clear_text.

enciphered_text

Direction: Output Type: String

The field where the enciphered text is returned. The length of this field must be
at least as long as the clear_text field.

output_chaining_vector

Direction: Output Type: String

This field contains the last 8 bytes of enciphered text and is used as the
initialization_vector for the next encryption call if data needs to be chained for
TDES-CBC mode. No data is returned for TDES-ECB.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

SAF will be invoked to check authorization to use the secure messaging for PINs
service and any key labels specified as input.

Keys only appear in the clear within the secure boundary of the cryptographic
coprocessors and never in host storage.

The Secure Messaging for PINs access control point controls the function of this
service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 211. Secure messaging for PINs required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

ISO-3 PIN block format is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ISO-3 PIN block format is not supported.

Secure Messaging for PINs

486 z/OS V1R13 ICSF Application Programmer's Guide

|
|

Table 211. Secure messaging for PINs required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

ISO-3 PIN block format requires the Nov.
2007 or later licensed internal code (LIC).

z196 Crypto Express3
Coprocessor

SET Block Compose (CSNDSBC and CSNFSBC)
The SET Block Compose callable service performs DES-encryption of data,
OAEP-formatting through a series of SHA-1 hashing operations, and the
RSA-encryption of the Optimal Asymmetric Encryption Padding (OAEP) block.

The callable service name for AMODE(64) invocation is CSNFSBC.

Format

CALL CSNDSBC(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
block_contents_identifier,
XData_string_length,
XData_string,
data_to_encrypt_length,
data_to_encrypt,
data_to_hash_length,
data_to_hash,
initialization_vector,
RSA_public_key_identifier_length,
RSA_public_key_identifier,
DES_key_block_length,
DES_key_block,
RSA_OAEP_block_length,
RSA_OAEP_block,
chaining_vector,
DES_encrypted_data_block)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

Secure Messaging for PINs

Chapter 8. Financial Services 487

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 1 or 2.

rule_array

Direction: Input Type: Character String

Keywords that provides control information to the callable service. The keyword
must be in 8 bytes of contiguous storage, left-justified and padded on the right
with blanks.

Table 212. Keywords for SET Block Compose Control Information

Keyword Meaning

Block Type (required)

SET1.00 The structure of the RSA-OAEP encrypted block is defined by
SET protocol.

Formatting Information (optional)

DES-ONLY DES encryption only is to be performed; no RSA-OAEP
formatting will be performed. (See Usage Notes.)

block_contents_identifier

Direction: Input Type: String

A one-byte string, containing a binary value that will be copied into the Block
Contents (BC) field of the SET DB data block (indicates what data is carried in
the Actual Data Block, ADB, and the format of any extra data (XData_string)).
This parameter is ignored if DES-ONLY is specified in the rule-array.

SET Block Compose

488 z/OS V1R13 ICSF Application Programmer's Guide

XData_string_length

Direction: Input Type: Integer

The length in bytes of the data contained within XData_string. The maximum
length is 94 bytes. This parameter is ignored if DES-ONLY is specified in the
rule-array.

XData_string

Direction: Input Type: String

Extra-encrypted data contained within the OAEP-processed and RSA-encrypted
block. The format is indicated by block_contents_identifier. For a
XData_string_length value of zero, XData_string must still be specified, but will
be ignored by ICSF. The string is treated as a string of hexadecimal digits. This
parameter is ignored if DES-ONLY is specified in the rule-array.

data_to_encrypt_length

Direction: Input/Output Type: Integer

The length in bytes of data that is to be DES-encrypted. The length has a
maximum value of 32 MB minus 8 bytes to allow for up to 8 bytes of padding.
The data is identified in the data_to_encrypt parameter. On output, this value is
updated with the length of the encrypted data in the
DES_encrypted_data_block.

data_to_encrypt

Direction: Input Type: String

The data that is to be DES-encrypted (with a 64-bit DES key generated by this
service). The data will be padded by this service according to the PKSC #5
padding rules.

data_to_hash_length

Direction: Input Type: Integer

The length in bytes of the data to be hashed. The hash is an optional part of
the OAEP block. If the data_to_hash_length is 0, no hash will be included in the
OAEP block. This parameter is ignored if DES-ONLY is specified in the
rule_array parameter.

data_to_hash

Direction: Input Type: String

The data that is to be hashed and included in the OAEP block. No hash is
computed or inserted in the OAEP block if the data_to_hash_length is 0. This
parameter is ignored if DES-ONLY is specified in the rule_array parameter.

initialization_vector

Direction: Input Type: String

SET Block Compose

Chapter 8. Financial Services 489

An 8-byte string containing the initialization vector to be used for the cipher
block chaining for the DES encryption of the data in the data_to_encrypt
parameter. The same initialization vector must be used to perform the DES
decryption of the data.

RSA_public_key_identifier_length

Direction: Input Type: Integer

The length of the RSA_public_key_identifier field. The maximum size is 2500
bytes. This parameter is ignored if DES-ONLY is specified in the rule-array.

RSA_public_key_identifier

Direction: Input Type: String

A string containing either the key label of the RSA public key or the RSA public
key token to be used to perform the RSA encryption of the OAEP block. The
modulus bit length of the key must be 1024 bytes. This parameter is ignored if
DES-ONLY is specified in the rule-array.

DES_key_block_length

Direction: Input/Output Type: Integer

The length of the DES_key_block. The current length of this field is defined to
be exactly 64 bytes.

DES_key_block

Direction: Input/Output Type: String

The DES key information returned from a previous SET Block Compose
service. The contents of the DES_key_block is the 64-byte DES internal key
token (containing the DES key enciphered under the host master key). Your
application program must not change the data in this string.

RSA_OAEP_block_length

Direction: Input/Output Type: Integer

The length of a block of storage to hold the RSA-OAEP_block. The length must
be at least 128 bytes on input. The length value will be updated on exit with the
actual length of the RSA-OAEP_block, which is exactly 128 bytes. This
parameter is ignored if DES-ONLY is specified in the rule-array.

RSA_OAEP_block

Direction: Output Type: String

The OAEP-formatted data block, encrypted under the RSA public key passed
as RSA_public_key_identifier. When the OAEP-formatted data block is returned,
it is left justified within the RSA-OAEP_block field if the input field length
(RSA-OAEP_block_length) was greater than 128 bytes. This parameter is
ignored if DES-ONLY is specified in the rule-array.

chaining_vector

Direction: Input/Output Type: String

SET Block Compose

490 z/OS V1R13 ICSF Application Programmer's Guide

An 18-byte field that ICSF uses as a system work area. Your application
program must not change the data in this string. This field is ignored by this
service, but must be specified.

DES_encrypted_data_block

Direction: Output Type: String

The DES-encrypted data block (data passed in as data_to_encrypt). The length
of the encrypted data is returned in data_to_encrypt_length. The
DES_encrypted_data_block may be 8 bytes longer than the length of the
data_to_encrypt because of padding added by this service.

Restrictions
Not all CCA implementations support a key label as input in the
RSA_public_key_identifier parameter. Some implementations may only support a
key token.

The data_to_encrypt and the DES_encrypted_data_block cannot overlap.

The maximum data block that can be supplied for DES encryption is the limit as
expressed by the Encipher callable service.

CCF Systems only: NOCV keys must be installed in the CKDS to use SET block
compose service on a CDMF-only system.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The first time the SET Block Compose service is invoked to form an RSA-OAEP
block and DES-encrypt data for communication between a specific source and
destination (for example, between the merchant and payment gateway), do not
specify the DES-ONLY keyword. A DES key will be generated by the service and
returned in the key token contained in the DES_key_block. On subsequent calls to
the Compose SET Block service for communication between the same source and
destination, the DES key can be re-used. The caller of the service must supply the
DES_key_block, the DES_key_block_length, the data_to_encrypt, the
data_to_encrypt_length, and the rule-array keywords SET1.00 and DES-ONLY. You
do not need to supply the block contents identifier, XDATA string and length,
RSA-OAEP block and length, and RSA public key information, although you must
still specify the parameters. For this invocation, the RSA-OAEP formatting is
bypassed and only DES encryption is performed, using the supplied DES key.

The SET Block Compose access control point controls the function of this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

SET Block Compose

Chapter 8. Financial Services 491

|

Table 213. SET block compose required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

If there are no PCI Cryptographic
Coprocessors online, the request is routed
to the Cryptographic Coprocessor Feature.

PCI Cryptographic
Coprocessor

This service routes the request to a PCI
Cryptographic Coprocessor to perform the
RSA-OAEP processing.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

z196 Crypto Express3
Coprocessor

SET Block Decompose (CSNDSBD and CSNFSBD)
Decomposes the RSA-OAEP block and the DES-encrypted data block of the SET
protocol to provide unencrypted data back to the caller.

The callable service name for AMODE(64) invocation is CSNFSBD.

Format

CALL CSNDSBD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
RSA_OAEP_block_length,
RSA_OAEP_block,
DES_encrypted_data_block_length,
DES_encrypted_data_block,
initialization_vector,
RSA_private_key_identifier_length,
RSA_private_key_identifier,
DES_key_block_length,
DES_key_block,
block_contents_identifier,
XData_string_length,
XData_string,
chaining_vector,
data_block,
hash_block_length,
hash_block)

SET Block Compose

492 z/OS V1R13 ICSF Application Programmer's Guide

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes,” on page 725 lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes,” on page 725 lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 1 or 2.

rule_array

Direction: Input Type: String

One keyword that provides control information to the callable service. The
keyword indicates the block type. The keyword must be in 8 bytes of contiguous
storage, left-justified and padded on the right with blanks.

Table 214. Keywords for SET Block Compose Control Information

Keyword Meaning

Block Type (required)

SET1.00 The structure of the RSA-OAEP encrypted block is defined by
SET protocol.

Formatting Information (optional)

DES-ONLY DES decryption only is to be performed; no RSA-OAEP block
decryption will be performed. (See Usage Notes.)

SET Block Decompose

Chapter 8. Financial Services 493

Table 214. Keywords for SET Block Compose Control Information (continued)

Keyword Meaning

PINBLOCK Specifies that the OAEP block will contain PIN information in
the XDATA field, including an ISO-0 format PIN block. The
DES_key_block must be 128 bytes in length and contain a
IPINENC or OPINENC key. The PIN block will be encrypted
under the PIN encrypting key. The PIN information and the
encrypted PIN block are returned in the XDATA_string
parameter.

RSA_OAEP_block_length

Direction: Input Type: Integer

The length of RSA-OAEP_block must be 128 bytes. This parameter is ignored if
DES-ONLY is specified in the rule-array.

RSA_OAEP_block

Direction: Input Type: String

The RSA-encrypted OAEP-formatted data block. This parameter is ignored if
DES-ONLY is specified in the rule-array.

DES_encrypted_data_block_length

Direction: Input/Output Type: Integer

The length in bytes of the DES-encrypted data block. The input length must be
a multiple of 8 bytes. Updated on return to the length of the decrypted data
returned in data_block. The maximum value of
DES_encrypted_data_block_length is 32MB bytes.

DES_encrypted_data_block

Direction: Input Type: String

The DES-encrypted data block. The data will be decrypted and passed back as
data_block.

initialization_vector

Direction: Input Type: String

An 8-byte string containing the initialization vector to be used for the cipher
block chaining for the DES decryption of the data in the
DES_encrypted_data_block parameter. You must use the same initialization
vector that was used to perform the DES encryption of the data.

RSA_private_key_identifier_length

Direction: Input Type: Integer

The length of the RSA_private_key_identifier field. The maximum size is 2500
bytes. This parameter is ignored if DES-ONLY is specified in the rule-array.

RSA_private_key_identifier

SET Block Decompose

494 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input Type: String

A key label of the RSA private key or an internal token of the RSA private key
to be used to decipher the RSA-OAEP block passed in RSA-OAEP_block. The
modulus bit length of the key must be 1024. This parameter is ignored if
DES-ONLY is specified in the rule-array.

DES_key_block_length

Direction: Input/Output Type: Integer

The length of the DES_key_block. The current length of this field may be 64 or
128 bytes. If rule array keyword PINBLOCK is specified, the length must be 128
bytes.

DES_key_block

Direction: Input/Output Type: String

The DES_key_block contains either one or two DES internal key tokens. If only
one token is specified on input, it contains either a null DES token (or binary
zeros) or (if DES-ONLY is specified) the DES key information returned from a
previous SET Block Decompose service invocation. This is the 64-byte DES
internal key token formed with the DES key which was retrieved from the
RSA-OAEP block and enciphered under the host master key. Your application
must not change this DES key information. If two tokens are specified in the
DES_key_block, the first 64 bytes contain the DES token described previously.
The second 64 bytes, used when PINBLOCK is specified in the rule array,
contains the DES internal token or the CKDS key label of the IPINENC or
OPINENC key used to encrypt the PIN block returned to the caller in the
XDATA_string parameter. If a key label is specified, it must be left-justified and
padded on the right with blanks.

block_contents_identifier

Direction: Output Type: String

A one-byte string, containing the binary value from the block contents (BC) field
of the SET data block (DB). It indicates what data is carried in the actual data
block (ADB) and the format of any extra data (XData_string). This parameter is
ignored if DES-ONLY is specified in the rule-array.

XData_string_length

Direction: Input/Output Type: Integer

The length of a string where the data contained within XData_string will be
returned. The string must be at least 94 bytes in length. The value will be
updated upon exit with the actual length of the returned XData_string. This
parameter is ignored if DES-ONLY is specified in the rule-array.

XData_string

Direction: Output Type: String

Extra-encrypted data contained within the OAEP-processed and RSA-encrypted
block. The format is indicated by block_contents_identifier. The string is treated

SET Block Decompose

Chapter 8. Financial Services 495

by ICSF as a string of hexadecimal digits. The service will always return the
data from the beginning of the XDataString to the end of the SET DB block, a
maximum of 94 bytes of data. The caller must examine the value returned in
block_contents_identifier to determine the actual length of the XDataString. This
parameter is ignored if DES-ONLY is specified in the rule-array.

chaining_vector

Direction: Input/Output Type: String

An 18-byte field that ICSF uses as a system work area. Your application
program must not change the data in this string. This field is ignored by this
service, but must be specified.

data_block

Direction: Output Type: String

The data that was decrypted (passed in as DES_encrypted_data_block). Any
padding characters are removed.

hash_block_length

Direction: Input/Output Type: Integer

The length in bytes of the SHA-1 hash returned in hash_block. On input, this
parameter must be set to the length of the hash_block field. The length must be
at least 20 bytes. On output, this field is updated to reflect the length of the
SHA-1 hash returned in the hash_block field (exactly 20 bytes). This parameter
is ignored if DES-ONLY is specified in the rule_array parameter.

hash_block

Direction: Output Type: String

The SHA-1 hash extracted from the RSA-OAEP block. This parameter is
ignored if DES-ONLY is specified in the rule_array parameter.

Restrictions
Not all CCA implementations support a key label as input in the
RSA_private_key_identifier parameter. Some implementations may only support a
key token.

The RSA private key used by this service must have been generated as a
signature-only key. This restriction does not apply if you are running on the IBM
Eserver zSeries 990 and subsequent releases.

The data_block and the DES_encrypted_data_block cannot overlap.

CCF Systems only: The ANSI system keys must be installed in the CKDS to use
the SET block decompose service on a CDMF-only system.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

SET Block Decompose

496 z/OS V1R13 ICSF Application Programmer's Guide

When the SET Block Decompose service is invoked without the DES-ONLY
keyword, the DES key is retrieved from the RSA-OAEP block and returned in the
key token contained in the DES_key_block. On subsequent calls to the SET Block
Decompose service, a caller can re-use the DES key. The caller of the service must
supply the DES_key_block, the DES_key_block_length, the
DES_encrypted_data_block, the DES_encrypted_data_block_length, the
initialization and chaining vectors, and the rule_array keywords SET1.00 and
DES-ONLY. The RSA private key information, RSA-OAEP block and length, XData
string and length, and hash block and length need not be supplied (although the
parameters must still be specified). For this invocation, the decryption of the
RSA-OAEP block is bypassed; only DES decryption is performed, using the
supplied DES key.

When the SET Block Decompose service is invoked with the PINBLOCK keyword,
DES-ONLY may not also be specified. If both of these rule array keywords are
specified, the service will fail. If PINBLOCK is specified and the
DES_key_block_length field is not 128, the service will fail.

The SET Block Decompose access control point controls the function of this
service. If a PIN-block encrypting key is supplied in the DES_key_block, the access
control point matching the key type of the key must be enabled in the ICSF role.

Table 215. Required access control points for PIN-block encrypting key

PIN-block encrypting key-type Access control point

OPINENC SET Block Decompose - PIN Extension OPINENC

IPINENC SET Block Decompose - PIN Extension IPINENC

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 216. SET block decompose required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

If there is no PCI Cryptographic
Coprocessor available, the request will be
processed on the Cryptographic
Coprocessor Feature.

PCI Cryptographic
Coprocessor

A PCI Cryptographic Coprocessor is
required if:

v the RSA_private_key_identifier specifies a
retained private key

v the RSA_private_key_identifier specifies a
CRT private key

v the PINBLOCK rule array keyword is
specified

The service has a preference for being
processed on a PCI Cryptographic
Coprocessor so that the symmetric key does
not appear in the clear.

SET Block Decompose

Chapter 8. Financial Services 497

|
|
|

||

||

||

||
|

Table 216. SET block decompose required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

z196 Crypto Express3
Coprocessor

Transaction Validation (CSNBTRV and CSNETRV)
The transaction validation callable service supports the generation and validation of
American Express card security codes (CSC). This service generates and verifies
transaction values based on information from the transaction and a cryptographic
key. You select the validation method, and either the generate or verify mode,
through rule-array keywords.

For the American Express process, the control vector supplied with the
cryptographic key must indicate a MAC or MACVER class key. The key may be
single or double length. DATAM and DATAMV keys are not supported. The MAC
generate control vector bit must be on (bit 20) if you request CSC generation and
MAC verify bit (bit 21) must be on if you request verification.

The callable service name for AMODE(64) invocation is CSNETRV.

Format

CALL CSNBTRV(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
transaction_key_identifier_length,
transaction_key_identifier,
transaction_info_length,
transaction_info,
validation_values_length,
validation_values)

SET Block Decompose

498 z/OS V1R13 ICSF Application Programmer's Guide

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
valid values are 1 or 2.

rule_array

Direction: Input Type: Character String

Keywords that provides control information to the callable service. The
keywords are left-justified in an 8-byte field and padded on the right with blanks.
The keywords must be in contiguous storage. Specify one or two of the values
inTable 217.

Table 217. Rule Array Keywords for Transaction Validation

Keyword Meaning

American Express card security codes (required)

CSC-3 3-digit card security code (CSC) located on the signature
panel. VERIFY implied. This is the default.

CSC-4 4-digit card security code (CSC) located on the signature
panel. VERIFY implied.

CSC-5 5-digit card security code (CSC) located on the signature
panel. VERIFY implied.

Transaction Validation

Chapter 8. Financial Services 499

Table 217. Rule Array Keywords for Transaction Validation (continued)

Keyword Meaning

CSC-345 Generate 5-byte, 4-byte, 3-byte values when given an account
number an an expiration date, GENERATE implied.

Operation (optional)

VERIFY Specifies verification of the value presented in the validation
values variable.

GENERATE Specifies generation of the value presented in the validation
values variable.

transaction_key_identifier_length

Direction: Input Type: Integer

The length of the transaction_key_identifier parameter.

transaction_key_identifier

Direction: Input Type: String

The labelname or internal token of a MAC or MACVER class key. Key may be
single or double length.

transaction_info_length

Direction: Input Type: Integer

The length of the transaction_info parameter. For the American Express CSC
codes, the length must be 19.

transaction_info

Direction: Input Type: String

For American Express, this is a 19-byte field containing the concatenation of the
4-byte expiration data (in the format YYMM) and the 15-byte American Express
account number. Provide the information in character format.

validation_values_length

Direction: Input/Output Type: Integer

The length of the validation_values parameter. Maximum value for this field is
64.

validation_values

Direction: Input Type: String

This variable contains American Express CSC values. The data is output for
GENERATE and input for VERIFY.

Transaction Validation

500 z/OS V1R13 ICSF Application Programmer's Guide

Table 218. Output description for validation values

Operation Element Description

GENERATE and
CSC-345

5555544444333 where:

55555 = CSC 5 value
4444 = CSC 4 value
333 = CSC 3 value

VERIFY and CSC-3 333 = CSC 3 value

VERIFY and CSC-4 4444 = CSC 4 value

VERIFY and CSC-5 55555 = CSC 5 value

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

There are additional access control points for this service.

RACF will be invoked to check authorization for using this service and the label
name specified.

The following table shows the access control points in the ICSF role that control the
function of this service.

Table 219. Required access control points for Transaction Validation

Operation keyword Security code keyword Access control point

GENERATE CSC-345 Transaction Validation - Generate

VERIFY CSC-3 Transaction Validation - Verify
CSC-3

VERIFY CSC-4 Transaction Validation - Verify
CSC-4

VERIFY CSC-5 Transaction Validation - Verify
CSC-5

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 220. Transaction validation required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Not supported

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

Requires May 2004 or later version of
Licensed Internal Code (LIC)

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Requires May 2004 or later version of
Licensed Internal Code (LIC)

Transaction Validation

Chapter 8. Financial Services 501

|
|

||

|||

|||

|||
|

|||
|

|||
|
|

Table 220. Transaction validation required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Requires May 2004 or later version of
Licensed Internal Code (LIC)

z196 Crypto Express3
Coprocessor

VISA CVV Service Generate (CSNBCSG and CSNECSG)
Use the VISA CVV Service Generate callable service to generate a:

v VISA Card Verification Value (CVV)

v MasterCard Card Verification Code (CVC)

v Diner’s Club Card Verification Value (CVV)

as defined for track 2.

This service generates a CVV that is based upon the information that the
PAN_data, the expiration_date, and the service_code parameters provide.

The service uses the Key-A and the Key-B keys to cryptographically process this
information. Key-A and Key-B can be single-length DATA or MAC keys or a
combined Key-A, Key-B double length DATA or MAC key. If the requested CVV is
shorter than 5 characters, the CVV is padded on the right by space characters. The
CVV is returned in the 5-byte variable that the CVV_value parameter identifies.
When you verify a CVV, compare the result to the value that the CVV_value
supplies.

The callable service name for AMODE(64) invocation is CSNECSG.

Format

CALL CSNBCSG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PAN_data,
expiration_date,
service_code,
CVV_key_A_Identifier,
CVV_key_B_Identifier,
CVV_value)

Parameters
return_code

Direction: Output Type: Integer

Transaction Validation

502 z/OS V1R13 ICSF Application Programmer's Guide

|
|

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
parameter rule_array_count must be 0, 1, or 2.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justified in 8-byte fields, and padded on the right with blanks. All keywords
must be in contiguous storage.

Table 221. CVV Generate Rule Array Keywords

Keyword Meaning

PAN data length (optional)

PAN-13 Specifies that the length of the PAN data is 13 bytes.
PAN-13 is the default value.

PAN-14 Specifies that the length of the PAN data is 14 bytes.

PAN-15 Specifies that the length of the PAN data is 15 bytes.

PAN-16 Specifies that the length of the PAN data is 16 bytes.

PAN-17 Specifies that the length of the PAN data is 17 bytes.

PAN-18 Specifies that the length of the PAN data is 18 bytes.

PAN-19 Specifies that the length of the PAN data is 19 bytes.
Requires z990, z890, z9 EC or z9 BC with Jan. 2005 or
higher version of Licensed Internal Code (LIC).

CVV length (optional)

VISA CVV Service Generate

Chapter 8. Financial Services 503

Table 221. CVV Generate Rule Array Keywords (continued)

Keyword Meaning

CVV-1 Specifies that the CVV is to be computed as one byte,
followed by 4 blanks. CVV-1 is the default value.

CVV-2 Specifies that the CVV is to be computed as 2 bytes,
followed by 3 blanks.

CVV-3 Specifies that the CVV is to be computed as 3 bytes,
followed by 2 blanks.

CVV-4 Specifies that the CVV is to be computed as 4 bytes,
followed by 1 blank.

CVV-5 Specifies that the CVV is to be computed as 5 bytes.

PAN_data

Direction: Input Type: String

The PAN_data parameter specifies an address that points to the place in
application data storage that contains personal account number (PAN)
information in character form. The PAN is the account number as defined for
the track-2 magnetic-stripe standards.

v If the PAN-13 keyword is specified in the rule array, 13 characters are
processed.

v If the PAN-14 keyword is specified in the rule array, 14 characters are
processed.

v If the PAN-15 keyword is specified in the rule array, 15 characters are
processed.

v If the PAN-16 keyword is specified in the rule array, 16 characters are
processed.

v If the PAN-17 keyword is specified in the rule array, 17 characters are
processed.

v If the PAN-18 keyword is specified in the rule array, 18 characters are
processed.

v If the PAN-19 keyword is specified in the rule array, 19 characters are
processed.

Even if you specify the PAN-13, PAN-14 or PAN-15 keywords, the server might
copy 16 bytes to a work area. Therefore ensure that the callable service can
address 16 bytes of storage.

expiration_date

Direction: Input Type: String

The expiration_date parameter specifies an address that points to the place in
application data storage that contains the card expiration date in numeric
character form in a 4-byte field. The application programmer must determine
whether the CVV will be calculated with the date form of YYMM or MMYY.

service_code

Direction: Input Type: String

VISA CVV Service Generate

504 z/OS V1R13 ICSF Application Programmer's Guide

The service_code parameter specifies an address that points to the place in
application data storage that contains the service code in numeric character
form in a 3-byte field. The service code is the number that the track-2
magnetic-stripe standards define. The service code of '000' is supported.

CVV_key_A_Identifier

Direction: Input/Output Type: String

A 64-byte string that is the internal key token containing a single- or
double-length DATA or MAC key or the label of a CKDS record containing a
single- or double-length DATA or MAC key.

When this key is a double-length key, CVV_key_B_identifier must be 64 byte of
binary zero. When a double-length MAC key is used, the CV bits 0-3 must
indicate a CVVKEY-A key (0010).

A single-length key contains the key-A key that encrypts information in the CVV
process. The left half of a double-length key contains the key-A key that
encrypts information in the CVV process and the right half contains the key-B
key that decrypts information.

CVV_key_B_Identifier

Direction: Input/Output Type: String

A 64-byte string that is the internal key token containing a single-length DATA or
MAC key or the label of a CKDS record containing a single-length DATA or
MAC key. When CVV_key_A_identifier a double-length key, this parameter must
be 64 byte of binary zero. The key contains the key-B key that decrypts
information in the CVV process.

CVV_value

Direction: Output Type: String

The CVV_value parameter specifies an address that points to the place in
application data storage that will be used to store the computed 5-byte
character output value.

Restrictions
The CVV generate callable service is not supported on CCF systems with a
CDMF-only configuration.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

PAN-19 requires the z990, z890, z9 EC, z9 BC, z10 EC or z10 BC with Jan. 2005
or higher version of Licensed Internal Code (LIC).

The VISA CVV Generate access control point controls the function of this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

VISA CVV Service Generate

Chapter 8. Financial Services 505

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|

Table 222. VISA CVV service generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

The request is processed on the CCF if
Key-A and Key-B are both DATA keys. MAC
and MACVER keys are not supported.

PAN-14, PAN-15, PAN-17, PAN-18 and
PAN-19 are not supported.

PCI Cryptographic
Coprocessor

The request is processed on a PCICC if
Key-A or Key-B is a MAC key. MACVER
keys are not supported.

PAN-14, PAN-15, PAN-17, PAN-18 and
PAN-19 are not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

MACVER keys are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

MACVER keys are not supported.

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

MACVER keys are not supported.

z196 Crypto Express3
Coprocessor

MACVER keys are not supported.

Combined CVV keys require the Sep. 2011
or later licensed internal code (LIC).

VISA CVV Service Verify (CSNBCSV and CSNECSV)
Use the VISA CVV Service Verify callable service to verify a:

v VISA Card Verification Value (CVV)

v MasterCard Card Verification Code (CVC)

v Diner’s Club Card Verification Value (CVV)

as defined for track 2.

This service verifies a CVV that is based upon the information that the PAN_data,
the expiration_date, and the service_code parameters provide.

The service uses the Key-A and the Key-B keys to cryptographically process this
information. If the requested CVV is shorter than 5 characters, the CVV is padded
on the right by space characters. On an IBM zSeries 900 or lower, the user must
pad out the CVV_value parameter with blanks if the supplied CVV is less than 5
characters. The generated CVV is then compared to the value that the CVV_value
supplies for verification.

The callable service name for AMODE(64) invocation is CSNECSV.

VISA CVV Service Generate

506 z/OS V1R13 ICSF Application Programmer's Guide

|
|

Format

CALL CSNBCSV(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PAN_data,
expiration_date,
service_code,
CVV_key_A_Identifier,
CVV_key_B_Identifier,
CVV_value)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
parameter rule_array_count must be 0, 1, or 2.

rule_array

Direction: Input Type: String

VISA CVV Service Verify

Chapter 8. Financial Services 507

Keywords that provide control information to the callable service. Each keyword
is left-justified in 8-byte fields, and padded on the right with blanks. All keywords
must be in contiguous storage.

Table 223. CVV Verify Rule Array Keywords

Keyword Meaning

PAN data length (optional)

PAN-13 Specifies that the length of the PAN data is 13 bytes.
PAN-13 is the default value.

PAN-14 Specifies that the length of the PAN data is 14 bytes.

PAN-15 Specifies that the length of the PAN data is 15 bytes.

PAN-16 Specifies that the length of the PAN data is 16 bytes.

PAN-17 Specifies that the length of the PAN data is 17 bytes.

PAN-18 Specifies that the length of the PAN data is 18 bytes.

PAN-19 Specifies that the length of the PAN data is 19 bytes.
Requires z990, z890, z9 EC or z9 BC with Jan. 2005 or
higher version of Licensed Internal Code (LIC).

CVV length (optional)

CVV-1 Specifies that the CVV is to be computed as one byte,
followed by 4 blanks. CVV-1 is the default value.

CVV-2 Specifies that the CVV is to be computed as 2 bytes,
followed by 3 blanks.

CVV-3 Specifies that the CVV is to be computed as 3 bytes,
followed by 2 blanks.

CVV-4 Specifies that the CVV is to be computed as 4 bytes,
followed by 1 blank.

CVV-5 Specifies that the CVV is to be computed as 5 bytes.

PAN_data

Direction: Input Type: String

The PAN_data parameter specifies an address that points to the place in
application data storage that contains personal account number (PAN)
information in character form. The PAN is the account number as defined for
the track-2 magnetic-stripe standards.

v If the PAN-13 keyword is specified in the rule array, 13 characters are
processed.

v If the PAN-14 keyword is specified in the rule array, 14 characters are
processed.

v If the PAN-15 keyword is specified in the rule array, 15 characters are
processed.

v If the PAN-16 keyword is specified in the rule array, 16 characters are
processed.

v If the PAN-17 keyword is specified in the rule array, 17 characters are
processed.

v If the PAN-18 keyword is specified in the rule array, 18 characters are
processed.

v If the PAN-19 keyword is specified in the rule array, 19 characters are
processed.

VISA CVV Service Verify

508 z/OS V1R13 ICSF Application Programmer's Guide

Even if you specify the PAN-13, PAN-14 or PAN-15 keywords, the server might
copy 16 bytes to a work area. Therefore ensure that the callable service can
address 16 bytes of storage.

expiration_date

Direction: Input Type: String

The expiration_date parameter specifies an address that points to the place in
application data storage that contains the card expiration date in numeric
character form in a 4-byte field. The application programmer must determine
whether the CVV will be calculated with the date form of YYMM or MMYY.

service_code

Direction: Input Type: String

The service_code parameter specifies an address that points to the place in
application data storage that contains the service code in numeric character
form in a 3-byte field. The service code is the number that the track-2
magnetic-stripe standards define. The service code of '000' is supported.

CVV_key_A_Identifier

Direction: Input/Output Type: String

A 64-byte string that is the internal key token containing a single- or
double-length DATA or MAC key or the label of a CKDS record containing a
single- or double-length DATA or MAC key.

When this key is a double-length key, CVV_key_B_identifier must be 64 byte of
binary zero. When a double-length MAC key is used, the CV bits 0-3 must
indicate a CVVKEY-A key (0010).

A single-length key contains the key-A key that encrypts information in the CVV
process. The left half of a double-length key contains the key-A key that
encrypts information in the CVV process and the right half contains the key-B
key that decrypts information.

CVV_key_B_Identifier

Direction: Input/Output Type: String

A 64-byte string that is the internal key token containing a single-length DATA or
MAC key or the label of a CKDS record containing a single-length DATA or
MAC key. When CVV_key_A_identifier a double-length key, this parameter must
be 64 byte of binary zero. The key contains the key-B key that decrypts
information in the CVV process.

CVV_value

Direction: Input Type: String

The CVV_value parameter specifies an address that contains the CVV value
which will be compared to the computed CVV value. This is a 5-byte field.

On an IBM zSeries 900, the user must pad out the CVV_value parameter with
blanks if the supplied CVV is less than 5 characters.

VISA CVV Service Verify

Chapter 8. Financial Services 509

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

Restrictions
The CVV verify callable service is not supported on CCF systems with a
CDMF-only configuration..

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

PAN-19 requires the z990, z890, z9 EC, z9 BC, z10 EC or z10 BC with Jan. 2005
or higher version of Licensed Internal Code (LIC).

The VISA CVV Verify access control point controls the function of this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 224. VISA CVV service verify required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

The request is processed on the CCF if
Key-A and Key-B are both DATA keys. MAC
and MACVER keys are not supported.

PAN-14, PAN-15, PAN-17, PAN-18 and
PAN-19 are not supported.

PCI Cryptographic
Coprocessor

The request is processed on a PCICC if
Key-A or Key-B is a MAC or MACVER key.

PAN-14, PAN-15, PAN-17, PAN-18 and
PAN-19 are not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

z196 Crypto Express3
Coprocessor

Combined CVV keys require the Sep. 2011
or later licensed internal code (LIC).

VISA CVV Service Verify

510 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|

Chapter 9. Using Digital Signatures

This topic describes the PKA callable services that support using digital signatures
to authenticate messages.
v “Digital Signature Generate (CSNDDSG and CSNFDSG)”
v “Digital Signature Verify (CSNDDSV and CSNFDSV)” on page 518

Digital Signature Generate (CSNDDSG and CSNFDSG)
Use the digital signature generate callable service to generate a digital signature
using a PKA private key. The digital signature generate callable service may use an
RSA, DSS, or ECC private key, depending on the algorithm you are using. DSS is
not supported on the PCIXCC, CEX2C, or CEX3C.

The PKA private key must be valid for signature usage. This service supports these
methods:

v ANSI X9.30 (DSS)

v ANSI X9.30 (ECDSA)

v ANSI X9.31 (RSA)

v ISO 9796-1 (RSA)

v RSA DSI PKCS 1.0 and 1.1 (RSA)

v Padding on the left with zeros (RSA)

Note: The maximum signature length is 512 bytes (4096 bits).

The input text should have been previously hashed using either the one-way hash
generate callable service or the MDC generation callable service. If the signature
formatting algorithm specifies ANSI X9.31, you must specify the hash algorithm
used to hash the text (SHA-1 or RPMD-160). See “Formatting Hashes and Keys in
Public-Key Cryptography” on page 885.

If the PKA_private_key_identifier specifies an RSA private key, you select the
method of formatting the text through the rule_array parameter. If the
PKA_private_key_identifier specifies a DSS private key, the DSS signature
generated is according to ANSI X9.30. For DSS, the signature is generated on a
20-byte hash created from SHA-1 algorithm. If the PKA_private_key_identifier
specifies an ECC private key, the ECC signature generated is according to ANSI
X9.30.

Note: For PKCS the message digest and the message-digest algorithm identifier
are combined into an ASN.1 value of type DigestInfo, which is BER-encoded
to give an octet string D (see Table 225). D is the text string supplied in the
hash variable.

The callable service name for AMODE(64) invocation is CSNFDSG.

© Copyright IBM Corp. 1997, 2011 511

Format

CALL CSNDDSG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PKA_private_key_identifier_length,
PKA_private_key_identifier,
hash_length,
hash,
signature_field_length,
signature_bit_length,
signature_field)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value may be 0 1, 2, or 3.

rule_array

Direction: Input Type: String

Digital Signature Generate

512 z/OS V1R13 ICSF Application Programmer's Guide

Keywords that provide control information to the callable service. One keyword
specifies the method for calculating the digital signature. Another keyword
specifies formatting of the hash value for RSA digital signature generation. A
third keyword specifies the hash method used to prepare the hash value for
RSA digital signature generation. Table 225 lists the keywords. Each keyword is
left-justified in an 8-byte field and padded on the right with blanks. All keywords
must be in contiguous storage.

Table 225. Keywords for Digital Signature Generate Control Information

Keyword Meaning

Digital Signature Formatting Method (optional, valid for RSA digital signature
generation only)

ISO-9796 Calculate the digital signature on the hash according to
ISO-9796-1. Any hash method is allowed. This is the
default.

PKCS-1.0 Calculate the digital signature on the BER-encoded
ASN.1 value of the type DigestInfo containing the hash
according to the RSA Data Security, Inc. Public Key
Cryptography Standards #1 block type 00. The text
must have been hashed prior to inputting to this
service.

PKCS-1.1 Calculate the digital signature on the BER-encoded
ASN.1 value of the type DigestInfo containing the hash
according to the RSA Data Security, Inc. Public Key
Cryptography Standards #1 block type 01. The text
must have been hashed prior to inputting to this
service.

ZERO-PAD Format the hash by padding it on the left with binary
zeros to the length of the RSA key modulus. Any
supported hash function is allowed.

X9.31 Format according to the ANSI X9.31 standard. The
input text must have been previously hashed with one
of these hash algorithms:

Hash Method Specification: Required with X9.31

RPMD-160 Hash the input text using the RIPEMD-160 hash
method.

SHA-1 Hash the input text using the SHA-1 hash method.

Signature algorithm (optional, supported on the CEX3C coprocessor)

RSA RSA or DSS processing is to occur.

ECDSA The elliptic curve digital signature algorithm is to be
used. When specified, this is the only keyword
permitted in the Rule Array.

PKA_private_key_identifier_length

Direction: Input Type: Integer

The length of the PKA_private_key_identifier field. The maximum size is 3500
bytes.

PKA_private_key_identifier

Direction: Input Type: String

Digital Signature Generate

Chapter 9. Using Digital Signatures 513

An internal token or label of an RSA or DSS private key or Retained key. If the
signature format is X9.31, the modulus of the RSA key must have a length of at
least 1024 bits. If the signature algorithm is ECDSA, this must be a token or
label of an ECC private key.

hash_length

Direction: Input Type: Integer

The length of the hash parameter in bytes. It must be the exact length of the
text to sign. The maximum size is 512 bytes. If you specify ZERO-PAD in the
rule_array parameter, the length is restricted to 36 bytes unless the RSA key is
a signature only key, then the maximum length is 512 bytes.

On the IBM Eserver zSeries 990 and subsequent releases, the hash length
limit is controlled by a new access control point. Only RSA key management
keys are affected by this access control point. The limit for RSA signature use
only keys is 512 bytes. This new access control point is always disabled in the
Default role. You must have a TKE workstation to enable it.

hash

Direction: Input Type: String

The application-supplied text on which to generate the signature. The input text
must have been previously hashed, and for PKCS formatting, it must be
BER-encoded as previously described. For X9.31, the hash algorithms must
have been either SHA-1 or RIPEMD-160. See the rule_array parameter for
more information.

signature_field_length

Direction: Input/Output Type: Integer

The length in bytes of the signature_field to contain the generated digital
signature. Upon return, this field contains the actual length of the generated
signature. The maximum size is 512 bytes.

Note: For RSA, this must be at least the RSA modulus size (rounded up to a
multiple of 32 bytes for the X9.31 signature format, or one byte for all
other signature formats). For DSS, this must be at least 40 bytes.

For RSA and DSS, this field is updated with the minimum byte length of
the digital signature.

For ECDSA, signature algorithm R concatenated with S is the digital
signature. The maximum output value will be 1042 bits (131 bytes). The
size of the signature is determined by the size of P. Both R and S will
have size P. For prime curves, the maximum is 2 * 521 bits. For brain
pool curves, the maximum size is 2 * 512 bits.

signature_bit_length

Direction: Output Type: Integer

The bit length of the digital signature generated. For ISO-9796 this is 1 less
than the modulus length. For other RSA processing methods, this is the
modulus length. For DSS, this is 320.

Digital Signature Generate

514 z/OS V1R13 ICSF Application Programmer's Guide

signature_field

Direction: Output Type: String

The digital signature generated is returned in this field. The digital signature is
in the low-order bits (right-justified) of a string whose length is the minimum
number of bytes that can contain the digital signature. This string is left-justified
within the signature_field. Any unused bytes to the right are undefined.

Restrictions
Although ISO-9796 does not require the input hash to be an integral number of
bytes in length, this service requires you to specify the hash_length in bytes.

X9.31 requires the RSA token to have a modulus bit length of at least 1024 bits and
the length must also be a multiple of 256 bits (or 32 bytes).

The length of the hash parameter in bytes. It must be the exact length of the text to
sign. The maximum size is 512 bytes. If you specify ZERO-PAD in the rule_array
parameter, the length is restricted to 36 bytes unless the RSA key is a signature
only key, then the maximum length is 512 bytes.

On the IBM Eserver zSeries 990 and subsequent releases, the hash length limit is
controlled by a new access control point. If OFF (disabled), the maximum hash
length limit for ZERO-PAD is the modulus length of the PKA private key. If ON
(enabled), the maximum hash length limit for ZERO-PAD is 36 bytes. Only RSA key
management keys are affected by this access control point. The limit for RSA
signature use only keys is 512 bytes. This new access control point is always
disabled in the Default role. You must have a TKE workstation to enable it.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The Digital Signature Generate access control point controls the function of this
service.

The length of the hash for ZERO-PAD is restricted to 36 bytes. If the DSG
ZERO-PAD unrestricted hash length access control point is enabled in the ICSF
role, the length of the hash is not restricted. This access control is disabled by
default.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Digital Signature Generate

Chapter 9. Using Digital Signatures 515

|
|

|
|
|
|

Table 226. Digital signature generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

ECC not supported.

The request is processed on the CCF when:

v the modulus bit length of the RSA key is
less than 512 bits

v the key specified is a DSS key

v the key specified is a X'02' private
modulus-exponent RSA key

v the key specified is a X'06' private
modulus-exponent RSA key and the key
use bits indicate signature only

v the key specified is a X'06' private
modulus-exponent RSA key and the key
use bits indicate key-management use
and the SMK is equal to the KMMK

RSA keys with moduli greater than 1024-bit
length are not supported.

PCI Cryptographic
Coprocessor

ECC not supported.

The request is processed on the PCICC
when

v the key specified is a X'08' CRT RSA key

v the key specified is a retained key. The
request will be routed to the specific
coprocessor of the retained key.

v the key specified is a X'06' private
modulus-exponent RSA key and the key
use bits indicate signature only

v the key specified is a X'06' private
modulus-exponent RSA key and the key
use bits indicate key-management use
and the SMK is equal to the KMMK

v the key specified is a X'06' private
modulus-exponent RSA key and the key
use bits indicate key-management use
and the SMK is not equal to the KMMK

RSA keys with moduli greater than 2048-bit
length are not supported.

Digital Signature Generate

516 z/OS V1R13 ICSF Application Programmer's Guide

Table 226. Digital signature generate required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ECC not supported.

DSS tokens are not supported.

ZERO-PAD hash length is controlled by an
access control point. When enabled, the
hash length limit is 36 bytes. When
disabled, the hash length limit is the
modulus byte length of the RSA key. This
access control point is always disabled and
can only be enabled with TKE V4.0 or
higher.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

ECC not supported.

DSS tokens are not supported.

ZERO-PAD hash length is controlled by an
access control point. When enabled, the
hash length limit is 36 bytes. When
disabled, the hash length limit is the
modulus byte length of the RSA key. This
access control point is always disabled and
can only be enabled with TKE V4.0 or
higher.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Digital Signature Generate

Chapter 9. Using Digital Signatures 517

Table 226. Digital signature generate required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

ECC not supported.

DSS tokens are not supported.

ZERO-PAD hash length is controlled by an
access control point. When enabled, the
hash length limit is 36 bytes. When
disabled, the hash length limit is the
modulus byte length of the RSA key. This
access control point is always disabled and
can only be enabled with TKE V4.0 or
higher.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express3
Coprocessor

ZERO-PAD hash length is controlled by an
access control point. When enabled, the
hash length limit is 36 bytes. When
disabled, the hash length limit is the
modulus byte length of the RSA key. This
access control point is always disabled and
can only be enabled with TKE V4.0 or
higher.

DSS tokens are not supported.

ECC not supported.

z196 Crypto Express3
Coprocessor

ZERO-PAD hash length is controlled by an
access control point. When enabled, the
hash length limit is 36 bytes. When
disabled, the hash length limit is the
modulus byte length of the RSA key. This
access control point is always disabled and
can only be enabled with TKE V4.0 or
higher.

DSS tokens are not supported.

Digital Signature Verify (CSNDDSV and CSNFDSV)
Use the digital signature verify callable service to verify a digital signature using a
PKA public key.

v The digital signature verify callable service can use the RSA, DSS, or ECC public
key, depending on the digital signature algorithm used to generate the signature.
DSS is supported only on the IBM Eserver zSeries 900.

v The digital signature verify callable service can also use the public keys that are
contained in trusted blocks regardless of whether the block also contains rules to
govern its use when generating or exporting keys with the RKX service. If the
TPK-ONLY keyword is used in the rule_array, an error will occur if the
PKA_public_key_identifier does not contain a trusted block.

This service supports these methods:

Digital Signature Generate

518 z/OS V1R13 ICSF Application Programmer's Guide

v ANSI X9.30 (DSS and ECC)

v ANSI X9.31 (RSA)

v ISO 9796 (RSA)

v RSA DSI PKCS 1.0 and 1.1 (RSA)

v Padding on the left with zeros (RSA)

Input text should have been previously hashed. You can use either the one-way
hash generate callable service or the MDC generation callable service. See also
“Formatting Hashes and Keys in Public-Key Cryptography” on page 885.

Note: The maximum signature length is 512 bytes.

The callable service name for AMODE(64) invocation is CSNFDSV.

Format

CALL CSNDDSV(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
PKA_public_key_identifier_length,
PKA_public_key_identifier,
hash_length,
hash,
signature_field_length,
signature_field)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Digital Signature Verify

Chapter 9. Using Digital Signatures 519

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 0, 1, or 2.

rule_array

Direction: Input Type: String

Contains an array of keywords that provide control information to the callable
service. One keyword specifies the method to use to verify the RSA digital
signature. Another keyword specifies the input token is a Trusted Block. A third
keyword specifies the algorithm used to validate the signature. Table 227 lists
the keywords. Each keyword is left-justified in an 8-byte field and padded on the
right with blanks. All keywords must be in contiguous storage.

Table 227. Keywords for Digital Signature Verify Control Information

Keyword Meaning

Digital Signature Formatting Method (optional, RSA only)

X9.31 Format according to the ANSI X9.31 standard.

ISO-9796 Calculate the digital signature on the hash according to ISO 9796-1.
Any hash method is allowed. This is the default.

PKCS-1.0 Calculate the digital signature on the BER-encoded ASN.1 value of
the type DigestInfo containing the hash according to the RSA Data
Security, Inc., Public Key Cryptography Standards #1 block type 00
and compare to the digital signature. The text must have been
hashed prior to inputting to this service.

PKCS-1.1 Calculate the digital signature on the BER-encoded ASN.1 value of
the type DigestInfo containing the hash according to the RSA Data
Security, Inc., Public Key Cryptography Standards #1 block type 01
and compare to the digital signature. The text must have been
hashed prior to inputting to this service.

ZERO-PAD Format the hash by padding it on the left with binary zeros to the
length of the PKA key modulus. Any supported hash function is
allowed.

PKA public key token type (one, optional)

TPK-ONLY The PKA_public_key_identifier must be a trusted block that contains,
at a minimum, two sections:

1. Trusted Block Information section 0x14 which is required for all
trusted blocks and

2. Trusted Public Key section 0x11 which contains the trusted
public key and usage rules that indicate whether or not the
trusted public key can be used in digital signature operations.

Signature Algorithm (optional, supported on the CEX3C coprocessor)

RSA RSA or DSS processing is to occur. This is the default value.

ECDSA The elliptic curve digital signature algorithm is to be used. When
specified, this is the only keyword permitted in the Rule Array.

Digital Signature Verify

520 z/OS V1R13 ICSF Application Programmer's Guide

PKA_public_key_identifier_length

Direction: Input Type: Integer

The length of the PKA_public_key_identifier parameter containing the public key
token or label. The maximum size is 3500 bytes.

PKA_public_key_identifier

Direction: Input Type: String

A token or label of the RSA or DSS public key or internal trusted block. If this
parameter contains a token or the label of an Internal Trusted Block, the
rule_array parameter must specify TPK-ONLY. If the signature algorithm is
ECDSA, this must be a token label of an ECC public key.

hash_length

Direction: Input Type: Integer

The length of the hash parameter in bytes. It must be the exact length of the
text that was signed. The maximum size is 512 bytes.

hash

Direction: Input Type: String

The application-supplied text on which the supplied signature was generated.
The text must have been previously hashed and, for PKCS formatting,
BER-encoded as previously described.

signature_field_length

Direction: Input Type: Integer

The length in bytes of the signature_field parameter. The maximum size is 512
bytes.

signature_field

Direction: Input Type: String

This field contains the digital signature to verify. The digital signature is in the
low-order bits (right-justified) of a string whose length is the minimum number of
bytes that can contain the digital signature. This string is left-justified within the
signature_field.

Restrictions
The ability to recover a message from a signature (which ISO-9796 allows but does
not require) is not supported.

The exponent of the RSA public key must be odd.

Although ISO-9796 does not require the input hash to be an integral number of
bytes in length, this service requires you to specify the hash_length in bytes.

Digital Signature Verify

Chapter 9. Using Digital Signatures 521

|
|
|
|

X9.31 requires the RSA token to have a modulus bit length of at least 1024 bits and
the length must also be a multiple of 256 bits (or 32 bytes).

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

For DSS if r=0 or s=0 then verification always fails. The DSS digital signature is of
the form r || s, each 20 bytes.

The Digital Signature Verify access control point controls the function of this
service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 228. Digital signature verify required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

ECC not supported.

Trusted key block not supported.

TPK-ONLY keyword not supported.

RSA keys with moduli greater than 1024-bit
length are not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

PCI Cryptographic
Accelerator

ECC not supported.

DSS tokens are not supported.

Trusted key block not supported.

TPK-ONLY keyword not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Crypto Express2
Accelerator

ECC not supported.

DSS tokens are not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express2
Accelerator

ECC not supported.

DSS tokens are not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express3
Coprocessor

Crypto Express3
Accelerator

ECC not supported.

DSS tokens not supported.

Digital Signature Verify

522 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|

Table 228. Digital signature verify required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

z196 Crypto Express3
Coprocessor

Crypto Express3
Accelerator

DSS tokens are not supported.

RSA clear key support with moduli within the
range 2048-bit and 4096-bit requires the
Sep. 2011 or later licensed internal code
(LIC).

Digital Signature Verify

Chapter 9. Using Digital Signatures 523

|
|
|
|

Digital Signature Verify

524 z/OS V1R13 ICSF Application Programmer's Guide

Chapter 10. Managing PKA Cryptographic Keys

This topic describes the callable services that generate and manage PKA keys.
v “PKA Key Generate (CSNDPKG and CSNFPKG)”
v “PKA Key Import (CSNDPKI and CSNFPKI)” on page 531
v “PKA Key Token Build (CSNDPKB and CSNFPKB)” on page 535
v “PKA Key Token Change (CSNDKTC and CSNFKTC)” on page 548
v “PKA Key Translate (CSNDPKT and CSNFPKT)” on page 551
v “PKA Public Key Extract (CSNDPKX and CSNFPKX)” on page 555
v “Retained Key Delete (CSNDRKD and CSNFRKD)” on page 558
v “Retained Key List (CSNDRKL and CSNFRKL)” on page 560

PKA Key Generate (CSNDPKG and CSNFPKG)
Use the PKA key generate callable service to generate these PKA keys:

v PKA internal tokens for use with the DSS algorithm in the digital signature
services

v RSA keys for use on the Cryptographic Coprocessor Feature, PCI Cryptographic
Coprocessor, PCI X Cryptographic Coprocessor, Crypto Express2 Coprocessor,
or Crypto Express3 Coprocessor.

v ECC keys for use on the Crypto Express3 Coprocessor.

Input to the PKA key generate callable service is either a skeleton key token that
has been built by the PKA key token build service or a valid internal RSA token.
PKG will generate a key with the same modulus length and the same exponent. In
the case of a valid internal ECC token, PKG will generate a key based on the curve
type and size. Internal tokens with a X'09' section are not supported.

DSS key generation requires this information in the input skeleton token:
v Size of modulus p in bits
v Prime modulus p
v Prime divisor q
v Public generator g
v Optionally, the private key name

DSS standards define restrictions on p, q, and g. (Refer to the Federal Information
Processing Standard (FIPS) Publication 186 for DSS standards.) This callable
service does not verify all of these restrictions. If you do not follow these
restrictions, the keys you generate may not be valid DSS keys. The PKA Key Token
Build service or an existing internal or external PKA DSS token can generate the
input skeleton token, but all of the preceding must be provided. You can extract the
DSS public key token from the internal private key token by calling the PKA public
key extract callable service.

Note: DSS keys are not supported on a PCIXCC, CEX2C, or CEX3C.

RSA key generation requires this information in the input skeleton token:
v Size of the modulus in bits. The modulus for modulus-exponent form keys is

between 512 and 1024. The CRT modulus is between 512 and 4096. The
modulus for the variable-length-modulus-exponent form is between 512 and
4096.

RSA key generation has these restrictions: For modulus-exponent, there are
restrictions on modulus, public exponent, and private exponent. For CRT, there are

© Copyright IBM Corp. 1997, 2011 525

restrictions on dp, dq, U, and public exponent. See the Key value structure in “PKA
Key Token Build (CSNDPKB and CSNFPKB)” on page 535 for a summary of
restrictions.

Note: The Transaction Security System PKA96 PKA key generate verb supports
RSA key generation only; it does not support DSS key generation.

ECC key generation requires this information in the skeleton token:

v The key type: ECC

v The type of curve: Prime or Brainpool

v The size of P in bits: 192, 224, 256, 384 or 521 for Prime curves and 160, 192,
224, 256, 320, 384, or 512 for Brainpool curves

v Key usage information

v Optionally, application associated data

The generated ECC private key will be returned in one of the following forms:

v Clear key

v Encrypted key enciphered under the ECC master key

v Encrypted key enciphered by an AES transport key

The callable service name for AMODE(64) invocation is CSNFPKG.

Format

CALL CSNDPKG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
regeneration_data_length,
regeneration_data,
skeleton_key_identifier_length,
skeleton_key_identifier,
transport_key_identifier,
generated_key_token_length,
generated_key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

PKA Key Generate

526 z/OS V1R13 ICSF Application Programmer's Guide

|

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. Value may
be 1 or 2.

rule_array

Direction: Input Type: String

A keyword that provides control information to the callable service. See
Table 229 for a list. A keyword is left-justified in an 8-byte field and padded on
the right with blanks.

Table 229. Keywords for PKA Key Generate Rule Array

Keyword Meaning

Private Key Encryption (required)

CLEAR Return the private key in clear text. The private key in clear
text is an external token. Only valid for RSA and ECC keys.

MASTER Encipher the private key under the master key. The keyword
is not supported if a skeleton token with a X'09' section is
provided.

RETAIN Retain the private key within a cryptographic coprocessor for
additional security. This is only valid for RSA signature keys.
Because of this, the RETAIN keyword is not supported for:

v a skeleton token with a X'09' section provided.

v an ECC token.

XPORT Encipher the private key under the transport_key_identifier.
This keyword is valid only for RSA and ECC keys.

Options (optional)

CLONE Mark a generated and retained private key as usable in
cryptographic engine cloning process. This keyword is
supported only if RETAIN is also specified. Only valid for
RSA keys. The keyword is not supported for:

v a skeleton token with a X'09' section is provided.

v an ECC token.

Processing Controls (Optional when regeneration_data_length is non-zero)

PKA Key Generate

Chapter 10. Managing PKA Cryptographic Keys 527

|

|

Table 229. Keywords for PKA Key Generate Rule Array (continued)

Keyword Meaning

ITER-38 When regeneration_data is specified, this keyword will cause
the service to generate key values that are FIPS and ANSI
X9.31 compliant.

Transport Key Type (one optional)

OKEK-DES The transport key identifier identifies a DES KEK token. This
is the default value.

OKEK-AES The transport key identifier identifies an AES KEK token.

regeneration_data_length

Direction: Input Type: Integer

The value must be 0 for DSS and ECC tokens. For RSA tokens, the
regeneration_data_length can be non-zero. If it is non-zero, it must be between
8 and 512 bytes inclusive.

regeneration_data

Direction: Input Type: String

This field points to a string variable containing a string used as the basis for
creating a particular public-private key pair in a repeatable manner.

skeleton_key_identifier_length

Direction: Input Type: Integer

The length of the skeleton_key_identifier parameter in bytes. The maximum
allowed value is 3500 bytes.

skeleton_key_identifier

Direction: Input Type: String

The application-supplied skeleton key token generated by PKA key token build
or label of the token that contains the required network quantities for DSS key
generation, the required curve type and bit length for ECC key generation, or
the required modulus length and public exponent for RSA key generation. If
RETAIN was specified and the skeleton_key_identifier is a label, the label must
match the private key name of the key.

For DSS and RSA keys, the skeleton_key_identifier parameter must contain a
token which specifies a modulus length in the range 512 – 4096 bits.

transport_key_identifier

Direction: Input Type: String

A variable-length field containing an AES or DES key identifier used to encrypt
the generated key. For RSA keys this must be a DES transport key and for
ECC keys this must be an AES transport key.

If the XPORT Rule is not specified or the key being generated is a DSS key,
this parameter must be 64 bytes of binary zeros.

PKA Key Generate

528 z/OS V1R13 ICSF Application Programmer's Guide

||
|
|

|

||
|

||

|

|||
|

|
|
|

|
|

For XPORT rule, this is an IMPORTER or EXPORTER key or the label of an
IMPORTER or EXPORTER key. If you specify a label, it must resolve uniquely
to either an IMPORTER or EXPORTER key. This parameter is a:

v 64-byte label of a CKDS record that contains the transport key.

v 64-byte DES internal key token containing the transport key.

v a variable-length AES internal key token containing the transport key.

generated_key_token_length

Direction: Input/Output Type: Integer

The length of the generated key token. The field is checked to ensure it is at
least equal to the token being returned. The maximum size is 3500 bytes. On
output, this field is updated with the actual token length.

generated_key_token

Direction: Input/Output Type: String

The internal token or label of the generated DSS, ECC, or RSA key. The label
can be that of a retained key for most RSA key tokens.

Checks are made to ensure that:

v An ECC Token in the PKDS will only be overlayed if an ECC token is
specified in the skeleton_key_identifier

v A retained key is not overlayed in PKDS. If the label is that of a retained key,
the private name in the token must match the label name. If a label is
specified in the generated_key_token field, the generated_key_token_length
returned to the application will be the same as the input length. If RETAIN
was specified, but the generated_key_token was not specified as a label, the
generated key length returned to the application will be zero (the key was
retained in the PCI Cryptographic Coprocessor). If the record already exists
in the PKDS with the same label as the one specified as the
generated_key_token, the record will be overwritten with the newly generated
key token (unless the PKDS record is an existing retained private key, in
which case it cannot be overwritten). If there is no existing PKDS record with
this label in the case of generating a retained key, a record will be created.
For generation of a non-retained key, if a label is specified in the
generated_key_token field, a record must already exist in the PKDS with this
same label or the service will fail.

v A retained key is not overlayed in PKDS. If the label is that of a retained key,
the private name in the token must match the label name. If a label is
specified in the generated_key_token field, the generated_key_token_length
returned to the application will be the same as the input length. If RETAIN
was specified, but the generated_key_token was not specified as a label, the
generated key length returned to the application will be zero (the key was
retained in the PCI Cryptographic Coprocessor). If the record already exists
in the PKDS with the same label as the one specified as the
generated_key_token, the record will be overwritten with the newly generated
key token (unless the PKDS record is an existing retained private key, in
which case it cannot be overwritten). If there is no existing PKDS record with
this label in the case of generating a retained key, a record will be created.
For generation of a non-retained key, if a label is specified in the
generated_key_token field, a record must already exist in the PKDS with this
same label or the service will fail.

PKA Key Generate

Chapter 10. Managing PKA Cryptographic Keys 529

|
|
|

|

|

|

Restrictions
2048-bit RSA keys may have a public exponent in the range of 1-256 bytes.
4096-bit RSA key public exponents are restricted to the values 3 and 65537.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

The PKA Key Generate access control point controls the function of this service.
Additional access control points control the use of rule array keys.

Table 230. Required access control points for PKA Key Generate rule array keys

Key algorithm Rule array keyword Access control point

RSA CLEAR PKA Key Generate – Clear RSA
keys

ECC CLEAR PKA Key Generate – Clear ECC
keys

RSA CLONE PKA Key Generate - Clone

To generate keys based on the value supplied in the regeneration_data variable,
you must enable at least one of these access control points:

v When not using the RETAIN keyword, PKA Key Generate - Permit
Regeneration Data

v When using the RETAIN keyword, PKA Key Generate - Permit Regeneration
Data Retain

For ECC keys, when an transport key is specified, the Variable-length Symmetric
Token - disallow weak wrap access control point can be enabled in the active role
to prevent stronger keys from being wrapped by weaker keys.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 231. PKA key generate required hardware

Server Required
Cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

ECC not supported.

The service examines the skeleton token
and routes the generation request to the
appropriate cryptographic processor. If the
skeleton is a DSS key token, processing
takes place on the Cryptographic
Coprocessor Feature.

PCI Cryptographic
Coprocessor

ECC not supported.

The service examines the skeleton token
and routes the generation request to the
appropriate cryptographic processor. If the
skeleton is a DSS key token, processing
takes place on the Cryptographic
Coprocessor Feature.

PKA Key Generate

530 z/OS V1R13 ICSF Application Programmer's Guide

|
|

||

|||

|||
|

|||
|

|||
|

|
|

|
|

|
|

|
|
|

Table 231. PKA key generate required hardware (continued)

Server Required
Cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ECC not supported.

DSS tokens are not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

ECC not supported.

DSS tokens are not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

ECC not supported.

DSS tokens are not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express3
Coprocessor

DSS tokens are not supported.

ECC not supported.

z196 Crypto Express3
Coprocessor

DSS tokens are not supported.

ECC Clear Key and Internal token support
requires the Sep. 2010 licensed internal
code (LIC).

ECC External token and Diffie-Hellman
support requires the Sep. 2011 or later
licensed internal code (LIC).

PKA Key Import (CSNDPKI and CSNFPKI)
Use this service to import an external PKA private key token. (The private key must
consist of a PKA private key and public key.) The secret values of the key may be:

v Clear

v Encrypted under a limited-authority DES importer key if the source_key_identifier
is an RSA token

v Encrypted under an AES Key Encryption Key if the source_key_identifier is an
ECC token

This service can also import a clear PKA key. The PKA key token build service
creates a clear PKA key token.

This service can also import an external trusted block token for use with the remote
key export callable service.

Output of this service is an ICSF internal token of the RSA, DSS, or ECC private
key or trusted block.

PKA Key Generate

Chapter 10. Managing PKA Cryptographic Keys 531

|
|
|

|
|
|

|

|
|

|
|

The callable service name for AMODE(64) invocation is CSNFPKI.

Restriction: DSS keys are not supported on the PCIXCC, CEX2C, or CEX3C.

Format

CALL CSNDPKI(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier_length,
source_key_identifier,
importer_key_identifier,
target_key_identifier_length,
target_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This may be
0 or 1.

rule_array

PKA Key Import

532 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input Type: Character String

The rule_array parameter is an array of keywords. The keywords must be 8
bytes of contiguous storage with the keyword left-justified in its 8-byte location
and padded on the right with blanks. The rule_array keywords are:

Table 232. Keywords for PKA Key Import

Keyword Meaning

Token Type (optional)

RSA Specifies that the key token is for an RSA key. This is the
default.

ECC Specifies that the key token is for an ECC key.

source_key_identifier_length

Direction: Input Type: Integer

The length of the source_key_identifier parameter. The maximum size is 3500
bytes.

source_key_identifier

Direction: Input Type: String

Contains an external token or label of a PKA private key, without section
identifier 0x14 (Trusted Block Information), or the trusted block in external form
as produced by the Trusted Block Create (CSNDTBC and CSNETBC) service
with the ACTIVATE keyword.

If a PKA private key without the section identifier 0x14 is passed in:

v There are no qualifiers. A retained key can not be used.

v The key token must contain both public-key and private-key information. The
private key can be in cleartext or it can be enciphered.

v This is the output of the PKA key generate (CSNDPKG) callable service or
the PKA key token build (CSNDPKB) callable service.

v If encrypted, it was created on another platform.

If a PKA key token with section 0x14 is passed in:

v This service will be used to encipher the MAC key within the trusted block
under the PKA master key instead of the IMP-PKA key-encrypting key.

v The importer_key_identifier must contain an IMP-PKA KEK in this case.

importer_key_identifier

Direction: Input/Output Type: String

A variable-length field containing an AES or DES key identifier used to wrap the
imported key. For RSA keys and trusted blocks, this must be a DES limited
authority transport key (IMP-PKA). For ECC keys, this must be an AES
transport key.

This parameter contains one of the following:

v 64-byte label of a CKDS record that contains the transport key.

v 64-byte DES internal key token containing the transport key.

PKA Key Import

Chapter 10. Managing PKA Cryptographic Keys 533

|

|
|
|
|

|

|

|

v a variable-length AES internal key token containing the transport key.

This parameter is ignored for clear tokens.

target_key_identifier_length

Direction: Input/Output Type: Integer

The length of the target_key_identifier parameter. The maximum size is 3500
bytes. On output, and if the size is of sufficient length, the variable is updated
with the actual length of the target_key_identifier field.

target_key_identifier

Direction: Input/Output Type: String

This field contains the internal token or label of the imported PKA private key or
a Trusted Block. If a label is specified on input, a PKDS record with this label
must exist. The PKDS record with this label will be overwritten with imported
key unless the existing record is a retained key. If the record is a retained key,
the import will fail. A retained key record cannot be overwritten. If no label is
specified on input, this field is ignored.

Restrictions
This service imports RSA keys of up to 4096 bits. However, the hardware
configuration sets the limits on the modulus size of keys for digital signatures and
key management; thus, the key may be successfully imported but fail when used if
the limits are exceeded.

The importer_key_identifier is a limited-authority key-encrypting key.

CRT form tokens with a private section ID of X'05' cannot be imported into ICSF.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

An RSA modulus-exponent form token imported on the PCICC, PCIXCC, CEX2C,
or CEX3C results in a X'06' format, while a token imported on a Cryptographic
Coprocessor Feature will result in a X'02' format. If the modulus length is less than
512, the token will be imported on the CCF, and it will be X'02' format.

This service imports keys of any modulus size up to 4096 bits. However, the
hardware configuration sets the limits on the modulus size of keys for digital
signatures and key management; thus, the key may be successfully imported but
fail when used if the limits are exceeded.

The PKA Key Import access control point controls the function of this service. If
the source_key_token parameter points to a trusted block, the PKA Key Import -
Import an External Trusted Block access control point must also be enabled.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

PKA Key Import

534 z/OS V1R13 ICSF Application Programmer's Guide

|

|

|

|
|
|

Table 233. PKA key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

The request will be processed on the CCF
when

v the source_key_identifier contains an
RSA modulus-exponent private key with a
modulus length of less than 512 bits

v the source_key_identifier contains a DSS
private key

RSA keys with moduli greater than 1024-bit
length are not supported.

PCI Cryptographic
Coprocessor

The request will be processed on the
PCICC when

v the source_key_identifier contains an
RSA modulus-exponent private key with a
modulus length of a least 512 bits

v the source_key_identifier contains an
RSA CRT private key

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

DSS tokens are not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

DSS tokens are not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

DSS tokens are not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

z196 Crypto Express3
Coprocessor

DSS tokens are not supported.

ECC External token and Diffie-Hellman
support requires the Sep. 2011 or later
licensed internal code (LIC).

PKA Key Token Build (CSNDPKB and CSNFPKB)
Use this callable service to build external PKA key tokens containing unenciphered
private RSA, DSS, or ECC keys, or public RSA, DSS, or ECC keys. This callable
service is used to create the following:

v A skeleton_key_token for use with the PKA Key Generate callable service (see
Table 229 on page 527)

v A key token with a public key that has been obtained from another source

v A key token with a clear private-key and the associated public key

PKA Key Import

Chapter 10. Managing PKA Cryptographic Keys 535

|
|
|

v A key token for an RSA private key in optimized Chinese Remainder Theorem
(CRT) form.

v An RSA token with X'09' section identifier using the RSAMEVAR keyword to
obtain a token for a key in modulus-exponent form that is variable length.

DSS key generation requires this information in the input skeleton token:
v Size of modulus p in bits
v Prime modulus p
v Prime divisor q
v Public generator g
v Optionally, the private key name

Note: DSS standards define restrictions on the prime modulus p, prime divisor q,
and public generator g. (Refer to the Federal Information Processing
Standard (FIPS) Publication 186 for DSS standards.) This callable service
does not verify all of these restrictions. If you do not follow the restrictions,
the keys you generate may not be valid DSS keys.

Restriction: DSS is not supported on a PCIXCC, CEX2C, or CEX3C. PKA
key token build will still build DSS tokens, but they cannot be used in any
other service on the z890, z990, z9 EC, z9 BC, z10 EC and z10 BC.

ECC key generation requires this information in the skeleton token:

v The key type: ECC

v The type of curve: Prime or Brainpool

v The size of P in bits: 192, 224, 256, 384 or 521 for Prime curves and 160, 192,
224, 256, 320, 384, or 521 for Brainpool curves

v Key usage information

v Optionally, application associated data

The callable service name for AMODE(64) invocation is CSNFPKB.

Format

CALL CSNDPKB(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_value_structure_length,
key_value_structure,
private_key_name_length,
private_key_name,
user_definable_associated_data_length,
user_definable_associated_data,
reserved_2_length,
reserved_2,
reserved_3_length,
reserved_3,
reserved_4_length,
reserved_4,
reserved_5_length,
reserved_5,
key_token_length,
key_token)

PKA Key Token Build

536 z/OS V1R13 ICSF Application Programmer's Guide

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. Value must
be 1, 2 or 3.

rule_array

Direction: Input Type: String

One or two keywords that provide control information to the callable service.
Table 234 lists the keywords. The keywords must be in contiguous storage with
each of the keywords left-justified in its own 8-byte location and padded on the
right with blanks.

Table 234. Keywords for PKA Key Token Build Control Information

Keyword Meaning

Key Type (required)

DSS-PRIV This keyword indicates building a key token containing both
public and private DSS key information. The parameter
key_value_structure identifies the input key values, if
supplied.

DSS-PUBL This keyword indicates building a key token containing public
DSS key information. The parameter key_value_structure
identifies the input key values, if supplied.

PKA Key Token Build

Chapter 10. Managing PKA Cryptographic Keys 537

|

|||
|

|

|

|||
|

|

Table 234. Keywords for PKA Key Token Build Control Information (continued)

Keyword Meaning

RSA-CRT This keyword indicates building a token containing an RSA
private key in the optimized Chinese Remainder Theorem
(CRT) form. The parameter key_value_structure identifies the
input key values, if supplied.

RSA-PRIV This keyword indicates building a token containing both
public and private RSA key information. The parameter
key_value_structure identifies the input key values, if
supplied.

RSA-PUBL This keyword indicates building a token containing public
RSA key information. The parameter key_value_structure
identifies the input values, if supplied.

RSAMEVAR This keyword is for creating a key token for an RSA public
and private key pair in modulus-exponent form whose
modulus is 512 bits or greater.

ECC-PAIR This keyword indicates building a token containing both
public and private ECC key information. The parameter
key_value_structure identifies the input key values, if
supplied.

ECC-PUBL This keyword indicates building a token containing public
ECC key information. The parameter key_value_structure
identifies the input values, if supplied.

Key Usage Control (optional)

KEY-MGMT Indicates that an RSA or ECC private key can be used in
both the symmetric key import and the digital signature
generate callable services.

KM-ONLY Indicates that an RSA or ECC private key can be used only
in symmetric key distribution.

SIG-ONLY Indicates that an RSA or ECC private key cannot be used in
symmetric key distribution. This is the default. Note that for
DSS-PRIV the keyword is allowed but extraneous; DSS keys
are defined only for digital signature.

Translate Control (optional)

XLATE-OK Specifies that the private key material can be translated.
XLATE-OK is only allowed with key types RSA-PRIV,
RSAMEVAR, RSA-CRT, and ECC-PAIR and is valid with all
key usage rules.

NO-XLATE Indicates key translation is not allowed. This is the default.
NO-XLATE is only allowed with key types RSA-PRIV,
RSAMEVAR, RSA-CRT, and ECC-PAIR and is valid with all
key usage rules.

key_value_structure_length

Direction: Input Type: Integer

This is a segment of contiguous storage containing a variable number of input
clear key values. The length depends on the key type parameter in the rule
array and on the actual values input. The length is in bytes.

PKA Key Token Build

538 z/OS V1R13 ICSF Application Programmer's Guide

|

|

Table 235. Key Value Structure Length Maximum Values for Key Types

Key Type Key Value Structure Maximum Value

DSS-PRIV 436

DSS-PUBL 416

RSA-CRT 3500

RSAMEVAR 3500

RSA-PRIV 648

RSA-PUBL 520

ECC-PAIR 207

ECC-PUBL 139

key_value_structure

Direction: Input Type: String

This is a segment of contiguous storage containing a variable number of input
clear key values and the lengths of these values in bits or bytes, as specified.
The structure elements are ordered, of variable length, and the input key values
must be right-justified within their respective structure elements and padded on
the left with binary zeros. If the leading bits of the modulus are zero's, don't
count them in the length. Table 236 defines the structure and contents as a
function of key type.

Table 236. Key Value Structure Elements for PKA Key Token Build

Offset Length (bytes) Description

Key Value Structure (Optimized RSA, Chinese Remainder Theorem form,
RSA-CRT)

000 002 Modulus length in bits (512 to
4096). This is required.

002 002 Modulus field length in bytes,
“nnn.” This value can be zero if the
key token is used as a
skeleton_key_token in the PKA key
generate callable service. This
value must not exceed 512.

004 002 Public exponent field length in
bytes, “eee.” This value can be
zero if the key token is used as a
skeleton_key_token in the PKA key
generate callable service.

006 002 Reserved, binary zero.

008 002 Length of the prime number, p, in
bytes, “ppp.” This value can be
zero if the key token is used as a
skeleton_key_token in the PKA key
generate callable service.
Maximum size of p + q is 512
bytes.

PKA Key Token Build

Chapter 10. Managing PKA Cryptographic Keys 539

Table 236. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

010 002 Length of the prime number, q, in
bytes, “qqq.” This value can be
zero if the key token is used as a
skeleton_key_token in the PKA key
generate callable service.
Maximum size of p + q is 512
bytes.

012 002 Length of dp, in bytes, “rrr.” This
value can be zero if the key token
is used as a skeleton_key_token in
the PKA key generate callable
service. Maximum size of dp + dq is
512 bytes.

014 002 Length of dq, in bytes, “sss.” This
value can be zero if the key token
is used as a skeleton_key_token in
the PKA key generate callable
service. Maximum size of dp + dq is
512 bytes.

016 002 Length of U, in bytes, “uuu.” This
value can be zero if the key token
is used as a skeleton_key_token in
the PKA key generate callable
service. Maximum size of U is 512
bytes.

018 nnn Modulus, n.

018 + nnn eee Public exponent, e. This is an
integer such that 1<e<n. e must be
odd. When you are building a
skeleton_key_token to control the
generation of an RSA key pair, the
public key exponent can be one of
these values: 3, 65537 (216 + 1), or
0 to indicate that a full random
exponent should be generated.
The exponent field can be a
null-length field if the exponent
value is 0.

018 + nnn + eee ppp Prime number, p.

018 + nnn + eee + ppp qqq Prime number, q.

018 + nnn + eee + ppp +
qqq

rrr dp = d mod(p-1).

018 + nnn + eee + ppp +
qqq + rrr

sss dq = d mod(q-1).

018 + nnn + eee + ppp +
qqq + rrr + sss

uuu U = q–1mod(p).

Key Value Structure (RSA Private, RSA Private variable or RSA Public)

000 002 Modulus length in bits. This is
required. When building a skeleton
token, the modulus length in bits
must be greater than or equal to
512 bits.

PKA Key Token Build

540 z/OS V1R13 ICSF Application Programmer's Guide

Table 236. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

002 002 Modulus field length in bytes,
“XXX”. This value can be zero if
you are using the key token as a
skeleton in the PKA key generate
verb. This value must not exceed
512 when either the RSA-PUBL or
RSAMEVAR keyword is used, and
must not exceed 128 when the
RSA-PRIV keyword is used.

This service can build a key token
for a public RSA key with a
4096-bit modulus length, or it can
build a key token for a 1024-bit
modulus length private key.

004 002 Public exponent field length in
bytes, “YYY”. This value must not
exceed 512 when either the
RSA-PUBL or RSAMEVAR
keyword is used, and must not
exceed 128 when the RSA-PRIV
keyword is used. This value can be
zero if you are using the key token
as a skeleton token in the PKA key
generate verb. In this case, a
random exponent is generated. To
obtain a fixed, predetermined
public key exponent, you can
supply this field and the public
exponent as input to the PKA key
generate verb.

006 002 Private exponent field length in
bytes, “ZZZ”. This field can be
zero, indicating that private key
information is not provided. This
value must not exceed 128 bytes.
This value can be zero if you are
using the key token as a skeleton
token in the PKA key generate
verb.

008 XXX Modulus, n. This is an integer such
that 1 < n <2**2048.The n is the
product of p and q for primes p
and q.

008 + XXX YYY RSA public exponent, e. This is an
integer such that 1<e<n. e must be
odd. When you are building a
skeleton_key_token to control the
generation of an RSA key pair, the
public key exponent can be one of
these values: 3, 65537 (216 + 1), or
0 to indicate that a full random
exponent should be generated.
The exponent field can be a
null-length field if the exponent
value is 0.

PKA Key Token Build

Chapter 10. Managing PKA Cryptographic Keys 541

Table 236. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

008 + XXX + YYY ZZZ RSA secret exponent d. This is an
integer such that 1<d<n. The value
of d is e-1 mod(p-1)(q-1). This can
be a null-length field if you are
using the key token as a skeleton
token in the PKA key generate
verb.

Key Value Structure (DSS Private or DSS Public)

000 002 Modulus length in bits. This is
required.

002 002 Prime modulus field length in
bytes, “XXX”. You can supply this
as a network quantity to the ICSF
PKA key generate callable service,
which uses the quantity to
generate DSS keys. The maximum
allowed value is 128.

004 002 Prime divisor field length in bytes,
“YYY”. You can supply this as a
network quantity to the ICSF PKA
key generate callable service,
which uses the quantity to
generate DSS keys. The allowed
values are 0 or 20 bytes.

006 002 Public generator field length in
bytes, “ZZZ”. You can supply this
in a skeleton token as a network
quantity to the ICSF PKA key
generate callable service, which
uses the quantity to generate DSS
keys. The maximum allowed value
is 128 bytes and is exactly the
same length as the prime modulus.

008 002 Public key field length in bytes,
“AAA”. This field can be zero,
indicating that the ICSF PKA key
generate callable service
generates a value at random from
supplied or generated network
quantities. The maximum allowed
value is 128 bytes and is exactly
the same length as the prime
modulus.

010 002 Secret key field length in bytes,
“BBB”. This field can be zero,
indicating that the ICSF PKA key
generate callable service
generates a value at random from
supplied or generated network
quantities. The allowed values are
0 or 20 bytes.

PKA Key Token Build

542 z/OS V1R13 ICSF Application Programmer's Guide

Table 236. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

012 XXX DSS prime modulus p. This is an
integer such that 2L-1<p<2L. The p
must be prime. You can supply this
value in a skeleton token as a
network quantity; it is used in the
algorithm that generates DSS
keys.

012 + XXX YYY DSS prime divisor q. This is an
integer that is a prime divisor of
p-1 and 2159<q<2160. You can
supply this value in a skeleton
token as a network quantity; it is
used in the algorithm that
generates DSS keys.

012 + XXX+ YYY ZZZ DSS public generator g. This is an
integer such that 1<g<p. You can
supply this value in a skeleton
token as a network quantity; it is
used in the algorithm that
generates DSS keys.

012 + XXX+ YYY+ ZZZ AAA DSS public key y. This is an
integer such that y = gx mod p.

012 + XXX+ YYY+ ZZZ+
AAA

BBB DSS secret private key x. This is
an integer such that 0<x<q. The x
is random. You need not supply
this value if you specify DSS-PUBL
in the rule array.

Key Value Structure (ECC_PAIR)

000 001 Curve type

x'00' Prime Curve

x'01' Brainpool Curve

001 001 Reserved x'00'

PKA Key Token Build

Chapter 10. Managing PKA Cryptographic Keys 543

Table 236. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

002 002 Length of p in bits

0x'00C0'
Prime P-192

0x'00E0'
Prime P-224

0x'0100'
Prime P-256

0x'0180'
Prime P-384

0x'0209'
Prime P-521

0x'00A0'
Brain Pool P-160

0x'00C0'
Brain Pool P-192

0x'00E0'
Brain Pool P-224

0x'0100'
Brain Pool P-256

0x'0140'
Brain Pool P-320

0x'0180'
Brain Pool P-384

0x'0200'
Brain Pool P512.

004 002 ddd, This field is the length of the
private key d value in bytes, This
value can be zero if the key token
is used as a skeleton key token in
the PKA Key Generate callable
service. The maximum value could
be up to 66 bytes.

006 002 xxx, This field is the length of the
public key Q value in bytes. This
value can be zero if the key token
is used as a skeleton key token in
the PKA Key Generate callable
service. The maximum value could
be up to 133 bytes which includes
one byte to indicate if the value is
compressed.

008 ddd Private key d

008 + ddd xxx Public Key value Q

Key value Structure (ECC_PUBL)

000 001 Curve type:

0x'00' Prime Curve

0x'01' Brain Pool Curve

PKA Key Token Build

544 z/OS V1R13 ICSF Application Programmer's Guide

Table 236. Key Value Structure Elements for PKA Key Token Build (continued)

Offset Length (bytes) Description

000 001 Reserved x'00'

002 002 Length of p in bits

0x'00C0'
Prime P-192

0x'00E0'
Prime P-224

0x'0100'
Prime P-256

0x'0180'
Prime P-384

0x'0209'
Prime P-521

0x'00A0'
Brain Pool P-160

0x'00C0'
Brain Pool P-192

0x'00E0'
Brain Pool P-224

0x'0100'
Brain Pool P-256

0x'0140'
Brain Pool P-320

0x'0180'
Brain Pool P-384

0x'0200'
Brain Pool P512.

004 002 xxx, This field is the length of the
public key Q value in bytes. This
value can be zero if the key token
is used as a skeleton key token in
the PKA Key Generate callable
service. The maximum value could
be up to 133 bytes which includes
a one byte value indicating
compressed or uncompressed key
value.

006 xxx Public key value Q

Notes:

1. All length fields are in binary.

2. All binary fields (exponent, lengths, modulus, and so on) are stored with the
high-order byte field first. This integer number is right-justified within the key
structure element field.

3. You must supply all values in the structure to create a token containing an
RSA or DSS private key for input to the PKA key import service.

private_key_name_length

PKA Key Token Build

Chapter 10. Managing PKA Cryptographic Keys 545

Direction: Input Type: Integer

The length can be 0 or 64.

private_key_name

Direction: Input Type: EBCDIC character

This field contains the name of a private key. The name must conform to ICSF
label syntax rules. That is, allowed characters are alphanumeric, national
(@,#,$) or period (.). The first character must be alphabetic or national. The
name is folded to upper case and converted to ASCII characters. ASCII is the
permanent form of the name because the name should be independent of the
platform. The name is then cryptographically coupled with clear private key data
prior to its encryption of the private key. Because of this coupling, the name can
never change when the key token is already imported. The parameter is not
valid with key types DSS-PUBL or RSA-PUBL.

user_definable_associated_data_length

Direction: Input Type: Integer

The length of the user_definable_associated_data parameter.

Valid for Rule Array Key Type of ECC-PAIR with a maximum value of 100 and
must be set to 0 for all other Rule Array Key Types.

user_definable_associated_data

Direction: Input Type: String

The user_definable_associated_data parameter is a pointer to a string variable
containing the associated data that will be placed following the IBM associated
data in the token. The associated data is data whose integrity but not
confidentiality is protected by a key wrap mechanism. It can be used to bind
usage control information.

Valid for Rule Array Key Type of ECC-PAIR and is ignored for all others.

reserved_2_length

Direction: Input Type: Integer

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_2

Direction: Input Type: String

The reserved_2 parameter identifies a string that is reserved. The service
ignores it.

reserved_3_length

Direction: Input Type: Integer.

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_3

PKA Key Token Build

546 z/OS V1R13 ICSF Application Programmer's Guide

|
|

Direction: Input Type: String

The reserved_3 parameter identifies a string that is reserved. The service
ignores it.

reserved_4_length

Direction: Input Type: Integer.

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_4

Direction: Input Type: String

The reserved_4 parameter identifies a string that is reserved. The service
ignores it.

reserved_5_length

Direction: Input Type: Integer.

Length in bytes of a reserved parameter. You must set this variable to 0.

reserved_5

Direction: Input Type: String

The reserved_5 parameter identifies a string that is reserved. The service
ignores it.

key_token_length

Direction: Input/Output Type: Integer

Length of the returned key token. The service checks the field to ensure it is at
least equal to the size of the token to return. On return from this service, this
field is updated with the exact length of the key_token created. On input, a size
of 3500 bytes is sufficient to contain the largest key_token created.

key_token

Direction: Output Type: String

The returned key token containing an unenciphered private or public key. The
private key is in an external form that can be exchanged with different Common
Cryptographic Architecture (CCA) PKA systems. You can use the public key
token directly in appropriate ICSF signature verification or key management
services.

Usage Notes
If you are building a skeleton for use in a PKA Key Generate request to generate a
retained PKA private key, you must build a private key name section in the skeleton
token.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

PKA Key Token Build

Chapter 10. Managing PKA Cryptographic Keys 547

Table 237. PKA key token build required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

PKA Key Token Change (CSNDKTC and CSNFKTC)
The PKA Key Token Change callable service changes PKA key tokens (RSA, DSS,
and ECC) or trusted block key tokens, from encipherment under the cryptographic
coprocessor's old RSA master key or ECC master key to encipherment under the
current cryptographic coprocessor's RSA master key or ECC master key.

v For RSA and DSS key tokens - Key tokens must be private internal PKA key
tokens to be changed by this service. PKA private keys encrypted under the Key
Management Master Key (KMMK) cannot be reenciphered using this services
unless the KMMK has the same value as the Signature Master Key (SMK).

v For trusted block key tokens - Trusted block key tokens must be internal.

v For ECC key tokens - key tokens must be private internal ECC key tokens
encrypted under the ECC master key.

The callable service name for AMODE(64) invocation is CSNFKTC.

Format

CALL CSNDKTC(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_identifier_length,
key_identifier)

Parameters
return_code

Direction: Output Type: Integer

PKA Key Token Build

548 z/OS V1R13 ICSF Application Programmer's Guide

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 1 or 2.

rule_array

Direction: Input Type: String

The process rules for the callable service. The keywords must be 8 bytes of
contiguous storage with the keyword left-justitfied in its 8-byte location and
padded on the right with blanks.

Table 238. Rule Array Keywords for PKA Key Token Change

Keyword Meaning

Algorithm (optional)

RSA Specifies that the key token is for a RSA or DSS key or
trusted block token. This is the default.

ECC Specifies that the key token is for an ECC key.

Reencipherment method (required)

PKA Key Token Change

Chapter 10. Managing PKA Cryptographic Keys 549

Table 238. Rule Array Keywords for PKA Key Token Change (continued)

Keyword Meaning

RTCMK If the key_identifier is an RSA key token, the service will
change an RSA private key from encipherment with the old
RSA master key to encipherment with the current RSA master
key.

If the key_identifier is a trusted block token, the service will
change the trusted block's embedded MAC key from
encipherment with the old RSA master key to encipherment
with the current RSA master key.

If the key_identifier is an ECC key token, the service will
change an ECC private key from encipherment with the old
ECC master key to encipherment with the current ECC master
key.

key_identifier_length

Direction: Input Type: Integer

The length of the key_identifier parameter. The maximum size is 3500 bytes.

key_identifier

Direction: Input/Output Type: String

Contains an internal key token of an internal RSA, DSS, ECC, or trusted block
key.

If the key token is an RSA key token, the private key within the token is
securely reenciphered under the current RSA master key.

If the key token is a Trusted Block key token, the MAC key within the token is
securely reenciphered under the current RSA master key.

If the key token is an ECC key token, the private key within the token is
securely reenciphered under the current ECC master key.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

To use this service, PKA callable services must be enabled for all RSA and DSS
token types. For systems with CEX3C coprocessors, there is no PKA callable
services control. The RSA master key must be valid to use this service.

To use this service for ECC tokens, the ECC master key must be valid.

The PKA Key Token Change RTCMK access control point controls the function of
this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

PKA Key Token Change

550 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|
|

Table 239. PKA key token change required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

ECC not supported.

Trusted key blocks are not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

Only the RTCMK rule keyword is applicable.
Additional keywords, if specified, are
ignored.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

ECC not supported.

Trusted key blocks are not supported.

RSA keys with moduli greater than 2048-bit
length are not supported.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

ECC not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

ECC not supported.

RSA key support with moduli within the
range 2048-bit to 4096-bit requires the Nov.
2007 or later licensed internal code (LIC).

Crypto Express3
Coprocessor

ECC not supported.

z196 Crypto Express3
Coprocessor

PKA Key Translate (CSNDPKT and CSNFPKT)
Use the PKA key translate callable service to translate a source CCA RSA key
token into a target external smart card key token.

The source CCA RSA key token must be wrapped with a transport key encrypting
key (KEK). The XLATE bit must also be turned on in the key usage byte of the
source token. The source token is unwrapped using the specified source transport
KEK. The target key token will be wrapped with the specified target transport KEK.
Existing information in the target token is overwritten.

There are restrictions on which type key can be used for the source and target
transport key tokens. These restrictions are enforced by access control points.

There are restrictions on which rule can be used. These restrictions are enforced by
access control points.

The callable service name for AMODE(64) invocation is CSNFPKT.

PKA Key Token Change

Chapter 10. Managing PKA Cryptographic Keys 551

|
|
|

Format

CALL CSNDPKT(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier_length,
source_key_identifier,
source_transport_key_identifier_length,
source_transport_key_identifier,
target_transport_key_identifier_length,
target_transport_key_identifier,
target_key_token_length
target_key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. Value must
be 1.

rule_array

PKA Key Translate

552 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input Type: String

The smartcard format rule for the callable service. A keyword that provides
control information to the callable service. See Table 240 for a list. A keyword is
left-justified in an 8-byte field and padded on the right with blanks.

Table 240. Keywords for PKA Key Generate Rule Array

Keyword Meaning

Smartcard Format (required)

SCVISA This keyword indicates translating the key into the
smart card Visa proprietary format.

SCCOMME This keyword indicates translating the key into the
smart card Modulus-Exponent format.

SCCOMCRT This keyword indicates translating the key into the
smart card Chinese Remainder Theorem format.

source_key_identifier_length

Direction: Input Type: Integer

Length in bytes of the source_key_identifier variable. The maximum length is
3500 bytes.

source_key_identifier

Direction: Input Type: String

This field contains either a key label identifying an RSA private key or an
external public-private key token. The private key must be wrapped with a key
encrypting key.

source_transport_key_identifier_length

Direction: Input Type: Integer

Length in bytes of the source_transport_key_identifier parameter. This value
must be 64.

source_transport_key_identifier

Direction: Input/Output Type: String

This field contains an internal token or label of a DES key-encrypting key. This
key is used to unwrap the input RSA key token specified with parameter
source_key_identifier. See “Usage Notes” on page 554 for details on the type of
transport key that can be used

target_transport_key_identifier_length

Direction: Input Type: Integer

Length in bytes of the target_transport_key_identifier parameter. This value
must be 64.

target_transport_key_identifier

PKA Key Translate

Chapter 10. Managing PKA Cryptographic Keys 553

Direction: Input/Output Type: String

This field contains an internal token or label of a DES key-encrypting key. This
key is used to wrap the output RSA key returned with parameter
target_key_token. See “Usage Notes” for details on the type of transport key
that can be used.

target_key_token_length

Direction: Input/Output Type: Integer

Length in bytes of the target_key_token parameter. On output, the value in this
variable is updated to contain the actual length of the target_key_token
produced by the callable service. The maximum length is 3500 bytes.

target_key_token

Direction: Output Type: String

This field contains the RSA key in the smartcard format specified in the rule
array and is protected by the key-encrypting key specified in the
target_transport_key parameter. This is not a CCA token, and cannot be stored
in the PKDS.

Restrictions
CCA RSA ME tokens will not be translated to the SCCOMCRT format. CCA RSA
CRT tokens will not be translated to the SCCOMME format. SCVISA only supports
Modulus-Exponent (ME) keys.

Usage Notes
There are access control points that control use of the format rule array keys and
the type of transport keys that can be used. All of these access control points are
enabled in the default role.

PKA Key Translate - from CCA RSA to SCVISA Format
PKA Key Translate - from CCA RSA to SC ME Format
PKA Key Translate - from CCA RSA to SC CRT Format
PKA Key Translate - from source EXP KEK to target EXP KEK
PKA Key Translate - from source IMP KEK to target EXP KEK
PKA Key Translate - from source IMP KEK to target IMP KEK

This service requires at least one of the following access control points to be
enabled in the ICSF role.

Table 241. Required access control points for PKA Key Translate

Smartcard format Access control point

SCVISA PKA Key Translate - from CCA RSA to SC Visa
Format

SCCOMME PKA Key Translate - from CCA RSA to SC ME Format

SCCOMCRT PKA Key Translate - from CCA RSA to SC CRT
Format

These access control points must be enabled to allow the key type combination
shown in this table.

PKA Key Translate

554 z/OS V1R13 ICSF Application Programmer's Guide

|
|

||

||

||
|

||

||
|
|

|
|

Table 242. Required access control points for source/target transport key combinations

Source transport
key type Target transport key type Access control point

EXPORTER EXPORTER PKA Key Translate - from source
EXP KEK to target EXP KEK

IMPORTER EXPORTER PKA Key Translate - from source
IMP KEK to target EXP KEK

IMPORTER IMPORTER PKA Key Translate - from source
IMP KEK to target IMP KEK

EXPORTER IMPORTER (Not allowed)

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 243. PKA key translate required hardware

Server Required
Cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Not supported on this platform.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

Not supported on this platform.

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

Requires the Apr. 2009 or later licensed
internal code (LIC).

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

Requires the Apr. 2009 or later licensed
internal code (LIC).

z196 Crypto Express3
Coprocessor

PKA Public Key Extract (CSNDPKX and CSNFPKX)
Use the PKA public key extract callable service to extract a PKA public key token
from a supplied PKA internal or external private key token. This service performs no
cryptographic verification of the PKA private token. You can verify the private token
by using it in a service such as digital signature generate.

The callable service name for AMODE(64) invocation is CSNFPKX.

PKA Key Translate

Chapter 10. Managing PKA Cryptographic Keys 555

||

|
|||

|||
|

|||
|

|||
|

|||
|

Format

CALL CSNDPKX(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_identifier_length,
source_key_identifier,
target_public_key_token_length,
target_public_key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 0.

rule_array

Direction: Input Type: String

Reserved field. This field is not used, but you must specify it.

PKA Public Key Extract

556 z/OS V1R13 ICSF Application Programmer's Guide

source_key_identifier_length

Direction: Input Type: integer

The length of the source_key_identifier parameter. The maximum size is 3500
bytes. When the source_key_identifier parameter is a key label, this field
specifies the length of the label.

source_key_identifier

Direction: Input/output Type: string

The internal or external token of a PKA private key or the label of a PKA private
key. This can be the input or output from PKA key import or from PKA key
generate.

This service supports:

v RSA private key token formats supported on the PCICC, PCIXCC, CEX2C,
or CEX3C. If the source_key_identifier specifies a label for a private key that
has been retained within a PCICC, PCIXCC, or CEX2C, this service extracts
only the public key section of the token.

v ECC private key token formats supported on the CEX3C.

target_public_key_token_length

Direction: Input/Output Type: Integer

The length of the target_public_key_token parameter. The maximum size is
3500 bytes. On output, this field will be updated with the actual byte length of
the target_public_key_token.

target_public_key_token

Direction: Output Type: String

This field contains the token of the extracted PKA public key.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the PKDS.

This service extracts the public key from the internal or external form of a private
key. However, it does not check the cryptographic validity of the private token.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 244. PKA public key extract build required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None

PKA Public Key Extract

Chapter 10. Managing PKA Cryptographic Keys 557

Table 244. PKA public key extract build required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None

IBM System z9 EC

IBM System z9 BC

None

IBM System z10 EC

IBM System z10 BC

None

z196 None

Retained Key Delete (CSNDRKD and CSNFRKD)
Use the retained key delete callable service to delete a key that has been retained
within the PCICC, PCIXCC, CEX2C, or CEX3C. This service also deletes the
record that contains the associated key token from the PKDS. It also allows the
deletion of a retained key in the PCICC, PCIXCC, CEX2C, or CEX3C even if there
isn't a PKDS record, or deletion of a PKDS record for a retained key even if the
PCICC, PCIXCC, CEX2C, or CEX3C holding the retained key is not online. Use the
rule_array parameter specifying the FORCE keyword and serial number of the
PCICC, PCIXCC, CEX2C, or CEX3C that contains the retained key to be deleted. If
a PKDS record exists for the same label, but the serial number doesn't match the
serial number in rule_array, the service will fail. If any applications still need the
public key, use public key extract to create a public key token prior to deletion of
the retained key.

The callable service name for AMODE(64) invocation is CSNFRKD.

Format

CALL CSNDRKD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

PKA Public Key Extract

558 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords supplied in the rule_array parameter. The value may
be 0 or 2.

rule_array

Direction: Input Type: Character String

This parameter may be FORCE and the PCICC, PCIXCC, CEX2C, or CEX3C
serial number.

key_label

Direction: Input Type: String

A 64-byte label of a key that has been retained in a PCICC, PCIXCC, CEX2C,
or CEX3C.

Usage Notes
ICSF calls the Security Server (RACF) to check authorization to use the Retained
Key Delete service and the label of the key specified in key_label.

Retained private keys are domain-specific. Only the LPAR domain that created a
Retained private key can delete the key via the Retained Key Delete service.

When a Retained key is deleted using the Retained Key Delete service, ICSF
records this event in a type 82 SMF record with a subtype of 15.

If the Retained key does not exist in the PCICC, PCIXCC, CEX2C, or CEX3C and
the PKDS record exists and the domain that created the retained key matches the
domain of the requestor, ICSF deletes the PKDS record. This situation may occur if
the PCICC, PCIXCC, CEX2C, or CEX3C has been zeroized through TKE or the
service processor.

If a PKDS record containing the retained key exists but the PCICC, PCIXCC,
CEX2C, or CEX3C holding the retained key is not online, ICSF deletes the PKDS

Retained Key Delete

Chapter 10. Managing PKA Cryptographic Keys 559

record if the FORCE keyword is specified. The serial number specified in the rule
array must be the serial number of the coprocessor where the Retained key was
created. The key token in the PKDS record contains this serial number, and the
serial number is used to verify that the PKDS record can be deleted.

If the retained key exists on the specified PCICC, PCIXCC, CEX2C, or CEX3C but
there is no corresponding PKDS record, ICSF deletes the retained key from the
PCICC, PCIXCC, CEX2C, or CEX3C if the FORCE keyword is specified.

The Retained Key Delete access control point controls the function of this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 245. Retained key delete required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

z196 Crypto Express3
Coprocessor

Retained Key List (CSNDRKL and CSNFRKL)
Use the retained key list callable service to list the key labels of those keys that
have been retained within all currently active PCICCs, PCIXCCs, CEX2Cs, or
CEX3Cs.

The callable service name for AMODE(64) invocation is CSNFRKL.

Retained Key Delete

560 z/OS V1R13 ICSF Application Programmer's Guide

|

Format

CALL CSNDRKL(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label_mask,
retained_keys_count,
key_labels_count,
key_labels)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords supplied in the rule_array parameter. The value must
be 0.

rule_array

Direction: Input Type: Character String

This parameter is ignored by ICSF.

Retained Key List

Chapter 10. Managing PKA Cryptographic Keys 561

key_label_mask

Direction: Input Type: String

A 64-byte key label mask that is used to filter the list of key names returned by
the verb. You can use a wild card (*) to identify multiple keys retained within the
PCICC, PCIXCC, CEX2C, or CEX3C.

Note: If an asterisk (*) is used, it must be the last character in key_label_mask.
There can only be one *.

retained_keys_count

Direction: Output Type: Integer

An integer variable to receive the number of retained keys stored within all
active PCICCs, PCIXCCs, CEX2Cs, and CEX3Cs.

key_labels_count

Direction: Input/Output Type: Integer

On input this variable defines the maximum number of key labels to be
returned. On output this variable defines the total number of key labels
returned. The maximum value for this field is 100. The value returned in the
retained_keys_count variable can be larger if you have not provided for the
return of a sufficiently large number of key labels in the key_labels_count field.

key_labels

Direction: Output Type: String

A string variable where the key label information will be returned. This field must
be at least 64 times the key label count value. The key label information is a
string of zero or more 64-byte entries. The first 64-byte entry contains a PCICC,
PCIXCC, CEX2C, or CEX3C card serial number, and is followed by one or
more 64-byte entries that each contain a key label of a key retained within that
PCICC, PCIXCC, CEX2C, or CEX3C. The format of the first 64-byte entry is as
follows:
/nnnnnnnnbbbbb...bbb
where
"/" is the character "/" (EBCDIC: X’61’)
"nnnnnnnn" is the 8-byte PCICC, PCIXCC, CEX2C, or CEX3C card serial number
"bbbbb...bbb" is 55 bytes of blank pad characters

(EBCDIC: X’40’)

This information (64-byte card serial number entry followed by one or more
64-byte label entries) is repeated for each active PCICC, PCIXCC, CEX2C, or
CEX3C that contains retained keys that match the key_label_mask. All data
returned is EBCDIC characters. The number of bytes of information returned is
governed by the value specified in the key_labels_count field. The key_labels
field must be large enough to hold the number of 64-byte labels specified in the
key_labels_count field plus one 64-byte entry for each active PCICC, PCIXCC,
CEX2C, or CEX3C (a maximum of 64 PCICCs, PCIXCCs, CEX2Cs, or
CEX3Cs).

Retained Key List

562 z/OS V1R13 ICSF Application Programmer's Guide

Usage Notes
Not all CCA platforms may support multiple PCICC, PCIXCC, CEX2C, or CEX3C
cards. In the case where only one card is supported, the key_labels field will
contain one or more 64-byte entries that each contain a key label of a key retained
within the PCICC, PCIXCC, CEX2C, or CEX3C. There will be no 64-byte entry or
entries containing a PCICC, PCIXCC, CEX2C, or CEX3C card serial number.

ICSF calls RACF to check authorization to use the Retained Key List service.

ICSF caller must be authorized to the key_label_mask name including the *.

Retained private keys are domain-specific. ICSF lists only those keys that were
created by the LPAR domain that issues the Retained Key List request.

The Retained Key List access control point controls the function of this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 246. Retained key list required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

z196 Crypto Express3
Coprocessor

Retained Key List

Chapter 10. Managing PKA Cryptographic Keys 563

|

Retained Key List

564 z/OS V1R13 ICSF Application Programmer's Guide

Chapter 11. Key Data Set Management

ICSF provides key stores for symmetric and asymmetric operational key tokens.
Symmetric keys tokens (AES, DES and HMAC) are stored in the Cryptographic Key
Data Set (CKDS). Asymmetric keys tokens (DSS, RSA, and ECC) and trusted
blocks are stored in the PKA Key Data Set (PKDS).

This topic describes the callable services that manage key tokens in the key stores.

v “CKDS Key Record Create (CSNBKRC and CSNEKRC)”

v “CKDS Key Record Create2 (CSNBKRC2 and CSNEKRC2)” on page 567

v “CKDS Key Record Delete (CSNBKRD and CSNEKRD)” on page 569

v “CKDS Key Record Read (CSNBKRR and CSNEKRR)” on page 571

v “CKDS Key Record Read2 (CSNBKRR2 and CSNEKRR2)” on page 573

v “CKDS Key Record Write (CSNBKRW and CSNEKRW)” on page 575

v “CKDS Key Record Write2 (CSNBKRW2 and CSNEKRW2)” on page 577

v “Coordinated KDS Administration (CSFCRC and CSFCRC6)” on page 580

v “PKDS Key Record Create (CSNDKRC and CSNFKRC)” on page 583

v “PKDS Key Record Delete (CSNDKRD and CSNFKRD)” on page 585

v “PKDS Key Record Read (CSNDKRR and CSNFKRR)” on page 587

v “PKDS Key Record Write (CSNDKRW and CSNFKRW)” on page 589

CKDS Key Record Create (CSNBKRC and CSNEKRC)

Use the CKDS key record create callable service to add a key record to the CKDS
that will be used to store AES and DES tokens. The record contains a key token set
to binary zeros and is identified by the label passed in the key_label parameter.
This service updates both the DASD copy of the CKDS currently in use by ICSF
and the in-storage copy of the CKDS.

The callable service name for AMODE(64) invocation is CSNEKRC).

Format

CALL CSNBKRC(
return_code,
reason_code,
exit_data_length,
exit_data,
key_label)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

© Copyright IBM Corp. 1997, 2011 565

|

|

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_label

Direction: Input Type: Character string

The 64-byte label of a record in the CKDS that is the target of this service. The
created record contains a key token set to binary zeros and has a key type of
NULL.

Restrictions
The record must have a unique label. Therefore, there cannot be another record in
the CKDS with the same label and a different key type.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
The CKDS key record create callable service checks the syntax of the label
provided in the key_label parameter to ensure that it follows the KGUP rules. To
bypass label syntax checking, use a preprocessing exit to turn on the bypass parse
bit in the Exit Parameter Control Block (EXPB). For more information about
preprocessing exits and the EXPB, refer to the z/OS Cryptographic Services ICSF
System Programmer's Guide.

You must use either the CKDS key record create callable service or KGUP to
create an initial record in the CKDS prior to using the CKDS key record write
service to update the record with a valid key token. Your applications perform better
if you use KGUP to create the initial records and REFRESH the entire in-storage
copy of the CKDS, rather than using CKDS key record create to create the initial
NULL key entries. This is particularly true if you are creating a large number of key
records. CKDS key record create adds a record to a portion of the CKDS that is
searched sequentially during key retrieval. Using KGUP followed by a REFRESH
puts the null key records in the portion of the CKDS that is ordered in key-label/type
sequence. A binary search of the key-label/type sequenced part of the CKDS is
more efficient than searching the sequentially ordered section.

CKDS Key Record Create

566 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|

|

|

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 247. CKDS record create required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

CKDS Key Record Create2 (CSNBKRC2 and CSNEKRC2)
Use this service to add a key record to the CKDS. The record will contain a null key
token or the key token supplied in the key_token parameter. The record is identified
by the label passed in the key_label parameter.

The callable service name for AMODE(64) is CSNEKRC2.

Format

CALL CSNBKRC2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label,
key_token_length,
key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

CKDS Key Record Create

Chapter 11. Key Data Set Management 567

|

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 0.

rule_array

Direction: Input Type: String

This parameter is ignored by ICSF.

key_label

Direction: Input Type: String

The 64-byte label of a record in the CKDS to be created.

key_token_length

Direction: Input Type: Integer

The length of the field containing the token to be written to the CKDS. If zero is
specified, a null token will be added to the CKDS. The maximum value is 725.

key_token

Direction: Input/Output Type: String

A symmetric internal token to be written to the CKDS if key_token_length is
non-zero. If the token supplied was encrypted under the old master key, the
token will be returned encrypted under the current master key.

Usage Notes
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

CKDS Key Record Create2

568 z/OS V1R13 ICSF Application Programmer's Guide

Table 248. CKDS Key Record Create2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

CKDS Key Record Delete (CSNBKRD and CSNEKRD)
Use the CKDS key record delete callable service to delete a key record containing
a DES or AES token from both the DASD copy of the CKDS and the in-storage
copy.

The callable service name for AMODE(64) invocation is CSNEKRD.

Format

CALL CSNBKRD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

CKDS Key Record Create2

Chapter 11. Key Data Set Management 569

|

|

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords supplied in the rule_array parameter. This number
must always be 1.

rule_array

Direction: Input Type: Character string

The 8 byte keyword that defines the action to be performed. The keyword must
be LABEL-DL.

key_label

Direction: Input Type: Character string

The 64-byte label of a record in the CKDS that is the target of this service. The
record can contain an AES or a DES key token. The record pointed to by this
label is deleted.

Restrictions
The record defined by the key_label must be unique. If more than one record per
label is found, the service fails.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
Secure key tokens cannot be processed when the master key is not loaded.

Clear AES and DES tokens can be processed on a system without a cryptographic
coprocessor or accelerator.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

CKDS Key Record Delete

570 z/OS V1R13 ICSF Application Programmer's Guide

Table 249. CKDS record delete required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

CKDS Key Record Read (CSNBKRR and CSNEKRR)
Use the CKDS key record read callable service to copy an internal AES or DES key
token from the in-storage CKDS to application storage. Other cryptographic services
can then use the copied key token directly. The key token can also be used as
input to the token copying functions of key generate, key import, or secure key
import services to create additional NOCV keys.

The callable service name for AMODE(64) invocation is CSNEKRR.

Format

CALL CSNBKRR(
return_code,
reason_code,
exit_data_length,
exit_data,
key_label,
key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned

CKDS Key Record Delete

Chapter 11. Key Data Set Management 571

|

|

to it indicating specific processing problems. Appendix A, “ICSF and TSS Return
and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_label

Direction: Input Type: Character string

The 64-byte label of a record containing an AES or DES token in the in-storage
CKDS. The internal key token in this record is returned to the caller.

key_token

Direction: Output Type: String

The 64-byte internal key token retrieved from the in-storage CKDS.

Restrictions
The record defined by the key_label parameter must be unique and must already
exist in the CKDS.

If the internal key token is a clear key token, the token is not returned to the caller
unless the caller is in supervisor state or system key.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
Clear AES and DES tokens can be processed on a system without a cryptographic
coprocessor or accelerator.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 250. CKDS record read required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

CKDS Key Record Read

572 z/OS V1R13 ICSF Application Programmer's Guide

Table 250. CKDS record read required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

CKDS Key Record Read2 (CSNBKRR2 and CSNEKRR2)
Use this callable service to copy a key token from the in-storage CKDS to
application storage. Other cryptographic services can then use the copied key token
directly.

The callable service name for AMODE(64) is CSNEKRR2.

Format

CALL CSNBKRR2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_label,
key_token_length,
key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

CKDS Key Record Read

Chapter 11. Key Data Set Management 573

|

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 0.

rule_array

Direction: Input Type: String

This parameter is ignored by ICSF.

key_label

Direction: Input Type: String

The 64-byte label of a record in the CKDS to be retrieved.

key_token_length

Direction: Input/Output Type: Integer

The length of the buffer for the output token. On input, the length of the buffer.
The minimum length is 64 bytes and the maximum length is 725 bytes. On
output, this parameter will be updated with the length of the token returned in
the key_token parameter.

key_token

Direction: Output Type: String

The buffer into which the return key token is written.

Usage Notes
This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

CKDS Key Record Read2

574 z/OS V1R13 ICSF Application Programmer's Guide

Table 251. CKDS key record read2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

CKDS Key Record Write (CSNBKRW and CSNEKRW)
Use the CKDS key record write callable service to write an internal AES or DES key
token to the CKDS record specified by the key_label parameter. This service
supports writing a record to the CKDS which contains a key token with a control
vector which is not supported by the Cryptographic Coprocessor Feature. These
records will be written to the CKDS with a key type of CV, unless the key is a DES
IMPORTER, EXPORTER, PINGEN, PINVER, IPINENC, or OPINENC type. These
key types will be preserved in the CKDS record, even if the control vector is not
supported by the Cryptographic Coprocessor Feature.

This service updates both the DASD copy of the CKDS currently in use by ICSF
and the in-storage copy. The record you are updating must be unique and must
already exist in both the DASD and in-storage copies of the CKDS.

This service supports writing a clear AES or DES key token with non-zero key
values to the CKDS.

The callable service name for AMODE(64) invocation is CSNEKRW.

Format

CALL CSNBKRW(
return_code,
reason_code,
exit_data_length,
exit_data,
key_token,
key_label)

Parameters
return_code

Direction: Output Type: Integer

CKDS Key Record Read2

Chapter 11. Key Data Set Management 575

|

|

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

key_token

Direction: Input/output Type: String

The 64-byte internal AES or DES key token that is written to the CKDS.

key_label

Direction: Input Type: Character string

The 64-byte label of a record in the CKDS that is the target of this service. The
record is updated with the AES or DES internal key token supplied in the
key_token parameter.

Restrictions
The record defined by the key_label parameter must be unique and must already
exist in the CKDS.

On CCF systems, writing a NOCV key-encrypting key is restricted to callers in
supervisor mode or in system key.

This callable service does not support version X'10' external DES key tokens (RKX
key tokens).

Usage Notes
With a PCIXCC, CEX2C, or CEX3C, you can write NOCV keys to the CKDS
without being in supervisor state.

Secure AES tokens in the CKDS can only be overwritten by a secure AES token
encrypted under the same AES master keys. The same is true for secure DES
tokens.

CKDS Key Record Write

576 z/OS V1R13 ICSF Application Programmer's Guide

DES tokens cannot be overwritten by an AES token. AES tokens cannot be
overwritten by a DES token.

Secure key tokens cannot be processed when the master key is not loaded.

Clear AES and DES tokens can be processed on a system without a cryptographic
coprocessor or accelerator.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 252. CKDS record write required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

Related Information
You can use this service with the CKDS key record create callable service to write
an initial record to key storage. Use it following the key import and key generate
callable services to write an operational key imported or generated by these
services directly to the CKDS.

CKDS Key Record Write2 (CSNBKRW2 and CSNEKRW2)
Use the CKDS key record write2 callable service to write an internal symmetric key
token to the variable-length CKDS record specified by the key_label parameter. This
service updates both the DASD copy of the CKDS currently in use by ICSF and the
in-storage copy. The record you are updating must be unique and must already
exist in both the DASD and in-storage copies of the CKDS.

The callable service name for AMODE(64) is CSNEKRW2.

CKDS Key Record Write

Chapter 11. Key Data Set Management 577

|

|

Format

CALL CSNBKRW2(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_token_length,
key_token,
key_label)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
may be 0.

rule_array

Direction: Input Type: String

This parameter is ignored by ICSF.

key_token_length

CKDS Key Record Write2

578 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input Type: Integer

The length in bytes of the token to be written to the CKDS. The maximum value
is 725.

key_token

Direction: Input/Output Type: String

An internal symmetric key token to be written to the CKDS. If the token supplied
was encrypted under the old master key, the token will be returned encrypted
under the current master key.

key_label

Direction: Input Type: String

The 64-byte label of a record in the CKDS to be overwritten.

Usage Notes
The Usage Notes for the CKDS Key Record Write callable service also apply to the
CKDS Key Record Write2 callable service when writing fixed-length symmetric key
tokens (versions X'00', X'01', and X'04').

A key token cannot be overwritten by another key token that doesn’t have the exact
same algorithm and key type. For example:

v a DES key token cannot be overwritten by an AES token, and an AES key token
cannot be overwritten by a DES token

v an AES HMAC token cannot be overwritten by an AES CIPHER token, and an
AES CIPHER token cannot be overwritten by an AES HMAC token.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 253. CKDS key record write2 required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

CKDS Key Record Write2

Chapter 11. Key Data Set Management 579

|
|
|

|
|

|
|

|
|

|

Coordinated KDS Administration (CSFCRC and CSFCRC6)
Use the coordinated KDS administration callable service to perform a coordinated
CKDS refresh or a coordinated CKDS master key change.

When used for master key change, applications can continue to run CKDS update
workloads in parallel, and ICSF guarantees that any dynamic updates will be
reflected in the target data set. For coordinated CKDS refresh, you should disable
CKDS update workloads when refreshing to a target data set that is different from
the currently-active CKDS. This is recommended, because updates occurring to the
currently-active CKDS might not be reflected in the target data set. ICSF does not
enforce manual disablement of dynamic CKDS updates prior to a coordinated
refresh operation, and will itself internally suspend such updates until the
coordinated refresh operation completes. Note that the recommendation to disable
CKDS updates does not apply to a coordinated refresh when the target data set is
the same as the currently-active CKDS. In this case, the updates to the
currently-active CKDS are guaranteed to be in the resulting in-storage CKDS when
the operation completes.

In a sysplex environment, this callable service enables an application to perform a
coordinated sysplex-wide CKDS refresh or CKDS change master key operation
from a single ICSF instance.

The callable service name for AMODE(64) invocation is CSFCRC6.

Format

CALL CSFCRC (
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
function
new_data_set_name,
data_set_type,
backup_data_set_name,
archive_data_set_name,
feedback_length,
feedback)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned

Coordinated KDS Administration

580 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||
|

|
|

|

|||
|

|
|

to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. The
value must be 0.

rule_array

Direction: Input Type: String

This parameter is ignored.

function

Direction: Input Type: Integer

The function to be performed by this callable service. The value must be 1 for
coordinated change master key or 2 for coordinated refresh.

new_data_set_name

Direction: Input Type: String

The name of the new data set to be used by this callable service. For
coordinated change master key this data set will be used to reencipher the
active KDS data set, and will become the active KDS data set. For coordinated
refresh this data set will become the active KDS dataset. This data set name
must be a 44 character string with the data set name left justified and padded
with blanks.

data_set_type

Direction: Input Type: Integer

The type of data set to be processed by the callable service. This value must
be 1 for a CKDS.

backup_data_set_name

Direction: Input Type: String

The name of the backup data set to be used by this callable service when
performing a coordinated change master key. This parameter is optional. If

Coordinated KDS Administration

Chapter 11. Key Data Set Management 581

|
|

|

|||
|

|

|

|||
|

|

|

|||
|

|
|

|

|||
|

|

|

|||
|

|
|

|

|||
|

|
|
|
|
|
|

|

|||
|

|
|

|

|||
|

|
|

specified, a backup copy of the reenciphered KDS will be stored in this data
set. This data set name must be a 44-character string with the data set name
left justified and padded with blanks.

archive_data_set_name

Direction: Input Type: String

The name of the archive data set to be used by the CRC callable service. This
parameter is optional. If specified, the active KDS will be renamed to this data
set name after performing the coordinated change master key or coordinated
refresh to a new data set. This data set name must be a 44-character string
with the data set name left justified and padded with blanks. The CRC service
will take the suffix (usually .D or .DATA /.I or .INDEX) from the active KDS and
apply them to the archive data set name. If the data or index name contains no
suffix, or if the suffix applied to the archive data set name exceeds 44
characters, the request will be rejected.

feedback_length

Direction: Input Type: Integer

The length of the feedback field used by the callable service.

feedback

Direction: Output Type: String

A field provided by the caller for the callable service to return additional
feedback in.

Usage Notes
All instances of a CKDS sysplex cluster (using the same active CKDS) must be
IPLed and started in order to perform a coordinated refresh or reencipher operation.
The coordinated KDS administration functions will not be queued for processing on
inactive sysplex cluster members.

SAF will be invoked to verify the caller is authorized to use this callable service.
The CSFCRC resource in the CSFSERV class protects access to this callable
service. To access this service, callers will be required to have a UACC of update
for the CSFCRC resource.

A coordinated CKDS sysplex cluster wide refresh on the active CKDS requires
CKDS updates to be suspended. A refresh of the active CKDS is only required
when KGUP or some other utility has altered the CKDS VSAM dataset. Updates
must be suspended in this case to allow the in-storage cache of the CKDS VSAM
data set to be rebuilt.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Coordinated KDS Administration

582 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|

|

|||
|

|
|
|
|
|
|
|
|
|

|

|||
|

|

|

|||
|

|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

Table 254. Coordinated CKDS administration required hardware

Server

Required
cryptographic
hardware Restrictions

IBM Eserver zSeries
900

None This callable service is not supported.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None

IBM System z9 EC

IBM System z9 BC

None

IBM System z10 EC

IBM System z10 BC

None

z196 None

PKDS Key Record Create (CSNDKRC and CSNFKRC)
This callable service writes a new record to the PKDS.

The callable service name for AMODE(64) invocation is CSNFKRC.

Format

CALL CSNDKRC(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
label,
token_length,
token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

Coordinated KDS Administration

Chapter 11. Key Data Set Management 583

||

|

|
|
||

|
|
||

|
|

|
|

||

|

|

||

|

|

||

|||
|

|
|

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. This
parameter is ignored by ICSF.

rule_array

Direction: Input Type: String

This parameter is ignored by ICSF.

label

Direction: Input Type: String

The label of the record to be created. A 64 byte character string.

token_length

Direction: Input Type: Integer

The length of the field containing the token to be written to the PKDS. If zero is
specified, a null token will be added to the PKDS. The maximum value of
token_length is the maximum length of a private RSA or DSS token.

token

Direction: Input Type: String

Data to be written to the PKDS if token_length is non-zero. An RSA, DSS, or
ECC private token in either external or internal format, or a DSS, RSA, or ECC
public token.

Usage Notes
To use this service, PKA callable services must be enabled for all RSA and DSS
token types. For systems with CEX3C coprocessors, there is no PKA callable
services control. The RSA master key must be valid to use this service.

To use this service for clear key ECC tokens, a current ECC master key is not
required.

PKDS Key Record Create

584 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|

To use this service for encrypted key ECC tokens, the ECC master key must be
valid.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 255. PKDS key record create required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None

PKDS Key Record Delete (CSNDKRD and CSNFKRD)
Use PKDS key record delete to delete a record from the PKDS.

The callable service name for AMODE(64) invocation is CSNFKRD.

Format

CALL CSNDKRD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
label)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

PKDS Key Record Create

Chapter 11. Key Data Set Management 585

|

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. This
value must be 0, or 1.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justified in 8-byte fields and padded on the right with blanks. All keywords
must be in contiguous storage.

Table 256. Keywords for PKDS Key Record Delete

Keyword Meaning

Deletion Mode (optional) specifies whether the record is to be deleted entirely or
whether only its contents are to be erased.

LABEL-DL Specifies that the record will be deleted from the PKDS
entirely. This is the default deletion mode.

TOKEN-DL Specifies that the only the contents of the record are to be
deleted. The record will still exist in the PKDS, but will
contain only binary zeroes.

label

Direction: Input Type: String

The label of the record to be deleted. A 64 byte character string.

Restrictions
This service cannot delete the PKDS record for a retained key.

PKDS Key Record Delete

586 z/OS V1R13 ICSF Application Programmer's Guide

Usage Notes
To use this service, PKA callable services must be enabled for all RSA and DSS
token types. For systems with CEX3C coprocessors, there is no PKA callable
services control. The RSA master key must be valid to use this service.

To use this service for clear key ECC tokens, a current ECC master key is not
required.

To use this service for encrypted key ECC tokens, the ECC master key must be
valid.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 257. PKDS key record delete required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver

zSeries 900
None.

IBM Eserver

zSeries 990

IBM Eserver

zSeries 890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None

PKDS Key Record Read (CSNDKRR and CSNFKRR)
Reads a record from the PKDS and returns the content of the record. This is true
even when the record contains a null PKA token.

The callable service name for AMODE(64) invocation is CSNFKRR.

Format

CALL CSNDKRR(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
label,
token_length,
token)

PKDS Key Record Delete

Chapter 11. Key Data Set Management 587

|
|
|

|

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. This
parameter is ignored by ICSF.

rule_array

Direction: Input Type: String

This parameter is ignored by ICSF.

label

Direction: Input Type: String

The label of the record to be read. A 64 byte character string.

token_length

Direction: Input/Output Type: Integer

The length of the area to which the record is to be returned. On successful
completion of this service, token_length will contain the actual length of the
record returned.

PKDS Key Record Read

588 z/OS V1R13 ICSF Application Programmer's Guide

token

Direction: Output Type: String

Area into which the returned record will be written. The area should be at least
as long as the record.

Usage Notes
To use this service, PKA callable services must be enabled for all RSA and DSS
token types. For systems with CEX3C coprocessors, there is no PKA callable
services control. The RSA master key must be valid to use this service.

To use this service for clear key ECC tokens, a current ECC master key is not
required.

To use this service for encrypted key ECC tokens, the ECC master key must be
valid.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 258. PKDS key record read required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None

PKDS Key Record Write (CSNDKRW and CSNFKRW)
Writes over an existing record in the PKDS.

The callable service name for AMODE(64) invocation is CSNFKRW.

PKDS Key Record Read

Chapter 11. Key Data Set Management 589

|
|
|

|

Format

CALL CSNDKRW(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
label,
token_length,
token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in the rule_array parameter. Its
value must be 0 or 1.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justified in 8-byte fields and padded on the right with blanks. All keywords
must be in contiguous storage.

PKDS Key Record Write

590 z/OS V1R13 ICSF Application Programmer's Guide

Table 259. Keywords for PKDS Key Record Write

Keyword Meaning

Write Mode (optional) specifies the circumstances under which the record is to be
written.

CHECK Specifies that the record will be written only if a record of
type NULL with the same label exists in the PKDS. If such
a record exists, ICSF overwrites it. This is the default
condition.

OVERLAY Specifies that the record will be overwritten regardless of
the current content of the record. If a record with the
same label exists in the PKDS, ICSF overwrites it.

label

Direction: Input Type: String

The label of the record to be overwritten. A 64 byte character string.

token_length

Direction: Input Type: Integer

The length of the field containing the token to be written to the PKDS.

token

Direction: Input Type: String

The data to be written to the PKDS, which is a DSS, RSA, or ECC private
token in either external or internal format, or a DSS, RSA, or ECC public token.

Restrictions
This service cannot update a PKDS record for a retained key.

Usage Notes
The PKDS Key Record Write service will only overwrite NULL tokens and tokens of
the same type. For example an RSA token cannot overwrite an ECC or DSS token.

To use this service, PKA callable services must be enabled for all RSA and DSA
token types. For systems with CEX3C coprocessors, there is no PKA callable
services control. The RSA master key must be valid to use this service.

To use this service for clear key ECC tokens, a current ECC master key is not
required.

To use this service for encrypted key ECC tokens, the ECC master key must be
valid.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

PKDS Key Record Write

Chapter 11. Key Data Set Management 591

|
|
|

Table 260. PKDS key record write required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

PKDS Key Record Write

592 z/OS V1R13 ICSF Application Programmer's Guide

Chapter 12. Utilities

This topic describes these callable services:

v “Character/Nibble Conversion (CSNBXBC and CSNBXCB)”

v “Code Conversion (CSNBXEA and CSNBXAE)” on page 595

v “ICSF Query Algorithm (CSFIQA and CSFIQA6)” on page 597

v “ICSF Query Facility (CSFIQF and CSFIQF6)” on page 602

v “X9.9 Data Editing (CSNB9ED)” on page 621

Note: These services are not dependent on the hardware. They will run on any
server.

Character/Nibble Conversion (CSNBXBC and CSNBXCB)
Use these utilities to convert a binary string to a character string (CSNBXBC) or
convert a character string to a binary string (CSNBXCB).

These utilities do not support invocation in AMODE(64).

Format

CALL CSNBXBC(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
source_text,
target_text,
code_table)

CALL CSNBXCB(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
source_text,
target_text,
code_table)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

© Copyright IBM Corp. 1997, 2011 593

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

text_length

Direction: Input/Output Type: Integer

On input, the text_length contains an integer that is the length of the
source_text. The length must be a positive nonzero value. On output,
text_length is updated with an integer that is the length of the target_text.

source_text

Direction: Input Type: String

This parameter contains the string to convert.

target_text

Direction: Output Type: String

The converted text that the callable service returns.

code_table

Direction: Input Type: String

A 16-byte conversion table. The code table for binary to EBCDIC conversion is
X'F0F1F2F3F4F5F6F7F8F9C1C2C3C4C5C6'.

Usage Notes
These services are structured differently from the other services. They run in the
caller's address space in the caller's key and mode.

ICSF need not be active for you to run either of these services. No pre- or
post-processing exits are enabled for these services, and no calls to RACF are
issued when you run these services.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Character/Nibble Conversion

594 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

|

|||
|

|

Table 261. Character/Nibble conversion required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

Code Conversion (CSNBXEA and CSNBXAE)
Use these utilities to convert ASCII data to EBCDIC data (CSNBXAE) or EBCDIC
data to ASCII data (CSNBXEA).

These utilities do not support invocation in AMODE(64).

Format

CALL CSNBXAE(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
source_text,
target_text,
code_table)

CALL CSNBXEA(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
source_text,
target_text,
code_table)

Parameters
return_code

Direction: Output Type: Integer

Character/Nibble Conversion

Chapter 12. Utilities 595

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

text_length

Direction: Input Type: Integer

The text_length contains an integer that is the length of the source_text. The
length must be a positive nonzero value.

source_text

Direction: Input Type: String

This parameter contains the string to convert.

target_text

Direction: Output Type: String

The converted text that the callable service returns.

code_table

Direction: Input Type: String

A 256-byte conversion table. To use the default code table, you need to pass a
full word of hexadecimal zero's. See Appendix G, “EBCDIC and ASCII Default
Conversion Tables,” on page 891 for contents of the default table.

Note: The Transaction Security System code table has 2 additional 8-byte
fields that are not used in the conversion process. ICSF accepts either a
256-byte or a 272-byte code table, but uses only the first 256 bytes in
the conversion.

Usage Notes
These services are structured differently than the other services. They run in the
caller's address space in the caller's key and mode. ICSF need not be active for

Code Conversion

596 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

|

|||
|

|

you to run either of these services. No pre- or post-processing exits are enabled for
these services, and no calls to RACF are issued when you run these services.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 262. Code conversion required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

ICSF Query Algorithm (CSFIQA and CSFIQA6)
Use this utility to retrieve information about the cryptographic and hash algorithms
available. You can control the amount of data that is returned by passing in
rule_array keywords. Keyword values describe the cryptographic algorithm or hash
algorithm you are interested in.

The service returns a table of information in the returned_data parameter. A row of
data consists of the algorithm name, the algorithm size, whether or not clear or
secure keys are supported and what method ICSF will use to satisfy a request -
CPU instructions, a cryptographic accelerator, a cryptographic coprocessor, or
software. The service updates the returned_data_length field with the actual length
of the output returned_data field.

The callable service name for AMODE (64) invocation is CSFIQA6.

Format

CALL CSFIQA(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
returned_data_length,
returned_data,
reserved_data_length,
reserved_data)

Code Conversion

Chapter 12. Utilities 597

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in rule_array. Value must be 0 or 1.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. The keywords
must be 8 bytes of contiguous storage with the keyword left-justified in its
8-byte location and padded on the right with blanks.

Table 263. Keywords for ICSF Query Algorithm

Keyword Meaning

ALGORITHM (optional)

AES Advanced Encryption Standard - symmetric key algorithm

DES Data Encryption Standard - single length symmetric key
algorithm

DSS Data Signature Standard - public key cryptography
algorithm

ECC Elliptic Curve Cryptography. All curve types.

ECC-PRIM Elliptic Curve Cryptography using NIST approved PRIME
curves

ECC-BP Elliptic Curve Cryptography using Brain Pool Curves

ICSF Query Algorithm

598 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

|

|||
|

|

Table 263. Keywords for ICSF Query Algorithm (continued)

Keyword Meaning

HMAC FIPS-198 keyed-hash message authentication code
algorithm.

RSA Rivest-Shamir-Adleman - public key cryptography
algorithm, all usage types

RSA-SIG Rivest-Shamir-Adleman - public key cryptography
algorithm, signature usage.

RSA-KM Rivest-Shamir-Adleman - public key cryptography
algorithm, key management usage.

RSA-GEN Rivest-Shamir-Adleman - public key cryptography
algorithm, key generation.

SHA-1 Secure Hash Algorithm 1 - A one way hash algorithm

SHA-2 Secure Hash Algorithm 2 - A one way hash algorithm

MDC-2 Modification Detection Code 2 - MDC-2 specifies two
encipherments per 8 bytes of input text

MDC-4 Modification Detection Code 4 - MDC-4 specifies four
encipherments per 8 bytes of input text

MD5 Message Digest 5 - A one way hash algorithm

RPMD-160 RIPE MD-160 - A one way hash algorithm

RNGL Random number generate long callable service

TDES Data Encryption Standard - double and triple length
symmetric key algorithm

returned_data_length

Direction: Input/Output Type: Integer

The length of the returned_data parameter. Currently, the value must be large
enough to handle the request. Allow additional space for future enhancements.
On output, this field will contain the actual length of the data returned.

returned_data

Direction: Output Type: String

This field will contain the table output from the service. Depending on the
contents of rule_array, multiple rows may be returned. One row in the table
contains:

Table 264. Output for ICSF Query Algorithm

Offset
(hex)

Name Description

ICSF Query Algorithm

Chapter 12. Utilities 599

Table 264. Output for ICSF Query Algorithm (continued)

0 (X'0') Algorithm An 8-byte EBCDIC character string containing the
name of the cryptographic algorithm. The character
string is padded on the right with blanks. Possible
values are:

AES
DES (single length DES)
DSS
ECC-PRIM
ECC-BP (Brain Pool)
HMAC
MDC-2
MDC-4
MD5
RNGL
RPMD-160
RSA-GEN
RSA-KM
RSA-SIG
SHA-1
SHA-2
TDES (double and triple length DES)

8 (X'8') Size An 8-byte EBCDIC string representing the maximum
key, modulus, p value, or hash size. The string is
padded with blanks on the right. The size is in bits.
This is true for all algorithms except RNGL. For
RNGL, the size is in bytes.

16 (X'10') Key Security An 8-byte EBCDIC character string containing the
string

CLEAR
SECURE
NA

The string is padded on the right with blanks.

24(X'18') Implementation An 8-byte EBCDIC character string containing how
the algorithm is implemented. The string is padded
on the right with blanks. Possible choices are:

ACC - Cryptographic Accelerator
CCF - CCF
COP - Cryptographic Coprocessor
CPU - CPACF
SW - Software

The rows are sorted in the following order:

v Algorithm name - alphabetically A to Z

v Algorithm size - numerically highest to least

v Key security - alphabetically A to Z

v Implementation - alphabetically A to Z

reserved_data_length

Direction: Input Type: Integer

The length of the reserved_data parameter. Currently, the value must be 0.

ICSF Query Algorithm

600 z/OS V1R13 ICSF Application Programmer's Guide

reserved_data

Direction: Ignored Type: String

This field is currently not used.

Usage Notes
The rule_array keyword allows the caller to select how much information is
returned. The returned data can describe all cryptographic support on the base
system or it can be filtered by an algorithm.

For example, a rule_array_count of 0 will return information about all algorithms and
key security. A rule_array_count of 1 and a keyword of 'AES' will return information
about the AES algorithm support, both clear and secure AES keys.

Only cryptographic coprocessors in the active state are queried.

In general, a key security of SECURE implies that both SECURE and CLEAR key
versions of the algorithm are supported by the processor or the cryptographic
coprocessor. The exception is TDES support in CCF on a z900. Only SECURE
TDES keys are supported.

This service lists an algorithm as being supported when the cryptographic
coprocessor or accelerator is capable of performing the function. It does not reflect
when an algorithm is unavailable because TKE was used to disable the function.

RNGL keyword refers to the Random Number Generate Long (CSFBRNGL) callable
service. The following is returned for implementation:

v COP - when RNGL is implemented using the RNGL verb in the cryptographic
coprocessor.

v CCF- when RNGL is implemented using the CCF random number generate
function (z900 machines)

v SW - when RNGL is implemented using a loop around the RNG verb in the
cryptographic coprocessor, creating the random number 8 bytes at a time.

When a row of the returned_data table contains a Key Security value of SECURE
and an Implementation value of CPU, this indicates that the CSNBSYE and
CSNBSYD callable services support the use of key labels for encrypted keys stored
in the CKDS. In other words, the required functions in ICSF, CPACF and the
cryptographic coprocessor are available.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 265. ICSF Query Algorithm required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

ICSF Query Algorithm

Chapter 12. Utilities 601

Table 265. ICSF Query Algorithm required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

ICSF Query Facility (CSFIQF and CSFIQF6)
Use this utility to retrieve information about ICSF, the cryptographic coprocessors
and the CCA code in the coprocessors. This information includes:

v general information about ICSF

v general information about CCA code in a coprocessor

v export control information from a coprocessor

v diagnostic information from a coprocessor

Coprocessor information requests may be directed to a specific ONLINE or ACTIVE
coprocessor or any ACTIVE coprocessor.

This service has an interface similar to the IBM 4758 service CSUACFQ. Instead of
the output being returned in the rule array, there is a separate output area. The
format of the data returned remains the same. This service supports a subset of the
keywords supported by CSUACFQ. For the same supported keywords, CSFIQF
and CSUACFQ return the same coprocessor-specific information. The service
returns information elements in the returned_data field and updates the
returned_data_length with the actual length of the output returned_data field.

The callable service name for AMODE(64) invocation is CSFIQF6.

Format

CALL CSFIQF(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
returned_data_length,
returned_data,
reserved_data_length,
reserved_data)

ICSF Query Algorithm

602 z/OS V1R13 ICSF Application Programmer's Guide

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in rule_array. Value must be 1 or 2

rule_array

Direction: Input Type: String

Keywords that provide control information to callable services. The keywords
are left-justified in an 8-byte field and padded on the right with blanks. The
keywords must be in contiguous storage. Specify one or two of the values in
Table 266.

Table 266. Keywords for ICSF Query Service

Keyword Meaning

Coprocessor (optional) - parameter is ignored for ICSFSTAT.

COPROCxx Specifies the specific coprocessor to execute the request.
xx may be 00 through 63 inclusive. This may be the
processor number of any coprocessor. The processor
number of any accelerator is not supported.

ANY Process request on any ACTIVE cryptographic
coprocessor. This is the default.

nnnnnnnn Specifies the 8-byte serial number of the coprocessor to
execute the request.

Information to return (required)

ICSF Query Facility

Chapter 12. Utilities 603

|

|||
|

|

|

|||
|

|

Table 266. Keywords for ICSF Query Service (continued)

Keyword Meaning

ICSFSTAT Get ICSF related status information.

ICSFST2 Get coprocessor-related basic status information.

NUM-DECT Get the number of bytes of storage required for the output
of a STATDECT request.

STATAES Get status information on AES enablement and the AES
master key registers.

STATCCA Get CCA-related status information.

STATCCAE Get CCA-related extended status information.

STATCARD Get coprocessor-related basic status information.

STATDECT Get the PIN decimalization tables loaded. The format of
the data is shown under the returned_data parameter.
The length of the data is 20 bytes per decimalization
table. The NUM-DECT option will return the storage
required for this option. The maximum length of the data
is 2000 bytes.

STATDIAG Get coprocessor-related basic status information.

STATAPKA Get status information on ECC enablement and the ECC
master key registers.

STATEID Get coprocessor-related basic status information.

STATEXPT Get coprocessor-related basic status information.

WRAPMTHD Get coprocessor-related default configuration setting for
the wrapping method.

returned_data_length

Direction: Input/Output Type: Integer

The length of the returned_data parameter. Currently, the value must be at least
eight times the number of elements returned for the rule_array keyword
specified. Allow additional space for future enhancements. On output, this field
will contain the actual length of the data returned.

returned_data

Direction: Output Type: String/Integer

This field will contain the output from the service. The format of the output
depends on the rule_array keyword. The format of the data is defined in the
tables below, which describe the output for each keyword.

When the format is 8-byte elements that contain numbers, those numbers are
represented by numeric characters which are left-justified and padded on the
right with space characters. For example, a returned_data element which
contains the number two will contain the character string '2 '.

For option NUM-DECT, the output is a 4-byte integer.

For ICSFSTAT, the coprocessor keyword is ignored. The output returned_data
for the ICSFSTAT keyword is defined in Table 267 on page 605.

ICSF Query Facility

604 z/OS V1R13 ICSF Application Programmer's Guide

||
|

||
|
|
|
|
|

|
|
|

|
|
|
|

|

Table 267. Output for option ICSFSTAT

Element
Number

Name Description

1 FMID 8-byte ICSF FMID

2 ICSF Status Field 1 Status of ICSF

Number Meaning

0 ICSF started

1 ICSF initialized (CCVINIT is
on)

2 SYM-MK (DES master key)
valid (CCVTMK is on)

3 PKA callable services enabled
(see “Usage Notes” on page
620)

3 ICSF Status Field 2 Status of ICSF

Number Meaning

0 64-bit callers not supported

1 64-bit callers supported

2 64-bit callers supported, and a
TKDS has been specified for
the storage of persistent
PKCS #11 objects.

4 CPACF CPACF availability

Number Meaning

0 CPACF not available

1 SHA-1 available only

2 DES/TDES enabled

3 SHA-224 and SHA-256 are
available

4 SHA-224 and SHA-256, DES
and TDES are available

5 SHA-384 and SHA-512 are
available

6 SHA-384 and SHA-512, DES
and TDES are available

7 Encrypted CPACF functions
available.

8 OFB, CFB, and GCM CPACF
functions are available.

5 AES AES availability for clear keys

Number Meaning

0 AES not available

1 AES software only

2 AES-128

3 AES-192 and AES-256

ICSF Query Facility

Chapter 12. Utilities 605

Table 267. Output for option ICSFSTAT (continued)

6 DSA DSA algorithm availability

Number Meaning

0 DSA not available

1 DSA 1024 key size

2 DSA 2048 key size

7 RSA Signature RSA Signature key length

Number Meaning

0 RSA not available

1 RSA 1024 key size

2 RSA 2048 key size

3 RSA 4096 key size

8 RSA Key Management RSA Key Management key length

Number Meaning

0 RSA not available

1 RSA 1024 key size

2 RSA 2048 key size

3 RSA 4096 key size

9 RSA Key Generate RSA Key Generate

Number Meaning

0 Service not available

1 Service available - 2048 bit
modulus

2 Service available - 4096 bit
modulus

10 Accelerators Availability of clear RSA key accelerators
(PCICAs)

Number Meaning

0 Not available

1 At least one available for
application use.

11 Accelerator Key Size Clear key size supported by Accelerators. There
must be at least one Accelerator available for
use for this field to contain valid information.

Number Meaning

0 RSA-ME key size of 2048,
CRT key size of 2048.

1 RSA-ME key size of 4096,
CRT key size of 4096.

12 Future Use Currently blanks

For ICSFST2 the coprocessor rule array keyword is ignored. The output
returned_data for the ICSFST2 keyword is defined in Table 268 on page 607.

ICSF Query Facility

606 z/OS V1R13 ICSF Application Programmer's Guide

|||
|
|

||

||
|

||
|

Table 268. Output for option ICSFST2

Element
Number

Name Description

1 Version Version of the ICSFST2 returned_data. Initial
value is 1. It covers elements 1 through 12.

2 FMID 8–byte ICSF FMID.

3 ICSF Status Field 1 Status of ICSF

Number Meaning

0 PKA callable services disabled

1 PKA callable services enabled
(see “Usage Notes” on page
620)

4 ICSF Status Field 2 Status of ICSF

Number Meaning

0 PKCS #11 is not available

1 PKCS #11 is available

5 ICSF Status Field 3 Status of ICSF

Number Meaning

0 ICSF started

1 ICSF initialized

2 AES master key valid

6 ICSF Status Field 4 Status of ICSF

Number Meaning

0 Secure key AES not available

1 Secure key AES is available

ICSF Query Facility

Chapter 12. Utilities 607

Table 268. Output for option ICSFST2 (continued)

7 ICSF Status Field 5 An 8-character numeric character string
summarizing the current Key Store Policy.

The first character in this string indicates if Key
Token Authorization Checking controls have
been enabled for the CKDS in either warning or
fail mode, and, if so, if the Default Key Label
Checking control has also been enabled. The
numbers that can appear in the first character of
this string are:

Number Meaning

0 Key Token Authorization
Checking is not enabled for
the CKDS.

1 Key Token Authorization
Checking for CKDS is enabled
in FAIL mode. Key Store
Policy is active for CKDS.
Default Key Label Checking is
not enabled.

2 Key Token Authorization
Checking for CKDS is enabled
in WARN mode. Key Store
Policy is active for CKDS.
Default Key Label Checking is
not enabled.

3 Key Token Authorization
Checking for CKDS is enabled
in FAIL mode. Key Store
Policy is active for CKDS.
Default Key Label Checking is
also enabled.

4 Key Token Authorization
Checking for CKDS is enabled
in WARN mode. Key Store
Policy is active for CKDS.
Default Key Label Checking is
also enabled.

The second character in this string indicates if
Duplicate Key Token Checking controls have
been enabled for the CKDS. The numbers that
can appear in the second character of this
string are:

Number Meaning

0 Duplicate Key Token Checking
is not enabled for the CKDS.

1 Duplicate Key Token Checking
is enabled for the CKDS. Key
Store Policy is active for
CKDS.

ICSF Query Facility

608 z/OS V1R13 ICSF Application Programmer's Guide

Table 268. Output for option ICSFST2 (continued)

The third character in this string indicates if Key
Token Authorization Checking controls have
been enabled for the PKDS in either warning or
fail mode, and, if so, if the Default Key Label
Checking control has also been enabled. The
numbers that can appear in the third character
of this string are:

Number Meaning

0 Key Token Authorization
Checking is not enabled for
the PKDS.

1 Key Token Authorization
Checking for PKDS is enabled
in FAIL mode. Key Store
Policy is active for PKDS.
Default Key Label Checking is
not enabled.

2 Key Token Authorization
Checking for PKDS is enabled
in WARN mode. Key Store
Policy is active for PKDS.
Default Key Label Checking is
not enabled.

3 Key Token Authorization
Checking for PKDS is enabled
in FAIL mode. Key Store
Policy is active for PKDS.
Default Key Label Checking is
also enabled.

4 Key Token Authorization
Checking for PKDS is enabled
in WARN mode. Key Store
Policy is active for PKDS.
Default Key Label Checking is
also enabled.

The fourth character in this string indicates if
Duplicate Key Token Checking controls have
been enabled for the PKDS. The numbers that
can appear in the fourth character of this string
are:

Number Meaning

0 Duplicate Key Token Checking
is not enabled for the PKDS.

1 Duplicate Key Token Checking
is enabled for the PKDS. Key
Store Policy is active for
PKDS.

ICSF Query Facility

Chapter 12. Utilities 609

Table 268. Output for option ICSFST2 (continued)

The fifth character in this string indicates if
Granular Key Label Access controls have been
enabled in WARN or FAIL mode. The numbers
that can appear in the fifth character of this
string are:

Number Meaning

0 Granular Key Label Access
controls are not enabled.

1 Granular Key Label Access
control is enabled in FAIL
mode

2 Granular Key Label Access
control is enabled in WARN
mode

The sixth character in this string indicates if
Symmetric Key Label Export controls have been
enabled for AES and/or DES keys. The
numbers that can appear in the sixth character
of this string are:

Number Meaning

0 Symmetric Key Label Export
controls are not enabled.

1 Symmetric Key Label Export
control is enabled for DES
keys only.

2 Symmetric Key Label Export
control is enabled for AES
keys only.

3 Symmetric Key Label Export
controls are enabled for both
DES and AES keys.

ICSF Query Facility

610 z/OS V1R13 ICSF Application Programmer's Guide

Table 268. Output for option ICSFST2 (continued)

The seventh character in this string indicates if
PKA Key Management Extensions have been
enabled in either WARN or FAIL mode, and, if
so, whether a SAF key ring or a PKCS #11
token is identified as the trusted certificate
repository. (The trusted certificate repository is
identified using the APPLDATA field of the
CSF.PKAEXTNS.ENABLE profile. If no value is
specified in the APPLDATA field, a PKCS #11
token is assumed.) The numbers that can
appear in the seventh character of this string
are:

Number Meaning

0 Symmetric Key Label Export
controls are not enabled.

1 PKA Key Management
Extensions control is enabled
in FAIL mode. The trusted
certificate repository is a SAF
key ring.

2 PKA Key Management
Extension control is enabled
in FAIL mode. The trusted
certificate repository is a
PKCS #11 token.

3 PKA Key Management
Extensions control is enabled
in WARN mode. The trusted
certificate repository is a SAF
key ring.

4 PKA Key Management
Extension control is enabled
in WARN mode. The trusted
certificate repository is a
PKCS #11 token.

8 ICSF Status Field 6 Status of ICSF

Number Meaning

0 ICSF started

1 ICSF initialized

2 ECC master key valid, internal
keys supported

3 ECC master key valid,
external keys also supported

9 ICSF Status Field 7 Status of ICSF

Number Meaning

0 ICSF started

1 ICSF initialized

2 RSA master key valid

ICSF Query Facility

Chapter 12. Utilities 611

||
|

||
|

Table 268. Output for option ICSFST2 (continued)

10 ICSF Status Field 8 Status of ICSF

Number Meaning

0 ICSF started

1 ICSF initialized

2 DES master key valid

11 ICSF Status Field 9 Status of ICSF

Number Meaning

0 PKA callable services
disabled.

1 PKA callable services
enabled.

See Usage Notes for additional information.

12 Future use Currently blanks

Table 269. Output for option NUM-DECT

Element
Number

Description

1 The number of bytes required for the output of a STATDECT request. This is
the number of decimalization tables loaded times 20 bytes. This is a four-byte
binary number.

Table 270. Output for option STATAES

Element
Number

Name Description

1 AES NMK Status State of the AES new master key register:

Number Meaning

1 Register is clear

2 Register contains a partially
complete key

3 Register contains a complete key

2 AES CMK Status State of the AES current master key register:

Number Meaning

1 Register is clear

2 Register contains a key

3 AES OMK Status State of the AES old master key register:

Number Meaning

1 Register is clear

2 Register contains a key

4 AES key length
enablement

The maximum AES key length that is enabled by the
function control vector. The value is 0 (if no AES key
length is enabled in the FCV), 128, 192, or 256.

ICSF Query Facility

612 z/OS V1R13 ICSF Application Programmer's Guide

||

|
|
|

||
|
|
|

Table 271. Output for option STATCCA

Element
Number

Name Description

1 NMK Status State of the DES New Master Key Register:

Number Meaning

1 Register is clear

2 Register contains a partially
complete key

3 Register contains a complete key

2 CMK Status State of the DES Current Master Key Register:

Number Meaning

1 Register is clear

2 Register contains a key

3 OMK Status State of the DES Old Master Key Register:

Number Meaning

1 Register is clear

2 Register contains a key

4 CCA Application
Version

A character string that identifies the version of the
CCA application program that is running in the
coprocessor.

5 CCA Application Build
Date

A character string containing the build date for the
CCA application program that is running in the
coprocessor.

6 User Role A character string containing the Role identifier which
defines the host application user's current authority.

Table 272. Output for option STATCCAE

Element
Number

Name Description

1 Symmetric NMK Status State of the DES Symmetric New Master Key
Register:

Number Meaning

1 Register is clear

2 Register contains a partially
complete key

3 Register contains a complete key

2 Symmetric CMK Status State of the DES Symmetric Current Master Key
Register:

Number Meaning

1 Register is clear

2 Register contains a key

ICSF Query Facility

Chapter 12. Utilities 613

Table 272. Output for option STATCCAE (continued)

3 Symmetric OMK Status State of the DES Symmetric Old Master Key
Register:

Number Meaning

1 Register is clear

2 Register contains a key

4 CCA Application
Version

A character string that identifies the version of the
CCA application program that is running in the
coprocessor.

5 CCA Application Build
Date

A character string containing the build date for the
CCA application program that is running in the
coprocessor.

6 User Role A character string containing the Role identifier which
defines the host application user's current authority.

7 Asymmetric NMK
Status

State of the RSA Asymmetric New Master Key
Register:

Number Meaning

1 Register is clear

2 Register contains a partially
complete key

3 Register contains a complete key

8 Asymmetric CMK
Status

State of the RSA Asymmetric Current Master Key
Register:

Number Meaning

1 Register is clear

2 Register contains a key

9 Asymmetric OMK
Status

State of the RSA Asymmetric Old Master Key
Register:

Number Meaning

1 Register is clear

2 Register contains a key

Table 273. Output for option STATCARD

Element
Number

Name Description

1 Number of installed
adapters

The number of active cryptographic coprocessors
installed in the machine. This only includes
coprocessors that have CCA software loaded
(including those with CCA UDX software).

2 DES hardware level A numeric character string containing an integer value
identifying the version of DES hardware that is on the
coprocessor.

3 RSA hardware level A numeric character string containing an integer value
identifying the version of RSA hardware that is on the
coprocessor.

ICSF Query Facility

614 z/OS V1R13 ICSF Application Programmer's Guide

Table 273. Output for option STATCARD (continued)

4 POST Version A character string identifying the version of the
coprocessor's Power-On Self Test (POST) firmware.
The first four characters define the POST0 version
and the last four characters define the POST1
version.

5 Coprocessor Operating
System Name

A character string identifying the operating system
firmware on the coprocessor. Padding characters are
blanks.

6 Coprocessor Operating
System Version

A character string identifying the version of the
operating system firmware on the coprocessor.

7 Coprocessor Part
Number

A character string containing the eight-character part
number identifying the version of the coprocessor.

8 Coprocessor EC Level A character string containing the eight-character EC
(engineering change) level for this version of the
coprocessor.

9 Miniboot Version A character string identifying the version of the
coprocessor's miniboot firmware. This firmware
controls the loading of programs into the coprocessor.

The first four characters define the MiniBoot0 version
and the last four characters define the MiniBoot1
version.

10 CPU Speed A numeric character string containing the operating
speed of the microprocessor chip, in megahertz.

11 Adapter ID (Also see
element number 15)

A unique identifier manufactured into the coprocessor.
The coprocessor's Adapter ID is an eight-byte binary
value.

12 Flash Memory Size A numeric character string containing the size of the
flash EPROM memory on the coprocessor, in
64-kilobyte increments.

13 DRAM Memory Size A numeric character string containing the size of the
dynamic RAM (DRAM) on the coprocessor, in
kilobytes.

14 Battery-Backed Memory
Size

A numeric character string containing the size of the
battery-backed RAM on the coprocessor, in kilobytes.

15 Serial Number A character string containing the unique serial number
of the coprocessor. The serial number is factory
installed and is also reported by the CLU utility in a
coprocessor signed status message.

For STATDECT, the output is a table of up to 100 PIN decimalization tables as
shown in the following table. The maximum size is 2000 bytes.

Table 274. Output for option STATDECT

Offset Field Description

0 Number Numeric character indicating the table number

3 State Character indicating the state of the table

L loaded

A active

4 Table 16-byte decimalization table

ICSF Query Facility

Chapter 12. Utilities 615

|
|

||

|||

|||

|||

||

||

|||
|

Table 275. Output for option STATDIAG

Element
Number

Name Description

1 Battery State A numeric character string containing a value which
indicates whether the battery on the coprocessor
needs to be replaced:

Number Meaning

1 Battery is good

2 Battery should be replaced

2 Intrusion Latch State A numeric character string containing a value which
indicates whether the intrusion latch on the
coprocessor is set or cleared:

Number Meaning

1 Latch is cleared

2 Latch is set

3 Error Log Status A numeric character string containing a value which
indicates whether there is data in the coprocessor
CCA error log.

Number Meaning

1 Error log is empty

2 Error log contains data but is not yet
full

3 Error log is full

4 Mesh Intrusion A numeric character string containing a value to
indicate whether the coprocessor has detected
tampering with the protective mesh that surrounds the
secure module — indicating a probable attempt to
physically penetrate the module.

Number Meaning

1 No intrusion detected

2 Intrusion attempt detected.

5 Low Voltage Detected A numeric character string containing a value to
indicate whether a power supply voltage was under
the minimum acceptable level. This may indicate an
attempt to attack the security module.

Number Meaning

1 Only acceptable voltages have been
detected

2 A voltage has been detected under
the low-voltage tamper threshold

ICSF Query Facility

616 z/OS V1R13 ICSF Application Programmer's Guide

|

Table 275. Output for option STATDIAG (continued)

6 High Voltage Detected A numeric character string containing a value to
indicate whether a power supply voltage was higher
than the maximum acceptable level. This may indicate
an attempt to attack the security module.

Number Meaning

1 Only acceptable voltages have been
detected

2 A voltage has been detected that is
higher than the high-voltage tamper
threshold

7 Temperature Range
Exceeded

A numeric character string containing a value to
indicate whether the temperature in the secure
module was outside of the acceptable limits. This may
indicate an attempt to obtain information from the
module:

Number Meaning

1 Temperature is acceptable

2 Detected temperature is outside an
acceptable limit

8 Radiation Detected A numeric character string containing a value to
indicate whether radiation was detected inside the
secure module. This may indicate an attempt to obtain
information from the module:

Number Meaning

1 No radiation has been detected

2 Radiation has been detected

9, 11, 13,
15, 17

Last Five Commands
Run

These five rule-array elements contain the last five
commands that were executed by the coprocessor
CCA application. They are in chronological order, with
the most recent command in element 9. Each element
contains the security API command code in the first
four characters and the subcommand code in the last
four characters.

10, 12,
14,16, 18

Last Five Return Codes These five rule-array elements contain the SAPI
return codes and reason codes corresponding to the
five commands in rule-array elements 9, 11, 13, 15,
and 17. l Each element contains the return code in
the first four characters and the reason code in the
last four characters.

Table 276. Output for option STATEID

Element
Number

Name Description

1 EID During initialization, a value of zero is set in the
coprocessor.

Table 277. Output for option STATEXPT

Element
Number

Name Description

ICSF Query Facility

Chapter 12. Utilities 617

Table 277. Output for option STATEXPT (continued)

1 Base CCA Services
Availability

A numeric character string containing a value to
indicate whether base CCA services are
available.

Number Meaning

0 Base CCA services are not
available

1 Base CCA services are
available

2 CDMF Availability A numeric character string containing a value to
indicate whether CDMF is available.

Number Meaning

0 CDMF encryption is not
available

1 CDMF encryption is available

3 56-bit DES Availability A numeric character string containing a value to
indicate whether 56-bit DES encryption is
available.

Number Meaning

0 56-bit DES encryption is not
available

1 56-bit DES encryption is
available

4 Triple-DES Availability A numeric character string containing a value to
indicate whether triple-DES encryption is
available.

Number Meaning

0 Triple-DES encryption is not
available

1 Triple-DES encryption is
available

5 SET Services Availability A numeric character string containing a value to
indicate whether SET (Secure Electronic
Transaction) services are available.

Number Meaning

0 SET Services are not
available

1 SET Services are available

ICSF Query Facility

618 z/OS V1R13 ICSF Application Programmer's Guide

Table 277. Output for option STATEXPT (continued)

6 Maximum Modulus for
Symmetric Key Encryption

A numeric character string containing the
maximum modulus size that is enabled for the
encryption of symmetric keys. This defines the
longest public-key modulus that can be used for
key management of symmetric-algorithm keys.

Number Meaning

0 DSA not available

1024 DSA 1024 key size

2048 DSA 2048 key size

4096 RSA 4096 key size

Table 278. Output for option STATAPKA

Element
Number

Name Description

1 ECC NMK status The state of the ECC new master key register:

Number Meaning

1 Register is clear.

2 Register contains a partially
complete key.

3 Register contains a complete
key.

2 ECC CMK status The state of the ECC current master key
register:

Number Meaning

1 Register is clear.

2 Register contains a key.

3 ECC OMK status The state of the ECC old master key register:

Number Meaning

1 Register is clear.

2 Register contains a key.

4 ECC key length
enablement

The maximum ECC curve size that is enabled
by the function control vector. The value will be
0 (if no ECC keys are enabled in the FCV) and
521 for the maximum size.

Table 279. Output for option WRAPMTHD

Element
Number

Name Description

1 Internal tokens Default wrapping method for internal tokens.

Number Meaning

0 Keys will be wrapped with the
original method

1 Keys will be wrapped with the
enhanced X9.24 method

ICSF Query Facility

Chapter 12. Utilities 619

Table 279. Output for option WRAPMTHD (continued)

2 External tokens Default wrapping method for external tokens.

Number Meaning

0 Keys will be wrapped with the
original method

1 Keys will be wrapped with the
enhanced X9.24 method

reserved_data_length

Direction: Input Type: Integer

The length of the reserved_data parameter. Currently, the value must be 0.

reserved_data

Direction: Input Type: String

This field is currently not used.

Usage Notes
RACF will be invoked to check authorization to use this service.

PKA key generate available indicates the PKA callable services are enabled and
there is at least one ACTIVE coprocessor.

The options ICSFSTAT and ICSFST2 report on the state of PKA callable services.
ICSFSTAT reports it in element 2. ICSFST2 reports it in elements 3 and 11. There
is a subtle difference between the three options. ICSFSTAT reports PKA callable
services as enabled only after the DES master key is loaded and valid. ICSFSTAT
does not report PKA callable services as enabled when only the AES master key is
loaded and valid. Option ICSFST2 element 3 reports PKA callable services as
enabled when the DES and/or AES master key is loaded and valid. Option
ICSFST2 element 11 reports PKA callable services as enabled when neither the
DES nor AES master keys are loaded and valid.

Note: If your system has CEX3C coprocessors, the PKA callable services control
will not be available. The PKA callable services state will be the same as the
RSA master key. If the RSA master key is active, the PKA callable services
will be enabled in the ICSFSTAT and ICSFST2 reports.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 280. ICSF Query Service required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

ICSF Query Facility

620 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|
|

Table 280. ICSF Query Service required hardware (continued)

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

X9.9 Data Editing (CSNB9ED)
Use this utility to edit an ASCII text string according to the editing rules of ANSI
X9.9-4. It edits the text that the source_text parameter supplies according to these
rules. The rules are listed here in the order in which they are applied. It returns the
result in the target_text parameter.

1. This service replaces each carriage-return (CR) character and each line-feed
(LF) character with a single-space character.

2. It replaces each lowercase alphabetic character (a through z) with its equivalent
uppercase character (A through Z).

3. It deletes all characters other than:
v Alphabetics A...Z
v Numerics 0...9
v Space
v Comma ,
v Period .
v Dash -
v Solidus /
v Asterisk *
v Open parenthesis (
v Close parenthesis)

4. It deletes all leading space characters.

5. It replaces all sequences of two or more space characters with a single-space
character.

This utility does not support invocation in AMODE(64).

Format

CALL CSNB9ED(
return_code,
reason_code,
exit_data_length,
exit_data,
text_length,
source_text,
target_text)

ICSF Query Facility

Chapter 12. Utilities 621

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

text_length

Direction: Input/Output Type: Integer

On input, the text_length contains an integer that is the length of the
source_text. The length must be a positive, nonzero value. On output,
text_length is updated with an integer that is the length of the edited text.

source_text

Direction: Input Type: String

This parameter contains the string to edit.

target_text

Direction: Output Type: String

The edited text that the callable service returns.

Usage Notes
This service is structured differently from the other services. It runs in the caller's
address space in the caller's key and mode.

X9.9 Data Editing

622 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

|

|||
|

|

ICSF need not be active for the service to run. There are no pre-processing or
post-processing exits that are enabled for this service. While running, this service
does not issue any calls to RACF.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 281. X9.9 data editing required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

None.

IBM Eserver zSeries
990

IBM Eserver zSeries
890

None.

IBM System z9 EC

IBM System z9 BC

None.

IBM System z10 EC

IBM System z10 BC

None.

z196 None.

X9.9 Data Editing

Chapter 12. Utilities 623

X9.9 Data Editing

624 z/OS V1R13 ICSF Application Programmer's Guide

Chapter 13. Trusted Key Entry Workstation Interfaces

The Trusted Key Entry (TKE) workstation is an optional feature. It offers an
alternative to clear key entry. You can use the TKE workstation to load:

v DES master keys, PKA master keys, and operational keys in a secure way. CCF
only supports Operational Transport and PIN keys. On the PCIXCC and CEX2C,
all operational keys may be loaded with TKE V4.1 or higher. On the CEX3C, all
operational keys may be loaded with TKE 6.0 or higher.

v DES-MK and ASYM-MK master keys on the PCICC, PCIXCC, CEX2C, and
CEX3C.

v AES-MK master key and operational key are supported on the z9 and z10
systems with the Nov. 2008 or later licensed internal code (LIC)

This topic describes these callable services:

v “PCI Interface Callable Service (CSFPCI and CSFPCI6)”

v “PKSC Interface Callable Service (CSFPKSC)” on page 629

PCI Interface Callable Service (CSFPCI and CSFPCI6)
TKE uses this callable service to send a request to a specific PCI card queue and
remove the corresponding response when complete. This service also allows the
TKE workstation to query the list of access control points which may be enabled or
disabled by a TKE user. This service is synchronous. The return and reason codes
reflect the success or failure of the queue functions rather than the success or
failure of the actual PCI request.

The callable service name for AMODE(64) invocation is CSFPCI6.

Format

CALL CSFPCI(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
target_pci_coprocessor,
target_pci_coprocessor_serial_number,
request_block_length,
request_block,
request_data_block_length,
request_data_block,
reply_block_length,
reply_block,
reply_data_block_length,
reply_data_block,
masks_length,
masks_data)

Parameters
return_code

Direction: Output Type: Integer

© Copyright IBM Corp. 1997, 2011 625

The return code specifies the general result of the callable service. See
Appendix A, “ICSF and TSS Return and Reason Codes,” for a list of return
codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. See Appendix A, “ICSF and TSS Return
and Reason Codes” for a list of reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you are supplying in rule_array. The value must be 1.

rule_array

Direction: Input Type: String

Keyword that provides control information to callable services. The keyword is
left-justified in an 8-byte field and padded on the right with blanks. The keyword
must be in contiguous storage. These keywords are mutually exclusive:

Table 282. Keywords for PCI Interface Callable Service

Keyword Meaning

ACPOINTS Queries the list of access control points which may be
enabled or disabled by a TKE user.

ACTIVECP This keyword is a request to call the PCI card initialization
code to revalidate the PCI cards. When the PCI card
initialization is completed, both the 64-bit mask indicating
which of the PCI cards are online and 64-bit mask indicating
which of the PCI cards are active will be returned. This
keyword is used by the TKE workstation code after the
ACTIVATE portion of the domain zeroize command. This is to
ensure that the status of the PCI card is accurately reflected
to the users. See the masks_data parameter description for
more information.

APNUM Specifies the target_pci_coprocessor field to be used.

SERIALNO Specifies the target_pci_coprocessor_number field to be used

PCI Interface

626 z/OS V1R13 ICSF Application Programmer's Guide

Table 282. Keywords for PCI Interface Callable Service (continued)

Keyword Meaning

PCIMASKS This keyword is a request to return both the 64-bit mask
indicating which of the PCI cards are online and 64-bit mask
indicating which of the PCI cards are active. See the
masks_data parameter description for more information.

XCPMASK This keyword is a request to return both the 64-bit mask
indicating which of the PCIXCCs, CEX2Cs, and CEX3Cs are
online and the 64-bit mask indicating which of the PCIXCCs,
CEX2Cs, and CEX3Cs are active. See the masks_data
parameter description for more information.

CX2MASK This keyword is a request to return both the 64-bit mask
indicating which of the CEX2Cs are online and the 64-bit
mask indicating which of the CEX2Cs are active. See the
masks_data parameter description for more information.

CX3MASK This keyword is a request to return both the 64-bit mask
indicating which of the CEX3Cs are online and the 64-bit
mask indicating which of the CEX3Cs are active. See the
masks_data parameter description for more information.

Note: When the PCIMASKS, ACTIVECP, XCPMASK, CX2MASK and
CX3MASK keywords are specified, the request_data_block_length,
request_data_block, reply_data_block_length, and the reply_data_block
parameters are ignored.

target_pci_coprocessor

Direction: Input Type: Integer

The PCICC, PCIXCC, CEX2C, or CEX3C card to which this request is directed.
Valid values are between 0 and 64.

target_pci_coprocessor_serial_number

Direction: Input/Output Type: String

The PCICC, PCIXCC, CEX2C, or CEX3C card serial number to which the
request is directed. This parameter may be used instead of the
target_pci_coprocessor. The length is 8 bytes. This parameter is updated with
the serial number of the card if the request was successfully processed.

request_block_length

Direction: Input Type: Integer

Length of CPRB and the request block in the request_block field. The maximum
length allowed is 5,500 bytes.

request_block

Direction: Input Type: String

PCICC, PCIXCC, CEX2C, or CEX3C command or query request for the target
PCICC, PCIXCC, CEX2C, or CEX3C. This is the complete CPRB and request
block to be processed by the PCICC, PCIXCC, CEX2C, or CEX3C.

request_data_block_length

PCI Interface

Chapter 13. Trusted Key Entry Workstation Interfaces 627

Direction: Input Type: Integer

Length of request data block in the request_data_block field. The maximum
length allowed is 6,400 bytes. The length field must be a multiple of 4.

request_data_block

Direction: Input Type: String

The data that accompanies the request_block field.

reply_block_length

Direction: Input/Output Type: Integer

Length of CPRB and the reply block in the reply_block field. The maximum
length allowed is 5,500 bytes. This field is updated on output with the actual
length of the reply_block field.

reply_block

Direction: Output Type: String

Reply from the target PCICC, PCIXCC, CEX2C, or CEX3C. This is the CPRB
and reply block that has been processed by the PCICC, PCIXCC, CEX2C, or
CEX3C.

reply_data_block_length

Direction: Input/Output Type: Integer

Length of reply block in the reply_data_block field. The maximum length
allowed is 6,400 bytes. This field is updated on output with the actual length of
the reply_data_block field. This length field must be a multiple of 4. For the
ACPOINTS keyword, the minimum length is 2572 bytes.

reply_data_block

Direction: Output Type: String

The data that accompanies the reply_block field.

masks_length

Direction: Input Type: Integer

Length of the reply data being returned in the masks_data field. The length
must be 32 bytes. This field is only valid when the input rule_array keyword is
PCIMASKS, ACTIVECP XCPMASK, CX2MASK, CX3MASK. For all other
rule_array keywords, this field is ignored.

masks_data

Direction: Output Type: String

The data being returned for all requests. The first 8 bytes indicate the count of
the PCI cards online. The second 8 bytes indicate a bit mask of the actual PCI
cards brought online. The third 8 bytes indicate the count of the PCI cards

PCI Interface

628 z/OS V1R13 ICSF Application Programmer's Guide

active. The fourth 8 bytes indicate a bit mask of the actual PCI cards that are
active. For the ACTIVECP keyword, if the PCI card initialization failed, the
appropriate return code and reason code is issued and the masks_data field will
contain zeros.

Usage Notes
The target_pci_coprocessor, the target_pci_coprocessor_serial_number, the
request_block, the reply_block, the request_block_data_block, and the
reply_block_data_block, are recorded in SMF Record Type 82, subtype 16.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 283. PCI Interface required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

IBM Eserver zSeries
990

IBM Eserver zSeries
890

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z9 EC

IBM System z9 BC

PCI X Cryptographic
Coprocessor

Crypto Express2
Coprocessor

IBM System z10 EC

IBM System z10 BC

Crypto Express2
Coprocessor

Crypto Express3
Coprocessor

z196 Crypto Express3
Coprocessor

PKSC Interface Callable Service (CSFPKSC)
Restriction: This service is only supported on the IBM Eserver zSeries 900.

TKE uses this callable service to send a request to a specific cryptographic module
and receive a corresponding response when processing is complete. The service is
synchronous. Note that the return and reason codes reflect the success or failure of
CSFPKSC's interaction with the cryptographic module rather than the success or
failure of the cryptographic module request. The response block contains the results
of the cryptographic module request.

This service does not support invocation in AMODE(64).

PCI Interface

Chapter 13. Trusted Key Entry Workstation Interfaces 629

Format

CALL CSFPKSC(
return_code,
reason_code,
exit_data_length,
exit_data,
target_crypto_module,
request_length,
request,
response)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

target_crypto_module

Direction: Input Type: Integer

Cryptographic module to which this request is directed. Value is 0 or 1.

request_length

Direction: Input Type: Integer

Length of request message in the request field. The maximum length allowed is
1024 bytes.

request

PKSC Interface

630 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input Type: String

PKSC command or query request for the target cryptographic module. This is
the complete architected command or query for the cryptographic module to
process.

response

Direction: Output Type: String

Area where the PKSC response from the target cryptographic module is
returned to the caller. The area returned can be up to 512 bytes.

Usage Notes
The format and content of the PKSC request and response areas are proprietary
IBM hardware information that may be licensed. Customers interested in this
information may contact the IBM Director of Licensing. For the address, refer to
Notices.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 284. PKSC Interface required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

PCI Cryptographic
Coprocessor

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

This callable service is not supported.

IBM System z10 EC

IBM System z10 BC

This callable service is not supported.

z196 This callable service is not supported.

PKSC Interface

Chapter 13. Trusted Key Entry Workstation Interfaces 631

PKSC Interface

632 z/OS V1R13 ICSF Application Programmer's Guide

Chapter 14. Managing Keys According to the ANSI X9.17
Standard

This topic describes the callable services that support the ANSI X9.17 key
management standard:
v “ANSI X9.17 EDC Generate (CSNAEGN and CSNGEGN)”
v “ANSI X9.17 Key Export (CSNAKEX and CSNGKEX)” on page 635
v “ANSI X9.17 Key Import (CSNAKIM and CSNGKIM)” on page 640
v “ANSI X9.17 Key Translate (CSNAKTR and CSNGKTR)” on page 645
v “ANSI X9.17 Transport Key Partial Notarize (CSNATKN and CSNGTKN)” on

page 650

These services are only supported on an IBM Eserver zSeries 900.

These callable services, that are described in other topics of this publication, also
support the ANSI X9.17 key management standard:
v “Key Generate (CSNBKGN and CSNEKGN)” on page 135
v “Key Part Import (CSNBKPI and CSNEKPI)” on page 160
v “Key Token Build (CSNBKTB and CSNEKTB)” on page 181

ANSI X9.17 EDC Generate (CSNAEGN and CSNGEGN)
Use the ANSI X9.17 EDC generate callable service to generate an error detection
code (EDC) on a text string. The service calculates the EDC by by using a key
value of X'0123456789ABCDEF' to generate a MAC on the specified text string, as
defined by the ANSI X9.17 standard.

Restriction: This service is only supported on an IBM Eserver zSeries 900.

The callable service name for AMODE(64) invocation is CSNGEGN.

Format

CALL CSNAEGN(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
chaining_vector,
EDC)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

© Copyright IBM Corp. 1997, 2011 633

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
must be 0.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Currently there
are no keywords that are defined for this variable, but you must declare the
variable. To do so, declare an area of blanks of any length.

text_length

Direction: Input Type: Integer

The length of the user-supplied text parameter for which the service should
calculate the EDC.

text

Direction: Input Type: String

The application-supplied text field for which the service is to generate the EDC.

chaining_vector

Direction: Input/Output Type: String

An 18-byte string that ICSF uses as a system work area. The chaining vector
permits data to be chained from one call to another. ICSF ignores the
information in this field, but you must declare an 18-byte string.

EDC

ANSI X9.17 EDC Generate

634 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Output Type: String

A 9-byte field where the callable service returns the EDC generated as two
groups of four ASCII-encoded hexadecimal characters that are separated by an
ASCII space character.

Usage Notes
The ANSI X9.17 standard states that for EDC, prior to the service generating the
MAC the caller must first edit the input text according to topic 4.3 of ANSI
X9.9-1982. It is the caller's responsibility to do the editing prior to calling the ANSI
X9.17 EDC generate service. If the supplied text is not a multiple of 8, the service
pads the text with X'00' up to a multiple of 8, as specified in ANSI X9.9-1.

To use this service you must have the ANSI system keys installed in the CKDS.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 285. ANSI X9.17 EDC generate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

This callable service is not supported.

IBM System z10 EC

IBM System z10 BC

This callable service is not supported.

z196 This callable service is not supported.

ANSI X9.17 Key Export (CSNAKEX and CSNGKEX)
Use the ANSI X9.17 key export callable service to export a DATA key or a pair of
DATA keys, along with an ANSI key-encrypting key (AKEK), using the ANSI X9.17
protocol. This service converts a single DATA key, or combines two DATA keys, into
a single MAC key. You can use the MAC key in either, or both, the MAC generation,
or MAC verification service to authenticate the service message. In addition, this
service also supports the export of a CCA IMPORTER or EXPORTER KEK.

If you export only DATA keys, the DATA keys are exported encrypted under the
specified transport AKEK. You have the option of applying the ANSI X9.17 key
offset or key notarization process to the transport AKEK.

If you export both DATA keys and an AKEK, the DATA keys are exported encrypted
under the key-encrypting key that is also being exported. The AKEK is exported
encrypted under the specified transport AKEK. You have the option of applying the
ANSI X9.17 key offset or key notarization process to the transport AKEK. The ANSI

ANSI X9.17 EDC Generate

Chapter 14. Managing Keys According to the ANSI X9.17 Standard 635

X9.17 key offset process is applied to the source AKEK. Use the CKT keyword to
specify whether to use an offset of 0 or 1. Use an offset of 0 when sending the
DATA key to a key translation center along with a transport AKEK.

Note: You must create the cryptographic service message and maintain the offset
counter value that is associated with the AKEK.

Restriction: This service is only supported on an IBM Eserver zSeries 900.

The callable service name for AMODE(64) invocation is CSNGKEX.

Format

CALL CSNAKEX(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
origin_identifier,
destination_identifier,
source_data_key_1_identifier,
source_data_key_2_identifier,
source_key_encrypting_key_identifier,
transport_key_identifier,
outbound_KEK_count,
target_data_key_1,
target_data_key_2,
target_key_encrypting_key,
MAC_key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicates specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

ANSI X9.17 Key Export

636 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
can be 0 to 4. If you specify 0, the callable service does not perform either
notarization or offset.

rule_array

Direction: Input Type: String

Zero to four keywords that provide control information to the callable service.
See the list of keywords in Table 286. The keywords must be in 8 to 32 bytes of
contiguous storage. Left-justify each keyword in its own 8-byte location and pad
on the right with blanks. You must specify this parameter even if you specify no
keyword.

Table 286. Keywords for ANSI X9.17 Key Export Rule Array

Keyword Meaning

Notarization and Offset Rule (optional with no defaults)

CPLT-NOT Complete ANSI X9.17 notarization using the value
obtained from the outbound_KEK_count parameter. The
transport key that the transport_key_identifier specifies
must be partially notarized.

NOTARIZE Perform notarization processing using the values obtained
from the origin_identifier, destination_identifier, and
outbound_KEK_count parameters.

OFFSET Perform ANSI X9.17 key offset processing using the origin
counter value obtained from the outbound_KEK_count
parameter.

Parity Rule (optional)

ENFORCE Stop processing if any source keys do not have odd parity.
This is the default value.

IGNORE Ignore the parity of the source key.

Source Key Rule (optional)

CCA-EXP Export a CCA EXPORTER KEK. Requires NOCV keys to
be enabled.

CCA-IMP Export a CCA IMPORTER KEK. Requires NOCV keys to
be enabled.

1-KD Export one DATA key. This is the default parameter.

1-KD+KK Export one DATA key and a single-length AKEK.

1-KD+*KK Export one DATA key and a double-length AKEK.

2-KD Export two DATA keys.

2-KD+KK Export two DATA keys and a single-length AKEK.

2-KD+*KK Export two DATA keys and a double-length AKEK.

Data Key Offset Value (optional)

ANSI X9.17 Key Export

Chapter 14. Managing Keys According to the ANSI X9.17 Standard 637

Table 286. Keywords for ANSI X9.17 Key Export Rule Array (continued)

Keyword Meaning

CKT Valid only when a key-encrypting key is being exported
along with a DATA key. If this keyword is specified, any
DATA keys being exported are encrypted under the
key-encrypting key using an offset value of 0. If this
keyword is not specified (this is the default), any DATA
keys being exported are encrypted under the
key-encrypting key using an offset value of 1. The CKT
keyword is not valid with CCA-IMP or CCA-EXP keywords.

origin_identifier

Direction: Input Type: String

This parameter is valid if the NOTARIZE keyword is specified. It specifies an
area that contains a 16-byte string that contains the origin identifier that is
defined in the ANSI X9.17 standard. The string must be ASCII characters,
left-justified, and padded on the right by space characters. This parameter must
be a minimum of four, non-space characters. ICSF ignores this parameter if you
specify the OFFSET or CPLT-NOT keyword in the rule_array parameter.

destination_identifier

Direction: Input Type: String

This parameter is valid if the NOTARIZE keyword is specified. It specifies an
area that contains a 16-byte string. The 16-byte string contains the destination
identifier that is defined in the ANSI X9.17 standard. The string must be ASCII
characters, left-justified, and padded on the right by space characters. This
parameter must be a minimum of four, non-space characters. ICSF ignores this
parameter if you specify the OFFSET or CPLT-NOT keyword in the rule_array
parameter.

source_data_key_1_identifier

Direction: Input/Output Type: String

A 64-byte area that contains an internal token, or the label of a CKDS entry that
contains a DATA key. ICSF ignores this field if you specify CCA-EXP or
CCA-IMP in the rule_array parameter.

source_data_key_2_identifier

Direction: Input/Output Type: String

A 64-byte area that contains an internal token, or the label of a CKDS entry that
contains a DATA key. This parameter is valid only if you specify 2-KD,
2-KD+KK, or 2-KD+*KK as the source key rule keyword on the rule_array
parameter. ICSF ignores this parameter if you specify other source key rule
keywords, or if you specify CCA-EXP or CCA-IMP in the rule_array parameter.

source_key_encrypting_key_identifier

Direction: Input/Output Type: String

ANSI X9.17 Key Export

638 z/OS V1R13 ICSF Application Programmer's Guide

A 64-byte area that contains an internal token, or the label of a CKDS entry that
contains either an AKEK, a CCA IMPORTER, or a CCA EXPORTER key. If this
parameter contains an AKEK, you must specify 1-KD+KK, 2-KD+KK, 1-KD+*KK,
or 2-KD+*KK for the source key rule on the rule_array parameter. If this
parameter contains a CCA IMPORTER or CCA EXPORTER key, you must
specify CCA-IMP or CCA-EXP, respectively, for the source key rule on the
rule_array parameter. ICSF ignores this field if you specify any other source key
rule keywords.

transport_key_identifier

Direction: Input/Output Type: String

A 64-byte area that contains either an internal token or a label that refers to an
internal token for an AKEK.

outbound_KEK_count

Direction: Input Type: String

An 8-byte area that contains an ASCII count that is used in the notarization
process. The count is an ASCII character string, left-justified, and padded on
the right by ASCII space characters. ICSF interprets a single ASCII space
character as a zero counter. The maximum value is 99999999.

target_data_key_1

Direction: Output Type: String

A 16-byte area where the exported data key 1 is returned. The enciphered key
is an ASCII-encoded hexadecimal string.

target_data_key_2

Direction: Output Type: String

A 16-byte area where the exported data key 2 is returned. The enciphered key
is an ASCII-encoded hexadecimal string. This key is returned if 2-KD, 2-KD+KK,
or 2-KD+*KK is specified in the rule_array parameter.

target_key_encrypting_key

Direction: Output Type: String

If the rule_array parameter specifies 1-KD+KK, 2-KD+KK, 1-KD+*KK, or
2-KD+*KK, this parameter specifies a 32-byte area that contains the exported
AKEK. If the rule_array parameter specifies CCA-IMP or CCA-EXP, this
parameter specifies a 32-byte area that contains the exported key-encrypting
key (KEK). The enciphered key is an ASCII-encoded hexadecimal string. If the
rule_array parameter specifies 1-KD+KK or 2-KD+KK, the 16-byte
ASCII-encoded output is left-justified in the field and the rest of the field remains
unchanged.

MAC_key_token

Direction: Output Type: String

ANSI X9.17 Key Export

Chapter 14. Managing Keys According to the ANSI X9.17 Standard 639

A 64-byte area that contains an internal token for a MAC key that is intended
for use in the MAC generation or MAC verification process. This field is the
EXCLUSIVE OR of the two supplied DATA keys when the source key rule in the
rule_array parameter specifies 2-KD, 2-KD+KK, or 2-KD+*KK. When the source
key rule specifies 1-KD, the DATA key is converted to a MAC key and returned
as an internal token in this field.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

You must install the ANSI system keys in the CKDS to use this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 287. ANSI X9.17 key export required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

This callable service is not supported.

IBM System z10 EC

IBM System z10 BC

This callable service is not supported.

z196 This callable service is not supported.

ANSI X9.17 Key Import (CSNAKIM and CSNGKIM)
Use the ANSI X9.17 key import callable service to import a DATA key or a pair of
DATA keys, along with an ANSI key-encrypting key (AKEK), using the ANSI X9.17
protocol. This service converts a single DATA key, or combines two DATA keys, into
a single MAC key. The MAC key can be used in either, or both, the MAC generation
or the MAC verification service to authenticate the service message. In addition, this
service also supports the import of the KEK to a CCA IMPORTER or EXPORTER
KEK, as well as an AKEK.

If you are importing only DATA keys, this service assumes that the DATA keys are
encrypted under the specified transport AKEK. You have the option of applying the
ANSI X9.17 key offset or key notarization process to the transport AKEK.

If you are importing both DATA keys and an AKEK, this service assumes that the
AKEK is encrypted under the specified transport AKEK. This service also assumes
that the DATA keys are encrypted under the source AKEK that is also being
imported. You have the option of applying the ANSI X9.17 key offset or key

ANSI X9.17 Key Export

640 z/OS V1R13 ICSF Application Programmer's Guide

notarization process to the transport AKEK. ICSF applies the ANSI X9.17 key offset
process to the source AKEK with an offset of 1.

Note: You must create the cryptographic service message and maintain the offset
counter value that is associated with the AKEK.

Restriction: This service is only supported on an IBM Eserver zSeries 900.

The callable service name for AMODE(64) invocation is CSNGKIM.

Format

CALL CSNAKIM(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
origin_identifier,
destination_identifier,
source_data_key_1,
source_data_key_2,
source_key_encrypting_key,
inbound_KEK_count,
transport_key_identifier,
target_data_key_1,
target_data_key_2,
target_key_encrypting_key,
MAC_key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

ANSI X9.17 Key Import

Chapter 14. Managing Keys According to the ANSI X9.17 Standard 641

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. The value
can be 0 to 3. If you specify 0, ICSF does not perform either notarization or
offset.

rule_array

Direction: Input Type: String

Zero to three keywords that provide control information to the callable service.
See the list of keywords in Table 288. The keywords must be in 8 to 24 bytes of
contiguous storage. Each of the keywords must be left-justified in its own 8-byte
location and padded on the right with blanks. You must specify this parameter
even is you do not specify a keyword.

Table 288. Keywords for ANSI X9.17 Key Import Rule Array

Keyword Meaning

Notarization and Offset Rule (optional with no defaults)

CPLT-NOT Complete ANSI X9.17 notarization using the value
obtained from the inbound_KEK_count parameter. The
transport key that the transport_key_identifier specifies
must be partially notarized.

NOTARIZE Perform notarization processing using the values obtained
from the origin_identifier, destination_identifier, and
inbound_KEK_count parameters.

OFFSET Perform ANSI X9.17 key offset processing using the origin
counter value obtained from the inbound_KEK_count
parameter.

Parity Rule (optional)

ENFORCE Stop processing if any source keys do not have odd
parity. This is the default value.

IGNORE Ignore the parity of the source key.

Source Key Rule (optional)

CCA-EXP Import a key-encrypting key as a CCA EXPORTER.
Requires NOCV keys to be enabled.

CCA-IMP Import a key-encrypting key as a CCA IMPORTER.
Requires NOCV keys to be enabled.

1-KD Import one DATA key. This is the default parameter.

1-KD+KK Import one DATA key and a single-length AKEK.

1-KD+*KK Import one DATA key and a double-length AKEK.

2-KD Import two DATA keys.

2-KD+KK Import two DATA keys and a single-length AKEK.

2-KD+*KK Import two DATA keys and a double-length AKEK.

ANSI X9.17 Key Import

642 z/OS V1R13 ICSF Application Programmer's Guide

origin_identifier

Direction: Input Type: String

This parameter is valid if you specify the NOTARIZE keyword in the rule_array
parameter. It specifies an area that contains a 16-byte string that contains the
origin identifier that is defined in the ANSI X9.17 standard. The string must be
ASCII characters, left-justified, and padded on the right by space characters.
The string must be a minimum of four, non-space characters. This parameter is
ignored if the OFFSET or CPLT-NOT keyword is specified.

destination_identifier

Direction: Input Type: String

This parameter is valid if you specify the NOTARIZE keyword in the rule_array
parameter. It specifies an area that contains a 16-byte string that contains the
destination identifier that is defined in the ANSI X9.17 standard. The string must
be ASCII characters, left-justified, and padded on the right by space characters.
It must be a minimum of four non-space characters. This parameter is ignored if
the OFFSET or CPLT-NOT keyword is specified.

source_data_key_1

Direction: Input Type: String

A 16-byte area that contains the enciphered DATA key to be imported. You must
supply the DATA key as an ASCII-encoded hexadecimal string. The field is
ignored if the rule_array parameter specifies CCA-IMP or CCA-EXP.

source_data_key_2

Direction: Input Type: String

A 16-byte area that contains the second enciphered DATA key to be imported.
This parameter is valid only if the rule_array parameter specifies KK, or
2-KD+*KK. You must supply the key as an ASCII-encoded hexadecimal string.
This field is ignored if the rule_array parameter specifies other source key rules.

source_key_encrypting_key

Direction: Input Type: String

A 16- or 32-byte area that contains an enciphered AKEK, if the rule_array
parameter specifies either 1-KD+KK, 2-KD+KK, 1-KD+*KK, or 2-KD+*KK. This
parameter specifies a KEK, if the rule_array parameter specifies either
CCA-IMP or CCA-EXP. The area is 16 bytes if the rule_array parameter
specifies a single-length AKEK (1-KD+KK or 2-KD+KK). The area is 32 bytes if
the rule_array parameter specifies a double-length AKEK (1-KD+*KK or
2-KD+*KK). You must supply the key as an ASCII-encoded hexadecimal string.
This field is ignored if the rule_array parameter specifies 1-KD or 2-KD.

inbound_KEK_count

Direction: Input Type: String

ANSI X9.17 Key Import

Chapter 14. Managing Keys According to the ANSI X9.17 Standard 643

An 8-byte area that contains an ASCII count for use in the notarization process.
The count is an ASCII character string, left-justified, and padded on the right by
space characters. ICSF interprets a single space character as a zero counter.
The maximum value is 99999999.

transport_key_identifier

Direction: Input/Output Type: String

A 64-byte area that contains an internal token or a label that refers to an
internal token for an AKEK.

target_data_key_1

Direction: Output Type: String

A 64-byte area where the imported data key 1 is returned as an ICSF internal
key token. ICSF does not support the direct import by label.

target_data_key_2

Direction: Output Type: String

A 64-byte area where the imported data key 2 is returned as an ICSF internal
key token. ICSF does not support the direct import by label. This key is
returned if 2-KD, 2-KD+KK, or 2-KD+*KK is specified in the rule_array
parameter.

target_key_encrypting_key

Direction: Output Type: String

A 64-byte area where the imported key-encrypting key is returned as an ICSF
internal key token. If the rule_array parameter specifies 1-KD+KK, 1-KD+*KK,
2-KD+KK, or 2-KD+*KK, the internal key token contains an AKEK. If the
rule_array parameter specifies either CCA-IMP or CCA-EXP, the internal token
contains a CCA IMPORTER or a CCA EXPORTER, respectively.

MAC_key_token

Direction: Output Type: String

A 64-byte area that contains an internal token for a MAC key that is intended
for use in the MAC generation or MAC verification function. This field is the
EXCLUSIVE OR of the two imported DATA keys if the source key rule in the
rule_array parameter specifies 2-KD, 2-KD+KK, or 2-KD+*KK. If the source key
rule in the rule_array parameter specifies 1-KD, ICSF converts the DATA key to
a MAC key and returns it as an internal token in this field.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

You must install the ANSI system keys in the CKDS to use this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

ANSI X9.17 Key Import

644 z/OS V1R13 ICSF Application Programmer's Guide

Table 289. ANSI X9.17 key import required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

This callable service is not supported.

IBM System z10 EC

IBM System z10 BC

This callable service is not supported.

z196 This callable service is not supported.

ANSI X9.17 Key Translate (CSNAKTR and CSNGKTR)
Use the ANSI X9.17 key translate callable service to translate a key from encryption
under one AKEK to encryption under another AKEK. In a single service call you can
translate either one or two encrypted DATA keys, or a single encrypted
key-encrypting key. In addition, this service also imports the supplied DATA keys. If
the rule_array parameter specifies 2-KD, this service exclusive-ORs the two
imported DATA keys and converts the result into a MAC key, which it returns in the
MAC_key_token field. The MAC key is used to perform MAC processing on the
service message. If the rule_array specifies keywords 1-KD and 2-KD, ICSF
translates only DATA keys. The service uses the inbound transport key-encrypting
key to decrypt the DATA keys, and uses the outbound transport key-encrypting key
to reencrypt the DATA keys. The service uses the ANSI X9.17 key offset process
during decryption or importing. The service can use the ANSI X9.17 notarization
process during reencryption or exporting of the DATA keys.

If the rule_array parameter specifies 1-KD+KK or 1-KD+*KK, the service translates
only the AKEK. The service uses the inbound transport key-encrypting key to
decrypt or import the input AKEK, applying the ANSI X9.17 offset process. The
service uses the outbound transport key-encrypting key to reencipher or export the
AKEK, with or without applying the optional ANSI X9.17 notarization process. ICSF
uses the inbound key-encrypting key that is being translated to import the supplied
DATA key, applying the ANSI X9.17 offset processing only with an offset of 0. The
DATA key is imported as previously discussed then converted to a MAC key token
and returned in the MAC_key_token field.

Restriction: This service is only supported on an IBM Eserver zSeries 900.

The callable service name for AMODE(64) invocation is CSNGKTR.

ANSI X9.17 Key Import

Chapter 14. Managing Keys According to the ANSI X9.17 Standard 645

Format

CALL CSNAKTR(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
inbound_KEK_count,
inbound_transport_key_identifier,
inbound_data_key_1,
inbound_data_key_2,
inbound_key_encrypting_key,
outbound_origin_identifier,
outbound_destination_identifier,
outbound_KEK_count,
outbound_transport_key_identifier,
outbound_data_key_1,
outbound_data_key_2,
outbound_key_encrypting_key,
MAC_key_token)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

ANSI X9.17 Key Translate

646 z/OS V1R13 ICSF Application Programmer's Guide

The number of keywords you supplied in the rule_array parameter. The value
can be 0 to 3. If you specify 0, the service does not perform notarization or
offset.

rule_array

Direction: Input Type: String

Zero to three keywords that provide control information to the callable service.
See the list of keywords in Table 290. The keywords must be in 8 to 24 bytes of
contiguous storage. Each of the keywords must be left-justified in its own 8-byte
location and padded on the right with blanks. You must specify this parameter
even if do not specify any keywords.

Table 290. Keywords for ANSI X9.17 Key Translate Rule Array

Keyword Meaning

Notarization Rule (optional with no defaults)

CPLT-NOT Complete ANSI X9.17 notarization using the value obtained
from the outbound_KEK_count parameter. The outbound
transport key specified must be partially notarized.

NOTARIZE Perform notarization processing using the values obtained
from the outbound_origin_identifier, the
outbound_destination_identifier,and the outbound_KEK_count.

Parity Rule (optional)

ENFORCE Stop processing if any source keys do not have odd parity.
This is the default value.

IGNORE Ignore the parity of the source key.

Source Key Rule (optional)

1-KD Import and translate one DATA key. This is the default
parameter.

1-KD+KK Import and translate one DATA key and a single-length AKEK.

1-KD+*KK Import and translate one DATA key and a double-length
AKEK.

2-KD Import and translate two DATA keys.

inbound_KEK_count

Direction: Input Type: String

An 8-byte area that contains an ASCII count for use in the offset process. The
count is an ASCII character string, left-justified, and padded on the right by
space characters. ICSF interprets a single space character as a zero counter.
The maximum value is 99999999.

inbound_transport_key_identifier

Direction: Input/Output Type: String

A 64-byte area that contains either an internal token, or a label that refers to an
internal token for an AKEK.

inbound_data_key_1

Direction: Input Type: String

ANSI X9.17 Key Translate

Chapter 14. Managing Keys According to the ANSI X9.17 Standard 647

A 16-byte area that contains the enciphered DATA key that the service is
importing and translating. You must specify the DATA key as an ASCII-encoded
hexadecimal string.

inbound_data_key_2

Direction: Input Type: String

A 16-byte area that contains the second enciphered DATA key that the service
is importing and translating. This field is valid if the rule_array parameter
specifies 2-KD. You must supply the key as an ASCII-encoded hexadecimal
string. This field is ignored if the rule_array parameter specifies other source
key rules.

inbound_key_encrypting_key

Direction: Input Type: String

A 16- or 32-byte area that contains an enciphered AKEK that the service is to
translate. The area is 16 bytes if the rule_array parameter specifies a source
key rule of single-length AKEK. The area is 32 bytes if the source key rule
specifies a double-length AKEK (1-KD+*KK). You must supply the key as an
ASCII-encoded hexadecimal string. ICSF ignores this field if the rule_array
specifies either 1-KD or 2-KD.

outbound_origin_identifier

Direction: Input Type: String

This parameter is valid if the rule_array parameter specifies a keyword of
NOTARIZE. It specifies an area that contains a 16-byte string that contains the
origin identifier that is defined in the ANSI X9.17 standard. The string must be
ASCII characters, left-justified, and padded on the right by space characters.
The string must be a minimum of four non-space characters. ICSF ignores this
field if the rule_array parameter specifies a keyword of CPLT-NOT.

outbound_destination_identifier

Direction: Input Type: String

This parameter is valid if the rule_array parameter specifies a keyword of
NOTARIZE. It specifies an area that contains a 16-byte string that contains the
destination identifier that is defined in the ANSI X9.17 standard. The string must
be ASCII characters, left-justified, and padded on the right by space characters.
The string must be a minimum of four non-space characters. This parameter is
ignored if the rule_array parameter specifies a keyword of CPLT-NOT.

outbound_KEK_count

Direction: Input Type: String

An 8-byte area that contains an ASCII count for use in the notarization process.
The count is an ASCII character string, left-justified, and padded on the right by
space characters. ICSF interprets a single space character as a zero counter.
The maximum value is 99999999.

outbound_transport_key_identifier

ANSI X9.17 Key Translate

648 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input/Output Type: String

A 64-byte area that contains either an internal token, or a label that refers to an
internal token for an AKEK.

outbound_data_key_1

Direction: Output Type: String

A 16-byte area where the service returns the translated data key 1 an
ASCII-encoded hexadecimal string. The service returns the key only if the
rule_array specifies 1-KD or 2-KD. ICSF ignores this field if the rule_array
parameter specifies either 1-KD+KK or 1-KD+*KK.

outbound_data_key_2

Direction: Output Type: String

A 16-byte area where the service returns the translated data key 2 as an
ASCII-encoded hexadecimal string. The service returns the key only if the
rule_array parameter specifies 2-KD. ICSF ignores this field if the rule_array
parameter specifies 1-KD, 1-KD+KK, or 1-KD+*KK.

outbound_key_encrypting_key

Direction: Output Type: String

A 16- or 32-byte area that contains the enciphered, translated AKEK. The area
is 16 bytes if the rule_array parameter specifies a single-length AKEK
(1-KD+KK). The area is 32 bytes if the rule_array parameter specifies a
double-length AKEK (1-KD+*KK). The service returns the key as an
ASCII-encoded hexadecimal string. ICSF ignores this field if the rule_array
parameter specifies either 1-KD or 2-KD.

MAC_key_token

Direction: Output Type: String

A 64-byte area that contains an internal token for a MAC key that is intended
for use in the MAC generation or MAC verification process. This field is the
EXCLUSIVE OR of the two imported DATA keys when the rule_array parameter
specifies 2-KD for the source key rule. If the rule_array parameter specifies
1-KD, the service returns the imported key in this field as an ICSF internal key
token.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

You must install the ANSI system keys in the CKDS to use this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

ANSI X9.17 Key Translate

Chapter 14. Managing Keys According to the ANSI X9.17 Standard 649

Table 291. ANSI X9.17 key translate required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

This callable service is not supported.

IBM System z10 EC

IBM System z10 BC

This callable service is not supported.

z196 This callable service is not supported.

ANSI X9.17 Transport Key Partial Notarize (CSNATKN and CSNGTKN)
Use the ANSI X9.17 transport key partial notarize callable service to preprocess an
ANSI X9.17 transport key-encrypting key with origin and destination identifiers.
ICSF completes the notarization process when you use the partially notarized key in
the ANSI X9.17 key export, ANSI X9.17 key import, or ANSI X9.17 key translate
services and specify the CPLT-NOT rule_array keyword.

Note: You cannot reverse the partial notarization process. If you want to keep the
original value of the AKEK, you must record the value.

Restriction: This service is only supported on an IBM Eserver zSeries 900.

The callable service name for AMODE(64) invocation is CSNGTKN.

Format

CALL CSNATKN(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
origin_identifier,
destination_identifier,
source_transport_key_identifier,
target_transport_key_identifier)

Parameters
return_code

Direction: Output Type: Integer

ANSI X9.17 Key Translate

650 z/OS V1R13 ICSF Application Programmer's Guide

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that are
assigned to it that indicate specific processing problems. Appendix A, “ICSF and
TSS Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Input/Output Type: Integer

The length of the data that is passed to the installation exit. The length can be
from X'00000000' to X'7FFFFFFF' (2 gigabytes). The data is identified in the
exit_data parameter.

exit_data

Direction: Input/Output Type: String

The data that is passed to the installation exit.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. Currently no
rule_array keywords are defined; thus, this field must be set to 0.

rule_array

Direction: Input Type: String

Currently, no rule_array keywords are defined for this service. You must still
specify this parameter for possible future use.

origin_identifier

Direction: Input Type: String

A 16-byte string that contains the origin identifier that is defined in the ANSI
X9.17 standard. The string must be ASCII characters, left-justified, and padded
on the right by space characters. The string must be a minimum of four
non-space characters.

destination_identifier

Direction: Input Type: String

A 16-byte string that contains the destination identifier that is defined in the
ANSI X9.17 standard. The string must be ASCII characters, left-justified, and
padded on the right by space characters. The string must be a minimum of four
non-space characters.

source_transport_key_identifier

ANSI X9.17 Transport Key Partial Notarize

Chapter 14. Managing Keys According to the ANSI X9.17 Standard 651

Direction: Input/Output Type: String

A 64-byte area that contains either an internal token, or a label of an internal
token for an AKEK that permits notarization.

target_transport_key_identifier

Direction: Output Type: String

A 64-byte area where the internal token of a partially notarized AKEK will be
returned. This AKEK cannot be used directly as a notarizing KEK until the
notarization process has been completed. To do this, specify CPLT-NOT as the
rule_array keyword in any service in which you intend to use this key as a
notarizing KEK.

Usage Notes
SAF may be invoked to verify the caller is authorized to use this callable service,
the key label, or internal secure key tokens that are stored in the CKDS or PKDS.

You must install the ANSI system keys in the CKDS to use this service.

This table lists the required cryptographic hardware for each server type and
describes restrictions for this callable service.

Table 292. ANSI X9.17 transport key partial notarize required hardware

Server Required
cryptographic
hardware

Restrictions

IBM Eserver zSeries
800

IBM Eserver zSeries
900

Cryptographic
Coprocessor Feature

IBM Eserver zSeries
990

IBM Eserver zSeries
890

This callable service is not supported.

IBM System z9 EC

IBM System z9 BC

This callable service is not supported.

IBM System z10 EC

IBM System z10 BC

This callable service is not supported.

z196 This callable service is not supported.

ANSI X9.17 Transport Key Partial Notarize

652 z/OS V1R13 ICSF Application Programmer's Guide

Part 3. PKCS #11 Callable Services

© Copyright IBM Corp. 1997, 2011 653

654 z/OS V1R13 ICSF Application Programmer's Guide

Chapter 15. Using PKCS #11 Tokens and Objects

This topic describes the callable services for creating and maintaining PKCS #11
tokens and objects. ICSF provides a number of callable services to assist you in
managing PKCS #11 tokens and maintaining the token data set (TKDS). Services
are also provided for generating, using, and managing key objects.

The following callable services are described:

v “PKCS #11 Derive multiple keys (CSFPDMK and CSFPDMK6)”

v “PKCS #11 Derive key (CSFPDVK and CSFPDVK6)” on page 663

v “PKCS #11 Get attribute value (CSFPGAV and CSFPGAV6)” on page 668

v “PKCS #11 Generate key pair (CSFPGKP and CSFPGKP6)” on page 671

v “PKCS #11 Generate secret key (CSFPGSK and CSFPGSK6)” on page 673

v “PKCS #11 Generate HMAC (CSFPHMG and CSFPHMG6)” on page 675

v “PKCS #11 Verify HMAC (CSFPHMV and CSFPHMV6)” on page 679

v “PKCS #11 One-way hash, sign, or verify (CSFPOWH and CSFPOWH6)” on
page 682

v “PKCS #11 Private key sign (CSFPPKS and CSFPPKS6)” on page 687

v “PKCS #11 Public key verify (CSFPPKV and CSFPPKV6)” on page 689

v “PKCS #11 Pseudo-random function (CSFPPRF and CSFPPRF6)” on page 692

v “PKCS #11 Set attribute value (CSFPSAV and CSFPSAV6)” on page 695

v “PKCS #11 Secret key decrypt (CSFPSKD and CSFPSKD6)” on page 697

v “PKCS #11 Secret key encrypt (CSFPSKE and CSFPSKE6)” on page 701

v “PKCS #11 Token record create (CSFPTRC and CSFPTRC6)” on page 707

v “PKCS #11 Token record delete (CSFPTRD and CSFPTRD6)” on page 711

v “PKCS #11 Token record list (CSFPTRL and CSFPTRL6)” on page 713

v “PKCS #11 Unwrap key (CSFPUWK and CSFPUWK6)” on page 717

v “PKCS #11 Wrap key (CSFPWPK and CSFPWPK6)” on page 720

As of ICSF FMID HCR7770, a TKDS is no longer required to use the PKCS #11
services. If ICSF is started without a TKDS, however, only the omnipresent token
will be available. The omnipresent token supports session objects only. Session
objects are objects that do not persist beyond the life of a PKCS #11 session.

PKCS #11 Derive multiple keys (CSFPDMK and CSFPDMK6)
Use the PKCS #11 Derive Multiple Keys callable service to generate multiple secret
key objects and protocol dependent keying material from an existing secret key
object. This service does not support any recovery methods.

The key handle must be a handle of a PKCS #11 secret key object. The
CKA_DERIVE attribute for the secret key object must be true. The mechanism
keyword specified in the rule array indicates what derivation protocol to use. The
derive parms list provides additional input/output data. The format of this list is
dependent on the protocol being used.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPDMK6.

© Copyright IBM Corp. 1997, 2011 655

|

Format

CALL CSFPDMK(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
attribute_list_length,
attribute_list,
base_key_handle,
parms_list_length,
parms_list)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justified in 8-byte fields and padded on the right with blanks. All keywords
must be in contiguous storage.

PKCS #11 Derive multiple keys

656 z/OS V1R13 ICSF Application Programmer's Guide

|

|

|||
|

|

|

|||
|

|

Table 293. Keywords for derive multiple keys

Keyword Meaning

Mechanism (required)

SSL-KM Use the SSL 3.0 Key and MAC derivation protocol as defined in the
PKCS #11 standard as mechanism
CKM_SSL3_KEY_AND_MAC_DERIVE.

TLS-KM Use the TLS 1.0/1.1 Key and MAC derivation protocol as defined in
the PKCS #11 standard as mechanism
CKM_TLS_KEY_AND_MAC_DERIVE.

IKE1PHA1 Use the IKEv1 phase 1 protocol to derive multiple keys using a
previously derived IKE seed key as the base key and a previously
derived secret key as an additional key. 3 keys are derived (one
derivation, one authentication, and one encryption key).

Using IKE terminology, this mechanism performs {SKEYID_d |
SKEYID_a | SKEYID_e} = prf(SKEYID, g^xy | CKY-I | CKY-R) with
key expansion for SKEYID_e, if required. (SKEYID_d,a are always
the size of the prf output.)

Where:

v CKY-I | CKY-R - is the concatenated initiator/responder cookie
string

v SKEYID - is the base key

v g^xy - is the additional key

v SKEYID_d,a,e - are the to-be-derived derivation, authentication
and encryption keys

IKE2PHA1 Use the IKEv2 phase 1 (SA) protocol to derive multiple keys using
a previously derived IKE seed key as the base key. 7 keys are
derived (one derivation, two authentication, two encryption, and two
peer authentication keys).

Using IKE terminology, this mechanism performs {SK_d | SK_ai |
SK_ar | SK_ei | SK_er | SK_pi | SK_pr } = prf+(SKEYSEED, Ni | Nr
| SPIi | SPIr).

Where:

v Ni | Nr | SPIi | SPIr - is the concatenated initiator/responder
nonce and Security Parameter Index string

v SKEYSEED - is the base key

v SK_d,ai,ar,ei,er,pi,pr - are the to-be-derived derivation, initiator
authentication, responder authentication, initiator encryption,
responder encryption, initiator peer authentication, and responder
peer authentication keys

PKCS #11 Derive multiple keys

Chapter 15. Using PKCS #11 Tokens and Objects 657

||
|
|
|

|
|
|
|

|

|
|

|

|

|
|

||
|
|
|

|
|
|

|

|
|

|

|
|
|
|

Table 293. Keywords for derive multiple keys (continued)

Keyword Meaning

IKE1PHA2 Use the IKEv1 phase 2 (CHILD SA) protocol to derive multiple keys
and salt values using a previously derived IKE derivation key as the
base key and a previously derived secret key as an additional key
(optional). The derivation produces one of the following key sets:

v One authentication key

v One GMAC key plus salt value

v One authentication key plus one encryption key

v One GCM key plus a salt value

Up to two such sets are produced, one for the sender and one for
the receiver.

Using IKE terminology, this mechanism performs KEYMAT =
prf(SKEYID_d, [g^xy |] protocol | SPI | Ni_b | Nr_b), done in two
passes – once for the sender and once for the receiver.

Where:

v protocol | SPI | Ni_b | Nr_b - is the concatenated Protocol,
Security Parameter Index, and initiator/responder nonce string

v SKEYID_d - is the base key

v g^xy - is the optional additional key

v KEYMAT - is the generated key material which is partitioned into
the key set

IKE2PHA2 Use the IKEv2 phase 2 protocol to derive multiple keys and salt
values using a previously derived IKE derivation key as the base
key and a previously derived secret key as an additional key
(optional). The derivation produces one of the following key sets:

v One authentication key

v One GMAC key plus salt value

v One authentication key plus one encryption key

v One GCM key plus a salt value

Two such sets are produced, one for the initiator and one for the
responder.

Using IKE terminology, this mechanism performs KEYMAT =
prf+(SK_d, [g^ir |] Ni | Nr).

Where:

v Ni | Nr - is the concatenated initiator/responder nonce string

v SK_d - is the base key

v g^ir - is the optional additional key

v KEYMAT - is the generated key material which is partitioned into
the key set

attribute_list_length

Direction: Input Type: Integer

The length of the attributes supplied in the attribute_list parameter in bytes. The
maximum value for this field is 32752.

attribute_list

PKCS #11 Derive multiple keys

658 z/OS V1R13 ICSF Application Programmer's Guide

||
|
|
|

|

|

|

|

|
|

|
|
|

|

|
|

|

|

|
|

||
|
|
|

|

|

|

|

|
|

|
|

|

|

|

|

|
|

Direction: Input Type: String

List of attributes for the derived secret key object. See “Attribute List” on page
94 for the format of an attribute_list .

base_key_handle

Direction: Input Type: String

The 44-byte handle of the base key object. See “Handles” on page 95 for the
format of a key_handle.

parms_list_length

Direction: Input Type: Integer

The length of the parameters supplied in the parms_list parameter in bytes.

parms_list

Direction: Input/Output Type: String

The protocol specific parameters. This field has a varying format depending on
the mechanism specified:

Table 294. parms_list parameter format for SSL-KM and TLS-KM mechanisms

Offset Length in bytes Direction Description

0 1 Input Boolean indicating if “export” processing is required.
Any value other than x’00’ means yes

1 3 Not applicable reserved

4 4 Input length in bytes of the client’s random data (x)),
where 1 <= length <= 32

8 4 Input length in bytes of the server’s random data (y)),
where 1 <= length <= 32

12 4 Input size of MAC to be generated in bits, where 8 <= size
<= 384, in multiples of 8

16 4 Input size of key to be generated in bits, Must match a
supported size for the key type specified in the
attribute list. Zero if no encryption keys are to be
generated.

20 4 Input size of IV to be generated in bits (v), where 0<= size
<= 128, in multiples of 8. Must be zero if no
encryption keys are to be generated.

24 44 Output handle of client MAC secret object created

68 44 Output handle of server MAC secret object created

112 44 Output handle of client key object created

156 44 Output handle of server key object created

200 x Input client’s random data

200+x y Input server’s random data

200+x+y v/8 Output client’s IV

200+x+y+v/8 v/8 Output server’s IV

PKCS #11 Derive multiple keys

Chapter 15. Using PKCS #11 Tokens and Objects 659

|

|

|
|

|
|

Table 295. parms_list parameter format for IKE1PHA1 mechanism

Offset Length in bytes Direction Description

0 1 Input IKE version code. Must be x’01’

1 1 Input PRF function code x'01' = HMAC_MD5, x’02’ =
HMAC_SHA1, x’04’ = HMAC_SHA256, x’05’ =
SHA384, and x’06’ = SHA512

2 4 Input reserved

6 2 Input length of to-be-derived encryption key, SKEYID_e

8 44 Input Key handle of additional key

52 16 Input Concatenated cookie string

68 44 Output SKEYID_d key handle

112 44 Output SKEYID_a key handle

156 44 Output SKEYID_e key handle

Table 296. parms_list parameter format for IKE2PHA1 mechanism

Offset Length in bytes Direction Description

0 1 Input IKE version code. Must be x’02’

1 1 Input PRF function code x'01' = HMAC_MD5, x’02’ =
HMAC_SHA1, x’04’ = HMAC_SHA256, x’05’ =
SHA384, and x’06’ = SHA512

2 2 Input length of to-be-derived derivation key, SK_d

4 2 Input length of a single to-be-derived authentication key,
SK_a

6 2 Input length of a single to-be-derived encryption key, SK_e

8 2 Input length of a single to-be-derived peer authentication
key, SK_p

10 2 Input Concatenated nonce, SPI string length (n), where 24
<= n <= 520

12 44 Output SKEYID_d key handle

56 44 Output Initiator SKEYID_a key handle

100 44 Output Responder SKEYID_a key handle

144 44 Output Initiator SKEYID_e key handle

188 44 Output Responder SKEYID_e key handle

232 44 Output Initiator SKEYID_p key handle

276 44 Output Responder SKEYID_p key handle

320 n Input Concatenated nonce, SPI string

Table 297. parms_list parameter format for IKE1PHA2 and IKE2PHA2 mechanisms

Offset Length in bytes Direction Description

0 1 Input IKE version code. Must be x’01’ for IKE1PHA2, x’02’
for IKE2PHA2

1 1 Input PRF function code x'01' = HMAC_MD5, x’02’ =
HMAC_SHA1, x’04’ = HMAC_SHA256, x’05’ =
SHA384, and x’06’ = SHA512

PKCS #11 Derive multiple keys

660 z/OS V1R13 ICSF Application Programmer's Guide

||

||||

||||

||||
|
|

||||

||||

||||

||||

||||

||||

||||
|

||

||||

||||

||||
|
|

||||

||||
|

||||

||||
|

||||
|

||||

||||

||||

||||

||||

||||

||||

||||
|

||

||||

||||
|

||||
|
|

Table 297. parms_list parameter format for IKE1PHA2 and IKE2PHA2 mechanisms (continued)

Offset Length in bytes Direction Description

2 2 Input length of to-be-derived salts (s), where 0 <= s <= 4.
Zero if salts are not to be derived

4 2 Input length of to-be-derived authentication keys. Zero if
authentication keys are not to be derived

6 2 Input length of to-be-derived encryption, GMAC, or GCM
keys. Zero if no such keys are to be derived

8 2 Input First pass parameter string length (n)

v For IKE1PHA2 – Receiver concatenated Protocol,
Security Parameter Index, and initiator/responder
nonce string length, where 25 <= n <= 525

v For IKE2PHA2 – Concatenated initiator/responder
nonce string length, where 16 <= n <= 512.

10 2 Input Second pass parameter string length (m)

v For IKE1PHA2 – Sender concatenated Protocol,
Security Parameter Index, and initiator/responder
nonce string length, where 25 <= m <= 525. Zero
if second pass is to be skipped

v For IKE2PHA2 – Not used. Must be zero

12 44 Input Key handle of additional key. Fill with binary zeros if
n/a

56 44 Output Initiator (sender) authentication key handle

100 44 Output Responder (receiver) authentication key handle

144 44 Output Initiator (sender) encryption, GMAC, or GCM key
handle

188 44 Output Responder (receiver) encryption, GMAC, or GCM
key handle

232 n Input First pass parameter string

232+n m Input Second pass parameter string

232+n+m s Output Initiator (sender) salt

232+n+m+s s Output Responder (receiver) salt

Authorization
There are multiple keys involved in this service — one or two base keys and the
target keys (the new keys created from the base key).

v To use a base key that is a public object, the caller must have SO (READ)
authority or USER (READ) authority (any access).

v To use a base key that is a private object, the caller must have USER (READ)
authority (user access).

v To derive a target key that is a public object, the caller must have SO (READ)
authority or USER (UPDATE) authority.

v To derive a target key that is a private object, the caller must have SO
(CONTROL) authority or USER (UPDATE) authority.

Usage Notes
Key derivation functions are performed in software.

PKCS #11 Derive multiple keys

Chapter 15. Using PKCS #11 Tokens and Objects 661

|

||||

||||
|

||||
|

||||
|

||||

|
|
|

|
|

||||

|
|
|
|

|

||||
|

||||

||||

||||
|

||||
|

||||

||||

||||

||||
|

|

For the SSL-KM and TLS-KM mechanisms, an attribute list is required if encryption
keys are to be generated.

For the IKE1PHA1, IKE2PHA1, IKE1PHA2, and IKE2PHA2 mechanisms, the
following attribute rules apply to the derived keys:

v Derivation keys will have the following attributes which may not be overridden by
other values in the attribute list:

– CKA_CLASS=CKO_SECRET_KEY

– CKA_KEY_TYPE=CKK_GENERIC_SECRET

– CKA_DERIVE=TRUE

– CKA_VALUE_LEN=as specified in the parms list

v Authentication keys will have the following attributes which may not be
overridden by other values in the attribute list:

– CKA_CLASS=CKO_SECRET_KEY

– CKA_KEY_TYPE=CKK_GENERIC_SECRET

– CKA_SIGN=TRUE=TRUE

– CKA_VERIFY=TRUE=TRUE

– CKA_VALUE_LEN= as specified in the parms list

v Encryption, GMAC, and GCM keys will be typed according to information found
in the attribute list. However, they will have the following attributes which may not
be overridden by other values in the attribute list:

– CKA_CLASS=CKO_SECRET_KEY

– For key types other than CKK_DES, CKK_DES2, and CKK_DES3,
CKA_VALUE_LEN= as specified in the parms list

v All key types will inherit the values of the CKA_SENSITIVE,
CKA_ALWAYS_SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE attributes from the base key. These may not be
overridden by other values in the attribute list. If an additional key is specified, its
values will be applied after setting the base key values as follows:

– If the additional key has CKA_SENSITIVE=TRUE, so will the derived key(s)

– If the additional key has CKA_EXTRACTABLE=FALSE, so will the derived
keys(s)

– If the additional key has CKA_ALWAYS_SENSITIVE=FALSE, so will the
derived keys(s)

– If the additional key has CKA_NEVER_EXTRACTABLE=FALSE, so will the
derived keys(s)

v If encryption, GMAC, or GCM keys are to be derived, an attribute list is required
for the key typing information. Otherwise, it is optional. For all keys, other
applicable secret key attributes may be specified in the attribute list. Any attribute
not specified will be assigned the default value normally assigned to a newly
created secret key.

For the IKE1PHA1, IKE1PHA2, and IKE2PHA2 mechanisms, the additional key
must be a secret key (CKA_CLASS=CKO_SECRET_KEY) capable of performing
key derivation (CKA_DERIVE=TRUE). It must also be contained in the same PKCS
#11 token as the base key.

The IKE1PHA1, IKE2PHA1, IKE1PHA2, and IKE2PHA2 mechanisms have the
following limitations if the operation is FIPS 140 restricted:

v The MD5 PRF may not be specified.

PKCS #11 Derive multiple keys

662 z/OS V1R13 ICSF Application Programmer's Guide

|
|

|
|

|
|

|

|

|

|

|
|

|

|

|

|

|

|
|
|

|

|
|

|
|
|
|
|

|

|
|

|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

|

v The length of the base key must be at least half the length of the output of the
PRF function.

PKCS #11 Derive key (CSFPDVK and CSFPDVK6)
Use the PKCS #11 Derive Key callable service to generate a new secret key object
from an existing key object. This service does not support any recovery methods.

The deriving key handle must be a handle of an existing PKCS #11 key object. The
CKA_DERIVE attribute for this object must be true. The mechanism keyword
specified in the rule array indicates what derivation protocol to use. The derive
parms list provides additional input data. The format of this list is dependent on the
protocol being used.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPDVK6.

Format

CALL CSFPDVK(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
attribute_list_length,
attribute_list,
base_key_handle,
parms_list_length,
parms_list,
target_key_handle)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

PKCS #11 Derive multiple keys

Chapter 15. Using PKCS #11 Tokens and Objects 663

|
|

|

|

|||
|

|

|
|

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justified in 8-byte fields and padded on the right with blanks. All keywords
must be in contiguous storage.

Table 298. Keywords for derive key

Keyword Meaning

Mechanism (required)

PKCS-DH Use the Diffie-Hellman PKCS derivation protocol as defined in the
PKCS #11 standard as mechanism CKM_DH_PKCS_DERIVE.

SSL-MS Use the SSL 3.0 Master Secret derivation protocol as defined in the
PKCS #11 standard as mechanism
CKM_SSL3_MASTER_KEY_DERIVE. The SSL protocol version is
also returned. The base key must have been generated according
to the rules for SSL 3.0

SSL-MSDH Use the SSL 3.0 Master Secret for Diffie-Hellman derivation
protocol as defined in the PKCS #11 standard as mechanism
CKM_SSL3_MASTER_KEY_DERIVE_DH.

TLS-MS Use the TLS Master Secret derivation protocol as defined in the
PKCS #11 standard as mechanism
CKM_TLS_MASTER_KEY_DERIVE. The base key must have been
generated according to the rules for TLS 1.0 or TLS 1.1

TLS-MSDH Use the TLS Master Secret for Diffie-Hellman derivation protocol as
defined in the PKCS #11 standard as mechanism
CKM_TLS_MASTER_KEY_DERIVE_DH.

EC-DH Use the Elliptic Curve Diffie-Hellman derivation protocol as defined
in the PKCS #11 standard as mechanism CKM_ECDH1_DERIVE

IKESEED Use the IKEv1 or IKEv2 initial seeding protocol to derive a seed
key using a previously derived secret key as the base key.

Using IKE terminology, this mechanism performs either SKEYID =
prf(Ni_b | Nr_b, g^xy) for IKEv1 or SKEYSEED = prf(Ni | Nr, g^ir)
for IKEv2.

Where:

v Ni_b | Nr_b or Ni | Nr - is the concatenated initiator/responder
nonce string

v g^xy or g^ir - is the base key

PKCS #11 Derive key

664 z/OS V1R13 ICSF Application Programmer's Guide

|||
|

|

||
|

|
|
|

|

|
|

|

Table 298. Keywords for derive key (continued)

Keyword Meaning

IKESHARE Use the IKEv1 initial seeding protocol to derive a seed key using a
pre-shared secret key as the base key.

Using IKE terminology, this mechanism performs SKEYID =
prf(pre-shared-key, Ni_b | Nr_b).

Where:

v Ni_b | Nr_b - is the concatenated initiator/responder nonce string

v pre-shared-key - is the base key

IKEREKEY Use the IKEv2 rekeying protocol to derive a new seed key using a
previously derived IKE derivation key as the base key and a
previously derived secret key as an additional key.

Using IKE terminology, this mechanism performs SKEYSEED =
prf(SK_d, g^ir | Ni | Nr).

Where:

v Ni | Nr - is the concatenated initiator/responder nonce string

v SK_d - is the base key

v g^ir - is the additional key

attribute_list_length

Direction: Input Type: Integer

The length of the attributes supplied in the attribute_list parameter in bytes. The
maximum value for this field is 32750.

attribute_list

Direction: Input Type: String

List of attributes for the derived secret key object. See “Attribute List” on page
94 for the format of an attribute_list .

base_key_handle

Direction: Input Type: String

The 44-byte handle of the source key object. See “Handles” on page 95 for the
format of a base_key_handle.

parms_list_length

Direction: Input Type: Integer

The length of the parameters supplied in the parms_list parameter in bytes.

parms_list

Direction: Input/Output Type: String

The protocol specific parameters. This field has a varying format depending on
the mechanism specified:

PKCS #11 Derive key

Chapter 15. Using PKCS #11 Tokens and Objects 665

||
|

|
|

|

|

|

||
|
|

|
|

|

|

|

|

|

Table 299. parms_list parameter format for PKCS-DH mechanism

Offset Length in
bytes

Direction Description

0 4 Input length in bytes of the other party’s public value, where 64 <= length <= 256

4 <=256 Input binary value representing the other party’s public value.

Table 300. parms_list parameter format for SSL-MS, SSL-MSDH, TLS-MS, and TLS-MSDH mechanisms

Offset Length in
bytes

Direction Description

0 2 Output SSL protocol version returned for SSL-MS and TLS-MS only. For the other
protocols, this field is left unchanged.

2 2 not
applicable

reserved

4 4 Input length in bytes of the client’s random data (x), where 1 <= length <= 32

8 4 Input length in bytes of the server’s random data (y)), where 1 <= length <= 32

12 x Input client’s random data

12+x y Input server’s random data

Table 301. parms_list parameter format for EC-DH mechanism

Offset Length in
bytes

Direction Description

0 1 Input KDF function code, x’01’ = NULL; x’02’ = SHA1. x’05’ = SHA224, x’06’ =
SHA256, x’07’ = SHA384, and x’08’ = SHA512

1 3 not
applicable

reserved

4 4 Input length in bytes of the optional data shared between the two parties. A zero length
means no shared data. For the NULL KDF the length must be zero. Otherwise,
the maximum shared data length 2147483647.

8 8 Input 64-bit address of the data shared between the two parties. The data must reside
in the caller’s address space. High order word must be set to all zeros by
AMODE31 callers. This field is ignored if the length is zero.

16 4 Input length in bytes of the other party’s public value (x). This length is dependent on
the curve type/size of the base key and on whether the value is DER encoded or
not:

secp192r1 – 49 (51 w/DER)
secp224r1 – 57 (59 w/DER)
secp256r1 – 65 (67 w/DER)
secp384r1 – 97 (99 w/DER)
secp521r1 – 133 (136 w/DER)

brainpoolP160r1 – 41 (43 w/DER)
brainpoolP192r1 – 49 (51 w/DER)
brainpoolP224r1 – 57 (59 w/DER)
brainpoolP256r1 – 65 (67 w/DER)
brainpoolP320r1 – 81 (83 w/DER)
brainpoolP384r1 – 97 (99 w/DER)
brainpoolP512r1 – 129 (132 w/DER)

20 x<=136 Input binary value representing the other party’s public value with or without DER
encoding.

PKCS #11 Derive key

666 z/OS V1R13 ICSF Application Programmer's Guide

Table 302. parms_list parameter format for IKESEED, IKESHARE, and IKEREKEY mechanisms

Offset Length in
bytes

Direction Description

0 1 Input IKE version code. Must be x’01’ for IKESHARE, x’02’ for IKEREKEY, x’01’ or x’02’
for IKESEED

1 1 Input PRF function code x'01' = HMAC_MD5, x’02’ = HMAC_SHA1, x’04’ =
HMAC_SHA256, x’05’ = SHA384, and x’06’ = SHA512

2 2 Input Length of concatenated initiator/responder nonce string (n), where 16 <= n <=
512

4 44 Input Key handle of additional key - required for IKEREKEY. Ignored for the other
mechanisms.

48 n Input Concatenated initiator/responder nonce string

target_key_handle

Direction: Output Type: String

Upon successful completion, the 44-byte handle of the secret key object that
was derived.

Authorization
There are multiple keys involved in this service — one or two base keys and the
target key (the new key created from the base key).

v To use a base key that is a public object, the caller must have SO (READ)
authority or USER (READ) authority (any access).

v To use a base key that is a private object, the caller must have USER (READ)
authority (user access).

v To derive a target key that is a public object, the caller must have SO (READ)
authority or USER (UPDATE) authority.

v To derive a target key that is a private object, the caller must have SO
(CONTROL) authority or USER (UPDATE) authority.

Usage Notes
Derivation of the EC-DH shared secret "Z" may be performed in hardware or
software. All other key derivation operations are performed in software.

Key derivation functions are performed in software.

For the IKESEED, IKESHARE, and IKEREKEY mechanisms, the following attribute
rules apply to the derived key:

v The key will have the following attributes which may not be overridden by other
values in the attribute list:

– CKA_CLASS=CKO_SECRET_KEY

– CKA_KEY_TYPE=CKK_GENERIC_SECRET

– CKA_DERIVE=TRUE

– CKA_VALUE_LEN=length of the output of the PRF function

v Other applicable secret key attributes may be specified in the attribute list.
However, an attribute list is not required. Any attribute not specified will be
assigned the default value normally assigned to a newly created secret key. In
particular, CKA_SENSITIVE defaults to FALSE and CKA_EXTRACTABLE
defaults to TRUE.

PKCS #11 Derive key

Chapter 15. Using PKCS #11 Tokens and Objects 667

||

||
|
||

||||
|

||||
|

||||
|

||||
|

||||
|

|
|

|
|

|

|
|

|
|

|

|

|

|

|
|
|
|
|

v CKA_ALWAYS_SENSITIVE is set to FALSE if the CKA_ALWAYS_SENSITIVE
attribute from the base key is FALSE. Otherwise it is set equal to the value of the
CKA_SENSITIVE attribute assigned to the derived key.

v CKA_NEVER_EXTRACTABLE is set to FALSE if the
CKA_NEVER_EXTRACTABLE attribute from the base key is FALSE. Otherwise it
is set opposite to the value of the CKA_EXTRACTABLE attribute assigned to the
derived key.

For the IKEREKEY mechanism, the additional key must be a secret key
(CKA_CLASS=CKO_SECRET_KEY) capable of performing key derivation
(CKA_DERIVE=TRUE). It must also be contained in the same PKCS #11 token as
the base key.

For the IKESEED, IKESHARE, and IKEREKEY mechanisms, the MD5 PRF may
not be specified if the operation is FIPS 140 restricted.

For the IKESHARE and IKEREKEY mechanisms, the length of the base key must
be at least half the length of the output of the PRF function if the operation is FIPS
140 restricted.

For the IKESEED mechanism, the length of the concatenated initiator/responder
nonce value must be at least half the length of the output of the PRF function if the
operation is FIPS 140 restricted.

PKCS #11 Get attribute value (CSFPGAV and CSFPGAV6)
Use the get attribute value callable service (CSFPGAV) to retrieve the attributes of
an object.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPGAV6.

Format

CALL CSFPGAV(
return_code,
reason_code,
exit_data_length,
exit_data,
handle,
rule_array_count,
rule_array,
attribute_list_length,
attribute_list)

Parameters
return_code

Direction: Output
Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

PKCS #11 Derive key

668 z/OS V1R13 ICSF Application Programmer's Guide

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|

Direction: Output
Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

handle

Direction: Input
Type: String

The 44-byte handle of the object. See “Handles” on page 95 for the format of a
handle.

rule_array_count

Direction: Input
Type: Integer

The number of keywords supplied in the rule_array parameter. This value must
be 0.

rule_array

Direction: Input
Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justified in 8-byte fields and padded on the right with blanks. All keywords
must be in contiguous storage.

attribute_list_length

Direction: Input/Output
Type: Integer

On input, the length of the attribute_list parameter in bytes.

On output, the length of the attribute_list parameter in bytes. If the length
supplied on input is insufficient to hold all attributes, the length on output is set
to the minimum length required.

attribute_list

PKCS #11 Get attribute value

Chapter 15. Using PKCS #11 Tokens and Objects 669

|

|||
|

|

|

|||
|

|

Direction: Output
Type: String

A list of object attributes.

See “Attribute List” on page 94 for the format of an attribute_list.

Authorization
The token authorization required and the amount of attribute information returned is
dependent on the values of the attributes the object possesses.

The authority to retrieve the non-sensitive attributes is as follows:

v For a public object - any authority to the token (USER (READ) or SO (READ))

v For a private object - USER (READ) or SO (CONTROL)

If the caller is not authorized to retrieve the non-sensitive attributes, the service
fails.

If the caller is authorized to retrieve the non-sensitive attributes and the object does
not possess any sensitive attributes, the service returns all the object's attributes.

If the caller is authorized to retrieve the non-sensitive attributes and the object does
possess sensitive attributes, processing is as defined in this table:

Table 303. Get attribute value processing for objects possessing sensitive attributes

Object PKCS #11 role
authority

CKA_SENSITIVE CKA_EXTRACTABLE Attributes
returned

Public USER (READ) or
SO (READ)

True True or False Non-sensitive only

Private USER (READ) or
SO (CONTROL)

True True or False Non-sensitive only

Public USER (READ) or
SO (READ)

False False Non-sensitive only

Private USER (READ) or
SO (CONTROL)

False False Non-sensitive only

Public USER (READ) or
SO (READ)

False True Sensitive and
non-sensitive

Private SO (CONTROL) False True Non-sensitive only

Private USER (READ) False True Sensitive and
non-sensitive

Note:

v Session and token objects require the same authority.

v The sensitive attributes are as follows:

– CKA_VALUE for a secret key, Elliptic Curve private key, DSA private
key, or Diffie-Hellman private key object.

– CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT_2, and CKA_COEFFICIENT
for a private key object.

v See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for
more information on the SO and User PKCS #11 roles.

PKCS #11 Get attribute value

670 z/OS V1R13 ICSF Application Programmer's Guide

Usage Notes
1. If the object is marked sensitive or not extractable, the sensitive attributes are

not returned

2. If the caller is authorized to list the non-sensitive attributes of an object, but not
the sensitive ones, the sensitive attributes are not returned

3. If the caller is not authorized to list the non-sensitive attributes of the object, the
service fails

PKCS #11 Generate key pair (CSFPGKP and CSFPGKP6)
Use the generate key pair callable service to generate an RSA, DSA, Elliptic Curve,
or Diffie-Hellman key pair. New token or session objects are created to hold the key
pair.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPGKP6.

Format

CALL CSFPGKP(
return_code,
reason_code,
exit_data_length,
exit_data,
token_handle,
rule_array_count,
rule_array,
public_key_attribute_list_length,
public_key_attribute_list,
public_key_object_handle,
private_key_attribute_list_length,
private_key_attribute_list,
private_key_object_handle)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

PKCS #11 Get attribute value

Chapter 15. Using PKCS #11 Tokens and Objects 671

|

|

|||
|

|

exit_data

Direction: Ignored Type: String

This field is ignored.

token_handle

Direction: Input Type: String

The 44-byte handle of the token of the key objects. See “Handles” on page 95
for the format of a token_handle.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array_parameter. This value
must be 0.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justified in 8-byte fields and padded on the right with blanks. All keywords
must be in contiguous storage

public_key_attribute_list_length

Direction: Input Type: Integer

The length of the attributes supplied in the public_key_attribute list parameter in
bytes.

public_key_attribute_list

Direction: Input Type: String

List of attributes for the public key object. The maximum value for this field is
32750. See “Attribute List” on page 94 for the format of a
public_key_attribute_list.

public_key_object_handle

Direction: Output Type: String

The 44-byte handle of the new public key object.

private_key_attribute_list_length

Direction: Input Type: Integer

The length of the attributes supplied in the private_key_attribute_list parameter
in bytes.

private_key_attribute_list

Direction: Input Type: String

List of attributes for the private key object. The maximum value for this field is
32750. See “Attribute List” on page 94 for the format of a
private_key_attribute_list.

private_key_object_handle

PKCS #11 Generate key pair

672 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

Direction: Output Type: String

The 44-byte handle of the new private key object.

Authorization
To generate a public object, the caller must have SO (READ) authority or USER
(UPDATE) authority.

To generate a private object, the caller must have SO (CONTROL) authority or
USER (UPDATE) authority.

Usage Notes
The type of key pair generated is determined by the key type attributes in the
public_key_attributes_list and private_key_attributes_list parameters.

DSA, Elliptic Curve, and Diffie-Hellman key pairs are generated in software. RSA
key pair generation may be done in hardware or software.

PKCS #11 Generate secret key (CSFPGSK and CSFPGSK6)
Use the generate secret key callable service to generate a secret key or set of
domain parameters. A new token or session object is created to hold the
information.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPGSK6.

Format

CALL CSFPGSK(
return_code,
reason_code,
exit_data_length,
exit_data,
handle,
rule_array_count,
rule_array,
attribute_list_length,
attribute_list,
parms_list_length,
parms_list)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

PKCS #11 Generate key pair

Chapter 15. Using PKCS #11 Tokens and Objects 673

|

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

handle

Direction: Input/Output Type: String

On input, the 44-byte handle of the token. On output, the 44-byte handle of the
new secret key or domain parameters object. See “Handles” on page 95 for the
format of a handle.

rule_array_count
The number of keywords you supplied in the rule_array parameter. This value
must be 1.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service.

Table 304. Keywords for generate secret key

Keyword Meaning

Mechanism (One of the following must be specified)

SSL Generate a generic secret key object where the client is using SSL
(for CKM_SSL3_PRE_MASTER_KEY_GEN)

TLS Generate a generic secret key object where the client is using TLS
(for CKM_TLS_PRE_MASTER_KEY_GEN)

KEY Generate a secret key object according to the key type attribute in
the attributes_list parameter (for
CKM_GENERIC_SECRET_KEY_GEN, CKM_DES_KEY_GEN,
CKM_DES2_KEY_GEN, CKM_DES3_KEY_GEN,
CKM_AES_KEY_GEN, CKM_RC4_KEY_GEN, and
CKM_BLOWFISH_KEY_GEN)

PARMS Generate a domain parameters object according to the key type
attribute in the attributes_list parameter (for
CKM_DSA_PARAMETER_GEN and
CKM_DH_PKCS_PARAMETER_GEN)

attribute_list_length

Direction: Input Type: Integer

PKCS #11 Generate secret key

674 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

|

|||
|

|

The length of the attributes supplied in the attribute_list parameter in bytes. The
maximum value for this field is 32750.

attribute_list

Direction: Input Type: String

List of attributes for the secret key object. See “Attribute List” on page 94 for the
format of an attribute_list .

parms_list_length

Direction: Input Type: Integer

The length of the parameters supplied in the parms_list parameter in bytes.

parms_list

Direction: Input/Output Type: String

The protocol specific parameters. This field has a varying format depending on
the mechanism specified:

Table 305. parms_list parameter format for SSL and TLS mechanism

Offset Length in
bytes

Direction Description

0 2 input SSL or TLS version number in binary, e.g., for version 3.01 this would be x’0301’

For the KEY and PARMS mechanisms, there are no paramerters. The
parms_list_length parameter must be set to zero for these mechanisms.

Authorization
To generate a public object, the caller must have SO (READ) authority or USER
(UPDATE) authority.

To generate a private object, the caller must have SO (CONTROL) authority or
USER (UPDATE) authority.

Usage Notes
Domain parameters are generated in software. Secret key generation may be done
in hardware or software.

PKCS #11 Generate HMAC (CSFPHMG and CSFPHMG6)
Use the PKCS #11 Generate HMAC callable service to generate a hashed
message authentication code (MAC). This service does not support any recovery
methods.

The key handle must be a handle of a PKCS #11 generic secret key object. The
mechanism keyword specified in the rule array indicates the hash algorithm to use.
The CKA_SIGN attribute for the secret key object must be true.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPHMG6.

PKCS #11 Generate secret key

Chapter 15. Using PKCS #11 Tokens and Objects 675

|

Format

CALL CSFPHMG(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
text_id,
chain_data_length,
chain_data,
key_handle,
hmac_length,
hmac)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule_array

Direction: Input Type: String

PKCS #11 Generate HMAC

676 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

|

|||
|

|

Keywords that provide control information to the callable service. Each keyword
is left-justisfied in 8-byte fields and padded on the right with blanks. All
keywords must be in contiguous storage.

Table 306. Keywords for generate HMAC

Keyword Meaning

Mechanism (required)

MD5 Generate an HMAC. Use MD5 hashing. Output returned in the
hmac parameter is 16 bytes in length.

SHA-1 Generate an HMAC. Use SHA-1 hashing. Output returned in the
hmac parameter is 20 bytes in length.

SHA-224 Generate an HMAC. Use SHA-224 hashing. Output returned in the
hmac parameter is 28 bytes in length.

SHA-256 Generate an HMAC. Use SHA-256 hashing. Output returned in the
hmac parameter is 32 bytes in length.

SHA-384 Generate an HMAC. Use SHA-384 hashing. Output returned in the
hmac parameter is 48 bytes in length.

SHA-512 Generate an HMAC. Use SHA-512 hashing. Output returned in the
hmac parameter is 64 bytes in length.

SSL3-MD5 Generate a MAC according to the SSL v3 protocol. Use MD5
hashing. Output returned in the hmac parameter is 16 bytes in
length.

SSL3-SHA Generate a MAC according to the SSL v3 protocol. Use SHA1
hashing. Output returned in the hmac parameter is 20 bytes in
length.

Chaining Selection (Optional)

FIRST Specifies this is the first call in a series of chained calls.
Intermediate results are stored in the hash field.

MIDDLE Specifies this is a middle call in a series of chained calls.
Intermediate results are stored in the hash field.

LAST Specifies this is the last call in a series of chained calls.

ONLY Specifies this is the only call and the call is not chained. This is the
default.

text_length

Direction: Input Type: Integer

Length of the text parameter in bytes. The length can be from 0 to 2147483647.

text

Direction: Input Type: String

Value for which an HMAC will be generated.

text_id

Direction: Input Type: Integer

The ALET identifying the space where the text resides.

chain_data_length

Direction: Input/Output Type: Integer

PKCS #11 Generate HMAC

Chapter 15. Using PKCS #11 Tokens and Objects 677

The byte length of the chain_data parameter. This must be 128 bytes.

chain_data

Direction: Input/Output Type: String

This field is a 128-byte work area. The chain data permits chaining data from
one call to another. ICSF initializes the chain data on a FIRST call and may
change it on subsequent MIDDLE and LAST calls. Your application must not
change the data in this field between the sequence of FIRST, MIDDLE, and
LAST calls for a specific message. The chain data has the following format:

Table 307. chain_data parameter format

Offset Length Description

0 4 Flag word

Bit Meaning when set on

0 Cryptographic state object has been allocated

1-31 Reserved for IBM’s use

4 44 Cryptographic state object handle

48 80 Reserved for IBM’s use

key_handle

Direction: Input Type: String

The 44-byte handle of a generic secret key object. This parameter is ignored for
MIDDLE and LAST chaining requests. See “Handles” on page 95 for the format
of a key_handle.

hmac_length

Direction: Ignored Type: Integer

Reserved field

hmac

Direction: Output Type: String

Upon successful completion of an ONLY or LAST request, this field contains the
generated HMAC value, left justified. The caller must provide an area large
enough to hold the generated HMAC as defined by the mechanism specified.
This field is ignored for FIRST and MIDDLE requests.

Authorization
To use this service with a public object, the caller must have at least SO (READ)
authority or USER (READ) authority (any access).

To use this service with a private object, the caller must have at least USER
(READ) authority (user access).

Usage Notes
HMAC operations are performed in software.

If the FIRST rule is used to start a series of chained calls:

PKCS #11 Generate HMAC

678 z/OS V1R13 ICSF Application Programmer's Guide

v The key used to initiate the chained calls must not be deleted until the chained
calls are complete.

v The application should make a LAST call to free ICSF resources allocated. If
processing is to be aborted without making a LAST call and the chain_data
parameter indicates that a cryptographic state object has been allocated, the
caller must free the object by calling CSFPTRD (or CSFPTRD6 for 64-bit callers)
passing the state object's handle.

PKCS #11 Verify HMAC (CSFPHMV and CSFPHMV6)
Use the PKCS #11 Verify HMAC callable service to verify a hash message
authentication code (MAC). This service does not support any recovery methods.

The key handle must be a handle of a PKCS #11 generic secret key object. The
mechanism keyword specified in the rule array indicates the hash algorithm to use.
The CKA_VERIFY attribute for the secret key object must be true.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPHMV6.

Format

CALL CSFPHMV(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
text_id,
chain_data_length,
chain_data,
key_handle,
hmac_length,
hmac)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

PKCS #11 Generate HMAC

Chapter 15. Using PKCS #11 Tokens and Objects 679

|

|
|

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justisfied in 8-byte fields and padded on the right with blanks. All
keywords must be in contiguous storage.

Table 308. Keywords for verify HMAC

Keyword Meaning

Mechanism (required)

MD5 Verify an HMAC. Use MD5 hashing. Data supplied in the hmac
parameter must be 16 bytes in length.

SHA-1 Verify an HMAC. Use SHA-1 hashing. Data supplied in the hmac
parameter must be 20 bytes in length.

SHA-224 Verify an HMAC. Use SHA-224 hashing. Data supplied in the hmac
parameter must be 28 bytes in length.

SHA-256 Verify an HMAC. Use SHA-256 hashing. Data supplied in the hmac
parameter must be 32 bytes in length.

SHA-384 Verify an HMAC. Use SHA-384 hashing. Data supplied in the hmac
parameter must be 48 bytes in length.

SHA-512 Verify an HMAC. Use SHA-512 hashing. Data supplied in the hmac
parameter must be 64 bytes in length.

SSL3-MD5 Verify a MAC according to the SSL v3 protocol. Use MD5 hashing.
Data supplied in the hmac parameter must be 16 bytes in length.

SSL3-SHA Verify a MAC according to the SSL v3 protocol. Use SHA1 hashing.
Data supplied in the hmac parameter must be 20 bytes in length.

Chaining Selection (Optional)

FIRST Specifies this is the first call in a series of chained calls.
Intermediate results are stored in the hash field.

MIDDLE Specifies this is a middle call in a series of chained calls.
Intermediate results are stored in the hash field.

LAST Specifies this is the last call in a series of chained calls.

ONLY Specifies this is the only call and the call is not chained. This is the
default.

PKCS #11 Verify HMAC

680 z/OS V1R13 ICSF Application Programmer's Guide

|||
|

|

|

|||
|

|

text_length

Direction: Input Type: Integer

Length of the text parameter in bytes. The length can be from 0 to 2147483647.

text

Direction: Input Type: String

Value for which an HMAC will be generated.

text_id

Direction: Input Type: Integer

The ALET identifying the space where the text resides.

chain_data_length

Direction: Input/Output Type: Integer

The byte length of the chain_data parameter. This must be 128 bytes.

chain_data

Direction: Input/Output Type: String

This field is a 128-byte work area. The chain data permits chaining data from
one call to another. ICSF initializes the chain data on a FIRST call and may
change it on subsequent MIDDLE and LAST calls. Your application must not
change the data in this field between the sequence of FIRST, MIDDLE, and
LAST calls for a specific message. The chain data has the following format:

Table 309. chain_data parameter format

Offset Length Description

0 4 Flag word

Bit Meaning when set on

0 Cryptographic state object has been allocated

1-31 Reserved for IBM’s use

4 44 Cryptographic state object handle

48 80 Reserved for IBM’s use

key_handle

Direction: Input Type: String

The 44-byte handle of a generic secret key object. This parameter is ignored for
MIDDLE and LAST chaining requests. See “Handles” on page 95 for the format
of a key_handle.

hmac_length

Direction: Ignored Type: Integer

Reserved field

hmac

Direction: Input Type: String

PKCS #11 Verify HMAC

Chapter 15. Using PKCS #11 Tokens and Objects 681

This field contains the HMAC value to be verified on ONLY and LAST requests,
left justified. The caller must provide an HMAC value of the required length as
determined by the mechanism specified. This field is ignored for FIRST and
MIDDLE requests.

Authorization
To use this service with a public object, the caller must have at least SO (READ)
authority or USER (READ) authority (any access).

To use this service with a private object, the caller must have at least USER
(READ) authority (user access).

Usage Notes
HMAC operations are performed in software.

Return code 4, reason code 8000 indicates the HMAC didn’t verify.

If the FIRST rule is used to start a series of chained calls:

v The key used to initiate the chained calls must not be deleted until the chained
calls are complete.

v The application should make a LAST call to free ICSF resources allocated. If
processing is to be aborted without making a LAST call and the chain_data
parameter indicates that a cryptographic state object has been allocated, the
caller must free the object by calling CSFPTRD (or CSFPTRD6 for 64-bit callers)
passing the state object's handle.

PKCS #11 One-way hash, sign, or verify (CSFPOWH and CSFPOWH6)
Use the one-way hash, sign, or verify callable service to generate a one-way hash
on specified text, sign specified text, or verify a signature on specified text. For
one-way hash, this service supports the following methods:

v MD2 - software only

v MD5 - software only

v SHA-1

v RIPEMD-160 - software only

v SHA-224

v SHA-256

v SHA-384

v SHA-512

For sign and verify, the following methods are supported:

v MD2 with RSA-PKCS 1.5

v MD5 with RSA-PKCS 1.5

v SHA1 with RSA-PKCS 1.5, DSA, or ECDSA

v SHA-224 with RSA-PKCS 1.5, DSA, or ECDSA

v SHA-256 with RSA-PKCS 1.5, DSA, or ECDSA

v SHA-384 with RSA-PKCS 1.5, DSA, or ECDSA

v SHA-512 with RSA-PKCS 1.5, DSA, or ECDSA

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPOWH6.

PKCS #11 Verify HMAC

682 z/OS V1R13 ICSF Application Programmer's Guide

|

|

|

|

|

Format

CALL CSFPOWH(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
text_length,
text,
text_id,
chain_data_length,
chain_data,
handle,
hash_length,
hash)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule_array

Direction: Input Type: String

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

Chapter 15. Using PKCS #11 Tokens and Objects 683

|

|||
|

|

|

|||
|

|

Keywords that provide control information to the callable service. Each keyword
is left-justisfied in 8-byte fields and padded on the right with blanks. All
keywords must be in contiguous storage.

Table 310. Keywords for one-way hash generate

Keyword Meaning

Hash Method (required)

MD2 Hash algorithm is MD2 algorithm. Length of hash generated is 16
bytes.

MD5 Hash algorithm is MD5 algorithm. Length of hash generated is 16
bytes.

RPMD-160 Hash algorithm is RIPEMD-160. Length of hash generated is 20
bytes.

SHA-1 Hash algorithm is SHA-1. Length of hash generated is 20 bytes.

SHA-224 Hash algorithm is SHA-224. Length of hash generated is 28 bytes.

SHA-256 Hash algorithm is SHA-256. Length of hash generated is 32 bytes.

SHA-384 Hash algorithm is SHA-384. Length of hash generated is 48 bytes.

SHA-512 Hash algorithm is SHA-512. Length of hash generated is 64 bytes.

DETERMIN For use with non-chained RSA signature verifies only. Hash
algorithm is to be determined from the input signature.

Chaining Flag (optional)

FIRST Specifies this is the first call in a series of chained calls.
Intermediate results are stored in the hash and chain_data fields.
Cannot be specified with hash method DETERMIN.

MIDDLE Specifies this is a middle call in a series of chained calls.
Intermediate results are stored in the hash and chain_data fields.
Cannot be specified with hash method DETERMIN.

LAST Specifies this is the last call in a series of chained calls. Cannot be
specified with hash method DETERMIN.

ONLY Specifies this is the only call and the call is not chained. This is the
default.

Requested Operation (optional)

HASH The specified text is to be hashed only. This is the default. Cannot
be specified (either explicitly or by default) with hash method
DETERMIN.

SIGN-RSA The data is to be hashed then signed using RSA-PKCS 1.5
formatting. Any hash method is acceptable except RPMD-160 and
DETERMIN.

SIGN-DSA The data is to be hashed then signed using DSA. The hash method
must be SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512.

SIGN-EC The data is to be hashed then signed using ECDSA. The hash
method must be SHA-1, SHA-224, SHA-256, SHA-384, or
SHA-512.

VER-RSA The data is to be hashed then signature verified using RSA-PKCS
1.5 formatting. Any hash method is acceptable except RPMD-160.
This operation is required for hash method DETERMIN.

VER-DSA The data is to be hashed then signature verified using DSA. The
hash method must be SHA-1, SHA-224, SHA-256, SHA-384, or
SHA-512.

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

684 z/OS V1R13 ICSF Application Programmer's Guide

||
|

|

|

|
|

|
|
|

|
|

|

|

|
|

Table 310. Keywords for one-way hash generate (continued)

Keyword Meaning

VER-EC The data is to be hashed then signature verified using ECDSA. The
hash method must be SHA-1, SHA-224, SHA-256, SHA-384, or
SHA-512.

text_length

Direction: Input Type: Integer

The length of the text parameter in bytes.

If you specify the FIRST or MIDDLE keyword, then the text length must be a
multiple of the block size of the hash method. For MD2, this is a multiple of 16
bytes. For MD5, RPMD-160, SHA-1, SHA-224, and SHA-256, this is a multiple
of 64 bytes. For SHA-384 and SHA-512, this is a multiple of 128 bytes. For
ONLY and LAST, this service performs the required padding according to the
algorithm specified. The length can be from 0 to 2147483647.

text

Direction: Input Type: String

Value to be hashed

text_id

Direction: Input Type: Integer

The ALET identifying the space where the text resides.

chain_data_length

Direction: Input/Output Type: Integer

The byte length of the chain_data parameter. This must be 128 bytes.

chain_data

Direction: Input/Output Type: String

This field is a 128-byte work area. The chain data permits chaining data from
one call to another. ICSF initializes the chain data on a FIRST call and may
change it on subsequent MIDDLE calls. Your application must not change the
data in this field between the sequence of FIRST, MIDDLE, and LAST calls for
a specific message. The chain data has the following format:

Table 311. chain_data parameter format

Offset Length Description

0 4 Flag word

Bit Meaning when set on

0 Cryptographic state object has been allocated

1-31 Reserved for IBM’s use

4 44 Cryptographic state object handle

48 80 Reserved for IBM’s use

handle

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

Chapter 15. Using PKCS #11 Tokens and Objects 685

Direction: Input Type: String

For hash requests, this is the 44-byte name of the token to which this hash
operation is related. The first 32 bytes of the handle are meaningful. The
remaining 12 bytes are reserved. See “Handles” on page 95 for the format of a
handle.

For sign and verify requests, this is the 44-byte handle to the key object that is
to be used. For FIRST and MIDDLE chaining requests, only the first 32 bytes of
the handle are meaningful, to identify the token.

hash_length

Direction: Input/Output Type: Integer

The length of the supplied hash field in bytes.

For hash requests, this field is input only. For SHA-1 and RPMD-160 this must
be at least 20 bytes; for MD2 and MD5 this must be at least 16 bytes. For
SHA-224 and SHA-256, this must be at least 32 bytes. Even though the length
of the SHA-224 hash is less than SHA-256, the extra bytes are used as a work
area during the generation of the hash value. The SHA-224 value is left-justified
and padded with 4 bytes of binary zeroes. For SHA-384 and SHA-512, thus
must be at least 64 bytes. Even though the length of the SHA-384 hash is less
than SHA-512, the extra bytes are used as a work area during the generation of
the hash value. The SHA-384 value is left-justified and padded with 16 bytes of
binary zeroes.

For FIRST and MIDDLE sign and verify requests, this field is ignored.

For LAST and ONLY sign requests, this field is input/output. If the signature
generation is successful, ICSF will update this field with the length of the
generated signature. If the signature generation is unsuccessful because the
supplied hash field is too small, ICSF will update this field with the required
length.

For LAST and ONLY verify requests, this field is input only.

hash

Direction: Input/Output Type: String

This field contains the hash or signature, left-justified. The processing of the
rest of the field depends on the implementation.

For hash requests, this field is the generated hash. If you specify the FIRST or
MIDDLE keyword, this field contains the intermediate hash value. Your
application must not change the data in this field between the sequence of
FIRST, MIDDLE, and LAST calls for a specific message.

For FIRST and MIDDLE sign and verify requests, this field is ignored.

For LAST and ONLY sign requests, this field is the generated signature.

For LAST and ONLY verify requests, this field is input signature to be verified.

Authorization
To use this service to sign or verify with a public object, the caller must have at
least SO (READ) authority or USER (READ) authority (any access).

To use this service to sign or verify with a private object, the caller must have at
least USER (READ) authority (user access).

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

686 z/OS V1R13 ICSF Application Programmer's Guide

Usage Notes
If the FIRST rule is used to start a series of chained calls, the application must not
change the Hash Method or Requested Operation rules between the calls. The
behavior of the service is undefined if the rules are changed.

If the FIRST rule is used to start a series of chained calls, the application should
make a LAST call to free ICSF resources allocated. If processing is to be aborted
without making a LAST call and the chain_data parameter indicates that a
cryptographic state object has been allocated, the caller must free the object by
calling CSFPTRD (or CSFPTRD6 for 64-bit callers) passing the state object’s
handle.

The CSFSERV resource name that protects this service is CSFOWH, the same
resource name used to protect the non-PKCS #11 One Way Hash service.

For hash method DETERMIN, ICSF determines the hashing method by RSA
decrypting the input signature using the specified public key and examining the
result. ICSF will return the “signature did not verify” error (return code 4, reason
code X'2AF8') if this process is unsuccessful for any of the following reasons:

1. ICSF cannot successfully perform the decryption because the public key is the
wrong size.

2. The resulting clear text block is not properly RSA-PKCS 1.5 formatted.

3. The resulting clear text block indicates a hashing algorithm not supported by
this service was used.

PKCS #11 Private key sign (CSFPPKS and CSFPPKS6)
Use the PKCS #11 private key sign callable service to:

v Decrypt or sign data using an RSA private key using zero-pad or PKCS #1 v1.5
formatting

v Sign data using a DSA private key

v Sign data using an Elliptic Curve private key in combination with DSA

The key handle must be a handle of a PKCS #11 private key object. When the
request type keyword DECRYPT is specified in the rule array, CKA_DECRYPT
attribute must be true. When no request type is specified, the CKA_SIGN attribute
must be true.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPPKS6.

Format

CALL CSFPPKS(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
cipher_value_length,
cipher_value,
key_handle,
clear_value_length,
clear_value)

PKCS #11 One-way hash, sign, or verify (CSFPOWH)

Chapter 15. Using PKCS #11 Tokens and Objects 687

|
|
|
|

|
|

|

|
|

|

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array_parameter. This value
may be 1 or 2.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service.

Table 312. Keywords for private key sign

Keyword Meaning

Mechanism (One of the following must be specified)

RSA-ZERO Mechanism is RSA decryption or signature generation using
zero-pad formatting

RSA-PKCS Mechanism is RSA decryption or signature generation using PKCS
#1 v1.5 formatting

DSA Mechanism is DSA signature generation

ECDSA Mechanism is Elliptic Curve with DSA signature generation

Request type (optional)

DECRYPT The request is to decrypt data. This type of request requires the
CKA_DECRYPT attribute to be true. If DECRYPT is not specified,
the CKA_SIGN attribute must be true. Valid with RSA only.

PKCS #11 Private key sign

688 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

|

|||
|

|

cipher_value_length

Direction: Input Type: Integer

Length of the cipher_value parameter in bytes.

cipher_value

Direction: Input Type: String

For decrypt, this is the value to be decrypted. Otherwise this is the value to be
signed. For RSA-PKCS signature requests, the data to be signed is expected to
be a DER encoded DigestInfo structure. For DSA and ECDSA signature
requests, the data to be signed is expected to be a SHA1, SHA224, SHA256,
SHA384 or SHA512 digest.

key_handle

Direction: Input Type: String

The 44-byte handle of a private key object. See “Handles” on page 95 for the
format of a key_handle.

clear_value_length

Direction: Input/Output Type: Integer

Length of the clear_value parameter in bytes. On output, this is updated to be
the actual length of the decrypted value or the generated signature.

clear_value

Direction: Output Type: String

For decrypt, this field will contain the decrypted value. Otherwise this field will
contain the generated signature.

Authorization
To use this service with a public object, the caller must have SO (READ) authority
or USER (READ) authority (any access).

To use this service with a private object, the caller must have USER (READ)
authority (user access).

Usage Notes
DSA operations are performed in software. RSA operations may be done in
hardware or software.

Request type DECRYPT is not supported for an Elliptic Curve or DSA private key.

PKCS #11 Public key verify (CSFPPKV and CSFPPKV6)
Use the PKCS #11 public key verify callable service to:

v Encrypt or verify data using an RSA public key using zero-pad or PKCS #1 v1.5
formatting. For encryption, the encrypted data is returned

v Verify a signature using a DSA public key. No data is returned

v Verify a signature using an Elliptic Curve public key in combination with DSA. No
data is returned

PKCS #11 Private key sign

Chapter 15. Using PKCS #11 Tokens and Objects 689

|
|
|

|

The key handle must be a handle of a PKCS #11 public key object. When the
request type keyword ENCRYPT is specified in the rule array, CKA_ENCRYPT
attribute must be true. When no request type is specified, the CKA_VERIFY
attribute must be true.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPPKV6.

Format

CALL CSFPPKV(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
clear_value_length,
clear_value,
key_handle,
cipher_value_length,
cipher_value)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

PKCS #11 Public key verify

690 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

|

|||
|

|

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service.

Table 313. Keywords for public key verify

Keyword Meaning

Mechanism (One of the following must be specified)

RSA-ZERO Mechanism is RSA encryption or signature verification using
zero-pad formatting

RSA-PKCS Mechanism is RSA encryption or signature verification using PKCS
#1 v1.5 formatting

DSA Mechanism is DSA signature verification

ECDSA Mechanism is Elliptic Curve with DSA signature verification

Request type (optional)

ENCRYPT The request is to encrypt data. This type of request requires the
CKA_ENCRYPT attribute to be true. If ENCRYPT is not specified,
the CKA_VERIFY attribute must be true. Valid with RSA only.

clear_value_length

Direction: Input Type: Integer

The length of the clear_value parameter

clear_value

Direction: Input Type: String

For encrypt, this is the value to be encrypted. Otherwise this is the signature is
be verified.

key_handle

Direction: Input Type: String

The 44-byte handle of public key object. See “Handles” on page 95 for the
format of a key_handle.

cipher_value_length

Direction: Input/Output Type: Integer

For encrypt, on input, this is the length of the cipher_value parameter in bytes.
On output, this is updated to be the actual length of the text encrypted into the
cipher_value parameter. For signature verification, this is the length of the data
to be verified (input only).

cipher_value

Direction: Input/Output Type: String

For encrypt, this is the encrypted value (output only). For signature verification,
this is the data to be verified (input only). For RSA-PKCS signature verification
requests, the data to be verified is expected to be a DER encoded DigestInfo
structure. For DSA and ECDSA signature verification requests, the data to be
verified is expected to be a SHA1, SHA224, SHA256, SHA384 or SHA512
digest.

PKCS #11 Public key verify

Chapter 15. Using PKCS #11 Tokens and Objects 691

|
|
|

Authorization
To use this service with a public object, the caller must have SO (READ) authority
or USER (READ) authority (any access).

To use this service with a private object, the caller must have USER (READ)
authority (user access).

Usage Notes
DSA operations are performed in software. RSA and ECDSA operations may be
done in hardware or software.

Request type ENCRYPT is not supported for an Elliptic Curve or DSA public key.

PKCS #11 Pseudo-random function (CSFPPRF and CSFPPRF6)
Use the PKCS #11 Pseudo-random callable service to generate pseudo-random
output of arbitrary length. This service does not support any recovery methods.

The mechanism keyword specified in the rule array indicates what derivation
protocol to use. The derive parms list provides additional input/output data. The
format of this list is dependent on the protocol being used.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPPRF6.

Format

CALL CSFPPRF(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
handle,
parms_list_length,
parms_list,
prf_output_length,
prf_output)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

PKCS #11 Public key verify

692 z/OS V1R13 ICSF Application Programmer's Guide

|

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justified in 8-byte fields and padded on the right with blanks. All keywords
must be in contiguous storage.

Table 314. Keywords for derive multiple keys

Keyword Meaning

Mechanism (required)

TLS-PRF Use the TLS Pseudo-Random Function derivation protocol as defined in the PKCS #11
standard as mechanism CKM_TLS_PRF. This mechanism derives deterministic random
bytes from a caller supplied secret key object and other parameters.

PRNG Generate pseudo-random bytes using the best source available. If a secure cryptographic
coprocessor that supports RNGL is installed and configured, it will be used to produce true
(non-deterministic) random data. Otherwise, a pseudo (deterministic) random algorithm,
consistent with ANSI X9.31, will be utilized. If a secure cryptographic coprocessor is
installed and configured, it will be used to provide entropy in producing the pseudo-random
data. Otherwise, an IBM proprietary entropy algorithm will be used in producing the
pseudo-random data

handle

Direction: Input Type: String

For mechanism TLS-PRF, this is the 44-byte handle of the source secret key
object. The CKA_DERIVE attribute for the secret key object must be true. If no
key is to be used, set the handle to all blanks.

For mechanism PRNG, this is the 44-byte name of the token to which this
operation is related. The first 32 bytes of the handle are meaningful. The
remaining 12 bytes are reserved and must be blanks.

See “Handles” on page 95 for the format of a handle.

PKCS #11 Pseudo-random function

Chapter 15. Using PKCS #11 Tokens and Objects 693

|

|||
|

|

|

|||
|

|

parms_list_length

Direction: Input Type: Integer

The length of the parameters supplied in the parms_list parameter in bytes.

parms_list

Direction: Input/Output Type: String

The protocol specific parameters. This field has a varying format depending on
the mechanism specified:

Table 315. parms_list parameter format for TLS-PRF mechanism

Offset Length in
bytes

Direction Description

0 1 input PRF function code – x’00’, use combined MD5/SHA1 digest algorithm as defined
in TLS 1.0/1.1, otherwise use the following single digest algorithm as defined in
TLS 1.2: x’01’ = SHA256, x’02’ = SHA384, and x’03’ = SHA512

1 3 not
applicable

reserved

4 4 input length in bytes of the label (x). where 1 <= length <= 256

8 4 input length in bytes of the seed (y), where 1 <= length <= 256

12 x input label

12+x y input seed

For the PRNG mechanism, there are no paramerters. The parms_list_length
parameter must be set to zero for this mechanism

prf_output_length

Direction: Input Type: Integer

The length in bytes of pseudo-random data to be generated and returned in the
prf_output parameter. The maximum length is 2147483647 bytes.

prf_output

Direction: Output Type: String

The pre-allocated area in which the pseudo-random data is returned.

Authorization
To use this service with a public object for mechanism TLS-PRF, the caller must
have at least SO (READ) authority or USER (READ) authority (any access).

To use this service with a private object for mechanism TLS-PRF, the caller must
have at least USER (READ) authority (user access).

Usage Notes
Pseudo-random functions operations are performed in software.

The CSFSERV resource name that protects this service is CSFRNG, the same
resource name used to protect the non-PKCS #11 Random Number Generation
service.

PKCS #11 Pseudo-random function

694 z/OS V1R13 ICSF Application Programmer's Guide

PKCS #11 Set attribute value (CSFPSAV and CSFPSAV6)
Use the set attribute value callable service (CSFPSAV) to update the attributes of
an object.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPSAV6.

Format

CALL CSFPSAV(
return_code,
reason_code,
exit_data_length,
exit_data,
handle,
rule_array_count,
rule_array,
attribute_list_length,
attribute_list)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

handle

Direction: Input Type: String

The 44-byte handle of the object. See “Handles” on page 95 for the format of a
handle.

rule_array_count

PKCS #11 Set attribute value

Chapter 15. Using PKCS #11 Tokens and Objects 695

|

|

|||
|

|

|

|||
|

|

Direction: Input Type: Integer

The number of keywords supplied in the rule_array parameter. This value must
be 0.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justisfied in 8-byte fields and padded on the right with blanks. All
keywords must be in contiguous storage.

attribute_list_length

Direction: Input Type: Integer

The length of the attribute_list parameter in bytes.

The maximum size in bytes is 32752.

attribute_list

Direction: Input Type: String

A list of object attributes.

Note: Lengths in the attribute list and attribute structures are unsigned integers.

See “Attribute List” on page 94 for the format of an attribute_list.

Authorization
Table 316. Authorization requirements for the set attribute value callable service

Action Object Authority required

Set Public object, except a CA
certificate

USER (UPDATE) or SO (READ)

Set Private object, except a CA
certificate

USER (UPDATE) or SO
(CONTROL)

Set Public CA certificate object USER (CONTROL) or SO
(READ)

Set Private CA certificate object USER (CONTROL) or SO
(CONTROL)

Note:

v Session and token objects require the same authority.

v See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for
more information on the SO and User PKCS #11 roles and how ICSF
determines that a certificate is a CA certificate.

Usage Notes
When updating the attributes of an object, all attributes in the template will be
processed and the value used is that of the last instance processed.

PKCS #11 Set attribute value

696 z/OS V1R13 ICSF Application Programmer's Guide

PKCS #11 Secret key decrypt (CSFPSKD and CSFPSKD6)
Use the PKCS #11 secret key decrypt callable service to decipher data using a
clear symmetric key. AES, DES, BLOWFISH, and RC4 are supported. This service
supports CBC, ECB, Galois/Counter, and stream modes and PKCS #7 padding.
The key handle must be a handle of a PKCS #11 secret key object. The
CKA_DECRYPT attribute must be true.

If the length of output field is too short to hold the output, the service will fail and
return the required length of the output field in the clear_text_length parameter.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPSKD6.

Format

CALL CSFPSKD(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_handle,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
cipher_text_length,
cipher_text,
cipher_text_id,
clear_text_length,
clear_text,
clear_text_id)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

PKCS #11 Secret key decrypt

Chapter 15. Using PKCS #11 Tokens and Objects 697

|

|||
|

|

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 0, 1, 2, or 3.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service.

Table 317. Keywords for secret key decrypt

Keyword Meaning

Encryption Mechanism (Optional. No default. If not specified, mechanism will be taken
from key type of secret key. If specified , must match key type)

AES AES algorithm will be used.

DES DES algorithm will be used. This is only single-key encryption.

DES3 DES3 algorithm will be used, This includes double- and triple-key
encryption.

BLOWFISH BLOWFISH algorithm will be used.

RC4 RC4 algorithm will be used. This is a stream cipher.

Processing Rule (optional)

CBC Performs cipher block chaining. The cipher text length must be a
multiple of the block size for the specified algorithm (8 bytes for
DES, DES3, and BLOWFISH, 16 bytes for AES). CBC is the
default value for DES, DES3, AES, and BLOWFISH. CBC cannot
be specified for RC4.

CBC-PAD Performs cipher block chaining. The cipher text length must be
greater than zero and a multiple of the block size for the specified
algorithm. For FINAL and ONLY calls, PKCS #7 padding is
performed. For this reason, the clear text will always be shorter
than the cipher text and may even be zero length. CBC-PAD
cannot be specified for BLOWFISH or RC4.

ECB Performs electronic code book encryption. The cipher text length
must be a multiple of the block size for the specified algorithm.
ECB cannot be specified for BLOWFISH or RC4.

GCM Performs Galois/Counter mode encryption. The cipher text length
must be greater than zero. The clear text will be shorter than the
cipher text and may even be zero length due to the truncation of
the authentication tag. GCM may only be specified with AES.
GMAC is a specialized form of GCM where no plain text is
returned.

STREAM Performs a stream cipher. STREAM cannot be specified for
BLOWFISH, DES, DES3, or AES. STREAM is the default value for
RC4.

Chaining Selection (optional)

PKCS #11 Secret key decrypt

698 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

Table 317. Keywords for secret key decrypt (continued)

Keyword Meaning

INITIAL Specifies this is the first call in a series of chained calls. For cipher
block chaining, the initialization vector is taken from the
initialization_vector parameter. Cannot be specified with processing
rule ECB or GCM.

CONTINUE Specifies this is a middle call in a series of chained calls.
Intermediate results are read from and stored in the chain_data
field. Cannot be specified with processing rule ECB or GCM.

FINAL Specifies this is the last call in a series of chained calls.
Intermediate results are read from the chain_data field. Cannot be
specified with processing rule ECB or GCM.

ONLY Specifies this is the only call and the call is not chained. For cipher
block chaining, the initialization vector is taken from the
initialization_vector parameter. For Galois Counter mode, the
initialization parameters are taken from the initialization_vector
parameter. ONLY is the default chaining.

key_handle

Direction: Input Type: String

The 44-byte handle of secret key object. See “Handles” on page 95 for the
format of a key_handle.

initialization_vector_length

Direction: Input Type: Integer

Length of the initialization_vector in bytes. For CBC and CBC-PAD, this must be
8 bytes for DES and BLOWFISH and 16 bytes for AES. For GCM, this must be
the size of the initialization_vector field (28 bytes).

initialization_vector

Direction: Input Type: String

This field has a varying format depending on the mechanism specified. For
CBC and CBC-PAD this is the 8 or 16 byte initial chaining value. The format for
GCM is shown in the following table.

Table 318. initialization_vector parameter format for GCM mechanism

Offset Length
in bytes

Direction Description

0 4 Input length in bytes of the initialization vector. The minimum value is 1. The maximum
value is 128. 12 is recommended.

4 8 Input 64-bit address of the initialization vector. The data must reside in the caller’s address
space. High order word must be set to all zeros by AMODE31 callers.

12 4 Input length in bytes of the additional authentication data. The minimum value is 0. The
maximum value is 1048576.

16 8 Input 64-bit address of the additional authentication data. The data must reside in the
caller’s address space. High order word must be set to all zeros by AMODE31
callers. This field is ignored if the length of the additional authentication data is zero.

24 4 Input Length in bytes of the desired authentication tag. This value must be one of 4, 8, 12,
13, 14, 15, or 16.

PKCS #11 Secret key decrypt

Chapter 15. Using PKCS #11 Tokens and Objects 699

chain_data_length

Direction: Input/Output Type: Integer

The byte length of the chain_data parameter. This must be 128 bytes.

chain_data

Direction: Input/Output Type: String

This field is a 128-byte work area. The chain data permits chaining data from
one call to another. ICSF initializes the chain data on an INITIAL call, and may
change it on subsequent CONTINUE calls. Your application must not change
the data in this field between the sequence of INITIAL, CONTINUE, and FINAL
calls for a specific message. The chain data has the following format:

Table 319. chain_data parameter format

Offset Length Description

0 4 Flag word

Bit Meaning when set on

0 Cryptographic state object has been allocated

1-31 Reserved for IBM’s use

4 44 Cryptographic state object handle

48 80 Reserved for IBM’s use

cipher_text_length

Direction: Input Type: Integer

Length of the cipher_text parameter in bytes. Except for processing rule GCM,
the length can be up to 2147483647. For processing rule GCM, the length
cannot exceed 1048576 plus the length of the tag.

cipher_text

Direction: Input Type: String

Text to be decrypted.

cipher_text_id

Direction: Input Type: Integer

The ALET identifying the space where the cipher text resides.

clear_text_length

Direction: Input/Output Type: Integer

On input, the length in bytes of the clear_text parameter. On output, the length
of the text decrypted into the clear_text parameter

clear_text

Direction: Output Type: String

Decrypted text

clear_text_id

PKCS #11 Secret key decrypt

700 z/OS V1R13 ICSF Application Programmer's Guide

Direction: Input Type: Integer

The ALET identifying the space where the clear text resides.

Authorization
To use this service with a public object, the caller must have at least SO (READ)
authority or USER (READ) authority (any access).

To use this service with a private object, the caller must have at least USER
(READ) authority (user access).

Usage Notes
If the INITIAL rule is used to start a series of chained calls:

v The key used to initiate the chained calls must not be deleted until the chained
calls are complete.

v The application should make a FINAL call to free ICSF resources allocated. If
processing is to be aborted without making a FINAL call and the chain_data
parameter indicates that a cryptographic state object has been allocated, the
caller must free the object by calling CSFPTRD (or CSFPTRD6 for 64-bit callers)
passing the state object’s handle.

GCM decryption may be used to verify a GMAC on some authentication data. To do
this request AES decryption with processing rule. The cipher_text_length and
cipher_text fields must be set to the length and value of the GMAC to be verified. A
return_code of zero and no clear_text data returned means the GMAC verification
was successful.

PKCS #11 Secret key encrypt (CSFPSKE and CSFPSKE6)
Use the PKCS #11 secret key encrypt callable service to encipher data using a
clear symmetric key. AES, DES, BLOWFISH, and RC4 are supported. This service
supports CBC, ECB, Galois/Counter, and stream modes and PKCS #7 padding.
The key handle must be a handle of a PKCS #11 secret key object. The
CKA_ENCRYPT attribute must be true.

If the length of output field is too short to hold the output, the service will fail and
return the required length of the output field in the cipher_text_length parameter.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPSKE6.

PKCS #11 Secret key decrypt

Chapter 15. Using PKCS #11 Tokens and Objects 701

|

Format

CALL CSFPSKE(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
key_handle,
initialization_vector_length,
initialization_vector,
chain_data_length,
chain_data,
clear_text_length,
clear_text,
clear_text_id,
cipher_text_length,
cipher_text,
cipher_text_id)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 0, 1, 2, or 3.

rule_array

Direction: Input Type: String

PKCS #11 Secret key encrypt (CSFPSKE)

702 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

|

|||
|

|

Keywords that provide control information to the callable service.

Table 320. Keywords for secret key encrypt

Keyword Meaning

Encryption Mechanism (Optional. No default. If not specified, mechanism will be taken
from key type of secret key. If specified , must match key type)

AES AES algorithm will be used.

DES DES algorithm will be used. This is only single-key encryption.

DES3 DES3 algorithm will be used, This includes double- and triple-key
encryption.

BLOWFISH BLOWFISH algorithm will be used.

RC4 RC4 algorithm will be used. This is a stream cipher.

Processing Rule (optional)

CBC Performs cipher block chaining. The text length must be a multiple
of the block size for the specified algorithm (8 bytes for DES,
DES3, and BLOWFISH, 16 bytes for AES). CBC is the default
value for DES, DES3, AES, and BLOWFISH. CBC cannot be
specified for RC4.

CBC-PAD Performs cipher block chaining. Except for FINAL and ONLY
chaining calls, the clear text length must be a multiple of the block
size for the specified algorithm. For FINAL and ONLY calls:

v The clear text length may be shorter than the block size and
may even be zero.

v PKCS #7 padding is performed. Thus, the cipher text will always
be longer than the clear text.

CBC-PAD cannot be specified for BLOWFISH or RC4.

ECB Performs electronic code book encryption. The text length must be
a multiple of the block size for the specified algorithm. ECB cannot
be specified for BLOWFISH or RC4.

GCM Performs Galois/Counter mode encryption. The clear text length
may be shorter than the block size and may even be zero. The
authentication tag is returned appended to the cipher text. GCM
may only be specified with AES. GMAC is a specialized form of
GCM where no plain text is specified.

GCMIVGEN Performs similarly to the GCM processing rule except that ICSF will
generate part of the initialization vector and return it in the
initialization_vector parameter. Having ICSF generate the
initialization vector ensures that initialization vectors are never
repeated for a given key object.

STREAM Performs a stream cipher. STREAM cannot be specified for
BLOWFISH, DES, DES3, or AES. STREAM is the default value for
RC4.

Chaining Selection (optional)

INITIAL Specifies this is the first call in a series of chained calls. For cipher
block chaining, the initialization vector is taken from the
initialization_vector parameter. Intermediate results are stored in the
chain_data field. Cannot be specified with processing rule ECB,
GCM, or GCMIVGEN.

PKCS #11 Secret key encrypt (CSFPSKE)

Chapter 15. Using PKCS #11 Tokens and Objects 703

Table 320. Keywords for secret key encrypt (continued)

Keyword Meaning

CONTINUE Specifies this is a middle call in a series of chained calls.
Intermediate results are read from and stored in the chain_data
field. Cannot be specified with processing rule ECB, GCM, or
GCMIVGEN.

FINAL Specifies this is the last call in a series of chained calls.
Intermediate results are read from the chain_data field. Cannot be
specified with processing rule ECB, GCM, or GCMIVGEN.

ONLY Specifies this is the only call and the call is not chained. For cipher
block chaining, the initialization vector is taken from the
initialization_vector parameter. For Galois Counter mode, the
initialization parameters are taken from the initialization_vector
parameter. ONLY is the default chaining.

key_handle

Direction: Input Type: String

The 44-byte handle of secret key object. See “Handles” on page 95 for the
format of a key_handle.

Initialization_vector_length

Direction: Input Type: Integer

Length of the initialization_vector in bytes. For CBC and CBC-PAD, this must be
8 bytes for DES and BLOWFISH and 16 bytes for AES. For GCM and
GCMVGEN, this must be the size of the initialization_vector field (28 bytes).

initialization_vector

Direction: Input Type: String

This field has a varying format depending on the mechanism specified. For
CBC and CBC-PAD this is the 8 or 16 byte initial chaining value. The format for
GCM and GCMIVGEN are shown in the following tables.

Table 321. initialization_vector parameter format for GCM mechanism

Offset Length
in bytes

Direction Description

0 4 Input length in bytes of the initialization vector area. The minimum value is 1. The
maximum value is 128. 12 is recommended.

4 8 Input 64-bit address of the initialization vector area. The data must reside in the caller’s
address space. High order word must be set to all zeros by AMODE31 callers.

12 4 Input length in bytes of the additional authentication data. The minimum value is 0. The
maximum value is 1048576.

16 8 Input 64-bit address of the additional authentication data. The data must reside in the
caller’s address space. High order word must be set to all zeros by AMODE31
callers. This field is ignored if the length of the additional authentication data is zero.

24 4 Input Length in bytes of the desired authentication tag. This value must be one of 4, 8, 12,
13, 14, 15, or 16.

PKCS #11 Secret key encrypt (CSFPSKE)

704 z/OS V1R13 ICSF Application Programmer's Guide

Table 322. initialization_vector parameter format for GCMIVGEN mechanism

Offset Length
in bytes

Direction Description

0 4 Input Nonce value which ICSF is to use as the first 4 bytes of the initialization vector. The
remaining 8 bytes will be generated and returned to the caller in the initialization
vector area.

4 8 Input 64-bit address of the initialization vector area into which ICSF will store the 8 bytes it
generates. The area must reside in the caller’s address space. High order word
must be set to all zeros by AMODE31 callers.

The complete initialization vector to be used for decryption is the 4-byte nonce
concatenated with the 8 bytes stored in the area

12 4 Input length in bytes of the additional authentication data. The minimum value is 0. The
maximum value is 1048576.

16 8 Input 64-bit address of the additional authentication data. The data must reside in the
caller’s address space. High order word must be set to all zeros by AMODE31
callers. This field is ignored if the length of the additional authentication data is zero.

24 4 Input Length in bytes of the desired authentication tag. This value must be one of 4, 8, 12,
13, 14, 15, or 16.

chain_data_length

Direction: Input/Output Type: Integer

The byte length of the chain_data parameter. This must be 128 bytes.

chain_data

Direction: Input/Output Type: String

This field is a 128-byte work area. The chain data permits chaining data from
one call to another. ICSF initializes the chain data on an INITIAL call, and may
change it on subsequent CONTINUE calls. Your application must not change
the data in this field between the sequence of INITIAL, CONTINUE, and FINAL
calls for a specific message. The chain data has the following format:

Table 323. chain_data parameter format

Offset Length Description

0 4 Flag word

Bit Meaning when set on

0 Cryptographic state object has been allocated

1-31 Reserved for IBM’s use

4 44 Cryptographic state object handle

48 80 Reserved for IBM’s use

clear_text_length

Direction: Input Type: Integer

Length of the clear_text parameter in bytes. Except for processing rules GCM
and GCMIVGEN, the length can be up to 2147483647. For processing rules
GCM and GCMIVGEN, the length cannot exceed 1048576.

clear_text

PKCS #11 Secret key encrypt (CSFPSKE)

Chapter 15. Using PKCS #11 Tokens and Objects 705

Direction: Input Type: String

Text to be encrypted

clear_text_id

Direction: Input Type: Integer

The ALET identifying the space where the clear text resides.

cipher_text_length

Direction: Input/Output Type: Integer

On input, the length in bytes of the cipher_text parameter. On output, the length
of the text encrypted into the cipher_text parameter.

cipher_text

Direction: Output Type: String

Encrypted text

cipher_text_id

Direction: Output Type: Integer

The ALET identifying the space where the cipher text resides.

Authorization
To use this service with a public object, the caller must have at least SO (READ)
authority or USER (READ) authority (any access).

To use this service with a private object, the caller must have at least USER
(READ) authority (user access).

Usage Notes
If the INITIAL rule is used to start a series of chained calls:

v The key used to initiate the chained calls must not be deleted until the chained
calls are complete.

v The application should make a FINAL call to free ICSF resources allocated. If
processing is to be aborted without making a FINAL call and the chain_data
parameter indicates that a cryptographic state object has been allocated, the
caller must free the object by calling CSFPTRD (or CSFPTRD6 for 64-bit callers)
passing the state object’s handle.

GCM encryption may be used to produce a GMAC on some authentication data. To
do this, request AES encryption with processing rule GCM or GCMVGEN. The
clear_text_length field must be set to zero. The authentication tag (the GMAC) is
returned in the cipher_text field.

For Processing Rule GCMIVGEN, the total number of initialization vector
generations for a token key object is limited to 4294967295. Once this number is
exceeded, the key object will no longer be eligible for Processing Rule GCMIVGEN
and is considered “retired”. This usage counter is maintained in the TKDS as part of
the key object. For keys that are copied using CSFPTRC (C_CopyObject), the
existing counter value is copied to the new key object, but not synchronized after
that.

PKCS #11 Secret key encrypt (CSFPSKE)

706 z/OS V1R13 ICSF Application Programmer's Guide

For Processing Rule GCMIVGEN, session key objects have no maximum lifetime.
They may be retired at any time. Once retired, the key object will no longer be
eligible for Processing Rule GCMIVGEN.

For Processing Rule GCMIVGEN, the nonce value portion of the initialization vector
is predetermined by the caller. It is used to ensure that initialization vector values
are not repeated for any given key value. The caller should provide a random value
and change the value as often as practical. It must be changed whenever:

v a given key value is replicated as a new persistent key object

v a given persistent key object is replicated as a new session key object

v a given session key value is re-instantiated after system IPL

v a given key value is re-instantiated after ICSF indicates it has been retired

Use of Processing Rule GCMIVGEN with token key objects requires that the first 4
bytes of ECVTSPLX or CVTSNAME be set to a unique value with respect to other
systems. See z/OS Cryptographic Services ICSF System Programmer's Guide,
SA22-7520 for information on how to set these fields.

A session key object should never be used for Processing Rule GCMIVGEN if the
key value is distributed to multiple systems outside the current sysplex where new
initialization vectors may be generated. Use only token key objects in such cases. If
session key objects are used, the other systems must use different nonces.

For Processing Rule GCMIVGEN, the 8 bytes of generated initialization vector are
stored back into the initialization vector area before the GCM operation is
performed. This allows the generated initialization vector to be part of the additional
authentication data, if desired.

PKCS #11 Token record create (CSFPTRC and CSFPTRC6)
Use the token record create callable service (CSFPTRC) to do these tasks:

v Initialize or re-initialize a z/OS PKCS #11 token

v Create or copy a token object in the token data set

v Create or copy a session object for the current PKCS #11 session

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPTRC6.

Format

CALL CSFPTRC(
return_code,
reason_code,
exit_data_length,
exit_data,
handle,
rule_array_count,
rule_array,
attribute_list_length,
attribute_list)

PKCS #11 Secret key encrypt (CSFPSKE)

Chapter 15. Using PKCS #11 Tokens and Objects 707

|

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

handle

Direction: Input/Output Type: String

On input, the 44-byte name of the z/OS PKCS #11 token to be initialized, or the
token handle of the object to be created or copied. For the create or re-create
functions, the first 32 bytes of the handle are meaningful on input. The
remaining 12 bytes are filled in by the token record create service. For the copy
function, all 44 bytes of the handle are significant on input.

On output, the 44-byte handle of the z/OS PKCS #11 token or object created.

See “Handles” on page 95 for the format of a handle.

rule_array_count

Direction: Input Type: Integer

The number of keywords supplied in the rule_arrray parameter. The value must
be 1 or 2.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justisfied in 8-byte fields and padded on the right with blanks. All
keywords must be in contiguous storage.

Keyword Meaning

One of these two keywords must be specified:

PKCS #11 Token record create

708 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

|

|||
|

|

Keyword Meaning

TOKEN Specifies that a token is to be initialized. If the token
exists in the token data set, the RECREATE keyword
must be specified.

OBJECT Specifies that an object (token object or session object) is
to be created. If the object is to be a copy of an existing
object, the COPY keyword must be specified.

This keyword is optional, and valid only with TOKEN:

RECREATE Specifies that the token exists and is to be re-initialized.
All objects of the existing token will be deleted.

This keyword is optional, and valid only with OBJECT:

COPY Specifies that the object specified by the handle is to be
copied into a new object.

attribute_list_length

Direction: Input Type: Integer

Length of the attribute_list parameter in bytes.

The maximum size in bytes is 32752.

attribute_list

Direction: Input Type: String

List of token or object attributes.

When creating or re-creating a token, the attribute_list parameter has this
format:

Bytes Description

0 - 31 Manufacturer ID

32 - 47 Model

48 - 63 Serial number

64 - 67 Reserved for IBM's use. Must be hexadecimal zeros.

Note: The strings supplied for Manufacturer ID, Model, and Serial number are
assumed to be from code page IBM1047.

For objects, see “Attribute List” on page 94 for the format of an attribute_list.

Authorization

Note: Session and token objects require the same SAF authority.

Table 324. Authorization requirements for the token record create callable service

Action
Source object (Copy
only)

Token / Object
being created

PKCS #11 role
Authority required

Create or recreate
token

N/A Token SO (UPDATE)

Create object N/A Public object, except
a CA certificate

USER (UPDATE) or
SO (READ)

PKCS #11 Token record create

Chapter 15. Using PKCS #11 Tokens and Objects 709

Table 324. Authorization requirements for the token record create callable
service (continued)

Action
Source object (Copy
only)

Token / Object
being created

PKCS #11 role
Authority required

Create object N/A Private object, except
a CA certificate

USER (UPDATE) or
SO (CONTROL)

Create object N/A Public CA certificate
object

USER (CONTROL)
or SO (READ)

Create object N/A Private CA certificate
object

USER (CONTROL)
or SO (CONTROL)

Copy object Public object, except
a CA certificate

Public object, except
a CA certificate

USER (UPDATE) or
SO (READ)

Copy object Public object or
private object, except
a CA certificate

Private object, except
a CA certificate

USER (UPDATE) or
SO (CONTROL)

Copy object Private object, except
a CA certificate

Public object, except
a CA certificate

USER (UPDATE)

Copy object Public object, where
source or target or
both are CA
certificate objects

Public object, where
source or target or
both are CA
certificate objects

USER (CONTROL)
or SO (READ)

Copy object Public object or
private object, where
source or target or
both are CA
certificate objects

Private object, where
source or target or
both are CA
certificate objects

USER (CONTROL)
or SO (CONTROL) or
both USER
(UPDATE) and SO
(READ)

Copy object Private object, where
source or target or
both are CA
certificate objects

Public object, where
source or target or
both are CA
certificate objects

USER (CONTROL)
or both USER
(UPDATE) and SO
(READ)

Note:

v Session and token objects require the same authority.

v See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for
more information on the SO and User PKCS #11 roles and on how ICSF
determines that a certificate is a CA certificate.

Usage Notes
When creating an object, these attribute processing rules will be in effect:

v All attributes will be processed and the value of the last instance of an attribute in
the template will be saved.

When copying an object, these attribute processing rules will be in effect:

v All attributes will be processed and the value of the last instance of an attribute in
the template will be saved except for CKA_EXTRACTABLE and
CKA_SENSITIVE. CKA_EXTRACTABLE will be copied from the source object
and may be set to False if the value in the source object is True.
CKA_SENSITIVE will be copied from the source object and may be set to True if
the value in the source object is False.

PKCS #11 Token record create

710 z/OS V1R13 ICSF Application Programmer's Guide

PKCS #11 Token record delete (CSFPTRD and CSFPTRD6)
Use the token record delete callable service (CSFPTRD) to delete a z/OS PKCS
#11 token, token object, session object, or state object. When a token is deleted, all
associated objects are deleted as well. The deletions occur in the token data set
(TKDS), and all session memory areas in the ICSF address space.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPTRD6.

Format

CALL CSFPTRD(
return_code,
reason_code,
exit_data_length,
exit_data,
handle,
rule_array_count,
rule_array)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

handle

Direction: Input Type: String

44-byte name of the token or object to be deleted. See “Handles” on page 95
for the format of a handle.

rule_array_count

PKCS #11 Token record delete

Chapter 15. Using PKCS #11 Tokens and Objects 711

|

|

|||
|

|

|

|||
|

|

Direction: Input Type: Integer

The number of keywords supplied in the rule_array parameter. This value must
be 1.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justisfied in 8-byte fields and padded on the right with blanks. All
keywords must be in contiguous storage.

Keyword Meaning

One of these two keywords must be specified:

TOKEN Specifies that a token and all associated objects are to
be deleted.

OBJECT Specifies that an object is to be deleted.

Authorization
Table 325. Authorization requirements for the token record delete callable service

Token / Object Type PKCS #11 Role Authority Required

Token SO (UPDATE)

Public object, except CA certificate USER (UPDATE) or SO (READ)

Private object, except CA certificate USER (UPDATE) or SO (CONTROL)

Public CA certificate object USER (CONTROL) or SO (READ)

Private CA certificate object USER (CONTROL) or SO (CONTROL)

State object None

Note:

v Session and token objects require the same authority.

v See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for
more information on the SO and User PKCS #11 roles and how ICSF
determines that a certificate is a CA certificate.

Usage Notes
An application can free state objects allocated by certain PKCS #11 callable
services by calling this service. To do so, specify the handle of the state object in
the handle parameter and “OBJECT ” in the rule_array parameter. For more
information on the PKCS #11 callable services that can allocate state objects, refer
to:

v “PKCS #11 Secret key decrypt (CSFPSKD and CSFPSKD6)” on page 697
CSFPSKD

v “PKCS #11 Secret key encrypt (CSFPSKE and CSFPSKE6)” on page 701
CSFPSKE

v “PKCS #11 One-way hash, sign, or verify (CSFPOWH and CSFPOWH6)” on
page 682 CSFPOWH

v “PKCS #11 Generate HMAC (CSFPHMG and CSFPHMG6)” on page 675
CSFPHMG

PKCS #11 Token record delete

712 z/OS V1R13 ICSF Application Programmer's Guide

v “PKCS #11 Verify HMAC (CSFPHMV and CSFPHMV6)” on page 679 CSFPHMV

PKCS #11 Token record list (CSFPTRL and CSFPTRL6)
Use the token record list callable service (CSFPTRL) to:

v Obtain a list of z/OS PKCS #11 tokens. The caller must have SAF authority to
the token for a particular token to be listed.

v Obtain a list of token and session objects for a token. Use a search template to
restrict the search for specific attributes. The caller must have SAF authority to
the token.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPTRL6.

Format

CALL CSFPTRL(
return_code,
reason_code,
exit_data_length,
exit_data,
handle,
rule_array_count,
rule_array,
search_template_length,
search_template,
list_length,
handle_count,
output_list)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes assigned
to it that indicate specific processing problems. Appendix A, “ICSF and TSS
Return and Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

PKCS #11 Token record delete

Chapter 15. Using PKCS #11 Tokens and Objects 713

|

|

|||
|

|

|

|||
|

This field is ignored.

handle

Direction: Input Type: String

For tokens, an empty string (blanks) for the first call, or the 44-byte handle of
the last token found for subsequent calls.

For objects, the 44-byte handle of the token for the first call, or the 44-byte
handle of the last object found for subsequent calls.

See Usage Notes for more information. See “Handles” on page 95 for the
format of a handle.

rule_array_count

Direction: Input Type: Integer

The number of keywords supplied in the rule_array parameter. This value must
be 1 or 2.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service. Each keyword
is left-justisfied in 8-byte fields and padded on the right with blanks. All
keywords must be in contiguous storage.

Keyword Meaning

Processing entity (required)

TOKEN Specifies that the list will contain all tokens to which the
caller has SAF access. The search_template parameter
is ignored.

OBJECT Specifies that the list will contain the handles of all
objects that match the attributes specified in the
search_template parameter and to which the caller has
SAF access.

List options (optional, valid only with OBJECT)

ALL Specifies that when listing objects, both public and private
objects that meet the search criteria should be listed if
the caller has SAF authority for the token. There may be
no sensitive attributes in the search template. See the
Authorization topic for details.

search_template_length

Direction: Input Type: Integer

The length of the search_template parameter in bytes. The value must be 0
when the TOKEN keyword is specified.

The maximum size in bytes is 32752.

search_template

Direction: Input Type: String

A list of criteria (attribute values) that an object must meet to be added to the
list. If the search_template_length parameter is 0, no criteria are checked.

PKCS #11 Token record list

714 z/OS V1R13 ICSF Application Programmer's Guide

|

See “Attribute List” on page 94 for the format of an attribute_list.

list_length

Direction: Input/Output Type: Integer

On input, the length in bytes of the output_list parameter. On output, the
number of bytes used for the output_list parameter. If the supplied length is
insufficient to hold one record, the list_length parameter is set to the minimum
length required for a record.

handle_count

Direction: Input/Output Type: Integer

On input, the maximum number of tokens or object handles to return in the list.
On output from a successful call (return_code < 8), the actual number of tokens
or object handles in the list.

output_list

Direction: Output Type: String

A list of token names and descriptions or a list of object handles meeting the
search criteria.

Authorization
To list tokens, the caller must have at least USER (READ) or SO (READ) authority.

Authority to list objects depends on the object's attributes and the search criteria as
follows:

v To list secret key or private key objects where sensitive key attributes are
specified in the search template, this must be true:

– The object must be marked CKA_SENSITIVE=F and CKA_EXTRACTABLE=T
and

– The caller must have USER (READ) authority

v Otherwise (no sensitive attributes in the search criteria)

– To list public objects, the caller must have at least USER (READ) or SO
(READ) authority

– To list private objects when the ALL rule array keyword is specified, the caller
must have at least USER (READ) or SO (READ) authority

– To list private objects when the ALL rule array keyword is not specified, the
caller must have USER (READ) or SO (CONTROL) authority

Token / Object Type
Sensitive Attributes in
search criteria ALL Rule Specified

PKCS #11 Role
Authority Required

Token N/A N/A USER (READ) or SO
(READ)

Public object No N/A USER (READ) or SO
(READ)

Private object No No USER (READ) or SO
(CONTROL)

Private object No Yes USER (READ) or SO
(READ)

PKCS #11 Token record list

Chapter 15. Using PKCS #11 Tokens and Objects 715

|
|

Token / Object Type
Sensitive Attributes in
search criteria ALL Rule Specified

PKCS #11 Role
Authority Required

Secret key or Private key
object (public or private object
class) CKA_SENSITIVE=F
and CKA_EXTRACTABLE=T

Yes N/A USER (READ)

Secret key or Private key
object (public or private object
class) CKA_SENSITIVE=T or
CKA_EXTRACTABLE=F

Yes N/A N/A (object is not listed)

Note:

v Session and token objects require the same authority.

v When the caller does not possess sufficient authority to list a given token
or object, that record is skipped. (No information for the token or object is
returned.) Processing continues with the next token or object.

v The sensitive attributes are as follows:

– CKA_VALUE for a secret key object, Elliptic Curve private key, DSA
private key, or Diffie-Hellman private key object.

– CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT_2, and CKA_COEFFICIENT
for an RSA private key object.

v See z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for
more information on the SO and USER PKCS #11 roles.

Usage Notes
For tokens: On the initial call to get a list of tokens, the handle parameter should
be all blanks. On subsequent calls, the handle parameter should be the last token
handle from the output_list returned in the previous call.

The output records are in this format:

Bytes Description

0 - 31 Token name

32 - 63 Manufacturer ID

64 - 79 Model

80 - 95 Serial number

96 - 103 Date that the token information or any token object was last
updated, expressed as Coordinated Universal Time (UCT) in the
format yyyymmdd

104 - 111 Time that the token information or any token object was last
updated, expressed as Coordinated Universal Time (UCT) in the
format hhmmssth

112 - 115 Flags

Bit Meaning when set on

0 Token is write protected.

For objects: On the initial call to get a list of object handles matching the search
template, the handle parameter contains the token handle. On subsequent calls, the

PKCS #11 Token record list

716 z/OS V1R13 ICSF Application Programmer's Guide

handle parameter should contain the last object handle from the output_list returned
in the previous call. The output records are the 44-byte handles of the objects.

PKCS #11 Unwrap key (CSFPUWK and CSFPUWK6)
Use unwrap key callable service to unwrap and create a key object using another
key. The following formatting is supported:

v PKCS 1.2 formatting is supported for a DES, DES3, AES, BLOWFISH, RC4, or
GENERIC secret wrapped by an RSA public key.

– A new secret key object is created with the decrypted key value

– The unwrapping key must be a private key object

– The CKA_UNWRAP attribute must be true

v PKCS 8 formatting (CBC mode with padding) is supported for an RSA, DSA,
Elliptic Curve, and Diffie-Hellman private key wrapped by a secret key.

– A new private key object is created with the decrypted key values

– The unwrapping key must be a secret key object

– The CKA_UNWRAP attribute must be true

– The encryption mechanism must be specified in the rule array and must
match the key type of the secret key object

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPUWK6.

Format

CALL CSFPUWK(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
wrapped_key_length,
wrapped_key,
initialization_vector_length,
initialization_vector,
unwrapping_key_handle,
attribute_list_length,
attribute_list,
target_key_handle)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

PKCS #11 Token record list

Chapter 15. Using PKCS #11 Tokens and Objects 717

|

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service.

Table 326. Keywords for unwrap key

Keyword Meaning

Formatting Method (required)

PKCS-1.2 RSA PKCS #1 block type 02 will be used to recover the key value.

PKCS-8 The private key values are DER encoded as specified by PKCS-8.
The encryption mechanism rule array keyword must be specified.

Encryption Mechanism (required when PKCS-8 specified, ignored otherwise)

AES For PKCS-8 processing, the unwrapping key must be an AES
secret key object.

DES For PKCS-8 processing, the unwrapping key must be a DES secret
key object.

DES3 For PKCS-8 processing, the unwrapping key must be a DES2 or
DES3 secret key object.

wrapped_key_length

Direction: Input Type: Integer

Length of the wrapped key in the wrapped_key parameter.

wrapped_key

Direction: Input Type: String

The key to be unwrapped.

initialization_vector_length

PKCS #11 Unwrap key

718 z/OS V1R13 ICSF Application Programmer's Guide

|

|||
|

|

|

|||
|

|

Direction: Input Type: Integer

The length of the initialization_vector parameter. The initial value can only be
used with PKCS-8. This parameter is ignored for PKCS-1.2. The length must
match the key type of the wrapping key (8 for DES, DES2, DES3 and 16 for
AES). If the length is zero, the initialization_vector parameter is ignored and an
initial value of zero is used.

initialization_vector

Direction: Input Type: String

The initial chaining value for symmetric encryption. The length must match the
key type of the wrapping key. The initial value can only be used with PKCS-8.
This parameter is ignored for PKCS-1.2.

unwrapping_key_handle

Direction: Input Type: String

The 44-byte handle of the private key or secret key object to unwrap the key.
See “Handles” on page 95 for the format of a unwrapping_key_handle.

attribute_list_length

Direction: Input Type: Integer

Length of the attribute_list parameter in bytes. The maximum value for this field
is 32750.

attribute_list

Direction: Input Type: String

List of token or object attributes for the target key. The attributes must be
consistent with the class of the object. See “Attribute List” on page 94 for the
format of an attribute_list.

target_key_handle

Direction: Output Type: String

The 44-byte handle of the secret key or private key object created for the
unwrapped key. The object will use to token name of the unwrapping key
object.

Authorization
There are two keys involved in this service: the unwrapping key and the target key
(the new key created from the wrapped key).

v To use an unwrapping key that is a public object, the caller must have SO
(READ) authority or USER (READ) authority (any access).

v To use an unwrapping key that is a private object, the caller must have USER
(READ) authority (user access).

v To unwrap a target key that is a public object, the caller must have SO (READ)
authority or USER (UPDATE) authority

v To unwrap a target key that is a private object, the caller must have SO
(CONTROL) authority or USER (UPDATE) authority

PKCS #11 Unwrap key

Chapter 15. Using PKCS #11 Tokens and Objects 719

PKCS #11 Wrap key (CSFPWPK and CSFPWPK6)
Use wrap key callable service to wrap a key with another key. The following
formatting is supported:

v PKCS 1.2 is supported for wrapping a DES, DES3, AES, BLOWFISH, RC4, or
GENERIC secret key with an RSA public key.

– The wrapping key must be a public key object.

– The CKA_WRAP attribute must be true.

v PKCS 8 formatting (CBC mode with padding) is supported for wrapping an RSA,
DSA, Elliptic Curve, or Diffie-Hellman private key with a secret key.

– The wrapping key must be a secret key object.

– The CKA_WRAP attribute must be true

– The encryption mechanism must be specified in the rule array and must
match the key type of the secret key object

If the length of output field is too short to hold the output, the service will fail and
return the required length of the output field in the wrapped_key_length parameter.

The callable service can be invoked in AMODE(24), AMODE(31), or AMODE(64).
64-bit callers must use CSFPWPK6.

Format

CALL CSFPWPK(
return_code,
reason_code,
exit_data_length,
exit_data,
rule_array_count,
rule_array,
source_key_handle,
wrapping_key_handle,
initialization_vector_length,
initialization_vector,
wrapped_key_length,
wrapped_key)

Parameters
return_code

Direction: Output Type: Integer

The return code specifies the general result of the callable service. Appendix A,
“ICSF and TSS Return and Reason Codes” lists the return codes.

reason_code

Direction: Output Type: Integer

The reason code specifies the result of the callable service that is returned to
the application program. Each return code has different reason codes that
indicate specific processing problems. Appendix A, “ICSF and TSS Return and
Reason Codes” lists the reason codes.

exit_data_length

PKCS #11 wrap key

720 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|

Direction: Ignored Type: Integer

This field is ignored. It is recommended to specify 0 for this parameter.

exit_data

Direction: Ignored Type: String

This field is ignored.

rule_array_count

Direction: Input Type: Integer

The number of keywords you supplied in the rule_array parameter. This value
must be 1 or 2.

rule_array

Direction: Input Type: String

Keywords that provide control information to the callable service.

Table 327. Keywords for wrap key

Keyword Meaning

Formatting Method (required)

PKCS-1.2 RSA PKCS #1 block type 02 will be used to format the key value.

PKCS-8 The private key values are DER encoded as specified by PKCS-8.
The encryption mechanism rule array keyword must be specified.

Encryption Mechanism (required when PKCS-8 specified, ignored otherwise)

AES For PKCS-8 processing, the wrapping key must be an AES secret
key object.

DES For PKCS-8 processing, the wrapping key must be a DES secret
key object.

DES3 For PKCS-8 processing, the wrapping key must be a DES2 or
DES3 secret key object.

source_key_handle

Direction: Input Type: String

The 44-byte handle of the secret key or private key object to be wrapped.

wrapping_key_handle

Direction: Input Type: String

The 44-byte handle of the public key or secret key object to wrap the secret
key. See “Handles” on page 95 for the format of a wrapping_key_handle.

Initialization_vector_length

Direction: Input Type: Integer

The length of the initialization_vector parameter. The initialization vector can
only be used with PKCS-8. This parameter is ignored for PKCS-1.2. The length
must match the key type of the wrapping key (8 for DES, DES2, DES3 and 16

PKCS #11 wrap key

Chapter 15. Using PKCS #11 Tokens and Objects 721

|||
|

|

|

|||
|

|

for AES). If the length is zero, the initialization vector parameter is ignored and
a value of zero is used.

Initialization_vector

Direction: Input Type: String

The initial chaining value for symmetric encryption. The length must match the
key type of the wrapping key. The initial value can only be used with PKCS-8.
This parameter is ignored for PKCS-1.2.

wrapped_key_length

Direction: Input/Output Type: Integer

On input, the length of the wrapped_key parameter. On output, the actual length
of the wrapped key returned in the wrapped_key parameter.

wrapped_key

Direction: Output Type: String

The wrapped key

Authorization
There are two key objects used by this service, the source key (the key to be
wrapped) and the wrapping key.

v To wrap a source key that is a public object, the caller must have SO (READ)
authority or USER (READ) authority (any access).

v To wrap a source key that is a private object, the caller must have USER (READ)
authority (user access)

v To use a wrapping key that is a public object, the caller must have SO (READ)
authority or USER (READ) authority (any access).

v To use a wrapping key that is a private object, the caller must have USER
(READ) authority (user access).

PKCS #11 wrap key

722 z/OS V1R13 ICSF Application Programmer's Guide

Part 4. Appendixes

© Copyright IBM Corp. 1997, 2011 723

724 z/OS V1R13 ICSF Application Programmer's Guide

Appendix A. ICSF and TSS Return and Reason Codes

This topic includes this information:

v Return codes and reason codes issued on the completion of a call to an ICSF
callable service

v Return codes and reason codes issued on the completion of a process on a PCI
Cryptographic Accelerator, PCI Cryptographic Coprocessor or PCI X
Cryptographic Coprocessor/Crypto Express2 Coprocessor /Crypto Express3
Coprocessor (referred to as cryptographic accelerators or coprocessors) .

v ICSF return and reason codes can be specified in the installation options data
set on the REASONCODES parameter. If the REASONCODES option is not
specified, the default of REASONCODES(ICSF) is used. A REASONCODES line
in the description indicates a conversion was done as a result of the
REASONCODES option in the installation options data set.

If you specified REASONCODES(ICSF) and your service was processed on a
PCICC, PCIXCC, CEX2C, or CEX3C, a TSS reason code may be returned if
there is no 1–1 corresponding ICSF reason code.

Return Codes and Reason Codes
This topic describes return codes and reason codes.

The TSS return and reason codes have been merged with the ICSF codes in this
release. If there is a REASONCODES line in the description, it will indicate an
alternate reason code you should investigate.

Each return code returns unique reason codes to your application program. The
reason codes associated with each return code are described in these topics. The
reason code tables present the hexadecimal code followed by the decimal code in
parenthesis.

Return Codes
Table 328 lists return codes from the ICSF callable services.

Table 328. Return Codes

Return Code Hex
(Decimal) Description

Return Code 0 (0) The call to the service was successfully processed. See the reason code for more
information.

Return Code 4 (4) The call to the service was successfully processed, but some minor event occurred during
processing. See the reason code for more information.

User action: Review the reason code.

Return Code 8 (8) The call to the service was unsuccessful. The parameters passed into the call are
unchanged, except for the return code and reason code. There are rare examples where
output areas are filled, but their contents are not guaranteed to be accurate. These are
described under the appropriate reason code descriptions. The reason code identifies which
error was found.

User action: Review the reason code, correct the problem, and retry the call.

© Copyright IBM Corp. 1997, 2011 725

Table 328. Return Codes (continued)

Return Code Hex
(Decimal) Description

Return Code C (12) The call to the service could not be processed because ICSF was not active, ICSF found
something wrong in its environment, a TSS security product is not available, or a processing
error occurred in a TSS product. The parameters passed into the call are unchanged,
except for the return code and reason code.

User action: Review the reason code and take the appropriate action.

Return Code 10 (16) The call to the service could not be processed because ICSF found something seriously
wrong in its environment or a processing error occurred in the PCICC, PCIXCC, CEX2C, or
CEX3C. The parameters passed into the call are unchanged, except for the return code and
reason code.

User action: Review the reason code and contact your system programmer.

Reason Codes for Return Code 0 (0)
Table 329 lists reason codes returned from callable services that give return code 0.

Table 329. Reason Codes for Return Code 0 (0)

Reason Code Hex
(Decimal) Description

0 (0) The call to the ICSF callable service was successfully processed. No error was encountered.

User action: None.

2 (2) The call to the ICSF callable service was successfully processed. A minor error was
detected. A key used in the service did not have odd parity. This key could be one provided
by you as a parameter or be one (perhaps of many) that was retrieved from the in-storage
CKDS.

User action: Refer to the reason code obtained when the key passed to this service was
transformed into operational form using clear key import, multiple clear key import, key
import, secure key import, or multiple secure key import callable services. Check if any of
the services prepared an even parity key. If one of these service reported an even parity
key, you need to know which key is affected. If none of these services identified an even
parity key, then the even parity key detected was found on the CKDS. Report this to your
administrator.

REASONCODES: ICSF 4 (4)

4 (4) The call to the ICSF callable service was successfully processed. A minor error was
detected. A key used in the service did not have odd parity. This key could be one provided
by you as a parameter or be one (perhaps of many) that was retrieved from the in-storage
CKDS.

User action: Refer to the reason code obtained when the key passed to this service was
transformed into operational form using clear key import, multiple clear key import, key
import, secure key import, or multiple secure key import callable services. Check if any of
the services prepared an even parity key. If one of these service reported an even parity
key, you need to know which key is affected. If none of these services identified an even
parity key, then the even parity key detected was found on the CKDS. Report this to your
administrator.

REASONCODES:TSS 2 (2)

8 (8) The CKDS key record read callable service attempted to read a NULL key record. The
returned key token contains only binary zeros.

User action: None required.

726 z/OS V1R13 ICSF Application Programmer's Guide

|

Table 329. Reason Codes for Return Code 0 (0) (continued)

Reason Code Hex
(Decimal) Description

862 (2146) When exporting a key under an AES KEK, it was found that the KEK is weaker than the key
being wrapped. This operation is allowed because the "Variable-length Symmetric Token -
warn when weak wrap" access control point is enabled.

User action: None required. If you wish to prohibit weak key wrapping, enable the access
control point "Variable-length Symmetric Token - disallow weak wrap" using the TKE
workstation.

BC2 (3010) The call to CSFIQF was successful. Additionally, the PCICC, PCIXCC, CEX2C, or CEX3C
adapter is disabled by TKE.

2710 (10000) The call to the callable service was successfully processed. The keys in one or more key
identifiers have been reenciphered from encipherment under the old master key to
encipherment under the current master key.

User action: If you obtained your operational token from a file, replace the token in the file
with the token just returned from ICSF.

Management of internal tokens is a user responsibility. Consider the possible case where
the token for this call was fetched from a file, and where this reason code is ignored. For the
next invocation of the service, the token will be fetched from the file again, and the service
will give this reason code again. If this continues until the master key is changed again, then
the next use of the internal token will fail.

2711 (10001) The call to the callable service was successfully processed. The keys in one or more key
identifiers were encrypted under the old master key. The callable service was unable to
reencipher the key.

2713 (10003) The call to the callable service was successfully processed. Weak key used. The strength of
the KEK key is less than the strength of the key to be wrapped.

If Access Control Point 'Variable-length Symmetric Token - disallow weak wrap' is not
enabled, this informational Reason Code will be returned. If Access Control Point
'Variable-length Symmetric Token - disallow weak wrap' is enabled you will receive an error
from the callable service. User action: None.

Reason Codes for Return Code 4 (4)
Table 330 lists reason codes returned from callable services that give return code 4.

Table 330. Reason Codes for Return Code 4 (4)

Reason Code Hex
(Decimal) Description

1 (1) The verification test failed.

REASONCODES: This reason code also corresponds to these ICSF reason codes: FA0
(4000), 1F40 (8000), 1F44 (8004), 2328 (9000), 232C (9004), 2AF8 (11000), or 36B8
(14008).

Appendix A. ICSF and TSS Return and Reason Codes 727

||
|
|

|
|
|

Table 330. Reason Codes for Return Code 4 (4) (continued)

Reason Code Hex
(Decimal) Description

13 (19) This is a combination reason code value. The call to the Encrypted PIN verify (PINVER)
callable service was successfully processed. However, the trial PIN that was supplied does
not match the PIN in the PIN block.

User action: The PIN is incorrect. If you expected the reason code to be zero, check that
you are using the correct key.

REASONCODES: ICSF BD4 (3028)

In addition, a key in a key identifier token has been reenciphered.

User action: See reason code 10000 (return code 0) for more detail about the key
reencipherment.

14 (20) The input text length was odd rather than even. The right nibble of the last byte is padded
with X'00'.

User action: None

REASONCODES: ICSF 7D0 (2000)

A6 (166) The control vector is not valid because of parity bits, anti-variant bits, inconsistent KEK bits,
or because bits 59 to 62 are not zero.

B3 (179) The control vector keywords that are in the rule array are ignored.

1AD (429) The digital signature verify ICSF callable service completed successfully but the supplied
digital signature failed verification.

User action: None

REASONCODES: ICSF 2AF8 (11000)

7D0 (2000) The input text length was odd rather than even. The right nibble of the last byte is padded
with X'00'.

User action: None

REASONCODES: TSS 14 (20)

81E (2078) The call to CKDS Key Record Read was successful. The key label exists in the CKDS. The
key label contains a clear DES or AES key token and is not returned to the caller.

BBA (3002) The call to the CVV Verify callable service was successfully processed. However, the trial
CVV that was supplied does not match the generated CVV. In addition, a key in the key
identifier has been reenciphered.

REASONCODES: See reason code 4000 (return code 4) for more details about the
incorrect CVV. See reason code 10000 (return code 0) for more details about the key
reencipherment.

BC9 (3017) The call to create a list of information completed successfully, however the storage supplied
for the list was insufficient to hold the complete list.

BD4 (3028) The call to the Encrypted PIN verify (PINVER) callable service was successfully processed.
However, the trial PIN that was supplied does not match the PIN in the PIN block.

User action: The PIN is incorrect. If you expected the reason code to be zero, check that
you are using the correct key.

REASONCODES: TSS 13 (19)

728 z/OS V1R13 ICSF Application Programmer's Guide

|

Table 330. Reason Codes for Return Code 4 (4) (continued)

Reason Code Hex
(Decimal) Description

BD8 (3032) This is a combination reason code value. The call to the Encrypted PIN verify (PINVER)
callable service was successfully processed. However, the trial PIN that was supplied does
not match the PIN in the PIN block.

In addition, a key in a key identifier token has been reenciphered.

REASONCODES: See reason code 3028 (return code 4) for more detail about the incorrect
PIN. See reason code 10000 (return code 0) for more detail about the key reencipherment.

BFC (3068) The verification pattern of an encrypted CPACF key block doesn't match the current
wrapping key's verification pattern.

FA0 (4000) The CVV did not verify.

User action: Regenerate the CVV.

REASONCODES: TSS 1 (1)

FA4 (4004) Rewrapping is not allowed for one or more keys.

1F40 (8000) The call to the MAC verification (MACVER) callable service was successfully processed.
However, the trial MAC that you supplied does not match that of the message text.

User action: The message text may have been modified, such that its contents cannot be
trusted. If you expected the reason code to be zero, check that you are using the correct
key. Check that all segments of the message were presented and in the correct sequence.
Also check that the trial MAC corresponds to the message being authenticated.

REASONCODES: TSS 1 (1)

1F44 (8004) This is a combination reason code value. The call to the MAC verification (MACVER)
callable service was successfully processed. However, the trial MAC that was supplied does
not match the message text provided.

In addition, a key in a key identifier token has been reenciphered.

User action: See reason code 8000 (return code 4) for more detail about the incorrect
MAC. See reason code 10000 (return code 0) for more detail about the key reencipherment.

REASONCODES: TSS 1 (1)

2328 (9000) The call to the key test service processed successfully, but the key test pattern was not
verified.

User action: Investigate why the key failed. When determining this, you can reinstall or
regenerate the key.

REASONCODES: TSS 1 (1)

232C (9004) This is a combination reason code value. The call to the key test service processed
successfully, but the key test pattern was not verified. Also, the key token has been
reenciphered.

User action: Investigate why the key failed. When determining this, you can reinstall or
regenerate the key.

REASONCODES: TSS 1 (1)

2AF8 (11000) The digital signature verify ICSF callable service completed successfully but the supplied
digital signature failed verification.

User action: None

REASONCODES: TSS 1AD (429)

Appendix A. ICSF and TSS Return and Reason Codes 729

Table 330. Reason Codes for Return Code 4 (4) (continued)

Reason Code Hex
(Decimal) Description

36B8 (14008) The PKDS record failed the authentication test.

User action: The record has changed since ICSF wrote it to the PKDS. The user action is
application dependent.

REASONCODES: TSS 1 (1)

8D10 (36112) CKDS conversion completed successfully but some tokens could not be rewrapped because
the control vector prohibited rewrapping from the enhanced wrapping method.

Reason Codes for Return Code 8 (8)
Table 331 lists reason codes returned from callable services that give return code 8.

Most of these reason codes indicate that the call to the service was unsuccessful.
No cryptographic processing took place. Therefore, no output parameters were
filled. Exceptions to this are noted in the descriptions.

Table 331. Reason Codes for Return Code 8 (8)

Reason Code Hex
(Decimal) Description

00C (12) A key identifier was passed to a service or token. It is checked in detail to ensure that it is a
valid token, and that the fields within it are valid values. There is a token validation value
(TVV) in the token, which is a non-cryptographic value. This value was again computed from
the rest of the token, and compared to the stored TVV. If these two values are not the same,
this reason code is returned.

User action: The contents of the token have been altered because it was created by ICSF
or TSS. Review your program to see how this could have been caused.

016 (22) The ID number in the request field is not valid. The PAN data is incorrect for VISA CVV.

017 (23) Offset length not correct for data to be inserted.

018 (24) A key identifier was passed to a service. The master key verification pattern in the token
shows that the key was created with a master key that is neither the current master key nor
the old master key. Therefore, it cannot be reenciphered to the current master key.

User action: Re-import the key from its importable form (if you have it in this form), or
repeat the process you used to create the operational key form. If you cannot do one of
these, you cannot repeat any previous cryptographic process that you performed with this
token.

REASONCODES: ICSF 2714 (10004)

019 (025) A length parameter has an incorrect value. The value in the length parameter could have
been zero (when a positive value was required) or a negative value. If the supplied value
was positive, it could have been larger than your installation's defined maximum, or for MDC
generation with no padding, it could have been less than 16 or not an even multiple of 8.

User action: Check the length you specified. If necessary, check your installation's
maximum length with your ICSF administrator. Correct the error.

730 z/OS V1R13 ICSF Application Programmer's Guide

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

01D (29) A key identifier was passed to a service or token. It is checked in detail to ensure that it is a
valid token, and that the fields within it are valid values. There is a token validation value
(TVV) in the token, which is a non-cryptographic value. This value was again computed from
the rest of the token, and compared to the stored TVV. If these two values are not the same,
this reason code is returned.

User action: The contents of the token have been altered because it was created by ICSF
or TSS. Review your program to see how this could have been caused.

REASONCODES: ICSF 2710 (10000)

01E (30) A key label was supplied for a key identifier parameter. This label is the label of a key in the
in-storage CKDS or the PKDS. Either the key could not be found, or a key record with that
label and the specific type required by the ICSF callable service could not be found. For a
retained key label, this error code is also returned if the key is not found in the PCICC,
PCIXCC, CEX2C, or CEX3C specified in the PKDS record.

User action: Check with your administrator if you believe that this key should be in the
in-storage CKDS or the PKDS. The administrator may be able to bring it into storage. If this
key cannot be in storage, use a different label.

REASONCODES: ICSF 271C (10012)

01F (31) The control vector did not specify a DATA key.

REASONCODES: ICSF 272C (10028)

020 (32) You called the CKDS key record create callable service, but the key_label parameter syntax
was incorrect.

User action: Correct key_label syntax.

REASONCODES: ICSF 3EA0 (16032)

021 (33) The rule_array parameter contents or a parameter value is not correct.

User action: Refer to the rule_array parameter described in this publication under the
appropriate callable service for the correct value.

REASONCODES: ICSF 7E0 (2016)

022 (34) A rule_array keyword combination is not valid.

REASONCODES: ICSF 7E0 (2016)

023 (35) The rule_array_count parameter contains a number that is not valid.

User action: Refer to the rule_array_count parameter described in this publication under the
appropriate callable service for the correct value.

REASONCODES: ICSF 7DC (2012)

027 (39) A control vector violation occurred.

REASONCODES: This reason code also corresponds to these ICSF reason codes: 272C
(10028), 2730 (10032), 2734 (10036), 2744 (10052), 2768 (10088), 278C (10124), 3E90
(16016), 2724 (10020).

028 (40) The service code does not contain numerical data.

REASONCODES: ICSF BE0 (3040)

Appendix A. ICSF and TSS Return and Reason Codes 731

|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

029 (41) The key_form parameter is neither IM nor OP. Most constants, these included, can be
supplied in lower or uppercase. Note that this parameter is 4 bytes long, so the value IM or
OP is not valid. They must be padded on the right with blanks.

User action: Review the value provided and change it to IM or OP, as required.

02A (42) The expiration date is not numeric (X'F0' through X'F9'). The parameter must be character
representations of numerics or hexadecimal data.

User action: Review the numeric parameters or fields required in the service that you called
and change to the format and values required.

REASONCODES: ICSF BE0 (3040)

02B (43) The value specified for the key_length parameter of the key generate callable service is not
valid.

User action: Review the value provided and change it as appropriate.

REASONCODES: See also the ICSF reason code 80C (2060) or 2710 (10000) for additional
information.

02C (44) The CKDS key record create callable service requires that the key created not already exist
in the CKDS. A key of the same label was found.

User action: Make sure the application specifies the correct label. If the label is correct,
contact your ICSF security administrator or system programmer.

02D (45) An input character is not in the code table.

User action: Correct the code table or the source text.

02F (47) A source key token is unusable because it contains data that is not valid or undefined.

REASONCODES: This reason code also corresponds to these ICSF reason codes: 83C
(2108), 2754 (10068), 2758 (10072), 275C (10076), 2AFC (11004), 2B04 (11012), 2B08
(11016), 2B10 (11024). Please see those reason codes for additional information.

030 (48) One or more keys has a master key verification pattern that is not valid.

This reason code also corresponds to these ICSF reason codes: 2714 (10004) and 2B0C
(11020). Please see those reason codes for additional information.

031 (49) Key identifiers contain a version number. The version number in a supplied key identifier
(internal or external) is inconsistent with one or more fields in the key identifier, making the
key identifier unusable.

User action: Use a token containing the required version number.

REASONCODES: ICSF 2738 (10040)

732 z/OS V1R13 ICSF Application Programmer's Guide

|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

033 (51) The encipher and decipher callable services sometime require text (plaintext or ciphertext) to
have a length that is an exact multiple of 8 bytes. Padding schemes always create ciphertext
with a length that is an exact multiple of 8. If you want to decipher ciphertext that was
produced by a padding scheme, and the text length is not an exact multiple of 8, then an
error has occurred. The CBC mode of enciphering requires a text length that is an exact
multiple of 8.

The ciphertext translate callable service cannot process ciphertext whose length is not an
exact multiple of 8.

The value that the text_length parameter specifies is not a multiple of the cryptographic
algorithm block length.

User action: Review the requirements of the service you are using. Either adjust the text
you are processing or use another process rule.

038 (56) The master key verification pattern in the OCV is not valid.

03D (61) The keyword supplied with the key_type parameter is not valid.

REASONCODES: This reason code also corresponds to these ICSF reason codes: 2720
(10016), 2740 (10048), 274C (10060). Please see those reason codes for additional
information.

03E (62) The source key was not found.

REASONCODES: ICSF 271C (10012)

03F (63) This check is based on the first byte in the key identifier parameter. The key identifier
provided is either an internal token, where an external or null token was required; or an
external or null token, where an internal token was required. The token provided may be
none of these, and, therefore, the parameter is not a key identifier at all. Another cause is
specifying a key_type of IMP-PKA for a key in importable form.

User action: Check the type of key identifier required and review what you have provided.
Also check that your parameters are in the required sequence.

REASONCODES: ICSF 7F8 (2040)

040 (64) The supplied private key can be used only for digital signature. Key management services
are disallowed.

User action: Supply a key with key management enabled.

OR

This service requires an RSA private key that is for signature use. The specified key may be
used for key management purposes only.

User action: Re-invoke the service with a supported private key.

OR

This service requires an RSA private key that is translatable. The specified key may not be
used in the PKA Key Translate callable service.

User action: Re-invoke the service with a supported private key. To make a key
translatable, XLATE-OK must be turned on.

Appendix A. ICSF and TSS Return and Reason Codes 733

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

041 (65) The RSA public or private key specified a modulus length that is incorrect for this service.

User action: Re-invoke the service with an RSA key with the proper modulus length.`

REASONCODES: ICSF 2B18 (11032) and 2B58 (11096)

042 (66) The recovered encryption block was not a valid PKCS-1.2 or zero-pad format. (The format is
verified according to the recovery method specified in the rule-array.) If the recovery method
specified was PKCS-1.2, refer to PKCS-1.2 for the possible error in parsing the encryption
block.

User action: Ensure that the parameters passed to CSNDSYI or CSNFSYI are correct.
Possible causes for this error are incorrect values for the RSA private key or incorrect values
in the RSA_enciphered_key parameter, which must be formatted according to PKCS-1.2 or
zero-pad rules when created.

REASONCODES: ICSF 2B20 (11040)

043 (67) DES or RSA encryption failed.

044 (68) DES or RSA decryption failed.

046 (70) Identifier tag for optional block is invalid: conflicts with IBM reserved tag, is a duplicate to a
tag already found, is bad in combination with a tag already found when parsing a section of
optional blocks, or is otherwise invalid.

User action: Check the TR-31 key block header for correctness.

048 (72) The value specified for length parameter for a key token, key, or text field is not valid.

User action: Correct the appropriate length field parameter.

REASONCODES: This reason code also corresponds to these ICSF reason codes: 2AF8
(11000) and 2B14 (11028). Please see those reason codes for additional information.

05A (90) Access is denied for this request. This is due to an access control point in the ICSF role
either being disabled or an access control point being enabled that restricts the use of a
parameter such as a rule array keyword.

User action: Check the reference information for the callable service to determine which
access control points are involved in the request. Contact the ICSF administrator to
determine if the access control points are in the correct state. The access control points can
be enabled/disabled using the TKE workstation.

064 (100) A request was made to the Clear PIN generate or Encrypted PIN verify callable service, and
the PIN_length parameter has a value outside the valid range. The valid range is from 4 to
16, inclusive.

User action: Correct the value in the PIN_length parameter to be within the valid range from
4 to 16.

REASONCODES: ICSF BBC (3004)

065 (101) A request was made to the Clear PIN generate callable service, and the PIN_check_length
parameter has a value outside the valid range. The valid range is from 4 to 16, inclusive.

User action: Correct the value in the PIN_check_length parameter to be within the valid
range from 4 to 16.

REASONCODES: ICSF BC0 (3008)

066 (102) The value of the decimalization table is not valid.

REASONCODES: ICSF BE0 (3040)

734 z/OS V1R13 ICSF Application Programmer's Guide

||
|
|

|

||
|
|

|
|
|
|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

067 (103) The value of the validation date is not valid.

REASONCODES: ICSF BE0 (3040)

068 (104) The value of the customer-selected PIN is not valid or the PIN length does not match the
value specified.

REASONCODES: ICSF BE0 (3040)

069 (105) A request was made to the Clear PIN generate callable service, and the PIN_check_length
parameter has a value outside the valid range. The valid range is from 4 to 16, inclusive.

User action: Correct the value in the PIN_check_length parameter to be within the valid
range from 4 to 16.

REASONCODES: ICSF BE0 (3040)

06A (106) A request was made to the Encrypted PIN Translate or the Encrypted PIN verify callable
service, and the PIN block value in the input_PIN_profile or output_PIN_profile parameter
has a value that is not valid.

User action: Correct the PIN block value.

06B (107) A request was made to the Encrypted PIN Translate callable service and the format control
value in the input_PIN_profile or output_PIN_profile parameter has a value that is not valid.
The valid values are NONE or PBVC.

User action: Correct the format control value to either NONE or PBVC.

06C (108) The value of the PAD data is not valid.

REASONCODES: ICSF B08 (3016)

06D (109) The extraction method keyword is not valid.

06E (110) The value of the PAD data is not numeric character date.

REASONCODES: ICSF BE0 (3040)

06F (111) A request was made to the Encrypted PIN Translate callable service. The sequence_number
parameter was required, but was not the integer value 99999.

User action: Specify the integer value 99999.

074 (116) The supplied PIN value is incorrect.

User action: Correct the PIN value.

REASONCODES: ICSF BBC (3004)

079 (121) The source_key_identifier or inbound_key_identifier you supplied is not a valid string.

User action: In an ANSI X9.17 service, check that you specified a valid ASCII string for the
source_key_identifier or inbound_key_identifier parameter. In the PKA key generate service,
an invalid exponent or modulus length was specified.

07A (122) The outbound_KEK_count or inbound_KEK_count you supplied is not a valid ASCII
hexadecimal string.

User action: Check that you specified a valid ASCII hexadecimal string for the
outbound_KEK_count or inbound_KEK_count parameter.

081 (129) A Required Rule Array keyword was not specified.

User action: Refer to the rule_array parameter described in this publication under the
appropriate callable service for the correct value.

Appendix A. ICSF and TSS Return and Reason Codes 735

||

|
|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

09A (154) This check is based on the first byte in the key identifier parameter. The key identifier
provided is either an internal token, where an external or null token was required; or an
external or null token, where an internal token was required. The token provided may be
none of these, and, therefore, the parameter is not a key identifier at all. Another cause is
specifying a key_type of IMP-PKA for a key in importable form.

User action: Check the type of key identifier required and review what you have provided.
Also check that your parameters are in the required sequence.

REASONCODES: ICSF 7F8 (2040)

09B (155) The value that the generated_key_identifier parameter specifies is not valid,or it is not
consistent with the value that the key_form parameter specifies.

09C (156) A keyword is not valid with the specified parameters.

REASONCODES: ICSF 2790 (10128)

09D (157) The rule_array parameter contents are incorrect.

User action: Refer to the rule_array parameter described in this publication under the
appropriate callable service for the correct value.

REASONCODES: ICSF 7E0 (2016)

09F (159) A parameter requires Rule Array keyword that is not specified.

User action: Refer to the rule_array parameter described in this publication under the
appropriate callable service for the correct value.

0A0 (160) The key_type and the key_length are not consistent.

User action: Review the key_type parameter provided and match it with the key_length
parameter.

A2 (162) A request was made to the Remote Key Export callable service, and the certificate_parms
parameter contains incorrect values. One or more of the offsets and/or lengths for the
modulus, public exponent, and/or digital signature would indicate overlap between two or all
three of the fields within the certificate parameter.

User Action: Correct the values in the certificate_parms parameter to indicate the actual
offsets and lengths of the modulus, public exponent, and digital signature within the
certificate parameter.

A4 (164) Two parameters (perhaps the plaintext and ciphertext areas, or text_in and text_out areas)
overlap each other. That is, some part of these two areas occupy the same address in
memory. This condition cannot be processed.

User action: Determine which two areas are responsible, and redefine their positions in
memory.

736 z/OS V1R13 ICSF Application Programmer's Guide

||

|
|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

0A5 (165) The contents of a chaining vector passed to a callable service are not valid. If you called the
MAC generation callable service, or the MDC generation callable service with a MIDDLE or
LAST segmenting rule, the count field has a number that is not valid. If you called the MAC
verification callable service, then this will have been a MIDDLE or LAST segmenting rule.

User action: Check to ensure that the chaining vector is not modified by your program. The
chaining vector returned by ICSF should only be used to process one message set, and not
intermixed between alternating message sets. This means that if you receive and process
two or more independent message streams, each should have its own chaining vector.
Similarly, each message stream should have its own key identifier.

If you use the same chaining vector and key identifier for alternating message streams, you
will not get the correct processing performed.

REASONCODES: ICSF 7F4 (2036)

0B4 (180) A null key token was passed in the key identifier parameter. When the key type is TOKEN, a
valid token is required.

User action: Supply a valid token to the key identifier parameter.

0B5 (181) This check is based on the first byte in the key identifier parameter. The key identifier
provided is either an internal token, where an external or null token was required; or an
external or null token, where an internal token was required. The token provided may be
none of these, and, therefore, the parameter is not a key identifier at all. Another cause is
specifying a key_type of IMP-PKA for a key in importable form.

User action: Check the type of key identifier required and review what you have provided.
Also check that your parameters are in the required sequence.

This reason code also corresponds to these ICSF reason codes: 7F8 (2040), 2B24 (11044)
and 3E98 (16024). Please see those reason codes for additional information.

0B7 (183) A cross-check of the control vector the key type implies has shown that it does not
correspond with the control vector present in the supplied internal key identifier.

User action: Change either the key type or key identifier.

REASONCODES: ICSF 273C (10044)

0B8 (184) An input pointer is null.

0CC (204) A memory allocation failed.

14F (335) The requested function is not implemented on the coprocessor.

154 (340) One of the input control vectors has odd parity.

157 (343) Either the data block or the buffer for the block is too small.

159 (345) Insufficient storage space exists for the data in the data block buffer.

15A (346) The requested command is not valid in the current state of the cryptographic hardware
component.

176 (374) Less data was supplied than expected or less data exists than was requested.

REASONCODES: ICSF 7D4 (2004) and ICSF 7E0 (2016)

181 (385) The cryptographic hardware component reported that the data passed as part of the
command is not valid for that command.

197 (407) A PIN block consistency check error occurred.

REASONCODES: ICSF BC8 (3016)

Appendix A. ICSF and TSS Return and Reason Codes 737

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

1B9 (441) One or more input parameters indicates the key to be processed should be partial, but the
key is not partial according to the CV or other control bits of the key.

User action: Check that the partial key option of any input parameters is consistent with the
partial key setting of any key tokens being used.

25D (605) The number of output bytes is greater than the number that is permitted.

2BF (703) A new master key value was found to be one of the weak DES keys.

2C0 (704) The new master key would have the same master key verification pattern as the current
master key.

2C1 (705) The same key-encrypting key was specified for both exporter keys.

2C2 (706) While deciphering ciphertext that had been created using a padding technique, it was found
that the last byte of the plaintext did not contain a valid count of pad characters.

Note that some cryptographic processing has taken place, and the clear_text parameter may
contain some or all of the deciphered text.

User action: The text_length parameter was not reduced. Therefore, it contains the length
of the base message, plus the length of the padding bytes and the count byte. Review how
the message was padded prior to being enciphered. The count byte that is not valid was
created prior to the message's encipherment.

You may need to check whether the ciphertext was not created using a padding scheme.
Otherwise, check with the creator of the ciphertext on the method used to create it. You
could also look at the plaintext to review the padding scheme used, if any.

REASONCODES: ICSF 7EC (2028)

2C3 (707) The master key registers are not in the state required for the requested function.

User action: Contact your ICSF administrator.

2CA (714) A reserved parameter was not a null pointer or an expected value.

REASONCODES: ICSF 844 (2116)

2CB (715) You supplied a pad_character that is not valid for a Transaction Security System
compatibility parameter for which ICSF supports only one value; or, you supplied a KEY
keyword and a non-zero master_key_version_number in the Key Token Build service; or,
you supplied a non-zero regeneration data length for a DSS key in the PKA Generate
service.

User action: Check that you specified the valid value for the TSS compatibility parameter.

REASONCODES: ICSF 834 (2100)

2CF (719) The RSA-OAEP block did not verify when it decomposed. The block type is incorrect (must
be X'03').

User action: Recreate the RSA-OAEP block.

REASONCODES: ICSF 2B38 (11064)

2D0 (720) The RSA-OAEP block did not verify when it decomposed. The random number I is not
correct (must be non-zero with the high-order bit equal to zero).

User action: Recreate the RSA-OAEP block.

REASONCODES: ICSF 2B40 (11072)

738 z/OS V1R13 ICSF Application Programmer's Guide

||
|

|
|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

2D1 (721) The RSA-OAEP block did not verify when it decomposed. The verification code is not correct
(must be all zeros).

User action: Recreate the RSA-OAEP block.

REASONCODES: ICSF 2BC3 (11068)

2F8 (760) The RSA public or private key specified a modulus length that is incorrect for this service.

User action: Re-invoke the service with an RSA key with the proper modulus length.

REASONCODES: ICSF 2B48 (11080)

302 (770) A reserved field in a parameter, probably a key identifier, has a value other than zero.

User action: Key identifiers should not be changed by application programs for other uses.
Review any processing you are performing on key identifiers and leave the reserved fields in
them at zero.

This reason code also corresponds to these ICSF reason codes: 7E8 (2024) and 2B00
(11008). Please see those reason codes for additional information.

REASONCODES: ICSF 2B00 (11008)

30F (783) The command is not permitted by the Function Control Vector value.

REASONCODES: ICSF Return code 12, reason code 2B0C (11020)

401 (1025) Registered public key or retained private key name already exists.

402 (1026) Registered public key or retained private key name does not exist.

405 (1029) There is an error in the Environment Identification data.

40B (1035) The signature does not match the certificate signature during an RKX call.

User Action: Check that the key used to check the signatures is the correct.

41A (1050) A KEK RSA-enciphered at this node (EID) cannot be imported at this same node.

41C (1052) Token identifier of the trusted block's header section is in the range 0x20 and 0xFF.

User Action: Check the token identifier of the trusted block.

41D (1053) The Active flag in the trusted block's trusted block section 0x14 is not disabled.

User Action: Use the trusted block create callable service to create an inactive/external
trusted block.

41E (1054) Token identifier of the trusted block's header section is not 0x1E (external).

User Action: Use the trusted block create callable service to create an inactive/external
trusted block.

41F (1055) The Active flag of the trusted block's trusted block section 0x14 is not enabled.

User Action: Use the trusted block create callable service to create an active/external
trusted block.

420 (1056) Token identifier of the trusted block's header section is not 0x1F (internal).

User Action: Use the PKA public key import callable service to import the trusted block.

421 (1057) Trusted block rule section 0x12 Rule ID does not match input parameter rule ID.

User Action: Verify the trusted block used has the rule section specified.

Appendix A. ICSF and TSS Return and Reason Codes 739

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

422 (1058) Trusted block contains a value that is too small/too large.

423 (1059) A trusted block parameter that must have a value of zero (or a grouping of bits set to zero)
is invalid.

424 (1060) Trusted block public key section failed consistency checking.

425 (1061) Trusted block contains extraneous sections or subsections (TLVs).

User Action: Check the trusted block for undefined sections of subsections.

426 (1062) Trusted block contains missing sections or subsections (TLVs).

User Action: Check the trusted block for required sections and subsections applicable to
the callable service invoked.

427 (1063) Trusted block contains duplicate sections or subsections (TLVs).

User Action: Check the trusted block's sections and subsections for duplicates. Multiple rule
sections are allowed.

428 (1064) Trusted block expiration date has expired (as compared to the 4764 clock).

User Action: Validate the expiration date in the trusted block's trusted information section's
Activation and Expiration Date TLV Object.

429 (1065) Trusted block expiration date is at a date prior to the activation date.

User Action: Validate the expiration date in the trusted block's trusted information section's
Activation and Expiration Date TLV Object.

42A (1066) Trusted Block Public Key Modulus bit length is not consistent with the byte length. The bit
length must be less than or equal to byte length * 8 and greater than (byte length - 1) * 8.

42B (1067) Trusted block Public Key Modulus Length in bits exceeds the maximum allowed bit length as
defined by the Function Control Vector.

42C (1068) One or more trusted block sections or TLV Objects contained data which is invalid (an
example would be invalid label data in label section 0x13).

42D (1069) Trusted block verification was attempted by a function other than CSNDDSV, CSNDKTC,
CSNDKPI, CSNDRKX, or CSNDTBC.

42E (1070) Trusted block rule ID contained within a Rule section contains invalid characters.

42F (1071) The source key's length or CV does not match what is expected by the rule section in the
trusted block that was selected by the rule ID input parameter.

430 (1072) The activation data is not valid.

User Action: Validate the activation data in the trusted block's trusted information section's
Activation and Expiration Date TLV Object.

431 (1073) The source-key label does not match the template in the export key DES token parameters
TLV object of the selected trusted block rule section.

432 (1074) The control-vector value specified in the common export key parameters TLV object in the
selected rule section of the trusted block contains a control vector that is not valid.

433 (1075) The source-key label template in the export key DES token parameters TLV object in the
selected rule section of the trusted block contains a label template that is not valid.

7D1 (2001) TKE: DH generator is greater than the modulus.

7D2 (2002) TKE: DH registers are not in a valid state for the requested operation.

7D3 (2003) TKE: TSN does not match TSN in pending change buffer.

740 z/OS V1R13 ICSF Application Programmer's Guide

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

7D4 (2004) A length parameter has an incorrect value. The value in the length parameter could have
been zero (when a positive value was required) or a negative value. If the supplied value
was positive, it could have been larger than your installation's defined maximum, or for MDC
generation with no padding, it could have been less than 16 or not an even multiple of 8.

User action: Check the length you specified. If necessary, check your installation's
maximum length with your ICSF administrator. Correct the error.

REASONCODES: TSS 019 (025)

7D5 (2005) TKE: PCB data exceeds maximum data length.

7D8 (2008) Two parameters (perhaps the plaintext and ciphertext areas, or text_in and text_out areas)
overlap each other. That is, some part of these two areas occupy the same address in
memory. This condition cannot be processed.

User action: Determine which two areas are responsible, and redefine their positions in
memory.

REASONCODES: TSS 0A4 (164)

7D9 (2009) TKE: ACI can not load both loads and profiles in one call.

7DA (2010) TKE: ACI can only load one role or one profile at a time.

7DB (2011) TKE: DH transport key algorithm match.

7DC (2012) The rule_array_count parameter contains a number that is not valid.

User action: Refer to the rule_array_count parameter described in this publication under the
appropriate callable service for the correct value.

REASONCODES: TSS 023 (035)

7DD (2013) TKE: Length of hash pattern for keypart is not valid for DH transport key algorithm specified.

7DE (2014) TKE: PCB buffer is empty.

7DF (2015) An error occurred in the Domain Manager.

7E0 (2016) The rule_array parameter contents are incorrect. One or more of the rules specified are not
valid for this service OR some of the rules specified together may not be combined.

User action: Refer to the rule_array parameter described in this publication under the
appropriate callable service for the correct value.

7E2 (2018) The form parameter specified in the random number generate callable service should be
ODD, EVEN, or RANDOM. One of these values was not supplied.

User action: Change your parameter to use one of the required values for the form
parameter.

REASONCODES: TSS 021 (033)

7E3 (2019) TKE: Signature in request CPRB did not verify.

7E4 (2020) TKE: TSN in request CPRB is not valid.

7E8 (2024) A reserved field in a parameter, probably a key identifier, has a value other than zero.

User action: Key identifiers should not be changed by application programs for other uses.
Review any processing you are performing on key identifiers and leave the reserved fields in
them at zero.

7EB (2027) TKE: DH transport key hash pattern doesn't match.

Appendix A. ICSF and TSS Return and Reason Codes 741

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

7EC (2028) While deciphering ciphertext that had been created using a padding technique, it was found
that the last byte of the plaintext did not contain a valid count of pad characters. Note that all
cryptographic processing has taken place, and the clear_text parameter contains the
deciphered text.

When deciphering ciphertext that had been created using Galois/Counter Mode (GCM)
either through PKCS #11 Secret key decrypt (CSFPSKD or CSFPSKD6) or Symmetric Key
Decipher (CSNBSYD, CSNBSYD1, CSNESYD, or CSNESYD1), the GCM tag provided did
not match the data provided. No cleartext was returned.

User action: The text_length parameter was not reduced. Therefore, it contains the length
of the base message, plus the length of the padding bytes and the count byte. Review how
the message was padded prior to it being enciphered. The count byte that is not valid was
created prior to the message's encipherment.

You may need to check whether the ciphertext was not created using a padding scheme.
Otherwise, check with the creator of the ciphertext on the method used to create it. You
could also look at the plaintext to review the padding scheme used, if any.

If using GCM, verify that the parameters provided (ciphertext, additional authenticated data,
and tag) match those provided to, or returned from, the corresponding call to PKCS #11
Secret key encrypt (CSFPSKE or CSFPSKE6) or Symmetric Key Encipher (CSNBSYE,
CSNBSYE1, CSNESYE, or CSNESYE1).

REASONCODES: TSS 2C2 (706)

7ED (2029) TKE: Request data block hash does not match hash in CPRB.

7EE (2030) TKE: DH supplied hash length is not correct.

7EF (2031) Reply data block too large.

7F0 (2032) The key_form, key_type_1, and key_type_2 parameters for the key generate callable service
form a combination, a three-element string. This combination is checked against all valid
combinations. Your combination was not found among this list.

User action: Check the allowable combinations described for each parameter in Key
Generate callable service and correct the appropriate parameter(s).

7F1 (2033) TKE: Change type does not match PCB change type.

742 z/OS V1R13 ICSF Application Programmer's Guide

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

7F4 (2036) The contents of a chaining vector or the chaining data passed to a callable service are not
valid. If you called the MAC generation callable service, or the MDC generation callable
service with a MIDDLE or LAST segmenting rule, the count field has a number that is not
valid. If you called the MAC verification callable service, then this will have been a MIDDLE
or LAST segmenting rule. If you called the Symmetric Key Encipher, Symmetric Key
Decipher, PKCS#11 Secret Key Encrypt or PKCS #11 Secret Key Decrypt, the chaining data
passed is unusable, either because a CONTINUE or FINAL was not preceded by an INITIAL
or CONTINUE, or because an attempt was made to continue chaining calls after a partial
block has been processed.

User action: Check to ensure that the chaining vector or chaining data is not modified by
your program. The chaining vector or chaining data returned by ICSF should only be used to
process one message set, and not intermixed between alternating message sets. This
means that if you receive and process two or more independent message streams, each
should have its own chaining vector. Similarly, each message stream should have its own
key identifier.

If you use the same chaining vector and key identifier for alternating message streams, you
will not get the correct processing performed.

REASONCODES: TSS 0A5 (165)

7F6 (2038) No RSA private key information was provided in the supplied token.

User action: Check that the token supplied was of the correct type for the service.

7F8 (2040) This check is based on the first byte in the key identifier parameter. The key identifier
provided is either an internal token, where an external or null token was required; or an
external or null token, where an internal token was required. The token provided may be
none of these, and, therefore, the parameter is not a key identifier at all. Another cause is
specifying a key_type of IMP-PKA for a key in importable form.

User action: Check the type of key identifier required and review what you have provided.
Also check that your parameters are in the required sequence.

REASONCODES: TSS 03F (063) and TSS 09A (154)

7FC (2044) The caller must be in task mode, not SRB mode.

800 (2048) The key_form is not valid for the key_type

User action: Review the key_form and key_type parameters. For a key_type of IMP-PKA,
the secure key import callable service supports only a key_form of OP.

802 (2050) A UKPT keyword was specified, but there is an error in the PIN_profile key serial number.

User action: Correct the PIN profile key serial number.

803 (2051) Invalid message length in OAEP-decoded information.

804 (2052) A single-length key, passed to the secure key import callable service in the clear_key
parameter, must be padded on the right with binary zeros. The fact that it is a single-length
key is identified by the key_form parameter, which identifies the key as being DATA,
MACGEN, MACVER, and so on.

User action: If you are providing a single-length key, pad the parameter on the right with
zeros. Alternatively, if you meant to pass a double-length key, correct the key_form
parameter to a valid double-length key type.

805 (2053) No message found in OAEP-decoded information.

806 (2054) Invalid RSA enciphered key cryptogram; OAEP optional encoding parameters failed
validation.

Appendix A. ICSF and TSS Return and Reason Codes 743

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

807 (2055) The RSA public key is too small to encrypt the DES key.

808 (2056) The key_form parameter is neither IM nor OP. Most constants, these included, can be
supplied in lower or uppercase. Note that this parameter is 4 bytes long, so the value IM or
OP is not valid. They must be padded on the right with blanks.

User action: Review the value provided and change it to IM or OP, as required.

REASONCODES: TSS 029 (041)

80C (2060) The value specified for the key_length parameter of the key generate callable service is not
valid.

User action: Review the value provided and change it as appropriate.

REASONCODES: TSS 02B (043)

810 (2064) The key_type and the key_length are not consistent.

User action: Review the key_type parameter provided and match it with the key_length
parameter.

REASONCODES: TSS 0A0 (160)

811 (2065) A null key token was not specified for a key identifier parameter.

User action: Check the service description and determine which key identifier parameter
must be a null token.

813 (2067) TKE: A key part register is in an invalid state. This includes the case where an attempt is
made to load a FIRST key part, but a register already contains a key or key part with the
same key name.

User action: Supply a different label name for the key part register or clear the existing key
part register with the same label name.

814 (2068) You supplied a key identifier or token to the key generate, key import, multiple secure key
import, key export, or CKDS key record write callable service. This key identifier holds an
importer or exporter key, and the NOCV bit is on in the token. Only programs running in
supervisor state or in a system key (key 0–7) may provide a key identifier with this bit set
on. Your program was not running in supervisor state or a system key.

User action: Either use a different key identifier, or else run in supervisor state or a system
key.

815 (2069) TKE: The control vector in the key part register does not match the control vector in the key
structure.

816 (2070) TKE: All key part registers are already in use.

User action: Either free existing key part registers by loading keys from ICSF or clearing
selected key part registers from TKE or select another PCIXCC, CEX2C, or CEX3C for
loading the key part register.

817 (2071) TKE: The key part hash pattern supplied does not match the hash pattern of the key part
currently in the register.

744 z/OS V1R13 ICSF Application Programmer's Guide

||

|
|

|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

818 (2072) A request was made to the key generate callable service to generate double-length keys of
SINGLE effective length, in the IMEX form. This request is valid only if the
KEK_key_identifier_1 parameter identifies a NOCV importer, and the caller (wrongly)
supplies a CV importer. The combination of IMEX for the key_form parameter and a CV
importer key-encrypting key can only be used for single-length keys.

User action: Either use a key identifier that holds (or identifies) a NOCV importer, or specify
a single-length key in the key_type parameter.

81B (2075) TKE: The length of the key part received is different from the length of the accumulated
value already in the key part register.

81C (2076) A request was made to the key import callable service to import a single-length key.
However, the right half of the key in the source_key_identifier parameter is not zeros.
Therefore, it appears to identify the right half of a double-length key. This combination is not
valid. This error does not occur if you are using the word TOKEN in the key_type parameter.

User action: Check that you specified the value in the key_type parameter correctly, and
that you are using the correct or corresponding source_key_identifier parameter.

81D (2077) TKE: An error occurred storing or retrieving the key part register data.

User action: Verify that the selected PCIXCC, CEX2C, or CEX3C is functioning correctly
and retry the operation.

81F (2079) An encrypted symmetric key token was passed to the service. Either an encrypted key token
is not supported for this service (CSNDPKE) or the required hardware is not present
(CSNBSYD and CSNBSYE).

824 (2084) The key token is not valid for the CSNBTCK service. If the source_key_identifier is an
external token, then the KEK_key_identifier cannot be marked as CDMF.

User action: Correct the appropriate key identifiers.

828 (2088) The origin_identifier or destination_identifier you supplied is not a valid ASCII hexadecimal
string.

User action: Check that you specified a valid ASCII string for the origin_identifier or
destination_identifier parameter.

829 (2089) The algorithm does not match the algorithm of the key identifier.

User action: Make sure the rule_array keywords specified are valid for the type of key
specified. Refer to the rule_array parameter described in this publication under the
appropriate callable service for the valid values.

82C (2092) The source_key_identifier or inbound_key_identifier you supplied in an ANSI X9.17 service
is not a valid ASCII hexadecimal string.

User action: Check that you specified a valid ASCII string for the source_key_identifier or
inbound_key_identifier parameter.

REASONCODES: TSS 079 (121)

82D (2093) Key identifiers contain a version number. The version number in a supplied key identifier
(internal or external) is inconsistent with one or more fields in the key identifier, making the
key identifier unusable.

User action: Use a token containing the required version number.

82F (2095) The value in the key_form parameter is incompatible with the value in the key_type
parameter.

User action: Ensure compatibility of the selected parameters.

Appendix A. ICSF and TSS Return and Reason Codes 745

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

830 (2096) The outbound_KEK_count or inbound_KEK_count you supplied is not a valid ASCII
hexadecimal string.

User action: Check that you specified a valid ASCII hexadecimal string for the
outbound_KEK_count or inbound_KEK_count parameter.

REASONCODES: TSS 07A (122)

831 (2097) The value in the key_identifier_length parameter is incompatible with the value in the
key_type parameter.

User action: Ensure compatibility of the selected parameters.

832 (2098) Either a key bit length that was not valid was found in an AES key token (length not 128,
192, or 256 bits) or a version X'01' DES token had a token-marks field that was not valid.

833 (2099) Encrypted key length in an AES key token was not valid when an encrypted key is present
in the token.

834 (2100) You supplied a pad_character that is not valid for a Transaction Security System
compatibility parameter for which ICSF supports only one value; or, you supplied a KEY
keyword and a non-zero master_key_version_number in the Key Token Build service; or,
you supplied a non-zero regeneration data length for a DSS key in the PKA Generate
service.

User action: Check that you specified the valid value for the TSS compatibility parameter.

REASONCODES: TSS 2CB (715)

838 (2104) An input character is not in the code table.

User action: Correct the code table or the source text.

REASONCODES: TSS 02D (045)

83C (2108) An unused field must be binary zeros, and an unused key identifier field generally must be
zeros.

User action: Correct the parameter list.

REASONCODES: TSS 02F (047)

83F (2111) There is an inconsistency between the wrapping information in the key token and the
request to wrap a key.

840 (2112) The length is incorrect for the key type.

User action: Check the key length parameter. DATA keys may have a length of 8, 16, or 24.
DATAXLAT and MAC keys must have a length of 8. All other keys should have a length of
16. Also check that the parameters are in the required sequence.

841 (2113) A key token contains invalid payload.

User action: Recreate the key token.

844 (2116) Parameter contents or a parameter value is not correct.

User action: Specify a valid value for the parameter.

REASONCODES: TSS 021 (033)

846 (2118) Invalid value(s) in TR-31 key block header.

User action: Check the TR-31 key block header for correctness. Also check that the
PADDING optional block is the last optional block in a set of optional blocks.

746 z/OS V1R13 ICSF Application Programmer's Guide

||

|

||

|
|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

847 (2119) “Mode” value in the TR-31 header is invalid or is not acceptable in the chosen operation.

User action: Check the TR-31 key block header for correctness.

849 (2121) “Algorithm” value in the TR-31 header is invalid or is not acceptable in the chosen operation.

User action: Check the TR-31 key block header for correctness.

84A (2122) If importing a TR-31 key block, the exportability byte in the TR-31 header contains a value
that is not supported. If exporting a TR-31 key block, the requested exportability is
inconsistent with the key block. For example a ‘B’ Key Block Version ID key can only be
wrapped by a KEK that is wrapped in CBC mode, the ECB mode KEK violates ANSI X9.24.

User action: Check the TR-31 key block header for correctness.

84B (2123) The length of the cleartext key in the TR-31 block is invalid, for example the algorithm is “D”
for single-DES but the key length is not 64 bits.

User action: Check that the values in the TR-31 header are consistent with the key fields.

84D (2125) The Key Block Version ID in the TR-31 header contains an invalid value.

User action: Check the TR-31 key block header for correctness.

84E (2126) The key usage field in the TR-31 header contains a value that is not supported for import of
the key into CCA.

User action: Check the TR-31 key block header for correctness.

84F (2127) The key usage field in the TR-31 header contains a value that is not valid with the other
parameters in the header.

User action: Check the TR-31 key block header for correctness

851 (2129) A parameter to a TR-31 service such as a TR-31 key block, a set of optional blocks, or a
single optional block contains invalid characters. It may be that the parameter contains
EBCDIC characters when ASCII is expected or vice-versa, or the wrong characters were
found in a field which only accepts a limited range of characters. For example some length
fields can be populated by characters '0' - '9' and 'A' - 'F', while other length fields can only
contain characters '0' - '9'.

User action: Check the TR-31 parameters for correctness

852 (2130) The CV carried in the TR-31 key block optional blocks is inconsistent with other attributes of
the key

User action: Check the TR-31 key block header for correctness.

853 (2131) The MAC validate step failed for a parameter. This may result from tampering, corruption, or
attempting to use a different key to validate the MAC from the one used to generate it.

User action: Check each parameter which includes a MAC for correctness. If the parameter
is wrapped by a key-encrypting-key (KEK), ensure that the correct KEK is supplied.

856 (2134) The requested PIN decimalization table does not exist or no PIN decimalization tables have
been stored in the coprocessor.

857 (2135) The supplied PIN decimalization table is not in the list of active tables stored in the
coprocessor.

Appendix A. ICSF and TSS Return and Reason Codes 747

||

|

||

|

||
|
|
|

|

||
|

|

||

|

||
|

|

||
|

|

||
|
|
|
|
|

|

||
|

|

||
|

|
|

||
|

||
|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

85E (2142) This code can be generated for the following reasons:

v On a call to Key Generate2, either or both of the key usage fields for
generated_key_identifier_1 and generated_key_identifier_2 contain incorrect values or are
in conflict. See Table 40 on page 154 for the valid combinations.

v On a call to Key Translate2 using the REFORMAT Encipherment rule and providing a
variable-length AES token, the key usage fields for input_key_token contain disallowed
values or prohibit the operation.

User action: Call Key Generate2 or Key Translate2 using key tokens whose key usage
fields contain a valid combination.

85F (2143) On a call to Key Translate2 using the REFORMAT Encipherment rule and providing a
variable-length AES token, the key management fields for input_key_token contain
disallowed values or prohibit the operation.

User action: Call Key Translate2 using a key token whose key-management fields contain
allowed values.

861 (2145) When exporting a key under an AES KEK, it was found that the KEK was weaker than the
key being wrapped. This operation is disallowed because the “Variable-length Symmetric
Token - disallow weak wrap” access control point is enabled.

User action: If weak key wrapping is to be allowed, disable access control point
"Variable-length Symmetric Token - disallow weak wrap" using the TKE workstation.

863 (2147) The key type that was to be generated by this callable service is not valid.

User action: Refer to the parameters described in this publication under the appropriate
callable service for the correct parameter values.

865 (2149) The key that was to be generated by this callable service is stronger than the input material.

User action: Validate the key material is is at least as strong as the key to be generated.

86A (2154) At least one key token passed to this callable service does not have the required key type
for the specified function.

User action: Refer to the parameters described in this publication under the appropriate
callable service for the correct parameter values.

86E (2156) Multiple ECC tokens were passed to this callable service. The curve types of the all the
token parameters do not match.

User action: Check that the curve types of the input ECC tokens are the same.

871 (2161) The requested or default wrapping method conflicts with one or both input tokens.

User action: On the call to the CVV Key Combine service, make sure that the desired
wrapping method (either specified as a rule_array keyword or the default wrapping method)
is consistent with the wrapping method of the input token(s). For example, an input token
that can only be wrapped in the enhanced method (ENH-ONLY flag on in the CV) cannot
produce an output token wrapped in the original method (ECB mode).

BB9 (3001) SET block decompose service was called with an encrypted OAEP block with a block
contents identifier that indicates a PIN block is present. No PIN encrypting key was supplied
to process the PIN block. The block contents identifier is returned in the
block_contents_identifier parameter.

User action: Supply a PIN encrypting key and resubmit the job.

748 z/OS V1R13 ICSF Application Programmer's Guide

||

|
|
|

|
|
|

|
|

||
|
|

|
|

||
|
|

|
|

||

|
|

||

|

||
|

|
|

||
|

|

||

|
|
|
|
|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

BBB (3003) An output parameter is too short to hold the output of the request. The length parameter for
the output parameter has been updated with the required length for the request.

User action: Update the size of the output parameter and length specified in the length field
and resubmit the request.

BBC (3004) A request was made to the Clear PIN generate or Encrypted PIN verify callable service, and
the PIN_length parameter has a value outside the valid range. The valid range is from 4 to
16, inclusive.

User action: Correct the value in the PIN_length parameter to be within the valid range from
4 to 16.

REASONCODES: TSS 064 (100)

BBE (3006) The UDX verb in the PCICC, PCIXCC, CEX2C, or CEX3C is not authorized to be executed.

BC0 (3008) A request was made to the Clear PIN generate callable service, and the PIN_check_length
parameter has a value outside the valid range. The valid range is from 4 to 16, inclusive.

User action: Correct the value in the PIN_check_length parameter to be within the valid
range from 4 to 16.

REASONCODES: TSS 065 (101)

BC1 (3009) For PKCS #11 attribute processing, an attribute has been specified in the template that is
not consistent with another attribute of the object being created or updated.

User action: Correct the template for the object.

BC3 (3011) The CRT value (p, q, Dp, Dq or U) is longer than the length allowed by the parameter block
for clear key processing on an accelerator. A modulus whose length is less than or equal to
1024 bits is 64 bytes in length. A modulus whose length is greater than 1024 bits but less
than or equal to 2048 bits is 128 bytes in length.

User action: Reconfigure CEX2A as a CEX2C or CEX3A as a CEX3C to make use of the
key (if the CRT value is not in error and there is no CEX2C or CEX3C installed).

REASONCODES: TSS 065 (101)

BC4 (3012) A request was made to the Clear PIN generate callable service to generate a VISA-PVV
PIN, and the trans_sec_parm field has a value outside the valid range. The field being
checked in the trans_sec_parm is the key index, in the 12th byte. This trans_sec_parm field
is part of the data_array parameter.

User action: Correct the value in the key index, held within the trans_sec_parm field in the
data_array parameter, to hold a number from the valid range.

REASONCODES: TSS 069 (105)

BC5 (3013) The AES clear key value LRC in the token failed validation.

User action: Correct the AES clear key value.

REASONCODES: TSS 06A (106)

BC8 (3016) A request was made to the Encrypted PIN Translate or the Encrypted PIN verify callable
service, and the PIN block value or PADDIGIT value in the input_PIN_profile or
output_PIN_profile parameter has a value that is not valid.

User action: Correct the PIN block value.

REASONCODES: TSS 06A (106)

Appendix A. ICSF and TSS Return and Reason Codes 749

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

BCB (3019) The call to insert or delete a z/OS PKCS #11 token object failed because the token was not
found in the TKDS data space or a request to delete a PKCS #11 session object failed
because the token was not found in the session data space.

BCC (3020) For a PKCS #11 callable service, the PKCS #11 object specified is the incorrect class for the
request.

User action: Specify the correct class of object for the service.

BCD (3021) The call to add a z/OS PKCS #11 token failed because the token already exists in the TKDS
data space or a request to add a z/OS PKCS #11 token object failed because an object with
the same handle already exists.

BCE (3022) The call to add or update a z/OS PKCS #11 tokens object failed because the supplied
attributes are too large to be stored in the TKDS.

BD0 (3024) A request was made to the Encrypted PIN Translate callable service and the format control
value in the input_PIN_profile or output_PIN_profile parameter has a value that is not valid.
The valid values are NONE or PBVC.

User action: Correct the format control value to either NONE or PBVC.

REASONCODES: TSS 06B (107)

BD1 (3025) The call to create a list of z/OS PKCS #11 tokens, a list of objects of a z/OS PKCS #11
token, the information for a z/OS PKCS #11 token or the attributes of a PKCS #11 object
failed because the length of the output field was insufficient to hold the data. The length field
has been updated with the length of a single list or entry, token information or object
attributes.

BD2 (3026) The z/OS PKCS #11 token or object handle syntax is invalid.

BD3 (3027) The call to read or update a z/OS PKCS #11 token or token object failed because the token
or object was not found in the TKDS data space, or if the call to read or update a PKCS #11
session object failed because the object was not found.

BD4 (3028) A request was made to the Clear PIN generate callable service. The clear_PIN supplied as
part of the data_array parameter for an GBP-PINO request begins with a zero (0). This
value is not valid.

User action: Correct the clear_PIN value.

REASONCODES: TSS 074 (116)

BD5 (3029) For PKCS #11 attribute processing, an invalid attribute was specified in the template. The
attribute is neither a PKCS #11 or vendor-specified attribute supported by this
implementation of PKCS #11.

User action: Correct the template by removing the invalid attribute or changing the attribute
to a valid attribute.

BD6 (3030) An invalid value was specified for a particular PKCS #11 attribute in a template when
creating or updating an object.

BD7 (3031) The certificate specified in creating a PKCS #11 certificate object was not properly encoded.

BD9 (3033) The attribute template for creating or updating a PKCS #11 object was incomplete. Required
attributes for the object class were not specified in the template.

BDA (3034) The call to modify PKCS #11 object attributes failed because the CKA_MODIFIABLE
attribute was set to false when the object was recreated.

750 z/OS V1R13 ICSF Application Programmer's Guide

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

BDB (3035) For PKCS #11 attribute processing, an attribute was specified in the template which can not
be set or updated by the application. See z/OS Cryptographic Services ICSF Writing PKCS
#11 Applications for a definition of attributes that can be set or updated by the application.

User action: Remove the offending attribute from the template.

BDC (3036) A request was made to the Encrypted PIN Translate callable service. The sequence_number
parameter was required, but was not the integer value 99999.

User action: Specify the integer value 99999.

REASONCODES: TSS 06F (111)

BDE (3038) For a PKCS #11 callable service, the attributes of the PKCS #11 object specified do not
permit the requested function.

User action: Specify an object that permits the requested function.

BDF (3039) For a PKCS #11 callable service, where a PKCS #11 key object is required, the specified
object is not of the correct key type for the requested function.

User action: Specify an object that is the correct class of key.

BE0 (3040) The PAN, expiration date, service code, decimalization table data, validation data, or pad
data is not numeric (X'F0' through X'F9'). The parameter must be character representations
of numerics or hexadecimal data.

User action: Review the numeric parameters or fields required in the service that you called
and change to the format and values required.

REASONCODES: TSS 028 (040), TSS 02A (042), TSS 066 (102), TSS 067 (103), TSS 068
(104), TSS 069 (105), TSS 06E (110)

BE1 (3041) PKCS #11 wrap key callable service failed because the wrapping key object is not of the
correct class to wrap the key specified to be wrapped.

User action: Specify a wrapping key object of the correct class to wrap the key object.

BE3 (3043) PKCS #11 wrap key callable service failed because the key object to be wrapped does not
exist or the key class does not match the wrapping mechanism.

User action: Specify an existing key object that is correct for the wrapping mechanism.

BE4 (3044) A PKCS #11 session data space is full. The request to create or update an object failed and
the object was not created or updated.

User action: Delete unused session objects and cryptographic state objects from incomplete
chained operations to create space for new or updated objects.

BE5 (3045) PKCS #11 wrap key callable service failed because the key object to be wrapped has
CKA_EXTRACTABLE set to false.

User action: Specify another key object that can be extracted.

BE7 (3047) A clear key was provided when a secure key was required.

User action: Correct the appropriate key identifier.

BEA (3050) A caller is attempting to overwrite one token type with another (for example, AES over DES).

BEC (3052) A clear key token was supplied to a service where a secure token is required.

BED (3053) A service was called with no parameter list, but a parameter list was expected.

User action: Call the service with a parameter list.

Appendix A. ICSF and TSS Return and Reason Codes 751

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

BEE (3054) A request was made to a callable service with a key token wrapped with the enhanced
X9.24 CBC method. Tokens wrapped with the enhanced method are not supported by this
release of ICSF.

User action: Contact your ICSF administrator to resolve which key token is to be used.

BF5 (3061) The provided asymmetric key identifier can not be used for the requested function. PKA Key
Management Extensions have been enabled by a CSF.PKAEXTNS.ENABLE profile in the
XFACILIT class. A CSFKEYS profile covering the key includes an ICSF segment, and the
ASYMUSAGE field of that segment restricts the key from being used for the specified
function.

An SMF type 82 subtype 27 record is logged in the SMF database.

BF6 (3062) The provided symmetric key identifier can not be exported using the provided asymmetric
key identifier. PKA Key Management Extensions have been enabled by a
CSF.PKAEXTNS.ENABLE profile in the XFACILIT class. A CSFKEYS or XCSFKEY profile
covering the symmetric key includes an ICSF segment and the SYMEXPORTABLE field of
that segment places restrictions on how the key can be exported. The SYMEXPORTABLE
field either specifies BYNONE, or else specifies BYLIST but the provided asymmetric key
identifier is not one of those permitted to export the symmetric key (as identified by the
SYMEXPORTCERTS or SYMEXPORTKEYS fields).

An SMF type 82 subtype 27 record is logged to the SMF database.

BF7 (3063) ICSF key store policy checking is active. The request failed the ICSF token policy check
because the caller is not authorized to the label for the token in the key data set (CKDS or
PKDS). The request is not allowed to continue because the token check policy is in FAIL
mode.

SMF type 82 subtype 25 records are logged in the SMF dataset. An SMF type 80 with event
code qualifier of ACCESS is logged.

The policy is defined by the CSF.CKDS.TOKEN.CHECK.LABEL.FAIL resource or the
CSF.PKDS.TOKEN.CHECK.LABEL.FAIL resource in the XFACILIT class.

BF8 (3064) ICSF key store policy checking is active. The specified token does not exist in the key data
set (CKDS or PKDS as appropriate). The CSF-CKDS-DEFAULT or CSF-PKDS-DEFAULT
resource in the CSFKEYS class is either not defined or the caller is not authorized to the
CSF-CKDS-DEFAULT or CSF-PKDS-DEFAULT resource. The resource is not in WARNING
mode, so the request is not allowed to continue.

An SMF type 80 record with event qualifier ACCESS is logged indicating the request failed.

The policy is defined by the CSF.CKDS.TOKEN.CHECK.DEFAULT.LABEL or the
CSF.PKDS.TOKEN.CHECK.DEFAULT.LABEL resource in the XFACILIT class.

BF9 (3065) ICSF token policy checking is active. The caller is requesting to add a token to the key data
set (CKDS or PKDS as appropriate) that already exists within the key data set. The request
fails.

The policy is defined by the CSF.CKDS.TOKEN.NODUPLICATES resource or the
CSF.PKDS.TOKEN.NODUPLICATES resource in the XFACILIT class.

BFB (3067) The provided symmetric key label refers to an encrypted CCA key token, and the CSFKEYS
profile covering it does not allow its use in high performance encrypted key operations.

User action: Contact your ICSF or RACF administrator if you need to use this key in calls
to Symmetric Key Encipher (CSNBSYE) or Symmetric Key Decipher (CSNBSYD).
Otherwise, use Encipher (CSNBENC) or Decipher (CSNBDEC) instead.

752 z/OS V1R13 ICSF Application Programmer's Guide

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

BFC (3068) A cryptographic operation using a specific PKCS #11 key object is being requested. The key
object has exceeded its useful life for the operation requested. The request is not
processed.

User action: Use a different key.

BFD (3069) A cryptographic operation that requires FIPS 140-2 compliance is being requested. Either
ICSF has not been configured to run in FIPS mode or the system environment does not
support it. The request is not processed.

User action: Contact your ICSF administrator to request that ICSF be configured for either
FIPS standard mode or FIPS compatibility mode.

BFE (3070) A cryptographic operation that requires FIPS 140-2 compliance is being requested. The
desired algorithm, mode, or key size is not approved for FIPS 140-2. The request is not
processed.

User action: Repeat the request using an algorithm, mode, and/or key size approved for
FIPS 140-2. Refer to z/OS Cryptographic Services ICSF Writing PKCS #11 Applications for
this list of approved algorithms, modes, and key sizes.

BFF (3071) An application using a z/OS PKCS #11 token that is marked ‘Write Protected’ is attempting
to do one of the following:

v Store a persistent object in the token.

v Delete the token.

v Reinitialize the token.

ICSF always marks the session object only omnipresent token as ‘Write Protected.’ ICSF will
also mark an ordinary token ‘Write Protected’ if it contains objects not supported by this
release of ICSF.

User action: Use a z/OS PKCS #11 token that is not marked ‘Read Only’ or, if this is an
ordinary token (not the omnipresent token), attempt the delete or reinitialization from a
different member of the sysplex.

C04 (3076) A symmetric key token was supplied in a key identifier parameter which is wrapped using
the enhanced X9.24 key wrapping method. The token can not be rewrapped to the original
method because the wrapping flag in the control vector prohibits this wrapping.

C07 (3079) A request was made to use a key token wrapped with the X9.24 enhanced wrapping method
introduced in HCR7780. Key tokens wrapped with the enhanced method can not be used on
this release. Also, key tokens wrapped with the enhanced method can not be updated or
deleted from the CKDS on this release.

User Action: Run your application on a release that support the enhanced wrapping
method.

C08 (3080) Use of an ECC token has been attempted. The usage of this type of token is not supported
on the release of ICSF currently running.

User Action: Check the ICSF release for support of this token type.

C0B (3083) The specified key token buffer length is of insufficient size for the buffer to contain the output
key token.

User action: Specify a key token buffer that is sufficiently large enough to receive the output
key token.

Appendix A. ICSF and TSS Return and Reason Codes 753

||
|

|

|

|

|
|
|

|
|
|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

C0C (3084) The key token associated with the specified key label is not a DES or AES key token, but
this callable service is only compatible with DES and AES key tokens.

User action: Either modify the program logic to utilize only key labels for DES and/or AES
key tokens, or use an ICSF callable service that supports all of the symmetric key token
types.

C0D (3085) Rule array keyword specifies a function not supported by this hardware. For example, ECC
specified in rule array for PKA Key Token Change callable service but request is being
executed on a system that does not support ECC keys.

User Action: Specify a different, supported, rule array keyword, or execute the service on a
system that supports the function.

C0E (3086) Specified token is not supported by this hardware. For example, an ECC token is being
used but request is being executed on a system that does not support ECC keys.

User Action: Specify a different, supported, token, or execute the request on a system that
supports the function.

C0F (3087) A coordinated KDS refresh was attempted to an empty KDS. The new KDS of a coordinated
KDS refresh must be initialized and must contain the same MKVP values as the active KDS.

User action: Perform a coordinated KDS refresh using a new KDS that is initialized and that
contains the same MKVP values as the active KDS.

C10 (3088) A coordinated KDS change master key was attempted and either the new KDS or backup
KDS contained a different LRECL attribute from the active KDS. The new KDS and
optionally the backup KDS must contain the same LRECL attribute as the active KDS during
a coordinate KDS change master key.

User action: Perform a coordinated KDS change master key using a new KDS and
optionally a backup KDS with the same LRECL attribute as the active KDS.

C11 (3089) The new KDS specified for a coordinated KDS change master key was not empty when the
operation began. The new KDS must be empty before performing a coordinated KDS
change master key.

User action: Perform the coordinated KDS change master key with a new KDS that is
empty.

C12 (3090) The backup KDS specified for a coordinated KDS change master key was not empty when
the operation began. When using the optional backup function, the backup KDS must be
empty before performing a coordinated KDS change master key.

User action: Perform the coordinated KDS change master key with a backup KDS that is
empty.

C13 (3091) The new KDS specified for a coordinated KDS refresh contains different MKVPs than the
active KDS. In order to perform a coordinated KDS refresh, the new KDS specified must
contain the same MKVPs as the active KDS.

User action: Perform the coordinated KDS refresh with a new KDS that contains the same
MKVPs as the active KDS.

C1F (3103) The new KDS specified for either a coordinated KDS refresh or coordinated KDS change
master key is not a valid data set name.

User action: Specify a valid data set name for the new KDS when performing either a
coordinated KDS refresh or coordinated KDS change master key.

754 z/OS V1R13 ICSF Application Programmer's Guide

||
|

|
|

||
|
|
|

|
|

||
|
|

|
|

||
|
|

|
|

||
|
|

|
|

||
|

|
|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

C20 (3104) The backup KDS specified for a coordinated KDS change master key is not a valid data set
name.

User action: Specify a valid data set name for the backup KDS when performing a
coordinated KDS change master key.

C21 (3105) A coordinated KDS refresh or coordinated KDS change master key was attempted while at
least one ICSF instance in the sysplex was below the HCR7790 FMID level. The
coordinated KDS refresh and coordinated KDS change master key functions are only
available when all ICSF instances in the sysplex, regardless of active KDS, are running at
the HCR7790 FMID level or higher.

User action: Remove or upgrade ICSF instances in the sysplex that are running below the
HCR7790 FMID level and retry the function.

C22 (3106) Either a coordinated KDS refresh or coordinated KDS change master key was attempted
while another coordinated KDS refresh or coordinated KDS change master key was still in
progress. The coordinated KDS function was initiated by this ICSF instance. Only one
coordinated KDS function may execute at a time in the sysplex.

User action: Wait for the previous coordinated KDS function to complete and retry the
function.

C23 (3107) A coordinated KDS change master key was attempted using a new KDS with the same
name as the active KDS. The new KDS name must be different from the active KDS when
performing a coordinated KDS change master key.

User action: Specify a new KDS with a different name from the active KDS and retry the
function. Coordinated KDS change master key requires the new KDS to be allocated and
match the same VSAM attributes as the active KDS.

C24 (3108) A coordinated KDS change master key was attempted using a backup KDS with the same
name as the active KDS. When using the backup function, the backup KDS name must be
different from the active KDS when performing a coordinated KDS change master key.

User action: Specify a backup KDS with a different name from the active KDS and retry the
function. Coordinated KDS change master key requires the backup KDS to be allocated and
match the same VSAM attributes as the active KDS.

C25 (3109) A coordinated KDS change master key was attempted using a new KDS with the same
name as the backup KDS. If a backup KDS is specified, its name must be different from the
new KDS.

User action: Specify a backup KDS with a different name from the new KDS and retry the
function. The backup KDS is optional. Coordinated KDS change master key requires the
new KDS, and optionally the backup KDS, to be allocated and match the same VSAM
attributes as the active KDS.

C26 (3110) A coordinated KDS refresh or coordinated KDS change master key was attempted using an
archive KDS name that is not valid.

User action: Specify a valid data set name for the archive KDS and retry the function. The
archive data set name is optional. The optional archive KDS name must not exist on the
system prior to performing a coordinated KDS refresh or a coordinated KDS change master
key.

Appendix A. ICSF and TSS Return and Reason Codes 755

||
|

|
|

||
|
|
|
|

|
|

||
|
|
|

|
|

||
|
|

|
|
|

||
|
|

|
|
|

||
|
|

|
|
|
|

||
|

|
|
|
|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

C27 (3111) A coordinated KDS change master key was attempted using an archive KDS with the same
name as the backup KDS. When using the archive and backup functions, the archive KDS
name must be different from the backup KDS.

User action: Specify an archive KDS with a different name from the backup KDS and retry
the function. The archive KDS name and the backup KDS are optional. The archive KDS
name must not exist on the system prior to performing a coordinated KDS refresh or a
coordinated KDS change master key. The backup KDS must be allocated and match the
same VSAM attributes as the active KDS.

C28 (3112) A coordinated KDS refresh or a coordinated KDS change master key was attempted using
an archive KDS with the same name as the active KDS. When using the archive function,
the archive KDS name must be different from the active KDS.

User action: Specify an archive KDS with a different name from the active KDS and retry
the function. The archive KDS name must not exist on the system prior to performing a
coordinated KDS refresh or a coordinated KDS change master key.

C29 (3113) A coordinated KDS refresh or a coordinated KDS change master key was attempted using
an archive KDS with the same name as the new KDS. When using the archive function, the
archive KDS name must be different from the new KDS.

User action: Specify an archive KDS with a different name than the new KDS and retry the
function. The archive KDS name must not exist on the system prior to performing a
coordinated KDS refresh or a coordinated KDS change master key.

C2A (3114) Either a coordinated KDS refresh or coordinated KDS change master key was attempted
while another coordinated KDS refresh or coordinated KDS change master key was still in
progress. The coordinated KDS function was initiated by another ICSF instance in the
sysplex. Only one coordinated KDS function may execute at a time in the sysplex.

User action: Wait for the previous coordinated KDS function to complete and retry the
function.

C30 (3120) A coordinated KDS change master key was attempted on an active KDS that was not
initialized. The active KDS must be initialized before performing a coordinated KDS change
master key.

User action: Initialize the active KDS and retry the function

C31 (3121) The archive option was specified for a coordinated KDS refresh of the active KDS. The
archive option is only valid for coordinated KDS refreshes to a new KDS or coordinated KDS
change master key.

User action: Do not specify an archive data set when performing a coordinated KDS refresh
of the active KDS.

C3C (3132) The archive data set name specified for coordinated KDS refresh or coordinated KDS
change master key is too long. The archive data set name must allow enough space for
renaming the KDS VSAM data and index portions within 44 characters.

User action: Specify a shorter name for the archive data set name to allow enough space
for renaming the KDS VSAM data and index portions within 44 characters. The archive data
set name is optional. When specified, the archive data set name must not exist on the
system prior to performing the coordinated KDS function.

756 z/OS V1R13 ICSF Application Programmer's Guide

||
|
|

|
|
|
|
|

||
|
|

|
|
|

||
|
|

|
|
|

||
|
|
|

|
|

||
|
|

|

||
|
|

|
|

||
|
|

|
|
|
|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

C3D (3133) During a coordinated KDS refresh or coordinated KDS change master key with the archive
option specified, the active KDS could not be renamed to the archive data set name. This
failure occurred because the active KDS VSAM data and index suffix names were not valid
for performing the rename.

User action: Consider alternate names for the active KDS VSAM data and index suffixes.
The archive data set name is optional. When specified the archive data set name must not
exist on the system prior to performing the coordinated KDS function.

C3E (3134) A coordinated KDS change master key attempted to use a new KDS that is currently
another sysplex members active KDS. Performing a coordinated KDS change master key to
another sysplex members active KDS is not allowed as it would alter all sysplex members
configured in that sysplex KDS cluster (same active KDS).

User action: Specify a new KDS that is not currently the active KDS of another sysplex
member and retry the function.

F9F (3999) On a call to CKDS Key Record Delete or CKDS Key Record Write2, the label refers to a
Variable-length Symmetric key token with an unrecognized algorithm or key type in the
associated data section. Only key tokens with a recognized algorithm or key type can be
managed on this release of ICSF.

User action: Call CKDS Key Record Delete or CKDS Key Record Write2 on a release of
ICSF which recognizes the algorithm and key type of this token.

FA0 (4000) The encipher and decipher callable services sometime require text (plaintext or ciphertext) to
have a length that is an exact multiple of 8 bytes. Padding schemes always create ciphertext
with a length that is an exact multiple of 8. If you want to decipher ciphertext that was
produced by a padding scheme, and the text length is not an exact multiple of 8, then an
error has occurred. The CBC mode of enciphering requires a text length that is an exact
multiple of 8.

The ciphertext translate callable service cannot process ciphertext whose length is not an
exact multiple of 8.

User action: Review the requirements of the service you are using. Either adjust the text
you are processing or use another process rule.

REASONCODES: TSS 033 (051)

1388 (5000) Target cryptographic module is not available in the configuration.

User action: Correct the target cryptographic module parameter and resubmit.

138C (5004) Format of the cryptographic request message is not valid.

User action: Correct the request and resubmit it.

1390 (5008) Length of the cryptographic request message is not valid.

User action: Message length of request must be nonzero, a multiple of eight, and less than
the system maximum. Correct the request and resubmit it.

1782 (6018) One or more of the parameters passed to this callable service are in error.

User action: Refer to the parameter descriptions in this publication under the appropriate
callable service to ensure the parameter values specified by your application are valid.

Appendix A. ICSF and TSS Return and Reason Codes 757

||
|
|
|

|
|
|

||
|
|
|

|
|

||
|
|
|

|
|

||

|
|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

2710 (10000) A key identifier was passed to a service or token. It is checked in detail to ensure that it is a
valid token, and that the fields within it are valid values. There is a token validation value
(TVV) in the token, which is a non-cryptographic value. This value was again computed from
the rest of the token, and compared to the stored TVV. If these two values are not the same,
this reason code is returned.

User action: The contents of the token have been altered because it was created by ICSF
or TSS. Review your program to see how this could have been caused.

REASONCODES: TSS 0C (12) and 1D (29)

2714 (10004) A key identifier was passed to a service. The master key verification pattern in the token
shows that the key was created with a master key that is neither the current master key nor
the old master key. Therefore, it cannot be reenciphered to the current master key.

User action: Re-import the key from its importable form (if you have it in this form), or
repeat the process you used to create the operational key form. If you cannot do one of
these, you cannot repeat any previous cryptographic process that you performed with this
token.

REASONCODES: TSS 030 (048)

271C (10012) A key label was supplied for a key identifier parameter. This label is the label of a key in the
in-storage CKDS or the PKDS. Either the key could not be found, or a key record with that
label and the specific type required by the ICSF callable service could not be found. For a
retained key label, this error code is also returned if the key is not found in the PCICC,
PCIXCC, CEX2C, or CEX3C specified in the PKDS record.

User action: Check with your administrator if you believe that this key should be in the
in-storage CKDS or the PKDS. The administrator may be able to bring it into storage. If this
key cannot be in storage, use a different label.

REASONCODES: TSS 01E (030)

2720 (10016) You specified a value for a key_type parameter that is not an ICSF-defined name.

User action: Review the ICSF key types and use the appropriate one.

REASONCODES: TSS 03D (061)

2724 (10020) You specified the word TOKEN for a key_type parameter, but the corresponding key
identifier, which implies the key type to use, has a value that is not valid in the control vector
field. Therefore, a valid key type cannot be determined.

User action: Review the value that you stored in the corresponding key identifier. Check
that the value for key_type is obtained from the appropriate key_identifier parameter.

REASONCODES: TSS 027 (039)

272C (10028) Either the left half of the control vector in a key identifier (internal or external) equates to a
key type that is not valid for the service you are using, or the value is not that of any ICSF
control vector. For example, an exporter key-encrypting key is not valid in the key import
callable service.

User action: Determine which key identifier is in error and use the key identifier that is
required by the service.

REASONCODES: TSS 027 (039)

758 z/OS V1R13 ICSF Application Programmer's Guide

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

2730 (10032) Either the right half of the control vector in a key identifier (internal or external) equates to a
key type that is not valid for the service you are using, or the value is not that of any ICSF
control vector. For example, an exporter key-encrypting key is not valid in the key import
callable service.

User action: Determine which key identifier is in error and use the key identifier that is
required by the service.

REASONCODES: TSS 027 (039)

2734 (10036) Either the complete control vector (CV) in a key identifier (internal or external) equates to a
key type that is not valid for the service you are using, or the value is not that of any ICSF
control vector.

The difference between this and reason codes 10028 and 10032 is that each half of the
control vector is valid, but as a combination, the whole is not valid. For example, the left half
of the control vector may be the importer key-encrypting key and the right half may be the
input PIN-encrypting (IPINENC) key.

User action: Determine which key identifier is in error and use the key identifier that is
required by the service.

REASONCODES: TSS 027 (039)

2738 (10040) Key identifiers contain a version number. The version number in a supplied key identifier
(internal or external) is inconsistent with one or more fields in the key identifier, making the
key identifier unusable.

User action: Use a token containing the required version number.

REASONCODES: TSS 031 (049)

273C (10044) A cross-check of the control vector the key type implies has shown that it does not
correspond with the control vector present in the supplied internal key identifier.

User action: Change either the key type or key identifier.

REASONCODES: TSS 0B7 (183)

2740 (10048) The key_type parameter does not contain one of the valid types for the service or the
keyword TOKEN.

User action: Check the supplied parameter with the ICSF key types. If you supplied the
keyword TOKEN, check that you have padded it on the right with blanks.

REASONCODES: TSS 03D (061)

2744 (10052) A null key identifier was supplied and the key_type parameter contained the word TOKEN.
This combination of parameters is not valid.

User action: Use either a null key identifier or the word TOKEN, not both.

REASONCODES: TSS 027 (039)

2748 (10056) You called the key import callable service. The importer key-encrypting key is a NOCV
importer and you specified TOKEN for the key_type parameter. This combination is not valid.

User action: Specify a value in the key_type parameter for the operational key form.

Appendix A. ICSF and TSS Return and Reason Codes 759

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

274C (10060) You called the key export callable service. A label was supplied in the key_identifier
parameter for the key to be exported and the key_type was TOKEN. This combination is not
valid because the service needs a key type in order to retrieve a key from the CKDS.

User action: Specify the type of key to be exported in the key_type parameter.

REASONCODES: TSS 03D (061)

2754 (10068) A flag in a key identifier indicates the master key verification pattern (MKVP) is not present
in an internal key token. This setting is not valid.

User action: Use a token containing the required flag values.

REASONCODES: TSS 02F (047)

2758 (10072) A flag in a key identifier indicates the encrypted key is not present in an external token. This
setting is not valid.

User action: Use a token containing the required flag values.

REASONCODES: TSS 02F (047)

275C (10076) A flag in a key identifier indicates the control vector is not present. This setting is not valid.

User action: Use a token containing the required flag values.

REASONCODES: TSS 02F (047)

2760 (10080) An ICSF private flag in a key identifier has been set to a value that is not valid.

User action: Use a token containing the required flag values. Do not modify ICSF or the
reserved flags for your own use.

2768 (10088) If you supplied a label in the key_identifier parameter, a record with the supplied label was
found in the CKDS, but the key type (CV) is not valid for the service. If you supplied an
internal key token for the key_identifier parameter, it contained a key type that is not valid.

User action: Check with your ICSF administrator if you believe that this key should be in the
in-storage CKDS. The administrator may be able to bring it into storage. If this key cannot
be in storage, use a different label.

REASONCODES: TSS 027 (039)

276C (10092) You supplied a source key that does not have odd parity and specified ENFORCE as the
parity rule on the rule_array parameter for either the ANSI X9.17 key export, ANSI X9.17 key
import, or ANSI X9.17 key translate callable service.

User action: Either supply an ODD parity key or change the rule_array parameter to specify
a parity rule of IGNORE.

2770 (10096) The transport key you specified is a single-length key, which cannot be used to encrypt a
double-length AKEK or (*KK).

User action: Use a double-length AKEK for the transport key.

2774 (10100) You specified a transport key that cannot be notarized and specified the keyword NOTARIZE
in the rule_array parameter. The transport key may have already been partially notarized.

User action: Use a transport key that allows notarization or change the rule_array
parameter keyword to CPLT-NOT.

760 z/OS V1R13 ICSF Application Programmer's Guide

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

2778 (10104) The AKEK you specified is either partially notarized or is a partial AKEK, which is not valid
for this service.

User action: Use a correct AKEK that is not partially notarized. A partially notarized key can
be used as a transport key if you specify CPLT-NOT in the rule_array parameter.

277C (10108) You did not supply a partial AKEK for the key_identifier parameter of the key part import
service.

User action: Correct the key_id parameter.

2780 (10112) The transport key you specified has not been partially notarized and you have specified
CPTL-NOT for the rule_array parameter.

User action: Use a transport key that has been partially notarized or change the rule_array
parameter.

2784 (10116) You attempted to export an AKEK with a CCA key export service, which is not supported.

User action: Use the ANSI X9.17 Key Export callable service.

2788 (10120) The internal key token you supplied, or the key token that was retrieved by the label you
supplied, contains a flag setting or data encryption algorithm bit that is not valid for this
service.

User action: Ensure that you supply a key token, or label, for a non-ANSI key type.

278C (10124) The key identifier you supplied cannot be exported because there is a prohibit-export
restriction on the key.

User action: Use the correct key for the service.

REASONCODES: TSS 027 (039)

2790 (10128) The keyword you supplied in the rule_array parameter is not consistent or not valid with
another parameter you specified. For example, the keyword SINGLE is not valid with the key
type of EXPORTER in the key token build callable service.

User action: Correct either the rule_array parameter or the other parameter.

REASONCODES: TSS 09C (156)

2791 (10129) S390 KEKs with NOCV (flagged as such by the MASK_NOCV bit in the flags field of the
token), are not permitted in the RKX service.

2AF8 (11000) The value specified for length parameter for a key token, key, or text field is not valid.

User action: Correct the appropriate length field parameter.

REASONCODES: TSS 048 (072)

2AFC (11004) The hash value (of the secret quantities) in the private key section of the internal token
failed validation. The values in the token are corrupted. You cannot use this key.

User action: Recreate the token using the appropriate combination of the PKA key token
build, PKA key generate, and PKA key import callable services.

REASONCODES: TSS 02F (047)

Appendix A. ICSF and TSS Return and Reason Codes 761

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

2B00 (11008) The public or private key values are not valid. (For example, the modulus or an exponent is
zero.) You cannot use the key.

User action: You may need to recreate the token using the PKA key token build or PKA key
import callable service or regenerate the key values on another platform.

REASONCODES: TSS 302 (770)

2B04 (11012) The internal or external private key token contains flags that are not valid.

User action: You may need to recreate the token using the PKA key token build or PKA key
import callable service.

REASONCODES: TSS 02F (047)

2B08 (11016) The calculated hash of the public information in the PKA token does not match the hash in
the private section of the token. The values in the token are corrupted.

User action: Verify the public key section and the key name section of the token. If the
token is still rejected, then you need to recreate the token using the appropriate combination
of the PKA key token build, PKA key generate, and PKA key import callable services.

REASONCODES: TSS 02F (047)

2B0C (11020) The hash pattern of the PKA master key (SMK or KMMK) in the supplied internal PKA
private key token does not match the current system's PKA master key. This indicates the
system PKA master key has changed since the token was created. You cannot use the
token.

User action: Recreate the token using the appropriate combination of the PKA key token
build, PKA key generate, and PKA key import callable services.

REASONCODES: TSS 030 (048)

2B10 (11024) The PKA tokens have incomplete values, for example, a PKA public key token without
modulus.

User action: Recreate the key.

REASONCODES: TSS 02F (047)

2B14 (11028) The modulus of the PKA key is too short for processing the hash or PKCS block.

User action: Either use a PKA key with a larger modulus size, use a hash algorithm that
generates a smaller hash (digital signature services), or specify a shorter DATA key size
(symmetric key export, symmetric key generate).

REASONCODES: TSS 048 (072)

2B18 (11032) The supplied private key can be used only for digital signature. Key management services
are disallowed.

User action: Supply a key with key management enabled.

REASONCODES: TSS 040 (064)

762 z/OS V1R13 ICSF Application Programmer's Guide

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

2B20 (11040) The recovered encryption block was not a valid PKCS-1.2 or zero-pad format. (The format is
verified according to the recovery method specified in the rule-array.) If the recovery method
specified was PKCS-1.2, refer to PKCS-1.2 for the possible error in parsing the encryption
block.

User action: Ensure that the parameters passed to CSNDSYI or CSNFSYI are correct.
Possible causes for this error are incorrect values for the RSA private key or incorrect values
in the RSA_enciphered_key parameter, which must be formatted according to PKCS-1.2 or
zero-pad rules when created.

REASONCODES: TSS 42 (66)

2B24 (11044) The first section of a supplied PKA token was not a private or public key section.

User action: Recreate the key.

REASONCODES: TSS 0B5(181)

2B28 (11048) The eyecatcher on the PKA internal private token is not valid.

User action: Reimport the private token using the PKA key import callable service.

2B2C (11052) An incorrect PKA token was supplied. One of the following situations is possible:

v The service requires a private key token of the correct type.

v The supplied token may be of a type that is not supported on this system.

User action: Check that the supplied token is:

v a PKA private key token of the correct type.

v a type supported by this system.

2B30 (11056) The input PKA token contains length fields that are not valid.

User action: Recreate the key token.

2B38 (11064) The RSA-OAEP block did not verify when it decomposed. The block type is incorrect (must
be X'03').

User action: Recreate the RSA-OAEP block.

REASONCODES: TSS 2CF (719)

2B3C (11068) The RSA-OAEP block did not verify when it decomposed. The verification code is not correct
(must be all zeros).

User action: Recreate the RSA-OAEP block.

REASONCODES: TSS 2D1 (721)

2B40 (11072) The RSA-OAEP block did not verify when it decomposed. The random number I is not
correct (must be non-zero with the high-order bit equal to zero).

User action: Recreate the RSA-OAEP block.

REASONCODES: TSS 2D0 (720)

2B48 (11080) The RSA public or private key specified a modulus length that is incorrect for this service.

User action: Re-invoke the service with an RSA key with the proper modulus length.

REASONCODES: See reason codes 41 (65) and 2F8 (760)

Appendix A. ICSF and TSS Return and Reason Codes 763

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

2B4C (11084) This service requires an RSA public key and the key identifier specified is not a public key.

User action: Re-invoke the service with an RSA public key.

2B50 (11088) This service requires an RSA private key that is for signature use only.

User action: Re-invoke the service with a supported private key.

2B54 (11092) There was an invalid subsection in the PKA token.

User action: Correct the PKA token.

2B58 (11096) This service requires an RSA private key that is for signature use. The specified key may be
used for key management purposes only.

User action: Re-invoke the service with a supported private key.

REASONCODES: TSS 040 (064)

3E80 (16000) RACF failed your request to use this service.

User action: Contact your ICSF or RACF administrator if you need this service.

3E84 (16004) RACF failed your request to use the key label. This may be caused by either CSFKEYS or
XCSFKEY class, depending on the setting of the Granular Keylabel Access Controls and the
type of token provided.

User action: Contact your ICSF or RACF administrator if you need this key.

3E8C (16012) You requested the conversion service, but you are not running in an authorized state.

User action: You must be running in supervisor state to use the conversion service. Contact
your ICSF administrator.

3E90 (16016) The input/output field contained a valid internal token with the NOCV bit on or encryption
algorithm mark, but the key type was incorrect or did not match the type of the generated or
imported key. Processing failed.

User action: Correct the calling application.

REASONCODES: TSS 027 (039)

3E94 (16020) You requested dynamic CKDS update services for a system key, which is not allowed.

User action: Correct the calling application.

REASONCODES: TSS 0B5 (181)

3E98 (16024) You called the CKDS key record write callable service, but the key token you supplied is not
valid.

User action: Check with your ICSF administrator if you believe that this key should be in the
in-storage CKDS. The administrator may be able to bring it into storage. If this key cannot
be in storage, use a different label.

3EA0 (16032) Invalid syntax for CKDS or PKDS label name.

User action: Correct key_label syntax.

REASONCODES: TSS 020 (032)

764 z/OS V1R13 ICSF Application Programmer's Guide

|

Table 331. Reason Codes for Return Code 8 (8) (continued)

Reason Code Hex
(Decimal) Description

3EA4 (16036) The CKDS key record create callable service requires that the key created not already exist
in the CKDS or PKDS. A key of the same label was found.

User action: Make sure the application specifies the correct label. If the label is correct,
contact your ICSF security administrator or system programmer.

REASONCODES: TSS 02C (044)

3EA8 (16040) Data in the PKDS record did not match the expected data. This occurs if the record does
not contain a null PKA token and CHECK was specified.

User action: If the record is to be overwritten regardless of its content, specify OVERLAY.

3EAC (16044) One or more key labels specified as input to the PKA key generate or PKA key import
service incorrectly refer to a retained private key. If generating a retained private key, this
error may result from one of these conditions:

v The private key name of the retained private key being generated is the same as an
existing PKDS record, but the PKDS record label was not specified as the input skeleton
(source) key identifier.

v The label specified in the generated_key_token parameter as the target for the retained
private key was not the same as the private key name

If generating or importing a non-retained key, this error occurs when the label specified as
the target key specifies a retained private key. The retained private key cannot be
over-written.

User action: Make sure the application specifies the correct label. If the label is correct,
contact your ICSF security administrator or system programmer.

3EB0 (16048) Retained keys on the PKDS cannot be deleted or updated using the PKDS key record
delete or PKDS key record write callable services, respectively.

User action: Use the retained key delete callable service to delete retained keys.

Reason code 0, return
code 308 (776)

RACF failed your request to use this service.

User action: Contact your ICSF or RACF administrator if you need this service.

Reason code 1, return
code 308 (776)

RACF failed your request to use the key label.

User action: Contact your ICSF or RACF administrator if you need this key.

06E (110)-PAN, 028
(040)-ser. code, 02A
(042)-exp. date, 066
(102)-dec table, 067
(103)-val. table, 06C
(198)-pad data

The PAN, expiration date, service code, decimalization table data, validation data, or pad
data is not numeric (X'F0' through X'F9'). The parameter must be character representations
of numerics or hexadecimal data.

User action: Review the numeric parameters or fields required in the service that you called
and change to the format and values required.

Reason Codes for Return Code C (12)
Table 332 on page 766 lists reason codes returned from callable services that give
return code 12. These reason codes indicate that the call to the callable service
was not successful. Either cryptographic processing did not take place, or the last
cryptographic unit was switched offline. Therefore, no output parameters were filled.

Note: The higher-order halfword of the reason code field for return code C (12)
may contain additional coding. See reason codes 1790, 273C, and 2740 in
this table. For example, in the reason code 42738, the 4 is an SVC 99 error
code and the 2738 is listed in this table:

Appendix A. ICSF and TSS Return and Reason Codes 765

|

|
|

|
|

Table 332. Reason Codes for Return Code C (12)

Reason Code Hex
(Decimal) Description

0 (0) ICSF is not available. One of the following situations is possible:

v ICSF is not started

v ICSF is started, but does not have access to any cryptographic units.

v ICSF is started, but the DES-MK, AES-MK, or ECC-MK is not defined.

v ICSF is started, but the requested function is not available. For instance, an ECC
operation was requested but the required hardware is not installed.

User action: Check the availability of ICSF with your ICSF administrator.

4 (4) The CKDS or PKDS management service you called is not available because it has been
disallowed by the ICSF User Control Functions panel.

User action: Contact the security administrator or system programmer to determine why the
CKDS or PKDS management services have been disallowed.

8 (8) The service or algorithm is not available on current hardware. Your request cannot be
processed.

User action: Correct the calling program or run on applicable hardware.

C (12) The service that you called is unavailable because the installation exit for that service had
previously failed.

User action: Contact your ICSF administrator or system programmer.

10 (16) A requested installation service routine could not be found. Your request was not processed.

User action: Contact your ICSF administrator or system programmer.

1C (28) Cryptographic asynchronous processor failed.

User action: Contact your IBM support center.

20 (32) Cryptographic asynchronous instruction was not executed.

User action: Ensure cryptographic services are enabled.

28 (40) The callable service that you called is unsupported for AMODE(64) applications. Your
request cannot be processed.

2C (44) The callable service that you called was linked with the AMODE(64) stub. The application is
not running AMODE(64). Your request cannot be processed.

User action: Link your application with the service stub with the appropriate addressing
mode.

0C5 (197) I/O error reading or writing to the DASD copy of the CKDS or PKDS in use by ICSF.

User action: Contact your ICSF security administrator or system programmer. The RPL
feedback code will be placed in the high-order halfword of the reason code field.

144 (324) There was insufficient coprocessor memory available to process your request. This could
include the Flash EPROM used to store keys, profiles and other application data.

User action: Contact your system programmer or the IBM Support Center.

2FC (764) The master key is not in a valid state.

User action: Contact your ICSF administrator.

REASONCODES: ICSF 2B08 (11016)

7D6 (2006) TKE: PCB service error.

7D7 (2007) TKE: Change type in PCB is not recognized.

766 z/OS V1R13 ICSF Application Programmer's Guide

Table 332. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

7DF (2015) Domain in CPRB not enabled by EMB mask.

7E1 (2017) MKVP mismatch on Set MK.

7E5 (2021) PCI Cryptographic Coprocessor , PCI X Cryptographic Coprocessor, Crypto Express2
Coprocessor, or Crypto Express3 Coprocessor adapter disabled.

7E9 (2025) Enforcement mask error.

7F3 (2035) Intrusion latch has been tripped. Services disabled.

7F5 (2037) The domain specified is not valid.

7FB (2043) OA certificate not found.

819 (2073) The PCIXCC, CEX2C, or CEX3C has been disabled on the Support Element. It must be
enabled on the Support Element prior to TKE accessing it.

User action: Permit the selected PCIXCC, CEX2C, or CEX3C for TKE Commands on the
Support Element and then re-open the Host on TKE.

835 (2101) AES flags in the function control vector are not valid.

BBD (3005) The CKDS I/O subtask timed out waiting for an exclusive ENQ on the SYSZCKDS.CKDSdsn
resource. A timeout will occur if one or more members of the ICSF sysplex group has not
relinquished its ENQ on the resource. The CKDS update operation has failed.

User action: Issue D GRS,RES=(nnnnn), where nnnnn is the CKDS resource name from
message CSFM302A, to determine which system or systems hold the resource. Determine if
action should be taken to cause the holding system to release its ENQ on the CKDS
resource.

BBE (3006) Failure after exhausting retry attempts. IXCMSGO issued from CSFMIOST.

User action: Contact your system programmer or the IBM Support Center.

BBF (3007) The CKDS service failed due to unexpected termination of the ICSF Cross-System Services
environment. The termination of the ICSF Cross-System Services environment was caused
by a failure when ICSF issued the IXCMSGI macro. Message CSFM603 has been issued.

User action: Report the occurrence of this error to your ICSF system programmer.

BC0 (3008) The TKDS I/O subtask timed out waiting for an exclusive ENQ on the SYSZTKDS.TKDSdsn
resource. A timeout will occur if one or more members of the ICSF sysplex group has not
reliquished its ENQ on the resource. The TKDS update operation has failed. The operator
should issue D GRS,RES=(nnnnn) (where nnnnn is the TKDS resource name from message
CSFM305A) to determine which system or systems hold the resource. Then the operator
should determine if action should be taken to cause the holding system to release its ENQ
on the TKDS resource.

User action: Report the occurrence of this error to your ICSF system programmer.

BC6 (3014) There is an I/O error reading or writing to the DASD copy of the TKDS in use by ICSF.

User action: Report the occurrence of this error to your ICSF system programmer.

BC7 (3015) A bad header record is detected for the TKDS in CSFMTDSL.

User action: Report the occurrence of this error to your ICSF system programmer.

BCF (3023) The PKCS #11 TKDS is not available for processing.

User action: Report the occurrence of this error to your ICSF system programmer.

Appendix A. ICSF and TSS Return and Reason Codes 767

Table 332. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

BE6 (3046) An RSA retained key can no longer be generated with its key-usage flag set to allow key
unwrapping (KM-ONLY or KEY-MGMT). Key usage must be SIG-ONLY.

User action: None required.

BE8 (3048) The services using encrypted AES keys, encrypted DES, or encrypted ECC keys are not
available because the master key is required but not loaded or there is no access to any
cryptographic units. Your request cannot be processed.

User action: Check the availability of ICSF with your ICSF administrator

BF2 (3058) A PKDS sysplex operation has been waiting unsuccessfully to obtain an enqueue. A failure
to obtain either the SYSZPKDS or SYSZPKUP resource will result in the timeout.

C00 (3072) The serialization subtask terminated for an unexpected reason prior to completing the
request. No dynamic CKDS or PKDS update services are possible at this point.

User action: Contact your system programmer who can investigate the problem and restart
the I/O subtask by stopping and restarting ICSF.

C01 (3073) An error occurred attempting to obtain the system ENQ for a key data set update.

User action: If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C03 (3075) A symmetric key token was supplied in a key identifier parameter which is wrapped using
the enhanced X9.24 key wrapping method. The cryptographic coprocessors available to
process the request don't support the enhanced key wrapping.

User action: Contact system personnel to get coprocessors installed on your system which
will support the enhanced X9.24 key wrapping.

C06 (3078) The CKDS was created with an unsupported LRECL.

C09 (3081) An attempt was made to load a PKDS that only uses the ECC master key on a
pre-HCR7780 release of ICSF. Pre-HCR7780 systems do not support the ECC master key
and use of an ECC MK-only PKDS is not allowed.

User Action: Change the PKDS selected. Specify a PKDS that is empty, uses an RSA
master key, or uses both RSA and ECC master keys.

C0A (3082) A callable service generated or updated a symmetric key token and the X9.24 enhanced
wrapping method was used to wrap the key. This key token is not usable on your system
and ICSF will not allow the key to be generated. The key was wrapped with the enhanced
wrapping method because a CEX3C coprocessor has the default wrapping configuration set
to enhanced. This was most likely done by TKE changing the configuration.

User Action: Have the ICSF administrator set the default wrapping configuration to original
for the LPAR that this system is running in.

C17 (3095) The sysplex KDS cluster members' new AES master key registers were loaded with different
values during a coordinated KDS change master key. All sysplex KDS cluster members'
(same active KDS) new AES master key registers must be loaded with the same value or all
must be empty when performing a coordinated KDS change master key.

User action: Ensure all sysplex KDS cluster members' new AES master key registers are
loaded with the same value or all are empty and retry the function.

768 z/OS V1R13 ICSF Application Programmer's Guide

||
|
|
|

|
|

Table 332. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

C18 (3096) One or more sysplex KDS cluster members' new DES master key registers were loaded and
others were empty during a coordinated KDS change master key. All sysplex KDS cluster
members' (same active KDS) new DES master key registers must be loaded with the same
value or all must be empty when performing a coordinated KDS change master key.

User action: Ensure all sysplex KDS cluster members' new DES master key registers are
loaded with the same value or all are empty and retry the function.

C19 (3097) The sysplex KDS cluster members' new DES master key registers were loaded with different
values during a coordinated KDS change master key. All sysplex KDS cluster members'
(same active KDS) new DES master key registers must be loaded with the same value or all
must be empty when performing a coordinated KDS change master key.

User action: Ensure all sysplex KDS cluster members' new DES master key registers are
loaded with the same value or all are empty and retry the function.

C1A (3098) A coordinated KDS change master key was attempted with empty DES new master key
registers and empty AES new master key registers. At least one of the new master key
registers must be loaded with a value to perform a coordinated KDS change master key.

User action: Load at least one of the DES new master key registers or AES new master
key registers on all sysplex KDS cluster members with the same value and retry the
function.

C1B (3099) An ICSF subtask terminated during coordinated KDS refresh or coordinated KDS change
master key processing.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C1C (3100) An error occurred attempting to obtain an ENQ for performing either a coordinated KDS
refresh or coordinated KDS change master key.

User action: The function can be retried. If the error is common and persistent, contact your
system programmer or the IBM Support Center.

C1D (3101) A target system (member of the sysplex KDS cluster) was unable to open the new KDS for
either a coordinated KDS refresh or coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C1E (3102) One or more sysplex KDS cluster members' new AES master key registers were loaded and
others were empty during a coordinated KDS change master key. All sysplex KDS cluster
members' (same active KDS) new AES master key registers must be loaded with the same
value or all must be empty when performing a coordinated KDS change master key.

User action: Ensure all sysplex KDS cluster members new AES master key registers are
loaded with the same value or all are empty and retry the function.

C2B (3115) Either a coordinated KDS refresh or coordinated KDS change master key was cancelled.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

Appendix A. ICSF and TSS Return and Reason Codes 769

||
|
|
|

|
|

||
|
|
|

|
|

||
|
|

|
|
|

||
|

|
|
|
|

||
|

|
|

||
|

|
|
|
|

||
|
|
|

|
|

||

|
|
|
|

Table 332. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

C2C (3116) A catalog problem occurred during either a coordinated KDS refresh or coordinated KDS
change master key. The problem occurred when looking up either the active KDS or new
KDS in the catalog.

User action: Ensure both the active KDS and new KDS are cataloged and retry the
function.

C2D (3117) A coordinated KDS refresh or coordinated KDS change master key was attempted on a
system with a level of hardware that is not supported by the function. This reason code is
also used if the licensed internal code (LIC) level on the originating system is lower then the
licensed internal code (LIC) level on 1 or more of the other sysplex KDS cluster members.

User action: Refer to “Coordinated KDS Administration (CSFCRC and CSFCRC6)” on page
580 for a list of supported hardware levels. Perform the coordinated KDS function from the
system running the highest level of licensed internal code (LIC).

C2E (3118) A coordinated KDS change master key was attempted with the DES new master key register
loaded but with no current DES master key set. In order to perform a coordinated KDS
change master key to a new DES master key, a valid DES master key must have previously
been set.

User action: Set a valid DES master key and then use the coordinated KDS change master
key to change the DES master key.

C2F (3119) A coordinated KDS change master key was attempted with the AES new master key register
loaded but with no current AES master key set. In order to perform a coordinated KDS
change master key to a new AES master key, a valid AES master key must have previously
been set.

User action: Set a valid AES master key and then use the coordinated KDS change master
key to change the AES master key.

C32 (3122) A sysplex communication failure occurred during either coordinated KDS refresh or
coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C33 (3123) A failure occurred processing KDS updates during a coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C34 (3124) An internal failure occurred in a coordinated KDS subtask while performing either a
coordinated KDS refresh or a coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C35 (3125) An internal failure occurred in a coordinated KDS subtask while performing either a
coordinated KDS refresh or a coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

770 z/OS V1R13 ICSF Application Programmer's Guide

||
|
|

|
|

||
|
|
|

|
|
|

||
|
|
|

|
|

||
|
|
|

|
|

||
|

|
|
|
|

||

|
|
|
|

||
|

|
|
|
|

||
|

|
|
|
|

Table 332. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

C36 (3126) An internal failure occurred in the sysplex subtask while performing either a coordinated
KDS refresh or coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C37 (3127) An internal failure occurred in the serialization subtask while performing either a coordinated
KDS refresh or coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C38 (3128) An internal failure occurred in the I/O subtask while performing a coordinated KDS change
master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function may
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C3A (3130) A target system (member of the sysplex KDS cluster) is not being responsive to a system
that is originating either a coordinated KDS refresh or coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C3B (3131) The active KDS could not be reenciphered to the new KDS during a coordinated KDS
change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C3E (3134) A failure occurred either renaming the active KDS to the archive KDS or renaming the new
KDS to the active KDS during a coordinated KDS refresh or coordinated KDS change
master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C40 (3136) A coordinated KDS refresh or coordinated KDS change master key was originated from a
system at a lower ICSF FMID release level than one or more of the target systems (sysplex
KDS cluster members). The coordinated KDS functions must be originated from a system
running the highest ICSF FMID level.

User action: Retry the function from a sysplex KDS cluster member running the highest
ICSF FMID level.

Appendix A. ICSF and TSS Return and Reason Codes 771

||
|

|
|
|
|

||
|

|
|
|
|

||
|

|
|
|
|

||
|

|
|
|
|

||
|

|
|
|
|

||
|
|

|
|
|
|

||
|
|
|

|
|

Table 332. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

C41 (3137) An internal failure occurred during the set master key step of a coordinated KDS change
master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C42 (3138) A failure occurred trying to back out from a failed rename of the active KDS to the archive
KDS or a failed rename of the new KDS to the active KDS during a coordinated KDS refresh
or coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C43 (3139) A failure occurred switching the new KDS to the active KDS during either a coordinated KDS
refresh or a coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

C44 (3140) A coordinated KDS refresh or a coordinated KDS change master key failed because one of
the target systems (sysplex KDS cluster members) had not finished ICSF initialization.

User action: Allow all sysplex KDS cluster members to finish ICSF initialization and retry the
function.

1779 (6009) One or more target systems (sysplex KDS cluster members) did not successfully load the
new KDS during a coordinated KDS refresh or coordinated KDS change master key. This a
common result of an unresponsive target system.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. If the error is
common and persistent, contact your system programmer or the IBM Support Center.

1780 (6016) A DASD IO error was encountered during access of the CKDS, PKDS, or TKDS.

User action: Contact your ICSF security administrator or system programmer. The SVC 99
error code will be placed in the high-order halfword of the reason code field.

178C (6028) ESTAE could not be established in common I/O routines.

User action: Contact your system programmer or the IBM Support Center.

1790 (6032) The dynamic allocation of the DASD copy of the CKDS, PKDS, or TKDS in use by ICSF
failed.

User action: Contact your ICSF security administrator or system programmer. The SVC 99
error code will be placed in the high-order halfword of the reason code field.

1794 (6036) A dynamic deallocation error occurred when closing and deallocating a CKDS, PKDS, or
TKDS.

User action: Contact your security administrator or system programmer. The SVC 99 error
code will be placed in the high-order halfword of the reason code field.

772 z/OS V1R13 ICSF Application Programmer's Guide

||
|

|
|
|
|

||
|
|

|
|
|
|

||
|

|
|
|
|

||
|

|
|

||
|
|

|
|
|

Table 332. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

1795 (6037) A failure occurred routing KDS updates to the originating system of a coordinated KDS
change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

1796 (6038) The I/O subtask became out of sync with the sysplex KDS cluster during a coordinated KDS
change master key. The I/O subtask will be restarted to get back in sync with the sysplex
KDS cluster.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

1797 (6039) ICSF was unable to attach a coordinated KDS subtask for either a coordinated KDS refresh
or coordinated KDS change master key.

User action: Refer to the z/OS Cryptographic Services ICSF Administrator's Guide for
information on recovering from a coordinated CKDS administration failure. The function can
be retried. If the error is common and persistent, contact your system programmer or the
IBM Support Center.

2724 (10020) A key retrieved from the in-storage CKDS failed the MAC verification (MACVER) check and
is unusable.

User action: Contact your ICSF administrator.

2728 (10024) A key retrieved from the in-storage CKDS or a key to be written to the PKDS was rejected
for use by the installation exit.

User action: Contact your ICSF administrator or system programmer.

272C (10028) You cannot use the secure key import or multiple secure key import callable services
because the cryptographic unit is not enabled for processing. The cryptographic unit is not in
special secure mode or is disabled in the environment control mask (ECM).

User action: Contact your ICSF administrator (your administrator can enable the processing
mode or the ECM).

2734 (10036) More than one key with the same label was found in the CKDS or PKDS. This function
requires a unique key per label. The probable cause may be the use of an incorrect label
pointing to a key type that allows multiple keys per label.

User action: Make sure the application specifies the correct label. If the label is correct,
contact your ICSF security administrator or system programmer to verify the contents of the
CKDS or PKDS.

273C (10044) OPEN of the PKDS in use by ICSF failed.

User action: Contact your ICSF security administrator or system programmer.

2740 (10048) I/O error reading or writing to the DASD copy of the CKDS or PKDS in use by ICSF.

User action: Contact your ICSF security administrator or system programmer. The RPL
feedback code will be placed in the high-order halfword of the reason code field.

REASONCODES: TSS 0C5 (197)

Appendix A. ICSF and TSS Return and Reason Codes 773

||
|

|
|
|
|

||
|
|

|
|
|
|

||
|

|
|
|
|

Table 332. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

2744 (10052) Automatic REFRESH to free storage in the linear section of the CKT failed.

User action: Contact your ICSF security administrator or system programmer and request
that a REFRESH be done.

274C (10060) The I/O subtask terminated for an unexpected reason prior to completing the request. No
dynamic CKDS or PKDS update services are possible at this point.

User action: Contact your system programmer who can investigate the problem and restart
the I/O subtask by stopping and restarting ICSF.

2B04 (11012) This function is disabled in the environment control mask (ECM).

User action: Contact your ICSF administrator.

2B08 (11016) The master key is not in a valid state.

User action: Contact your ICSF administrator.

REASONCODES: TSS 2FC (764)

2B0C (11020) The modulus of the public or private key is larger than allowed and configured in the CCC or
FCV. You cannot use this key on this system.

User action: Regenerate the key with a smaller modulus size.

2B10 (11024) The system administrator has used the ICSF User Control Functions panel to disable the
RSA functions.

User action: Wait until administrator functions are complete and the RSA functions are
again enabled.

2B18 (11032) A CAMQ is valid for PKSC but not for PKA.

User action: Contact your ICSF administrator.

2B1C (11036) A PKDS is not available for processing.

User action: Contact your ICSF administrator.

2B20 (11040) The PKDS Control Record hash pattern is not valid.

User action: Contact your ICSF administrator.

2B24 (11044) The PKDS could not be accessed.

User action: Contact your ICSF administrator.

2B28 (11048) The PCICC, PCIXCC, CEX2C, or CEX3C failed.

User action: Contact your IBM support center.

2B2C (11052) The specific PCICC, PCIXCC, CEX2C, or CEX3C requested for service is temporarily
unavailable. PKDS could not be accessed. The specific PCICC, PCIXCC, CEX2C, or
CEX3C may be attempting some recovery action. If recovery action is successful, the
PCICC, PCIXCC, CEX2C, or CEX3C will be made available. If the recovery action fails, the
PCICC, PCIXCC, CEX2C, or CEX3C will be made permanently unavailable.

User action: Retry the function.

2B30 (11056) The PCICC, PCIXCC, CEX2C, or CEX3C failed. The response from the processor was
incomplete.

User action: Contact your IBM support center.

774 z/OS V1R13 ICSF Application Programmer's Guide

Table 332. Reason Codes for Return Code C (12) (continued)

Reason Code Hex
(Decimal) Description

2B34 (11060) The service could not be performed because the required PCICC, PCIXCC, CEX2C, or
CEX3C was not active, or did not have a master key set.

User action: If the service required a specific PCICC, PCIXCC, CEX2C, or CEX3C, verify
that the value specified is correct. Reissue the request when the required PCICC, PCIXCC,
CEX2C, or CEX3C is available, and has the master key set.

2B38 (11064) Service could not be performed because of a hardware error on the PCICC, PCIXCC,
CEX2C, or CEX3C.

2B40 (11072) CEX2C has been reconfigured to a CEX2A, or CEX3C has been reconfigured to a CEX3A.
TKE will not recognize the coprocessor until it is reconfigured back to a CEX2C or CEX3C.

2EDC (11996) The Cryptographic Coprocessor Feature is not available for CKDS initialization because the
cryptographic unit is not in special secure mode.

User action: Contact your ICSF administrator.

2EE0 (12000) You cannot use the Clear PIN generate callable service because the cryptographic unit is
not enabled for processing. The cryptographic unit is not in special secure mode.

User action: Contact your ICSF administrator who can enable the processing mode.

8CA2 (36002) CSFPCI was called to set the RSA master key in a PCIXCC, CEX2C or CEX3C. This
function is disabled because dynamic RSA master key change is enabled and the RSA
master key can only be changed from the ICSF TSO Change asymmetric master key utility.

8CB4 (36020) A refresh of the CKDS failed because the DASD copy of the CKDS is enciphered under the
wrong master key. This may have resulted from an automatic refresh during processing of
the CKDS key record create callable service.

User action: Contact your ICSF administrator.

8D14 (36116) The PKDS specified for refresh, reencipher or activate has an incorrect dataset attribute.

User action: Create a larger PKDS. See z/OS Cryptographic Services ICSF System
Programmer's Guide.

8D3C (36156) A PKCS #11 service is being requested. The service is disabled due to an ICSF FIPS self
test failure. The request is not processed.

User action: Report the problem to your IBM support center

8D40 (36160) The attempt to reencipher the CKDS failed because there is an enhanced wrapped token in
the CKDS.

User Action: Reencipher the CKDS on a system that supports the enhanced wrapping
method.

8D5A (36186) A request was made to reencipher a CKDS. The CKDS specified cannot be reenciphered on
this release of ICSF because the CKDS contains Variable-length Symmetric key tokens with
an unrecognized algorithm or key type in the associated data section. Only key tokens with
a recognized algorithm or key type can be managed on this release of ICSF.

User action: Perform the reencipher operation on a release of ICSF which recognizes the
algorithm and key type of all tokens in the specified CKDS.

8D56 (36182) A coprocessor failure was detected during initialization.

User action: The error is accompanied by the CSFM540I message. Follow instructions
associated with that message.

Appendix A. ICSF and TSS Return and Reason Codes 775

||
|
|

|

||
|
|
|

|
|

||

|
|

Reason Codes for Return Code 10 (16)
Table 333 lists reason codes returned from callable services that give return code
16.

Table 333. Reason Codes for Return Code 10 (16)

Reason Code Hex
(Decimal) Description

4 (4) ICSF: Your call to an ICSF callable service resulted in an abnormal ending.

User action: Contact your system programmer or the IBM Support Center.

150 (336) An error occurred in the cryptographic hardware component.

User action: Contact your system programmer or the IBM Support Center.

REASONCODES: ICSF 4 (4)

22C (556) The request parameter block failed consistency checking.

User action: Contact your system programmer or the IBM Support Center.

REASONCODES: ICSF 4 (4)

2C4 (708) Inconsistent data was returned from the cryptographic engine.

User action: Contact your system programmer or the IBM Support Center.

REASONCODES: ICSF 4 (4)

2C5 (709) Cryptographic engine internal error; could not access the master key data.

User action: Contact your system programmer or the IBM Support Center.

REASONCODES: ICSF 4 (4)

2C8 (712) An unexpected error occurred in the Master Key manager.

User action: Contact your system programmer or the IBM Support Center.

REASONCODES: ICSF 4 (4)

776 z/OS V1R13 ICSF Application Programmer's Guide

Appendix B. Key Token Formats

For debugging purposes, this appendix provides the formats for AES, DES internal,
external, and null key tokens and for PKA key tokens.

v “AES Internal Key Token”

v “DES Internal Key Token” on page 778

v “DES External Key Token” on page 780

v “External RKX DES Key Token” on page 781

v “DES Null Key Token” on page 782

v “Variable-length Symmetric Key Token” on page 782

v “Variable-length Symmetric Null Key Token” on page 792

v “PKA Null Key Token” on page 793

v “RSA Public Key Token” on page 793

v “RSA Private External Key Token” on page 793

– “RSA Private Key Token, 1024-bit Modulus-Exponent External Form” on page
795

– “RSA Private Key Token, 4096-bit Modulus-Exponent External Form” on page
796

– “RSA Private Key Token, 4096-bit Chinese Remainder Theorem External
Form” on page 797

v “RSA Private Internal Key Token” on page 798

– “RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for
Cryptographic Coprocessor Feature” on page 799

– “RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for
PCICC, PCIXCC, CEX2C, or CEX3C” on page 800

– “RSA Private Key Token, 4096-bit Chinese Remainder Theorem Internal Form”
on page 801

v “DSS Public Key Token” on page 803

v “DSS Private External Key Token” on page 804

v “DSS Private Internal Key Token” on page 805

v “ECC Key Token Format” on page 807

v “Trusted Block Key Token” on page 811

AES Key Token Formats

AES Internal Key Token
Table 334 shows the format for an AES internal key token.

Table 334. Internal Key Token Format

Bytes Description

0 X'01' (flag indicating this is an internal key token)

1–3 Implementation-dependent bytes (X'000000' for ICSF)

4 Key token version number (X'04')

5 Reserved - must be set to X'00'

© Copyright IBM Corp. 1997, 2011 777

Table 334. Internal Key Token Format (continued)

Bytes Description

6 Flag byte

Bit Meaning When Set On

0 Encrypted key and master key verification pattern (MKVP) are present.

Off for a clear key token, on for an encrypted key token.

1 Control vector (CV) value in this token has been applied to the key.

2 No key is present or the AES MKVP is not present if the key is encrypted.

3- 7 Reserved. Must be set to 0.

7 1-byte LRC checksum of clear key value.

8–15 Master key verification pattern (MKVP)

(For a clear AES key token this value will be hex zeros.)

16–47 128-bit, 192-bit, or 256-bit key value, left-justified and padded on the right with hex zeros.

48–55 8-byte control vector.

(For a clear AES key token this value will be hex zeros.)

56–57 2-byte integer specifying the length in bits of the clear key value.

58–59 2-byte integer specifying the length in bytes of the encrypted key value.

(For a clear AES key token this value will be hex zeros.)

60–63 Token validation value (TVV). See “Token Validation Value” for more information.

Token Validation Value
ICSF uses the token validation value (TVV) to verify that a token is valid. The TVV
prevents a key token that is not valid or that is overlaid from being accepted by
ICSF. It provides a checksum to detect a corruption in the key token.

When an ICSF callable service generates a key token, it generates a TVV and
stores the TVV in bytes 60-63 of the key token. When an application program
passes a key token to a callable service, ICSF checks the TVV. To generate the
TVV, ICSF performs a twos complement ADD operation (ignoring carries and
overflow) on the key token, operating on four bytes at a time, starting with bytes 0-3
and ending with bytes 56-59.

DES Key Token Formats

DES Internal Key Token
Table 335 shows the format for a DES internal key token.

Table 335. Internal Key Token Format

Bytes Description

0 X'01' (flag indicating this is an internal key token)

1–3 Implementation-dependent bytes (X'000000' for ICSF)

4 Key token version number (X'00' or X'01')

5 Reserved (X'00')

778 z/OS V1R13 ICSF Application Programmer's Guide

Table 335. Internal Key Token Format (continued)

Bytes Description

6 Flag byte

Bit Meaning When Set On

0 Encrypted key and master key verification pattern (MKVP) are present.

1 Control vector (CV) value in this token has been applied to the key.

2 Key is used for no control vector (NOCV) processing. Valid for transport keys only.

3 Key is an ANSI key-encrypting key (AKEK).

4 AKEK is a double-length key (16 bytes).
Note: When bit 3 is on and bit 4 is off, AKEK is a single-length key (8 bytes).

5 AKEK is partially notarized.

6 Key is an ANSI partial key.

7 Export prohibited.

7
Bit Meaning When Set On

0-2 Key value encryption method.

v 000 - the key is encrypted using the original CCA method (ECB).

v 001 - the key is encrypted using the X9.24 enhanced method (CBC).

These bits are ignored if the token contains no key or a clear key.

3-7 Reserved.

8–15 Master key verification pattern (MKVP)

16–23 A single-length key, the left half of a double-length key, or Part A of a triple-length key. The value
is encrypted under the master key when flag bit 0 is on, otherwise it is in the clear.

24–31 X'0000000000000000' if a single-length key, or the right half of a double-length operational key, or
Part B of a triple-length operational key. The right half of the double-length key or Part B of the
triple-length key is encrypted under the master key when flag bit 0 is on, otherwise it is in the
clear.

32–39 The control vector (CV) for a single-length key or the left half of the control vector for a
double-length key.

40–47 X'0000000000000000' if a single-length key or the right half of the control vector for a
double-length operational key.

48–55 X'0000000000000000' if a single-length key or double-length key, or Part C of a triple-length
operational key. Part C of a triple-length key is encrypted under the master key when flag bit 0 is
on, otherwise it is in the clear.

56-58 Reserved (X'000000')

59 bits 0 and 1 B'10' Indicates CDMF DATA or KEK.
B'00' Indicates DES for DATA keys or the system default algorithm for a KEK.
B'01' Indicates DES for a KEK.

59 bits 2 and 3 B'00' Indicates single-length key (version 0 only).
B'01' Indicates double-length key (version 1 only).
B'10' Indicates triple-length key (version 1 only).

59 bits 4 –7 B'0000'

60–63 Token validation value (TVV).

Appendix B. Key Token Formats 779

Note: A key token stored in the CKDS will not have an MKVP or TVV. Before such
a key token is used, the MKVP is copied from the CKDS header record and
the TVV is calculated and placed in the token. See “Token Validation Value”
on page 778 for more information.

DES External Key Token
Table 336 shows the format for a DES external key token.

Table 336. Format of External Key Tokens

Bytes Description

0 X'02' (flag indicating an external key token)

1 Reserved (X'00')

2–3 Implementation-dependent bytes (X'0000' for ICSF)

4 Key token version number (X'00' or X'01')

5 Reserved (X'00')

6 Flag byte

Bit Meaning When Set On

0 Encrypted key is present.

1 Control vector (CV) value has been applied to the key.

Other bits are reserved and are binary zeros.

7
Bit Meaning When Set On

0-2 Key value encryption method.

v 000 - the key is encrypted using the original CCA method (ECB).

v 001 - the key is encrypted using the X9.24 enhanced method (CBC).

These bits are ignored if the token contains no key or a clear key.

3-7 Reserved.

8–15 Reserved (X'0000000000000000')

16–23 Single-length key or left half of a double-length key, or Part A of a triple-length key. The value is
encrypted under a transport key-encrypting key when flag bit 0 is on, otherwise it is in the clear.

24–31 X'0000000000000000' if a single-length key or right half of a double-length key, or Part B of a
triple-length key. The right half of a double-length key or Part B of a triple-length key is encrypted
under a transport key-encrypting key when flag bit 0 is on, otherwise it is in the clear.

32–39 Control vector (CV) for single-length key or left half of CV for double-length key

40–47 X'0000000000000000' if single-length key or right half of CV for double-length key

48–55 X'0000000000000000' if a single-length key, double-length key, or Part C of a triple-length key.
This key part is encrypted under a transport key-encrypting key when flag bit 0 is on, otherwise it
is in the clear.

56–58 Reserved (X'000000')

59 bits 0 and 1 B'00'

59 bits 2 and 3 B'00' Indicates single-length key (version 0 only).
B'01' Indicates double-length key (version 1 only).
B'10' Indicates triple-length key (version 1 only).

59 bits 4–7 B'0000'

60-63 Token validation value (see “Token Validation Value” on page 778 for a description).

780 z/OS V1R13 ICSF Application Programmer's Guide

External RKX DES Key Token
Table 337 defines an external DES key-token called an RKX key-token. An RKX
key-token is a special token used exclusively by the Remote Key Export
(CSNDRKX and CSNFRKX) and DES key-storage callable services (for example,
CKDS Key Record Write). No other callable services use or reference an RKX
key-token or key-token record. For additional information about the usage of RKX
key tokens, see “Remote Key Loading” on page 33.

Note: Callable services other than the Remote Key Export and the DES
key-storage callable services do not support RKX key tokens or RKX key
token records.

As can be seen in the table, RKX key tokens are 64 bytes in length, have a token
identifier flag (X'02'), a token version number (X'10'), and room for encrypted keys
like normal CCA DES key tokens. Unlike normal CCA DES key-tokens, RKX key
tokens do not have a control vector, flag bits, and a token-validation value. In
addition, they have a confounder value, a MAC value, and room for a third
encrypted key.

Table 337. External RKX DES key-token format, version X'10'

Offset Length Meaning

00 1 X'02' (a token identifier flag that indicates an external key-token)

01 3 Reserved, binary zero

04 1 The token version number (X'10')

05 2 Reserved, binary zero

07 1 Key length in bytes, including confounder

08 8 Confounder

16 8 Key left

24 8 Key middle (binary zero if not used)

32 8 Key right (binary zero if not used)

40 8 Rule ID

The trusted block rule identifier used to create this key token. A
subsequent call to Remote Key Export (CSNDRKX or CSNFRKX)
can use this token with a trusted block rule that references the
rule ID that must have been used to create this token. The
trusted block rule can be compared with this rule ID for
verification purposes.

The Rule ID is an 8-byte string of ASCII characters, left justified
and padded on the right with space characters. Acceptable
characters are A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F'). All other
characters are reserved for future use.

48 8 Reserved, binary zero

Appendix B. Key Token Formats 781

|

Table 337. External RKX DES key-token format, version X'10' (continued)

Offset Length Meaning

56 8 MAC value

ISO 16609 TDES CBC-mode MAC, computed over the 56 bytes
starting at offset 0 and including the encrypted key value and the
rule ID using the same MAC key that is used to protect the
trusted block itself.

This MAC value guarantees that the key and the rule ID cannot
be modified without detection, providing integrity and binding the
rule ID to the key itself. This MAC value must verify with the
same trusted block used to create the key, thus binding the key
structure to that specific trusted block.

Notes:

1. A fixed, randomly derived variant is exclusive-ORed with the MAC key before it
is used to encipher the generated or exported key and confounder.

2. The MAC key is located within a trusted block (internal format) and can be
recovered by decipherment under a variant of the PKA master key.

3. The trusted block is originally created in external form by the Trusted Block
Create callable service and then converted to internal form by the PKA Key
Import callable service prior to the Remote Key Export call.

DES Null Key Token
Table 338 shows the format for a DES null key token.

Table 338. Format of Null Key Tokens

Bytes Description

0 X'00' (flag indicating this is a null key token).

1–15 Reserved (set to binary zeros).

16–23 Single-length encrypted key, or left half of double-length encrypted key, or Part A of triple-length
encrypted key.

24–31 X'0000000000000000' if a single-length encrypted key, the right half of double-length encrypted
key, or Part B of triple-length encrypted key.

32–39 X'0000000000000000' if a single-length encrypted key or double-length encrypted key.

40–47 Reserved (set to binary zeros).

48–55 Part C of a triple-length encrypted key.

56–63 Reserved (set to binary zeros).

Variable-length Symmetric Key Token Formats

Variable-length Symmetric Key Token
The following table presents the presents the format for a variable-length symmetric
key token. The length of the token depends on the key type and algorithm.

782 z/OS V1R13 ICSF Application Programmer's Guide

|

|

|
|

Table 339. Variable-length Symmetric Key Token

Offset
(Dec)

Length of
Field
(Bytes) Description

Header

0 1 Token flag

X'00' for null token

X'01' for internal tokens

X'02' for external tokens

1 1 Reserved (X'00')

2 2 Length of the token in bytes

4 1 Token version number X'05'

5 3 Reserved (X'000000')

Wrapping information

8 1 Key material state.

X'00' no key present (internal or external)

X'01' key is clear (internal)

X'02' key is encrypted under a key-encrypting key (external)

X'03' key is encrypted under the master key (internal)

9 1 Key verification pattern (KVP) type.

X'00' No KVP

X'01' AES master key verification pattern

X'02' key-encrypting key verification pattern

10 16 Verification pattern of the key used to wrap the payload. Value is left justified.

26 1 Wrapping method - This value indicates the wrapping method used to protect the data in
the encrypted section.

X'00' key is in the clear

X'02' AESKW

X'03' PKOAEP2

27 1 Hash algorithm used in wrapping algorithm.

v For wrapping method X'00'

X'00' None. For clear key tokens.

v For wrapping method X'02'

X'02' SHA-256

v For wrapping method X'03'

X'01' SHA-1

X'02' SHA-256

X'04' SHA-384

X'08' SHA-512

28 2 Reserved (X'0000')

AESKW Components: Associated data and clear key or encrypted AESKW payload

Appendix B. Key Token Formats 783

||

|
|

|
|
||

|

|||

||

||

||

|||

|||

|||

|||

|

|||

||

||

||

||

|||

||

||

||

|||

|||
|

||

||

||

|||

|

||

|

||

|

||

||

||

||
|

|||

|

Table 339. Variable-length Symmetric Key Token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

Associated data section

30 1 Associated data version (X'01')

31 1 Reserved (X'00')

32 2 Length of the associated data in bytes: adl

34 1 Length of the key name in bytes: kl

35 1 Length of the IBM extended associated data in bytes: iead

36 1 Length of the installation-definable associated data in bytes: uad

37 1 Reserved (X'00')

38 2 Length of the payload in bits: pl

40 1 Reserved (X'00')

41 1 Type of algorithm for which the key can be used

X'02' AES

X'03' HMAC

42 2 Key type:

For algorithm AES:

X'0001' CIPHER

X'0003' EXPORTER

X'0004' IMPORTER

For algorithm HMAC:

X'0002' MAC

44 1 Key-usage field count (kuf) - (1 byte)

45 kuf * 2 Key-usage fields (kuf * 2 bytes)

v For HMAC algorithm keys, refer to Table 340 on page 788.

v For AES algorithm Key-Encrypting Keys (Exporter or Importer), refer to Table 341 on
page 789.

v For AES algorithm Cipher Keys, refer to Table 342 on page 792.

45 + kuf *
2

1 Key-management field count (kmf): 2 (no pedigree information) or 3 (has pedigree
information)

784 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|

|
|
||

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

||

||

|||

|

||

||

||

|

||

|||

|||

|

|
|

|

|
|
||
|

Table 339. Variable-length Symmetric Key Token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

46 + kuf *
2

2 Key-management field 1

High-order byte:

1xxx xxxx
Allow export using symmetric key

x1xx xxxx
Allow export using unauthenticated asymmetric key

xx1x xxxx
Allow export using authenticated asymmetric key

xxx1 xxxx
Allow export in RAW format.

All other bits are reserved and must be zero.

Low-order byte:

--symmetric--

1xxx xxxx
Prohibit export using DES key.

x1xx xxxx
Prohibit export using AES key.

--asymmetric--

xxxx 1xxx
Prohibit export using RSA key.

All other bits are reserved and must be zero.

Appendix B. Key Token Formats 785

|

|
|

|
|
||

|
|
||

|

|
|

|
|

|
|

|
|

|

|

|

|
|

|
|

|

|
|

|

Table 339. Variable-length Symmetric Key Token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

48 + kuf *
2

2 Key-management field 2

High-order byte:

11xx xxxx
Key, if present, is incomplete. Key requires at least 2 more parts.

10xx xxxx
Key, if present, is incomplete. Key requires at least 1 more part.

01xx xxxx
Key, if present, is incomplete. Key can be completed or have more parts added.

00xx xxxx
Key, if present, is complete. No more parts can be added.

All other bits are reserved and must be zero.

Low-order byte (Security History):

xxx1 xxxx
Key was encrypted with an untrusted KEK

xxxx 1xxx
Key was in a format without type/usage attributes

xxxx x1xx
Key was encrypted with key weaker than itself

xxxx xx1x
Key was in a non-CCA format

xxxx xxx1
Key was encrypted in ECB mode.

All other bits are reserved and must be zero.

50 + kuf *
2

2 Key-management field 3 - Pedigree (this field may or may not be present)

Indicates how key was originally created and how it got into the current system.

High-order byte: Pedigree Original.

X'00' Unknown (Key Token Build2, Key Translate2)

X'01' Other - method other than those defined here, probably used in UDX

X'02' Randomly Generated (Key Generate2)

X'03' Established by key agreement (ECC Diffie-Hellman)

X'04' Created from cleartext key components (Key Part Import2)

X'05' Entered as a cleartext key value (Key Part Import2, Secure Key Import2)

X'06' Derived from another key

X'07' Cleartext keys or key parts that were entered at TKE and secured from there to
the target card (operational key load)

All unused values are reserved and undefined.

786 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|

|
|
||

|
|
||

|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|
|

|
|

|
|

|

|
|
||

|

|

||

||

||

||

||

||

||

||
|

|

Table 339. Variable-length Symmetric Key Token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

Low-order byte: Pedigree Current.

X'00' Unknown (Key Token Build2)

X'01' Other - method other than those defined here, probably used in UDX

X'02' Randomly Generated (Key Generate2)

X'03' Established by key agreement (ECC Diffie-Hellman)

X'04' Created from cleartext key components (Key Part Import2)

X'05' Entered as a cleartext key value (Key Part Import2, Secure Key Import2)

X'06' Derived from another key

X'07' Imported from a CCA 05 variable length token with pedigree field (Symmetric Key
Import2)

X'08' Imported from a CCA 05 variable length token with no pedigree field (Symmetric
Key Import2)

X'09' Imported from a CCA token that had a CV

X'0A' Imported from a CCA token that had no CV or a zero CV

X'0B' Imported from a TR-31 key block that contained a CCA CV (ATTR-CV option)
(TR-31 Import)

X'0C' Imported from a TR-31 key block that did not contain a CCA CV (TR-31 Import)

X'0D' Imported using PKCS 1.2 RSA encryption (Symmetric Key Import2)

X'0E' Imported using PKCS OAEP encryption (Symmetric Key Import2)

X'0F' Imported using PKA92 RSA encryption (Symmetric Key Import2)

X'10' Imported using RSA ZERO-PAD encryption (Symmetric Key Import2)

X'11' Converted from a CCA token that had a CV (Key Translate2)

X'12' Converted from a CCA token that had no CV or a zero CV (Key Translate2)

X'13' Cleartext keys or key parts that were entered at TKE and secured from there to
the target card (operational key load)

X'14' Exported from a CCA 05 variable length token with pedigree field (Symmetric Key
Export)

X'15' Exported from a CCA 05 variable length token with no pedigree field (Symmetric
Key Export)

X'16' Exported using PKCS OAEP encryption (Symmetric Key Export)

All unused values are reserved and undefined.

46 + kuf *
2 + kmf *
2

kl Key name

46 + kuf *
2 + kmf *
2 + kl

iead IBM extended associated data

46 + kuf *
2 + kmf *
2 + kl +
iead

uad Installation-defined associated data

Appendix B. Key Token Formats 787

|

|
|

|
|
||

|||

||

||

||

||

||

||

||

||
|

||
|

||

||

||
|

||

||

||

||

||

||

||

||
|

||
|

||
|

||

|

|
|
|

||

|
|
|

||

|
|
|
|

||

Table 339. Variable-length Symmetric Key Token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

Clear key or encrypted payload

30 + adl (pl+7)/8 Encrypted AESKW payload (internal keys): The encrypted AESKW payload is created
from the unencrypted AESKW payload which is made up of the ICV/pad length/hash
options and hash length/hash options/hash of the associated data/key material/padding.
See unencrypted AESKW payload below.

Encrypted PKOAEP2 payload (external keys): The encrypted PKOAEP2 payload is
created using the PKCS #1 v1.2 encoding method for a given hash algorithm. The
message (M) inside the encoding contains: [2 bytes: bit length of key] || [clear HMAC key].
M is encoded using OAEP and then encrypted with an RSA public key according to the
standard.

Clear key payload: When the key is clear, only the key material will be in the payload
padded to the nearest byte with binary zeros.

30 + adl +
(pl+7)/8

End of AESKW components

Unencrypted AESKW payload (This data will never appear in the clear outside of the cryptographic
coprocessor)

0 6 Integrity check value.

Six byte constant: X'A6A6A6A6A6A6'.

6 1 Length of the padding in bits: pb

7 1 Length of hash options and hash of the associated data in bytes (hoh)

8 4 Hash options

12 hoh - 4 Hash of the associated data

8 + hoh (pl/8) – 8 -
hoh

Key data and padding (key data is left justified).

pl/8 pl is the bit length of the payload

Table 340. HMAC Algorithm Key-usage fields

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 2

788 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|

|
|
||

|

|||
|
|
|

|
|
|
|
|

|
|

|
|
||

|
|

|||

|

|||

|||

|||

|||

||
|
|

|||
|

||

|
|

|
|
||

|||

Table 340. HMAC Algorithm Key-usage fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 2 Key-usage field 1

High-order byte:

1xxx xxxx
Key can be used for generate.

x1xx xxxx
Key can be used for verify.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:

1xxx xxxx
SHA-1 hash method is allowed for the key.

x1xx xxxx
SHA-224 hash method is allowed for the key.

xx1x xxxx
SHA-256 hash method is allowed for the key.

xxx1 xxxx
SHA-384 hash method is allowed for the key.

xxxx 1xxx
SHA-512 hash method is allowed for the key.

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

Table 341. AES Algorithm KEK Key-usage fields

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 4

Appendix B. Key Token Formats 789

|

|
|

|
|
||

|||

|

|
|

|
|

|

|

|
|

|
|

|
|

|

|||

|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

||

|
|

|
|
||

|||

Table 341. AES Algorithm KEK Key-usage fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 2 Key-usage field 1

High-order byte for EXPORTER:

1xxx xxxx
Key can be used for EXPORT.

x1xx xxxx
Key can be used for TRANSLAT.

xx1x xxxx
Key can be used for GENERATE-OPEX.

xxx1 xxxx
Key can be used for GENERATE-IMEX.

xxxx 1xxx
Key can be used for GENERATE-EXEX.

xxxx x1xx
Key can be used for GENERATE-PUB.

All unused bits are reserved and must be zero.

High-order byte for IMPORTER:

1xxx xxxx
Key can be used for IMPORT.

x1xx xxxx
Key can be used for TRANSLAT.

xx1x xxxx
Key can be used for GENERATE-OPIM.

xxx1 xxxx
Key can be used for GENERATE-IMEX.

xxxx 1xxx
Key can be used for GENERATE-IMIM.

xxxx x1xx
Key can be used for GENERATE-PUB.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

790 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|

|
|
||

|||

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|
|

|

Table 341. AES Algorithm KEK Key-usage fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

47 2 Key-usage field 2

High-order byte:

1xxx xxxx
Key can wrap a TR-31 key.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx xxx1
This KEK can export a key in RAW format.

All unused bits are reserved and must be zero

49 2 Key-usage field 3

High-order byte:

1xxx xxxx
Key can wrap DES keys

x1xx xxxx
Key can wrap AES keys

xx1x xxxx
Key can wrap HMAC keys

xxx1 xxxx
Key can wrap RSA keys

xxxx 1xxx
Key can wrap ECC keys

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

51 2 Key-usage field 4

High-order byte:

1xxx xxxx
Key can wrap DATA class keys

x1xx xxxx
Key can wrap KEK class keys

xx1x xxxx
Key can wrap PIN class keys

xxx1 xxxx
Key can wrap DERIVATION class keys

xxxx 1xxx
Key can wrap CARD class keys

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

Appendix B. Key Token Formats 791

|

|
|

|
|
||

|||

|

|
|

|

|

|
|

|

|||

|

|
|

|
|

|
|

|
|

|
|

|

|

|

|||

|

|
|

|
|

|
|

|
|

|
|
|

|

|
|

Table 342. AES Algorithm Cipher Key Associated Data

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 2

45 2 Key-usage field 1

High-order byte:

1xxx xxxx
Key can be used for encryption.

x1xx xxxx
Key can be used for decryption.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:

X'00' Key can be used for Cipher Block Chaining (CBC).

X'01' Key can be used for Electronic Code Book (ECB).

X'02' Key can be used for Cipher Feedback (CFB).

X'03' Key can be used for Output Feedback (OFB).

X'04' Key can be used for Galois/Counter Mode (GCM)

X'05' Key can be used for XEX-based Tweaked CodeBook Mode with CipherText
Stealing (XTS)

All unused values are reserved and must not be used.

Low-order byte:

All bits are reserved and must be zero.

Variable-length Symmetric Null Key Token
The following table shows the format for a variable-length symmetric null key token.

Table 343. Variable-length Symmetric Null Token

Bytes Description

0 X'00' Token identifier (indicates that this is a null key token).

1 Version, X'00'.

2-3 X'0008' Length of the key token structure.

4-7 Ignored (zero).

792 z/OS V1R13 ICSF Application Programmer's Guide

||

|
|

|
|
||

|||

|||

|

|
|

|
|

|

|

|
|

|
|

|
|

|

|||

|

||

||

||

||

||

||
|

|

|

|
|

|

|

||

||

||

||

||

||
|

PKA Key Token Formats

PKA Null Key Token
Table 344 shows the format for a PKA null key token.

Table 344. Format of PKA Null Key Tokens

Bytes Description

0 X'00' Token identifier (indicates that this is a null key token).

1 Version, X'00'

2–3 X'0008' Length of the key token structure.

4–7 Ignored (should be zero).

RSA Key Token Formats

RSA Public Key Token
An RSA public key token contains the following sections:

v A required token header, starting with the token identifier X'1E'

v A required RSA public key section, starting with the section identifier X'04'

Table 345 presents the format of an RSA public key token. All length fields are in
binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format).

Table 345. RSA Public Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx+yyy.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, “yyy”.

012 xxx Public key exponent (this is generally a 1-, 3-, or 64- to 512-byte quantity), e.
e must be odd and 1<e<n. (Frequently, the value of e is 216+1)

12+xxx yyy Modulus, n.

RSA Private External Key Token
An RSA private external key token contains the following sections:
v A required PKA token header starting with the token identifier X'1E'

Appendix B. Key Token Formats 793

|

v A required RSA private key section starting with one of the following section
identifiers:

– X'02' which indicates a modulus-exponent form RSA private key section (not
optimized) with modulus length of up to 1024 bits for use with the
Cryptographic Coprocessor Feature or the PCI Cryptographic Coprocessor.

– X'08' which indicates an optimized Chinese Remainder Theorem form private
key section with modulus bit length of up to 4096 bits for use with the PCICC,
PCIXCC, CEX2C, or CEX3C.

– X'09' which indicates a modulus-exponent form RSA private key section (not
optimized) with modulus length of up to 4096 bits for use with the CEX2C or
CEX3C.

v A required RSA public key section, starting with the section identifier X'04'
v An optional private key name section, starting with the section identifier X'10'

Table 346 presents the basic record format of an RSA private external key token. All
length fields are in binary. All binary fields (exponents, lengths, and so on) are
stored with the high-order byte first (left, low-address, S/390 format). All binary fields
(exponents, modulus, and so on) in the private sections of tokens are right-justified
and padded with zeros to the left.

Table 346. RSA Private External Key Token Basic Record Format

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token. The private key is
either in cleartext or enciphered with a transport key-encrypting key.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Private Key Section (required)

v For 1024-bit Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent External Form”
on page 795

v For 4096-bit Modulus-Exponent form refer to “RSA Private Key Token, 4096-bit Modulus-Exponent External Form”
on page 796

v For 4096-bit Chinese Remainder Theorem form refer to “RSA Private Key Token, 4096-bit Chinese Remainder
Theorem External Form” on page 797

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, which is zero for a private
token.
Note: In an RSA private key token, this field should be zero. The RSA
private key section contains the modulus.

012 xxx Public key exponent, e (this is generally a 1-, 3-, or 64- to 512-byte
quantity). e must be odd and 1<e<n. (Frequently, the value of e is 216+1
(=65,537).

Private Key Name (optional)

794 z/OS V1R13 ICSF Application Programmer's Guide

Table 346. RSA Private External Key Token Basic Record Format (continued)

Offset (Dec) Number of Bytes Description

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

RSA Private Key Token, 1024-bit Modulus-Exponent External Form: This RSA
private key token and the external X'02' token is supported on the Cryptographic
Coprocessor Feature and PCI Cryptographic Coprocessor.

Table 347. RSA Private Key Token, 1024-bit Modulus-Exponent External Format

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key, modulus-exponent format
(RSA-PRIV)

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'00' Unencrypted RSA private key subsection identifier.
X'82' Encrypted RSA private key subsection identifier.

029 001 Reserved, binary zero.

030 020 SHA-1 hash of the optional key-name section. If there is no key-name
section, then 20 bytes of X'00'.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable.

All other bits reserved, set to binary zero.

054 006 Reserved; set to binary zero.

060 024 Reserved; set to binary zero.

084 Start of the optionally-encrypted secure subsection.

084 024 Random number, confounder.

108 128 Private-key exponent, d. d=e-1 mod((p-1)(q-1)), and 1<d<n where e is the
public exponent.

End of the optionally-encrypted subsection; the confounder field and the private-key exponent field
are enciphered for key confidentiality when the key format and security flags (offset 28) indicate
that the private key is enciphered. They are enciphered under a double-length transport key using
the ede2 algorithm.

236 128 Modulus, n. n=pq where p and q are prime and 1<n<21024.

Appendix B. Key Token Formats 795

RSA Private Key Token, 4096-bit Modulus-Exponent External Form: This RSA
private key token and the external X'09' token is supported on the Crypto Express2
Coprocessor and Crypto Express3 Coprocessor.

Table 348. RSA Private Key Token, 4096-bit Modulus-Exponent External Format

Offset (Dec) Number of Bytes Description

000 001 X'09', section identifier, RSA private key, modulus-exponent format
(RSAMEVAR).

001 001 X'00', version.

002 002 Length of the RSA private key section 132+ddd+nnn+xxx.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 002 Length of the encrypted private key section 8+ddd+xxx.

026 002 Reserved; set to binary zero.

028 001 Key format and security:
X'00' Unencrypted RSA private key subsection identifier.
X'82' Encrypted RSA private key subsection identifier.

029 001 Reserved, set to binary zero.

030 020 SHA-1 hash of the optional key-name section. If there is no key-name
section, then 20 bytes of X'00'.

050 001 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable

All other bits reserved, set to binary zero.

051 001 Reserved; set to binary zero.

052 048 Reserved; set to binary zero.

100 016 Reserved; set to binary zero.

116 002 Length of private exponent, d, in bytes: ddd.

118 002 Length of modulus, n, in bytes: nnn.

120 002 Length of padding field, in bytes: xxx.

122 002 Reserved; set to binary zero.

124 Start of the optionally-encrypted secure subsection.

124 008 Random number, confounder.

132 ddd Private-key exponent, d. d=e-1 mod((p-1)(q-1)), and 1<d<n where e is the
public exponent.

132+ddd xxx X'00' padding of length xxx bytes such that the length from the start of the
random number above to the end of the padding field is a multiple of
eight bytes.

End of the optionally-encrypted subsection; the confounder field and the private-key exponent field
are enciphered for key confidentiality when the key format and security flags (offset 28) indicate
that the private key is enciphered. They are enciphered under a double-length transport key using
the ede2 algorithm.

132+ddd+xxx nnn Modulus, n. n=pq where p and q are prime and 1<n<24096.

796 z/OS V1R13 ICSF Application Programmer's Guide

RSA Private Key Token, 4096-bit Chinese Remainder Theorem External
Form: This RSA private key token (up to 2048-bit modulus) is supported on the
PCICC, PCIXCC, CEX2C, or CEX3C. The 4096-bit modulus private key token is
supported on the z9 EC, z9 BC, z10 EC and z10 BC with the Nov. 2007 or later
version of the licensed internal code installed on the CEX2C or CEX3C.

Table 349. RSA Private Key Token, 4096-bit Chinese Remainder Theorem External Format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss + uuu
+ xxx + nnn.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
end of the modulus.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'40' Unencrypted RSA private-key subsection identifier, Chinese

Remainder form.
X'42' Encrypted RSA private-key subsection identifier, Chinese

Remainder form.

029 001 Reserved; set to binary zero.

030 020 SHA-1 hash of the optional key-name section and any following optional
sections. If there are no optional sections, then 20 bytes of X'00'.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 004 Reserved; set to binary zero.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 Reserved, set to binary zero.

092 032 Reserved; set to binary zero.

124 Start of the optionally-encrypted secure subsection.

124 008 Random number, confounder.

132 ppp Prime number, p.

132 + ppp qqq Prime number, q

132 + ppp + qqq rrr dp = d mod(p - 1)

Appendix B. Key Token Formats 797

Table 349. RSA Private Key Token, 4096-bit Chinese Remainder Theorem External Format (continued)

Offset (Dec) Number of Bytes Description

132 + ppp + qqq
+ rrr

sss dq = d mod(q - 1)

132 + ppp + qqq
+ rrr + sss

uuu U = q –1mod(p).

132 + ppp + qqq
+ rrr + sss + uuu

xxx X'00' padding of length xxx bytes such that the length from the start of the
random number above to the end of the padding field is a multiple of
eight bytes.

End of the optionally-encrypted secure subsection; all of the fields starting with the confounder
field and ending with the variable length pad field are enciphered for key confidentiality when the
key format-and-security flags (offset 28) indicate that the private key is enciphered. They are
enciphered under a double-length transport key using the TDES (CBC outer chaining) algorithm.

132 + ppp + qqq
+ rrr + sss + uuu
+ xxx

nnn Modulus, n. n = pq where p and q are prime and 1<n<24096.

RSA Private Internal Key Token
An RSA private internal key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1F'
v basic record format of an RSA private internal key token. All length fields are in

binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format). All binary fields (exponents,
modulus, and so on) in the private sections of tokens are right-justified and
padded with zeros to the left.

Table 350. RSA Private Internal Key Token Basic Record Format

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1F' indicates an internal token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

RSA Private Key Section and Secured Subsection (required)

v For 1024-bit X'02' Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent Internal
Form for Cryptographic Coprocessor Feature” on page 799

v For 1024-bit X'06' Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent Internal
Form for PCICC, PCIXCC, CEX2C, or CEX3C” on page 800

v For 4096-bit X'08' Chinese Remainder Theorem form refer to “RSA Private Key Token, 4096-bit Chinese
Remainder Theorem Internal Form” on page 801

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

798 z/OS V1R13 ICSF Application Programmer's Guide

Table 350. RSA Private Internal Key Token Basic Record Format (continued)

Offset (Dec) Number of Bytes Description

010 002 RSA public key modulus field length in bytes, which is zero for a private
token.

012 xxx Public key exponent (this is generally a 1, 3, or 64 to 512 byte quantity),
e. e must be odd and 1<e<n. (Frequently, the value of e is 216+1
(=65,537).

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

Internal Information Section (required)

000 004 Eye catcher 'PKTN'.

004 004 PKA token type.

Bit Meaning When Set On

0 RSA key.

1 DSS key.

2 Private key.

3 Public key.

4 Private key name section exists.

5 Private key unenciphered.

6 Blinding information present.

7 Retained private key.

008 004 Address of token header.

012 002 Total length of total structure including this information section.

014 002 Count of number of sections.

016 016 PKA master key hash pattern.

032 001 Domain of retained key.

033 008 Serial number of processor holding retained key.

041 007 Reserved.

RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for
Cryptographic Coprocessor Feature:

Table 351. RSA Private Internal Key Token, 1024-bit ME Form for Cryptographic Coprocessor Feature

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key.

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

Appendix B. Key Token Formats 799

Table 351. RSA Private Internal Key Token, 1024-bit ME Form for Cryptographic Coprocessor Feature (continued)

Offset (Dec) Number of Bytes Description

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key
is deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'02' RSA private key.

029 001 Format of external key from which this token was derived:
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.

030 020 SHA-1 hash of the key token structure contents that follow the public key
section. If no sections follow, this field is set to binary zeros.

050 001 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

051 009 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under a PKA master key—can be
under the Signature Master Key (SMK) or Key Management Master Key
(KMMK) depending on key use.

108 128 Secret key exponent d, encrypted under the OPK. d=e-1 mod((p-1)(q-1))

236 128 Modulus, n. n=pq where p and q are prime and 1<n<21024.

RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for PCICC,
PCIXCC, CEX2C, or CEX3C:

Table 352. RSA Private Internal Key Token, 1024-bit ME Form for PCICC, PCIXCC, CEX2C, or CEX3C

Offset (Dec) Number of Bytes Description

000 001 X'06', section identifier, RSA private key modulus-exponent format
(RSA-PRIV).

001 001 X'00', version.

002 002 Length of the RSA private key section X'0198' (408 decimal) + rrr + iii +
xxx.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to and
including the modulus at offset 236.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'02' RSA private key.

029 001 Format of external key from which this token was derived:
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.
X'23' Private key was generated using regeneration data.
X'24' Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following optional
sections. If there are no optional sections, this field is set to binary zeros.

800 z/OS V1R13 ICSF Application Programmer's Guide

Table 352. RSA Private Internal Key Token, 1024-bit ME Form for PCICC, PCIXCC, CEX2C, or CEX3C (continued)

Offset (Dec) Number of Bytes Description

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zeros.

054 006 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under the Asymmetric Keys
Master Key using the ede3 algorithm.

108 128 Private key exponent d, encrypted under the OPK using the ede5
algorithm. d=e-1mod((p-1)(q-1)), and 1<d<n where e is the public
exponent.

236 128 Modulus, n. n=pq where p and q are prime and 2512<n<21024.

364 016 Asymmetric-Keys Master Key hash pattern.

380 020 SHA-1 hash value of the blinding information subsection cleartext, offset
400 to the end of the section.

400 002 Length of the random number r, in bytes: rrr.

402 002 Length of the random number r–1, in bytes: iii.

404 002 Length of the padding field, in bytes: xxx.

406 002 Reserved; set to binary zeros.

408 Start of the encrypted blinding subsection

408 rrr Random number r (used in blinding).

408 + rrr iii Random number r–1 (used in blinding).

408 + rrr + iii xxx X'00' padding of length xxx bytes such that the length from the start of
the encrypted blinding subsection to the end of the padding field is a
multiple of eight bytes.

End of the encrypted blinding subsection; all of the fields starting with the random number r and
ending with the variable length pad field are encrypted under the OPK using TDES (CBC outer
chaining) algorithm.

RSA Private Key Token, 4096-bit Chinese Remainder Theorem Internal Form:
This RSA private key token (up to 2048-bit modulus) is supported on the PCICC,
PCIXCC, CEX2C, or CEX3C. The 4096-bit modulus private key token is supported
on the z9 EC, z9 BC, z10 EC, z10 BC, or z196 with the Nov. 2007 or later version
of the licensed internal code installed on the CEX2C or CEX3C.

Table 353. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss + uuu
+ ttt + iii + xxx + nnn.

004 020 SHA-1 hash value of the private-key subsection cleartext, offset 28 to the
end of the modulus.

024 004 Reserved; set to binary zero.

Appendix B. Key Token Formats 801

Table 353. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format (continued)

Offset (Dec) Number of Bytes Description

028 001 Key format and security:
X'08' Encrypted RSA private-key subsection identifier, Chinese

Remainder form.

029 001 Key derivation method:
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.
X'23' Private key was generated using regeneration data.
X'24' Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following sections.
If there are no optional sections, then 20 bytes of X'00'.

050 004 Key use flag bits:

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 002 Length of the random number r, in bytes: ttt.

068 002 Length of the random number r–1, in bytes: iii.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 Asymmetric-Keys Master Key hash pattern.

092 032 Object Protection Key (OPK) encrypted under the Asymmetric-Keys
Master Key using the TDES (CBC outer chaining) algorithm.

124 Start of the encrypted secure subsection, encrypted under the OPK using TDES (CBC outer
chaining).

124 008 Random number, confounder.

132 ppp Prime number, p.

132 + ppp qqq Prime number, q

132 + ppp + qqq rrr dp = d mod(p - 1)

132 + ppp + qqq
+ rrr

sss dq = d mod(q - 1)

132 + ppp + qqq
+ rrr + sss

uuu U = q–1mod(p).

132 + ppp + qqq
+ rrr + sss + uuu

ttt Random number r (used in blinding).

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt

iii Random number r–1 (used in blinding).

802 z/OS V1R13 ICSF Application Programmer's Guide

Table 353. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format (continued)

Offset (Dec) Number of Bytes Description

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt + iii

xxx X'00' padding of length xxx bytes such that the length from the start of the
confounder at offset 124 to the end of the padding field is a multiple of
eight bytes.

End of the encrypted secure subsection; all of the fields starting with the confounder field and
ending with the variable length pad field are encrypted under the OPK using TDES (CBC outer
chaining) for key confidentiality.

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt + iii + xxx

nnn Modulus, n. n = pq where p and q are prime and 1<n<24096.

DSS Key Token Formats

DSS Public Key Token
A DSS public key token contains the following sections:

v A required token header, starting with the token identifier X'1E'

v A required DSS public key section, starting with the section identifier X'03'

Table 354 presents the format of a DSS public key token. All length fields are in
binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format).

Table 354. DSS Public Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

DSS Public Key Section (required)

000 001 X'03', section identifier, DSS public key.

001 001 X'00', version.

002 002 Section length, 14+ppp+qqq+ggg+yyy.

004 002 Size of p in bits. The size of p must be one of: 512, 576, 640, 704, 768,
832, 896, 960, or 1024.

006 002 Size of the p field in bytes, “ppp”.

008 002 Size of the q field in bytes, “qqq”.

010 002 Size of the g field in bytes, “ggg”.

012 002 Size of the y field in bytes, “yyy”.

014 ppp Prime modulus (large public modulus), p.

014 +ppp qqq Prime divisor (small public modulus), q. 2159<q<2160.

014 +ppp +qqq ggg Public key generator, g.

014 +ppp +qqq
+ggg

yyy Public key, y. y=gx mod(p); 1<y<p.

Appendix B. Key Token Formats 803

DSS Private External Key Token
A DSS private external key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1E'
v A required DSS private key section, starting with the section identifier X'01'
v A required DSS public key section, starting with the section identifier X'03'
v An optional private key name section, starting with the section identifier X'10'

Table 355 presents the format of a DSS private external key token. All length fields
are in binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format). All binary fields (exponents,
modulus, and so on) in the private sections of tokens are right-justified and padded
with zeros to the left.

Table 355. DSS Private External Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

DSS Private Key Section and Secured Subsection (required)

000 001 X'01', section identifier, DSS private key.

001 001 X'00', version.

002 002 Length of the DSS private key section, 436, X'01B4'.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key security:
X'00' Unencrypted DSS private key subsection identifier.
X'81' Encrypted DSS private key subsection identifier.

029 001 Padding, X'00'.

030 020 SHA-1 hash of the key token structure contents that follow the public key
section. If no sections follow, this field is set to binary zeros.

050 010 Reserved; set to binary zero.

060 048 Ignored; set to binary zero.

108 128 Public key generator, g. 1<g<p.

236 128 Prime modulus (large public modulus), p. 2L-1<p<2L and L (the modulus
length) must be a multiple of 64.

364 020 Prime divisor (small public modulus), q. 2159<q<2160.

384 004 Reserved; set to binary zero.

388 024 Random number, confounder.
Note: This field and the next two fields are enciphered for key
confidentiality when the key security flag (offset 28) indicates the private
key is enciphered.

412 020 Secret DSS key, x; x is random. (See the preceding note.)

432 004 Random number, generated when the secret key is generated. (See the
preceding note.)

804 z/OS V1R13 ICSF Application Programmer's Guide

Table 355. DSS Private External Key Token (continued)

Offset (Dec) Number of Bytes Description

DSS Public Key Section (required)

000 001 X'03', section identifier, DSS public key.

001 001 X'00', version.

002 002 Section length, 14+yyy.

004 002 Size of p in bits. The size of p must be one of: 512, 576, 640, 704, 768,
832, 896, 960, or 1024.

006 002 Size of the p field in bytes, which is zero for a private token.

008 002 Size of the q field in bytes, which is zero for a private token.

010 002 Size of the g field in bytes, which is zero for a private token.

012 002 Size of the y field in bytes, “yyy”.

014 yyy Public key, y. y=gx mod(p)
Note: p, q, and y are defined in the DSS public key token.

Private Key Name (optional)

000 001 X'10', section identifier, private key. name

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

DSS Private Internal Key Token
A DSS private internal key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1F'
v A required DSS private key section, starting with the section identifier X'01'
v A required DSS public key section, starting with the section identifier X'03'
v An optional private key name section, starting with the section identifier X'10'
v A required internal information section, starting with the eyecatcher 'PKTN'

Table 356 presents the format of a DSS private internal token. All length fields are
in binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format). All binary fields (exponents,
modulus, and so on) in the private sections of tokens are right-justified and padded
with zeros to the left.

Table 356. DSS Private Internal Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1F' indicates an internal token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

DSS Private Key Section and Secured Subsection (required)

000 001 X'01', section identifier, DSS private key.

Appendix B. Key Token Formats 805

Table 356. DSS Private Internal Key Token (continued)

Offset (Dec) Number of Bytes Description

001 001 X'00', version.

002 002 Length of the DSS private key section, 436, X'01B4'.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key security: X'01' DSS private key.

029 001 Format of external key token:
X'10' Private key generated on an ICSF host.
X'11' External private key was specified in the clear.
X'12' External private key was encrypted.

030 020 SHA-1 hash of the key token structure contents that follow the public key
section. If no sections follow, this field is set to binary zeros.

050 010 Reserved; set to binary zero.

060 048 The OPK encrypted under a PKA master key (Signature Master Key
(SMK)).

108 128 Public key generator, g. 1<g<p.

236 128 Prime modulus (large public modulus), p. 2L-1<p<2L for 512≤L≤1024, and L
(the modulus length) must be a multiple of 64.

364 020 Prime divisor (small public modulus), q. 2159<q<2160.

384 004 Reserved; set to binary zero.

388 024 Random number, confounder.
Note: This field and the two that follow are enciphered under the OPK.

412 020 Secret DSS key, x. x is random. (See the preceding note.)

432 004 Random number, generated when the secret key is generated. (See the
preceding note.)

DSS Public Key Section (required)

000 001 X'03', section identifier, DSS public key.

001 001 X'00', version.

002 002 Section length, 14+yyy.

004 002 Size of p in bits. The size of p must be one of: 512, 576, 640, 704, 768,
832, 896, 960, or 1024.

006 002 Size of the p field in bytes, which is zero for a private token.

008 002 Size of the q field in bytes, which is zero for a private token.

010 002 Size of the g field in bytes, which is zero for a private token.

012 002 Size of the y field in bytes, “yyy”.

014 yyy Public key, y. y=gx mod(p);
Note: p, g, and y are defined in the DSS public key token.

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

806 z/OS V1R13 ICSF Application Programmer's Guide

Table 356. DSS Private Internal Key Token (continued)

Offset (Dec) Number of Bytes Description

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

Internal Information Section (required)

000 004 Eye catcher 'PKTN'.

004 004 PKA token type.

Bit Meaning When Set On

0 RSA key.

1 DSS key.

2 Private key.

3 Public key.

4 Private key name section exists.

008 004 Address of token header.

012 002 Length of internal work area.

014 002 Count of number of sections.

016 016 PKA master key hash pattern.

032 016 Reserved.

ECC Key Token Format
The following table presents the format of the ECC Key Token.

Table 357. ECC Key Token Format

Offset (Dec) Number of Bytes Description

Token Header

000 001 Token identifier.

X'00' Null token

X'1E' External token

X'1F' Internal token; the private key is protected by the master key

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

ECC Token Private section

000 001 X'20', section identifier, ECC private key

001 001 X'00', version.

002 002 Section length.

Appendix B. Key Token Formats 807

Table 357. ECC Key Token Format (continued)

Offset (Dec) Number of Bytes Description

004 001 Wrapping Method: This value indicates the wrapping method used to
protect the data in the encrypted section. It is not the method used to
protect the Object Protection Key (OPK).

X'00' Clear – section is unencrypted.

X'01' AESKW

X'02' CBC Wrap - Other

005 001 Hash used for Wrapping

X'01' SHA224

X'02' SHA256

X'04' Reserved.

X'08' Reserved

006 002 Reserved Binary Zero

008 001 Key Usage:

X'C0' Key Agreement

X'80' Both signature generation and key agreement

X'00' Signature generation only

X'02' Translate allowed
The two high-order bits indicate permitted key usage in the decryption of
symmetric keys and in the generation of digital signatures. The bit in the
second nibble indicates if the key is translatable. A key is translatable if it
can be re-encrypted from one key encrypting key to another.

009 001 Curve type:

X'00' Prime curve

X'01' Brainpool curve

010 001 Key Format and Security Flag.

External Token:

X'40' Unencrypted ECC private key identifier

X'42' Encrypted ECC private key identifier

Internal Token:

X'08' Encrypted ECC private key identifier

011 001 Reserved Binary Zero

808 z/OS V1R13 ICSF Application Programmer's Guide

Table 357. ECC Key Token Format (continued)

Offset (Dec) Number of Bytes Description

012 002 Length of p in bits

X'00C0'
Prime P-192

X'00E0'
Prime P-224

X'0100' Prime P-256

X'0180' Prime P-384

X'0209' Prime P-521

X'00A0'
Brainpool p-160

X'00C0'
Brainpool P-192

X'00E0'
Brainpool P-224

X'0100' Brainpool P-256

X'0140' Brainpool P-320

X'0180' Brainpool P-384

X'0200' Brainpool P-512)

014 002 IBM Associated Data length. The length of this field must be greater than
or equal to 16

016 008 External Token:

v Unencrypted – Reserved Binary 0x’00’

v Encrypted – KVP of the AESKEK

Internal Token: MKVP

024 048 External Token: reserved binary zeros.

Internal Token: Object Protection Key (OPK), ICV (Integrity Check value),
8 byte confounder and a 256-bit AES key used with the AESKW algorithm
to encrypt the ECC private key.

The OPK is encrypted by the AES master key using AESKW as well.
Example format for OPK data passed to AESKW:

v 8 bytes = A6A6A6A6A6A60000

v 40 bytes = Confounder(8)/Key(32)

072 002 Associated data length, aa

074 002 Length of formatted section in bytes, bb

076 aa Associated data (See Table 358 on page 810 for the Associated Data
format).

076 + aa Start of formatted
section

If this section is in the clear it contains private key d.

If it is encrypted it contains the AESKW wrapped payload.

76 + aa bb Formatted section which includes Private key d

See Table 359 on page 811 for the format of the AESKW Wrapped
Payload

Appendix B. Key Token Formats 809

|

|

Table 357. ECC Key Token Format (continued)

Offset (Dec) Number of Bytes Description

76 + aa + bb End of formatted
section

ECC Token Public Section

000 001 X'21', section identifier

001 001 X'00', version.

002 002 Section length

004 004 Reserved field, binary zero

008 001 Curve type

X'00' Prime curve

X'01' Brainpool curve

009 001 Reserved field, binary zero

010 002 Length of p in bits:

X'00C0'
Prime P-192

X'00E0'
Prime P-224

X'0100' Prime P-256

X'0180' Prime P-384

X'0209' Prime P-521

X'00A0'
Brainpool P-160

X'00C0'
Brainpool P-192

X'00E0'
Brainpool P-224

X'0100' Brainpool P-256

X'0140' Brainpool P-320

X'0180' Brainpool P-384

X'0200' Brainpool P-512

012 002 This field is the length of the public key q value in bytes, the maximum
value could be up to 133 bytes, cc. The value includes the key material
length and one byte to indicate if the key material is compressed or
uncompressed.

014 cc Public Key , q field

Associated Data Format for ECC Token
The table below defines the associated data as it is stored in the ECC token in the
clear. Associated data is data whose integrity but not confidentiality is protected by
a key wrap mechanism.

Table 358. Associated Data Format for ECC Private Key Token

Offset (Dec) Number of Bytes Description

000 001 Associated Data Version. 0 for ECC

810 z/OS V1R13 ICSF Application Programmer's Guide

Table 358. Associated Data Format for ECC Private Key Token (continued)

Offset (Dec) Number of Bytes Description

001 001 Length of Key Label, kl

002 002 IBM Associated Data length, 16 + kl + xxx

004 002 IBM Extended Associated Data length, xxx

006 001 User Definable Associated Data length, yyy. User
definable lengths are from 0 bytes to 100 bytes.

007 001 Curve Type

008 002 Length of p in bits

010 001 Usage flag

011 001 Format and Security flag

012 004 reserved

016 kl Key Label (optional)

016 + kl xxx IBM Extended Associated Data

016 + kl +
xxx

yyy User-definable Associated Data

AESKW Wrapped Payload Format for ECC Private Key Token
This table defines the contents of the AESKW payload: data will be copied into this
format, then encrypted with the OPK according to the AESKW specification, and the
result will be stored in the encrypted data section.

Table 359. AESKW Wrapped Payload Format for ECC Private Key Token

Offset (Dec) Number of Bytes Description

000 006 ICV (‘A6’....)

006 001 Length of padding in bits

007 001 Length of the hash of the associated data in bytes, ii

008 004 Hash options

012 ii Hash of Associated Data

12+ii mm Key data

12+ii+mm 0-7 Padding to a multiple of 8 bytes

Trusted Block Key Token
A trusted block key-token (trusted block) is an extension of CCA PKA key tokens
using new section identifiers. A trusted block was introduced to CCA beginning with
Release 3.25. They are an integral part of a remote key-loading process.

Trusted blocks contain various items, some of which are optional, and some of
which can be present in different forms. Tokens are composed of concatenated
sections that, unlike CCA PKA key tokens, occur in no prescribed order.

As with other CCA key-tokens, both internal and external forms are defined:

v An external trusted block contains a randomly generated confounder and a
triple-length MAC key enciphered under a DES IMP-PKA transport key. The MAC
key is used to calculate an ISO 16609 CBC mode TDES MAC of the trusted
block contents. An external trusted block is created by the Trusted_Block_Create
verb. This verb can:

Appendix B. Key Token Formats 811

1. Create an inactive external trusted block

2. Change an external trusted block from inactive to active

v An internal trusted block contains a confounder and triple-length MAC key
enciphered under a variant of the PKA master key. The MAC key is used to
calculate a TDES MAC of the trusted block contents. A PKA master key
verification pattern is also included to enable determination that the proper
master key is available to process the key. The Remote_Key_Export verb only
operates on trusted blocks that are internal. An internal trusted block must be
imported from an external trusted block that is active using the PKA_Key_Import
verb.

Note: Trusted blocks do not contain a private key section.

Trusted block sections
A trusted block is a concatenation of a header followed by an unordered set of
sections. The data structures of these sections are summarized in the following
table:

Section Reference Usage

Header Table 360 on page 814 Trusted block token header

X'11' Table 361 on page 815 Trusted block public key

X'12' Table 362 on page 816 Trusted block rule

X'13' Table 369 on page 823 Trusted block name (key label)

X'14' Table 370 on page 823 Trusted block information

X'15' Table 374 on page 826 Trusted block application-defined data

Every trusted block starts with a token header. The first byte of the token header
determines the key form:

v An external header (first byte X'1E'), created by the Trusted_Block_Create verb

v An internal header (first byte X'1F'), imported from an active external trusted
block by the PKA_Key_Import verb

Following the token header of a trusted block is an unordered set of sections. A
trusted block is formed by concatenating these sections to a trusted block header:

v An optional public-key section (trusted block section identifier X'11')

The trusted block trusted RSA public-key section includes the key itself in
addition to a key-usage flag. No multiple sections are allowed.

v An optional rule section (trusted block section identifier X'12')

A trusted block may have zero or more rule sections.

1. A trusted block with no rule sections can be used by the
PKA_Key_Token_Change and PKA_Key_Import callable services. A trusted
block with no rule sections can also be used by the Digital_Signature_Verify
verb, provided there is an RSA public-key section that has its key-usage flag
bits set to allow digital signature operations.

2. At least one rule section is required when the Remote_Key_Export verb is
used to:

– Generate an RKX key-token

– Export an RKX key-token

– Export a CCA DES key-token

812 z/OS V1R13 ICSF Application Programmer's Guide

– Encrypt the clear generated or exported key using the provided vendor
certificate

3. If a trusted block has multiple rule sections, each rule section must have a
unique 8-character Rule ID.

v An optional name (key label) section (trusted block section identifier X'13')

The trusted block name section provides a 64-byte variable to identify the trusted
block, just as key labels are used to identify other CCA keys. This name, or label,
enables a host access-control system such as RACF to use the name to verify
that the application has authority to use the trusted block. No multiple sections
are allowed.

v A required information section (trusted block section identifier X'14')

The trusted block information section contains control and security information
related to the trusted block. The information section is required while the others
are optional. This section contains the cryptographic information that guarantees
its integrity and binds it to the local system. No multiple sections are allowed.

v An optional application-defined data section (trusted block section identifier X'15')

The trusted block application-defined data section can be used to include
application-defined data in the trusted block. The purpose of the data in this
section is defined by the application. CCA does not examine or use this data in
any way. No multiple sections are allowed.

Trusted block integrity
An enciphered confounder and triple-length MAC key contained within the required
information section of the trusted block is used to protect the integrity of the trusted
block. The randomly generated MAC key is used to calculate an ISO 16609 CBC
mode TDES MAC of the trusted block contents. Together, the MAC key and MAC
value provide a way to verify that the trusted block originated from an authorized
source, and binds it to the local system.

An external trusted block has its MAC key enciphered under an IMP-PKA
key-encrypting key. An internal trusted block has its MAC key enciphered under a
variant of the PKA master key, and the master key verification pattern is stored in
the information section.

Number representation in trusted blocks
v All length fields are in binary

v All binary fields (exponents, lengths, and so forth) are stored with the high-order
byte first (left, low-address, z/OS format); thus the least significant bits are to the
right and preceded with zero-bits to the width of a field

v In variable-length binary fields that have an associated field-length value, leading
bytes that would otherwise contain X'00' can be dropped and the field shortened
to contain only the significant bits

Format of trusted block sections
At the beginning of every trusted block is a trusted block header. The header
contains the following information:

v A token identifier, which specifies if the token contains an external or internal
key-token

v A token version number to allow for future changes

v A length in bytes of the trusted block, including the length of the header

The trusted block header is defined in the following table:

Appendix B. Key Token Formats 813

Table 360. Trusted block header

Offset
(bytes)

Length
(bytes)

Description

000 001 Token identifier (a flag that indicates token type)
X'1E' External trusted block token
X'1F' Internal trusted block token

001 001 Token version number (X'00').

002 002 Length of the key-token structure in bytes.

004 004 Reserved, binary zero.

Note: See “Number representation in trusted blocks” on page 813.

Following the header, in no particular order, are trusted block sections. There are
five different sections defined, each identified by a one-byte section identifier (X'11' -
X'15'). Two of the five sections have subsections defined. A subsection is a
tag-length-value (TLV) object, identified by a two-byte subsection tag.

Only sections X'12' and X'14' have subsections defined; the other sections do not. A
section and its subsections, if any, are one contiguous unit of data. The subsections
are concatenated to the related section, but are otherwise in no particular order.
Section X'12' has five subsections defined (X'0001' - X'0005'), and section X'14' has
two (X'0001' and X'0002'). Of all the subsections, only subsection X'0001' of section
X'14' is required. Section X'14' is also required.

The trusted block sections and subsections are described in detail in the following
sections.

Trusted block section X'11': Trusted block section X'11' contains the trusted RSA
public key in addition to a key-usage flag indicating whether the public key is usable
in key-management operations, digital signature operations, or both.

Section X'11' is optional. No multiple sections are allowed. It has no subsections
defined.

This section is defined in the following table:

814 z/OS V1R13 ICSF Application Programmer's Guide

Table 361. Trusted block trusted RSA public-key section (X'11')

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'11' Trusted block trusted RSA public key

001 001 Section version number (X'00').

002 002 Section length (16+xxx+yyy).

004 002 Reserved, must be binary zero.

006 002 RSA public-key exponent field length in bytes, xxx.

008 002 RSA public-key modulus length in bits.

010 002 RSA public-key modulus field length in bytes, yyy.

012 xxx Public-key exponent, e (this field length is typically 1, 3, or 64 - 512
bytes). e must be odd and 1≤e<n. (e is frequently valued to 3 or 216+1
(=65537), otherwise e is of the same order of magnitude as the
modulus).
Note: Although the current product implementation does not generate
such a public key, you can import an RSA public key having an exponent
valued to two (2). Such a public key (a Rabin key) can correctly validate
an ISO 9796-1 digital signature.

012+xxx yyy RSA public-key modulus, n. n=pq, where p and q are prime and
2512≤n<24096. The field length is 64 - 512 bytes.

012+xxx+yyy 004 Flags:
X'00000000' Trusted block public key can be used in digital

signature operations only
X'80000000' Trusted block public key can be used in both digital

signature and key management operations
X'C0000000' Trusted block public key can be used in key

management operations only

Note: See “Number representation in trusted blocks” on page 813.

Trusted block section X'12': Trusted block section X'12' contains information that
defines a rule. A trusted block may have zero or more rule sections.

1. A trusted block with no rule sections can be used by the
PKA_Key_Token_Change and PKA_Key_Import callable services. A trusted
block with no rule sections can be used by the Digital_Signature_Verify verb,
provided there is an RSA public-key section that has its key-usage flag set to
allow digital signature operations.

2. At least one rule section is required when the Remote_Key_Export verb is used
to:

v Generate an RKX key-token

v Export an RKX key-token

v Export a CCA DES key-token

v Generate or export a key encrypted by a public key. The public key is
contained in a vendor certificate (section X'11'), and is the root certification
key for the ATM vendor. It is used to verify the digital signature on public-key
certificates for specific individual ATMs.

3. If a trusted block has multiple rule sections, each rule section must have a
unique 8-character Rule ID.

Section X'12' is the only section allowed to have multiple sections. Section X'12' is
optional. Multiple sections are allowed.

Appendix B. Key Token Formats 815

Note: The overall length of the trusted block may not exceed its maximum size of
3500 bytes.

Five subsections (TLV objects) are defined.

This section is defined in the following table:

Table 362. Trusted block rule section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'12' Trusted block rule

001 001 Section version number (X'00').

002 002 Section length in bytes (20+yyy).

004 008 Rule ID (in ASCII).

An 8-byte character string that uniquely identifies the rule within the
trusted block.

Valid ASCII characters are: A...Z, a...z, 0...9, - (hyphen), and _
(underscore), left justified and padded on the right with space characters.

012 004 Flags (undefined flag bits are reserved and must be zero).

X'00000000' Generate new key

X'00000001' Export existing key

016 001 Generated key length.

Length in bytes of key to be generated when flags value (offset 012) is
set to generate a new key; otherwise ignore this value. Valid values are
8, 16, or 24; return an error if not valid.

017 001 Key-check algorithm identifier (all others are reserved and must not be
used):
Value Meaning
X'00' Do not compute key-check value. In a call to CSNDRKX or

CSNFRKX, set the key_check_length variable to zero.
X'01' Encrypt an 8-byte block of binary zeros with the key. In a call

to CSNDRKX or CSNFRKX, set the key_check_length variable
to 8.

X'02' Compute the MDC-2 hash of the key. In a call to CSNDRKX or
CSNFRKX, set the key_check_length variable to 16.

018 001 Symmetric encrypted output key format flag (all other values are reserved
and must not be used).

Return the indicated symmetric key-token using the
sym_encrypted_key_identifier parameter.
Value Meaning
X'00' Return an RKX key-token encrypted under a variant of the

MAC key.
Note: This is the only key format permitted when the flags
value (offset 012) is set to generate a new key.

X'01' Return a CCA DES key-token encrypted under a transport key.
Note: This is the only key format permitted when the flags
value (offset 012) is set to export an existing key.

816 z/OS V1R13 ICSF Application Programmer's Guide

Table 362. Trusted block rule section (X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

019 001 Asymmetric encrypted output key format flag (all other values are
reserved and must not be used).

Return the indicated asymmetric key-token in the asym_encrypted_key
variable.
Value Meaning
X'00' Do not return an asymmetric key. Set the

asym_encrypted_key_length variable to zero.
X'01' Output in PKCS1.2 format.
X'02' Output in RSAOAEP format.

020 yyy Rule section subsections (tag-length-value objects). A series of 0 - 5
objects in TLV format.

Note: See “Number representation in trusted blocks” on page 813.

Section X'12' has five rule subsections (tag-length-value objects) defined. These
subsections are summarized in the following table:

Table 363. Summary of trusted block rule subsection

Rule
subsection
tag

TLV object Optional or
required

Comments

X'0001' Transport
key variant

Optional Contains variant to be exclusive-ORed into the
cleartext transport key.

X'0002' Transport
key rule
reference

Optional; required to
use an RKX
key-token as a
transport key

Contains the rule ID for the rule that must have been
used to create the transport key.

X'0003' Common
export key
parameters

Optional for key
generation; required
for key export of an
existing key

Contains the export key and source key minimum and
maximum lengths, an output key variant length and
variant, a CV length, and a CV to be exclusive-ORed
with the cleartext transport key to control usage of the
key.

X'0004' Source key
reference

Optional; required if
the source key is an
RKX key-token

Contains the rule ID for the rule used to create the
source key.
Note: Include all rules that will ever be needed when
a trusted block is created. A rule cannot be added to
a trusted block after it has been created.

X'0005' Export key
CCA token
parameters

Optional; used for
export of CCA DES
key tokens only

Contains mask length, mask, and CV template to limit
the usage of the exported key. Also contains the
template length and template which defines which
source key labels are allowed.

The key type of a source key input parameter can be
"filtered" by using the export key CV limit mask (offset
005) and limit template (offset 005+yyy) in this
subsection.

Note: See “Number representation in trusted blocks” on page 813.

Trusted block section X'12' subsection X'0001': Subsection X'0001' of the trusted
block rule section (X'12') is the transport key variant TLV object. This subsection is
optional. It contains a variant to be exclusive-ORed into the cleartext transport key.

This subsection is defined in the following table:

Appendix B. Key Token Formats 817

Table 364. Transport key variant subsection (X'0001' of trusted block rule section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0001' Transport key variant TLV object

002 002 Subsection length in bytes (8+nnn).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Length of variant field in bytes (nnn).

This length must be greater than or equal to the length of the transport
key that is identified by the transport_key_identifier parameter. If the
variant is longer than the key, truncate it on the right to the length of the
key prior to use.

008 nnn Transport key variant.

Exclusive-OR this variant into the cleartext transport key, provided: (1) the
length of the variant field value (offset 007) is not zero, and (2) the
symmetric encrypted output key format flag (offset 018 in section X'12') is
X'01'.
Note: A transport key is not used when the symmetric encrypted output
key is in RKX key-token format.

Note: See “Number representation in trusted blocks” on page 813.

Trusted block section X'12' subsection X'0002': Subsection X'0002' of the trusted
block rule section (X'12') is the transport key rule reference TLV object. This
subsection is optional. It contains the rule ID for the rule that must have been used
to create the transport key. This subsection must be present to use an RKX
key-token as a transport key.

This subsection is defined in the following table:

Table 365. Transport key rule reference subsection (X'0002') of trusted block rule section
(X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0002' Transport key rule reference TLV object

002 002 Subsection length in bytes (14).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 008 Rule ID.

Contains the rule identifier for the rule that must have been used to
create the RKX key-token used as the transport key.

The Rule ID is an 8-byte string of ASCII characters, left justified and
padded on the right with space characters. Acceptable characters are
A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F'). All other characters are reserved
for future use.

Trusted block section (X'12') subsection X'0003': Subsection X'0003' of the
trusted block rule section (X'12') is the common export key parameters TLV object.
This subsection is optional, but is required for the key export of an existing source
key (identified by the source_key_identifier parameter) in either RKX key-token

818 z/OS V1R13 ICSF Application Programmer's Guide

format or CCA DES key-token format. For new key generation, this subsection
applies the output key variant to the cleartext generated key, if such an option is
desired. It contains the input source key and output export key minimum and
maximum lengths, an output key variant length and variant, a CV length, and a CV
to be exclusive-ORed with the cleartext transport key.

This subsection is defined in the following table:

Table 366. Common export key parameters subsection (X'0003') of trusted block rule
section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0003' Common export key parameters TLV object

002 002 Subsection length in bytes (12+xxx+yyy).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Flags (must be set to binary zero).

008 001 Export key minimum length in bytes. Length must be 8, 16, or 24.

Also applies to the source key.

009 001 Export key maximum length in bytes (yyy). Length must be 8, 16, or 24.

Also applies to the source key.

010 001 Output key variant length in bytes (xxx).

Valid values are 0 or 8 - 255. If greater than 0, the length must be at
least as long as the longest key ever to be exported using this rule. If the
variant is longer than the key, truncate it on the right to the length of the
key prior to use.
Note: The output key variant (offset 011) is not used if this length is
zero.

011 xxx Output key variant.

The variant can be any value. Exclusive-OR this variant into the cleartext
value of the output.

011+xxx 001 CV length in bytes (yyy).

v If the length is not 0, 8, or 16, return an error.

v If the length is 0, and if the source key is a CCA DES key-token,
preserve the CV in the symmetric encrypted output if the output is to
be in the form of a CCA DES key-token.

v If a non-zero length is less than the length of the key identified by the
source_key_identifier parameter, return an error.

v If the length is 16, and if the CV (offset 012+xxx) is valued to 16 bytes
of X'00' (ignoring the key-part bit), then:

1. Ignore all CV bit definitions

2. If CCA DES key-token format, set the flag byte of the symmetric
encrypted output key to indicate a CV value is present.

3. If the source key is 8 bytes in length, do not replicate the key to 16
bytes.

Appendix B. Key Token Formats 819

Table 366. Common export key parameters subsection (X'0003') of trusted block rule
section (X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

012+xxx yyy CV.

Place this CV into the output exported key-token, provided that the
symmetric encrypted output key format selected (offset 018 in rule
section) is CCA DES key-token.

v If the symmetric encrypted output key format flag (offset 018 in section
X'12') indicates return an RKX key-token (X'00'), then ignore this CV.
Otherwise, exclusive-OR this CV into the cleartext transport key.

v Exclusive-OR the CV of the source key into the cleartext transport key
if the CV length (offset 011+xxx) is set to 0. If a transport key to
encrypt a source key has equal left and right key halves, return an
error. Replicate the key halves of the key identified by the
source_key_identifier parameter whenever all of these conditions are
met:

1. The Replicate Key command (offset X'00DB') is enabled in the
active role

2. The CV length (offset 011+xxx) is 16, and both CV halves are
non-zero

3. The source_key_identifier parameter (contained in either a CCA
DES key-token or RKX key-token) identifies an 8-byte key

4. The key-form bits (40 - 42) of this CV do not indicate a
single-length key (are not set to zero)

5. Key-form bit 40 of this CV does not indicate the key is to have
guaranteed unique halves (is not set to 1).

Note: A transport key is not used when the symmetric encrypted output
key is in RKX key-token format.

Note: See “Number representation in trusted blocks” on page 813.

Trusted block section X'12' subsection X'0004': Subsection X'0004' of the trusted
block rule section (X'12') is the source key rule reference TLV object. This
subsection is optional, but is required if using an RKX key-token as a source key
(identified by source_key_identifier parameter). It contains the rule ID for the rule
used to create the export key. If this subsection is not present, an RKX key-token
format source key will not be accepted for use.

This subsection is defined in the following table:

820 z/OS V1R13 ICSF Application Programmer's Guide

Table 367. Source key rule reference subsection (X'0004' of trusted block rule section
(X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0004' Source key rule reference TLV object

002 002 Subsection length in bytes (14).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 008 Rule ID.

Rule identifier for the rule that must have been used to create the source
key.

The Rule ID is an 8-byte string of ASCII characters, left justified and
padded on the right with space characters. Acceptable characters are
A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F'). All other characters are reserved
for future use.

Note: See “Number representation in trusted blocks” on page 813.

Trusted block section X'12' subsection X'0005': Subsection X'0005' of the trusted
block rule section (X'12') is the export key CCA token parameters TLV object. This
subsection is optional. It contains a mask length, mask, and template for the export
key CV limit. It also contains the template length and template for the source key
label. When using a CCA DES key-token as a source key input parameter, its key
type can be "filtered" by using the export key CV limit mask (offset 005) and limit
template (offset 005+yyy) in this subsection.

This subsection is defined in the following table:

Table 368. Export key CCA token parameters subsection (X'0005') of trusted block rule
section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0005' Export key CCA token parameters TLV object

002 002 Subsection length in bytes (10+yyy+yyy+zzz).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Flags (must be set to binary zero).

008 001 Export key CV limit mask length in bytes (yyy).

Do not use CV limits if this CV limit mask length (yyy) is zero. Use CV
limits if yyy is non-zero, in which case yyy:

v Must be 8 or 16

v Must not be less than the export key minimum length (offset 008 in
subsection X'0003')

v Must be equal in length to the actual source key length of the key

Example: An export key minimum length of 16 and an export key CV
limit mask length of 8 returns an error.

Appendix B. Key Token Formats 821

Table 368. Export key CCA token parameters subsection (X'0005') of trusted block rule
section (X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

009 yyy Export key CV limit mask (does not exist if yyy=0).

Indicates which CV bits to check against the source key CV limit template
(offset 009+yyy).

Examples: A mask of X'FF' means check all bits in a byte. A mask of
X'FE' ignores the parity bit in a byte.

009+yyy yyy Export key CV limit template (does not exist if yyy=0).

Specifies the required values for those CV bits that are checked based
on the export key CV limit mask (offset 009).

The export key CV limit mask and template have the same length, yyy.
This is because these two variables work together to restrict the
acceptable CVs for CCA DES key tokens to be exported. The checks
work as follows:

1. If the length of the key to be exported is less than yyy, return an error

2. Logical AND the CV for the key to be exported with the export key
CV limit mask

3. Compare the result to the export key CV limit template

4. Return an error if the comparison is not equal

Examples: An export key CV limit mask of X'FF' for CV byte 1 (key type)
along with an export key CV limit template of X'3F' (key type CVARENC)
for byte 1 filters out all key types except CVARENC keys.
Note: Using the mask and template to permit multiple key types is
possible, but cannot consistently be achieved with one rule section. For
example, setting bit 10 to 1 in the mask and the template permits PIN
processing keys and cryptographic variable encrypting keys, and only
those keys. However, a mask to permit PIN-processing keys and
key-encrypting keys, and only those keys, is not possible. In this case,
multiple rule sections are required, one to permit PIN-processing keys
and the other to permit key-encrypting keys.

009+yyy+yyy 001 Source key label template length in bytes (zzz).

Valid values are 0 and 64. Return an error if the length is 64 and a
source key label is not provided.

010+yyy+yyy zzz Source key label template (does not exist if zzz=0).

If a key label is identified by the source_key_identifier parameter, verify
that the key label name matches this template. If the comparison fails,
return an error. The source key label template must conform to the
following rules:

v The key label template must be 64 bytes in length

v The first character cannot be in the range X'00' - X'1F', nor can it be
X'FF'

v The first character cannot be numeric (X'30' - X'39')

v A key label name is terminated by a space character (X'20') on the
right and must be padded on the right with space characters

v The only special characters permitted are #, $, @, and * (X'23', X'24',
X'40', and X'2A')

v The wildcard X'2A' (*) is only permitted as the first character, the last
character, or the only character in the template

v Only alphanumeric characters (a...z, A...Z, 0...9), the four special
characters (X'23', X'24', X'40', and X'2A'), and the space character
(X'20') are allowed

822 z/OS V1R13 ICSF Application Programmer's Guide

Note: See “Number representation in trusted blocks” on page 813.

Trusted block section X'13': Trusted block section X'13' contains the name (key
label). The trusted block name section provides a 64-byte variable to identify the
trusted block, just as key labels are used to identify other CCA keys. This name, or
label, enables a host access-control system such as RACF to use the name to
verify that the application has authority to use the trusted block.

Section X'13' is optional. No multiple sections are allowed. It has no subsections
defined. This section is defined in the following table:

Table 369. Trusted block key label (name) section X'13'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'13' Trusted block name (key label)

001 001 Section version number (X'00').

002 002 Section length in bytes (68).

004 064 Name (key label).

Note: See “Number representation in trusted blocks” on page 813.

Trusted block section X'14': Trusted block section X'14' contains control and
security information related to the trusted block. This information section is separate
from the public key and other sections because this section is required while the
others are optional. This section contains the cryptographic information that
guarantees its integrity and binds it to the local system.

Section X'14' is required. No multiple sections are allowed. Two subsections are
defined. This section is defined in the following table:

Table 370. Trusted block information section X'14'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'14' Trusted block information

001 001 Section version number (X'00').

002 002 Section length in bytes (10+xxx).

004 002 Reserved, binary zero.

006 004 Flags:

X'00000000' Trusted block is in the inactive state

X'00000001' Trusted block is in the active state

010 xxx Information section subsections (tag-length-value objects).

One or two objects in TLV format.

Note: See “Number representation in trusted blocks” on page 813.

Section X'14' has two information subsections (tag-length-value objects) defined.
These subsections are summarized in the following table:

Appendix B. Key Token Formats 823

Table 371. Summary of trusted block information subsections

Rule
subsection
tag

TLV object Optional or
required

Comments

X'0001' Protection
information

Required Contains the encrypted 8-byte confounder and triple-length
(24-byte) MAC key, the ISO 16609 TDES CBC MAC value,
and the MKVP of the PKA master key (computed using
MDC4).

X'0002' Activation
and
expiration
dates

Optional Contains flags indicating whether or not the coprocessor is
to validate dates, and contains the activation and expiration
dates that are considered valid for the trusted block.

Note: See “Number representation in trusted blocks” on page 813.

Trusted block section X'14' subsection X'0001': Subsection X'0001' of the trusted
block information section (X'14') is the protection information TLV object. This
subsection is required. It contains the encrypted 8-byte confounder and triple-length
(24-byte) MAC key, the ISO-16609 TDES CBC MAC value, and the MKVP of the
PKA master key (computed using MDC4).

This subsection is defined in the following table:

Table 372. Protection information subsection (X'0001') of trusted block information section
(X'14')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0001' Trusted block information TLV object

002 002 Subsection length in bytes (62).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 032 Encrypted MAC key.

Contains the encrypted 8-byte confounder and triple-length (24-byte)
MAC key in the following format:
Offset Description
00 - 07 Confounder
08 - 15 Left key
16 - 23 Middle key
24 - 31 Right key

038 008 MAC.

Contains the ISO-16609 TDES CBC message authentication code value.

046 016 MKVP.

Contains the PKA master key verification pattern, computed using MDC4,
when the trusted block is in internal form, otherwise contains binary zero.

Note: See “Number representation in trusted blocks” on page 813.

Trusted block section X'14' subsection X'0002': Subsection X'0002' of the trusted
block information section (X'14') is the activation and expiration dates TLV object.
This subsection is optional. It contains flags indicating whether or not the
coprocessor is to validate dates, and contains the activation and expiration dates
that are considered valid for the trusted block.

824 z/OS V1R13 ICSF Application Programmer's Guide

This subsection is defined in the following table:

Table 373. Activation and expiration dates subsection (X'0002') of trusted block information
section (X'14')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0002' Activation and expiration dates TLV object

002 002 Subsection length in bytes (16).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 002 Flags:

X'0000' The coprocessor does not check dates.

X'0001' The coprocessor checks dates.

Compare the activation date (offset 008) and the expiration
date (offset 012) to the coprocessor's internal real-time clock.
Return an error if the coprocessor date is before the activation
date or after the expiration date.

008 004 Activation date.

Contains the first date that the trusted block can be used for generating
or exporting keys. Format of the date is YYMD, where:

YY Big-endian year (return an error if greater than 9999)

M Month (return an error if any value other than X'01' - X'0C')

D Day of month (return an error if any value other than X'01' -
X'1F'; day must be valid for given month and year, including
leap years)

Return an error if the activation date is after the expiration date or is not
valid.

012 004 Expiration date.

Contains the last date that the trusted block can be used. Same format
as activation date (offset 008). Return an error if date is not valid.

Note: See “Number representation in trusted blocks” on page 813.

Trusted block section X'15': Trusted block section X'15' contains
application-defined data. The trusted block application-defined data section can be
used to include application-defined data in the trusted block. The purpose of the
data in this section is defined by the application; it is neither examined nor used by
CCA in any way.

Section X'15' is optional. No multiple sections are allowed. It has no subsections
defined. This section is defined in the following table:

Appendix B. Key Token Formats 825

Table 374. Trusted block application-defined data section X'15'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'15' Application-defined data

001 001 Section version number (X'00').

002 002 Section length (6+xxx)

004 002 Application data length (xxx)

The value of xxx can be from 0 bytes to a length that does not
cause the trusted block to exceed its maximum size of 3500
bytes.

006 xxx Application-defined data

May be used to hold a public-key certificate for the trusted public
key.

Note: See “Number representation in trusted blocks” on page 813.

826 z/OS V1R13 ICSF Application Programmer's Guide

Appendix C. Control Vectors and Changing Control Vectors
with the CVT Callable Service

This section contains a control vector table which displays the default value of the
control vector that is associated with each type of key. It also describes how to
change control vectors with the control vector translate callable service.

Control Vector Table

Note: The Control Vectors used in ICSF are exactly the same as documented in
CCA and the TSS documents.

The master key enciphers all keys operational on your system. A transport key
enciphers keys that are distributed off your system. Before a master key or
transport key enciphers a key, ICSF exclusive ORs both halves of the master key or
transport key with a control vector. The same control vector is exclusive ORed to
the left and right half of a master key or transport key.

Also, if you are entering a key part, ICSF exclusive ORs each half of the key part
with a control vector before placing the key part into the CKDS.

Each type of key on ICSF (except the master key) has either one or two unique
control vectors associated with it. The control vector that ICSF exclusive ORs the
master key or transport key with depends on the type of key the master key or
transport key is enciphering. For double-length keys, a unique control vector exists
for each half of a specific key type. For example, there is a control vector for the left
half of an input PIN-encrypting key, and a control vector for the right half of an input
PIN-encrypting key.

If you are entering a key part into the CKDS, ICSF exclusive ORs the key part with
the unique control vector(s) associated with the key type. ICSF also enciphers the
key part with two master key variants for a key part. One master key variant
enciphers the left half of the key part, and another master key variant enciphers the
right half of the key part. ICSF creates the master key variants for a key part by
exclusive ORing the master key with the control vectors for key parts. These
procedures protect key separation.

Table 375 displays the default value of the control vector that is associated with
each type of key. Some key types do not have a default control vector. For keys
that are double-length, ICSF enciphers a unique control vector on each half. Control
vectors indicated with an "*" are supported by the Cryptographic Coprocessor
Feature.

Table 375. Default Control Vector Values

Key Type Control Vector Value (Hex)
Value for Single-length Key
or Left Half of
Double-length Key

Control Vector Value (Hex)
Value for Right Half of
Double-length Key

*AKEK 00 00 00 00 00 00 00 00

CIPHER 00 03 71 00 03 00 00 00

CIPHER (double length) 00 03 71 00 03 41 00 00 00 03 71 00 03 21 00 00

CVARDEC 00 3F 42 00 03 00 00 00

© Copyright IBM Corp. 1997, 2011 827

Table 375. Default Control Vector Values (continued)

Key Type Control Vector Value (Hex)
Value for Single-length Key
or Left Half of
Double-length Key

Control Vector Value (Hex)
Value for Right Half of
Double-length Key

CVARENC 00 3F 48 00 03 00 00 00

CVARPINE 00 3F 41 00 03 00 00 00

CVARXCVL 00 3F 44 00 03 00 00 00

CVARXCVR 00 3F 47 00 03 00 00 00

*DATA 00 00 00 00 00 00 00 00

DATAC 00 00 71 00 03 41 00 00 00 00 71 00 03 21 00 00

*DATAM generation key
(external)

00 00 4D 00 03 41 00 00 00 00 4D 00 03 21 00 00

*DATAM key (internal) 00 05 4D 00 03 00 00 00 00 05 4D 00 03 00 00 00

*DATAMV MAC verification
key (external)

00 00 44 00 03 41 00 00 00 00 44 00 03 21 00 00

*DATAMV MAC verification
key (internal)

00 05 44 00 03 00 00 00 00 05 44 00 03 00 00 00

*DATAXLAT 00 06 71 00 03 00 00 00

DECIPHER 00 03 50 00 03 00 00 00

DECIPHER (double-length) 00 03 50 00 03 41 00 00 00 03 50 00 03 21 00 00

DKYGENKY 00 71 44 00 03 41 00 00 00 71 44 00 03 21 00 00

ENCIPHER 00 03 60 00 03 00 00 00

ENCIPHER (double-length) 00 03 60 00 03 41 00 00 00 03 60 00 03 21 00 00

*EXPORTER 00 41 7D 00 03 41 00 00 00 41 7D 00 03 21 00 00

IKEYXLAT 00 42 42 00 03 41 00 00 00 42 42 00 03 21 00 00

*IMP-PKA 00 42 05 00 03 41 00 00 00 42 05 00 03 21 00 00

*IMPORTER 00 42 7D 00 03 41 00 00 00 42 7D 00 03 21 00 00

*IPINENC 00 21 5F 00 03 41 00 00 00 21 5F 00 03 21 00 00

*MAC 00 05 4D 00 03 00 00 00

MAC (double-length) 00 05 4D 00 03 41 00 00 00 05 4D 00 03 21 00 00

*MACVER 00 05 44 00 03 00 00 00

MACVER (double-length) 00 05 44 00 03 41 00 00 00 05 44 00 03 21 00 00

OKEYXLAT 00 41 42 00 03 41 00 00 00 41 42 00 03 21 00 00

*OPINENC 00 24 77 00 03 41 00 00 00 24 77 00 03 21 00 00

*PINGEN 00 22 7E 00 03 41 00 00 00 22 7E 00 03 21 00 00

*PINVER 00 22 42 00 03 41 00 00 00 22 42 00 03 21 00 00

Note: The external control vectors for DATAC, DATAM MAC generation and
DATAMV MAC verification keys are also referred to as data compatibility
control vectors.

828 z/OS V1R13 ICSF Application Programmer's Guide

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

00000000 01000001 0EgksixP 00000000 0000001P fff0K00P 00000000 HT00000P

00000000 01000001 0E00001P 00000000 0000001P fff0K00P 00000000 HT00000P

00000000 01000010 0E00001P 00000000 0000001P fff0K00P 00000000 HT00000P

00000000 01000010 0EgksixP 00000000 0000001P fff0K00P 00000000 HT00000P

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

.......PP .E.....P0P1PK..PP HT.....P

Control-Vector Base Bits

Most Significant Bit

E= XPORT-OK

P=Even Parity

EXPORTER

OKEYXLAT

IKEYXLAT

IMPORTER

Key-Encrypting Keys

K=KEY-PART

Common Bits

Anti-Variant Bits

Least Significant Bit

g=IMEX

k=OPEX

x=XLATE
i=IMPORT

s=IMIM
k=OPIM

g=IMEX

s=EXEX

i=EXPORT

x=XLATE

Key-Form

H=ENH-ONLY
T=NOT31XPT

Figure 8. Control Vector Base Bit Map (Common Bits and Key-Encrypting Keys)

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 829

00000000 00000000 0Eedmv0P 00000000 00000011 fff0K00P 00000000 HT00000P

00000000 00000000 0E11000P 00000000 00000011 fff0K00P 00000000 HT00000P

00000000 00000000 0E00110P 00000000 00000011 fff0K00P 00000000 HT00000P

00000000 00000000 0E00010P 00000000 00000011 fff0K00P 00000000 HT00000P

00000000 00000011 0E11000P 00000000 00000011 fff0K00P 00000000 HT00000P

00000000 00000011 0E01000P 00000000 00000011 fff0K00P 00000000 HT00000P

00000000 00000011 0E10000P 00000000 00000011 fff0K00P 00000000 HT00000P

00000000 00001010 0E..000P 00000000 00000011 fff0K00P 00000000 HT00000P

cccc0000 00000101 0E00110P 00000000 00000011 fff0K00P 00000000 HT00000P

cccc0000 00000101 0E00010P 00000000 00000011 fff0K00P 00000000 HT00000P

DATA

DATAC

DATAM

DATAMV

CIPHER

MACVER

SECMSG

MAC

ENCIPHER

DECIPHER

01 PIN encryption
10 Key encryption

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

Control-Vector Base Bits

Most Significant Bit

Data Operation Keys

Least Significant Bit

Key-Form

e=ENCIPHER

d=DECIPHER

m=MACGEN

v=MACVER

0000 ANY

0001 ANSI X9.9

0010 CVV KEY-A

0011 CVV KEY-B

0100 AMEX-CSC

Figure 9. Control Vector Base Bit Map (Data Operation Keys)

830 z/OS V1R13 ICSF Application Programmer's Guide

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

aaaa000P 00100010 0E.....P 00000000 00000o1P fff0K00P 00000000 HT00000P

aaaa000P 00100010 0E00001P 00000000 00000o1P fff0K00P 00000000 HT00000P

00000000 00100001 0E0..trP 00000000 00000011 fff0K00P 00000000 HT00000P

00000000 00100100 0E..0trP 00000000 00000011 fff0K00P 00000000 HT00000P

00000000 00111111 0EvvvvvP 00000000 00000011 fff0K00P 00000000 HT00000P

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

Control-Vector Base Bits

Most Significant Bit

Prohibit offsets:

NOOFFSET

PINGEN

PINVER

IPINENC

OPINENC

PIN Processing Keys

Cryptographic Variable-Encrypting Keys

Least Significant Bit

0000 NO-SPEC

CPINGEN

EPINVER

REFORMAT

Key-form

00000 CVARPINE
00001 CVARDEC
00010 CVARXCVL
00011 CVARXCVR
00100 CVARENC

CPINENC

EPINGEN TRANSLAT

CPINGENA

EPINGENA

EPINGEN

CPINGENA

EPINVER

0001 IBM-PIN/IBM-PINO

0010 VISA-PVV

0011 INBK-PIN

0100 GBP-PIN/GBP-PINO

0101 NL-PIN-1

Figure 10. Control Vector Base Bit Map (PIN Processing Keys and Cryptographic Variable-Encrypting Keys)

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 831

Key Form Bits, 'fff' - The key form bits, 40-42, and for a double-length key, bits
104-106, are designated 'fff' in the preceding illustration. These bits can have these
values:

000 Single length key

010 Double length key, left half

001 Double length key. right half

The following values may exist in some CCA implementations:

110 Double-length key, left half, halves guaranteed unique

101 Double-length key, right half, halves guaranteed unique

Specifying a Control-Vector-Base Value
You can determine the value of a control vector by working through the following
series of questions:

1. Begin with a field of 64 bits (eight bytes) set to B'0'. The most significant bit is
referred to as bit 0. Define the key type and subtype (bits 8 to 14), as follows:

v The main key type bits (bits 8 to 11). Set bits 8 to 11 to one of the following
values:

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

00000000 01010011 0E..000P 00000000 00000011 fff0K00P 00000000 HT00000P

00000000 0111vvvP 0E0vvvvP 00000000 00000011 fff0K00P 00000000 HT00000P

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

Control-Vector Base Bits

Most Significant Bit

KEYGENKY

DKYGENKY

Key Generating Keys

Least Significant Bit

CLR8-ENC

0001 DDATA000 DKY Subtype 0
001 DKY Subtype 1
010 DKY Subtype 2
011 DKY Subtype 3
100 DKY Subtype 4
101 DKY Subtype 5
110 DKY Subtype 6
111 DKY Subtype 7

0010 DMAC
0011 DMV
0100 DIMP

0101 DEXP

0110 DPVR

1000 DMKEY

1001 DMPIN

1111 DALL

UKPT

Key-form

Figure 11. Control Vector Base Bit Map (Key Generating Keys)

832 z/OS V1R13 ICSF Application Programmer's Guide

Bits 8 to 11 Main Key Type

0000 Data operation keys

0010 PIN keys

0011 Cryptographic variable-encrypting keys

0100 Key-encrypting keys

0101 Key-generating keys

0111 Diversified key-generating keys

v The key subtype bits (bits 12 to 14). Set bits 12 to 14 to one of the following
values:

Note: For Diversified Key Generating Keys, the subtype field specifies the
hierarchical level of the DKYGENKY. If the subtype is non-zero, then
the DKYGENKY can only generate another DKYGENKY key with the
hierarchy level decremented by one. If the subtype is zero, the
DKYGENKY can only generate the final diversified key (a
non-DKYGENKY key) with the key type specified by the usage bits.

Bits 12 to 14 Key Subtype

Data Operation Keys

000 Compatibility key (DATA)

001 Confidentiality key (CIPHER, DECIPHER, or ENCIPHER)

010 MAC key (MAC or MACVER)

101 Secure messaging keys

Key-Encrypting Keys

000 Transport-sending keys (EXPORTER and OKEYXLAT)

001 Transport-receiving keys (IMPORTER and IKEYXLAT)

PIN Keys

001 PIN-generating key (PINGEN, PINVER)

000 Inbound PIN-block decrypting key (IPINENC)

010 Outbound PIN-block encrypting key (OPINENC)

Cryptographic Variable-Encrypting Keys

111 Cryptographic variable-encrypting key (CVAR....)

Diversified Key Generating Keys

000 DKY Subtype 0

001 DKY Subtype 1

010 DKY Subtype 2

011 DKY Subtype 3

100 DKY Subtype 4

101 DKY Subtype 5

110 DKY Subtype 6

111 DKY Subtype 7

2. For key-encrypting keys, set the following bits:

v The key-generating usage bits (gks, bits 18 to 20). Set the gks bits to B'111'
to indicate that the Key Generate callable service can use the associated

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 833

key-encrypting key to encipher generated keys when the Key Generate
callable service is generating various key-pair key-form combinations (see
the Key-Encrypting Keys section of Figure 8). Without any of the gks bits set
to 1, the Key Generate callable service cannot use the associated
key-encrypting key. The Key Token Build callable service can set the gks
bits to 1 when you supply the OPIM, IMEX, IMIM, OPEX, and EXEX
keywords.

v The IMPORT and EXPORT bit and the XLATE bit (ix, bits 21 and 22). If the
‘i’ bit is set to 1, the associated key-encrypting key can be used in the Data
Key Import, Key Import, Data Key Export, and Key Export callable services.
If the ‘x’ bit is set to 1, the associated key-encrypting key can be used in the
Key Translate callable service.

v The key-form bits (fff, bits 40 to 42). The key-form bits indicate how the key
was generated and how the control vector participates in
multiple-enciphering. To indicate that the parts can be the same value, set
these bits to B'010'. For information about the value of the key-form bits in
the right half of a control vector, see Step 8.

3. For MAC and MACVER keys, set the following bits:

v The MAC control bits (bits 20 and 21). For a MAC-generate key, set bits 20
and 21 to B'11'. For a MAC-verify key, set bits 20 and 21 to B'01'.

v The key-form bits (fff, bits 40 to 42). For a single-length key, set the bits to
B'000'. For a double-length key, set the bits to B'010'.

4. For PINGEN and PINVER keys, set the following bits:

v The PIN calculation method bits (aaaa, bits 0 to 3). Set these bits to one of
the following values:

Bits 0 to 3 Calculation Method
Keyword

Description

0000 NO-SPEC A key with this control vector
can be used with any PIN
calculation method.

0001 IBM-PIN or IBM-PINO A key with this control vector
can be used only with the IBM
PIN or PIN Offset calculation
method.

0010 VISA-PVV A key with this control vector
can be used only with the
VISA-PVV calculation method.

0100 GBP-PIN or GBP-PINO A key with this control vector
can be used only with the
German Banking Pool PIN or
PIN Offset calculation method.

0011 INBK-PIN A key with this control vector
can be used only with the
Interbank PIN calculation
method.

0101 NL-PIN-1 A key with this control vector
can be used only with the
NL-PIN-1, Netherlands PIN
calculation method.

v The prohibit-offset bit (o, bit 37) to restrict operations to the PIN value. If set
to 1, this bit prevents operation with the IBM 3624 PIN Offset calculation
method and the IBM German Bank Pool PIN Offset calculation method.

834 z/OS V1R13 ICSF Application Programmer's Guide

5. For PINGEN, IPINENC, and OPINENC keys, set bits 18 to 22 to indicate
whether the key can be used with the following callable services

Service Allowed Bit Name Bit

Clear PIN Generate CPINGEN 18

Encrypted PIN Generate
Alternate

EPINGENA 19

Encrypted PIN Generate EPINGEN 20 for PINGEN

19 for OPINENC

Clear PIN Generate Alternate CPINGENA 21 for PINGEN

20 for IPINENC

Encrypted Pin Verify EPINVER 19

Clear PIN Encrypt CPINENC 18

6. For the IPINENC (inbound) and OPINENC (outbound) PIN-block ciphering
keys, do the following:

v Set the TRANSLAT bit (t, bit 21) to 1 to permit the key to be used in the PIN
Translate callable service. The Control Vector Generate callable service can
set the TRANSLAT bit to 1 when you supply the TRANSLAT keyword.

v Set the REFORMAT bit (r, bit 22) to 1 to permit the key to be used in the
PIN Translate callable service. The Control Vector Generate callable service
can set the REFORMAT bit and the TRANSLAT bit to 1 when you supply
the REFORMAT keyword.

7. For the cryptographic variable-encrypting keys (bits 18 to 22), set the
variable-type bits (bits 18 to 22) to one of the following values:

Bits 18 to 22 Generic Key Type Description

00000 CVARPINE Used in the Encrypted PIN
Generate Alternate service to
encrypt a clear PIN.

00010 CVARXCVL Used in the Control Vector
Translate callable service to
decrypt the left mask array.

00011 CVARXCVR Used in the Control Vector
Translate callable service to
decrypt the right mask array.

00100 CVARENC Used in the Cryptographic
Variable Encipher callable
service to encrypt an
unformatted PIN.

8. For key-generating keys, set the following bits:

v For KEYGENKY, set bit 18 for UKPT usage and bit 19 for CLR8-ENC
usage.

v For DKYGENKY, bits 12–14 will specify the hierarchical level of the
DKYGENKY key. If the subtype CV bits are non-zero, then the DKYGENKY
can only generate another DKYGENKY key with the hierarchical level
decremented by one. If the subtype CV bits are zero, the DKYGENKY can
only generate the final diversified key (a non-DKYGENKY key) with the key
type specified by usage bits.

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 835

To specify the subtype values of the DKYGENKY, keywords DKYL0, DKYL1,
DKYL2, DKYL3, DKYL4, DKYL5, DKYL6 and DKYL7 will be used.

v For DKYGENKY, bit 18 is reserved and must be zero.

v Usage bits 18-22 for the DKYGENKY key type are defined as follows. They
will be encoded as the final key type that the DKYGENKY key generates.

Bits 19 to 22 Keyword Usage

0001 DDATA DATA, DATAC, single or double
length

0010 DMAC MAC, DATAM

0011 DMV MACVER, DATAMV

0100 DIMP IMPORTER, IKEYXLAT

0101 DEXP EXPORTER, OKEYXLAT

0110 DPVR PINVER

1000 DMKEY Secure message key for
encrypting keys

1001 DMPIN Secure message key for
encrypting PINs

1111 DALL All key types may be generated
except DKYGENKY and
KEYGENKY keys. Usage of the
DALL keyword is controlled by
a separate access control point.

9. For secure messaging keys, set the following bits:

v Set bit 18 to 1 if the key will be used in the secure messaging for PINs
service. Set bit 19 to 1 if the key will be used in the secure messaging for
keys service.

10. For all keys, set the following bits:

v The export bit (E, bit 17). If set to 0, the export bit prevents a key from
being exported. By setting this bit to 0, you can prevent the receiver of a
key from exporting or translating the key for use in another cryptographic
subsystem. Once this bit is set to 0, it cannot be set to 1 by any service
other than Control Vector Translate. The Prohibit Export callable service can
reset the export bit.

v The key-part bit (K, bit 44). Set the key-part bit to 1 in a control vector
associated with a key part. When the final key part is combined with
previously accumulated key parts, the key-part bit in the control vector for
the final key part is set to 0. The Control Vector Generate callable service
can set the key-part bit to 1 when you supply the KEY-PART keyword.

v The anti-variant bits (bit 30 and bit 38). Set bit 30 to 0 and bit 38 to 1. Many
cryptographic systems have implemented a system of variants where a 7-bit
value is exclusive-ORed with each 7-bit group of a key-encrypting key
before enciphering the target key. By setting bits 30 and 38 to opposite
values, control vectors do not produce patterns that can occur in
variant-based systems.

v Control vector bits 64 to 127. If bits 40 to 42 are B'000' (single-length key),
set bits 64 to 127 to 0. Otherwise, copy bits 0 to 63 into bits 64 to 127 and
set bits 105 and 106 to B'01'.

836 z/OS V1R13 ICSF Application Programmer's Guide

v Set the parity bits (low-order bit of each byte, bits 7, 15, ..., 127). These bits
contain the parity bits (P) of the control vector. Set the parity bit of each byte
so the number of zero-value bits in the byte is an even number.

v For secure messaging keys, usage bit 18 on will enable the encryption of
keys in a secure message and usage bit 19 on will enable the encryption of
PINs in a secure message.

v The ENH-ONLY bit (H, bit 56). Set the ENH-ONLY bit to 1 in a control
vector to require the key value be encrypted with the enhanced wrapping.
method. The Control Vector Generate callable service can set the
ENH-ONLY bit to 1 when you supply the ENH-ONLY keyword.

Changing Control Vectors with the Control Vector Translate Callable
Service

Do the following when using the Control Vector Translate callable service:

v Provide the control information for testing the control vectors of the source,
target, and key-encrypting keys to ensure that only sanctioned changes can be
performed

v Select the key-half processing mode.

Providing the Control Information for Testing the Control Vectors
To minimize your security exposure, the Control Vector Translate callable service
requires control information (mask array information) to limit the range of allowable
control vector changes. To ensure that this service is used only for authorized
purposes, the source-key control vector, target-key control vector, and
key-encrypting key (KEK) control vector must pass specific tests. The tests on the
control vectors are performed within the secured cryptographic engine.

The tests consist of evaluating four logic expressions, the results of which must be
a string of binary zeros. The expressions operate bitwise on information that is
contained in the mask arrays and in the portions of the control vectors associated
with the key or key-half that is being processed. If any of the expression evaluations
do not result in all zero bits, the callable service is ended with a control vector
violation return and reason code (8/39). See Figure 12. Only the 56 bit positions
that are associated with a key value are evaluated. The low-order bit that is
associated with key parity in each key byte is not evaluated.

Mask Array Preparation
A mask array consists of seven 8-byte elements: A1, B1, A2, B2, A3, B3, and B4. You
choose the values of the array elements such that each of the following four
expressions evaluates to a string of binary zeros. (See Figure 12 on page 839.) Set
the A bits to the value that you require for the corresponding control vector bits. In
expressions 1 through 3, set the B bits to select the control vector bits to be
evaluated. In expression 4, set the B bits to select the source and target control
vector bits to be evaluated. Also, use the following control vector information:

C1 is the control vector associated with the left half of the KEK.

C2 is the control vector associated with the source key, or selected source-key
half/halves.

C3 is the control vector associated with the target key or selected target-key
half/halves.

1. (C1 exclusive-OR A1) logical-AND B1

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 837

This expression tests whether the KEK used to encipher the key meets your
criteria for the desired translation.

2. (C2 exclusive-OR A2) logical-AND B2

This expression tests whether the control vector associated with the source key
meets your criteria for the desired translation.

3. (C3 exclusive-OR A3) logical-AND B3

This expression tests whether the control vector associated with the target key
meets your criteria for the desired translation.

4. (C2 exclusive-OR C3) logical-AND B4

This expression tests whether the control vectors associated with the source
key and the target key meet your criteria for the desired translation.

Encipher two copies of the mask array, each under a different cryptographic-
variable key (key type CVARENC). To encipher each copy of the mask array, use
the Cryptographic Variable Encipher callable service. Use two different keys so that
the enciphered-array copies are unique values. When using the Control Vector
Translate callable service, the mask_array_left parameter and the mask_array_right
parameter identify the enciphered mask arrays. The array_key_left parameter and
the array_key_right parameter identify the internal keys for deciphering the mask
arrays. The array_key_left key must have a key type of CVARXCVL and the
array_key_right key must have a key type of CVARXCVR. The cryptographic
process deciphers the arrays and compares the results; for the service to continue,
the deciphered arrays must be equal. If the results are not equal, the service
returns the return and reason code for data that is not valid (8/385).

Use the Key Generate callable service to create the key pairs CVARENC-
CVARXCVL and CVARENC-CVARXCVR. Each key in the key pair must be
generated for a different node. The CVARENC keys are generated for, or imported
into, the node where the mask array will be enciphered. After enciphering the mask
array, you should destroy the enciphering key. The CVARXCVL and CVARXCVR
keys are generated for, or imported into, the node where the Control Vector
Translate callable service will be performed.

If using the BOTH keyword to process both halves of a double-length key,
remember that bits 41, 42, 104, and 105 are different in the left and right halves of
the CCA control vector and must be ignored in your mask-array tests (that is, make
the corresponding B2 and/or B3 bits equal to zero).

When the control vectors pass the masking tests, the verb does the following:

v Deciphers the source key. In the decipher process, the service uses a key that is
formed by the exclusive-OR of the KEK and the control vector in the key token
variable the source_key_token parameter identifies.

v Enciphers the deciphered source key. In the encipher process, the service uses a
key that is formed by the exclusive-OR of the KEK and the control vector in the
key token variable the target_key_token parameter identifies.

v Places the enciphered key in the key field in the key token variable the
target_key_token parameter identifies.

838 z/OS V1R13 ICSF Application Programmer's Guide

Selecting the Key-Half Processing Mode
Use the Control Vector Translate callable service to change a control vector
associated with a key. Rule-array keywords determine which key halves are
processed in the call, as shown in Figure 13 on page 840.

0 1 0 1 … 0 1 0 1 …

0 0 0 0 … 1 1 1 1 …

0 0 1 1 … 0 0 1 1 …

0 1 1 0 … 0 1 1 0 …

0 1 0 1 … 0 1 0 1 …

0 0 0 0 … 0 1 1 0 …

0 0 1 1 … 0 0 1 1 …

0 1 1 0 … 0 1 1 0 …

0 0 0 0 0 1 1 0 …

0 0 0 0 … 1 1 1 1 …

Control Vector
Under Test

For expression
1: KEK CV
2: Source CV
3: Target CV

A_Values

Intermediate
Result

B_Values

Final Result

For Expression
4: Source CV

Target CV

Intermediate
Result

B_Values

Final Result

Exclusive-OR

Exclusive-OR

Logical-AND

Logical-AND

Set Tested Positions
to the Value that
the Control Vector
Must Match

Set to 1
Those Positions
to be Tested

Report a Control Vector
Violation if any
Bit Position is 1

Source Control Vector

Target Control Vector

Set to 1
Those Positions
to be Tested

Report a Control Vector
Violation if any
bit Position is 1

Figure 12. Control Vector Translate Callable Service Mask_Array Processing

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 839

Keyword Meaning

SINGLE This keyword causes the control vector of the left half of the source
key to be changed. The updated key half is placed into the left half
of the target key in the target key token. The right half of the target
key is unchanged.

The SINGLE keyword is useful when processing a single-length
key, or when first processing the left half of a double-length key (to
be followed by processing the right half).

RIGHT This keyword causes the control vector of the right half of the
source key to be changed. The updated key half is placed into the
right half of the target key of the target key token. The left half of
the source key is copied unchanged into the left half of the target
key in the target key token.

BOTH This keyword causes the control vector of both halves of the source
key to be changed. The updated key is placed into the target key in
the target key token.

A single set of control information must permit the control vector
changes applied to each key half. Normally, control vector bit
positions 41, 42, 105, and 106 are different for each key half.
Therefore, set bits 41 and 42 to B'00' in mask array elements B1,
B2, and B3.

You can verify that the source and target key tokens have control
vectors with matching bits in bit positions 40-42 and 104-106, the
“form field” bits. Ensure that bits 40-42 of mask array B4 are set to
B'111'.

LEFT This keyword enables you to supply a single-length key and obtain
a double-length key. The source key token must contain:
v The KEK-enciphered single-length key
v The control vector for the single-length key (often this is a null

value)
v A control vector, stored in the source token where the right-half

control vector is normally stored, used in decrypting the
single-length source key when the key is being processed for the
target right half of the key.

The service first processes the source and target tokens as with the
SINGLE keyword. Then the source token is processed using the
single-length enciphered key and the source token right-half control

CHANGE-CV CHANGE-CV

LEFT RIGHTLEFT RIGHT

LEFT RIGHT LEFT RIGHT LEFT RIGHT

LEFT RIGHT

CHANGE-CV

Keyword SINGLE Keyword RIGHT Keyword BOTH

Source Key

Process

Target Key

Copy

(Unchanged)

CHANGE-CV

Figure 13. Control Vector Translate Callable Service. In this figure, CHANGE-CV means the requested control vector
translation change; LEFT and RIGHT mean the left and right halves of a key and its control vector.

840 z/OS V1R13 ICSF Application Programmer's Guide

vector to obtain the actual key value. The key value is then
enciphered using the KEK and the control vector in the target token
for the right-half of the key.

This approach is frequently of use when you must obtain a
double-length CCA key from a system that only supports a
single-length key, for example when processing PIN keys or
key-encrypting keys received from non-CCA systems.

To prevent the service from ensuring that each key byte has odd parity, you can
specify the NOADJUST keyword. If you do not specify the NOADJUST keyword, or
if you specify the ADJUST keyword, the service ensures that each byte of the
target key has odd parity.

When the Target Key Token CV Is Null
When you use any of the LEFT, BOTH, or RIGHT keywords, and when the control
vector in the target key token is null (all B'0'), then bit 3 in byte 59 will be set to B'1'
to indicate that this is a double-length DATA key.

Control Vector Translate Example
As an example, consider the case of receiving a single-length PIN-block encrypting
key from a non-CCA system. Often such a key will be encrypted by an unmodified
transport key (no control vector or variant is used). In a CCA system, an inbound
PIN encrypting key is double-length.

First use the Key Token Build callable service to insert the single-length key value
into the left-half key-space in a key token. Specify USE-CV as a key type and a
control vector value set to 16 bytes of X'00'. Also specify EXTERNAL, KEY, and CV
keywords in the rule array. This key token will be the source key key token.

Second, the target key token can also be created using the Key Token Build
callable service. Specify a key type of IPINENC and the NO-EXPORT rule array
keyword.

Then call the Control Vector Translate callable service and specify a rule-array
keyword of LEFT. The mask arrays can be constructed as follows:

v A1 is set to the value of the KEK's control vector, most likely the value of an
IMPORTER key, perhaps with the NO-EXPORT bit set. B1 is set to eight bytes of
X'FF' so that all bits of the KEK's control vector will be tested.

v A2 is set to eight bytes of X'00', the (null) value of the source key control vector.
B2 is set to eight bytes of X'FF' so that all bits of the source-key “control vector”
will be tested.

v A3 is set to the value of the target key's left-half control vector. B3 is set to
X'FFFF FFFF FF9F FFFF'. This will cause all bits of the control vector to be
tested except for the two (“fff”) bits used to distinguish between the left-half and
right-half target-key control vector.

v B4 is set to eight bytes of X'00' so that no comparison is made between the
source and target control vectors.

Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service 841

842 z/OS V1R13 ICSF Application Programmer's Guide

Appendix D. Coding Examples

This appendix provides sample routines using the ICSF callable services for these
languages:
v C
v COBOL
v Assembler
v PL/1

The C, COBOL and Assembler H examples that follow use the key generate,
encipher, and decipher callable services to determine whether the deciphered text
matches the starting text.

C
C programs must include the header file csfbext.h, which contains stubs for calling
the ICSF services. This file is installed in the HFS directory /usr/include and is
copied to SYS1.SIEAHDR.H(CSFBEXT).

Information on creating C applications that call ICSF PKCS #11 services is available
in z/OS Cryptographic Services ICSF Writing PKCS #11 Applications.

In addition, C applications that include csfbext.h must be link edited with the
appropriate DLL sidedeck for the addressing model:

Standard 31-bit
Link with /usr/lib/CSFDLL31.x or SYS1.SIEASID(CSFDLL31)

31-bit with XPLINK
Link with /usr/lib/CSFDLL3X.x or SYS1.SIEASID(CSFDLL3X)

64-bit Link with /usr/lib/CSFDLL64.x or SYS1.SIEASID(CSFDLL64)

Information on creating C applications that call ICSF PKCS #11 services is available
in z/OS Cryptographic Services ICSF Writing PKCS #11 Applications.
/*---*
* Example using C: *
* Invokes CSNBKGN (key generate), CSNBENC (DES encipher) and *
* CSNBDEC (DES decipher) *
---/
#include <stdio.h>
#include "csfbext.h"

/*---*
* Prototypes for functions in this example *
---/

/*---*
* Utility for printing hex strings *
---/
void printHex(unsigned char *, unsigned int);

/***/
/* Main Function */
/***/
int main(void) {

/*---*
* Constant inputs to ICSF services *
---/

© Copyright IBM Corp. 1997, 2011 843

static int textLen = 24;
static unsigned char clearText[24]="ABCDEFGHIJKLMN0987654321";
static unsigned char cipherProcessRule[8]="CUSP ";
static unsigned char keyForm[4]="OP ";
static unsigned char keyLength[8]="SINGLE ";
static unsigned char dataKeyType[8]="DATA ";
static unsigned char nullKeyType[8]=" ";
static unsigned char ICV[8]={0};
static int *pad=0;
static int exitDataLength = 0;
static unsigned char exitData[4]={0};
static int ruleArrayCount = 1;

/*---*
* Variable inputs/outputs for ICSF services *
---/
unsigned char cipherText[24]={0};
unsigned char compareText[24]={0};
unsigned char dataKeyId[64]={0};
unsigned char nullKeyId[64]={0};
unsigned char dummyKEKKeyId1[64]={0};
unsigned char dummyKEKKeyId2[64]={0};
int returnCode = 0;
int reasonCode = 0;
unsigned char OCV[18]={0};

/*---*
* Begin executable code *
---/
do {

/*---*
* Call key generate *
---/
if ((returnCode = CSNBKGN(&returnCode,

&reasonCode,
&exitDataLength,
exitData,
keyForm,
keyLength,
dataKeyType,
nullKeyType,
dummyKEKKeyId1,
dummyKEKKeyId2,
dataKeyId,
nullKeyId)) != 0) {

printf("\nKey Generate failed:\n");
printf(" Return Code = %04d\n",returnCode);
printf(" Reason Code = %04d\n",reasonCode);
break;
}

/*---*
* Call encipher *
---/
printf("\nClear Text\n");
printHex(clearText,sizeof(clearText));

if ((returnCode = CSNBENC(&returnCode,
&reasonCode,
&exitDataLength,
exitData,
dataKeyId,
&textLen,
clearText,
ICV,
&ruleArrayCount,
cipherProcessRule,
&pad,

844 z/OS V1R13 ICSF Application Programmer's Guide

OCV,
cipherText)) != 0) {

printf("\nReturn from Encipher:\n");
printf(" Return Code = %04d\n",returnCode);
printf(" Reason Code = %04d\n",reasonCode);
if (returnCode > 4)

break;
}

/*---*
* Call decipher *
---/
printf("\nCipher Text\n");
printHex(cipherText,sizeof(cipherText));

if ((returnCode = CSNBDEC(&returnCode,
&reasonCode,
&exitDataLength,
exitData,
dataKeyId,
&textLen,
cipherText,
ICV,
&ruleArrayCount,
cipherProcessRule,
OCV,
compareText)) != 0) {

printf("\nReturn from Decipher:\n");
printf(" Return Code = %04d\n",returnCode);
printf(" Reason Code = %04d\n",reasonCode);
if (returnCode > 4)

break;
}

/*---*
* End *
---/
printf("\nClear Text after decipher\n");
printHex(compareText,sizeof(compareText));

} while(0);

return returnCode;

} /* end main */

void printHex (unsigned char * text, unsigned int len)
/*--*
* Prints a string as hex characters *
--/

{
unsigned int i;

for (i = 0; i < len; ++i)
if (((i & 7) == 7) ││ (i == (len - 1)))

printf (" %02x\n", text[i]);
else

printf (" %02x", text[i]);
printf ("\n");

} /* end printHex */

Appendix D. Coding Examples 845

COBOL

IDENTIFICATION DIVISION.

PROGRAM-ID. COBOLXMP.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.

DATA DIVISION.

FILE SECTION.
WORKING-STORAGE SECTION.
77 INPUT-TEXT PIC X(24)

VALUE ’ABCDEFGHIJKLMN0987654321’.
77 OUTPUT-TEXT PIC X(24)

VALUE LOW-VALUES.
77 COMPARE-TEXT PIC X(24)

VALUE LOW-VALUES.
77 CIPHER-PROCESSING-RULE PIC X(08)

VALUE ’CUSP ’.
77 KEY-FORM PIC X(08)

VALUE ’OP ’.
77 KEY-LENGTH PIC X(08)

VALUE ’SINGLE ’.
77 KEY-TYPE-1 PIC X(08)

VALUE ’DATA ’.
77 KEY-TYPE-2 PIC X(08)

VALUE ’ ’.
77 ICV PIC X(08)

VALUE LOW-VALUES.
77 PAD PIC X(01)

VALUE LOW-VALUES.
************* DEFINE SAPI INPUT/OUTPUT PARAMETERS ************
01 SAPI-REC.

05 RETURN-CODE-S PIC 9(08) COMP.
05 REASON-CODE-S PIC 9(08) COMP.
05 EXIT-DATA-LENGTH-S PIC 9(08) COMP.
05 EXIT-DATA-S PIC X(04).
05 KEK-KEY-ID-1-S PIC X(64)

VALUE LOW-VALUES.
05 KEK-KEY-ID-2-S PIC X(64)

VALUE LOW-VALUES.
05 DATA-KEY-ID-S PIC X(64)

VALUE LOW-VALUES.
05 NULL-KEY-ID-S PIC X(64)

VALUE LOW-VALUES.
05 KEY-FORM-S PIC X(08).
05 KEY-LENGTH-S PIC X(08).
05 DATA-KEY-TYPE-S PIC X(08).
05 NULL-KEY-TYPE-S PIC X(08).
05 TEXT-LENGTH-S PIC 9(08) COMP.
05 TEXT-S PIC X(24).
05 ICV-S PIC X(08).
05 PAD-S PIC X(01).
05 CPHR-TEXT-S PIC X(24).
05 COMP-TEXT-S PIC X(24).
05 RULE-ARRAY-COUNT-S PIC 9(08) COMP.
05 RULE-ARRAY-S.

10 RULE-ARRAY PIC X(08).
05 CHAINING-VECTOR-S PIC X(18).

PROCEDURE DIVISION.

846 z/OS V1R13 ICSF Application Programmer's Guide

MAIN-RTN.
************* CALL KEY GENERATE ***************************

MOVE 0 TO EXIT-DATA-LENGTH-S.
MOVE KEY-FORM TO KEY-FORM-S.
MOVE KEY-LENGTH TO KEY-LENGTH-S.
MOVE KEY-TYPE-1 TO DATA-KEY-TYPE-S.
MOVE KEY-TYPE-2 TO NULL-KEY-TYPE-S.
CALL ’CSNBKGN’ USING RETURN-CODE-S

REASON-CODE-S
EXIT-DATA-LENGTH-S
EXIT-DATA-S
KEY-FORM-S
KEY-LENGTH-S
DATA-KEY-TYPE-S
NULL-KEY-TYPE-S
KEK-KEY-ID-1-S
KEK-KEY-ID-2-S
DATA-KEY-ID-S
NULL-KEY-ID-S.

IF RETURN-CODE-S NOT = 0 OR
REASON-CODE-S NOT = 0 THEN
DISPLAY ’*** KEY-GENERATE ***’
DISPLAY ’*** RETURN-CODE = ’ RETURN-CODE-S
DISPLAY ’*** REASON-CODE = ’ REASON-CODE-S

ELSE
MOVE 24 TO TEXT-LENGTH-S
MOVE INPUT-TEXT TO TEXT-S
MOVE 1 TO RULE-ARRAY-COUNT-S
MOVE CIPHER-PROCESSING-RULE TO RULE-ARRAY-S
MOVE LOW-VALUES TO CHAINING-VECTOR-S
MOVE ICV TO ICV-S.
MOVE PAD TO PAD-S.

************* CALL ENCIPHER ************************************
CALL ’CSNBENC’ USING RETURN-CODE-S

REASON-CODE-S
EXIT-DATA-LENGTH-S
EXIT-DATA-S
DATA-KEY-ID-S
TEXT-LENGTH-S
TEXT-S
ICV-S
RULE-ARRAY-COUNT-S
RULE-ARRAY-S
PAD-S
CHAINING-VECTOR-S
CPHR-TEXT-S

IF RETURN-CODE-S NOT = 0 OR
REASON-CODE-S NOT = 0 THEN
DISPLAY ’*** ENCIPHER ***’
DISPLAY ’*** RETURN-CODE = ’ RETURN-CODE-S
DISPLAY ’*** REASON-CODE = ’ REASON-CODE-S

ELSE
************* CALL DECIPHER ************************************

CALL ’CSNBDEC’ USING RETURN-CODE-S
REASON-CODE-S
EXIT-DATA-LENGTH-S
EXIT-DATA-S
DATA-KEY-ID-S
TEXT-LENGTH-S
CPHR-TEXT-S
ICV-S
RULE-ARRAY-COUNT-S
RULE-ARRAY-S
CHAINING-VECTOR-S
COMP-TEXT-S

IF RETURN-CODE-S NOT = 0 OR

Appendix D. Coding Examples 847

REASON-CODE-S NOT = 0 THEN
DISPLAY ’*** DECIPHER ***’
DISPLAY ’*** RETURN-CODE = ’ RETURN-CODE-S
DISPLAY ’*** REASON-CODE = ’ REASON-CODE-S

ELSE
IF COMP-TEXT-S = TEXT-S THEN

DISPLAY ’*** DECIPHERED TEXT = PLAIN TEXT ***’
ELSE

DISPLAY ’*** DECIPHERED TEXT ê= PLAIN TEXT ***’.
DISPLAY ’*** TEST PROGRAM ENDED ***’
STOP RUN.

Assembler H
TITLE ’SAMPLE ENCIPHER/DECIPHER S/370 PROGRAM.’

===
* SYSTEM/370 ASSEMBLER H EXAMPLE *
* *
===

SPACE
SAMPLE START 0

DS 0H
STM 14,12,12(13) SAVE REGISTERS
BALR 12,0 USE R12 AS BASE REGISTER
USING *,12 PROVIDE SAVE AREA FOR SUBROUTINE
LA 14,SAVE PERFORM SAVE AREA CHAINING
ST 13,4(14) "
ST 14,8(13) "
LR 13,14 "

*
CALL CSFKGN,(RETCD, *

RESCD, *
EXDATAL, *
EXDATA, *
KEY_FORM, *
KEY_LEN, *
KEYTYP1, *
KEYTYP2, *
KEK_ID1, *
KEK_ID2, *
DATA_ID, *
NULL_ID)

CLC RETCD,=F’0’ CHECK RETURN CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP
CLC RESCD,=F’0’ CHECK REASON CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP

*
* CALL ENCIPHER WITH THE KEY JUST GENERATED
* OPERATIONAL FORM
*

MVC RULEAC,=F’1’ SET RULE ARRAY COUNT
MVC RULEA,=CL8’CUSP ’ BUILD RULE ARRAY
CALL CSFENC,(RETCD, *

RESCD, *
EXDATAL, *
EXDATA, *
DATA_ID, *
TEXTL, *
TEXT, *
ICV, *
RULEAC, *
RULEA, *
PAD_CHAR, *
OCV, *
CIPHER_TEXT)

CLC RETCD,=F’0’ CHECK RETURN CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP

848 z/OS V1R13 ICSF Application Programmer's Guide

CLC RESCD,=F’0’ CHECK REASON CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP
CALL CSFDEC,(RETCD, *

RESCD, *
EXDATAL, *
EXDATA, *
DATA_ID, *
TEXTL, *
CIPHER_TEXT, *
ICV, *
RULEAC, *
RULEA, *
OCV, *
NEW_TEXT)

CLC RETCD,=F’0’ CHECK RETURN CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP
CLC RESCD,=F’0’ CHECK REASON CODE
BNE BACK OUTPUT RETURN/REASON CODE AND STOP

*
COMPARE EQU * COMPARE START AND END TEXT

CLC TEXT,NEW_TEXT
BE GOODENC
WTO ’DECIPHERED TEXT DOES NOT MATCH STARTING TEXT’
B BACK

GOODENC WTO ’DECIPHERED TEXT MATCHES STARTING TEXT’
*
*

WTO ’TEST PROGRAM TERMINATING’
B RETURN

*
*--
* CONVERT RETURN/REASON CODES FROM BINARY TO EBCDIC
*--
BACK DS 0F OUTPUT RETURN & REASON CODE

L 5,RETCD LOAD RETURN CODE
L 6,RESCD LOAD REASON CODE
CVD 5,BCD1 CONVERT TO PACK-DECIMAL
CVD 6,BCD2
UNPK ORETCD,BCD1 CONVERT TO EBCDIC
UNPK ORESCD,BCD2
OI ORETCD+7,X’F0’ CORRECT LAST DIGIT
OI ORESCD+7,X’F0’

*
MVC ERROUT+21(4),ORETCD+4
MVC ERROUT+41(4),ORESCD+4

ERROUT WTO ’ERROR CODE = , REASON CODE = ’
RETURN EQU *

L 13,4(13) SAVE AREA RESTORATION
MVC 16(4,13),RETCD SAVE RETURN CODE
LM 14,12,12(13)
BR 14 RETURN TO CALLER

*
BCD1 DS D CONVERT TO BCD TEMP AREA
BCD2 DS D CONVERT TO BCD TEMP AREA
ORETCD DS CL8’0’ OUTPUT RETURN CODE
ORESCD DS CL8’0’ OUTPUT REASON CODE
*
KEY_FORM DC CL8’OP ’ KEY FORM
KEY_LEN DC CL8’SINGLE ’ KEY LENGTH
KEYTYP1 DC CL8’DATA ’ KEY TYPE 1
KEYTYP2 DC CL8’ ’ KEY TYPE 2
TEXT DC C’ABCDEFGHIJKLMNOPQRSTUV0987654321’
TEXTL DC F’32’ TEXT LENGTH
CIPHER_TEXT DC CL32’ ’
NEW_TEXT DC CL32’ ’
DATA_ID DC XL64’00’ DATA KEY TOKEN
NULL_ID DC XL64’00’ NULL KEY TOKEN - UNFILLED

Appendix D. Coding Examples 849

KEK_ID1 DC XL64’00’ KEK1 KEY TOKEN
KEK_ID2 DC XL64’00’ KEK2 KEY TOKEN
RETCD DS F’0’ RETURN CODE
RESCD DS F’0’ REASON CODE
EXDATAL DC F’0’ EXIT DATA LENGTH
EXDATA DS 0C EXIT DATA
RULEA DS 1CL8 RULE ARRAY
RULEAC DS F’0’ RULE ARRAY COUNT
ICV DC XL8’00’ INITIAL CHAINING VECTOR
OCV DC XL18’00’ OUTPUT CHAINING VECTOR
PAD_CHAR DC F’0’ PAD CHARACTER
SAVE DS 18F SAVE REGISTER AREA

END SAMPLE

PL/1
/**/
/* */
/* Sample program to call the one-way hash service to generate */
/* the SHA-1 hash of the input text and call digital signature */
/* generate with an RSA key using the ISO 9796 text formatting. The */
/* RSA key token is built from supplied data and imported for the */
/* signature generate service to use. */
/* */
/* INPUT: TEXT Message digest to be signed */
/* */
/* OUTPUT: SIGNATURE_LENGTH Length of the signature in bytes */
/* Written to a dataset. */
/* */
/* SIGNATURE Signature for hash. Written to a */
/* dataset. */
/* */
/**/
DSIGEXP:PROCEDURE(TEXT) OPTIONS(MAIN);

/* Declarations - Parameters */

DCL TEXT CHAR(64) VARYING;

/* Declarations - API parameters */

DCL CHAINING_VECTOR_LENGTH FIXED BINARY(31, 0) INIT(128);
DCL CHAINING_VECTOR CHAR(128);
DCL DUMMY_KEK CHAR(64);
DCL EXIT_DATA CHAR(4);
DCL EXIT_LEN FIXED BINARY(31, 0) INIT(0);

DCL HASH CHAR(20);
DCL HASH_LENGTH FIXED BINARY(31, 0) INIT(20);

DCL INTERNAL_PKA_TOKEN CHAR(1024);
DCL INTERNAL_PKA_TOKEN_LENGTH FIXED BINARY(31, 0);

DCL KEY_VALUE_STRUCTURE CHAR(139)
INIT((’02000040000300408000000000000000’X ||

’01AE28DA4606D885EB7E0340D6BAAC51’X ||
’991C0CD0EAE835AFD9CFF3CD7E7EA741’X ||
’41DADD24A6331BEDF41A6626522CCF15’X ||
’767D167D01A16F970100010252BDAD42’X ||
’52BDAD425A8C6045D41AFAF746BEBD5F’X ||
’085D574FCD9C07F0B38C2C45017C2A1A’X ||
’B919ED2551350A76606BFA6AF2F1609A’X ||
’00A0A48DD719A55E9CA801’X));

DCL KEY_VALUE_LENGTH FIXED BINARY(31, 0) INIT(139);

DCL OWH_TEXT CHAR(64);

850 z/OS V1R13 ICSF Application Programmer's Guide

DCL PKA_KEY_TOKEN CHAR(1024);
DCL PKA_TOKEN_LENGTH FIXED BINARY(31, 0);

DCL PRIVATE_NAME CHAR(64) INIT(’PL1.EXAMPLE.FOR.APG’);
DCL PRIVATE_NAME_LENGTH FIXED BINARY(31, 0) INIT(0);

DCL RETURN_CODE FIXED BINARY(31, 0) INIT(0);
DCL REASON_CODE FIXED BINARY(31, 0) INIT(0);

DCL RESERVED_FIELD_LENGTH FIXED BINARY(31, 0) INIT(0);
DCL RESERVED_FIELD CHAR(1);

DCL RULE_ARY_CNT_DSG FIXED BINARY(31, 0) INIT(1);
DCL RULE_ARY_CNT_PKB FIXED BINARY(31, 0) INIT(1);
DCL RULE_ARY_CNT_PKI FIXED BINARY(31, 0) INIT(0);
DCL RULE_ARY_CNT_OWH FIXED BINARY(31, 0) INIT(2);
DCL RULE_ARY_DSG CHAR(8) INIT(’ISO-9796’);
DCL RULE_ARY_PKB CHAR(8) INIT(’RSA-PRIV’);
DCL RULE_ARY_PKI CHAR(8);
DCL RULE_ARY_OWH CHAR(16) INIT(’SHA-1 ONLY ’);

DCL SIGNATURE_LENGTH FIXED BINARY(31, 0);
DCL SIGNATURE CHAR(128);
DCL SIG_BIT_LENGTH FIXED BINARY(31, 0);

DCL TEXT_LENGTH FIXED BINARY(31, 0);

/* Declarations - Files and entry points */

DCL SYSPRINT FILE OUTPUT;
DCL SIGOUT FILE RECORD OUTPUT;

DCL CSNDPKB ENTRY EXTERNAL OPTIONS(ASM, INTER);
DCL CSNDPKI ENTRY EXTERNAL OPTIONS(ASM, INTER);
DCL CSNBOWH ENTRY EXTERNAL OPTIONS(ASM, INTER);
DCL CSNDDSG ENTRY EXTERNAL OPTIONS(ASM, INTER);

/* Declarations - Internal variables */

DCL DSG_HEADER CHAR(32)
INIT(’* DIGITAL SIGNATURE GENERATION *’);

DCL FILE_OUT_LINE CHAR(128);
DCL OWH_HEADER CHAR(16)

INIT(’* ONE WAY HASH *’);
DCL PKB_HEADER CHAR(16)

INIT(’* PKA TOKEN BUILD *’);
DCL PKI_HEADER CHAR(16)

INIT(’* PKA TOKEN IMPORT *’);
DCL RC_STRING CHAR(14) INIT(’RETURN CODE = ’);
DCL RS_STRING CHAR(14) INIT(’REASON CODE = ’);
DCL SIG_STRING CHAR(12) INIT(’SIGNATURE = ’);
DCL SIG_LEN_STRING CHAR(26) INIT(’SIGNATURE LENGTH(BYTES) = ’);

/* Declarations - Built-in functions */

DCL (SUBSTR, LENGTH) BUILTIN;

/**/
/* Call one-way hash to get the SHA-1 hash of the text. */
/**/
TEXT_LENGTH = LENGTH(TEXT);
OWH_TEXT = SUBSTR(TEXT, 1, TEXT_LENGTH);

CALL CSNBOWH(RETURN_CODE,
REASON_CODE,
EXIT_LEN,
EXIT_DATA,

Appendix D. Coding Examples 851

RULE_ARY_CNT_OWH,
RULE_ARY_OWH,
TEXT_LENGTH,
OWH_TEXT,
CHAINING_VECTOR_LENGTH,
CHAINING_VECTOR,
HASH_LENGTH,
HASH);

PUT SKIP LIST(OWH_HEADER);
PUT SKIP LIST(RC_STRING || RETURN_CODE);
PUT SKIP LIST(RS_STRING || REASON_CODE);

/**/
/* Create the PKA RSA private external token. */
/**/
IF RETURN_CODE = 0 THEN

DO;

PKA_TOKEN_LENGTH = 1024;

CALL CSNDPKB(RETURN_CODE,
REASON_CODE,
EXIT_LEN,
EXIT_DATA,
RULE_ARY_CNT_PKB,
RULE_ARY_PKB,
KEY_VALUE_LENGTH,
KEY_VALUE_STRUCTURE,
PRIVATE_NAME_LENGTH,
PRIVATE_NAME,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
RESERVED_FIELD_LENGTH,
RESERVED_FIELD,
PKA_TOKEN_LENGTH,
PKA_KEY_TOKEN);

PUT SKIP LIST(PKB_HEADER);
PUT SKIP LIST(RC_STRING || RETURN_CODE);
PUT SKIP LIST(RS_STRING || REASON_CODE);

END;

/**/
/* Import the clear RSA private external token. */
/**/
IF RETURN_CODE = 0 THEN

DO;

INTERNAL_PKA_TOKEN_LENGTH = 1024;

CALL CSNDPKI(RETURN_CODE,
REASON_CODE,
EXIT_LEN,
EXIT_DATA,
RULE_ARY_CNT_PKI,
RULE_ARY_PKI,
PKA_TOKEN_LENGTH,
PKA_KEY_TOKEN,
DUMMY_KEK,

852 z/OS V1R13 ICSF Application Programmer's Guide

INTERNAL_PKA_TOKEN_LENGTH,
INTERNAL_PKA_TOKEN);

PUT SKIP LIST(PKI_HEADER);
PUT SKIP LIST(RC_STRING || RETURN_CODE);
PUT SKIP LIST(RS_STRING || REASON_CODE);

END;
/**/
/* Call digital signature generate. */
/**/
IF RETURN_CODE = 0 THEN

DO;

SIGNATURE_LENGTH = 128;

CALL CSNDDSG(RETURN_CODE,
REASON_CODE,
EXIT_LEN,
EXIT_DATA,
RULE_ARY_CNT_DSG,
RULE_ARY_DSG,
INTERNAL_PKA_TOKEN_LENGTH,
INTERNAL_PKA_TOKEN,
HASH_LENGTH,
HASH,
SIGNATURE_LENGTH,
SIG_BIT_LENGTH,
SIGNATURE);

PUT SKIP LIST(DSG_HEADER);
PUT SKIP LIST(RC_STRING || RETURN_CODE);
PUT SKIP LIST(RS_STRING || REASON_CODE);

IF RETURN_CODE = 0 THEN
DO;

/**/
/* Write the signature and its length to the output file. */
/**/
FILE_OUT_LINE = SIG_LEN_STRING || SIGNATURE_LENGTH;
WRITE FILE(SIGOUT) FROM(FILE_OUT_LINE);
FILE_OUT_LINE = SIG_STRING || SIGNATURE;
WRITE FILE(SIGOUT) FROM(FILE_OUT_LINE);
END;

END;

END DSIGEXP;

Appendix D. Coding Examples 853

854 z/OS V1R13 ICSF Application Programmer's Guide

Appendix E. Using ICSF with BSAFE

ICSF works in conjunction with RSA Security, Inc.'s BSAFE toolkit (BSAFE 3.1 or
later). If you are currently using applications developed with BSAFE, we strongly
recommend you take advantage of the increased security and performance
available with ICSF interfaces. The BHAPI interface has been stabilized since ICSF
FMID HCR770B and may be removed in a future release.

Through BSAFE 3.1 you can access the ICSF services to:

v Compute message digests or hashes

v Generate random numbers

v Encipher and decipher data using the DES algorithm

v Generate and verify RSA digital signatures

Some BSAFE Basics
BSAFE has many algorithm information types (called AIs). Many of the AIs can
perform several cryptographic functions. For this reason, you must specify the
algorithmic method (AM) to be used by supplying a chooser. If the cryptographic
function requires a key, you supply key information to the BSAFE application with a
key information (KI) type. For the most current information on the BSAFE user
interface and a complete description of algorithm information types, algorithm
methods, choosers, and key information types, refer to BSAFE User's Manual and
BSAFE Library Reference Manual.

Computing Message Digests and Hashes
MD5 and SHA1 hashing are both available from ICSF via BSAFE. If your BSAFE
application uses the AM_MD5 or the AM_SHA algorithm methods, you can add a
couple of BSAFE function calls and the application will use ICSF and the
Cryptographic Coprocessor Feature instead of the BSAFE algorithm method.

The following list shows BSAFE AI types with choosers that may include AM_MD5:
v AI_MD5
v AI_MD5_BER
v AI_MD5WithDES_CBCPad
v AI_MD5WithDES_CBCPadBER
v AI_MD5WithRC2_CBCPad
v AI_MD5WithRC2_CBCPadBER
v AI_MD5WithRSAEncryption
v AI_MD5WithRSAEncryptionBER
v AI_MD5WithXOR
v AI_MD5WithXOR_BER

The following list shows BSAFE AI types with choosers that may include AM_SHA:
v AI_SHA1
v AI_SHA1_BER
v AI_SHA1WithDES_CBCPad
v AI_SHA1WithDES_CBCPadBER

Generating Random Numbers
If your BSAFE application uses the algorithm method AM_MD5_RANDOM, you can
add a chooser definition containing the algorithm method AM_HW_RANDOM (new

© Copyright IBM Corp. 1997, 2011 855

with BSAFE 3.1) and a couple of BSAFE function calls and your program can use
ICSF and the Cryptographic Coprocessor Feature to generate random numbers
instead of the BSAFE algorithm method.

BSAFE 3.1 provides a new algorithm information type, AI_HWRandom. You need to
set your random number generation object with AI_HWRandom, and initialize the
object with a chooser containing AM_HW_RANDOM, in order to use ICSF with the
Cryptographic Coprocessor Feature for generating random numbers. You do not,
however, have to make a B_RandomUpdate call, since the S/390 and IBM
Eserver zSeries cryptographic solution does not require a seed.

The only AI type with choosers that may include AM_HW_RANDOM is
AI_HWRandom.

Encrypting and Decrypting with DES
If your BSAFE application uses either the AM_DES_CBC_ENCRYPT or the
AM_DES_CBC_DECRYPT algorithm methods, you can add a chooser containing
the algorithm methods AM_TOKEN_DES_CBC_ENCRYPT and/or
AM_TOKEN_DES_CBC_DECRYPT (both new with BSAFE 3.1) and a couple of
BSAFE function calls and your program can use ICSF and the Cryptographic
Coprocessor Feature to encrypt and/or decrypt data using the DES algorithm.

For your encryption or decryption key, you can use either a clear key in the form of
a KI_8Byte or KI_DES8 or KI_Item (8 bytes long), or a CCA DES Key Token in the
form of a KI_TOKEN (64 bytes long). KI_TOKEN is a new key information type in
BSAFE 3.1.

The following list shows BSAFE AI types with choosers that may include either
AM_TOKEN_DES_CBC_ENCRYPT, AM_TOKEN_DES_CBC_DECRYPT, or both:
v AI_DES_CBC_BSAFE1
v AI_DES_CBC_IV8
v AI_DES_CBCPadBER
v AI_DES_CBCPadIV8
v AI_DES_CBCPadPEM
v AI_MD5WithDES_CBCPad
v AI_MD5WithDES_CBCPadBER
v AI_SHA1WithDES_CBCPad
v AI_SHA1WithDES_CBCPadBER

Generating and Verifying RSA Digital Signatures
You can use algorithm method AM_TOKEN_RSA_PRV_ENCRYPT with AM_MD5 or
AM_SHA to have ICSF and the Cryptographic Coprocessor Feature generate RSA
digital signatures. To verify the RSA digital signature using the S/390 or IBM
Eserver zSeries cryptographic solution, you can use
AM_TOKEN_RSA_PUB_DECRYPT (with AM_MD5 or AM_SHA). Your BSAFE
application must contain a couple of new BSAFE function calls to access the S/390
and IBM Eserver zSeries services. AM_TOKEN_RSA_PRV_ENCRYPT and
AM_TOKEN_RSA_PUB_DECRYPT are new in BSAFE 3.1. For more information,
see “Using the New Function Calls in Your BSAFE Application” on page 857.

For signature generation, you can use either a clear private key in the form of a
KI_PKCS_RSAPrivate or a CCA RSA private key token in the form of a KI_TOKEN.
For signature verification, you can use either a public RSA key in the form of a
KI_RSAPublic or a CCA RSA public key token in the form of a KI_TOKEN.

856 z/OS V1R13 ICSF Application Programmer's Guide

KI_TOKEN is a new key information type in BSAFE. For more information about
KI_TOKEN, see “Using the BSAFE KI_TOKEN” on page 859.

The following list shows BSAFE AI types with choosers that may include
AM_TOKEN_RSA_PRV_ENCRYPT:
v AI_MD5WithRSAEncryption
v AI_MD5WithRSAEncryptionBER
v AI_SHA1WithRSAEncryption
v AI_SHA1WithRSAEncryptionBER

The following list shows BSAFE AI types with choosers that may include
AM_TOKEN_RSA_PUB_DECRYPT:
v AI_MD5WithRSAEncryption
v AI_SHA1WithRSAEncryption

Encrypting and Decrypting with RSA
You can use algorithm method AM_TOKEN_RSA_ENCRYPT to have ICSF encrypt
a symmetric key (or other string of 48 bytes or fewer). To decrypt the string using
ICSF, you can use AM_TOKEN_RSA_CRT_DECRYPT. You'll need a couple of new
BSAFE function calls to access the S/390 and IBM Eserver zSeries services (see
“Using the New Function Calls in Your BSAFE Application.”

To encrypt a string, you can use either a public key in the form KI_RSAPublic or a
CCA RSA public key token in the form of a KI_TOKEN.

To decrypt a string, you can use either a private key in the form
KI_PKCS_RSAPrivate or a CCA RSA private key token in the form of a KI_TOKEN.

Using the New Function Calls in Your BSAFE Application
To have your BSAFE application access the ICSF, S/390, and IBM Eserver

zSeries Cryptographic Coprocessor Feature services, you need to add several new
elements to your program. These elements are explained with examples in the
steps that follow.

1. At the beginning of your program, declare one or more session choosers and
also the hardware table list. For information about choosers and the hardware
table list, see BSAFE User's Manual.
/*---*
* SESSION_CHOOSER will replace OLD_CHOOSER. *
---/
B_ALGORITHM_METHOD **SESSION_CHOOSER = NULL_PTR;

/*---*
* CCA_VTABLE is a vector table of functions that will be *
* substituted for BSAFE equivalents. It is supplied by IBM *
* and will be loaded into your application when you invoke *
* QueryCrypto. *
---/
HW_TABLE_LIST CCA_VTABLE = (HW_TABLE_LIST)NULL_PTR;

2. Declare a tag list. The content of the tag list is supplied by BSAFE at the
B_CreateSessionChooser call, which is discussed in a later step.
unsigned char **taglist = (unsigned char **)NULL_PTR;

3. For random number generation, DES encryption or decryption or RSA
encryption or decryption, you need to define and declare an additional chooser

Appendix E. Using ICSF with BSAFE 857

wherever your current chooser is defined and declared. For instance, suppose
your application is doing an RSA encryption, and OLD_CHOOSER is defined as
follows:
/*--*
* OLD_CHOOSER is used for this application when ICSF and *
* the crypto hardware is not available. *
--/
B_ALGORITHM_METHOD *OLD_CHOOSER[] = {

&AM_SHA,
&AM_RSA_ENCRYT,
(B_ALGORITHM_METHOD *)NULL_PTR

};

/*--*
* ICSF_CHOOSER is a ’skeleton’ for SESSION_CHOOSER. *
* SESSION_CHOOSER will be used for this application if *
* ICSF and the crypto hardware are not available. *
--/
B_ALGORITHM_METHOD *ICSF_CHOOSER[] = {

&AM_SHA,
&AM_TOKEN_RSA_PUB_ENCRYPT,
(B_ALGORITHM_METHOD *)NULL_PTR

};

4. At the beginning of the main function in your application, add a call to the ICSF
QueryCrypto function followed by a conditional call to the BSAFE
B_CreateSessionChooser function.
/*---*
* Check for the existence of crypto hardware. If it’s there, *
* QueryCrypto will supply CCA_VTABLE *
---/
if ((status = QueryCrypto(CRYPTO_Q_DES_AND_RSA,&CCA_VTABLE)) == 0)
/*---*

* B_CreateSessionChooser will replace the *
* BSAFE software functions with their CCA *
* hardware equivalents. *
* *
* Note that the last three parameters are not *
* used with CCA *
---/

if ((status = B_CreateSessionChooser(ICSF_CHOOSER,
&SESSION_CHOOSER,
CCA_VTABLE,
(ITEM *)NULL_PTR,
(POINTER *)NULL_PTR,

&taglist)) != 0)
break;

5. Set up the conditions under which any alternate choosers are used to initialize
the appropriate algorithm object. For information about initializing algorithm
objects, see BSAFE User's Manual.
/*---*
* Initialize the algorithm object with the appropriate *
* chooser. *
---/
if (SESSION_CHOOSER != NULL_PTR)

if ((status = B_xxxxxxInit
(xxxxxxObject,SESSION_CHOOSER,
(A_SURRENDER_CTX *)NULL_PTR)) != 0)

break;
else ;

else
if ((status = B_xxxxxxInit

858 z/OS V1R13 ICSF Application Programmer's Guide

(xxxxxxObject,OLD_CHOOSER,
(A_SURRENDER_CTX *)NULL_PTR)) != 0)

break;
else ;

6. When your application no longer needs the session chooser, program a call to
the BSAFE B_FreeSessionChooser function.
if (SESSION_CHOOSER != NULL_PTR)

B_FreeSessionChooser(&SESSION_CHOOSER,&taglist);

Using the BSAFE KI_TOKEN
Those ICSF functions that require a key, like encipher and decipher, expect the key
in the form of a CCA token. If you already have a CCA token, perform the following
steps before you try to set your algorithm object. For information about how to
perform the following tasks, see BSAFE User's Manual and BSAFE Library
Reference Manual.

1. Create a key object.

2. Declare a KEY_TOKEN_INFO and fill it in.

KEY_TOKEN_INFO is defined as follows in the BSAFE User's Manual:
typedef struct {

ITEM manufacturerID;
ITEM internalKeyInfo;

} KEY_TOKEN_INFO;

The first ITEM is the address and length of one of the following three strings,
depending on the CCA key token type you are using:

v com.ibm.CCADES

v com.ibm.CCARSAPublic

v com.ibm.CCARSAPrivate

The second ITEM is the address and length of your CCA key token.

3. Set the key information (B_SetKeyInfo) into the key object using the item and a
key information type of KI_TOKEN as input.

If you don't already have a CCA token, you can supply a clear key to the function
using one of the key information types mentioned in the section discussing the
function you are using. BSAFE will convert the key to a CCA token. If you supply a
clear BSAFE KI type to one of the ICSF functions, and the function is performed
successfully, you can retrieve the key as a CCA token by invoking B_GetKeyInfo
with KI_TOKEN as the key information type. A KEY_TOKEN_INFO struct is
returned.

ICSF Triple DES via BSAFE
ICSF performs single, double, or triple DES depending on the length of the DES
key; if you're using BSAFE to access ICSF triple DES, you should use the algorithm
methods AM_TOKEN_DES_CBC_ENCRYPT and
AM_TOKEN_DES_CBC_DECRYPT.

If you've already have an ICSF token, follow the instructions in the section titled
“Using the BSAFE KI_TOKEN.”

If you're using a clear key, follow the same procedure, except use your clear key
padded on the right with binary zeroes to a length of 64 as the internalKeyInfo part
of your KI_TOKEN_INFO. ICSF will convert your clear key to an internal ICSF key
token.

Appendix E. Using ICSF with BSAFE 859

Here's an example:
B_KEY_OBJ desKey = (B_KEY_OBJ)NULL_PTR;
KEY_TOKEN_INFO myTokenInfo;
unsigned char myToken[64] = {0};
unsigned char * myTokenP;
unsigned char myDoubleKey[16]; /* Input to this function *
unsigned char mfgID[] = "com.ibm.CCADES";
unsigned char * mfgIDP;

.

.

.
myTokenP = myToken;
mfgIDP = mfgID;
T_memcpy(myToken,myDoubleKey,sizeof(myDoubleKey));
myTokenInfo.manufacturerID.len = strlen(mfgID);
myTokenInfo.manufacturerID.data = mfgIDP;
myTokenInfo.internalKeyInfo.len = sizeof(myToken);
myTokenInfo.internalKeyInfo.data = myTokenP;

/* Create a key object. */
if ((status = B_CreateKeyObject (&desKey)) != 0)

break;

/* Set the key object. */
if ((status = B_SetKeyInfo

(desKey, KI_TOKEN, myTokenInfo)) != 0)
break;

.

.

.

Retrieving ICSF Error Information
When using the ICSF and Cryptographic Coprocessor Feature, Init, Update, and
Final calls can result in BSAFE returning a status of BE_HARDWARE (0x020B).
When this occurs, you can derive the ICSF return and reason codes by using a
new BSAFE operation, B_GetExtendedErrorInfo. For an explanation of the return
codes and reason codes, see Appendix A, “ICSF and TSS Return and Reason
Codes,” on page 725.

A coding example follows.
.
.

#include "balg.h"
#include "algobj.h"
#include "cca.h"

.

.
{

.

.

.
B_ALGORITHM_OBJECT * aop;
ITEM * errp;
unsigned char * algorithmMethod;
CCA_ERROR_DATA * edp;
unsigned int CCAreturnCode=0;
unsigned int CCAreasonCode=0;
unsigned char algorithmName[40]={0x00};

.

.

.
if (status==BE_HARDWARE) {

B_GetExtendedErrorInfo(aop,errp,algorithmMethod);

860 z/OS V1R13 ICSF Application Programmer's Guide

edp = errp->data;
CCAreturnCode = (unsigned int) edp->returnCode;
CCAreasonCode = (unsigned int) edp->reasonCode;

}
.
.

}

The prototype for B_GetExtendedErrorInfo is in balg.h, as shown in the example
that follows.
B_GetExtendedErrorInfo (
B_ALGORITHM_OBJ algorithmObject, /* in--algorithm object */
ITEM * errorData, /* out--address and length of error data */
POINTER algorithmMethod /* out--address of faulting AM */
);

Appendix E. Using ICSF with BSAFE 861

862 z/OS V1R13 ICSF Application Programmer's Guide

Appendix F. Cryptographic Algorithms and Processes

This appendix describes the personal identification number (PIN) formats and
algorithms.

PIN Formats and Algorithms
For PIN calculation procedures, see IBM Common Cryptographic Architecture:
Cryptographic Application Programming Interface Reference.

PIN Notation
This section describes various PIN block formats. The following notations describe
the contents of PIN blocks:

P = A 4-bit decimal digit that is one digit of the PIN value.

C = A 4-bit hexadecimal control value. The valid values are X'0', X'1', and X'2'.

L = A 4-bit hexadecimal value that specifies the number of PIN digits. The value
ranges from 4 to 12, inclusive.

F = A 4-bit field delimiter of value X'F'.

f = A 4-bit delimiter filler that is either P or F, depending on the length of the
PIN.

D = A 4-bit decimal padding value. All pad digits in the PIN block have the same
value.

X = A 4-bit hexadecimal padding value. All pad digits in the PIN block have the
same value.

x = A 4-bit hexadecimal filler that is either P or X, depending on the length of
the PIN.

R = A 4-bit hexadecimal random digit. The sequence of R digits can each take a
different value.

r = A 4-bit random filler that is either P or R, depending on the length of the
PIN.

Z = A 4-bit hexadecimal zero (X'0').

z = A 4-bit zero filler that is either P or Z, depending on the length of the PIN.

S = A 4-bit hexadecimal digit that constitutes one digit of a sequence number.

A = A 4-bit decimal digit that constitutes one digit of a user-specified constant.

PIN Block Formats
This section describes the PIN block formats and assigns a code to each format.

ANSI X9.8
This format is also named ISO format 0, VISA format 1, VISA format 4, and ECI
format 1.

P1 = CLPPPPffffffffFF

P2 = ZZZZAAAAAAAAAAAA

© Copyright IBM Corp. 1997, 2011 863

PIN Block = P1 XOR P2

where C = X’0’
L = X’4’ to X’C’

Programming Note: The rightmost 12 digits (excluding the check digit) in P2 are
the rightmost 12 digits of the account number for all formats
except VISA format 4. For VISA format 4, the rightmost 12
digits (excluding the check digit) in P2 are the leftmost 12
digits of the account number.

ISO Format 1
This format is also named ECI format 4.

PIN Block = CLPPPPrrrrrrrrRR

where C = X’1’
L = X’4’ to X’C’

ISO Format 2
PIN Block = CLPPPPffffffffFF

where C = X’2’
L = X’4’ to X’C’

VISA Format 2
PIN Block = LPPPPzzDDDDDDDDD

where L = X’4’ to X’6’

VISA Format 3
This format specifies that the PIN length can be 4-12 digits, inclusive. The PIN
starts from the leftmost digit and ends by the delimiter (‘F’), and the remaining digits
are padding digits.

An example of a 6-digit PIN:
PIN Block = PPPPPPFXXXXXXXXX

IBM 4700 Encrypting PINPAD Format
This format uses the value X'F' as the delimiter for the PIN.

PIN Block = LPPPPffffffffFSS

where L = X’4’ to X’C’

IBM 3624 Format
This format requires the program to specify the delimiter, X, for determining the PIN
length.

PIN Block = PPPPxxxxxxxxXXXX

IBM 3621 Format
This format requires the program to specify the delimiter, X, for determining the PIN
length.

PIN Block = SSSSPPPPxxxxxxxx

ECI Format 2
This format defines the PIN to be 4 digits.

PIN Block = PPPPRRRRRRRRRRRR

864 z/OS V1R13 ICSF Application Programmer's Guide

ECI Format 3
PIN Block = LPPPPzzRRRRRRRRR

where L = X’4’ to X’6’

PIN Extraction Rules
This section describes the PIN extraction rules for the Encrypted PIN verify and
Encrypted PIN translate callable services.

Encrypted PIN Verify Callable Service
The service extracts the customer-entered PIN from the input PIN block according
to the following rules:

v If the input PIN block format is ANSI X9.8, ISO format 0, VISA format 1, VISA
format 4, ECI format 1, ISO format 1, ISO format 2, VISA format 2, IBM
Encrypting PINPAD format, or ECI format 3, the service extracts the PIN
according to the length specified in the PIN block.

v If the input PIN block format is VISA format 3, the specified delimiter (padding)
determines the PIN length. The search starts at the leftmost digit in the PIN
block. If the input PIN block format is 3624, the specification of a PIN extraction
method for the 3624 is supported through rule array keywords. If no PIN
extraction method is specified in the rule array, the specified delimiter (padding)
determines the PIN length.

v If the input PIN block format is 3621, the specification of a PIN extraction method
for the 3621 is supported through rule array keywords. If no PIN extraction
method is specified in the rule array, the specified delimiter (padding) determines
the PIN length.

v If the input PIN block format is ECI format 2, the PIN is the leftmost 4 digits.

For the VISA algorithm, if the extracted PIN length is less than 4, the services sets
a reason code that indicates that verification failed. If the length is greater than or
equal to 4, the service uses the leftmost 4 digits as the referenced PIN.

For the IBM German Banking Pool algorithm, if the extracted PIN length is not 4,
the service sets a reason code that indicates that verification failed.

For the IBM 3624 algorithm, if the extracted PIN length is less than the PIN check
length, the service sets a reason code that indicates that verification failed.

Clear PIN Generate Alternate Callable Service
The service extracts the customer-entered PIN from the input PIN block according
to the following rules:

v This service supports the specification of a PIN extraction method for the 3624
and 3621 PIN block formats through the use of the rule_array keyword.
Rule_array points to an array of one or two 8-byte elements. The first element in
the rule array specifies the PIN calculation method. The second element in the
rule array (if specified) indicates the PIN extraction method. Refer to the “Clear
PIN Generate Alternate (CSNBCPA and CSNECPA)” on page 442 for an
explanation of PIN extraction method keywords.

Encrypted PIN Translate Callable Service
The service extracts the customer-entered PIN from the input PIN block according
to the following rules:

v If the input PIN block format is ANSI X9.8, ISO format 0, VISA format 1, VISA
format 4, ECI format 1, ISO format 1, ISO format 2, VISA format 2, IBM

Appendix F. Cryptographic Algorithms and Processes 865

Encrypting PINPAD format, or ECI format 3, and if the specified PIN length is
less than 4, the service sets a reason code to reject the operation. If the
specified PIN length is greater than 12, the operation proceeds to normal
completion with unpredictable contents in the output PIN block. Otherwise, the
service extracts the PIN according to the specified length.

v If the input PIN block format is VISA format 3, the specified delimiter (padding)
determines the PIN length. The search starts at the leftmost digit in the PIN
block. If the input PIN block format is 3624, the specification of a PIN extraction
method for the 3624 is supported through rule array keywords. If no PIN
extraction method is specified in the rule array, the specified delimiter (padding)
determines the PIN length.

v If the input PIN block format is 3621, the specification of a PIN extraction method
for the 3621 is supported through rule array keywords. If no PIN extraction
method is specified in the rule array, the specified delimiter (padding) determines
the PIN length.

v If the input block format is ECI format 2, the PIN is always the leftmost 4 digits.

If the maximum PIN length allowed by the output PIN block is shorter than the
extracted PIN, only the leftmost digits of the extracted PIN that form the allowable
maximum length are placed in the output PIN block. The PIN length field in the
output PIN block, it if exists, specifies the allowable maximum length.

PIN Change/Unblock Callable Service
The PIN Block calculation PIN Change/Unblock:

1. Form three 8-byte, 16-digit blocks, -1, -2, and -3, and set all digits to X'0'

2. Replace the rightmost four bytes of block-1 with the authentication code
described in the previous section.

3. Set the second digit of block-2 to the length of the new PIN (4 to 12), followed
by the new PIN, and padded to the right with X'F'

4. Include any current PIN by placing it into the leftmost digits of block-3.

5. Exclusive-OR blocks -1, -2, and -3 to form the 8-byte PIN block.

6. Pad the PIN block with other portions of the message for the smart card:

v Prepend X'08'

v Append X'80'

v Append an additional six bytes of X'00'

The resulting message is ECB-mode triple-encrypted with an appropriate session
key.

IBM PIN Algorithms
This section describes the IBM PIN generation algorithms, IBM PIN offset
generation algorithm, and IBM PIN verification algorithms.

3624 PIN Generation Algorithm
This algorithm generates a n-digit PIN based on an account-related data or
person-related data, namely the validation data. The assigned PIN length parameter
specifies the length of the generated PIN.

The algorithm requires the following input parameters:

v A 64-bit validation data

v A 64-bit decimalization table

v A 4-bit assigned PIN length

866 z/OS V1R13 ICSF Application Programmer's Guide

v A 128-bit PIN-generation key

The service uses the PIN generation key to encipher the validation data. Each digit
of the enciphered validation data is replaced by the digit in the decimalization table
whose displacement from the leftmost digit of the table is the same as the value of
the digit of the enciphered validation data. The result is an intermediate PIN. The
leftmost n digits of the intermediate PIN are the generated PIN, where n is specified
by the assigned PIN length.

Figure 14 illustrates the 3624 PIN generation algorithm.

German Banking Pool PIN Generation Algorithm
This algorithm generates a 4-digit PIN based on an account-related data or
person-related data, namely the validation data.

The algorithm requires the following input parameters:

v A 64-bit validation data

v A 64-bit decimalization table

v A 128-bit PIN-generation key

The validation data is enciphered using the PIN generation key. Each digit of the
enciphered validation data is replaced by the digit in the decimalization table whose
displacement from the leftmost digit of the table is the same as the value of the digit
of enciphered validation data. The result is an intermediate PIN. The rightmost 4
digits of the leftmost 6 digits of the intermediate PIN are extracted. The leftmost
digit of the extracted 4 digits is checked for zero. If the digit is zero, the digit is
changed to one; otherwise, the digit remains unchanged. The resulting four digits is
the generated PIN.

Assigned PIN Length

PIN
Generation
Key

Validation Data

Intermediate PIN

Generated PIN

E
D
E

Digit
Replacement

Decimalization
Table

Multiple
Encryption

Figure 14. 3624 PIN Generation Algorithm

Appendix F. Cryptographic Algorithms and Processes 867

Figure 15 illustrates the German Banking Pool (GBP) PIN generation algorithm.

PIN Offset Generation Algorithm
To allow the customer to select his own PIN, a PIN offset is used by the IBM 3624
and GBP PIN generation algorithms to relate the customer-selected PIN to the
generated PIN.

The PIN offset generation algorithm requires two parameters in addition to those
used in the 3624 PIN generation algorithm. They are a customer-selected PIN and
a 4-bit PIN check length. The length of the customer-selected PIN is equal to the
assigned-PIN length, n.

The 3624 PIN generation algorithm described in the previous section is performed.
The offset data value is the result of subtracting (modulo 10) the leftmost n digits of
the intermediate PIN from the customer-selected PIN. The modulo 10 subtraction
ignores borrows. The rightmost m digits of the offset data form the PIN offset,
where m is specified by the PIN check length. Note that n cannot be less than m.
To generate a PIN offset for a GBP PIN, m is set to 4 and n is set to 6.

Figure 16 illustrates the PIN offset generation algorithm.

6 Digits

4 Digits

PIN
Generation
Key

Validation Data

Intermediate PIN

If A = 0, then Z = 1; otherwise, Z = A.

A P P P

Z P P P
(Generated PIN)

E
D
E

Digit
Replacement

Decimalization
Table

Multiple
Encryption

Figure 15. GBP PIN Generation Algorithm

868 z/OS V1R13 ICSF Application Programmer's Guide

3624 PIN Verification Algorithm
This algorithm generates an intermediate PIN based on the specified validation
data. A part of the intermediate PIN is adjusted by adding an offset data. A part of
the result is compared with the corresponding part of the customer-entered PIN.

The algorithm requires the following input parameters:
v A 64-bit validation data
v A 64-bit decimalization table
v A 128-bit PIN-verification key
v A 4-bit PIN check length

Assigned PIN Length

Assigned PIN Length

PIN Check Length

PIN
Generation
Key

Validation Data

Intermediate PIN

A

B

Customer
Selected PIN

A - B,
where B is leftmost
n digits of the
intermediate PIN

Offset Data

PIN Offset

E
D
E

Digit
Replacement

Subtraction
modulo 10

Decimalization
Table

Multiple
Encryption

Figure 16. PIN-Offset Generation Algorithm

Appendix F. Cryptographic Algorithms and Processes 869

v An offset data
v A customer-entered PIN

The rightmost m digits of the offset data form the PIN offset, where m is the PIN
check length.

1. The validation data is enciphered using the PIN verification key. Each digit of
the enciphered validation data is replaced by the digit in the decimalization table
whose displacement from the leftmost digit of the table is the same as the value
of the digit of enciphered validation data.

2. The leftmost n digits of the result is added (modulo 10) to the offset data value,
where n is the length of the customer-entered PIN. The modulo 10 addition
ignores carries.

3. The rightmost m digits of the result of the addition operation form the PIN check
number. The PIN check number is compared with the rightmost m digits of the
customer-entered PIN. If they match, PIN verification is successful; otherwise,
verification is unsuccessful.

When a nonzero PIN offset is used, the length of the customer-entered PIN is equal
to the assigned PIN length.

Figure 17 illustrates the PIN verification algorithm.

870 z/OS V1R13 ICSF Application Programmer's Guide

German Banking Pool PIN Verification Algorithm
This algorithm generates an intermediate PIN based on the specified validation
data. A part of the intermediate PIN is adjusted by adding an offset data. A part of
the result is extracted. The extracted value may or may not be modified before it
compares with the customer-entered PIN.

The algorithm requires the following input parameters:

Length of CE PIN

Length of CE PIN

PIN Check
Length

PIN Check Length

PIN CN: PIN Check Number
CE PIN: Customer-entered PIN

PIN
Verification
Key

Validation Data

Intermediate PIN

A

Offset Data

B, the leftmost
n digits of the
intermediate
PIN

A + B

=?

CE PIN

PIN CN

E
D
E

Digit
Replacement

Addition
modulo 10

Decimalization
Table

Multiple
Encryption

Figure 17. PIN Verification Algorithm

Appendix F. Cryptographic Algorithms and Processes 871

v A 64-bit validation data

v A 64-bit decimalization table

v A 128-bit PIN verification key

v An offset data

v A customer-entered PIN

The rightmost 4 digits of the offset data form the PIN offset.

1. The validation data is enciphered using the PIN verification key. Each digit of
the enciphered validation data is replaced by the digit in the decimalization table
whose displacement from the leftmost digit of the table is the same as the value
of the digit of enciphered validation data.

2. The leftmost 6 digits of the result is added (modulo 10) to the offset data. The
modulo 10 addition ignores carries.

3. The rightmost 4 digits of the result of the addition (modulo 10) are extracted.

4. The leftmost digit of the extracted value is checked for zero. If the digit is zero,
the digit is set to one; otherwise, the digit remains unchanged. The resulting
four digits are compared with the customer-entered PIN. If they match, PIN
verification is successful; otherwise, verification is unsuccessful.

Figure 18 illustrates the GBP PIN verification algorithm.

VISA PIN Algorithms
The VISA PIN verification algorithm performs a multiple encipherment of a value,
called the transformed security parameter (TSP), and a extraction of a 4-digit PIN
verification value (PVV) from the ciphertext. The calculated PVV is compared with
the referenced PVV and stored on the plastic card or data base. If they match,
verification is successful.

PVV Generation Algorithm
The algorithm generates a 4-digit PIN verification value (PVV) based on the
transformed security parameter (TSP).

The algorithm requires the following input parameters:

v A 64-bit TSP

v A 128-bit PVV generation key

Key encrypted
under sending
system's DES
master key

Key encrypted
under receiving
system's DES
master key

Prepare key
for export

Import the
key

Key encrypted
under transport
key

Key encrypted
under transport
key

Exporter key Importer key

Sending System Receiving System

Figure 18. GBP PIN Verification Algorithm

872 z/OS V1R13 ICSF Application Programmer's Guide

1. A multiple encipherment of the TSP using the double-length PVV generation key
is performed.

2. The ciphertext is scanned from left to right. Decimal digits are selected during
the scan until four decimal digits are found. Each selected digit is placed from
left to right according to the order of selection. If four decimal digits are found,
those digits are the PVV.

3. If, at the end of the first scan, less than four decimal digits have been selected,
a second scan is performed from left to right. During the second scan, all
decimal digits are skipped and only nondecimal digits can be processed.
Nondecimal digits are converted to decimal digits by subtracting 10. The
process proceeds until four digits of PVV are found.

Figure 19 illustrates the PVV generation algorithm.

Programming Note: For VISA PVV algorithms, the leftmost 11 digits of the TSP
are the personal account number (PAN), the leftmost 12th
digit is a key table index to select the PVV generation key,
and the rightmost 4 digits are the PIN. The key table index
should have a value between 1 and 6, inclusive.

PVV Verification Algorithm
The algorithm requires the following input parameters:

v A 64-bit TSP

PGK = PVV Generation Key
= PGKL PGKR

Scan the result from left to
right to select 4 digits

PGKL

PGKR

PGKL

TSP

Encipherment Result

4-digit PVV

E

D

E

Figure 19. PVV Generation Algorithm

Appendix F. Cryptographic Algorithms and Processes 873

v A 16-bit referenced PVV

v A 128-bit PVV verification key

A PVV is generated using the PVV generation algorithm, except a PVV verification
key rather than a PVV generation key is used. The generated PVV is compared
with the referenced PVV. If they match, verification is successful.

Interbank PIN Generation Algorithm
The Interbank PIN calculation method consists of the following steps:

1. Let X denote the transaction_security parameter element converted to an array
of 16 4-bit numeric values. This parameter consists of (in the following
sequence) the 11 rightmost digits of the customer PAN (excluding the check
digit), a constant of 6, a 1-digit key indicator, and a 3-digit validation field.

2. Encrypt X with the double-length PINGEN (or PINVER) key to get 16
hexadecimal digits (64 bits).

3. Perform decimalization on the result of the previous step by scanning the 16
hexadecimal digits from left to right, skipping any digit greater than X'9' until 4
decimal digits (for example, digits that have values from X'0' to X'9') are found.

If all digits are scanned but 4 decimal digits are not found, repeat the scanning
process, skipping all digits that are X'9' or less and selecting the digits that are
greater than X'9'. Subtract 10 (X'A') from each digit selected in this scan.

If the 4 digits that were found are all zeros, replace the 4 digits with 0100.

4. Concatenate and use the resulting digits for the Interbank PIN. The 4-digit PIN
consists of the decimal digits in the sequence in which they are found.

Cipher Processing Rules
DES defines operations on 8-byte data strings. Although the fundamental concepts
of ciphering (enciphering and deciphering) and data verification are simple, there
are different approaches to processing data strings that are not a multiple of 8 bytes
in length. These approaches are defined in various standards and IBM products.

CBC and ANSI X3.106
ANSI standard X3.106 defines four methods of operation for ciphering. One of
these modes, cipher block chaining (CBC), defines the basic method for performing
ciphering on multiple blocks. A plaintext data string, which must be a multiple of the
block size, is processed as a series of blocks. The ciphered result from processing
a block is exclusive ORed with the next block. The last block of the ciphered result
is defined as an output chaining vector (OCV). ICSF stores the output chaining
vector value in the chaining_vector parameter.

An initial chaining vector is exclusive ORed with the first group of 8 input bytes.

In summary:

v An input chaining vector (ICV) is required.

v If the text_length is not an exact multiple of 8 bytes, the request fails.

v The plaintext is not padded, for example, the output text length is not increased.

ICSF provides an enhancement to CBC mode called ciphertext-stealing. This allows
for a text length that is not a multiple of the block size. This is accomplished by
manipulating the last two blocks in a certain way. The second to last block is
encrypted in the normal manner, but then some of the bits are "stolen" and added
to the last (partial) block. These bits can be recovered by decrypting the last block.

874 z/OS V1R13 ICSF Application Programmer's Guide

This enhancement is currently proposed to NIST as Proposal To Extend CBC Mode
By “Ciphertext Stealing”, dated May 6, 2007.

ANSI X9.23 and IBM 4700
An enhancement to the basic cipher block chaining mode of ANSI X3.106 is defined
so the data lengths that are not an exact multiple of 8 bytes can be processed. The
ANSI X9.23 method always adds from 1 byte to 8 bytes to the plaintext before
encipherment. The last added byte is the count of the added bytes and is in the
range of X'01' to X'08'. The standard defines that the other added bytes, the pad
characters, are random.

When ICSF enciphers the plaintext, the resulting ciphertext is always 1 to 8 bytes
longer than the plaintext.

When ICSF deciphers the ciphertext, ICSF uses the last byte of the deciphered
data as the number of bytes to be removed (the pad bytes and the count byte). The
resulting plaintext is the same as the original plaintext.

The output chaining vector can be used as feedback with this method in the same
way as with the X3.106 method.

In summary, for the ANSI X9.23 method:
v X9.23 processing requires the caller to supply an ICV.
v X9.23 encipher does not allow specification of a pad character.

The 4700 padding rule is similar to the X9.23 rule. The only difference is that in the
X9.23 method, the padding character is not user-selected, but the padding string is
selected by the encipher process.

Segmenting
The callable services can operate on large data objects. Segmenting is the process
of dividing the function into more than one processing step. Your application can
divide the process into multiple steps without changing the final outcome.

To provide segmenting capability, the MAC generation, MAC verification, and MDC
generation callable services require an 18-byte system work area in the application
address space that is provided as the chaining vector parameter to the callable
service. The application program must not change the system work area.

Cipher Last-Block Rules
The DES defines cipher-block chaining as operating on multiples of 8 bytes, and
AES uses multiples of 16 bytes. Various algorithms are used to process strings that
are multiples of the block size. The algorithms are generically named “last-block
rules”. You select the supported last-block rules by using these keywords:
v X9.23
v IPS
v CUSP (also used with PCF)
v 4700-PAD
v CBC-CS

You specify which cipher last-block rule you want to use in the rule_array parameter
of the callable service.

Appendix F. Cryptographic Algorithms and Processes 875

CUSP
If the length of the data to be enciphered is an exact multiple of 8 bytes, the ICV is
exclusive ORed with the first 8-byte block of plaintext, and the resulting 8 bytes are
passed to the DES with the specified key. The resulting 8-byte block of ciphertext is
then exclusive ORed with the second 8-byte block of plaintext, and the value is
enciphered. This process continues until the last 8-byte block of plaintext is to be
enciphered. Because the length of this last block is exactly 8 bytes, the last block is
processed in an identical manner to all the preceding blocks.

To produce the OCV, the last block of ciphertext is enciphered again (thus
producing a double-enciphered block). The user can pass this value of the OCV as
the ICV in his next encipher call to produce chaining between successive calls. The
caller can alternatively pass the same ICV on every call to the callable service.

If the length of data to be enciphered is greater than 7 bytes, and is not an exact
multiple of 8 bytes, the process is the same as that above, until the last partial
block of 1 to 7 bytes is reached. To encipher the last short block, the previous
8-byte block of ciphertext is passed to the DES with the specified key. The first 1 to
7 bytes of this double-enciphered block has two uses. The first use is to exclusive
OR this block with the last short block of plaintext to form the last short block of the
ciphertext. The second use is to pass it back as the OCV. Thus, the OCV is the last
complete 8-byte block of plaintext, doubly enciphered.

If the length of the data to be enciphered is less than 8 bytes, the ICV is enciphered
under the specified key. The first 1 to 7 bytes of the enciphered ICV is exclusive
ORed with the plaintext to form the ciphertext. The OCV is the enciphered ICV.

The Information Protection System (IPS)
The Information Protection System (IPS) offers two forms of chaining: block and
record. Under record chaining, the OCV for each enciphered data string becomes
the ICV for the next. Under block chaining, the same ICV is used for each
encipherment.

Files that are enciphered directly with the ICSF encipher callable service cannot be
properly deciphered using the IPS/CMS CIPHER command or the IPS/CMS
subroutines. Both IPS/CMS CIPHER and AMS REPRO ENCIPHER write headers to
their files that contain information (principally the ICV and chaining method) needed
for decipherment. The encipher callable service does not generate these headers.
Specialized techniques are described in IPS/CMS documentation to overcome
some, if not all, of these limitations, depending on the chaining mode. As a rough
test, you can attempt a decipherment with the CIPHER command HDWARN option,
which causes CIPHER to continue processing even though the header is absent.

The encipher callable service returns an OCV used by IPS for record chaining. This
allows cryptographic applications using ICSF to be compatible with IPS record
chaining.

Record chaining provides a superior method of handling successive short blocks,
and has better error recovery features when the caller passes successive short
blocks.

The principle used by record chaining is that the OCV is the last 8 bytes of
ciphertext. This is handled as follows:

v If the length of the data to be enciphered is an exact multiple of 8 bytes, the ICV
is exclusive ORed with the first 8 byte block of plaintext, and the resulting 8 bytes

876 z/OS V1R13 ICSF Application Programmer's Guide

are passed to the DES with the specified key. The resulting 8-byte block of
ciphertext is then exclusive ORed with the second 8-byte block of plaintext, and
the resulting value is enciphered. This process continues until the last 8-byte
block of plaintext is to be enciphered. Because the length of this last block is
exactly 8 bytes, the last block is processed in an identical manner to all the
preceding blocks.

The OCV is the last 8 bytes of ciphertext.

The user can pass this value as the ICV in the next encipher call to produce
chaining between successive calls.

v If the length of data to be enciphered is greater than 7 bytes, and is not an exact
multiple of 8 bytes, the process is the same as that above, until the last partial
block of 1 to 7 bytes is reached. To encipher the last short block, the previous
8-byte block of ciphertext is passed to the DES with the specified key. The first 1
to 7 bytes of this doubly enciphered block is then exclusive ORed with the last
short block of plaintext to form the last short block of the ciphertext. The OCV is
the last 8 bytes of ciphertext.

v If the length of the data to be enciphered is less than 8 bytes, then the ICV is
enciphered under the specified key. The first 1 to 7 bytes of the enciphered ICV
is exclusive ORed with the plaintext to form the ciphertext. The OCV is the
rightmost 8 bytes of the plaintext ICV concatenated with the short block of
ciphertext. For example:

ICV = ABCDEFGH
ciphertext = XYZ
OCV = DEFGHXYZ

PKCS Padding Method
This section describes the algorithm used to pad clear text when the PKCS-PAD
method is specified. Padding is applied before encryption when this keyword is
specified with the Symmetric Algorithm Encipher callable service, and it is removed
from decrypted data when the keyword is specified with the Symmetric Algorithm
Decipher callable service.

The rules for PKCS padding are very simple:

v Padding bytes are always added to the clear text before it is encrypted.

v Each padding byte has a value equal to the total number of padding bytes that
are added. For example, if 6 padding bytes must be added, each of those bytes
will have the value 0x06.

v The total number of padding bytes is at least one, and is the number that is
required in order to bring the data length up to a multiple of the cipher algorithm
block size.

The callable services described in this document use AES, which has a cipher block
size of 16 bytes. The total number of padding bytes added to the clear text will
always be between 1 and 16. The table below indicates exactly how many padding
bytes are added according to the data length, and also shows the value of the
padding bytes that are applied.

Value of clear text length
(mod 16)

Number of padding bytes
added Value of each padding byte

0 16 0x10

1 15 0x0F

2 14 0x0E

3 13 0x0D

Appendix F. Cryptographic Algorithms and Processes 877

Value of clear text length
(mod 16)

Number of padding bytes
added Value of each padding byte

4 12 0x0C

5 11 0x0B

6 10 0x0A

7 9 0x09

8 8 0x08

9 7 0x07

10 6 0x06

11 5 0x05

12 4 0x04

13 3 0x03

14 2 0x02

15 1 0x01

Note that the PKCS standards that define this padding method describe it in a way
that limits the maximum padding length to 8 bytes. This is a consequence of the
fact that the algorithms at that time used 8-byte blocks. We extend the definition to
apply to 16-byte AES cipher blocks.

PKCS Padding Method (Example 1)
Clear text consists of the following18 bytes:
F14ADBDA019D6DB7 EFD91546E3FF8444 9BCB

In order to make this a multiple of 16 bytes (the AES block size), we must add 14
bytes. Each byte will contain the value 0x0E, which is 14, the total number of
padding bytes added. The result is that the padded clear text is as follows:
F14ADBDA019D6DB7 EFD91546E3FF8444 9BCB0E0E0E0E0E0E
0E0E0E0E0E0E0E0E

The padded value is 32 bytes in length, which is two AES blocks. This padded
string is encrypted in CBC mode, and the resulting ciphertext will also be 32 bytes
in length.

PKCS Padding Method (Example 2)
Clear text consists of the following16 bytes:
971ACD01C9C7ADEA CC83257926F490FF

This is already a multiple of the AES block size, but PKCS padding rules say that
padding is always applied. Thus, we add 16 bytes of padding to bring the total
length to 32, the next multiple of the AES block size. Each pad byte has the value
0x10, which is 16, the total number of padding bytes added. The result is that the
padded clear text is as follows:
971ACD01C9C7ADEA CC83257926F490FF 1010101010101010
1010101010101010

The padded value is 32 bytes in length, which is two AES blocks. This padded
string is encrypted in CBC mode, and the resulting cipher text will also be 32 bytes
in length.

878 z/OS V1R13 ICSF Application Programmer's Guide

Wrapping Methods for Symmetric Key Tokens
This section explains how symmetric keys are wrapped with master and
key-encrypting keys. For DES and AES keys, two methods are detailed. These use
the 64-byte token. HMAC keys will use a variable length token with associated data
and the payload wrapping method. In the future, all symmetric keys will be able to
use the variable length token and the payload wrapping method.

ECB Wrapping of DES Keys (Original Method)
The wrapping of a double-length key (*K) using a double-length *KEK is defined as
follows:
e*KEK(KL) || e*KEK(KR) = eKEKL(dKEKR(eKEKL(KL))) || eKEKL(dKEKR(eKEKL(KR)))

Where:

v KL is the left 64 bits of *K.

v KR is the right 64 bits of *K.

v KEKL is the left 64 bits of *KEK.

v KEKR is the right 64 bits of *KEK.

v || means concatenation

CBC Wrapping of AES Keys
The key value in AES tokens are wrapped using the AES algorithm and cipher
block chaining (CBC) mode of encryption. The key value is left justified in a 32-byte
block, padded on the right with zero and encrypted.

The enhanced wrapping of an AES key (*K) using an AES *MK is defined as
follows: e*MK(*K) = ecbcMK(*K)

Enhanced CBC Wrapping of DES Keys (Enhanced Method)
The enhanced CBC wrapping method uses triple DES encryption, an internal
chaining of the key value and CBC mode.

The enhanced wrapping of a double-length key (*K) using a double-length *KEK is
defined as follows:
e*KEK(*KL) = ecbcKEKL(dcbcKEKR(ecbcKEKL(KLPRIME || KR)))

KLPRIME = KL XOR SHA1(KR)

Where:

v KL is the left 64 bits of *K.

v KR is the right 64 bits of *K.

v KLPRIME is the 64 bit modified value of KL

v KEKL is the left 64 bits of *KEK.

v KEKR is the right 64 bits of *KEK.

v SHA1(X) is the 160-bit SHA-1 hash of X

v || means concatenation.

v XOR means bitwise exclusive OR

v ecbc means encryption using cipher block chaining mode

v dcbc means decryption using cipher block chaining mode

Appendix F. Cryptographic Algorithms and Processes 879

Wrapping key derivation for enhanced wrapping of DES keys
The wrapping key is exactly the same key that is used by CCA today, with one
exception. Instead of using the base key itself (master key or key-encrypting key),
ICSF will use a key that is derived from that base key. The derived key will have the
control vector applied to it in the standard CCA manner, and then use the resulting
key to wrap the new-format target key token. The reason for using a derived key is
to ensure that no attacks against this wrapping scheme are possible using the
existing CCA functions. For example, it was observed that an attack was possible
by copying the wrapped key into an ECB CCA key token, if the wrapping key was
used instead of a derivative of that key.

The key will be derived using a method defined in the NIST standard SP 800-108,
"Recommendation for Key Derivation Using Pseudorandom Functions" (October,
2009). Derivation will use the method "KDF in Counter Mode" using pseudorandom
function (PRF) HMAC-SHA256. This method provides sufficient strength for deriving
keys for any algorithm used.

The HMAC algorithm is defined as follows:
HMAC(K, text) = H((K0 XOR opad) || H((K0 XOR ipad) || text))

where opad is the constant 0x5C repeated to form a string the same length as K0,
and ipad is the constant 0x36 repeated to form a string the same length as K0. If
the key K is equal in length to the input block size of the hash function (512 bits for
SHA-256), then K0 is set to the value of K. Otherwise, K0 is formed from K by
hashing and/or padding.

The KDF specification calls for inputs optionally including two byte strings, Label
and Context. The context will not be used. The label will contain information on the
usage of this key, to distinguish it from other derivations that CCA may use in the
future for different purposes. Since the security of the derivation process is rooted in
the security of the derivation key and in the HMAC and KDF functions themselves,
it is not necessary for this label string to be of any particular minimum size. The
separation indicator byte of 0x00 specified in the NIST document will follow the
label.

The label value will be defined so that it will be unique to derivation for this key
wrapping process. This means that in any future designs which use the same KDF,
ICSF must use a different value for the label. The label will be the 16 byte value
consisting of the following ASCII characters:
ENHANCEDWRAP2010 (X'454E4841 4E434544 57524150 32303130’)

The parameters for the counter mode KDF defined in SP 800-108 are as follows:

v Fixed values:

– h (length of output of PRF) = 256 bits

– r (length of the counter, in bits) = 32 - the counter will be an unsigned 4-byte
value

v Inputs:

– KI (input key) will be the key we are deriving from

– Label will be the value shown above (ASCII ENHANCEDWRAP2010)

– Separator byte of 0x00 will follow the label value

– Context will be a null string (no context is used)

– L will be the length of the derived key to be produced, rounded up to the next
multiple of 256

880 z/OS V1R13 ICSF Application Programmer's Guide

– PRF (pseudorandom function) will be HMAC-SHA256

The KDF function will produce a pseudorandom bit string that is a multiple of 256
and will use as many bits of that as are required for the key to be produced. Bits for
the key will be taken starting from the leftmost bit of the pseudorandom string, and
any unused bits at the right will be discarded.

Variable length token (AESKW method)
The wrapping method for the variable-length key tokens will be AESKW as defined
in ANSI X9.102.

The wrapping of the payload of a variable length key (*K) using an AES *MK is
defined as follows:
e*MK(*K) = eAESKW*MK(P)

P = ICV || Pad Length || Hash Length || Hash options || Data Hash || *K || Padding

Where:

v ICV is the 6 byte constant 0xA6A6A6A6A6A6

v Pad length is the length of the Padding in bits

v Hash length is the length of the Data Hash in bytes

v Hash options is a 4-byte field

v Data Hash is the hash of the associated data block

v Padding is the number of bytes, 0x00, to make of the overall length of P a
multiple of 16

v eAESKW means encryption using the AESKW method

PKA92 Key Format and Encryption Process
The PKA Symmetric Key Generate and the PKA Symmetric Key Import callable
services optionally support a PKA92 method of encrypting a DES or CDMF key
with an RSA public key. This format is adapted from the IBM Transaction Security
System (TSS) 4753 and 4755 product's implementation of “PKA92”. The callable
services do not create or accept the complete PKA92 AS key token as defined for
the TSS products. Rather, the callable services only support the actual
RSA-encrypted portion of a TSS PKA92 key token, the AS External Key Block.

Forming an AS External Key Block - The PKA96 implementation forms an AS
External Key Block by RSA-encrypting a key block using a public key. The key
block is formed by padding the key record detailed in Table 376 with zero bits on
the left, high-order end of the key record. The process completes the key block with
three sub-processes: masking, overwriting, and RSA encrypting.

Table 376. PKA96 Clear DES Key Record

Offset
(Bytes)

Length
(Bytes)

Description

Zero-bit padding to form a structure as long as the length of the public key modulus. The
implementation constrains the public key modulus to a multiple of 64 bits in the range of
512 to 1024 bits. Note that government export or import regulations can impose limits on
the modulus length. The maximum length is validated by a check against a value in the
Function Control Vector.

000 005 Header and flags: X'01 0000 0000'

005 016 Environment Identifier (EID), encoded in ASCII

Appendix F. Cryptographic Algorithms and Processes 881

Table 376. PKA96 Clear DES Key Record (continued)

Offset
(Bytes)

Length
(Bytes)

Description

021 008 Control vector base for the DES key

029 008 Repeat of the CV data at offset 021

037 008 The single-length DES key or the left half of a double-length
DES key

045 008 The right half of a double-length DES key or a random number.
This value is locally designated "K."

053 008 Random number, "IV"

061 001 Ending byte, X'00'

Masking Sub-process

1. Form the initial key block by padding the PKR with zero bits on the left,
high-order end to the length of the modulus.

2. Create a mask by CBC encrypting a multiple of 8 bytes of binary zeros using K
as the key and the length of the modulus, and IV as the initialization vector as
defined in the key record at offsets 45 and 53. Exclusive-OR the mask with the
key record and call the result PKR.

3. Exclusive-OR the mask with the key block.

Overwriting Sub-process

1. Set the high-order bits of PKR to B'01', and set the low-order bits to B'0110'.

2. Exclusive-OR K and IV and write the result at offset 45 in PKR.

3. Write IV at offset 53 in PKR. This causes the masked and overwritten PKR to
have IV at its original position.

Encrypting Sub-process - RSA encrypt the overwritten PKR masked key record
using the public key of the receiving node. This is the last step in creating an AS
external key block

Recovering a Key from an AS External Key Block - Recover the encrypted DES
key from an AS External Key Block by performing decrypting, validating, unmasking,
and extraction sub-processes.

Decrypting Sub-process - RSA decrypt the AS External Key Block using an RSA
private key and call the result of the decryption PKR. The private key must be
usable for key management purposes.

Validating Sub-process - Verify that the high-order two bits of the decrypted key
block are valued to B'01' and that the low-order four bits of the PKR record are
valued to B'0110'.

Unmasking Sub-process - Set IV to the value of the 8 bytes at offset 53 of the PKR
record. Note that there is a variable quantity of padding prior to offset 0. See
Table 376 on page 881.

Set K to the exclusive-OR of IV and the value of the 8 bytes at offset 45 of the PKR
record.

882 z/OS V1R13 ICSF Application Programmer's Guide

Create a mask that is equal in length to the key block by CBC encrypting a multiple
of 8 bytes of binary zeros using K as the key and IV as the initialization vector.
Exclusive-OR the mask with PKR and call the result the key record.

Copy K to offset 45 in the PKR record.

Extraction Sub-process. Confirm that:
v The four bytes at offset 1 in the PKR are valued to X'0000 0000'
v The two control vector fields at offsets 21 and 29 are identical
v If the control vector is an IMPORTER or EXPORTER key class, that the EID in

the key record is not the same as the EID stored in the cryptographic engine.

The control vector base of the recovered key is the value at offset 21. If the control
vector base bits 40 to 42 are valued to B'010' or B'110', the key is double length.
Set the right half of the received key's control vector equal to the left half and
reverse bits 41 and 42 in the right half.

The recovered key is at offset 37 and is either 8 or 16 bytes long based on the
control vector base bits 40 to 42. If these bits are valued to B'000', the key is single
length. If these bits are valued to B'010' or B'110', the key is double length.

ANSI X9.17 Partial Notarization Method
The ANSI X9.17 notarization process can be divided into two procedures:

1. Partial notarization, in which the ANSI key-encrypting key (AKEK) is
cryptographically combined with the origin and destination identifiers.

Note: IBM defines this step as partial notarization. The ANSI X9.17 standard
does not use the term partial notarization.

2. Offsetting, in which the result of the first step is exclusive-ORed with a counter
value. ICSF performs the offset procedure to complete the notarization process
when you use a partially notarized AKEK.

This appendix describes partial notarization for the ANSI X9.17 notarization
process.

Partial Notarization
Partial notarization improves performance when you use an AKEK for many
cryptographic service messages, each with a different counter value.

This section describes the steps in partial notarization. For more information about
partial notarization, see “ANSI X9.17 Key Management Services” on page 50. For a
description of the steps ICSF uses to complete the notarization of an AKEK or to
notarize a key in one process, see ANSI X9.17 - 1985, Financial Institution Key
Management (Wholesale).

Notations Used in the Calculations
*KK The 16-byte AKEK to be partially notarized
KKL The leftmost 8 bytes of *KK
KKR The rightmost 8 bytes of *KK
KK The 8-byte AKEK to be partially notarized

KK1 An 8-byte intermediate result
KK2 An 8-byte intermediate result

Appendix F. Cryptographic Algorithms and Processes 883

FMID The 16-byte origin identifier
FMID1 The leftmost 8 bytes of FMID
FMID2 The rightmost 8 bytes of FMID

TOID The 16-byte destination identifier
TOID1 The leftmost 8 bytes of TOID
TOID2 The rightmost 8 bytes of TOID

NSL An 8-byte intermediate result
NSL1 The leftmost 4 bytes of NSL

NSR An 8-byte intermediate result
NSR2 The rightmost 4 bytes of NSR

*KKNI The 16-byte partially notarized AKEK
KKNIL

The leftmost 8 bytes of *KKNI
KKNIR

The rightmost 8 bytes of *KKNI
KKNI The 8-byte partially notarized AKEK

XOR Denotes the exclusive-OR operation
TOID1<<1

Denotes the ASCII TOID1 left-shifted one bit
FMID1<<1

Denotes the ASCII FMID1 left-shifted one bit
eK(X) Denotes DES encryption of plaintext X using key K
{ Denotes the concatenation operation

Partial Notarization Calculation for a Double-Length AKEK
For a double-length AKEK, the partial notarization calculation consists of the
following steps:
1. Set KK1 = KKL XOR TOID1<<1
2. Set KK2 = KKR XOR FMID1<<1
3. Set NSL = eKK2(TOID2)
4. Set NSR = eKK1(FMID2)
5. Set KKNIL = KKL XOR NSL
6. Set KKNIR = KKR XOR NSR
7. Set *KKNI = KKNIL { KKNIR

Partial Notarization Calculation for a Single-Length AKEK
For a single-length AKEK, the partial notarization calculation consists of the
following steps:
1. Set KK1 = KK XOR TOID1<<1
2. Set KK2 = KK XOR FMID1<<1
3. Set NSL = eKK2(TOID2)
4. Set NSR = eKK1(FMID2)
5. Set NSL = NSL1 { NSR2
6. Set KKNI = KK XOR NSL

Transform CDMF Key Algorithm
The CDMF key transformation algorithm uses a 64-bit cryptographic key.

1. Set parity bits of the key to zero by ANDing the key with
X'FEFEFEFEFEFEFEFE' to produce Kx.

2. Using DES, encipher Kx under the constant K1.

884 z/OS V1R13 ICSF Application Programmer's Guide

3. XOR this value with Kx to produce Ky.

4. AND Ky with X'0EFE0EFE0EFE0EFE' to produce Kz.

5. Using DES, encipher Kz under K2 to produce eK2(Kz).

6. Adjust eK2(Kz) to odd parity in each byte. The result is the transformed key.

The following figure illustrates these steps. (e indicates DES encryption.)

Formatting Hashes and Keys in Public-Key Cryptography
The digital signature generate and digital signature verify callable services support
several methods for formatting a hash, and in some cases a descriptor for the
hashing method, into a bit-string to be processed by the cryptographic algorithm.
This topic discusses the ANSI X9.31 and PKCS #1 methods. The ISO 9796-1
method can be found in the ISO standard.

Kx

eK1(Kx)

Ky

Kz

eK2(Kz)

TCDM Key

X 'FEFEFEFEFEFEFEFE'

X'0EFE0EFE0EFE0EFE'

K1 = X'C408B0540BA1E0AE'

K2 = X'EF2C041CE6382FE6'

CDMF Key

AND

e

e

Adjust
to odd
parity

XOR

AND

Figure 20. The CDMF Key Transformation Algorithm

Appendix F. Cryptographic Algorithms and Processes 885

This topic also describes the PKCS #1, version 1, 1.5, and 2.0, methods for placing
a key in a bit string for RSA ciphering in a key exchange.

ANSI X9.31 Hash Format
With ANSI X9.31, the string that is processed by the RSA algorithm is formatted by
the concatenation of a header, padding, the hash and a trailer, from the most
significant bit to the least significant bit, such that the resulting string is the same
length as the modulus of the key. For the ICSF implementation, the modulus length
must be a multiple of 8 bits.

v The header consists of X'6B'

v The padding consists of X'BB', repeated as many times as required, and
terminated by X'BA'

v The hash value follows the padding

v The trailer consists of a hashing mechanism specifier and final byte. These
specifiers are defined:

– X'31': RIPEMD-160

– X'33': SHA-1

v A final byte of X'CC'.

PKCS #1 Formats
Version 2.0 of the PKCS #1 standard 5 defines methods for formatting keys and
hashes prior to RSA encryption of the resulting data structures. The lower versions
of the PKCS #1 standard defined block types 0, 1, and 2, but in the current
standard that terminology is dropped.

ICSF implemented these processes using the terminology of the Version 2.0
standard:

v For formatting keys for secured transport (CSNDSYX, CSNDSYG, CSNDSYI):

– RSAES-OAEP, the preferred method for key-encipherment 6 when exchanging
DATA keys between systems. Keyword PKCSOAEP is used to invoke this
formatting technique. The P parameter described in the standard is not used
and its length is set to zero.

– RSAES-PKCS1-v1_5, is an older method for formatting keys. Keyword
PKCS-1.2 is used to invoke this formatting technique.

v For formatting hashes for digital signatures (CSNDDSG and CSNDDSV):

– RSASSA-PKCS1-v1_5, the newer name for the block-type 1 format. Keyword
PKCS-1.1 is used to invoke this formatting technique.

– The PKCS #1 specification no longer discusses use of block-type 0. Keyword
PKCS-1.0 is used to invoke this formatting technique. Use of block-type 0 is
discouraged.

Using the terminology from older versions of the PKCS #1 standard, block types 0
and 1 are used to format a hash and block type 2 is used to format a DES key. The
blocks consist of (|| means concatenation): X'00' || BT || PS || X'00' D where:

v BT is the block type, X'00', X'01', X'02'.

5. PKCS standards can be retrieved from http://www.rsasecurity.com/rsalabs/pkcs.

6. The PKA 92 method and the method incorporated into the SET standard are other examples of the Optimal Asymmetric Encryption
Padding (OAEP) technique. The OAEP technique is attributed to Bellare and Rogaway.

886 z/OS V1R13 ICSF Application Programmer's Guide

v PS is the padding of as many bytes as required to make the block the same
length as the modulus of the RSA key, and is bytes of X'00' for block type 0,
X'01' for block type 1, and random and non-X'00' for block type 2. The length of
PS must be at least 8 bytes.

v D is the key, or the concatenation of the BER-encoded hash identifier and the
hash.

You can create the BER encoding of an MD5 or SHA-1 value by prepending these
strings to the 16 or 20-byte hash values, respectively:

MD5 X'3020300C 06082A86 4886F70D 02050500 0410'
SHA-1 X'30213009 06052B0E 03021A05 000414'

Visa and EMV-related smart card formats and processes
The VISA and EMV specifications for performing secure messaging with an EMV
compliant smart card are covered in these documents:

v EMV 2000 Integrated Circuit Card Specification for Payment Systems Version 4.0
(EMV4.0) Book 2

v Design Visa Integrated Circuit Card Specification Manual

v Integrated Circuit Card Specification (VIS) 1.4.0 Corrections

Book 2, Annex A1.3, describes how a smart-card, card-specific authentication code
is derived from a card-issuer-supplied encryption key (ENC-MDK). The Integrated
Circuit Card Specification (VIS) 1.4.0 Corrections indicates that the key used should
be an authentication key (MAC-MDK).

Book 2, Annex A1.3 describes how a smart-card, card-specific session key is
derived from a card-issuer-supplied PIN-block-encryption key (ENC-MDK). The
encryption key is derived using a "tree-based-derivation" technique. IBM CCA offers
two variations of the tree-based technique (TDESEMV2 and TDESEMV4), and a
third technique CCA designates TDES-XOR.

In addition, Book 2 describes construction of the PIN block sent to an EMV card to
initialize or update the user's PIN.

Design Visa Integrated Circuit Card Specification Manual, Annex B.4, contains a
description of the session-key derivation technique CCA designates TDES-XOR.

Augmented by the above-mentioned documentation, the relevant processes are
described in these sections:

v “Deriving the smart-card-specific authentication code”

v “Constructing the PIN-block for transporting an EMV smart-card PIN” on page
888

v “Deriving the CCA TDES-XOR session key” on page 888

v “Deriving the EMV TDESEMVn tree-based session key” on page 889

v “PIN-block self-encryption” on page 889

Deriving the smart-card-specific authentication code
To ensure that an original or replacement PIN is received from an authorized
source, the EMV PIN-transport PIN-block incorporates an authentication code. The
authentication code is the rightmost four bytes resulting from the ECB-mode

Appendix F. Cryptographic Algorithms and Processes 887

triple-DES encryption of (the first) eight bytes of card-specific data (that is, the
rightmost four bytes of the Unique DEA Key A).

Constructing the PIN-block for transporting an EMV smart-card PIN
The PIN block is used to transport a new PIN value. The PIN block also contains
an authentication code, and optionally the "current" PIN value, enabling the smart
card to further ensure receipt of a valid PIN value. To enable incorporation of the
PIN block into the a message for an EMV smart-card, the PIN block is padded to
16 bytes prior to encryption.

PINs of length 4 - 12 digits are supported.

PIN-block construction:

1. Form three 8-byte, 16-digit blocks, block-1, block-2, and block-3, and set all
digits to X'0'.

2. Replace the rightmost four bytes of block-1 with the authentication code
described in the previous section.

3. Set the second digit of block-2 to the length of the new PIN (4 to 12), followed
by the new PIN, and padded to the right with X'F'.

4. Include any current PIN by placing it into the leftmost digits of block-3.

5. Exclusive-OR block-1, block-2, and block-3 to form the 8-byte PIN block.

6. Pad the PIN block with other portions of the message for the smart card:

v Prepend X'08' (the length of the PIN block)

v Append X'80', followed by 6 bytes of X'00'

The resulting message is ECB-mode triple-encrypted with an appropriate session
key.

Deriving the CCA TDES-XOR session key
In the diversified key generate and PIN change/unblock services, the TDES-XOR
process first derives a smart-card-specific intermediate key from the issuer-supplied
ENC-MDK key and card-specific data. (This intermediate key is also used in the
TDESEMV2 and TDESEMV4 processes. See the next section.) The intermediate
key is then modified using the application transaction counter (ATC) value supplied
by the smart card.

The double-length session-key creation steps:

1. Obtain the left-half of an intermediate key by ECB-mode triple-DES encrypting
the (first) eight bytes of card specific data using the issuer-supplied ENC-MDK
key.

2. Again using the ENC-MDK key, obtain the right-half of the intermediate key by
ECB-mode triple-DES encrypting:

v The second 8 bytes of card-specific derivation data when 16 bytes have been
supplied

v The exclusive-OR of the supplied 8 bytes of derivation data with X'FFFFFFFF
FFFFFFFF'

3. Pad the ATC value to the left with six bytes of X'00' and exclusive-OR the result
with the left-half of the intermediate key to obtain the left-half of the session key.

888 z/OS V1R13 ICSF Application Programmer's Guide

4. Obtain the one's complement of the ATC by exclusive-ORing the ATC with
X'FFFF'. Pad the result on the left with six bytes of X'00'. Exclusive-OR the
8-byte result with the right-half of the intermediate key to obtain the right-half of
the session key.

Deriving the EMV TDESEMVn tree-based session key
In the diversified key generate and PIN change/unblock services, the TDESEMV2
and TDESEMV4 keywords call for the creation of the session key with this process:

1. The intermediate key is obtained as explained above for the TDES-XOR
process.

2. Combine the intermediate key with the two-byte Application Transaction Counter
(ATC) and an optional Initial Value. The process is defined in the EMV 2000
Integrated Circuit Card Specification for Payment Systems Version 4.0 (EMV4.0)
Book 2 Book 2, Annex A1.3.

v TDESEMV2 causes processing with a branch factor of 2 and a height of 16.

v TDESEMV4 causes processing with a branch factor of 4 and a height of 8.

PIN-block self-encryption
In the Secure Messaging for PINs (CSNBSPN and CSNESPN) service, you can
use the SELFENC rule-array keyword to specify that the 8-byte PIN block shall be
used as a DES key to encrypt the PIN block. The verb appends the self-encrypted
PIN block to the clear PIN-block in the output message.

Key Test Verification Pattern Algorithms
The key test verification pattern algorithms are:

v The DES algorithm is used by the Key Test callable service to generate and
verify the verification pattern.

v The SHAVP1 algorithm is used by the Key Test2 callable service to generate and
verify the verification pattern.

DES Algorithm (single- and double-length keys)
For DES keys, the Key Test callable service uses this algorithm to generate and
verify the verification pattern.

KK = eC(KL) XOR KL
VP = eKK(KR XOR RN) XOR RN

where:

v eK(x) - x is encrypted by key K using the DES algorithm

v KL is the left 128-bit clear key value of the key

v KR is the right 128-bit clear key value of the key (will be hex zero for a single
length key)

v C is X''4545454545454545'

v KK is a 128-bit intermediate value

v RN is a 128-bit pseudo-random number

v VP is the 128-bit verification pattern

SHAVP1 Algorithm
This algorithm is used by the Key Test2 callable service to generate and verify the
verification pattern.

Appendix F. Cryptographic Algorithms and Processes 889

VP = Trunc128(SHA256(KA || KT || KL || K))

Where:

v VP is the 128-bit verification pattern

v TruncN(x) is truncation of the string x to the left most N bits

v SHA256(x) is the SHA-256 hash of the string x

v KA is the one-byte CCA variable-length key token constant for the algorithm of
key (HMAC X'03')

v KT is the two-byte CCA variable-length key token constant for the type of key
(MAC X'0002')

v KL is the two-byte bit length of the clear key value

v K is the clear key value left justified and padded on the right with binary zeros to
byte boundary || is string concatenation

890 z/OS V1R13 ICSF Application Programmer's Guide

Appendix G. EBCDIC and ASCII Default Conversion Tables

This section presents tables showing EBCDIC to ASCII and ASCII to EBCDIC
conversion tables. In the table headers, EBC refers to EBCDIC and ASC refers to
ASCII.

Table 377 shows the EBCDIC to ASCII default conversion table.

Table 377. EBCDIC to ASCII Default Conversion Table

EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC

00 00 20 81 40 20 60 2D 80 F8 A0 C8 C0 7B E0 5C

01 01 21 82 41 A6 61 2F 81 61 A1 7E C1 41 E1 E7

02 02 22 1C 42 E1 62 DF 82 62 A2 73 C2 42 E2 53

03 03 23 84 43 80 63 DC 83 63 A3 74 C3 43 E3 54

04 CF 24 86 44 EB 64 9A 84 64 A4 75 C4 44 E4 55

05 09 25 0A 45 90 65 DD 85 65 A5 76 C5 45 E5 56

06 D3 26 17 46 9F 66 DE 86 66 A6 77 C6 46 E6 57

07 7F 27 1B 47 E2 67 98 87 67 A7 78 C7 47 E7 58

08 D4 28 89 48 AB 68 9D 88 68 A8 79 C8 48 E8 59

09 D5 29 91 49 8B 69 AC 89 69 A9 7A C9 49 E9 5A

0A C3 2A 92 4A 9B 6A BA 8A 96 AA EF CA CB EA A0

0B 0B 2B 95 4B 2E 6B 2C 8B A4 AB C0 CB CA EB 85

0C 0C 2C A2 4C 3C 6C 25 8C F3 AC DA CC BE EC 8E

0D 0D 2D 05 4D 28 6D 5F 8D AF AD 5B CD E8 ED E9

0E 0E 2E 06 4E 2B 6E 3E 8E AE AE F2 CE EC EE E4

0F 0F 2F 07 4F 7C 6F 3F 8F C5 AF F9 CF ED EF D1

10 10 30 E0 50 26 70 D7 90 8C B0 B5 D0 7D F0 30

11 11 31 EE 51 A9 71 88 91 6A B1 B6 D1 4A F1 31

12 12 32 16 52 AA 72 94 92 6B B2 FD D2 4B F2 32

13 13 33 E5 53 9C 73 B0 93 6C B3 B7 D3 4C F3 33

14 C7 34 D0 54 DB 74 B1 94 6D B4 B8 D4 4D F4 34

15 B4 35 1E 55 A5 75 B2 95 6E B5 B9 D5 4E F5 35

16 08 36 EA 56 99 76 FC 96 6F B6 E6 D6 4F F6 36

17 C9 37 04 57 E3 77 D6 97 70 B7 BB D7 50 F7 37

18 18 38 8A 58 A8 78 FB 98 71 B8 BC D8 51 F8 38

19 19 39 F6 59 9E 79 60 99 72 B9 BD D9 52 F9 39

1A CC 3A C6 5A 21 7A 3A 9A 97 BA 8D DA A1 FA B3

1B CD 3B C2 5B 24 7B 23 9B 87 BB D9 DB AD FB F7

1C 83 3C 14 5C 2A 7C 40 9C CE BC BF DC F5 FC F0

1D 1D 3D 15 5D 29 7D 27 9D 93 BD 5D DD F4 FD FA

1E D2 3E C1 5E 3B 7E 3D 9E F1 BE D8 DE A3 FE A7

1F 1F 3F 1A 5F 5E 7F 22 9F FE BF C4 DF 8F FF FF

© Copyright IBM Corp. 1997, 2011 891

Table 378 shows the ASCII to EBCDIC default conversion table.

Table 378. ASCII to EBCDIC Default Conversion Table

ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC ASC EBC

00 00 20 40 40 7C 60 79 80 43 A0 EA C0 AB E0 30

01 01 21 5A 41 C1 61 81 81 20 A1 DA C1 3E E1 42

02 02 22 7F 42 C2 62 82 82 21 A2 2C C2 3B E2 47

03 03 23 7B 43 C3 63 83 83 1C A3 DE C3 0A E3 57

04 37 24 5B 44 C4 64 84 84 23 A4 8B C4 BF E4 EE

05 2D 25 6C 45 C5 65 85 85 EB A5 55 C5 8F E5 33

06 2E 26 50 46 C6 66 86 86 24 A6 41 C6 3A E6 B6

07 2F 27 7D 47 C7 67 87 87 9B A7 FE C7 14 E7 E1

08 16 28 4D 48 C8 68 88 88 71 A8 58 C8 A0 E8 CD

09 05 29 5D 49 C9 69 89 89 28 A9 51 C9 17 E9 ED

0A 25 2A 5C 4A D1 6A 91 8A 38 AA 52 CA CB EA 36

0B 0B 2B 4E 4B D2 6B 92 8B 49 AB 48 CB CA EB 44

0C 0C 2C 6B 4C D3 6C 93 8C 90 AC 69 CC 1A EC CE

0D 0D 2D 60 4D D4 6D 94 8D BA AD DB CD 1B ED CF

0E 0E 2E 4B 4E D5 6E 95 8E EC AE 8E CE 9C EE 31

0F 0F 2F 61 4F D6 6F 96 8F DF AF 8D CF 04 EF AA

10 10 30 F0 50 D7 70 97 90 45 B0 73 D0 34 F0 FC

11 11 31 F1 51 D8 71 98 91 29 B1 74 D1 EF F1 9E

12 12 32 F2 52 D9 72 99 92 2A B2 75 D2 1E F2 AE

13 13 33 F3 53 E2 73 A2 93 9D B3 FA D3 06 F3 8C

14 3C 34 F4 54 E3 74 A3 94 72 B4 15 D4 08 F4 DD

15 3D 35 F5 55 E4 75 A4 95 2B B5 B0 D5 09 F5 DC

16 32 36 F6 56 E5 76 A5 96 8A B6 B1 D6 77 F6 39

17 26 37 F7 57 E6 77 A6 97 9A B7 B3 D7 70 F7 FB

18 18 38 F8 58 E7 78 A7 98 67 B8 B4 D8 BE F8 80

19 19 39 F9 59 E8 79 A8 99 56 B9 B5 D9 BB F9 AF

1A 3F 3A 7A 5A E9 7A A9 9A 64 BA 6A DA AC FA FD

1B 27 3B 5E 5B AD 7B C0 9B 4A BB B7 DB 54 FB 78

1C 22 3C 4C 5C E0 7C 4F 9C 53 BC B8 DC 63 FC 76

1D 1D 3D 7E 5D BD 7D D0 9D 68 BD B9 DD 65 FD B2

1E 35 3E 6E 5E 5F 7E A1 9E 59 BE CC DE 66 FE 9F

1F 1F 3F 6F 5F 6D 7F 07 9F 46 BF BC DF 62 FF FF

892 z/OS V1R13 ICSF Application Programmer's Guide

Appendix H. Access Control Points and Callable Services

The TKE workstation allows you to enable or disable callable service access control
points. For systems that do not use the optional TKE Workstation, all access control
points (current and new) are enabled in the DEFAULT Role with the appropriate
licensed internal code on the PCI Cryptographic Coprocessor, PCI X Cryptographic
Coprocessor, Crypto Express2 Coprocessor, or Crypto Express3 Coprocessor.

Access to services that are executed on the PCIXCC, CEX2C, or CEX3C is through
Access Control Points in the DEFAULT Role. To execute callable services on the
PCI X Cryptographic Coprocessor/Crypto Express2 Coprocessor, access control
points must be enabled for each service in the DEFAULT Role.

New TKE users and non-TKE users have all access control points enabled. This is
also true for new TKE V5.x users. If you are migrating from TKE V4.0, V4.1, or V4.2
to TKE V5.0 and have a PCIXCC/CEX2C/CEX3C, all your current access control
points will remain the same and any new access control points for ICSF will not be
enabled.

Note: Access control points DKYGENKY-DALL and DSG ZERO-PAD unrestricted
hash length and PTR enhanced PIN security are always disabled in the
DEFAULT role for all customers (TKE and Non-TKE). A TKE Workstation is
required to enable these access control points.

Access control points added in ICSF FMID HCR7790:

v ANSI X9.8 PIN – Use stored decimalization tables only

v CVV Key Combine

v CVV Key Combine - Allow wrapping override keywords

v CVV Key Combine - Permit mixed key types

v ECC Diffie-Hellman – Allow PASSTHRU

v ECC Diffie-Hellman – Allow key wrap override

v ECC Diffie-Hellman – Allow Prime Curve 192

v ECC Diffie-Hellman – Allow Prime Curve 224

v ECC Diffie-Hellman – Allow Prime Curve 256

v ECC Diffie-Hellman – Allow Prime Curve 384

v ECC Diffie-Hellman – Allow Prime Curve 521

v ECC Diffie-Hellman – Allow BP Curve 160

v ECC Diffie-Hellman – Allow BP Curve 192

v ECC Diffie-Hellman – Allow BP Curve 224

v ECC Diffie-Hellman – Allow BP Curve 256

v ECC Diffie-Hellman – Allow BP Curve 320

v ECC Diffie-Hellman – Allow BP Curve 384

v ECC Diffie-Hellman – Allow BP Curve 512

v ECC Diffie-Hellman – Prohibit weak key generate

v ECC Diffie-Hellman Callable Service

v Restrict Key Attribute - Permit setting the TR-31 export bit

v Secure Key Import2 - IM

v Symmetric Key Import2 - HMAC/AES, AESKW

v Symmetric Key Export - AESKW

© Copyright IBM Corp. 1997, 2011 893

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v TR31 Export – Permit any CCA key if INCL-CV is specified

v TR31 Export – Permit KEYGENKY:UKPT to B0

v TR31 Export – Permit MAC/MACVER:AMEX-CSC to C0:G/C/V

v TR31 Export – Permit MAC/MACVER:CVV-KEYA to C0:G/C/V

v TR31 Export – Permit MAC/MACVER:ANY-MAC to C0:G/C/V

v TR31 Export – Permit DATA to C0:G/C

v TR31 Export – Permit ENCIPHER/DECIPHER/CIPHER to D0:E/D/B

v TR31 Export – Permit DATA to D0:B

v TR31 Export – Permit EXPORTER/OKEYXLAT to K0:E

v TR31 Export – Permit IMPORTER/IKEYXLAT to K0:D

v TR31 Export – Permit EXPORTER/OKEYXLAT to K1:E

v TR31 Export – Permit IMPORTER/IKEYXLAT to K1:D

v TR31 Export – Permit MAC/DATA/DATAM to M0:G/C

v TR31 Export – Permit MACVER/DATAMV to M0:V

v TR31 Export – Permit MAC/DATA/DATAM to M1:G/C

v TR31 Export – Permit MACVER/DATAMV to M1:V

v TR31 Export – Permit MAC/DATA/DATAM to M3:G/C

v TR31 Export – Permit MACVER/DATAMV to M3:V

v TR31 Export – Permit OPINENC to P0/E

v TR31 Export – Permit IPINENC to P0/D

v TR31 Export – Permit PINVER:NO-SPEC to V0

v TR31 Export – Permit PINGEN:NO-SPEC to V0

v TR31 Export – Permit PINVER:NO-SPEC/IBM-PIN/IBM-PINO to V1

v TR31 Export – Permit PINGEN:NO-SPEC/IBM-PIN/IBM-PINO to V1

v TR31 Export – Permit PINVER:NO-SPEC/VISA-PVV to V2

v TR31 Export – Permit PINGEN:NO-SPEC/VISA-PVV to V2

v TR31 Export – Permit DKYGENKY:DKYL0+DMAC to E0

v TR31 Export – Permit DKYGENKY:DKYL0+DMV to E0

v TR31 Export – Permit DKYGENKY:DKYL0+DALL to E0

v TR31 Export – Permit DKYGENKY:DKYL1+DMAC to E0

v TR31 Export – Permit DKYGENKY:DKYL1+DMV to E0

v TR31 Export – Permit DKYGENKY:DKYL1+DALL to E0

v TR31 Export – Permit DKYGENKY:DKYL0+DDATA to E1

v TR31 Export – Permit DKYGENKY:DKYL0+DMPIN to E1

v TR31 Export – Permit DKYGENKY:DKYL0+DALL to E1

v TR31 Export – Permit DKYGENKY:DKYL1+DDATA to E1

v TR31 Export – Permit DKYGENKY:DKYL1+DMPIN to E1

v TR31 Export – Permit DKYGENKY:DKYL1+DALL to E1

v TR31 Export – Permit DKYGENKY:DKYL0+DMAC to E2

v TR31 Export – Permit DKYGENKY:DKYL0+DALL to E2

v TR31 Export – Permit DKYGENKY:DKYL1+DMAC to E2

v TR31 Export – Permit DKYGENKY:DKYL1+DALL to E2

v TR31 Export – Permit DATA/MAC/CIPHER/ENCIPHER to E3

v TR31 Export – Permit DKYGENKY:DKYL0+DDATA to E4

v TR31 Export – Permit DKYGENKY:DKYL0+DALL to E4

894 z/OS V1R13 ICSF Application Programmer's Guide

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v TR31 Export – Permit DKYGENKY:DKYL0+DEXP to E5

v TR31 Export – Permit DKYGENKY:DKYL0+DMAC to E5

v TR31 Export – Permit DKYGENKY:DKYL0+DDATA to E5

v TR31 Export – Permit DKYGENKY:DKYL0+DALL to E5

v TR31 Export – Permit PINGEN/PINVER to V0/V1/V2:N

v TR31 Export – Permit version A TR-31 key blocks

v TR31 Export – Permit version B TR-31 key blocks

v TR31 Export – Permit version C TR-31 key blocks

v TR31 Import – Permit C0 to MAC/MACVER:CVVKEY-A

v TR31 Import – Permit C0 to MAC/MACVER:AMEX-CSC

v TR31 Import – Permit K0:E to EXPORTER/OKEYXLAT

v TR31 Import – Permit K0:D to IMPORTER/IKEYXLAT

v TR31 Import – Permit K0:B to EXPORTER/OKEYXLAT

v TR31 Import – Permit K0:B to IMPORTER/IKEYXLAT

v TR31 Import – Permit K1:E to EXPORTER/OKEYXLAT

v TR31 Import – Permit K1:D to IMPORTER/IKEYXLAT

v TR31 Import – Permit K1:B to EXPORTER/OKEYXLAT

v TR31 Import – Permit K1:B to IMPORTER/IKEYXLAT

v TR31 Import – Permit M0/M1/M3 to MAC/MACVER:ANY-MAC

v TR31 Import – Permit P0:E to OPINENC

v TR31 Import – Permit P0:D to IPINENC

v TR31 Import – Permit V0 to PINGEN:NO-SPEC

v TR31 Import – Permit V0 to PINVER:NO-SPEC

v TR31 Import – Permit V1 to PINGEN:IBM-PIN/IBM-PINO

v TR31 Import – Permit V1 to PINVER:IBM-PIN/IBM-PINO

v TR31 Import – Permit V2 to PINGEN:VISA-PVV

v TR31 Import – Permit V2 to PINVER:VISA-PVV

v TR31 Import – Permit E0 to DKYGENKY:DKYL0+DMAC

v TR31 Import – Permit E0 to DKYGENKY:DKYL0+DMV

v TR31 Import – Permit E0 to DKYGENKY:DKYL1+DMAC

v TR31 Import – Permit E0 to DKYGENKY:DKYL1+DMV

v TR31 Import – Permit E1 to DKYGENKY:DKYL0+DMPIN

v TR31 Import – Permit E1 to DKYGENKY:DKYL0+DDATA

v TR31 Import – Permit E1 to DKYGENKY:DKYL1+DMPIN

v TR31 Import – Permit E1 to DKYGENKY:DKYL1+DDATA

v TR31 Import – Permit E2 to DKYGENKY:DKYL0+DMAC

v TR31 Import – Permit E2 to DKYGENKY:DKYL1+DMAC

v TR31 Import – Permit E3 to ENCIPHER

v TR31 Import – Permit E4 to DKYGENKY:DKYL0+DDATA

v TR31 Import – Permit E5 to DKYGENKY:DKYL0+DMAC

v TR31 Import – Permit E5 to DKYGENKY:DKYL0+DDATA

v TR31 Import – Permit E5 to DKYGENKY:DKYL0+DEXP

v TR31 Import – Permit V0/V1/V2:N to PINGEN/PINVER

v TR31 Import – Permit version A TR-31 key blocks

v TR31 Import – Permit version B TR-31 key blocks

Appendix H. Access Control Points and Callable Services 895

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v TR31 Import – Permit version C TR-31 key blocks

v TR31 Import – Permit override of default wrapping method

v Variable-length Symmetric Token - disallow weak wrap

v Variable-length Symmetric Token - warn when weak wrap

Access control points added in ICSF FMID HCR7780:

v ANSI X9.8 PIN - Enforce PIN block restrictions

v ANSI X9.8 PIN - Allow modification of PAN

v ANSI X9.8 PIN - Allow only ANSI PIN blocks

v Clear New ECC Master Key

v Load First ECC Master Key Part

v Combine ECC Master Key Parts

v Set ECC Master Key

v Generate ECC keys in the clear

v Symmetric token wrapping - internal enhanced method

v Symmetric token wrapping - internal original method

v Symmetric token wrapping - external enhanced method

v Symmetric token wrapping - external original method

v Diversified Key Generate - Allow wrapping override keywords

v Symmetric Key Generate - Allow wrapping override keywords

v Key Part Import - Allow wrapping override keywords

v Multiple Clear Key Import - Allow wrapping override keywords

v Multiple Secure Key Import - Allow wrapping override keywords

v Symmetric Key Import - Allow wrapping override keywords

v CKDS Conversion2 - Allow use of REFORMAT

v CKDS Conversion2 - Allow wrapping override keywords

v CKDS Conversion2 - Convert from enhanced to original

v PCF CKDS Conversion - Allow wrapping override keywords

v Key Translate2

v Key Translate2 - Allow wrapping override keywords

v Key Translate2 - Allow use of REFORMAT

v HMAC Generate – SHA-1

v HMAC Generate – SHA-224

v HMAC Generate – SHA-256

v HMAC Generate – SHA-384

v HMAC Generate – SHA-512

v Restrict Key Attribute – Export Control

v Key Generate2 – OP

v Key Generate2 – Key Set

v Symmetric Key Token Change2

v Symmetric Key Token Change2 – RTCMK

v Secure Key Import2 - HMAC, OP

v Symmetric Key Import2 - HMAC,PKOAEP2

v Symmetric Key Export – HMAC,PKOAEP2

v HMAC Verify – SHA-1

896 z/OS V1R13 ICSF Application Programmer's Guide

|

|

|

|

|

|

v HMAC Verify – SHA-224

v HMAC Verify – SHA-256

v HMAC Verify – SHA-384

v HMAC Verify – SHA-512

v Key Part Import2 – Load first key part, require 3 key parts

v Key Part Import2 – Load first key part, require 2 key parts

v Key Part Import2 - Load first key part, require 1 key parts

v Key Part Import2 - Add second of 3 or more key parts

v Key Part Import2 - Add last required key part

v Key Part Import2 - Add optional key part

v Key Part Import2 – Complete key

v Key Test and Key Test2

Access control points added in ICSF FMID HCR7770 are:

v PKA Key Token Change RTNMK

v PKA Key Translate - from CCA RSA to SC Visa Format

v PKA Key Translate - from CCA RSA to SC ME Format

v PKA Key Translate - from CCA RSA to SC CRT Format

v PKA Key Translate - from source EXP KEK to target EXP KEK

v PKA Key Translate - from source IMP KEK to target EXP KEK

v PKA Key Translate - from source IMP KEK to target IMP KEK

v Symmetric Key Encipher/Decipher - Encrypted DES keys

v Symmetric Key Encipher/Decipher - Encrypted AES keys

In addition, access control point PKA Key Token Change was renamed to PKA Key
Token Change RTCMK

Access Control Points for HCR7751 are:

v Clear New AES Master Key Register (ISPF ACP)

v Load First AES Master Key Part (ISPF ACP)

v Combine AES Master Key Parts (ISPF ACP)

v Set AES Master Key (ISPF ACP)

v Multiple Clear Key Import/Multiple Secure Key Import - AES

v Symmetric Algorithm Encipher - Secure AES

v Symmetric Algorithm Decipher - Secure AES

v Symmetric Key Generate - AES, PKCSOEAP, PKCS- 1.2

v Symmetric Key Generate - AES, ZERO-PAD

v Symmetric Key Import - AES, PKCSOEAP, PKCS-1.2

v Symmetric Key Import - AES, ZERO-PAD

v Symmetric Key Export - AES, PKCSOAEP, PKCS-1.2

v Symmetric Key Export - AES, ZERO-PAD

These access control points require the Nov. 2008 or later licensed internal code
(LIC).

For the relationship between access control points and callable services, see
Table 379 on page 898.

Appendix H. Access Control Points and Callable Services 897

Callable Service Access Control Points
If an access control point is disabled, the corresponding ICSF callable service or
utility will fail during execution with an access denied error.

Table 379. Callable service access control points

Access Control Point Callable Service/Utility Enabled in
the default
role?

Allow ECC Clear Key Generation CSNDPKG and CSNFPKG Yes

ANSI X9.8 PIN - Enforce PIN block
restrictions

CSNBCPA / CSNECPA,
CSNBPTR / CSNEPTR, and
CSNBSPN / CSNESPN

No

ANSI X9.8 PIN - Allow modification of PAN CSNBPTR / CSNEPTR No

ANSI X9.8 PIN - Allow only ANSI PIN blocks CSNBPTR / CSNEPTR No

ANSI X9.8 PIN – Use stored decimalization
tables only

CSNBPGN, CSNBCPA,
CSNBEPG and CSNBPVR

No

CKDS Conversion2 - Allow use of
REFORMAT

CSFCNV2 Yes

CKDS Conversion2 - Allow wrapping override
keywords

CSFCNV2 Yes

CKDS Conversion2 - Convert from enhanced
to original

CSFCNV2 Yes

Clear Key Import / Multiple Clear Key Import -
DES

CSNBCKI or CSNBCKM Yes

Clear Key Import / Multiple Clear Key Import -
AES

CSNBCKI , CSNBCKM or
CSNBSKM

Yes

Clear PIN Encrypt CSNBCPE Yes

Clear PIN Generate - 3624 CSNBPGN Yes

Clear PIN Generate - GBP CSNBPGN Yes

Clear PIN Generate - VISA PVV CSNBPGN Yes

Clear PIN Generate - Interbank CSNBPGN Yes

Clear Pin Generate Alternate - 3624 Offset CSNBCPA Yes

Clear PIN Generate Alternate - VISA PVV CSNBCPA Yes

Control Vector Translate CSNBCVT Yes

Cryptographic Variable Encipher CSNBCVE Yes

CVV Generate CSNBCSG Yes

CVV Key Combine CSNBCKC and CSNECKC Yes

CVV Key Combine - Allow wrapping override
keywords

CSNBCKC and CSNECKC Yes

CVV Key Combine - Permit mixed key types CSNBCKC and CSNECKC Yes

CVV Verify CSNBCSV Yes

DATAM Key Management Control CSNBKGN, CSNBKIM,
CSNBKEX and CSNBDKG

Yes

Data Key Export CSNBDKX Yes

Data Key Export - Unrestricted CSNBDKX Yes

Data Key Import CSNBDKM Yes

898 z/OS V1R13 ICSF Application Programmer's Guide

|

|

|

|
|
|

|||

|
|
||

|||

Table 379. Callable service access control points (continued)

Data Key Import - Unrestricted CSNBDKM Yes

Decipher - DES CSNBDEC Yes

Digital Signature Generate CSNDDSG Yes

DSG ZERO-PAD restriction lifted CSNDDSG Yes

Digital Signature Verify CSNDDSV Yes

Diversified Key Generate - Allow wrapping
override keywords

CSNBDKG and CSNEDKG Yes

Diversified Key Generate - CLR8–ENC CSNBDKG Yes

Diversified Key Generate - SESS-XOR CSNBDKG Yes

Diversified Key Generate - TDES-ENC CSNBDKG Yes

Diversified Key Generate - TDES-DEC CSNBDKG Yes

Diversified Key Generate - TDES-XOR CSNBDKG Yes

Diversified Key Generate -
TDESEMV2/TDESEMV4

CSNBDKG Yes

Diversified Key Generate - single length or
same halves

CSNBDKG Yes

DKYGENKY - DALL CSNBDKG Yes

ECC Diffie-Hellman – Allow PASSTHRU CSNDEDH and CSNFEDH Yes

ECC Diffie-Hellman – Allow key wrap override CSNDEDH and CSNFEDH Yes

ECC Diffie-Hellman – Allow Prime Curve 192 CSNDEDH and CSNFEDH Yes

ECC Diffie-Hellman – Allow Prime Curve 224 CSNDEDH and CSNFEDH Yes

ECC Diffie-Hellman – Allow Prime Curve 256 CSNDEDH and CSNFEDH Yes

ECC Diffie-Hellman – Allow Prime Curve 384 CSNDEDH and CSNFEDH Yes

ECC Diffie-Hellman – Allow Prime Curve 521 CSNDEDH and CSNFEDH Yes

ECC Diffie-Hellman – Allow BP Curve 160 CSNDEDH and CSNFEDH Yes

ECC Diffie-Hellman – Allow BP Curve 192 CSNDEDH and CSNFEDH Yes

ECC Diffie-Hellman – Allow BP Curve 224 CSNDEDH and CSNFEDH Yes

ECC Diffie-Hellman – Allow BP Curve 256 CSNDEDH and CSNFEDH Yes

ECC Diffie-Hellman – Allow BP Curve 320 CSNDEDH and CSNFEDH Yes

ECC Diffie-Hellman – Allow BP Curve 384 CSNDEDH and CSNFEDH Yes

ECC Diffie-Hellman – Allow BP Curve 512 CSNDEDH and CSNFEDH Yes

ECC Diffie-Hellman – Prohibit weak key
generate

CSNDEDH and CSNFEDH No

ECC Diffie-Hellman Callable Service CSNDEDH and CSNFEDH Yes

Encipher - DES CSNBENC Yes

Encrypted PIN Generate - 3624 CSNBEPG Yes

Encrypted PIN Generate - GBP CSNBEPG Yes

Encrypted PIN Generate - Interbank CSNBEPG Yes

Encrypted PIN Translate - Translate CSNBPTR Yes

Encrypted PIN Translate - Reformat CSNBPTR Yes

Encrypted PIN Verify - 3624 CSNBPVR Yes

Encrypted PIN Verify - GPB CSNBPVR Yes

Appendix H. Access Control Points and Callable Services 899

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|
|
||

|||

Table 379. Callable service access control points (continued)

Encrypted PIN Verify - VISA PVV CSNBPVR Yes

Encrypted PIN Verify - Interbank CSNBPVR Yes

HMAC Generate – SHA-1 CSNBHMG or CSNBHMG1
and CSNEHMG or
CSNEHMG1

Yes

HMAC Generate – SHA-224 CSNBHMG or CSNBHMG1
and CSNEHMG or
CSNEHMG1

Yes

HMAC Generate – SHA-256 CSNBHMG or CSNBHMG1
and CSNEHMG or
CSNEHMG1

Yes

HMAC Generate – SHA-384 CSNBHMG or CSNBHMG1
and CSNEHMG or
CSNEHMG1

Yes

HMAC Generate – SHA-512 CSNBHMG or CSNBHMG1
and CSNEHMG or
CSNEHMG1

Yes

HMAC Verify – SHA-1 CSNBHMV or CSNBHMV1
and CSNEHMV or
CSNEHMV1

Yes

HMAC Verify – SHA-224 CSNBHMV or CSNBHMV1
and CSNEHMV or
CSNEHMV1

Yes

HMAC Verify – SHA-256 CSNBHMV or CSNBHMV1
and CSNEHMV or
CSNEHMV1

Yes

HMAC Verify – SHA-384 CSNBHMV or CSNBHMV1
and CSNEHMV or
CSNEHMV1

Yes

HMAC Verify – SHA-512 CSNBHMV or CSNBHMV1
and CSNEHMV or
CSNEHMV1

Yes

Key Export CSNBKEX Yes

Key Export - Unrestricted CSNBKEX Yes

Key Generate - OPIM, OPEX, IMEX, etc. CSNBKGN Yes

Key Generate - EX, IM, OP CSNBKGN Yes

Key Generate - CVARs CSNBKGN Yes

Key Generate - SINGLE-R CSNBKGN Yes

Key Generate2 – OP CSNBKGN2 and
CSNEKGN2

Yes

Key Generate2 – Key Set CSNBKGN2 and
CSNEKGN2

Yes

Key Import CSNBKIM Yes

Key Import - Unrestricted CSNBKIM Yes

Key Part Import2 – Load first key part,
require 3 key parts

CSNBKPI2 and CSNEKPI2 Yes

Key Part Import2 – Load first key part,
require 2 key parts

CSNBKPI2 and CSNEKPI2 Yes

900 z/OS V1R13 ICSF Application Programmer's Guide

|

|

Table 379. Callable service access control points (continued)

Key Part Import2 - Load first key part, require
1 key parts

CSNBKPI2 and CSNEKPI2 Yes

Key Part Import2 - Add second of 3 or more
key parts

CSNBKPI2 and CSNEKPI2 Yes

Key Part Import2 - Add last required key part CSNBKPI2 and CSNEKPI2 Yes

Key Part Import2 - Add optional key part CSNBKPI2 and CSNEKPI2 Yes

Key Part Import2 – Complete key CSNBKPI2 and CSNEKPI2 Yes

Key Part Import - ADD-PART CSNBKPI Yes

Key Part Import - Allow wrapping override
keywords

CSNBKPI Yes

Key Part Import - COMPLETE CSNBKPI Yes

Key Part Import - first key part CSNBKPI Yes

Key Part Import - middle and final CSNBKPI Yes

Key Part Import - unrestricted CSNBKPI Yes

Key Part Import - RETRKPR CSNBKPI Yes

Key Test and Key Test2 CSNBKYT, CSNEKYT,
CSNBKYT2, and
CSNEKYT2

Yes

Key Translate CSNBKTR Yes

Key Translate2 CSNBKTR2 and
CSNEKTR2

Yes

Key Translate2 - Allow wrapping override
keywords

CSNBKTR2 and
CSNEKTR2

Yes

Key Translate2 - Allow use of REFORMAT CSNBKTR2 and
CSNEKTR2

Yes

MAC Generate CSNBMGN Yes

MAC Verify CSNBMVR Yes

Multiple Clear Key Import - Allow wrapping
override keywords

CSNBCKM and CSNECKM Yes

Multiple Secure Key Import - Allow wrapping
override keywords

CSNBSKM and CSNESKM Yes

NOCV KEK usage for export-related functions CSNBKEX, CSNBSKM, and
CSNBKGN

Yes

NOCV KEK usage for import-related functions CSNBKIM, CSNBSKI,
CSNBSKM, and CSNBKGN

Yes

PCF CKDS Conversion - Allow wrapping
override keywords

CSFCONV Yes

PCF CKDS Conversion Program CSFCONV Yes

PIN Change/Unblock - change EMV PIN with
OPINENC

CSNBPCU Yes

PIN Change/Unblock - change EMV PIN with
IPINENC

CSNBPCU Yes

PIN Change/Unblock - PTR Enhanced PIN
Security

CSNBPCU Yes

PKA Decrypt CSNDPKD Yes

PKA Encrypt CSNDPKE Yes

Appendix H. Access Control Points and Callable Services 901

Table 379. Callable service access control points (continued)

PKA Key Generate CSNDPKG Yes

PKA Key Generate - Clear CSNDPKG Yes

PKA Key Generate - Clone CSNDPKG Yes

PKA Key Generate - Permit Regeneration
Data

CSNDPKG Yes

PKA Key Generate - Permit Regeneration
Data Retain

CSNDPKG Yes

PKA Key Import CSNDPKI Yes

PKA Key Import - Import an External Trusted
Key Block to internal form

CSNDPKI Yes

PKA Key Token Change RTCMK CSNDKTC Yes

PKA Key Token Change RTNMK CSNDKTC Yes

PKA Key Translate - from CCA RSA to SC
Visa Format

CSNDPKT Yes

PKA Key Translate - from CCA RSA to SC
ME Format

CSNDPKT Yes

PKA Key Translate - from CCA RSA to SC
CRT Format

CSNDPKT Yes

PKA Key Translate - from source EXP KEK to
target EXP KEK

CSNDPKT Yes

PKA Key Translate - from source IMP KEK to
target EXP KEK

CSNDPKT Yes

PKA Key Translate - from source IMP KEK to
target IMP KEK

CSNDPKT Yes

Prohibit Export CSNBPEX Yes

Prohibit Export Extended CSNBPEXX Yes

PTR Enhanced PIN Security CSNBCPE, CSNBCPA,
CSNBEPG, CSNBPTR,
CSNBPVR, and CSNBPCU

No

Remote Key Export - Generate or export a
key for use by a non-CCA node

CSNDRKX and CSNFRKX Yes

Restrict Key Attribute – Export Control CSNBRKA and CSNERKA Yes

Restrict Key Attribute - Permit setting the
TR-31 export bit

CSNBRKA and CSNERKA Yes

Retained Key Delete CSNDRKD Yes

Retained Key List CSNDRKL Yes

Secure Key Import - IM CSNBSKI or CSNBSKM Yes

Secure Key Import - OP CSNBSKI or CSNBSKM Yes

Secure Key Import2 - HMAC, OP CSNBSKI2 and CSNESKI2 Yes

Secure Key Import2 - IM CSNBSKI2 and CSNESKI2 Yes

Secure Messaging for Keys CSNBSKY Yes

Secure Messaging for PINs CSNBSPN Yes

SET Block Compose CSNDSBC Yes

SET Block Decompose CSNDSBD Yes

SET Block Decompose - PIN ext IPINENC CSNDSBD Yes

902 z/OS V1R13 ICSF Application Programmer's Guide

|

|
|
||

|||

Table 379. Callable service access control points (continued)

SET Block Decompose - PIN ext OPINENC CSNDSBD Yes

Symmetric Algorithm Decipher - Secure AES CSNBSAD or CSNBSAD1 Yes

Symmetric Algorithm Encipher - Secure AES CSNBSAE or CSNBSAE1 Yes

Symmetric Key Export - AESKW CSNDSYX and CSNFSYX Yes

Symmetric Key Export - AES, PKCS-1.2 CSNDSYX and CSNFSYX Yes

Symmetric Key Export - DES, PKCS-1.2 CSNDSYX and CSNFSYX Yes

Symmetric Key Export - AES, ZERO-PAD CSNDSYX and CSNFSYX Yes

Symmetric Key Export - DES, ZERO-PAD CSNDSYX and CSNFSYX Yes

Symmetric Key Export – HMAC,PKOAEP2 CSNDSYX and CSNFSYX Yes

Symmetric Key Encipher/Decipher -
Encrypted DES keys

CSNBSYD or CSNBSYE Yes

Symmetric Key Encipher/Decipher -
Encrypted AES keys

CSNBSYD or CSNBSYE Yes

Symmetric Key Generate - Allow wrapping
override keywords

CSNDSYG and CSNFSYG Yes

Symmetric Key Generate - DES, PKA92 CSNDSYG and CSNFSYG Yes

Symmetric Key Generate - AES, PKCS-1.2 CSNDSYG and CSNFSYG Yes

Symmetric Key Generate - DES, PKCS-1.2 CSNDSYG and CSNFSYG Yes

Symmetric Key Generate - AES, ZERO-PAD CSNDSYG and CSNFSYG Yes

Symmetric Key Generate - DES, ZERO-PAD CSNDSYG and CSNFSYG Yes

Symmetric Key Import - Allow wrapping
override keywords

CSNDSYI and CSNFSYI Yes

Symmetric Key Import - DES, PKA92 KEK CSNDSYI and CSNFSYI Yes

Symmetric Key Import - AES, PKCS-1.2 CSNDSYI and CSNFSYI Yes

Symmetric Key Import - DES, PKCS-1.2 CSNDSYI and CSNFSYI Yes

Symmetric Key Import - AES, ZERO-PAD CSNDSYI and CSNFSYI Yes

Symmetric Key Import - DES, ZERO-PAD CSNDSYI and CSNFSYI Yes

Symmetric Key Import2 – HMAC,PKOAEP2 CSNDSYI2 and CSNFSYI2 Yes

Symmetric Key Import2 - HMAC/AES,
AESKW

CSNDSYI2 and CSNFSYI2 Yes

TR31 Export – Permit version A TR-31 key
blocks

CSNBT31X and CSNET31X Yes

TR31 Export – Permit version B TR-31 key
blocks

CSNBT31X and CSNET31X Yes

TR31 Export – Permit version C TR-31 key
blocks

CSNBT31X and CSNET31X Yes

TR31 Export – Permit any CCA key if
INCL-CV is specified

CSNBT31X and CSNET31X Yes

TR31 Export – Permit KEYGENKY:UKPT to
B0

CSNBT31X and CSNET31X Yes

TR31 Export – Permit MAC/MACVER:AMEX-
CSC to C0:G/C/V

CSNBT31X and CSNET31X No

TR31 Export – Permit MAC/MACVER:CVV-
KEYA to C0:G/C/V

CSNBT31X and CSNET31X No

Appendix H. Access Control Points and Callable Services 903

|||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

Table 379. Callable service access control points (continued)

TR31 Export – Permit MAC/MACVER:ANY-
MAC to C0:G/C/V

CSNBT31X and CSNET31X Yes

TR31 Export – Permit DATA to C0:G/C CSNBT31X and CSNET31X Yes

TR31 Export – Permit ENCIPHER/
DECIPHER/CIPHER to D0:E/D/B

CSNBT31X and CSNET31X Yes

TR31 Export – Permit DATA to D0:B CSNBT31X and CSNET31X Yes

TR31 Export – Permit EXPORTER/
OKEYXLAT to K0:E

CSNBT31X and CSNET31X No

TR31 Export – Permit IMPORTER/IKEYXLAT
to K0:D

CSNBT31X and CSNET31X No

TR31 Export – Permit EXPORTER/
OKEYXLAT to K1:E

CSNBT31X and CSNET31X No

TR31 Export – Permit IMPORTER/IKEYXLAT
to K1:D

CSNBT31X and CSNET31X No

TR31 Export – Permit MAC/DATA/DATAM to
M0:G/C

CSNBT31X and CSNET31X No

TR31 Export – Permit MACVER/DATAMV to
M0:V

CSNBT31X and CSNET31X Yes

TR31 Export – Permit MAC/DATA/DATAM to
M1:G/C

CSNBT31X and CSNET31X Yes

TR31 Export – Permit MACVER/DATAMV to
M1:V

CSNBT31X and CSNET31X Yes

TR31 Export – Permit MAC/DATA/DATAM to
M3:G/C

CSNBT31X and CSNET31X Yes

TR31 Export – Permit MACVER/DATAMV to
M3:V

CSNBT31X and CSNET31X Yes

TR31 Export – Permit OPINENC to P0/E CSNBT31X and CSNET31X Yes

TR31 Export – Permit IPINENC to P0/D CSNBT31X and CSNET31X Yes

TR31 Export – Permit PINVER:NO-SPEC to
V0

CSNBT31X and CSNET31X No

TR31 Export – Permit PINGEN:NO-SPEC to
V0

CSNBT31X and CSNET31X No

TR31 Export – Permit PINVER:NO-SPEC/
IBM-PIN/IBM-PINO to V1

CSNBT31X and CSNET31X Yes

TR31 Export – Permit PINGEN:NO-SPEC/
IBM-PIN/IBM-PINO to V1

CSNBT31X and CSNET31X Yes

TR31 Export – Permit PINVER:NO-SPEC/
VISA-PVV to V2

CSNBT31X and CSNET31X Yes

TR31 Export – Permit PINGEN:NO-SPEC/
VISA-PVV to V2

CSNBT31X and CSNET31X Yes

TR31 Export – Permit
DKYGENKY:DKYL0+DMAC to E0

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL0+DMV to E0

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL0+DALL to E0

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL1+DMAC to E0

CSNBT31X and CSNET31X No

904 z/OS V1R13 ICSF Application Programmer's Guide

|
|
||

|||

|
|
||

|||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|||

|||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

Table 379. Callable service access control points (continued)

TR31 Export – Permit
DKYGENKY:DKYL1+DMV to E0

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL1+DALL to E0

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL0+DDATA to E1

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL0+DMPIN to E1

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL0+DALL to E1

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL1+DDATA to E1

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL1+DMPIN to E1

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL1+DALL to E1

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL0+DMAC to E2

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL0+DALL to E2

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL1+DMAC to E2

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL1+DALL to E2

CSNBT31X and CSNET31X No

TR31 Export – Permit DATA/MAC/CIPHER/
ENCIPHER to E3

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL0+DDATA to E4

CSNBT31X and CSNET31X Yes

TR31 Export – Permit
DKYGENKY:DKYL0+DALL to E4

CSNBT31X and CSNET31X Yes

TR31 Export – Permit
DKYGENKY:DKYL0+DEXP to E5

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL0+DMAC to E5

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL0+DDATA to E5

CSNBT31X and CSNET31X No

TR31 Export – Permit
DKYGENKY:DKYL0+DALL to E5

CSNBT31X and CSNET31X Yes

TR31 Export – Permit PINGEN/PINVER to
V0/V1/V2:N

CSNBT31X and CSNET31X No

TR31 Import – Permit version A TR-31 key
blocks

CSNBT31I and CSNET31I Yes

TR31 Import – Permit version B TR-31 key
blocks

CSNBT31I and CSNET31I Yes

TR31 Import – Permit version C TR-31 key
blocks

CSNBT31I and CSNET31I Yes

TR31 Import – Permit override of default
wrapping method

CSNBT31I and CSNET31I Yes

Appendix H. Access Control Points and Callable Services 905

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

Table 379. Callable service access control points (continued)

TR31 Import – Permit C0 to
MAC/MACVER:CVVKEY-A

CSNBT31I and CSNET31I No

TR31 Import – Permit C0 to
MAC/MACVER:AMEX-CSC

CSNBT31I and CSNET31I No

TR31 Import – Permit K0:E to
EXPORTER/OKEYXLAT

CSNBT31I and CSNET31I No

TR31 Import – Permit K0:D to
IMPORTER/IKEYXLAT

CSNBT31I and CSNET31I No

TR31 Import – Permit K0:B to
EXPORTER/OKEYXLAT

CSNBT31I and CSNET31I No

TR31 Import – Permit K0:B to
IMPORTER/IKEYXLAT

CSNBT31I and CSNET31I No

TR31 Import – Permit K1:E to
EXPORTER/OKEYXLAT

CSNBT31I and CSNET31I No

TR31 Import – Permit K1:D to
IMPORTER/IKEYXLAT

CSNBT31I and CSNET31I No

TR31 Import – Permit K1:B to
EXPORTER/OKEYXLAT

CSNBT31I and CSNET31I No

TR31 Import – Permit K1:B to
IMPORTER/IKEYXLAT

CSNBT31I and CSNET31I No

TR31 Import – Permit M0/M1/M3 to
MAC/MACVER:ANY-MAC

CSNBT31I and CSNET31I Yes

TR31 Import – Permit P0:E to OPINENC CSNBT31I and CSNET31I Yes

TR31 Import – Permit P0:D to IPINENC CSNBT31I and CSNET31I Yes

TR31 Import – Permit V0 to
PINGEN:NO-SPEC

CSNBT31I and CSNET31I No

TR31 Import – Permit V0 to
PINVER:NO-SPEC

CSNBT31I and CSNET31I No

TR31 Import – Permit V1 to
PINGEN:IBM-PIN/IBM-PINO

CSNBT31I and CSNET31I Yes

TR31 Import – Permit V1 to
PINVER:IBM-PIN/IBM-PINO

CSNBT31I and CSNET31I Yes

TR31 Import – Permit V2 to
PINGEN:VISA-PVV

CSNBT31I and CSNET31I Yes

TR31 Import – Permit V2 to
PINVER:VISA-PVV

CSNBT31I and CSNET31I Yes

TR31 Import – Permit E0 to
DKYGENKY:DKYL0+DMAC

CSNBT31I and CSNET31I No

TR31 Import – Permit E0 to
DKYGENKY:DKYL0+DMV

CSNBT31I and CSNET31I No

TR31 Import – Permit E0 to
DKYGENKY:DKYL1+DMAC

CSNBT31I and CSNET31I No

TR31 Import – Permit E0 to
DKYGENKY:DKYL1+DMV

CSNBT31I and CSNET31I No

TR31 Import – Permit E1 to
DKYGENKY:DKYL0+DMPIN

CSNBT31I and CSNET31I No

TR31 Import – Permit E1 to
DKYGENKY:DKYL0+DDATA

CSNBT31I and CSNET31I No

906 z/OS V1R13 ICSF Application Programmer's Guide

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|||

|||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

Table 379. Callable service access control points (continued)

TR31 Import – Permit E1 to
DKYGENKY:DKYL1+DMPIN

CSNBT31I and CSNET31I No

TR31 Import – Permit E1 to
DKYGENKY:DKYL1+DDATA

CSNBT31I and CSNET31I No

TR31 Import – Permit E2 to
DKYGENKY:DKYL0+DMAC

CSNBT31I and CSNET31I No

TR31 Import – Permit E2 to
DKYGENKY:DKYL1+DMAC

CSNBT31I and CSNET31I No

TR31 Import – Permit E3 to ENCIPHER CSNBT31I and CSNET31I No

TR31 Import – Permit E4 to
DKYGENKY:DKYL0+DDATA

CSNBT31I and CSNET31I Yes

TR31 Import – Permit E5 to
DKYGENKY:DKYL0+DMAC

CSNBT31I and CSNET31I No

TR31 Import – Permit E5 to
DKYGENKY:DKYL0+DDATA

CSNBT31I and CSNET31I No

TR31 Import – Permit E5 to
DKYGENKY:DKYL0+DEXP

CSNBT31I and CSNET31I No

TR31 Import – Permit V0/V1/V2:N to
PINGEN/PINVER

CSNBT31I and CSNET31I No

Transaction Validation - Generate CSNBTRV Yes

Transaction Validation - Verify CSC-3 CSNBTRV Yes

Transaction Validation - Verify CSC-4 CSNBTRV Yes

Transaction Validation - Verify CSC-5 CSNBTRV Yes

Trusted Block Create - Activate an Inactive
Trusted Key Block

CSNDTBC Yes

Trusted Block Create - Create Trusted Key
Block in Inactive Form

CSNDTBC Yes

UKPT - PIN Verify, PIN Translate CSNBPVR and CSNBPTR Yes

Variable-length Symmetric Token – disallow
weak wrap

CSNDEDH / CSNFEDH,
CSNDSYI2 / CSNFSYI2,
CSNDSYX / CSNFSYX, and
CSNBKGN2 / CSNEKGN2

No

Variable-length Symmetric Token - warn when
weak wrap

CSNDSYI2 / CSNFSYI2,
CSNBKGN2 / CSNEKGN2,
and CSNDSYX / CSNFSYX

No

Notes:

1. The Access Control Points available depend on the coprocessor you are using.

2. To use PKA Key Generate - Clear or PKA Key Generate - Clone, the PKA Key
Generate access control point must be enabled or the callable service will fail.

3. To use SET Block Decompose - PIN ext IPINENC or PIN ext OPINENC, the
SET Block Decompose access control point must be enabled or the callable
service will fail.

4. Diversified Key Generate - single length or same halves requires either
Diversified Key Generate - TDES-ENC or Diversified Key Generate -
TDES-DEC be enabled.

5. In order to use ATM Remote Key Loading, TKE users will have to enable the
access control points for these functions:

Appendix H. Access Control Points and Callable Services 907

|
|
||

|
|
||

|
|
||

|
|
||

|||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
|
|
|
|

|

|
|
|
|
|

|

v Trusted Block Create - Activate an Inactive Trusted Key Block

v Trusted Block Create - Create Trusted Key Block in Inactive Form

v PKA Key Import - Import an External Trusted Key Block to internal form

v Remote Key Export - Generate or export a key for use by a non-CCA node

908 z/OS V1R13 ICSF Application Programmer's Guide

Appendix I. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS® enable users to:

v Use assistive technologies such as screen readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

z/OS information
z/OS information is accessible using screen readers with the BookServer/Library
Server versions of z/OS books in the Internet library at:
http://www.ibm.com/systems/z/os/zos/bkserv/

© Copyright IBM Corp. 1997, 2011 909

http://www.ibm.com/systems/z/os/zos/bkserv/

910 z/OS V1R13 ICSF Application Programmer's Guide

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1997, 2011 911

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of z/OS Integrated Cryptographic Service
Facility.

Trademarks
IBM®, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation
in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

912 z/OS V1R13 ICSF Application Programmer's Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Glossary

This glossary defines terms and abbreviations
used in Integrated Cryptographic Service Facility
(ICSF). If you do not find the term you are looking
for, refer to the index of the appropriate Integrated
Cryptographic Service Facility document or view
IBM Glossary of Computing Terms located at:
http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from:

v IBM Glossary of Computing Terms. Definitions
are identified by the symbol (D) after the
definition.

v The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies can be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are identified
by the symbol (A) after the definition.

v The Information Technology Vocabulary,
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of this
vocabulary are identified by the symbol (I) after
the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

Definitions specific to the Integrated Cryptographic
Services Facility are labeled “In ICSF.”

A
access method services (AMS). The facility used to
define and reproduce VSAM key-sequenced data sets
(KSDS). (D)

Advanced Encryption Standard (AES). In computer
security, the National Institute of Standards and
Technology (NIST) Advanced Encryption Standard
(AES) algorithm. The AES algorithm is documented in a
draft Federal Information Processing Standard.

AES. Advanced Encryption Standard.

American National Standard Code for Information
Interchange (ASCII). The standard code using a
coded character set consisting of 7-bit characters (8 bits
including parity check) that is used for information
exchange among data processing systems, data
communication systems, and associated equipment.
The ASCII set consists of control characters and graphic
characters.

ANSI key-encrypting key (AKEK). A 64- or 128-bit
key used exclusively in ANSI X9.17 key management
applications to protect data keys exchanged between
systems.

ANSI X9.17. An ANSI standard that specifies
algorithms and messages for DES key distribution.

ANSI X9.19. An ANSI standard that specifies an
optional double-MAC procedure which requires a
double-length MAC key.

application program. (1) A program written for or by a
user that applies to the user's work, such as a program
that does inventory control or payroll. (2) A program
used to connect and communicate with stations in a
network, enabling users to perform application-oriented
activities. (D)

application program interface (API). (1) A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system or
the licensed program. (D) (2) In ICSF, a callable service.

asymmetric cryptography. Synonym for public key
cryptography. (D)

authentication pattern. An 8-byte pattern that ICSF
calculates from the master key when initializing the
cryptographic key data set. ICSF places the value of the
authentication pattern in the header record of the
cryptographic key data set.

authorized program facility (APF). A facility that
permits identification of programs authorized to use
restricted functions. (D)

C
callable service. A predefined sequence of
instructions invoked from an application program, using
a CALL instruction. In ICSF, callable services perform
cryptographic functions and utilities.

CBC. Cipher block chaining.

CCA. Common Cryptographic Architecture.

© Copyright IBM Corp. 1997, 2011 913

http://www.ibm.com/software/globalization/terminology/

CCF. Cryptographic Coprocessor Feature.

CDMF. Commercial Data Masking Facility.

CEDA. A CICS transaction that defines resources
online. Using CEDA, you can update both the CICS
system definition data set (CSD) and the running CICS
system.

CEX2A. Crypto Express2 Accelerator

CEX2C. Crypto Express2 Coprocessor

CEX3A. Crypto Express3 Accelerator

CEX3C. Crypto Express3 Coprocessor

checksum. (1) The sum of a group of data associated
with the group and used for checking purposes. (T) (2)
In ICSF, the data used is a key part. The resulting
checksum is a two-digit value you enter when you use
the key-entry unit to enter a master key part or a clear
key part into the key-storage unit.

Chinese Remainder Theorem (CRT). A mathematical
theorem that defines a format for the RSA private key
that improves performance.

CICS. Customer Information Control System.

cipher block chaining (CBC). A mode of encryption
that uses the data encryption algorithm and requires an
initial chaining vector. For encipher, it exclusively ORs
the initial block of data with the initial control vector and
then enciphers it. This process results in the encryption
both of the input block and of the initial control vector
that it uses on the next input block as the process
repeats. A comparable chaining process works for
decipher.

ciphertext. (1) In computer security, text produced by
encryption. (2) Synonym for enciphered data. (D)

CKDS. Cryptographic Key Data Set.

clear key. Any type of encryption key not protected by
encryption under another key.

CMOS. Complementary metal oxide semiconductor.

coexistence mode. An ICSF method of operation
during which CUSP or PCF can run independently and
simultaneously on the same ICSF system. A CUSP or
PCF application program can run on ICSF in this mode
if the application program has been reassembled.

Commercial Data Masking Facility (CDMF). A
data-masking algorithm using a DES-based kernel and
a key that is shortened to an effective key length of 40
DES key-bits. Because CDMF is not as strong as DES,
it is called a masking algorithm rather than an
encryption algorithm. Implementations of CDMF, when
used for data confidentiality, are generally exportable
from the USA and Canada.

Common Cryptographic Architecture: Cryptographic
Application Programming Interface. Defines a set of
cryptographic functions, external interfaces, and a set of
key management rules that provide a consistent,
end-to-end cryptographic architecture across different
IBM platforms.

compatibility mode. An ICSF method of operation
during which a CUSP or PCF application program can
run on ICSF without recompiling it. In this mode, ICSF
cannot run simultaneously with CUSP or PCF.

complementary keys. A pair of keys that have the
same clear key value, are different but complementary
types, and usually exist on different systems.

console. A part of a computer used for communication
between the operator or maintenance engineer and the
computer. (A)

control-area split. In systems with VSAM, the
movement of the contents of some of the control
intervals in a control area to a newly created control
area in order to facilitate insertion or lengthening of a
data record when there are no remaining free control
intervals in the original control area. (D)

control block. (1) A storage area used by a computer
program to hold control information. (I) Synonymous
with control area. (2) The circuitry that performs the
control functions such as decoding microinstructions
and generating the internal control signals that perform
the operations requested. (A)

control interval. A fixed-length area of direct-access
storage in which VSAM stores records and creates
distributed free space. Also, in a key-sequenced data
set or file, the set of records pointed to by an entry in
the sequence-set index record. The control interval is
the unit of information that VSAM transmits to or from
direct access storage. A control interval always
comprises an integral number of physical records. (D)

control interval split. In systems with VSAM, the
movement of some of the stored records in a control
interval to a free control interval to facilitate insertion or
lengthening of a record that does not fit in the original
control interval. (D)

control statement input data set. A key generator
utility program data set containing control statements
that a particular key generator utility program job will
process.

control statement output data set. A key generator
utility program data set containing control statements to
create the complements of keys created by the key
generator utility program.

control vector. In ICSF, a mask that is exclusive
ORed with a master key or a transport key before ICSF
uses that key to encrypt another key. Control vectors
ensure that keys used on the system and keys

914 z/OS V1R13 ICSF Application Programmer's Guide

distributed to other systems are used for only the
cryptographic functions for which they were intended.

CPACF. CP Assist for Cryptographic Functions

CP Assist for Cryptographic Functions.
Implemented on all z890, z990, z9 EC, z9 BC, z10 EC
and z10 BC processors to provide SHA-1 secure
hashing.

cross memory mode. Synchronous communication
between programs in different address spaces that
permits a program residing in one address space to
access the same or other address spaces. This
synchronous transfer of control is accomplished by a
calling linkage and a return linkage.

CRT. Chinese Remainder Theorem.

Crypto Express2 Coprocessor. An asynchronous
cryptographic coprocessor available on the z890, z990,
z9 EC, z9 BC, z10 EC and z10 BC.

Crypto Express3 Coprocessor. An asynchronous
cryptographic coprocessor available on z10 EC and z10
BC.

cryptographic adapter (4755 or 4758). An expansion
board that provides a comprehensive set of
cryptographic functions for the network security
processor and the workstation in the TSS family of
products.

cryptographic coprocessor. A microprocessor that
adds cryptographic processing functions to specific
z890, z990, z9 EC, z9 BC, z10 EC and z10 BC
processors. The Cryptographic Coprocessor Feature is
a tamper-resistant chip built into the processor board.

cryptographic key data set (CKDS). (1) A data set
that contains the encrypting keys used by an
installation. (D) (2) In ICSF, a VSAM data set that
contains all the cryptographic keys. Besides the
encrypted key value, an entry in the cryptographic key
data set contains information about the key.

cryptography. (1) The transformation of data to
conceal its meaning. (2) In computer security, the
principles, means, and methods for encrypting plaintext
and decrypting ciphertext. (D) (3) In ICSF, the use of
cryptography is extended to include the generation and
verification of MACs, the generation of MDCs and other
one-way hashes, the generation and verification of
PINs, and the generation and verification of digital
signatures.

CUSP (Cryptographic Unit Support Program). The
IBM cryptographic offering, program product 5740-XY6,
using the channel-attached 3848. CUSP is no longer in
service.

CUSP/PCF conversion program. A program, for use
during migration from CUSP or PCF to ICSF, that

converts a CUSP or PCF cryptographic key data set
into a ICSF cryptographic key data set.

Customer Information Control System (CICS). An
IBM licensed program that enables transactions entered
at remote terminals to be processed concurrently by
user written application programs. It includes facilities
for building, using, and maintaining databases.

CVC. Card verification code used by MasterCard.

CVV. Card verification value used by VISA.

D
data encryption algorithm (DEA). In computer
security, a 64-bit block cipher that uses a 64-bit key, of
which 56 bits are used to control the cryptographic
process and 8 bits are used for parity checking to
ensure that the key is transmitted properly. (D)

data encryption standard (DES). In computer
security, the National Institute of Standards and
Technology (NIST) Data Encryption Standard, adopted
by the U.S. government as Federal Information
Processing Standard (FIPS) Publication 46, which
allows only hardware implementations of the data
encryption algorithm. (D)

data key or data-encrypting key. (1) A key used to
encipher, decipher, or authenticate data. (D) (2) In ICSF,
a 64-bit encryption key used to protect data privacy
using the DES algorithm or the CDMF algorithm. AES
data keys are now supported by ICSF.

data set. The major unit of data storage and retrieval,
consisting of a collection of data in one of several
prescribed arrangements and described by control
information to which the system has access. (D)

data-translation key. A 64-bit key that protects data
transmitted through intermediate systems when the
originator and receiver do not share the same key.

DEA. Data encryption algorithm.

decipher. (1) To convert enciphered data in order to
restore the original data. (T) (2) In computer security, to
convert ciphertext into plaintext by means of a cipher
system. (3) To convert enciphered data into clear data.
Contrast with encipher. Synonymous with decrypt. (D)

decode. (1) To convert data by reversing the effect of
some previous encoding. (I) (A) (2) In ICSF, to decipher
data by use of a clear key.

decrypt. See decipher.

DES. Data Encryption Standard.

Glossary 915

diagnostics data set. A key generator utility program
data set containing a copy of each input control
statement followed by a diagnostic message generated
for each control statement.

digital signature. In public key cryptography,
information created by using a private key and verified
by using a public key. A digital signature provides data
integrity and source nonrepudiation.

Digital Signature Algorithm (DSA). A public key
algorithm for digital signature generation and verification
used with the Digital Signature Standard.

Digital Signature Standard (DSS). A standard
describing the use of algorithms for digital signature
purposes. One of the algorithms specified is DSA
(Digital Signature Algorithm).

domain. (1) That part of a network in which the data
processing resources are under common control. (T) (2)
In ICSF, an index into a set of master key registers.

double-length key. A key that is 128 bits long. A key
can be either double- or single-length. A single-length
key is 64 bits long.

DSA. Digital Signature Algorithm.

DSS. Digital Signature Standard.

E
ECB. Electronic codebook.

ECI. Eurochèque International S.C., a financial
institution consortium that has defined three PIN block
formats.

EID. Environment Identification.

electronic codebook (ECB) operation. (1) A mode of
operation used with block cipher cryptographic
algorithms in which plaintext or ciphertext is placed in
the input to the algorithm and the result is contained in
the output of the algorithm. (D) (2) A mode of encryption
using the data encryption algorithm, in which each block
of data is enciphered or deciphered without an initial
chaining vector. It is used for key management functions
and the encode and decode callable services.

electronic funds transfer system (EFTS). A
computerized payment and withdrawal system used to
transfer funds from one account to another and to
obtain related financial data. (D)

encipher. (1) To scramble data or to convert data to a
secret code that masks the meaning of the data to any
unauthorized recipient. Synonymous with encrypt. (2)
Contrast with decipher. (D)

enciphered data. Data whose meaning is concealed
from unauthorized users or observers. (D)

encode. (1) To convert data by the use of a code in
such a manner that reconversion to the original form is
possible. (T) (2) In computer security, to convert
plaintext into an unintelligible form by means of a code
system. (D) (3) In ICSF, to encipher data by use of a
clear key.

encrypt. See encipher.

exit. (1) To execute an instruction within a portion of a
computer program in order to terminate the execution of
that portion. Such portions of computer programs
include loops, subroutines, modules, and so on. (T) (2)
In ICSF, a user-written routine that receives control from
the system during a certain point in processing—for
example, after an operator issues the START command.

exportable form. A condition a key is in when
enciphered under an exporter key-encrypting key. In this
form, a key can be sent outside the system to another
system. A key in exportable form cannot be used in a
cryptographic function.

exporter key-encrypting key. A 128-bit key used to
protect keys sent to another system. A type of transport
key.

F
file. A named set of records stored or processed as a
unit. (T)

G
GBP. German Bank Pool.

German Bank Pool (GBP). A German financial
institution consortium that defines specific methods of
PIN calculation.

H
hashing. An operation that uses a one-way
(irreversible) function on data, usually to reduce the
length of the data and to provide a verifiable
authentication value (checksum) for the hashed data.

header record. A record containing common,
constant, or identifying information for a group of
records that follows. (D)

I
ICSF. Integrated Cryptographic Service Facility.

importable form. A condition a key is in when it is
enciphered under an importer key-encrypting key. A key
is received from another system in this form. A key in
importable form cannot be used in a cryptographic
function.

916 z/OS V1R13 ICSF Application Programmer's Guide

importer key-encrypting key. A 128-bit key used to
protect keys received from another system. A type of
transport key.

initial chaining vector (ICV). A 64-bit random or
pseudo-random value used in the cipher block chaining
mode of encryption with the data encryption algorithm.

initial program load (IPL). (1) The initialization
procedure that causes an operating system to
commence operation. (2) The process by which a
configuration image is loaded into storage at the
beginning of a work day or after a system malfunction.
(3) The process of loading system programs and
preparing a system to run jobs. (D)

input PIN-encrypting key. A 128-bit key used to
protect a PIN block sent to another system or to
translate a PIN block from one format to another.

installation exit. See exit.

Integrated Cryptographic Service Facility (ICSF). A
licensed program that runs under MVS/System Product
3.1.3, or higher, or OS/390 Release 1, or higher, or
z/OS, and provides access to the hardware
cryptographic feature for programming applications. The
combination of the hardware cryptographic feature and
ICSF provides secure high-speed cryptographic
services.

International Organization for Standardization. An
organization of national standards bodies from many
countries, established to promote the development of
standards to facilitate the international exchange of
goods and services and to develop cooperation in
intellectual, scientific, technological, and economic
activity. ISO has defined certain standards relating to
cryptography and has defined two PIN block formats.

ISO. International Organization for Standardization.

J
job control language (JCL). A control language used
to identify a job to an operating system and to describe
the job's requirements. (D)

K
key-encrypting key (KEK). (1) In computer security, a
key used for encryption and decryption of other keys.
(D) (2) In ICSF, a master key or transport key.

key generator utility program (KGUP). A program
that processes control statements for generating and
maintaining keys in the cryptographic key data set.

key output data set. A key generator utility program
data set containing information about each key that the
key generator utility program generates except an
importer key for file encryption.

key part. A 32-digit hexadecimal value that you enter
for ICSF to combine with other values to create a
master key or clear key.

key part register. A register in the key storage unit
that stores a key part while you enter the key part.

key store policy. Ensures that only authorized users
and jobs can access secure key tokens that are stored
in one of the ICSF key stores - the CKDS or the PKDS.

key store policy controls. Resources that are defined
in the XFACILIT class. A control can verify the caller has
authority to use a secure token and identify the action to
take when the secure token is not stored in the CKDS
or PKDS.

L
linkage. The coding that passes control and
parameters between two routines.

load module. All or part of a computer program in a
form suitable for loading into main storage for execution.
A load module is usually the output of a linkage editor.
(T)

LPAR mode. The central processor mode that enables
the operator to allocate the hardware resources among
several logical partitions.

M
MAC generation key. A 64-bit or 128-bit key used by
a message originator to generate a message
authentication code sent with the message to the
message receiver.

MAC verification key. A 64-bit or 128-bit key used by
a message receiver to verify a message authentication
code received with a message.

magnetic tape. A tape with a magnetizable layer on
which data can be stored. (T)

master key. (1) In computer security, the top-level key
in a hierarchy of key-encrypting keys. (2) ICSF uses
master keys to encrypt operational keys. Master keys
are known only to the cryptographic coprocessors and
are maintained in tamper proof cryptographic
coprocessors. Examples of cryptographic coprocessors
are CCF, PCICC, PCIXCC, CEX2C, and CEX3C. Some
of the master keys that ICSF supports are a 128-bit
DES master key, a 192-bit signature master key, and
the 192-bit key management master key, a 192-bit
symmetric master key (that is, DES), a 192-bit
asymmetric master key, and a 256-bit AES master key.

master key concept. The idea of using a single
cryptographic key, the master key, to encrypt all other
keys on the system.

Glossary 917

master key register. A register in the cryptographic
coprocessors that stores the master key that is active
on the system.

master key variant. A key derived from the master
key by use of a control vector. It is used to force
separation by type of keys on the system.

MD4. Message Digest 4. A hash algorithm.

MD5. Message Digest 5. A hash algorithm.

message authentication code (MAC). (1) The
cryptographic result of block cipher operations on text or
data using the cipher block chain (CBC) mode of
operation. (D) (2) In ICSF, a MAC is used to
authenticate the source of the message, and verify that
the message was not altered during transmission or
storage.

modification detection code (MDC). (1) A 128-bit
value that interrelates all bits of a data stream so that
the modification of any bit in the data stream results in a
new MDC. (2) In ICSF, an MDC is used to verify that a
message or stored data has not been altered.

multiple encipherment. The method of encrypting a
key under a double-length key-encrypting key.

N
new master key register. A register in the key storage
unit that stores a master key before you make it active
on the system.

NIST. U.S. National Institute of Science and
Technology.

NOCV processing. Process by which the key
generator utility program or an application program
encrypts a key under a transport key itself rather than a
transport key variant.

noncompatibility mode. An ICSF method of operation
during which CUSP or PCF can run independently and
simultaneously on the same z/OS, OS/390 or MVS
system. You cannot run a CUSP or PCF application
program on ICSF in this mode.

nonrepudiation. A method of ensuring that a message
was sent by the appropriate individual.

notarization. The ANSI X9.17 process involving the
coupling of an ANSI key-encrypting key (AKEK) with
ASCII character strings containing origin and destination
identifiers and then exclusive ORing (or offsetting) the
result with a binary counter.

O
OAEP. Optimal asymmetric encryption padding.

offset. The process of exclusively ORing a counter to
a key.

old master key register. A register in the key storage
unit that stores a master key that you replaced with a
new master key.

operational form. The condition of a key when it is
encrypted under the master key so that it is active on
the system.

output PIN-encrypting key. A 128-bit key used to
protect a PIN block received from another system or to
translate a PIN block from one format to another.

P
PAN. Personal Account Number.

parameter. Data passed between programs or
procedures. (D)

parmlib. A system parameter library, either
SYS1.PARMLIB or an installation-supplied library.

partial notarization. The ANSI X9.17 standard does
not use the term partial notarization. IBM has divided
the notarization process into two steps and defined the
term partial notarization as a process during which only
the first step of the two-step ANSI X9.17 notarization
process is performed. This step involves the coupling of
an ANSI key-encrypting key (AKEK) with ASCII
character strings containing origin and destination
identifiers.

partitioned data set (PDS). A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data. (D)

PCI Cryptographic Coprocessor. The 4758 model 2
standard PCI-bus card supported on the field upgraded
IBM S/390 Parallel Enterprise Server - Generation 5,
the IBM S/390 Parallel Enterprise Server - Generation 6
and the IBM Eserver zSeries.

PCICA. PCI Cryptographic Accelerator.

PCICC. PCI Cryptographic Coprocessor.

PCI X Cryptographic Coprocessor. An asynchronous
cryptographic coprocessor available on the IBM
Eserver zSeries 990 and IBM Eserver zSeries 800.

PCIXCC. PCI X Cryptographic Coprocessor.

Personal Account Number (PAN). A Personal
Account Number identifies an individual and relates that
individual to an account at a financial institution. It
consists of an issuer identification number, customer
account number, and one check digit.

918 z/OS V1R13 ICSF Application Programmer's Guide

personal identification number (PIN). The 4- to
12-digit number entered at an automatic teller machine
to identify and validate the requester of an automatic
teller machine service. Personal identification numbers
are always enciphered at the device where they are
entered, and are manipulated in a secure fashion.

Personal Security card. An ISO-standard “smart
card” with a microprocessor that enables it to perform a
variety of functions such as identifying and verifying
users, and determining which functions each user can
perform.

PIN block. A 64-bit block of data in a certain PIN block
format. A PIN block contains both a PIN and other data.

PIN generation key. A 128-bit key used to generate
PINs or PIN offsets algorithmically.

PIN key. A 128-bit key used in cryptographic functions
to generate, transform, and verify the personal
identification numbers.

PIN offset. For 3624, the difference between a
customer-selected PIN and an institution-assigned PIN.
For German Bank Pool, the difference between an
institution PIN (generated with an institution PIN key)
and a pool PIN (generated with a pool PIN key).

PIN verification key. A 128-bit key used to verify PINs
algorithmically.

PKA. Public Key Algorithm.

PKCS. Public Key Cryptographic Standards (RSA Data
Security, Inc.)

PKDS. Public key data set (PKA cryptographic key
data set).

plaintext. Data in normal, readable form.

primary space allocation. An area of direct access
storage space initially allocated to a particular data set
or file when the data set or file is defined. See also
secondary space allocation. (D)

private key. In computer security, a key that is known
only to the owner and used with a public key algorithm
to decrypt data or generate digital signatures. The data
is encrypted and the digital signature is verified using
the related public key.

processor complex. A configuration that consists of
all the machines required for operation.

Processor Resource/Systems Manager. Enables
logical partitioning of the processor complex, may
provide additional byte-multiplexer channel capability,
and supports the VM/XA System Product enhancement
for Multiple Preferred Guests.

Programmed Cryptographic Facility (PCF). (1) An
IBM licensed program that provides facilities for

enciphering and deciphering data and for creating,
maintaining, and managing cryptographic keys. (D) (2)
The IBM cryptographic offering, program product
5740-XY5, using software only for encryption and
decryption. This product is no longer in service; ICSF is
the replacement product.

PR/SM. Processor Resource/Systems Manager.

public key. In computer security, a key made available
to anyone who wants to encrypt information using the
public key algorithm or verify a digital signature
generated with the related private key. The encrypted
data can be decrypted only by use of the related private
key.

public key algorithm (PKA). In computer security, an
asymmetric cryptographic process in which a public key
is used for encryption and digital signature verification
and a private key is used for decryption and digital
signature generation.

public key cryptography. In computer security,
cryptography in which a public key is used for
encryption and a private key is used for decryption.
Synonymous with asymmetric cryptography.

R
RACE Integrity Primitives Evaluatiuon Message
Digest. A hash algorithm.

RDO. Resource definition online.

record chaining. When there are multiple cipher
requests and the output chaining vector (OCV) from the
previous encipher request is used as the input chaining
vector (ICV) for the next encipher request.

Resource Access Control Facility (RACF). An IBM
licensed program that provides for access control by
identifying and verifying the users to the system,
authorizing access to protected resources, logging the
detected unauthorized attempts to enter the system,
and logging the detected accesses to protected
resources. (D)

retained key. A private key that is generated and
retained within the secure boundary of the PCI
Cryptographic Coprocessor.

return code. (1) A code used to influence the
execution of succeeding instructions. (A) (2) A value
returned to a program to indicate the results of an
operation requested by that program. (D)

Rivest-Shamir-Adleman (RSA) algorithm. A process
for public key cryptography that was developed by R.
Rivest, A. Shamir, and L. Adleman.

RMF. Resource Manager Interface.

RMI. Resource Measurement Facility.

Glossary 919

RSA. Rivest-Shamir-Adleman.

S
SAF. Security Authorization Facility.

save area. Area of main storage in which contents of
registers are saved. (A)

secondary space allocation. In systems with VSAM,
area of direct access storage space allocated after
primary space originally allocated is exhausted. See
also primary space allocation. (D)

Secure Electronic Transaction. A standard created
by Visa International and MasterCard for safe-guarding
payment card purchases made over open networks.

secure key. A key that is encrypted under a master
key. When ICSF uses a secure key, it is passed to a
cryptographic coprocessor where the coprocessor
decrypts the key and performs the function. The secure
key never appears in the clear outside of the
cryptographic coprocessor.

Secure Sockets Layer. A security protocol that
provides communications privacy over the Internet by
allowing client/server applications to communicate in a
way that is designed to prevent eavesdropping,
tampering, or message forgery.

sequential data set. A data set whose records are
organized on the basis of their successive physical
positions, such as on magnetic tape. (D)

SET. Secure Electronic Transaction.

SHA (Secure Hash Algorithm, FIPS 180) . (Secure
Hash Algorithm, FIPS 180) The SHA (Secure Hash
Algorithm) family is a set of related cryptographic hash
functions designed by the National Security Agency
(NSA) and published by the National Institute of
Standards and Technology (NIST). The first member of
the family, published in 1993, is officially called SHA.
However, today, it is often unofficially called SHA-0 to
avoid confusion with its successors. Two years later,
SHA-1, the first successor to SHA, was published. Four
more variants, have since been published with
increased output ranges and a slightly different design:
SHA-224, SHA-256, SHA-384, and SHA-512 (all are
sometimes referred to as SHA-2).

SHA-1 (Secure Hash Algorithm 1, FIPS 180). A hash
algorithm required for use with the Digital Signature
Standard.

SHA-2 (Secure Hash Algorithm 2, FIPS 180). Four
additional variants to the SHA family, with increased
output ranges and a slightly different design: SHA-224,
SHA-256, SHA-384, and SHA-512 (all are sometimes
referred to as SHA-2).

SHA-224. One of the SHA-2 algorithms.

SHA-256 . One of the SHA-2 algorithms.

SHA-384. One of the SHA-2 algorithms.

SHA-512 . One of the SHA-2 algorithms.

single-length key. A key that is 64 bits long. A key
can be single- or double-length. A double-length key is
128 bits long.

smart card. A plastic card that has a microchip
capable of storing data or process information.

special secure mode. An alternative form of security
that allows you to enter clear keys with the key
generator utility program or generate clear PINs.

SSL. Secure Sockets Layer.

supervisor state. A state during which a processing
unit can execute input/output and other privileged
instructions. (D)

System Authorization Facility (SAF). An interface to
a system security system like the Resource Access
Control Facility (RACF).

system key. A key that ICSF creates and uses for
internal processing.

System Management Facility (SMF). A base
component of z/OS that provides the means for
gathering and recording information that can be used to
evaluate system usage. (D)

T
TDEA. Triple Data Encryption Algorithm.

TKE. Trusted key entry.

Transaction Security System. An IBM product
offering including both hardware and supporting
software that provides access control and basic
cryptographic key-management functions in a network
environment. In the workstation environment, this
includes the 4755 Cryptographic Adapter, the Personal
Security Card, the 4754 Security Interface Unit, the
Signature Verification feature, the Workstation Security
Services Program, and the AIX Security Services
Program/6000. In the host environment, this includes
the 4753 Network Security Processor and the 4753
Network Security Processor MVS Support Program.

transport key. A 128-bit key used to protect keys
distributed from one system to another. A transport key
can either be an exporter key-encrypting key, an
importer key-encrypting key, or an ANSI key-encrypting
key.

transport key variant. A key derived from a transport
key by use of a control vector. It is used to force
separation by type for keys sent between systems.

920 z/OS V1R13 ICSF Application Programmer's Guide

TRUE. Task-related User Exit (CICS). The CICS-ICSF
Attachment Facility provides a CSFATRUE and
CSFATREN routine.

U
UAT. UDX Authority Table.

UDF. User-defined function.

UDK. User-derived key.

UDP. User Developed Program.

UDX. User Defined Extension.

V
verification pattern. An 8-byte pattern that ICSF
calculates from the key parts you enter when you enter
a master key or clear key. You can use the verification
pattern to verify that you have entered the key parts
correctly and specified a certain type of key.

Virtual Storage Access Method (VSAM). An access
method for indexed or sequential processing of fixed
and variable-length records on direct-access devices.
The records in a VSAM data set or file can be
organized in logical sequence by means of a key field
(key sequence), in the physical sequence in which they
are written on the data set or file (entry-sequence), or
by means of relative-record number.

Virtual Telecommunications Access Method
(VTAM). An IBM licensed program that controls
communication and the flow of data in an SNA network.
It provides single-domain, multiple-domain, and
interconnected network capability. (D)

VISA. A financial institution consortium that has
defined four PIN block formats and a method for PIN
verification.

VISA PIN Verification Value (VISA PVV). An input to
the VISA PIN verification process that, in practice, works
similarly to a PIN offset.

Numerics
3621. A model of an IBM Automatic Teller Machine that
has a defined PIN block format.

3624. A model of an IBM Automatic Teller Machine that
has a defined PIN block format and methods of PIN
calculation.

4753. The Network Security processor. The IBM 4753
is a processor that uses the Data Encryption Algorithm
and the RSA algorithm to provide cryptograpic support
for systems requiring secure transaction processing
(and other cryptographic services) at the host computer.

The NSP includes a 4755 cryptographic adapter in a
workstation which is channel attached to a S/390 host
computer.

4758. The IBM PCI Cryptographic processor provides
a secure programming and hardware environment
where DES and RSA processes are performed.

Glossary 921

922 z/OS V1R13 ICSF Application Programmer's Guide

Index

Numerics
3621 PIN block format 429, 864
3624 PIN block format 429, 864
4700-PAD processing rule 335, 344
4704-EPP PIN block format 429

A
accessibility 909
accessing

callable service 9
invocation requirements 9

AES algorithm 15
affinity (IEAAFFN callable service) 10
AKEK key type 24
ALET (alternate entry point)

format 4
algorithm

3624 PIN generation 866
3624 PIN verification 869
AES 15
CDMF 15
DES 15
GBP PIN generation 867
GBP PIN verification 871
GBP-PIN 468
GBP-PINO 468
IBM-PIN 468
IBM-PINO 468
PIN offset generation 868
PIN, detailed 866
PIN, general 56
PVV generation 872
PVV verification 873
VISA PIN 872
VISA-PVV 445, 468
VISAPVV4 468

ANSI 9.9-1 algorithm 383
ANSI key-encrypting key (AKEK) 24
ANSI X3.106 processing rule 874
ANSI X9.17 EDC generate callable service (CSNAEGN)

format 633
overview 51
parameters 633
syntax 633

ANSI X9.17 key export callable service (CSNAKEX)
format 635
overview 51
parameters 635
syntax 635

ANSI X9.17 key import callable service (CSNAKIM)
format 640
overview 51
parameters 640
syntax 640

ANSI X9.17 key management 633
overview 50

ANSI X9.17 key translate callable service (CSNAKTR)
format 645
overview 51
parameters 645
syntax 645

ANSI X9.17 key-encrypting key 22
ANSI X9.17 transport key partial notarize callable

service (CSNATKN)
overview 51

ANSI X9.17 transport key partial notorize (CSNATKN)
format 650
parameters 650
syntax 650

ANSI X9.19 optional double MAC procedure 383
ANSI X9.23 processing rule 335, 344, 875
ANSI X9.8 463
ANSI X9.8 PIN block format 863
ASCII to EBCDIC conversion

table 891
asym_encrypted_key parameter

remote key export callable service 236
asym_encrypted_key_length parameter

remote key export callable service 236
authenticating messages 383

C
c-variable encrypting key identifier parameter

cryptographic variable encipher callable service 110
call

successful 11
unsuccessful 12

callable service
ANSI X9.17 EDC generate (CSNAEGN) 51, 633
ANSI X9.17 key export (CSNAKEX) 51, 635
ANSI X9.17 key import (CSNAKIM) 51, 640
ANSI X9.17 key translate (CSNAKTR) 51, 645
ANSI X9.17 transport key partial notarize

(CSNATKN) 51
ANSI X9.17 transport key partial notorize

(CSNATKN) 650
character/nibble conversion (CSNBXBC and

CSNBXCB) 593
ciphertext 66
ciphertext translate (CSNBCTT or CSNBCTT1) 328
CKDS key record create (CSNBKRC) 47, 565
CKDS key record create2 (CSNBKRC2 and

CSNEKRC2) 47
CKDS Key Record Create2 (CSNBKRC2 and

CSNEKRC2) 567
CKDS key record delete (CSNBKRD) 47, 569
CKDS key record read (CSNBKRR) 47, 571
CKDS key record read2 (CSNBKRR2 and

CSNEKRR2) 48
CKDS Key Record Read2 (CSNBKRR2 and

CSNEKRR2) 573
CKDS key record write (CSNBKRW) 48, 575

© Copyright IBM Corp. 1997, 2011 923

callable service (continued)
CKDS key record write2 (CSNBKRW2 and

CSNEKRW2) 48
CKDS Key Record Write2 (CSNBKRW2 and

CSNEKRW2) 577
clear key import (CSNBCKI) 25, 100
clear PIN encrypt (CSNBCPE) 57, 434
clear PIN generate (CSNBPGN) 57, 438
clear PIN generate alternate (CSNBCPA) 57, 442
code conversion (CSNBXAE) 61
code conversion (CSNBXBC) 61
code conversion (CSNBXCB) 61
code conversion (CSNBXEA and CSNBXAE) 595
code conversion (CSNBXEA) 61
coding examples 843

Assembler H 848
C 843
COBOL 846
PL/1 850

control vector generate (CSNBCVG) 25, 102
control vector translate callable service

(CSNBCVT) 26, 105
coordinated KDS administration (CSFCRC and

CSFCRC6) 580
coordinated KDS administration callable services

(CSFCRC and CSFCRC6) 48
cryptographic variable encipher (CSNBCVE) 26,

109
CSFxxxx format 4
CSNBxxxx format 4
CVV Key Combine (CSNBCKC and

CSNECKC) 448
data key export (CSNBDKX) 26, 111
data key import (CSNBDKM) 26, 114
decipher (CSNBDEC or CSNBDEC1) 331
decode (CSNBDCO) 338
definition 3, 15
digital signature generate (CSNDDSG) 81, 511
digital signature verify (CSNDDSV) 82, 518
diversified key generate (CSNBDKG) 26, 117
ECC Diffie-Hellman (CSNDEDH and

CSNFEDH) 123
encipher (CSNBENC or CSNBENC1) 340
encode (CSNBECO) 348
encrypted PIN generate (CSNBEPG) 58, 453
encrypted PIN translate (CSNBPTR) 58, 458
encrypted PIN verification (CSNBPVR) 58
encrypted PIN verify (CSNBPVR) 466
format 625, 629
get attribute value (CSFPGAV) 668
HMAC Generate (CSNBHMG, CSNEHMG,

CSNBHMG1 and CSNEHMG1) 385
HMAC generation (CSNBHMG or CSNBHMG1 and

CSNEHMG or CSNEHMG1) 54
HMAC verification (CSNBHMV or CSNBHMV1 and

CSNEHMV or CSNEHMV1) 54
HMAC Verify (CSNBHMV, CSNEHMV, CSNBHMV1

and CSNEHMV1) 389
ICSF Query Algorithm (CSFIQA) 61, 597
ICSF Query Service (CSFIQF) 61, 602
IEAAFFN (affinity) 10

callable service (continued)
installation-defined 15
invoking a 3
key export (CSNBKEX) 26, 130
key generate (CSNBKGN) 26, 63, 135
Key Generate (CSNBKGN) 29
key generate2 (CSNBKGN2 and CSNEKGN2) 29,

31
Key Generate2 (CSNBKGN2 and CSNEKGN2) 147
key import (CSNBKIM) 27, 155
key part import (CSNBKPI) 27, 160
key part import2 (CSNBKPI2 and CSNEKPI2) 29,

30, 31
Key Part Import2 (CSNBKPI2 and CSNEKPI2) 165
key test (CSNBKYT) 169
key test (CSNBKYT and CSNBKYTX) 27
key test extended (CSNBKYTX) 178
Key Test2 (CSNBKYT2 and CSNEKYT2) 173
key token build (CSNBKTB) 27, 181
Key Token Build2 (CSNBKTB2 and

CSNEKTB2) 191
key translate (CSNBKTR) 27, 197
Key Translate2 (CSNBKTR2 and CSNEKTR2) 199
link edit step 12
MAC generate (CSNBMGN or CSNBMGN1) 393
MAC generation (CSNBMGN or CSNBMGN1) 54
MAC verification (CSNBMVR or CSNBMVR1) 54
MAC verify (CSNBMVR or CSNBMVR1) 398
MDC generate (CSNBMDG or CSNBMDG1) 404
MDC generation (CSNBMDG or CSNBMDG1) 56
multiple clear key import (CSNBCKM) 27, 205
multiple secure key import (CSNBSKM) 27, 209
one-way hash generate (CSNBOWH and

CSNBOWH1) 55
one-way hash generate (CSNBOWH, CSNEOWH

and CSNBOWH1) 408
overview 3
PCI interface (CSFPCI) 625
PIN change/unblock (CSNBPCU) 58
PIN Change/Unblock (CSNBPCU) 473
PKA decrypt (CSNDPKD) 48
PKA encrypt (CSNDPKE) 48
PKA key generate (CSNDPKG) 82, 525
PKA key import (CSNDPKI) 82, 531
PKA key token build (CSNDPKB) 83, 535
PKA key token change (CSNDKTC and

CSNFKTC) 83
PKA key token change (CSNDKTC) 548
PKA keyTranslate (CSNDPKT) 551
PKA public key extract (CSNDPKX) 83, 555
PKCS #11 Derive key (CSFPDVK) 663
PKCS #11 Derive multiple keys (CSFPDMK) 655
PKCS #11 Generate HMAC (CSFPHMG) 675
PKCS #11 Generate secret key (CSFPGSK) 673
PKCS #11 One-way hash, sign, or verify

(CSFPOWH) 682
PKCS #11 Private key sign (CSFPPKS) 687
PKCS #11 Pseudo-random function

(CSFPPRF) 692
PKCS #11 Public key verify (CSFPPKV) 689
PKCS #11 Secret key decrypt (CSFPSKD) 697

924 z/OS V1R13 ICSF Application Programmer's Guide

callable service (continued)
PKCS #11 Secret key encrypt (CSFPSKE) 701
PKCS #11 Unwrap key (CSFPUWK) 717
PKCS #11 Verify HMAC (CSFPHMV) 679
PKCS #11 wrap key (CSFPWPK) 720
PKDS key record create (CSNDKRC) 583
PKDS key record delete (CSNDKRD) 585
PKDS key record read (CSNDKRR) 587
PKDS key record write (CSNDKRW) 589
PKSC interface (CSFPKSC) 629
PPKCS #11 Generate key pair (CSFPGKP) 671
prohibit export (CSNBPEX) 27, 225
prohibit export extended (CSNBPEXX) 28, 226
random number generate (CSNBRNG) 28, 228
random number generate (CSNBRNGL) 228
remote key export (CSNDRKX) 28, 232
restrict key attribute (CSNBRKA and

CSNERKA) 28, 30, 31
Restrict Key Attribute (CSNBRKA and

CSNERKA) 239
retained key delete (CSNDRKD) 558
retained key list (CSNDRKL) 560
secure key import (CSNBSKI) 28, 243
Secure Key Import2 (CSNBSKI2 and

CSNESKI2) 247
secure messaging for keys (CSNBSKY) 479
secure messaging for PINs (CSNBSPN) 482
security considerations 9
sequences 62
set attribute value (CSFPSAV) 695
SET block compose (CSNDSBC) 85, 487
SET block decompose (CSNDSBD) 85, 492
symmetric algorithm decipher (CSNBSAD,

CSNBSAD1, CSNESAD and CSNESAD1) 350
symmetric key decipher (CSNBSYD and

CSNBSYD1) 362
symmetric key encipher (CSNBSAE, CSNBSAE1,

CSNESAE, and CSNESAE1) 356
symmetric key encipher (CSNBSYE, CSNBSYE1,

CSNESYE and CSNESYE1) 371
symmetric key export (CSNDSYX) 28, 251
symmetric key generate (CSNDSYG) 28, 258
symmetric key import (CSNDSYI) 29, 266
Symmetric Key Import2 (CSNDSYI2 and

CSNFSYI2) 272
Symmetric MAC generate (CSNBSMG, CSNBSMG1,

CSNESMG, and CSNESMG1) 413
Symmetric MAC Generate Callable Service

(CSNBSMG, CSNBSMG1, CSNESMG and
CSNESMG1) 55

Symmetric MAC verify (CSNBSMV, CSNBSMV1,
CSNESMV, and CSNESMV1) 417

Symmetric MAC Verify Callable Service (CSNBSMV,
CSNBSMV1, CSNESMV and CSNESMV1) 55

syntax 3
token record create (CSFPTRC) 707
token record delete (CSFPTRD) 711
token record list (CSFPTRL) 713
TR-31 export (CSNBT31X and CSNET31X) 283
TR-31 import (CSNBT31I and CSNET31I) 298

callable service (continued)
TR-31 Optional Data Build (CSNBT31O and

CSNET31O) 311
TR-31 Optional Data Read (CSNBT31R and

CSNET31R) 314
TR-31 Parse (CSNBT31P and CSNET31P) 318
transaction validation 59
Transaction Validation (CSNBTRV) 498
transform CDMF key (CSNBTCK) 29, 277
translating ciphertext 53
trusted block create (CSNDTBC) 29, 279
User derived key (CSFUDK) 321
using key types and key forms 11
VISA CVV service generate (CSNBCSG) 502
VISA CVV service verify (CSNBCSV) 506
with ALETs (alternate entry point) 4
X9.9 data editing (CSNB9ED) 61, 621

CBC processing rule 335, 344
CDMF

overview 49
CDMF algorithm 15
CDMF key, transforming

algorithm 884
callable service 277

certificate length parameter
remote key export callable service 233

certificate parameter
remote key export callable service 234

certificate_parms parameter
remote key export callable service 234

certificate_parms_length parameter
remote key export callable service 234

chaining vector length parameter
one-way hash generate callable service 411
Symmetric MAC generate callable service 416
Symmetric MAC verify callable service 420

chaining vector parameter
decipher callable service 336
encipher callable service 346
MAC generate callable service 397
MAC verify callable service 402
MDC generate callable service 407
one-way hash generate callable service 411
symmetric MAC generate callable service 416
Symmetric MAC verify callable service 420

changing control vectors 837
character/nibble conversion callable service (CSNBXBC

and CSNBXCB)
format 593
parameters 593
syntax 593

character/nibble conversion callable services
(CSNBXBC and CSNBXCB)

overview 61
choosing between

CSNBCTT and CSNBCTT1 328
CSNBDEC and CSNBDEC1 333
CSNBENC and CSNBENC1 342
CSNBMDG and CSNBMDG1 404
CSNBMGN and CSNBMGN1 394
CSNBMVR and CSNBMVR1 399

Index 925

choosing between (continued)
CSNBSYD and CSNBSYD1 364, 413
CSNBSYE and CSNBSYE1 373
CSNESAE and CSNESAE1 356

CIPHER
keys 20

cipher block chaining (CBC) 325
mode 326

cipher feedback (CFB)
mode 326

cipher text id parameter
decipher callable service 355
encipher callable service 361

ciphertext
cryptographic variable encipher callable service 110
deciphering 53, 325
encoding 348
field 337, 347, 371, 380
translating 53, 328

ciphertext id parameter
decipher callable service 336, 370
encipher callable service 346, 379

ciphertext parameter
decipher callable service 334
decode callable service 339
encipher callable service 346
encode callable service 349

ciphertext translate callable service (CSNBCTT or
CSNBCTT1)

format 329
parameters 329
syntax 329
using 66

CKDS (cryptographic key data set)
record format 783, 788, 789, 792

CKDS key record create callable service (CSNBKRC)
format 565
overview 47
parameters 565
syntax 565

CKDS key record delete callable service (CSNBKRD)
format 569
parameters 569
syntax 569

CKDS key record read callable service (CSNBKRR)
format 571
overview 47
parameters 571
syntax 571

CKDS key record write callable service (CSNBKRW)
format 575
overview 48
parameters 575
syntax 575

clear key
deciphering data with 338
definition 24
enciphering 243
enciphering data with 348
encoding and decoding data with 53
protecting 325

clear key import callable service (CSNBCKI)
format 100
overview 25
parameters 100
syntax 100

clear key length parameter
multiple clear key import callable service 207, 212

clear key parameter
clear key import callable service 101
decode callable service 339
encode callable service 349
multiple clear key import callable service 207, 212
secure key import callable service 244

clear PIN encrypt callable service (CSNBCPE)
format 435
syntax 435

clear PIN encrypt service (CSNBCPE)
parameters 435

clear PIN generate alternate callable service
(CSNBCPA)

format 442
overview 57
parameters 442
syntax 442

clear PIN generate callable service (CSNBPGN)
format 438
parameters 438
syntax 438

clear PIN generate key identifier parameter 444
clear PIN generate callable service 439

clear text id parameter
decipher callable service 337, 355, 370
encipher callable service 346, 361, 379

clear text parameter
decipher callable service 336
decode callable service 339
encipher callable service 343
encode callable service 349

code conversion callable service (CSNBXEA and
CSNBXAE)

format 595
parameters 595
syntax 595

code conversion callable services (CSNBXEA and
CSNBXAE)

overview 61
code table parameter

character/nibble conversion callable service 594
code conversion callable service 596

coding examples 843
Assembler H 848
C 843
COBOL 846
PL/1 850

Commercial Data Masking Facility (CDMF) 325
control information

for digital signature generate 513
for digital signature verify 520
for diversified key generate 118
for key test 171
for key test extended 179

926 z/OS V1R13 ICSF Application Programmer's Guide

control information (continued)
for MAC generate 396
for MAC verify 401, 419
for MDC generate 406
for multiple clear key import 207
for multiple secure key import 211, 284, 299, 315,

450
for one-way hash generate 410
for PKA key token build 537
for symmetric algorithm encipher 3, 352, 358
for symmetric key encipher 366, 375
for symmetric key generate 260
for symmetric key import 267, 274
for symmetric MAC generate 415
for user derived key 323
random number generate callable service 230

control vector
description 827
value 827

control vector generate (CSNBCVG)
parameters 102

control vector generate callable service (CSNBCVG)
format 102
overview 25
syntax 102

control vector parameter
control vector generate callable service 105

control vector translate callable service (CSNBCVT)
format 106
overview 26
parameters 106, 386, 390, 567, 573, 578
syntax 106

control vector, description of 16, 19
control vectors, changing 837
coordinated KDS administration callable service

(CSFCRC and CSFCRC6) 580
coordinated KDS administration callable services

(CSFCRC and CSFCRC6)
overview 48

cryptographic feature
description xxxi

cryptographic key data set (CKDS)
held keys 22
storing keys 25, 46, 99

cryptographic variable encipher (CSNBCVE)
parameters 109

cryptographic variable encipher callable service
(CSNBCVE)

format 109
overview 26
syntax 109

CSFCRC callable service 580
CSFCRC6 callable service 580
CSFIQA callable service 597
CSFIQF callable service 602
CSFIQF6 602
CSFPCI callable service 625
CSFPDMK callable service 655
CSFPDVK callable service 663
CSFPGAV callable service 668
CSFPGKP callable service 671

CSFPGSK callable service 673
CSFPHMG callable service 675
CSFPHMV callable service 679
CSFPKSC callable service 629
CSFPOWH callable service 682
CSFPPKS callable service 687
CSFPPKV callable service 689
CSFPPRF callable service 692
CSFPSAV callable service 695
CSFPSKD callable service 697
CSFPSKE callable service 701
CSFPTRC callable service 707
CSFPTRD callable service 711
CSFPTRL callable service 713
CSFPUWK callable service 717
CSFPWPK callable service 720
CSFUDK callable service 321
CSFxxxx format 4
CSNAEGN callable service 633
CSNAKEX callable service 635, 640
CSNAKTR callable service 645
CSNATKN callable service 650
CSNB9ED callable service 621
CSNBCKC and CSNECKC callable services 448
CSNBCKI callable service 100
CSNBCKM callable service 205
CSNBCPA callable service 442
CSNBCPE callable service 434
CSNBCSG callable service 502
CSNBCSV callable service 506
CSNBCTT or CSNBCTT1 callable service 328
CSNBCVE callable service 109
CSNBCVG callable service 102
CSNBCVT callable service 105
CSNBDCO callable service 338
CSNBDEC or CSNBDEC1 callable service 331
CSNBDKG callable service 117
CSNBDKM callable service 114
CSNBDKX callable service 111
CSNBECO callable service 348
CSNBENC or CSNBENC1 callable service 340
CSNBEPG callable service 453
CSNBHMG, CSNEHMG, CSNBHMG1 and CSNEHMG1

callable services 385
CSNBHMV, CSNEHMV, CSNBHMV1 and CSNEHMV1

callable services 389
CSNBKEX callable service 130
CSNBKGN callable service 135
CSNBKGN2 and CSNEKGN2 callable services 147
CSNBKIM callable service 155
CSNBKPI callable service 160
CSNBKPI2 and CSNEKPI2 callable services 165
CSNBKRC callable service 565
CSNBKRC2 and CSNEKRC2 callable services 567
CSNBKRD callable service 569
CSNBKRR callable service 571
CSNBKRR2 and CSNEKRR2 callable services 573
CSNBKRW callable service 575
CSNBKRW2 and CSNEKRW2 callable services 577
CSNBKTB callable service 181
CSNBKTB2 and CSNEKTB2 callable services 191

Index 927

CSNBKTR callable service 197
CSNBKTR2 and CSNEKTR2 callable services 199
CSNBKYT callable service 169
CSNBKYT2 and CSNEKYT2 callable services 173
CSNBKYTX callable service 178
CSNBMDG or CSNBMDG1 callable service 404
CSNBMGN or CSNBMGN1 callable service 393
CSNBMVR or CSNBMVR1 callable service 398
CSNBOWH, CSNEOWH and CSNBOWH1 callable

services 408
CSNBPCU callable service 473
CSNBPEX callable service 225
CSNBPEXX callable service 226
CSNBPGN callable service 438
CSNBPTR callable service 458
CSNBPVR callable service 466
CSNBRKA and CSNERKA callable services 239
CSNBRNG callable service 228
CSNBRNGL callable service 228
CSNBSAD or CSNBSAD1 and CSNESAD or

CSNESAD1 350
CSNBSAE, CSNBSAE1, CSNESAE, and CSNESAE1

callable service 356
CSNBSKI callable service 243
CSNBSKI2 and CSNESKI2 callable services 247
CSNBSKM callable service 209
CSNBSKY callable service 479
CSNBSMG, CSNBSMG1, CSNESMG, and CSNESMG1

callable service 413
CSNBSMV, CSNBSMV1, CSNESMV, and CSNESMV1

callable service 417
CSNBSPN callable service 482
CSNBSYD and CSNBSYD1 callable service 362
CSNBSYE and CSNBSYE1 callable service 371
CSNBT31I and CSNET31I callable services 298
CSNBT31O and CSNET31O callable services 311
CSNBT31P and CSNET31P callable services 318
CSNBT31R and CSNET31R callable services 314
CSNBT31X and CSNET31X callable services 283
CSNBTCK callable service 277
CSNBTRV callable service 498
CSNBXAE callable service 595
CSNBXBC callable service 593
CSNBXCB callable service 593
CSNBXEA callable service 595
CSNBxxxx format 4
CSNDDSG callable service 511
CSNDDSV callable service 518
CSNDEDH and CSNFEDH callable services 123
CSNDKRC callable service 583
CSNDKRD callable service 585
CSNDKRR callable service 587
CSNDKRW callable service 589
CSNDKTC callable service 548
CSNDPKB callable service 535
CSNDPKD callable service 215
CSNDPKE callable service 220
CSNDPKG callable service 525
CSNDPKI callable service 531
CSNDPKT callable service 551
CSNDPKX callable service 555

CSNDRKD callable service 558
CSNDRKL callable service 560
CSNDSBC callable service 487
CSNDSBD callable service 492
CSNDSYG callable service 258
CSNDSYI callable service 266
CSNDSYI2 callable service 272
CSNDSYX callable service 251
CSNDTBC callable service 279
CSNECKI 100
CSNECKM 205
CSNEKGN 135
CSNEOWH 408
CSNERNG 229
CSNFKRC 583
CSNFKRD 585
CSNFPKB 536
CSNFPKD 216
CSNFPKE 221
CSNFPKG 526
CSNFPKI 532
CSNFPKX 555
CSNFRKD 558
CSNFRKL 560
CSNFSYI2 callable service 272
CUSP processing rule 335, 344, 876
CVV Key Combine callable service (CSNBCKC and

CSNECKC) 448

D
data

deciphering 331
enciphering 340
enciphering and deciphering 52
encoding and decoding 53
protecting 325

data array parameter
clear PIN generate alternate callable service 446
clear PIN generate callable service 440
encrypted PIN generate callable service 455
encrypted PIN verify callable service 469

data integrity
ensuring 53
verifying 383

data key
exporting 111
importing 100
reenciphering 111

data key export callable service (CSNBDKX)
format 111
overview 26
parameters 111
syntax 111

data key import callable service (CSNBDKM)
format 114
overview 26
parameters 114
syntax 114

DATA key type 24

928 z/OS V1R13 ICSF Application Programmer's Guide

data length parameter
diversified key generate callable service 120

data space
callable services that use data in data spaces 4

data-encrypting key 20
data-translation key 20, 328
DATAM key type 24
DATAMV key type 24
DATAXLAT key type 24
decipher callable service (CSNBDEC or CSNBDEC1)

format 333
syntax 333

deciphering
data 325, 331
data with clear key 338

decode callable service (CSNBDCO)
format 338
parameters 338
syntax 338

DES algorithm 15, 325
DES external key token format 780
DES internal key token format 777
destination identifier 50
digital signature generate callable service (CSNDDSG)

format 511
overview 81
parameters 511
syntax 511

digital signature verify callable service (CSNDDSV)
format 518
overview 82
parameters 518
syntax 518

disability 909
diversified key generate callable service (CSNBDKG)

format 117
overview 26
parameters 117
syntax 117

double-length key
using 22

DSS private external key token 804
DSS private internal key token 805
DSS public token 803
dynamic CKDS update callable services

description 46

E
EBCDIC to ASCII conversion

table 891
ECDSA algorithm 79
ECI-1 463
ECI-2 PIN block format 429, 864
ECI-3 PIN block format 429, 865
ECI-4 463
EDC

generating 633
electronic code book (ECB) 325

mode 326
Elliptic Curve Digital Signature Algorithm (ECDSA) 79

encipher callable service (CSNBENC or CSNBENC1)
format 342
parameters 342
syntax 342

enciphered
key 135, 245, 325
under master key 155

enciphering
data 325, 340
string with clear key 348

encode callable service (CSNBECO)
format 348
parameters 348
syntax 348

encrypted PIN block parameter
clear PIN generate alternate callable service 444
encrypted PIN verify callable service 468

encrypted PIN generate callable service (CSNBEPG)
format 454
syntax 454

encrypted PIN generate service (CSNBEPG)
parameters 454

encrypted PIN translate callable service
(CSNBPTR) 458

extraction rules 865
format 459
parameters 459
syntax 459

encrypted PIN verification callable service (CSNBPVR)
extraction rules 865

encrypted PIN verify callable service (CSNBPVR)
format 466
parameters 466
syntax 466

ensuring data integrity and authenticity 53
error detection code (EDC)

generating 633
EX key form 63
examples of callable services 843
EXEX key form 65
exit data 7
exit data length 7
exit, installation 8
exportable key form 17

definition 17
generating 63
value 136

exporter key identifier parameter
data key export callable service 112
key export callable service 132

EXPORTER key type 24
exporter key-encrypting key 21

any DES key 130
enciphering data key 111

exporting keys
trusted blocks 40

external key token 8, 18, 88
DES 780
PKA 89

DSS private 804
RSA private 794

Index 929

extra_data parameter
remote key export callable service 237

extra_data_length parameter
remote key export callable service 237

extraction rules, PIN 865

F
FEATURE=CRYPTO keyword

SCHEDULE macro 10
form parameter

random number generate callable service 229
format control 432
formats, PIN 56
functions of

cryptographic keys 15
ICSF 15

G
GBP-PIN algorithm 468
GBP-PINO algorithm 468
generated key identifier 1 parameter

key generate callable service 142
generated key identifier 2 parameter

key generate callable service 142
generated key identifier parameter

diversified key generate callable service 121
generating an error detection code (EDC) 633
generating encrypted keys 135
generating key identifier parameter

diversified key generate callable service 120
generating keys

remote key export 42
German Banking Pool PIN algorithm 867
get attribute value callable service (CSFPGAV)

format 668
parameters 668
syntax 668

H
hash length parameter

digital signature generate callable service 514
digital signature verify callable service 521
one-way hash generate callable service 411

hash parameter
digital signature generate callable service 514
digital signature verify callable service 521
one-way hash generate callable service 412

HEXDIGIT PIN extraction method keyword 429
high-level languages 4
HMAC

keys 20

I
IBM 3624 438, 466
IBM 4700 processing rule 875
IBM GBP 438, 466

IBM-4700 PIN block format 864
IBM-PIN algorithm 468
IBM-PINO algorithm 468
ICSF

functions 15
overview 15

ICSF Query Algorithm (CSFIQA)
parameters 597
syntax 597

ICSF Query Algorithm (CSFIQA))
format 597

ICSF Query Algorithm Service (CSFIQA)
overview 61

ICSF Query Facility (CSFIQF)
parameters 602
syntax 602

ICSF Query Facility (CSFIQF))
format 602

ICSF Query Facility Service (CSFIQF)
overview 61

IEAAFFN callable service (affinity) 10
IM key form 63
IMEX key form 65
IMIM key form 64
importable key form 17

definition 17
generating 63
value 136

imported key identifier length parameter
multiple secure key import callable service 213

imported key identifier parameter
multiple secure key import callable service 213

importer key identifier parameter
key import callable service 157
secure key import callable service 245

IMPORTER key type 24
importer key-encrypting key 21

enciphering clear key 243, 245
importer_key_identifier parameter

remote key export callable service 236
importer_key_length parameter

remote key export callable service 236, 237
importing a non-exportable key 226
improving performance using partial notarization 883
INBK PIN 426, 438
INBK-PIN 466
Information Protection System (IPS) 876
initial chaining vector (ICV)

description 326, 874
initialization vector in parameter

ciphertext translate callable service 330
initialization vector out parameter

ciphertext translate callable service 330
initialization vector parameter

cryptographic variable encipher callable service 110
decipher callable service 335
encipher callable service 344
key token build callable service 187

input data transport key 328
input KEK key identifier parameter

key translate callable service 198

930 z/OS V1R13 ICSF Application Programmer's Guide

input PIN profile parameter
clear PIN generate alternate callable service 444
encrypted PIN translate callable service 460
encrypted PIN verify callable service 467

input PIN-encrypting key identifier parameter
encrypted PIN translate callable service 459
encrypted PIN verify callable service 467

input_block parameter
trusted block create callable service 281

input_block_identifier parameter
trusted block create callable service 281

installation exit
post-processing 8
preprocessing 8

installation-defined callable service 15
Integrated Cryptographic Service Facility (ICSF)

description xxxi
Integrity 813
Interbank PIN 74, 426, 438, 466
internal key token 8, 18, 88, 89

aes; 777
DES 777, 778
PKA

DSS private 805
RSA private 798, 799, 800, 807, 810, 811

invocation requirements 9
IPINENC key type 24, 459
IPS processing rule 335, 344, 876
ISO-0 PIN block format 429
ISO-1 PIN block format 429, 864
ISO-2 PIN block format 429, 864
ISO-3 PIN block format 429

J
JCL statements, sample 12

K
KEK key identifer parameter

control vector translate callable service 106
KEK key identifier 1 parameter

key generate callable service 141
KEK key identifier 2 parameter

key generate callable service 141
KEK key identifier parameter

key test extended callable service 180
prohibit export extended callable service 227
transform CDMF key callable service 278

key array parameter
control vector translate callable service 107

key array right parameter
control vector translate callable service 107

Key Data Set management 565
callable services 565

key encrypting key identifier parameter 261
key export callable service (CSNBKEX)

format 130
overview 26
parameters 130
syntax 130

key flow 17
key form

combinations for a key pair 144
combinations with key type 144
definition 17
exportable 17
importable 17
operational 17
value 136

key form parameter
key generate callable service 136
secure key import callable service 245

key generate callable service (CSNBKGN)
format 135
overview 25
parameters 135
syntax 135
using 63

key generator utility program (KGUP)
description 25

key identifier 8
PKA keys 88

key identifier in parameter
ciphertext translate callable service 330

key identifier length parameter
multiple clear key import callable service 207
Symmetric MAC generate callable service 414
symmetric MAC verify callable service 419

key identifier out parameter
ciphertext translate callable service 330

key identifier parameter
clear key import callable service 101
decipher callable service 334
diversified key generate callable service 121
encipher callable service 343
key test callable service 171
key test extended callable service 179
MAC generate callable service 395
MAC generation callable service 400
multiple clear key import callable service 208
secure key import callable service 245
Symmetric MAC generate callable service 414
symmetric MAC verify callable service 419

key import callable service (CSNBKIM)
format 155
overview 27
parameters 155
syntax 155

key label 8, 88
security considerations 9

key length parameter
key generate callable service 137

key management
ANSI X9.17 standard 633

key pair 144
key part import callable service (CSNBKPI)

format 160
overview 27
parameters 160
syntax 160

Index 931

key record delete callable service (CSNBKRD)
overview 47

key test callable service (CSNBKYT and CSNBKYTX)
overview 27

key test callable service (CSNBKYT)
parameters 169

key test callable services (CSNBKYT)
format 169
syntax 169

key test extended callable service (CSNBKYTX)
parameters 178

key test extended callable services (CSNBKYTX)
syntax 178

key test extended callable services (CSNBKYTX)
format 178

key token 17, 88
aes; internal 777
DES

external 780
internal 777
null 782

DES internal 778
external 18
internal 18, 89
null 19
PKA 85

DSS private external 804
DSS private internal 805
DSS public 803
null 793
RSA 1024-bit modulus-exponent private

external 795
RSA 1024-bit private internal 799, 800
RSA 2048-bit Chinese remainder theorem private

internal 801
RSA 4096-bit Chinese remainder theorem private

external 797
RSA 4096-bit modulus-exponent private

external 796
RSA private external 794
RSA private internal 798, 807, 810, 811
RSA public 793

PKA external 89
key token build callable service (CSNBKTB and

CSNEKTB)
overview 30

key token build callable service (CSNBKTB)
format 181
overview 27
parameters 181
syntax 181

key translate (CSNBKTR)
parameters 198

key translate callable service (CSNBKTR)
format 197
overview 27
syntax 197

Key Translate2 callable service (CSNBKTR2 and
CSNEKTR2)

format 200
parameters 200

Key Translate2 callable service (CSNBKTR2 and
CSNEKTR2) (continued)

syntax 200
key type 1 64, 65
key type 1 parameter

key generate callable service 140
key type 2 64, 65
key type 2 parameter

key generate callable service 140
key type parameter

key export callable service 131
key import callable service 156
key token build callable service 182
secure key import callable service 244
user derived key callable service 322

key value structure length parameter 538
key value structure parameter 539
key_check_length parameter

remote key export callable service 238
key_check_parameters parameter

remote key export callable service 238
key_check_parameters_length parameter

remote key export callable service 237
key_check_value parameter

remote key export callable service 238
key-encrypting key 21

definition 16
description 21
exporter 111, 130
importer 243

keyboard 909
keys

ANSI X9.17 key-encrypting 22
changing CDMF DATA key to transformed shortened

DES 277
CIPHER 20
clear 24, 243
control vector 16, 19
create

values for keys 29
creating 11
cryptographic, functions of 15
data key

exporting 111
importing 100
reenciphering 111

data-encrypting 20
data-translation 20
double-length 64, 65
enciphered 245
export

values for keys 28
exporter key-encrypting 21
forms 17
generating

encrypted 135
values for keys 28

held in applications 22
held in CKDS 22
HMAC 20
importer key-encrypting 21

932 z/OS V1R13 ICSF Application Programmer's Guide

keys (continued)
key-encrypting 21
list of types 24
MAC 21
managing 99
master key variant 16
master, DES 19
master,AES 20
pair 64, 65
parity 100
PIN 21
PIN-encrypting key 458
PKA master 79

Key Management Master Key (KMMK) 79
Signature Master Key (SMK) 79

possible forms 26
protecting 325
reenciphered 155
reenciphering 130
separation 16
single-length 63, 64
transport 21
transport key variant 16
types of 19
using 11
VISA PVV

generating 442

L
languages, high-level 4
large data object 875
linking callable services 12
local enciphered key token parameter 262

M
MAC

generation callable service 54
keys 21
length keywords 396, 401, 415, 419
managing 53
verification callable service 54

MAC generate callable service (CSNBMGN or
CSNBMGN1)

format 394
parameters 394
syntax 394

MAC key type 24
mac length parameter

Symmetric MAC generate callable service 416
symmetric MAC verify callable service 421

mac parameter
MAC generate callable service 397
MAC verify callable service 402
Symmetric MAC generate callable service 416, 417
symmetric MAC verify callable service 421

MAC verify callable service (CSNBMVR or CSNBMVR1)
format 399
parameters 400
syntax 399

MACVER key type 24
managing keys 99
mask array left parameter

control vector translate callable service 107
mask array preparation 837
mask array right parameter

control vector translate callable service 107
master key

AES 20
changing

possible effect on internal key tokens 18
enciphered key 155

master key variant 16
master key, DES 19
MDC

generate callable service 56
length keywords 406
managing 55

mdc parameter
MDC generate callable service 407

message authentication
definition 53, 54

message authentication code (MAC)
description 383
generating 383, 393, 413
verifying 383, 398, 417

messages
authenticating 383

migration consideration
return codes from PCF macros 7

mode, special secure 10
modes of operation 325
modification detection

definition 55, 56
modification detection code (MDC)

generating 384, 404
verifying 384

multiple clear key import callable service
(CSNBCKM) 205

format 206
overview 27, 30
parameters 206
syntax 206

multiple node network 328
multiple secure key import callable service (CSNBSKM

and CSNESKM)
overview 30

multiple secure key import callable service
(CSNBSKM) 209

format 210
overview 27
parameters 210
syntax 210

N
notarization 50
Notices 911
null key token 19

format 782, 793
number, generated 228

Index 933

O
object ion key (OPK) 823
offsetting 50, 883
one-way hash generate callable service (CSNBOWH

and CSNBOWH1)
overview 55

one-way hash generate callable service (CSNBOWH,
CSNEOWH and CSNBOWH1)

format 408
parameters 408
syntax 408

OP key form 63
operational key form 17

definition 17
generating 63
value 136

OPEX key form 64
OPIM key form 64
OPINENC key type 24, 460
OPK, object protection key 823
OPOP key form 64
origin identifier 50
output chaining vector (OCV)

description 874
output data transport key 328
output KEK key identifier parameter

key translate callable service 198
output PIN profile parameter

encrypted PIN translate callable service 462
output PIN-encrypt translation key identifier parameter

encrypted PIN translate callable service 460
overview of callable services 3

P
pad character parameter

encipher callable service 345
key token build callable service 187

pad digit 433
format 432

PADDIGIT PIN extraction method keyword 429
padding schemes 332, 341
PADEXIST PIN extraction method keyword 429
pair of keys 64, 65
PAN data in parameter

encrypted PIN translate callable service 460
PAN data out parameter

encrypted PIN translate callable service 462
PAN data parameter

clear PIN encrypt callable service 436
clear PIN generate alternate callable service 444
encrypted PIN generate callable service 456
encrypted PIN verify callable service 467

parameter
attribute definitions 5
definitions 6
direction 6
exit data 7
exit data length 7
reason code 7

parameter (continued)
return code 7
type 6

parity of key 100, 243
adjusting 171, 179
EVEN 230
ODD 230

partial notarization 51, 883
calculation for a double-length AKEK 884
calculation for a single-length AKEK 884

PCF
key separation 16
keys 22
macros 7
migration consideration 7

PCI interface callable service (CSFPCI)
parameters 625
syntax 625

performance considerations 10
personal account number (PAN)

for encrypted PIN translate 460
for encrypted PIN verify 467

personal authentication
definition 56

personal identification number (PIN)
3624 PIN generation algorithm 866
3624 PIN verification algorithm 869
algorithm value 445, 468
algorithms 56, 425, 438
block format 426, 458
clear PIN encrypt callable service 57
clear PIN generate alternate callable service 57,

442
definition 56
description 423
detailed algorithms 866
encrypted generation callable service 58
encrypting key 426, 458
extraction rules 865
formats 56
GBP PIN verification algorithm 871
generating 425, 438

from encrypted PIN block 425
generation callable service 57, 438
German Banking Pool PIN algorithm 867
keys 21
managing 56
PIN offset generation algorithm 868
PVV generation algorithm 872
PVV verification algorithm 873
translating 425
translation callable service 58, 458
translation of, in networks 424
using 423
verification callable service 58, 466
verifying 425, 466
VISA PIN algorithm 872

PIN block format
3621 864
3624 864
additional names 463

934 z/OS V1R13 ICSF Application Programmer's Guide

PIN block format (continued)
ANSI X9.8 863
detail 863
ECI-2 864
ECI-3 865
format values 429
IBM-4700 864
ISO-1 864
ISO-2 864
PIN extraction method keywords 429
VISA-2 864
VISA-3 864

PIN block in parameter
encrypted PIN translate callable service 460

PIN block out parameter
encrypted PIN translate callable service 463

PIN block variant constant (PBVC)
description 432, 447
for clear PIN generate alternate 447
for encrypted PIN translate 463
for PIN verification 470

PIN Change/Unblock
format 474
syntax 474

PIN Change/Unblock (CSNBPCU) 473
parameters 474

PIN check length parameter 445
clear PIN encrypt callable service 436
clear PIN generate callable service 440
PIN verify callable service 469

PIN encryption key identifier parameter 443
PIN encryting key identifier parameter

clear PIN encrypt callable service 435
PIN generating key identifier parameter

encrypted PIN generate callable service 454
PIN keys 21
PIN length parameter

clear PIN generate callable service 436, 439
encrypted PIN generate callable service 455

PIN notation 863
PIN profile 429

description 460, 467
PIN profile parameter 444

encrypted PIN generate callable service 456
PIN validation value (PVV) 438
PIN verifying key identifier parameter

encrypted PIN verify callable service 467
PINBLOCK PIN extraction method keyword 429
PINGEN key type 24
PINLEN04 PIN extraction method keyword 429
PINLEN12 PIN extraction method keyword 429
PINVER key type 24
PKA decrypt callable service (CSNDPKD)

overview 48
PKA decrypt callable servicec 215
PKA encrypt callable service (CSNDPKE)

overview 48
PKA encrypt callable servicec 220
PKA external key token 89
PKA key generate callable service (CSNDPKG)

format 525

PKA key generate callable service (CSNDPKG)
(continued)

parameters 525
syntax 525

PKA key import callable service (CSNDPKI)
format 531
overview 82
parameters 531
syntax 531

PKA key token 85
external 89
record format

DSS private external 804
DSS private internal 805
DSS public 803
RSA 1024-bit modulus-exponent private

external 795
RSA 1024-bit private internal 799, 800
RSA 2048-bit Chinese remainder theorem private

internal 801
RSA 4096-bit Chinese remainder theorem private

external 797
RSA 4096-bit modulus-exponent private

external 796
RSA private external 794
RSA private internal 798, 807, 810, 811
RSA public 793

PKA key token build callable service (CSNDPKB)
format 535
overview 83
parameters 535
syntax 535

PKA key token change (CSNDKTC)
parameters 548

PKA key token change callable service (CSNDKTC and
CSNFKTC)

overview 83
PKA key token change callable service

(CSNDKTC) 548
PKA key translate callable service (CSNDPKT)

format 551
parameters 551
syntax 551

PKA master key 81
PKA private key identifier length parameter 513
PKA private key identifier parameter 513
PKA public key extract callable service (CSNDPKX)

format 555
overview 83
parameters 555
syntax 555

PKA public key identifier length parameter 521
PKA public key identifier parameter 521
PKA92 key format and encryption process 881
pkcs #11

using 93
PKCS #11

callable services 93, 655
objects 655
tokens 655
using 655

Index 935

PKDS key record create callable service
(CSNDKRC) 583

format 583
parameters 583
syntax 583

PKDS key record delete callable service
(CSNDKRD) 585

format 585
parameters 585
syntax 585

PKDS key record read callable service
(CSNDKRR) 587

format 587
parameters 588
syntax 587

PKDS key record write callable service
(CSNDKRW) 589

format 590
parameters 590
syntax 590

PKSC interface 629
PKSC interface callable service (CSFPKSC)

parameters 629
syntax 629

plaintext
enciphering 325
encoding 348
field 337, 347, 371, 380

plaintext parameter
cryptographic variable encipher callable service 110

post-processing exit 8
preprocessing exit 8
privacy 52
private external key token

DSS 804
RSA 794

private internal key token
DSS 805
RSA 798, 799, 800, 807, 810, 811

private key name length parameter 545
private key name parameter 546
processing rule

4700-PAD 335, 344
ANSI X3.106 874
ANSI X9.23 335, 344, 875
CBC 335, 344
cipher 874
cipher last block 875
CUSP 876
CUSP/IPS 335, 344
decipher 335
encipher 344
GBP-PIN 439
GBP-PINO 439
IBM 4700 875
IBM-PIN 439
IBM-PINO 439
INBK-PIN 439
IPS 876
recommendations for encipher 345
segmenting 875

processing rule (continued)
VISA-PVV 439

prohibit export (CSNBPEX) 225
prohibit export callable service (CSNBPEX)

format 225
overview 27
syntax 225

prohibit export extended callable service (CSNBPEXX)
format 226
overview 28
parameters 226
syntax 226

protecting data and keys 325
public key token

DSS 803
RSA 793

R
RACF authorization 9
random number generate callable service (CSNBRNG)

format 228
overview 28
parameters 228
syntax 228

random number generate callable service (CSNBRNGL)
format 228
parameters 228
syntax 228

random number parameter
key test callable service 171
key test extended callable service 180
random number generate callable service 231

random_number_length
random number generate callable service 231

reason codes 7, 12
reason codes for ICSF

for return code 0 (0) 726
for return code 10 (16) 776
for return code 4 (4) 727
for return code 8 (8) 730
for return code C (12) 765

recommendations for encipher processing rules 345
record chaining 876
reenciphered

key 155
reenciphering

data-encrypting key 111
PIN block 458

remote key distribution 32
benefits 45
scenario 44

remote key export
exporting keys 40
generating keys 42

remote key export callable service (CSNDRKX)
format 232
overview 28
parameters 232
syntax 232

remote key loading 33

936 z/OS V1R13 ICSF Application Programmer's Guide

remote key loading (continued)
example 33
new method 33

remote key-loading
CCA API changes 38

reserved
random number generate callable service 230

reserved data length parameter
symmetric MAC generate callable service 416
symmetric MAC verify callable service 420

reserved data parameter
Symmetric MAC generate callable service 416
symmetric MAC verify callable service 421

reserved parameter
control vector generate callable service 105, 199

reserved_length
random number generate callable service 230

retained key delete callable service (CSNDRKD)
format 558
overview 84
parameters 558
syntax 558

retained key list callable service (CSNDRKL)
format 560
overview 84
parameters 560
syntax 560

retained private keys
overview 84

return codes 7, 12
from PCF macros

migration consideration 7
returned PVV parameter 446
returned result parameter

clear PIN generate callable service 441
Rivest-Shamir-Adleman (RSA) algorithm 79
RKX key token 38
RKX key-token 781
RSA 1024-bit private internal key token 799, 800
RSA algorithm 79
RSA enciphered key length parameter

symmetric key generate callable service 262
symmetric key import callable service 268

RSA enciphered key parameter
symmetric key generate callable service 262
symmetric key import callable service 268

RSA private external Chinese remainder theorem key
token 797

RSA private external key token 794
RSA private external modulus-exponent key

token 795, 796
RSA private internal Chinese remainder theorem key

token 801
RSA private internal key token 798, 807, 810, 811
RSA private key identifier 268
RSA private key identifier length 268
RSA public key identifier length parameter

for symmetric key generate 262
RSA public key identifier parameter 262
RSA public token 793

rule array count parameter
clear PIN encrypt callable service 436
Clear PIN encrypt callable service 107, 455
clear PIN generate alternate callable service 444
clear PIN generate callable service 439
control vector translate callable service 107
decipher callable service 335
digital signature generate callable service 512
digital signature verify callable service 520
diversified key generate callable service 118
encipher callable service 344
encrypted PIN translate callable service 460
encrypted PIN verify callable service 468
key test callable service 170
key test extended callable service 179
key token build callable service 184
MAC generate callable service 395
MAC generation callable service 401
MDC generate callable service 406
one-way hash generate callable service 410
PKA key generate callable service 527, 552
PKA key import callable service 532
PKA key token build callable service 537
PKA public key extract callable service 556
symmetric key export callable service 252
symmetric key generate callable service 259
symmetric key import callable service 267
Symmetric MAC generate callable service 415
Symmetric MAC verify callable service 419
transform CDMF key callable service 233, 278
trusted block create callable service 280
user derived key callable service 323

rule array parameter
clear PIN encrypt callable service 436
clear PIN generate alternate callable service 444
clear PIN generate callable service 439
control vector generate callable service 103
control vector translate callable service 107, 125
decipher callable service 335
digital signature generate callable service 512
digital signature verify callable service 520
diversified key generate callable service 118
encipher callable service 344
encrypted PIN generate callable service 455
encrypted PIN translate callable service 461
encrypted PIN verify callable service 468
key test callable service 170
key test extended callable service 179
key token build callable service 184
MAC generate callable service 395
MAC generation callable service 401
MDC generate callable service 406
one-way hash generate callable service 410
PKA key generate callable service 527, 552
PKA key token build callable service 537
PKA public key extract callable service 556
random number generate callable service 230
symmetric key export callable service 252
symmetric key generate callable service 259
symmetric key import callable service 267
Symmetric MAC generate callable service 415

Index 937

rule array parameter (continued)
symmetric MAC verify callable service 419
transform CDMF key callable service 233, 278
trusted block create callable service 280
user derived key callable service 323

rule_array_count
ICSF query service callable service 598, 603
random number generate callable service 230

rule_id parameter
remote key export callable service 235

rule_id_length parameter
remote key export callable service 235

S
sample JCL statements 12
SCHEDULE macro

FEATURE=CRYPTO keyword 10
SCSFMOD0 module 12
section sequence, trusted block 812
secure key import callable service (CSNBSKI)

format 243
overview 28
parameters 243
syntax 243

secure messaging
overview 60

secure messaging for keys callable service (CSNBSKY)
format 479, 548
parameters 479, 499
syntax 479, 548

Secure messaging for keys callable service
(CSNBSKY) 479

secure messaging for PINs callable service (CSNBSPN)
format 483
parameters 483
syntax 483

Secure messaging for PINs callable service
(CSNBSPN) 482

Secure Sockets Layer (SSL) 48
security considerations 9
segmenting

control keywords 396, 401, 406, 415, 419
definition 875
rule, large data object 875

sequence number parameter
encrypted PIN translate callable service 462

sequences of callable service 62
set attribute value callable service (CSFPSAV)

format 695
parameters 695
syntax 695

SET block compose callable service (CSNDSBC) 487
format 487
overview 85
parameters 487
syntax 487

SET block decompose callable service
(CSNDSBD) 492

format 492
overview 85

SET block decompose callable service (CSNDSBD)
(continued)

paramters 493
syntax 492

SET protocol 85
SET Secure Electronic Transaction 85
short blocks 341
shortcut keys 909
signature bit length parameter 514
signature field length parameter

digital signature generate callable service 514
digital signature verify callable service 521

signature field parameter
digital signature generate callable service 515
digital signature verify callable service 521

single-length key
purpose 63, 64
using 22

source key identifier length parameter
PKA key import callable service 533
PKA public key extract callable service 557

source key identifier parameter
data key export callable service 112
key export callable service 132
key import callable service 157
PKA key import callable service 533
PKA public key extract callable service 557
transform CDMF key callable service 278

source key token length parameter
prohibit export extended callable service 227

source text parameter
character/nibble conversion callable service 594
code conversion callable service 596
X9.9 data editing callable service 622

source_key_length parameter
remote key export callable service 236

special secure mode 10
SRB, scheduling 10
SSL support 48
sym_encrypted_key_length parameter

remote key export callable service 237
symmetric algorithm decipher callable service

(CSNBSAD, CSNBSAD1, CSNESAD and CSNESAD1)
format 350
parameters 350
syntax 350

symmetric algorithm encipher callable service
(CSNBSAE, CSNBSAE1, CSNESAE, and
CSNESAE1)

format 356
syntax 356

symmetric algorithm encipher callable service
CSNBSAE, CSNBSAE1, CSNESAE, and CSNESAE1)

parameters 356
symmetric key decipher callable service (CSNBSYD and

CSNBSYD1)
format 362
parameters 362
syntax 362

938 z/OS V1R13 ICSF Application Programmer's Guide

symmetric key encipher callable service (CSNBSYE,
CSNBSYE1, CSNESYE and CSNESYE1)

format 371
parameters 371
syntax 371

symmetric key export callable service (CSNDSYX and
CSNFSYX)

overview 30
symmetric key export callable service (CSNDSYX)

format 251
overview 28
parameters 251
syntax 251

symmetric key generate callable service (CSNDSYG
and CSNFSYG)

overview 30
symmetric key generate callable service (CSNDSYG)

format 258
overview 28
parameters 258
syntax 258

symmetric key import callable service (CSNDSYI and
CSNFSYI)

overview 30
symmetric key import callable service (CSNDSYI)

format 266
overview 29
parameters 266
syntax 266

Symmetric MAC
generation callable service 55
verify callable service 55

Symmetric MAC generate callable service (CSNBSMG,
CSNBSMG1, CSNESMG, and CSNESMG1)

format 413
parameters 414
syntax 413

Symmetric MAC verify callable service (CSNBSMV,
CSNBSMV1, CSNESMV, and CSNESMV1)

format 418
parameters 418
syntax 418

syntax for callable service 3

T
target key identifier length parameter 534
target key identifier parameter 534

data key export callable service 113
key export callable service 132
key import callable service 157
symmetric key import callable service 268
transform CDMF key callable service 278

target key token parameter
encrypted PIN generate callable service 108

target public key token length parameter 557
target public key token parameter 557
target text parameter

character/nibble conversion callable service 594,
599, 601, 620

code conversion callable service 596

target text parameter (continued)
ICSF query facility callable service 604
X9.9 data editing callable service 622

text id in parameter
ciphertext translate callable service 330
MAC generate callable service 397
MAC verify callable service 402
MDC generate callable service 407
one-way hash generate callable service 412
symmetric MAC verify callable service 421

text id out parameter
ciphertext translate callable service 331

text in parameter
ciphertext translate callable service 330

text length parameter
character/nibble conversion callable service 594
ciphertext translate callable service 330
code conversion callable service 596
cryptographic variable encipher callable service 110
decipher callable service 334
encipher callable service 343
MAC generate callable service 395
MAC generation callable service 400
MDC generate callable service 405
one-way hash generate callable service 411
Symmetric MAC generate callable service 415
Symmetric MAC verify callable service 419
X9.9 data editing callable service 622

text out parameter
ciphertext translate callable service 330

text parameter
MAC generate callable service 395
MAC generation callable service 401
MDC generate callable service 406
one-way hash generate callable service 411
Symmetric MAC generate callable service 415
symmetric MAC verify callable service 419

text, translating 328
TKE

overview 60
token record create callable service (CSFPTRC)

format 707
parameters 707
syntax 707

token record delete callable service (CSFPTRD)
format 711
parameters 711
syntax 711

token record list callable service (CSFPTRL)
format 713
parameters 713
syntax 713

token validation value (TVV) 778
TR-31 export callable service (CSNBT31X and

CSNET31X) 283
TR-31 import callable service (CSNBT31I and

CSNET31I) 298
TR-31 Optional Data Build callable services

(CSNBT31O and CSNET31O) 311
TR-31 Optional Data Read callable services

(CSNBT31R and CSNET31R) 314

Index 939

TR-31 Parse callable service (CSNBT31P and
CSNET31P) 318

trailing short blocks 341
transaction validation callable service (CSNBSKY)

format 498
syntax 498

transaction validation callable service (CSNBTRV) 498
transform CDMF key algorithm 884
transform CDMF key callable service (CSNBTCK)

format 277
overview 29
parameters 277
syntax 277

transformed shortened DES key 277
transport key 21
transport key variant 16
transport_key_identifier parameter

remote key export callable service 235
trusted block create callable service 281

transport_key_length parameter
remote key export callable service 235

trusted block 34
trusted block create

callable service 279
trusted block create callable service (CSNDTBC)

format 279
overview 29
parameters 279
syntax 279

trusted block key token
trusted block key token

trusted block key token 811
trusted blocks

CCA API changes 38
creating 39
exporting keys 40
using 39

Trusted Key Entry
overview 60

trusted_block_identifier parameter
trusted block create callable service 233, 282

trusted_block_length parameter
remote key export callable service 233
trusted block create callable service 281

types of keys 19

U
UKPT

format 433
user derived key

generating 321
processing rules 323

utilities
character/nibble conversion 593
code conversion 595
ICSF Query Algorithm 597
ICSF Query Facility 602
key token build 181
PKA key token build 535
X9.9 data editing 621

V
V1R11 changed information xlii
V1R11 new information xlii
V1R12 changed information xl
V1R12 new information xxxix
V1R13 changed information xxxviii
V1R13 new information xxxvii
verification pattern parameter 172, 180
verification pattern, generating and verifying 169, 178
verifying data integrity and authenticity 383
VISA CVV service generate callable service

(CSNBCSG) 502
format 502
parameters 502
syntax 502

VISA CVV service verify callable service
(CSNBCSV) 506

format 507
parameters 507
syntax 507

VISA PVV 438
generating 442

VISA-1 463
VISA-2 PIN block format 429, 864
VISA-3 PIN block format 429, 864
VISA-4 PIN block format 429
VISA-PVV algorithm 445, 468
VISAPVV4 algorithm 468

X
X9.9 data editing callable service (CSNB9ED)

format 621
overview 61
parameters 621
syntax 621

X9.9-1 keyword 396, 401

940 z/OS V1R13 ICSF Application Programmer's Guide

����

Product Number: 5694-A01

Printed in USA

SA22-7522-15

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	Where to find more information
	Related Publications

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Changes made in z/OS Version 1 Release 13
	Changes made in z/OS Version 1 Release 12
	Changes made in z/OS Version 1 Release 11

	Part 1. IBM CCA Programming
	Chapter 1. Introducing Programming for the IBM CCA
	ICSF Callable Services Naming Conventions
	Callable Service Syntax
	Callable Services with ALET Parameters
	Rules for Defining Parameters and Attributes
	Parameter Definitions
	Return and Reason Codes
	Exit Data Length and Exit Data
	Key Identifier for Key Token

	Invocation Requirements
	Security Considerations

	Performance Considerations
	Special Secure Mode
	Using the Callable Services
	When the Call Succeeds
	When the Call Does Not Succeed

	Linking a Program with the ICSF Callable Services

	Chapter 2. Introducing Symmetric Key Cryptography and Using Symmetric Key Callable Services
	Functions of the Symmetric Cryptographic Keys
	Key Separation
	Master Key Variant for Fixed-length Tokens
	Transport Key Variant for Fixed-length Tokens
	Key Forms
	DES Key Flow

	Key Token
	Key Wrapping
	Control Vector for DES Keys
	Types of Keys
	Other Considerations
	Clear Keys

	Generating and Managing Symmetric Keys
	Key Generator Utility Program
	Common Cryptographic Architecture DES Key Management Services
	Clear Key Import Callable Service (CSNBCKI and CSNECKI)
	Control Vector Generate Callable Service (CSNBCVG and CSNECVG)
	Control Vector Translate Callable Service (CSNBCVT and CSNECVT)
	Cryptographic Variable Encipher Callable Service (CSNBCVE and CSNECVE)
	Data Key Export Callable Service (CSNBDKX and CSNEDKX)
	Data Key Import Callable Service (CSNBDKM and CSNEDKM)
	Diversified Key Generate Callable Service (CSNBDKG and CSNEDKG)
	Key Export Callable Service (CSNBKEX and CSNEKEX)
	Key Generate Callable Service (CSNBKGN and CSNEKGN)
	Key Import Callable Service (CSNBKIM and CSNEKIM)
	Key Part Import Callable Service (CSNBKPI and CSNEKPI)
	Key Test Callable Service (CSNBKYT, CSNEKYT, CSNBKYTX, and CSNEKYTX)
	Key Token Build Callable Service (CSNBKTB and CSNEKTB)
	Key Translate Callable Service (CSNBKTR and CSNEKTR)
	Key Translate2 Callable Service (CSNBKTR2 and CSNEKTR2)
	Multiple Clear Key Import Callable Service (CSNBCKM and CSNECKM)
	Multiple Secure Key Import Callable Service (CSNBSKM and CSNESKM)
	Prohibit Export Callable Service (CSNBPEX and CSNEPEX)
	Prohibit Export Extended Callable Service (CSNBPEXX and CSNEPEXX)
	Random Number Generate Callable Service (CSNBRNG, CSNERNG, CSNBRNGL, and CSNERNGL)
	Remote Key Export Callable Service (CSNDRKX and CSNFRKX)
	Restrict Key Attribute Callable Service (CSNBRKA and CSNERKA)
	Secure Key Import Callable Service (CSNBSKI and CSNESKI)
	Symmetric Key Export Callable Service (CSNDSYX and CSNFSYX)
	Symmetric Key Generate Callable Service (CSNDSYG and CSNFSYG)
	Symmetric Key Import Callable Service (CSNDSYI and CSNFSYI)
	Transform CDMF Key Callable Service (CSNBTCK and CSNETCK)
	Trusted Block Create Callable Service (CSNDTBC and CSNFTBC)
	User Derived Key Callable Service (CSFUDK and CSFUDK6)

	Common Cryptographic Architecture AES Key Management Services
	Key Generate Callable Service (CSNBKGN and CSNEKGN)
	Key Generate2 Callable Service (CSNBKGN2 and CSNEKGN2)
	Key Part Import2 Callable Service (CSNBKPI2 and CSNEKPI2)
	Key Test2 Callable Service (CSNBKYT2 and CSNEKYT2)
	Key Token Build Callable Service (CSNBKTB and CSNEKTB)
	Multiple Clear Key Import Callable Service (CSNBCKM and CSNECKM)
	Multiple Secure Key Import Callable Service (CSNBSKM and CSNESKM)
	Restrict Key Attribute Callable Service (CSNBRKA and CSNERKA)
	Secure Key Import2 Callable Service (CSNBSKI2 and CSNESKI2)
	Symmetric Key Export Callable Service (CSNDSYX and CSNFSYX)
	Symmetric Key Generate Callable Service (CSNDSYG and CSNFSYG)
	Symmetric Key Import Callable Service (CSNDSYI and CSNFSYI)
	Symmetric Key Import2 Callable Service (CSNDSYI2 and CSNFSYI2)

	Common Cryptographic Architecture HMAC Key Management Services
	Key Generate2 callable service (CSNBKGN2 and CSNEKGN2)
	Key Part Import2 callable service (CSNBKPI2 and CSNEKPI2)
	Key Test2 callable service (CSNBKYT2 and CSNEKYT2)
	Key Token Build2 callable service (CSNBKTB2 and CSNEKTB2)
	Restrict Key Attribute callable service (CSNBRKA and CSNERKA)
	Secure Key Import2 callable service (CSNBSKI2 and CSNESKI2)
	Symmetric Key Export Callable Service (CSNDSYX and CSNFSYX)
	Symmetric Key Import2 Callable Service (CSNDSYI2 and CSNFSYI2)

	ECC Diffie-Hellman Key Agreement Models
	Token Agreement Scheme
	Obtaining the Raw “Z” value

	Improved remote key distribution
	Remote Key Loading
	Trusted block
	Changes to the CCA API
	The RKX key token
	Using trusted blocks
	Remote key distribution scenario
	Remote key distribution benefits

	Diversifying keys
	Callable Services for Dynamic CKDS Update
	CKDS Key Record Create Callable Service (CSNBKRC and CSNEKRC)
	CKDS Key Record Create2 Callable Service (CSNBKRC2 and CSNEKRC2)
	CKDS Key Record Delete Callable Service (CSNBKRD and CSNEKRD)
	CKDS Key Record Read Callable Service (CSNBKRR and CSNEKRR)
	CKDS Key Record Read2 Callable Service (CSNBKRR2 and CSNEKRR2)
	CKDS Key Record Write Callable Service (CSNBKRW and CSNEKRW)
	CKDS Key Record Write2 Callable Service (CSNBKRW2 and CSNEKRW2)
	Coordinated KDS Administration Callable Service (CSFCRC and CSFCRC6)

	Callable Services that Support Secure Sockets Layer (SSL)
	PKA Decrypt Callable Service (CSNDPKD)
	PKA Encrypt Callable Service (CSNDPKE)

	System Encryption Algorithm
	ANSI X9.17 Key Management Services
	Key Generate Callable Service Used to Generate an AKEK (CSNBKGN)
	ANSI X9.17 EDC Generate Callable Service (CSNAEGN and CSNGEGN)
	ANSI X9.17 Key Export Callable Service (CSNAKEX and CSNGKEX)
	ANSI X9.17 Key Import Callable Service (CSNAKIM and CSNGKIM)
	ANSI X9.17 Key Translate Callable Service (CSNAKTR and CSNGKTR)
	ANSI X9.17 Transport Key Partial Notarize Callable Service (CSNATKN and CSNGTKN)

	Enciphering and Deciphering Data
	Encoding and Decoding Data (CSNBECO, CSNEECO, CSNBDCO, and CSNEDCO)
	Translating Ciphertext (CSNBCTT or CSNBCTT1 and CSNECTT or CSNECTT1)
	Managing Data Integrity and Message Authentication
	Message Authentication Code Processing
	HMAC Generation Callable Service (CSNBHMG or CSNBHMG1 and CSNEHMG or CSNEHMG1)
	HMAC Verification Callable Service (CSNBHMV or CSNBHMV1 and CSNEHMV or CSNEHMV1)
	MAC Generation Callable Service (CSNBMGN or CSNBMGN1 and CSNEMGN or CSNEMGN1)
	MAC Verification Callable Service (CSNBMVR or CSNBMVR1 and CSNEMVR or CSNEMVR1)
	Symmetric MAC Generate Callable Service (CSNBSMG, CSNBSMG1, CSNESMG and CSNESMG1)
	Symmetric MAC Verify Callable Service (CSNBSMV, CSNBSMV1, CSNESMV and CSNESMV1)

	Hashing Functions
	One-Way Hash Generate Callable Service (CSNBOWH or CSNBOWH1 and CSNEOWH or CSNEOWH1)
	MDC Generation Callable Service (CSNBMDG or CSNBMDG1 and CSNEMDG or CSNEMDG1)

	Managing Personal Authentication
	Verifying Credit Card Data
	Clear PIN Encrypt Callable Service (CSNBCPE and CSNECPE)
	Clear PIN Generate Alternate Callable Service (CSNBCPA and CSNECPA)
	Clear PIN Generate Callable Service (CSNBPGN and CSNEPGN)
	CVV Key Combine Callable Service (CSNBCKC and CSNECKC)
	Encrypted PIN Generate Callable Service (CSNBEPG and CSNEEPG)
	Encrypted PIN Translate Callable Service (CSNBPTR and CSNEPTR)
	Encrypted PIN Verify Callable Service (CSNBPVR and CSNEPVR)
	PIN Change/Unblock Callable Service (CSNBPCU and CSNEPCU)
	Transaction Validation Callable Service (CSNBTRV and CSNETRV)

	ANSI TR-31 key block support
	TR-31 Export Callable Service (CSNBT31X and CSNET31X)
	TR-31 Import Callable Service (CSNBT31I and CSNET31I)
	TR-31 Parse Callable Service (CSNBT31P and CSNET31P)
	TR-31 Optional Data Read Callable Service (CSNBT31R and CSNET31R)
	TR-31 Optional Data Build Callable Service (CSNBT31O and CSNET31O)

	Secure Messaging
	Trusted Key Entry (TKE) Support
	Utilities
	Character/Nibble Conversion Callable Services (CSNBXBC and CSNBXCB)
	Code Conversion Callable Services (CSNBXEA and CSNBXAE)
	X9.9 Data Editing Callable Service (CSNB9ED)
	ICSF Query Algorithm Callable Service (CSFIQA)
	ICSF Query Facility Callable Service (CSFIQF)

	Typical Sequences of ICSF Callable Services
	Key Forms and Types Used in the Key Generate Callable Service
	Generating an Operational Key
	Generating an Importable Key
	Generating an Exportable Key
	Examples of Single-Length Keys in One Form Only
	Examples of OPIM Single-Length, Double-Length, and Triple-Length Keys in Two Forms
	Examples of OPEX Single-Length, Double-Length, and Triple-Length Keys in Two Forms
	Examples of IMEX Single-Length and Double-Length Keys in Two Forms
	Examples of EXEX Single-Length and Double-Length Keys in Two Forms
	Generating AKEKs

	Using the Ciphertext Translate Callable Service
	Summary of Callable Services

	Chapter 3. Introducing PKA Cryptography and Using PKA Callable Services
	PKA Key Algorithms
	PKA Master Keys
	Operational private keys

	PKA Callable Services
	Callable Services Supporting Digital Signatures
	Digital Signature Generate Callable Service (CSNDDSG and CSNFDSG)
	Digital Signature Verify Callable Service (CSNDDSV and CSNFDSG)

	Callable Services for PKA Key Management
	PKA Key Generate Callable Service (CSNDPKG and CSNFPKG)
	PKA Key Import Callable Service (CSNDPKI and CSNFPKI)
	PKA Key Token Build Callable Service (CSNDPKB and CSNFPKB)
	PKA Key Token Change Callable Service (CSNDKTC and CSNFKTC)
	PKA Key Translate (CSNDPKT and CSNFPKT)
	PKA Public Key Extract Callable Service (CSNDPKX and CSNFPKX)

	Callable Services to Update the Public Key Data Set (PKDS)
	PKDS Key Record Create Callable Service (CSNDKRC and CSNFKRC)
	PKDS Key Record Delete Callable Service (CSNDKRD and CSNFKRD)
	PKDS Key Record Read Callable Service (CSNDKRR and CSNFKRR)
	PKDS Key Record Write Callable Service (CSNDKRW and CSNFKRW)

	Callable Services for Working with Retained Private Keys
	Retained Key Delete Callable Service (CSNDRKD and CSNFRKD)
	Retained Key List Callable Service (CSNDRKL and CSNFKRL)
	Clearing the retained keys on a coprocessor

	Callable Services for SET Secure Electronic Transaction
	SET Block Compose Callable Service (CSNDSBC and CSNFSBC)
	SET Block Decompose Callable Service (CSNDSBD and CSNFSBD)

	PKA Key Tokens
	PKA Key Management
	Security and Integrity of the Token
	Key Identifier for PKA Key Token
	Key Label
	Key Token

	The Transaction Security System and ICSF Portability
	Summary of the PKA Callable Services

	Chapter 4. Introducing PKCS #11 and using PKCS #11 callable services
	PKCS #11 Management Services
	Attribute List
	Handles

	Part 2. CCA Callable Services
	Chapter 5. Managing Symmetric Cryptographic Keys
	Clear Key Import (CSNBCKI and CSNECKI)
	Format
	Parameters
	Usage Notes

	Control Vector Generate (CSNBCVG and CSNECVG)
	Format
	Parameters
	Usage Notes

	Control Vector Translate (CSNBCVT and CSNECVT)
	Format
	Parameters
	Restrictions
	Usage Notes

	Cryptographic Variable Encipher (CSNBCVE and CSNECVE)
	Format
	Parameters
	Restrictions
	Usage Notes

	Data Key Export (CSNBDKX and CSNEDKX)
	Format
	Parameters
	Restrictions
	Usage Notes

	Data Key Import (CSNBDKM and CSNEDKM)
	Format
	Parameters
	Restrictions
	Usage Notes

	Diversified Key Generate (CSNBDKG and CSNEDKG)
	Format
	Parameters
	Restrictions
	Usage Notes

	ECC Diffie-Hellman (CSNDEDH and CSNFEDH)
	Format
	Parameters
	Restrictions
	Usage Notes

	Key Export (CSNBKEX and CSNEKEX)
	Format
	Parameters
	Restrictions
	Usage Notes
	Systems with the Cryptographic Coprocessor Feature.
	Systems with a PCI X Cryptographic Coprocessor, Crypto Express2 Coprocessor, or Crypto Express3 Coprocessor

	Key Generate (CSNBKGN and CSNEKGN)
	Format
	Parameters
	Restrictions
	Usage Notes
	System Encryption Algorithm Marks (CCF systems only)
	Key type and key form combinations

	Key Generate2 (CSNBKGN2 and CSNEKGN2)
	Format
	Parameters
	Usage Notes

	Key Import (CSNBKIM and CSNEKIM)
	Format
	Parameters
	Restrictions
	Usage Notes
	Systems with the Cryptographic Coprocessor Feature
	Systems with the PCI X Cryptographic Coprocessor, Crypto Express2 Coprocessor, or Crypto Express3 Coprocessor

	Key Part Import (CSNBKPI and CSNEKPI)
	Format
	Parameters
	Restrictions
	Usage Notes
	Related Information

	Key Part Import2 (CSNBKPI2 and CSNEKPI2)
	Format
	Parameters
	Usage Notes

	Key Test (CSNBKYT and CSNEKYT)
	Format
	Parameters
	Restrictions
	Usage Notes

	Key Test2 (CSNBKYT2 and CSNEKYT2)
	Format
	Parameters
	Usage Notes

	Key Test Extended (CSNBKYTX and CSNEKTX)
	Format
	Parameters
	Restrictions
	Usage Notes

	Key Token Build (CSNBKTB and CSNEKTB)
	Format
	Parameters
	Restrictions
	Usage Notes
	Related Information

	Key Token Build2 (CSNBKTB2 and CSNEKTB2)
	Format
	Parameters
	Usage Notes

	Key Translate (CSNBKTR and CSNEKTR)
	Format
	Parameters
	Restrictions
	Usage Notes

	Key Translate2 (CSNBKTR2 and CSNEKTR2)
	Format
	Parameters
	Restrictions
	Usage Notes

	Multiple Clear Key Import (CSNBCKM and CSNECKM)
	Format
	Parameters
	Usage Notes

	Multiple Secure Key Import (CSNBSKM and CSNESKM)
	Format
	Parameters
	Usage Notes

	PKA Decrypt (CSNDPKD and CSNFPKD)
	Format
	Parameters
	Restrictions
	Usage Notes

	PKA Encrypt (CSNDPKE and CSNFPKE)
	Format
	Parameters
	Restrictions
	Usage Notes

	Prohibit Export (CSNBPEX and CSNEPEX)
	Format
	Parameters
	Usage Notes

	Prohibit Export Extended (CSNBPEXX and CSNEPEXX)
	Format
	Parameters
	Restrictions
	Usage Notes

	Random Number Generate (CSNBRNG, CSNERNG, CSNBRNGL and CSNERNGL)
	Format
	Parameters
	Usage Notes

	Remote Key Export (CSNDRKX and CSNFRKX)
	Format
	Parameters
	Usage Notes

	Restrict Key Attribute (CSNBRKA and CSNERKA)
	Format
	Parameters
	Usage Notes

	Secure Key Import (CSNBSKI and CSNESKI)
	Format
	Parameters
	Usage Notes

	Secure Key Import2 (CSNBSKI2 and CSNESKI2)
	Format
	Parameters
	Usage Notes

	Symmetric Key Export (CSNDSYX and CSNFSYX)
	Format
	Parameters
	Restrictions
	Usage Notes

	Symmetric Key Generate (CSNDSYG and CSNFSYG)
	Format
	Parameters
	Restrictions
	Usage Notes

	Symmetric Key Import (CSNDSYI and CSNFSYI)
	Format
	Parameters
	Restrictions
	Usage Notes

	Symmetric Key Import2 (CSNDSYI2 and CSNFSYI2)
	Format
	Parameters
	Restrictions
	Usage Notes

	Transform CDMF Key (CSNBTCK and CSNETCK)
	Format
	Parameters
	Restrictions
	Usage Notes

	Trusted Block Create (CSNDTBC and CSNFTBC)
	Format
	Parameters
	Usage Notes

	TR-31 Export (CSNBT31X and CSNET31X)
	Format
	Parameters
	Restrictions
	Usage Notes

	TR-31 Import (CSNBT31I and CSNET31I)
	Format
	Parameters
	Restrictions
	Usage Notes

	TR-31 Optional Data Build (CSNBT31O and CSNET31O)
	Format
	Parameters
	Restrictions
	Usage Notes

	TR-31 Optional Data Read (CSNBT31R and CSNET31R)
	Format
	Parameters
	Restrictions
	Usage Notes

	TR-31 Parse (CSNBT31P and CSNET31P)
	Format
	Parameters
	Restrictions
	Usage Notes

	User Derived Key (CSFUDK and CSFUDK6)
	Format
	Parameters
	Usage Notes

	Chapter 6. Protecting Data
	Modes of Operation
	Electronic Code Book (ECB) Mode
	Cipher Block Chaining (CBC) Mode
	Cipher Feedback (CFB) Mode
	Output Feedback (OFB) Mode
	Galois/Counter Mode (GCM)
	Triple DES Encryption

	Ciphertext Translate (CSNBCTT or CSNBCTT1 and CSNECTT or CSNECTT1)
	Choosing Between CSNBCTT and CSNBCTT1
	Format
	Parameters
	Restrictions
	Usage Notes

	Decipher (CSNBDEC or CSNBDEC1 and CSNEDEC or CSNEDEC1)
	Choosing Between CSNBDEC and CSNBDEC1
	Format
	Parameters
	Restrictions
	Usage Notes
	Related Information

	Decode (CSNBDCO and CSNEDCO)
	Considerations
	Format
	Parameters
	Restrictions
	Usage Notes

	Encipher (CSNBENC or CSNBENC1 and CSNEENC or CSNEENC1)
	Choosing between CSNBENC and CSNBENC1
	Format
	Parameters
	Restrictions
	Usage Notes
	Related Information

	Encode (CSNBECO and CSNEECO)
	Considerations
	Format
	Parameters
	Restrictions
	Usage Notes

	Symmetric Algorithm Decipher (CSNBSAD or CSNBSAD1 and CSNESAD or CSNESAD1)
	Choosing Between CSNBSAD and CSNBSAD1 or CSNESAD and CSNESAD1
	Format
	Parameters
	Usage Notes

	Symmetric Algorithm Encipher (CSNBSAE or CSNBSAE1 and CSNESAE or CSNESAE1)
	Choosing between CSNBSAE and CSNBSAE1 or CSNESAE and CSNESAE1
	Format
	Parameters
	Usage Notes

	Symmetric Key Decipher (CSNBSYD or CSNBSYD1 and CSNESYD or CSNESYD1)
	Choosing Between CSNBSYD and CSNBSYD1
	Format
	Parameters
	Usage Notes
	Related Information

	Symmetric Key Encipher (CSNBSYE or CSNBSYE1 and CSNESYE or CSNESYE1)
	Choosing between CSNBSYE and CSNBSYE1
	Format
	Parameters
	Usage Notes
	Related Information

	Chapter 7. Verifying Data Integrity and Authenticating Messages
	How MACs are Used
	How Hashing Functions Are Used
	How MDCs Are Used

	HMAC Generate (CSNBHMG or CSNBHMG1 and CSNEHMG or CSNEHMG1)
	Choosing Between CSNBHMG and CSNBHMG1
	Format
	Parameters
	Usage Notes

	HMAC Verify (CSNBHMV or CSNBHMV1 and CSNEHMV or CSNEHMV1)
	Choosing Between CSNBHMV and CSNBHMV1
	Format
	Parameters
	Usage Notes

	MAC Generate (CSNBMGN or CSNBMGN1 and CSNEMGN or CSNEMGN1)
	Choosing Between CSNBMGN and CSNBMGN1
	Format
	Parameters
	Usage Notes
	Related Information

	MAC Verify (CSNBMVR or CSNBMVR1 and CSNEMVR or CSNEMVR1)
	Choosing Between CSNBMVR and CSNBMVR1
	Format
	Parameters
	Usage Notes
	Related Information

	MDC Generate (CSNBMDG or CSNBMDG1 and CSNEMDG or CSNEMDG1)
	Choosing Between CSNBMDG and CSNBMDG1
	Format
	Parameters
	Usage Notes

	One-Way Hash Generate (CSNBOWH or CSNBOWH1 and CSNEOWH or CSNEOWH1)
	Format
	Parameters
	Usage Notes

	Symmetric MAC Generate (CSNBSMG or CSNBSMG1 and CSNESMG or CSNESMG1)
	Choosing Between CSNBSMG and CSNBSMG1 or CSNESMG and CSNESMG1
	Format
	Parameters
	Usage Notes

	Symmetric MAC Verify (CSNBSMV or CSNBSMV1 and CSNESMV or CSNESMV1)
	Choosing Between CSNBSMV and CSNBSMV1 or CSNESMV and CSNESMV1
	Format
	Parameters
	Usage Notes

	Chapter 8. Financial Services
	How Personal Identification Numbers (PINs) are Used
	How VISA Card Verification Values Are Used
	Translating Data and PINs in Networks
	Working with Europay–MasterCard–Visa smart cards
	PIN Callable Services
	Generating a PIN
	Encrypting a PIN
	Generating a PIN Validation Value from an Encrypted PIN Block
	Verifying a PIN
	Translating a PIN
	Algorithms for Generating and Verifying a PIN
	Using PINs on Different Systems
	PIN-Encrypting Keys
	Derived Unique Key Per Transaction Algorithms
	Encrypted PIN Translate
	Encrypted PIN Verify

	ANSI X9.8 PIN Restrictions
	ANSI X9.8 PIN - Enforce PIN block restrictions
	ANSI X9.8 PIN - Allow modification of PAN
	ANSI X9.8 PIN - Allow only ANSI PIN blocks
	ANSI X9.8 PIN – Use stored decimalization tables only

	The PIN Profile
	PIN Block Format
	PIN Block Format and PIN Extraction Method Keywords

	Enhanced PIN Security Mode
	Format Control
	Pad Digit
	Recommendations for the Pad Digit

	Current Key Serial Number
	Decimalization Tables

	Clear PIN Encrypt (CSNBCPE and CSNECPE)
	Format
	Parameters
	Restrictions
	Usage Notes

	Clear PIN Generate (CSNBPGN and CSNEPGN)
	Format
	Parameters
	Restrictions
	Usage Notes
	Related Information

	Clear PIN Generate Alternate (CSNBCPA and CSNECPA)
	Format
	Parameters
	Restrictions
	Usage Notes

	CVV Key Combine (CSNBCKC and CSNECKC)
	Format
	Parameters
	Restrictions
	Usage Notes

	Encrypted PIN Generate (CSNBEPG and CSNEEPG)
	Format
	Parameters
	Restrictions
	Usage Notes

	Encrypted PIN Translate (CSNBPTR and CSNEPTR)
	Format
	Parameters
	Restrictions
	Usage Notes

	Encrypted PIN Verify (CSNBPVR and CSNEPVR)
	Format
	Parameters
	Restrictions
	Usage Notes
	Related Information

	PIN Change/Unblock (CSNBPCU and CSNEPCU)
	Format
	Parameters
	Usage Notes

	Secure Messaging for Keys (CSNBSKY and CSNESKY)
	Format
	Parameters
	Usage Notes

	Secure Messaging for PINs (CSNBSPN and CSNESPN)
	Format
	Parameters
	Usage Notes

	SET Block Compose (CSNDSBC and CSNFSBC)
	Format
	Parameters
	Restrictions
	Usage Notes

	SET Block Decompose (CSNDSBD and CSNFSBD)
	Format
	Parameters
	Restrictions
	Usage Notes

	Transaction Validation (CSNBTRV and CSNETRV)
	Format
	Parameters
	Usage Notes

	VISA CVV Service Generate (CSNBCSG and CSNECSG)
	Format
	Parameters
	Restrictions
	Usage Notes

	VISA CVV Service Verify (CSNBCSV and CSNECSV)
	Format
	Parameters
	Restrictions
	Usage Notes

	Chapter 9. Using Digital Signatures
	Digital Signature Generate (CSNDDSG and CSNFDSG)
	Format
	Parameters
	Restrictions
	Usage Notes

	Digital Signature Verify (CSNDDSV and CSNFDSV)
	Format
	Parameters
	Restrictions
	Usage Notes

	Chapter 10. Managing PKA Cryptographic Keys
	PKA Key Generate (CSNDPKG and CSNFPKG)
	Format
	Parameters
	Restrictions
	Usage Notes

	PKA Key Import (CSNDPKI and CSNFPKI)
	Format
	Parameters
	Restrictions
	Usage Notes

	PKA Key Token Build (CSNDPKB and CSNFPKB)
	Format
	Parameters
	Usage Notes

	PKA Key Token Change (CSNDKTC and CSNFKTC)
	Format
	Parameters
	Usage Notes

	PKA Key Translate (CSNDPKT and CSNFPKT)
	Format
	Parameters
	Restrictions
	Usage Notes

	PKA Public Key Extract (CSNDPKX and CSNFPKX)
	Format
	Parameters
	Usage Notes

	Retained Key Delete (CSNDRKD and CSNFRKD)
	Format
	Parameters
	Usage Notes

	Retained Key List (CSNDRKL and CSNFRKL)
	Format
	Parameters
	Usage Notes

	Chapter 11. Key Data Set Management
	CKDS Key Record Create (CSNBKRC and CSNEKRC)
	Format
	Parameters
	Restrictions
	Usage Notes

	CKDS Key Record Create2 (CSNBKRC2 and CSNEKRC2)
	Format
	Parameters
	Usage Notes

	CKDS Key Record Delete (CSNBKRD and CSNEKRD)
	Format
	Parameters
	Restrictions
	Usage Notes

	CKDS Key Record Read (CSNBKRR and CSNEKRR)
	Format
	Parameters
	Restrictions
	Usage Notes

	CKDS Key Record Read2 (CSNBKRR2 and CSNEKRR2)
	Format
	Parameters
	Usage Notes

	CKDS Key Record Write (CSNBKRW and CSNEKRW)
	Format
	Parameters
	Restrictions
	Usage Notes
	Related Information

	CKDS Key Record Write2 (CSNBKRW2 and CSNEKRW2)
	Format
	Parameters
	Usage Notes

	Coordinated KDS Administration (CSFCRC and CSFCRC6)
	Format
	Parameters
	Usage Notes

	PKDS Key Record Create (CSNDKRC and CSNFKRC)
	Format
	Parameters
	Usage Notes

	PKDS Key Record Delete (CSNDKRD and CSNFKRD)
	Format
	Parameters
	Restrictions
	Usage Notes

	PKDS Key Record Read (CSNDKRR and CSNFKRR)
	Format
	Parameters
	Usage Notes

	PKDS Key Record Write (CSNDKRW and CSNFKRW)
	Format
	Parameters
	Restrictions
	Usage Notes

	Chapter 12. Utilities
	Character/Nibble Conversion (CSNBXBC and CSNBXCB)
	Format
	Parameters
	Usage Notes

	Code Conversion (CSNBXEA and CSNBXAE)
	Format
	Parameters
	Usage Notes

	ICSF Query Algorithm (CSFIQA and CSFIQA6)
	Format
	Parameters
	Usage Notes

	ICSF Query Facility (CSFIQF and CSFIQF6)
	Format
	Parameters
	Usage Notes

	X9.9 Data Editing (CSNB9ED)
	Format
	Parameters
	Usage Notes

	Chapter 13. Trusted Key Entry Workstation Interfaces
	PCI Interface Callable Service (CSFPCI and CSFPCI6)
	Format
	Parameters
	Usage Notes

	PKSC Interface Callable Service (CSFPKSC)
	Format
	Parameters
	Usage Notes

	Chapter 14. Managing Keys According to the ANSI X9.17 Standard
	ANSI X9.17 EDC Generate (CSNAEGN and CSNGEGN)
	Format
	Parameters
	Usage Notes

	ANSI X9.17 Key Export (CSNAKEX and CSNGKEX)
	Format
	Parameters
	Usage Notes

	ANSI X9.17 Key Import (CSNAKIM and CSNGKIM)
	Format
	Parameters
	Usage Notes

	ANSI X9.17 Key Translate (CSNAKTR and CSNGKTR)
	Format
	Parameters
	Usage Notes

	ANSI X9.17 Transport Key Partial Notarize (CSNATKN and CSNGTKN)
	Format
	Parameters
	Usage Notes

	Part 3. PKCS #11 Callable Services
	Chapter 15. Using PKCS #11 Tokens and Objects
	PKCS #11 Derive multiple keys (CSFPDMK and CSFPDMK6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Derive key (CSFPDVK and CSFPDVK6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Get attribute value (CSFPGAV and CSFPGAV6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Generate key pair (CSFPGKP and CSFPGKP6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Generate secret key (CSFPGSK and CSFPGSK6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Generate HMAC (CSFPHMG and CSFPHMG6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Verify HMAC (CSFPHMV and CSFPHMV6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 One-way hash, sign, or verify (CSFPOWH and CSFPOWH6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Private key sign (CSFPPKS and CSFPPKS6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Public key verify (CSFPPKV and CSFPPKV6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Pseudo-random function (CSFPPRF and CSFPPRF6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Set attribute value (CSFPSAV and CSFPSAV6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Secret key decrypt (CSFPSKD and CSFPSKD6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Secret key encrypt (CSFPSKE and CSFPSKE6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Token record create (CSFPTRC and CSFPTRC6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Token record delete (CSFPTRD and CSFPTRD6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Token record list (CSFPTRL and CSFPTRL6)
	Format
	Parameters
	Authorization
	Usage Notes

	PKCS #11 Unwrap key (CSFPUWK and CSFPUWK6)
	Format
	Parameters
	Authorization

	PKCS #11 Wrap key (CSFPWPK and CSFPWPK6)
	Format
	Parameters
	Authorization

	Part 4. Appendixes
	Appendix A. ICSF and TSS Return and Reason Codes
	Return Codes and Reason Codes
	Return Codes
	Reason Codes for Return Code 0 (0)
	Reason Codes for Return Code 4 (4)
	Reason Codes for Return Code 8 (8)
	Reason Codes for Return Code C (12)
	Reason Codes for Return Code 10 (16)

	Appendix B. Key Token Formats
	AES Key Token Formats
	AES Internal Key Token
	Token Validation Value

	DES Key Token Formats
	DES Internal Key Token
	DES External Key Token
	External RKX DES Key Token
	DES Null Key Token

	Variable-length Symmetric Key Token Formats
	Variable-length Symmetric Key Token
	Variable-length Symmetric Null Key Token

	PKA Key Token Formats
	PKA Null Key Token
	RSA Key Token Formats
	RSA Public Key Token
	RSA Private External Key Token
	RSA Private Internal Key Token

	DSS Key Token Formats
	DSS Public Key Token
	DSS Private External Key Token
	DSS Private Internal Key Token

	ECC Key Token Format
	Associated Data Format for ECC Token
	AESKW Wrapped Payload Format for ECC Private Key Token

	Trusted Block Key Token
	Trusted block sections
	Trusted block integrity
	Number representation in trusted blocks
	Format of trusted block sections

	Appendix C. Control Vectors and Changing Control Vectors with the CVT Callable Service
	Control Vector Table
	Specifying a Control-Vector-Base Value

	Changing Control Vectors with the Control Vector Translate Callable Service
	Providing the Control Information for Testing the Control Vectors
	Mask Array Preparation
	Selecting the Key-Half Processing Mode
	When the Target Key Token CV Is Null
	Control Vector Translate Example

	Appendix D. Coding Examples
	C
	COBOL
	Assembler H
	PL/1

	Appendix E. Using ICSF with BSAFE
	Some BSAFE Basics
	Computing Message Digests and Hashes
	Generating Random Numbers
	Encrypting and Decrypting with DES
	Generating and Verifying RSA Digital Signatures

	Encrypting and Decrypting with RSA
	Using the New Function Calls in Your BSAFE Application
	Using the BSAFE KI_TOKEN
	ICSF Triple DES via BSAFE
	Retrieving ICSF Error Information

	Appendix F. Cryptographic Algorithms and Processes
	PIN Formats and Algorithms
	PIN Notation
	PIN Block Formats
	ANSI X9.8
	ISO Format 1
	ISO Format 2
	VISA Format 2
	VISA Format 3
	IBM 4700 Encrypting PINPAD Format
	IBM 3624 Format
	IBM 3621 Format
	ECI Format 2
	ECI Format 3

	PIN Extraction Rules
	Encrypted PIN Verify Callable Service
	Clear PIN Generate Alternate Callable Service
	Encrypted PIN Translate Callable Service
	PIN Change/Unblock Callable Service

	IBM PIN Algorithms
	3624 PIN Generation Algorithm
	German Banking Pool PIN Generation Algorithm
	PIN Offset Generation Algorithm
	3624 PIN Verification Algorithm
	German Banking Pool PIN Verification Algorithm

	VISA PIN Algorithms
	PVV Generation Algorithm
	PVV Verification Algorithm
	Interbank PIN Generation Algorithm

	Cipher Processing Rules
	CBC and ANSI X3.106
	ANSI X9.23 and IBM 4700
	Segmenting
	Cipher Last-Block Rules

	CUSP
	The Information Protection System (IPS)
	PKCS Padding Method
	PKCS Padding Method (Example 1)
	PKCS Padding Method (Example 2)

	Wrapping Methods for Symmetric Key Tokens
	ECB Wrapping of DES Keys (Original Method)
	CBC Wrapping of AES Keys
	Enhanced CBC Wrapping of DES Keys (Enhanced Method)
	Wrapping key derivation for enhanced wrapping of DES keys
	Variable length token (AESKW method)

	PKA92 Key Format and Encryption Process
	ANSI X9.17 Partial Notarization Method
	Partial Notarization
	Notations Used in the Calculations
	Partial Notarization Calculation for a Double-Length AKEK
	Partial Notarization Calculation for a Single-Length AKEK

	Transform CDMF Key Algorithm
	Formatting Hashes and Keys in Public-Key Cryptography
	ANSI X9.31 Hash Format
	PKCS #1 Formats

	Visa and EMV-related smart card formats and processes
	Deriving the smart-card-specific authentication code
	Constructing the PIN-block for transporting an EMV smart-card PIN
	Deriving the CCA TDES-XOR session key
	Deriving the EMV TDESEMVn tree-based session key
	PIN-block self-encryption

	Key Test Verification Pattern Algorithms
	DES Algorithm (single- and double-length keys)
	SHAVP1 Algorithm

	Appendix G. EBCDIC and ASCII Default Conversion Tables
	Appendix H. Access Control Points and Callable Services
	Callable Service Access Control Points

	Appendix I. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Numerics
	A
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X

