
z/OS
Cryptographic Services
Integrated Cryptographic Service Facility

System Programmer's Guide

SA22-7520-16

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
325.

This edition applies to Version 1 Release 13 of z/OS (5694–A01) and to all subsequent releases and modifications
until otherwise indicated in new editions. This edition applies to ICSF FMID HCR7790.

This edition replaces SA22-7520-15.

© Copyright IBM Corporation 1997, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . ix

Tables . xi

About this information . xiii
Who should use this information xiii
How to use this information . xiii
Where to find more information xv
Do You Have Problems, Comments, or Suggestions? xvi

How to send your comments to IBM xvii
If you have a technical problem xvii

Summary of changes . xix
Changes made in z/OS Version 1 Release 13 xix
Changes made in z/OS Version 1 Release 12 xx
Changes made in z/OS Version 1 Release 11 xx

Chapter 1. Introduction to z/OS ICSF 1
Hardware Features . 1

Cryptographic Hardware . 1
Server Hardware. 3
z/OS ICSF FMIDs . 6

ICSF Features . 7
The Cryptographic Key Data Set (CKDS). 8
The Public Key Data Set (PKDS) 9
The Token Data Set (TKDS) . 10
Additional Background Information. 10

Running PCF applications on z/OS ICSF 10
Running 4753-HSP applications on ICSF 11
Using RMF and SMF to monitor z/OS ICSF events 11
Controlling access to ICSF 12

Steps prior to starting installation 12

Chapter 2. Installation, Initialization, and Customization 13
Steps for installation and initialization. 13

Steps to customize SYS1.PARMLIB 14
Creating the CKDS . 15
Creating the PKDS . 19
Creating the TKDS . 23
Steps to create the Installation Options Data Set 26
Steps to create the ICSF Startup Procedure 28
Steps to provide access to the ICSF panels 30
Steps to start ICSF for the first time 31
MK Initialization for SMP/E - CCF Systems Only 36

Customizing ICSF after the first start 37
Parameters in the installation options data set 38
Improving CKDS performance 51
Dispatching priority of ICSF 52
Creating ICSF exits and generic services 52

Chapter 3. Migration . 53
Terminology . 53

© Copyright IBM Corp. 1997, 2011 iii

Migrating from earlier software releases. 54
Callable Services . 54
Ensure the expected master key support is available 60
Ensure that the CSFPUTIL utility is not used to initialize a PKDS 61
Modify ICSF startup procedure to run new startup program 62
Ensure PKCS #11 applications call C_Finalize() prior to calling dlclose() . . . 62
ICSF Key Data Sets . 62
Changing the RSA master key 64
Installation Options Data Set 65
Function Restrictions. 66
CICS Attachment Facility . 66
Dynamic LPA Load . 67
Special Secure Mode . 67
Resource Manager Interface (RMF) 68
System Abend Codes . 68
SMF Records . 69
TKE Workstation . 69

Migrating from the IBM Eserver zSeries 900 70
Callable Services . 70
Functions Not Supported . 71
Setup Considerations . 71
Programming Considerations. 71

Migrating from 4753-HSP . 72

Chapter 4. Operating ICSF . 75
Starting and stopping ICSF . 76
Modifying ICSF . 78
Using different configurations. 78

Configuring the z890, z990, z9 EC, z9 BC, z10 EC, z10 BC, and z196 . . . 78
Configuring the IBM Eserver zSeries 900 80

Adding and Removing Cryptographic Coprocessors 82
Adding Cryptographic Coprocessors 83
Steps for activating/deactivating cryptographic coprocessors 83
Steps to configure on/off cryptographic coprocessors 84
Steps for enabling/disabling cryptographic coprocessors (PCICC, PCIXCC,

CEX2C, and CEX3C). 84
Steps for enabling/disabling cryptographic coprocessors (CCF) 86

Performance considerations for using installation options 86
Dispatching priority of ICSF . 87
VTAM session-level encryption 87
System SSL encryption . 87
Access method services cryptographic option 87
Remote Key Loading. 88
Event Recording . 88

System Management Facilities (SMF) Recording 88
Message Recording . 98

Security Considerations. 98
Controlling the program environment 98
Controlling access to KGUP 98
Controlling access to CSFDUTIL 99
Controlling access to the callable services 99
Controlling access to cryptographic keys 99
Controlling access to secure key tokens 100
Scheduling changes for cryptographic keys 100
Controlling access to administrative panel functions 100
Obtaining RACF SMF log records 100

iv z/OS V1R13 System Programmer's Guide

||

||

Debugging Aids . 101
Component Trace . 101
Abnormal Endings . 104
IPCS Formatting Routine. 104
Detecting ICSF Serialization Contention Conditions 107

Chapter 5. Installation Exits 111
Types of exits . 111

Mainline exits . 111
Exits for the services . 112
The PCF CKDS conversion program exit 112
The Single-record, Read-write exit 112
The cryptographic key data set entry retrieval exit 112
Security exits . 113
The KGUP exit . 113

Entry and return specifications 113
Registers at entry . 113
Registers at return . 114

Exits environment . 115
Mainline exits . 115
service exits . 115
CKDS entry retrieval exit . 115
KGUP, Conversion Programs, and Single-record, Read-write exits 115
Security exits . 115

Exit recovery . 115
Mainline installation exits . 116

Purpose and use of the exits 116
Environment of the exits . 117
Installing the exits . 117
Input . 118
Return Codes . 123

Services installation exits. 123
Purpose and use of the exits 124
Environment of the exits . 124
Installing the exits . 124
Input . 128
Return Codes . 133

Cryptographic key data set entry retrieval installation exit 134
Purpose and use of the exit. 134
Environment of the exit . 134
Installing the exit . 135
Input . 135
Return codes . 136

PCF conversion program installation exit 136
Purpose and use of the exit. 137
Environment of the exit . 137
Installing the exit . 137
Input . 138
Return codes . 139

Single-record, Read-write installation exit 139
Purpose and use of the exit. 140
Environment of the exit . 140
Installing the exit . 140
Input . 141
Return codes . 142

Exit points for security installation exits 143

Contents v

Security installation exits . 143
Purpose and use of the exits 143
Environment of the exits . 143
Installing the exits . 144
Input . 145
Return codes . 146

Key generator utility program installation exit 147
Purpose and use of the exit. 147
Environment of the exit . 148
Installing the exit . 148
Input . 149
The SET statement . 157
Return codes . 157

Chapter 6. Installation-Defined Callable Services 159
Writing a callable service. 159

Contents of Registers . 160
Security access control checking 161
Checking the parameters. 161
Link-Editing the callable service 161

Defining a callable service . 161
Writing a service stub . 162

Example of a Service Stub 163

Chapter 7. Converting a CKDS from fixed length to variable length record
format . 169

Chapter 8. Migration from PCF to z/OS ICSF 173
Running PCF and z/OS ICSF on the same system 173

Running in Compatibility Mode 174
Running in Coexistence Mode 174
Changing the master key in compatibility or coexistence mode 175
Running in noncompatibility mode 176
Specifying compatibility modes during migration 176

Converting a PCF CKDS to ICSF format 177
How the PCF conversion program runs 177
Using the conversion program override file 179
Running the Conversion Program 184

Chapter 9. Compatibility and Coexistence of 4753-HSP and ICSF 191
Running 4753-HSP and ICSF on the same z/OS system 191

Appendix A. Diagnosis Reference Information 193
Cryptographic Key Data Set (CKDS) Formats 193

Fixed-Length Cryptographic Key Data Set (CKDS) Record Format 193
Variable-Length Cryptographic Key Data Set (CKDS) Record Format . . . 195

Public Key Data Set (PKDS) Format 197
Format of the PKDS Header Record 197
Format of the PKDS Record 198

Token data set (TKDS) format 198
Format of the header record of the token data set 199
Format of the token and object records 199

AES Key Token Format . 217
AES Internal Key Token . 217
Token Validation Value . 218

DES Key Token Formats . 218

vi z/OS V1R13 System Programmer's Guide

DES Internal Key Token . 218
DES External Key Token . 220
External RKX DES Key Token 220
DES Null Key Token . 222

Variable-length Symmetric Key Token Formats 222
Variable-length Symmetric Key Token 222
Variable-length Symmetric Null Key Token 231

PKA Key Token Formats . 232
Internal PKA Tokens . 232
PKA Null Key Token . 233
RSA Key Token Formats . 233
DSS Key Token Formats . 243
ECC Key Token Format . 247
Trusted Block Key Token . 251

Data Areas . 266
The Cryptographic Communication Vector Table (CCVT) 266
The Cryptographic Communication Vector Table Extension (CCVE) 273
DES Master Key Verification Pattern Block (MKVB) 278
Generic Service Table (CSFMGST) 278

RMF Measurements Table . 279

Appendix B. ICSF SMF Records 283
Record Type 82 (52) — ICSF Record 283

Record Environment . 284
Record Mapping . 284
Subtype 1 . 286
Subtype 3 . 287
Subtype 4 . 287
Subtype 5 . 287
Subtype 6 . 288
Subtype 7 . 288
Subtype 8 . 288
Subtype 9 . 289
Subtype 10 . 289
Subtype 11 . 289
Subtype 12 . 290
Subtype 13 . 290
Subtype 14 . 290
Subtype 15 . 291
Subtype 16 . 291
Subtype 17 . 292
Subtype 18 . 292
Subtype 19 . 292
Subtype 20 . 293
Subtype 21 . 293
Subtype 22 . 294
Subtype 23 . 294
Subtype 24 . 294
Subtype 25 . 295
Subtype 26 . 295
Subtype 27 . 296
Subtype 28 . 297
Subtype 29 . 297

Appendix C. CICS-ICSF Attachment Facility 299
Installing the CICS-ICSF Attachment Facility 299

Contents vii

||
||
||

Steps for installing the CICS-ICSF attachment facility 299

Appendix D. Helpful Hints for ICSF First Time Startup. 305
Checklist for First-Time Startup of ICSF 305

Step 1. Hardware Setup - CCF Systems 305
Step 1. Hardware Setup - PCIXCC/CEX2C/CEX3C Systems 305
Step 2. LPAR Activation Profiles - CCF Systems 306
Step 2. LPAR Activation Profiles - PCIXCC, CEX2C, and CEX3C Systems 307
Step 3. ICSF Setup . 307
Step 4. TKE Setup . 308
Step 5. ICSF Startup . 308
Step 6. Loading Master Keys and Initializing the CKDS through ICSF Panels 309
Step 7. Customizing TKE and Loading Master Keys 312
Step 8. CICS-ICSF Attachment Facility Setup 315
Step 9. Complete ICSF initialization 315

Commonly Encountered ICSF First Time Setup/initialization Messages 315

Appendix E. Using AMS REPRO Encryption. 317
Steps for setting up ICSF . 317

Appendix F. z890, z990, z9 EC, z9 BC, z10 EC, z10 BC, or z196 without a
PCIXCC, CEX2C, or CEX3C 319

Applications and programs . 319
Callable services. 319
ICSF Setup and Initialization 321
Secure Sockets Layer (SSL) 321
TKE workstation . 321

Appendix G. Accessibility . 323
Using assistive technologies 323
Keyboard navigation of the user interface. 323
z/OS information . 323

Notices . 325
Programming Interface Information 326
Trademarks. 326

Index . 329

viii z/OS V1R13 System Programmer's Guide

Figures

1. Two Crypto PCICAs on a Processor Complex Running in LPAR Mode 79
2. Multiple Crypto Coprocessors on a Complex Running in LPAR Mode 80
3. Two Crypto CPs on a Processor Complex Running in Single Image Mode. 81
4. Two Crypto Coprocessors and one PCICC on a Processor Complex Running in LPAR Mode 82
5. Primary Panel . 83
6. Coprocessor Management Panel . 84
7. EXPB Control Block for Mainline Exits . 118
8. EXPB Control Block in the Service Exits. 129
9. Example of a Service Entry and Exit . 160

10. Example of a Service Stub. 163
11. Example of a Conversion Initial Activity Report 187
12. Example of a Conversion Update Activity Report. 189

© Copyright IBM Corp. 1997, 2011 ix

x z/OS V1R13 System Programmer's Guide

Tables

1. z/OS ICSF FMIDs . 6
2. FMID and Hardware . 6
3. Exit Identifiers and Exit Invocations . 42
4. Summary of new and changed ICSF callable services 54
5. Coprocessor activation example . 60
6. Coprocessor activation example (ECC support based only on CEX3C coprocessors) 61
7. IPCS Symbols and Format References for the ICSF Control Blocks 107
8. DISPLAY GRS command syntax ICSF key data set ENQ resources 108
9. EXPB Control Block Format for Mainline Exits. 118

10. CSFEXIT1 Parameters . 120
11. CSFEXIT2 and CSFEXIT3 Parameters . 120
12. CSFEXIT4 and CSFEXIT5 Parameters . 121
13. Format of the Exit Name Table . 121
14. Services and Their ICSF Names . 125
15. Compatibility Services and Their ICSF Names 128
16. EXPB Control Block Format for Services . 129
17. SPB Control Block Format . 131
18. The CKDS Entry Retrieval Exit Parameters. 135
19. CVXP Control Block Format . 138
20. RWXP Control Block Format . 141
21. Parameters Received by the Security Service Exit 145
22. Parameters Received by the Security Key Exit 146
23. KGXP Control Block Format . 149
24. Format of Records in the Override File . 180
25. Cryptographic Key Data Set Header Record Format 193
26. Cryptographic Key Data Set Record Format . 194
27. Cryptographic Key Data Set Header Record Format 196
28. Variable-Length Cryptographic Key Data Set Record Format 197
29. Public Key Data Set Header Record Format . 197
30. Public Key Data Set Record Format . 198
31. Format of the header record of the token data set 199
32. Format of the common section of the token and object records 199
33. Format of the unique section of the token record 200
34. Format of the token object flags . 201
35. Format of the token certificate object . 202
36. Format of the token public key object (Version 0) 203
37. Format of the token public key object (Version 1) 204
38. Format of the token public key object (Version 2) 205
39. Format of the token private key object (Version 0) 207
40. Format of the token private key object (Version 1) 209
41. Format of the token private key object (Version 2) 211
42. Format of the token secret key object (Version 0) 213
43. Format of the token secret key object (Version 1) 214
44. Format of the token domain parameters object (Version 1) 214
45. Format of the token domain parameters object (Version 2) 215
46. Format of the token data object . 216
47. Internal Key Token Format . 217
48. Internal Key Token Format . 218
49. Format of External Key Tokens . 220
50. External RKX DES key-token format, version X'10' 221
51. Format of Null Key Tokens . 222
52. Variable-length Symmetric Key Token . 222
53. HMAC Algorithm Key-usage fields . 227

© Copyright IBM Corp. 1997, 2011 xi

||
||

||

||

||

||
||

54. AES Algorithm KEK Key-usage fields . 228
55. AES Algorithm Cipher Key Associated Data . 231
56. Variable-length Symmetric Null Token . 231
57. Format of PKA Null Key Tokens . 233
58. RSA Public Key Token . 233
59. RSA Private External Key Token Basic Record Format 234
60. RSA Private Key Token, 1024-bit Modulus-Exponent External Format 235
61. RSA Private Key Token, 4096-bit Modulus-Exponent External Format 236
62. RSA Private Key Token, 4096-bit Chinese Remainder Theorem External Format 237
63. RSA Private Internal Key Token Basic Record Format 238
64. RSA Private Internal Key Token, 1024-bit ME Form for Cryptographic Coprocessor Feature 239
65. RSA Private Internal Key Token, 1024-bit ME Form for PCICC, PCIXCC, CEX2C, or CEX3C 240
66. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format 241
67. DSS Public Key Token . 243
68. DSS Private External Key Token . 244
69. DSS Private Internal Key Token . 245
70. ECC Key Token Format . 247
71. Associated Data Format for ECC Private Key Token 250
72. AESKW Wrapped Payload Format for ECC Private Key Token 251
73. Trusted block header . 254
74. Trusted block trusted RSA public-key section (X'11') 255
75. Trusted block rule section (X'12') . 256
76. Summary of trusted block rule subsection . 257
77. Transport key variant subsection (X'0001' of trusted block rule section (X'12') 258
78. Transport key rule reference subsection (X'0002') of trusted block rule section (X'12') 258
79. Common export key parameters subsection (X'0003') of trusted block rule section (X'12') 259
80. Source key rule reference subsection (X'0004' of trusted block rule section (X'12') 261
81. Export key CCA token parameters subsection (X'0005') of trusted block rule section (X'12') 261
82. Trusted block key label (name) section X'13' . 263
83. Trusted block information section X'14' . 263
84. Summary of trusted block information subsections 264
85. Protection information subsection (X'0001') of trusted block information section (X'14') 264
86. Activation and expiration dates subsection (X'0002') of trusted block information section (X'14') 265
87. Trusted block application-defined data section X'15' 266
88. Cryptographic Communication Vector Table . 267
89. Cryptographic Communication Vector Table Extension. 273
90. DES Master Key Verification Pattern Block Format 278
91. Generic Service Table Block Format . 279
92. RMF Measurements Record Format . 279
93. SMF type 82 server user or end user audit section 285
94. Tag-Length-Value (TLV) triplet structure (SMF82AUD_TRIPLET) 285
95. TLV triplet tag values . 285

xii z/OS V1R13 System Programmer's Guide

||
||
||

About this information

This information supports z/OS (5694-A01). It describes how to initialize, customize,
operate, and diagnose the z/OS Integrated Cryptographic Service Facility (ICSF).
The z/OS Cryptographic Services includes these components:

v z/OS Integrated Cryptographic Service Facility (ICSF)

v z/OS Open Cryptographic Services Facility (OCSF)

v z/OS System Secure Socket Level Programming (SSL)

v z/OS Public Key Infrastructure Services (PKI)

ICSF is a software element of z/OS that works with the hardware cryptographic
feature and the Security Server (RACF) to provide secure, high-speed cryptographic
services. ICSF provides the application programming interfaces by which
applications request the cryptographic services.

Who should use this information
This information is intended for the system programmer. It describes the tasks that
a system programmer might perform:

v Programming installation options, installation-defined callable services, and
installation exits

v Creating the data sets that ICSF uses

v Migrating the system from the Cryptographic Unit Support Program (CUSP) and
Programmed Cryptographic Facility (PCF) to ICSF

v Migrating to z/OS ICSF

v Migrating from the IBM Network Security Processor Support Program (hereafter
called 4753-HSP) to ICSF

v Starting and stopping ICSF

v Checking event recording

v Planning for security and performance considerations

v Debugging and recovering from problems

Defining and writing installation-defined callable services and installation exit
routines is intended to be accomplished primarily by experienced system
programmers. This information assumes that the reader has an advanced
knowledge of z/OS.

How to use this information
This information is divided into descriptions of these tasks:

v Introducing ICSF

– Chapter 1, “Introduction to z/OS ICSF,” on page 1, introduces the
cryptographic key data set (CKDS), the public key data set (PKDS) and the
token data set (TKDS) and provides basic information about running PCF and
4753-HSP applications on ICSF and preparing for installation.

v Initializing ICSF

– Chapter 2, “Installation, Initialization, and Customization,” on page 13,
describes how to customize SYS1.PARMLIB, create the CKDS, the PKDS,
and the TKDS, the installations options data set, the startup procedure, and
provide access to the ICSF panels. It also explains how to setup for SMP/E

© Copyright IBM Corp. 1997, 2011 xiii

electronic delivery, change the parameters in the installation options data set
after the first start and introduces installation exits.

v Migration and coexistence issues

Chapter 8, “Migration from PCF to z/OS ICSF,” on page 173, describes how to
migrate application programs and cryptographic key data set information to z/OS
ICSF from the IBM cryptographic products CUSP/PCF.

Chapter 3, “Migration,” on page 53, describes migration to z/OS ICSF from
previous releases of ICSF.

Chapter 9, “Compatibility and Coexistence of 4753-HSP and ICSF,” on page 191,
gives a brief overview of migrating 4753-HSP key storage to ICSF CKDS.

v Customizing ICSF

– Chapter 6, “Installation-Defined Callable Services,” on page 159 gives
information that an experienced system programmer can use to write
installation-defined callable services. It also explains how to define these
callable services to ICSF, and how to write service stubs to access them.

– Chapter 5, “Installation Exits,” on page 111, describes the ICSF installation
exits you can use to customize ICSF.

v Operating ICSF

– Chapter 4, “Operating ICSF,” on page 75, describes how to add and remove
cryptographic coprocessors and to start, modify, and stop ICSF and other
operating considerations.

– “Event Recording” on page 88, describes ICSF event recording on the
Security Console and SMF.

v Planning ICSF

– “Security Considerations” on page 98, describes methods you can use to
protect ICSF resources.

v Diagnosing ICSF

– “Debugging Aids” on page 101, describes the use of component trace and
Interactive Problem Control System (IPCS) to debug ICSF.

– Appendix A, “Diagnosis Reference Information,” on page 193, maps the
cryptographic key data set and the cryptographic communication vector tables
as reference information for use in debugging. This appendix also maps DES
and PKA key tokens.

– Appendix B, “ICSF SMF Records,” on page 283 describes SMF Record type
82, which is used to record information about the events and operations of
ICSF. Record type 82 is written to the SMF data set at the completion of
certain cryptographic functions.

– Appendix C, “CICS-ICSF Attachment Facility,” on page 299, defines steps to
install the CICS-ICSF Attachment Facility.

– Appendix D, “Helpful Hints for ICSF First Time Startup,” on page 305, defines
helpful hints and that you may encounter when starting ICSF for the first time.

– Appendix E, “Using AMS REPRO Encryption,” on page 317, provides
information on using IDCAMS REPRO ENCIPHER and DECIPHER options
with ICSF.

– Appendix F, “z890, z990, z9 EC, z9 BC, z10 EC, z10 BC, or z196 without a
PCIXCC, CEX2C, or CEX3C,” on page 319 describes processing and
functionality support for this environment.

– Appendix G, “Accessibility,” on page 323 contains information on accessibility
features in z/OS.

xiv z/OS V1R13 System Programmer's Guide

– “Notices” on page 325 contains information on notices, programming interface
information and trademarks.

Where to find more information
The publications in the z/OS ICSF library include:

v z/OS Cryptographic Services ICSF Overview

v z/OS Cryptographic Services ICSF Administrator's Guide

v z/OS Cryptographic Services ICSF System Programmer's Guide

v z/OS Cryptographic Services ICSF Application Programmer's Guide

v z/OS Cryptographic Services ICSF Messages

v z/OS Cryptographic Services ICSF Writing PKCS #11 Applications

v z/OS Cryptographic Services ICSF TKE Workstation User's Guide

This publication also refers to these publications:

v IBM ES/3090 Processor Complex Recovery Guide

v z/OS Planning for Installation, GA22-7504

v z/OS Security Server RACF Auditor's Guide

v z/OS Security Server RACF Command Language Reference

v z/OS Security Server RACF Security Administrator's Guide

v z/OS Security Server RACF Macros and Interfaces

v z/OS Security Server RACF System Programmer's Guide

v z/OS MVS IPCS User's Guide, SA22-7596

v z/OS MVS System Codes, SA22-7626

v z/OS MVS System Management Facilities (SMF), SA22-7630

v z/OS MVS Programming: Extended Addressability Guide, SA22-7614

v z/OS MVS Initialization and Tuning Guide, SA22-7591

v z/OS MVS Initialization and Tuning Reference, SA22-7592

v MVS Batch Local Shared Resources, GC28-1469

v z/OS DFSMS Access Method Services for Catalogs

v z/OS DFSMS Using Data Sets

v IBM Transaction Security System: General Information Manual and Planning
Guide

v IBM Transaction Security System: Concepts and Programming Guide: Volume 1,
Access Controls and DES Cryptography

v IBM Transaction Security System: Basic CCA Cryptographic Services

v IBM Transaction Security System: Concepts and Programming Guide: Volume II,
Public-Key Cryptography

v IBM Distributed Key Management System, Installation and Customization Guide

v OS/VS1 and OS/VS2 MVS Cryptographic Unit Support: Installation Manual

v OS/VS1 and OS/VS2 MVS Programmed Cryptographic Facility

v CICS Customization Guide, SC34-6227

v CICS Resource Definition Guide, SC34-6228

About this information xv

Do You Have Problems, Comments, or Suggestions?
Your suggestions and ideas can contribute to the quality and the usability of this
document. If you have problems using this document, or if you have suggestions for
improving it, complete and mail the Reader's Comment Form found at the back of
the document.

xvi z/OS V1R13 System Programmer's Guide

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:

1. Send an email to mhvrcfs@us.ibm.com

2. Visit the Contact z/OS web page at http://www.ibm.com/systems/z/os/zos/
webqs.html

3. Mail the comments to the following address:
IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

4. Fax the comments to us as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address
v Your email address
v Your telephone or fax number
v The publication title and order number:

z/OS Cryptographic Services ICSF System Programmer's Guide
SA22-7520-16

v The topic and page number related to your comment
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations will only use the personal information that you
supply to contact you about the issues that you submit.

If you have a technical problem
Do not use the feedback methods listed above. Instead, do one of the following:

v Contact your IBM service representative

v Call IBM technical support

v Visit the IBM zSeries support web page at http://www.ibm.com/systems/z/support/

© Copyright IBM Corp. 1997, 2011 xvii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xviii z/OS V1R13 System Programmer's Guide

Summary of changes

Changes made in z/OS Version 1 Release 13
This document contains information previously presented in z/OS ICSF System
Programmer's Guide, SA22-7520-15, which supports z/OS Version 1 Release 12.

This document is for ICSF FMID HCR7790. This release runs on z/OS V1R11, z/OS
V1R12, and z/OS V1R13 and only on zSeries hardware.

New information:

v Exit identifiers for new callable services described in Table 3 on page 42.

v New system abend codes summarized in “System Abend Codes” on page 68.

v Migration action for moving from a version of ICSF prior to FMID HCR7780 to
FMID HCR7780 or HCR7790 described in “Ensure the expected master key
support is available” on page 60

v A new message, CSFM540I, was added to indicate a card has been fenced off
during ICSF initialization. See notes in “Starting and stopping ICSF” on page 76
for more information.

v A new health check, ICSF_COPROCESSOR_STATE_NEGCHANGE, was added
to detect a degradation in the state of a coprocessor or accelerator. See notes in
“Starting and stopping ICSF” on page 76 for more information.

v A new health check, ICSFMIG_DEPRECATED_SERV_WARNINGS, was added
to detect the use of a services that will not be supported in subsequent releases.
See “Migrating from the IBM Eserver zSeries 900” on page 70 for more
information.

Changed information:

v Changes to callable services summarized in Table 4 on page 54.

v The process to reencipher the PKDS and change the RSA master key has
changed for z196 systems with CEX3C coprocessors and the Sep. 2011 licensed
internal code (LIC). See “Changing the RSA master key” on page 64.

v For clarity:

– CSNBKRC and CSNEKRC, which had been referred to as the "Key Record
Create" service, are now referred to as the "CKDS Key Record Create"
service

– CSNBKRC2 and CSNEKRC2, which had been referred to as the "Key Record
Create2" service, are now referred to as the "CKDS Key Record Create2"
service

– CSNBKRD and CSNEKRD, which had been referred to as the "Key Record
Delete" service, are now referred to as the "CKDS Key Record Delete" service

– CSNBKRR and CSNEKRR, which had been referred to as the "Key Record
Read" service, are now referred to as the "CKDS Key Record Read" service

– CSNBKRR2 and CSNEKRR2, which had been referred to as the "Key Record
Read2" service, are now referred to as the "CKDS Key Record Read2"
service

– CSNBKRW and CSNEKRW, which had been referred to as the "Key Record
Write" service, are now referred to as the "CKDS Key Record Write" service

– CSNBKRW2 and CSNEKRW2, which had been referred to as the "Key
Record Write2" service, are now referred to as the "CKDS Key Record Write2"
service

© Copyright IBM Corp. 1997, 2011 xix

– CSNDKRC and CSNFKRC, which had been referred to as the "PKDS Record
Create" service, are now referred to as the "PKDS Key Record Create"
service

– CSNDKRD and CSNFKRD, which had been referred to as the "PKDS Record
Delete" service, are now referred to as the "PKDS Key Record Delete" service

– CSNDKRR and CSNFKRR, which had been referred to as the "PKDS Record
Read" service, are now referred to as the "PKDS Key Record Read" service

– CSNDKRW and CSNFKRW, which had been referred to as the "PKDS
Record Write" service, are now referred to as the "PKDS Key Record Write"
service

Changes made in z/OS Version 1 Release 12
This document contains information previously presented in z/OS ICSF System
Programmer's Guide, SA22-7520-14, which supports z/OS Version 1 Release 11.

This document is for ICSF FMID HCR7780. This release runs on z/OS V1R10,
z/OS V1R11, and z/OS V1R12 and only on zSeries hardware.

New information:

v Added support for IBM zEnterprise 196 (z196) servers.

v Added support for Elliptic Curve Cryptography (ECC).

v Added information on HMAC key support. HMAC key support is to be enabled
with the PTF for APAR OA33260, planned for February 2011 availability.

To accommodate HMAC keys, added a new variable length record format for the
CKDS. The variable length record format is only required if HMAC keys are to be
stored in the CKDS. The variable length record format can be used to store all
existing symmetric keys and the new HMAC keys. Added a CKDS conversion
program, CSFCNV2, that converts a fixed length record format CKDS to a
variable length record format.

v Added a new, X9.24 compliant CBC wrapping method for DES keys. Added a
new installation option, DEFAULTWRAP, to indicate whether the original CAA
token wrapping method or the new CBC wrapping method should be used by
default.

v Added new SMF type 82 subtype 29 - TKE Workstation Audit Record

Changed information:

v Changed SMF records to include an auditing header, and audit sections for
server user and end user. Modified:

– SMF type 82 subtype 1 - Initialization

– SMF type 82 subtype 14 - Cryptographic Coprocessor Clear Master Key Entry

v Modified the Cryptographic Communication Vector Table (CCVT) and the
Cryptographic Communication Vector Table Extension (CCVE)

Changes made in z/OS Version 1 Release 11
This document contains information previously presented in z/OS ICSF System
Programmer's Guide, SA22-7520-13, which supports z/OS Version 1 Release 10.

This document is for ICSF FMID HCR7770. This release runs on z/OS V1R9, z/OS
V1R10, and z/OS V1R11 and only on zSeries hardware.

New information:

xx z/OS V1R13 System Programmer's Guide

v Added information for Crypto Express3 feature (CEX3C and CEX3A)

v Added new installation option FIPSMODE.

v Added support for new callable services:

– Added new callable service PKA Key Translate (CSNDPKT and CSNFPKT).
Using this callable service, applications can translate a source CCA RSA key
token into a target external smart card key token.

– Added new callable services for managing PKCS #11 tokens and objects.
These additional services are:

- PKCS #11 Derive key (CSFPDVK)

- PKCS #11 Derive multiple keys (CSFPDMK)

- PKCS #11 Generate HMAC (CSFPHMG)

- PKCS #11 Generate key pair (CSFPGKP)

- PKCS #11 Generate secret key (CSFPGSK)

- PKCS #11 One-way hash generate (CSFPOWH)

- PKCS #11 Private key sign (CSFPPKS)

- PKCS #11 Pseudo-random function (CSFPPRF)

- PKCS #11 Public key verify (CSFPPKV)

- PKCS #11 Secret key decrypt (CSFPSKD)

- PKCS #11 Secret key encrypt (CSFPSKE)

- PKCS #11 Unwrap key (CSFPUWK)

- PKCS #11 Verify HMAC (CSFPHMV)

- PKCS #11 Wrap key (CSFPWPK)

v Added information for new SMF type 82 subtype records:

– SMF type 82 subtype 7 - KEU Key Part Entry Section

– SMF type 82 subtype 14 - Cryptographic Coprocessor Clear

– SMF type 82 subtype 15 - PCI Cryptographic Coprocessor

– SMF type 82 subtype 16 - PCI Cryptographic Coprocessor TKE

– SMF type 82 subtype 18 - Cryptographic Coprocessor

– SMF type 82 subtype 20 - Cryptographic Coprocessor

– SMF type 82 subtype 27 - PKA Key Management Extensions

– SMF type 82 subtype 28 - High Performance Encrypted Key

v Added information for using DISPLAY GRS properly to understand ICSF key data
set serialization conditions, and to detect the possible ICSF client application
workload that could be impeding ongoing ICSF operation.

Changed information:

v Modified token data set (TKDS) format information

v Modified the Cryptographic Communication Vector Table (CCVT) and the
Cryptographic Communication Vector Table Extension (CCVE)

v Modified ICSF startup procedure to support new startup program.

v Modified the supported boundary values for the TRACEENTRY parameter in the
installation options data set. The TRACEENTRY parameter now specifies a
decimal value from 10000 to 500000.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of changes xxi

xxii z/OS V1R13 System Programmer's Guide

Chapter 1. Introduction to z/OS ICSF

ICSF is a software element of z/OS. ICSF works with the hardware cryptographic
features and the Security Server (RACF element) to provide secure, high-speed
cryptographic services in the z/OS environment. ICSF provides the application
programming interfaces by which applications request the cryptographic services.
ICSF is also the means by which the secure cryptographic features are loaded with
master key values, allowing the hardware features to be used by applications. The
cryptographic feature is secure, high-speed hardware that performs the actual
cryptographic functions. Your processor hardware determines the cryptographic
feature available to your applications.

Hardware Features
This topic describes the cryptographic hardware features available. Information on
adding and removing cryptographic coprocessors can be found in z/OS
Cryptographic Services ICSF Administrator's Guide.

Cryptographic Hardware
This topic describes the cryptographic hardware features available. Information on
adding and removing cryptographic coprocessors can be found in z/OS
Cryptographic Services ICSF Administrator's Guide.

Crypto Express3 Feature (CEX3C or CEX3A)
The Crypto Express3 Feature is an asynchronous cryptographic coprocessor or
accelerator. The feature contains two cryptographic engines that can be
independently configured as a coprocessor (CEX3C) or as an accelerator (CEX3A).
It is available on the IBM System z10 Enterprise Class, IBM System z10 Business
Class, and the IBM zEnterprise 196.

Crypto Express2 Feature (CEX2C or CEX2A)
The Crypto Express2 Feature is an asynchronous cryptographic coprocessor or
accelerator. The feature contains two cryptographic engines that can be
independently configured as a coprocessor (CEX2C) or as an accelerator (CEX2A).
It is available on the IBM System z9 Enterprise Class, IBM System z9 Business
Class, IBM System z10 Enterprise Class, and IBM System z10 Business Class.

PCI X Cryptographic Coprocessor (PCIXCC)
The PCI X Cryptographic Coprocessor is an asynchronous cryptographic
coprocessor. It is a replacement for the Cryptographic Coprocessor Feature and
PCI Cryptographic Coprocessor. It is only available on a IBM Eserver zSeries 990
or IBM Eserver zSeries 890.

The PCIXCC/CEX2C DES master key is used in place of the CCF DES master key.
The asymmetric-keys master key is used in place of the CCF signature and key
management master keys. The PCIXCC/CEX2C supports up to 2048-bit RSA keys
in all PKA services except SET services (Set Block Compose and Set Block
Decompose).

This feature is in the process of being certified for Federal Information Processing
Standard (FIPS) 140-2. This includes algorithmic certification under FIPS 46-2
(DES) and FIPS 180-1 (Secure Hash Standard).

© Copyright IBM Corp. 1997, 2011 1

CP Assist for Cryptographic Functions (CPACF)
CPACF is a set of cryptographic instructions available on all CPs of z990, z890, z9
EC, z9 BC, z10 EC and z10 BC. Use of the CPACF instructions provides improved
performance. The SHA-1 algorithm is always available. Additionally, SHA-224 and
SHA-256 algorithms are available on the z9 EC and z9 BC. Additionally, SHA-384
and SHA-512 algorithms are available on IBM System z10 Enterprise Class and
IBM System z10 Business Class.

CP Assist for Cryptographic Functions (CPACF) DES/TDES Enablement, feature
3863, provides for clear key DES and TDES instructions. On the z9 EC and z9 BC,
this feature includes clear key AES for 128-bit keys. On IBM System z10 Enterprise
Class and IBM System z10 Business Class, this feature also includes clear key
AES for 192-bit and 256-bit keys.

If you want to include a PCIXCC, CEX2C, PCICA (z990, z890), Crypto Express2
feature (z9 EC, z9 BC, z10 EC and z10 BC), or Crypto Express3 Coprocessor (z10
EC, z10 BC, and z196), then feature 3863 is required.

PCI Cryptographic Accelerator (PCICA)
On all systems, the PCI Cryptographic Accelerator provides support for clear keys
in the CSNDPKD callable services for better performance than when executed in a
cryptographic coprocessor. On z990 or z890, it also supports CSNDDSV and
CSNDPKE.

PCICAs enable maximum SSL performance.

Cryptographic Coprocessor Feature (CCF)
The Cryptographic Coprocessor Feature (CCF) can have up to two cryptographic
coprocessors as high-speed extensions of the central processor. Each CCF
contains both DES and PKA cryptographic processing units. You can configure the
processor complex to run in either single-image mode or logical partition mode.

If the Cryptographic Coprocessor Feature is in single-image mode, the same master
keys must be installed on both CCFs. If you bring a second coprocessor online,
ICSF verifies that the master keys are the same. If the DES master keys are
different, ICSF will not use the second coprocessor. The PKA master keys must be
the same on both Coprocessors in order to enable the PKA services.

This feature is currently certified for Federal Information Processing Standard
(FIPS) 140-1 level 4. This includes algorithmic certification under FIPS 46-2 (DES),
FIPS 180-1 (Secure Hash Standard), and FIPS 186 (Digital Signature Standard).

The possible configurations include:

v DES with PKA

These servers are configured for full 64-bit DES keys (effective length 56 bits),
1024-bit PKA keys for DES key distribution, and 1024-bit PKA signature keys.

v Triple DES with PKA

These servers are configured for 192-bit DES keys (effective length 169 bits),
1024-bit PKA keys for DES key distribution, and 1024-bit PKA signature keys.
This configuration is available on S/390 G5 Enterprise Servers and higher.

PCI Cryptographic Coprocessor (PCICC)
The PCI Cryptographic Coprocessor, which works in conjunction with the
Cryptographic Coprocessor Feature, provides the capability of generating and

2 z/OS V1R13 System Programmer's Guide

retaining RSA keys in secure hardware. This capability meets a requirement to
become a SET Certificate Authority. A PCI Cryptographic Coprocessor is required
on a CCF system for:

v UDX capability

v Generating RSA public and private keys

v The retained key list and retain key delete callable service.

The PCICC cards are in addition to the Cryptographic Coprocessor Feature. In
order for the PCI Cryptographic Coprocessor to operate, the verification pattern for
the SYM-MK master key must match the verification pattern of the DES master key
on the server's Cryptographic Coprocessor Feature. Before you can use the PKA
services of the PCI Cryptographic Coprocessor, you must install both the KMMK
and the SMK on the Cryptographic Coprocessor Feature and the RSA-MK master
key on the PCI Cryptographic Coprocessor. The hash pattern of the RSA-MK
master key must match the hash pattern of the SMK in order to use the PCI
Cryptographic Coprocessor.

Note: For new installations, it is recommended that the installation enter the KMMK
equal to the SMK master key. Existing customers should reencipher their
PKDS and migrate to a system with the KMMK equal to the SMK.

Server Hardware
This topic describes the servers on which the cryptographic hardware features are
available.

IBM zEnterprise 196 (z196)
The z196 provides constraint relief and addresses various customer demands. It
has several cryptographic features.

v CP Assist for Cryptographic Functions is implemented on every processor.
SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 secure hashing is directly
available to application programs.

v Feature code 3863, CP Assist for Cryptographic Functions (CPACF)
DES/TDES Enablement – enables clear key DES and TDES instructions on all
CPs. AES 128-bit, AES 192-bit and AES 256-bit support is also available.

v Feature code 0864, Crypto Express3 Feature – optional, and only available if
you have feature 3863, CPACF DES/TDES Enablement installed. The z10 EC
and z10 BC can support a maximum of 8 features. Each feature code has two
coprocessors/accelerators.

IBM System z10 Enterprise Class and IBM System z10 Business
Class (z10 BC)
The IBM System z10 Enterprise Class and IBM System z10 Business Class provide
constraint relief and addresses various customer demands. It has several
cryptographic features.

v CP Assist for Cryptographic Functions is implemented on every processor.
SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 secure hashing is directly
available to application programs.

v Feature code 3863, CP Assist for Cryptographic Functions (CPACF)
DES/TDES Enablement – enables clear key DES and TDES instructions on all
CPs. AES 128-bit, AES 192-bit and AES 256-bit support is also available.

Chapter 1. Introduction to z/OS ICSF 3

v Feature code 0863, Crypto Express2 Feature – optional, and only available if
you have feature 3863, CPACF DES/TDES Enablement installed. The z10 EC
and z10 BC can support a maximum of 8 features. Each feature code has two
coprocessors/accelerators.

v Feature code 0864, Crypto Express3 Feature – optional, and only available if
you have feature 3863, CPACF DES/TDES Enablement installed. The z10 EC
and z10 BC can support a maximum of 8 features. Each feature code has two
coprocessors/accelerators.

IBM System z9 Business Class (z9 BC)
The IBM System z9 BC provides constraint relief and addresses various customer
demands. It has several cryptographic features.

v CP Assist for Cryptographic Functions is implemented on every processor.
SHA-1, SHA-224 and SHA-256 secure hashing is directly available to application
programs.

v Feature code 3863, CP Assist for Cryptographic Functions (CPACF)
DES/TDES Enablement – enables clear key DES and TDES instructions on all
CPs. In addition, ICSF supports hardware implementation of AES 128-bit keys
and software implementation of AES 192-bit and AES 256-bit key lengths.

v Feature code 0863, Crypto Express2 Feature – optional, and only available if
you have feature 3863, CPACF DES/TDES Enablement installed. The IBM
System z9 BC can support a maximum of 8 features. Each feature code has two
coprocessors/accelerators.

IBM System z9 Enterprise Class (z9 EC)
The IBM System z9 EC provides constraint relief and addresses various customer
demands. It has several cryptographic features.

v CP Assist for Cryptographic Functions is implemented on every processor.
SHA-1, SHA-224 and SHA-256 secure hashing is directly available to application
programs.

v Feature code 3863, CP Assist for Cryptographic Functions (CPACF)
DES/TDES Enablement – enables clear key DES and TDES instructions on all
CPs. In addition, ICSF supports hardware implementation of AES 128-bit keys
and software implementation of AES 192-bit and AES 256-bit key lengths.

v Feature code 0863, Crypto Express2 Feature – optional, and only available if
you have feature 3863, CPACF DES/TDES Enablement installed. The IBM
System z9 EC can support a maximum of 8 features. Each feature code has two
coprocessors/accelerators.

IBM Eserver zSeries 990 (z990)
The IBM Eserver zSeries 990 provides constraint relief and addresses various
customer demands. It has several cryptographic features.

v CP Assist for Cryptographic Functions is implemented on every processor.
SHA-1 secure hashing is directly available to application programs.

v Feature code 3863, CP Assist for Cryptographic Functions (CPACF)
DES/TDES Enablement – enables clear key DES and TDES instructions on all
CPs. In addition, ICSF supports software implementation of AES.

v Feature code 0862, PCI Cryptographic Accelerator – optional, and only
available if you have feature 3863, CPACF DES/TDES Enablement installed. The
IBM Eserver zSeries 990 can support a maximum of 12 PCI Cryptographic
Accelerators. Each feature code has two coprocessors.

4 z/OS V1R13 System Programmer's Guide

v Feature code 0868, PCI X Cryptographic Coprocessor – optional, and only
available if you have feature 3863, CPACF DES/TDES Enablement installed. The
IBM Eserver zSeries 990 can support a maximum of 4 PCIXCCs. Each feature
code has one coprocessor.

v Feature code 0863, Crypto Express2 Coprocessor – optional, and only
available if you have feature 3863, CPACF DES/TDES Enablement installed. The
IBM Eserver zSeries 990 can support a maximum of 16 CEX2Cs. Each feature
code has two coprocessors.

Note: You can have a maximum of 6 PCICA features (12 cards), 4 PCIXCC
features (4 cards) and 16 CEX2Cs (8 features), with maximum number of 8
installed features.

IBM Eserver zSeries 890 (z890)
The IBM Eserver zSeries 890 provides constraint relief and addresses various
customer demands. It has several cryptographic features.

v CP Assist for Cryptographic Functions are implemented on every processor.
SHA-1 secure hashing is directly available to application programs.

v Feature code 3863, CP Assist for Cryptographic Functions (CPACF)
DES/TDES Enablement – enables clear key DES and TDES instructions on all
CPs. In addition, ICSF supports software implementation of AES.

v Feature code 0862, PCI Cryptographic Accelerator – optional, and only
available if you have feature 3863, CPACF DES/TDES Enablement installed. The
IBM Eserver zSeries 890 can support a maximum of 12 PCI Cryptographic
Accelerators. Each feature code has two coprocessors.

v Feature code 0868, PCI X Cryptographic Coprocessor – optional, and only
available if you have feature 3863, CPACF DES/TDES Enablement installed. The
IBM Eserver zSeries 890 can support a maximum of 4 PCIXCCs. Each feature
code has one coprocessor.

v Feature code 0863, Crypto Express2 Coprocessor – optional, and only
available if you have feature 3863, CPACF DES/TDES Enablement installed. The
IBM Eserver zSeries 890 can support a maximum of 16 CEX2Cs. Each feature
code has two coprocessors.

Note: You can have a maximum of 6 PCICA features (12 cards), 4 PCIXCC
features (4 cards) and 16 CEX2Cs (8 features), with maximum number of 8
installed features.

IBM Eserver zSeries 900 (z900) — Feature Code 800
You can enable these features on this server:

v Cryptographic Coprocessor Feature – one or two cryptographic coprocessors
protected by tamper-detection circuitry and a cryptographic battery unit.

v Feature code 0861, PCI Cryptographic Coprocessor (PCICC) – based on the
4758 model 2 standard PCI-bus card package. You must have at least one
Cryptographic Coprocessor Feature on your system with a PCICC. Note that
each feature has two coprocessors.

v Feature code 0862, PCI Cryptographic Accelerator (PCICA). You must have at
least one Cryptographic Coprocessor Feature on your system with a PCICA.
Note that each feature has two coprocessors.

Note: The IBM Eserver zSeries 900 can support a combination of PCI
Cryptographic Coprocessors (maximum of 16) or PCI Cryptographic
Accelerators (maximum of 12), but the total must not exceed 16.

Chapter 1. Introduction to z/OS ICSF 5

IBM Eserver zSeries 800 (z800) — Feature Code 800
These features are available on this server:

v Cryptographic Coprocessor Feature (CCF) – one or two cryptographic
coprocessors protected by tamper-detection circuitry and a cryptographic battery
unit.

v Feature code 0861, PCI Cryptographic Coprocessor (PCICC) – based on the
4758 model 2 standard PCI-bus card package. You must have at least one
Cryptographic Coprocessor Feature on your system with a PCICC. Note that
each feature has two coprocessors.

v Feature code 0862, PCI Cryptographic Accelerator (PCICA). You must have at
least one Cryptographic Coprocessor Feature on your system with a PCICA.
Note that each feature code has two coprocessors.

Note: The IBM Eserver zSeries 800 can support a combination of PCI
Cryptographic Coprocessors (maximum of 16) or PCI Cryptographic
Accelerators (maximum of 12), but the total must not exceed 16.

z/OS ICSF FMIDs
These tables explain the relationships of z/OS releases, ICSF FMIDs and servers.

Table 1. z/OS ICSF FMIDs

z/OS and z/OS.e ICSF FMID1 Web deliverable name

V1.11

HCR7751 Cryptographic Support for z/OS V1R8-R10 & z/OS.e V1R8

HCR7770 Cryptographic Support for z/OS V1R9-R11

HCR7780 Cryptographic Support for z/OS V1R10-R12

HCR7790 Cryptographic Support for z/OS V1R11-R13

V1R12
HCR7780 Cryptographic Support for z/OS V1R10-R12

HCR7790 Cryptographic Support for z/OS V1R11-R13

V1R13 HCR7790 Cryptographic Support for z/OS V1R11-R13

Notes:

1. PTF information can be found in the PSP bucket '2094DEVICE'.

Refer to this chart to determine what release is associated with each ICSF FMID
and what server it will run on.

Table 2. FMID and Hardware

ICSF FMID Applicable z/OS Releases Servers where FMID will run

HCR7751 (Base of z/OS 1.11) 1.9, 1.10, and 1.11 z800, z900, z890, z990, z9 EC, z9 BC,
z10 EC and z10 BC

HCR7770 (Base of z/OS 1.12) 1.9, 1.10, and 1.11 z800, z900, z890, z990, z9 EC, z9 BC,
z10 EC and z10 BC

HCR7780 (Base of z/OS 1.13) 1.10, 1.11, and 1.12 z800, z900, z890, z990, z9 EC, z9 BC,
z10 EC, z10 BC, and z196.

HCR7790 1.11, 1.12, and 1.13 z800, z900, z890, z990, z9 EC, z9 BC,
z10 EC, z10 BC, and z196.

6 z/OS V1R13 System Programmer's Guide

|

|

|

|

|||
|

ICSF Features
ICSF protects data from unauthorized disclosure or modification. It protects data
that is stored within a system, stored in a file on magnetic tape off a system, and
sent between systems. It can also be used to authenticate identities of senders and
receivers and to ensure the integrity of messages transmitted over a network. It
uses cryptography to accomplish these functions.

Cryptography enciphers data, using an algorithm and a cryptographic key, so the
data is in an unintelligible form. Deciphering data involves reproducing the
intelligible data from the unintelligible data. To encipher and decipher data, ICSF
uses either the U.S. National Institute of Science and Technology Data Encryption
Standard (DES) algorithm, Advanced Encryption Standard (AES), Elliptic Curve
Cryptography (ECC), or the Commercial Data Masking Facility (CDMF).

Restrictions:

v The CDMF defines a scrambling technique for data confidentiality. It is a
weakened form of DES and is only supported on IBM Eserver zSeries 900
servers.

v ECC is supported only on the z196 with a CEX3C.

ICSF supports several Public Key Algorithms (PKA), which do not require
exchanging a secret key. You can use these algorithms to exchange AES, DES, or
CDMF secret keys securely and to compute digital signatures for authenticating
messages and users. For digital signatures, you use a pair of keys: a private
(secret) key to sign a message and a corresponding public key to verify the
signature. ICSF supports the RSA, ECC, and DSS algorithms. (Refer to the Federal
Information Processing Standard (FIPS) Publication 186 for DSS standards.)

Restrictions:

v DSS is only supported on IBM Eserver zSeries 900 servers.

v ECC is supported only on the z196 with a CEX3C.

A key can be any combination of hexadecimal characters. A key determines how
ICSF uses the algorithm to uniquely encipher data.

You can call an ICSF callable service from an application program to perform a
cryptographic function. ICSF uses keys in cryptographic functions to:
v Protect data
v Protect other keys
v Verify that messages were not altered between sender and receiver
v Generate, protect, and verify personal identification numbers (PINs)
v Distribute AES, DES and CDMF keys
v Generate and verify digital signatures

You use ICSF callable services and programs to generate, maintain, and manage
keys that are used in the cryptographic functions. A unique key performs each type
of cryptographic function on ICSF. AES keys, except the AES master key, are
enciphered under another key. The AES master key, which is physically secure,
enciphers each AES key that is used on the system. All DES keys, except the DES
master key, are enciphered under another key. The DES master key, which is
physically secure, enciphers each DES key that is used on the system. AES keys
are enciphered under an AES master key (AES-MK). The AES master key is
256-bits long. It is only available on the Crypto Express2 Coprocessor or Crypto
Express3 Coprocessor with the Nov. 2008 or later licensed internal code (LIC). DES

Chapter 1. Introduction to z/OS ICSF 7

keys are enciphered under the DES master key or a DES key-encrypting key. The
DES master key (DES-MK or SYM-MK) is a double-length key that is used only to
encrypt other DES keys. The AES and DES master keys are physically secure.

On CCF systems, the DES-MK must be the same as the DES master key on the
Cryptographic Coprocessor Feature. On systems with PCI X Cryptographic
Coprocessors, Crypto Express2 Coprocessors, or Crypto Express3 Coprocessor,
the DES-MK verification pattern must match the hash pattern of the CKDS.

On Crypto Express2 Coprocessors and Crypto Express3 Coprocessors, the AES
master key verification pattern must match the AES master key verification pattern
stored in the CKDS. The AES master key (AES-MK) is a 32 byte key that is used
only to encrypt AES keys.

There are two public key master keys available — the RSA master key (RSA-MK)
and the ECC master key (ECC-MK). ICSF handles each master key independently.
Either, both, or neither of the master keys can be set.

v RSA master keys protect RSA private keys. There are two RSA master keys on
the Cryptographic Coprocessor Feature. One RSA master key, the signature
master key (SMK), protects private keys that are intended for creating digital
signatures. The other RSA master key, the key management master key
(KMMK), protects private keys that are used in DES key distribution. Private keys
that are protected by the KMMK can also be used to generate digital signatures.

The RSA master key (RSA-MK) on the PCICC, PCIXCC, CEX2C, or CEX3C is a
triple-length key used to encipher and decipher RSA keys. In order for the PCI
Cryptographic Coprocessor to function, the value of the RSA-MK must have the
same value as the SMK on the Cryptographic Coprocessor Feature. If the PCICC
master key values are different, then the PCICC will not be made active. On
systems with a PCIXCC, CEX2C, or CEX3C, the RSA-MK hash pattern must
match the hash pattern of the PKDS.

v ECC master keys protect ECC keys. The ECC master key is a 256-bit AES key
used to protect ECC private keys. ECC keys are supported only on the z196 with
a CEX3C coprocessor. Although a CEX3C card is not necessary to load a PKDS
with ECC keys, those keys will not be usable without a CEX3C.

The Cryptographic Key Data Set (CKDS)
Keys that are protected under the DES or AES master key are stored in a VSAM
data set that is called the cryptographic key data set (CKDS). ICSF provides
sample CKDS allocation jobs (member CSFCKDS and CSFCKD2) in
SYS1.SAMPLIB. The CKDS contains individual entries for each key that is added to
it. You can store all types of keys (except master keys and PKA keys) in the CKDS.
Each record in the data set contains the key value encrypted under the master key
and other information about the key. ICSF maintains two copies of the CKDS: a
disk copy and an in-storage copy.

Notes:

1. There are two formats of the CKDS: a fixed length record (supported by all
releases of ICSF) and a new, variable length record (supported by HCR7780
and later releases). The variable length record format is only required if HMAC
keys are to be stored in the CKDS. The variable length record format can be
used to store all existing symmetric keys and the new HMAC keys.

2. When a CKDS record is written which contains a key token with a control vector
that is not supported by the Cryptographic Coprocessor Feature, a key type of
CV will be placed into the CKDS record. During CKDS reencipher processing,

8 z/OS V1R13 System Programmer's Guide

for any key containing a control vector which is not supported by the
Cryptographic Coprocessor Feature, a key token change request will be sent to
the PCI Cryptographic Coprocessor to reencipher the key. In a sysplex with a
shared CKDS, the CKDS reencipher process must be invoked on a system
which has a PCI Cryptographic Coprocessor installed.

Callable services use the in-storage copy of the CKDS to perform CKDS functions.
For information on managing and sharing the CKDS in a sysplex environment, see
z/OS Cryptographic Services ICSF Administrator's Guide, SA22-7521. The key
generator utility program (KGUP) updates the disk copy rather than the in-storage
copy. Therefore, cryptographic functions do not have to stop while KGUP updates
the CKDS. The ICSF administrator can use the ICSF panels or a utility program to
refresh the in-storage CKDS with the updated disk copy of the CKDS. Applications
can also use the dynamic CKDS update callable services to update both the
in-storage and DASD copies of the CKDS with no interruption of cryptographic
function.

To add operational keys to the CKDS for z900, you can:
v Use KGUP to generate or enter keys
v Use the dynamic CKDS update callable services to create and write keys directly

to the CKDS
v Use the Trusted Key Entry (TKE) workstation to load operational PIN and

TRANSPORT keys. TKE is not part of the base product. It is an optional feature.

To add operational keys to the CKDS for the z890, z990, z9 EC, z9 BC, z10 EC,
z10 BC, and z196 servers, you can:
v Use KGUP to generate or enter keys or to load keys from the cryptographic

coprocessor's key part registers
v Use the dynamic CKDS update callable services to create and write keys directly

to the CKDS
v Use the Trusted Key Entry workstation to load operational AES or DES keys.

DES keys can be loaded with TKE Version 4.1 or higher. AES keys can be
loaded with TKE Version 5.3 or higher. TKE is not part of the base product. It is
an optional feature.

The Public Key Data Set (PKDS)
RSA, ECC, and DSS public and private keys can be stored in a VSAM data set that
is called the public key data set (PKDS). ICSF maintains the PKDS as an external
data set. ICSF provides a sample PKDS allocation job (member CSFPKDS) in
SYS1.SAMPLIB. ICSF maintains two copies of the PKDS: a disk copy and an
in-storage copy.

You can store public key tokens or both external and internal private key tokens.
Applications can use the dynamic PKDS update callable services to create, write,
read, and delete PKDS records.

The PKDS must be initialized using the ICSF Master Key Management panels.

Support to reencipher and refresh the PKDS is available by using the Master Key
Management Panels or the CSFPUTIL utility to reencipher the PKDS and to refresh
the reenciphered PKDS. CSFPUTIL is a utility that performs the same reencipher
and refresh functions available using the Master Key Management panels. Other
systems with lower levels of ICSF which are sharing the PKDS would disable the
dynamic PKDS access control, change the appropriate master key(s), refresh the
reenciphered PKDS and enable the dynamic PKDS access control. For information

Chapter 1. Introduction to z/OS ICSF 9

|
|
|
|
|
|
|

on managing and sharing the PKDS in a sysplex environment, see z/OS
Cryptographic Services ICSF Administrator's Guide.

Notes:

1. ECC support is available in ICSF HCR7780 and later releases. A PKDS with
ECC key tokens can be shared with prior levels of ICSF. A reencipher of the
PKDS with ECC tokens can only be done on systems that support ECC. If a
prior level system attempts to reencipher a PKDS containing ECC tokens, it will
fail with a bad token error (12/36112).

2. With ICSF release HCR7750 or later, ICSF expects the PKDS to have the
longer LRECL before it will start. You can share the larger PKDS with
down-level systems by installing the toleration APAR OA21807. Even with
toleration APAR OA21807 installed, however, be aware that reencipherment of a
larger PKDS must always be performed on an HCR7750 or later system.

The Token Data Set (TKDS)
PKCS #11 tokens and objects are stored in a VSAM data set called the token data
set (TKDS). ICSF provides a sample TKDS allocation job (member CSFTKDS) in
SYS1.SAMPLIB. The TKDS contains individual entries for each token and object
that is added to it. ICSF maintains two copies of the TKDS: a disk copy and an
in-storage copy. Only token objects are stored in the TKDS, session objects are
stored in a data space.

The TKDS must be a key-sequenced data set with spanned variable length records
and must be allocated on a permanently resident volume.

Additional Background Information
These topics provide some additional background information about using ICSF
with other products, such as the Programmed Cryptographic Facility (PCF).

Running PCF applications on z/OS ICSF
If your installation uses PCF, you can run PCF applications on ICSF. You can use
an installation option to specify whether a PCF application runs on ICSF. If you are
migrating from PCF, ICSF provides a conversion program that converts a PCF
CKDS to ICSF format.

You can use your own installation services and exits to customize ICSF. You can
write, define, and call your own installation-defined callable service. You can also
write and define exits that ICSF calls during the processing of:
v ICSF mainline
v A callable service
v The PCF CKDS conversion program
v The key generator utility program
v CKDS access

For example, most callable services in ICSF call an exit before and after
processing. Such an exit can alter return codes in a service.

ICSF System SVC 143
SVC 143 (0A8F) is an ICSF system SVC that is used by CUSP and PCF macros
(GENKEY, RETKEY, CIPHER, and EMK) for SVC entry into ICSF. The SVC allows

10 z/OS V1R13 System Programmer's Guide

|
|

|
|
|
|
|

you to run a CUSP or PCF application on ICSF. See “Running PCF and z/OS ICSF
on the same system” on page 173 for more information about running CUSP and
PCF applications on ICSF.

SVC 143 is a type 4 SVC and does not get a lock. The General Trace Facility data
is:

r141 and R0 No applicable data.

R1 Address of the parameter list. The macro that is called determines
the parameter list.

Running 4753-HSP applications on ICSF
If your installation uses the IBM Network Security Processor Support Program
products, you may be able to run 4753-HSP applications on ICSF without change.
There are some restrictions when running both ICSF and 4753-HSP in the same
z/OS (MVS) environment:

v Although both ICSF and 4753-HSP can run PCF compatibility mode, only one
system can provide this service at any time.

v Because both ICSF and 4753-HSP support the Common Cryptographic
Architecture (CCA) Application Programming Interface, applications need to be
linked with the callable service stubs that each product provides to access the
intended service.

v Internal key tokens are not interchangeable between the two products.

For more information on running ICSF and 4753-HSP in the same operating system
environment, refer to “Running 4753-HSP and ICSF on the same z/OS system” on
page 191.

Using RMF and SMF to monitor z/OS ICSF events
You can run ICSF in different configurations and use installation options to affect
ICSF performance. While ICSF is running, you can use the Resource Management
Facilities (RMF) and System Management Facilities (SMF) to monitor certain
events. For example, ICSF records information in the SMF data set when ICSF
changes the status of a cryptographic processor or when you enter or change the
master key. ICSF also sends information and diagnostic messages to data sets and
consoles.

With the availability of cryptographic hardware on an LPAR basis, RMF provides
performance monitoring in the Postprocessor Crypto Hardware Activity report. This
report is based on SMF record type 70, subtype 2. The Monitor I gathering options
on the REPORTS control statement are CRYPTO and NOCRYPTO. Specify
CRYPTO to measure cryptographic hardware activity and NOCRYPTO to suppress
the gathering. In addition, overview criteria is shown for the Postprocessor in the
Postprocessor Workload Activity Report - Goal Mode (WLMGL) report. Refer to
z/OS RMF Programmer's Guide, SC33-7994, z/OS RMF User's Guide, SC33-7990,
and z/OS RMF Report Analysis, SC33-7991 for additional information.

ICSF also supports enabling RMF to provide performance measurements on ICSF
services (Encipher, Decipher, MAC Generate, MAC Verify, One Way Hash, PIN
Translate, and PIN Verify). These measurements are of the Direct Access Crypto
CCF instructions and the PCIXCCs, CEX2Cs, or CEX3Cs.

For diagnosis monitoring, use Interactive Problem Control System (IPCS) to access
the trace buffer and to format control blocks.

Chapter 1. Introduction to z/OS ICSF 11

Controlling access to ICSF
For security, you should control access to ICSF resources and services. Use a
security product like the Security Server (RACF) to protect cryptographic programs,
keys, and services. You should also change the value of the DES, AES and PKA
master keys periodically.

Steps prior to starting installation
You use either ServerPac or CBPDO to install ICSF as part of the z/OS installation
process.

When beginning installation:

1. Refer to z/OS Planning for Installation for installation planning information.

2. Check with your IBM center or search the IBM problem database to find any
pertinent Preventative Service Planning (PSP). There may also be HOLDDATA
and PSP information for ICSF on the tape.

3. Make sure that you have all needed programs and their corequisites:

v If you use the Security Sever (RACF) and want access control and auditing
services for ICSF, you need the Security Server (RACF), an optional feature
of z/OS.

v If you are a Resource Measurement Facility (RMF) user, you need the
Resource Measurement Facility option available with z/OS.

4. Collect all required information. The Program Directory lists publications useful
during installation.

5. Confirm you have adequate DASD storage and create SMP/E DDDEF entries
for each data set. See the Program Directory for details.

12 z/OS V1R13 System Programmer's Guide

Chapter 2. Installation, Initialization, and Customization

For this topic, you need to understand these terms:

installation options
You create an installation options data set that specifies these
options. They become active when you start ICSF, customizing how
ICSF runs on your system.

startup procedure
You create an ICSF startup procedure. Along with other information,
this specifies the name of the installation options data set.

SYS1.SAMPLIB
Contains samples, including an installation options data set, a
CKDS allocation job, a PKDS allocation job, a startup procedure, a
CICS Wait List data set, and sample JCL for SMP/E Delivery to
load keys by using a pass phrase. You can update this code as
necessary and generally store the updated code in SYS1.PARMLIB
and SYS1.PROCLIB.

SYS1.PARMLIB
Generally contains the installation options data set. The installation
options data set can alternately be a member of a partitioned or
sequential data set.

SYS1.PROCLIB
Contains the startup procedure.

Steps for installation and initialization
Refer to the z/OS Program Directory for installation instructions. Several of the
installation steps in the z/OS Program Directory refer you to this publication for
details. This publication explains these installation steps.

Note: Because it is possible for ICSF control blocks like the DACC and CCVT to
persist in storage across an ICSF restart, an IPL is required when installing a
new release of ICSF.

1. Customize SYS1.PARMLIB. “Steps to customize SYS1.PARMLIB” on page 14
describes this task.

2. Create the Cryptographic Key Data Set (CKDS). “Steps to create the CKDS” on
page 17 describes this. Create the Public Key Data Set (PKDS). “Steps to
create the PKDS” on page 20 describes this task.

3. If PKCS #11 support is desired, create the TKDS. “Steps to create the TKDS”
on page 24 describes this task.

4. Create the installation options data set. “Steps to create the Installation Options
Data Set” on page 26 describes this task.

5. Create the startup procedure. “Steps to create the ICSF Startup Procedure” on
page 28 describes this task.

6. Provide access to the ICSF panels. “Steps to provide access to the ICSF
panels” on page 30 describes this task.

Note: You only need to perform the first six steps once. If you stop ICSF and
want to perform a subsequent SMP/E electronic delivery (this is optional),
you need to start at Step 7 (Start ICSF for the first time).

© Copyright IBM Corp. 1997, 2011 13

7. Start ICSF for the first time. See “Steps to start ICSF for the first time” on page
31. Once ICSF has been started, Master Keys can be entered.

For additional information on ICSF first time startup, refer to “Checklist for
First-Time Startup of ICSF” on page 305. See z/OS Cryptographic Services
ICSF Administrator's Guide for directions on entering Master Keys.

8. Enter Master Keys.

9. Run the JCL to set the SMP/E pass phrase for SMP/E electronic delivery
(optional). “MK Initialization for SMP/E - CCF Systems Only” on page 36
describes this.

Only complete this step if ICSF is needed for SMP/E. Do not complete this step
for other applications.

Other topics in this publication and z/OS Cryptographic Services ICSF
Administrator's Guide provide additional installation information.

For information on installing the CICS-ICSF Attachment Facility, refer to Appendix C,
“CICS-ICSF Attachment Facility,” on page 299.

Steps to customize SYS1.PARMLIB
The installation options data set you will create is generally stored in
SYS1.PARMLIB. If your administrator does not have access to SYS1.PARMLIB, you
need to use another data set instead.

Update the data set you are using as follows:

1. Add CEE.SCEERUN and CSF.SCSFMOD0 to the LNKLST concatenation. This
adds the ICSF library to the z/OS library search. This is an example of an ICSF
entry to the LNKLST concatenation.
CSF.SCSFMOD0

2. APF authorize CSF.SCSFMOD0, if LNKAUTH=APFTAB. This is an example of
an ICSF entry for APF authorization.
APF ADD DSNAME(CSF.SCSFMOD0) VOLUME(******)

3. In the IKJTSOxx parameter, add CSFDAUTH and CSFDPKDS as a value in the
AUTHPGM parameter list and in the AUTHTSF parameter list. This is an
example of an ICSF entry in the IKJTSOxx member.
AUTHPGM NAMES(/* AUTHORIZED PROGRAMS */ +
....
....
CSFDAUTH /* ICSF */ +
CSFDPKDS /* ICSF */ +

....

AUTHTSF NAMES(/* PROGRAMS TO BE AUTHORIZED WHEN */ +
/* WHEN CALLED THROUGH THE TSO */ +
/* SERVICE FACILITY */ +

....

....
CSFDAUTH /* ICSF */ +
CSFDPKDS /* ICSF */

4. If your application programmers intend to use PKCS #11 token key objects for
AES Galois/Counter Mode (GCM) encryption or GMAC generation, and have
ICSF generate the initialization vectors, then you need to set ECVTSPLX or
CVTSNAME to a unique value.

This needs to be done, because, for AES GCM encryption or GMAC generation,
the security of the algorithm is dependent on never repeating a key, initialization
vector combination for two or more distinct sets of data. In PKCS #11,

14 z/OS V1R13 System Programmer's Guide

applications can request that ICSF generate a new (unique) initialization vector
each time AES GCM or GMAC is initiated. In fact, this is the only permitted way
to perform AES GCM or GMAC when PKCS #11 is operating in FIPS mode.
When ICSF generates initialization vectors, it uses the ECVTSPLX (sysplex
mode) or CVTSNAME (non-sysplex mode) field as the cryptographic module
name. The name ensures uniqueness if such keys are distributed to multiple
systems, but only if each system is set with a unique name.

When setting ECVTSPLX or CVTSNAME to unique values, be aware that ICSF
uses only the first (left most) 4 characters of these fields. For this reason, these
4 characters must be set to uniquely identify the system.

For example, suppose AES key value 123 is created on the current
single-image system (known as System A) and is distributed to another system
residing in a Sysplex (known as Sysplex B). Both systems will be performing
GCM encryption where ICSF generates the initialization vectors. To ensure that
unique initialization vectors are generated, set CVTSNAME=SYSA on System A
and ECVTSPLX=PLXB on Sysplex B.

CVTSNAME is normally set from the SYSNAME=value statement in the
IEASYSxx member of "SYS1.PARMLIB". For more information, see z/OS MVS
Initialization and Tuning Reference, SA22-7592.

ECVTSPLX is normally set from the COUPLE SYSPLEX(value) in the
COUPLExx member of "SYS1.PARMLIB". For more information, see z/OS MVS
Setting Up a Sysplex, SA22-7625.

Notes:

1. If you will be using TKE V3.0 or higher on this host, you should also add
CSFTTKE as a value in the AUTHCMD parameter list.

2. If you will only be using ICSF for SMP/E electronic delivery, this step does not
need to be performed. TKE is not needed for SMP/E electronic delivery.

3. To change the active IKJTSOxx member of SYS.PARMLIB without an IPL, use
the PARMLIB UPDATE command.

z/OS MVS Initialization and Tuning Guide and z/OS MVS Initialization and Tuning
Reference provide more information.

Creating the CKDS
Installations need to understand and plan for the system resources required for
managing the CKDS copy in virtual storage, particularly when the installation is
deploying a very large CKDS. Refer to “ICSF System Resource Planning for the
CKDS” for guidelines. Once you understand these guidelines, refer to “Steps to
create the CKDS” on page 17 for step-by-step instructions.

ICSF System Resource Planning for the CKDS
Like the PKDS and TKDS, ICSF manages a mirror copy of the CKDS data set in
protected, private virtual storage to optimize cryptographic workload access to
symmetric keys in the normal course of workload operation. This copy is kept
current as keys are dynamically added to, and removed from, the active CKDS key
store. Like any set of control information maintained in virtual storage, the
in-storage CKDS copy must be accommodated with sufficient system central
storage and auxiliary paging space resources.

Installations need to understand and plan for the system resources required for
managing the CKDS copy in virtual storage, particularly when the installation is
deploying a very large CKDS. Note that “very large” is a relative assessment

Chapter 2. Installation, Initialization, and Customization 15

depending upon the installation, and could be expressed, for example, in terms of
tens or hundreds of thousands of symmetric keys in the CKDS, or perhaps even
millions of keys.

An in-storage copy of a CKDS that is not experiencing significant dynamic key
creation or deletion activity consumes a stable amount of virtual storage, and
therefore a stable amount of system backing resource. Certain occasional but
unavoidable ICSF functions such as CKDS refresh do, however, generate a
significant spike in the amount of utilized virtual storage, and therefore a greater
temporary demand for system resources backing that virtual storage.

Given these circumstances, it’s important to calculate and plan for the system
central storage and auxiliary paging space required to support an active in-storage
copy. For a CKDS shared across a sysplex environment, every active ICSF in the
sysplex will have an equivalent resource requirement.

Each symmetric key in the CKDS is managed with one VSAM record. Installations
need to plan for the appropriate amount of combined central storage and auxiliary
paging space for each VSAM record, per active ICSF. The following formula is
provided to help you calculate the required system virtual storage backing resource
for an active in-storage CKDS. In this formula HI-A-RBA is the allocated relative
byte address for the data component of a CKDS VSAM data set. The IDCAMS
LISTCAT command output for a CKDS VSAM data set can be consulted to
determine the HI-A-RBA value for the data component. The %Free Space used in
this formula represents the percentage of free space in the CKDS VSAM data set.
The IDCAMS EXAMINE DATATEST command output can be consulted to
determine the percentage of free space.
HI-A-RBA x ((100 - %Free Space) / 100) x 6

For example, the central storage and auxiliary paging space requirement for a
CKDS VSAM data set with a HI-A-RBA of 481,787,904 for its data component entry
and 16 percent free space can be calculated as follows.
481,787,904 x ((100 - 16) / 100) x 6 = 2,428,211,036.16 bytes

This CKDS VSAM data set will require 2.26 Gigabytes of combined central storage
and auxiliary paging space for system backing resource.

As is the case with all virtual storage usage, central storage is the preferred
medium to optimize the workload performance, and to avoid system paging
overhead. Note that excessive system paging due to any virtual storage usage can
cause degradation across the workload and system operation, and an extreme
shortage of central storage and auxiliary paging space can lead to a catastrophic
system failure.

Note: The output from the formulas above should be added to the outputs
calculated from the formulas in “ICSF System Resource Planning for the
PKDS” on page 20 and “ICSF System Resource Planning for the TKDS and
Session Object Memory Areas” on page 23. This will give you the required
system virtual storage backing resource for all of ICSF’s KDS data sets. This
value represents the required amount of virtual storage for a given instance
of ICSF. For a set of KDS data sets shared across a sysplex environment,
every active ICSF in the sysplex will have an equivalent resource
requirement.

Additional CKDS Performance Considerations: Beginning with the FMID
HCR7780, ICSF support of the CKDS key store data set has been enhanced to

16 z/OS V1R13 System Programmer's Guide

facilitate a CKDS that may contain millions of symmetric keys. If an installation is
intending to pursue a CKDS of such a large size, then IBM recommends migrating
to HCR7780 (or later) first. Prior releases of ICSF were not designed to
accommodate a CKDS with millions of keys, and could experience various
symptoms of degradation or failure. Note that, in a sysplex environment sharing the
CKDS across multiple active ICSF instances, that all such instances should be
migrated to the HCR7780 or later release level before scoping the symmetric key
material to that magnitude.

IBM also recommends that installations that deploy a CKDS with millions of
symmetric keys not enable CKDS MAC authentication, or disable it if it’s already
enabled. CKDS MAC authentication adds an additional coprocessor request for
each VSAM data set read/write operation. There is a significant performance
implication for CKDS MAC authentication that would be greatly magnified with such
a large CKDS.

Steps to create the CKDS
The CKDS must be a key-sequenced data. There are two formats: a fixed record
length of 252 bytes, and a variable record length. Allocate the CKDS on a
permanently resident volume.

Attention: Ensure that this volume is not subject to data set migration. If the CKDS
is migrated, message CSFM450E is issued and ICSF ends.

For detailed information about calculating space for a VSAM data set and an
explanation of keyed-direct update processing and what happens when control area
and control interval splits occur, see z/OS DFSMS Access Method Services for
Catalogs.

1. Determine the amount of primary space you need to allocate for the CKDS.

This should reflect the total number of entries you expect the data set to contain
originally. Besides transport keys, PIN keys, data-encrypting keys,
data-translating keys, and MAC keys, the CKDS contains a header record and
system keys that ICSF uses for processing.

CCF Systems Only: To run ICSF requires the header record and four of the
system keys. The other system keys, NOCV enablement keys, ANSI
enablement keys, and enhanced system keys, are optional.

Your system needs NOCV enablement keys if it communicates with systems
that do not use control vectors, supports the use of DATA keys in the MAC
services, or needs to convert a PCF CKDS. Your system needs ANSI
enablement keys if you distribute keys according to the ANSI X9.17 protocol. To
use the SET callable services on a CDMF system, you need to install both the
NOCV keys and ANSI system keys.

Fixed length record format: Each record is 252 bytes long. Allocate space for
all of the installation and system keys you expect to store in the CKDS.

Variable length record format: The minimum size of record will be 332 bytes.
Records containing HMAC keys can be up to 750 bytes long. Records
containing DES and AES keys will be 332 bytes long. Allocate space for all of
the installation and system keys you expect to store in the CKDS

2. Determine the amount of secondary space to allocate for CKDS.

This should reflect the total number of entries you expect to add to the data set.

To access keys, VSAM uses the key label as the VSAM key. This means that
VSAM adds keys to the data set in collating sequence. That is, if two keys
named A and B are in the data set, A appears earlier in the data set than B. As
a result, adding keys to the data set can cause multiple VSAM control interval

Chapter 2. Installation, Initialization, and Customization 17

|

splits and control area splits. For example, a split might occur if the data set
contains keys A, B, and E and you add C. In this case, C must be placed
between B and E. These splits can leave considerable free space in the data
set and can affect KGUP performance.

The amount of secondary space you allocate must take into account the
number of control interval and control area splits that might occur. If the disk
copy of the CKDS uses a significant amount of secondary space, you can copy
it into another disk copy that you created with more primary space. You can do
this by using the Access Method Services (AMS) REPRO command or the AMS
EXPORT/IMPORT commands.

The BUFFERSPACE parameter on the AMS DEFINE CLUSTER command
(required by Step 3) lets VSAM optimize space for control area and control
interval splits.

3. Create an empty VSAM data set to use as the CKDS. ICSF provides a sample
job to define the CKDS in member CSFCKDS of SYS1.SAMPLIB.

Use the AMS DEFINE CLUSTER command to define the data set and to
allocate its space.

Note: To improve security and reliability of the data that is stored on the CKDS:

v Use the ERASE and WRITECHECK parameters on the AMS DEFINE
CLUSTER command. ERASE overwrites data records with binary zeros when
the CKDS cluster is deleted. WRITECHECK provides hardware verification of
all data that is written to the data set.

v Create a Security Server (RACF) data set profile for the CKDS.

Fixed length record format: Allocate a disk copy of the CKDS by defining a
VSAM cluster as in this SYS1.SAMPLIB CSFCKDS member sample:
//CSFCKDS JOB = JOB CARD PARAMETERS
//**
//* Licensed Materials - Property of IBM *
//* 5694-A01 *
//* COPYRIGHT IBM CORP. 2002, 2009 *
//* *
//* THIS JCL DEFINES A VSAM CKDS TO USE FOR ICSF *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the approrpriate HLQ if you choose *
//* not to use the default. *
//* 3) Change xxxxxx to the volid where you want your CKDS to *
//* reside. The CKDS needs to be on a permanently resident *
//* volume. *
//* *
//* NOTE: This JCL is specific for creating the CKDS. There are *
//* samples for each of the other key data sets. *
//* PKDS - CSFPKDS JCL *
//* TKDS - CSFTKDS JCL *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER (NAME(CSF.CSFCKDS) -
VOLUMES(XXXXXX) -
RECORDS(100 50) -
RECORDSIZE(252,252) -
KEYS(72 0) -
FREESPACE(10,10) -

18 z/OS V1R13 System Programmer's Guide

SHAREOPTIONS(2 3)) -
DATA (NAME(CSF.CSFCKDS.DATA) -

BUFFERSPACE(100000) -
ERASE -
WRITECHECK) -

INDEX (NAME(CSF.CSFCKDS.INDEX))
/*

Variable length record format: Allocate a disk copy of the CKDS by defining a
VSAM cluster as in this SYS1.SAMPLIB CSFCKD2 member sample:
//CSFCKD2 JOB = JOB CARD PARAMETERS
//**
//* Licensed Materials - Property of IBM *
//* 5694-A01 *
//* COPYRIGHT IBM CORP. 2010 *
//* *
//* THIS JCL DEFINES A VSAM CKDS FOR VARIABLE LENGTH RECORDS *
//* TO USE FOR ICSF *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change xxxxxx to the volid where you want your CKDS to *
//* reside. The CKDS needs to be on a permanently resident *
//* volume. *
//* *
//* NOTE: This JCL is specific for creating the CKDS. There are *
//* samples for each of the other key data sets. *
//* PKDS - CSFPKDS JCL *
//* TKDS - CSFTKDS JCL *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER (NAME(CSF.CSFCKDS) -
VOLUMES(XXXXXX) -
RECORDS(100 50) -
RECORDSIZE(332,1024) -
KEYS(72 0) -
FREESPACE(10,10) -
SHAREOPTIONS(2,3)) -

DATA (NAME(CSF.CSFCKDS.DATA) -
BUFFERSPACE(100000) -
ERASE -
WRITECHECK) -

INDEX (NAME(CSF.CSFCKDS.INDEX))
/*

You can change and use the Job Control Language according to the needs of
your installation. Please note that the JCL to define the CKDS differs from the
JCL that defines the PKDS (RECORDSIZE and CISZ parameters). For more
information about allocating a VSAM data set, see z/OS DFSMS Access Method
Services for Catalogs.

Creating the PKDS
Installations need to understand and plan for the system resources required for
managing the PKDS copy in virtual storage, particularly when the installation is
deploying a very large PKDS. Refer to “ICSF System Resource Planning for the
PKDS” on page 20 for guidelines. Once you understand these guidelines, refer to
“Steps to create the PKDS” on page 20 for step-by-step instructions.

Chapter 2. Installation, Initialization, and Customization 19

ICSF System Resource Planning for the PKDS
Like the CKDS and TKDS, ICSF manages a mirror copy of the PKDS data set in
protected, private virtual storage to optimize cryptographic workload access to
asymmetric keys. Again, similar to the CKDS, the in-storage PKDS copy must be
accommodated with sufficient system central storage and auxiliary paging space
resources. The same formula used in the system resource planning section for the
CKDS can be used to estimate the virtual storage requirement for an existing,
stable PKDS (one that is not experiencing significant dynamic asymmetric key
creation or deletion activity).
HI-A-RBA x ((100 - %Free Space) / 100) x 6

As described in “ICSF System Resource Planning for the CKDS” on page 15, the
output from running the IDCAMS LISTCAT and EXAMINE DATATEST commands
against a PKDS VSAM data set can be consulted to determine the data set's data
component HI-A-RBA and the percentage of free space in the data set.

Note: The output from the formula above should be added to the outputs
calculated from the formulas in “ICSF System Resource Planning for the
CKDS” on page 15 and “ICSF System Resource Planning for the TKDS and
Session Object Memory Areas” on page 23. This will give you the required
system virtual storage backing resource for all of ICSF’s KDS data sets. This
value represents the required amount of virtual storage for a given instance
of ICSF. For a set of KDS data sets shared across a sysplex environment,
every active ICSF in the sysplex will have an equivalent resource
requirement.

Steps to create the PKDS
The PKDS must be allocated and the PKDS data set name must be specified on
the PKDSN parameter of the options data set when you first start ICSF. ICSF
support for the PCICC, PCIXCC, CEX2C, or CEX3C requires a PKDS. Even if not
available at first time start up, a PCICC, PCIXCC, CEX2C, or CEX3C can be
dynamically configured online. Since ICSF can not tell if a PCICC, PCIXCC,
CEX2C, or CEX3C will be added, it requires the PKDS to be available at start up.

The PKDS must be a key-sequenced data set with variable length records. Allocate
the PKDS on a permanently resident volume.

1. Determine the amount of primary space you need to allocate for the PKDS.

This should reflect the total number of entries you expect the data set to contain
originally. The PKDS will contain both public and private PKA keys. Each record
has a maximum size of 2.8 KB. The average record length for a private key is 1
KB, and for a public key is 0.5 KB. Allocate space for a minimum of two private
keys, one for digital signatures, and another for encipherment. In addition,
allocate enough space for the number of public keys you expect to store in the
PKDS. The number of public keys varies from system to system. Generally, only
those keys that are received from other users or systems are stored in the
PKDS. The public keys are used to send messages to the owners of the public
keys.

2. Determine the amount of secondary space to allocate for the PKDS.

This should reflect the total number of entries you expect to add to the data set.
For detailed information about calculating space for a VSAM data set, see z/OS
DFSMS Access Method Services for Catalogs.

To access keys, VSAM uses the key label as the VSAM key. This means that
VSAM adds keys to the data set in collating sequence. That is, if two keys
named A and B are in the data set, A appears earlier in the data set than B. As

20 z/OS V1R13 System Programmer's Guide

a result, adding keys to the data set can cause multiple VSAM control interval
splits and control area splits. For example, a split might occur if the data set
contains keys A, B, and E and you add C. In this case, C must be placed
between B and E.

The amount of secondary space you allocate must take into account the
number of control interval and control area splits that might occur. If the PKDS
uses a significant amount of secondary space, you can copy it into another disk
copy that you created with more primary space. You can do this by using the
Access Method Services (AMS) REPRO command or the AMS
EXPORT/IMPORT commands.

The BUFFERSPACE parameter on the AMS DEFINE CLUSTER command
(required by Step 3) lets VSAM optimize space for control area and control
interval splits. For a detailed explanation of keyed-direct update processing and
what happens when control area and control interval splits occur, see z/OS
DFSMS Access Method Services for Catalogs.

3. Create an empty VSAM data set to use as the PKDS. Use the AMS DEFINE
CLUSTER command to define the data set and to allocate its space. ICSF
provides a sample job to define the PKDS in member CSFPKDS of
SYS1.SAMPLIB.

Note: To improve security and reliability of the data that is stored on the PKDS:

v Use the ERASE and WRITECHECK parameters on the AMS DEFINE
CLUSTER command. ERASE overwrites data records with binary
zeros when the PKDS cluster is deleted. WRITECHECK provides
hardware verification of all data that is written to the data set.

v Create a Security Server (RACF) data set profile for the PKDS.

v The CISZ(8192) coded in this sample in the DATA section is a
hardcoded requirement.

4. Allocate a disk copy of the PKDS by defining a VSAM cluster as in this
SYS1.SAMPLIB CSFPKDS member sample:
//CSFPKDS JOB = JOB CARD PARAMETERS
//**
//* Licensed Materials - Property of IBM *
//* 5694-A01 *
//* Copyright IBM Corp. 2002, 2009 *
//* *
//* THIS JCL DEFINES A VSAM PKDS TO USE FOR ICSF *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change xxxxxx to the volid where you want your PKDS to *
//* reside. The PKDS needs to be on a permanently resident *
//* volume. *
//* *
//* NOTE: This JCL is specific for creating the PKDS. There are *
//* samples for each of the other key data sets. *
//* CKDS - CSFCKDS JCL *
//* TKDS - CSFTKDS JCL *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER (NAME(CSF.CSFPKDS) -

Chapter 2. Installation, Initialization, and Customization 21

VOLUMES(XXXXXX) -
RECORDS(100,50) -
RECORDSIZE(350,3800) -
KEYS(72 0) -
FREESPACE(0,0) -
SHAREOPTIONS(2,3)) -

DATA (NAME(CSF.CSFPKDS.DATA) -
BUFFERSPACE(100000) -
ERASE -
CISZ(8192) -
WRITECHECK) -

INDEX (NAME(CSF.CSFPKDS.INDEX))
/*

You can change and use the Job Control Language according to the needs of
your installation. Please note that the JCL to define the PKDS differs from the
JCL that defines the CKDS (RECORDSIZE and CISZ parameters). For more
information about allocating a VSAM data set, see z/OS DFSMS Access Method
Services for Catalogs.

Migrating to a larger PKDS: In ICSF HCR7750, the LRECL for the PKDS
increased. This change allows 4096-bit RSA public and private keys to be stored in
the PKDS. With ICSF release HCR7750 or later, ICSF expects the PKDS to have
the longer LRECL before it will start.

If you currently have a PKDS that ICSF is using and are planning to move to

v the ICSF HCR7750 or later web deliverable

v z/OS V1.10 or later

then you need to perform the following steps before starting the new version of
ICSF.

The steps take you through the tasks that must be performed to make an exact
copy of the old PKDS contents. The ICSF PKA services are not available during the
time the copy is made to ensure the PKDS contents are not changing. You need to
schedule the change for a period of time when the applications using the PKDS
keys are also not available.

The steps to migrate are:

1. If the PKDS is shared with down-level systems, install the toleration APAR on
those systems to allow continued sharing of the PKDS. The toleration APAR
number is OA21807.

Note: Even with toleration APAR OA21807 installed, however, be aware that
reencipherment of a larger PKDS must always be performed on an
HCR7750 or later system.

2. Create the larger PKDS - use the JCL in SYS1.SAMPLIB(CSFPKDS) from the
HCR7750 or later system. If the PKDS will be shared, place the VSAM data set
where it can be shared.

3. Suspend activity with the PKDS:

v On HCR7751 and lower releases, disable the PKDS READ, PKDS WRITE,
PKDS CREATE, and PKDS DELETE access from the ADMINCNTL option.
This will prevent any updates from being made while the migration action is
performed. It will affect applications that use the PKDS services.

v On HCR7770, disable the Dynamic PKDS access from the ADMINCNTL
option. This will prevent any updates from being made while the migration
action is performed. It will affect applications that use the PKDS services.

22 z/OS V1R13 System Programmer's Guide

4. If the old PKDS is not empty, copy it to the larger PKDS using the JCL in
SYS1.SAMPLIB(CSFPKDCP) from the HCR7750 system. If the original PKDS is
an empty one, you will need to initialize the new PKDS.
//CSFPKDCP <JOB CARD PARAMETERS>
//**
//* Licensed Materials - Property of IBM *
//* 5694-A01 *
//* Copyright IBM Corp. 2007 *
//* *
//* THIS JCL COPIES ONE VSAM PKDS TO THE LARGER PKDS *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* *
//**
//STEP1 EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//INDD DD DSN=CSF.CSFPKDS.OLD,DISP=SHR
//OUTDD DD DSN=CSF.CSFPKDS,DISP=SHR
//SYSIN DD *
REPRO INFILE(INDD) OUTFILE(OUTDD)
/*

5. Protect the VSAM data set from use by non-authorized personnel.

6. Update the ICSF started procedures on all systems to reference the new PKDS.

7. Activate the new PKDS on each system - Refresh the PKDS from the Master
Key Mgmt option on the main ICSF Administration panel.

8. Resume activity with the PKDS:

v On HCR7751 and lower releases, enable the PKDS READ, PKDS WRITE,
PKDS CREATE, and PKDS DELETE access from the ADMINCNTL option.
Resume any applications that use the PKDS services.

v On HCR7770, enable the Dynamic PKDS access from the ADMINCNTL
option. Resume any applications that use the PKDS services.

Another approach is to stop ICSF, create the new PKDS, perform the copy, update
the installation options data set, and restart ICSF.

Creating the TKDS
TKDS Installations need to understand and plan for the system resources required
for managing the TKDS copy in virtual storage, particularly when the installation is
deploying a very large TKDS. Refer to “ICSF System Resource Planning for the
TKDS and Session Object Memory Areas” for guidelines. Once you understand
these guidelines, refer to “Steps to create the TKDS” on page 24 for step-by-step
instructions.

ICSF System Resource Planning for the TKDS and Session
Object Memory Areas
Like the CKDS and PKDS, ICSF manages a mirror copy of the TKDS data set in
protected, private virtual storage to optimize cryptographic workload access to
persistent PKCS #11 objects (keys, certificates, and so on). Also like the CKDS and
PKDS, the in-storage TKDS copy must be accommodated with sufficient system
central storage and auxiliary paging space resources. Unfortunately, the variable
length nature of PKCS #11 objects makes resource estimating for the TKDS
difficult. The best way to estimate the virtual storage requirement for an existing,

Chapter 2. Installation, Initialization, and Customization 23

stable TKDS (one that is not experiencing significant dynamic PKCS #11 object
creation or deletion activity) is to determine the actual size of the used DATA portion
of the TKDS and multiply this by 3. The following formula is provided to help you
calculate the required system virtual storage backing resource for an active
in-storage TKDS. In this formula HI-A-RBA is the allocated relative byte address for
the data component of a TKDS VSAM data set. The IDCAMS LISTCAT command
output for a TKDS VSAM data set can be consulted to determine the HI-A-RBA
value for the data component. The %Free Space used in this formula represents the
percentage of free space in the TKDS VSAM data set. The IDCAMS EXAMINE
DATATEST command output can be consulted to determine the percentage of free
space.
HI-A-RBA x ((100 - %Free Space) / 100) x 3

For example, if the DATA HI-A-RBA has the value 1622016 with 56% free space,
then the virtual storage requirement estimate would be 1622016 x (44/100) x 6 =
4282122 bytes or 4182 Kilobytes.

In addition to the persistent PKCS #11 objects stored in the TKDS, applications may
also make use of temporary (session) objects. These too occupy ICSF protected,
private virtual storage and should be accounted for. However, since these objects
are not stored in the TKDS, it is impossible to estimate their virtual storage
requirements without having some knowledge of the applications that are using
PKCS #11. Fortunately, most applications that use PKCS #11 use only a small
number of PKCS #11 session objects and their storage requirements are already
factored into the TKDS estimate above. However, some applications, such as
TCP/IP’s IPSec, use session objects exclusively, and may use a large number of
them. Estimating the virtual storage requirements for these is beyond the scope of
this document. Note that applications using PKCS #11 session objects have an
overall upper limit of 128 Megabytes per application address space for session
objects.

Note: The output from the formula above should be added to the outputs
calculated from the formulas in “ICSF System Resource Planning for the
CKDS” on page 15 and “ICSF System Resource Planning for the PKDS” on
page 20. This will give you the required system virtual storage backing
resource for all of ICSF’s KDS data sets. This value represents the required
amount of virtual storage for a given instance of ICSF. For a set of KDS data
sets shared across a sysplex environment, every active ICSF in the sysplex
will have an equivalent resource requirement.

Steps to create the TKDS
To enable applications to create and use persistent PKCS #11 tokens and objects
using the PKCS #11 services, the TKDS must be allocated and the TKDS data set
name must be specified on the TKDSN parameter of the options data set when you
first start ICSF.

The TKDS must be a key-sequenced data set with variable length records. Allocate
the TKDS on a permanently resident volume.

For detailed information about calculating space for a VSAM data set and an
explanation of keyed-direct update processing and what happens when control area
and control interval splits occur, see z/OS DFSMS Access Method Services for
Catalogs.

1. Determine the amount of primary space you need to allocate for the TKDS.

24 z/OS V1R13 System Programmer's Guide

This should reflect the total number of entries you expect the data set to contain
originally. The TKDS will contain PKCS #11 tokens and objects. Each record
has a maximum size of 32 KB. A record for a token will use 0.1 KB. The
minimum size of a record for objects is: Data: 1 KB, Secret Key: 1.1 KB, Public
Key: 1.5 KB, Private Key: 3.4 KB, Certificate: 1 KB, Domain Parameter: 1.5KB.
Allocate enough space for the number of tokens to be supported and for the
number of objects to be created. Note that session objects are not stored in the
TKDS.

2. Determine the amount of secondary space to allocate for the TKDS.

This should reflect the total number of entries you expect to add to the data set.

To access tokens and objects, VSAM uses the token handle or object handle as
the VSAM key. This means that VSAM adds objects to the data set in collating
sequence. That is, if two objects named A and B are in the data set, A appears
earlier in the data set than B. As a result, adding objects to the data set can
cause multiple VSAM control interval splits and control area splits. For example,
a split might occur if the data set contains objects A, B, and E and you add C.
In this case, C must be placed between B and E.

The amount of secondary space you allocate must take into account the
number of control interval and control area splits that might occur. If the TKDS
uses a significant amount of secondary space, you can copy it into another disk
copy that you created with more primary space. You can do this by using the
Access Method Services (AMS) REPRO command or the AMS
EXPORT/IMPORT commands.

The BUFFERSPACE parameter on the AMS DEFINE CLUSTER command
(required by Step 3) lets VSAM optimize space for control area and control
interval splits.

3. Create an empty VSAM data set to use as the TKDS. Use the AMS DEFINE
CLUSTER command to define the data set and to allocate its space. ICSF
provides a sample job to define the TKDS in member CSFTKDS of
SYS1.SAMPLIB.

Note: To improve security and reliability of the data that is stored on the TKDS:

v Use the ERASE and WRITECHECK parameters on the AMS DEFINE
CLUSTER command. ERASE overwrites data records with binary
zeros when the TKDS cluster is deleted. WRITECHECK provides
hardware verification of all data that is written to the data set.

v Create a Security Server (RACF) data set profile for the TKDS.

4. Allocate a disk copy of the TKDS by defining a VSAM cluster as in this
SYS1.SAMPLIB CSFTKDS member sample:
//CSFTKDS JOB = JOB CARD PARAMETERS
//**
//* Licensed Materials - Property of IBM *
//* 5694-A01 *
//* COPYRIGHT IBM CORP. 2007, 2009 *
//* *
//* THIS JCL DEFINES A VSAM TKDS TO USE FOR ICSF *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change XXXXXX to the volid where you want your TKDS to *
//* reside. The TKDS needs to be on a permanently resident *

Chapter 2. Installation, Initialization, and Customization 25

//* volume. *
//* *
//* NOTE: This JCL is specific for creating the TKDS. There are *
//* samples for each of the other key data sets. *
//* CKDS - CSFCKDS JCL *
//* PKDS - CSFPKDS JCL *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER (NAME(CSF.CSFTKDS) -
VOLUMES(XXXXXX) -
RECORDS(100,50) -
RECORDSIZE(2200 32756) -
KEYS(72 0) -
FREESPACE(0,0) -
SPANNED -
SHAREOPTIONS(2,3)) -

DATA (NAME(CSF.CSFTKDS.DATA) -
BUFFERSPACE(100000) -
ERASE -
WRITECHECK) -

INDEX (NAME(CSF.CSFTKDS.INDEX))
/*

You can change and use the Job Control Language according to the needs of
your installation. For more information about allocating a VSAM data set, see
z/OS DFSMS Access Method Services for Catalogs.

Steps to create the Installation Options Data Set
The installation options data set is a file that you create that contains installation
options. It becomes active when you start ICSF.

v The installation options data set can be a member of PARMLIB, a member of a
partitioned data set, or a sequential data set.

v The format of each record in the data set must be fixed length or fixed block
length.

v A physical line in the data set is 80 characters long. The system ignores any
characters in positions 72 to 80 of the line.

v A logical line is one or more physical lines. You can group physical lines into a
logical line by placing a comma at the end of the information. Only a comment
can appear after the comma. The system ignores any other information between
the comma and column 71.

v Continuation causes the next physical line to append immediately following the
comma. The system removes all leading blanks on the next physical line.

v You can delimit comments by /* and */ and include them anywhere within the
text. A comment cannot span physical records. The system removes comments
from a logical line before parsing it. It ignores physical lines that contain only
comments.

v Specify only one option setting or keyword on a logical line. (If you specify more
than one, the system ignores all but the last one on the line. The system reports
syntax errors, but the errors do not cause it to stop interpreting the file.)

ICSF provides two sample installation options data sets. These sample data sets
use the recommended values for each option.

1. When you are starting ICSF for the first time:

26 z/OS V1R13 System Programmer's Guide

a. Change the name of the data set on the CKDSN and PKDSN statements to
the name of the empty VSAM datasets you created previously (in Step 3 on
page 18 and Step 4 on page 21).

b. Change SSM(NO) to SSM(YES).

c. For a complete description of options you may want to change after the first
start, see “Customizing ICSF after the first start” on page 37.)

2. Store the updated data set in SYS1.PARMLIB.

Note: For convenience, the installation options data set generally resides in
SYS1.PARMLIB. If your cryptographic administrator does not have
update access to SYS1.PARMLIB, store installation options in another
data set, and RACF-protect it.

The two sample installation options data sets are as follows in SYS1.SAMPLIB:

v CSFPRM00
/***/
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* 5694-A01 */
/* */
/* COPYRIGHT IBM CORP. 1990, 2008 */
/* */
/* THIS IS A SAMPLE OF THE ICSF OPTIONS DATASET */
/* */
/***/
CKDSN(CSF.CSFCKDS)
PKDSN(CSF.CSFPKDS)
COMPAT(NO)
SSM(NO)
KEYAUTH(NO)
CKTAUTH(NO)
CHECKAUTH(NO)
TRACEENTRY(10000)
USERPARM(USERPARM)
REASONCODES(ICSF)

v CSFPRM01 (batch setup for SMP/E)
/***/
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* 5694-A01 */
/* */
/* COPYRIGHT IBM CORP. 1990, 2008 */
/* */
/* THIS IS A SAMPLE OF THE ICSF OPTIONS DATASET */
/* */
/***/
CKDSN(CSF.CSFCKDS)
PKDSN(CSF.CSFPKDS)
COMPAT(NO)
SSM(YES)
KEYAUTH(NO)
CKTAUTH(NO)
CHECKAUTH(NO)
TRACEENTRY(10000)
USERPARM(USERPARM)
REASONCODES(ICSF)

Note: See “Parameters in the installation options data set” on page 38 for
descriptions of these parameters.

Chapter 2. Installation, Initialization, and Customization 27

Use of system symbols in the options data set is supported. System symbols can
be used as values for any of the parameters. System symbols must be no more
than 8 characters. ICSF allows the CKDS and PKDS data set names to be a
maximum of 44 characters with up to 21 qualifiers. See “Parameters in the
installation options data set” on page 38 for additional information.

This example shows how system symbols could be used for the CKDS and PKDS
data set names. You could use a SYS1.PARMLIB(IEASYMxx) file and modify
CSFPRM01.

IEASYMxx file could contain:
/*------------------------------------*/
/* SYSTEM SYMBOLS FOR ICSF CRYPTO */
/*------------------------------------*/
SYSDEF
SYMDEF(&CKDSN001=’CSF’)
SYMDEF(&CKDSN002=’CSFCKDS’)
SYMDEF(&PKDSN001=’CSF’)
SYMDEF(&PKDSN002=’CSFPKDS’)

CSFPRM01 could be modified as follows:
/* */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* "RESTRICTED MATERIALS OF IBM" */
/* 5694-A01 */
/* */
/* (C) COPYRIGHT IBM CORP. 1990, 2008 */
/* */
/* */
CKDSN(&CKDSN001..&CKDSN002)
PKDSN(&PKDSN001..&PKDSN002)
COMPAT(NO)
SSM(YES)
KEYAUTH(NO)
CKTAUTH(NO)
CHECKAUTH(NO)
TRACEENTRY(10000)
USERPARM(USERPARM)
REASONCODES(ICSF)

When the machine or partition is IPLed, specify within the load parameter the
symbol file that should be used. For example, if the previous symbol file was called
IEASYM01, then within the load member, the IEASYM entry might look like
IEASYM(00,01); where 00 denotes the IEASYM00 file (usually the system default)
and 01 denotes the IEASYM01 file.

For SMP/E, CSFPRM01 can be copied to the CPAC.PARMLIB data set. The CKDS
and PKDS data set names in CSFPRM01 need to match in Server-Pac. Outside of
Server-Pac, you need to copy and edit CSFPRM01.

Steps to create the ICSF Startup Procedure
ICSF provides these two job control language programs. You can use this code as
the basis for your startup procedure.

v member CSF in SYS1.SAMPLIB
//CSF PROC
//CSF EXEC PGM=CSFINIT,REGION=0M,TIME=1440,MEMLIMIT=NOLIMIT
//CSFPARM DD DSN=SYS1.PARMLIB(CSFPRM00),DISP=SHR

v member CSFSTART in SYS1.SAMPLIB (batch setup for SMP/E)

28 z/OS V1R13 System Programmer's Guide

|

|
|
|

|

//CSFSTART PROC
//CSFSTART EXEC PGM=CSFINIT,REGION=0M,TIME=1440,MEMLIMIT=NOLIMIT
//CSFPARM DD DSN=SYS1.PARMLIB(CSFPRM01),DISP=SHR).

Store this startup PROC in SYS1.PROCLIB (or another suitable library). For
SMP/E this startup PROC can be copied to the CPAC.PROC data set, and the
data set name (SYS1.PARMLIB) can be copied to match the name you chose for
the CPAC.PARMLIB data set (in which CSFPRM01 would be placed). This would
work for Server-Pac. Outside of Server-Pac, you need to copy and edit
CSFSTART.

1. Change or use the sample startup procedure according to your needs.

a. In the sample code, the first line is the PROC statement. You can add one
or more procedure variables to the PROC statement. For example, you can
allow the system operator to decide at start time which member of the
installation options data set to use. This example allows the operator to
enter START CSF,M=CSFPRM01, specifying an alternate set of start-up
options.
//CSF PROC M=CSFPRM00...
//CSFPARM DD DSN=MY.ICSF.PARM(&M),DISP=SHR

You can use the same principle to change the name of a sequential data
set, if you are not using a partitioned data set.

b. The last line is the CSFPARM DD statement. The sample code specifies
SYS1.PARMLIB as the data set where the installation options data set is
stored. If you stored the installation options data set elsewhere, replace
SYS1.PARMLIB with the name of the data set where you stored the
installation options.

c. The CSFPARM DD statement also specifies member CSFPRM00 as the
name of the installation options data set. If you used a different name when
you created the installation options data set (or any time you want to use
other options), change this member name.

2. Store your startup procedure in SYS1.PROCLIB (or another suitable library) with
a member name of your choice. (Depending on installation standards, possible
names include CSF, CSFPROD, and CRYPTO.)

3. If you use Security Server (RACF), you may need to update the RACF Started
Procedure Table if you define a new started task:

a. Add the new started task name

b. Add a RACF userid to associate with the started task. This userid requires
that:

v READ access to the data set to which the CSFPARM JCL DD statement
refers

v Define all CKDSs in every installation option data set.

v Define all PKDSs in every installation option data set.

See z/OS Security Server RACF System Programmer's Guide for more
information.

c. Optionally, you can add a RACF group name.

Note: RACF uses the userid associated with the ICSF address space only
when accessing the CKDS and PKDS named in the installation options
data set and then only at ICSF startup. When you perform a CKDS or
PKDS Refresh task by using the ICSF ISPF panels under TSO/E, RACF
uses the TSO userid to determine access authorization. When the CKDS

Chapter 2. Installation, Initialization, and Customization 29

|
|
|

|
|
|
|
|
|

Refresh and PKDS Refresh tasks are a batch job, RACF uses the userid
associated with the batch address space to determine access
authorization.

Steps to provide access to the ICSF panels
To provide a way for the administrator to access the ICSF panels, you can create
an ICSF option on the ISPF Primary Option Menu. Access the code for the ISPF
Primary Option Menu panel body and perform these steps:

1. Under the % OPTION ===> _ZCMD line, add this line:
% <option value> - ICSF Panels

You can specify either a letter or number for the option value. Do not use an
option value that already exists in the menu.

2. On the &ZSEL= TRANS(&ZQ line, add this information:
<option value>,’’PANEL(CSF@PRIM) NEWAPPL(CSF)’’

The option value should be the same value as the option value you chose to
use in the preceding step.

When you access the ISPF Primary Option Menu panel, the ICSF panels option
appears on the menu. You can choose the ICSF option value to access the ICSF
panels.

You must also update the logon procedure that is used by ICSF administrators who
will use the ICSF panels. For example:

//SYSPROC DD ...
.
.
.
// DD DSN=CSF.SCSFCLI0,DISP=SHR
.
.
.
//ISPPLIB DD ...
.
.
.
// DD DSN=CSF.SCSFPNL0,DISP=SHR
.
.
.
//ISPMLIB DD ...
.
.
.
// DD DSN=CSF.SCSFMSG0,DISP=SHR
.
.
.
//ISPSLIB DD ...
.
.
.
// DD DSN=CSF.SCSFSKL0,DISP=SHR
.
.
.
// ISPTLIB
.
.
.

30 z/OS V1R13 System Programmer's Guide

// DD DSN=CSF.SCSFTLIB,DISP=SHR
.
.
.

An alternate method to access the ICSF panels is to use ISPF LIBDEF. Here is a
sample clist.

/* Rexx */
/* IBMs ICSF */

address ispexec

"LIBDEF ISPPLIB DATASET ID(’CSF.SCSFPNL0’) STACK"
"LIBDEF ISPMLIB DATASET ID(’CSF.SCSFMSG0’) STACK"
"LIBDEF ISPSLIB DATASET ID(’CSF.SCSFSKL0’) STACK"
"LIBDEF ISPTLIB DATASET ID(’CSF.SCSFTLIB’) STACK"

address tso "ALTLIB ACTIVATE APPLICATION(CLIST)
DATASET(’CSF.SCSFCLI0’)"

"SELECT PANEL(CSF@PRIM) NEWAPPL(CSF) PASSLIB"
address tso "ALTLIB DEACTIVATE APPLICATION(CLIST)"

"LIBDEF ISPSLIB"
"LIBDEF ISPPLIB"
"LIBDEF ISPMLIB"
"LIBDEF ISPTLIB"

Ensure that the latest CSFKEYS file is part of ISPTLIB; this allows scrolling of the
management panels.

The z/OS Program Directory lists additional installation steps, and some of these
steps depend on the system from which you are migrating. See z/OS Program
Directory, other topics in this publication, and z/OS Cryptographic Services ICSF
Administrator's Guide for details about the remaining steps.

Steps to start ICSF for the first time
Now that you have created the key data sets, the installation data set, the started
procedure, and the ICSF management panels, you can start ICSF.

For additional information on starting ICSF for the first time, see Appendix D,
“Helpful Hints for ICSF First Time Startup,” on page 305.
v Created an empty data set for use as a CKDS
v Specified the CKDS name in the installation options data set
v Created an empty data set for use as a PKDS
v Specified the PKDS name in the installation options data set
v If PKCS #11 support is desired, create the TKDS
v Created a startup procedure
v Installed ICSF

Steps for initializing ICSF
You must initialize ICSF and the cryptographic coprocessors:

1. Enter the START command and the startup procedure name. In this example,
CSF is the name of the startup procedure.

START CSF

When you start ICSF, you specify the name of the ICSF startup procedure you
created (see “Steps to create the ICSF Startup Procedure” on page 28). See
“Starting and stopping ICSF” on page 76 for more information about starting and
stopping ICSF.

Chapter 2. Installation, Initialization, and Customization 31

Note: CCF Systems Only: If you start CSF using CSFSTART and then run the
CSFSETMK JCL to set the master keys and initialize the CKDS, the DES
master keys will be set and the PKA master keys will be set in the
Cryptographic Coprocessor Feature, and the CKDS will be initialized
using the appropriate pass phrase. If your environment has PCI
Cryptographic Coprocessors, they will not be initialized by this process.
Only the Cryptographic Coprocessor Feature is initialized. If you need to
initialize the PCI Cryptographic Coprocessor, see z/OS Cryptographic
Services ICSF Administrator's Guide for additional information on using
the Pass Phrase Initialization Utility. If you re-IPL or stop ICSF and want
to perform a subsequent SMP/E E-delivery, you only need to start ICSF
(providing you wish to reuse the previously established options and
parameters).

2. Access the ICSF panels to define a master key and initialize the CKDS and
PKDS. For a description of how to use the ICSF panels to define a master key
and initialize the CKDS and PKDS at first-time startup, see z/OS Cryptographic
Services ICSF Administrator's Guide.

When defining a master key by specifying master key parts, make sure the key
parts are recorded and saved in a secure location. When you are entering
the key parts for the first time, be aware that you may need to reenter these
same key values at a later date to restore master key values that have
been cleared. If defining a master key using a pass phrase, realize that the
same pass phrase will always produce the same master key values, and is
therefore as critical and sensitive as the master key values themselves. Make
sure you save the pass phrase so that you can later reenter it if needed.
Because of the sensitive nature of the pass phrase, make sure you secure it in
a safe place.

3. When you start ICSF for the first time, you will see different messages
depending on your system hardware.

v z10 EC, z10 BC, and z196 with a CEX3C:

– First time startup messages before master keys have been loaded and the
CKDS and PKDS have not been initialized:
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM124I MASTER KEY DES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY RSA ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY AES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY ECC ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CKDS IS NOT INITIALIZED.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.PKDS IS NOT INITIALIZED.
CSFM012I NO ACCESS CONTROL AVAILABLE FOR CRYPTOZ RESOURCES. ICSF PKCS11
SERVICES DISABLED.
CSFM122I PKA SERVICES WERE NOT ENABLED DURING ICSF INITIALIZATION
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM009I NO ACCESS CONTROL AVAILABLE FOR ICSF SERVICES OR KEYS
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.

Message CSFM124I will be issued for each CEX3C online.

32 z/OS V1R13 System Programmer's Guide

Notes:

a. Message CSFM508I will not be issued if one of the Crypto Express3
Feature's cryptographic engines is configured as an accelerator
(CEX3A).

b. Message CSFM122I will not be issued when your system has any
CEX3C coprocessors (with the Sep. 2011 or later LIC) online. The
PKA callable services control will not be active. The availability of RSA
callable services will depend on the status of the RSA master key.
CSFM130I is issued when the RSA master key is active and RSA
callable services are available.

– First time startup messages before master keys have been loaded and
sharing an initialized CKDS and PKDS:
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM123E MASTER KEY DES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, IN ERROR.
CSFM123E MASTER KEY AES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, IN ERROR.
CSFM123E MASTER KEY ECC ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, IN ERROR.
CSFM123E MASTER KEY RSA ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, IN ERROR.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM122I PKA SERVICES WERE NOT ENABLED DURING ICSF INITIALIZATION
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.

Message CSFM123E will be issued for each CEX3C online.

Notes:

a. Message CSFM508I will not be issued if one of the Crypto Express3
Feature's cryptographic engines is configured as an accelerator
(CEX3A).

b. Message CSFM122I will not be issued when your system has any
CEX3C coprocessors (with the Sep. 2011 or later LIC) online. The
PKA callable services control will not be active. The availability of RSA
callable services will depend on the status of the RSA master key.
CSFM130I is issued when the RSA master key is active and RSA
callable services are available.

– Normal ICSF restart messages. Master key registers are valid and match
the CKDS/PKDS.
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM129I MASTER KEY DES ON CRYPTO EXPRESS2 COPROCESSOR Epp, SERIAL
NUMBER nnnnnnnn, IS CORRECT.
CSFM129I MASTER KEY AES ON CRYPTO EXPRESS2 COPROCESSOR Epp, SERIAL
NUMBER nnnnnnnn, IS CORRECT.
CSFM129I MASTER KEY ECC ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, IS CORRECT.
CSFM129I MASTER KEY RSA ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, IS CORRECT.

Chapter 2. Installation, Initialization, and Customization 33

|
|
|
|
|
|

|
|
|
|
|
|

CSFM129I MASTER KEY mk ON coprocessor-name cii, SERIAL
NUMBER nnnnnnn, IS CORRECT.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM400I CRYPTOGRAPHY - SERVICES ARE NOW AVAILABLE.
CSFM130I CRYPTOGRAPHY - RSA SERVICES ARE AVAILABLE.
CSFM127I CRYPTOGRAPHY - AES SERVICES ARE AVAILABLE.
CSFM130I CRYPTOGRAPHY - ECC SERVICES ARE AVAILABLE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

Message CSFM129I will be issued for each active CEX3C.

Note: Message CSFM508I will not be issued if one of the Crypto
Express3 Feature's cryptographic engines is configured as an
accelerator (CEX3A).

v z9 EC, z9 BC, z10 EC and z10 BC with a CEX2C:

– First time startup messages before master keys have been loaded and the
CKDS and PKDS have not been initialized:
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM124I MASTER KEY DES ON CRYPTO EXPRESS2 COPROCESSOR Epp, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY AES ON CRYPTO EXPRESS2 COPROCESSOR Epp, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CKDS IS NOT INITIALIZED.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.PKDS IS NOT INITIALIZED.
CSFM012I NO ACCESS CONTROL AVAILABLE FOR CRYPTOZ RESOURCES. ICSF PKCS11
SERVICES DISABLED.
CSFM122I PKA SERVICES WERE NOT ENABLED DURING ICSF INITIALIZATION
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM009I NO ACCESS CONTROL AVAILABLE FOR ICSF SERVICES OR KEYS
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.

Message CSFM124I will be issued for each CEX2C online.

Note: Message CSFM508I will not be issued if one of the Crypto
Express2 Feature's cryptographic engines is configured as an
accelerator (CEX2A).

– First time startup messages before master keys have been loaded and
sharing an initialized CKDS and PKDS:
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM123E MASTER KEY DES ON CRYPTO EXPRESS2 COPROCESSOR Epp, SERIAL
NUMBER nnnnnnnn, IN ERROR.
CSFM123E MASTER KEY AES ON CRYPTO EXPRESS2 COPROCESSOR Epp, SERIAL
NUMBER nnnnnnnn, IN ERROR.
CSFM123E MASTER KEY RSA ON CRYPTO EXPRESS2 COPROCESSOR E38, SERIAL
NUMBER nnnnnnnn, IN ERROR.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM122I PKA SERVICES WERE NOT ENABLED DURING ICSF INITIALIZATION
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.

Message CSFM123E will be issued for each CEX2C online.

34 z/OS V1R13 System Programmer's Guide

Note: CSFM508I will not be issued if one of the Crypto Express2
Feature's cryptographic engines is configured as an accelerator
(CEX2A).

– Normal ICSF restart messages. Master key registers are valid and match
the CKDS/PKDS.
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM124I MASTER KEY DES ON CRYPTO EXPRESS2 COPROCESSOR Epp, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY AES ON CRYPTO EXPRESS2 COPROCESSOR Epp, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM129I MASTER KEY AES ON coprocessor-name cii, SERIAL
NUMBER nnnnnnn, IS CORRECT.
CSFM129I MASTER KEY DES ON coprocessor-name cii, SERIAL
NUMBER nnnnnnn, IS CORRECT.
CSFM129I MASTER KEY RSA ON coprocessor-name cii, SERIAL
NUMBER nnnnnnn, IS CORRECT.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM400I CRYPTOGRAPHY - SERVICES ARE NOW AVAILABLE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM127I CRYPTOGRAPHY - AES SERVICES ARE AVAILABLE.

Message CSFM129I will be issued for each active CEX2C.

Note: Message CSFM508I will not be issued if one of the Crypto
Express2 Feature's cryptographic engines is configured as an
accelerator (CEX2A).

– z9 EC, z9 BC, z10 EC and z10 BC with CPACF only (no
CEX2C/CEX3C or CEX2A/CEX3A)
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM101E PKA KEY DATA SET, CSF.PKDS IS NOT INITIALIZED.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CKDS IS NOT INITIALIZED.
CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM122I PKA SERVICES WERE NOT ENABLED DURING ICSF INITIALIZATION
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.

– z9 EC, z9 BC, z10 EC and z10 BC with CPACF and CEX2A/CEX3A
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.
CSFM122I PKA SERVICES WERE NOT ENABLED DURING ICSF INITIALIZATION
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM400I CRYPTOGRAPHY - SERVICES ARE NOW AVAILABLE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.

Chapter 2. Installation, Initialization, and Customization 35

You'll receive message CSFM511E for each Cryptographic Coprocessor Feature
you have online.

Notes:

1. When you are starting ICSF for the first time and loading the first master key
and initializing one or more CKDSs, you provide the name of the empty VSAM
data set you defined previously (see step 3 on page 18) to use for the CKDS
when starting ICSF.

2. While ICSF processes the data set, it requires exclusive use so that no one can
make changes while the data set is read. ICSF releases the data set when it
completes startup processing.

3. During CKDS initialization or refresh, ICSF reads the CKDS into extended
private storage. Make sure that the region size is sufficient for reading in the
entire data set. The parameter setting REGION=0M specifies the maximum
available space.

4. You can add keys to the CKDS in several ways. See “The Cryptographic Key
Data Set (CKDS)” on page 8 for details.

5. You can also write application programs to call services to perform
cryptographic functions. See “Creating ICSF exits and generic services” on page
52 for details.

MK Initialization for SMP/E - CCF Systems Only
This task applies only to CCF systems. It does not apply to z890, z990, z9, z10, or
z196 systems.

Run the JCL to set the SMP/E pass phrase for SMP/E electronic delivery only.

The JCL uses a pass phrase value to load the DES and PKA master keys. The
DES and PKA master keys will be set in the Cryptographic Coprocessor Feature.
Change This Pass Phrase is the default pass phrase. The entry point is CSFEUTIL
and will have 2 or (optionally) 3 parameters. The first parameter must be the CKDS
name. The second parameter (optional) is the pass phrase. The last parameter is
the function PPINIT. If you do not use the default pass phrase and create your own:

v It must be sixteen to sixty-four bytes in length.

v Any EBCDIC character is allowed.

v Leading and trailing blanks will be removed.

v Embedded blanks are allowed.

Important: The same pass phrase will always produce the same master key
values, and is therefore as critical and sensitive as the master key
values themselves. Make sure you save the pass phrase so that you
can later reenter it if needed (for example, if you need to restore master
key values that have been cleared).

See this example:
//CSFSETMK JOB (JOB CARD PARAMETERS)
//**
//* Licensed Materials - Property of IBM *
//* 5694-A01 *
//* (C) Copyright IBM Corp. 2002 *
//* *
//* THIS JCL USES A PASS PHRASE VALUE TO LOAD DES AND PKA MASTER KEYS*
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *

36 z/OS V1R13 System Programmer's Guide

//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) The first parameter must be the CKDS name *
//* 3) An optional second parameter may be used. The second *
//* parameter must be 16-64 character pass phrase. *
//* For the pass phrase any EBCDIC character is allowed. *
//* Leading and trailing blanks will be removed. *
//* Embedded blanks are allowed. *
//* It is STRONGLY recommended that the pass phrase NOT contain *
//* any commas. Commas are used as a delimiter for the *
//* parameters of the CSFEUTIL program. *
//* 4) The last parameter must be the function PPINIT. *
//* 5) If the default pass phrase of "Change This Pass Phrase" *
//* is desired, the PARM= would look like this: *
//* PARM=’CSF.CSFCKDS,PPINIT’ *
//* *
//* If a customer selected pass phrase is to be used the *
//* PARM= would look like this: *
//* PARM=’CSF.CSFCKDS,Different Pass Phrase,PPINIT’ *
//* *
//**
//* User supplied pass phrase of Different Pass Phrase
//STEP EXEC PGM=CSFEUTIL,
// PARM=’CSF.CSFCKDS,Different Pass Phrase,PPINIT’
//SYSPRINT DD SYSOUT=*
//*

OR:

//* Using the default pass phrase of Change This Pass Phrase
//STEP EXEC PGM=CSFEUTIL,
// PARM=’CSF.CSFCKDS,PPINIT’
//SYSPRINT DD SYSOUT=*
//*

In order to successfully run the CSFSETMK job, determine if these services are
RACF protected in the CSFSERV class. If the services are not RACF protected in
the CSFSERV class, then nothing needs to be done. If the services are protected in
the CSFSERV class, then the issuer of the CSFSETMK JCL must be permitted to
the profile for each service.

v CSFOWH

v CSFPMCI

v CSFCMK

v CSFREFR

Customizing ICSF after the first start
The startup procedure includes a CSFPARM DD statement, which gives the name
of the installation options data set. The installation options data set includes a
CKDSN option, which gives the names of the CKDS, and a PKDSN option, which
gives the name of the PKDS.

After the first start, whenever you restart ICSF, the CKDS and PKDS named in the
installation options data set becomes the active in-storage CKDS and PKDS.

In order for changes to the installation options dataset to take effect, stop and
restart ICSF. To change the active in-storage CKDS or PKDS, stop and restart
ICSF, or use the REFRESH option of the Master Key Management panel.

Chapter 2. Installation, Initialization, and Customization 37

Parameters in the installation options data set
The installation options data set is an intended programming interface.

When specifying parameter values within parentheses, leading and trailing blanks
are ignored. Embedded blanks may cause unpredictable results.

Support is provided for the use of system symbols in the installation options data
set. System symbols can be used as values for any of the parameters. System
symbols are specified in the IEASYMxx member of SYS1.PARMLIB; the IEASYM
statement of the LOADxx member of SYS1.PARMLIB specifies the IEASYMxx
member(s) to be used for the resolution of system symbols. This example shows
the use of a system symbol for specifying the domain to be used for the start of
ICSF:
DOMAIN(&PARDOM.)

When the Installation Options Data Set is processed during the start of ICSF, the
value of the system symbol PARDOM will be substituted as the value of the
DOMAIN parameter.

For the first start, you specified an empty VSAM data set name for the CKDS in the
CKDSN option, an empty VSAM data set name for the PKDS in the PKDSN option,
and SSM(YES). You may want to change these and other options for subsequent
starts. Here is a complete list of installation options:

BEGIN(fmid)
Specifies that keywords following this BEGIN keyword are supported in
release fmid and later. There must be an END statement to complete the
current section. If not, an error message will be issued and ICSF will
terminate.

There may be any number of BEGIN/END pairs in the data set, but they
can't be nested within each other. A BEGIN must have a matching END
before another BEGIN can be specified.

If the release of ICSF you're running is at this release or later, the keywords
will be parsed and processed. If release of ICSF you're running is an earlier
release, the keywords will be ignored.

It recommended that when your systems are all running releases that
support newer keywords that the BEGIN/END pair be removed.

The following FMIDs are supported: HCR7740, HCR7750, HCR7751,
HCR7770, HCR7780, and HCR7790.

Here is an example of the usage of the BEGIN/END keywords.
keyword4 /* keyword4 is supported by all releases */
BEGIN(HCR7751)
keyword1 /* keyword1 added in HCR7751 */
keyword3 /* keyword3 added in HCR7751 */
END
BEGIN(HCR7770)
keyword2 /* keyword2 added in HCR7770 */
END
keyword5 /* keyword5 is supported by all releases */

CHECKAUTH(YES or NO)
Indicates whether ICSF performs security access control checking of
Supervisor State or System Key callers. If you specify CHECKAUTH(YES),
ICSF issues RACROUTE calls to perform the security access control
checking and the results are logged in RACF SMF records that are cut by

38 z/OS V1R13 System Programmer's Guide

|
|

|

RACF. If you specify CHECKAUTH(NO), the authorization checks against
resources in the CSFSERV class are not performed resulting in a significant
performance enhancement for supervisor state and system key callers.
However, the authorization checks are not logged in the RACF SMF
records.

If you do not specify the CHECKAUTH option, the default is
CHECKAUTH(NO).

If you configure CHECKAUTH(YES) in the ICSF options dataset, the Health
Checker address space user identity must be authorized to the CSFRKL
profile in class CSFSERV for the
ICSFMIG7731_ICSF_RETAINED_RSAKEY migration check to successfully
execute. However, you have no action to take if you choose not to run the
migration check. If you configure CHECKAUTH(NO), there is no
requirement to authorize the Health Checker user identity for any ICSF
profiles or classes, since the check routine executes in supervisor state.
This is not an implementation consideration, but rather a check deployment
or activation time customer administration consideration.

CKDSN(data-set-name)
Specifies the CKDS name the system uses to start ICSF. Whenever you
restart ICSF, the CKDS named in the CKDSN option becomes the active
in-storage CKDS. (At first-time startup, you should specify the name of an
empty VSAM data set you created to use as the CKDS.)

If you do not specify this keyword, ICSF does not become active. There is
no default for this option, so you must specify a value.

CKTAUTH(YES or NO)
Decides if authentication will be performed for every CKDS record read
from DASD.

Note: If the active CKDS is a variable-length record format CKDS or a
fixed-length record format CKDS that does not use record level
authentication, the CKTAUTH option will be ignored. It will be
displayed as DISABLED on the Installation Options Display panel.

YES Indicates authentication will be performed.

NO Indicates no authentication will be performed.

COMPAT(YES, NO, or COEXIST)
Indicates whether ICSF runs in compatibility mode, non-compatibility mode,
or coexistence mode with PCF.

YES Indicates compatibility mode.

In compatibility mode, you can run a PCF application on
ICSF, because ICSF supports the PCF macros. You do not
have to reassemble PCF applications to do this. You cannot
start PCF at the same time as ICSF on the same operating
system.

NO Indicates non-compatibility mode. In noncompatibility
mode, you run PCF applications on PCF and ICSF
applications on ICSF. You cannot run PCF applications on
ICSF, because ICSF does not support the PCF macros in
this mode. PCF can be started at the same time as ICSF
on the same operating system. You can start ICSF and then
start PCF, or you can start PCF and then start ICSF.

Chapter 2. Installation, Initialization, and Customization 39

|
|
|
|

You should use noncompatibility mode unless you are
migrating from PCF to ICSF.

COEXIST Indicates coexistence mode.

In coexistence mode, you can run a PCF application on
PCF, or you can reassemble the PCF application to run on
ICSF. To do this, you reassemble the application against
coexistence macros that are shipped with ICSF. You can
start PCF at the same time as ICSF on the same operating
system.

If you do not specify the COMPAT option, the default value is
COMPAT(NO). See “Running PCF and z/OS ICSF on the same system” on
page 173 for a complete description of the COMPAT options.

When you initialize ICSF for the first time, noncompatibility mode must be
active. Therefore, at first-time startup, you must specify COMPAT(NO) or
allow the default to be used.

COMPENC(DES or CDMF)
This keyword is no longer supported but is tolerated.

DEFAULTWRAP(internal_wrapping_method,external_wrapping_method)
Specifies the default key wrapping for DES keys. Any token generated or
updated by a service will be wrapped using the specified method unless
overridden by rule array keyword or a skeleton token. The default wrapping
method for internal and external tokens is specified independently.

Valid values for internal_wrapping_method and external_wrapping_method
are:

ORIGINAL
Specifies the original CCA token wrapping be used: ECB wrapping
for DES.

ENHANCED
Specifies the new X9.24 compliant CBC wrapping used. Note that
the enhanced wrapping method is available only on the z196 with a
CEX3C.

If the DEFAULTWRAP keyword is not specified, the default wrapping
method will be ORIGINAL for both internal and external tokens.

DOMAIN(n)
Specifies the number of the domain that you want to use for this start of
ICSF. You can specify only one domain in the options data set. Valid values
are between 0 and 15 inclusive.

DOMAIN is an optional parameter. The DOMAIN parameter is only required
if more than one domain is specified as the usage domain on the PR/SM
panels or if running in native mode. If specified in the options data set, it
will be used and it must be one of the usage domains for the LPAR.

If DOMAIN is not specified in the options data set, ICSF determines which
domains are available in this LPAR. If only one domain is defined for the
LPAR, ICSF will use it. If more than one is available, ICSF will issue error
message CSFM409E.

The cryptographic processors support multiple sets of master key registers,
which the specific domain values identify.

40 z/OS V1R13 System Programmer's Guide

|
|

v The Cryptographic Coprocessor Feature has a master key register for
the DES master key, the auxiliary DES master key, the signature master
key and the key management master key. The auxiliary DES master key
register may contain either the new or old DES master key. On the PCI
Cryptographic Coprocessor, each domain has a master key register for
the current, new, and old SYM-MK and RSA-MK.

v The PCIXCC/CEX2C has master key registers for the DES-MK, AES-MK
and RSA-MK master keys. Each domain has a master key register for
the current, new, and old DES-MK, AES-MK and RSA-MK.

v The CEX3C has master key registers for the DES-MK, AES-MK,
RSA-MK, and ECC-MK master keys. Each domain has a master key for
the current, new, and old DES-MK, AES-MK, RSA-MK, and ECC-MK.

For more information about partitions and running different configurations,
see z/OS Cryptographic Services ICSF Overview.

If you run ICSF in compatibility or coexistence mode, you cannot change
the domain number without re-IPLing the system. A re-IPL ensures that a
program does not access a cryptographic service with a key that is
encrypted under a different master key. If you are certain that no
cryptographic applications are still running, you can:

1. Stop CSF

2. Start CSF in COMPAT(NO) mode with a different domain number

3. Stop CSF

4. Start CSF in compatibility or coexistence mode with a different domain
number.

END Specifies the end of a section of keywords for the fmid from the
BEGIN(fmid). There must be a BEGIN(fmid) prior to the END. There must
be an END for each BEGIN(fmid). See the description for BEGIN for an
example of the usage of the BEGIN and END keywords.

EXIT(ICSF-name,load-module-name,FAIL(fail-option))
Indicates information about an installation exit.

The ICSF-name is the identifier for each exit. Table 3 on page 42 lists all
the ICSF exit names and explains when ICSF calls each exit. The load
module name is the name of the module that contains the exit. The name
can be any valid name your installation chooses.

Using the FAIL keyword of the EXIT statement, you specify the action ICSF,
the KGUP, or the PCF conversion program takes if the exit ends
abnormally. The fail action that you specify applies to subsequent calls of
the exit. If an exit ends abnormally, ICSF takes a system dump. The exit is
protected with an ESTAE or the ICSF service functional recovery routine
(FRR).

In general, you can specify one of these values for a fail option:

NONE No action is taken. The exit can be called again and will end
abnormally again.

EXIT The exit is no longer available to be called again.

SERVICE
The service or program that called the exit is no longer available to
be called again.

ICSF ICSF or the key generator utility program or the PCF conversion
program is ended, depending on the exit.

Chapter 2. Installation, Initialization, and Customization 41

Some fail options are not valid for a specific exit. If you specify a fail option
that is not valid, ICSF uses the next valid fail option. For example, if
SERVICE is not a valid fail option for an exit, ICSF uses the EXIT option.
EXIT is responsible for logging in SMF the results of any authorization
checks that are made.

Table 3. Exit Identifiers and Exit Invocations

Exit Identifiers Exit Invocations

CSFEXIT1 Gets control after the operator issues the START command, but before processing
takes place.
Note: You must not specify an EXIT statement for the first mainline exit, CSFEXIT1.

CSFEXIT2 Gets control after ICSF reads and interprets the installation options data set.

CSFEXIT3 Gets control before ICSF completes initialization.

CSFEXIT4 Gets control after the operator issues the STOP command to stop ICSF.

CSFEXIT5 Gets control when the operator issues the MODIFY command to modify ICSF.

CSFEMK Gets control during the compatibility service for the PCF EMK macro.

CSFGKC Gets control during the compatibility service for the PCF GENKEY macro.

CSFRTC Gets control during the compatibility service for the PCF RETKEY macro.

CSFEDC Gets control during the compatibility service for the PCF CIPHER macro.

CSFCKDS Gets control when a callable service retrieves an entry from the CKDS.

CSFKGUP Gets control during key generator utility program initialization, processing, and
termination.

CSFCONVX Gets control when you run the PCF CKDS conversion program.

CSFSRRW Gets control when an access to a single record in the CKDS is made using the key
entry hardware.

CSFAEGN Gets control during the ANSI X9.17 EDC generate callable service.

CSFAKEX Gets control during the ANSI X9.17 key export callable service.

CSFAKIM Gets control during the ANSI X9.17 key import callable service.

CSFAKTR Gets control during the ANSI X9.17 key translate callable service.

CSFATKN Gets control during the ANSI X9.17 transport key partial notarize callable service.

CSFCKC Gets control during the CVV key combine callable service.

CSFCKI Gets control during the clear key import callable service.

CSFCPE Gets control during the clear PIN encrypt callable service.

CSFCPA Gets control during the clear PIN generate alternate callable service.

CSFCSG Gets control during the VISA CVV service generate callable service.

CSFCSV Gets control during the VISA CVV service verify callable service.

CSFCTT Gets control during the ciphertext translate callable service.

CSFCTT1 Gets control during the ciphertext translate (with ALET) callable service.

CSFPGN Gets control during the Clear PIN generate callable service.

CSFCVT Gets control during the control vector translate callable service.

CSFCVE Gets control during the cryptographic variable encipher callable service.

CSFDKX Gets control during the data key export callable service.

CSFDKM Gets control during the data key import callable service.

CSFDEC Gets control during the decipher callable service.

CSFDEC1 Gets control during the decipher (with ALET) callable service.

42 z/OS V1R13 System Programmer's Guide

||

Table 3. Exit Identifiers and Exit Invocations (continued)

Exit Identifiers Exit Invocations

CSFDCO Gets control during the decode callable service.

CSFDSG Gets control during the digital signature generate service.

CSFDSV Gets control during the digital signature verify callable service.

CSFDKG Gets control during the diversified key generate callable service.

CSFENC Gets control during the encipher callable service.

CSFENC1 Gets control during the encipher (with ALET) callable service.

CSFECO Gets control during the encode callable service.

CSFEDH Gets control during the ECC Diffie-Hellman callable service.

CSFEPG Gets control during the encrypted PIN generate callable service.

CSFHMG Gets control during the HMAC generate callable service.

CSFHMV Gets control during the HMAC Verify callable service.

CSFPTR Gets control during the encrypted PIN translate callable service.

CSFPVR Gets control during the encrypted PIN verify callable service.

CSFKEX Gets control during the key export callable service.

CSFKGN Gets control during the key generate callable service.

CSFKGN2 Gets control during the key generate2 callable service.

CSFKIM Gets control during the key import callable service.

CSFKPI Gets control during the key part import callable service.

CSFKPI2 Gets control during the key part import2 callable service.

CSFKRC Gets control during the CKDS key record create callable service.

CSFKRC2 Gets control during the CKDS key record create2 callable service.

CSFKRD Gets control during the CKDS key record delete callable service.

CSFKRR Gets control during the CKDS key record read callable service.

CSFKRR2 Gets control during the CKDS key record read2 callable service.

CSFKRW Gets control during the CKDS key record write callable service.

CSFKRW2 Gets control during the CKDS key record write2 callable service.

CSFKYT Gets control during the key test callable service.

CSFKYT2 Gets control during the key test2 callable service.

CSFKYTX Gets control during the key test extended callable service.

CSFMDG Gets control during the MDC generate callable service.

CSFKTR Gets control during the key translate callable service.

CSFKTR2 Gets control during the key translate2 callable service.

CSFMGN1 Gets control during the MAC generate (with ALET) callable service.

CSFMVR Gets control during the MAC verify callable service.

CSFMVR1 Gets control during the MAC verify (with ALET) callable service.

CSFMDG1 Gets control during the MDC generate (with ALET) callable service.

CSFMGN Gets control during the MAC generate callable service.

CSFCKM Gets control during the multiple clear key import callable service.

CSFSKM Gets control during the multiple secure key import callable service.

CSFOWH Gets control during the one-way hash generate callable service.

Chapter 2. Installation, Initialization, and Customization 43

||

|

|

|

|

|

|

|

Table 3. Exit Identifiers and Exit Invocations (continued)

Exit Identifiers Exit Invocations

CSFOWH1 Gets control during the one-way hash generate (with ALET) callable service.

CSFPCI Gets control during the PCI interface callable service.

CSFPCU Gets contol during the PIN Change/Unblock callable service

CSFPEX Gets control during the prohibit export callable service.

CSFPEXX Gets control during the prohibit export extended callable service.

CSFPKD Gets control during the PKA decrypt callable service.

CSFPKE Gets control during the PKA encrypt callable service.

CSFPKG Gets control during the PKA key generate callable service.

CSFPKI Gets control during the PKA key import callable service.

CSFPKT Gets control during the PKA key translate callable service.

CSFPKTC Gets control during the PKA key token change callable service.

CSFPKX Gets control during the PKA Public Key Extract callable service.

CSFPKRC Gets control during the PKDS key record create callable service.

CSFPKRD Gets control during the PKDS key record delete callable service.

CSFPKRR Gets control during the PKDS key record read callable service.

CSFPKRW Gets control during the PKDS key record write callable service.

CSFPKSC Gets control during the PKSC interface callable service.

CSFRKA Gets control during the restrict key attribute callable service.

CSFRNG Gets control during the random number generate callable service.

CSFRNGL Gets control during the random number generate long callable service.

CSFRKD Gets control during the retained key delete callable service.

CSFRKL Gets control during the retained key list callable service.

CSFRKX Gets control during the remote key export callable service.

CSFSKI Gets control during the secure key import callable service.

CSFSKI2 Gets control during the secure key import2 callable service.

CSFSKY Gets control during the secure messaging for keys callable service.

CSFSMG Gets control during the symmetric MAC generate callable service.

CSFSMG1 Gets control during the symmetric MAC generate (with ALET) callable service.

CSFSMV Gets control during the symmetric MAC verify callable service.

CSFSMV1 Gets control during the symmetric MAC verify (with ALET) callable service.

CSFSPN Gets control during the secure messaging for PINs callable service.

CSFSBC Gets control during the SET block compose callable service.

CSFSBD Gets control during the SET block decompose callable service.

CSFSYX Gets control during the symmetric key export callable service.

CSFSYG Gets control during the symmetric key generate callable service.

CSFSYI Gets control during the symmetric key import callable service.

CSFSYI2 Gets control during the symmetric key import2 callable service.

CSFT31X Gets control during the TR-31 export callable service.

CSFT31I Gets control during the TR-31 import callable service.

CSFTBC Gets control during the trusted block create callable service.

44 z/OS V1R13 System Programmer's Guide

|

|

|

|

||

||

Table 3. Exit Identifiers and Exit Invocations (continued)

Exit Identifiers Exit Invocations

CSFTCK Gets control during the transform CDMF key callable service.

CSFTRV Gets control during the transaction validation callable service

CSFUDK Gets control during the user derived key callable service.

See Chapter 5, “Installation Exits,” on page 111 for a detailed description of
each ICSF exit, including the valid fail options.

Note: z/OS no longer ships IBM-supplied security exit routines; the security
exit points remain. Users of z/OS should use the Security Server
(RACF) or an equivalent product to obtain access checking of
services and keys. ICSF no longer needs these exit routines.

FIPSMODE(YES or COMPAT or NO,FAIL(fail-option))
Indicates whether z/OS PKCS #11 services must run in compliance with the
Federal Information Processing Standard Security Requirements for
Cryptographic Modules, referred to as FIPS 140-2. FIPS 140-2, published
by the National Institute of Standards and Technology (NIST), is a standard
that defines rules and restrictions for how cryptographic modules should
protect sensitive or valuable information. The standard is available at
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf.

By configuring z/OS PKCS #11 services to operate in compliance with FIPS
140-2 specifications, installations or individual applications can use the
z/OS PKCS #11 services in a way that allows only the cryptographic
algorithms (including key sizes) approved by the standard, and restricts
access to the algorithms that are not approved. For more information, refer
to z/OS Cryptographic Services ICSF Writing PKCS #11 Applications.

YES Indicates that the z/OS PKCS #11 services will operate in FIPS
standard mode. Any application using the PKCS #11 services will
be forced to use those services in a FIPS-compliant manner.
Applications will not have access to the algorithms or key sizes not
approved by FIPS 140-2. In addition, ICSF initialization will test that
it is running on an IBM System z model type, and a version and
release of z/OS, that supports FIPS. If so, then ICSF will perform a
series of cryptographic known answer tests as required by the FIPS
140-2 standard. If any of these initialization tests should fail, the
action the ICSF initialization process takes will depend on the
fail-option specified.

COMPAT
Indicates that the z/OS PKCS #11 services will operate in FIPS
compatibility mode. This mode is intended for installations where
only certain z/OS PKCS #11 applications must comply with the
FIPS 140-2 standard, while other applications do not. In this mode,
the PKCS #11 services can be further configured so that the
applications that do not need to comply with the FIPS 140-2
standard are not restricted from using any of the PKCS #11
algorithms, while applications that must comply with the standard
are restricted from using the non-approved algorithms. By default,
the COMPAT option will have the same effect as the YES option,
and all applications using the PKCS #11 services will be forced to
use those services in a FIPS-compliant manner. However,
additional specifications can be made:

Chapter 2. Installation, Initialization, and Customization 45

v at the PKCS #11 token and application level, by creating
FIPSEXEMPT.token-name resource profiles in the CRYPTOZ
class. A FIPSEXEMPT.token-name resource exists for each
token. User IDs with READ access authority to a
FIPSEXEMPT.token-name are exempt from FIPS compliance,
while user IDs with access authority NONE can only use the
PKCS #11 services in a FIPS-compliant manner.

v within applications themselves for individual keys. When an
application creates a key, the application can specify that the key
must be used in a FIPS 140-2 compliant fashion. The application
can specify this by setting the Boolean key attribute
CKA_IBM_FIPS140 to TRUE.

When the COMPAT option is specified, ICSF initialization will test
that it is running on an IBM System z model type, and a version
and release of z/OS, that supports FIPS. If so, then ICSF will
perform a series of cryptographic known answer tests as required
by the FIPS 140-2 standard. If any of these initialization tests
should fail, the action the ICSF initialization process takes will
depend on the fail-option specified.

NO Indicates that no z/OS PKCS #11 applications at the installation
need to comply with the FIPS 140-2 standard, and ICSF will bypass
the extra processing that is required to ensure FIPS compliance.
FIPSEXEMPT.token-name profiles, if they exist, will not be
examined. Requests to generate or use a key with
CKA_IBM_FIPS140=TRUE will result in a failure return code.

The fail-option is either YES or NO, and indicates what action the ICSF
initialization process should take if any of the initialization tests (performed
when FIPSMODE is YES or COMPAT) should fail.

YES indicates that ICSF should end abnormally if any of the tests fail.

NO Specifies that ICSF initialization process should continue even if
one or more of the tests fail. However, z/OS PKCS #11 support will
be limited or nonexistent depending on the test that failed.

v If ICSF is running on an IBM system z model type or with a
version of z/OS that does not support FIPS, most FIPS
processing is bypassed. PKCS #11 callable services will be
available, but ICSF will not adhere to FIPS 140 restrictions.
Requests to generate or use a key with
CKA_IBM_FIPS140=TRUE will result in a failure return code.

v If a known answer test failed, all ICSF PKCS #11 callable
services will be unavailable.

KEYAUTH(YES or NO)
Indicates whether or not ICSF authenticates a key entry after ICSF retrieves
one from the in-storage CKDS. If you specify KEYAUTH(YES), ICSF
authenticates the key. ICSF generates a message authentication code
(MAC) for each key entry in the CKDS when you create or update the entry.
If you specify KEYAUTH(YES), ICSF performs a MAC verification to ensure
that the entry has not changed. If you specify KEYAUTH(NO), ICSF does
not perform this authentication and gains a small performance
enhancement. If you do not specify the KEYAUTH option, the default value
is KEYAUTH(NO).

46 z/OS V1R13 System Programmer's Guide

Note: If the active CKDS is a variable-length record format CKDS or a
fixed-length record format CKDS that does not use record level
authentication, the KEYAUTH option will be ignored. It will be
displayed as DISABLED on the Installation Options Display panel.

MAXLEN(n)
Defines the maximum length of characters in a text string, including any
necessary padding, for some callable service requests. For example, this
option defines the maximum length of the text the encipher service encrypts
for each call. Specify n as a decimal value from 1024 through 2147483647.
If you do not specify the MAXLEN option, the default value is
MAXLEN(65535).

The MAXLEN parameter may still be specified in the options data set, but
only the maximum value limit will be enforced (2147483647). If a value
greater than this is specified, an error will result and ICSF will not start.

Note: MAXLEN is no longer displayed on the Installation Option Display
panel.

PKDSCACHE
This keyword is no longer supported but is tolerated.

PKDSN(data-set-name)
Specifies the PKDS name the system uses to start ICSF. Whenever you
restart ICSF, the PKDS named in the PKDSN option becomes the active
PKDS. (At first-time startup, you should specify the name of an empty
VSAM data set you created to use as the PKDS.)

If you do not specify this keyword, ICSF does not become active. There is
no default for this option, so you must specify a value.

REASONCODES(ICSF or TSS)
Specifies which set of reason codes are to be returned from callable
services. If you do not specify the REASONCODES option, the default of
REASONCODES(ICSF) is used. If you specify REASONCODES(TSS), TSS
reason codes will be returned. If there is a 1-to-1 mapping, the codes will
be converted.

If you specified REASONCODES(ICSF) and your service was processed on
a PCICC, PCIXCC, CEX2C, or CEX3C, a TSS reason code may be
returned if there is no 1–1 corresponding ICSF reason code.

SERVICE(service-number,load-module-name,FAIL(fail-option))
Indicates information about an installation-defined service.

ICSF allows an installation to define its own service similar to an ICSF
callable service. The service-number specifies a number that identifies the
service to ICSF. The valid service numbers are 1 through 32767, inclusive.
This set of service numbers is valid for both installation-defined services
and UDX services. The service number of an installation-defined service
must not be the same as the service number of a UDX service. The
load-module-name is the name of the module that contains the service.
During ICSF startup, ICSF loads this module and binds it to the
service-number you specified.

The fail-option is YES or NO, indicating the action ICSF should take if
loading the service ends abnormally.

YES Specifies that ICSF ends abnormally if your service cannot be
loaded.

Chapter 2. Installation, Initialization, and Customization 47

|
|
|
|

NO Specifies that ICSF continues to start if your service cannot be
loaded.

If the service itself ends abnormally, ICSF does not end, but takes a system
dump instead. The ICSF service functional recovery routine (FRR) protects
the service.

See Chapter 6, “Installation-Defined Callable Services,” on page 159 for a
description of how to write and run an installation-defined callable service.

SSM(YES or NO)
Specifies whether or not an installation can enable special secure mode
(SSM) while running ICSF. SSM lowers the security of your system to let
you enter clear keys and generate clear PINs. You must enable SSM for
KGUP to permit generation or entry of clear keys and to enable the secure
key import or clear pin generate callable services.

YES Indicates that you can enable the SSM.

NO Indicates that you cannot enable the SSM.

If you do not specify the SSM option, the default value is SSM(NO).

Note: CCF Systems only: When you initialize ICSF for the first time, SSM
must be active. Therefore, at first-time startup, you must specify
SSM(YES).

If you are running with the IBM Eserver zSeries 900, S/390 Enterprise
Servers and S/390 Multiprise servers, you must perform these tasks to
make SSM active:
v Specify SSM(YES) in the installation options data set
v Enable SSM in the cryptographic hardware
v When running under a logical partition (LPAR), enable SSM for each

partition.

SSM must be enabled or disabled in ALL places or errors may be logged
and functions will not work as expected.

Note: The setting of the Environment Control Mask (ECM) enables SSM.
Without TKE, the supplied ECM enables SSM. With TKE, you can
set the ECM directly; the supplied ECM enables SSM, but you have
the ability to disable it. For details, refer to Support Element
Operations Guide and z/OS Cryptographic Services ICSF TKE
Workstation User's Guide.

SYSPLEXCKDS(YES or NO,FAIL(fail-option))

SYSPLEXCKDS(YES,FAIL(fail-option))
ICSF will join the ICSF sysplex group SYSICSF and this
system will participate in sysplex-wide consistency for
CKDS data.

SYSPLEXCKDS(YES,FAIL(YES))
Indicates ICSF initialization will end abnormally if
the ICSF cross-system services environment cannot
be established during ICSF initialization due to a
failure creating the CKDS latch set or a failure to
join the ICSF sysplex group.

SYSPLEXCKDS(YES,FAIL(NO))
Indicates ICSF initialization processing will continue

48 z/OS V1R13 System Programmer's Guide

even if the request to create a CKDS latch set fails
or the request to join the ICSF sysplex group fails.
The system will not be notified of updates to the
CKDS by other members of the ICSF sysplex
group. A value of either FAIL(YES) or FAIL(NO) will
be ignored with SYSPLEXCKDS(NO,...).

SYSPLEXCKDS(NO,FAIL(fail-option))
CKDS update processing proceeds as it does today (i.e. no
Cross-System Services task will be initialized, nor will any
XCF signalling be performed when an update to a CKDS
record occurs).

If you do not specify the SYSPLEXCKDS option, the default value is
SYSPEXCKDS(NO,FAIL(NO)).

SYSPLEXPKDS(YES or NO,FAIL(fail-option))
ICSF will join the ICSF sysplex group SYSICSF and this system will
participate in sysplex-wide consistency for PKDS data.

SYSPLEXPKDS(YES,FAIL(fail-option))
ICSF will join the ICSF sysplex group SYSICSFP and this
system will participate in sysplex-wide consistency for
PKDS data.

SYSPLEXPKDS(YES,FAIL(YES))
Indicates ICSF initialization will fail to join the
sysplex if the ICSF cross-system services
environment cannot be established during ICSF
initialization due to a failure creating the PKDS latch
set or a failure to join the ICSF sysplex group.

SYSPLEXPKDS(YES,FAIL(NO))
Indicates ICSF initialization processing will continue
even if the request to create a PKDS latch set fails
or the request to join the ICSF sysplex group fails.
The system will not be notified of updates to the
PKDS by other members of the ICSF sysplex
group. A value of either FAIL(YES) or FAIL(NO) will
be ignored with SYSPLEXPKDS(NO,...).

SYSPLEXPKDS(NO,FAIL(fail-option))
PKDS update processing proceeds without trying to join the
ICSF sysplex group.

If you do not specify the SYSPLEXPKDS option, the default value is
SYSPEXPKDS(NO,FAIL(NO)).

SYSPLEXTKDS(YES or NO,FAIL(fail-option))

ICSF will join the ICSF sysplex group SYSICSF and this system will
participate in sysplex-wide consistency for TKDS data.

Note: TKDSN needs to be specified for this to work. See on page 50.

SYSPLEXTKDS(NO,FAIL(fail-option))
Indicates no XCF signalling will be performed when an
update to a TKDS record occurs.

SYSPLEXTKDS(YES,FAIL(fail-option))
Indicates the system will be notified of updates made to the

Chapter 2. Installation, Initialization, and Customization 49

TKDS by other members of the sysplex who have also
specified SYSPLEXTKDS(YES,FAIL(fail-option)).

SYSPLEXTKDS(YES,FAIL(YES))
Indicates ICSF will terminate abnormally if there is
a failure creating the TKDS latch set.

SYSPLEXTKDS(YES,FAIL(NO))
Indicates ICSF initialization processing will continue
even if the request to create a TKDS latch set fails
with an environment failure. This system will not be
notified of updates to the TKDS by other members
of the ICSF sysplex group.

If you do not specify the SYSPLEXTKDS option, the default
value is SYSPLEXTKDS(NO,FAIL(NO)) is the default.

TKDSN(data-set-name)
The name of an existing TKDS or an empty VSAM data set to be used as
the TKDS. To enable applications to create and use persistent PKCS #11
tokens and objects using the PKCS #11 services, this option must be
specified.

TRACEENTRY(n)
Specifies the number, n, of trace buffers to allocate for ICSF tracing.
Specify n as a decimal value from 10000 through 500000, inclusive. The
default is 10000.

You should set this parameter to the maximum in case you ever need this
trace material.

UDX(UDX-id,service-number,load-module-name,'comment_text',FAIL(fail-
option))

ICSF allows the development of User Defined Extensions for the PCICC,
PCIXCC, CEX2C, or CEX3C. The UDX-id is supplied to the installation
when the UDX is developed. The service-number specifies a number that
identifies the service to ICSF. The valid service numbers are 1 to 32767,
inclusive. This set of service numbers is valid for both installation-defined
services and UDX services. The service number of a UDX service must not
be the same as the service number of an installation-defined service. The
load-module-name is the name of the module that contains this service.
During ICSF startup, ICSF loads this module and binds it to the
service-number that was specified. A comment may be specified. The
positional parameter is required. The comment consists of up to 40 EBCDIC
characters, and may include imbedded blank characters. The comment text
is enclosed by single quotes. If no comment text is desired, two contiguous
single quotes should be specified.

The fail-option is YES or NO, indicating the action ICSF should take if
loading the service ends abnormally. If the service itself ends abnormally,
ICSF does not end, but takes a system dump instead.

YES Specifies that ICSF ends abnormally if your service cannot be
loaded.

NO Specifies that ICSF continues to start if your service cannot be
loaded.

The User Defined Extension (UDX) is responsible for logging in SMF the
results of any authorization checks that were made.

50 z/OS V1R13 System Programmer's Guide

USERPARM(value)
Specifies an 8-byte field for installation use. The Installation Option Display
panel displays this value, which is stored in the Cryptographic
Communication Vector Table (CCVT) in the CCVT_USERPARM field. An
application program or installation exit can examine this field and use it to
set system environment information. The default is eight blanks.

WAITLIST(data_set_name)
This optional parameter can be used if you have ICSF with CICS (CICS 4.1
or higher) installed. It specifies a customer modifiable data set will be used
to determine names of the services to be placed into the ICSF CICS Wait
List. A sample data set is provided by ICSF via member CSFWTL00 of
SYS1.SAMPLIB with CCFs/PCICCs and CSFWTL01 for systems with
PCIXCCs, CEX2Cs, or CEX3Cs. The sample data set contains the same
entries as the default ICSF CICS Wait List (i.e., the data set contains the
names of all ICSF callable services which, by default, will be driven through
the CICS TRUE). The WAITLIST option should be added to the Installation
Options data set under these conditions.

v Non-CICS customers will not specify a WAITLIST keyword. You must
ensure, however, that if you have any existing CICS applications which
invoke any of the ICSF services in the Wait List and if these applications
were linked with ICSF stubs at a pre-OS/390 V2R10 level, then these
applications must be re-linked with the current ICSF stubs.

If running on a z990, z890, z9 EC or z9 BC however, you must also
ensure that any existing CICS applications which invoke any of these
services are re-linked to ensure that the correct version of the stub is
used: CSNBCKI, CSNBCKM, CSNBDEC, CSNBENC, CSNBKYTX,
CSNBMGN, CSNBMVR, CSNBPEXX, CSNBRNG

v CICS customers who do not want to make use of CICS TRUE must
either not enable the TRUE or must specify a WAITLIST keyword and
point to an empty wait list data set (or specify WAITLIST(DUMMY)) in the
Installation Options data set.

v CICS customers who wish to modify the ICSF default CICS Wait List
should modify the sample Wait List data set supplied in member
CSFWTL00 or CSFWTL01 of SYS1.SAMPLIB. The WAITLIST keyword
in the Installation Options Data Set should be set to point to this modified
data set. If you have any existing CICS applications which invoke any of
the ICSF services in the Wait List and if these applications were linked
with ICSF stubs at a pre-OS/390 V2R10 level, then these applications
must be re-linked with the current ICSF stubs.

If running on a z990, z890, z9 EC or z9 BC any existing CICS
applications which invoke any of these services are re-linked to ensure
that the correct version of the stub is used: CSNBCKI, CSNBCKM,
CSNBDEC, CSNBENC, CSNBKYTX, CSNBMGN, CSNBMVR,
CSNBPEXX, CSNBRNG.

For additional information on the CICS Attachment Facility, see
Appendix C, “CICS-ICSF Attachment Facility,” on page 299.

Improving CKDS performance
To improve the performance of CKDS operations during KGUP runs, use the Batch
Local Shared Resource (BLSR) with Deferred Write for all KGUP runs. See MVS
Batch Local Shared Resources for more information.

Chapter 2. Installation, Initialization, and Customization 51

Dispatching priority of ICSF
To avoid performance problems, the dispatching priority of ICSF should be set at
least as high as that of the highest task using ICSF.

Creating ICSF exits and generic services
You need not code any exits or generic services before using ICSF productively.

Developing callable service exits and generic services requires skill in assembler
programming in a cross memory environment. To help with testing, the system
programmer might want to use the WTO macro with the LINKAGE=BRANCH
keyword to issue console messages while in cross-memory mode. (See “service
exits” on page 115 for more information.)

52 z/OS V1R13 System Programmer's Guide

Chapter 3. Migration

This topic describes migration considerations.

Your plan for migrating to the new level of ICSF should include information from a
variety of sources. These sources of information describe topics such as
coexistence, service, hardware and software requirements, installation and
migration procedures, and interface changes.

Attention: Although you are migrating to a new release, you should review the
information in Chapter 2, “Installation, Initialization, and Customization,” on page 13;
especially review customization steps that may have changed since your last
migration.

If this migration also includes a hardware upgrade be sure to have your Master
Keys available. Once Migration is complete, the Master Keys may need to be
loaded and set. Review Chapter 2, “Installation, Initialization, and Customization,”
on page 13 for information on setting Master Keys.

An IPL is required when installing a new release of ICSF (it is possible for ICSF
control blocks like the DACC and CCVT to persist in storage across an ICSF
restart).

Consult these documents for information on migration and installation:

v z/OS Migration

This publication describes the migration tasks for z/OS at a system and element
level.

This publication, which is supplied with your product order, provides information
about installing your z/OS system. In addition to specific information about ICSF,
this publication contains information about all of the z/OS elements.

v z/OS Planning for Installation

This publication describes the installation requirements for z/OS at a system and
element level. It includes hardware, software, and service requirements for both
the driving and target systems. It also describes any coexistence considerations
and actions.

v z/OS Program Directory

This publication, which is provided with your z/OS product order, leads you
through the specific installation steps for ICSF and the other z/OS elements.

v ServerPac Installing Your Order

This is the order-customized, installation publication for using the ServerPac
Installation method. Be sure to review “Appendix A. Product Information”, which
describes data sets supplied, jobs or procedures that have been completed for
you, and product status. IBM may have run jobs or made updates to PARMLIB or
other system control data sets. These updates could affect your migration.

Terminology
This topic describes some terms you may need to know as you use this publication.

Migration Activities that relate to the installation of a new
version or release of a program to replace a
previous level. Completion of these activities

© Copyright IBM Corp. 1997, 2011 53

|
|
|
|

ensures that the applications and resources on your
system will function correctly at the new level.

Coexistence Two or more systems at different levels (for
example, software, service or operational levels)
that share resources. Coexistence includes the
ability of a system to respond in these ways to a
new function that was introduced on another
system with which it shares resources: ignore a
new function, terminate gracefully, support a new
function. These are examples of multisystem
configurations in which resource sharing can occur:

v A single system running multiple LPARs

v A single processor that is time-sliced to run
different levels of the system (for example, during
different times of the day)

v Two or more systems running separate
processors

v A Parallel Sysplex configuration (also includes a
basic sysplex)

Migrating from earlier software releases
These topics describe common activities and considerations that should be
considered when you migrate from an earlier release of ICSF to FMID HCR7790.

Callable Services
The following table summarizes the new and changes callable services for ICSF
FMID HCR7790. For complete reference information on these callable services,
refer to z/OS Cryptographic Services ICSF Application Programmer's Guide.

Table 4. Summary of new and changed ICSF callable services

Callable service Release Description

Clear PIN Generate HCR7790 Changed: Increased X9.8 PIN block security, stored PIN
decimalization tables support.

Clear PIN Generate
Alternate

HCR7790 Changed: Increased X9.8 PIN block security, stored PIN
decimalization tables support.

Control Vector Generate HCR7790 Changed: ANSI TR-31 key block support.

Coordinated KDS
Administration

HCR7790 New: Support for a coordinated CKDS refresh or a coordinated
CKDS reencipher and master key change.

CVV Key Combine HCR7790 New: Double-length CVV key support

Digital Signature Verify HCR7790 Changed: 4096-bit RSA clear key hardware support.

ECC Diffie-Hellman HCR7790 New: Creation of:

v Symmetric key material from a pair of ECC keys using the Elliptic
Curve Diffie-Hellman protocol using the Static Unified Model

v “Z” - The “secret” material output from D-H process

Encrypted PIN Generate HCR7790 Changed: Increased X9.8 PIN block security, stored PIN
decimalization tables support.

Encrypted PIN Verify HCR7790 Changed: Increased X9.8 PIN block security, stored PIN
decimalization tables support.

ICSF Query Algorithm HCR7790 Changed: 4096-bit RSA clear key hardware support.

54 z/OS V1R13 System Programmer's Guide

|

|||
|

|
|
||
|

|||

|
|
||
|

|||

|||

|||

|
|

|

|||
|

|||
|

|||

Table 4. Summary of new and changed ICSF callable services (continued)

Callable service Release Description

ICSF Query Facility HCR7790 Changed:

v Increased X9.8 PIN block security, stored PIN decimalization
tables support.

v ECC Diffie-Hellman (ECCDH) and ECC key wrapping support.

v 4096-bit RSA clear key hardware support.

Key Generate2 HCR7790 Changed: AES key type support

Key Part Import2 HCR7790 Changed: AES key type support

Key Test2 HCR7790 Changed:

v AES key type support

v ANSI TR-31 key block support.

Key Token Build HCR7790 Changed: ANSI TR-31 key block support.

Key Token Build2 HCR7790 Changed: AES key type support

Key Translate2 HCR7790 Changed: AES key type support

PKA Decrypt HCR7790 Changed: 4096-bit RSA clear key hardware support.

PKA Encrypt HCR7790 Changed: 4096-bit RSA clear key hardware support.

PKA Key Generate HCR7790 Changed: Support for External ECC Keys (ECC Keys encrypted by
an AES KEK)

PKA Key Import HCR7790 Changed: Support for External ECC Keys (ECC Keys encrypted by
an AES KEK)

PKCS #11 Derive key HCR7790 Changed: Support for hardware generated “z” value.

PKCS #11 Derive multiple
keys

HCR7790 Changed: Support for hardware generated “z” value.

PKCS #11 Private key sign HCR7790 Changed: 4096-bit RSA clear key hardware support.

PKCS #11 Public key verify HCR7790 Changed: 4096-bit RSA clear key hardware support.

PKCS #11 Unwrap key HCR7790 Changed: 4096-bit RSA clear key hardware support.

Restrict Key Attribute HCR7790 Changed:

v AES key type support

v ANSI TR-31 key block support.

Secure Key Import2 HCR7790 Changed: AES key type support

Symmetric Algorithm
Decipher

HCR7790 Changed: AES key type support

Symmetric Algorithm
Encipher

HCR7790 Changed: AES key type support

Symmetric Key Export HCR7790 Changed:

v AES key type support

v Support for PKCS#1 OAEP data block formatting with the
SHA-256 hash method

Symmetric Key Generate HCR7790 Changed: Support for PKCS#1 OAEP data block formatting with
the SHA-256 hash method

Symmetric Key Import HCR7790 Changed: Support for PKCS#1 OAEP data block formatting with
the SHA-256 hash method

Symmetric Key Import2 HCR7790 Changed: AES key type support

TR-31 Export HCR7790 New: ANSI TR-31 key block support.

TR-31 Import HCR7790 New: ANSI TR-31 key block support.

Chapter 3. Migration 55

|||

|
|

|

|

|||

|||

|||

|

|

|||

|||

|||

|||

|||

|||
|

|||
|

|||

|
|
||

|||

|||

|||

|||

|

|

|||

|
|
||

|
|
||

|||

|

|
|

|||
|

|||
|

|||

|||

|||

Table 4. Summary of new and changed ICSF callable services (continued)

Callable service Release Description

TR-31 Optional Data Build HCR7790 New: ANSI TR-31 key block support.

TR-31 Optional Data Read HCR7790 New: ANSI TR-31 key block support.

TR-31 Parse HCR7790 New: ANSI TR-31 key block support.

VISA CVV Service Verify HCR7790 Changed: Double-length CVV key support

VISA CVV Service
Generate

HCR7790 Changed: Double-length CVV key support

ANSI X9.17 EDC Generate HCR7780 Changed: Support for invocation in AMODE(64).

ANSI X9.17 Key Export HCR7780 Changed: Support for invocation in AMODE(64).

ANSI X9.17 Key Import HCR7780 Changed: Support for invocation in AMODE(64).

ANSI X9.17 Key Translate HCR7780 Changed: Support for invocation in AMODE(64).

ANSI X9.17 Transport Key
Partial Notarize

HCR7780 Changed: Support for invocation in AMODE(64).

Ciphertext Translate HCR7780 Changed: Support for invocation in AMODE(64).

Clear PIN Encrypt HCR7780 Changed: Support for invocation in AMODE(64).

Clear PIN Generate HCR7780 Changed: Support for invocation in AMODE(64).

Clear PIN Generate
Alternate

HCR7780 Changed: Support for invocation in AMODE(64).

Control Vector Generate HCR7780 Changed: Support for invocation in AMODE(64).

Control Vector Translate HCR7780 Changed: Support for invocation in AMODE(64).

Cryptographic Variable
Encipher

HCR7780 Changed: Support for invocation in AMODE(64).

Data Key Export HCR7780 Changed: Support for invocation in AMODE(64).

Data Key Import HCR7780 Changed: Support for invocation in AMODE(64).

Decipher HCR7780 Changed: Support for invocation in AMODE(64).

Decode HCR7780 Changed: Support for invocation in AMODE(64).

Digital Signature Generate HCR7780 Changed: Elliptic Curve Cryptography (ECC) support.

Digital Signature Verify HCR7780 Changed: Elliptic Curve Cryptography (ECC) support.

Diversified Key Generate HCR7780 Changed:

v Support for invocation in AMODE(64).

v New rule array keywords to support enhanced key wrapping
method.

Encipher HCR7780 Changed: Support for invocation in AMODE(64).

Encode HCR7780 Changed: Support for invocation in AMODE(64).

Encrypted PIN Generate HCR7780 Changed: Support for invocation in AMODE(64).

Encrypted PIN Translate HCR7780 Changed: Support for invocation in AMODE(64).

Encrypted PIN Verify HCR7780 Changed: Support for invocation in AMODE(64).

HMAC Generate HCR7780 New: Support for CCA key management of HMAC keys.

HMAC Verify HCR7780 New: Support for CCA key management of HMAC keys.

Key Export HCR7780 Changed: Support for invocation in AMODE(64).

Key Generate2 HCR7780 New: Support for CCA key management of HMAC keys.

Key Import HCR7780 Changed: Support for invocation in AMODE(64).

56 z/OS V1R13 System Programmer's Guide

|||

|||

|||

|||

|
|
||

Table 4. Summary of new and changed ICSF callable services (continued)

Callable service Release Description

Key Part Import HCR7780 Changed:

v Support for invocation in AMODE(64).

v New rule array keywords to support enhanced key wrapping
method.

Key Part Import2 HCR7780 New: Support for CCA key management of HMAC keys.

Key Record Create HCR7780 Changed: Support for invocation in AMODE(64).

Key Record Create2 HCR7780 New: Support for CCA key management of HMAC keys.

Key Record Delete HCR7780 Changed: Support for invocation in AMODE(64).

Key Record Read HCR7780 Changed: Support for invocation in AMODE(64).

Key Record Read2 HCR7780 New: Support for CCA key management of HMAC keys.

Key Record Write HCR7780 Changed: Support for invocation in AMODE(64).

Key Record Write2 HCR7780 New: Support for CCA key management of HMAC keys.

Key Test HCR7780 Changed: Support for invocation in AMODE(64).

Key Test Extended HCR7780 Changed: Support for invocation in AMODE(64).

Key Test2 HCR7780 New: Support for CCA key management of HMAC keys.

Key Token Build HCR7780 Changed:

v Support for invocation in AMODE(64).

v New rule array keywords to support enhanced key wrapping
method.

Key Token Build2 HCR7780 New: Support for CCA key management of HMAC keys.

Key Translate HCR7780 Changed: Support for invocation in AMODE(64).

Key Translate2 HCR7780 New: Support for CCA key management of HMAC keys.

MAC Generate HCR7780 Changed: Support for invocation in AMODE(64).

MAC Verify HCR7780 Changed: Support for invocation in AMODE(64).

MDC Generate HCR7780 Changed: Support for invocation in AMODE(64).

Multiple Clear Key Import HCR7780 Changed: New rule array keywords to support enhanced key
wrapping method.

Multiple Secure Key Import HCR7780 Changed:

v Support for invocation in AMODE(64).

v New rule array keywords to support enhanced key wrapping
method.

One-Way Hash Generate HCR7780 New: Support for invocation in AMODE(64).

PIN Change/Unblock HCR7780 Changed: Support for invocation in AMODE(64).

PKA Key Generate HCR7780 Changed: Elliptic Curve Cryptography (ECC) support.

PKA Key Import HCR7780 Changed: Elliptic Curve Cryptography (ECC) support.

PKA Key Token Build HCR7780 Changed: Elliptic Curve Cryptography (ECC) support.

PKA Key Token Change HCR7780 Changed:

v Elliptic Curve Cryptography (ECC) support.

v Support for invocation in AMODE(64).

PKA Public Key Extract HCR7780 Changed: Elliptic Curve Cryptography (ECC) support.

PKDS Key Record Create HCR7780 Changed: Elliptic Curve Cryptography (ECC) support.

PKDS Key Record Delete HCR7780 Changed: Elliptic Curve Cryptography (ECC) support.

Chapter 3. Migration 57

|

|

Table 4. Summary of new and changed ICSF callable services (continued)

Callable service Release Description

PKDS Key Record Read HCR7780 Changed:

v Elliptic Curve Cryptography (ECC) support.

v Support for invocation in AMODE(64).

PKDS Key Record Write HCR7780 Changed:

v Elliptic Curve Cryptography (ECC) support.

v Support for invocation in AMODE(64).

Prohibit Export HCR7780 Changed: Support for invocation in AMODE(64).

Prohibit Export Extended HCR7780 Changed: Support for invocation in AMODE(64).

Remote Key Export HCR7780 Changed: Support for invocation in AMODE(64).

Restrict Key Attribute HCR7780 New: Support for CCA key management of HMAC keys.

Secure Key Import HCR7780 Changed: Support for invocation in AMODE(64).

Secure Key Import2 HCR7780 New: Support for CCA key management of HMAC keys.

Secure Messaging for Keys HCR7780 Changed: Support for invocation in AMODE(64).

Secure Messaging for PINS HCR7780 Changed: Support for invocation in AMODE(64).

SET Block Compose HCR7780 Changed: Support for invocation in AMODE(64).

SET Block Decompose HCR7780 Changed: Support for invocation in AMODE(64).

Symmetric Key Decipher HCR7780 Changed: Additional modes of operation for protecting data.

Symmetric Key Encipher HCR7780 Changed: Additional modes of operation for protecting data.

Symmetric Key Export HCR7780 Changed: Support for CCA key management of HMAC keys.

Symmetric Key Generate HCR7780 Changed:

v Support for invocation in AMODE(64).

v New rule array keywords to support enhanced key wrapping
method.

Symmetric Key Import HCR7780 Changed: New rule array keywords to support enhanced key
wrapping method.

Symmetric Key Import2 HCR7780 New: Support for CCA key management of HMAC keys.

Transaction Validation HCR7780 Changed: Support for invocation in AMODE(64).

Transform CDMF Key HCR7780 Changed: Support for invocation in AMODE(64).

Trusted Block Create HCR7780 Changed: Support for invocation in AMODE(64).

User Derived Key HCR7780 Changed: Support for invocation in AMODE(64).

VISA CVV Service
Generate

HCR7780 Changed: Support for invocation in AMODE(64).

VISA CVV Service Verify HCR7780 Changed: Support for invocation in AMODE(64).

PKCS #11 Derive key HCR7770 New: Support for PKCS #11.

PKCS #11 Derive multiple
keys

HCR7770 New: Support for PKCS #11.

PKCS #11 Generate HMAC HCR7770 New: Support for PKCS #11.

PKCS #11 Generate key
pair

HCR7770 New: Support for PKCS #11.

PKCS #11 Generate secret
key

HCR7770 New: Support for PKCS #11.

PKCS #11 One-way hash
generate

HCR7770 New: Support for PKCS #11.

58 z/OS V1R13 System Programmer's Guide

|

|

Table 4. Summary of new and changed ICSF callable services (continued)

Callable service Release Description

PKCS #11 Private key sign HCR7770 New: Support for PKCS #11.

PKCS #11 Pseudo-random
function

HCR7770 New: Support for PKCS #11.

PKCS #11 Public key verify HCR7770 New: Support for PKCS #11.

PKCS #11 Secret key
decrypt

HCR7770 New: Support for PKCS #11.

PKCS #11 Secret key
encrypt

HCR7770 New: Support for PKCS #11.

PKCS #11 Unwrap key HCR7770 New: Support for PKCS #11.

PKCS #11 Verify HMAC HCR7770 New: Support for PKCS #11.

PKCS #11 Wrap key HCR7770 New: Support for PKCS #11.

PKA Key Translate HCR7770 New: Support for RSA private key export.

PKA Key Generate HCR7770 Changed: Support for RSA private key export.

PKA Key Token Build HCR7770 Changed: Support for RSA private key export.

Symmetric Key Export HCR7770 Changed: Support for invocation in AMODE(64).

Symmetric Key Import HCR7770 Changed: Support for invocation in AMODE(64).

Symmetric Key Encipher HCR7770 Changed: Support an encrypted key in the CKDS.

Symmetric Key Decipher HCR7770 Changed: Support an encrypted key in the CKDS.

ICSF Query Algorithm HCR7751 New: HCR7751

Symmetric Algorithm
Decipher

HCR7751 New: Supports secure key AES

Symmetric Algorithm
Encipher

HCR7751 New: Supports secure key AES

Symmetric MAC Generate HCR7751 New: Supports IPv6

Symmetric MAC Verify HCR7751 New: Supports IPv6

ICSF Query Function HCR7751 Changed: Supports secure key AES

Key Generate HCR7751 Changed: Supports secure key AES

Key Record Create HCR7751 Changed: Supports secure key AES

Key Record Delete HCR7751 Changed: Supports secure key AES

Key Record Read HCR7751 Changed: Supports secure key AES

Key Record Write HCR7751 Changed: Supports secure key AES

Key Test HCR7751 Changed: Supports secure key AES

Key Token Build HCR7751 Changed: Supports secure key AES

Multiple Clear Key Import HCR7751 Changed: Supports secure key AES

Multiple Secure Key Import HCR7751 Changed: Supports secure key AES

Symmetric Key Export HCR7751 Changed: Supports secure key AES

Symmetric Key Generate HCR7751 Changed: Supports secure key AES

Symmetric Key Import HCR7751 Changed: Supports secure key AES

VISA CVV Service
Generate

HCR7751 Changed: Supports PAN-14, PAN-15, PAN-17 and PAN-18

VISA CVV Service Verify HCR7751 Changed: Supports PAN-14, PAN-15, PAN-17 and PAN-18

Chapter 3. Migration 59

Ensure the expected master key support is available
In versions of ICSF prior to FMID HCR7780, in order for a coprocessor to become
active, a DES master key needed to be set on the coprocessor. Once the
coprocessor was active, DES master key support, and the support of any other
master key (an AES master key or an asymetric master key) set on the
coprocessor, would then be available.

Starting with ICSF FMID HCR7780, the activation procedure for non-CCF systems
is designed to maximize the number of active coprocessors by selecting the set of
master keys that are available on the majority of coprocessors. A DES master key
is no longer required in order for a coprocessor to become active. Instead, any one
of four master keys – the DES master key, the AES master key, the RSA master
key (which in earlier releases was called the asymetric master key), or the ECC
master key – is enough for a coprocessor to become active. However, because the
goal is to select the combination of master keys that will maximize the number of
active coprocessors, if a certain master key is not set on all the same coprocessors,
that master key support will not be available. Before you use ICSF FMID HCR7780,
you must understand the new method of coprocessor activation in order to ensure
that the expected master keys will be available. You may need to set master keys
on additional coprocessors to ensure the same master key support you had in
earlier versions of ICSF is available in ICSF FMID HCR7780.

To further illustrate the change in coprocessor activation introduced in ICSF FMID
HCR7780, let's say you have the following four coprocessors with these master
keys set (as indicated by the letter “Y”).

Table 5. Coprocessor activation example

E00 E01 E02 E03

DES Y Y

AES Y Y Y Y

RSA (ASYM) Y Y

In releases prior to ICSF FMID HCR7780, a DES master key was required in order
for a coprocessor to become active. In our example, coprocessors E00 and E02
have the DES master key set, so they become active. The DES master key is
available as well as the AES and RSA (ASYM) master keys which are set on the
the E00 and E02 coprocessors. Coprocessors E01 and E03 do not have a DES
master key set, and so are not active.

Starting with ICSF FMID HCR7780, any master key is enough for a coprocessor to
become active and the activation procedure tries to maximize the number of active
coprocessors. The AES master key is set on all four of these coprocessors, so all
four of the coprocessors become active. However, since the DES and RSA master
keys are not set on all four of the coprocessors, DES and RSA support is not
available. As coprocessor master keys are set or changed, however, additional
function may become available. In this case, setting the DES and RSA master keys
on coprocessors E01 and E03 would make the DES and RSA support available.

ECC master key support is based on the existence of CEX3C coprocessors. If a
mixture of CEX3C coprocessors and older coprocessors exist on a system, then
ECC support will be based solely on the state of the CEX3C coprocessors. For
example, let's change our example so that two of the coprocessors are CEX3C
coprocessors (as identified by the G prefix in the name) that have the ECC master
key set.

60 z/OS V1R13 System Programmer's Guide

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

||

|||||

|||||

|||||

|||||
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

Table 6. Coprocessor activation example (ECC support based only on CEX3C
coprocessors)

G00 E01 G02 E03

DES Y Y

AES Y Y Y Y

RSA (ASYM) Y Y

ECC Y Y

In this example, the AES master key is still the one set on the majority of
coprocessors and makes the coprocessors active. The DES and RSA master keys
are not set on all the coprocessors, and so DES and RSA support is not available.
The ECC master key cannot be set on all coprocessors (because it is not available
on the CEX2C). However, unlike the DES and RSA support, ECC support is still
available. This is because the ECC master key is set on all CEX3C coprocessors.

After migrating from an ICSF release prior to HCR7780 to HCR7780 or later, verify
the expected master key support is available.

To verify the master key support is available, select option 1, COPROCESSOR
MGMT, from the ICSF Primary menu. This will display the coprocessor
management panel, which shows which coprocessors are active, and the state of
the master keys for coprocessors.

To ensure the master key support that you expect is available, follow these steps

1. To ensure AES support, set the AES master key on each CEX2C and CEX3C.

2. To ensure DES support, set the DES master key on each CEX2C, CEX3C, and
PCIXCC.

3. To ensure RSA support, set the RSA master key on each CEX2C, CEX3C, and
PCIXCC.

4. To ensure ECC support, set the ECC master key on each CEX3C.

Notes:

1. AES support is not available on PCIXCC.

2. ECC support is only available on a CEX3C on a z196.

Ensure that the CSFPUTIL utility is not used to initialize a PKDS
ICSF provides a utility program, CSFPUTIL, that performs certain functions that can
also be performed using the administrator’s panels. In releases of ICSF prior to
FMID HCR7780, you could use the CSFPUTIL utility program to initialize a PKDS,
reencipher a PKDS, and refresh the in-storage copy of the PKDS. You can still use
the CSFPUTIL utility to reencipher or refresh a PKDS. However, starting with FMID
HCR7780, the CSFPUTIL utility program no longer supports the function to initialize
a PKDS. Instead, the ICSF panels must be used to initialize a PKDS.

Because of this change, jobs that call the CSFPUTIL utility with the INITPKDS
option will no longer initialize a PKDS, and return code 4 (which indicates that
supplied parameters are incorrect) will be returned. If migrating from a release of
ICSF prior to HCR7780 to HRC7780 or later, you should, prior to the first IPL, make
sure no jobs call CSFPUTIL with the INITPKDS option. Use the administrator
panels to initialize the PKDS instead.

Chapter 3. Migration 61

||
|

|||||

|||||

|||||

|||||

|||||
|

|
|
|
|
|
|

|
|

|
|
|
|

|

|

|
|

|
|

|

|

|

|

For more information in initializing the PKDS and on the CSFPUTIL utility, refer to
z/OS Cryptographic Services ICSF Administrator's Guide.

Modify ICSF startup procedure to run new startup program
In ICSF FMID HCR7770, the CSFMMAIN program (which started ICSF in earlier
releases) has been replaced by the new startup program CSFINIT. If migrating to
HCR7770 (or later) from an earlier release, you must modify your ICSF startup
procedure to run this new program. If you do not modify your ICSF startup
procedure, ICSF will not start.

Member CSF in SYS1.SAMPLIB contains sample JCL code for an ICSF startup
procedure to identifies the new startup program. This sample is described in “Steps
to create the Installation Options Data Set” on page 26. You can also update an
existing startup procedure for ICSF by doing the following.

1. Find the job step that identifies the ICSF startup program (CSFMMAIN) that was
used in earlier releases. For example:
CSFSTART EXEC PGM=CSFMMAIN,REGION=0M,TIME=1440

2. Modify the PGM parameter on this EXEC statement to identify the new startup
program (CSFINIT):
CSFSTART EXEC PGM=CSFINIT,REGION=0M,TIME=1440

3. Save your changes to the startup procedure.

If your ICSF startup procedure specifies a CSFLIST dataset, you can remove this
specification. The HCR7770 level of ICSF does not utilize a CSFLIST dataset, and
will ignore it if specified. Refer to z/OS Cryptographic Services ICSF Messages for
an explanation of how CSFLIST dataset information is handled for the HCR7770
release level.

Ensure PKCS #11 applications call C_Finalize() prior to calling
dlclose()

A PKCS #11 application initializes the environment by calling dlopen() to load the
PKCS #11 DLL into storage, and then calling C_Initialize(). Later, when processing
is complete, the application terminates processing by calling C_Finalize(), and then
calling dlclose(). Reinitialization, if desired, can be achieved by calling dlopen() and
C_Initialize() a second time.

In releases prior to HCR7770, z/OS PKCS #11 allowed an application to implicitly
finalize the environment by calling dlclose() without first calling C_Finalize(). Starting
in HCR7770, this will no longer be supported. If an application does not call
C_Finalize() prior to calling dlclose(), a subsequent attempt to re-initialize PKCS #11
by calling C_Initialize() will result in error CKR_FUNCTION_FAILED being returned.

PKCS #11 application developers should scan their source code for the following
sequence of calls: dlopen(), C_Initialize(), processing functions, dlclose(), dlopen(),
C_Initialize(). Change all such sequences to insert a call to C_Finalize() before the
call to dlclose().

ICSF Key Data Sets

CKDS
There are two formats of the CKDS: a fixed length record (supported by all releases
of ICSF) and a new, variable length record (supported by HCR7780 and later

62 z/OS V1R13 System Programmer's Guide

releases). If you are going to store the HMAC or variable-length AES keys in the
CKDS, variable length format is required. See “Migrating to the variable length
CKDS” for more information.

When sharing a CKDS with CCF systems and z890, z990, z9 EC, z9 BC, z10 EC,
z10 BC, and z196, the CKDS must be created on a CCF system.

Once new key types are added to the CKDS, these considerations apply when
sharing the CKDS:

v once keys with non-CCF control vectors are added to the CKDS, a CKDS
reencipher operation must be invoked from a system that has a PCICC, PCIXCC,
CEX2C, or CEX3C installed.

v when clear DES or AES keys are added to the CKDS, RACF-protect all clear
DES and AES keys by label name on all systems sharing the CKDS.

v generation of a clear DES or AES key using KGUP requires a PCIXCC, CEX2C,
or CEX3C.

If you have no coprocessor, you can initialize the CKDS for use with clear AES and
DES data keys. This CKDS cannot be used on a system with cryptographic
coprocessors.

ICSF releases before HCR7751 do not support secure AES keys and require APAR
OA26579 for toleration.

Release HCR7780 introduced the enhanced key wrapping method for DES key
tokens. ICSF releases before HCR7780 do not support enhanced key wrapping and
require a toleration APAR.

A CKDS with tokens wrapped with the enhanced method can only be reenciphered
on a system running release HCR7780

Note: The CKDS exits (single-record, read-write and retrieval) are not enabled for
the variable-length record format of the CKDS. See Chapter 5, “Installation
Exits,” on page 111 for more information.

Migrating to the variable length CKDS: If HMAC or variable-length AES keys
are to be stored in the CKDS, any existing CKDS must be converted to the new
variable length record format. ICSF provides a conversion utility to do this. ICSF
provides a utility program, CSFCNV2, that will convert a CKDS to the variable
length format. Refer to Chapter 7, “Converting a CKDS from fixed length to variable
length record format,” on page 169 for more information.

There is no reason to migrate a variable length record CKDS if your applications
are not using HMAC keys. In the future, other symmetric keys may required the
variable length record CKDS be used. You can migrate to the variable length record
at any time.

Note: All systems that will share a CKDS with the variable length record format
must be running ICSF HCR7780 or later.

To migrate to a variable length CKDS:

1. Install the HC7780 or later release of ICSF on all systems that will share the
CKDS.

2. Allocate a new CKDS with the variable length record format. The new CKDS
should be large enough to hold all key in the current CKDS.

Chapter 3. Migration 63

|

|

3. Disable dynamic CKDS updates on all systems.

4. Run the CKDS Conversion2 utility to convert the existing CKDS records to the
new record format

5. Refresh the new CKDS on all systems that are sharing the CKDS

6. Enable dynamic CKDS updates on all systems

PKDS
The PKDS must be initialized. Support to INITIALIZE PKDS, REENCIPHER PKDS
and REFRESH PKDS is available in the Master Key Management Panels. The
CSFPUTIL utility also provides support to reencipher and refresh the PKDS.

For information on managing and sharing the PKDS in a sysplex environment, see
z/OS Cryptographic Services ICSF Administrator's Guide, SA22-7521.

The process of reenciphering the PKDS has changed for z196 systems with CEX3C
coprocessors and the Sep. 2011 licensed internal code (LIC). See “Changing the
RSA master key.”

For additional information on ME and CRT tokens, see Appendix A, “Diagnosis
Reference Information,” on page 193.

TKDS
Beginning with HCR7740, these TKDS key management panels are available from
the ICSF Utility panel:

v Listing tokens

v Creating a token

v Deleting a token

v Listing the objects of a token

v Viewing the attributes of an object

v Updating the attributes of an object

v Deleting an object

Access authorization of the new callable services will be determined via SAF calls.
No support will be provided for invocation of an installation security exit for these
new services. The CSFSERV class controls access to the ICSF PKCS #11 callable
services.

Key Tokens
v On the z990, z890, z9 EC, z9 BC, z10 EC, z10 BC, and z196, all RSA internal

tokens are usable on PCIXCC, CEX2C, or CEX3C if they are encrypted under
the current RSA-MK.

v Existing DES internal key tokens can be used on all cryptographic coprocessors:
CCF, PCICC, PCIXCC, CEX2C, or CEX3C

v AES internal key tokens can only be used on a CEX2C or CEX3C.

v ECC internal key tokens can only be used on a CEX3C.

Changing the RSA master key
The process to reencipher the PKDS and change the RSA master key has changed
for z196 systems with CEX3C coprocessors and the Sep. 2011 licensed internal
code (LIC). For these systems, RSA master key change will be processed in the
same manner as master key change for the DES, AES and ECC master keys.

64 z/OS V1R13 System Programmer's Guide

|
|
|

|

|
|
|
|

This is the current procedure for changing the RSA master key. For systems without
CEX3C coprocessors and the Sep. 2011 LIC, this procedure has not changed.

1. Disable dynamic PKDS updates control (recommended)

2. Disable PKA callable services control

3. Load the new RSA master key

v TKE: load and set RSA master key

v ICSF panels: loading the final key part causes the current master key to be
set

4. Reencipher the PKDS (old to current master key)

5. Refresh the reenciphered PKDS

6. Enable PKA callable services control

7. Enable dynamic PKDS updates control

For systems with CEX3C coprocessors (and the Sep. 2011 LIC) with the RSA
master key loaded, this will be the new procedure for changing the RSA master key.
See z/OS Cryptographic Services ICSF Administrator's Guide for more information.

1. Disable dynamic PKDS updates control (recommended)

2. Load the new RSA master key (TKE or ICSF panels)

3. Reencipher the PKDS (current to new master key)

4. Change the RSA master key (the current master key is set and the
reenciphered PKDS becomes active PKDS)

5. Enable dynamic PKDS updates control

Note: When the new RSA master key change process is used:

v The PKA callable services control will not appear on the Administrator
Control Functions panel.

v The availability of callable services that required the RSA master key is
controlled by the state of the RSA master key. When the RSA master key
is active (the master key verification pattern in the PKDS matches the
verification pattern of the current RSA master key), RSA callable service
are available. Message CSFM130I will be issued.

v The RSA master key cannot be set from the TKE workstation.

Installation Options Data Set
v CKTAUTH - decides if authentication will be performed for every CKDS record

read from DASD. With a large CKDS, CKTAUTH(YES) could cause an impact to
performance.

v PKDSCACHE - no longer supported, but tolerated.

v COMPENC - no longer supported, but tolerated.

v DOMAIN - this parameter is optional. It is required if more than one domain is
specified as the usage domain on the PR/SM panels or if running in native mode.

On a z990 or z890, if a PCI Cryptographic Accelerator, PCIXCC, CEX2C, or
CEX3C is not available, or on a z9 EC, z9 BC, z10 EC, z10 BC, or z196 if a
CEX2A, CEX2C, CEX3A, or CEX3C is not available, the DOMAIN parameter is
not required. If a PCICA, PCIXCC, CEX2A, CEX2C, CEX3A, or CEX3C is
available, the DOMAIN parameter is required if more than one domain is
specified as the usage domain on the PR/SM panels. If only one usage domain
is assigned to the LPAR, the DOMAIN parameter is optional.

Chapter 3. Migration 65

|
|

|

|

|

|

|
|

|

|

|

|

|
|
|

|

|

|

|
|

|

|

|
|

|
|
|
|
|

|

|

v SYSPLEXCKDS - this parameter is optional. It specifies whether this system, if a
member of a multi-system sysplex using a shared CKDS, should participate in
XCF signalling in order to maintain consistency of the CKDS data across the
sysplex.

v SYSPLEXPKDS - this parameter is optional. It specifies whether this system, if a
member of a multi-system sysplex using a shared PKDS, should participate in
XCF signalling in order to maintain consistency of the PKDS data across the
sysplex.

v SYSPLEXTKDS - this parameter is optional. It specifies whether this system, if a
member of a multi-system sysplex using a shared TKDS, should participate in
XCF signalling in order to maintain consistency of the TKDS data across the
sysplex.

v TKDSN - this parameter is the name of an existing TKDS or an empty VSAM
data set to be used as the TKDS.

v TRACEENTRY - the supported boundary values for this parameter have been
changed to a minimum of 10000 and a maximum of 500000. Values outside of
this range are tolerated, but automatically adjusted to 10000.

v DEFAULTWRAP – this parameter is optional. The parameter defines the
wrapping method of DES key tokens in ICSF. The ORIGINAL method is ECB for
DES keys. The ENHANCED method is ANSI X9.24 compliant. The key value is
bundled with other data and encrypted using the CBC mode. The default
wrapping method is defined independently for internal and external tokens

Function Restrictions
Retained keys are RSA private keys that are stored in a cryptographic coprocessor
instead of in the public key storage data set. This change does not affect retained
keys that you are currently using, that is, keys that are stored on the cryptographic
coprocessor. However, starting with ICSF HCR7750, the ICSF services do no allow
you to store in a cryptographic coprocessor RSA keys intended for key
management use. Your applications can continue to store in the cryptographic
coprocessor RSA private keys intended for signature usage. The modulus length of
these private keys is limited to 2048-bits. ICSF HCR7750 introduces 4096-bit
modulus RSA keys support.

The 2048-bit RSA keys may have an public exponent, e, in the range of 1<e<22048.
and e must be odd. The RSA public key exponents for 2049-bit to 4096-bit RSA
keys are restricted to the values 3 and 65537

ICSF delivers the migration check support for PKDS compatibility with 4096-bit RSA
key support for HCR7731 and z/OS V1.9 (ICSF release HCR7740) only, but not for
any releases earlier or later. This check support also requires that its delivery PTF
pre-req the PTF for the PKDS 4096-bit key toleration - APAR OA21807. Doing so
ensures that you have enabled the opportunity for a sufficiently allocated PKDS,
and avoids the problem where you attempt to properly allocate a PKDS for 4096-bit
RSA keys, but then find the current ICSF service level fails to support it.

CICS Attachment Facility
If you have the CICS Attachment Facility (CICS 4.1 or higher) installed and you
specify your own CICS wait list data set, you need to modify the wait list data set to
include the new callable services.

On a z900 machine, modify and include:

v HCR7780: CSFKRC2, CSFKRW2

66 z/OS V1R13 System Programmer's Guide

|

v HCR7770: CSF1DMK, CSF1DVK, CSF1GKP, CSF1GSK, CSF1PKS, CSF1PKV,
CSF1SAV, CSF1SKE, CSF1TRC, CSF1TRD, CSF1UWK, CSF1WPK, CSFTBC,
CSFRKX

v HCR7751, HCR7750, HCR7740: CSF1GKP, CSF1GSK, CSF1PKS, CSF1PKV,
CSF1SAV, CSF1TRC, CSF1TRD, CSF1UWK, CSF1WPK, CSFTBC, CSFRKX

v HCR7731: CSFTBC, CSFRKX

Note: If no Wait List is specified on a z900, the default wait list will be used. (See
sample CSFWTL00 for the contents of the default wait list for z900.)

On a z990 or z890 (or later) class machine, modify and include:

v HCR7790: CSFEDH, CSFT31X, CSFT31I, CSFCKC

v HCR7780: CSFHMG, CSFHMG1, CSFHMV, CSFHMV1, CSFKGN2, CSFKPI2,
CSFKTR2, CSFKYT2, CSFRKA, CSFSKI2, CSFSYI2, CSFKRC2, CSFKRW2

v HCR7770: CSNBSYD, CSNBSYD1, CSNBSYE, CSNBSYE1, CSFPKT,
CSF1DMK, CSF1DVK, CSF1SKD, CSF1SKE, CSF1HMG, CSF1HMV,
CSF1OWH, CSF1PRF, CSNBSAD, CSNBSAD1, CSNBSAE, CSNBSAE1,
CSFRNGL, CSF1GKP, CSF1GSK, CSF1PKS, CSF1PKV, CSF1SAV, CSF1TRC,
CSF1TRD, CSF1UWK, CSF1WPK, CSFTBC, CSFRKX

v HCR7751: CSNBSAD, CSNBSAD1, CSNBSAE, CSNBSAE1, CSFRNGL,
CSF1GKP, CSF1GSK, CSF1PKS, CSF1PKV, CSF1SAV, CSF1TRC, CSF1TRD,
CSF1UWK, CSF1WPK, CSFTBC, CSFRKX

v HCR7750: CSFRNGL, CSF1GKP, CSF1GSK, CSF1PKS, CSF1PKV, CSF1SAV,
CSF1TRC, CSF1TRD, CSF1UWK, CSF1WPK, CSFTBC, CSFRKX

v HCR7740: CSF1GKP, CSF1GSK, CSF1PKS, CSF1PKV, CSF1SAV, CSF1TRC,
CSF1TRD, CSF1UWK, CSF1WPK, CSFTBC, CSFRKX

v HCR7731: CSFTBC, CSFRKX

Note: If no Wait List is specified on a z990, z890, z9 EC, z9 BC, z10 EC and z10
BC the default wait list will be used. (See sample CSFWTL01 for the
contents of the default wait list for z990, z890, z9 EC, z9 BC, z10 EC and
z10 BC.)

Dynamic LPA Load
Prior to HCR7740, ICSF loaded the pre-PC routines, CICS related routines and
other modules which must reside in common storage into below-the-line SQA.

As of HCR7740, ICSF uses dynamic LPA to load these modules into above-the-line
ECSA. The dynamic LPA load will occur the first time that ICSF is started within an
IPL, and the modules will persist across subsequent restarts of ICSF.

Special Secure Mode
Use of some ICSF services requires that ICSF be in special secure mode:
CSNBPGN, CSNBSKI, CSNBSKI2, CSNBSKM, and CSNDSYG with the IM
keyword (CCF only).

Note: On a CCF system, if a PCICC is available and the modulus bit length of the
RSA public key is greater than or equal to 512 bits, than special secure
mode is not required for CSNDSYG IM form.

Chapter 3. Migration 67

|

|
|

|
|
|

Resource Manager Interface (RMF)
Support to enable RMF to provide performance measurements on these selected
ICSF services and functions that use Direct Access Crypto (DAC) CCF instructions
is available. On a z990, z890,z9 EC, z9 BC, z10 EC, z10 BC, and z196 with a
PCIXCC, CEX2C, or CEX3C, the measurements refer to these services processing
on PCIXCCs, CEX2Cs, or CEX3Cs except for one-way hash. One-way hash is
processed on CPACF.

v Encipher (CSNBENC)

v Decipher (CSNBDEC)

v MAC Generate (CSNBMGN)

v MAC Verify (CSNBMVR)

v One-Way Hash (CSNBOWH)

v PIN Translate (CSNBPTR)

v Symmetric Algorithm Decipher (CSNBSAD)

v Symmetric Algorithm Encipher (CSNBSAE)

v PIN Verify (CSNBPVR)

System Abend Codes
A complete list of the reason codes for the ICSF abend (X'18F') is contained in
z/OS MVS System Codes which is published on release boundaries. As a migration
aid for HCR7790, which is not on a release boundary, new codes for FMID
HCR7790 are listed here.

An 18F code indicates an abend from ICSF. Reason codes for application services
routines:

Code Hex (Dec) Meaning

2D (45) A cryptographic coprocessor returned a bad
condition code. The coprocessor has been fenced
off.

6F (111) Error from ATTACH of the CSFPLMWT task.

F3 (243) Error from IXCQUERY request in CSFPLCMD
module.

F4 (244) Error from IXCMSGO request in CSFPLMSR
module.

F5 (245) Error from IEAVPSE2 request in CSFPLMSR
module.

FA (250) Error determining sysplex KDS cluster member list
in CSFPLCMD.

19A (410) XCF message is too big for internal ICSF buffer.

19B (411) An IXCMSGI request failure occurred receiving an
XCF message.

45A (1114) The CSFPLMWT task received a bad RC from
IEAVPSE2.

45B (1115) The CSFPLMRT task received inconsistent internal
control information.

45C (1116) The CSFSMBTM module received inconsistent
internal control information.

68 z/OS V1R13 System Programmer's Guide

|
|

||
|
|

||

||
|

||
|

||
|

||
|

||

||
|

||
|

||
|

||
|

45D (1117) A pause failure occurred in the CSFPLPSC module.

45E (1118) An IXCMSGO request failure occurred sending an
XCF message.

45F (1119) An XCF message exit error occurred during ICSF
sysplex processing.

460 (1120) A sequence number error occurred during ICSF
sysplex processing.

461 (1121) A cache update failure occurred during ICSF
sysplex processing.

462 (1122) The CSFKSIDC module was called with an
incorrect function code.

463 (1123) The CSFKSIIO module was called with an invalid
IO function request.

464 (1124) The CSFKSIIO module ran out of dynamic storage.

465 (1125) ICSF forced termination.

466 (1126) An error occurred during ATTACH of the
CSFMISTP task.

SMF Records
SMF records are documented in z/OS MVS System Management Facilities (SMF)
and published on release boundaries. As a migration aid for ICSF FMIDs, which are
often made available as Web Deliverables that are not on a z/OS release boundary,
SMF record information for ICSF is also documented in Appendix B, “ICSF SMF
Records,” on page 283. Refer there for information on SMF records.

TKE Workstation
The Trusted Key Entry (TKE) workstation is available on the IBM Eserver zSeries
990 IBM Eserver zSeries 890, z9 EC, z9 BC, z10 EC, z10 BC, and z196. It can
also be used to provide key management on the IBM Eserver zSeries 900.

Refer to z/OS Cryptographic Services ICSF TKE Workstation User's Guide for more
information.

TKE Version 3.1 and Access to Callable Services
Access to services that are executed on the PCI Cryptographic Coprocessor is
through Access Control Points in the DEFAULT Role. To execute callable services
on the PCI Cryptographic Coprocessor, access control points must be enabled for
each service in the DEFAULT Role. For systems that do not use the optional TKE
Workstation, all access control points (current and new) are enabled in the
DEFAULT Role with the appropriate microcode level on the PCI Cryptographic
Coprocessor.

New TKE users and non-TKE users have all* access control points enabled. This is
also true for brand new TKE V3.1 users (not converting from TKE V3.0).

Note: *Access control point DKYGENKY-DALL is always disabled in the DEFAULT
Role for all customers (TKE and Non-TKE). A TKE Workstation is required to
enable this access control point for the Diversified Key Generate service.

All of the mentioned components are required for complete access control point
support.

Chapter 3. Migration 69

||

||
|

||
|

||
|

||
|

||
|

||
|

||

||

||
|

Access to services which execute on the Cryptographic Coprocessor Feature is
through SAF. Disablement through SAF is sufficient to prevent execution of a
service by the Cryptographic Coprocessor Feature, the PCI Cryptographic
Coprocessor, the PCI X Cryptographic Coprocessor or the Crypto Express2
Coprocessor. For functions which can be executed on the PCI Cryptographic
Coprocessor or PCI X Cryptographic Coprocessor/Crypto Express2 Coprocessor,
enablement of the function requires that the function be enabled through SAF and
through the access control point in the DEFAULT Role. For additional details, see
“TKE Version 4.x and Higher and Access to Callable Services.”

These are access control points for PCICCs.

TKE Version 4.x and Higher and Access to Callable Services
Access to services that are executed on the PCI X Cryptographic Coprocessor or
Crypto Express2 Coprocessor is through Access Control Points in the DEFAULT
Role. To execute callable services on the PCIXCC/CEX2C, access control points
must be enabled for each service in the DEFAULT Role. For systems that do not
use the optional TKE Workstation, all access control points (current and new) are
enabled in the DEFAULT Role with the appropriate microcode level on the
PCIXCC/CEX2C.

New TKE users and non-TKE users have all* access control points enabled. If you
are migrating from TKE V4.0 or TKE V4.1 or TKE V4.2 to TKE V5.x and have a
PCIXCC/CEX2C, all your current access control points will remain the same and
any new applicable access control points will not be enabled.

Note: *Access control points DKYGENKY-DALL and DSG ZERO-PAD unrestricted
hash length and PTR enhanced PIN security are always disabled in the
DEFAULT role for all customers (TKE and Non-TKE). A TKE Workstation is
required to enable these access control points.

TKE Enablement from the Support Element
On z890 or systems running with May 2004 or higher version of Licensed Internal
Code or a z9 EC, z9 BC and IBM System z10 Enterprise Class system running with
MCL 029 Stream J12220 or higher version of Licensed Internal Code, you must
enable TKE commands on each PCIXCC, CEX2C, or CEX3C card from the support
element. This is true for new TKE users and those upgrading to this level of LIC.
See Support Element Operations Guide, SC28-6820 and z/OS Cryptographic
Services ICSF TKE Workstation User's Guide, SA23-2211 for more information.

Migrating from the IBM Eserver zSeries 900

Callable Services
These services are only available on the IBM Eserver zSeries 900. These services
are not supported with a PCIXCC/CEX2C installed.

v ANSI X9.17 EDC Generate (CSNAEGN)

v ANSI X9.17 Key Export (CSNAKEX)

v ANSI X9.17 Key Import (CSNAKIM)

v ANSI X9.17 Key Translate (CSNAKTR)

v ANSI X9.17 Transport Key Partial Notarize (CSNAKTR)

v Ciphertext Translate (CSNBCTT)

v PKSC Interface Service (CSFPKSC)

v Transform CDMF Key (CSNBTCK)

70 z/OS V1R13 System Programmer's Guide

v User Derived Key (CSFUDK)

A Health Check, ICSFMIG_DEPRECATED_SERV_WARNINGS, has been provided
to detect the use of these services. You should migrate away from the use of these
services, because support is being removed in later releases of ICSF. You should
investigate applications using these services, and determine the appropriate actions
to remove or replace them.

Functions Not Supported
This topic lists functions not supported with a PCIXCC/CEX2C installed.

1. There is no KMMK (key management master key).

2. The Commercial Data Masking Facility (CDMF) is no longer supported. The
CDMF keyword on KGUP control statements and panels are no longer
supported.

3. The Public Key Algorithm Digital Signature Standard is not supported. This
affects callable services CSNDPKG, CSNDPKI, CSNDDSG, and CSNDDSV.

4. The PBVC keyword is not supported on a PCIXCC/CEX2C. This affects callable
services Clear PIN Generate Alternate (CSNBCPA), PIN Translate (CSNBPTR)
and PIN Verify (CSNBPVR).

Setup Considerations
This topic lists setup changes that should be considered when installing a
PCIXCC/CEX2C.

Consideration should be given to:

1. CICS wait list should be updated for services now executing on
PCIXCCs/CEX2Cs. The sample CICS wait list, CSFWTL01, supplied by IBM
includes these services and can be used as a reference.

2. PKDS initialization is required.

3. New options data set keyword CKTAUTH.

4. A CKDS initialized on a z990, z890, z9 EC, z9 BC, z10 EC, z10 BC, and z196
cannot be used on CCF systems. However, a CKDS initialized on z900 can be
used on z890, z990, z9 EC, z9 BC, z10 EC, z10 BC, and z196.

5. If sharing a PKDS with a PCICC and PCIXCC/CEX2C, delete the PKDS
records for labelnames of retained keys on PCICCs no longer in use.

6. Customers who run CSFEUTIL to setup ICSF for automated electronic delivery
process no longer need to execute CSFEUTIL on a z990, z890, z9 EC, z9 BC,
or z196 system. SHA-1 is available on z990, z890, z9 EC, z9 BC, z10 EC, z10
BC, and z196 without entering ICSF master keys.

7. Options data set keyword SYSPLEXCKDS.

8. Options data set keyword SYSPLEXTKDS.

9. Options data set keyword SYSPLEXPKDS.

10. The PKDSCACHE function is replaced with an in-storage copy of the PKDS.
No installation option is required.

Programming Considerations
This topic lists programming changes that should be considered when installing a
PCIXCC/CEX2C.

Consideration should be given to:

1. The DATAC key type can not be used on the IBM Eserver zSeries 900.

Chapter 3. Migration 71

|
|
|
|
|

2. The PIN block format checking on PCIXCC/CEX2C is more rigorous than with
a CCF.

For CSNBPVR, CSNBPTR and CSNBCPA services, the input PIN block must
have the correct format as specified in the PIN Profile parameter. On a CCF
system, the PIN block format checking is incomplete.

For example, the REFORMAT processing mode of PIN Translate (CSNBPTR)
may now fail on a PCIXCC/CEX2C when it was previously successful on a
CCF. On a CCF, if input to the PIN verify service (CSNBPVR) is a malformed
encrypted PIN block, the service will fail with return code 4, reason code 3028
(verification failed); on a PCIXCC/CEX2C, the service may fail with return code
8 and some appropriate reason code for invalid PIN format.

3. 512 to 2048 bit modulus for RSA keys is supported in all PKA services except
SET services (Set Block Compose and Set Block Decompose).

4. All CCF functions are now executed on the PCIXCC/CEX2C. This may cause
some impact on the performance of customer applications.

5. Reason codes from the PCIXCC/CEX2C may be different from previous
cryptographic hardware.

6. With PCIXCCs/CEX2Cs, the requirement that caller must be in supervisor
state to use NOCV tokens is lifted for the CKDS Key Record Write
(CSNBKRW) service.

7. The z/OS SCHEDULE and IEAMSCHD macros are used to schedule SRBs.
On the IBM Eserver zSeries 990, IBM Eserver zSeries 890, IBM System
Enterprise Class or IBM System Business Class, since there are no CCFs on
the system, applications should delete FEATURE=CRYPTO on the
SCHEDULE and IEAMSCHD macros or the SRB being scheduled will not run.

8. External tokens that are export prohibited are imported differently on a z990,
z890, z9 EC, z9 BC, z10 EC, z10 BC, and z196 system with
PCIXCCs/CEX2C/CEX3Cs. The imported internal token will have the same
control vector as the external token with export prohibited. These tokens will
only be usable on a z990, z890, z9 EC, z9 BC, z10 EC, z10 BC, and z196
with a PCIXCC/CEX2C or on CCF systems with PCICCs. On previous
hardware (CCF systems) the imported internal token had a control vector that
allowed export, and export prohibition was enforced by the export flag in the
token.

9. Prohibit Export service can now be used for MAC and MACVER keys.

10. New rule array keyword TDES-MAC added to the MAC Generate and MAC
Verify services.

11. New rule array keywords, CFB and PKCS-PAD added to the Symmetric Key
Decipher and Symmetric Key Encipher services.

12. A RACF check is added to the Key Generation Utility (CSFKGUP).

13. The CSFKGUP utility exit control block has been changed for AES. See
Chapter 5, “Installation Exits,” on page 111 for the new format.

Migrating from 4753-HSP
ICSF provides key management callable services that are identical to the 4753-HSP
verbs of the same name. Key management applications that are developed for the
4753-HSP and use these common verbs can be run on OS/390 ICSF or z/OS ICSF
without reassembly. You will, however, need to relink them.

If your installation is currently using the 4753-HSP and you are migrating to OS/390
ICSF or z/OS ICSF, consider:

72 z/OS V1R13 System Programmer's Guide

|

v 4753-HSP cryptographic key storage

Internal key tokens for ICSF and the 4753-HSP are not interchangeable. Key
token migration for the 4753 exists through the optional TKE Version 3
Workstation for the S/390 G5, G6, and z900 servers and TKE Version 4 or higher
for z900, z890, z990, z9 EC, z9 BC and IBM System z10 Enterprise Class
servers. TKE Version 3, Version 4, and Version 5 supply a 4753 Migration Utility.
It allows you to migrate internal DES key tokens from the 4753 to ICSF. Key
exchange between the two systems is through the external key token. To migrate
keys from the 4753-HSP to ICSF, you must first establish an exporter/importer
key relationship between the 4753-HSP and ICSF. You can then write an
application to export keys from the 4753-HSP key storage and import them into
the ICSF CKDS. You can perform this type of key exchange only with
CCA-defined keys, which have the same control vectors on key-encrypting keys.
If your 4753-HSP installation includes non-CCA key types in key storage, you
need to generate a special exporter/importer key-encrypting key pair on the
4753-HSP. The exporter key-encrypting key nullifies the CV value that is used on
the 4753-HSP, and the importer key-encrypting key includes the CV value that is
needed at ICSF.

v Key labels

ICSF/MVS Version 1 Release 2 and above supports an extended key label of up
to 64 bytes. Although the 4753-HSP also supports a 64-byte key label, there are
additional key label formatting restrictions that do not apply to ICSF. The
4753-HSP key label consists of one to five name tokens that are separated by
periods. Each name token includes one to eight alphanumeric or national string
characters. ICSF, therefore, can accept all 4753-HSP key labels, but the
4753-HSP cannot accept all ICSF key labels. For more information on key label
formatting restrictions, refer to IBM Transaction Security System: Concepts and
Programming Guide: Volume I, Access Controls and DES Cryptography.

ICSF/MVS Version 1 Release 2 and above, like the 4753-HSP, requires unique
key labels for data-encrypting keys, data-translation keys, and MAC keys. To
maintain compatibility with ICSF/MVS Version 1 Release 1, however, KGUP will
continue to allow multiple key types per label for importer, exporter, and PIN keys
under these conditions. Use either KGUP or the KEU to enter the keys, and
ensure that the key labels do not conflict with other unique label restrictions.

v UDX (User Defined Extension) support

Beginning with OS/390 V2 R10 ICSF, ICSF support is provided for UDX
capabilities. UDX routines are developed by special contract with IBM and are
only distributed to authorized customers.

The UDX function is invoked by an "installation-defined" or generic callable
service. The callable service is defined in the Installation Options data set (UDX
parameter) and the service stub is link-edited with the application. The
application program calls the service stub which accesses the UDX
installation-defined service.

There is a one-to-one correspondence between a specific generic service in
ICSF and a specific UDX command processor in the PCICC, PCIXCC, or
CEX2C. The administrator, through ISCF panels, performs UDX authorization
processing on each PCI Cryptographic Coprocessor. Authorization is not LPAR
specific. See Managing User Defined Extensions in z/OS Cryptographic Services
ICSF Administrator's Guide, SA22-7521 for additional information.

Support for writing your own UDX for a PCI Cryptographic Coprocessor is
available. Development of a UDX for a PCIXCC or CEX2C requires a special
contract with IBM. See the UDX Reference and Guide and the 4758 Custom
Software Developer's Toolkit Guide for additional information. These, and other

Chapter 3. Migration 73

publications related to the IBM 4758 Coprocessor can be obtained in PDF format
from the Library page located at http://www.ibm.com/security/cryptocards.

See the UDX parameter and Installation-Defined Callable Services in z/OS
Cryptographic Services ICSF System Programmer's Guide, SA22-7520 for
additional details.

74 z/OS V1R13 System Programmer's Guide

Chapter 4. Operating ICSF

Starting and stopping ICSF . 76
Modifying ICSF . 78
Using different configurations. 78

Configuring the z890, z990, z9 EC, z9 BC, z10 EC, z10 BC, and z196 . . . 78
Configuring the IBM Eserver zSeries 900 80

Single Image Mode . 80
Logical Partition (LPAR) Mode 81

Adding and Removing Cryptographic Coprocessors 82
Adding Cryptographic Coprocessors 83
Steps for activating/deactivating cryptographic coprocessors 83
Steps to configure on/off cryptographic coprocessors 84
Steps for enabling/disabling cryptographic coprocessors (PCICC, PCIXCC,

CEX2C, and CEX3C). 84
Intrusion Latch on the PCICC, PCIXCC, CEX2C, or CEX3C 85

Steps for enabling/disabling cryptographic coprocessors (CCF) 86
Performance considerations for using installation options 86
Dispatching priority of ICSF . 87
VTAM session-level encryption 87
System SSL encryption . 87
Access method services cryptographic option 87
Remote Key Loading. 88
Event Recording . 88

System Management Facilities (SMF) Recording 88
ICSF Initialization (Subtype 1) 91
ICSF Status Change (Subtype 3) 91
Error Handling for Cryptographic Coprocessor Feature (Subtype 4) . . . 91
Special Secure Mode Change (Subtype 5). 92
Master Key Part Entry (Subtype 6) 92
Operational Key Part Entry (Subtype 7) 92
CKDS Refresh (Subtype 8) 92
Dynamic CKDS Update (Subtype 9) 92
PKA Key Part Entry (Subtype 10) 93
Clear New Master Key Part Entry (Subtype 11) 93
PKSC Commands (Subtype 12) 93
Dynamic PKDS Update (Subtype 13). 93
Cryptographic Coprocessor Clear Master Key Entry (Subtype 14) 93
Cryptographic Coprocessor Retained Key Create or Delete (Subtype 15) 94
Cryptographic Coprocessor TKE Command Request or Reply (Subtype 16) 94
PCI Cryptographic Coprocessor Timing (Subtype 17) 94
Cryptographic Coprocessor Configuration (Subtype 18) 95
PCI X Cryptographic Coprocessor Timing (Subtype 19) 95
Cryptographic Coprocessor Timing (Subtype 20) 95
ICSF Sysplex Group (Subtype 21) 95
Trusted Block Create (Subtype 22) 96
Token Data Set (TKDS) (Subtype 23) 96
Duplicate Key Tokens (Subtype 24) 96
Key Store Policy (Subtype 25) 96
PKDS Data Space Refresh (Subtype 26) 96
PKA Key Management Extensions (Subtype 27) 97
High Performance Encrypted Key (Subtype 28) 97
TKE Workstation Audit Record (Subtype 29) 97

Message Recording . 98
Security Considerations. 98

© Copyright IBM Corp. 1997, 2011 75

Controlling the program environment 98
Controlling access to KGUP 98
Controlling access to CSFDUTIL 99
Controlling access to the callable services 99
Controlling access to cryptographic keys 99
Controlling access to secure key tokens 100
Scheduling changes for cryptographic keys 100
Controlling access to administrative panel functions 100
Obtaining RACF SMF log records 100

Debugging Aids . 101
Component Trace . 101

Examining the Trace Entry Buffer. 101
Abnormal Endings . 104
IPCS Formatting Routine. 104
Detecting ICSF Serialization Contention Conditions 107

You use certain commands to operate ICSF. Also, there are different conditions for
operating ICSF that you should consider. This topic describes the ICSF operating
tasks.

Starting and stopping ICSF
To start ICSF, issue the operator START command. You must issue the START
command after each IPL. When you issue the START command, verification tests
check that the master key in each coprocessor is the same as the master key that
enciphered the cryptographic key data set (CKDS) and that the hash patterns in
each coprocessor is the same as the hash pattern of the master key that
enciphered the PKA key data set (PKDS).

Releases of ICSF prior to FMID HCR7780 required an RSA master key on all
systems. For non-CCF systems running HCR7780 or later, an RSA master key is
no longer required on all systems. This requirement, however, still exists for CCF
systems. For non-CCF systems, any combination of master keys can be loaded.
The activation procedure for non-CCF systems selects the combination of master
keys that will maximize the number of active coprocessors. ICSF checks the master
keys available on the system (AES, DES, ECC and RSA) and determines validity
based on the master keys used for the CKDS and PKDS. The master key
verification patterns (MKVPs) contained in the header of the CKDS and PKDS are
compared to the MKVPs of the master keys on the coprocessors. If they match, the
master key is valid. After determining the valid master keys for the system, it then
selects the set of available master keys that will maximize the number of active
coprocessors.

v On CCF Systems, verification tests are also performed to ensure that the PCI
Cryptographic Coprocessor SYM-MK on all PCI Cryptographic Coprocessors is
the same as the DES master key on the Cryptographic Coprocessor Features,
and that the PCI Cryptographic Coprocessor RSA-MK on all PCI Cryptographic
Coprocessors is the same as the SMK on the Cryptographic Coprocessor
Features.

If a master key does not match the CKDS, this occurs:

– ICSF starts.

– A message that indicates the verification failed for the indicated coprocessor
and CPU appears on the console.

– The Cryptographic Coprocessor Feature on the CPU for which the verification
failed is not active.

76 z/OS V1R13 System Programmer's Guide

v On PCIXCC Systems, verification tests are also performed to ensure that the
PCIXCC DES-MK is the same on all PCIXCC coprocessors, and that the
PCIXCC RSA-MK is the same on all PCIXCC coprocessors.

If a DES-MK master key verification pattern does not match the verification
pattern in the CKDS, then: ICSF starts and a message that indicates the
verification failed for the indicated coprocessor appears on the console. The
PCIXCCs will not be active.

If the RSA-MKs do not match, or if they match but the hash pattern does not
match the hash pattern in the PKDS, a message indicates that the PKA hash
pattern in the PKDS does not match the system PKA hash pattern. PKA callable
services are not enabled.

If the RSA-MKs do match the hash pattern in the PKDS but the DES-MK is not
valid, then PKA callable services are not enabled. Once the DES-MK become
valid, the user will have to enable the PKA services or stop and restart ICSF.

v On CEX2C Systems, verification tests are also performed to ensure that the
DES-MK, AES-MK, and RSA-MK are the same on all CEX2C coprocessors.

If DES-MK or AES-MK master key verification patterns do not match the
verification patterns in the CKDS, then: ICSF starts and a message that indicates
the verification failed for the indicated coprocessor appears on the console. In
order for the coprocessor to become active, either the DES-MK or the AES-MK
(or both) verification patterns must match those in the CKDS. If neither match,
the coprocessor will not be active.

If the RSA-MKs do not match, or if they match but the hash pattern does not
match the hash pattern in the PKDS, a message indicates that the RSA hash
pattern in the PKDS does not match the system RSA hash pattern. PKA callable
services are not enabled.

If the RSA-MKs do match the hash pattern in the PKDS but both the DES-MK
and AES-MK are not valid, then PKA callable services are not enabled. Once the
DES-MK or AES-MK becomes valid, the user will have to enable the PKA
services or stop and restart ICSF.

v On CEX3C Systems, verification tests are also performed to ensure that the
DES-MK, AES-MK, RSA-MK, and ECC-MK are the same on all CEX3C
coprocessors.

If DES-MK or AES-MK master key verification patterns do not match the
verification patterns in the CKDS, then: ICSF starts and a message that indicates
the verification failed for the indicated coprocessor appears on the console.

If the RSA-MKs do not match or the ECC-MKs do not match, or if they match but
do not match the hash pattern in the PKDS, a message indicates that the hash
pattern in the PKDS does not match the system hash pattern.

In order for a coprocessor to become active, at least one master key on the
coprocessor must be valid.

PKA callable services are enabled if the RSA-MK matches the hash pattern in
the PKDS. PKA callable services are disabled if the RSA-MK does not match the
hash pattern.

When ICSF successfully starts, a message that indicates that initialization is
complete appears on the console.

This example shows the format of the START command to start ICSF, assuming
that CSF is the name of the start procedure:

START CSF

You can start ICSF only as a started task.

Chapter 4. Operating ICSF 77

To stop ICSF, issue the operator STOP command. After you issue the command, all
ICSF processing stops. If ICSF stops successfully, a message that states that ICSF
is stopped appears on the console.

This example shows the format of the STOP command to stop ICSF, assuming that
CSF is the name of the started procedure:

STOP CSF

Notes:

1. If a problem is detected with a cryptographic coprocessor or with an accelerator
during initialization, then a CSFM540I message is generated and the device is
bypassed.

2. A Health Check, ICSF_COPROCESSOR_STATE_NEGCHANGE, monitors the
state of the coprocessors and accelerators on a daily basis to detect a negative
change in state.

3. If ICSF is unresponsive to the STOP command, be aware that you will not be
able to use the CANCEL command to stop ICSF processing. Instead, use the
force command:
FORCE csfproc,arm

Modifying ICSF
When you issue the MODIFY command, ICSF gives control to the installation exit
CSFEXIT5, if it exists. Your installation can write an exit routine for CSFEXIT5 that
changes ICSF operations. For example, you might have the installation exit change
the CHECKAUTH and KEYAUTH installation options without having to stop and
restart ICSF. See Chapter 5, “Installation Exits,” on page 111 for a description of the
installation exits.

If your installation does not write an exit routine for CSFEXIT5, no action occurs
when you enter the MODIFY command.

Using different configurations
A central processor complex can have multiple cryptographic features of various
types. This topics describes some of the different configurations available with the
various servers.

Configuring the z890, z990, z9 EC, z9 BC, z10 EC, z10 BC, and z196
There is only LPAR mode on a z890, z990, z9 EC, z9 BC, z10 EC, z10 BC, and
z196. You can divide your processor complex into PR/SM logical partitions. When
you create logical partitions on your processor complex, you use the usage domain
index on the Support Element Customize Image Profile page only if you have, or
plan to add, PCICAs, PCIXCCs, CEX2Cs, CEX3Cs, CEX2As, or CEX3As.

The DOMAIN parameter is optional. The number that is specified for the usage
domain index must correspond to the domain number you specified with the
DOMAIN(n) keyword in the installation options data set – if you specified one. The
DOMAIN keyword is required if more than one domain is specified as the usage
domain on the PR/SM panels.

A PCICA, PCIXCC, CEX2C, CEX3C, CEX2A, or CEX3A can be configured and
shared across multiple partitions.

78 z/OS V1R13 System Programmer's Guide

|
|
|

|
|
|

Note: The domain assigned to the TKE Host LPAR must be unique if TKE is to
control all the coprocessor cards in the environment. No other LPAR can use
the domain assigned to the TKE Host.

With the z990, z890, z9 EC, z9 BC, z10 EC, z10 BC, and z196, there is support for
up to 30 LPARs. On previous systems, where the maximum number of LPARs was
16, a domain was unique to an LPAR. With more than 16 LPARs to support, the
domain may not be unique across LPARs but the same domain may be assigned to
different LPARs if they are accessing different PCICAs, PCIXCCs, CEX2Cs, or
CEX3Cs. This is illustrated by LPAR 1 and LPAR 3 in Figure 1. They are both
assigned to usage domain 0 but on two different PCICAs.

The example in Figure 1 shows that LPAR 2 has assigned access to Domain 1 on
both PCICA 1 and PCICA 2. If you were to add another PCICA, PCIXCC, CEX2C,
or CEX3C to LPAR 2, Domain 1 on the new PCICA, PCIXCC, CEX2C, or CEX3C
would also be assigned.

A PCIXCC and PCICA configuration with domain sharing is illustrated by LPAR 1
and LPAR 3 in Figure 2 on page 80.

Figure 1. Two Crypto PCICAs on a Processor Complex Running in LPAR Mode

Chapter 4. Operating ICSF 79

The example in Figure 2 shows that LPAR 2 has assigned access to Domain 1 on
PCIXCC 1, CEX2C 1, and PCICA 1. LPAR 3 has assigned access to Domain 0 on
CEX2C 1 and PCICA 1.

Configuring the IBM Eserver zSeries 900
The Cryptographic Coprocessor Feature can include up to two cryptographic
coprocessors, each of which is attached to a central processor within the central
processor complex. Each cryptographic coprocessor has sixteen master key
register sets, referred to as domains. ICSF uses the domain usage index to access
each domain. You can configure the complex to run in one of these modes:
v Single image mode
v Logical partition mode

Single Image Mode
In single image mode, the processor complex has access to the same domain on
both Crypto CP 0 and Crypto CP 4. The domain is specified in the installation
options data set. The DOMAIN parameter is optional. It is required if more than one
domain is specified as the usage domain on the PR/SM panels or if running in
native mode. See z/OS Cryptographic Services ICSF System Programmer's Guide
for additional information on the DOMAIN parameter. The accessed domain on both
coprocessors must have the same master key. Figure 3 on page 81 shows an
example single image mode configuration.

Domain 0

Domain 0

Domain 1

Domain 1

Domain 2

Domain 2

Domain 15

Domain 15

=

=

=

=

PCIXCC 1

CEX2C 1

Domain 0

Domain 1

Domain 2

Domain 15

= =

PCICA 1

Operating
System

LPAR 1
Domain 0

LPAR 3
Domain 0

Operating
System

Operating
System

LPAR 2
Domain 1

Processor Complex

Figure 2. Multiple Crypto Coprocessors on a Complex Running in LPAR Mode

80 z/OS V1R13 System Programmer's Guide

Logical Partition (LPAR) Mode
You can divide your processor complex into PR/SM logical partitions (LPARs).
When you create logical partitions on your processor complex, you use the usage
domain index on the Support Element Customize Image Profile page to enable
access to a Crypto CP domain. The number that is specified for the usage domain
index must correspond to the domain number you specify with the DOMAIN(n)
keyword in the installation options data set. The DOMAIN parameter is optional. It is
required if more than one domain is specified as the usage domain on the PR/SM
panels or if running in native mode. See z/OS Cryptographic Services ICSF System
Programmer's Guide for additional information on the DOMAIN parameter.

You can assign more than one domain to an LPAR, but you must use a unique
installation options data set to define each domain. Assigning more than one
domain to an LPAR makes it possible to have separate master keys for different
purposes. For example, you might have one master key for production operations
and a different master key for test operations.

The PCI Cryptographic Coprocessor can be configured like a Cryptographic
Coprocessor Feature. It can be dedicated or shared across multiple partitions with
each card supporting up to 16 domains.

The PCI Cryptographic Accelerator can be configured like a Cryptographic
Coprocessor Feature. It can be dedicated or shared across multiple partitions with
each card supporting up to 16 domains.

When using logical partitions, there is no domain sharing unless TKE is being used.
The 'HOST' LPAR can control the domains of the other LPARS if the control domain
for the first LPAR is setup for it. The example in Figure 4 on page 82 shows that
LPAR 1 has access to Domain 0 on Crypto CP 0, Crypto CP 1, and PCICC. LPAR
2 has access to Domain 1 and Domain 2 on both Crypto CPs and on the PCICC.
LPAR 1 cannot access Domain 1 or Domain 2 on the PCICC or on either of the
Crypto CPs. Likewise, LPAR 2 cannot access Domain 0 on either Crypto CP or the

Domain 0
Key A

Domain 1

Domain 2

Domain 15

= =

Crypto CP 0
Coprocessor 0

Domain 0
Key A

Domain 1

Domain 2

Domain 15

= =

Crypto CP 4
Coprocessor 1

Operating System

Processor Complex

Figure 3. Two Crypto CPs on a Processor Complex Running in Single Image Mode

Chapter 4. Operating ICSF 81

PCICC. The ICSF system running on the operating system in LPAR 2 has access to
only one domain at any particular time, as specified in the installation options data
set.

Adding and Removing Cryptographic Coprocessors
It may become necessary for your installation to add or remove cryptographic
coprocessors. This topic gives you a brief overview of the hardware implications.
For more detailed information, refer to the zSeries PR/SM Planning Guide and the
zSeries Hardware Management Console Operations Guide (OS/2).

There are several terms associated with removing the cards. Use the Support
Element (SE) panel to configure cryptographic coprocessors online and offline
(standby). Use the ICSF Coprocessor Management panel from your TSO user ID to
activate and deactivate cryptographic coprocessors. Use the TKE workstation to
enable and disable cryptographic coprocessors.

Domain 0
Key B

Domain 1
Key C

Domain 2
Key D

Domain 15

= =

Crypto CP 0
Coprocessor 0

Domain 0
Key B

Domain 1
Key C

Domain 2
Key D

Domain 15

= =

PCICC

Domain 0
Key B

Domain 1
Key C

Domain 2
Key D

Domain 15

= =

Crypto CP 1
Coprocessor 1

Operating
System

LPAR 1

Operating
System

LPAR 2

Processor Complex

Figure 4. Two Crypto Coprocessors and one PCICC on a Processor Complex Running in
LPAR Mode

82 z/OS V1R13 System Programmer's Guide

Adding Cryptographic Coprocessors
You can dynamically add these cryptographic coprocessors: PCICA, PCICC,
PCIXCC, CEX2C, CEX2A, CEX3C, and CEX3A. If you are adding a PCIXCC,
CEX2C, or CEX3C, ensure that feature 3863 is installed on your z890, z990, z9
EC, z9 BC, z10 EC, z10 BC, or z196.

The cryptographic coprocessor number must be in the Candidates list of the LPAR
Activation panel. Configure On the card. Each coprocessor or accelerator will
display as ONLINE. Once the master keys are entered, they become ACTIVE. The
PCICA, CEX2A, and CEX3A will automatically become ACTIVE.

Steps for activating/deactivating cryptographic coprocessors
From your TSO userid, select option 1, Coprocessor Mgmt.

On the Coprocessor Management panel, you can select the coprocessors you want
to activate or deactivate.

CSF@PRIM ----- Integrated Cryptographic Service Facility ---------
OPTION ===> 1

Enter the number of the desired option.

1 COPROCESSOR MGMT - Management of Cryptographic Coprocessors
2 MASTER KEY MGMT - Master key set or change, CKDS/PKDS processing
3 OPSTAT - Installation options
4 ADMINCNTL - Administrative Control Functions
5 UTILITY - ICSF Utilities
6 PPINIT - Pass Phrase Master Key/CKDS Initialization
7 TKE - TKE Master and Operational key processing
8 KGUP - Key Generator Utility processes
9 UDX MGMT - Management of User Defined Extensions

Licensed Materials - Property of IBM

5694-A01 (C) Copyright IBM Corp. 1990, 2008. All rights reserved.
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Press ENTER to go to the selected option.
Press END to exit to the previous menu.

Figure 5. Primary Panel

Chapter 4. Operating ICSF 83

Note: The coprocessors available for z9 EC and z9 BC are Exx and Fxx. The
coprocessors available for z10 EC and z10 BC are Exx, Fxx, Gxx, and Hxx.
The coprocessors available on the z196 are Gxx and Hxx.

When a PCICC, PCICA, PCIXCC, CEX2C, CEX2A, CEX3C, or CEX3A is
deactivated through the Coprocessor Management Panel, the card is only
deactivated for that one LPAR.

Steps to configure on/off cryptographic coprocessors
To configure the PCICC, PCICA, PCIXCC, CEX2C, CEX2A, CEX3C, or CEX3A
cards online and offline, you must use the support element (SE) panel.

Before configuring a card offline, it is strongly recommended that you deactivate the
card first from the ICSF Coprocessor Management panel. You need to 'deactivate'
the card in ALL partitions that are using that card. This allow jobs to complete
before the card is varied offline. You use the Configure On/Off service on the
Support Element panel to take the card offline (standby).

After you configure the card offline from the SE panel, hit enter on the coprocessor
management panel to verify that the card is offline. This configuring is done to
remove and replace cards or to load new card code for the PCIXCC, CEX2C,
CEX3C, and PCICC cards.

To bring a card back online, use the SE panel again. If a card was deactivated and
then brought offline (configured off), you will need to activate it again through the
Coprocessor Management panel.

There are no z/OS operator commands to vary these devices.

Steps for enabling/disabling cryptographic coprocessors (PCICC,
PCIXCC, CEX2C, and CEX3C)

With TKE 3.0 or higher you can disable/enable the PCICCs. With TKE V4.0 or
higher, you can disable/enable the PCIXCCs/CEX2Cs. With TKE V6.0, you can
disable/enable the CEX3Cs.

When a PCICA, PCICC, PCIXCC, CEX2C, CEX2A, CEX3C, or CEX3A is
deactivated through the Coprocessor Management Panel, the card is only

CSFGCMP0 ---------------- ICSF Coprocessor Management -------------
COMMAND ===>

Select the coprocessors to be processed and press ENTER.
Action characters are: A, D, E, K, R, and S. See the help panel for details.

Serial
CoProcessor Number Status AES DES ECC RSA
----------- --------- ------ --- --- --- ----
__ H00 ACTIVE
A G01 00000001 ONLINE U U U U
__ G02 00000002 ACTIVE C U U C
__ G03 00000003 ACTIVE C U A C
D G04 00000004 ACTIVE C C A C
__ G05 00000005 ONLINE U C E U
__ E06 00000006 ACTIVE C C - C
__ G07 00000007 OFFLINE - - - -

Figure 6. Coprocessor Management Panel

84 z/OS V1R13 System Programmer's Guide

deactivated for that one LPAR. When a PCICC, PCIXCC, CEX2C, or CEX3C is
disabled by TKE, the card is disabled for the entire system, not just the LPAR that
issued the disable.

Intrusion Latch on the PCICC, PCIXCC, CEX2C, or CEX3C
Under normal operation, the intrusion latch on a PCICC, PCIXCC, CEX2C, or
CEX3C is tripped when the card is removed. This causes all installation data,
master keys, retained keys, roles and authorities to be zeroized in the card when it
is reinstalled.

If a situation arises where a PCIXCC, CEX2C, or CEX3C needs to be removed, for
example, you need to remove your card for service, and you do not want the
installation data to be cleared, perform this procedure to disable the PCIXCC,
CEX2C, or CEX3C before removing.

There is no similar procedure for the PCICC.

This process will require you to switch between the TKE application, the ICSF
Coprocessor Management panel, and the Support Element.

1. Open an Emulator Session on the TKE workstation and logon to your TSO
userid on the Host System where the PCIXCC, CEX2C, or CEX3C will be
removed.

2. From the ICSF Primary Option Menu on TSO, select Option 1 for Coprocessor
Management.

3. Leave the Coprocessor Management panel displayed during the rest of this
procedure. You will be required to hit ENTER on the Coprocessor Management
panel at different times. DO NOT EXIT this panel.

4. Open the TKE Host where the PCIXCC, CEX2C, or CEX3C will be removed.
Open the PCIXCC, CEX2C, or CEX3C. Click on Disable Crypto Module.

5. After the PCIXCC, CEX2C, or CEX3C has been disabled from TKE, hit
ENTER on the Coprocessor Management panel. The status should change to
DISABLED.

Note: You do not need to deactivate a disabled card.

6. Configure Off the PCIXCC, CEX2C, or CEX3C from the Support Element.

7. After the card has been taken Offline, hit ENTER on the Coprocessor
Management panel. The status should change to OFFLINE.

8. Remove the PCIXCC, CEX2C, or CEX3C. Perform whatever operation needs
to be done. Replace the PCIXCC, CEX2C, or CEX3C.

9. Configure On the PCIXCC, CEX2C, or CEX3C from the Support Element.

10. When the initialization process is complete, hit ENTER on the Coprocessor
Management panel. The status should change to DISABLED.

11. From the TKE Workstation Crypto Module General page, click on Enable
Crypto Module.

12. After the PCIXCC, CEX2C, or CEX3C has been enabled from TKE, hit ENTER
on the Coprocessor Management panel. The Status should return to its original
state. If the Status was ACTIVE in step 2, when the PCIXCC, CEX2C, or
CEX3C is enabled it should return to ACTIVE.

All installation data; master keys, retained keys, roles, and authorities should still be
available. The PCIXCC, CEX2C, or CEX3C data was not cleared with the card
removal because it was Disabled first via the TKE workstation.

Chapter 4. Operating ICSF 85

Steps for enabling/disabling cryptographic coprocessors (CCF)
With TKE V3.0 and higher, you can enable and disable the Cryptographic
Coprocessor Feature.

Cryptographic functions can be disabled through the ECM Domains Controls
function. This places the Cryptographic Coprocessor Feature in standby mode. The
functions can be brought out of standby mode by enabling the cryptographic
function bit in the ECM through TKE.

Note: Status displayed on the coprocessor management panel will show
DISABLED, not STANDBY.

Performance considerations for using installation options
You specify installation options in the installation options data set. Three installation
options, CHECKAUTH, KEYAUTH, and CKTAUTH provide additional security
checking, but affect performance.

In ICSF, the Security Server (RACF) always checks non-Supervisor State callers.
The CHECKAUTH option allows you to specify whether CSF performs access
control checking of Supervisor State and System Key callers. Specify
CHECKAUTH(NO) if you do not want CSF to check Supervisor State and System
Key callers. Specify CHECKAUTH(YES) if you want CSF to check Supervisor State
callers. Checking Supervisor State and System Key callers significantly affects
performance.

The KEYAUTH option allows you to specify whether ICSF should authenticate an
entry in the CKDS whenever ICSF accesses the entry. ICSF creates a message
authentication code (MAC) for each entry in the CKDS and stores the MAC with the
entry. Whenever ICSF retrieves an entry from the CKDS, ICSF uses the MAC to
authenticate the entry. When ICSF authenticates the entry, ICSF verifies that the
entry was not inadvertently changed or damaged. If the authentication fails, ICSF
returns either a return code with a reason code or message.

You specify KEYAUTH(NO) for ICSF not to authenticate an entry or
KEYAUTH(YES) for ICSF to authenticate an entry. The authentication can have a
significant impact on performance when using the Crypto Express2 or Crypto
Express3 feature. The chance of an error occurring in the in-storage CKDS is
minimal. However, the authentication might be useful for diagnostic purposes if an
error occurs.

The CKTAUTH option allows you to specify whether ICSF should authenticate an
entry in the CKDS whenever ICSF reads the record from DASD. Customers with a
large CKDS may experience a performance impact as each authentication requires
a request to the PCIXCC, CEX2C, or CEX3C. CKTAUTH has no effect on the
KEYAUTH option.

The SYSPLEXCKDS, SYSPLEXPKDS and SYSPLEXTKDS options specify whether
sysplex-wide data consistency for the CKDS, PKDS, and TKDS is desired. For a
description of the subkeywords, see “Parameters in the installation options data set”
on page 38.

86 z/OS V1R13 System Programmer's Guide

Dispatching priority of ICSF
To avoid performance problems, the dispatching priority of ICSF should be set at
least as high as that of the highest task using ICSF.

VTAM session-level encryption
ICSF supports VTAM session-level encryption. VTAM session-level encryption
provides protection for messages within SNA sessions, that is, between pairs of
logical units that support their respective end users. When this method of protection
is in effect, data is enciphered by the originating logical unit and deciphered only by
the destination logical unit. Thus, the data never appears in the clear while passing
through the network.

ICSF places no restrictions on the addressing mode of calling programs. In
particular, when VTAM session-level encryption is used with ICSF, VTAM can use
storage greater than 16 megabytes.

System SSL encryption
ICSF supports System SSL encryption on all servers.

On the z890, z990, z9 EC, z9 BC, z10 EC, z10 BC, or z196, a PCICA, PCIXCC,
CEX2C, or CEX3C is required.

On CCF systems that also have PCICAs, you can run system SSL encryption
without entering master keys.

Access method services cryptographic option
In compatibility mode, ICSF supports the Access Method Services Cryptographic
Option. The option enables the user of the Access Method Services REPRO
command to use the Data Encryption Algorithm to encipher data.

The Access Method Services user can use REPRO to encipher data that is written
to a data set, and then store the enciphered data set offline. When desired, you can
bring the enciphered data set back online, and use REPRO to decipher the
enciphered data. You can decipher the data either on the host processor on which it
was enciphered, or on another host processor that contains the Access Method
Services Cryptographic Option and the same cryptographic key that was used to
encipher the data. You can either use ICSF to create the cryptographic keys, or use
keys that the Access Method Services user supplies.

With the exception of catalogs, all data set organizations that are supported for
input by REPRO are eligible as input for enciphering. Similarly, with the exception of
catalogs, all data set organizations supported for output by REPRO are eligible as
output for deciphering. The resulting enciphered data sets are always sequentially
organized (SAM or VSAM entry-sequenced data sets).

See Appendix E, “Using AMS REPRO Encryption,” on page 317 for more
information in using this method.

Chapter 4. Operating ICSF 87

Remote Key Loading
The process of remote key loading is loading DES keys to automated teller
machines (ATMs) from a central administrative site. Because a new ATM has none
of the bank's keys installed, getting the first key securely loaded is currently done
manually by loading the first key-encrypting key (KEK) in multiple cleartext key
parts. A new standard ANSI X9.24-2 defines the acceptable methods of doing this
using public key cryptographic techniques, which will allow banks to load the initial
KEKs without having to send anything to the ATMS. This method is quicker, more
reliable and much less expensive.

Once an ATM is in operation, the bank can install new keys as needed by sending
them enciphered under a KEK it installs at a previous time. Cryptographic
architecture in the ATMs is not Common Cryptographic Architecture (CCA) and it is
difficult to export CCA keys in a form understood by the ATM. Remote key loading
will make it easier to export keys to non-CCA systems without compromising
security.

In order to use ATM Remote Key Loading, TKE users will have to enable the
access control points for these functions:

v Trusted Block Create - API Keyword = Inactive

v Trusted Block Create - API Keyword = Active

v Public Key Import - Source Key Token = Trusted Block

v Public Key Import - Source Key Token = PKA96 Key Token

v Remote Key Export

Event Recording
ICSF records certain ICSF events in the System Management Facilities (SMF) data
set. ICSF also sends messages that are generated during processing to the ICSF
job log and consoles. The SMF recording and messages help you detect problems
and track events. This topic describes the events that ICSF records in the SMF
record and describes where ICSF sends certain messages.

These records can be used with RACF SMF type 80 record to audit use of the
callable services and the keys. The RACF type 80 records are extracted and
formatted using the RACF SMF Unload Utility. See z/OS Security Server RACF
Auditor's Guide for information on how to use this utility. For information about the
formatted SMF records see z/OS Security Server RACF Macros and Interfaces.

System Management Facilities (SMF) Recording
ICSF uses SMF record type 82 to record certain ICSF events. Record type 82
contains:

v a fixed header / self-defining section. This section contains the common SMF
record headers fields and the triplet fields (offset/length/number), if applicable,
that locate the other sections on the record.

v ICSF event specific (subtype) section. Each subtype contains information
about the event that caused ICSF to write to the SMF record. For subtypes that
log state changes, the SMF record will contain additional auditing sections.

v an auditing header section. This section is present in the record for subtypes
that log state changes. It describes the number and overall length of the auditing
sections that follow.

88 z/OS V1R13 System Programmer's Guide

v a server user section and, optionally, an end user section. If both sections are
present, they can appear in either order.

You can map record type 82 by using the CSFSMF82 macro.

ICSF records information in the SMF data set when these events occur:

v ICSF starts

v ICSF status changes on a processor

v ICSF handles error conditions for Cryptographic Coprocessor Feature failure or
tampering

v You enable or disable special secure mode

v You enter a master key part

v You use the ICSF panels to process an operational key part or key part register
loaded using the TKE workstation

v TKE commands and responses are all audited through SMF 82 (TKE commands
on the Cryptographic Coprocessor Feature use CSFPKSC. TKE commands on
the PCICC, PCIXCC, CEX2C, and CEX3C use CSFPCI.)

v The in-storage cryptographic key data set (CKDS) is refreshed

v A dynamic change is made to the PKDS

v The in-storage PKDS is refreshed

v Duplicate tokens were detected

v A key store policy check resulted in a 'warning'

v You use the ICSF panels to update the new master key register on a PCICC,
PCIXCC, CEX2C, or CEX3C

v You create or delete a retained key on a PCICC, PCIXCC, CEX2C, or CEX3C

v The TKE workstation issues a PCICC, PCIXCC, CEX2C, or CEX3C command
request or receives a reply response from a PCICC, PCIXCC, CEX2C, or CEX3C

v ICSF records processing times for PCICCs, PCIXCCs, CEX2Cs, CEX3Cs,
PCICAs, CEX2As, and CEX3As.

v A PCICA, PCICC, PCIXCC, CEX2C, CEX3C CEX2A, or CEX3A is either brought
online or taken offline

v ICSF issues IXCJOIN to join the ICSF sysplex group or issues IXCLEAVE to
leave the sysplex group.

v The trusted block create callable service is used to create or activate a trusted
block.

Each of these events causes ICSF to record information in a separate subtype in
the SMF record.

Recording and Formatting type 82 SMF Records in a Report - Sample jobs are
available (in SYS1.SAMPLIB) to assist in the recording and formatting of type 82
SMF data:

v CSFSMFJ - JCL that executes the code to dump and format SMF type 82
records for ICSF. Before executing the JCL, you need to make modifications to
the JCL (see the prologue in the sample for specific instructions). After the JCL
has been modified, terminate SMF recording of the currently active dump dataset
(by issuing I SMF) to allow for the unloading of SMF records. After SMF
recording has been terminated, execute the JCL. The output goes into the held
queue. This is an example of CSFSMFJ.

Chapter 4. Operating ICSF 89

//CSFSMFJ JOB <JOB CARD PARAMETERS>
//**
//* LICENSED MATERIALS − PROPERTY OF IBM *
//* 5694−A01 *
//* (C) COPYRIGHT IBM CORP. 2002 *
//* *
//* This JCL reads Type 82 SMF records and formats them in a report.*
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Change the DUMPIN DSN=hlq.smfdata.input to be the name of *
//* the dataset where you currently have SMF data being *
//* recorded. *
//* 3) Change the STEPLIB VOL=SER=ttttt1 and VOL=SER=ttttt2 to *
//* be the volumes where these sort datasets reside. *
//* 4) Change the SYSPROC DSN=hlq.rexx.dataset to be the name of *
//* the dataset where you have placed the CSFSMFR REXX sample. *
//* *
//* Prior to executing this job, you need to terminate SMF *
//* recording of the currently active dump dataset for allow the *
//* unload of SMF records. *
//* *
//**
//*
//*−−*
//* UNLOAD SMF 82 RECORDS FROM VSAM TO VBS *
//*−−*
//SMFDMP EXEC PGM=IFASMFDP
//DUMPIN DD DISP=SHR,DSN=hlq.smfdata.input
//DUMPOUT DD DISP=(NEW,PASS),DSN=&&VBS,UNIT=3390,
// SPACE=(CYL,(1,1)),DCB=(LRECL=32760,RECFM=VBS,BLKSIZE=4096)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

INDD(DUMPIN,OPTIONS(DUMP))
OUTDD(DUMPOUT,TYPE(82))

//*
//*−−*
//* COPY VBS TO SHORTER VB AND SORT ON DATE/TIME *
//*−−*
//COPYSORT EXEC PGM=SORT,REGION=6000K
//STEPLIB DD DISP=SHR,DSN=SYS1.SORTLPA,VOL=SER=ttttt1,UNIT=3390
// DD DISP=SHR,DSN=SYS1.SICELINK,VOL=SER=ttttt2,UNIT=3390
//SYSOUT DD SYSOUT=*
//SORTWK01 DD UNIT=3390,SPACE=(CYL,10)
//SORTIN DD DISP=(OLD,DELETE),DSN=&&VBS
//SORTOUT DD DISP=(NEW,PASS),DSN=&&VB,UNIT=3390,
// SPACE=(CYL,(1,1)),DCB=(LRECL=3000,RECFM=VB)
//SYSIN DD *
SORT FIELDS=(11,4,A,7,4,A),FORMAT=BI,SIZE=E4000
//*
//*−−*
//* FORMAT TYPE 82 RECORDS *
//*−−*
//FMT EXEC PGM=IKJEFT01,REGION=5128K,DYNAMNBR=100
//SYSPROC DD DISP=SHR,DSN=hlq.rexx.dataset
//SYSTSPRT DD SYSOUT=*
//INDD DD DISP=(OLD,DELETE),DSN=&&VB
//OUTDD DD SYSOUT=*
//SYSTSIN DD *

%CSFSMFR

v CSFSMFR - An EXEC that formats the SMF type 82 records into a readable
report.

90 z/OS V1R13 System Programmer's Guide

ICSF Initialization (Subtype 1)
When ICSF starts, ICSF writes to subtype 1 after initialization is completed.
Subtype 1 describes the values of installation options that are specified in the
installation options data set.

Subtype 1 contains this information:

v Special secure mode (SSM) option

v Key authentication (KEYAUTH) option

v Security Server (RACF) checking of Supervisor State and System Key callers
(CHECKAUTH) option

v Compatibility mode with CUSP or PCF (COMPAT) option

v Cryptographic domain number (DOMAIN) option

v Number of trace entries (TRACEENTRY) option

v CKDS name (CKDSN) option

v Maximum length for data in a callable service (MAXLEN) option

Beginning with z/OS V1 R2, the MAXLEN parameter may still be specified in the
options data set, but only the maximum value limit will be enforced
(2147483647). If a value greater than this is specified, an error will result and
ICSF will not start.

v CKDS record authentication (CKTAUTH) option

v User parameter (USERPARM) option

v PKDS name (PKDSN) option

v TKDS name (TKDSN) option

SMF records for this subtype will also contain a server user audit section.

ICSF Status Change (Subtype 3)
ICSF writes to subtype 3 when processors are verified at initialization, after a
master key is set or changed, when ICSF switches from stand-by mode to normal
mode, or when a processor comes online or offline. When processor status
changes, subtype 3 gives the status of the processors still online.

Subtype 3 contains this information:
v Processor number
v Coprocessor number
v Cryptographic domain number
v Master key version number

If a master key change or set occurs, subtype 3 also contains this information:
v Master key verification pattern
v Old master key verification pattern, if an old master key exists
v New master key verification pattern, if a new master key exists

Error Handling for Cryptographic Coprocessor Feature (Subtype
4)
ICSF writes to subtype 4 when the Coprocessor is in standby mode or when the
Cryptographic Coprocessor Feature detects tampering.

Subtype 4 contains this information:
v Status word from the Cryptographic Coprocessor Feature
v Processor number
v Cryptographic domain number

Chapter 4. Operating ICSF 91

Special Secure Mode Change (Subtype 5)
Subtype 5 contains special secure mode status bit. ICSF writes to subtype 5 when
the status of special secure mode changes. ICSF also updates subtype 5 when the
Cryptographic Coprocessor Feature indicates that special secure mode was
required for an instruction, but was not enabled.

Master Key Part Entry (Subtype 6)
ICSF writes to subtype 6 when master key parts are entered using TKE workstation
and are processed using the TKE master key entry ICSF panels. Subtype 6
contains this information:
v The verification pattern for the master key part
v The verification pattern for the new master key
v A bit indicating whether the verification pattern is valid
v The Coprocessor number
v The cryptographic domain number

If you enter the final master key part, the record also contains the verification
pattern for the entire master key and a bit indicating whether the verification pattern
is valid.

Operational Key Part Entry (Subtype 7)
ICSF writes to subtype 7 when key parts are entered using the TKE workstation
and are processed using the operational key entry ICSF panels. Subtype 7 contains
this information:
v The ENC-ZERO verification pattern of the completed key for a PCIXCC, CEX2C,

or CEX3C or the CCF verification pattern
v A bit indicating whether the verification pattern is valid
v The cryptographic coprocessor domain number
v The cryptographic coprocessor number
v The name of the CKDS that contains the entry with the key part
v The label of the CKDS entry that contains the key part

SMF records for this subtype will also contain server user and end user audit
sections.

CKDS Refresh (Subtype 8)
ICSF writes to subtype 8 when the in-storage CKDS is successfully refreshed. ICSF
refreshes the in-storage CKDS by reading a disk copy of a CKDS into storage.
Subtype 8 contains this information:

v Name of the current in-storage CKDS that ICSF refreshes

v Name of the disk copy of the CKDS that ICSF read into storage to replace the
current CKDS

SMF records for this subtype will also contain server user and end user audit
sections.

Dynamic CKDS Update (Subtype 9)
ICSF writes to subtype 9 when an application uses the dynamic CKDS update
services to write to the CKDS. Subtype 9 contains this information:
v Name of the changed CKDS
v An indication of the operation performed.
v The CKDS entry (which includes the label name and key type) that was changed

SMF records for this subtype will also contain server user and end user audit
sections.

92 z/OS V1R13 System Programmer's Guide

PKA Key Part Entry (Subtype 10)
ICSF writes to subtype 10 when you use the ICSF panels to enter PKA master key
parts. Subtype 10 contains this information:
v An indication of which PKA Master key is changing; the Signature Master Key

(SMK), or the Key Management Master Key (KMMK)
v An indication of whether the hash pattern of the PKA master key register is valid

(It is valid when the final key part is entered.)
v The hash pattern (MDC-4) of the PKA master key register
v The hash pattern of PKA key part
v The Coprocessor number
v Current cryptographic domain

If no DES master key has been validated, the key part entries do not contain a
hash pattern. The record for the final key contains the hash pattern of the complete
key.

Clear New Master Key Part Entry (Subtype 11)
ICSF writes to subtype 11 when you use the ICSF panels to enter new master key
parts. Subtype 11 contains this information:
v An indication of whether the hash patterns for the new master key register and

new master key part are valid. (The new master keys register hash pattern is
only valid once the final key part in entered.)

v An indication of whether the verification patterns for the new master key register
and key part are valid. (The new master key verification pattern is valid only after
the final key part is entered.)

v The hash pattern of the new master key register
v The verification pattern of the new master key register
v The hash pattern of new master key part
v The verification pattern of new master key part
v The Coprocessor number
v Current cryptographic domain

If no DES master key has been validated, the key part entries do not contain a
verification pattern and hash pattern. The record for the final key contains the
verification pattern and hash pattern of the complete key.

PKSC Commands (Subtype 12)
ICSF writes to subtype 12 for every PKSC command entered through the
CSFPKSC interface. Subtype 12 contains this information:
v The complete PKSC request
v The corresponding PKSC response

Dynamic PKDS Update (Subtype 13)
ICSF writes to subtype 13 when an application uses the dynamic PKDS update
services to change the PKDS. Subtype 13 contains this information:
v The name of the changed PKDS
v An indication of the operation performed.
v The name of the changed entry in the PKDS

SMF records for this subtype will also contain server user and end user audit
sections.

Cryptographic Coprocessor Clear Master Key Entry (Subtype 14)
ICSF writes to subtype 14 whenever you use ICSF panels to update AES-MK,
DES-MK, ECC-MK, or RSA-MK in the new master key register in a PCICC,
PCIXCC, CEX2C, or CEX3C. Subtype 14 contains this information:

Chapter 4. Operating ICSF 93

v The master Key valid indicator
v The indicator for a PCICC, PCIXCC, CEX2C, or CEX3C
v The new master key verification pattern
v The key part verification pattern
v The cryptographic coprocessor processor number
v The cryptographic coprocessor serial number
v The cryptographic coprocessor domain index

SMF records for this subtype will also contain server user and end user audit
sections.

Cryptographic Coprocessor Retained Key Create or Delete
(Subtype 15)
ICSF writes to subtype 15 whenever you create or delete a retained private key in a
PCICC, PCIXCC, CEX2C, or CEX3C. Subtype 15 contains this information:
v The operation performed (created, deleted from PCI, deleted from PKDS)
v The indicator for a PCICC, PCIXCC, CEX2C, or CEX3C
v The retained key label
v The cryptographic coprocessor processor number
v The cryptographic coprocessor serial number
v The domain index

SMF records for this subtype will also contain server user and end user audit
sections.

Cryptographic Coprocessor TKE Command Request or Reply
(Subtype 16)
ICSF writes to subtype 16 whenever a TKE workstation either issues a command
request to, or receives a reply response from, a PCICC, PCIXCC, CEX2C, or
CEX3C. Subtype 16 contains this information:
v The indicator for request or reply
v The indicator for a PCICC, PCIXCC, CEX2C, or CEX3C
v The cryptographic coprocessor processor number
v The cryptographic coprocessor serial number
v The cryptographic coprocessor domain index
v The request command block or reply response block length
v The request command data block or reply response data block length
v The request or reply CPRB
v The length of the fixed audit data
v The number of relocate sections
v The function id
v The function return code
v The function description - describes the function id.

SMF records for this subtype will also contain server user and end user audit
sections.

PCI Cryptographic Coprocessor Timing (Subtype 17)
ICSF periodically records processing times for PCI Cryptographic Coprocessor
operations in subtype 17. Subtype 17 contains this information:
v The time immediately before the operation begins
v The time immediately after the operation ends
v The time immediately after the results of the operation have been communicated

to the caller address space
v The number of processes waiting to submit work to the same PCI Cryptographic

Coprocessor, domain, and reference slot used by this operation

94 z/OS V1R13 System Programmer's Guide

v The function code for this operation
v The PCI Cryptographic Coprocessor processor number
v The PCI Cryptographic Coprocessor serial number
v The PCI Cryptographic Coprocessor domain
v A reference number that identifies an internal ICSF queue element

Cryptographic Coprocessor Configuration (Subtype 18)
ICSF writes subtype 18 when a PCICA, PCICC, PCIXCC, CEX2C, CEX2A, CEX3C,
or CEX3A is brought online or taken offline. Subtype 18 contains this information:
v The operation performed (coprocessor brought online, taken offline)
v The coprocessor number
v The PCICC, PCIXCC, CEX2C, or CEX3C serial number, or a PCICA, CEX2A, or

CEX3A number

PCI X Cryptographic Coprocessor Timing (Subtype 19)
ICSF periodically records processing times for PCIXCC operations in subtype 19.
Subtype 19 contains this information:
v The time immediately before the operation begins
v The time immediately after the operation ends
v The time immediately after the results of the operation have been communicated

to the caller address space
v The number of processes waiting to submit work to the same PCIXCC, domain,

and reference slot used by this operation
v The function code for this operation
v The PCIXCC processor number
v The PCIXCC serial number
v The PCIXCC domain
v A reference number that identifies an internal ICSF queue element

Cryptographic Coprocessor Timing (Subtype 20)
ICSF periodically records processing times for PCIXCC, CEX2C, CEX3C, CEX2A,
and CEX3A operations in subtype 20. Subtype 20 contains this information:
v The device type
v The time immediately before the operation begins
v The time immediately after the operation ends
v The time immediately after the results of the operation have been communicated

to the caller address space
v The number of processes waiting to submit work to the same coprocessor,

domain, and reference slot used by this operation
v The function code for this operation
v The PCIXCC, CEX2C, CEX3C, CEX2A, or CEX3A processor number
v The PCIXCC, CEX2C, CEX3C, CEX2A, or CEX3A serial number
v The PCIXCC, CEX2C, CEX3C, CEX2A, or CEX3A domain
v A reference number that identifies an internal ICSF queue element

ICSF Sysplex Group (Subtype 21)
ICSF writes subtype 21 when ICSF joins or leaves the ICSF sysplex group.
Subtype 21 contains this information:

v The name of the ICSF sysplex group

v The name of the sysplex member

v An indication of whether the member joined or left the sysplex group

v An indication of whether the join or leave was due to normal
initialization/termination processing

v An indication of whether the leave was due to error recovery processing

v The time of the join or leave

Chapter 4. Operating ICSF 95

v The name of the active CKDS

Trusted Block Create (Subtype 22)
ICSF writes subtype 22 when the Trusted Block Create callable services are
invoked. Subtype 22 contains this information:

v Type of call, Active or Inactive

v If a Public Key Section was present in the Trusted Block Token

v ASID of the Caller

v If Input Trusted Block Token is in the PKDS, save it's Label

v If Output Trusted Block Token is in the PKDS, save it's Label

v If the Transport Key Token is in the CKDS, save it's Label

SMF records for this subtype will also contain server user and end user audit
sections.

Token Data Set (TKDS) (Subtype 23)
ICSF writes subtype 23 when the Token Data Set (TKDS) record is updated
(created, modified, deleted) of PKCS #11 tokens or token objects. Token Data Set
callable services are invoked. Subtype 23 contains this information:

v The name of the changed TKDS

v An indication of the operation performed

v The name of the changed entry in the TKDS

SMF records for this subtype will also contain server user and end user audit
sections.

Duplicate Key Tokens (Subtype 24)
ICSF writes subtype 24 when the security administrator has indicated that duplicate
key tokens must be identified. Subtype 24 contains this information:

v The data set name

v The number of key labels

v The key labels

Key Store Policy (Subtype 25)
ICSF writes subtype 25 when a callable service checks the key store policy.
Subtype 25 contains this information:

v The list information (incomplete, from CKDS, from PKDS)

v The number of key labels

v The unauthorized duplicate key label and key type

SMF records for this subtype will also contain server user and end user audit
sections.

PKDS Data Space Refresh (Subtype 26)
ICSF writes to subtype 26 when the in-storage PKDS is successfully refreshed.
ICSF refreshes the in-storage PKDS by reading a disk copy of a PKDS into
storage. Subtype 26 contains this information:

v Name of the current in-storage PKDS that ICSF refreshes

v Name of the disk copy of the PKDS that ICSF read into storage to replace the
current PKDS

96 z/OS V1R13 System Programmer's Guide

SMF records for this subtype will also contain server user and end user audit
sections.

PKA Key Management Extensions (Subtype 27)
When PKA Key Management Extensions are enabled, ICSF writes to subtype 27 to
record operational and error information related to PKA Key Management
Extensions. A subtype 27 record is written:

v when a CSF.PKAEXTNS.ENABLE or CSF.PKAEXTNS.ENABLE.WARNONLY
profile in the XFACILIT class uses the APPLDATA field to specify a trusted
certificate repository, an SMF record is cut to indicate if the trusted certificate
repository was successfully changed, or whether there was an error. The
APPLDATA field and the repository it specifies will be checked at startup and
whenever the XFACILIT class is RACLISTed. ICSF will write a subtype 27 record
if the certificate repository is changed, or if there is an error. In this case, subtype
27 will indicate if:

– the trusted certificate repository was changed

– the specified trusted certificate repository is empty

– an error was detected while extracting the APPLDATA

– the specified repository was not found

– one or more certificates could not be parsed

v when an application calls a service attempting to use a key in a way that is not
allowed by the ICSF segment specifications within the CSFKEYS or XCSFKEY
profile that covers the key. The SMF record will be written at the completion of
the callable service, which, depending on whether PKA Key Management
Extensions had been enabled in warning or fail mode, may or may not allow the
requested operation on the key. Subtype 27 contains this information. In this
case, subtype 27 will indicate if:

– an asymmetric key may not be used for the requested function

– a symmetric key cannot be exported by the provided asymmetric key

SMF records for this subtype will also contain server user and end user audit
sections.

High Performance Encrypted Key (Subtype 28)
Symmetric Key Encipher (CSNBSYE, CSNBSYE1, CSNESYE and CSNESYE1)
and Symmetric Key Decipher (CSNBSYD, CSNBSYD1, CSNESYD and
CSNESYD1) callable services exploit CP Assist for Cryptographic Functions
(CPACF) for improved key management performance. A CKDS encrypted key can
be used in these services, but only when SYMCPACFWRAP(YES) is specified in
the ICSF segment of the CSFKEYS class profile that covers the key. ICSF writes to
subtype 28 at the completion of functions that attempt to wrap an encrypted key
under the CPACF wrapping key. Subtype 28 will indicate if the rewrapping operation
is:

v permitted for this symmetric key

v not permitted for this symmetric key

SMF records for this subtype will also contain server user and end user audit
sections.

TKE Workstation Audit Record (Subtype 29)
If you have the optional TKE Workstation, you can use the TKE Audit Record
Upload Configuration Utility to send Trusted Key Entry workstation security audit
records to a System z host, where they will be saved in the z/OS System

Chapter 4. Operating ICSF 97

Management Facilities (SMF) dataset. Each TKE security audit record is stored in
the SMF dataset as a type 82 subtype 29 record. For more information on the TKE
Audit Record Upload Configuration Utility, refer to the z/OS Cryptographic Services
ICSF TKE Workstation User's Guide.

Message Recording
ICSF writes messages to the job log, and to the security console and the operator
console.

ICSF writes most of its messages to the job log. Messages that demand action from
the master console operator will display on the operator console, and messages
related to system security will display on the security console. Some of these
console messages will appear only on the console, and some will also be written to
the job log. Messages that are not displayed on either the operator or security
console are written to the job log.

For a description of each ICSF message, see z/OS Cryptographic Services ICSF
Messages.

Security Considerations
You can provide enhanced security on ICSF by controlling access to resources and
changing the values of your keys periodically. This topic describes these aspects of
security:
v Controlling access to utility programs - KGUP, CSFDUTIL
v Controlling access to the callable services
v Controlling access to cryptographic keys
v Controlling access to tokens
v Scheduling changes for cryptographic keys
v Controlling access to panel functions
v Controlling access to RACF SMF log records

Controlling the program environment
Some programs or applications which use ICSF require that the environment be
program controlled. In a program controlled environment, programs within the
address space are defined to the Security Server (RACF). Defining a program to
RACF requires the program name and the name of the data set which contains the
program.

The commands to define the ICSF load module to RACF are:
RDEFINE PROGRAM * ADDMEM(’CSF.SCSFMOD0’//NOPADCHK) UACC(READ)
SETROPTS WHEN(PROGRAM) REFRESH

Additional details on program control may be found in the "Program Control" topic
of the z/OS Security Server RACF Security Administrator's Guide.

Controlling access to KGUP
Anyone running the key generator utility program can read and alter an unprotected
cryptographic key data set (CKDS). Therefore, only authorized users should have
access to the key generator utility program. To make it difficult for an unauthorized
person to execute the key generator utility program, store the program in an
APF-authorized library that is protected by the Security Server (RACF). Additionally,
a security administrator can define a CSFKGUP profile in the CSFSERV class and
permit or deny users access to the utility.

98 z/OS V1R13 System Programmer's Guide

Controlling access to CSFDUTIL
CSFDUTIL reads through a CKDS or PKDS and generates a report for duplicate
secure key tokens. Only authorized users should have access to the CSFDUTIL
utility program. To make it difficult for an unauthorized person to execute the
CSFDUTIL utility program, store the program in an APF-authorized library that is
protected by the Security Server (RACF). Grant ICSF administrators access to the
CSFDUTIL resource in the CSFSERV class.

Controlling access to the callable services
Unauthorized persons should not perform the cryptographic or key management
functions that the callable services provide. The security administrator should be the
only one able to access some services like those used in managing keys. The
security administrator can give access to some services, such as enciphering and
deciphering data, to persons who are authorized on the system.

You can use the Security Server (RACF) to control which users can use ICSF
callable services. For example, you can use the key export service to export any
type of key. Your installation may want only the security administrator to be able to
use the key export function.

ICSF provides security exit points that you can use to control access to a callable
service. (In ICSF/MVS Version 2 Release 1 the IBM-supplied security exit routines
were removed, but the exit points still remain.) For information about the security
exit points, see “Security installation exits” on page 143.

Your installation may want other users to just be able to export data keys, because
sending encrypted data between systems is a common function. The data key
export callable service permits the export of data keys only. Your security
administrator can have access to the key export service and can use the Security
Server (RACF) to give other users access to the data key export service. For more
information on controlling who can use ICSF callable services, see z/OS
Cryptographic Services ICSF Administrator's Guide.

Access control points for specific functions may be enabled/disabled through the
TKE workstation. See thez/OS Cryptographic Services ICSF TKE Workstation
User's Guide for additional information.

Controlling access to cryptographic keys
Besides the key generator utility program and services, your installation should also
control access to the cryptographic keys. First, it is highly recommended that you
store cryptographic keys in data sets that are protected by RACF or an equivalent
product. You should limit access to authorized persons or applications. Second, you
can use RACF to control access to keys in the in-storage cryptographic key data
set. For more information on protecting cryptographic keys, see z/OS Cryptographic
Services ICSF Administrator's Guide.

When clear DES or AES keys are added to the CKDS, RACF-protect all clear keys
by label name on all systems sharing the CKDS.

ICSF also provides security exit points that you can use to control access to keys in
the in-storage CKDS and in the PKDS. For information about the security exit
points, see “Security installation exits” on page 143.

Security Considerations

Chapter 4. Operating ICSF 99

Controlling access to secure key tokens
You and your installation have the option of controlling access to a secure tokens
that have the same token value and different key labels. To do this, define a key
store policy. Key store policy are a system wide setting, using RACF profiles to
define the policy. Because key store policy makes use of additional RACF checks,
careful planning should occur before implementing the support.

For details on key store policy, see z/OS Cryptographic Services ICSF
Administrator's Guide.

Scheduling changes for cryptographic keys
You should periodically change the value of cryptographic keys to reduce the
possibility of exposing a key value. It is recommended that you change the DES or
AES master key at least every 12 months.

The security administrator can use the key generator utility program (KGUP) to
change the cryptographic keys. KGUP updates keys in the disk copy of the
cryptographic key data set while the callable services access keys in the in-storage
copy of the cryptographic key data set. Therefore, you can change the keys without
affecting cryptographic operations. For more information on using KGUP, refer to
z/OS Cryptographic Services ICSF Administrator's Guide.

Controlling access to administrative panel functions
You can perform many ICSF administration functions by using the TSO panels.
RACF can protect access to these functions. The functions include:
v Refreshing the CKDS
v Setting the master key
v Changing the master key

Additionally, for S/390 Enterprise Servers, S/390 Multiprise servers, and IBM
Eserver zSeries, these functions are also protected:
v Clear key entry (access can also be controlled through the TKE workstation,

domain controls)
v Pass phrase MK/KDS initialization
v Administrative control functions (enabling and disabling dynamic CKDS access,

PKA callable services, PKDS read access, and PKDS write, create, and delete
access)

These functions are treated the same way as callable services. See 'Viewing and
Changing System Status' in the z/OS Cryptographic Services ICSF Administrator's
Guide, SA22-7521 for more information.

Obtaining RACF SMF log records
For information on how to capture SMF log records for RACF access events, see
z/OS Security Server RACF Auditor's Guide and z/OS Security Server RACF
Command Language Reference.

You can extract RACF log records from the SMF data set that can be correlated to
the ICSF log records. For more information on how to obtain RACF log records
from the SMF data set, see z/OS Security Server RACF Auditor's Guide.

Security Considerations

100 z/OS V1R13 System Programmer's Guide

Debugging Aids
This topic contains information you can use when diagnosing problems on ICSF.
This topic describes:
v Component trace
v Abnormal endings
v Using the IPCS formatting routine
v Detecting ICSF serialization contention conditions

Component Trace
The ICSF component trace is written to a single buffer that is addressed from the
ICSF CCVE. This buffer contains the number of entries you specify in the
installation options data set TRACEENTRY parameter. If you do not specify this
installation option, the default is 10000. Each entry is 96 bytes long, and the
maximum number of entries allowed is 500,000. When the buffer is full, the trace is
wrapped.

In addition to the service and exit trace entry information that is always provided,
you can also activate ICSF component tracing for:

v instruction trace entries

v Sysplex CKDS trace entries

v Sysplex PKDS trace entries

v Sysplex TKDS trace entries

To turn tracing on for all these additional entries, use the TRACE ON command:
TRACE CT,ON,COMP=CSF

Follow the TRACE ON command with this reply:
R nn,END

To deactivate tracing for these additional entries, use this TRACE OFF command:
TRACE CT,OFF,COMP=CSF

Examining the Trace Entry Buffer
To examine the trace buffer, use the CTRACE facility of the Interactive Problem
Control System (IPCS) in either batch or online mode.

CSF TRACE Common Header: These items are present in every trace entry:
ASCB@ Address of the (application) ASCB
TCB@ Address of the (application) TCB
ASID Application's address space identifier

These items are omitted in the IPCS trace SUMMARY output, and the type-specific
data appears after this common header.

Service and Exit Trace Entry Types: ICSF component trace is always active,
and these types of trace entries are always written to the buffer:
MISC: Miscellaneous ICSF internal call
BSERVICE: Before the call to service
ASERVICE: After the call to service
BEXIT: Before the call to exit
AEXIT: After the call to exit

Type-Specific Data for Misc Trace Entries: These items are traced for MISC
entries:

Security Considerations

Chapter 4. Operating ICSF 101

Module: Name of the ICSF module which issued this entry
X'8': Returned PSMID
X'4A': CCPA pointer
X'4B' A 4 byte field.
ID: Internal ICSF identifier

These items appear in both IPCS SUMMARY and IPCS FULL output.

Type-Specific Data for Service Trace Entries: These items are traced for
BSERVICE and ASERVICE entries:
Module: Name of the service called
Rcode: Return code from the service
Reason: Reason code from the service

Rcode and Reason are meaningless for BSERVICE.

These items appear in both IPCS SUMMARY and IPCS FULL output, and the exit
trace entries are not called.

Instruction Trace Entry Types: If you have activated ICSF component tracing,
instruction trace entries are written to the buffer in addition to the service and exit
trace entry information that is always provided:
BCRYPTO: Before the cryptographic instruction
ACRYPTO: After the cryptographic instruction

Type-Specific Data for Instruction Trace Entries: These items are traced for
BCRYPTO and ACRYPTO entries:
GPRnn: General Registers 0–13
ARnn: Access Registers 3 and 8
Instruction: The cryptographic instruction

These items appear in both IPCS SUMMARY and IPCS FULL output.

The precise meanings of the register differ for each cryptographic instruction.
Indeed, the registers GPR10-GPR13 are not used by any cryptographic instruction.
However, the more common registers are:

GPR00 Function called (for example, for CMD, encipher or decipher).

GPR01 Cryptographic status (only valid for ACRYPTO).

GPR02 Address of the local instruction parameter block. The length and
usage of the parameter block differ from instruction to instruction
and the usage from function to function within the instruction.

GPR03 Address of output text when this is of variable length (for example,
ciphertext for encipher command).

GPR08 Address of input text when this is of variable length (for example,
plain text for encipher command).

AR03 Access Register 3 (only useful if GPR03 is useful).

AR08 Access Register 8 (only useful if GPR08 is useful).

Sysplex CKDS Entry Types: If you have activated ICSF component tracing,
these trace entries are written to the buffer in addition to the service and exit trace
entry information that is always provided.
XCFMSGS: Traces the Send of an XCF message relating to an update to a

CKDS in a sysplex

Security Considerations

102 z/OS V1R13 System Programmer's Guide

XCFMSGR: Traces the Receipt of an XCF message relating to an update to a
CKDS in a sysplex

XCFENQX: Traces the return of control to the CKDS I/O subtask following the
request for an exclusive ENQ on the SYSZCKDS.ckdsdsn resource.
(The difference in the timestamp values between the XCFENQX
entry and the XCFMSGS entry can be used to determine the delay
due to multi-system effects of using the SYSPLEXCKDS option for
sysplex-wide consistency of CKDS data.)

Type-Specific Data for Sysplex CKDS Trace Entries: These items are traced for
XCFMSGS, XCFMSGR, and XCFENQX entries:
ASCB: ASCB address
TCB: TCB address
ASID: Address Space ID
GPRnn: General Registers 0-12
GPRLEN: The length of the General Registers (8 for AMODE(64) operation, 4

otherwise)
CSS: Address of ICSF Cross-System Services (CSS) block
SYSID: The System ID of the system originating the XCF message
MsgInfo: The message type and CKDS action (create, update, delete)
IOStatus: The status of the CKDS I/O operation

These items appear in both IPCS SUMMARY and IPCS FULL output.

Sysplex PKDS Entry Types: If you have activated ICSF component tracing, these
trace entries are written to the buffer in addition to the service and exit trace entry
information that is always provided.
XCFPMSGS: Traces the broadcast of an XCF message related to PKDS I/O.
XCFPMSGR: Traces the Receipt of an XCF message relating to an update to a

PKDS I/O.
XCFPENQ: Traces the return of control to the PKDS I/O subtask following the

request for an exclusive ENQ on the SYSZTKDS.PKDSdsn
resource.

Type-Specific Data for Sysplex PKDS Trace Entries: These items are traced for
XCFTMSGS, XCFTMSGR, and XCFTENQ entries:
ASCB: ASCB address
TCB: TCB address
ASID: Address Space ID
GPRnn: General Registers 0-12
GPRLEN: The length of the General Registers (8 for AMODE(64) operation, 4

otherwise)
CSS: Address of ICSF Cross-System Services (CSS) block

These items appear in both IPCS SUMMARY and IPCS FULL output.

Sysplex TKDS Entry Types: If you have activated ICSF component tracing, these
trace entries are written to the buffer in addition to the service and exit trace entry
information that is always provided.
XCFTMSGS: Traces the broadcast of an XCF message related to TKDS I/O.
XCFTMSGR: Traces the Receipt of an XCF message relating to an update to a

TKDS I/O.
XCFTENQ: Traces the return of control to the TKDS I/O subtask following the

request for an exclusive ENQ on the SYSZTKDS.TKDSdsn
resource.

Security Considerations

Chapter 4. Operating ICSF 103

Type-Specific Data for Sysplex TKDS Trace Entries: These items are traced for
XCFTMSGS, XCFTMSGR, and XCFTENQ entries:
ASCB: ASCB address
TCB: TCB address
ASID: Address Space ID
GPRnn: General Registers 0-12
GPRLEN: The length of the General Registers (8 for AMODE(64) operation, 4

otherwise)
CSS: Address of ICSF Cross-System Services (CSS) block

These items appear in both IPCS SUMMARY and IPCS FULL output.

Abnormal Endings
ICSF has an abnormal ending in these cases only:
v When an error occurs during ICSF initialization
v When you specify FAIL(ICSF) in the callable service exit installation option
v When the setting of a cryptographic domain index fails

If an abnormal end occurs in any other cases, your application or unit of work ends;
however, ICSF is still available.

ICSF has an abnormal end code unique to ICSF. Errors specific to ICSF result in an
abnormal end code of X'18F' and a unique reason code. In general, all abnormal
ends occurring within ICSF result in an appropriate system dump, user dump, or
LOGREC recording.

Review the reason code to see if the abnormal end was an installation or user
error. For a list of the reason codes for abnormal end code X'18F', refer to z/OS
MVS System Codes. If you cannot resolve the problem, save the dump and contact
the IBM Support Center.

IPCS Formatting Routine
There is a CTrace filter exit for ICSF. You can now issue these IPCS commands:

CTRACE COMP(CSF) OPTIONS((COUNTS,FAILURES))
CTRACE COMP(CSF) OPTIONS((COUNTS))
CTRACE COMP(CSF) OPTIONS((FAILURES))

COUNTS
Produces a list of services called and how often they were called.

FAILURES
Produces output for each failed ICSF service trace entry.

There is a formatter for ICSF called CSFDATA. It is an IPCS VERBEXIT. To run it,
enter:

VERBX CSFDATA 'options'

The supported options are:

v CELL

v CCPV

v CCPP

v CCPA

v CCPS

Security Considerations

104 z/OS V1R13 System Programmer's Guide

v CACB

v CCPD

If no options are specified you get VERBX CSFDATA Output:
No valid options were specified on VERBX CSFDATA.
Valid options are CELL,CCPV,CCPP,CCPA,CCPS,CACB,CCPD

Sample output:
COMPONENT TRACE FULL FORMAT
COMP(CSF)
OPTIONS((FAILURES))
**** 08/15/2006

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

SYSAK ASERVICE 00000006 12:58:13.679197 After call to service

ASCB@.... 00FCD980 TCB@..... 007BCA38 AS_id.... 0022
Module... CSFNENC RCode.... 00000008 Reason... 0000002F
User..... 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000
0000

SYSAK ASERVICE 00000006 13:07:02.162950 After call to service

ASCB@.... 00FCD980 TCB@..... 007BCA38 AS_id.... 0022
Module... CSFNSYI RCode.... 00000008 Reason... 00000042
User..... 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000
0000

==

COMPONENT TRACE FULL FORMAT
COMP(CSF)
OPTIONS((COUNTS))

ICSF COUNTS FROM CTRACE:
SERVICE CALLS_FOUND = 00000070
FAILING SERVICES = 00000035
SERVICE #SUCCESS #FAILED
CSFSSTSW 00000001 00000000
CSFNPCV 00000001 00000000
CSFNPCM 00000001 00000000
CSFSTRL 00000002 00000000
CSFNENC 00000003 00000025
CSFNDEC 00000017 00000000
CSFNSYI 00000003 00000004
CSFNPKD 00000007 00000006

==

COMPONENT TRACE FULL FORMAT
COMP(CSF)
OPTIONS((COUNTS,FAILURES))
**** 08/15/2006

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

SYSAK ASERVICE 00000006 12:58:13.679197 After call to service

ASCB@.... 00FCD980 TCB@..... 007BCA38 AS_id.... 0022

Security Considerations

Chapter 4. Operating ICSF 105

Module... CSFNENC RCode.... 00000008 Reason... 0000002F
User..... 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000
0000

SYSAK ASERVICE 00000006 13:11:04.023615 After call to service

ASCB@.... 00FCD980 TCB@..... 007BCA38 AS_id.... 0022
Module... CSFNPKD RCode.... 00000008 Reason... 00000041
User..... 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000
0000

ICSF COUNTS FROM CTRACE:
SERVICE CALLS_FOUND = 00000010
FAILING SERVICES = 00000002
SERVICE #SUCCESS #FAILED
CSFNENC 00000003 00000001
CSFNPKD 00000007 00000001

==

Sample output of ?CSFTRCE TYPE(MISC)

COMPONENT TRACE FULL FORMAT
COMP(CSF)
**** 08/15/2006

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

SYSAK MISC 00000013 15:20:29.471700 Miscellaneous

ASCB@.... 00F58100 TCB@..... 007D4A70 AS_id.... 001E
Module... CSFACCPD HEX8..... 00297D54 F800804D
Hex4A.... 7F44B3B0 Hex4B.... 00E7F1F0 ID....... X10

SYSAK MISC 00000013 15:20:29.471702 Miscellaneous

ASCB@.... 00F58100 TCB@..... 007D4A70 AS_id.... 001E
Module... CSFACCPD HEX8..... 00297D54 F800804D
Hex4A.... 7F44B468 Hex4B.... ACD7F0F1 ID....... P01

SYSAK MISC 00000013 15:20:29.471731 Miscellaneous

ASCB@.... 00FB1780 TCB@..... 007D54F8 AS_id.... 0029
Module... CSFGCCPN HEX8..... 00297D54 F800804D
Hex4A.... 7F44B468 Hex4B.... B8D7F0F8 ID....... P08

SYSAK MISC 00000013 15:20:29.476769 Miscellaneous

ASCB@.... 00FB0D00 TCB@..... 007D9138 AS_id.... 0030
Module... CSFASEND HEX8..... 00307D91 3800804F
Hex4A.... 7F44B3B0 Hex4B.... 00E7F1F1 ID....... X11

SYSAK MISC 00000013 15:20:29.476769 Miscellaneous

ASCB@.... 00FB0D00 TCB@..... 007D9138 AS_id.... 0030
Module... CSFASEND HEX8..... 00307D91 3800804F
Hex4A.... 7F44B468 Hex4B.... A4D7F1F0 ID....... P10

You can use the Interactive Problem Control System (IPCS) to format and display
the certain ICSF control blocks. The IPCS CBFORMAT command displays the
control block's eye-catcher name, its location in the address space, and its field
names with their offsets. You specify a symbol with the command to identify the

Security Considerations

106 z/OS V1R13 System Programmer's Guide

control block. Table 7 lists the control blocks you can display, the symbol IPCS
recognizes for each control block, and a reference for the control block format.

Table 7. IPCS Symbols and Format References for the ICSF Control Blocks

Control Block Symbol Format Reference

Installation-defined Service Table CSFMGST Varies for each installation.

CSF Exit Name Table CSFENT See Table 13 on page 121.

Cryptographic Communication
Vector Table

CSFCCVT See Table 88 on page 267.

Cryptographic Communication
Vector Table Extension

CSFCCVE See Table 89 on page 273.

Secondary Parameter Block CSFASPB See Table 17 on page 131.

For example, to format and display the ICSF Exit Name table issue this command:
CBFORMAT CSFENT

Instead of using a symbol to identify the control block, you can provide an address.
Find and specify the address of the control block in the address space at the time
of the dump. When you specify an address, you must also specify the
STRUCTURE keyword with the control block symbol.

Note: To format the secondary parameter block, you must provide an address to
identify the control block.

For example, if the address of the secondary parameter block is F632D0, issue this
command to format the secondary parameter block.

CBFORMAT F632D0. STRUCTURE(CSFASPB)

In the example, the secondary parameter block is located at address F632D0 in the
address space at the time of the dump. On the command, you must put a period
after the address. With this control block, you also specify the structure keyword
with the symbol CSFASPB.

For more information about using the CBFORMAT command, see z/OS MVS IPCS
User's Guide.

Detecting ICSF Serialization Contention Conditions
If a user task or address space holds an ENQ or latch for an extended period of
time, it is likely hung and needs to be cancelled so that other work can obtain the
ENQ or latch. Some applications might provide controls or document procedures for
addressing situations in which the application appears to be gating the rest of the
workload. The ICSF system programmer should consult the application's system
programmer or administrator regarding actions to take for or against the application.
Such action could include stopping or canceling the application.

ICSF requires Global Resource Serialization (GRS) ENQ resources to manage
concurrent operations involving the key data sets (CKDS, PKDS and TKDS), and
the ICSF ENQ scheme has ICSF itself obtaining any necessary data set ENQ, in a
proxy fashion, on behalf of an application unit of work driving an ICSF API request
requiring an ENQ. ICSF also manages any set of additional, different application
requests that may be waiting for that same ENQ resource. For this reason, GRS
always perceives only ICSF as a key data set ENQ resource owner or waiter, and a
DISPLAY GRS,CONTENTION command would not illustrate key data set ENQ

Security Considerations

Chapter 4. Operating ICSF 107

contention between two or more competing application requests within a single
system scope. For sysplex scope ENQ contention, DISPLAY GRS,CONTENTION
would, without any internal assistance, illustrate only ICSF itself as an ENQ holder
or waiter, and would not reflect any client application identity or information
associated with ICSF's ENQ resource usage.

ICSF provides an internal capability to embellish the DISPLAY GRS command
output to illustrate the ICSF client applications for which ICSF is holding an ENQ
resource, and on the general conditions involving client waiters for an ENQ
resource. This enhanced capability is transparently provided and requires no
additional ICSF or GRS installation or configuration action. The ICSF support to
enhance the DISPLAY GRS output is relevant on a DISPLAY GRS,CONTENTION
command only if GRS can detect contention, which is not the case when two or
more ICSF client application requests are competing for the same ENQ resource
within a single system scope. The ICSF support is relevant on a DISPLAY
GRS,RES=(qname-rname) command whenever the ENQ resource specified in the
qname-rname option is currently held, regardless of whether or not contention
exists. For this reason, the DISPLAY GRS,RES=() command version is
recommended as the reliable technique for obtaining information about ICSF key
data set ENQ serialization conditions. The DISPLAY GRS command syntax for the
various ICSF key data set ENQ resources can be summarized as follows:

Table 8. DISPLAY GRS command syntax ICSF key data set ENQ resources

This command: Displays ENQ information for the:

DISPLAY GRS,RES=(SYSZCKT.*) CKDS

DISPLAY GRS,RES=(SYSZPKT.*) PKDS

DISPLAY GRS,RES=(SYSZTKT.*) TKDS

Here is sample command output for the DISPLAY GRS,RES=(SYSZCKT.*)
command:
ISG343I 12.01.33 GRS STATUS 360
S=SYSTEM SYSZCKT SYSZCKT
SYSNAME JOBNAME ASID TCBADDR EXC/SHR

SY1 CSFJM70 /APPL107 0040/0045 007D8E88 EXCLUSIVE

ADDITIONAL RESOURCE INFORMATION FROM: ICSF Managed ENQ
Owner: APPL107 TTOKEN: 000001200000000300000003007FF050 Waiters: 005

In this example, the display command result illustrates that ICSF on system SY1
started under jobname CSFJM70 and executing in ASID 40, has obtained the
CKDS ENQ resource exclusively on behalf of the client application running with a
jobname of APPL107 and executing in ASID 45. Furthermore, the APPL107
application unit of work that caused ICSF to obtain this ENQ was the task identified
by task token 000001200000000300000003007FF050, and there are five additional
application requests on system SY1 that are awaiting access to this ENQ resource.

The DISPLAY GRS,RES=() command must be executed on (or routed to) all of the
systems within the scope of a sysplex to obtain the comprehensive understanding
of an ICSF key data set ENQ resource.

ICSF also exploits Global Resource Serialization (GRS) latches for serializing
resources that are managed within the scope of a single system. In the case of
ICSF latches, whenever a client application request requires an ICSF latch for
serialization, the latch is obtained under the application's unit of work (not proxied

Security Considerations

108 z/OS V1R13 System Programmer's Guide

like the ENQ), and therefore the DISPLAY GRS,CONTENTION command will
always illustrate the application information for the current latch owner(s).

The following operational steps are recommended when ICSF serialization
contention is suspected as a cause for a workload slowdown or hang:

1. Issue the DISPLAY GRS,CONTENTION command to illustrate sysplex scope
contention on ICSF ENQ serialization resources, or system level contention on
ICSF latch serialization resources. If the command result demonstrates latch
contention, go to step 3. If the command result demonstrates ICSF key data set
ENQ contention and discloses the ENQ owner client application information, go
to step 3. If the command result does not demonstrate contention, or does not
disclose the ENQ owner client application information, proceed to the next step.

2. Issue the following commands as needed (depending on the key data sets you
are using):
DISPLAY GRS,RES=(SYSZCKT.*)
DISPLAY GRS,RES=(SYSZPKT.*) Issue this command only if you are utilizing a PKDS
DISPLAY GRS,RES=(SYSZTKT.*) Issue this command only if you are utilizing a TKDS

The commands need to be executed either on all systems within a sysplex, or
on the local system where the ENQ resource is known to be owned. The
command result should disclose the ENQ owner client application information.

3. Initiate an action for or against the client application to end the unit of work on
behalf of which ICSF has obtained the ENQ resource. Such action could include
stopping or canceling the application.

Security Considerations

Chapter 4. Operating ICSF 109

Security Considerations

110 z/OS V1R13 System Programmer's Guide

Chapter 5. Installation Exits

Your installation can define exit routines to supplement the Integrated Cryptographic
Service Facility (ICSF), the key generator utility program (KGUP), and the PCF
conversion program. Exit routines are programs that programmers at your
installation write to allow you to “customize” an application. Your installation may
need to perform specific functions with the data that your cryptographic application
manipulates. At various points in processing, ICSF, KGUP, and the PCF conversion
program release control to an exit routine.

Some common uses for installation exits include:
v Identifying and verifying users
v Accessing alternate data sets
v Manipulating input commands
v Manipulating output data

This topic describes the various types of exit points in ICSF and the functions that
your exits can perform.

Attention: Only an experienced system programmer should use the ICSF
installation exits. Writing an exit routine and installing a new exit are tasks that
require a thorough knowledge of system programming in an OS/390 and z/OS
environment. An unknowledgeable programmer who attempts to write exit routines
or to install new exit points, runs the risk of seriously degrading the performance of
your system and causing complete system failure.

Types of exits
ICSF provides several types of exit points:

v Exits that are called during initialization, stopping, and modification of ICSF itself,
which are known as the mainline exits

v Exits that are called from the services

v An exit called from the PCF conversion program

v An exit called when you update the CKDS with a key that is entered through the
key entry hardware or during conversion program processing

v An exit called when records are retrieved from the in-storage CKDS

v Security exits that are called during initialization and stopping of ICSF, during a
call to a service, and when accessing a CKDS entry

v An exit called at various points during KGUP processing

These topics briefly describe the different types of exits available in ICSF.

Note: Although IBM no longer supplies security exit routines, the exit points still
remain.

Mainline exits
You can supply three exits that are called during ICSF initialization. You can also
define an exit routine to run after an operator issues the STOP command and
another exit to run after the MODIFY command. Thus, mainline exits can run at
these five different points:
v Initialization points

– Before ICSF initialization

© Copyright IBM Corp. 1997, 2011 111

– After ICSF reads and interprets the installation options
– Before the completion of ICSF initialization

v When an operator issues a STOP ICSF command
v When an operator issues a MODIFY ICSF command

You can use a mainline exit to alter values in the Cryptographic Communication
Vector Table, to end ICSF, or to change ICSF installation options. For more
information about the mainline exits, see “Mainline installation exits” on page 116.

Exits for the services
Each of the services in ICSF calls an exit before and after processing. z/OS
Cryptographic Services ICSF Application Programmer's Guide describes the
services in greater detail.

You can use a service exit to change, augment, or replace processing or to bypass
the IBM-supplied processing for the service entirely. “Services installation exits” on
page 123 gives further details about exits for the services.

The PCF CKDS conversion program exit
The PCF conversion program changes a CKDS from PCF to ICSF CKDS format.
See Chapter 8, “Migration from PCF to z/OS ICSF,” on page 173 for more
information about the conversion program.

ICSF provides three exit points for the same exit routine:
v During the initialization of the conversion program
v While the conversion program is processing individual records
v During the ending of the conversion program

See “PCF conversion program installation exit” on page 136 for more information
about the conversion program installation exit (CSFCONVX).

The Single-record, Read-write exit
Certain ICSF processes read records from or write records to the CKDS. These
processes include running a conversion program, refreshing and reenciphering the
CKDS, and using the key entry hardware to enter a key. When these processes
read or write CKDS records, they call the exit. You can customize the processing of
a CKDS record read-write with the single-record, read-write exit (CSFSRRW). See
“Single-record, Read-write installation exit” on page 139 for more information about
the single-record, read-write exit.

When application programs write records to or read records from the PKDS, ICSF
calls the single-record, read-write exit.

Note: This exit is given control only for a fixed-length record CKDS. The exit does
not work with the variable-length record format of the CKDS.

The cryptographic key data set entry retrieval exit
You can use certain services to manage keys on ICSF. A service can access a key
in the in-storage CKDS by specifying a key label. For more information about the
services, see z/OS Cryptographic Services ICSF Application Programmer's Guide.

When a service requests a record from the in-storage CKDS by label, ICSF calls
the CKDS entry retrieval exit. For instance, you can use this exit to perform a

112 z/OS V1R13 System Programmer's Guide

specific search of the installation data field in the record. See “Cryptographic key
data set entry retrieval installation exit” on page 134 for more information about the
CKDS entry retrieval exit.

Note: This exit is given control only for a fixed-length record CKDS. The exit does
not work with the variable-length record format of the CKDS.

Security exits
You can supply four different exits to control access to resources on ICSF. ICSF
calls the security exits at these points:
v During CSF initialization
v During CSF termination
v When an application calls an ICSF service
v When an entry in the in-storage CKDS is accessed

See “Security installation exits” on page 143 for more information about the security
exits.

The KGUP exit
You use KGUP to generate and maintain keys in the CKDS. KGUP creates key
values that systems can use in key exchanges. The ICSF administrator uses job
control language to start KGUP and specifies information to KGUP through the use
of a control statement.

As opposed to the five different mainline exits, ICSF provides one exit for KGUP
processing that is called at four different points. ICSF calls the KGUP exits at these
points:
v During KGUP initialization
v Before KGUP processes a key that is identified by a control statement
v Before KGUP updates the CKDS
v During KGUP termination

The KGUP exit receives a parameter that identifies the exit's calling point. Thus, the
installation exit can perform different functions at each of the calls.

You can use the KGUP exit to change key values, make a copy of a CKDS entry, or
end KGUP. “Key generator utility program installation exit” on page 147 gives a
more detailed description of the KGUP exit.

Entry and return specifications
All of the exits described in “Types of exits” on page 111 use standard linkage
conventions on entry and return from the exits.

Registers at entry
The mainline exits have these register contents on entry:

Register Contents

0 Address of the exit parameter block (EXPB)

1 Address of a parameter list

2–12 Not applicable

13 Address of register save area

Chapter 5. Installation Exits 113

14 Return address

15 Entry point address

The service exits have these register contents on entry:

Register Contents

0 Address of the exit parameter block (EXPB)

1 Address of a parameter list

2–13 Not applicable

14 Return address

15 Entry point address

The CKDS entry retrieval installation exit has these register contents on entry:

Register Contents

0 Not applicable

1 Address of a parameter list

2–12 Not applicable

13 Address of register save area

14 Return address

15 Entry point address

The conversion program, single-record, read-write, and KGUP exits have these
register contents on entry:

Register Contents

0 Not applicable

1 Address of a control block (CVXP, RWXP, or KGXP, depending on
the exit)

2–12 Not applicable

13 Address of register save area

14 Return address

15 Entry point address

The particular control blocks that are passed through register 0 or register 1 are
described with each exit.

Registers at return
Registers for all exits must contain the original contents on entry with the exception
of register 15 which must contain a valid return code. See each exit for a list of
valid return codes. The registers should contain this information on return.

Register Contents

0–14 Same as entry contents

15 Valid return code

114 z/OS V1R13 System Programmer's Guide

Exits environment
ICSF calls different types of exits in distinct environments. The exits differ regarding
the mode in which they run and how they address data.

Mainline exits
ICSF mainline exits run in task mode in the ICSF address space. All the passed
storage pointers specify addresses in the ICSF address space and are not ALET
qualified. There are essentially no restrictions on the use of z/OS services for these
exits.

service exits
ICSF calls the service exits in cross memory mode after a space switch PC. The
exits run in the ICSF address space, which is the primary address space. The exits
need to address parameters in the caller's address space, which is the secondary
address space. In general, user-passed parameters, including the parameter list
itself, are in the secondary address space. An exit that is running in access register
(AR) mode using an ALET of 1 can access these parameters. For information about
cross memory mode and AR mode, see z/OS MVS Programming: Extended
Addressability Guide.

CKDS entry retrieval exit
The exit runs in cross memory mode. The addresses of the CKDS records that are
used by the exit are ALET-qualified. The exit receives both the current CKDS record
address and the record's associated ALET as parameters in the exit parameter list.
The exit must run in AR mode, and must use the information passed in the exit
parameter list to access CKDS entries. For information about cross memory mode
and AR mode, see z/OS MVS Programming: Extended Addressability Guide.

KGUP, Conversion Programs, and Single-record, Read-write exits
The exits run in task mode in the caller's home address space. The exits do not run
in cross memory mode and are not passed ALET-qualified storage pointers. There
are essentially no restrictions on the use of z/OS services for these exits.

Security exits
The initialization and termination security exits run in task mode in the ICSF
address space. The passed storage pointers specify an address in the ICSF
address space and are not ALET-qualified. There are essentially no restrictions on
the use of z/OS services for these exits.

ICSF calls the security service exit and the security keys exit in cross memory
mode after a space switch PC. The security service exit runs in the ICSF address
space, which is the primary address space. The security key exit runs in cross
memory and AR mode.

Exit recovery
An ESTAE routine provides recovery for the mainline exits; the single-record,
read-write exit; and the security initialization and termination exits. If an exit ends
abnormally, the ESTAE routine intercepts the abnormal ending code and schedules
a system dump. If the conversion program exit ends abnormally, the conversion

Chapter 5. Installation Exits 115

program ends abnormally. If the KGUP exit ends abnormally, KGUP also ends
abnormally. ESTAE routines provide recovery for the conversion program and
KGUP.

The ICSF Functional Recovery Routine (FRR) provides recovery for the service
exits, the CKDS entry retrieval exit, and the security service and key exits. If an exit
ends abnormally, the FRR intercepts the abnormal ending code and schedules a
system dump.

There are times during ICSF processing that ICSF suppresses dumps. For
example, ICSF does not schedule dumps when integrity checking user data. This
action avoids the possibility of user errors that can severely affect system
performance. However, ICSF does write a record to SYS1.LOGREC if the error
occurs.

When writing exits, you may also want to suppress dumps under certain
circumstances. You can suppress dumps by setting a bit on in the SPB. This bit, the
SPBTERM bit, is the third bit of the flag byte at offset 18 in the SPB. An exit might
want to suppress dumps whenever the exit writes user storage. The exit can turn
the bit on before the WRITE instruction and turn the bit off again after the
instruction.

Mainline installation exits
ICSF begins when an operator issues a START command from the operator
console. When ICSF issues this command, the initialization process begins.

After ICSF starts, operators can issue the MODIFY or STOP commands. You can
define installation exits to customize ICSF at the initialization, stopping, and
modification points.

Purpose and use of the exits
ICSF calls the mainline exits during the startup, modification, and shutdown stages.
The exits allow your installation to change the initialization options, issue special
messages, and bypass operator commands. This is a description of each point at
which ICSF calls mainline exit routines.

CSFEXIT1
ICSF calls this exit after an operator issues a START command, but before any
processing takes place. You can use this exit to change the allocation of the
installation options data set.

ICSF always calls the exit. If this exit does not exist, ICSF continues normal
processing. If this exit exists, ICSF starts it.

CSFEXIT2
ICSF calls this exit during the initialization process after the installation options data
set is read and interpreted. You can use this exit to change certain installation
options.

CSFEXIT3
ICSF calls this exit just before ICSF initialization is complete. You can use this exit
to issue commands to start other cryptographic work.

116 z/OS V1R13 System Programmer's Guide

CSFEXIT4
ICSF calls this exit when an operator issues a STOP command. You can use this
exit to decide to allow or disallow the STOP command.

CSFEXIT5
CSFEXIT5 receives the command input block (the string that is entered by the
operator), so you can customize CSFEXIT5 to perform any processing you require.
ICSF calls this exit when an operator issues a MODIFY command. ICSF provides
the MODIFY command exit to allow each installation the flexibility of defining its
own command. ICSF does no processing when an operator uses the MODIFY
command. The MODIFY command is simply a call to CSFEXIT5.

Environment of the exits
The exits receive control with these characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB mode
v Address Space Control mode=access register mode
v AMODE(31) orAMODE(64)

The exit receives control in AMODE(64) if the service was invoked in
AMODE(64); otherwise the exit receives control in AMODE(31). If you have a
callable service exit for a service which supports invocation by an AMODE(64)
caller, once HCR7720 is installed, you should recode your exit to be sure it can
handle being invoked in AMODE(64).

v RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits
must return to ICSF with the same characteristics as on entry.

Installing the exits
Because ICSF calls CSFEXIT1 before any initialization occurs, the exit is not
defined in the same way as the other exits. For all the mainline exits, install the
load module that contains the exit into an APF-authorized library. ICSF uses this
normal OS/390 search order to locate the exit:
v Job pack area
v Steplib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

You must define CSFEXIT2, CSFEXIT3, CSFEXIT4, and CSFEXIT5 in the
installation options data set. However, you must not define CSFEXIT1 in the
installation options data set, and the load module name for the exit must be
CSFEXIT1.

To define the exits in the installation options data set, define the ICSF exit point
name and load module name on the EXIT keyword in the installation options data
set. For information about the installation options data set, see “Parameters in the
installation options data set” on page 38. The EXIT keyword has this syntax:

EXIT (ICSF exit point name, load module name, FAIL (options))

The ICSF exit point name portion of the keyword refers to the ICSF name for each
exit, CSFEXIT2, CSFEXIT3, CSFEXIT4, and CSFEXIT5. The load module name is
the name of the load module that contains the exit. The name can be any valid

Chapter 5. Installation Exits 117

name your installation chooses. The FAIL portion of the EXIT keyword specifies the
action ICSF takes if the exit cannot be loaded. The valid FAIL options are:
NONE Initialization continues even if exits cannot be loaded.
SERVICE Initialization continues even if exits cannot be loaded.
EXIT Initialization continues even if exits cannot be loaded.
ICSF End ICSF if exits cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message,
abnormally ends, and generates an SVC dump when attempting to load the exit.

Input
All mainline exits receive the address of an exit parameter block (EXPB) passed in
register 0. Each exit receives the address of an address list passed in register 1.
Each address in the list points to a parameter.

Figure 7 illustrates the contents of register 0 and EXPB for the mainline exits.

Both the mainline exits and the services exits receive the address of EXPB in
register 0. Some of the fields in EXPB are used only by the service exits and are
reserved fields for the mainline exits.

The Exit Parameter Block
Table 9 describes the contents of the exit parameter block.

Table 9. EXPB Control Block Format for Mainline Exits

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. This field contains the
character string EXPB.

Register 0

EXPB EXPB

NAME

VERSION LENGTH

DYNAMIC AREA

DYNAMIC AREA

400 BYTES

8 BYTES

EXIT AREA
EXIT AREA

EXIT COMMUNICATION

RESERVED

RESERVED

CCVT
CCVT

. . .

. . .
MODULE NAME

Figure 7. EXPB Control Block for Mainline Exits

118 z/OS V1R13 System Programmer's Guide

Table 9. EXPB Control Block Format for Mainline Exits (continued)

Offset (Dec)
Number of
Bytes Description

4 2 Version.

The version of the control block. This field contains the
character string 01.

6 2 Length.

The length of the control block. The value of this field is 40 in
decimal.

8 4 Dynamic area address.

The address of a 400-byte area that the exit can use as a
dynamic area.

12 4 Exit area address.

The address of an 8-byte area the exits can use to
communicate with each other. ICSF does not check or
change this field.

16 4 Exit communication area.

A character string that can be used for communication
between the exits. The field is initialized to zero before
CSFEXIT1 is called, and ICSF does not modify this field.

20 4 Flags.

Reserved. The flag field is used only by the exits for the
services. The field contains binary zeros for the mainline
exits.

24 4 Secondary parameter block (SPB) address.

Reserved. The SPB is used only by the exits for the
services. The field contains binary zeros for the mainline
exits.

28 4 CCVT address.

Address of the Cryptographic Communication Vector Table
(CCVT). “The Cryptographic Communication Vector Table
(CCVT)” on page 266 describes the CCVT in greater detail.

32 8 Module name.

The installation exit's load module name. The field contains
the value of the load module name you specified on the
EXIT keyword in the installation options data set. The field is
8 bytes of characters, and the value is left-justified and
padded with blanks.

Parameters
All mainline exits receive an address list that uses standard entry linkage. Register
1 points to the address list. Each address in the list points to a parameter. Tables in
the next four topics describe the parameters for each of the mainline exits.

CSFEXIT1: This table describes the parameters for CSFEXIT1:

Chapter 5. Installation Exits 119

Table 10. CSFEXIT1 Parameters

Parameter
Number of
Bytes Description

1 8 The data set name (DDNAME) of the installation options
data set.

2 Variable The command input block for the START command. The
command control block is mapped by IEZCIB.

When ICSF calls this, the Cryptographic Communication Vector Table exists, but the
table is not yet complete.

CSFEXIT2 and CSFEXIT3: Both CSFEXIT2 and CSFEXIT3 receive the same
parameters. Table 11 describes these parameters.

Table 11. CSFEXIT2 and CSFEXIT3 Parameters

Parameter
Number of
Bytes Description

1 44 A character string that is the CKDS name specified in the
CKDSN installation option.

2 4 A decimal value that is the maximum length permitted for
data passed to services specified in the MAXLEN
installation option.

Beginning with z/OS V1 R2, the MAXLEN parameter may
still be specified in the options data set, but only the
maximum value limit will be enforced (2147483647). If a
value greater than this is specified, an error will result and
ICSF will not start.

3 4 ICSF environmental options.
Note: Do not change bits 2, 4, and 5.

Byte 1:

Bit Meaning When Set On

0 Special secure mode allowed.

1 Special secure mode enabled.

2 Reserved and must be zero.

3 Key authentication required.

4 The hardware has gone from active to
inactive.

5 First start of ICSF during this IPL.

6 Security Sever (RACF) checking
required for authorized callers.

7 PCF coexistence.

Bytes 2–4: Reserved

4 4 Address of the exit name table. Table 13 on page 121
describes the exit name table.

CSFEXIT4 and CSFEXIT5: Both CSFEXIT4 and CSFEXIT5 receive the same
parameters. Table 12 on page 121 describes these parameters.

120 z/OS V1R13 System Programmer's Guide

Table 12. CSFEXIT4 and CSFEXIT5 Parameters

Parameter
Number of
Bytes Description

1 44 A character string that is the CKDS name specified in
the CKDSN installation option.

2 4 A decimal value that is the maximum length permitted for
data passed to services specified in the MAXLEN
installation option.

Beginning with z/OS V1 R2, the MAXLEN parameter
may still be specified in the options data set, but only the
maximum value limit will be enforced (2147483647). If a
value greater than this is specified, an error will result
and ICSF will not start.

3 4 ICSF environmental options.
Note: Do not change bits 2, 4, and 5.

Byte 1:

Bit Meaning When Set On

0 Special secure mode allowed.

1 Special secure mode enabled.

2 Reserved and must be zero.

3 Key authentication required.

4 The hardware has gone from active to
inactive.

5 First start of ICSF during this IPL.

6 Security Server (RACF) checking
required for authorized callers.

7 PCF coexistence.

Bytes 2–4: Reserved

4 4 Address of the exit name table. Table 13 describes the
exit name table.

5 Variable The command input block. You can use the IEZCIB
mapping macro to map the control block.

The Exit Name Table: The exit name table contains a list of all of the exits and
their load module names. Table 13 describes the format of the exit name table.

Table 13. Format of the Exit Name Table

Offset (Dec)
Number of
Bytes Description

0 4 Exit name table ID. The value is always the character
string ENT.

4 2 Exit name table version. The value is always the character
string 01.

6 2 Length of the exit name table. This value is in decimal.

8 4 Number of entries in the array which is the number of exits
ICSF supplies. This value is in decimal.

12 4 Subpool that the exit name table is in.

Chapter 5. Installation Exits 121

Table 13. Format of the Exit Name Table (continued)

Offset (Dec)
Number of
Bytes Description

16 4 Reserved.

20 4 Reserved.

24 4 Reserved.

28 4 Reserved.

32 8 ICSF exit name 1. This value is a character string.

40 8 Installation load module name 1. This value is a character
string.

48 4 Flags.

Flag bytes. Only the first two bytes are used; bytes 3 and 4
are reserved.

Byte 1:

Bit Meaning When Set On

0 Exit has been requested by the
installation.

1 Exit has been loaded.

2 Exit is active.

3 If exit fails, end ICSF.

4 If exit fails, do not call the exit again.

5 If exit fails, fail the service.

6 If exit fails, do nothing.

7 Exit has failed previously.

Byte 2:

Bit Meaning When Set On

0 The exit should be called.

1 The exit is available to the installation.

2 If the security exit fails, fail the service.

3–7 Reserved.

52 4 Address of the exit.

56 4 Reserved.

60 4 Reserved.

64 8 ICSF exit name 2. This value is a character string.

72 8 Installation load module name 2. This value is a character
string.

80 4 Flags.

See offset +48 for flag byte definitions.

84 4 Address of the exit.

88 4 Reserved.

92 4 Reserved.

122 z/OS V1R13 System Programmer's Guide

...
...

x 8 ICSF exit name a.

x+8 8 Installation load module name a.

x+16 4 Flags.

See offset +48 for flags.

x+20 4 Address of the exit.

x+24 4 Reserved.

x+28 4 Reserved.

Return Codes
All mainline exits can pass back a return code in register 15. CSFEXIT1,
CSFEXIT2, and CSFEXIT3 support these decimal return codes:

Return Code Description
0 Proceed with initialization.
16 End ICSF.

CSFEXIT4 supports these decimal return codes:

Return Code Description
0 Proceed with the STOP command.
4 Do not allow the STOP command to proceed.

CSFEXIT5 supports these decimal return codes:

Return Code Description
0 Continue processing.
4 End ICSF.

Any return codes other than those listed cause ICSF to end abnormally.

Services installation exits
ICSF provides services that you can use to perform various cryptographic functions.
Examples of these functions include enciphering and deciphering data, generating
and verifying message authentication codes, generating and verifying PINs, and
dynamically updating the CKDS and PKDS. You can define an installation exit for
each of the services to customize processing. For a detailed description of the
services, see z/OS Cryptographic Services ICSF Application Programmer's Guide.

Use this general format to request a service:
CALL CSNBxxx (

return_code
,reason_code
,exit_data_length
,exit_data
,parameter_5
,parameter_6

.

.

.
,parameter_N)

Chapter 5. Installation Exits 123

Table 14 on page 125 lists the ICSF exit names for each of the services. The
parameters that the application passes to a service are known as the service
parameter list, and the parameters vary from service to service. “Parameters” on
page 133 describes the services parameter lists in more detail.

Purpose and use of the exits
Each of the services has an installation exit. Each installation exit for a service has
two exit points:

v The Preprocessing exit point. This exit point occurs after an application
program calls a service, but before the service starts processing. For example,
you can use this exit point to check or change the parameters that the
application passes on the call, or to end the call. You can also perform additional
security checks.

v The Postprocessing exit point. This exit point occurs after the service has
finished processing, but before the service returns control to the application
program. For example, you can use this exit point to check and change the
return code from the service or perform cleanup processing.

Environment of the exits
The exits receive control with these characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB or SRB mode
v Cross memory mode
v AR mode
v AMODE(31) orAMODE(64)

The exit receives control in AMODE(64) if the callable service was invoked in
AMODE(64); otherwise the exit receives control in AMODE(31). If you have a
callable service exit for a service which supports invocation by an AMODE(64)
caller, you must recode your exit to be sure it can handle being invoked in
AMODE(64) when running with ICSF HCR7720 or later.

v RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits
must return to their caller with the same characteristics as on entry.

You must write the exits in assembler, because you are in AR and cross memory
mode and the addresses of some of the parameters you may access are
ALET-qualified. In particular, parameters passed into a service are in the user's
address space which you can access with an ALET of 1.

For information about cross memory and AR mode, see z/OS MVS Programming:
Extended Addressability Guide.

Installing the exits
You install an exit for a service by installing the load module that contains the exit
into an APF-authorized library. ICSF uses this normal search order to locate the
exit:
v Job pack area
v Steplib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

124 z/OS V1R13 System Programmer's Guide

Define the ICSF name and the load module name as a value on the EXIT keyword
in the installation options data set. For more information about the installation
options data set, see “Parameters in the installation options data set” on page 38.
The EXIT keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for each service
exit. Note that the ICSF name for each service exit is the same as its name.
Table 14 lists the ICSF names for each of the service exits. Table 15 on page 128
lists the ICSF names for each of the compatibility service exits. The load module
name is the name of the load module that contains the exit. The name can be any
valid name that your installation chooses. The FAIL portion of the EXIT keyword
specifies the action ICSF takes if the exit cannot be loaded or it ends abnormally.
The valid FAIL options are:
NONE No action is taken. The exit can be called again and will end

abnormally again.
EXIT The exit is no longer available to be called again.
SERVICE The service or program that called the exit is no longer available to

be called again.
ICSF ICSF or the key generator utility program or the PCF conversion

program is ended, depending on the exit.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends
abnormally, and generates an SVC dump when attempting to load the exit. If the
exit ends abnormally, the service call fails regardless of the fail option you specified.
Fail options apply only to subsequent requests for the service.

Note: In this table, CSFPKSC (PKSC interface) and CSFPCI (PCI interface), are a
part of the product-sensitive programming interface.

Table 14. Services and Their ICSF Names

Service ICSF Name

ANSI X9.17 EDC Generate CSFAEGN

ANSI X9.17 Key Export CSFAKEX

ANSI X9.17 Key Import CSFAKIM

ANSI X9.17 Key Translate CSFAKTR

ANSI X9.17 Transport Key Partial Notarize CSFATKN

Ciphertext Translate CSFCTT

Ciphertext Translate (with ALET) CSFCTT1

CKDS Key Record Create CSFKRC

CKDS Key Record Create2 CSFKRC2

CKDS Key Record Delete CSFKRD

CKDS Key Record Read CSFKRR

CKDS Key Record Read2 CSFKRR2

CKDS Key Record Write CSFKRW

CKDS Key Record Write2 CSFKRW2

Clear Key Import CSFCKI

Clear PIN Encrypt CSFCPE

Clear PIN Generate CSFPGN

Clear PIN Generate Alternate CSFCPA

Chapter 5. Installation Exits 125

|

|

|

|

|

|

|

Table 14. Services and Their ICSF Names (continued)

Service ICSF Name

Control Vector Translate CSFCVT

Coordinated KDS Administration CSFCRC

Cryptographic Variable Encipher CSFCVE

CVV Key Combine CSFCKC

Data Key Export CSFDKX

Data Key Import CSFDKM

Decipher CSFDEC

Decipher (with ALET) CSFDEC1

Decode CSFDCO

Digital Signature Generate CSFDSG

Digital Signature Verify CSFDSV

Diversified Key Generate CSFDKG

ECC Diffie-Hellman CSFEDH

Encipher CSFENC

Encipher (with ALET) CSFENC1

Encode CSFECO

Encrypted PIN Generate CSFEPG

Encrypted PIN Translate CSFPTR

Encrypted PIN Verify CSFPVR

HMAC Generate CSFHMG

HMAC Verify CSFHMV

Key Export CSFKEX

Key Generate CSFKGN

Key Generate2 CSFKGN2

Key Import CSFKIM

Key Part Import CSFKPI

Key Part Import2 CSFKPI2

Key Test CSFKYT

Key Test2 CSFKYT2

Key Test Extended CSFKYTX

Key Translate CSFKTR

Key Translate2 CSFKTR2

MAC Generate CSFMGN

MAC Generate (with ALET) CSFMGN1

MAC Verify CSFMVR

MAC Verify (with ALET) CSFMVR1

MDC Generate CSFMDG

MDC Generate (with ALET) CSFMDG1

Multiple Clear Key Import CSFCKM

Multiple Secure Key Import CSFSKM

126 z/OS V1R13 System Programmer's Guide

||

||

||

Table 14. Services and Their ICSF Names (continued)

Service ICSF Name

One Way Hash Generate CSFOWH

One Way Hash Generate (with ALET) CSFOWH1

PCI Interface CSFPCI

PIN change/unblock CSFPCU

PKA Decrypt CSFPKD

PKA Encrypt CSFPKE

PKA Key Generate CSFPKG

PKA Key Import CSFPKI

PKA Key Translate CSFPKT

PKA Key Token Change CSFPKTC

PKA Public Key Extract CSFPKX

PKDS Key Record Create CSFPKRC

PKDS Key Record Delete CSFPKRD

PKDS Key Record Read CSFPKRR

PKDS Key Record Write CSFPKRW

PKSC Interface CSFPKSC

Prohibit Export CSFPEX

Prohibit Export Extended CSFPEXX

Random Number Generate CSFRNG

Random Number Generate Long CSFRNGL

Remote Key Export CSFRKX

Restrict Key Attribute CSFRKA

Retained Key Delete CSFRKD

Retained Key List CSFRKL

Secure Key Import CSFSKI

Secure Key Import2 CSFSKI2

Secure Messaging for Keys CSFSKY

Secure Messaging for PINs CSFSPN

SET Block Compose CSFSBC

SET Block Decompose CSFSBD

Symmetric Key Export CSFSYX

Symmetric Key Generate CSFSYG

Symmetric Key Import CSFSYI

Symmetric Key Import2 CSFSYI2

Symmetric MAC Generate CSFSMG

Symmetric MAC Generate (with ALET) CSFSMG1

Symmetric MAC Verify CSFSMV

Symmetric MAC Verify (with ALET) CSFSMV1

TR-31 Export CSFT31X

TR-31 Import CSFT31I

Chapter 5. Installation Exits 127

|

|

|

|

||

||

Table 14. Services and Their ICSF Names (continued)

Service ICSF Name

Transaction Validation CSFTRV

Transform CDMF Key CSFTCK

Trusted Block Create CSFTBC

User Derived Key CSFUDK

VISA CVV Service Generate CSFCSG

VISA CVV Service Verify CSFCSV

Notes:

1. The alias for the ANSI X9.17 key management services is CSNAxxx.

2. The aliases for the PKA services is CSNDxxx or or CSNFxxx.

3. The aliases for the symmetric key services are CSNBxxx or CSNExxx.

Table 15. Compatibility Services and Their ICSF Names

Compatibility Service ICSF Name

Encipher under Master Key CSFEMK

Generate a key CSFGKC

Import a key CSFRTC

Cipher/Decipher CSFEDC

Input
The installation exit for each service gets the address of the exit parameter block
(EXPB) in register 0. ICSF obtains and initializes an EXP for every service call.
Figure 8 on page 129 illustrates the contents of register 0, and Table 16 on page
129 illustrates the EXPB for the service exits.

Register 1 contains the address of an address list. Each address in the list points to
a parameter. “Parameters” on page 133 describes the service parameter list. The
parameters the exit receives are the same parameters that are passed on the call
to the service. For more information about the parameters for each service, see
z/OS Cryptographic Services ICSF Application Programmer's Guide.

128 z/OS V1R13 System Programmer's Guide

Exit parameter block
Table 16 describes the contents of the exit control block.

Table 16. EXPB Control Block Format for Services

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the
character string EXPB.

4 2 Version.

The version of the control block. The field contains the
character string 01.

6 2 Length.

The length of the control block. The value is 40 in decimal.

8 4 Dynamic area.

The address of a 400-byte area that the exit can use as a
dynamic area.

12 4 Exit area address.

The address of an 8-byte area for the preprocessing and
postprocessing invocations of the exit to use for
communication. ICSF does not check or change this field.

Register 0

EXPB EXPB

NAME

VERSION LENGTH

DYNAMIC AREA

DYNAMIC AREA

400 BYTES

8 BYTES

NAME
VERSION
LENGTH
CCVT
SIF
FLAGS
RESERVED

EXIT AREA
EXIT AREA

EXIT COMMUNICATION

FLAGS

SERVICE PARMS
SERVICE PARM BLOCK

CCVT

CCVT
. . .

. . .

MODULE NAME

Figure 8. EXPB Control Block in the Service Exits

Chapter 5. Installation Exits 129

Table 16. EXPB Control Block Format for Services (continued)

Offset (Dec)
Number of
Bytes Description

16 4 Exit communication area.

A character string that can be used for communication
between preprocessing and postprocessing invocations of
a service exit.

20 4 Flags.

A flag byte. Each bit setting (on/off) indicates a particular
condition. ICSF sets bit 0 and an exit cannot change that
bit. Your exit can set any of the other bits.

Bit Meaning When Set On/Off

0 Postprocessing invocation./Preprocessing
invocation.

1 Reserved.

2 Use the return and reason code that the
exit places in register 0 and register 15
as the service's return code/reason code.
Do not use the exit's return code as the
service return code in registers 0 and 15.

The exit can pass any valid return code
in register 15 and any valid reason code
in register 0. If this bit is set on, ICSF
uses these codes as the service's return
and reason codes. See “Return Codes”
on page 133 for more information about
using exit return codes.

3 Do not call the postprocessing invocation
of the service exit./Call the
postprocessing invocation of the service
exit.

4 Bypass the service./Run the service.

5 Use the return and reason code that the
exit places in the service's parameter
list./Do not store codes the exit places in
the service's parameter list.

The exit can pass any valid return and
reason code in the first two parameters
of the service's parameter list.
“Parameters” on page 133 describes the
service parameter list.

6 CSFSKRC bypass input label
parsing./CSFSKRC parse the input label.

7–31 Reserved.

24 4 Secondary parameter block.

The address of the secondary parameter block. The exit
can use the SPB to determine the environmental
information of the service. For a description of the SPB,
see “Secondary parameter block” on page 131.

130 z/OS V1R13 System Programmer's Guide

Table 16. EXPB Control Block Format for Services (continued)

Offset (Dec)
Number of
Bytes Description

28 4 CCVT.

Address of the Cryptographic Control Vector Table (CCVT).
For a description of the CCVT, see “The Cryptographic
Communication Vector Table (CCVT)” on page 266.

32 8 Module name.

The installation exit's load module name. The field contains
the value of the load module name you specified on the
EXIT keyword in the installation options data set. The field
is 8 bytes of characters, and the value is left-justified and
padded with blanks.

Secondary parameter block
Offset +24 of EXPB contains the address of the secondary parameter block (SPB).
The exit can use the SPB to determine the environmental conditions of the service.
Table 17 describes the contents of SPB.

Table 17. SPB Control Block Format

Offset
(Dec)

Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the
character string SPB.

4 2 Version.

The version of the control block. The field contains the
character string 04.

6 2 Length.

The length of the control block.

8 4 CCVT.

The address of the Cryptographic Communication Vector
Table (CCVT). For a description of the CCVT, see“The
Cryptographic Communication Vector Table (CCVT)” on page
266.

12 4 Signal Information Word.

Bytes 1–2 Reserved.

Bytes 3–4 of the field contain the installation-assigned code
number for an installation-defined service.

Chapter 5. Installation Exits 131

|

Table 17. SPB Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

16 4 Flags and Indicators. Each byte of this field is either an
indicator byte or contains flag bits. The contents of each byte
in the field are:

Byte 1—PSW key. This byte contains the original caller's
program status word key. The first four bits are the key and
the remaining four bits are zeros.

Byte 2—Caller's state. Each bit in byte 2 indicates a condition
of the caller's state.

Bit Meaning When Set On
0 ICSF was entered via SVC entry from a

PCF compatibility macro.
1 Original caller in AMODE(31).
2 Original caller in AR mode.
3 Original caller in SRB mode.
4 Original caller in supervisor state or system

key.

5 Original caller in AMODE(64).
6–7 Reserved.

Byte 3—Flag byte 1. The first flag byte. Each bit that is set on
indicates a particular condition.
Note: These bits are informational. Do not change bits 0 and
1.

Bit Meaning When Set On
0 The service is using a “storage access”

crypto instruction.
1 Key record found in in-store KDS during

delete operation.
2 The recovery routine should not retry.
3 and 4 Reserved
5 Hardware initialization in process.
6 NQAP in progress.
7 Reserved

Byte 4—Flag byte 2

Bit Meaning When Set On
0 The service parameter list has a position for

a return code.
1 The service parameter list has a position for

a reason code.
2 In-store CKDS record format is variable

length.
3 The caller has no exit data.
4 Change master key processing holds global

AP latch
5-7 Reserved

20 4 Protected storage pointer.

24 4 Auxiliary SPB Pointer

28 4 EDC buffer pointer.

32 4 EDC buffer length.

132 z/OS V1R13 System Programmer's Guide

||
||
|
||
|
||
||
||
||
||

||
||
|
||
|
||
|
||
||
|
||

|||

Table 17. SPB Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

36 4 Address of XPB.

40 8 ID for latch manager.

48 4 Address for ERPB.

52 8 Original caller's register 1.

60 4 Address of CPRB request storage.

64 4 Length of CPRB request storage.

68 4 Address of CPRB reply storage.

72 4 Length of CPRB reply storage.

76 4 CCPS address.

80 4 Serialization block address.

84 4 Recovery token.

88 8 Recovery footprint for hash tables.

96 4 Pointer to ICSF/C resource owning object.

100 4 Pointer to metal C stack.

104 2 Entry point index of metal C caller.

106 2 Flags and indicators

Byte 1 - Reserved for dump processing which will be
overwritten when being copied.

Bit Meaning When Set On
0 Dump CKDS in-store
1 Dump PKDS in-store
2 Dump TKDS in-store and session objects
3-7 Reserved
Byte 2 - Reserved

108 4 ASCB of SPB owner.

112 4 Register 14 from CSFMIREC.

116 4 Address of MSTB.

120 24 Reserved.

Parameters
Each service has a unique parameter list. Parameters 1–4 are always the return
code, reason code, exit data length, and exit data. The other parameters differ with
each service. The installation exit gets passed the address of the service parameter
list in Register 1. For a description of each service's parameter list, refer to z/OS
Cryptographic Services ICSF Application Programmer's Guide.

Return Codes
To use a return code and reason code that are set in the postprocessing exit, you
must set bit 2 in Offset +20 of EXPB. Setting bit 2 on causes ICSF to return the
return code from the exit in register 15 and the reason code in register 0. Even
though the application program receives the codes from the exit in the registers, the
program still receives the codes from the service in the parameter list. The return
code is the first parameter, and the reason code is the second parameter in the list.

Chapter 5. Installation Exits 133

|||

|||

|||

|||

|||

|||

|||

|
|

||
||
||
||
||
|

|||

|||

|||

|||

Some control languages can access registers more easily than others. For this
reason, ICSF allows you to return the return code and the reason code in both the
registers and the parameter list. To do this, set bit 5 as well as bit 2 in Offset +20 of
EXPB. The application then receives the return code and the reason code from the
exit in both the registers and the parameter list.

If you do not set either of or both of the flag bits, the service ignores any return or
reason code from the exit. The application program receives the codes from the
service in both the registers and the parameter list.

The exit can pass back any valid return code for each service. For a listing of each
service's return codes, see z/OS Cryptographic Services ICSF Application
Programmer's Guide.

Cryptographic key data set entry retrieval installation exit
The cryptographic key data set entry retrieval installation exit (CSFCKDS) is called
when a service requests an entry from the in-storage cryptographic key data set
(CKDS) by label. ICSF calls this exit after it finds the record in the CKDS and
before it returns the record to the service.

Note: This exit is given control only for a fixed-length record CKDS. The exit does
not work with the variable-length record format of the CKDS.

Purpose and use of the exit
The exit point lists the entry that matches a certain label and type. You can use the
exit to check fields in a record and decide whether to use the record. The exit sets
a return code that specifies whether to use the record or not. Use the exit_data
parameter in the service to specify what the exit should use as a search value.

For example, you can use the CKDS entry retrieval exit to perform a specific search
of the installation data field. An installation can specify whatever it chooses to in the
installation data field. The exit can select a record that matches a certain key label
and key type. You can check the record and accept or reject it based on the
installation data field.

Note: The cryptographic key data set entry retrieval installation exit will not be
given control if SYSPLEXCKDS(YES,FAIL(xxx)) is specified in the ICSF
installation options data set.

Environment of the exit
The exit receives control with these characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB or SRB mode
v AR mode
v AMODE(31)
v RMODE(ANY)
v Cross memory mode

The exit can change the characteristics during its processing. However, the exit
must return to its caller with the same characteristics as on entry.

134 z/OS V1R13 System Programmer's Guide

The exit runs in the cross memory mode in the ICSF address space. The CKDS
records are ALET-qualified. ICSF supplies the address and the ALET of a CKDS
record as parameters to the CKDS retrieval exit.

For information about cross memory mode and AR mode, see z/OS MVS
Programming: Extended Addressability Guide.

Installing the exit
Install the CKDS entry retrieval exit by installing the load module that contains the
exit into an APF-authorized library. ICSF uses this normal z/OS search order to
locate the exit:
v Job pack area
v Steplib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and the load module name on the EXIT keyword in the
installation options data set. “Parameters in the installation options data set” on
page 38 describes the installation options data set in further detail. The EXIT
keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the exit. The
ICSF name for the CKDS entry retrieval exit is CSFCKDS. The load module name
is the name of the load module that contains the exit. The name can be any valid
name that your installation chooses. The FAIL portion of the EXIT keyword specifies
the action ICSF takes if the exit cannot be loaded or if it ends abnormally. The valid
FAIL options are:

NONE Do not take any action.

EXIT Do not call this exit again. The exit will not receive control during
subsequent attempts at CKDS retrieval.

SERVICE Fail the service. All subsequent attempts at CKDS entry retrieval
fail.

ICSF End ICSF.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends
abnormally, and generates an SVC dump when attempting to load the exit. If the
exit ends abnormally, the attempt at CKDS entry retrieval fails, regardless of the
FAIL option you specified. FAIL options only apply to subsequent attempts at CKDS
entry retrieval.

Input
The CKDS entry retrieval exit receives the address of an address list passed in
register 1. Each address in the list points to a parameter. The address list exists in
the ICSF address space, and register 1 is not ALET-qualified.

Table 18 describes the parameters for the CKDS entry retrieval exit.

Table 18. The CKDS Entry Retrieval Exit Parameters

Parameter Description

1 The address of the current CKDS record. See Table 26 on page 194 for a
description of the CKDS record format.

Chapter 5. Installation Exits 135

Table 18. The CKDS Entry Retrieval Exit Parameters (continued)

Parameter Description

2 The address of the ALET of the current CKDS record. This record is a
fullword address.

3 The address of the record that matches a certain label and type. This
value is a fullword integer. The parameter is in the ICSF address space
and the exit can access the parameter using an ALET of 0.

4 The address of the record chosen. This value is a fullword integer. The
parameter is in the ICSF address space and the exit can access the
parameter using an ALET of 0.

5 The address of the exit data length. This value is a fullword integer. The
parameter is in the caller's address space, which is the secondary
address space, and the exit can access the parameter using an ALET of
1.

6 The address of the exit data. For a description of exit data, see z/OS
Cryptographic Services ICSF Application Programmer's Guide. The
parameter is in the caller's address space, which is the secondary
address space, and the exit can access the parameter using an ALET of
1.

7 The address of the secondary parameter block. See “Secondary
parameter block” on page 131 for a description of the secondary
parameter block. The parameter is in the ICSF address space and the
exit can access the parameter using an ALET of 0.

Return codes
You can pass a return code back in register 15.

The valid decimal return codes are:

Return Code Description
0 Use the record.
4 Do not use the record.

If you specify not to use any of the records that match the search value, ICSF
returns control to the application. It returns with return code 12 and reason code
10024, which indicate that the exit rejected all the keys in the search.

PCF conversion program installation exit
Use the PCF conversion program to convert a CKDS from the Programmed
Cryptographic Facility (PCF) format to the ICSF format. The conversion program
converts each record in the PCF CKDS to the CKDS format that ICSF uses, and
then writes the new record to an ICSF CKDS. The conversion program extends the
label field to 64 bytes.

An ICSF CKDS record contains an installation data field that you can use to further
identify the record. This field can contain any information about a record that your
installation would like to use. You can use the conversion program exit to change
the information in this field. You can also use the conversion program exit to have
the conversion program not place a converted CKDS entry in the ICSF CKDS.

Chapter 8, “Migration from PCF to z/OS ICSF,” on page 173 contains more
information about the PCF conversion program.

136 z/OS V1R13 System Programmer's Guide

Note: The ICSF/MVS Version 1 Release 1 conversion program cannot run this exit.

Purpose and use of the exit
The PCF conversion program installation exit (CSFCONVX) is called at three points
during processing of the conversion program:

v During conversion program initialization. This is known as the conversion
preprocessing invocation. At this point, you can use the exit to change the ICSF
CKDS header record installation data field.

v During conversion program individual record processing. This is known as
the record processing invocation. At this point, the conversion program is
converting the PCF entry but has not yet placed the entry into the ICSF CKDS.
You can use the exit to change the installation data field in the entry for the ICSF
CKDS. You can also specify that the conversion program not place the entry into
the ICSF CKDS.

v Just prior to conversion program termination. This is known as the
conversion postprocessing invocation. At this point, like the preprocessing exit
point, you can use the exit to change the ICSF CKDS header record installation
data field.

Environment of the exit
The exit receives control with these characteristics:
v Problem program state.
v APF-authorized
v TCB mode
v Address Space Control mode=primary
v AMODE(31)
v RMODE(ANY)

The exit can change the characteristics during its processing. However, the exit
must return to its caller with the same characteristics as on entry.

The exit runs in task mode in the caller's own address space.

Installing the exit
Install the load module that contains the exit into an APF-authorized library. ICSF
uses this normal OS/390 search order to locate the exit:
v Job pack area
v Steplib (if one exists)
v Joblib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and load module name on the EXIT keyword in the
installation options data set. For more information about the installation options data
set, see “Parameters in the installation options data set” on page 38. The EXIT
keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the exit. The
ICSF name for the conversion program exit is CSFCONVX. The load module
name is the name of the load module that contains the exit. This name can be any
valid name that your installation chooses. The FAIL portion of the EXIT keyword

Chapter 5. Installation Exits 137

specifies the action ICSF takes if the exit cannot be loaded. The valid FAIL options
are NONE, EXIT, SERVICE, and CSF. For the conversion program exit, you can
use these options only:
NONE Initialization continues even if exit cannot be loaded.
ICSF Initialization ends if exit cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends
abnormally, and generates an SVC dump when attempting to load the exit.

If the exit ends abnormally, the conversion program does also.

Input
ICSF supplies the address of the conversion program exit parameter block (CVXP)
in register 2 each time it calls the PCF conversion program exit. The exit does not
receive a parameter list. “Entry and return specifications” on page 113 gives a
complete list of the registers on entry to the conversion program exit.

Table 19 describes the contents of the exit control block.

Table 19. CVXP Control Block Format

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the
character string CVXP.

4 2 Version.

The version of the control block. The field contains the
character string 01.

6 2 Length.

The length of the control block. The value is 28 in decimal.

8 4 Return Code.

The value the exit returns. Valid decimal values for this
field are:

Return Code Description
0 Normal.
4 Do not process the entry.
8 End conversion program.

12 4 Address of the ICSF CKDS installation data area.

16 4 The value in decimal of the length of the ICSF CKDS
installation data area.

20 1 Action.

Bit 0 is set on if the action was to change an entry on the
ICSF CKDS. Bit 0 is set off if the action was to add an
entry to the ICSF CKDS. The rest of the bits in this byte
are reserved.

138 z/OS V1R13 System Programmer's Guide

Table 19. CVXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

21 1 Call Point.

Indicates the invocation point of the exit. The exit cannot
change this field and the conversion program does not use
this field on return from the exit. You can determine the
invocation point by the bit that is set on.

Bit Meaning When Set On

0 Conversion preprocessing invocation.

1 Conversion postprocessing invocation.

2 Record processing invocation.

3-7 Reserved.

22 6 Reserved.

Return codes
You can pass a return code back to the conversion program in the CVXP control
block (offset +8). The exit can use return codes to reject records for conversion
processing or end the conversion program.

Return Code Description
0 Normal.
4 Do not process the entry.
8 End conversion program.

Single-record, Read-write installation exit
ICSF provides an exit that is called when a record is read from or written to a
CKDS or PKDS. ICSF calls the single-record, read-write (CSFSRRW) exit under
these conditions:

v The PCF conversion program converts a record into ICSF CKDS format. The
conversion program calls the exit right before it writes a converted record to the
ICSF CKDS.

v ICSF reenciphers a disk copy of a CKDS under a new master key. ICSF calls the
exit two times during this processing; after ICSF reads a record to reencipher it
and before ICSF writes the reenciphered record.

v ICSF refreshes the in-storage copy of a CKDS. ICSF calls this exit after reading
a record from the disk copy to place into storage.

v You enter a key into a disk copy of the CKDS by using the key entry hardware.
ICSF calls the exit two times during this processing: after reading a partial key
from the CKDS, and before writing a record into a CKDS.

v An application creates, reads, writes, or deletes a record from the PKDS.

Using the exit, you can do such things as prevent the record from being processed,
or add user information to the record.

Note: This exit is given control only for a fixed-length record CKDS. The exit does
not work with the variable-length record format of the CKDS.

Chapter 5. Installation Exits 139

Purpose and use of the exit
The exit receives a parameter block that describes the CKDS or PKDS record and
the action occurring to the record. By setting a return code in the parameter block,
the exit may affect the processing of the record. Depending on the return code, one
of these actions occurs:
v ICSF continues to read the record.
v ICSF does not read or write the record.
v ICSF does not read or write the entire CKDS or PKDS.

The parameter block contains the address of the CKDS or PKDS record. The exit
can add information into the installation data field of the record. For integrity
reasons, ICSF receives only changes to this particular field. If the exit sets a return
code to continue processing, ICSF processes the record with this information.

The KGUP exit, the PCF conversion program exit, and the single-record, read-write
exit can add information to the installation data field of the CKDS or PKDS header
record to identify the data set. If the header record installation data field contains
information identifying the CKDS or PKDS, the single-record, read-write exit can
check the field to ensure that it is processing the correct data set. If the exit finds
that it is processing the wrong CKDS or PKDS, the exit can set a return code to
stop the processing of the entire data set.

You can use the exit to prevent processing of a record. You can check certain fields
in the record and specify that the record not be processed. For example, during
postprocessing conversion, you can prevent the processing of any record of a
certain key type. However, the exit should never prevent processing of a record
containing a system key because ICSF uses these keys in its processing. You
differentiate a system key record from other key records by its key label. A system
key record label contains all binary zeros. All other key labels contain an alphabetic
first character with the remaining characters as either alphabetic or numeric.

Environment of the exit
The exit receives control with these characteristics:
v Problem program state
v APF-authorized
v TCB mode
v Address Space Control mode=primary
v AMODE(31)
v RMODE(ANY)

The exit can change the characteristics during its processing. However, the exit
must return to ICSF with the same characteristics as on entry.

When the single-record, read-write exit is called, the exit parameter block is in the
caller's address space. The exit is loaded in the caller's address space. The caller is
either the PCF conversion program, the utility program (CSFEUTIL), or an ICSF
panel.

Installing the exit
Install the load module that contains the exit into an APF-authorized library. ICSF
uses this search order to locate the exit:
v Job pack area
v Steplib (if one exists)
v Joblib (if one exists)

140 z/OS V1R13 System Programmer's Guide

v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and load module name on the EXIT keyword of the
installation options data set. For more information about the installation options data
set, see “Parameters in the installation options data set” on page 38. The EXIT
keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the exit. The
ICSF name for the single-record, read-write exit is CSFSRRW. The load module
name is the name of the load module that contains the exit. The name can be any
valid name that your installation chooses. The FAIL portion of the EXIT keyword
specifies the action ICSF takes if the exit cannot be loaded or ends abnormally. The
valid FAIL options are:
NONE Do not take any action.
EXIT Do not call this exit again.
SERVICE Fail the service that called the exit.
ICSF Fail the service that called the exit.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends
abnormally, and generates an SVC dump when attempting to load the exit. If you
specify FAIL(ICSF) and the exit cannot be loaded, ICSF initialization does not
continue. If you specify FAIL(ICSF) and the exit ends abnormally, ICSF issues an
advisory message that ICSF should be ended.

Input
The single-record, read-write exit receives the address of the address list passed in
register 1. The first address in the address list is for the read-write exit parameter
block (RWXP). The exit does not receive a parameter list. “Entry and return
specifications” on page 113 gives a complete list of the registers on entry to the
single-record, read-write exit.

The RWXP parameter block contains the address of the CKDS or PKDS record that
is being processed and information about the situation in which the exit is called.
The exit sets a return code in a field in the block to specify whether the processing
should continue. Table 20 describes the RWXP control block.

Table 20. RWXP Control Block Format

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the
character string RWXP.

4 2 Version.

The version of the control block. The field contains the
character string 02.

6 2 Length.

The length of the control block. The value of this field is 28
in decimal.

Chapter 5. Installation Exits 141

Table 20. RWXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

8 4 Return Code.

The value the exit returns. Valid decimal values for this
field are:

Return Code Description
0 Process current CKDS record
4 Do not process current CKDS record
8 End processing

12 4 Address of the CKDS record.

16 4 The value in decimal of the length of the CKDS record.

20 7 Action.

The field is a 7-byte character string describing the action
performed on the CKDS record. The field can contain
these values:
v READ
v WRITE
v DELETE

Note that the value of the field is left-justified and padded
with blanks.

27 1 Exit Invocation Reason

The reason that the exit was invoked. The field relates to
only the CKDS and can contain one of these values:

2 Refresh of the in-storage CKDS with a
disk copy of a CKDS. The value of the
Action field is READ.

3 Reencipher of the in-storage CKDS from
a disk copy of a CKDS. The value of the
Action field is READ or WRITE.

5 Conversion record postprocessing. The
value of the Action field is WRITE.

8 Key entry hardware input. The value of
the Action field is READ or WRITE.

28 4 Data set type (either CKDS or PKDS).

Return codes
You can pass a return code back to the single-record, read-write process in the
RWXP control block (offset +8) or in register 15. The exit can use the return code to
reject records or to end the single record read-write process. These values are valid
decimal return codes:

Return Code Description
0 Process the current CKDS record.
4 Do not process the current CKDS record.
8 End processing.

142 z/OS V1R13 System Programmer's Guide

Exit points for security installation exits
IBM-supplied security exit routines were removed in ICSF/MVS Version 2 Release
1. The exit points themselves are still available.

Security installation exits
ICSF provides these exit points to control access to the keys in the in-storage
CKDS and to the services.
v Security Initialization Exit
v Security Termination Exit
v Security Service Exit
v Security Key Exit

Purpose and use of the exits
There are two groups of security exits. The security initialization exit (CSFESECI)
and security termination exit (CSFESECT) are called during ICSF mainline
processing to maintain a security communication area that is used by the other
security exits.

Next is a description of each point where ICSF calls security exit routines.

Security initialization exit
ICSF calls this exit during initialization just before calling the ICSF mainline exit
CSFEXIT. You can use this exit to anchor resource lists, work areas, and other data
to the security communication area. The security service exit (CSFESECS) and
security key exit (CSFESECK) can be used to control access to resources on ICSF
and for logging in SMF the results of any authorization checks that are made. The
security initialization exit defined in the options data set is only invoked if
CSFESECS, CSFESECK, or both are also defined.

Security termination exit
ICSF calls this exit as the last function when ICSF ends, before deleting all the
installation exits. You can use this exit to free whatever is anchored to the security
communication area.

Security service exit
ICSF calls this exit when an application uses an IBM-supplied service, before
calling any other installation exit that is associated with that service. You can use
this exit to control access to a service. Refer to Table 14 on page 125 for a list of
services.

Security key exit
ICSF calls this exit when an application uses a key in the in-storage CKDS, before
any other installation exit associated with that use of the key is called. You can use
this exit to control access to the keys in the CKDS.

Environment of the exits
The security initialization and termination exits receive control with these
characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB mode
v Address Space Control mode=access register mode

Chapter 5. Installation Exits 143

v AMODE(31)
v RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits
must return to ICSF with the same characteristics as on entry.

The security service and key exits receive control with these characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB mode
v Cross memory mode
v AR mode
v AMODE(31)
v RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits
must return to ICSF with the same characteristics as on entry.

Note: The security exits are not called in SRB mode.

Installing the exits
You install the security exits by installing the load module that contains the exit into
an APF authorized library. ICSF uses this normal search order to locate the exit:
v Job pack area
v Steplib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Use the EXIT keyword in the installation options data set to define the ICSF name
and load module name. For information about the installation options data set, see
Parameters in the installation options data set. The EXIT keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF identifier for each exit,
CSFESECI, CSFESECT, CSFESECS, and CSFESECK. The load module name is
the name of the load module that contains the exit. The name can be any valid
name your installation chooses. The action that the FAIL portion of the EXIT
keyword specifies depends on the type of security exit.

For the security initialization and termination exits, the FAIL portion specifies the
action ICSF takes if the exit cannot be loaded. The valid FAIL options mean:
NONE Continue initialization even if exits cannot be loaded.
SERVICE Continue initialization even if exits cannot be loaded.
EXIT Continue initialization even if exits cannot be loaded.
ICSF End ICSF if exits cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends
abnormally, and generates an SVC dump when attempting to load the exit.

If the security initialization exit ends abnormally, ICSF ends. If the security
termination exit ends abnormally, ICSF continues to end.

144 z/OS V1R13 System Programmer's Guide

For the security service and key exits, the FAIL portion specifies the action ICSF
takes if the exit cannot be loaded or ends abnormally. When the service or key exit
is loaded, the valid FAIL options mean:
NONE Continue initialization even if exits cannot be loaded.
SERVICE Continue initialization even if exits cannot be loaded.
EXIT Continue initialization even if exits cannot be loaded.
ICSF End ICSF if exits cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends
abnormally, and generates an SVC dump when attempting to load the exit.

When the security service exit ends abnormally, the valid FAIL options mean:

NONE Process subsequent calls to the service as if no abnormal ending
occurred. Call the exit for each call of a service.

SERVICE Fail on subsequent calls to the particular service.

EXIT Do not call the exit again. Bypass the exit on subsequent calls to
any IBM service.

ICSF End ICSF.

If the security service exit ends abnormally, ICSF ends the service call before
performing the service.

When the security key exit ends abnormally, the valid FAIL options mean:

NONE Process subsequent attempts to access the in-storage CKDS as if
no abnormal ending occurred. Call the exit for each access attempt.

SERVICE Fail on subsequent attempts to access the CKDS.

EXIT Do not call the exit again. Bypass the exit on subsequent accesses
of the CKDS.

ICSF End ICSF.

If the security key exit ends abnormally, ICSF ends the attempt to access the CKDS
before performing the access.

Input
The security initialization and termination exits receive the address of an 8-byte
security communication area in register 1. When ICSF starts, the security
initialization exit can use this area as an anchor for resource lists, work areas, or
any other data that your service or keys security exits need to check authorizations.
When ICSF ends, the security termination exit can free any system resources that
are anchored to this area and used by the service or keys security exits. For
example, the exit can free storage that is allocated from the common storage area
(CSA).

When a call to a service occurs, the security service exit receives the address of an
address list passed in register 1. Table 21 describes the parameters the exit
receives:

Table 21. Parameters Received by the Security Service Exit

Parameter
Number of
Bytes Description

1 8 The security communication area.

Chapter 5. Installation Exits 145

Table 21. Parameters Received by the Security Service Exit (continued)

Parameter
Number of
Bytes Description

2 8 The character string CSFSERV.

3 8 The name of the service being called.

When an attempt to access a CKDS entry occurs, the security key exit receives the
address of an address list passed in register 1. Table 22 describes the parameters
this exit receives:

Table 22. Parameters Received by the Security Key Exit

Parameter
Number of
Bytes Description

1 8 The security communication area.

2 8 The character string CSFKEYS.

3 64 The label of the key entry being accessed.

Register 0 contains the address of the exit parameter block (EXPB). See Figure 8
on page 129 and Table 16 on page 129.

Return codes
All the security exits can pass back a return code in register 15. The security
initialization exit supports these decimal return codes:

Return Code Description
0 Proceed with initialization.
4 End ICSF.

Any return codes other than those listed cause ICSF to end abnormally.

The security termination exit supports these decimal return codes:

Return Code Description
0 or 4 Proceed with termination.

Any return codes other than those listed cause ICSF to end abnormally.

The security service exit supports these decimal return codes:

Return Code Description
0 or 4 Proceed with the service call.

Any return codes other than those that are listed cause the service call to fail.

The security key exit supports these decimal return codes:

Return Code Description
0 or 4 Proceed with the access of the CKDS entry.

Any return codes other than those that are listed cause the access of the key to fail.

146 z/OS V1R13 System Programmer's Guide

Key generator utility program installation exit
The key generator utility program (KGUP) generates and maintains keys in the
cryptographic key data set (CKDS). You can use KGUP to generate or supply a key
to update the CKDS. KGUP generates keys to use in key exchange with other
systems. ICSF provides an exit for customizing KGUP processing. For information
about using KGUP to managing cryptographic keys, see z/OS Cryptographic
Services ICSF Administrator's Guide.

Purpose and use of the exit
You can use the KGUP installation exit (CSFKGUP) to modify records in the CKDS,
write copies of records to alternate data sets, or put additional information in the
SMF record. There are many other uses for the KGUP exit depending on your
installation's needs. Examine the calling points for an exit and the active control
block fields at each calling point to determine other applications for the exit.

KGUP calling points
After an ICSF administrator submits a KGUP job for processing, KGUP calls exits at
four points in processing:

1. During KGUP initialization. This is known as the KGUP preprocessing exit.
After the KGUP job begins but before KGUP starts processing a control
statement, KGUP calls this exit.

You can use this exit to place additional information in the installation data field
of the CKDS header record. You may want to do this if you need to process
different cryptographic key data sets differently. You can place information in the
installation data field of the record, and then subsequent calls of the exit can
use this information as the basis for performing processes.

2. Before KGUP processes a key that is identified by a control statement.
This is known as the record preprocessing exit. Before KGUP accesses the
CKDS to retrieve the key that is requested in the control statement, KGUP calls
the exit again.

Note: This call occurs before KGUP accesses the CKDS. If an exit routine
alters a key entry at this call, KGUP accesses the CKDS with the altered
entry.

You can use this exit to provide additional security for entering clear key values.
When a user enters a clear key in a control statement, use the exit to change
the value. In this way, the user never knows the actual clear value in the CKDS.
For example, a user enters zeros for clear key values. Your exit generates some
random number and replaces the user's clear key value. KGUP then processes
the exit's random number as the value to write to the CKDS.

3. Before KGUP updates the CKDS with a key entry. This is known as the
record postprocessing exit. After KGUP processes a key and before KGUP
updates the CKDS, KGUP calls the exit a third time.

At this call, the installation exit can change any information in the Key Output
Data Set. Changing the Key Output Data Set also enters the changed keys into
the Control Statement Output Data Set, if the keys are exportable. You can use
this exit to create audit trails.

4. During KGUP termination. This is known as the KGUP postprocessing exit.
Calls to this exit occur after KGUP completes processing but before KGUP
returns control to ICSF.

Chapter 5. Installation Exits 147

Note: If an error occurs in exit processing, KGUP does not call the remaining exit
invocations. If an error occurs in KGUP processing that does not result in an
abnormal ending, KGUP does not call the remaining exit invocations.

Processing in the exit
At each call, the exit receives the address of the KGUP exit parameter block
(KGXP) in register 1. The exit can access any of the data in KGXP. The exit can
alter some of the fields in KGXP, while others are simply references. Also, the
KGUP exit can alter some fields at some calls but not at other calls.

A field in KGXP gives the calling point of the exit. The exit uses this field to
determine when to call the exit to perform appropriate processing. “Input” on page
149 gives a more detailed explanation of the KGXP control block, the values it
contains, and when an exit can use or change the values.

Environment of the exit
The KGUP calls the exit only in the address space where KGUP is running. The
exit receives control with these characteristics:
v Supervisor state
v APF-authorized
v TCB mode
v Address Space Control mode=primary
v AMODE(31)
v RMODE(ANY)

The exit can change the characteristics during its processing. However, the exit
must return to its caller with the same characteristics as on entry.

Installing the exit
Install the load module that contains the exit into an APF authorized library. ICSF
uses this search order to locate the exit:
v Job pack area
v Steplib (if one exists)
v Joblib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and load module name on the EXIT keyword in the
installation options data set. For more information about the installation options data
set, see “Parameters in the installation options data set” on page 38. The EXIT
keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the KGUP exit.
The ICSF name for the KGUP exit is CSFKGUP. The load module name is the
name of the load module that contains the exit. The name can be any valid name
that your installation chooses. The FAIL portion of the EXIT keyword specifies the
action ICSF takes if the exit cannot be loaded. The valid FAIL options are NONE,
EXIT, SERVICE, and CSF. The FAIL options available to the KGUP exit are:
NONE Initialization continues even if exit cannot be loaded.
ICSF Initialization ends if exit cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message, ends
abnormally, and generates an SVC dump when attempting to load the exit. If the
exit ends abnormally, KGUP also ends abnormally.

148 z/OS V1R13 System Programmer's Guide

Input
At each of the invocation points, the exit receives the address of the KGUP exit
parameter block (KGXP) in register 1. The exit does not receive a parameter list.
“Entry and return specifications” on page 113 gives a complete list of the registers
on entry to the KGUP exit.

The KGUP exit can alter some of the fields in KGXP. Some fields only provide
information to the exit and cannot be changed, and some fields do not apply to
particular calls to the exit.

Table 23 describes the KGXP control block.

Table 23. KGXP Control Block Format

Offset
(Dec)

Number of
Bytes Description

0 4 Block Identifier.

The name of the control block. The field must contain the
character string KGXP. The exit must not change the value and
KGUP does not use the field upon return from the exit.

4 2 Block Version Number.

The version of the control block. The field must contain the
character string 03. The exit cannot change this field and
KGUP does not use this field on return from the exit.

6 2 Block Length.

The length of the control block. The decimal value of the field
is 408. The exit cannot change the field and KGUP does not
use this field on return from the exit.

8 4 Return Code.

The return code the exit supplies upon completion. Upon
entry, KGUP initializes this field to zeros. The valid decimal
return codes for each of the invocation points are:

Record Pre- or postprocessing.
0 Normal, continue processing.
4 Reject control statement, but do not end

KGUP.
8 End KGUP immediately.

KGUP pre- or postprocessing.
0 Normal, continue processing.
> 0 End KGUP immediately.

Chapter 5. Installation Exits 149

Table 23. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

12 1 Call Point.

Indicates the invocation point of the exit. The exit cannot
change this field and KGUP does not use this field on return
from the exit. You can determine the invocation point by the
bit that is set on.

Bit Meaning When Set On

0 KGUP preprocessing invocation.

1 KGUP postprocessing invocation.

2 Record preprocessing invocation.

3 Record postprocessing invocation.

4-7 Reserved.

13 1 Options.

Indicates the keywords specified on the KGUP control
statement. The exit cannot change this field and KGUP does
not use the field upon return from the exit. The field is used
only during the record preprocessing and postprocessing
invocations. You can determine the keywords on the control
statement by the bits that are set on.

Bit Meaning When Set On

0 LABEL with multiple values specified.

1 RANGE specified.

2 KEY specified.

3 CLEAR specified.

4 SINGLE specified.

5 NOCV specified.

6 OUTTYPE specified.

7 Reserved.

150 z/OS V1R13 System Programmer's Guide

Table 23. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

14 1 Verb Type.

Indicates the verb used on the KGUP control statement. The
exit cannot change this field and KGUP does not use this field
on return from the exit. The field is used only for the record
preprocessing and record postprocessing invocations. You
can determine the verb on the control statement by the bit
that is set on.

Bit Meaning When Set On

0 ADD

1 UPDATE

2 DELETE

3 RENAME

4 SET

5 OPKYLOAD

6–7 Reserved.

15 1 KGUP Flags.

Indicates the processing conditions encountered by KGUP at
the record postprocessing invocation. The exit cannot change
this field and KGUP does not use the field upon return from
the exit. The field is not used for the KGUP pre- or
postprocessing invocations or the record preprocessing
invocation. The processing conditions can be determined by
examining whether bit 0 is set on.

Bit Meaning When Set On

0 Non-odd parity key was imported.

1 Algorithm is AES

2 Algorithm is DES

3–7 Reserved.

Chapter 5. Installation Exits 151

Table 23. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

16 72 Action Key.

Contains the key index accessed by the KGUP control
statement. The key index consists of the key label and type
fields of a CKDS record entry (“Debugging Aids” on page 101
describes the CKDS record format in greater detail). The key
index is the first 72 bytes of a CKDS record, and the
information in the key index is used to differentiate one key
from another.

The exit can modify the field at the record preprocessing
invocation. The field is not used for the KGUP pre- or
postprocessing invocation or the record postprocessing
invocation.

If the exit modifies the field, KGUP uses the modified field to
access the CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places this
in this field:

v The key label or key old label from the LABEL or key label
from the RANGE keyword of the control statement

v The key type from the TYPE keyword of the control
statement

The exit cannot modify the key label, key old label, or key
type.

88 72 Rename Key.

Contains the key index used to rename a key when RENAME
is the verb on the control statement. The key index consists of
the key label and type fields of a CKDS record entry.

The exit can modify the field at the record preprocessing
invocation. The field is not used for the KGUP pre- or
postprocessing or record postprocessing invocations.

If the exit modifies the field, KGUP uses the modified field to
access the CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places this
information in this field:

v The key new label from the LABEL keyword of the control
statement.

v The key type from the TYPE keyword of the control
statement.

The exit cannot modify the key new label or the key type.

152 z/OS V1R13 System Programmer's Guide

Table 23. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

160 72 Transkey key-label1.

The key index of the TRANSKEY key-label1 on the KGUP
control statement. The key index is the key label and type of
the CKDS record entry.

The exit can modify the field at the record preprocessing
invocation. The field is not used for the KGUP pre- or
postprocessing and record postprocessing invocations.

If the exit modifies the field, KGUP uses the modified field to
access the CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places this
information in this field:

v The key-label1 from the TRANSKEY keyword of the control
statement.

v The key type. The type is IMPORTER, if keys are supplied;
the type is EXPORTER, if keys are not supplied.

The exit cannot modify the key-label1 or the key type.

232 72 Transkey key-label2.

The key index of the TRANSKEY key-label2 on the KGUP
control statement. The key index is the key label and type of
the CKDS record entry.

The exit can modify the field at the record preprocessing
invocation. The field is not used for the KGUP pre- or
postprocessing and record postprocessing invocations.

If the exit modifies the field, KGUP uses the modified field to
access the CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places this
information in this field:

v The key-label2 from the TRANSKEY keyword of the control
statement.

v The key type. The key type is IMPORTER, if keys are
supplied; the type is EXPORTER, if keys are not supplied.

The exit cannot modify the key-label2 or the key type.

304 8 The OUTTYPE value, if specified. If no OUTTYPE is
specified, this field set to binary zeros.

312 4 Key length in bytes.

The value supplied by the LENGTH keyword or the byte
length of the key value if the KEY option was selected.

This value is for ease of processing the key values. The exit
may not modify this value.

Chapter 5. Installation Exits 153

Table 23. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

316 16 Key key-value 1.

The value of the key supplied on the KGUP control statement.
The 16 bytes are hexadecimal characters representing the
8-byte hexadecimal key value. The field contains a value only
if the KEY option was specified and a key value was supplied
on the control statement. You can determine whether the KEY
option was used by examining bit 2 at offset +13 in KGXP.

If TRANSKEY was specified on the control statement, KGUP
decrypts key-value1 under the transport key specified with the
TRANSKEY keyword. If CLEAR was specified on the control
statement, KGUP does not decrypt key-value1.

The exit can modify the field at the record preprocessing
invocation. This field is not used for the KGUP pre- or
postprocessing invocations or the record postprocessing
invocation. The field does not contain a value when
generating keys.

The exit is permitted to put values in this field only if a key
was supplied on the control statement. The exit-supplied value
must be edited for hexadecimal values and it then replaces
the values entered on the input control statement.

332 16 Key key-value 2.

The value of the second key supplied on the KGUP control
statement. The 16 bytes are hexadecimal characters
representing the 8-byte hexadecimal key value. The field
contains a value only if the KEY option was specified and a
key value was supplied on the control statement. You can
determine whether the KEY option was used by examining bit
2 at offset +13 in KGXP.

If TRANSKEY was specified on the control statement, KGUP
decrypts the key-value 2 under the transport key specified
with the TRANSKEY keyword. If SINGLE was specified on the
control statement, the key-value 2 will be equal to the
key-value. If CLEAR was specified on the control statement,
KGUP does not decrypt the key-value 2.

The exit can modify the field at the record preprocessing
invocation. This field is not used at the KGUP pre- or
postprocessing invocation or the record postprocessing
invocation.

The field does not contain a value when generating keys.

The exit can put values in this field only if a key was supplied
on the control statement. The exit-supplied value must be
edited for hexadecimal values; it then replaces the values
entered on the input control statement.

154 z/OS V1R13 System Programmer's Guide

Table 23. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

348 16 Key key-value 3.

The value of the third key supplied on the KGUP control
statement. The 16 bytes are hexadecimal characters
representing the 8-byte hexadecimal key value. The field
contains a value only if the KEY option was specified and a
key value was supplied on the control statement. You can
determine whether the KEY option was used by examining bit
2 at offset +13 in KGXP.

If TRANSKEY was specified on the control statement, KGUP
decrypts the key-value 3 under the transport key specified
with the TRANSKEY keyword. If CLEAR was specified on the
control statement, KGUP does not decrypt the key-value 3.

The exit can modify the field at the record preprocessing
invocation. This field is not used at the KGUP pre- or
postprocessing invocation or the record postprocessing
invocation.

The field does not contain a value when generating keys.

The exit can put values in this field only if a key was supplied
on the control statement. The exit-supplied value must be
edited for hexadecimal values; it then replaces the values
entered on the input control statement.

364 16 Key key-value 4.

The value of the fourth key supplied on the KGUP control
statement. The 16 bytes are hexadecimal characters
representing the 8-byte hexadecimal key value. The field
contains a value only if the KEY option was specified and a
key value was supplied on the control statement. You can
determine whether the KEY option was used by examining bit
2 at offset +13 in KGXP.

The exit can modify the field at the record preprocessing
invocation. This field is not used at the KGUP pre- or
post-processing invocation or the record post-processing
invocation. The field does not contain a value when
generating keys.

The exit can put values in this field only if a key was supplied
on the control statement. The exit-supplied value must be
edited for hexadecimal values; it then replaces the values
entered on the input control statement.

Chapter 5. Installation Exits 155

Table 23. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

380 4 CSFKEYS record for transkey, key-label1.

The address of the CSFKEYS data set record that is output
for transkey key-label1 on the KGUP control statement. The
field ONLY contains a value when generating keys. This field
is filled in when CLEAR keys are generated.

The exit can modify the field at the record postprocessing
invocation. KGUP sets the address to zero for the KGUP pre-
or postprocessing and record preprocessing invocations.

KGUP does not check the field upon return from the exit.
Normal CSFKEYS processing applies. KGUP uses key values
on control statement creation.

For the format of the CSFKEYS record, refer to z/OS
Cryptographic Services ICSF Administrator's Guide.

384 4 CSFCKDS header record.

The address of the CSFCKDS data set header record.

The exit can check the field at the KGUP pre- or
postprocessing invocations. However, the exit can modify the
field only at the KGUP postprocessing invocation. KGUP sets
the value of the field to zero for the record pre- or
postprocessing invocations.

The exit can modify the installation data field of the CKDS
header record (see “Debugging Aids” on page 101 for a
description of the CKDS header record. Offset +196 of the
CKDS header record is the installation data field). The
installation data field supplied by the exit is placed in the
CKDS header record after the KGUP postprocessing
invocation returns control to KGUP.

388 4 CSFCKDS record.

The address of the CSFCKDS data set record processed by
the KGUP control statement. KGUP sets the address to zero
if the TRANSKEY keyword has two labels of transport keys.

The exit can check the field only at the record postprocessing
invocation. KGUP sets the address to zero for the record
preprocessing and KGUP pre- or postprocessing invocations.

The exit can modify the record area if the TRANSKEY
keyword does not have two labels.

156 z/OS V1R13 System Programmer's Guide

Table 23. KGXP Control Block Format (continued)

Offset
(Dec)

Number of
Bytes Description

392 4 RENAME CSFCKDS record.

The address of the CSFCKDS data set record processed
when the RENAME verb is used in a control statement. You
can determine whether the RENAME verb was used by
examining bit 3 at offset +14 in KGXP.

The exit can modify the field at the record postprocessing
invocation. KGUP sets the address to zero for the record
preprocessing and KGUP pre- or postprocessing invocations.

The exit can modify the record area. KGUP does not check
this field upon return from the invocation. Normal CSFCKDS
processing applies.

396 4 Installation data.

The address of the data specified on the INSTDATA keyword
of the KGUP control statement. The address of the area is
zero if a SET control statement has not been processed. “The
SET statement” describes how to use the field in greater
detail.

400 4 Installation exit area.

The address of an area set by the installation that is
preserved across all invocations of the exit. The first byte of
the area contains the length of the area (including the length
byte). After KGUP completes, the first 64 bytes of the area are
written to the SMF data set. The exit has exclusive control of
modifying this area. The area is only used as input to SMF
processing upon completion of KGUP.

The SET statement
Use the SET control statements to specify data to send to a KGUP installation exit.
For a more detailed description of the SET statement, see z/OS Cryptographic
Services ICSF Administrator's Guide.

The installation data field in KGXP (offset +396) contains the address of the data
SET statement specifies. Data that is specified on a SET statement can be
especially useful if you alter key entries. You may want to keep track of the entries
you change by putting the original data and the changed data in the installation
data area.

Return codes
You can pass a return code back to KGUP in the KGXP control block (offset +8).
The exit can use the return code to cause KGUP to reject control statements or to
end KGUP. Return code values, in decimal, for record pre- or postprocessing exit
calls are:

Return Code Description
0 Normal, continue processing.
4 Reject control statement, but do not end KGUP.
8 End KGUP.

Chapter 5. Installation Exits 157

All other return codes are not valid and cause KGUP to end.

Return code values, in decimal, for the KGUP pre- or postprocessing invocations
are:

Return Code Description
0 Normal, continue processing.
>0 End KGUP.

158 z/OS V1R13 System Programmer's Guide

Chapter 6. Installation-Defined Callable Services

This topic contains Programming Interface information.

ICSF provides callable services that perform cryptographic functions. For example,
the ICSF encipher callable service enciphers data. You call and pass parameters to
a callable service from an application program. See z/OS Cryptographic Services
ICSF Application Programmer's Guide for a description of the ICSF callable
services.

Besides the callable services that ICSF provides, you can write your own callable
services; these are known as installation-defined callable services.

Attention: Only an experienced system programmer should attempt to write an
installation-defined callable service. The writing and installation of such a service
require a thorough knowledge of system programming in an z/OS environment. If,
without having this knowledge, you attempt to write or to install installation-defined
callable services, you run the risk of seriously degrading the performance of your
system and causing complete system failure.

To write an installation-defined callable service, you must first write the callable
service and link-edit it into a load module. Then define the service in the installation
options data set. Use the SERVICE installation option keyword to specify a number
to identify the service and the load module that contains the service.

You must also write a service stub. To run an installation-defined callable service,
you call a service stub from your application program. The service stub connects
the application program with the installation-defined callable service. In the service
stub, you specify the service number that identifies the callable service.

During ICSF startup, ICSF loads the load module that contains the service into the
ICSF address space with the ICSF callable services. ICSF binds the service with
the service number that you specified in the installation options data set.

This topic describes how to perform these tasks:
v Write a callable service.
v Define a callable service.
v Write a service stub.

Writing a callable service
An installation-defined callable service receives parameters from the application
program when the program calls the service stub that is associated with the service.
An installation-defined service can also access information in the secondary
parameter block (SPB). The address of the SPB is passed in register 0. See
“Secondary parameter block” on page 131 for a description of the SPB.

The service receives control with these characteristics.
v Supervisor state
v Key 0
v APF authorized
v TCB or SRB mode
v Cross memory mode
v AR mode
v AMODE(31) or AMODE(64)

© Copyright IBM Corp. 1997, 2011 159

v RMODE(ANY)

The service can change the characteristics during their processing. However, the
service must return to its caller with the same characteristics as on entry.

You must write the services in assembler, because you are in Access Register and
cross memory mode, and the addresses of some of the parameters you may
access are ALET-qualified. In particular, parameters passed into a callable service
are in the user's address space, which you can access with an ALET of 1. See
z/OS MVS Programming: Extended Addressability Guide for information about cross
memory and AR mode.

Contents of Registers
The contents of the registers on entry to the callable service are:
Register 0 Address of the secondary parameter block (SPB)
Register 1 Address of the parameter list
Register 2–13 Unpredictable
Register 14 Return address
Register 15 Service entry point address

The contents of the registers on exit from the callable service are:
Register 0 Reason code
Register 1–14 Same as on entry
Register 15 Return code

Figure 9 shows an example of entry and exit code for a generic service.

The example uses the instructions BAKR and PR to replace standard linkage. With
these instructions, you no longer need to pass the save area in a register.

MYSERV CSECT
MYSERV AMODE 31
MYSERV RMODE ANY

USING *,15
B PROLOG Branch around header text
DC C’some text’
DC C’compile date/time’

PROLOG EQU *
DROP 15
BSM R14,0
BAKR 14,0 Save callers info on stack
LAE 12,0 Clear access register 12
LR 12,15 Load reg 15 into 12

PROGSTRT EQU *
USING MYSERV,12 Set up base register

* addressability
.
.
.
Get dynamic area for program
.. STORAGE OBTAIN or CELLPOOL or own scheme ...
.
.
Free dynamic area for program
.
.
.

RETURN L 0,REASON_CODE Put reason code in reg 0
L 15,RETURN_CODE Put return code in reg 15
PR

Figure 9. Example of a Service Entry and Exit

160 z/OS V1R13 System Programmer's Guide

If the callable service ends abnormally, ICSF takes a system dump. The ICSF
service functional recovery routine (FRR) PROTECTS an installation-defined
service. You can, however, write your own recovery routine.

Security access control checking
For the ICSF-defined services, ICSF performs security access control checking to
determine if the caller is authorized to access the service and the results of the
authorization check can be logged in SMF. This checking is not performed by ICSF
for installation-defined services or UDXs. Any security access control checking must
be performed by the installation-defined service or UDX itself.

Checking the parameters
For the ICSF-defined services, ICSF checks the integrity of user-passed
parameters. An error in a parameter that causes a system abend does not cause a
system dump. For an installation-defined callable service, you must perform your
own integrity checking of parameters. An error in a user parameter that results in a
system abend causes a system dump. You can suppress the system dump by
setting a bit on in the SPB. To suppress the dump, set the bit on before you check
the integrity of the parameters. This bit (the SPBTERM bit) is the third bit of the flag
byte at offset 16 in the SPB.

Link-Editing the callable service
After you write the callable service, you need to link-edit it into a load module, and
install the load module into an APF authorized library. ICSF uses this normal search
order to locate the service:
v Job pack area
v Steplib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Defining a callable service
Use the SERVICE keyword in the installation options data set to specify information
about the callable service. ICSF uses this information at ICSF startup to enable the
service. See “Steps to create the Installation Options Data Set” on page 26 for
more information about ICSF installation options.

The SERVICE keyword has this syntax:
SERVICE(service-number,load-module-name,FAIL(fail-option))

The service-number is a number that identifies the service to ICSF. The valid
service numbers are 1 through 32767, inclusive. The load-module-name is the
name of the module that contains the service your installation wrote. During ICSF
startup, ICSF loads the module and binds it to the service number you specified.

Using the fail-option, you specify the action ICSF takes if the loading of the service
ends abnormally. ICSF loads all installation-defined services at ICSF startup.

Specify one of these values for the fail-option:

YES ICSF abends if your service cannot be loaded.

NO ICSF continues to start if your service cannot be loaded.

If the callable service ends abnormally while it is processing, ICSF does not end.

Chapter 6. Installation-Defined Callable Services 161

This SERVICE installation option statement identifies a specific installation-defined
service to ICSF:

SERVICE(50,KSUST,FAIL(NO))

When ICSF starts, it binds the service number 50 to the load module KSUST, which
contains the callable service you wrote. Because the fail option is NO, if your
service cannot be loaded, ICSF continues to start anyway.

Writing a service stub
Besides writing the callable service itself, you must write a service stub, which is
the connection between the application program and the installation-defined service.
In an application program, you call the service stub, which accesses the
installation-defined service. The service stub can be any name you choose to call it.

The service stub must:

v Check that ICSF is active.

v Place the service number for the installation-defined callable service into register
0.

v Call the IBM-supplied processing routine, CSFAPRPC.

CSFAPRPC is used to access the callable services on ICSF. In the service stub,
you must call CSFAPRPC. ICSF stores the address of the CSFAPRPC entry point
in the CCVTPRPC field of the ICSF cryptographic communication vector table
(CCVT). If running in a CICS address space, then, after you call CSFVCCPP, the
system calls the callable service that corresponds to the service number in register
0. “The Cryptographic Communication Vector Table (CCVT)” on page 266 describes
the format of the CCVT.

The contents of the registers on entry to the service stub are:
Register 0 Unpredictable
Register 1 Address of the parameter list
Register 2–13 Unpredictable
Register 14 Return address
Register 15 Service stub entry point address

The contents of the registers on exit from the service stub are:
Register 0 Reason code
Register 1–14 Same as on entry
Register 15 Return code

To run an installation-defined callable service, an application program calls the
service stub. You must link-edit the service stub with the application program that
calls the service stub. Any application program that calls a service stub must be
link-edited with the service stub.

To call an installation-defined service from an application program, use this
statement:

CALL <service-stub-name> <service-parameters>

The service-stub-name is the name of the service stub for the installation-defined
callable service. The service-parameters are the parameters you want to pass to
the installation-defined service. You supply the parameters according to the syntax
of the programming language that you use to write the application program.

162 z/OS V1R13 System Programmer's Guide

Example of a Service Stub
Figure 10 shows an example of a service stub for an installation-defined callable
service.

**** START OF SPECIFICATIONS ***
* *
* MODULE NAME = CSFGEN *
* DESCRIPTIVE NAME = SERVICE STUB *
* *
* FUNCTION = *
* THIS IS A SAMPLE SERVICE STUB. IT IS MEANT TO BE LINKEDITED *
* WITH THE APPLICATION AND ENTERED VIA A CALL CSFGEN. THIS STUB *
* CAUSES THE EXECUTION OF THE SERVICE WITH SERVICE NUMBER = 50 *
* (DECIMAL). *
* MODULE TYPE = ASSEMBLER *
* PROCESSOR = ASSEMBLER *
* MODULE SIZE = ONE BASE REGISTER *
* *
**** END OF SPECIFICATIONS ***
CSFGEN START 0
GENSNUM EQU 50
CSFGEN CSECT
CSFGEN AMODE 31
CSFGEN RMODE ANY
MAINENT DS 0H

USING *,R15
LAE R15,0(R15,0)
L R15,=A(CICSTEST)
BAKR 0,R15 PR from CICSTEST will restore GPRs
LTR R15,R15
BC 2,NOCICS

*
YESCICS DS 0H

SAC 0
STM R14,R12,12(R13)
LR R12,R15
DROP R15
USING MAINENT,R12
LR R3,R0
B NORMAL

*
NOCICS DS 0H
USING MAINENT,R12
BSM R14,0
BAKR R14,0
LAE R12,0
LR R12,R15
SLR R13,R13

* At this point, R0 must contain the service number.
* If we are to call the TRUE, R13 is non-zero
* R1 points to the caller’s parameter list.

NORMAL DS 0H

LA R0,GENSNUM R0 gets service number
SLR R10_ZERO,R10_ZERO
LR RC,R10_ZERO
L R2,CVTPTR
USING CVT,R2
L R2,CVTABEND

Figure 10. Example of a Service Stub (Part 1 of 5)

Chapter 6. Installation-Defined Callable Services 163

CLR R2,R10_ZERO
BC 8,NOICSF
USING SCVTSECT,R2
L R2,SCVTCCVT
CLR R2,R10_ZERO
BC 8,NOICSF
USING CCVT,R2
TM CCVTSFG1,B’00110000’ IS ICSF ACTIVE
BC 1,YESICSF

NOICSF LA RC,12 Set return code to 12 decimal
L R7,RETURN_CODE_PTR(,R1)
ST RC,RETURN_CODE(,R7)
SLR R0,R0
L R7,REASON_CODE_PTR(,R1)
ST R0,REASON_CODE(,R7)
B FINISHED

YESICSF DS 0H
**
* Note that, if we’re in CICS, the prolog code pointed R3 at the AFCB
* and R13 at the caller’s savearea--they’re still pointing. Also, R0
* contains the service number, with the high order bit ON if the TRUE
* has been tried and found wanting. In this last case, CSFVCCPP will
* check the high order bit and not attempt to call the TRUE.
* If R13 is zero, we’re using the linkage stack. That means we can
* call CSFAPRPC.
* If R13 is not zero, we’re using non-stack linkage. That means the
* caller’s savearea will be used. CSFVCCPP uses this kind of linkage.
* But note that CSFVCCPP won’t return here. Instead, it will return
* directly to the caller--that is, to the owner of the only save
* area around.
**

CLR R13,R10_ZERO
BC 8,EXECPRPC
L R15,CCVTPRPD
BALR R14,R15

LR RC,R15
B FINISHED

EXECPRPC L R15,CCVTPRPC
BALR R14,R15
LR RC,R15

FINISHED DS 0H
*
**
* This routine uses the linkage stack to save the caller’s regs
* if this is not a CICS environment. In CICS, it uses the save
* area pointed to by register 13. So the epilog code takes one
* of two forms. If this is CICS (i.e. if R13 is non-zero),
* return is via LM and BR 14. If this is not CICS, return is
* via PR.
*
* On return, the PR of ESA linkage does not restore registers
* 0, 1, 14 and 15. In the LM of normal BR 14 linkage, however,
* everything but 13 gets restored. Since this routine has no
* autodata, there’s no way to pass back return and reason codes
* unless we leave 0 and 15 intact. The solution is to deviate
* slightly from normal BR 14 linkage and restore only registers
* 1 through 12 and 14.
**

LTR R13,R13
BC 8,ENDNOCICS

Figure 10. Example of a Service Stub (Part 2 of 5)

164 z/OS V1R13 System Programmer's Guide

ENDCICS LR R15,RC
L R14,SAVE14(,R13)
LM R1,R12,24(R13)
BR R14

*
EDNOCICS DS 0H

LR R15,RC
LA R7,12
CR R15,R7
BNE ENDSVC
LA R7,16
CR R0,R7
BNE ENDSVC
L R7,RETURN_CODE_PTR(,R1)
ST R15,RETURN_CODE(,R7)
L R7,REASON_CODE_PTR(,R1)
ST R0,REASON_CODE(,R7)

ENDSVC LR R15,RC
PR

**
**
** CICSTEST: Decides whether this is a CICS environment
**
**
CICSTEST DS 0H

LAE R12,0 Clear AR 12
LR R12,R15 Addressability via R12
USING CICSTEST,R12
L R15,=A(CSFGEN) R15 gets caller’s base reg
L R2,CVTPTR GET CVT POINTER
USING CVT,R2
L R2,CVTABEND AND SECONDARY CVT POINTER
USING SCVTSECT,R2
L R2,SCVTCCVT POINT TO CSF CCVT
LTR R2,R2 IS CRYPTO INSTALLED?
BZ RETRN IF NOT, GO HOME
USING CCVT,R2
TM CCVTSFG1,B’00110000’ IS ICSF ACTIVE
BNO RETRN IF NOT , GO HOME

* Check for wait list routine
*

TM CCVTCICS,B’10000000’ Q. CCVTPRPA ON?
BZ RETRN no---No CICS capability
TM CCVTCICS,B’01000000’ Q. CCVTCKWL ON?
BZ CKWLHERE no---use imbedded routine

* yes--use installed routine
LA R0,GENSNUM R0 gets service number
LR R3,R1 R3 saves R1
LR R4,R14 R4 saves R14
LR R5,R15 R5 saves R15
L R15,CCVTCKWL R15 gets routine address
BALR R14,R15 Go check for CICS
LR R0,R15 Save return code in R0
LR R15,R5 Restore R15
LR R14,R4 Restore R14
LR R1,R3 Restore R1
LTR R0,R0 Q. CICS?
BZ RETRN no---return

* yes--pass info along
O R15,M_CICS Enable high bit of R15 to CICS
B RETRN Return

Figure 10. Example of a Service Stub (Part 3 of 5)

Chapter 6. Installation-Defined Callable Services 165

* Cannot use installed routine. Use imbedded routine
*
CKWLHERE DS 0H Imbedded check for TRUE routine

SLR R0,R0 Init R0 to 0
CPYA R8,R12 Zero AR 8
SLR R8,R8 Init R8 to 0
USING PSA,R8
L R8,PSATOLD R8->TCB
USING TCB,R8
LTR R8,R8 Q. Is there a TCB?
BC 8,RETRN no---return

* yes--check state and key
CPYA R11,R12 Zero AR 11
LA R11,1 Get PSW state and key in R6
ESTA R6,R11
LR R7,R6 Copy of state & key in R7
N R7,M_KEY Q. problem key?
BZ RETRN no---return

* yes--check state
N R6,M_STATE Q. problem state?
BZ RETRN no---return

* yes--get the CICS eye-catcher
LA R6,2 Set ARs 6 and 8 to home
SAR R6,R6
SAR R8,R6
L R8,TCBEXT2 R8->TCB extension
USING TCBXTNT2,R8
ICM R4,B’1111’,TCBCAUF R4 gets AFCX address

* Q. Address there?
BZ RETRN no---return

* yes--check eye-catch
CLC 0(4,R4),CICS_EYE Q. CICS?
BNE RETRN no---return

* yes--pass info along
LR R0,R4 R0 gets the AFCX pointer
O R15,M_CICS Enable high order bit of R15

RETRN DS 0H
DROP R12 Free R12
PR Return from CICSTEST subroutine

*
LTORG
DS 0D

*
GENSDATA DS 0F
R10_ZERO EQU 10
RC EQU 05
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*

Figure 10. Example of a Service Stub (Part 4 of 5)

166 z/OS V1R13 System Programmer's Guide

In Figure 10 on page 163, the service stub, CSFGEN, checks that ICSF is active,
places the service number 50 into register 0, and calls CSFAPRPC.

The service number 50 (in the case of this example) must be bound to the
installation-defined service by using the SERVICE keyword in the installation
options data set. The service number is bound to the service when ICSF interprets
the SERVICE installation option statement and loads the service at ICSF startup. To
run the callable service that is associated with service number 50, call the service
stub CSFGEN from an application program.

For flexibility, to create a service stub for a different installation-defined callable
service, you can copy an existing service stub and just change the service number
that you load into register 0.

INPUT_PARMS EQU 0,8,C’C’
RETURN_CODE_PTR EQU INPUT_PARMS,4,C’A’
REASON_CODE_PTR EQU INPUT_PARMS+4,4,C’A’
RETURN_CODE EQU 0,4,C’F’
REASON_CODE EQU 0,4,C’F’
*
SAVAREA EQU 0,72,C’C’
SAVE14 EQU SAVAREA+12,4,C’A’
SAVE01 EQU SAVAREA+24,4,C’A’
SCVTSPTR EQU CVTABEND,4,C’F’
TCBPTR EQU PSATOLD,4,C’F’

DS 0D
*

DS 0F Align
M_KEY DC X’00800000’ Problem key mask
M_STATE DC X’00010000’ Problem state mask
M_NOCICS DC X’7FFFFFFF’ Not-CICS mask
M_CICS DC X’80000000’ Yes-CICS mask

DS 0D
CICS_EYE DC CL4’AFCX’ CICS eye catcher
*

IHAPSA
TITLE ’DSECT CVT’
CVT DSECT=YES
TITLE ’DSECT SCVT’
IHASCVT DSECT=YES
TITLE ’DSECT TCB’
IKJTCB
TITLE ’DSECT CCVT’
CSFCCVT

*
LA R7,12
CR R15,R7
BNE ENDGSVC
LA R7,16
CR R0,R7
BNE ENDGSVC
L R7,RETURN_CODE_PTR(,R1)
ST R15,RETURN_CODE(,R7)
L R7,REASON_CODE_PTR(,R1)
ST R0,REASON_CODE(,R7)
ENDGSVC DS 0H

END

Figure 10. Example of a Service Stub (Part 5 of 5)

Chapter 6. Installation-Defined Callable Services 167

168 z/OS V1R13 System Programmer's Guide

Chapter 7. Converting a CKDS from fixed length to variable
length record format

ICSF provides a CKDS conversion program, CSFCNV2, that converts a fixed length
record format CKDS to a variable length record format. There will be no changes to
the key token in the CKDS record. Only the format of the record will be changed.

Note: You can also use the CSFCNV2 utility to rewrap encrypted DES values in
the CKDS. For more information on this capability of the CSFCNV2 utility,
refer to z/OS Cryptographic Services ICSF Administrator's Guide.

There is no conversion from variable length to fixed length records.

You run the conversion utility program by submitting a batch job. On the EXEC
statement, specify PGM=CSFCNV2.

This example is a JCL that runs the conversion program:
//CKDSCNV2 EXEC PGM=CSFCNV2,PARM=’FORMAT,OLD.CKDS,NEW.CKDS’

Where:

OLD.CKDS
The fixed length record format CKDS to be converted. This is the source
CKDS for the conversion.

NEW.CKDS
An empty disk copy of a variable length record format CKDS. This is the
CKDS into which the conversion utility writes the converted records. The
data set must be defined and empty before you run the conversion
program.

Refer to the SYS1.SAMPLIB CSFCKD2 member sample described in “Steps to
create the CKDS” on page 17 for example JCL that defines a VSAM CKDS for
variable length records.

The CSFV0560 message in the joblog will indicate the results of processing.

Return Code
Meaning

0 Process successful.

4 Minor error occurred.

8 RACF authorization check failed.

12 Process unsuccessful.

60 or 92
CKDS processing has failed. A return code 60 indicates the error was
detected in the new KDS. A return code 92 indicates the error was detected
with the old KDS.

When the program is invoked from another program, the invoking program receives
the reason code in General Register 0 along with the return code in General
Register 15. The following list describes the meaning of the reason codes. If a

© Copyright IBM Corp. 1997, 2011 169

particular reason code is not listed, refer to the listing of ICSF and TSS return and
reason codes in the z/OS Cryptographic Services ICSF Application Programmer's
Guide.

Return code 0 has this reason code:

Reason Code Meaning

36132 CKDS reencipher/Change MK processed only tokens encrypted
under the DES master key.

Return code 4 has these reason codes:

Reason Code Meaning

0 Parameters are incorrect.

4004 Rewrapping is not allowed for one or more keys.

36112 CKDS conversion completed successfully but some tokens could
not be rewrapped because the control vector prohibited rewrapping
from the enhanced wrapping method.

36164 Input CKDS is already in the variable-length record format. No
conversion is necessary.

Return code 8 has this reason code:

Reason Code Meaning

16000 Invoker has insufficient RACF access authority to perform function.

Return code 12 has these reason codes:

Reason Code Meaning

0 ICSF has not been started

11060 The required cryptographic coprocessor was not active or the
master key has not been set

36000 Unable to change master key. Check hardware status.

36008 Crypto master key register(s) in improper state.

36020 Input CKDS is empty or not initialized (authentication pattern in the
control record is invalid).

36036 The new master key register for Coprocessor 1 (C1) is not full, but
C0 is ready and the current master key is valid.

36040 The new master key register for C0 is not full, but C1 is ready and
the current master key is valid.

36044 The master key authentication pattern for the CKDS does not
match the authentication pattern of the coprocessors, which are not
equal.

36048 The master key authentication pattern for the CKDS does not
match the authentication pattern of either of the coprocessors,
which are not equal.

36052 A valid new master key is present in C0, but its authentication
pattern does not match that of C1 or the CKDS, which are equal.

170 z/OS V1R13 System Programmer's Guide

||
|
|

||
|

||

||
|

36056 A valid new master key is present in C1, but its authentication
pattern does not match that of C0 or the CKDS, which are equal.

36060 The new master key register(s) is/are not full.

36064 Both new master key registers are full but not equal.

36068 The input KDS is not enciphered under the current master key.

36076 The new master key register for C0 is not full, but the CPUs are
online.

36080 The new master key register for C1 is not full, but the CPUs are
online.

36084 The master key register cannot be changed since ICSF is running
in compatibility mode.

36104 Option not available. There were no Cryptographic Coprocessors
available to perform the service that was attempted.

36108 PKA callable services are enabled, and the PKDS is the active
PKDS as specified in the options data set.

36120 The CKDS is unusable. The CKDS does not support record level
authentication.

36124 The CKDS is unusable. The CKDS only supports encrypted AES
keys and encrypted DES support is required.

36128 The CKDS is unusable. The CKDS does not support encrypted
DES keys which is required.

36160 The attempt to reencipher the CKDS failed because there is an
enhanced token in the CKDS.

36168 A CKDS has an invalid LRECL value for the requested function. For
wrapping, the input and output CKDS LRECLs must be the same.

36172 The level of hardware required to perform the operation is not
available.

Return code 60 or 92 has these reason codes:

Reason Code Meaning

3078 The CKDS was created with an unsupported LRECL.

5896 The CKDS does not exist.

6008 A service routine has failed.

The service routines that may be called are:
CSFMGN

MAC generation
CSFMVR

MAC verification
CSFMKVR

Master key verification

6012 The single-record, read-write installation exit (CSFSRRW) returned
a return code greater than 4.

6016 An I/O error occurred reading or writing the CKDS.

6020 The CSFSRRW installation exit abended and the installation options
EXIT keyword specifies that the invoking service should end.

Chapter 7. Converting a CKDS from fixed length to variable length record format 171

6024 The CSFSRRW installation exit abended and the installation options
EXIT keyword specifies that ICSF should end.

6028 The CKDS access routine could not establish the ESTAE
environment.

6040 The CSFSRRW installation exit could not be loaded and is required.

6044 Information necessary to set up CSFSRRW installation exit
processing could not be obtained.

6048 The system keys cannot be found while attempting to write a
complete CKDS data set.

6052 For a write CKDS record request, the current master key
verification pattern (MKVP) does not match the CKDS header
record MKVP.

6056 The output CKDS is not empty.

Note: It is possible that you will receive MVS reason codes rather than ICSF
reason codes, for example, if the reason code indicates a dynamic allocation
failure. For an explanation of Dynamic Allocation reason codes, see z/OS
MVS Programming: Authorized Assembler Services Guide

172 z/OS V1R13 System Programmer's Guide

Chapter 8. Migration from PCF to z/OS ICSF

If your installation uses the cryptographic product, Programmed Cryptographic
Facility (PCF), ICSF helps you migrate PCF applications to ICSF. You can run PCF
applications on ICSF to gain the enhanced performance and availability of ICSF
and to test ICSF. Eventually, you should convert these applications to use ICSF
services, rather than the PCF macros.

During migration, you can run PCF applications on ICSF because ICSF continues
to support the PCF macros (GENKEY, RETKEY, EMK, and CIPHER). If GENKEY or
RETKEY macro exits exist, you should reevaluate their applicability to ICSF. If an
exit performs a necessary function, you need to rewrite the exit for ICSF. Exits exist
for the compatibility services on ICSF.

If a PCF application uses a key in the PCF cryptographic key data set, you must
convert the key to an ICSF cryptographic key data set before you run the PCF
application on ICSF. ICSF provides a program to make this conversion.

Running PCF and z/OS ICSF on the same system
You can run PCF and ICSF simultaneously on the same z/OS system or separately
in three different modes. You can run ICSF in compatibility, coexistence, or
noncompatibility mode.

In compatibility mode, you can run either PCF or ICSF, but you cannot run them
simultaneously on the same z/OS system. You can continue to run PCF
applications on PCF or you can run PCF applications on ICSF. ICSF supports the
PCF macros that the PCF applications call. However, you cannot run the PCF key
generator utility program (KGUP) on ICSF. You do not have to reassemble PCF
applications to run the applications on ICSF.

In coexistence mode, you can run PCF and ICSF simultaneously on the same z/OS
system. You can continue to run a PCF application on PCF or you can reassemble
the PCF application to run on ICSF. In this mode, ICSF supports the PCF macros
when a reassembled PCF application calls these macros.

In noncompatibility mode, you can run PCF and ICSF simultaneously and
independently on the same z/OS system. You can run PCF applications on PCF
and ICSF applications on ICSF. You cannot run PCF applications on ICSF, because
ICSF does not support the PCF macros in this mode.

You can run PCF simultaneously and independently in coexistence and
noncompatibility mode. Therefore, in these modes, you can run PCF KGUP on PCF
while running ICSF. The PCF KGUP updates keys on a PCF CKDS.

The ICSF installation option COMPAT(YES, COEXIST or NO) allows you to specify
which mode you want ICSF to run in. You specify COMPAT(YES) for compatibility
mode, COMPAT(COEXIST) for coexistence mode, and COMPAT(NO) for
noncompatibility mode. See “Steps to create the Installation Options Data Set” on
page 26 for information about creating the installation options data set and
“Parameters in the installation options data set” on page 38 for details about these
options.

© Copyright IBM Corp. 1997, 2011 173

Running in Compatibility Mode
In compatibility mode, you can run a PCF application on ICSF without reassembling
the application. A PCF application running on ICSF can still use PCF macros,
because ICSF supports these macros. The PCF application gains the enhanced
performance, reliability, and availability of ICSF.

You cannot run PCF and ICSF simultaneously on the same z/OS system in
compatibility mode. If you start PCF, you must stop PCF before you can start ICSF.
If you start ICSF, you must stop ICSF before you can start PCF.

A PCF application may have used keys on the PCF cryptographic key data set
(CKDS). When you run the application on ICSF, these keys must be in the ICSF
CKDS. The format of a key entry on the PCF CKDS differs from the format of a key
entry on the ICSF CKDS. Therefore, you need to run a conversion program to
convert the PCF CKDS entries and place the entries in the ICSF CKDS. See
“Converting a PCF CKDS to ICSF format” on page 177 for a description of how to
convert a PCF CKDS.

For encryption, ICSF supports the Data Encryption Standard (DES), the
Commercial Data Masking Facility (CDMF), or both. Wherever possible, the key
token is marked to signal which algorithm to use.

PCF macros receive identical error return codes if they run on ICSF or PCF, with
one exception. If a key is installed on the ICSF CKDS with the correct label but with
the wrong key type, an attempt to use that key by RETKEY or GENKEY results in a
return code of 8 from PCF. This indicates that the key was not of the correct type.
ICSF issues return code 12, indicating that it could not find the key. Ensure that
PCF LOCAL or CROSS 1 keys are installed in the ICSF CKDS as EXPORTER
keys. Also, ensure that REMOTE and CROSS 2 keys are installed in the ICSF
CKDS as IMPORTER keys.

In compatibility mode, the safest method for changing the master key is to re-IPL
the system. To change the master key in compatibility mode, see “Changing the
master key in compatibility or coexistence mode” on page 175.

Note: To use AMS REPRO encryption, you need to run ICSF in compatibility mode.

Running in Coexistence Mode
In coexistence mode, you can run ICSF and PCF simultaneously on the same z/OS
system and run a PCF application on PCF or on ICSF. A PCF application running
on ICSF gains the enhanced performance, reliability, and availability of ICSF.

A PCF application running on ICSF can still use PCF macros, because ICSF
supports these macros. ICSF ships changed PCF macros in SAMPLIB that run only
on ICSF. Because these changed PCF macros already exist unchanged on PCF,
the changed PCF macros shipped with ICSF are named differently.

On ICSF, in SAMPLIB:
v The changed PCF EMK macro is named CSFEMK.
v The changed PCF CIPHER macro is named CSFCIPH.
v The changed PCF RETKEY macro is named CSFRKY.
v The changed PCF GENKEY macro is named CSFGKY.

You can rename these macros to the PCF names when you want to run a PCF
application on ICSF.

174 z/OS V1R13 System Programmer's Guide

To run a PCF application on ICSF, you must:

v Rename the changed PCF macro shipped in ICSF SAMPLIB to the appropriate
PCF name.

v Place the macro in the appropriate macro library.

v Reassemble the PCF application against the changed PCF macro.

Then the application can run only on ICSF. To run a PCF application on PCF, just
run the application without reassembling the application.

During migration, you can start ICSF and start PCF so that both products are
running simultaneously. If you want to run a PCF application using the PCF macros
on PCF, do not reassemble the application. If you want to run a PCF application
using the changed PCF macros on ICSF, reassemble the application against the
changed macros. Coexistence mode enables you to run the products
simultaneously and choose whether to run a PCF application on PCF or ICSF.

A PCF application can use keys on the PCF CKDS. When you run the application
on ICSF, those keys must be in the ICSF CKDS. The format of a key entry on the
PCF CKDS differs from the format of a key entry on the ICSF CKDS. Therefore,
you need to run a conversion program to convert the PCF CKDS entries and place
the entries in the ICSF CKDS. See “Converting a PCF CKDS to ICSF format” on
page 177 for a description of how to convert a PCF CKDS.

In coexistence mode, the safest method for changing the master key is to re-IPL the
system. See “Changing the master key in compatibility or coexistence mode” for a
description of the process used to change the master key in coexistence mode.

Changing the master key in compatibility or coexistence mode
In compatibility and coexistence modes, the safest way to activate a master key
after changing it is to re-IPL the system. This process is different from the usual
process for entering and activating a master key. For information about changing
the master key, see z/OS Cryptographic Services ICSF Administrator's Guide.

A re-IPL ensures that a program does not access a cryptographic service with a key
that is encrypted under a different master key. If a program is using an operational
key, the program either re-creates the key or imports the key again.

In compatibility or coexistence mode, the ICSF administrator can use the ICSF
panels to enter the key value into the new master key register. However, the master
key cannot be activated using the panels in compatibility or coexistence mode. The
value entered remains in the new master key register until you re-IPL the system.
(In noncompatibility mode, the ICSF administrator can use the ICSF panels to enter
the key value into the new master key register and to activate the master key.)

If the new master key is different than the current master key, the ICSF
administrator must reencipher the CKDS under this new master key. To do this,
choose the change option on the master key management panel. This reenciphers
a CKDS under the master key in the new master key register. Reencipher all the
disk copies of the CKDSs, and leave the ICSF panels without changing the master
key.

Then re-IPL the system and restart ICSF. In the installation options data set, the
CKDSN installation option must specify a disk copy of the CKDS that is
reenciphered under the new master key. When ICSF starts again, it detects that the
current master key is not the one that enciphered the CKDS that is specified in the

Chapter 8. Migration from PCF to z/OS ICSF 175

installation options data set. ICSF detects that the CKDS is enciphered under the
new master key and makes that master key active.

If your installation requires 24-hour availability and it is not possible to re-IPL the
system, an alternative method is to stop all cryptographic applications, especially
those using PCF macros. This helps eliminate inadvertent use of operational keys
that are encrypted under the old master key. After you restart CSF, applications
using an operational key can either re-create or reimport the key.

Running in noncompatibility mode
In noncompatibility mode PCF and ICSF can run simultaneously and independently.
You can run both ICSF and PCF at the same time. Just start one and then the
other. Both ICSF and PCF run completely separate from each other. Each has its
own applications and each uses its own services and CKDS.

You cannot run a PCF application on ICSF, even if you reassemble it. If you run an
application on ICSF that calls a PCF macro, the application ends abnormally,
because ICSF does not support the PCF macros in noncompatibility mode.

Because each product runs separately, neither product loses any function in
exchange for compatibility. When ICSF is in compatibility or coexistence mode, you
can no longer change the master key dynamically. In noncompatibility mode, this
function is still possible. Therefore, except for when your installation is migrating to
ICSF, you probably want to run ICSF in noncompatibility mode.

Note: When you initialize ICSF for the first time, noncompatibility mode must be
active.

Specifying compatibility modes during migration
The process and duration to migrate from PCF to ICSF depend on your installation.
You can use different modes in different stages of migration. To change modes,
change the COMPAT option in the installation options data set and restart ICSF.
When you complete migration to ICSF, you can run in noncompatibility mode to use
the full function of ICSF.

When you first install an ICSF system, you can continue to run PCF for production
and just test ICSF. Because you are running the products separately but
simultaneously on the same z/OS system, you can run in noncompatibility or
coexistence mode. To run in compatibility mode, you need more than one z/OS
system. You can run the test applications on ICSF on one z/OS system while you
run your production on PCF on another z/OS system.

When you begin testing ICSF, you can run existing applications in either
compatibility mode or coexistence mode to test the PCF macros on ICSF. After you
run the test applications, you may want to bring up production using PCF
applications on ICSF. When you bring over PCF applications to ICSF, you can run
in coexistence mode. In this mode, you can run an application on PCF and then
reassemble the application to run the application on ICSF.

While, or after, you bring PCF applications into production on ICSF, you can run test
applications that call ICSF services. You can then convert the applications that call
PCF macros to applications that call the ICSF services. The ICSF services provide
enhanced key separation, performance, and function. After you convert all your PCF
applications to ICSF applications, you can activate noncompatibility mode and have
the full function of ICSF.

176 z/OS V1R13 System Programmer's Guide

Converting a PCF CKDS to ICSF format
During migration, you may need to convert a PCF CKDS into ICSF CKDS format if:

v PCF applications running on ICSF use keys stored in a PCF CKDS.

v Your installation uses the PCF key generator utility program to create keys and
uses ICSF for other cryptographic operations. To use the keys in ICSF
applications, you must convert the PCF CKDS.

ICSF provides a PCF conversion program, CSFCONV, that converts a PCF CKDS
into an ICSF CKDS. The conversion program runs with certain defaults. The
program converts all the entries in a PCF CKDS and converts the PCF key types
into certain corresponding ICSF key types. You can use the conversion program
override file to instruct the conversion program not to convert certain entries. You
can also tell the conversion program to convert a PCF key type into a different
ICSF key type than the default.

These topics describe how:
v The conversion program runs with certain defaults
v To use the override file to make it run differently
v To run the conversion program

How the PCF conversion program runs
You can run the PCF conversion program only after you initialize the master key
and CKDS for ICSF. To run the conversion program on CCF systems, the CKDS
you specify at ICSF startup must be initialized to contain NOCV-enablement keys.
For non-CCF systems, NOCV-enablement keys are not required. For information
about master key and CKDS initialization and NOCV-enablement keys, see z/OS
Cryptographic Services ICSF Administrator's Guide.

When the conversion program processes a PCF CKDS, the program duplicates the
single length key values to create double length keys.

The conversion program merges the PCF CKDS with an input ICSF CKDS. The
input ICSF CKDS is an existing disk copy of an ICSF CKDS. The input ICSF CKDS
must contain a header record and include system keys entries, but may or may not
contain other key entries. ICSF uses NOCV enablement keys to create keys to
communicate with systems that do not use control vectors. If the ICSF CKDS
resulting from the conversion contains converted importer or exporter
key-encrypting keys, the input ICSF CKDS must contain NOCV enablement keys.
For information about initializing an ICSF CKDS, see z/OS Cryptographic Services
ICSF Administrator's Guide.

The PCF conversion program places the input ICSF CKDS entries and the
converted PCF entries into an output CKDS. You must create an empty VSAM data
set to be the output CKDS before running the conversion program. See “Steps to
create the CKDS” on page 17 for information about creating the data set.

The PCF conversion program converts all the entries in a PCF CKDS. When you
run the PCF conversion program, the program does these conversions of PCF key
types into ICSF key types:

v Converts each PCF local key entry into an ICSF NOCV exporter key-encrypting
key entry.

v Converts each PCF remote key entry into an ICSF NOCV importer
key-encrypting key entry.

Chapter 8. Migration from PCF to z/OS ICSF 177

v Converts each PCF cross key entry into two ICSF key entries: an NOCV exporter
key-encrypting key and an NOCV importer key-encrypting key.

You use the override file to not convert all the entries in a PCF CKDS or to convert
a PCF key into a different key type than the default key type.

When the PCF conversion program converts a PCF entry, the program places any
installation data from the installation data field of the PCF entry into the ICSF entry.
You can use the override file to place different installation data into the ICSF entry.

Note: ICSF copies any installation data in the input CSF CKDS header record into
the output ICSF CKDS header record.

As the conversion program reads the PCF CKDS, the input ICSF CKDS, and the
override file, the program places key entries into a virtual image of the output ICSF
CKDS. When the virtual image CKDS is complete, the conversion program
reenciphers the key values of the PCF entries from under the PCF master key to
under the ICSF master key. The conversion program places the reenciphered
entries into the actual output CKDS.

As the conversion program creates the virtual image ICSF CKDS, the conversion
program takes information from the PCF entry and possibly the override file. For
each PCF entry, the conversion program checks if its key label exists in the
override file. If the label does exist in the override file, the conversion program takes
the action that is specified in the override file. The program either converts or
bypasses the entry. If the key label does not exist in the override file, ICSF converts
the entry.

The conversion program compares the converted PCF entries by label and type
with the ICSF entries that already exist in the input ICSF CKDS. If there is a match,
the conversion program replaces the key value from the converted entry of the PCF
source into the virtual image CKDS. If there is not a match, the conversion program
converts each PCF entry after checking the override file. If the label matches and
the type does not, the conversion program checks to see if the type requires a
unique label. If a unique label is not required, the conversion program converts the
PCF entry after checking the override file. If a unique label is required, the
conversion program does not convert the PCF entry and issues an error message.
If the record type is DATA, DATAXLAT, MAC, MACVER, or NULL the CKDS record
requires a unique label. The CKDS record also requires a unique label if the record
has ever been updated by the dynamic CKDS update callable services. The
conversion program also places all the input ICSF CKDS entries into the virtual
image CKDS.

Calling installation exits during conversion
You can call two installation exits during conversion program processing: the
conversion program exit (CSFCONVX) and the single-record, read-write exit
(CSFSRRW). The conversion program calls the exit at three different times: before,
during, and after conversion program processing. See Chapter 5, “Installation Exits,”
on page 111 for a description of the conversion program and single-record,
read-write exit control blocks.

The conversion program calls the CSFCONVX exit after you submit the conversion
program job, but before the program actually begins processing. At this point, you
can use the exit to change the output ICSF CKDS header record installation data
field.

178 z/OS V1R13 System Programmer's Guide

The conversion program also calls the CSFCONVX exit during processing as the
conversion program completes the virtual image ICSF CKDS, but before the
conversion program reenciphers the key values. The conversion program calls the
exit as it writes each record to the virtual image ICSF CKDS. At this point, you can
use the exit to specify that the conversion program not place an entry into the
output ICSF CKDS.

The conversion program also calls the CSFCONVX exit after the conversion
program completes processing. At this point, you can use the exit to change the
output ICSF CKDS header record installation data field.

As the conversion program reads the records from the virtual image ICSF CKDS to
the actual output ICSF CKDS it calls the single-record, read-write exit. The
conversion program calls the single-record, read-write exit as it writes each record
to the output ICSF CKDS. You can use this exit to specify that the conversion
program not place an entry into the output ICSF CKDS.

The conversion program writes every entry from the PCF CKDS and input ICSF
CKDS into the output ICSF CKDS unless an override record or installation exit
indicates that the conversion program should bypass the entry from the PCF CKDS.

Using the conversion program override file
The conversion program converts all entries in a PCF CKDS into ICSF entries. The
conversion program also converts each type of PCF key into a specific ICSF key
type. If you want the conversion program to bypass certain key entries or convert a
specific key or key type differently than it does by default, use the override file.

By specifying override records, you can have the conversion program:
v Bypass conversion of key entries
v Include information in key entries
v Convert key types differently than it does by default

These actions can relate to entries explicitly identified with a key label or entries
that are identified globally.

You specify information in certain fields in an override record and leave other fields
blank, depending on the action you want the conversion program to take. You can
specify a global record affecting more than one PCF CKDS entry or a record that
affects only one PCF CKDS entry.

All the override data set records should be in ascending sequence by key label and
old key type. If you use global entries, they must be the initial entries in the override
record. Table 24 on page 180 shows the syntax of a record in the override file.

Note: All the fields should contain character values and be left-justified.

If you specify a key label in an override record, the conversion program processes
the key entry identified by that key label. If you do not specify a key label in an
override record, you are using a global override record. The conversion program
processes all the key labels that pertain to the information specified by the override
file.

You can use a global override record to affect all the entries in a CKDS and then
use override records to explicitly affect entries you did not want to have that global
override record affect.

Chapter 8. Migration from PCF to z/OS ICSF 179

Table 24. Format of Records in the Override File

Column Length Description

1 8 Key Label

The key label of the PCF entry you want to convert

The field can have these values:
v Blanks
v A key label existing in the PCF CKDS that you want to

convert

9 1 This field must be blank.

10 8 Old Key Type

The key type of the key entry you want to convert in the
PCF CKDS.

The field can have these values:
v Blanks
v LOCAL
v REMOTE

18 1 This field must be blank.

19 8 New Key Type

The key type that you want the converted key entry to be in
the ICSF CKDS. The master key variant for the key type
enciphers the key in the ICSF CKDS entry that the
conversion program creates.

The field can have these values:
v Blanks
v OPINENC
v EXPORTER
v IPINENC
v IMPORTER

27 1 This field must be blank.

28 8 Ignored

In ICSF/MVS Version 1 Release 1, this field contained the
key qualifier. The CKDS for ICSF/MVS Version 1 Release 2
or above does not support key qualifiers. If your installation
has a PCF conversion program override file created with
ICSF/MVS Version 1 Release 1, you can still use it with
z/OS ICSF. Any key qualifier entries are ignored.

36 1 This field must be blank.

37 1 Bypass Flag

Used to indicate that an input CKDS entry is not to be
included in the new ICSF CKDS. If you set this field to Y, the
conversion program does not convert the entry.

The field can have these values:
v Blank (same as N)
v N
v Y

38 1 This field must be blank.

180 z/OS V1R13 System Programmer's Guide

Table 24. Format of Records in the Override File (continued)

Column Length Description

39 52 Installation Data

Any additional information your installation records about a
key. The information appears in the installation data field of
the new ICSF CKDS.

The field can contain any value.

Bypassing Conversion of Entries
Using an override record, you can bypass a PCF entry so it is not converted and
placed in the ICSF CKDS. You can use a global override record to bypass all the
entries in the data set and then use explicit override records to convert certain
entries. You can also convert most of a PCF CKDS and just bypass certain entries
using explicit override records.

These are some examples of override records for bypassing conversion.

Example 1: This example shows an override record specifying that the conversion
program not convert any PCF CKDS entry with a certain key label.

EXTOATM3 Y

The conversion program bypasses any PCF CKDS entry with the label EXTOATM3.

Example 2: This example shows an override record specifying that the conversion
program not convert any PCF CKDS entry with a certain key label and key type.

CRLABEL4 REMOTE Y

The conversion program bypasses any PCF CKDS entry with the label CRLABEL4
and key type REMOTE.

Example 3: This example shows a global override record specifying that the
conversion program bypass all the entries in a PCF CKDS.

Y

The conversion program does not convert any of the entries in the PCF CKDS.

After you specify this global override record, you can use explicit override records to
convert certain entries in the PCF CKDS. For example, you can use an override
record like this one to explicitly convert PCF entries with a certain label.

ATM03 N

In this example, the conversion program converts any PCF CKDS entry with the
label ATM03.

Example 4: This example shows a global override record specifying that the
conversion program bypass all the entries with a certain PCF key type in a PCF
CKDS.

REMOTE Y

The conversion program does not convert any of the entries with a key type of
REMOTE in the PCF CKDS. After you specify this global override record, you can
use explicit override records to convert specific entries with a key type of REMOTE
in the PCF CKDS.

Chapter 8. Migration from PCF to z/OS ICSF 181

Including Information in a Key Entry

Programming Interface information

An ICSF key entry contains an installation data field that an installation can use to
further identify a key. The installation data field contains any information that an
installation wants to supply about a key.

PCF records contain an installation data field. The conversion program places the
information in the field into the installation data field of the converted entry in the
output ICSF CKDS. You can use an override record to specify installation data
information for the converted entry in the output ICSF CKDS. The installation data
information supplied in the override record overrides any information from the PCF
installation data field. If you do not use an override record, the conversion program
places any installation data from the PCF entry into the leftmost 8 bytes of the ICSF
entry.

These are examples of override records for including key information.

Example 1: This example shows an override record providing the conversion
program with installation data information to place in the ICSF CKDS for any
converted PCF entry with a certain key label.

ATMKEY12 CONVERTED FROM CUSP1.CKDS 10/01/98

When the conversion program converts an entry that is labeled ATMKEY12, it
places CONVERTED FROM CUSP1.CKDS 10/01/98 in the installation data field for the
converted entry.

Example 2: This example shows an override record providing the conversion
program with installation data information to place in the ICSF CKDS for any
converted PCF entry with a certain key label and key type.

LOCAL890 LOCAL CONVERTED FROM PCF12.CKDS

When the conversion program converts an entry that is labeled LOCAL890 with a
key type of LOCAL, it places CONVERTED FROM PCF12.CKDS in the installation data
field for the converted entry.

Example 3: This example shows a global override record that provides the
conversion program with installation data information to place in the ICSF CKDS for
all converted entries.

CONVERTED FROM PCF10.CKDS

When the conversion program converts the PCF CKDS, it places CONVERTED FROM
PCF10.CKDS in the installation data field. The information is placed into every
converted key entry. After you specify this global override record, you can use
explicit override records to provide different information for specific entries in the
PCF CKDS.

End of Programming Interface information

Converting Key Types
By default, the conversion program converts PCF keys into certain ICSF key types.
You can use the override file to override the defaults. For example:

v Instead of automatically converting a PCF local key into a NOCV exporter
key-encrypting key, you can convert the local key into an output PIN-encrypting
key.

182 z/OS V1R13 System Programmer's Guide

v Instead of automatically converting a PCF remote key into a NOCV importer
key-encrypting key, you can convert the remote key into an input PIN-encrypting
key.

v Instead of automatically converting a PCF cross key into a NOCV exporter
key-encrypting key and a NOCV importer key-encrypting key, you can convert
the cross key into an output PIN-encrypting key and an input PIN-encrypting key.

You can use a global override record to convert all keys of a certain type into a type
other than the conversion program default key type. Then using an explicit override
record, you can specify that the conversion program convert a specific record into a
the default key type. For example, you can use a global override record to convert
all remote keys into input PIN-encrypting keys, and then use an override record to
convert specific remote entries into importer key-encrypting keys.

These are some examples of override records for key type conversion.

Example 1: This example shows an override record specifying that the conversion
program convert a local key to an output PIN-encrypting key for any PCF CKDS
entry with a certain key label. The override record also provides the conversion
program with installation data.

CRLABEL1 LOCAL OPINENC OPINENC FOR ATM123

When the conversion program converts any PCF entry labeled CRLABEL1 with a
key type of local, it converts the key from a local key type to an output
PIN-encrypting key type. The program also places OPINENC FOR ATM123 in the
installation data field.

If you did not specify this override record, the conversion program would
automatically convert the entry from a local key type to an exporter key-encrypting
key type.

Example 2: This example shows an override record specifying that the conversion
program convert a remote key to an input PIN-encrypting key for any PCF CKDS
entry with a certain key label. The override record also provides the conversion
program with installation data.

CRLABEL2 REMOTE IPINENC IPINENC FOR ATM123

When the conversion program converts any PCF CKDS entry labeled CRLABEL2
with a key type of remote, it converts the key from a remote key type to an input
PIN-encrypting key type. The program also places IPINENC FOR ATM123 in the
installation data field.

If you did not specify this override record, the conversion program would
automatically convert the entry from a remote key type to an importer
key-encrypting key type.

Example 3: This example shows an override record specifying that the conversion
program convert a local key to an exporter key-encrypting key for any PCF CKDS
entry with a certain key label. The override record also provides the conversion
program with installation data.

LOLABEL1 LOCAL EXPORTER EXPORTER CONVERTED FROM CUSP12.CKDS

The conversion program automatically converts a local key to an exporter
key-encrypting key. You can use this override record if you previously submitted an
override record that had the conversion program convert all the local key types to

Chapter 8. Migration from PCF to z/OS ICSF 183

output PIN-encrypting keys. You can use this override record to explicitly convert
the key entry that is labeled LOLABEL1 from a local key type to an exporter
key-encrypting key type.

With the example override record, when the conversion program converts any PCF
entry labelled LOLABEL1 with a key type of local, it converts the key from a local
key type to an exporter key-encrypting key type. The program also places EXPORTER
CONVERTED FROM CUSP12.CKDS in the installation data field.

Example 4: This example shows an override record specifying that the conversion
program convert a remote key to an importer key-encrypting key for any PCF CKDS
entry with a certain key label. The override record also provides the conversion
program with installation data.

RECKDS12 REMOTE IMPORTER IMPORTER CONVERTED FROM CUSP12.CKDS

The conversion program automatically converts remote keys to importer
key-encrypting keys. You can use this override record if you supplied an override
record to convert all the remote key types to input key-encrypting keys. Use this
override record to explicitly convert key entries labeled RECKDS12 from remote key
types to importer key-encrypting key types.

With the example override record, when the conversion program converts any PCF
entry labeled RECKDS12 with a key type of remote, it converts the key from a
remote key type to an importer key-encrypting key type. The program also places
IMPORTER CONVERTED FROM CUSP12.CKDS in the installation data field.

Example 5: This example shows a global override record specifying that the
conversion program convert a local key to an output PIN-encrypting key for any
PCF CKDS entry with a key type of local. The override record also provides the
conversion program with installation data.

LOCAL OPINENC OPINENC FROM CUSP.PIN12.CKDS

When the conversion program converts any PCF entry with a key type of local, the
program converts the key from a local key type to an output PIN-encrypting key
type. The program also places OPINENC FROM CUSP.PIN12.CKDS in the installation
data field. After you specify this global override record, you can use explicit override
records to place different installation data in the ICSF CKDS entries.

Example 6: This example shows a global override record specifying that the
conversion program convert a remote key to an input PIN-encrypting key for any
PCF CKDS entry with a key type of remote. The override record also provides the
conversion program with installation data.

REMOTE IPINENC IPINENC FROM CUSP.PIN12.CKDS

When the conversion program converts any CUSP/PCF entry with a key type of
remote, it converts the key from a remote key type to an input PIN-encrypting key
type. The program also places IPINENC FROM CUSP.PIN12.CKDS in the installation
data field for the entry in the ICSF CKDS. After you specify this global override
record, you can use explicit override records to place different installation data
information in the ICSF CKDS entries.

Running the Conversion Program
You can run the conversion program only after you initialize the master key and
CKDS for ICSF. The CKDS you specify at ICSF startup must be initialized to

184 z/OS V1R13 System Programmer's Guide

contain NOCV-enablement keys. For information about defining keys on ICSF, see
z/OS Cryptographic Services ICSF Administrator's Guide.

If the PCF master key and the ICSF master key are not the same, you must define
the PCF master key in the input ICSF CKDS. Define the PCF master key as an
importer key-encrypting key in the input ICSF CKDS. You define the key by entering
the key through the key entry hardware, or by importing the key using the ICSF key
generator utility program. For information about direct key entry through the key
entry hardware and the key generator utility program, see z/OS Cryptographic
Services ICSF Administrator's Guide.

Note: Be careful defining the PCF master key in the input ICSF CKDS, because
there is no programmed way to determine its validity.

You run the conversion program by submitting a batch job. On the EXEC statement,
specify PGM=CSFCONV. If the PCF master key and ICSF master key are not the
same in the PARM= field on the EXEC statement, specify the label of the PCF
master key entry in the input ICSF CKDS. If you do not specify the parameter, the
conversion program assumes that the PCF master key and ICSF master key are
the same.

This example is a JCL that runs the conversion program:
//CKDSCONV EXEC PGM=CSFCONV,PARM=’CUSPMKEY’
//CSFVSRC DD DSN=PROD.CUSP.CKDS,DISP=SHR
//CSFVINP DD DSN=TEST.CSF.CKDS,DISP=SHR
//CSFVOVR DD DSN=OVERRIDE.DATA,DISP=OLD
//CSFVNEW DD DSN=MERGED.CSF.CKDS,DISP=OLD
//CSFVRPT DD SYSOUT=A
//

In the example, CUSPMKEY is the label of the entry in the input ICSF CKDS for
the PCF master key in importer key-encrypting key form. All the data sets
necessary to run the conversion program are specified using DD statements.

The conversion program uses these data sets:

CSFVSRC
The PCF CKDS containing entries that you want to convert into ICSF
format and place in the output ICSF CKDS. This is the source CKDS for the
conversion. For a description of the PCF CKDS record format, see OS/VS1
and OS/VS2 MVS Programmed Cryptographic Facility.

CSFVINP
A disk copy of the input ICSF CKDS. The input CKDS should already
contain the header record and the ICSF system keys and can contain other
ICSF key entries. If the CKDS does not contain NOCV-enablement keys,
the output ICSF CKDS will not contain NOCV-enablement keys. For more
information about NOCV-enablement keys, see z/OS Cryptographic
Services ICSF Administrator's Guide.

Note: The input ICSF CKDS does not have to be the CKDS you specify
when you start ICSF.

CSFVOVR
The override file with information specifying how you want the conversion
program to process PCF key entries. If no override data is required, this
data set is optional. However, you must code a dummy DD statement in the
JCL.

Chapter 8. Migration from PCF to z/OS ICSF 185

This JCL is an example of a dummy DD statement for an override file:
//CSFVOVR DD DUMMY,DCB=(RECFM=FB,LRECL=90,BLKSIZE=3600)

See “Using the conversion program override file” on page 179 for a
description of when and how to use the override file.

CSFVNEW
An empty disk copy of an ICSF CKDS. This is the ICSF CKDS into which
the conversion program places key entries. The conversion program places
key entries from the input ICSF CKDS and the PCF CKDS into the output
ICSF CKDS. The data set must be defined and empty before you run the
conversion program.

CSFVRPT
The activity report that the conversion program creates. The report
describes any override records and gives a summary of CKDS entries that
were affected by the conversion program.

Attention: If a conversion program run ends prematurely, the results of the job
are unpredictable. You should not read a CKDS involved in the conversion into
storage for use. For a description of the conversion program return codes, see the
explanation of message CSFV0026 in z/OS Cryptographic Services ICSF
Messages.

When you run the conversion program, the program produces information about the
conversion in an activity report. The activity report lists each override entry, the
action each override entry applies to the input PCF CKDS, and any error
messages. The activity report also lists the data sets that were used in the
conversion and a summary of processing. The summary of processing contains
totals that apply to CKDS entries in the conversion program job.

Example of a Conversion Initial Activity Report
Figure 11 on page 187 is an example of an activity report with five explicit override
records and no global override records.

186 z/OS V1R13 System Programmer's Guide

In the report, the first override record specifies that when the conversion program
converts a PCF entry labeled CRLABEL3 with a key type of local, the program
should convert the entry into an output PIN-encrypting key. The conversion program
also places the information Used in transfers to Main Office in the installation
data field of the output ICSF CKDS entry.

The second override record specifies that when the conversion program converts a
PCF entry labeled CRLABEL3 with a key type of remote, the program should
convert the key into an input PIN-encrypting key. The conversion program places
the information Used in receiving from the Main Office in the installation data
field of the output ICSF CKDS entry.

The label specified by the third override record does not exist in the PCF CKDS.
Therefore, the conversion program ignores this override record.

The fourth override record specifies that when the conversion program converts a
PCF entry labelled LOLABEL2, the program should place the information Valid for
January 2001 in the installation data field of the output ICSF CKDS record.

The label specified by the fifth override record does not exist on the PCF CKDS
that the conversion program is converting. Therefore, the conversion program
ignores this override record.

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 1
OVERRIDE--> CRLABEL3 LOCAL OPINENC Used in transfers to Main Office.
>>>CSFV0192 TYPE FOR KEY ENTRY CRLABEL3 LOCAL CONVERTED TO OPINENC.
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY CRLABEL3 OPINENC SET TO Used in transfers to Main Office

OVERRIDE--> CRLABEL3 REMOTE IPINENC Used in receiving from the Main Office
>>>CSFV0192 TYPE FOR KEY ENTRY CRLABEL3 REMOTE CONVERTED TO IPINENC.
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY CRLABEL3 IPINENC SET TO Used in receiving from the Main Office.

OVERRIDE--> KGLABEL1 LOCAL OPINENC Used for sending encrypted PINs
>>>CSFV0292 NO KEY ENTRY FOUND FOR KGLABEL1 LOCAL.

OVERRIDE--> LOLABEL2 Valid for January 2001
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY LOLABEL2 EXPORTER SET TO Valid for January 2001.

OVERRIDE--> ZZZZ1 LOCAL Y Eliminate Key from output CKDS
>>>CSFV0382 ADD/CHANGE SPECIFICATIONS IGNORED ON OVERRIDE ENTRY. BYPASS_FLAG VALUE IS "Y".
>>>CSFV0292 NO KEY ENTRY FOUND FOR ZZZZ1 LOCAL.

>>>CSFV0012 CONVERSION PROCESSING COMPLETED. RETURN CODE = 4.

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 2

CKDS DDNAME Data Set Name
------------ --------------
CSFVSRC PROD.CUSP.CKDS
CSFVINP TEST.CSF.CKDS
CSFVNEW MERGED.CSF.CKDS

PROCESSING SUMMARY

Source CKDS Entries Converted Entries ICSF Entries
-------------------------------- ----------------------------------- -----------------------------------

LOCAL 4 * Candidates 16 + Changed Input Entries 2
REMOTE 4 Bypassed by Overrides (0) Unchanged Input Entries 13
CROSS 4 --------------------------------
----------------------------- -------------------------------- TOTAL ICSF Input Entries 15

* TOTAL Source Entries 12 TOTAL Converted Entries 16 + Entries Added from Source 14
Entries Bypassed by Exit (0)

TOTAL Output ICSF Entries 29

* One Source CKDS CROSS entry converts to two Candidates.
+ Total Converted Entries = Changed Input Entries + Entries Added from Source.

Figure 11. Example of a Conversion Initial Activity Report

Chapter 8. Migration from PCF to z/OS ICSF 187

The message that the conversion processing has been completed is followed by a
return code. Return codes are listed under message CSFV0026 in z/OS
Cryptographic Services ICSF Messages.

After describing the five override records, the conversion report lists the data sets
the conversion program used in the conversion. PROD.CUSP.CKDS is the PCF
CKDS that the program converted. TEST.CSF.CKDS is the input ICSF CKDS
containing the ICSF entries input during the conversion. MERGED.CSF.CKDS is the
output ICSF CKDS where the conversion program placed the converted entries.

Then the activity report lists totals pertaining to the conversion. The PCF CKDS has
a total of 12 entries: four with a key type of local, four with a key type of remote,
and four with a key type of cross. Because the conversion of each cross key entry
results in two ICSF entries, the total ICSF entries that are candidates for conversion
from the PCF is 16. None of these candidates was bypassed because of an
override record, so 16 PCF entries were converted.

There were 15 entries in the input ICSF CKDS, and two of these entries were
updated because they had identical key labels in the PCF CKDS. Fourteen new
output ICSF CKDS entries were added from the PCF CKDS. The total number of
entries in the output ICSF CKDS is 29. This includes the 15 entries in the input
ICSF CKDS and the 14 entries added from the PCF CKDSN. No entries were
bypassed because of the conversion program exit.

Example of a Conversion Update Activity Report
Figure 12 on page 189 is an example of an activity report with a global override
record that has the conversion program bypass all the entries in the PCF CKDS.
Then two override records are used to convert specific entries.

188 z/OS V1R13 System Programmer's Guide

The first override record specifies that the conversion program bypass all the
entries in the PCF CKDS. The second override record specifies that the conversion
program convert a PCF entry labeled CRLABEL3 with a key type of local into an
output PIN-encrypting key. This second override record also instructs the conversion
program to place the phrase Used in transfers to Main Office in the installation
data field of the output ICSF CKDS entry. The third override record specifies that
the conversion program convert a PCF entry labeled LOLABEL2 and place Valid
for January 2001 in the installation data field of the output ICSF CKDS entry.

After describing the three override records, the conversion report lists the data sets
the conversion program used in the conversion. PROD.PCF.CKDS is the PCF
CKDS that the program converted. INTEST.CSF.CKDS is the input ICSF CKDS that
contains the ICSF entries input containing the ICSF entries input during the
conversion. NEWTEST.CSF.CKDS is the output ICSF CKDS where the conversion
program placed the converted entries.

Then the activity report lists totals pertaining to the conversion. The PCF CKDS has
a total of 12 entries: four with a key type of local, four with a key type of remote,
and four with a key type of cross. Because the conversion of each cross key entry
results in two ICSF entries, the total ICSF records that are candidates for
conversion from PCF is 16. Fourteen of those 16 entries were bypassed because of
the global override record.

There were 28 entries in the input ICSF CKDS, and one of these entries was
updated because it had an identical key label in the PCF CKDS. The total number

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 1
OVERRIDE--> Y
>>>CSFV0172 ALL ENTRIES BYPASSED.

OVERRIDE--> CRLABEL3 LOCAL OPINENC Used in transfers to Main Office
>>>CSFV0222 KEY ENTRY CRLABEL3 LOCAL NOT BYPASSED.
>>>CSFV0192 TYPE FOR KEY ENTRY CRLABEL3 LOCAL CONVERTED TO OPINENC.
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY CRLABEL3 OPINENC SET TO Used in transfers to Main Office.

OVERRIDE--> LOLABEL2 Valid for January 2001
>>>CSFV0222 KEY ENTRY LOLABEL2 LOCAL NOT BYPASSED.
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY LOLABEL2 EXPORTER SET TO Valid for January 2001.

>>>CSFV0012 CONVERSION PROCESSING COMPLETED. RETURN CODE = 0.

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 2

CKDS DDNAME Data Set Name
------------ --------------
CSFVSRC PROD.PCF.CKDS
CSFVINP INTEST.CSF.CKDS
CSFVNEW NEWTEST.CSF.CKDS

PROCESSING SUMMARY

Source CKDS Entries Converted Entries ICSF Entries
-------------------------------- ----------------------------------- -----------------------------------

LOCAL 4 * Candidates 16 + Changed Input Entries 1
REMOTE 4 Bypassed by Overrides (14) Unchanged Input Entries 27
CROSS 4 --------------------------------
----------------------------- -------------------------------- TOTAL ICSF Input Entries 28

* TOTAL Source Entries 12 TOTAL Converted Entries 2 + Entries Added from Source 1
Entries Bypassed by Exit (0)

TOTAL Output ICSF Entries 29

* One Source CKDS CROSS entry converts to two Candidates.
+ Total Converted Entries = Changed Input Entries + Entries Added from Source.

Figure 12. Example of a Conversion Update Activity Report

Chapter 8. Migration from PCF to z/OS ICSF 189

of entries in the output ICSF CKDS is 29. This includes the 28 entries in the input
ICSF CKDS plus the one added from the PCF CKDS. No entries were bypassed
because of the conversion program exit.

190 z/OS V1R13 System Programmer's Guide

Chapter 9. Compatibility and Coexistence of 4753-HSP and
ICSF

The Transaction Security System products provide a range of cryptographic
facilities. These facilities can be implemented throughout an organization using a
compatible set of services at both workstation and host locations. One component
of the Transaction Security System is the channel-attached IBM 4753 Network
Security Processor (NSP) and its supporting software. The 4753 NSP can be
installed at the IBM System/370, IBM System/OS/390 MVS or OS/390 host
locations. The IBM Network Security Processor Support Program (referred to as
4753-HSP) provides host software support for the 4753 NSP. The Network Security
Processor Control Program runs in the IBM 4753 NSP and processes encryption
requests that are received from the host. If your installation is currently using
4753-HSP, you can either add ICSF and the Cryptographic Coprocessor Feature to
your OS/390 host (where it can coexist with 4753-HSP) or migrate to ICSF.

Because both 4753-HSP and ICSF support the CCA, applications developed to run
with 4753-HSP may run with ICSF without recompiling if they contain common
verbs.

This topic gives a brief overview of 4753-HSP and ICSF coexistence
considerations. See “Migrating from 4753-HSP” on page 72 for migration
considerations.

Running 4753-HSP and ICSF on the same z/OS system
Although the 4753-HSP and ICSF can coexist in the same z/OS environment on a
logical partition of a S/390 or z/OS complex, some restrictions apply.

Both systems can run simultaneously in noncompatibility mode. However, because
both systems support the CCA API, they use the same verbs to call cryptographic
services. For this reason, you must link your applications with the appropriate library
routines to ensure that they are routed to the correct system. Use 4753-HSP stubs
to link applications that are intended for 4753-HSP. Use ICSF stubs in
SYS1.SCSFMOD0 to link applications that are intended for ICSF.

Both ICSF and 4753-HSP are capable of running CUSP/PCF compatibility mode,
but only one system can provide this service at a time. Use of compatibility mode is
effectively serialized by ownership of the CVTCCVT field.

The two systems use the external key token for key exchange. Internal key tokens
are not interchangeable between 4753-HSP and ICSF, and each system uses
different control vectors internally for data keys.

Generally, 4753-HSP provides additional function for a given service call. Be sure to
use the common subset of services when an application operates with both of the
systems. (Concurrent use of 4753-HSP and ICSF is beyond the scope of this
information.)

z/OS ICSF supports a PKA implementation that differs from the Transaction
Security System PKA implementation. The Transaction Security System supports
both PKA92 and PKA96 versions. Applications that are written to one PKA version
will not run on the other PKA version. Because ICSF does not support PKA92,
4753-HSP techniques that use RSA keys that have been implemented in PKA92 for

© Copyright IBM Corp. 1997, 2011 191

DES key distribution are incompatible with ICSF applications. For PKA96, APIs are
the same for services that ICSF and the 4753-HSP have in common. With the
addition of RSA key support in the PKA Generate function, it becomes easier for the
PKA96 to move to ICSF. The main difference is that the 4753-HSP does not
support the Digital Signature Standard (DSS). RSA digital signatures that use
ISO9796 formatting can be exchanged between the two products.

192 z/OS V1R13 System Programmer's Guide

Appendix A. Diagnosis Reference Information

This appendix contains Diagnosis, Modification, or Tuning Information.

This appendix contains descriptions of the cryptographic key data set (CKDS), the
public key data set (PKDS), PKA key tokens, the Cryptographic Communication
Vector Table (CCVT), and Cryptographic Communication Vector Table Extension
(CCVE) data areas.

For more information about key tokens, refer to z/OS Cryptographic Services ICSF
Application Programmer's Guide.

Cryptographic Key Data Set (CKDS) Formats
There are two formats of the CKDS: a fixed length record (supported by all releases
of ICSF) and a new, variable length record (supported by HCR7780 and later
releases). The variable length record format is only required if HMAC keys are to be
stored in the CKDS. The variable length record format can be used to store all
existing symmetric keys and the new HMAC keys.

Fixed-Length Cryptographic Key Data Set (CKDS) Record Format
The CKDS includes a header record, data set record, and an internal key token
record. Tables in these topics show the format of each of these records.

Format of the Fixed-Length CKDS Header Record
Table 25 presents the format of the CKDS header record.

Table 25. Cryptographic Key Data Set Header Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 72 Constant The field is set to binary zeros and is not used for the
header record.

72 8 Creation date The date the CKDS was initialized in the format yyyymmdd.

80 8 Creation time The initial time the CKDS was created in the format
hhmmssth.

88 8 Last update date The most recent date the CKDS was updated, in the format
yyyymmdd.

96 8 Last update time The most recent time the CKDS was updated, in the format
hhmmssth.

104 2 Sequence number Initially zero in binary. Incremented each time the data set is
processed.

© Copyright IBM Corp. 1997, 2011 193

Table 25. Cryptographic Key Data Set Header Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

106 2 CKDS header flag
bytes

Flag bytes.

Bit Meaning When Set On

0 The DES master key verification pattern is
valid.

1 The DES master key authentication
pattern is valid.

2 The AES master key verification pattern is
valid.

3–7 Reserved.

8 Record level authentication is disabled.

9–15 Reserved.
Note: After the bits are set on, the given values remain
constant in ICSF.

108 8 DES master key
verification pattern

The system DES master key verification pattern.

116 8 DES master key
authentication
pattern

The system DES master key authentication pattern.

124 8 AES master key
verification pattern.

The AES master key verification pattern.

132 64 Reserved The field is set to binary zeros.

196 52 Installation data Installation data associated with the CKDS record, as
supplied by an installation exit.

248 4 Authentication code The code generated by the authentication process that
ensures that the CKDS record has not been modified since
the last update. The authentication code is placed in the
CKDS header record when the CKDS is initialized. ICSF
verifies the CKDS header record authentication code
whenever a CKDS is reenciphered, refreshed, or converted
from PCF to ICSF format.This field is not used when the
record level authentication flag is set in the CKDS header
flag bytes field of the CKDS header record.

Format of the Fixed-Length CKDS Record
Table 26 presents the format of each data set record.

Table 26. Cryptographic Key Data Set Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 Key label The key label specified by the KGUP control statement or
Clear Key Input panel when the record was created. When
using KGUP and the callable services, you can specify the
label to identify the record. The key label is the first field of
the key index.

194 z/OS V1R13 System Programmer's Guide

Table 26. Cryptographic Key Data Set Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

64 8 Key type The type of key the record contains. The master key variant
for the key type enciphers the key. A KGUP control
statement or Clear Key Input panel specifies the key type
when the record is created. The key type is the second field
of the key index.

72 8 Creation date The initial date the CKDS record was created in the format
yyyymmdd.

80 8 Creation time The initial time the CKDS record was created in the format
hhmmssth.

88 8 Last update date The most recent date the CKDS record was updated in the
format yyyymmdd.

96 8 Last update time The most recent time the CKDS record was updated in the
format hhmmssth.

104 64 Key token The internal key token. A key token contains the key value.
Refer to “DES Internal Key Token” on page 218 for the
format of the internal key token.

168 2 CKDS flag bytes Flag bytes.

Bit Meaning When Set On

0 The key within the key token field (offset
104) is a partial key. You can enter key
parts through the key entry hardware. A
partial key is a key whose final key part
has not been entered yet.

1 Cryptographic key token (CKT) delete.

2 CKDS label must be unique.

3–7 Reserved.
Note: When bit 0 is off, the key within the key token field
(offset 104) is an entire key.

170 26 Reserved Reserved.

196 52 Installation data Installation data associated with the CKDS record as
supplied by an installation exit.

248 4 Authentication code The code generated by the authentication process that
ensures the CKDS record has not been modified since the
last update. The authentication code is placed in the CKDS
record when the record is created. When you refresh,
reencipher, or convert a CKDS, ICSF verifies each CKDS
record as ICSF performs the action. This field is not used
when the record level authentication flag is set in the CKDS
header flag bytes field of the CKDS header record.

Variable-Length Cryptographic Key Data Set (CKDS) Record Format
The CKDS record includes the CKDS header and the key record. These tables
show the format of each of these records.

Appendix A. Diagnosis Reference Information 195

Format of the Variable-Length Header Record
The following table presents the format of the variable-length CKDS header record

Table 27. Cryptographic Key Data Set Header Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 72 Constant VSAM key of the CKDS header.

72 8 Creation date The date the CKDS was initialized in the format yyyymmdd.

80 8 Creation time The initial time the CKDS was created in the format
hhmmssth.

88 8 Last update date The most recent date the CKDS was updated, in the format
yyyymmdd.

96 8 Last update time The most recent time the CKDS was updated, in the format
hhmmssth.

104 2 Sequence number Initially zero in binary. Incremented each time the data set is
processed.

106 2 header flag bytes Flag bytes.

Bit Meaning When Set On

0 The DES master key verification pattern is
valid.

1 The DES master key authentication
pattern is valid.

2 The AES master key verification pattern is
valid.

3–8 Reserved.

9 The record format is variable — always 1

10-15 Reserved.
Note: After the bits are set on, the given values remain
constant in ICSF.

108 8 DES master key
verification pattern

The system DES master key verification pattern.

116 8 DES master key
authentication
pattern

The system DES master key authentication pattern.

124 8 AES master key
verification pattern.

The system AES master key verification pattern.

132 4 Record length Length of the record in bytes.

136 60 Reserved

196 52 Installation data

248 4 Authentication code CKDS header authentication code.

196 z/OS V1R13 System Programmer's Guide

Format of the Variable-Length CKDS Record
The following table presents the format of each variable-length data set record.

Table 28. Variable-Length Cryptographic Key Data Set Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 Key label The label or name of this CKDS record. The key label is the
first field of the key index.

64 8 Key type The type of key the record contains. The key type is the
second field of the key index.

72 8 Creation date The initial date the CKDS record was created in the format
yyyymmdd.

80 8 Creation time The initial time the CKDS record was created in the format
hhmmssth.

88 8 Last update date The most recent date the CKDS record was updated in the
format yyyymmdd.

96 8 Last update time The most recent time the CKDS record was updated in the
format hhmmssth.

104 4 Record length Length of the entire record including the key token.

108 60 Reserved.

168 2 CKDS flag bytes Flag bytes.

Bit Meaning When Set On

0 The key within the key token field is a
partial key.

1 Reserved.

2 CKDS label must be unique.

3 The record format is variable — always 1

4–7 Reserved.
Note: When bit 0 is off, the key within the key token field
(offset 104) is an entire key.

170 26 Reserved.

196 52 Installation data

248 20 Authentication code The record authentication code.

268 variable Key token The key token.

Public Key Data Set (PKDS) Format
The PKDS record includes the PKDS header and the PKA key token. These tables
show the format of each of these records.

Format of the PKDS Header Record
Table 29. Public Key Data Set Header Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 PKHVKEY VSAM key of the PKDS header.

64 8 Reserved.

Appendix A. Diagnosis Reference Information 197

Table 29. Public Key Data Set Header Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

72 8 PKHCRDTE The date the PKDS was created in the format yyyymmdd.

80 8 PKHCRTIM The initial time the PKDS was created in the format
hhmmssth.

88 8 PKHUPDTE The most recent date the PKDS header was updated, in the
format yyyymmdd.

96 8 PKHUPTIM The most recent time the PKDS header was updated, in the
format hhmmssth.

104 4 PKHRLEN Length of the PKDS header entry.

108 16 PKHKMKHP The hash pattern of the KMMK.

124 16 PKHSMKHP The hash pattern of the SMK.

140 8 PKHEMKVP The verification pattern of the ECC MK.

148 12 Reserved.

160 20 PKHAUTH PKDS header authentication code.

Format of the PKDS Record
Table 30. Public Key Data Set Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 PKDLABEL Label or name of this PKDS entry.

64 8 Reserved.

72 8 PKDCRDTE The date this PKDS record was created in the format
yyyymmdd.

80 8 PKDCRTIM The initial time this PKDS record was created in the format
hhmmssth.

88 8 PKDUPDTE The most recent date this PKDS record was updated, in the
format yyyymmdd.

96 8 PKDUPTIM The most recent time this PKDS record was updated, in the
format hhmmssth.

104 4 PKDRLEN Length of the entire PKDS record entry.

108 52 PKDUDATA User data.

160 20 PKDAUTH The entry authentication code.

180 1868 PKDTOKEN The public or private key token.

Token data set (TKDS) format
A z/OS PKCS #11 token represents a virtual cryptographic device, and can contain
multiple objects. The token data set (TKDS) contains definitions of z/OS PKCS #11
tokens and token objects.

The token data set includes a header record and records for each of the individual
z/OS PKCS #11 tokens and token objects. Each object associated with a particular
z/OS PKCS #11 token has the token's name in its handle. The records are variable
length records, and contain a length field specifying the total length of the record.

198 z/OS V1R13 System Programmer's Guide

Format of the header record of the token data set
There is one header record for the token data set.

Table 31. Format of the header record of the token data set

Offset
(decimal)

Length of field
(bytes) Description

0 72 VSAM key of the TKDS header
Bytes 0-39: Binary zeros
Bytes 40-43: EBCDIC “THDR”
Bytes 44-71: Binary zeros

72 8 Reserved for IBM's use

80 8 The date that the TKDS was created, in the format
yyyymmdd

88 8 The time that the TKDS was created, in the format
hhmmmssth

96 8 The most recent date that the TKDS header was
updated, in the format yyyymmdd

104 8 The most recent time that the TKDS header was
updated, in the format hhmmmssth

112 4 Length of the TKDS header record

116 40 Reserved for IBM's use

Format of the token and object records
Each z/OS PKCS #11 token record and token object record begins with the same
188 bytes of data. The remainder of the record is specific to the token or object.

Common section of the token and object records
Every record in the token data set, with the exception of the header record, begins
with these 188 bytes of data.

Table 32. Format of the common section of the token and object records

Offset
(decimal)

Length of field
(bytes) Description

0 72 Handle of token or object
Bytes 0-31: Token name
Bytes 32-39: Sequence number
Byte 40: Character “T” for token object
Bytes 41-43 Blank characters
Bytes 44-71: Binary zeros

72 8 Reserved for IBM's use

80 8 The date that this record was created, in the format
yyyymmdd

88 8 The time that this record was created, in the format
hhmmssth

96 8 The most recent date that this record was updated,
in the format yyyymmdd

104 8 The most recent time that this record was updated,
in the format hhmmssth

112 4 Length of the entire TKDS record entry

116 20 Reserved for IBM's use

Appendix A. Diagnosis Reference Information 199

Table 32. Format of the common section of the token and object records (continued)

Offset
(decimal)

Length of field
(bytes) Description

136 52 User data

188 variable The TKDS token or object (see mappings)

Format of the token-specific section of the token record
Each z/OS PKCS #11 token record begins with the 188 bytes. The remainder of the
record contains the contents of the token. The mapping of the record shows the
data beginning at offset 0, which is its offset into the token-specific portion of the
record; however, that portion of the record is at an offset of 188 into the entire
record.

Table 33. Format of the unique section of the token record

Offset (decimal)
188 +

Length of field
(bytes) Description

0 4 Eye catcher for token: “TOKN”

4 2 Version number of structure: EBCDIC '00'

6 2 Length of structure in bytes

8 4 Reserved for IBM's use. Must be zeros.

12 8 Last assigned sequence number

20 32 Manufacturer identification

52 16 Model

68 16 Serial number

84 8 Date of the most recent update to this token,
expressed as Coordinated Universal Time (UTC) in
the format yyyymmdd. This includes any update to
token information or to a token object.

92 8 Time of the most recent update to this token,
expressed as Coordinated Universal Time (UTC) in
the format hhmmssth. This includes any update to
token information or to a token object.

100 44 Reserved for IBM's use

144 End of token

Format of the object-specific sections of the token object
records
The following classes of objects can be associated with a z/OS PKCS #11 token:
v Certificate
v Public key
v Private key
v Secret key
v Data objects
v Domain parameters

The token object record for each begins with the common section described
“Common section of the token and object records” on page 199, followed by a
section specific to the class of object. Each of the object-specific sections begins
with a 12-byte header record, followed by a variable-length section. Each 12-byte
header contains a 4-byte flag field that has the same mapping for all classes of
objects.

200 z/OS V1R13 System Programmer's Guide

Table 34. Format of the token object flags. This 4-byte flag field occurs in the object header
section of each token object record.

Offset
(decimal) Field name Description

Flag byte 1

Bit 0 OBJ_IS_TOKOBJ When on, the object is a token object.
When off, the object is a session
object.

Bit 1 OBJ_IS_PRVOBJ When on, the object is a private
object. When off, the object is a public
object.

Bit 2 OBJ_IS_MODOBJ When on, the object is modifiable.

Bit 3 KEY_DERIVE When on, the key supports key
derivation.

Bit 4 KEY_LOCAL When on, the key was generated
locally.

Bit 5 KEY_ENCRYPT When on, the key supports encryption.

Bit 6 KEY_DECRYPT When on, the key supports decryption.

Bit 7 KEY_VERIFYA When on, the key supports verification
where the signature is an appendix to
the data.

Flag byte 2

Bit 0 KEY_VERIFYR When on, the key supports verification
where the data is recovered from the
signature

Bit 1 KEY_SIGA When on, the key supports signatures
where the signature is an appendix to
the data.

Bit 2 KEY_SIGR When on, the key supports signatures
where the data is recovered from the
signature.

Bit 3 KEY_WRAP When on, the key supports wrapping.

Bit 4 KEY_UNWRAP When on, the key supports
unwrapping.

Bit 5 KEY_EXTRACT When on, the key is extractable.

Bit 6 KEY_IS_SENSITIVE When on, the key is sensitive.

Bit 7 KEY_IS_ALWAYS_SENSITIVE When on, the SENSITIVE attribute
(KEY_IS_SENSITIVE) is always true.

Flag byte 3

Bit 0 KEY_NEVER_EXTRACT When on, the EXTRACTABLE attribute
(KEY_EXTRACT) is never true. When
off, the EXTRACTABLE attribute
(KEY_EXTRACT) can be true.

Bit 1 OBJ_IS_TRUSTED When on, the certificate can be trusted
for the application for which it was
created.

Bit 2 CERT_IS_DEFAULT When on, this is the default certificate.

Bit 3 FIPS140 When on, key is only to be used in a
FIPS-compliant manner.

Appendix A. Diagnosis Reference Information 201

Table 34. Format of the token object flags (continued). This 4-byte flag field occurs in the
object header section of each token object record.

Offset
(decimal) Field name Description

Bits 4-7 Reserved for IBM's use

Flag byte 4

Bits 0-7 Reserved for IBM's use

Table 35. Format of the token certificate object

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for certificate object: “CERT”

4 2 Version: EBCDIC '00'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 34 on page 201)

Object type-specific section

12 4 TYPE attribute:
X'00000000': CKC_X_509

16 4 Certificate category
0 Undefined
1 Token user
2 Certificate authority
3 Other entity

20 8 Reserved for IBM's use

28 32 Reserved for IBM's use

60 2 Length of SUBJECT attribute in bytes (aa)

62 2 Length of ID attribute in bytes (bb)

64 2 Length of ISSUER attribute in bytes (cc)

66 2 Length of SERIAL_NUMBER attribute in bytes (dd)

68 2 Length of VALUE attribute in bytes (ee)

70 2 Length of LABEL attribute in bytes (ff)

72 2 Length of APPLICATION attribute in bytes (gg)

74 22 Reserved for IBM's use

96 4 Offset of SUBJECT attribute in bytes

100 4 Offset of ID attribute in bytes

104 4 Offset of ISSUER attribute in bytes

108 4 Offset of SERIAL_NUMBER attribute in bytes

112 4 Offset of VALUE attribute in bytes

116 4 Offset of LABEL attribute in bytes

120 4 Offset of APPLICATION attribute in bytes

124 44 Reserved for IBM's use

168 aa + bb + cc + dd +
ee + ff + gg

Certificate attributes (variable length)

202 z/OS V1R13 System Programmer's Guide

Table 35. Format of the token certificate object (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

168 + aa + bb +
cc + dd + ee + ff
+ gg

End of certificate object

Table 36. Format of the token public key object (Version 0)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for public key object: “PUBK”

4 2 Version: EBCDIC '00'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 34 on page 201)

Object type-specific section

12 4 TYPE attribute:
CKK_RSA

16 8 Start date for the key, in the format yyyymmdd

24 8 End date for the key, in the format yyyymmdd

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

72 4 Length in bits of modulus n

76 256 Modulus n

332 256 Reserved

588 256 Public exponent e

844 256 Reserved

1100 2 Length of SUBJECT attribute in bytes (aa)

1102 2 Length of ID attribute in bytes (bb)

1104 2 Length of LABEL attribute in bytes (cc)

1106 2 Length of APPLICATION attribute in bytes (dd)

1108 20 Reserved

1128 4 Offset of SUBJECT attribute in bytes

1132 4 Offset of ID attribute in bytes

1136 4 Offset of LABEL attribute in bytes

1140 4 Offset of APPLICATION attribute in bytes

1144 40 Reserved

1184 aa+bb+cc+dd Public key attributes (variable length)

1184+aa+bb+cc+dd End of public key object

Appendix A. Diagnosis Reference Information 203

Table 37. Format of the token public key object (Version 1)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for public key object: “PUBK”

4 2 Version: EBCDIC '01'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 34 on page 201)

Object type-specific section

12 4 TYPE attribute:
CKK_RSA, CKK_DSA, CKK_EC, or CKK_DH

16 8 Start date for the key, in the format yyyymmdd

24 8 End date for the key, in the format yyyymmdd

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus n

588 512 Public exponent e

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 128 Reserved

204 128 Prime p

332 128 Reserved

460 128 Base g

588 128 Reserved

716 128 Value y

844 20 Reserved

864 20 Subprime q

884 216 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value y

844 256 Reserved

Algorithm-specific section (EC)

204 z/OS V1R13 System Programmer's Guide

Table 37. Format of the token public key object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

72 4 EC params curve constant –

x'00000001' secp192r1
- { 1 2 840 10045 3 1 1 }

x'00000002' secp224r1
- { 1 3 132 0 33 }

x'00000003' secp256r1
- { 1 2 840 10045 3 1 7 }

x'00000004' secp384r1
- { 1 3 132 0 34 }

x'00000005' secp521r1
- { 1 3 132 0 35 }

x'00000006' brainpoolP160r1
- { 1 3 36 3 3 2 8 1 1 1 }

x'00000007' brainpoolP192r1
- { 1 3 36 3 3 2 8 1 1 3 }

x'00000008' brainpoolP224r1
- { 1 3 36 3 3 2 8 1 1 5 }

x'00000009' brainpoolP256r1
- { 1 3 36 3 3 2 8 1 1 7 }

x'0000000A' brainpoolP320r1
- { 1 3 36 3 3 2 8 1 1 9 }

x'0000000B' brainpoolP384r1
- { 1 3 36 3 3 2 8 1 1 11 }

x'0000000C' brainpoolP512r1
- { 1 3 36 3 3 2 8 1 1 13 }

76 128 Reserved

204 136 EC point Q (DER encoded)

340 760 Reserved

Variable length attribute section

1100 2 Length of SUBJECT attribute in bytes (aa)

1102 2 Length of ID attribute in bytes (bb)

1104 2 Length of LABEL attribute in bytes (cc)

1106 2 Length of APPLICATION attribute in bytes (dd)

1108 20 Reserved

1128 4 Offset of SUBJECT attribute in bytes

1132 4 Offset of ID attribute in bytes

1136 4 Offset of LABEL attribute in bytes

1140 4 Offset of APPLICATION attribute in bytes

1144 40 Reserved

1184 aa+bb+cc+dd Public key attributes (variable length)

1184+aa+bb+cc+dd End of public key object

Table 38. Format of the token public key object (Version 2)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

Appendix A. Diagnosis Reference Information 205

||

|
|
|
||

|

Table 38. Format of the token public key object (Version 2) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

0 4 Eye catcher for public key object: “PUBK”

4 2 Version: EBCDIC '02'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 34 on page 201)

Object type-specific section

12 4 TYPE attribute:
CKK_RSA, CKK_DSA, CKK_EC, or CKK_DH

16 8 Start date for the key, in the format yyyymmdd

24 8 End date for the key, in the format yyyymmdd

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus n

588 512 Public exponent e

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value y

844 8 Reserved

852 32 Subprime q

884 216 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value y

844 256 Reserved

Algorithm-specific section (EC)

206 z/OS V1R13 System Programmer's Guide

|

|
|
|
||

|||

|||

|||

|||

|

|||
|

|||

|||

|||
|

|||

|

|||

|||

|||

|

|||

|||

|||

|||

|||

|||

|||

|

|||

|||

|||

|||

|||

|

Table 38. Format of the token public key object (Version 2) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

72 4 EC params curve constant –

x'00000001' secp192r1
- { 1 2 840 10045 3 1 1 }

x'00000002' secp224r1
- { 1 3 132 0 33 }

x'00000003' secp256r1
- { 1 2 840 10045 3 1 7 }

x'00000004' secp384r1
- { 1 3 132 0 34 }

x'00000005' secp521r1
- { 1 3 132 0 35 }

x'00000006' brainpoolP160r1
- { 1 3 36 3 3 2 8 1 1 1 }

x'00000007' brainpoolP192r1
- { 1 3 36 3 3 2 8 1 1 3 }

x'00000008' brainpoolP224r1
- { 1 3 36 3 3 2 8 1 1 5 }

x'00000009' brainpoolP256r1
- { 1 3 36 3 3 2 8 1 1 7 }

x'0000000A' brainpoolP320r1
- { 1 3 36 3 3 2 8 1 1 9 }

x'0000000B' brainpoolP384r1
- { 1 3 36 3 3 2 8 1 1 11 }

x'0000000C' brainpoolP512r1
- { 1 3 36 3 3 2 8 1 1 13 }

76 128 Reserved

204 136 EC point Q (DER encoded)

340 760 Reserved

Variable length attribute section

1100 2 Length of SUBJECT attribute in bytes (aa)

1102 2 Length of ID attribute in bytes (bb)

1104 2 Length of LABEL attribute in bytes (cc)

1106 2 Length of APPLICATION attribute in bytes (dd)

1108 20 Reserved

1128 4 Offset of SUBJECT attribute in bytes

1132 4 Offset of ID attribute in bytes

1136 4 Offset of LABEL attribute in bytes

1140 4 Offset of APPLICATION attribute in bytes

1144 40 Reserved

1184 aa+bb+cc+dd Public key attributes (variable length)

1184+aa+bb+cc+dd End of public key object

Table 39. Format of the token private key object (Version 0)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

Appendix A. Diagnosis Reference Information 207

|

|
|
|
||

|||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||

|||

|||

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

Table 39. Format of the token private key object (Version 0) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

0 4 Eye catcher for private key object: “PRIV”

4 2 Version: EBCDIC '00'

6 2 Length of object (in bytes)

8 4 Flags (see Table 34 on page 201)

Object type-specific section

12 4 Type attribute: CKK_RSA

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

72 4 Length in bits of modulus n

76 256 Modulus: modulus n

332 256 Reserved

588 256 Public exponent e

844 256 Reserved

1100 32 Reserved

1132 256 Private exponent d

1388 256 Reserved

1644 136 Prime p

1780 128 Reserved

1908 128 Prime q

2036 128 Reserved

2172 136 Private exponent d modulo p-1

2300 128 Reserved

2428 128 Private exponent d modulo q-1

2556 128 Reserved

2684 136 CRT coefficient q-1 mod p

2820 128 Reserved

2948 2 Length of SUBJECT attribute in bytes (xx)

2950 2 Length of ID attribute in bytes (yy)

2952 2 Length of LABEL attribute in bytes (zz)

2954 2 Length of APPLICATION attribute in bytes (ww)

2956 20 Reserved

2976 4 Offset of SUBJECT attribute in bytes

2980 4 Offset of ID attribute in bytes

2984 4 Offset of LABEL attribute in bytes

2988 4 Offset of APPLICATION attribute in bytes

2992 40 Reserved

208 z/OS V1R13 System Programmer's Guide

Table 39. Format of the token private key object (Version 0) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

3032 xx+yy+zz+ww Private key attributes (variable length)

3032+xx+yy+zz+ww End of private key object

Table 40. Format of the token private key object (Version 1)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for private key object: “PRIV”

4 2 Version: EBCDIC '01'

6 2 Length of object (in bytes)

8 4 Flags (see Table 34 on page 201)

Object type-specific section

12 4 Type attribute: CKK_RSA, CKK_DSA,
CKK_EC, or CKK_DH

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus: modulus n

588 512 Public exponent e

1100 32 Reserved

1132 512 Private exponent d

1644 264 Prime p

1908 256 Prime q

2164 264 Private exponent d modulo p-1

2428 256 Private exponent d modulo q-1

2684 264 CRT coefficient q-1 mod p

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 128 Reserved

204 128 Prime p

332 128 Reserved

460 128 Base g

588 236 Reserved

824 20 Value x

844 20 Reserved

864 20 Subprime q

Appendix A. Diagnosis Reference Information 209

Table 40. Format of the token private key object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

884 2064 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 236 Reserved

824 20 Value x

844 2104 Reserved

Algorithm-specific section (EC)

72 4 EC params curve constant –

x'00000001' secp192r1
- { 1 2 840 10045 3 1 1 }

x'00000002' secp224r1
- { 1 3 132 0 33 }

x'00000003' secp256r1
- { 1 2 840 10045 3 1 7 }

x'00000004' secp384r1
- { 1 3 132 0 34 }

x'00000005' secp521r1
- { 1 3 132 0 35 }

x'00000006' brainpoolP160r1
- { 1 3 36 3 3 2 8 1 1 1 }

x'00000007' brainpoolP192r1
- { 1 3 36 3 3 2 8 1 1 3 }

x'00000008' brainpoolP224r1
- { 1 3 36 3 3 2 8 1 1 5 }

x'00000009' brainpoolP256r1
- { 1 3 36 3 3 2 8 1 1 7 }

x'0000000A' brainpoolP320r1
- { 1 3 36 3 3 2 8 1 1 9 }

x'0000000B' brainpoolP384r1
- { 1 3 36 3 3 2 8 1 1 11 }

x'0000000C' brainpoolP512r1
- { 1 3 36 3 3 2 8 1 1 13 }

76 64 Reserved

140 66 Value d

206 2742 Reserved

Variable length attribute section

2948 2 Length of SUBJECT attribute in bytes (xx)

2950 2 Length of ID attribute in bytes (yy)

2952 2 Length of LABEL attribute in bytes (zz)

2954 2 Length of APPLICATION attribute in bytes (ww)

2956 20 Reserved

2976 4 Offset of SUBJECT attribute in bytes

2980 4 Offset of ID attribute in bytes

2984 4 Offset of LABEL attribute in bytes

210 z/OS V1R13 System Programmer's Guide

Table 40. Format of the token private key object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

2988 4 Offset of APPLICATION attribute in bytes

2992 40 Reserved

3032 xx+yy+zz+ww Private key attributes (variable length)

3032+xx+yy+zz+ww End of private key object

Table 41. Format of the token private key object (Version 2)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for private key object: “PRIV”

4 2 Version: EBCDIC '02'

6 2 Length of object (in bytes)

8 4 Flags (see Table 34 on page 201)

Object type-specific section

12 4 Type attribute: CKK_RSA, CKK_DSA,
CKK_EC, or CKK_DH

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus: modulus n

588 512 Public exponent e

1100 32 Reserved

1132 512 Private exponent d

1644 264 Prime p

1908 256 Prime q

2164 264 Private exponent d modulo p-1

2428 256 Private exponent d modulo q-1

2684 264 CRT coefficient q-1 mod p

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 224 Reserved

812 32 Value x

844 8 Reserved

852 32 Subprime q

Appendix A. Diagnosis Reference Information 211

||

|
|
|
||

|

|||

|||

|||

|||

|

|||
|

|||

|||

|||
|

|||

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|||

|||

|||

|||

|||

|||

|||

Table 41. Format of the token private key object (Version 2) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

884 2064 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value x

844 4 Length in bits of value x

848 2100 Reserved

Algorithm-specific section (EC)

72 4 EC params curve constant –

x'00000001' secp192r1
- { 1 2 840 10045 3 1 1 }

x'00000002' secp224r1
- { 1 3 132 0 33 }

x'00000003' secp256r1
- { 1 2 840 10045 3 1 7 }

x'00000004' secp384r1
- { 1 3 132 0 34 }

x'00000005' secp521r1
- { 1 3 132 0 35 }

x'00000006' brainpoolP160r1
- { 1 3 36 3 3 2 8 1 1 1 }

x'00000007' brainpoolP192r1
- { 1 3 36 3 3 2 8 1 1 3 }

x'00000008' brainpoolP224r1
- { 1 3 36 3 3 2 8 1 1 5 }

x'00000009' brainpoolP256r1
- { 1 3 36 3 3 2 8 1 1 7 }

x'0000000A' brainpoolP320r1
- { 1 3 36 3 3 2 8 1 1 9 }

x'0000000B' brainpoolP384r1
- { 1 3 36 3 3 2 8 1 1 11 }

x'0000000C' brainpoolP512r1
- { 1 3 36 3 3 2 8 1 1 13 }

76 64 Reserved

140 66 Value d

206 2742 Reserved

Variable length attribute section

2948 2 Length of SUBJECT attribute in bytes (xx)

2950 2 Length of ID attribute in bytes (yy)

2952 2 Length of LABEL attribute in bytes (zz)

2954 2 Length of APPLICATION attribute in bytes (ww)

2956 20 Reserved

2976 4 Offset of SUBJECT attribute in bytes

2980 4 Offset of ID attribute in bytes

2984 4 Offset of LABEL attribute in bytes

212 z/OS V1R13 System Programmer's Guide

|

|
|
|
||

|||

|

|||

|||

|||

|||

|||

|||

|

|||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||

|||

|||

|

|||

|||

|||

|||

|||

|||

|||

|||

Table 41. Format of the token private key object (Version 2) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

2988 4 Offset of APPLICATION attribute in bytes

2992 40 Reserved

3032 xx+yy+zz+ww Private key attributes (variable length)

3032+xx+yy+zz+ww End of private key object

Table 42. Format of the token secret key object (Version 0)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for secret key object: “SECK”

4 2 Version: EBCDIC '00'

6 2 Length of the object in bytes

8 4 Flags
(see Table 34 on page 201)

Object type-specific section

12 4 Type of key: CKK_DES, CKK_DES2, CKK_DES3,
CKK_AES

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism
CK_UNAVAILABLE_INFORMATION

36 2 Length of the key in bytes

38 32 Reserved

70 64 VALUE: value of the key

134 538 Reserved

672 4 Usage counter field

676 2 Reserved

678 2 Length of LABEL attribute in bytes (xx)

680 2 Length of APPLICATION attribute in bytes (yy)

682 2 Length of the ID attribute in bytes (zz)

684 20 Reserved

704 4 Offset of LABEL attribute in bytes

708 4 Offset of APPLICATION attribute in bytes

712 4 Offset of the ID attribute in bytes

716 40 Reserved

756 xx+yy+zz Secret key attributes (variable length)

756+xx+yy+zz End of secret key object

Appendix A. Diagnosis Reference Information 213

|

|
|
|
||

|||

|||

|||

|||
|

Table 43. Format of the token secret key object (Version 1)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for secret key object: “SECK”

4 2 Version: EBCDIC '01'

6 2 Length of the object in bytes

8 4 Flags
(see Table 34 on page 201)

Object type-specific section

12 4 Type of key:

CKK_DES, CKK_DES2, CKK_DES3,
CKK_BLOWFISH, CKK_RC4,
CKK_GENERIC_SECRET, and CKK_AES.

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism
CK_UNAVAILABLE_INFORMATION

36 2 Length of the key in bytes

38 32 Reserved

70 256 VALUE: value of the key

326 346 Reserved

672 4 Usage counter field

676 2 Reserved

678 2 Length of LABEL attribute in bytes (xx)

680 2 Length of APPLICATION attribute in bytes (yy)

682 2 Length of the ID attribute in bytes (zz)

684 20 Reserved

704 4 Offset of LABEL attribute in bytes

708 4 Offset of APPLICATION attribute in bytes

712 4 Offset of the ID attribute in bytes

716 40 Reserved

756 xx+yy+zz Secret key attributes (variable length)

756+xx+yy+zz End of secret key object

Table 44. Format of the token domain parameters object (Version 1)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for token domain object: “DOMP”

4 2 Version: EBCDIC '01'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 34 on page 201)

Object type-specific section

214 z/OS V1R13 System Programmer's Guide

Table 44. Format of the token domain parameters object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

12 4 TYPE attribute: CKK_DSA or CKK_DH

16 28 Reserved

Algorithm-specific section (DSA)

44 4 Length in bits of prime p

48 128 Reserved

176 128 Prime p

304 128 Reserved

432 128 Base g

560 20 Reserved

580 20 Subprime q

600 636 Reserved

Algorithm-specific section (DH)

44 4 Length in bits of prime p

48 4 Reserved

52 256 Prime p

308 256 Reserved

564 256 Base g

820 416 Reserved

Variable length attribute section

1236 2 Length of LABEL attribute in bytes (aa)

1238 2 Length of APPLICATION attribute in bytes (bb)

1240 20 Reserved

1260 4 Offset of LABEL attribute in bytes

1264 4 Offset of APPLICATION attribute in bytes

1268 40 Reserved

1308 aa+bb Domain parameters attributes (variable length)

1308+aa+bb End of domain parameters object

Table 45. Format of the token domain parameters object (Version 2)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for token domain object: “DOMP”

4 2 Version: EBCDIC '02'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 34 on page 201)

Object type-specific section

12 4 TYPE attribute: CKK_DSA or CKK_DH

16 28 Reserved

Algorithm-specific section (DSA)

Appendix A. Diagnosis Reference Information 215

||

|
|
|
||

|

|||

|||

|||

|||

|

|||

|||

|

Table 45. Format of the token domain parameters object (Version 2) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

44 4 Length in bits of prime p

48 256 Prime p

304 256 Base g

560 8 Reserved

568 32 Subprime q

600 636 Reserved

Algorithm-specific section (DH)

44 4 Length in bits of prime p

48 4 Reserved

52 256 Prime p

308 256 Reserved

564 256 Base g

820 416 Reserved

Variable length attribute section

1236 2 Length of LABEL attribute in bytes (aa)

1238 2 Length of APPLICATION attribute in bytes (bb)

1240 20 Reserved

1260 4 Offset of LABEL attribute in bytes

1264 4 Offset of APPLICATION attribute in bytes

1268 40 Reserved

1308 aa+bb Domain parameters attributes (variable length)

1308+aa+bb End of domain parameters object

Table 46. Format of the token data object

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for data object: “DATA”

4 2 Version: EBCDIC '00'

6 2 Length of object, in bytes

8 4 Flags (see Table 34 on page 201)

Object type-specific section

12 4 Reserved for IBM's use

16 28 Reserved for IBM's use

44 2 Length of VALUE attribute in bytes (aa)

46 2 Length of OBJECT_ID attribute in bytes (bb)

48 2 Length of LABEL attribute in bytes (cc)

50 2 Length of APPLICATION attribute in bytes (dd)

52 2 Length of ID attribute in bytes (ee)

54 22 Reserved for IBM's use

216 z/OS V1R13 System Programmer's Guide

|

|
|
|
||

|||

|||

|||

|||

|||

|||

|

|||

|||

|||

|||

|||

|||

|

|||

|||

|||

|||

|||

|||

|||

|||
|

Table 46. Format of the token data object (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

76 4 Offset of VALUE attribute in bytes

80 4 Offset of OBJECT_ID attribute in bytes

84 4 Offset of LABEL attribute in bytes

88 4 Offset of APPLICATION attribute in bytes

92 4 Offset of ID attribute in bytes

96 44 Reserved for IBM's use

140 aa + bb + cc + dd +
ee

Data attributes (variable length)

140 + aa + bb +
cc + dd + ee

End of data object

AES Key Token Format

AES Internal Key Token
Table 47 shows the format for an AES internal key token.

Table 47. Internal Key Token Format

Bytes Description

0 X'01' (flag indicating this is an internal key token)

1–3 Implementation-dependent bytes (X'000000' for ICSF)

4 Key token version number (X'04')

5 Reserved - must be set to X'00'

6 Flag byte

Bit Meaning When Set On

0 Encrypted key and master key verification pattern (MKVP) are present.

Off for a clear key token, on for an encrypted key token.

1 Control vector (CV) value in this token has been applied to the key.

2 No key is present or the AES MKVP is not present if the key is encrypted.

3- 7 Reserved. Must be set to 0.

7 1-byte LRC checksum of clear key value.

8–15 Master key verification pattern (MKVP)

(For a clear AES key token this value will be hex zeros.)

16–47 128-bit, 192-bit, or 256-bit key value, left-justified and padded on the right with hex zeros.

48–55 8-byte control vector.

(For a clear AES key token this value will be hex zeros.)

56–57 2-byte integer specifying the length in bits of the clear key value.

58–59 2-byte integer specifying the length in bytes of the encrypted key value.

(For a clear AES key token this value will be hex zeros.)

60–63 Token validation value (TVV). See “Token Validation Value” on page 218 for more information.

Appendix A. Diagnosis Reference Information 217

Token Validation Value
ICSF uses the token validation value (TVV) to verify that a token is valid. The TVV
prevents a key token that is not valid or that is overlaid from being accepted by
ICSF. It provides a checksum to detect a corruption in the key token.

When an ICSF callable service generates a key token, it generates a TVV and
stores the TVV in bytes 60-63 of the key token. When an application program
passes a key token to a callable service, ICSF checks the TVV. To generate the
TVV, ICSF performs a twos complement ADD operation (ignoring carries and
overflow) on the key token, operating on four bytes at a time, starting with bytes 0-3
and ending with bytes 56-59.

DES Key Token Formats

DES Internal Key Token
Table 48 shows the format for a DES internal key token.

Table 48. Internal Key Token Format

Bytes Description

0 X'01' (flag indicating this is an internal key token)

1–3 Implementation-dependent bytes (X'000000' for ICSF)

4 Key token version number (X'00' or X'01')

5 Reserved (X'00')

6 Flag byte

Bit Meaning When Set On

0 Encrypted key and master key verification pattern (MKVP) are present.

1 Control vector (CV) value in this token has been applied to the key.

2 Key is used for no control vector (NOCV) processing. Valid for transport keys only.

3 Key is an ANSI key-encrypting key (AKEK).

4 AKEK is a double-length key (16 bytes).
Note: When bit 3 is on and bit 4 is off, AKEK is a single-length key (8 bytes).

5 AKEK is partially notarized.

6 Key is an ANSI partial key.

7 Export prohibited.

7
Bit Meaning When Set On

0-2 Key value encryption method.

v 000 - the key is encrypted using the original CCA method (ECB).

v 001 - the key is encrypted using the X9.24 enhanced method (CBC).

These bits are ignored if the token contains no key or a clear key.

3-7 Reserved.

8–15 Master key verification pattern (MKVP)

16–23 A single-length key, the left half of a double-length key, or Part A of a triple-length key. The value
is encrypted under the master key when flag bit 0 is on, otherwise it is in the clear.

218 z/OS V1R13 System Programmer's Guide

Table 48. Internal Key Token Format (continued)

Bytes Description

24–31 X'0000000000000000' if a single-length key, or the right half of a double-length operational key, or
Part B of a triple-length operational key. The right half of the double-length key or Part B of the
triple-length key is encrypted under the master key when flag bit 0 is on, otherwise it is in the
clear.

32–39 The control vector (CV) for a single-length key or the left half of the control vector for a
double-length key.

40–47 X'0000000000000000' if a single-length key or the right half of the control vector for a
double-length operational key.

48–55 X'0000000000000000' if a single-length key or double-length key, or Part C of a triple-length
operational key. Part C of a triple-length key is encrypted under the master key when flag bit 0 is
on, otherwise it is in the clear.

56-58 Reserved (X'000000')

59 bits 0 and 1 B'10' Indicates CDMF DATA or KEK.
B'00' Indicates DES for DATA keys or the system default algorithm for a KEK.
B'01' Indicates DES for a KEK.

59 bits 2 and 3 B'00' Indicates single-length key (version 0 only).
B'01' Indicates double-length key (version 1 only).
B'10' Indicates triple-length key (version 1 only).

59 bits 4 –7 B'0000'

60–63 Token validation value (TVV).

Note: A key token stored in the CKDS will not have an MKVP or TVV. Before such
a key token is used, the MKVP is copied from the CKDS header record and
the TVV is calculated and placed in the token. See “Token Validation Value”
on page 218 for more information.

Appendix A. Diagnosis Reference Information 219

DES External Key Token
Table 49 shows the format for a DES external key token.

Table 49. Format of External Key Tokens

Bytes Description

0 X'02' (flag indicating an external key token)

1 Reserved (X'00')

2–3 Implementation-dependent bytes (X'0000' for ICSF)

4 Key token version number (X'00' or X'01')

5 Reserved (X'00')

6 Flag byte

Bit Meaning When Set On

0 Encrypted key is present.

1 Control vector (CV) value has been applied to the key.

Other bits are reserved and are binary zeros.

7
Bit Meaning When Set On

0-2 Key value encryption method.

v 000 - the key is encrypted using the original CCA method (ECB).

v 001 - the key is encrypted using the X9.24 enhanced method (CBC).

These bits are ignored if the token contains no key or a clear key.

3-7 Reserved.

8–15 Reserved (X'0000000000000000')

16–23 Single-length key or left half of a double-length key, or Part A of a triple-length key. The value is
encrypted under a transport key-encrypting key when flag bit 0 is on, otherwise it is in the clear.

24–31 X'0000000000000000' if a single-length key or right half of a double-length key, or Part B of a
triple-length key. The right half of a double-length key or Part B of a triple-length key is encrypted
under a transport key-encrypting key when flag bit 0 is on, otherwise it is in the clear.

32–39 Control vector (CV) for single-length key or left half of CV for double-length key

40–47 X'0000000000000000' if single-length key or right half of CV for double-length key

48–55 X'0000000000000000' if a single-length key, double-length key, or Part C of a triple-length key.
This key part is encrypted under a transport key-encrypting key when flag bit 0 is on, otherwise it
is in the clear.

56–58 Reserved (X'000000')

59 bits 0 and 1 B'00'

59 bits 2 and 3 B'00' Indicates single-length key (version 0 only).
B'01' Indicates double-length key (version 1 only).
B'10' Indicates triple-length key (version 1 only).

59 bits 4–7 B'0000'

60-63 Token validation value (see “Token Validation Value” on page 218 for a description).

External RKX DES Key Token
Table 50 on page 221 defines an external DES key-token called an RKX key-token.
An RKX key-token is a special token used exclusively by the Remote Key Export

220 z/OS V1R13 System Programmer's Guide

(CSNDRKX) and DES key-storage callable services (for example, Key Record
Write). No other callable services use or reference an RKX key-token or key-token
record.

Note: Callable services other than CSNDRKX and the DES key-storage do not
support RKX key tokens or RKX key token records.

As can be seen in the table, RKX key tokens are 64 bytes in length, have a token
identifier flag (X'02'), a token version number (X'10'), and room for encrypted keys
like normal CCA DES key tokens. Unlike normal CCA DES key-tokens, RKX key
tokens do not have a control vector, flag bits, and a token-validation value. In
addition, they have a confounder value, a MAC value, and room for a third
encrypted key.

Table 50. External RKX DES key-token format, version X'10'

Offset Length Meaning

00 1 X'02' (a token identifier flag that indicates an external key-token)

01 3 Reserved, binary zero

04 1 The token version number (X'10')

05 2 Reserved, binary zero

07 1 Key length in bytes, including confounder

08 8 Confounder

16 8 Key left

24 8 Key middle (binary zero if not used)

32 8 Key right (binary zero if not used)

40 8 Rule ID

The trusted block rule identifier used to create this key token. A
subsequent call to Remote Key Export (CSNDRKX) can use this
token with a trusted block rule that references the rule ID that
must have been used to create this token. The trusted block rule
can be compared with this rule ID for verification purposes.

The Rule ID is an 8-byte string of ASCII characters, left justified
and padded on the right with space characters. Acceptable
characters are A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F'). All other
characters are reserved for future use.

48 8 Reserved, binary zero

56 8 MAC value

ISO 16609 TDES CBC-mode MAC, computed over the 56 bytes
starting at offset 0 and including the encrypted key value and the
rule ID using the same MAC key that is used to protect the
trusted block itself.

This MAC value guarantees that the key and the rule ID cannot
be modified without detection, providing integrity and binding the
rule ID to the key itself. This MAC value must verify with the
same trusted block used to create the key, thus binding the key
structure to that specific trusted block.

Notes:

1. A fixed, randomly derived variant is exclusive-ORed with the MAC key before it
is used to encipher the generated or exported key and confounder.

Appendix A. Diagnosis Reference Information 221

2. The MAC key is located within a trusted block (internal format) and can be
recovered by decipherment under a variant of the PKA master key.

3. The trusted block is originally created in external form by the CSNDTBC callable
service and then converted to internal form by the CSNDPKI callable service
prior to the CSNDRKX call.

DES Null Key Token
Table 51 shows the format for a DES null key token.

Table 51. Format of Null Key Tokens

Bytes Description

0 X'00' (flag indicating this is a null key token).

1–15 Reserved (set to binary zeros).

16–23 Single-length encrypted key, or left half of double-length encrypted key, or Part A of triple-length
encrypted key.

24–31 X'0000000000000000' if a single-length encrypted key, the right half of double-length encrypted
key, or Part B of triple-length encrypted key.

32–39 X'0000000000000000' if a single-length encrypted key or double-length encrypted key.

40–47 Reserved (set to binary zeros).

48–55 Part C of a triple-length encrypted key.

56–63 Reserved (set to binary zeros).

Variable-length Symmetric Key Token Formats

Variable-length Symmetric Key Token
The following table presents the presents the format for a variable-length symmetric
key token. The length of the token depends on the key type and algorithm.

Table 52. Variable-length Symmetric Key Token

Offset
(Dec)

Length of
Field
(Bytes) Description

Header

0 1 Token flag

X'00' for null token

X'01' for internal tokens

X'02' for external tokens

1 1 Reserved (X'00')

2 2 Length of the token in bytes

4 1 Token version number X'05'

5 3 Reserved (X'000000')

Wrapping information

222 z/OS V1R13 System Programmer's Guide

|

|

|
|

||

|
|

|
|
||

|

|||

||

||

||

|||

|||

|||

|||

|

Table 52. Variable-length Symmetric Key Token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

8 1 Key material state.

X'00' no key present (internal or external)

X'01' key is clear (internal)

X'02' key is encrypted under a key-encrypting key (external)

X'03' key is encrypted under the master key (internal)

9 1 Key verification pattern (KVP) type.

X'00' No KVP

X'01' AES master key verification pattern

X'02' key-encrypting key verification pattern

10 16 Verification pattern of the key used to wrap the payload. Value is left justified.

26 1 Wrapping method - This value indicates the wrapping method used to protect the data in
the encrypted section.

X'00' key is in the clear

X'02' AESKW

X'03' PKOAEP2

27 1 Hash algorithm used in wrapping algorithm.

v For wrapping method X'00'

X'00' None. For clear key tokens.

v For wrapping method X'02'

X'02' SHA-256

v For wrapping method X'03'

X'01' SHA-1

X'02' SHA-256

X'04' SHA-384

X'08' SHA-512

28 2 Reserved (X'0000')

AESKW Components: Associated data and clear key or encrypted AESKW payload

Associated data section

30 1 Associated data version (X'01')

31 1 Reserved (X'00')

32 2 Length of the associated data in bytes: adl

34 1 Length of the key name in bytes: kl

35 1 Length of the IBM extended associated data in bytes: iead

36 1 Length of the installation-definable associated data in bytes: uad

37 1 Reserved (X'00')

38 2 Length of the payload in bits: pl

40 1 Reserved (X'00')

Appendix A. Diagnosis Reference Information 223

|

|
|

|
|
||

|||

||

||

||

||

|||

||

||

||

|||

|||
|

||

||

||

|||

|

||

|

||

|

||

||

||

||
|

|||

|

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 52. Variable-length Symmetric Key Token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

41 1 Type of algorithm for which the key can be used

X'02' AES

X'03' HMAC

42 2 Key type:

For algorithm AES:

X'0001' CIPHER

X'0003' EXPORTER

X'0004' IMPORTER

For algorithm HMAC:

X'0002' MAC

44 1 Key-usage field count (kuf) - (1 byte)

45 kuf * 2 Key-usage fields (kuf * 2 bytes)

v For HMAC algorithm keys, refer to Table 53 on page 227.

v For AES algorithm Key-Encrypting Keys (Exporter or Importer), refer to Table 54 on
page 228.

v For AES algorithm Cipher Keys, refer to Table 55 on page 231.

45 + kuf *
2

1 Key-management field count (kmf): 2 (no pedigree information) or 3 (has pedigree
information)

46 + kuf *
2

2 Key-management field 1

High-order byte:

1xxx xxxx
Allow export using symmetric key

x1xx xxxx
Allow export using unauthenticated asymmetric key

xx1x xxxx
Allow export using authenticated asymmetric key

xxx1 xxxx
Allow export in RAW format.

All other bits are reserved and must be zero.

Low-order byte:

--symmetric--

1xxx xxxx
Prohibit export using DES key.

x1xx xxxx
Prohibit export using AES key.

--asymmetric--

xxxx 1xxx
Prohibit export using RSA key.

All other bits are reserved and must be zero.

224 z/OS V1R13 System Programmer's Guide

|

|
|

|
|
||

|||

||

||

|||

|

||

||

||

|

||

|||

|||

|

|
|

|

|
|
||
|

|
|
||

|

|
|

|
|

|
|

|
|

|

|

|

|
|

|
|

|

|
|

|

Table 52. Variable-length Symmetric Key Token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

48 + kuf *
2

2 Key-management field 2

High-order byte:

11xx xxxx
Key, if present, is incomplete. Key requires at least 2 more parts.

10xx xxxx
Key, if present, is incomplete. Key requires at least 1 more part.

01xx xxxx
Key, if present, is incomplete. Key can be completed or have more parts added.

00xx xxxx
Key, if present, is complete. No more parts can be added.

All other bits are reserved and must be zero.

Low-order byte (Security History):

xxx1 xxxx
Key was encrypted with an untrusted KEK

xxxx 1xxx
Key was in a format without type/usage attributes

xxxx x1xx
Key was encrypted with key weaker than itself

xxxx xx1x
Key was in a non-CCA format

xxxx xxx1
Key was encrypted in ECB mode.

All other bits are reserved and must be zero.

50 + kuf *
2

2 Key-management field 3 - Pedigree (this field may or may not be present)

Indicates how key was originally created and how it got into the current system.

High-order byte: Pedigree Original.

X'00' Unknown (Key Token Build2, Key Translate2)

X'01' Other - method other than those defined here, probably used in UDX

X'02' Randomly Generated (Key Generate2)

X'03' Established by key agreement (ECC Diffie-Hellman)

X'04' Created from cleartext key components (Key Part Import2)

X'05' Entered as a cleartext key value (Key Part Import2, Secure Key Import2)

X'06' Derived from another key

X'07' Cleartext keys or key parts that were entered at TKE and secured from there to
the target card (operational key load)

All unused values are reserved and undefined.

Appendix A. Diagnosis Reference Information 225

|

|
|

|
|
||

|
|
||

|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|
|

|
|

|
|

|

|
|
||

|

|

||

||

||

||

||

||

||

||
|

|

Table 52. Variable-length Symmetric Key Token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

Low-order byte: Pedigree Current.

X'00' Unknown (Key Token Build2)

X'01' Other - method other than those defined here, probably used in UDX

X'02' Randomly Generated (Key Generate2)

X'03' Established by key agreement (ECC Diffie-Hellman)

X'04' Created from cleartext key components (Key Part Import2)

X'05' Entered as a cleartext key value (Key Part Import2, Secure Key Import2)

X'06' Derived from another key

X'07' Imported from a CCA 05 variable length token with pedigree field (Symmetric Key
Import2)

X'08' Imported from a CCA 05 variable length token with no pedigree field (Symmetric
Key Import2)

X'09' Imported from a CCA token that had a CV

X'0A' Imported from a CCA token that had no CV or a zero CV

X'0B' Imported from a TR-31 key block that contained a CCA CV (ATTR-CV option)
(TR-31 Import)

X'0C' Imported from a TR-31 key block that did not contain a CCA CV (TR-31 Import)

X'0D' Imported using PKCS 1.2 RSA encryption (Symmetric Key Import2)

X'0E' Imported using PKCS OAEP encryption (Symmetric Key Import2)

X'0F' Imported using PKA92 RSA encryption (Symmetric Key Import2)

X'10' Imported using RSA ZERO-PAD encryption (Symmetric Key Import2)

X'11' Converted from a CCA token that had a CV (Key Translate2)

X'12' Converted from a CCA token that had no CV or a zero CV (Key Translate2)

X'13' Cleartext keys or key parts that were entered at TKE and secured from there to
the target card (operational key load)

X'14' Exported from a CCA 05 variable length token with pedigree field (Symmetric Key
Export)

X'15' Exported from a CCA 05 variable length token with no pedigree field (Symmetric
Key Export)

X'16' Exported using PKCS OAEP encryption (Symmetric Key Export)

All unused values are reserved and undefined.

46 + kuf *
2 + kmf *
2

kl Key name

46 + kuf *
2 + kmf *
2 + kl

iead IBM extended associated data

46 + kuf *
2 + kmf *
2 + kl +
iead

uad Installation-defined associated data

226 z/OS V1R13 System Programmer's Guide

|

|
|

|
|
||

|||

||

||

||

||

||

||

||

||
|

||
|

||

||

||
|

||

||

||

||

||

||

||

||
|

||
|

||
|

||

|

|
|
|

||

|
|
|

||

|
|
|
|

||

Table 52. Variable-length Symmetric Key Token (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

Clear key or encrypted payload

30 + adl (pl+7)/8 Encrypted AESKW payload (internal keys): The encrypted AESKW payload is created
from the unencrypted AESKW payload which is made up of the ICV/pad length/hash
options and hash length/hash options/hash of the associated data/key material/padding.
See unencrypted AESKW payload below.

Encrypted PKOAEP2 payload (external keys): The encrypted PKOAEP2 payload is
created using the PKCS #1 v1.2 encoding method for a given hash algorithm. The
message (M) inside the encoding contains: [2 bytes: bit length of key] || [clear HMAC key].
M is encoded using OAEP and then encrypted with an RSA public key according to the
standard.

Clear key payload: When the key is clear, only the key material will be in the payload
padded to the nearest byte with binary zeros.

30 + adl +
(pl+7)/8

End of AESKW components

Unencrypted AESKW payload (This data will never appear in the clear outside of the cryptographic
coprocessor)

0 6 Integrity check value.

Six byte constant: X'A6A6A6A6A6A6'.

6 1 Length of the padding in bits: pb

7 1 Length of hash options and hash of the associated data in bytes (hoh)

8 4 Hash options

12 hoh - 4 Hash of the associated data

8 + hoh (pl/8) – 8 -
hoh

Key data and padding (key data is left justified).

pl/8 pl is the bit length of the payload

Table 53. HMAC Algorithm Key-usage fields

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 2

Appendix A. Diagnosis Reference Information 227

|

|
|

|
|
||

|

|||
|
|
|

|
|
|
|
|

|
|

|
|
||

|
|

|||

|

|||

|||

|||

|||

||
|
|

|||
|

||

|
|

|
|
||

|||

Table 53. HMAC Algorithm Key-usage fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 2 Key-usage field 1

High-order byte:

1xxx xxxx
Key can be used for generate.

x1xx xxxx
Key can be used for verify.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:

1xxx xxxx
SHA-1 hash method is allowed for the key.

x1xx xxxx
SHA-224 hash method is allowed for the key.

xx1x xxxx
SHA-256 hash method is allowed for the key.

xxx1 xxxx
SHA-384 hash method is allowed for the key.

xxxx 1xxx
SHA-512 hash method is allowed for the key.

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

Table 54. AES Algorithm KEK Key-usage fields

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 4

228 z/OS V1R13 System Programmer's Guide

|

|
|

|
|
||

|||

|

|
|

|
|

|

|

|
|

|
|

|
|

|

|||

|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

||

|
|

|
|
||

|||

Table 54. AES Algorithm KEK Key-usage fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 2 Key-usage field 1

High-order byte for EXPORTER:

1xxx xxxx
Key can be used for EXPORT.

x1xx xxxx
Key can be used for TRANSLAT.

xx1x xxxx
Key can be used for GENERATE-OPEX.

xxx1 xxxx
Key can be used for GENERATE-IMEX.

xxxx 1xxx
Key can be used for GENERATE-EXEX.

xxxx x1xx
Key can be used for GENERATE-PUB.

All unused bits are reserved and must be zero.

High-order byte for IMPORTER:

1xxx xxxx
Key can be used for IMPORT.

x1xx xxxx
Key can be used for TRANSLAT.

xx1x xxxx
Key can be used for GENERATE-OPIM.

xxx1 xxxx
Key can be used for GENERATE-IMEX.

xxxx 1xxx
Key can be used for GENERATE-IMIM.

xxxx x1xx
Key can be used for GENERATE-PUB.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

Appendix A. Diagnosis Reference Information 229

|

|
|

|
|
||

|||

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|
|

|

Table 54. AES Algorithm KEK Key-usage fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

47 2 Key-usage field 2

High-order byte:

1xxx xxxx
Key can wrap a TR-31 key.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx xxx1
This KEK can export a key in RAW format.

All unused bits are reserved and must be zero

49 2 Key-usage field 3

High-order byte:

1xxx xxxx
Key can wrap DES keys

x1xx xxxx
Key can wrap AES keys

xx1x xxxx
Key can wrap HMAC keys

xxx1 xxxx
Key can wrap RSA keys

xxxx 1xxx
Key can wrap ECC keys

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

51 2 Key-usage field 4

High-order byte:

1xxx xxxx
Key can wrap DATA class keys

x1xx xxxx
Key can wrap KEK class keys

xx1x xxxx
Key can wrap PIN class keys

xxx1 xxxx
Key can wrap DERIVATION class keys

xxxx 1xxx
Key can wrap CARD class keys

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

230 z/OS V1R13 System Programmer's Guide

|

|
|

|
|
||

|||

|

|
|

|

|

|
|

|

|||

|

|
|

|
|

|
|

|
|

|
|

|

|

|

|||

|

|
|

|
|

|
|

|
|

|
|
|

|

|
|

Table 55. AES Algorithm Cipher Key Associated Data

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 2

45 2 Key-usage field 1

High-order byte:

1xxx xxxx
Key can be used for encryption.

x1xx xxxx
Key can be used for decryption.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:

X'00' Key can be used for Cipher Block Chaining (CBC).

X'01' Key can be used for Electronic Code Book (ECB).

X'02' Key can be used for Cipher Feedback (CFB).

X'03' Key can be used for Output Feedback (OFB).

X'04' Key can be used for Galois/Counter Mode (GCM)

X'05' Key can be used for XEX-based Tweaked CodeBook Mode with CipherText
Stealing (XTS)

All unused values are reserved and must not be used.

Low-order byte:

All bits are reserved and must be zero.

Variable-length Symmetric Null Key Token
The following table shows the format for a variable-length symmetric null key token.

Table 56. Variable-length Symmetric Null Token

Bytes Description

0 X'00' Token identifier (indicates that this is a null key token).

1 Version, X'00'.

2-3 X'0008' Length of the key token structure.

4-7 Ignored (zero).

Appendix A. Diagnosis Reference Information 231

||

|
|

|
|
||

|||

|||

|

|
|

|
|

|

|

|
|

|
|

|
|

|

|||

|

||

||

||

||

||

||
|

|

|

|
|

|

|

||

||

||

||

||

||
|

PKA Key Token Formats
As with DES key tokens, the first byte of a PKA key token indicates the type of
token. If the first byte of the key identifier is X'1E' or X'1F', this indicates that it is a
PKA key token.

A first byte of X'1E' indicates an external token with a cleartext public key and
optionally a private key that is either in cleartext or enciphered by a transport
key-encrypting key.

A first byte of X'1F' indicates an internal token with a cleartext public key and a
private key that is enciphered by the master key and ready for internal use.

Although DES tokens are 64 bytes, PKA tokens are of variable length because they
contain either RSA or DSS key values, which are variable in length. Consequently,
length parameters precede all PKA token parameters. The maximum allowed size is
3500 bytes. PKA key tokens consist of a token header, any required sections, and
optional sections, which depend on the token type.

A PKA key token can be a public or private key token, and a private key token can
be internal or external. Therefore, there are three basic types of tokens, each of
which can contain either RSA or DSS information:
v Public key tokens
v Private external key tokens
v Private internal key tokens

Public key tokens contain only the public key. Private key tokens contain the public
and private key pair.

Internal PKA Tokens

Programming Interface information

PKA private internal key tokens contain both private and public key information.
There is no need for an internal token with only the public key information because
the public values are in the clear.

The first byte of X'1F' indicates an internal token with a cleartext public key and a
private key that is enciphered with a PKA master key and ready for local (internal)
use.

The format of a PKA private internal key token is similar to that of a private external
token. The only differences are changes in the private key section and the addition
of some internal information at the end of the token. This last section starts with the
eyecatcher 'PKTN' rather than with a token or section marker.

End of Programming Interface information

232 z/OS V1R13 System Programmer's Guide

|

PKA Null Key Token
Table 57 shows the format for a PKA null key token.

Table 57. Format of PKA Null Key Tokens

Bytes Description

0 X'00' Token identifier (indicates that this is a null key token).

1 Version, X'00'

2–3 X'0008' Length of the key token structure.

4–7 Ignored (should be zero).

RSA Key Token Formats

RSA Public Key Token
An RSA public key token contains the following sections:

v A required token header, starting with the token identifier X'1E'

v A required RSA public key section, starting with the section identifier X'04'

Table 58 presents the format of an RSA public key token. All length fields are in
binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format).

Table 58. RSA Public Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx+yyy.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, “yyy”.

012 xxx Public key exponent (this is generally a 1-, 3-, or 64- to 512-byte quantity), e.
e must be odd and 1<e<n. (Frequently, the value of e is 216+1)

12+xxx yyy Modulus, n.

RSA Private External Key Token
An RSA private external key token contains the following sections:
v A required PKA token header starting with the token identifier X'1E'
v A required RSA private key section starting with one of the following section

identifiers:

Appendix A. Diagnosis Reference Information 233

– X'02' which indicates a modulus-exponent form RSA private key section (not
optimized) with modulus length of up to 1024 bits for use with the
Cryptographic Coprocessor Feature or the PCI Cryptographic Coprocessor.

– X'08' which indicates an optimized Chinese Remainder Theorem form private
key section with modulus bit length of up to 4096 bits for use with the PCICC,
PCIXCC, CEX2C, or CEX3C.

– X'09' which indicates a modulus-exponent form RSA private key section (not
optimized) with modulus length of up to 4096 bits for use with the CEX2C or
CEX3C.

v A required RSA public key section, starting with the section identifier X'04'
v An optional private key name section, starting with the section identifier X'10'

Table 59 presents the basic record format of an RSA private external key token. All
length fields are in binary. All binary fields (exponents, lengths, and so on) are
stored with the high-order byte first (left, low-address, S/390 format). All binary fields
(exponents, modulus, and so on) in the private sections of tokens are right-justified
and padded with zeros to the left.

Table 59. RSA Private External Key Token Basic Record Format

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token. The private key is
either in cleartext or enciphered with a transport key-encrypting key.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Private Key Section (required)

v For 1024-bit Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent External Form”
on page 235

v For 4096-bit Modulus-Exponent form refer to “RSA Private Key Token, 4096-bit Modulus-Exponent External Form”
on page 236

v For 4096-bit Chinese Remainder Theorem form refer to “RSA Private Key Token, 4096-bit Chinese Remainder
Theorem External Form” on page 237

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, which is zero for a private
token.
Note: In an RSA private key token, this field should be zero. The RSA
private key section contains the modulus.

012 xxx Public key exponent, e (this is generally a 1-, 3-, or 64- to 512-byte
quantity). e must be odd and 1<e<n. (Frequently, the value of e is 216+1
(=65,537).

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

234 z/OS V1R13 System Programmer's Guide

Table 59. RSA Private External Key Token Basic Record Format (continued)

Offset (Dec) Number of Bytes Description

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

RSA Private Key Token, 1024-bit Modulus-Exponent External Form: This RSA
private key token and the external X'02' token is supported on the Cryptographic
Coprocessor Feature and PCI Cryptographic Coprocessor.

Table 60. RSA Private Key Token, 1024-bit Modulus-Exponent External Format

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key, modulus-exponent format
(RSA-PRIV)

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'00' Unencrypted RSA private key subsection identifier.
X'82' Encrypted RSA private key subsection identifier.

029 001 Reserved, binary zero.

030 020 SHA-1 hash of the optional key-name section. If there is no key-name
section, then 20 bytes of X'00'.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable.

All other bits reserved, set to binary zero.

054 006 Reserved; set to binary zero.

060 024 Reserved; set to binary zero.

084 Start of the optionally-encrypted secure subsection.

084 024 Random number, confounder.

108 128 Private-key exponent, d. d=e-1 mod((p-1)(q-1)), and 1<d<n where e is the
public exponent.

End of the optionally-encrypted subsection; the confounder field and the private-key exponent field
are enciphered for key confidentiality when the key format and security flags (offset 28) indicate
that the private key is enciphered. They are enciphered under a double-length transport key using
the ede2 algorithm.

236 128 Modulus, n. n=pq where p and q are prime and 1<n<21024.

Appendix A. Diagnosis Reference Information 235

RSA Private Key Token, 4096-bit Modulus-Exponent External Form: This RSA
private key token and the external X'09' token is supported on the Crypto Express2
Coprocessor and Crypto Express3 Coprocessor.

Table 61. RSA Private Key Token, 4096-bit Modulus-Exponent External Format

Offset (Dec) Number of Bytes Description

000 001 X'09', section identifier, RSA private key, modulus-exponent format
(RSAMEVAR).

001 001 X'00', version.

002 002 Length of the RSA private key section 132+ddd+nnn+xxx.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 002 Length of the encrypted private key section 8+ddd+xxx.

026 002 Reserved; set to binary zero.

028 001 Key format and security:
X'00' Unencrypted RSA private key subsection identifier.
X'82' Encrypted RSA private key subsection identifier.

029 001 Reserved, set to binary zero.

030 020 SHA-1 hash of the optional key-name section. If there is no key-name
section, then 20 bytes of X'00'.

050 001 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable

All other bits reserved, set to binary zero.

051 001 Reserved; set to binary zero.

052 048 Reserved; set to binary zero.

100 016 Reserved; set to binary zero.

116 002 Length of private exponent, d, in bytes: ddd.

118 002 Length of modulus, n, in bytes: nnn.

120 002 Length of padding field, in bytes: xxx.

122 002 Reserved; set to binary zero.

124 Start of the optionally-encrypted secure subsection.

124 008 Random number, confounder.

132 ddd Private-key exponent, d. d=e-1 mod((p-1)(q-1)), and 1<d<n where e is the
public exponent.

132+ddd xxx X'00' padding of length xxx bytes such that the length from the start of the
random number above to the end of the padding field is a multiple of
eight bytes.

End of the optionally-encrypted subsection; the confounder field and the private-key exponent field
are enciphered for key confidentiality when the key format and security flags (offset 28) indicate
that the private key is enciphered. They are enciphered under a double-length transport key using
the ede2 algorithm.

132+ddd+xxx nnn Modulus, n. n=pq where p and q are prime and 1<n<24096.

236 z/OS V1R13 System Programmer's Guide

RSA Private Key Token, 4096-bit Chinese Remainder Theorem External
Form: This RSA private key token (up to 2048-bit modulus) is supported on the
PCICC, PCIXCC, CEX2C, or CEX3C. The 4096-bit modulus private key token is
supported on the z9 EC, z9 BC, z10 EC and z10 BC with the Nov. 2007 or later
version of the licensed internal code installed on the CEX2C or CEX3C.

Table 62. RSA Private Key Token, 4096-bit Chinese Remainder Theorem External Format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss + uuu
+ xxx + nnn.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
end of the modulus.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'40' Unencrypted RSA private-key subsection identifier, Chinese

Remainder form.
X'42' Encrypted RSA private-key subsection identifier, Chinese

Remainder form.

029 001 Reserved; set to binary zero.

030 020 SHA-1 hash of the optional key-name section and any following optional
sections. If there are no optional sections, then 20 bytes of X'00'.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 004 Reserved; set to binary zero.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 Reserved, set to binary zero.

092 032 Reserved; set to binary zero.

124 Start of the optionally-encrypted secure subsection.

124 008 Random number, confounder.

132 ppp Prime number, p.

132 + ppp qqq Prime number, q

132 + ppp + qqq rrr dp = d mod(p - 1)

Appendix A. Diagnosis Reference Information 237

Table 62. RSA Private Key Token, 4096-bit Chinese Remainder Theorem External Format (continued)

Offset (Dec) Number of Bytes Description

132 + ppp + qqq
+ rrr

sss dq = d mod(q - 1)

132 + ppp + qqq
+ rrr + sss

uuu U = q –1mod(p).

132 + ppp + qqq
+ rrr + sss + uuu

xxx X'00' padding of length xxx bytes such that the length from the start of the
random number above to the end of the padding field is a multiple of
eight bytes.

End of the optionally-encrypted secure subsection; all of the fields starting with the confounder
field and ending with the variable length pad field are enciphered for key confidentiality when the
key format-and-security flags (offset 28) indicate that the private key is enciphered. They are
enciphered under a double-length transport key using the TDES (CBC outer chaining) algorithm.

132 + ppp + qqq
+ rrr + sss + uuu
+ xxx

nnn Modulus, n. n = pq where p and q are prime and 1<n<24096.

RSA Private Internal Key Token
An RSA private internal key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1F'
v basic record format of an RSA private internal key token. All length fields are in

binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format). All binary fields (exponents,
modulus, and so on) in the private sections of tokens are right-justified and
padded with zeros to the left.

Table 63. RSA Private Internal Key Token Basic Record Format

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1F' indicates an internal token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

RSA Private Key Section and Secured Subsection (required)

v For 1024-bit X'02' Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent Internal
Form for Cryptographic Coprocessor Feature” on page 239

v For 1024-bit X'06' Modulus-Exponent form refer to “RSA Private Key Token, 1024-bit Modulus-Exponent Internal
Form for PCICC, PCIXCC, CEX2C, or CEX3C” on page 240

v For 4096-bit X'08' Chinese Remainder Theorem form refer to “RSA Private Key Token, 4096-bit Chinese
Remainder Theorem Internal Form” on page 241

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

238 z/OS V1R13 System Programmer's Guide

Table 63. RSA Private Internal Key Token Basic Record Format (continued)

Offset (Dec) Number of Bytes Description

010 002 RSA public key modulus field length in bytes, which is zero for a private
token.

012 xxx Public key exponent (this is generally a 1, 3, or 64 to 512 byte quantity),
e. e must be odd and 1<e<n. (Frequently, the value of e is 216+1
(=65,537).

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

Internal Information Section (required)

000 004 Eye catcher 'PKTN'.

004 004 PKA token type.

Bit Meaning When Set On

0 RSA key.

1 DSS key.

2 Private key.

3 Public key.

4 Private key name section exists.

5 Private key unenciphered.

6 Blinding information present.

7 Retained private key.

008 004 Address of token header.

012 002 Total length of total structure including this information section.

014 002 Count of number of sections.

016 016 PKA master key hash pattern.

032 001 Domain of retained key.

033 008 Serial number of processor holding retained key.

041 007 Reserved.

RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for
Cryptographic Coprocessor Feature:

Table 64. RSA Private Internal Key Token, 1024-bit ME Form for Cryptographic Coprocessor Feature

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key.

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

Appendix A. Diagnosis Reference Information 239

Table 64. RSA Private Internal Key Token, 1024-bit ME Form for Cryptographic Coprocessor Feature (continued)

Offset (Dec) Number of Bytes Description

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key
is deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'02' RSA private key.

029 001 Format of external key from which this token was derived:
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.

030 020 SHA-1 hash of the key token structure contents that follow the public key
section. If no sections follow, this field is set to binary zeros.

050 001 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

051 009 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under a PKA master key—can be
under the Signature Master Key (SMK) or Key Management Master Key
(KMMK) depending on key use.

108 128 Secret key exponent d, encrypted under the OPK. d=e-1 mod((p-1)(q-1))

236 128 Modulus, n. n=pq where p and q are prime and 1<n<21024.

RSA Private Key Token, 1024-bit Modulus-Exponent Internal Form for PCICC,
PCIXCC, CEX2C, or CEX3C:

Table 65. RSA Private Internal Key Token, 1024-bit ME Form for PCICC, PCIXCC, CEX2C, or CEX3C

Offset (Dec) Number of Bytes Description

000 001 X'06', section identifier, RSA private key modulus-exponent format
(RSA-PRIV).

001 001 X'00', version.

002 002 Length of the RSA private key section X'0198' (408 decimal) + rrr + iii +
xxx.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to and
including the modulus at offset 236.

024 004 Reserved; set to binary zero.

028 001 Key format and security:
X'02' RSA private key.

029 001 Format of external key from which this token was derived:
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.
X'23' Private key was generated using regeneration data.
X'24' Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following optional
sections. If there are no optional sections, this field is set to binary zeros.

240 z/OS V1R13 System Programmer's Guide

Table 65. RSA Private Internal Key Token, 1024-bit ME Form for PCICC, PCIXCC, CEX2C, or CEX3C (continued)

Offset (Dec) Number of Bytes Description

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zeros.

054 006 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under the Asymmetric Keys
Master Key using the ede3 algorithm.

108 128 Private key exponent d, encrypted under the OPK using the ede5
algorithm. d=e-1mod((p-1)(q-1)), and 1<d<n where e is the public
exponent.

236 128 Modulus, n. n=pq where p and q are prime and 2512<n<21024.

364 016 Asymmetric-Keys Master Key hash pattern.

380 020 SHA-1 hash value of the blinding information subsection cleartext, offset
400 to the end of the section.

400 002 Length of the random number r, in bytes: rrr.

402 002 Length of the random number r–1, in bytes: iii.

404 002 Length of the padding field, in bytes: xxx.

406 002 Reserved; set to binary zeros.

408 Start of the encrypted blinding subsection

408 rrr Random number r (used in blinding).

408 + rrr iii Random number r–1 (used in blinding).

408 + rrr + iii xxx X'00' padding of length xxx bytes such that the length from the start of
the encrypted blinding subsection to the end of the padding field is a
multiple of eight bytes.

End of the encrypted blinding subsection; all of the fields starting with the random number r and
ending with the variable length pad field are encrypted under the OPK using TDES (CBC outer
chaining) algorithm.

RSA Private Key Token, 4096-bit Chinese Remainder Theorem Internal Form:
This RSA private key token (up to 2048-bit modulus) is supported on the PCICC,
PCIXCC, CEX2C, or CEX3C. The 4096-bit modulus private key token is supported
on the z9 EC, z9 BC, z10 EC, z10 BC, or z196 with the Nov. 2007 or later version
of the licensed internal code installed on the CEX2C or CEX3C.

Table 66. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss + uuu
+ ttt + iii + xxx + nnn.

004 020 SHA-1 hash value of the private-key subsection cleartext, offset 28 to the
end of the modulus.

024 004 Reserved; set to binary zero.

Appendix A. Diagnosis Reference Information 241

Table 66. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format (continued)

Offset (Dec) Number of Bytes Description

028 001 Key format and security:
X'08' Encrypted RSA private-key subsection identifier, Chinese

Remainder form.

029 001 Key derivation method:
X'21' External private key was specified in the clear.
X'22' External private key was encrypted.
X'23' Private key was generated using regeneration data.
X'24' Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following sections.
If there are no optional sections, then 20 bytes of X'00'.

050 004 Key use flag bits:

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 002 Length of the random number r, in bytes: ttt.

068 002 Length of the random number r–1, in bytes: iii.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 Asymmetric-Keys Master Key hash pattern.

092 032 Object Protection Key (OPK) encrypted under the Asymmetric-Keys
Master Key using the TDES (CBC outer chaining) algorithm.

124 Start of the encrypted secure subsection, encrypted under the OPK using TDES (CBC outer
chaining).

124 008 Random number, confounder.

132 ppp Prime number, p.

132 + ppp qqq Prime number, q

132 + ppp + qqq rrr dp = d mod(p - 1)

132 + ppp + qqq
+ rrr

sss dq = d mod(q - 1)

132 + ppp + qqq
+ rrr + sss

uuu U = q–1mod(p).

132 + ppp + qqq
+ rrr + sss + uuu

ttt Random number r (used in blinding).

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt

iii Random number r–1 (used in blinding).

242 z/OS V1R13 System Programmer's Guide

Table 66. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format (continued)

Offset (Dec) Number of Bytes Description

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt + iii

xxx X'00' padding of length xxx bytes such that the length from the start of the
confounder at offset 124 to the end of the padding field is a multiple of
eight bytes.

End of the encrypted secure subsection; all of the fields starting with the confounder field and
ending with the variable length pad field are encrypted under the OPK using TDES (CBC outer
chaining) for key confidentiality.

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt + iii + xxx

nnn Modulus, n. n = pq where p and q are prime and 1<n<24096.

DSS Key Token Formats

DSS Public Key Token
A DSS public key token contains the following sections:

v A required token header, starting with the token identifier X'1E'

v A required DSS public key section, starting with the section identifier X'03'

Table 67 presents the format of a DSS public key token. All length fields are in
binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format).

Table 67. DSS Public Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

DSS Public Key Section (required)

000 001 X'03', section identifier, DSS public key.

001 001 X'00', version.

002 002 Section length, 14+ppp+qqq+ggg+yyy.

004 002 Size of p in bits. The size of p must be one of: 512, 576, 640, 704, 768,
832, 896, 960, or 1024.

006 002 Size of the p field in bytes, “ppp”.

008 002 Size of the q field in bytes, “qqq”.

010 002 Size of the g field in bytes, “ggg”.

012 002 Size of the y field in bytes, “yyy”.

014 ppp Prime modulus (large public modulus), p.

014 +ppp qqq Prime divisor (small public modulus), q. 2159<q<2160.

014 +ppp +qqq ggg Public key generator, g.

014 +ppp +qqq
+ggg

yyy Public key, y. y=gx mod(p); 1<y<p.

Appendix A. Diagnosis Reference Information 243

DSS Private External Key Token
A DSS private external key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1E'
v A required DSS private key section, starting with the section identifier X'01'
v A required DSS public key section, starting with the section identifier X'03'
v An optional private key name section, starting with the section identifier X'10'

Table 68 presents the format of a DSS private external key token. All length fields
are in binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format). All binary fields (exponents,
modulus, and so on) in the private sections of tokens are right-justified and padded
with zeros to the left.

Table 68. DSS Private External Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

DSS Private Key Section and Secured Subsection (required)

000 001 X'01', section identifier, DSS private key.

001 001 X'00', version.

002 002 Length of the DSS private key section, 436, X'01B4'.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key security:
X'00' Unencrypted DSS private key subsection identifier.
X'81' Encrypted DSS private key subsection identifier.

029 001 Padding, X'00'.

030 020 SHA-1 hash of the key token structure contents that follow the public key
section. If no sections follow, this field is set to binary zeros.

050 010 Reserved; set to binary zero.

060 048 Ignored; set to binary zero.

108 128 Public key generator, g. 1<g<p.

236 128 Prime modulus (large public modulus), p. 2L-1<p<2L and L (the modulus
length) must be a multiple of 64.

364 020 Prime divisor (small public modulus), q. 2159<q<2160.

384 004 Reserved; set to binary zero.

388 024 Random number, confounder.
Note: This field and the next two fields are enciphered for key
confidentiality when the key security flag (offset 28) indicates the private
key is enciphered.

412 020 Secret DSS key, x; x is random. (See the preceding note.)

432 004 Random number, generated when the secret key is generated. (See the
preceding note.)

244 z/OS V1R13 System Programmer's Guide

Table 68. DSS Private External Key Token (continued)

Offset (Dec) Number of Bytes Description

DSS Public Key Section (required)

000 001 X'03', section identifier, DSS public key.

001 001 X'00', version.

002 002 Section length, 14+yyy.

004 002 Size of p in bits. The size of p must be one of: 512, 576, 640, 704, 768,
832, 896, 960, or 1024.

006 002 Size of the p field in bytes, which is zero for a private token.

008 002 Size of the q field in bytes, which is zero for a private token.

010 002 Size of the g field in bytes, which is zero for a private token.

012 002 Size of the y field in bytes, “yyy”.

014 yyy Public key, y. y=gx mod(p)
Note: p, q, and y are defined in the DSS public key token.

Private Key Name (optional)

000 001 X'10', section identifier, private key. name

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

DSS Private Internal Key Token
A DSS private internal key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1F'
v A required DSS private key section, starting with the section identifier X'01'
v A required DSS public key section, starting with the section identifier X'03'
v An optional private key name section, starting with the section identifier X'10'
v A required internal information section, starting with the eyecatcher 'PKTN'

Table 69 presents the format of a DSS private internal token. All length fields are in
binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first (left, low-address, S/390 format). All binary fields (exponents,
modulus, and so on) in the private sections of tokens are right-justified and padded
with zeros to the left.

Table 69. DSS Private Internal Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1F' indicates an internal token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

DSS Private Key Section and Secured Subsection (required)

000 001 X'01', section identifier, DSS private key.

Appendix A. Diagnosis Reference Information 245

Table 69. DSS Private Internal Key Token (continued)

Offset (Dec) Number of Bytes Description

001 001 X'00', version.

002 002 Length of the DSS private key section, 436, X'01B4'.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key security: X'01' DSS private key.

029 001 Format of external key token:
X'10' Private key generated on an ICSF host.
X'11' External private key was specified in the clear.
X'12' External private key was encrypted.

030 020 SHA-1 hash of the key token structure contents that follow the public key
section. If no sections follow, this field is set to binary zeros.

050 010 Reserved; set to binary zero.

060 048 The OPK encrypted under a PKA master key (Signature Master Key
(SMK)).

108 128 Public key generator, g. 1<g<p.

236 128 Prime modulus (large public modulus), p. 2L-1<p<2L for 512≤L≤1024, and L
(the modulus length) must be a multiple of 64.

364 020 Prime divisor (small public modulus), q. 2159<q<2160.

384 004 Reserved; set to binary zero.

388 024 Random number, confounder.
Note: This field and the two that follow are enciphered under the OPK.

412 020 Secret DSS key, x. x is random. (See the preceding note.)

432 004 Random number, generated when the secret key is generated. (See the
preceding note.)

DSS Public Key Section (required)

000 001 X'03', section identifier, DSS public key.

001 001 X'00', version.

002 002 Section length, 14+yyy.

004 002 Size of p in bits. The size of p must be one of: 512, 576, 640, 704, 768,
832, 896, 960, or 1024.

006 002 Size of the p field in bytes, which is zero for a private token.

008 002 Size of the q field in bytes, which is zero for a private token.

010 002 Size of the g field in bytes, which is zero for a private token.

012 002 Size of the y field in bytes, “yyy”.

014 yyy Public key, y. y=gx mod(p);
Note: p, g, and y are defined in the DSS public key token.

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

246 z/OS V1R13 System Programmer's Guide

Table 69. DSS Private Internal Key Token (continued)

Offset (Dec) Number of Bytes Description

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

Internal Information Section (required)

000 004 Eye catcher 'PKTN'.

004 004 PKA token type.

Bit Meaning When Set On

0 RSA key.

1 DSS key.

2 Private key.

3 Public key.

4 Private key name section exists.

008 004 Address of token header.

012 002 Length of internal work area.

014 002 Count of number of sections.

016 016 PKA master key hash pattern.

032 016 Reserved.

ECC Key Token Format
The following table presents the format of the ECC Key Token.

Table 70. ECC Key Token Format

Offset (Dec) Number of Bytes Description

Token Header

000 001 Token identifier.

X'00' Null token

X'1E' External token

X'1F' Internal token; the private key is protected by the master key

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

ECC Token Private section

000 001 X'20', section identifier, ECC private key

001 001 X'00', version.

002 002 Section length.

Appendix A. Diagnosis Reference Information 247

Table 70. ECC Key Token Format (continued)

Offset (Dec) Number of Bytes Description

004 001 Wrapping Method: This value indicates the wrapping method used to
protect the data in the encrypted section. It is not the method used to
protect the Object Protection Key (OPK).

X'00' Clear – section is unencrypted.

X'01' AESKW

X'02' CBC Wrap - Other

005 001 Hash used for Wrapping

X'01' SHA224

X'02' SHA256

X'04' Reserved.

X'08' Reserved

006 002 Reserved Binary Zero

008 001 Key Usage:

X'C0' Key Agreement

X'80' Both signature generation and key agreement

X'00' Signature generation only

X'02' Translate allowed
The two high-order bits indicate permitted key usage in the decryption of
symmetric keys and in the generation of digital signatures. The bit in the
second nibble indicates if the key is translatable. A key is translatable if it
can be re-encrypted from one key encrypting key to another.

009 001 Curve type:

X'00' Prime curve

X'01' Brainpool curve

010 001 Key Format and Security Flag.

External Token:

X'40' Unencrypted ECC private key identifier

X'42' Encrypted ECC private key identifier

Internal Token:

X'08' Encrypted ECC private key identifier

011 001 Reserved Binary Zero

248 z/OS V1R13 System Programmer's Guide

Table 70. ECC Key Token Format (continued)

Offset (Dec) Number of Bytes Description

012 002 Length of p in bits

X'00C0'
Prime P-192

X'00E0'
Prime P-224

X'0100' Prime P-256

X'0180' Prime P-384

X'0209' Prime P-521

X'00A0'
Brainpool p-160

X'00C0'
Brainpool P-192

X'00E0'
Brainpool P-224

X'0100' Brainpool P-256

X'0140' Brainpool P-320

X'0180' Brainpool P-384

X'0200' Brainpool P-512)

014 002 IBM Associated Data length. The length of this field must be greater than
or equal to 16

016 008 External Token:

v Unencrypted – Reserved Binary 0x’00’

v Encrypted – KVP of the AESKEK

Internal Token: MKVP

024 048 External Token: reserved binary zeros.

Internal Token: Object Protection Key (OPK), ICV (Integrity Check value),
8 byte confounder and a 256-bit AES key used with the AESKW algorithm
to encrypt the ECC private key.

The OPK is encrypted by the AES master key using AESKW as well.
Example format for OPK data passed to AESKW:

v 8 bytes = A6A6A6A6A6A60000

v 40 bytes = Confounder(8)/Key(32)

072 002 Associated data length, aa

074 002 Length of formatted section in bytes, bb

076 aa Associated data (See Table 71 on page 250 for the Associated Data
format).

076 + aa Start of formatted
section

If this section is in the clear it contains private key d.

If it is encrypted it contains the AESKW wrapped payload.

76 + aa bb Formatted section which includes Private key d

See Table 72 on page 251 for the format of the AESKW Wrapped
Payload

Appendix A. Diagnosis Reference Information 249

|

|

Table 70. ECC Key Token Format (continued)

Offset (Dec) Number of Bytes Description

76 + aa + bb End of formatted
section

ECC Token Public Section

000 001 X'21', section identifier

001 001 X'00', version.

002 002 Section length

004 004 Reserved field, binary zero

008 001 Curve type

X'00' Prime curve

X'01' Brainpool curve

009 001 Reserved field, binary zero

010 002 Length of p in bits:

X'00C0'
Prime P-192

X'00E0'
Prime P-224

X'0100' Prime P-256

X'0180' Prime P-384

X'0209' Prime P-521

X'00A0'
Brainpool P-160

X'00C0'
Brainpool P-192

X'00E0'
Brainpool P-224

X'0100' Brainpool P-256

X'0140' Brainpool P-320

X'0180' Brainpool P-384

X'0200' Brainpool P-512

012 002 This field is the length of the public key q value in bytes, the maximum
value could be up to 133 bytes, cc. The value includes the key material
length and one byte to indicate if the key material is compressed or
uncompressed.

014 cc Public Key , q field

Associated Data Format for ECC Token
The table below defines the associated data as it is stored in the ECC token in the
clear. Associated data is data whose integrity but not confidentiality is protected by
a key wrap mechanism.

Table 71. Associated Data Format for ECC Private Key Token

Offset (Dec) Number of Bytes Description

000 001 Associated Data Version. 0 for ECC

250 z/OS V1R13 System Programmer's Guide

Table 71. Associated Data Format for ECC Private Key Token (continued)

Offset (Dec) Number of Bytes Description

001 001 Length of Key Label, kl

002 002 IBM Associated Data length, 16 + kl + xxx

004 002 IBM Extended Associated Data length, xxx

006 001 User Definable Associated Data length, yyy. User
definable lengths are from 0 bytes to 100 bytes.

007 001 Curve Type

008 002 Length of p in bits

010 001 Usage flag

011 001 Format and Security flag

012 004 reserved

016 kl Key Label (optional)

016 + kl xxx IBM Extended Associated Data

016 + kl +
xxx

yyy User-definable Associated Data

AESKW Wrapped Payload Format for ECC Private Key Token
This table defines the contents of the AESKW payload: data will be copied into this
format, then encrypted with the OPK according to the AESKW specification, and the
result will be stored in the encrypted data section.

Table 72. AESKW Wrapped Payload Format for ECC Private Key Token

Offset (Dec) Number of Bytes Description

000 006 ICV (‘A6’....)

006 001 Length of padding in bits

007 001 Length of the hash of the associated data in bytes, ii

008 004 Hash options

012 ii Hash of Associated Data

12+ii mm Key data

12+ii+mm 0-7 Padding to a multiple of 8 bytes

Trusted Block Key Token
A trusted block key-token (trusted block) is an extension of CCA PKA key tokens
using new section identifiers. A trusted block was introduced to CCA beginning with
Release 3.25. They are an integral part of a remote key-loading process.

Trusted blocks contain various items, some of which are optional, and some of
which can be present in different forms. Tokens are composed of concatenated
sections that, unlike CCA PKA key tokens, occur in no prescribed order.

As with other CCA key-tokens, both internal and external forms are defined:

v An external trusted block contains a randomly generated confounder and a
triple-length MAC key enciphered under a DES IMP-PKA transport key. The MAC
key is used to calculate an ISO 16609 CBC mode TDES MAC of the trusted
block contents. An external trusted block is created by the Trusted_Block_Create
verb. This verb can:

Appendix A. Diagnosis Reference Information 251

1. Create an inactive external trusted block

2. Change an external trusted block from inactive to active

v An internal trusted block contains a confounder and triple-length MAC key
enciphered under a variant of the PKA master key. The MAC key is used to
calculate a TDES MAC of the trusted block contents. A PKA master key
verification pattern is also included to enable determination that the proper
master key is available to process the key. The Remote_Key_Export verb only
operates on trusted blocks that are internal. An internal trusted block must be
imported from an external trusted block that is active using the PKA_Key_Import
verb.

Note: Trusted blocks do not contain a private key section.

Trusted block sections
A trusted block is a concatenation of a header followed by an unordered set of
sections. The data structures of these sections are summarized in the following
table:

Section Reference Usage

Header Table 73 on page 254 Trusted block token header

X'11' Table 74 on page 255 Trusted block public key

X'12' Table 75 on page 256 Trusted block rule

X'13' Table 82 on page 263 Trusted block name (key label)

X'14' Table 83 on page 263 Trusted block information

X'15' Table 87 on page 266 Trusted block application-defined data

Every trusted block starts with a token header. The first byte of the token header
determines the key form:

v An external header (first byte X'1E'), created by the Trusted_Block_Create verb

v An internal header (first byte X'1F'), imported from an active external trusted
block by the PKA_Key_Import verb

Following the token header of a trusted block is an unordered set of sections. A
trusted block is formed by concatenating these sections to a trusted block header:

v An optional public-key section (trusted block section identifier X'11')

The trusted block trusted RSA public-key section includes the key itself in
addition to a key-usage flag. No multiple sections are allowed.

v An optional rule section (trusted block section identifier X'12')

A trusted block may have zero or more rule sections.

1. A trusted block with no rule sections can be used by the
PKA_Key_Token_Change and PKA_Key_Import callable services. A trusted
block with no rule sections can also be used by the Digital_Signature_Verify
verb, provided there is an RSA public-key section that has its key-usage flag
bits set to allow digital signature operations.

2. At least one rule section is required when the Remote_Key_Export verb is
used to:

– Generate an RKX key-token

– Export an RKX key-token

– Export a CCA DES key-token

252 z/OS V1R13 System Programmer's Guide

– Encrypt the clear generated or exported key using the provided vendor
certificate

3. If a trusted block has multiple rule sections, each rule section must have a
unique 8-character Rule ID.

v An optional name (key label) section (trusted block section identifier X'13')

The trusted block name section provides a 64-byte variable to identify the trusted
block, just as key labels are used to identify other CCA keys. This name, or label,
enables a host access-control system such as RACF to use the name to verify
that the application has authority to use the trusted block. No multiple sections
are allowed.

v A required information section (trusted block section identifier X'14')

The trusted block information section contains control and security information
related to the trusted block. The information section is required while the others
are optional. This section contains the cryptographic information that guarantees
its integrity and binds it to the local system. No multiple sections are allowed.

v An optional application-defined data section (trusted block section identifier X'15')

The trusted block application-defined data section can be used to include
application-defined data in the trusted block. The purpose of the data in this
section is defined by the application. CCA does not examine or use this data in
any way. No multiple sections are allowed.

Trusted block integrity
An enciphered confounder and triple-length MAC key contained within the required
information section of the trusted block is used to protect the integrity of the trusted
block. The randomly generated MAC key is used to calculate an ISO 16609 CBC
mode TDES MAC of the trusted block contents. Together, the MAC key and MAC
value provide a way to verify that the trusted block originated from an authorized
source, and binds it to the local system.

An external trusted block has its MAC key enciphered under an IMP-PKA
key-encrypting key. An internal trusted block has its MAC key enciphered under a
variant of the PKA master key, and the master key verification pattern is stored in
the information section.

Number representation in trusted blocks
v All length fields are in binary

v All binary fields (exponents, lengths, and so forth) are stored with the high-order
byte first (left, low-address, z/OS format); thus the least significant bits are to the
right and preceded with zero-bits to the width of a field

v In variable-length binary fields that have an associated field-length value, leading
bytes that would otherwise contain X'00' can be dropped and the field shortened
to contain only the significant bits

Format of trusted block sections
At the beginning of every trusted block is a trusted block header. The header
contains the following information:

v A token identifier, which specifies if the token contains an external or internal
key-token

v A token version number to allow for future changes

v A length in bytes of the trusted block, including the length of the header

The trusted block header is defined in the following table:

Appendix A. Diagnosis Reference Information 253

Table 73. Trusted block header

Offset
(bytes)

Length
(bytes)

Description

000 001 Token identifier (a flag that indicates token type)
X'1E' External trusted block token
X'1F' Internal trusted block token

001 001 Token version number (X'00').

002 002 Length of the key-token structure in bytes.

004 004 Reserved, binary zero.

Note: See “Number representation in trusted blocks” on page 253.

Following the header, in no particular order, are trusted block sections. There are
five different sections defined, each identified by a one-byte section identifier (X'11' -
X'15'). Two of the five sections have subsections defined. A subsection is a
tag-length-value (TLV) object, identified by a two-byte subsection tag.

Only sections X'12' and X'14' have subsections defined; the other sections do not. A
section and its subsections, if any, are one contiguous unit of data. The subsections
are concatenated to the related section, but are otherwise in no particular order.
Section X'12' has five subsections defined (X'0001' - X'0005'), and section X'14' has
two (X'0001' and X'0002'). Of all the subsections, only subsection X'0001' of section
X'14' is required. Section X'14' is also required.

The trusted block sections and subsections are described in detail in the following
sections.

Trusted block section X'11': Trusted block section X'11' contains the trusted RSA
public key in addition to a key-usage flag indicating whether the public key is usable
in key-management operations, digital signature operations, or both.

Section X'11' is optional. No multiple sections are allowed. It has no subsections
defined.

This section is defined in the following table:

254 z/OS V1R13 System Programmer's Guide

Table 74. Trusted block trusted RSA public-key section (X'11')

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'11' Trusted block trusted RSA public key

001 001 Section version number (X'00').

002 002 Section length (16+xxx+yyy).

004 002 Reserved, must be binary zero.

006 002 RSA public-key exponent field length in bytes, xxx.

008 002 RSA public-key modulus length in bits.

010 002 RSA public-key modulus field length in bytes, yyy.

012 xxx Public-key exponent, e (this field length is typically 1, 3, or 64 - 512
bytes). e must be odd and 1≤e<n. (e is frequently valued to 3 or 216+1
(=65537), otherwise e is of the same order of magnitude as the
modulus).
Note: Although the current product implementation does not generate
such a public key, you can import an RSA public key having an exponent
valued to two (2). Such a public key (a Rabin key) can correctly validate
an ISO 9796-1 digital signature.

012+xxx yyy RSA public-key modulus, n. n=pq, where p and q are prime and
2512≤n<24096. The field length is 64 - 512 bytes.

012+xxx+yyy 004 Flags:
X'00000000' Trusted block public key can be used in digital

signature operations only
X'80000000' Trusted block public key can be used in both digital

signature and key management operations
X'C0000000' Trusted block public key can be used in key

management operations only

Note: See “Number representation in trusted blocks” on page 253.

Trusted block section X'12': Trusted block section X'12' contains information that
defines a rule. A trusted block may have zero or more rule sections.

1. A trusted block with no rule sections can be used by the
PKA_Key_Token_Change and PKA_Key_Import callable services. A trusted
block with no rule sections can be used by the Digital_Signature_Verify verb,
provided there is an RSA public-key section that has its key-usage flag set to
allow digital signature operations.

2. At least one rule section is required when the Remote_Key_Export verb is used
to:

v Generate an RKX key-token

v Export an RKX key-token

v Export a CCA DES key-token

v Generate or export a key encrypted by a public key. The public key is
contained in a vendor certificate (section X'11'), and is the root certification
key for the ATM vendor. It is used to verify the digital signature on public-key
certificates for specific individual ATMs.

3. If a trusted block has multiple rule sections, each rule section must have a
unique 8-character Rule ID.

Section X'12' is the only section allowed to have multiple sections. Section X'12' is
optional. Multiple sections are allowed.

Appendix A. Diagnosis Reference Information 255

Note: The overall length of the trusted block may not exceed its maximum size of
3500 bytes.

Five subsections (TLV objects) are defined.

This section is defined in the following table:

Table 75. Trusted block rule section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'12' Trusted block rule

001 001 Section version number (X'00').

002 002 Section length in bytes (20+yyy).

004 008 Rule ID (in ASCII).

An 8-byte character string that uniquely identifies the rule within the
trusted block.

Valid ASCII characters are: A...Z, a...z, 0...9, - (hyphen), and _
(underscore), left justified and padded on the right with space characters.

012 004 Flags (undefined flag bits are reserved and must be zero).

X'00000000' Generate new key

X'00000001' Export existing key

016 001 Generated key length.

Length in bytes of key to be generated when flags value (offset 012) is
set to generate a new key; otherwise ignore this value. Valid values are
8, 16, or 24; return an error if not valid.

017 001 Key-check algorithm identifier (all others are reserved and must not be
used):
Value Meaning
X'00' Do not compute key-check value. In a call to CSNDRKX or

CSNFRKX, set the key_check_length variable to zero.
X'01' Encrypt an 8-byte block of binary zeros with the key. In a call

to CSNDRKX or CSNFRKX, set the key_check_length variable
to 8.

X'02' Compute the MDC-2 hash of the key. In a call to CSNDRKX or
CSNFRKX, set the key_check_length variable to 16.

018 001 Symmetric encrypted output key format flag (all other values are reserved
and must not be used).

Return the indicated symmetric key-token using the
sym_encrypted_key_identifier parameter.
Value Meaning
X'00' Return an RKX key-token encrypted under a variant of the

MAC key.
Note: This is the only key format permitted when the flags
value (offset 012) is set to generate a new key.

X'01' Return a CCA DES key-token encrypted under a transport key.
Note: This is the only key format permitted when the flags
value (offset 012) is set to export an existing key.

256 z/OS V1R13 System Programmer's Guide

Table 75. Trusted block rule section (X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

019 001 Asymmetric encrypted output key format flag (all other values are
reserved and must not be used).

Return the indicated asymmetric key-token in the asym_encrypted_key
variable.
Value Meaning
X'00' Do not return an asymmetric key. Set the

asym_encrypted_key_length variable to zero.
X'01' Output in PKCS1.2 format.
X'02' Output in RSAOAEP format.

020 yyy Rule section subsections (tag-length-value objects). A series of 0 - 5
objects in TLV format.

Note: See “Number representation in trusted blocks” on page 253.

Section X'12' has five rule subsections (tag-length-value objects) defined. These
subsections are summarized in the following table:

Table 76. Summary of trusted block rule subsection

Rule
subsection
tag

TLV object Optional or
required

Comments

X'0001' Transport
key variant

Optional Contains variant to be exclusive-ORed into the
cleartext transport key.

X'0002' Transport
key rule
reference

Optional; required to
use an RKX
key-token as a
transport key

Contains the rule ID for the rule that must have been
used to create the transport key.

X'0003' Common
export key
parameters

Optional for key
generation; required
for key export of an
existing key

Contains the export key and source key minimum and
maximum lengths, an output key variant length and
variant, a CV length, and a CV to be exclusive-ORed
with the cleartext transport key to control usage of the
key.

X'0004' Source key
reference

Optional; required if
the source key is an
RKX key-token

Contains the rule ID for the rule used to create the
source key.
Note: Include all rules that will ever be needed when
a trusted block is created. A rule cannot be added to
a trusted block after it has been created.

X'0005' Export key
CCA token
parameters

Optional; used for
export of CCA DES
key tokens only

Contains mask length, mask, and CV template to limit
the usage of the exported key. Also contains the
template length and template which defines which
source key labels are allowed.

The key type of a source key input parameter can be
"filtered" by using the export key CV limit mask (offset
005) and limit template (offset 005+yyy) in this
subsection.

Note: See “Number representation in trusted blocks” on page 253.

Trusted block section X'12' subsection X'0001': Subsection X'0001' of the trusted
block rule section (X'12') is the transport key variant TLV object. This subsection is
optional. It contains a variant to be exclusive-ORed into the cleartext transport key.

This subsection is defined in the following table:

Appendix A. Diagnosis Reference Information 257

Table 77. Transport key variant subsection (X'0001' of trusted block rule section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0001' Transport key variant TLV object

002 002 Subsection length in bytes (8+nnn).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Length of variant field in bytes (nnn).

This length must be greater than or equal to the length of the transport
key that is identified by the transport_key_identifier parameter. If the
variant is longer than the key, truncate it on the right to the length of the
key prior to use.

008 nnn Transport key variant.

Exclusive-OR this variant into the cleartext transport key, provided: (1) the
length of the variant field value (offset 007) is not zero, and (2) the
symmetric encrypted output key format flag (offset 018 in section X'12') is
X'01'.
Note: A transport key is not used when the symmetric encrypted output
key is in RKX key-token format.

Note: See “Number representation in trusted blocks” on page 253.

Trusted block section X'12' subsection X'0002': Subsection X'0002' of the trusted
block rule section (X'12') is the transport key rule reference TLV object. This
subsection is optional. It contains the rule ID for the rule that must have been used
to create the transport key. This subsection must be present to use an RKX
key-token as a transport key.

This subsection is defined in the following table:

Table 78. Transport key rule reference subsection (X'0002') of trusted block rule section
(X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0002' Transport key rule reference TLV object

002 002 Subsection length in bytes (14).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 008 Rule ID.

Contains the rule identifier for the rule that must have been used to
create the RKX key-token used as the transport key.

The Rule ID is an 8-byte string of ASCII characters, left justified and
padded on the right with space characters. Acceptable characters are
A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F'). All other characters are reserved
for future use.

Trusted block section (X'12') subsection X'0003': Subsection X'0003' of the
trusted block rule section (X'12') is the common export key parameters TLV object.
This subsection is optional, but is required for the key export of an existing source
key (identified by the source_key_identifier parameter) in either RKX key-token

258 z/OS V1R13 System Programmer's Guide

format or CCA DES key-token format. For new key generation, this subsection
applies the output key variant to the cleartext generated key, if such an option is
desired. It contains the input source key and output export key minimum and
maximum lengths, an output key variant length and variant, a CV length, and a CV
to be exclusive-ORed with the cleartext transport key.

This subsection is defined in the following table:

Table 79. Common export key parameters subsection (X'0003') of trusted block rule section
(X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0003' Common export key parameters TLV object

002 002 Subsection length in bytes (12+xxx+yyy).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Flags (must be set to binary zero).

008 001 Export key minimum length in bytes. Length must be 8, 16, or 24.

Also applies to the source key.

009 001 Export key maximum length in bytes (yyy). Length must be 8, 16, or 24.

Also applies to the source key.

010 001 Output key variant length in bytes (xxx).

Valid values are 0 or 8 - 255. If greater than 0, the length must be at
least as long as the longest key ever to be exported using this rule. If the
variant is longer than the key, truncate it on the right to the length of the
key prior to use.
Note: The output key variant (offset 011) is not used if this length is
zero.

011 xxx Output key variant.

The variant can be any value. Exclusive-OR this variant into the cleartext
value of the output.

011+xxx 001 CV length in bytes (yyy).

v If the length is not 0, 8, or 16, return an error.

v If the length is 0, and if the source key is a CCA DES key-token,
preserve the CV in the symmetric encrypted output if the output is to
be in the form of a CCA DES key-token.

v If a non-zero length is less than the length of the key identified by the
source_key_identifier parameter, return an error.

v If the length is 16, and if the CV (offset 012+xxx) is valued to 16 bytes
of X'00' (ignoring the key-part bit), then:

1. Ignore all CV bit definitions

2. If CCA DES key-token format, set the flag byte of the symmetric
encrypted output key to indicate a CV value is present.

3. If the source key is 8 bytes in length, do not replicate the key to 16
bytes.

Appendix A. Diagnosis Reference Information 259

Table 79. Common export key parameters subsection (X'0003') of trusted block rule section
(X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

012+xxx yyy CV.

Place this CV into the output exported key-token, provided that the
symmetric encrypted output key format selected (offset 018 in rule
section) is CCA DES key-token.

v If the symmetric encrypted output key format flag (offset 018 in section
X'12') indicates return an RKX key-token (X'00'), then ignore this CV.
Otherwise, exclusive-OR this CV into the cleartext transport key.

v Exclusive-OR the CV of the source key into the cleartext transport key
if the CV length (offset 011+xxx) is set to 0. If a transport key to
encrypt a source key has equal left and right key halves, return an
error. Replicate the key halves of the key identified by the
source_key_identifier parameter whenever all of these conditions are
met:

1. The Replicate Key command (offset X'00DB') is enabled in the
active role

2. The CV length (offset 011+xxx) is 16, and both CV halves are
non-zero

3. The source_key_identifier parameter (contained in either a CCA
DES key-token or RKX key-token) identifies an 8-byte key

4. The key-form bits (40 - 42) of this CV do not indicate a
single-length key (are not set to zero)

5. Key-form bit 40 of this CV does not indicate the key is to have
guaranteed unique halves (is not set to 1).

Note: A transport key is not used when the symmetric encrypted output
key is in RKX key-token format.

Note: See “Number representation in trusted blocks” on page 253.

Trusted block section X'12' subsection X'0004': Subsection X'0004' of the trusted
block rule section (X'12') is the source key rule reference TLV object. This
subsection is optional, but is required if using an RKX key-token as a source key
(identified by source_key_identifier parameter). It contains the rule ID for the rule
used to create the export key. If this subsection is not present, an RKX key-token
format source key will not be accepted for use.

This subsection is defined in the following table:

260 z/OS V1R13 System Programmer's Guide

Table 80. Source key rule reference subsection (X'0004' of trusted block rule section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0004' Source key rule reference TLV object

002 002 Subsection length in bytes (14).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 008 Rule ID.

Rule identifier for the rule that must have been used to create the source
key.

The Rule ID is an 8-byte string of ASCII characters, left justified and
padded on the right with space characters. Acceptable characters are
A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F'). All other characters are reserved
for future use.

Note: See “Number representation in trusted blocks” on page 253.

Trusted block section X'12' subsection X'0005': Subsection X'0005' of the trusted
block rule section (X'12') is the export key CCA token parameters TLV object. This
subsection is optional. It contains a mask length, mask, and template for the export
key CV limit. It also contains the template length and template for the source key
label. When using a CCA DES key-token as a source key input parameter, its key
type can be "filtered" by using the export key CV limit mask (offset 005) and limit
template (offset 005+yyy) in this subsection.

This subsection is defined in the following table:

Table 81. Export key CCA token parameters subsection (X'0005') of trusted block rule
section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0005' Export key CCA token parameters TLV object

002 002 Subsection length in bytes (10+yyy+yyy+zzz).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Flags (must be set to binary zero).

008 001 Export key CV limit mask length in bytes (yyy).

Do not use CV limits if this CV limit mask length (yyy) is zero. Use CV
limits if yyy is non-zero, in which case yyy:

v Must be 8 or 16

v Must not be less than the export key minimum length (offset 008 in
subsection X'0003')

v Must be equal in length to the actual source key length of the key

Example: An export key minimum length of 16 and an export key CV
limit mask length of 8 returns an error.

Appendix A. Diagnosis Reference Information 261

Table 81. Export key CCA token parameters subsection (X'0005') of trusted block rule
section (X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

009 yyy Export key CV limit mask (does not exist if yyy=0).

Indicates which CV bits to check against the source key CV limit template
(offset 009+yyy).

Examples: A mask of X'FF' means check all bits in a byte. A mask of
X'FE' ignores the parity bit in a byte.

009+yyy yyy Export key CV limit template (does not exist if yyy=0).

Specifies the required values for those CV bits that are checked based
on the export key CV limit mask (offset 009).

The export key CV limit mask and template have the same length, yyy.
This is because these two variables work together to restrict the
acceptable CVs for CCA DES key tokens to be exported. The checks
work as follows:

1. If the length of the key to be exported is less than yyy, return an error

2. Logical AND the CV for the key to be exported with the export key
CV limit mask

3. Compare the result to the export key CV limit template

4. Return an error if the comparison is not equal

Examples: An export key CV limit mask of X'FF' for CV byte 1 (key type)
along with an export key CV limit template of X'3F' (key type CVARENC)
for byte 1 filters out all key types except CVARENC keys.
Note: Using the mask and template to permit multiple key types is
possible, but cannot consistently be achieved with one rule section. For
example, setting bit 10 to 1 in the mask and the template permits PIN
processing keys and cryptographic variable encrypting keys, and only
those keys. However, a mask to permit PIN-processing keys and
key-encrypting keys, and only those keys, is not possible. In this case,
multiple rule sections are required, one to permit PIN-processing keys
and the other to permit key-encrypting keys.

009+yyy+yyy 001 Source key label template length in bytes (zzz).

Valid values are 0 and 64. Return an error if the length is 64 and a
source key label is not provided.

010+yyy+yyy zzz Source key label template (does not exist if zzz=0).

If a key label is identified by the source_key_identifier parameter, verify
that the key label name matches this template. If the comparison fails,
return an error. The source key label template must conform to the
following rules:

v The key label template must be 64 bytes in length

v The first character cannot be in the range X'00' - X'1F', nor can it be
X'FF'

v The first character cannot be numeric (X'30' - X'39')

v A key label name is terminated by a space character (X'20') on the
right and must be padded on the right with space characters

v The only special characters permitted are #, $, @, and * (X'23', X'24',
X'40', and X'2A')

v The wildcard X'2A' (*) is only permitted as the first character, the last
character, or the only character in the template

v Only alphanumeric characters (a...z, A...Z, 0...9), the four special
characters (X'23', X'24', X'40', and X'2A'), and the space character
(X'20') are allowed

262 z/OS V1R13 System Programmer's Guide

Note: See “Number representation in trusted blocks” on page 253.

Trusted block section X'13': Trusted block section X'13' contains the name (key
label). The trusted block name section provides a 64-byte variable to identify the
trusted block, just as key labels are used to identify other CCA keys. This name, or
label, enables a host access-control system such as RACF to use the name to
verify that the application has authority to use the trusted block.

Section X'13' is optional. No multiple sections are allowed. It has no subsections
defined. This section is defined in the following table:

Table 82. Trusted block key label (name) section X'13'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'13' Trusted block name (key label)

001 001 Section version number (X'00').

002 002 Section length in bytes (68).

004 064 Name (key label).

Note: See “Number representation in trusted blocks” on page 253.

Trusted block section X'14': Trusted block section X'14' contains control and
security information related to the trusted block. This information section is separate
from the public key and other sections because this section is required while the
others are optional. This section contains the cryptographic information that
guarantees its integrity and binds it to the local system.

Section X'14' is required. No multiple sections are allowed. Two subsections are
defined. This section is defined in the following table:

Table 83. Trusted block information section X'14'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'14' Trusted block information

001 001 Section version number (X'00').

002 002 Section length in bytes (10+xxx).

004 002 Reserved, binary zero.

006 004 Flags:

X'00000000' Trusted block is in the inactive state

X'00000001' Trusted block is in the active state

010 xxx Information section subsections (tag-length-value objects).

One or two objects in TLV format.

Note: See “Number representation in trusted blocks” on page 253.

Section X'14' has two information subsections (tag-length-value objects) defined.
These subsections are summarized in the following table:

Appendix A. Diagnosis Reference Information 263

Table 84. Summary of trusted block information subsections

Rule
subsection
tag

TLV object Optional or
required

Comments

X'0001' Protection
information

Required Contains the encrypted 8-byte confounder and triple-length
(24-byte) MAC key, the ISO 16609 TDES CBC MAC value,
and the MKVP of the PKA master key (computed using
MDC4).

X'0002' Activation
and
expiration
dates

Optional Contains flags indicating whether or not the coprocessor is
to validate dates, and contains the activation and expiration
dates that are considered valid for the trusted block.

Note: See “Number representation in trusted blocks” on page 253.

Trusted block section X'14' subsection X'0001': Subsection X'0001' of the trusted
block information section (X'14') is the protection information TLV object. This
subsection is required. It contains the encrypted 8-byte confounder and triple-length
(24-byte) MAC key, the ISO-16609 TDES CBC MAC value, and the MKVP of the
PKA master key (computed using MDC4).

This subsection is defined in the following table:

Table 85. Protection information subsection (X'0001') of trusted block information section
(X'14')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0001' Trusted block information TLV object

002 002 Subsection length in bytes (62).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 032 Encrypted MAC key.

Contains the encrypted 8-byte confounder and triple-length (24-byte)
MAC key in the following format:
Offset Description
00 - 07 Confounder
08 - 15 Left key
16 - 23 Middle key
24 - 31 Right key

038 008 MAC.

Contains the ISO-16609 TDES CBC message authentication code value.

046 016 MKVP.

Contains the PKA master key verification pattern, computed using MDC4,
when the trusted block is in internal form, otherwise contains binary zero.

Note: See “Number representation in trusted blocks” on page 253.

Trusted block section X'14' subsection X'0002': Subsection X'0002' of the trusted
block information section (X'14') is the activation and expiration dates TLV object.
This subsection is optional. It contains flags indicating whether or not the
coprocessor is to validate dates, and contains the activation and expiration dates
that are considered valid for the trusted block.

264 z/OS V1R13 System Programmer's Guide

This subsection is defined in the following table:

Table 86. Activation and expiration dates subsection (X'0002') of trusted block information
section (X'14')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0002' Activation and expiration dates TLV object

002 002 Subsection length in bytes (16).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 002 Flags:

X'0000' The coprocessor does not check dates.

X'0001' The coprocessor checks dates.

Compare the activation date (offset 008) and the expiration
date (offset 012) to the coprocessor's internal real-time clock.
Return an error if the coprocessor date is before the activation
date or after the expiration date.

008 004 Activation date.

Contains the first date that the trusted block can be used for generating
or exporting keys. Format of the date is YYMD, where:

YY Big-endian year (return an error if greater than 9999)

M Month (return an error if any value other than X'01' - X'0C')

D Day of month (return an error if any value other than X'01' -
X'1F'; day must be valid for given month and year, including
leap years)

Return an error if the activation date is after the expiration date or is not
valid.

012 004 Expiration date.

Contains the last date that the trusted block can be used. Same format
as activation date (offset 008). Return an error if date is not valid.

Note: See “Number representation in trusted blocks” on page 253.

Trusted block section X'15': Trusted block section X'15' contains
application-defined data. The trusted block application-defined data section can be
used to include application-defined data in the trusted block. The purpose of the
data in this section is defined by the application; it is neither examined nor used by
CCA in any way.

Section X'15' is optional. No multiple sections are allowed. It has no subsections
defined. This section is defined in the following table:

Appendix A. Diagnosis Reference Information 265

Table 87. Trusted block application-defined data section X'15'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'15' Application-defined data

001 001 Section version number (X'00').

002 002 Section length (6+xxx)

004 002 Application data length (xxx)

The value of xxx can be from 0 bytes to a length that does not
cause the trusted block to exceed its maximum size of 3500
bytes.

006 xxx Application-defined data

May be used to hold a public-key certificate for the trusted public
key.

Note: See “Number representation in trusted blocks” on page 253.

Data Areas
These topics present the format of the Cryptographic Communication Vector Table
(CCVT) and the Cryptographic Communication Vector Table Extension (CCVE) data
areas.

The Cryptographic Communication Vector Table (CCVT)
The CCVT is the ICSF base control block and contains addresses of common
areas for use by ICSF components. Indicators in the CCVT also provide ICSF
status information. The CCVT is getmained in subpool 245 under the line. The ICSF
CCVT is anchored off of SCVTCCVT in the SCVT macro.

Programming Interface information

CCVT

ONLY these fields are part of the programming interface:
v CCVTDACC
v CCVTCCVE
v CCVTHFLG
v CCVTSFLG
v CCVTPRPC
v CCVTINST
v CCVTINS2
v CCVTLNTH
v CCVTFMID
v CCVT_USERPARM

End of Programming Interface information

Table 88 on page 267 describes the contents of the Cryptographic Communication
Vector Table. Any bits that are not described in the table are reserved.

266 z/OS V1R13 System Programmer's Guide

Table 88. Cryptographic Communication Vector Table

Offset
(Dec)

Number
of Bytes Field Name Description

0 4 CCVTID EBCDIC Cryptographic Communication Vector Table ID.
This field must contain the character string CCVT.

4 2 CCVTVER Version.

The version of the CCVT. This field must contain the
character string 04

6 2 CCVTLEN The length of the CCVT.

8 6 CCVTAUX Auxilliary flags.

Bit Meaning When Set On

0 ICSF is terminating.

1 ICSF is abnormally terminating.

2 ICSF initialization is performing master
key validation.

3 Coprocessor request interrupts
enabled.

14 2 CCVTRLVL ICSF level.

16 4 CCVTCCVE Cryptographic Communication Vector Table Extension
(CCVE) address.

The address of a private area extension of the CCVT.
You should place any fields not needed by other
address spaces in the CCVE.

20 4 CCVT_CKT_BTMB Address of anchor for CKT.

24 4 CCVTPC2 PC number for entry into module CSFASSPC.

28 4 CCVTPRPC Entry point for the pre-PC processing module,
CSFARPC.

32 4 CCVTINST For installation use.

36 1 CCVTSFG1 Status byte.

Bit Meaning When Set On

0 ICSF services are active.

1 At least one Integrated Cryptographic
Feature has a valid master key.

2 ICSF initialization complete.

3 ICSF is active and PCF is not active.

4 Compatibility is permitted.
COMPAT(YES) or
COMPAT(COEXIST) is specified.

5 At least one Integrated Cryptographic
Feature is valid.

7 Always set to 1.

Appendix A. Diagnosis Reference Information 267

||
|

||
|

||

Table 88. Cryptographic Communication Vector Table (continued)

Offset
(Dec)

Number
of Bytes Field Name Description

37 1 CCVTFLAG Flag byte.

Bit Meaning When Set On

3 Cryptographic coprocessor hardware
instructions available.

4 At least one cryptographic
coprocessor is active.

5 Coprocessor request interrupt support
active.

6 At least one cryptographic
coprocessor is online

7 At least one coprocessor or
accelerator is present.

38 1 CCVTOFLG Operational flag byte.

Bit Meaning When Set On

0 Configuration is under PR/SM.

2 CKDS key record create, key record
delete, and key record write
disallowed.

3 CKDS I/O subtask is available.

4 CCVT_DEF_ALG bit. If on, CDMF is
the system default algorithm; if off,
DES is the default.

5 CCVT_CDMF_ENA bit. If on,
hardware is capable of performing
CDMF.

6 PKA master keys are valid.

7 Use ICSF reason codes.

39 1 CCVTSVCM SVC number for key management. This is the PCF
compatibility SVC.

40 1 Reserved

41 1 CCVTSVCS SVC number for DES interface SVC. This is the PCF
compatibility SVC.

42 2 CCVTASID ASID of ICSF address space.

44 4 CcvtPcGrs Entry point to CSFMIDGR.

48 4 CCVTPC3 Entry point to CSFASSPA used by compatibility SVCs.

52 4 CCVTSRUT Address of the access method module.

56 8 CCVTINS2 An 8-byte area for installation use.

64 4 CCVTMDS Data space server PC. PC number for entry to data
space server that adds and deletes the in-storage
CKDS.

68 4 CCVTLNTH Maximum installation data length.

72 4 CCVTASCB ICSF ASCB address.

76 4 Reserved

268 z/OS V1R13 System Programmer's Guide

||
|

||
|

||
|

||
|

||
|
|

||

Table 88. Cryptographic Communication Vector Table (continued)

Offset
(Dec)

Number
of Bytes Field Name Description

80 1 CCVTHFLG Flag bytes.

Bit Meaning When Set On

0 Crypto assist instructions available.

1 Additional secure Crypto device
available.

2 Support for 64-bit callers.

3 ICSF Cross-System Services
environment is active for CKDS

4 ICSF Cross-System Services
environment is active for TKDS

5 RSA 4096-bit function enabled and the
RNGL service is available

6 Secure key AES is available

7 AES master key is active

81 1 CCVTSFLG Flag bytes.

Bit Meaning When Set On

0 ICSF during initialization.

1 ICSF was able to complete cleanup,
so no EOM cleanup is needed.

2 PKCS #11 operating in FIPS standard
mode.

3 PKCS #11 operating in FIPS
compatibility mode.

82 1 CCVT1FLG Flag byte.

Bit Meaning When Set On

0 ECC master key is active / ECC
Secure Key Functions available

1 ECC clear key functions are supported

2 AES KEKs, TR-31, and ECC
Diffie-Hellman are supported.

3 Dynamic RSA master key change
enabled.

83 1 Reserved

84 4 CCVTENF ECB for ENF listen.

88 4 CCVTTCB ICSF maintask TCB address.

92 4 CCVTTRC ECB for component trace.

96 4 Reserved

100 4 CCVT_ABTERM_ECB Abnormal termination ECB.

104 8 CCVT_CKDS_FIXED Offsets and lengths for fixed length CKDS.

112 8 CCVT_CKDS_VAR Offsets and lengths for variable length CKDS.

120 4 CCVTLFDE ECB to start the “look for disabled crypto” task.

Appendix A. Diagnosis Reference Information 269

||
|

||
|

Table 88. Cryptographic Communication Vector Table (continued)

Offset
(Dec)

Number
of Bytes Field Name Description

124 4 CCVTIOSE ECB to post to use I/O subtask.

128 4 CCVTPCTRP PC for CSFKSTRP entry.

132 4 CCVT_ACT_DURING_TERM Activity count during term.

136 8 CCVTFMID ICSF FMID.

144 8 CCVT_USERPARM ICSF user parameter.

152 1 CCVTPKAF PKA register clear key entry processing flags.

Bit Meaning When Set On

0 KMMK is valid for CP0.

1 SMK is valid for CP0.

2 KMMK has been reset for CP0.

3 SMK has been reset for CP0.

4 KMMK is valid for CP1.

5 SMK is valid for CP1.

6 KMMK has been reset for CP1.

7 SMK has been reset for CP1.

153 1 CCVTPKAR
Bit Meaning When Set On

0 and 1 SMK status for KSU0.

2 and 3 KMMK status for KSU0.

4 and 5 SMK status for KSU1.

6 and 7 KMMK status for KSU1.

154 1 CCVTPKAX PKA register status (reserved).

155 1 CCVTPKAZ PKA register status (reserved).

156 16 CCVTCCC Cryptographic configuration control (CCC).

172 4 CCVTSPKB Address of public key build.

176 4 CCVTSPKX Address of public key extract.

180 4 CCVTPIOE ECB for PKDS I/O subtask.

184 8 Reserved

192 4 CCVTGiveAway Recovery token for cell pools.

196 1 CCVTPKDF PKDS processing flags.

Bit Meaning When Set On

0 PKDS available.

2 At least one PCICA is active.

3 ICSF Cross-System Services
environment is active for PKDS.

197 1 CCVTCICS CICS processing flags.

Bit Meaning When Set On

0 CSFVCCPP installed.

1 CSFACKWL installed.

270 z/OS V1R13 System Programmer's Guide

||||

||
|

Table 88. Cryptographic Communication Vector Table (continued)

Offset
(Dec)

Number
of Bytes Field Name Description

198 1 CCVTYAFF
Bit Meaning When Set On

0 ZKA compliance environment.

199 1 CSFTTKDF TKDS processing flags

Bit Meaning When Set On

0 TKDS available

200 4 CCVTPRPD Address of CSFVCCPP.

204 4 CCVTCKWL Address of CSFVCCKW.

208 12 CcvtSdtTcb Address of CSFMISDT TCBs.

220 4 CCVTENFP ECB for PCI Cryptographic Coprocessor online event.

224 6 CcvtSdtAsid Asids owning SYSZxKT

230 10 Reserved.

240 4 CCVTPC6 PC6 (CSFMWCFS entry).

244 16 CCVT_KXMD Hardware feature status.

Bit Meaning When Set On

1 SHA-1 enabled.

2 SHA-256 enabled.

3 SHA-512 enabled.
Bytes 2–16 are reserved.

260 4 Reserved

264 4 Reserved

268 4 CCVTCSVG Address of CSFSCVG.

272 4 Reserved

276 4 CCVTDACC ICSF DAC instructions control block for RMF.

280 16 CCVT_KMC_EXPORT Hardware feature status.

Bit Meaning When Set On

1 KMC DES enabled.

3 KMC TDES enabled.

9 KMC encrypted DES enabled.

11 KMC encrypted TDES enabled.

18 KMC AES 128 key enabled.

19 KMC AES 192 key enabled.

20 KMC AES 256 key enabled.

26 KMC encrypted AES-128 enabled

27 KMC encrypted AES-192 enabled.

28 KMC encrypted AES-256 enabled
Change bytes 5-16 are reserved.

296 4 CCVTPC7 PC7 (CSFMGARM entry)

300 4 CCVTPC8 PC8 (CSFMGTRM entry)

Appendix A. Diagnosis Reference Information 271

||||

Table 88. Cryptographic Communication Vector Table (continued)

Offset
(Dec)

Number
of Bytes Field Name Description

304 8 CCVTGART Token of CSFMGARC resource manager

312 8 CCVTGTRT Token of CSFMGTRC resource manager

320 4 CCVTGARC Address of CSFMGARC resource manager

324 4 CCVTGTRC Address of CSFMGTRC resource manager

328 4 CCVT_IDENTITY Identifier

332 4 Reserved

336 8 CCVT_PSMID Last used PSMID

344 4 CCVTEPRP Address of CSFVCPC6

348 4 CCVTPKB6 Address of CSFSPKB6

352 4 CCVTVRET Address of CSFVRET

356 4 CCVTWRET Address of CSFWRET

360 4 CCVTSRET Address of CCVTSRET

364 4 CCVTGSRET Address of CCVTGSRET

368 4 CCVTCVG6 Address of CCVTCVG6

372 4 Ccvt_CKDS_PREPMSG_ORIGIN SYSid of XCF message originator for prepare message
for CKDS

376 4 Ccvt_PKDS_PREPMSG_ORIGIN SYSid of XCF message originator for prepare message
for PKDS

380 4 Ccvt_TKDS_PREPMSG_ORIGIN SYSid of XCF message originator for prepare message
for TKDS

384 4 CCVTTIOE ECB for TKDS I/O subtask

388 4 CCVT_CKDS_VALUES_ACTIVE Address of CCVT_CKDS_VALUES structures for the
active CKDS

392 32 Reserved

424 8 CCVTTDS Definition space information (TKDS)

432 20 Reserved

452 2 CCVT_PKDS_MAXLRECL Maximum logical record length for PKDS records

454 2 Reserved

456 8 CCVT_PKDS_DS Current PKDS data space

464 16 Reserved

480 4 CCVTPUPD_ECB ECB to post for PKDS update

484 44 CCVT_PKDSN PKDS data set name

528 4 CCVTNAMES Address of CSFNAMES

532 4 CCVTSNAMES Address of CCVTSNAMES

536 4 CCVTGNAMES Address of CCVTGNAMES

540 4 Ccvt_MTLen Size of module table.

544 4 Ccvt_MTSP Module table subpool Id

548 48 Ccvt_Mt Module Table

596 4 CCVTRNAMES Address of CSFRNAMES

600 8 Reserved

272 z/OS V1R13 System Programmer's Guide

||||

||||

Table 88. Cryptographic Communication Vector Table (continued)

Offset
(Dec)

Number
of Bytes Field Name Description

608 32 Ccvt_ModuleAddrs Module address.

640 8 Reserved

648 4 CCVTCSS Address of CKDS Cross-System Services block.

652 4 CCVTCSST Address of TKDS Cross-System Services block.

656 4 CCVTCSSP Address of PKDS Cross-System Services block .

660 32 CCVT_Keep Area preserved across a restart of ICSF.

692 8 CCVTGIRT Token of CSFMGIRT resource manager.

700 4 CCVTSMF82_14Ctr counter to control writing of SMF records.

704 44 CCVT_CKDSN CKDS data set name currently in use .

748 44 CCVT_TKDSN TKDS data set name currently in use.

792 24 Reserved

816 0

The Cryptographic Communication Vector Table Extension (CCVE)
The CCVE is an extension of the CCVT that contains fields that can exist. The
CCVE exists in ICSF extended private. It should contain any ICSF base control
block fields that are not needed by other address spaces.

Programming Interface information

CCVE

ONLY these fields are part of the programming interface:
v CCVEINPP
v CCVEINPL
v CCVESECC

End of Programming Interface information

Table 89 describes the contents of the Cryptographic Communication Vector Table
Extension. Any bits that are not described in the table are reserved.

Table 89. Cryptographic Communication Vector Table Extension

Offset
(Dec)

Number
of
Bytes Field Name Description

0 4 CCVEID Cryptographic Communication Vector Table Extension
ID. This field must contain the character string CCVE.

4 2 CCVEVER Version.

The version number of the CCVE. This field must
contain the character string 04.

6 2 CCVELEN The length of the CCVE.

8 8 Reserved.

Appendix A. Diagnosis Reference Information 273

Table 89. Cryptographic Communication Vector Table Extension (continued)

Offset
(Dec)

Number
of
Bytes Field Name Description

16 4 CCVESTAT Status word

First status byte – CCVESTA1

Bit Meaning When Set On
0 Special secure mode allowed.
1 Special secure mode enabled.
3 Authentication required for key

retrieval.
4 The hardware has gone from active to

inactive.
5 First start of ICSF during this IPL.
6 Security Server (RACF) checking

required for authorized callers.
7 PCF coexistence.

Second status byte – CCVESTA2
0 Dynamic CKDS updates disallowed.
1 PKA callable services disabled from

panel.
2 Dynamic PKDS updates disabled from

panel.
3 Include CKT in dump of ICSF private

space.
6 PKA callable services disallowed.
7 Authenticate the CKT when bit is one.

Third status byte – CCVESTA3
1 PKDS write, create, and delete not

permitted.
2 SYSPLEXCKDS(YES) was specified in

Install Options Data Set.
3 SYSPLEXCKDS(YES,FAIL(YES)) was

specified in Install Options Data Set.
4 SYSPLEXTKDS(YES) was specified in

Install Options Data Set.
5 SYSPLEXTKDS(YES,FAIL(YES)) was

specified in Install Options Data Set.
6 TKDS refresh requested.
7 TKDS empty at initialization

Fourth status byte – CCVESTA4

Bit Meaning When Set On
0 PKDS dataspace needs refresh.
1 PKDS dataspace can't be updated.
2 Reserved
3 Reserved
4 SYSPLEXPKDS(YES)
5 SYSPLEXPKDS(YES,FAIL(YES))
6 CKDS MAC record authentication
7 Sysplex running in sysplex mode (not

XCF-local mode)

20 4 CCVECAMQ Pointer to MCAMQ.

24 4 CCVEEXIT Pointer to the installation exit router (CSFEXIT).

28 4 CCVECLIC Software Crypto control block

274 z/OS V1R13 System Programmer's Guide

||
|

Table 89. Cryptographic Communication Vector Table Extension (continued)

Offset
(Dec)

Number
of
Bytes Field Name Description

32 4 CCVE_ENQ_TIMEOUT XCF Failure detection interval in 0.01 seconds used for
Sysplex ENQ timeout interval.

36 4 CCVETRCB Pointer to the current trace buffer.

Bit Meaning When Set On

0 Trace is active.

40 4 CCVECPRM Address of CPRM.

44 4 CCVEMGST Address of the generic service table. See “Generic
Service Table (CSFMGST)” on page 278 for a
description of the generic service table.

48 4 CCVEENT Address of the exit name table.

52 4 CCVETSKT Address of task table.

56 4 CCVEMKVN Master key version numbers.

Byte 1: Current master key version number.

Bytes 2 and 3: Reserved.

Byte 4: Cryptographic domain index.

60 54 CCVEWLDS Dataset name of WaitList dataset.

114 1 CCVEIBMR IBM reserved byte.

115 1 CCVEHFL2 Hardware flags

Bit Meaning When Set On

0 CCA level 3.41 detected

1 CCA level 4.00 detected

2 Reserved

3 AP-special-command facility available

4 AP 4096-bit ME facility available

5 AP 4096-bit CRT facility available

116 4 CCVE_EXTRAFALGS Status word.

Bit Meaning When Set On

0 The default wrapping for internal
tokens is enhanced.

1 The default wrapping for external
tokens is enhanced.

120 4 CCVE_NOPKA_MSGID WTO message ID saved when PKA callable services are
not available at startup

124 12 CCVEDCTLARR DCTL address array.

136 4 CCVESERBCPID SERB cell pool ID

140 4 CCVEFIXS Address of the fixed area storage used as dynamic
storage for the RISGNL routines.

144 4 CCVEFIXL Length of the fixed area storage.

148 4 CCVECPUF CPUF routine — used to manipulate the control register.

Appendix A. Diagnosis Reference Information 275

||

||

Table 89. Cryptographic Communication Vector Table Extension (continued)

Offset
(Dec)

Number
of
Bytes Field Name Description

152 4 CCVERFMK RFOMK routine — used to RFOMK keys on specific
CPs.

156 4 CCVERMKV MKV RISGNL routine — used by MKV to validate a CP.

160 4 CCVESTHW STHW routine — used to obtain the current status of the
hardware.

164 4 CCVEKEYM KEYM routine — used to manipulate keys from the key
entry hardware.

168 4 CCVEDKEF DKEF routine — used to manipulate keys for clear key
entry.

172 16 CCVE_PKA_KMMK_HP KMMK hash pattern

188 16 CCVE_PKA_SMK_HP SMK hash pattern

204 4 CCVELFDD ECB for look for disabled Cryptographic Coprocessor
Feature task termination (LFD Done).

208 4 CCVELFDT Pointer to TCB for CSFMLFDT.

212 4 CCVEENFS ECB for Issue ENF SIGNAL.

216 4 CVESMCA Address of SMCA

220 4 CCVE_SUBPOOL Subpool for storage

224 4 CCVE_SRRW_EXIT Single read/write exit addr

228 4 CCVEMKVB Pointer to the current Master Key Verification Pattern
(MKVP) block. See “DES Master Key Verification Pattern
Block (MKVB)” on page 278 for a description of the
MKVP block.

232 32 CCVEMKB1 First MKVP block.

264 32 CCVEMKB2 Second MKVP block.

296 32 CCVEMKB3 Third MKVP block.

328 4 CCVEINPP Pointer to installation optional parameter.

332 4 CCVEINPL Length of the installation optional parameter.

336 4 CCVETRCN Number of trace entries.

340 4 CCVEIOPB_PKDS Address of PKDS IO subtask data.

344 4 CCVEIOST_TKDS Address of TKDS IO subtask TCB.

348 4 CCVEIOPB_TKDS Address of TKDS IO subtask data.

352 4 CCVEIOPB Address of IO subtask data.

356 4 CCVECCPD Pointer to CAJP Data.

360 4 CCVECCPV Pointer to private CAJP Data .

364 4 CCVEWKAR Work area for services.

368 4 CCVEMUST Address of UDX service table.

372 8 CCVESECC Reserved for security exit.

380 4 CCVEENTK ENTE for security keys exit.

384 4 CCVEENTS ENTE for security service exit.

388 4 CCVEMIQIH Address of interrupt handler

392 4 CCVE_TKE_KEY_CACHE@ Address of TKE key cache

276 z/OS V1R13 System Programmer's Guide

||||

Table 89. Cryptographic Communication Vector Table Extension (continued)

Offset
(Dec)

Number
of
Bytes Field Name Description

396 4 CCVEDSCB Control block for the data manager.

400 12 CCVE_CKDS_HASH_TABLES CKDS hash tables.

412 12 CCVE_PKDS_HASH_TABLES PKDS hash tables.

424 4 CCVE_KEY_
STORE_POLICY Bit Meaning When Set On

0 CKDS key store policy enabled

1 CKDS control in fail mode

2 CKDS control in warn mode

3 CKDS default control enabled

4 No duplicates in CKDS

8 PKDS key store policy enabled

9 PKDS control in fail mode

10 PKDS control in warn mode

11 PKDS default control enabled

12 No duplicates in PKDS

16 Granular keylabel access controls
enabled in fail mode

17 Granular keylabel access controls
enabled in warn mode

18 Enhanced export restrictions enabled
for AES keys

19 Enhanced export restrictions enabled
for DES keys

24 PKA key extensions enabled.

25 PKCS #11 Token used for trusted
certificate repository (SAF keyring
when this bit is 0).

26 PKA key extensions in WARNONLY
mode.

428 4 CCVE_PLEX_SYSID System sysplex token

432 4 CCVEINQKP_ECB INQKP ECB for waking up

436 4 CCVE_KSP_PKAKE_DATA_PTR Address of PKAKE data

440 1 CCVE_FIPS FIPS policy flags.

Bit Meaning When Set On

1 FIPS startup known answer tests failed
disabling PKCS#11.

2 FIPSMODE(xxx,FAIL(YES)) specified

3 Known answer test executed on
accelerator for private key operation

4 Known answer test executed on
accelerator for public key operation

Appendix A. Diagnosis Reference Information 277

Table 89. Cryptographic Communication Vector Table Extension (continued)

Offset
(Dec)

Number
of
Bytes Field Name Description

441 3 Reserved.

444 8 CCVE_ECC_MKVP ECC MK verification pattern

This field will contain zeros unless the ECC MK is valid.

452 16 CCVE_KMF_QUERY Results of CPACF KMF-Query

468 16 CCVE_KMCTR_QUERY Results of CPACF KMCTR-Query

484 16 CCVE_KMO_QUERY Results of CPACF KMO-Query

492 8 CCVE_AES_MKVP AES MK verification pattern.

500 8 CCVE_DES_MKVP DES MK verification pattern

508 32 CCVE_KDS_MKVPS MKVPs from key data sets

540 4 Ccve_MaxSys Maximum number of systems possible in sysplex

544 4 CCVEMWT_EBC ECB to attach CSFPLMWT

548 4 reserved

552 4 CCVE_ABTERM_EBC ECB to terminate ICSF

556 4 CCVE_HCHK_PTR Pointer to Health Check blocks

560 28 reserved

DES Master Key Verification Pattern Block (MKVB)
Table 90 describes the contents of the MKVB.

Table 90. DES Master Key Verification Pattern Block Format

Offset (Dec)
Number of
Bytes Description

0 4 Pointer to the next element or zero.

4 4 Pointer to the next element — this field for use by CSFMMKV.

8 4 Reserved.

12 1 DES master key version number for this verification pattern.

13 1 Flag.

Bit Meaning When Set On

0 This element is on the active queue.

14 2 Reserved.

16 8 DES Master Key Verification Pattern.

24 8 DES Master Key Authentication Pattern.

Generic Service Table (CSFMGST)
Table 91 on page 279 describes the format of the generic service table, a control
block that is used to control the call of installation-defined services.

278 z/OS V1R13 System Programmer's Guide

||||

||||

||||

||||

||||

||||

Table 91. Generic Service Table Block Format

Offset (Dec)
Number of
Bytes Description

0 4 EBCDIC ID.

4 2 Version number.

6 2 Length of the MGST.

8 4 Number of entries in the array.

12 4 Subpool this table is in.

16 4 Reserved.

20 4 Reserved.

24 4 Reserved.

28 4 Reserved.

Variable Section of the MGST

32 8 IBM-assigned name.

40 8 Installation-assigned name.

48 4 Flags.

Bit Meaning When Set On

0 Service has been requested by the installation.

1 Service has been loaded.

2 Service is active.

3 Service is required.

52 4 Address of the service.

56 4 Installation-assigned service number.

60 4 Reserved.

RMF Measurements Table
Table 92 describes the contents of the performance measurements for RMF. The
count fields are double-word length.

Table 92. RMF Measurements Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 4 DACC_ID The DACC ID.

4 4 DACC_VER The version.

8 4 DACC_LEN The control block length.

12 4 DACC_ENT_CNT Number of entries.

16 4 DACC_ENT_LEN Length of each entry.

20 8 DACC_ENT_ID Identifier of count array - character 'ENCSDES'. The
Encipher service will collect data as follows:

v Collection for single DES is done separately. The number
of service calls, number of bytes of data enciphered, and
the number of hardware instructions used to encipher the
data will be collected.

28 8 DACC_ENT_SVC_CNT Count of ENCSDES service calls.

Appendix A. Diagnosis Reference Information 279

Table 92. RMF Measurements Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

36 8 DACC_ENT_BYT_CNT Count of ENCSDES bytes processed.

44 8 DACC_ENT_INT_CNT Count of ENCSDES instructions.

52 8 DACC_ENT_ID Identifier of count array - character 'ENCTDES'. The
Encipher service will collect data as follows:

v Double and triple DES will be counted together. The
number of service calls, number of bytes of data
enciphered, and the number of hardware instructions
used to encipher the data will be collected.

60 8 DACC_ENT_SVC_CNT Count of ENCTDES service calls.

68 8 DACC_ENT_BYT_CNT Count of ENCTDES bytes processed.

76 8 DACC_ENT_INT_CNT Count of ENCTDES instructions.

84 8 DACC_ENT_ID Identifier of count array - character 'DECSDES'. The
Decipher service will collect data as follows:

v Collection for single DES is done separately. The number
of service calls, number of bytes of data deciphered, and
the number of hardware instructions used to decipher the
data will be collected.

92 8 DACC_ENT_SVC_CNT Count of DECSDES service calls.

100 8 DACC_ENT_BYT_CNT Count of DECSDES bytes processed.

108 8 DACC_ENT_INT_CNT Count of DECSDES instructions.

116 8 DACC_ENT_ID Identifier of count array - character 'DECTDES'. The
Decipher service will collect data as follows:

v Double and triple DES will be counted together. The
number of service calls, number of bytes of data
deciphered, and the number of hardware instructions
used to decipher the data will be collected.

124 8 DACC_ENT_SVC_CNT Count of DECTDES service calls.

132 8 DACC_ENT_BYT_CNT Count of DECTDES bytes processed.

140 8 DACC_ENT_INT_CNT Count of DECTDES instructions.

148 8 DACC_ENT_ID Identifier of count array - character 'MACGEN'. The MAC
Generate service will collect data as follows:

v Single and various double key MAC will be gathered
together. The number of service calls, number of bytes of
data MAC'd, and the number of instructions will be
collected.

156 8 DACC_ENT_SVC_CNT Count of MACGEN service calls.

164 8 DACC_ENT_BYT_CNT Count of MACGEN bytes processed.

172 8 DACC_ENT_INT_CNT Count of MACGEN instructions.

180 8 DACC_ENT_ID Identifier of count array - character 'MACVER'. The MAC
Verify service will collect data as follows:

v Single and various double key MAC will be gathered
together. The number of service calls, number of bytes of
data MAC'd, and the number of instructions will be
collected.

188 8 DACC_ENT_SVC_CNT Count of MACVER service calls.

196 8 DACC_ENT_BYT_CNT Count of MACVER bytes processed.

280 z/OS V1R13 System Programmer's Guide

Table 92. RMF Measurements Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

204 8 DACC_ENT_INT_CNT Count of MACVER instructions.

212 8 DACC_ENT_ID Identifier of count array - character 'OWH'. The One Way
Hash service will collect data as follows:

v For SHA-1, the number of service calls, number of bytes
of bytes of data hashed, and the number of instructions
will be collected.

220 8 DACC_ENT_SVC_CNT Count of OWH service calls.

228 8 DACC_ENT_BYT_CNT Count of OWH bytes processed.

236 8 DACC_ENT_INT_CNT Count of OWH instructions.

244 8 DACC_ENT_ID Identifier of count array - character 'PTR'. The PIN Translate
service will collect data as follows:

v Collect the number of service calls only.

252 8 DACC_ENT_SVC_CNT Count of PTR service calls.

260 16 Reserved.

276 8 DACC_ENT_ID Identifier of count array - character 'PVR'. The PIN Verify
service will collect data as follows:

v Collect the number of service calls only.

284 8 DACC_ENT_SVC_CNT Count of PVR service calls.

292 16 Reserved.

308 8 DACC_ENT_ID Identifier of count array - character 'OWH256'. The One
Way Hash service will collect data as follows:

v For SHA-224 and SHA-256, the number of service calls,
number of bytes of data hashed, and the number of
instructions will be collected.

316 8 DACC_ENT_SVC_CNT Count of OWH service calls for SHA-224 and SHA-256.

324 8 DACC_ENT_BYT_CNT Count of OWH bytes processed for SHA-224 and SHA-256.

332 8 DACC_ENT_INT_CNT Count of OWH instructions for SHA-224 and SHA-256.

340 8 DACC_ENT_ID Identifier of count array - character 'OWH512'. The One
Way Hash service will collect data as follows:

v For SHA-384 and SHA-512, the number of service calls,
number of bytes of data hashed, and the number of
instructions will be collected.

348 8 DACC_ENT_SVC_CNT Count of OWH service calls for SHA-384 and SHA-512.

356 8 DACC_ENT_BYT_CNT Count of OWH bytes processed for SHA-384 and SHA-512.

364 8 DACC_ENT_INT_CNT Count of OWH instructions for SHA-384 and SHA-512.

372 8 DACC_ENT_ID Identifier of count array - character ‘ENCAES’. The
Symmetric algorithm encipher service will collect data as
follows: The number of service calls, number of bytes of
data enciphered, and the number of instructions used to
encipher the data will be collected.

380 8 DACC_ENT_SVC_CNT Count of SAE service calls

388 8 DACC_ENT_BYT_CNT Count of ENCAES bytes processed

396 8 DACC_ENT_INT_CNT Count of ENCAES instruction

Appendix A. Diagnosis Reference Information 281

Table 92. RMF Measurements Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

404 8 DACC_ENT_ID Identifier of count array - character ‘DECAES’. The
Symmetric algorithm decipher service will collect data as
follows: the number of service calls, number of bytes of
data deciphered, and the number of instructions used to
decipher the data will be collected.

412 8 DACC_ENT_SVC_CNT Count of SAD service calls

420 8 DACC_ENT_BYT_CNT Count of DECAES bytes processed

428 8 DACC_ENT_INT_CNT Count of DECAES instruction

282 z/OS V1R13 System Programmer's Guide

Appendix B. ICSF SMF Records

SMF records are documented in z/OS MVS System Management Facilities (SMF)
and published on release boundaries of z/OS. As a migration aid for ICSF Web
Deliverables, which are often made available between releases or z/OS, the ICSF
SMF records are also documented here.

Record Type 82 (52) — ICSF Record
Record type 82 is used to record information about the events and operations of the
Integrated Cryptographic Service Facility (ICSF) program product. Record type 82 is
written to the SMF data set at the completion of certain cryptographic functions:

v Subtype 1 — is written whenever ICSF is started.

v Subtype 3 — is written whenever there is a change in the number of available
processors with the cryptographic feature

v Subtype 4 — is written whenever ICSF handles error conditions for
cryptographic feature failure (CC3, Reason Code 1) or cryptographic tampering
(CC3 Reason Code 3).

v Subtype 5 — is written whenever a change to special security mode is detected.

v Subtype 6 and 7 — are written whenever a key part is entered via the key entry
unit (KEU).

v Subtype 8 — is written whenever the in-storage copy of the CKDS is refreshed.

v Subtype 9 — is written whenever the CKDS is updated by a dynamic CKDS
update service.

v Subtype 10 — is written when a clear key part is entered for one of the PKA
master keys.

v Subtype 11 — is written when a clear key part is entered for the DES master
key.

v Subtype 12 — is written for each request and reply from calls to the CSFSPKSC
service by TKE.

v Subtype 13 — is written whenever the PKDS is updated by a dynamic PKDS
update service.

v Subtype 14 — is written when a clear key part is entered for any of the PCI
Cryptographic Coprocessor master keys.

v Subtype 15 — is written whenever a PCI Cryptographic Coprocessor retained
key is created or deleted.

v Subtype 16 — is written for each request and reply from calls to the CSFPCI
service by TKE.

v Subtype 17 — is written periodically to provide some indication of PCI
Cryptographic Coprocessor usage.

v Subtype 18 — is written when a PCI Cryptographic Coprocessor, PCI
Cryptographic Accelerator, PCI X Cryptographic Coprocessor, Crypto Express2
Coprocessor, or Crypto Express2 Accelerator comes online or offline.

v Subtype 19 — is written when a PCI X Cryptographic Coprocessor operation
begins or ends.

v Subtype 20 — is written by ICSF to record processing times for PCIXCCs and
CEX2Cs.

v Subtype 21 — is written when ICSF issues IXCJOIN to join the ICSF sysplex
group or issues IXCLEAVE to leave the sysplex group.

© Copyright IBM Corp. 1997, 2011 283

v Subtype 22 — is written when the Trusted Block Create Callable services are
invoked.

v Subtype 23 — is written when the token data set (TKDS) is updated

v Subtype 24 — is written when duplicate tokens are found.

v Subtype 25 — is written when the key store policy is activated.

v Subtype 26 — is written when the public key data set is refreshed.

v Subtype 27 — is written for information about PKA Key Management
Extensions.

v Subtype 28 — is written for information about High Performance Encrypted Key.

v Subtype 29 — is written for each TKE workstation audit record received from a
TKE workstation.

Macro to Symbolically Address Record Type 82: The SMF record mapping
macro for ICSF type 82 record is CSFSMF82.

The mapping macro, CSFSMF82, resides in SYS1.MACLIB.

Record Environment
The following conditions exist for the generation of each of the subtypes of this
record:

Macro

Subtype Macro

1 SMFWTM (record exit: IEFU83)

3,4,5,6,7,8 SMFEWTM,BRANCH=YES,MODE=XMEM (record
exit: IEFU85)

Record Mapping

Header/Self-defining Section
This section contains the common SMF record headers fields and the triplet fields
(offset/length/number), if applicable, that locate the other sections on the record.

Offsets Name Length Format Description

0 0 SMF82LEN 2 binary Record length. This field and the next field (total of four
bytes) form the RDW (record descriptor word).

2 2 SMF82SEG 2 binary Segment descriptor (see record length field).

4 4 SMF82FLG 1 binary System indicator:

Bit Meaning When Set
0-2 Reserved
3-6 Version indicators
7 Reserved.

5 5 SMF82RTY 1 binary Record type 82 (X'52').

6 6 SMF82TME 4 binary Time since midnight, in hundredths of a second, that the
record was moved into the SMF buffer.

10 A SMF82DTE 4 packed Date when the record was moved into the SMF buffer, in the
form 0cyydddF.

14 E SMF82SID 4 EBCDIC System identification (from the SID parameter).

18 12 SMF82SSI 4 EBCDIC Subsystem identification.

22 16 SMF82STY 2 binary Record subtype.

Record Type 82

284 z/OS V1R13 System Programmer's Guide

Server User or End User Audit Section
Provides server user or end user audit information when the subtype is one that
logs state changes. When auditing information is supplied, there will be a server
user section and, optionally, an end user section. The
SMF82AUD_HDR_NUM_SECTIONS field of the Auditing Header section will
indicate whether only a server user section is provided, or if an end user section is
also provided. If both a server user section and an end user section are present,
they can appear in either order.

Table 93. SMF type 82 server user or end user audit section

Offsets Name Length Format Description

0 0 SMF82AUD_SECTION_TYPE 4 EBCDIC Type of the section that follows.
Either:

v ‘SERV' (for server user)

v ‘USER' (for end user)

4 4 SMF82AUD_SECTION_NUM_FLDS 2 binary Number of triples in this section

6 6 SMF82AUD_SECTION_TOTAL_LEN 2 binary Overall length of this section,
including this header

8 8 Tag-Length-Value (TLV) triplets start here and are defined in Table 94. These repeat as many times as the
SMF82AUD_SECTION_NUM_FLDS field indicates.

Each Tag-Length-Value (TLV) triplet is a structure called SMF82AUD_TRIPLET and
is defined as follows. The values for the tags and the format and maximum length
of the data are defined in Table 95.

Table 94. Tag-Length-Value (TLV) triplet structure (SMF82AUD_TRIPLET)

Offsets Name Length Format Description

0 0 SMF82AUD_TRIPL_TAG 2 binary Tag of the information in this TLV

2 2 SMF82AUD_TRIPL_LENGTH 2 binary Length of this TLV including these first two fixed fields

4 4 SMF82AUD_TRIPL_DATA * varies Data for this TLV

The tag values and their corresponding information are described in the following
table. The tag value is defined in the constant SMF82AUD_TAG_xxx and the
maximum length in SMF82AUD_MAXLEN_xxx. For example, the tag for X500_IDN
is SMF82AUD_TAG_X500_IDN and maximum length of the associated data is
SMF82AUD_MAXLEN_X500_IDN.

Table 95. TLV triplet tag values

Tag Value Name Length Format Description

1 1 X500_IDN 0-255 EBCDIC X.500 Certificate Issuer’s Distinguished Name
(ACEEX5PR->IDN)

2 2 X500_SDN 0-255 EBCDIC X.500 Certificate Subject’s Distinguished Name
(ACEEX5PR->SDN)

10 A IDID_USRI 1-246 UTF-8 X.500 Distinguished Name of distributed client end user
(ACEEIDID-> IDID1UDN)

11 B IDID_USRF 1 binary Format of IDID_USRI (ACEEIDID->IDID1NMF)

0 Undetermined

1 Straight string

2 X.500 format

12 C IDID_REG 1-255 UTF-8 Name of the registry that authenticated the user
(ACEEIDID->IDID1RN)

14 E USRI 8 EBCDIC RACF user ID (ACEEUSRI)

Record Type 82

Appendix B. ICSF SMF Records 285

Table 95. TLV triplet tag values (continued)

Tag Value Name Length Format Description

15 F GRPN 8 EBCDIC Connect group (ACEEGRPN)

16 10 TRM_USER 8 EBCDIC Terminal ID (ACEETRM)

17 11 JOB_JBN 8 EBCDIC Job name (JMRJOB)

18 12 JOB_RST 4 binary Job entry time (JMRENTRY) in hundredths of a second that
the reader recognized the JOB statement for this job. This
field can be zero.

26 1A JOB_RSD 4 binary Job entry date (JMREDATE) that the reader recognized the
JOB statement for this job in the form 0CYYDDDF. This
field can be zero.

34 22 JOB_UID 8 binary User-defined identification field (JMRUSEID)

42 2A SEC 8 EBCDIC Security label (TOKSCL)

Subtype 1

Initialization Section

Offsets Name Length Format Description

0 0 SMF82INI 4 binary Cryptographic communication vector table extension (CCVE)
status bits

Bit Meaning When Set
0 Special security mode allowed
1 Special security mode enabled
2 Reserved
3 Key authentication
4-5 Reserved
6 RACF checking
7-14 Reserved
15 CKT authentication
16 Default wrapping for internal tokens is the

enhanced method
17 Default wrapping for external tokens is the

enhanced method
18-31 Reserved

4 4 SMF82VTS 1 binary Cryptographic communication vector table (CCVT) status
bits

Bit Meaning When Set
0-3 Reserved
4 Compatible with CUSP and PCF
5-7 Reserved.

5 5 SMF82IDO 1 binary Current crypto domain index.

6 6 2 Reserved.

8 8 SMF82ITE 4 binary Number of trace entries.

12 C SMF82CKD 44 EBCDIC Name of the cryptographic key data set (CKDS) that was
read into storage.

56 38 SMF82IML 4 binary Maximum length for data.

60 3C SMF82USR 8 EBCDIC USERPARM specifies installation use in the installation
options data set.

68 44 SMF82PKD 44 EBCDIC PKDS name.

112 70 SMF82TKS 44 EBCDIC TKDS name.

Record Type 82

286 z/OS V1R13 System Programmer's Guide

Subtype 3

Status Change Section

Offsets Name Length Format Description

0 0 SMF82SNS 4 binary Number of sections following.

4 4 SMF82SPR 4 binary Processor number.

8 8 SMF82KSU 4 binary Key storage unit (KSU) number.

12 C SMF82SDX 4 binary Current crypto domain index.

16 10 SMF82VER 4 binary Current master key version.

20 14 SMF82SSW 4 binary Zero, if no error condition exists with the processor.
Otherwise, the ICSF status word.

24 18 SMF82STI 4 binary
Bit Meaning When Set
0 Current master key verification pattern valid
1 New master key authentication pattern valid
2 New master key verification pattern valid
3 Old master key verification pattern valid
4-31 Reserved.

28 1C SMF82CVP 8 EBCDIC Current master key verification pattern.

36 24 SMF82NAP 8 EBCDIC New master key authentication pattern.

44 2C SMF82NVP 8 EBCDIC New master key verification pattern.

52 34 SMF82OVP 8 EBCDIC Old master key verification pattern.

Subtype 4

Condition Code Three Section

Offsets Name Length Format Description

0 0 SMF823SW 4 binary Status word from CC3.

4 4 SMF823PR 1 binary Processor number.

5 5 SMF823DX 1 binary Current crypto domain index.

6 6 2 Reserved.

Subtype 5

Special Security Mode Section

Offsets Name Length Format Description

0 0 SMF82SSB 8 binary Special security mode (SSM) bits

Bit Meaning When Set
0 SSM mode is enabled
1-63 Reserved.

Record Type 82

Appendix B. ICSF SMF Records 287

Subtype 6

Master Key Part Section

Offsets Name Length Format Description

0 0 SMF82MKB 4 binary Master key part (MKPART) bits

Bit Meaning When Set
0 New master key verification pattern valid
1 Old master key verification pattern valid
2-31 Reserved.

4 4 SMF82NMV 8 EBCDIC New master key verification pattern.

12 C SMF82OMV 8 EBCDIC Verification pattern for the key part.

20 14 SMF82MKS 1 binary KSU number.

21 15 SMF82MDX 1 binary Current crypto domain index.

22 16 2 Reserved.

Subtype 7

KEU Key Part Entry Section

Offsets Name Length Format Description

0 0 SMF82KPB 4 binary Key part (KPART) bits

Bit Meaning When Set
0 Key part verification pattern valid.
1 Coprocessor is a PCIXCC.
2 Coprocessor is a CEX2C.
3 Coprocessor is a CEX3C.
4-31 Reserved.

4 4 SMF82KV 8 EBCDIC Key part verification pattern.

12 C SMF82KKS 1 binary KSU number.

13 D SMF82KDX 1 binary Current crypto domain index.

14 E 2 Reserved.

16 10 SMF82KCK 44 EBCDIC Name of the CKDS containing the key part.

60 3C SMF82KCL 72 EBCDIC CKDS entry being modified.

Subtype 8

Cryptographic Key Data Set Refresh Section

Offsets Name Length Format Description

0 0 SMF82ROC 44 EBCDIC Name of the CKDS being replaced.

44 2C SMF82RNC 44 EBCDIC Name of the CKDS to replace the current CKDS.

Record Type 82

288 z/OS V1R13 System Programmer's Guide

Subtype 9

Dynamic CKDS Update

Offsets Name Length Format Description

0 0 SMF82UCB 4 binary Update CKDS bits

Bit Meaning When Set
0 CKDS record added
1 CKDS record changes
2 CKDS record deleted
3-31 Reserved.

4 4 SMF82UCN 44 EBCDIC CKDS name.

48 30 SMF82UCL 72 EBCDIC CKDS entry being modified.

Subtype 10

PKA Key Part Entry

Offsets Name Length Format Description

0 0 SMF82PKB 4 binary PKA part bits

Bit Meaning When Set
0 Key management master key processed
1 Signature master key processed
2 Key part hash pattern valid
3 Master key hash pattern valid
4-31 Reserved.

4 4 SMF82PHP 16 EBCDIC Master key hash pattern.

20 14 SMF82KPH 16 EBCDIC Key part hash pattern.

36 24 SMF82PKS 1 binary KSU number.

37 25 SMF82PKX 1 binary Current crypto domain index.

38 26 2 Reserved.

Subtype 11

Clear New Master Key Part Entry

Offsets Name Length Format Description

0 0 SMF82CMB 4 binary Clear new master key bits

Bit Meaning When Set
0 Clear new master key hash pattern valid
1 Clear new master key verification pattern valid
2 Clear new key part hash pattern valid
3 Clear new key part verification pattern valid.

4 4 SMF82CHP 16 EBCDIC Clear new master key hash pattern.

20 14 SMF82CNP 8 EBCDIC Clear new master key verification pattern.

28 1C SMF82CPH 16 EBCDIC Key part hash pattern.

44 2C SMF82CPV 8 EBCDIC Key part verification pattern.

52 34 SMF82CKS 1 binary KSU number.

53 35 SMF82CDX 1 binary Current crypto domain index.

54 36 2 Reserved.

Record Type 82

Appendix B. ICSF SMF Records 289

Subtype 12

PKSC Commands

Offsets Name Length Format Description

0 0 SMF82PSQ 1024 EBCDIC Request.

1024 400 SMF82PSP 1024 EBCDIC Response.

Subtype 13

Dynamic PKDS Update

Offsets Name Length Format Description

0 0 SMF_PKDS_BITS 4 binary Update PKDS bits

Bit Meaning When Set
0 PKDS record added
1 PKDS record changed
2 PKDS record deleted
3-31 Reserved.

4 4 SMF_PKDS_NAME 44 EBCDIC PKDS name.

48 30 SMF_PKDS_KEY_LABEL 72 EBCDIC PKDS entry being modified.

Subtype 14

PCI Cryptographic Coprocessor Master Key Entry

Offsets Name Length Format Description

0 0 SMF82AAB 4 binary Flag bytes

Bit Meaning When Set
0 DES NMK verification pattern is valid.
1 RSA NMK verification pattern is valid.
2 DES Key key part verification pattern is valid.
3 RSA Key Key part verification pattern is valid.
4 AES NMK verification pattern is valid.
5 AES key part verification pattern is valid.
6 ECC NMK verification pattern is valid.
7 ECC key part verification pattern is valid.
8 Coprocessor is not a PCI Cryptographic

Coprocessor.
9 Coprocessor is a PCI X Cryptographic

Coprocessor.
10 Coprocessor is a CEX2C.
11 Coprocessor is a CEX3C.
12-31 Reserved.

4 4 SMF82ANV 16 EBCDIC New master key register verification pattern.

20 14 SMF82AKV 16 EBCDIC Key part verification pattern.

36 24 SMF82APN 1 binary PCI Cryptographic Processor number.

37 25 SMF82ASN 8 EBCDIC PCI Cryptographic Processor serial number.

45 2D SMF82ADM 1 binary PCI Cryptographic Coprocessor domain.

46 2E 2 Reserved.

Record Type 82

290 z/OS V1R13 System Programmer's Guide

Subtype 15

PCI Cryptographic Coprocessor Master Key Entry

Offsets Name Length Format Description

0 0 SMF82RKF 4 binary First flag byte

Bit Meaning When Set
0 Retained key created.
1 Retained key deleted on coprocessor.
2 Retained key deleted from PKDS.
3-7 Reserved.
8 Coprocessor is not a PCI Cryptographic

Coprocessor.
9 Coprocessor is a PCI X Cryptographic

Coprocessor.
10 Coprocessor is a CEX2C.
11 Coprocessor is a CEX3C.
12-31 Reserved.

4 4 SMF82RKN 64 EBCDIC Label of Retained private key.

68 44 SMF82RKP 1 binary PCI Cryptographic Coprocessor number.

69 45 SMF82RKS 8 EBCDIC PCI Cryptographic Coprocessor serial number.

77 4D SMF82RDM 1 binary PCI Cryptographic Coprocessor domain.

78 4E 2 Reserved.

Subtype 16

PCI Cryptographic Coprocessor TKE

Offsets Name Length Format Description

0 0 SMF82PFL 4 binary Flag bytes

Bit Meaning When Set
0 Request command.
1 Reply response.
2-7 Reserved.
8 Coprocessor is not a PCI Cryptographic

Coprocessor.
9 Coprocessor is a PCI X Cryptographic

Coprocessor.
10 Coprocessor is a CEX2C.
11 Coprocessor is a CEX3C.
12-31 Reserved.

4 4 SMF82PPN 1 binary PCI Cryptographic Coprocessor number.

5 5 SMF82PSN 8 EBCDIC PCI Cryptographic Coprocessor serial number.

13 D SMF82PDM 1 binary PCI Cryptographic Coprocessor domain.

14 E 2 Reserved.

16 10 SMF82PBL 4 binary Parameter block length, "xxx".

20 14 SMF82PDL 4 binary Parameter data block length, "yyy".

24 18 SMF82PBK Parameter block of length "xxx" followed by parameter data
block of length "yyy".

Record Type 82

Appendix B. ICSF SMF Records 291

Subtype 17

PCI Cryptographic Coprocessor Timing

Offsets Name Length Format Description

0 0 SMF82CTN 8 EBCDIC Time just before the PCI Cryptographic Coprocessor
operation begins. This is in time-of-day (TOD) format.

8 8 SMF82CTD 8 EBCDIC Time just after PCI Cryptographic Coprocessor operation
ends. This is in time-of-day (TOD) format.

16 10 SMF82CTW 8 EBCDIC Time just after results have been communicated to caller
address space. This is in time-of-day (TOD) format.

20 14 SMF82CTQ 4 binary Number of processes waiting to submit work to the same
PCI Cryptographic Coprocessor and domain, using the same
reference number.

24 18 SMF82CTF 2 EBCDIC Function code of service.

26 1A SMF82CTX 1 binary PCI Cryptographic Coprocessor number.

27 1B SMF82CTS 8 EBCDIC PCI Cryptographic Coprocessor serial number.

35 23 SMF82CTM 1 binary PCI Cryptographic Coprocessor domain.

36 24 SMF82CTR 1 binary PCI Cryptographic Coprocessor reference number.

37 25 3 Reserved.

Subtype 18

Cryptographic Coprocessor Configuration

Offsets Name Length Format Description

0 0 SMF82CGB 4 binary Flag bytes

Bit Meaning When Set
0 A Cryptographic Coprocessor has been brought

online.
1 A Cryptographic Coprocessor has been taken

offline.
2-7 Reserved.
8 Coprocessor is not a PCI Cryptographic

Coprocessor.
9 Coprocessor is a PCI X Cryptographic

Coprocessor.
10 Coprocessor is a CEX2C.
11 Coprocessor is a CEX2A.
12 Coprocessor is a CEX3C.
13 Coprocessor is a CEX3A.
14–31 Reserved.

4 4 SMF82CGX 1 binary Cryptographic Coprocessor number.

5 5 SMF82CGS 8 EBCDIC Cryptographic Coprocessor serial number.

13 D 3 Reserved.

Subtype 19

PCI X Cryptographic Coprocessor Timing

Offsets Name Length Format Description

0 0 SMF82XTN 8 EBCDIC Time just before the PCI X Cryptographic Coprocessor
operation begins.

8 8 SMF82XTD 8 EBCDIC Time just after PCI X Cryptographic Coprocessor operation
ends.

Record Type 82

292 z/OS V1R13 System Programmer's Guide

Offsets Name Length Format Description

16 10 SMF82XTW 8 EBCDIC Time just after results have been communicated to caller
address space.

24 18 SMF82XTQ 4 binary Number of processes waiting to submit work to the same
PCI X Cryptographic Coprocessor and domain, using the
same reference number.

28 1C SMF82XTF 2 EBCDIC Function code of service.

30 1E SMF82XTX 1 binary PCI X Cryptographic Coprocessor number.

31 1F SMF82XTS 8 EBCDIC PCI X Cryptographic Coprocessor serial number.

39 27 SMF82XTM 1 binary PCI X Cryptographic Coprocessor domain.

40 28 SMF82XTR 1 binary PCI X Cryptographic Coprocessor reference number.

41 29 3 Reserved.

Subtype 20

Cryptographic Coprocessor Processing Times

Offsets Name Length Format Description

0 0 SMF82TFL 4 binary Flag bytes

Bit Meaning When Set
0 Coprocessor is a PCI X Cryptographic

Coprocessor.
1 Coprocessor is a CEX2C.
2 Coprocessor is a CEX2A.
3 Coprocessor is a CEX3C.
4 Coprocessor is a CEX3A.
5–31 Reserved.

4 4 SMF82TNQ 8 EBCDIC Coprocessor time before NQAP.

12 C SMF82TDQ 8 EBCDIC Coprocessor time after DQAP.

20 14 SMF82TWT 8 EBCDIC Coprocessor time after WAIT.

28 1C SMF82TQU 4 binary Coprocessor queue length.

32 20 SMF82TSF 2 EBCDIC Coprocessor sub function code.

34 22 SMF82TIX 1 binary Coprocessor index.

35 23 SMF82TSN 8 EBCDIC Coprocessor serial number.

43 2B SMF82TDM 1 binary Domain.

44 2C SMF82TRN 1 binary Reference number.

45 2D 3 Reserved.

Subtype 21

ICSF Sysplex Group Change Section

Offsets Name Length Format Description

0 0 SMF82SXG 8 EBCDIC Name of ICSF Sysplex group.

8 8 SMF82SXM 8 EBCDIC Name of sysplex member.

16 F SMF82SXA 1 binary ICSF Sysplex member status flags

Bit Meaning When Set
0 Member joined the ICSF sysplex group.
1 Member left the ICSF sysplex group.
2–7 Reserved.

Record Type 82

Appendix B. ICSF SMF Records 293

Offsets Name Length Format Description

17 11 SMF82SXR 1 binary ICSF Sysplex member conditions of status flags

Bit Meaning When Set
0 Member joined or left the ICSF sysplex due to

normal initialization/termination processing
1 Member left the ICSF sysplex due to error
2–7 Reserved.

18 12 2 Reserved.

20 14 SMF82SXT 8 EBCDIC Time of ICSF sysplex join/leave index.

28 1C SMF82SXC 44 EBCDIC Name of active CKDS.

Subtype 22

Trusted Block Create Callable Services Section

Offsets Name Length Format Description

0 0 SMF82TBF 4 binary Process Flag bytes

Bit Meaning When Set
0 Created Inactive Trusted Block.
1 Activate an Inactive Block.
2 Trusted Block has Public Key.
3–31 Reserved.

4 4 SMF82TBS 2 EBCDIC ASID of caller.

6 6 SMF82TBN 64 EBCDIC Label of Input Trusted Block.

70 46 SMF82TBO 64 EBCDIC Label of Output Trusted Block.

134 86 SMF82TBX 64 EBCDI Label of Transport Key.

Subtype 23

Token Data Set Update

Offsets Name Length Format Description

0 0 SMF82TKF 4 binary TKDS bits

Bit Meaning When Set
0 TKDS record added
1 TKDS record changed
2 TKDS record deleted
3–31 Reserved.

4 4 SMF82TKN 44 EBCDIC TKDS name

48 30 SMF82TKH 44 EBCDIC TKDS handle being processed

Subtype 24

Duplicate Tokens Found

Offsets Name Length Format Description

0 0 SMF82DCNTSTRT 4 binary Start of duplicate labels.

4 4 SMF82DCNTEND 4 binary End of duplicate labels.

8 8 SMF82DCNT 4 binary Number of duplicate labels.

12 C SMF82DRSVD 4 binary Reserved.

16 10 SMF82DNAM 44 binary Name of key data set.

Record Type 82

294 z/OS V1R13 System Programmer's Guide

Offsets Name Length Format Description

The following field is repeated count (SMF82DCNT) number of times.

60 3C SMF82_Label 64 EBCDIC A key label.

Subtype 25

Key Store Policy
The key store policy must be activated before this SMF record subtype is logged.
The subtype is logged when the callable service request meets the following
requirements:

v The key store policy allows the request to complete with a warning.

v The key store policy indicates that the request should complete with a failure.
The "warning" flag is not set in the failure case.

Offsets Name Length Format Description

0 0 SMF82KDS 44 EBCDIC Data set name.

44 2C SMF82KLF 4 binary Key store policy flags:

Bit Meaning When Set
0 Warning.
1 List is incomplete.
2 List is from CKDS.
3 List is from PKDS.
4-31 Reserved.

48 30 SMF82KLC 4 binary Number of key labels following.

The following field is repeated count (SMF82KLC) number of times.

52 34 SMF82DKL 72 EBCDIC Unauthorized duplicate key label and key type.

Subtype 26

Public Key Data Set Refresh

Offsets Name Length Format Description

0 0 SMF82PREF_FLAG 4 binary Flags:

Bit Meaning When Set
0 Data space was refreshed.
1-31 Reserved.

4 4 SMF82_PREF_OLDDS 44 EBCDIC Old PKDS Name.

48 30 SMF82_PREF_NEWDS 44 EBCDIC New PKDS Name.

Record Type 82

Appendix B. ICSF SMF Records 295

Subtype 27

PKA Key Management Extensions

Offsets Name Length Format Description

24 18 SMF82PKE_FLAGS 4 binary PKA Key Management Extension flags:

Bit Meaning When Set
0 PKA token may not be used for

requested function.
1 SYM token may not be exported by

the provided PKA token.
2 PKA label list is imcomplete.
3 SYM label list is incomplete.
24 Trusted certificate repository has

changed.
25 PKA Key Management Extensions in

WARNONLY mode.
26 An error was detected during

processing.
27 Trusted cert repository was empty.
28 An error was detected while

extracting APPLDATA.
29 The repository wasn't found.
30 One or more certs couldn't be

parsed.
Bits 0-3 are set during callable services.

Bits 24-30 are set during repository parsing.

Bits 4-23 and 31 are reserved.

28 1C SMF82PKE_FUNCTION 8 EBCDIC Name of the service that issued this SMF
record. The name is in the form CSFzzz.

36 24 SMF82PKE_APPLDATALEN 1 binary Length of the enablement profile APPLDATA
or current repository name.

37 25 SMF82PKE_APPLDATA 247 EBCDIC Enablement profile APPLDATA or current
repository name.

284 11C SMF82PKE_FUNCSPEC 0 binary Function-specific section of the record.

284 11C SMF82PKE_APPLDATA_PARSING 0 binary APPLDATA parsing results section.

284 11C SMF82PKE_SAF_RC 2 binary SAF_RC or 'FFFF'X.

286 11E SMF82PKE_SERV_RC 2 binary RACF RC or ICSF RC.

288 120 SMF82PKE_SERV_RS 4 binary RACF RS or ICSF RS.

284 11C SMF82PKE_SERVICE_SECTION 0 binary Callable services section.

284 11C SMF82PKE_PKA_REC_CNT 4 binary Number of PKA labels present in this record.

288 120 SMF82PKE_SYM_REC_CNT 4 binary Number of SYM labels present in this record.

The following is repeated SMF82PKE_PKA_REC_CNT number of times.

292 124 SMF82PKE_PKA_LABELS 64 EBCDIC PKA key label.

The following is repeated SMF82PKE_SYM_REC_CNT number of times.

292+
zzz

124+
zzz

SMF82PKE_SYM_LABELS 72 EBCDIC SYM key label.

Record Type 82

296 z/OS V1R13 System Programmer's Guide

Subtype 28

High Performance Encrypted Key

Offsets Name Length Format Description

24 18 SMF82HPSK_FLAGS 4 binary High Performance Encrypted Key flags:

Bit Meaning When Set
0 Rewrapping operation is not permitted for

this symmetric key.
1 Rewrapping operation was permitted for this

symmetric key.
2 The list of labels is incomplete.
Bits 3–31 are reserved.

28 1C SMF82HPSK_FUNCTION 8 EBCDIC Name of the service that issues this SMF record. The
name is in the form of CSFzzzz.

36 24 SMF82HPSK_SYM_LABEL_CNT 4 binary Number of SYM labels present in this record.

The following is repeated SMF82HPSK_SYM_LABEL_CNT number of times.

40 28 SMF82HPSK_SYM_LABELS 72 EBCDIC SYM key label and type.

Subtype 29

TKE Workstation Audit Record

Offsets Name Length Format Description

24 18 SMF82TKEAR_FLAGS 4 binary Flags -- reserved

28 1C SMF82TKEAR_NAMELEN 2 binary TKE workstation name length

30 24 SMF82TKEAR_RCDLEN 2 binary TKE audit record data length

32 20 SMF82TKEAR_NAME VAR EBCDIC TKE workstation name

VAR VAR VAR EBCDIC TKE audit record data

Record Type 82

Appendix B. ICSF SMF Records 297

Record Type 82

298 z/OS V1R13 System Programmer's Guide

Appendix C. CICS-ICSF Attachment Facility

The purpose of the CICS-ICSF Attachment Facility is to enhance the performance
of CICS transactions in the same region as a transaction using long-running ICSF
services such as the PKA services and CKDS or PKDS update services. You must
have CICS Transaction Server for z/OS Version 3.1 or higher.

Without the CICS-ICSF Attachment Facility, the application that requests a
long-running ICSF service is placed into an OS WAIT. With the CICS-ICSF
Attachment Facility, a long running service is transferred to an L8, and the CICS
application is placed into a CICS WAIT, rather than an OS WAIT, for the duration of
the operation.

Installing the CICS-ICSF Attachment Facility
Before you can use the CICS-ICSF Attachment Facility, the ICSF system
programmer, or the CICS administrator needs to install it. This involves:

v Relinking the ICSF enabling routine, CSFATREN, and the ICSF TRUE,
CSFATRUE, if ICSF was previously installed in an environment without the
CICS-ICSF Attachment Facility

v Installing the proper load libraries in the PROC used to start CICS

v Updating the CICS System Definitions (CSD) data set to define the programs to
CICS

v Enabling these programs

For information about CICS TRUE programs, refer to CICS Customization Guide,
SC33-1683.

Steps for installing the CICS-ICSF attachment facility
1. If ICSF was previously installed in an environment without the CICS-ICSF

Attachment Facility (i.e., without being linked with the CICS SDFHLOAD data
set), the ICSF system programmer will need to relink the ICSF TRUE,
CSFATRUE, and the ICSF enabling routine, CSFATREN. This would be the
case if, for example, (a) the DDDEF entries for ICSF do not have the
SDFHLOAD DDDEF pointing to the CICS SDFHLOAD data set but instead
have it pointing to an empty data set, or (b) z/OS (and hence ICSF) was
installed using a ServerPac.

To relink the ICSF modules, first manually update the ICSF DDDEF for
SDFHLOAD to point to the CICS SDFHLOAD data set. (Refer to ICSF sample
CSFDDDEF shipped in SAMPLIB.) Then submit a job to relink the ICSF
modules. This is an example of job control language for the relink.
//STEP01 EXEC PGM=IEWL,
// PARM=’LIST,XREF,LET,DCBS,AMODE(31),RMODE(24)’
//SYSLMOD DD DISP=SHR,DSN=yyy.SCSFMOD0 (the ICSF load library)
//SYSLIB DD DISP=SHR,DSN=xxxxxx.SDFHLOAD
//SDFHLOAD DD DISP=SHR,DSN=xxxxxx.SDFHLOAD
//SCSFMOD0 DD DISP=SHR,DSN=yyy.SCSFMOD0 (the ICSF load library)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,10))
//SYSPRINT DD SYSOUT=*
//SYSLIN DD *

INCLUDE SDFHLOAD(DFHEAI)
REPLACE CSFDHEAI(DFHEAI),CSF0EAI
INCLUDE SCSFMOD0(CSFATREN)

ENTRY DFHEAI
NAME CSFATREN(R)

© Copyright IBM Corp. 1997, 2011 299

INCLUDE SDFHLOAD(DFHEAI)
REPLACE CSFDHEAI(DFHEAI),CSF0EAI
INCLUDE SCSFMOD0(CSFATRUE)

ENTRY DFHEAI
NAME CSFATRUE(R)

/*

2. Include the ICSF load module data set in the CICS startup job control language
as shown in this example.
//DFHRPL DD DISP=SHR,DSN=xxxxx.SDFHLOAD
// DD DISP=SHR,DSN=yyy.SCSFMOD0 (The ICSF load library)
// DD ...
...
//SYSIN DD DISP=SHR,DSN=xxxxx.SYSIN(DFH$SIPx)
...

In the previous sample code, DFH$SIPx includes the entry:
PLTPI=yy,

3. Customize the Program Load Table (PLT), to include the ICSF enabling routine
CSFATREN in second stage initialization.

This is an example input deck for compiling a PLT for automatic enablement of
the CICS-ICSF link. This is ASM code. Assemble it with the CICS macro library,
but without the CICS translator.
//SYSIN DD *
*
* List of programs to be executed sequentially during system
* initialization. Required system initialization parm: PLTPI=yy
* DFHPLTCS should be defined in the CSD by CEDA or DFHCSDUP job
*
DFHPLT TYPE=INITIAL,SUFFIX=yy
*
* -------- Second stage of initialization -----------------
*
DFHPLT TYPE=ENTRY,PROGRAM=CSFATREN (Run enable of CSFATRUE)
*
* ---------- Delimiter between Stages 2 and 3 ------------
*
DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
*
* --------- Third stage of initialization -----------------
* (none)
*
DFHPLT TYPE=FINAL
END
/*

The previous code is an example only. Your CICS administrator can use it as a
guide in customizing the PLT. For more information about coding the PLT, refer
to CICS Resource Definition Guide.

4. Link edit the PLT with these controls:
INCLUDE OBJLIB(DFHPLTyy)
NAME DFHPLTyy(R)

5. The CICS administrator should customize the system CSD to include:

v CSFATRUE

v CSFATREN

v A PLT to indicate that initialization is to call CSFATREN to enable the ICSF
TRUE, CSFATRUE

This is an example of the job control language and input. In this example, xxxxx
represents the local CICS prefix, and zzzzzzzz represents the PLT entry that
was compiled previously.

300 z/OS V1R13 System Programmer's Guide

//UPDATE JOB ...
//*- -
//DEFINES EXEC PGM=DFHCSDUP,REGION=2M
//STEPLIB DD DISP=SHR,DSN=xxxxxx.SDFHLOAD
// DD DISP=SHR,DSN=zzzzzzzz
//DFHCSD DD DISP=SHR,DSN=xxxxxx.DFHCSD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
*
DEFINE PROGRAM(CSFATREN) GROUP(ICSF)

DESCRIPTION(TRUE enablement routine)
LANGUAGE(ASSEMBLER)

*
DEFINE PROGRAM(CSFATRUE) GROUP(ICSF)

DESCRIPTION(ICSF interface TRUE)
LANGUAGE(ASSEMBLER)
CONCURRENCY(THREADSAFE)
API(OPENAPI)

*
DEFINE PROGRAM(DFHPLTyy) GROUP(ICSF)

DESCRIPTION(PLT Program Init for CSFATRUE)
LANGUAGE(ASSEMBLER)

The PLT in the example runs the program CSFATREN during CICS initialization.
CSFATREN automatically enables the ICSF TRUE, CSFATRUE. If CICS is
already started, use a CICS Command Level Interpreter Transaction (CECI) to
enable CSFATRUE. To do this, go into CECI and issue this statement:
ENABLE PROGRAM(’CSFATRUE’) TALENGTH(250) LINKEDITMODE START

You can also do this in a single step with this statement:
CECI ENABLE PROGRAM(’CSFATRUE’) TALENGTH(250) LINKEDITMODE START

6. If you have any existing CICS applications which invoke any of the ICSF
services in the Wait List, then these applications must be re-linked with the
current ICSF stubs.

Implementing the CICS wait list
The CICS Wait List can be implemented by means of a customer modifiable data
set, pointed to by the Installation Options Data Set (WAITLIST parameter). The
default WAITLIST includes all services which can complete asynchronously (for
example, those services which perform I/O to a cryptographic key data set and
those services which are routed to a PCICC or PCIXCC). If the option is not
specified, the default CICS Wait List will be utilized by ICSF when a CICS
application invokes an ICSF callable service. If WAITLIST is specified, the data set
specified by this parameter will be used to determine the names of the services to
be placed on the CICS Wait List. A sample data set is provided by ICSF via
member CSFWTL00 (for CCF systems with PCICCs) and CSFWTL01 (for systems
with PCIXCCs) of SYS1.SAMPLIB. The sample data set contains the same entries
as the default ICSF CICS Wait List -- for example, the data set contains the names
of all ICSF callable services which, by default, will be driven through the CICS
TRUE.

The WAITLIST option should be added to the Installation Options data set under
these conditions.

v Non-CICS customers will not specify a WAITLIST keyword.

v CICS customers who want to use the default CICS Wait List shipped with ICSF
will not specify a WAITLIST keyword. If you have any existing CICS applications
which invoke any of the ICSF services in the Wait List, then these applications
must be re-linked with the current ICSF stubs.

Appendix C. CICS-ICSF Attachment Facility 301

v CICS customers who do not want to make use of CICS TRUE must either not
enable the TRUE or specify a WAITLIST keyword and point to an empty wait list
data set or you can specify WAITLIST(DUMMY) in the Installation Options data
set.

v CICS customers who wish to modify the ICSF default CICS Wait List should
modify the sample Wait List data set supplied in member CSFWTL00 (for CCF
systems with PCICCs) or member CSFWTL01 (for systems with PCIXCCs,
CEX2Cs, or CEX3Cs) of SYS1.SAMPLIB. The WAITLIST keyword in the
Installation Options Data Set should be set to point to this data set. If you have
any existing CICS applications which invoke any of the ICSF services in the Wait
List, then these applications must be re-linked with the current ICSF stubs.

If you already have the CICS-ICSF Attachment facility installed, there are a number
of callable services which may potentially be routed to the PCICC, PCIXCC,
CEX2C, or CEX3C or may perform other asynchronous processing. If you have a
modified CICS Wait List, you should ensure that the wait list data set includes all
such services, and any CICS applications which invoke any of these services are
re-linked with the current ICSF stubs. As a model, you can use the default CICS
Wait List that is shipped with ICSF which includes all services which have an
asynchronous interface to ICSF or you can use a sample Wait List data set that is
also shipped with ICSF. The sample CICS Wait List data set is contained in
member CSFWTL00 (for CCF systems with PCICCs) or in member CSFWTL01 (for
systems with PCIXCC, CEX2C, or CEX3C) of SYS1.SAMPLIB. The sample data
set contains the same entries as the default ICSF CICS Wait List. You can modify
the sample data set to add and/or delete items from the Wait List. Here are some
examples of why you might want to modify the sample data set.

For CCF Systems:

v If you do not have a PCI Cryptographic Coprocessor installed, you can delete all
of the services identified with an "*" that are in the sample wait list.

v If you have a PCI Cryptographic Coprocessor installed, you can examine the
services your applications invoke in a CICS environment and determine, based
upon the routing information provided for each service in z/OS Cryptographic
Services ICSF Application Programmer's Guide, SA22-7522, that the service will
never be routed to a PCI Cryptographic Coprocessor. In this case (except for the
CKDS/PKDS access services) the service can be deleted from the list.

For CCF systems with a PCICC or z990/z890 systems with a PCIXCC/CEX2C:

v If you have an application which invokes a UDX while running under CICS, then
the name of the UDX generic service should be added to the CICS Wait List.

If you use a CICS Wait List data set, you need to identify the data set to ICSF
through the WAITLIST(data_set_name) option in the ICSF Installation Options data
set. The data set can be a member of a PARMLIB, a member of a partitioned data
set, or a sequential data set. The data set should be allocated on a permanently
resident volume and should adhere to:

v The format of each record in the data set must be fixed length or fixed block
length.

v A physical line in the data set must be a LRECL of 80 characters long. The
system ignores any characters in positions 73 to 80 of the line.

v You can delimit comments by "/*" and "*/" and include them anywhere in the text.
A comment cannot span physical records.

v Only one service may be specified on a logical line.

302 z/OS V1R13 System Programmer's Guide

Note: You can use the WAITLIST(DUMMY) parameter to specify a null CICS Wait
List data set, or you can disable the CICS TRUE if you do not want to utilize
the CICS TRUE. See “Parameters in the installation options data set” on
page 38 for additional information.

Appendix C. CICS-ICSF Attachment Facility 303

304 z/OS V1R13 System Programmer's Guide

Appendix D. Helpful Hints for ICSF First Time Startup

The purpose of this topic is to provide some helpful hints and resolutions for the
problems that you may encounter when starting ICSF for the first time.

See Appendix F, “z890, z990, z9 EC, z9 BC, z10 EC, z10 BC, or z196 without a
PCIXCC, CEX2C, or CEX3C,” on page 319 if you're running in this environment.

Checklist for First-Time Startup of ICSF
This is a checklist for the first-time startup of ICSF.

Note: ALL crypto coprocessors cards must be loaded with the same level of code.
Otherwise, unpredictable results can occur.

Step 1. Hardware Setup - CCF Systems
Process Crypto Enablement Diskette Load

PCICC FCV Load (if applicable)

Power-on Reset

Responsible CE or Client Operator Representative

Where Support Element

Verify Via Cryptographic Coprocessor Configuration Task

v Status for CP0 and/or CP1 is "Initialized"

Via PCI Cryptographic Coprocessor Configuration Task

v Status for Pxx is "Configured"

References Support Element Operations Guide

Completed

Step 1. Hardware Setup - PCIXCC/CEX2C/CEX3C Systems

Note: The CP Assist for Cryptographic Functions feature is required for selection of
the PCIXCC/CEX2C/CEX3C in the activation profiles.

Process LIC installed for CP Assist for Cryptographic Functions

Note: If using TKE V4.0 or higher and your z890/z990 system is
running with May 2004 or higher version LIC or your z9 EC
or z9 BC system is running with MCL 029 Stream J12220 or
higher version of LIC, you must Permit each
PCIXCC/CEX2C for TKE Commands.

Responsible CE or Client Operator Representative

Where Support Element

Verify Via CPC details

v CP Assist for Cryptographic Functions is 'Installed'

v CP Assist for Cryptographic Functions DES/TDES enablement
(feature 3863) is 'Installed'

Via PCI Cryptographic Configuration Task

© Copyright IBM Corp. 1997, 2011 305

v Status for each PCICA, PCIXCC, CEX2C, CEX2A, CEX3C, or
CEX3A is 'Configured'

Note: If using TKE V4.0 or higher, the status for each
PCIXCC/CEX2C is 'Permitted' when May 2004 or higher
LIC is installed on a z890/z990 or MCL 029 Stream
J12220 or higher is installed on a z9 EC or z9 BC.

References Support Element Operations Guide

Completed

Step 2. LPAR Activation Profiles - CCF Systems
Process Crypto Page Setup

PCICC Page Setup

Processor Page Setup

Responsible CE or Client Operator Representative

Where Support Element

Verify On Crypto Page of the Activation Profile

v Enable Public Key Algorithm

v Enable Cryptographic Functions

v Enable PKSC and ICSF

v Enable Cryptographic Facility (ICRF) Key Entry

v Enable Special Secure Mode

If using TKE, also

v Enable Modify Authority (Only (1) LPAR - TKE Host)

v Enable Query Signature Controls (TKE Host)

v Enable Query Transport Controls (TKE Host)

v For the TKE Host, the Control Domain must include ALL the
domains that will be controlled by the TKE Host

On the PCICC Page of the Activation Profile

v PCI Cryptographics Coprocessor Candidate List includes all
PCICC's and PCICA's that CAN be online

v PCI Cryptographics Coprocessor Online List includes all PCICC's
and PCICAs that WILL be online when activation is complete
(Selections in the Online List MUST be selected in the Candidate
List)

On the Processor Page Setup

v Cryptographic Coprocessor(s) are enabled for that LPAR

References Support Element Operations Guide

z/OS Cryptographic Services ICSF TKE Workstation User's Guide,
SA23-2211 (LPAR Considerations)

zSeries PR/SM Planning Guide

Completed

306 z/OS V1R13 System Programmer's Guide

Step 2. LPAR Activation Profiles - PCIXCC, CEX2C, and CEX3C
Systems

Process PCI Crypto Page Setup

Responsible CE or Client Operator Representative

Where Support Element

Verify Control Domain Index

Usage Domain Index

PCI Cryptographic Candidate List includes all PCICAs, PCIXCCs,
CEX2Cs, CEX2As, CEX3Cs, and CEX3As that CAN be online

PCI Cryptographic Online List includes all PCICAs, PCIXCCs,
CEX2Cs, CEX2As, CEX3Cs, and CEX3As that WILL be online
when activation is complete (Selections in the Online List MUST be
selected in the Candidate List)

References Support Element Operations Guide

z/OS Cryptographic Services ICSF TKE Workstation User's Guide,
SA23-2211 (LPAR Considerations)

zSeries PR/SM Planning Guide

Completed

Note: If TKE is to be used, then ALL PCIXCCs, CEX2Cs, and CEX3Cs that you
want TKE to be able to control MUST be defined in the Online and
Candidate Lists. Also, the Usage Domain for the TKE Host LPAR MUST be
unique. While the same domain may be used by other LPARs as long as
these LPARs do not share any of the same PCIXCC/CEX2C/CEX3C cards,
the TKE Host domain must have access to all the PCIXCC/CEX2C/CEX3C
cards so that prohibits any other LPAR from using the same domain.

Step 3. ICSF Setup
Process Install and Customize ICSF

Responsible System Programmer and ICSF Administrator

Where TSO and ISPF Panels

Verify Customize SYS1.PARMLIB

v Add CSF.SCSFMOD0 to the LNKLST concatenation

v Update PROGxx to APF authorize CSF.SCSFMOD0

v Update IKJTSOxx for ICSF by adding CSFDAUTH and
CSFDPKDS to the AUTHPGM and AUTHTSF parameter lists. To
change the active IKJTSOxx member of SYS1.PARMLIB, use the
PARMLIB UPDATE command.

CKDS and PKDS created

ICSF Startup Procedure created

Installation Options Dataset created

v The DOMAIN parameter in the installation options data set is
optional. It is required if more than one domain is specified as
the usage domain on the PR/SM panels or if running in native
mode.

Appendix D. Helpful Hints for ICSF First Time Startup 307

v CKDS and PKDS names specified

v COMPAT(NO) and SSM(YES)

Note: SSM(YES) is not required with a PCIXCC, CEX2C, or
CEX3C

Access provided to the ICSF panels

References Chapter 2, “Installation, Initialization, and Customization,” on page
13

Completed

Step 4. TKE Setup
If you are not using TKE, proceed to the next step.

Process Initialize the TKE Workstation

Configure TCP/IP on the Host and the TKE Workstation

Perform passphrase or smart card setup

Setup the TKE Host Transaction Program

v Create JCL to start the TKE Host Transaction Program

v RACF Security Setup

v Start the TKE Host Transaction Program

Responsible Network Programmer, System Programmer and TKE Administrator

Where ISPF Panels, TKE Workstation

Verify CSFTTKE is authorized in the AUTHCMD list of IKJTSOxx in
SYS1.PARMLIB

TKE Host Transaction Program (CSFTTCP) is defined in the RACF
STARTED class (If your installation has a Generic Userid
associated to all started procedures, this is not necessary)

CSFTTKE profile is defined in the RACF FACILITY and RACF
APPL classes

References z/OS Cryptographic Services ICSF TKE Workstation User's Guide,
SA23-2211 (See Topics: TKE Workstation Setup and Customization
and TKE TCP/IP and Host Considerations)

Completed

Step 5. ICSF Startup
Process Start ICSF

Responsible Client Operator Representative or System Programmer

Where Operator Console

References Chapter 2, “Installation, Initialization, and Customization,” on page
13

Completed

308 z/OS V1R13 System Programmer's Guide

Step 6. Loading Master Keys and Initializing the CKDS through ICSF
Panels

Notes:

1. If sharing a CKDS between CCF systems and non-CCF systems, the CKDS
must be initialized on a CCF system.

2. When defining a master key by specifying master key parts, make sure the key
parts are recorded and saved in a secure location. When you are entering
the key parts for the first time, be aware that you may need to reenter these
same key values at a later date to restore master key values that have
been cleared. If defining a master key using a pass phrase, realize that the
same pass phrase will always produce the same master key values, and is
therefore as critical and sensitive as the master key values themselves. Make
sure you save the pass phrase so that you can later reenter it if needed.
Because of the sensitive nature of the pass phrase, make sure you secure it in
a safe place.

If you are using TKE, proceed to the next step.

Process Passphrase Initialization to load and SET master keys and initialize
CKDS and PKDS

v Create NOCV, ANSI, and ESYS keys as applicable for your
installation

Note: These system keys are not valid on a PCIXCC, CEX2C,
or CEX3C system.

- OR -

Clear Master Key Entry

v Load DES New Master Key

v Load AES New Master Key

v Load PKA Signature Master Key (SMK)

v Load PKA Key Management Master Key (KMMK)

v Load New Symmetric Master Key (if applicable)

v Load New Asymmetric Master Key (if applicable)

Note: Using the Coprocessor Management panel, the master
keys can be loaded into all the coprocessors (CCF,
PCICC, PCIXCC, CEX2C, and CEX3C) at the same time.
It is recommended that the SMK and KMMK keys be set
to the same value.

v Initialize CKDS

v Create NOCV, ANSI, and ESYS keys as applicable for your
installation - CCF systems only

v Initialize the PKDS

v Enable PKA Services

v Enable PKDS Read Access

v Enable PKDS Write, Create, and Delete Access

Responsible ICSF Administrator and Key Officers

Where ICSF Panels

Verify In System Log (CCF Systems):

Appendix D. Helpful Hints for ICSF First Time Startup 309

CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
IEE504I CRYPTO(0),ONLINE
IEE504I CRYPTO(1),ONLINE (if applicable)
CSFM116I BOTH MASTER KEYS CORRECT ON PCI CRYPTOGRAPHIC
COPROCESSOR Pnn, SERIAL NUMBER nn-nnnn (if applicable)
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM400I CRYPTOGRAPHY SERVICES ARE NOW AVAILABLE

In System Log (PCIXCC, CEX2C, or CEX3C Systems):
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM124I MASTER KEY DES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY AES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY ECC ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY RSA ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CKDS IS NOT INITIALIZED.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.PKDS IS NOT INITIALIZED.
CSFM012I NO ACCESS CONTROL AVAILABLE FOR CRYPTOZ RESOURCES. ICSF PKCS11
SERVICES DISABLED.
CSFM122I PKA SERVICES WERE NOT ENABLED DURING ICSF INITIALIZATION
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM009I NO ACCESS CONTROL AVAILABLE FOR ICSF SERVICES OR KEYS
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.

Message CSFM440I will be issued for each active PCIXCC.

Message CSFM124I will be issued for each CEX2C/CEX3C online.
The ECC master key is available only on the CEX3C.

Message CSFM122I will not be issued when your system has any
CEX3C coprocessors (with the Sep. 2011 or later LIC) online. The
PKA callable services control will not be active. The availability of
RSA callable services will depend on the status of the RSA master
key. CSFM130I is issued when the RSA master key is active and
RSA callable services are available.

In System Log (CEX2C or CEX3C without CEX2A or CEX3A
Systems):
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM124I MASTER KEY DES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY AES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY ECC ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL

310 z/OS V1R13 System Programmer's Guide

|
|
|
|
|
|

NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY RSA ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM129I MASTER KEY mk ON coprocessor-name cii, SERIAL
NUMBER nnnnnnn, IS CORRECT.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM400I CRYPTOGRAPHY - SERVICES ARE NOW AVAILABLE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM127I CRYPTOGRAPHY - AES SERVICES ARE AVAILABLE.

Message CSFM129I will be issued for each CEX2C/CEX3C online.

In System Log (CEX2C/CEX3C and CEX2A/CEX3A Systems):
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM101E PKA KEY DATA SET, CSF.PKDS IS NOT INITIALIZED.
CSFM124I MASTER KEY DES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY AES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY ECC ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY RSA ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CKDS IS NOT INITIALIZED.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM400I CRYPTOGRAPHY - SERVICES ARE NOW AVAILABLE.
CSFM127I CRYPTOGRAPHY - AES SERVICES ARE AVAILABLE.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS3 COPROCESSOR
xxx, SERIAL NUMBER nnnnnnn

Message CSFM124I will be issued for each CEX2C/CEX3C online.
The ECC master key is available only on the CEX3C.

Message CSFM111I will be issued for each active CEX2C/CEX3C.

In System Log (CPACF only system):
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.

In System Log (CPACF, CEX2A, and CEX3A)
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS3 COPROCESSOR
xxx, SERIAL NUMBER nnnnnnn

Appendix D. Helpful Hints for ICSF First Time Startup 311

CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.

Message CSFM111I will be issued for each active CEX2A/CEX3A.

References For information on using the Pass Phrase Initialization Utility and
managing master keys, refer to z/OS Cryptographic Services ICSF
Administrator's Guide, SA22-7521.

Completed

Step 7. Customizing TKE and Loading Master Keys
If you are not using TKE, proceed to the next step.

Process - CCF Systems
TKE Administrator's and Key Officers

v Define Host IDs

v Define CCF Authorities

v Define Access Controls (Signature Requirements for CCF)

v Define Roles (if applicable)

v Define PCI Cryptographic Coprocessor Authorities (if applicable)

v Load DES New Master Key

v Load PKA Signature Master Key (SMK)

v Load PKA Key Management Master Key (KMMK)

v Load New Symmetric Master Key (if applicable)

v Load and SET New RSA Master Key (if applicable)

Note: If you have more than one crypto module or PCI
Cryptographic Coprocessor, repeat the process for each,
unless Groups have been defined. It is recommended that
the SMK and KMMK keys be set to the same value.

Process - PCIXCC/CEX2C/CEX3C Systems
TKE Administrator's and Key Officers

v Define Host IDs

v Define Roles

v Define PCIXCC/CEX2C/CEX3C Authorities

v Load New DES-MK

v Load New AES-MK (if running on z10 or z196 servers with a
CEX2C or CEX3C and the Nov. 2008 or later licensed internal
code (LIC))

v Load and SET New RSA-MK or ECC-MK

Note: If you have more than one PCIXCC, CEX2C, or CEX3C,
repeat the process for each, unless Groups have been
defined.

Responsible ICSF Administrator

v Initialize CKDS and SET the DES/SYM-MK New Master Key

v Create NOCV, ANSI, and ESYS keys as applicable for your
installation - CCF Systems only

v Load PKA/RSA-MK/ECC-MK Master Keys

312 z/OS V1R13 System Programmer's Guide

v SET RSA-MK (PCICC, PCIXCC, CEX2C, and CEX3C) and/or
ECC-MK (CEX3C)

v Initialize the PKDS

v Enable PKA Services

v Enable PKDS Read Access

v Enable PKDS Write, Create, and Delete Access

Where TKE Workstation and ICSF Panels

Verify In System Log (CCF Systems):
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
IEE504I CRYPTO(0),ONLINE
IEE504I CRYPTO(1),ONLINE (if applicable)
CSFM116I BOTH MASTER KEYS CORRECT ON PCI CRYPTOGRAPHIC
COPROCESSOR Pnn, SERIAL NUMBER nn-nnnn (if applicable)
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM400I CRYPTOGRAPHY SERVICES ARE NOW AVAILABLE

In System Log (PCIXCC, CEX2C, or CEX3C Systems):
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM124I MASTER KEY DES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY AES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY ECC ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY RSA ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CKDS IS NOT INITIALIZED.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.PKDS IS NOT INITIALIZED.
CSFM012I NO ACCESS CONTROL AVAILABLE FOR CRYPTOZ RESOURCES. ICSF PKCS11
SERVICES DISABLED.
CSFM122I PKA SERVICES WERE NOT ENABLED DURING ICSF INITIALIZATION
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM009I NO ACCESS CONTROL AVAILABLE FOR ICSF SERVICES OR KEYS
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.

Message CSFM440I will be issued for each active PCIXCC.

Message CSFM124I will be issued for each CEX2C/CEX3C online.
The ECC master key is available only on the CEX3C.

Message CSFM122I will not be issued when your system has any
CEX3C coprocessors (with the Sep. 2011 or later LIC) online. The
PKA callable services control will not be active. The availability of
RSA callable services will depend on the status of the RSA master
key. CSFM130I is issued when the RSA master key is active and
RSA callable services are available.

In System Log (CEX2C or CEX3C without CEX2A or CEX3A
Systems):

Appendix D. Helpful Hints for ICSF First Time Startup 313

|
|
|
|
|
|

S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM124I MASTER KEY DES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY AES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY ECC ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY RSA ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM129I MASTER KEY mk ON coprocessor-name cii, SERIAL
NUMBER nnnnnnn, IS CORRECT.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM400I CRYPTOGRAPHY - SERVICES ARE NOW AVAILABLE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM127I CRYPTOGRAPHY - AES SERVICES ARE AVAILABLE.

Message CSFM129I will be issued for each CEX2C/CEX3C online.

In System Log (CEX2C/CEX3C and CEX2A/CEX3A Systems):
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM101E PKA KEY DATA SET, CSF.PKDS IS NOT INITIALIZED.
CSFM124I MASTER KEY DES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY AES ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY ECC ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY RSA ON CRYPTO EXPRESS3 COPROCESSOR xxx, SERIAL
NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CKDS IS NOT INITIALIZED.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM400I CRYPTOGRAPHY - SERVICES ARE NOW AVAILABLE.
CSFM127I CRYPTOGRAPHY - AES SERVICES ARE AVAILABLE.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS3 COPROCESSOR
xxx, SERIAL NUMBER nnnnnnn

Message CSFM124I will be issued for each CEX2C/CEX3C online.
The ECC master key is available only on the CEX3C.

Message CSFM111I will be issued for each active CEX2C/CEX3C.

In System Log (CPACF only system):
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.

314 z/OS V1R13 System Programmer's Guide

In System Log (CPACF, CEX2A, and CEX3A)
S CSF
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS3 COPROCESSOR
xxx, SERIAL NUMBER nnnnnnn
CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.

Message CSFM111I will be issued for each active CEX2A/CEX3A.

References

For information on managing master keys, refer to z/OS
Cryptographic Services ICSF Administrator's Guide, SA22-7521.

Completed

Step 8. CICS-ICSF Attachment Facility Setup
If you are not using CICS, proceed to the next topic.

Process Follow the instructions in Appendix C, “CICS-ICSF Attachment
Facility,” on page 299 if desired.

Responsible System Programmer

Where Sample Jobs

References Appendix C, “CICS-ICSF Attachment Facility,” on page 299

Completed

Step 9. Complete ICSF initialization
See “Steps for initializing ICSF” on page 31

Responsible System Programmer

Where Operator Console

Completed

Commonly Encountered ICSF First Time Setup/initialization Messages
These ICSF messages are commonly encountered during initialization and first time
startup of ICSF.

v CSFM105E CRYPTOGRAPHY - DOMAIN 'domain' IS NOT ACCESSIBLE - A
domain mismatch exists between the domain you have selected in your LPAR
activation profile and the domain option specified in your ICSF options data set.
You must decide which domain is the one you want and correct it in the
appropriate location.

v CSFM107E CRYPTOGRAPHY - CRYPTO MODULES CONFIGURED
DIFFERENTLY - The CCC values on both of your crypto coprocessors (CCFs)
must be the same. One of the cryptos may not have been loaded with an
enablement diskette yet, or selected for next activation with the force zeroize
option. Ensure that both crypto coprocessors are loaded with the same
configuration. An IPL will be required.

Appendix D. Helpful Hints for ICSF First Time Startup 315

This message is only if you have a CCF System.

v CSFM120E PUBLIC KEY SECURE CABLE (PKSC) FACILITY IS NOT
ENABLED - The Enable cryptographic functions option and/or the Enable public
key secure cable (PKSC) and integrated cryptographic service facility (ICSF)
option is not enabled in the LPAR activation profile. Check the appropriate boxes
to enable the options.

This message is only if you have a CCF System.

v CSFM124I MASTER KEY mk ON coprocessor-name cii, SERIAL NUMBER
nnnnnnn, NOT INITIALIZED - The cryptographic coprocessor does not have the
master key. When a master key is not set, then the cryptographic coprocessor
may not be used for operations with the master key until the system
administrator has provided the master key. This may be a normal situation for
your installation. Have the system administrator enter the correct master key if
appropriate.

v CSFM410E ERROR IN OPTIONS DATA SET - ICSF could not interpret the
options data set. Check the CSF job output for diagnostic messages.

CCF Systems ONLY: Before trying to start ICSF, ensure that the crypto
coprocessors have been initialized with the enablement diskette. If the coprocessors
have been loaded, a configuration should be available to select for next activation
from the Cryptographic Coprocessors Configuration panels. If the crypto
coprocessors have not been loaded with the enablement diskette and ICSF is
started, message CSFM107E will be issued. This message will only be issued if
you have 2 Cryptographic Coprocessor Features and they do not contain the same
CCC. If the CCCs have not been initialized (are all zeroes) you will receive an
X'18F' reason code 4a abend.

A PKDS is required. The PKDS data set name must be specified in the options data
set with the PKDSN option. If a PKDS is not specified, you will receive these
messages:
CSFM408A NO PKDS NAME WAS SPECIFIED IN THE OPTIONS DATA SET.
CSFM401I CRYPTOGRAPHY - SERVICES NO LONGER AVAILABLE.

316 z/OS V1R13 System Programmer's Guide

Appendix E. Using AMS REPRO Encryption

This appendix provides information on using IDCAMS REPRO ENCIPHER and
DECIPHER options with ICSF.

Steps for setting up ICSF
Perform these tasks to use the ENCIPHER and DECIPHER parameters with ICSF:

1. Define the key value that is used to encrypt and decrypt the data key. To define
the key value, use one of these ICSF key administrative options:

v Trusted Key Entry (TKE) workstation. For information about how to define the
key value using the TKE workstation, see z/OS Cryptographic Services ICSF
TKE Workstation User's Guide.

v Key generator utility program (KGUP). Use the KGUP panel "ICSF - Create
ADD, UPDATE, or DELETE Key Statement" to define the key value. For
more information about how to use KGUP panels, see z/OS Cryptographic
Services ICSF Administrator's Guide.

Be aware of the following restrictions:

– The length of the data encryption key is limited to 8 bytes, or 56-bit DES.
Triple DES support is not available.

– Key labels are limited to 8 characters because of the fixed size of REPRO
storage areas.

– The REPRO command's encryption algorithm variables are not
documented, so you cannot use them to write decryption applications on
another system. Therefore, cross-platform exchange is not possible.

2. Refresh ICSF's cryptographic key data set (CKDS) so that the key value can be
used by REPRO.

3. Ensure that ICSF can support PCF macro calls by specifying COMPAT(YES) in
the ICSF installation options. For more information about how to specify ICSF
installation options, see Chapter 2, “Installation, Initialization, and
Customization,” on page 13.

If you had to change the ICSF installation options, you must restart ICSF.

4. Run the REPRO ENCIPHER or DECIPHER job.

Restrictions:The REPRO command's encryption algorithm variables are not
documented, so you cannot use them to write decryption applications on another
system. Therefore, cross-platform exchange is not possible.

Recommendation: Do not specify the REPRO parameter PRIVATEKEY, because it
exposes the clear data key value. Instead, specify either EXTERNALKEY or
INTERNALKEY, and STOREDATAKEY

© Copyright IBM Corp. 1997, 2011 317

318 z/OS V1R13 System Programmer's Guide

Appendix F. z890, z990, z9 EC, z9 BC, z10 EC, z10 BC, or z196
without a PCIXCC, CEX2C, or CEX3C

This topic describes the processing of the z890, z990, z9 EC, z9 BC, z10 EC and
z10 BC environment without a PCI X Cryptographic Coprocessor, Crypto Express2
Coprocessor, or Crypto Express3 Coprocessor. Note that these servers do not
support the Cryptographic Coprocessor Feature or the PCI Cryptographic
Coprocessor.

Applications and programs
Applications requiring secure cryptography using encrypted keys will not be able to
execute on the z890, z990, z9 EC, z9 BC, z10 EC, z10 BC, and z196 without a PCI
X Cryptographic Coprocessor Crypto Express2 Coprocessor, or Crypto Express3
Coprocessor. All cryptographic keys must be clear keys.

These applications and programs are not supported:

v Access Method Services Cryptographic option

v CICS attachment facility

v CKDS Conversion program

v CSFEUTIL program for CKDS reencipher, refresh, change master key, and
passphrase initialization functions

v CSFPUTIL program for PKDS reencipher and refresh functions.

v Distributed Key Management System (DKMS)

v Key Generation Utility Program (KGUP)

v PCF applications

v UDX (User Defined Extension) support

v VTAM Session Level Encryption

v 4753-HSP applications

v Applications that access ICSF services through the BSAFE interfaces

v If only the CPACF feature is installed you will not be able to:

1. Set master keys (SYM-MK and ASYM-MK)

2. Initialize the CKDS and PKDS

3. Store keys in the CKDS and PKDS.

Callable services
These services are available when running on a z990, z890, z9 EC, z9 BC, z10
EC, z10 BC, and z196 without a PCI X Cryptographic Coprocessor, Crypto
Express2 Coprocessor, or Crypto Express3 Coprocessor:

v Character/Nibble Conversion (CSNBXBC and CSNBXCB)

v Code Conversion (CSNBXEA and CSNBXAE)

v Control Vector Generate (CSNBCVG)

v Decode (CSNBDCO) - This service requires CP Assist for Cryptographic
Functions.

v Digital Signature Verify (CSNDDSV) - This service requires a PCI Cryptographic
Accelerator.

v Encode (CSNBECO) - This service requires CP Assist for Cryptographic
Functions.

© Copyright IBM Corp. 1997, 2011 319

|

|
|

|

v ICSF Query Sevice (CSFIQF) - The only part of this service available without a
PCIXCC/CEX2C/CEX3C is the ICSFSTAT function.

v ICSF Query Algorithm (CSFIQA)

v MDC Generate (CSNBMDG and CSNBMDG1) - This service requires CP Assist
for Cryptographic Functions.

v One-Way Hash Generate (CSNBOWH and CSNBOWH1) - This service requires
CP Assist for Cryptographic Functions.

v PKA Decrypt (CSNDPKD) - This service requires a PCI Cryptographic
Accelerator.

v PKA Encrypt (CSNDPKE) ZERO-PAD formatting only - This service requires a
PCI Cryptographic Accelerator.

v PKA Key Token Build (CSNDPKB)

v PKA Public Key Extract (CSNDPKX)

v PKCS #11 Derive multiple keys (CSFPDMK)

v PKCS #11 Derive key (CSFPDVK)

v PKCS #11 Get attribute value (CSFPGAV)

v PKCS #11 Generate key pair (CSFPGKP)

v PKCS #11 Generate secret key (CSFPGSK)

v PKCS #11 Generate HMAC (CSFPHMG)

v PKCS #11 Verify HMAC (CSFPHMV)

v PKCS #11 One-way hash generate (CSFPOWH)

v PKCS #11 Private key sign (CSFPPKS)

v PKCS #11 Public key verify (CSFPPKV)

v PKCS #11 Pseudo-random function (CSFPPRF)

v PKCS #11 Set attribute value (CSFPSAV)

v PKCS #11 Secret key decrypt (CSFPSKD)

v PKCS #11 Secret key encrypt (CSFPSKE)

v PKCS #11 Token record create (CSFPTRC)

v PKCS #11 Token record delete (CSFPTRD)

v PKCS #11 Token record list (CSFPTRL)

v PKCS #11 Unwrap key (CSFPUWK)

v PKCS #11 Wrap key (CSFPWPK)

v Symmetric Key Decipher (CSNBSYD and CSNBSYD1) - This service requires
CP Assist for Cryptographic Functions.

v Symmetric Key Encipher (CSNBSYE and CSNBSYE1) - This service requires CP
Assist for Cryptographic Functions.

v Symmetric MAC Generate (CSNBSMG, CSNBSMG1, CSNESMG, and
CSNESMG1)

v Symmetric MAC Verify (CSNBSMV, CSNBSMV1, CSNESMV, and CSNESMV1)

v X9.9 Data Editing (CSNB9ED)

Installation defined callable services are supported only if you're using clear keys
and using one of the supported callable services.

320 z/OS V1R13 System Programmer's Guide

|

ICSF Setup and Initialization
Starting ICSF on a z990, z890, or z9 EC or z9 BC without a PCI Cryptographic
Accelerator or PCIXCC/CEX2C or starting ICSF on a z9 EC, z9 BC, z10 EC, z10
BC, or z196 without a CEX2C, CEX2A,CEX3C, or CEX3A:

v Starting ICSF on a z990, z890, z9 EC, z9 BC, z10 EC, z10 BC, or z196 without
a PCICA, PCIXCC, CEX2C, or CEX3C:
S CSF
$HASP100 CSF ON STCINRDR
IEF695I START CSF WITH JOBNAME CSF IS ASSIGNED TO USER
++++++++
$HASP373 CSF STARTED
IEF403I CSF - STARTED - TIME=11.07.28
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM506I CRYPTOGRAPHY - THERE IS NO ACCESS TO ANY CRYPTOGRAPHIC COPROCESSORS OR
ACCELERATORS.
CSFM122I PKA SERVICES WERE NOT ENABLED DURING ICSF INITIALIZATION
CSFM001I ICSF INITIALIZATION COMPLETE

v Starting ICSF on a z990 or z890 with a PCI Cryptographic Accelerator and
without a PCI X Cryptographic Coprocessor or Crypto Express2 Coprocessor,
you'll receive message CSFM411I for each PCI Cryptographic Accelerator that is
Active. Starting ICSF on a z9 EC, z9 BC, z10 EC, z10 BC, or z196 with a Crypto
Express2 Accelerator, and without a Crypto Express2 Coprocessor, you’ll receive
message CSFM435I for each Crypto Express2 Accelerator that is Active.
S CSF
$HASP100 CSF ON STCINRDR
IEF695I START CSF WITH JOBNAME CSF IS ASSIGNED TO USER
++++++++
$HASP373 CSF STARTED
IEF403I CSF - STARTED - TIME=11.08.15
CSFM607I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM607I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM411I PCI CRYPTOGRAPHIC ACCELERATOR Ann is ACTIVE (for z890/z990)
CSFM435I CRYPTO EXPRESS2 ACCELERATOR Fpp IS ACTIVE (for z9 EC/z9 BC)
CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.
CSFM122I PKA SERVICES WERE NOT ENABLED DURING ICSF INITIALIZATION
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM400I CRYPTOGRAPHY - SERVICES ARE NOW AVAILABLE.

Secure Sockets Layer (SSL)
System SSL applications are supported on the z990, z890, z9 EC, z9 BC, z10 EC,
z10 BC, or z196. SSL defines methods for data encryption, server authentication,
message integrity, and client authentication for a TCP/IP connection. Security is
provided on the link and callable services have been enhanced for DES, TDES and
SHA-1 services.

TKE workstation
The Trusted Key Entry (TKE) workstation is not available with this hardware
configuration.

Appendix F. z890, z990, z9 EC, z9 BC, z10 EC, z10 BC, or z196 without a PCIXCC, CEX2C, or CEX3C 321

|

|

|

322 z/OS V1R13 System Programmer's Guide

Appendix G. Accessibility

Publications for this product are offered in Adobe Portable Document Format (PDF)
and should be compliant with accessibility standards. If you experience difficulties
when using PDF files, you may view the information through the z/OS Internet
Library Web site or the z/OS Information Center. If you continue to experience
problems, send an e-mail to mhvrcfs@us.ibm.com or write to:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS® enable users to:

v Use assistive technologies such as screen readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

z/OS information
z/OS information is accessible using screen readers with the BookServer or Library
Server versions of z/OS books in the Internet library at:
http://www.ibm.com/systems/z/os/zos/bkserv/

© Copyright IBM Corp. 1997, 2011 323

http://www.ibm.com/systems/z/os/zos/bkserv/

324 z/OS V1R13 System Programmer's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send inquiries,
in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1997, 2011 325

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book primarily documents information that is NOT intended to be used as a
Programming Interface of ICSF.

This book also documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of ICSF. This information is identified where
it occurs, either by an introductory statement to a chapter or section or by the
following marking:

Programming Interface information

End of Programming Interface information

Trademarks
IBM®, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

326 z/OS V1R13 System Programmer's Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation
in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 327

328 z/OS V1R13 System Programmer's Guide

Index

Numerics
4753

key tokens 73
4753-HSP

compatibility and coexistence with ICSF 191

A
abends 104
access control checking

udx 161
Access Method Services Cryptographic Option

and ICSF 87
accessibility 323
activity report

defining on a DD statement 185
description 186

addressing mode
no restrictions on ICSF's caller 87

AMS DEFINE CLUSTER command 18, 21, 25
AMS IMPORT/EXPORT commands 18, 21, 25
AMS REPRO command 18, 21, 25
AMS REPRO encryption 174

B
BEGIN installation option 38

C
callable services

ICSF 54
CDMF 7
changing parameters in installation options data set

specifying option keywords and values 38
changing the master key in compatibility or coexistence

mode 175
CHECKAUTH installation option 38
choosing compatibility modes during migration 176
CICS

WAITLIST installation option 51
CICS wait list 71
CICS-ICSF Attachment Facility 299

installing 299
CIPHER macro

SVC description 10
CKDS

create 17
primary space required 17
secondary space required 17

CKDS (cryptographic key data set) 8
conversion from PCF CKDS to ICSF CKDS 177
creating 18
description 8
header record format 193, 196
record format 194, 197, 222, 227, 228, 231

CKDS entry retrieval installation exit
environment 134
input 135
installing 135
purpose and use 134
return codes 136

CKDS refresh
SMF record type 82 92

CKDSN installation option 39
CKTAUTH 39
clear master key part entry

SMF record type 82 93
coexistence mode

changing the master key 175
description 173, 174

coexistence with 4753-HSP 191
coexistence, definition 54
COMPAT installation option 39, 173
compatibility mode

and the Access Method Services Cryptographic
Option 87

changing the master key 174, 175
description 173, 174

compatibility with 4753-HSP 191
COMPENC installation option 40
component trace 101
configure on/off cryptographic coprocessors 84
controlling access to CSFDUTIL 99
controlling access to secure tokens 100
controlling access to the callable services 99
controlling access to the cryptographic keys 99
controlling access to the key generator utility

program 98
controlling the program environment 98
conversion considerations

4753-HSP to OS/390 ICSF 72
conversion program

activity report 186
bypassing entries 181
converting key types 182
data sets 185
including information in a key entry 182
installation exit 178
JCL for submitting 185
override file 179
running 184

conversion program installation exit
PCF 136

purpose and use 137
return codes 139

converting a PCF CKDS 177
Coprocessor Management panel 84
CP Assist for Cryptographic Functions

description 2
creating the CKDS

allocating space for the CKDS 17
reading the CKDS into storage 31
using the AMS DEFINE CLUSTER command 18

© Copyright IBM Corp. 1997, 2011 329

creating the installation options data set
guidelines 26

creating the PKDS
allocating space for the PKDS 20

creating the startup procedure 28
specifying the installation options data set 28

creating the TKDS
allocating space for the TKDS 24

Crypto Express2 Coprocessor
description 1

cryptographic communication vector table 266
cryptographic communication vector table

extension 273
Cryptographic Coprocessor clear master key entry

SMF record type 82 93
Cryptographic Coprocessor Feature

description 2
cryptographic coprocessor retained key create or delete

SMF record type 82 94
cryptographic coprocessor timing

SMF record type 82 95
cryptographic coprocessor TKE command request or

reply
SMF record type 82 94

cryptographic coprocessors
bringing offline 84
bringing online 84
disabling 84, 86

csf 29
CSFAPRPC processing routine 162
CSFCKDS exit 134
CSFCONVX exit 136
CSFESECI exit 143
CSFESECK exit 143
CSFESECS exit 143
CSFESECT exit 143
CSFEXIT1 exit 116
CSFEXIT2 exit 116
CSFEXIT3 exit 116
CSFEXIT4 exit 117
CSFEXIT5 exit 117
CSFKGUP exit 147
CSFPARM data set 29
CSFPRM00 28
CSFPRM01 28
CSFSRRW exit 139
CSFVINP data set 185
CSFVNEW data set 186
CSFVOVR data set 185
CSFVRPT data set 186
CSFVSRC data set 185

D
DEFAULTWRAP installation option 40
DEFINE CLUSTER command 18, 21, 25
defining conversion program data sets 185
DES

with PKA 2
DES external key token format 220
DES with PKA 2

disability 323
disabling cryptographic coprocessors 84, 86
DOMAIN installation option 40
DSS private external key token 244
DSS private internal key token 245
DSS public token 243
duplicate key tokens

SMF record type 82 96
dynamic CKDS update

SMF record type 82 92
dynamic PKDS update

SMF record type 82 93

E
EMK macro

SVC description 10
END installation option 41
error handling for ICRF

SMF record type 82 91
event recording 88
exit

CKDS entry retrieval installation exit 112, 134
description 111
entry and return specifications 113
identifier on ICSF 41
invocation on ICSF 42
key generator utility program installation exit 113,

147
mainline installation exits 111, 116
PCF conversion program installation exit 112, 136
security installation exits 143
service installation exits 112, 123
single-record, read-write installation exit 112, 139

EXIT installation option 41
exit name table 121
external key token

DES 220
PKA

DSS private 244
RSA private 234

F
FIPSMODE installation option 45
FMID

applicable z/OS releases 6
hardware 6
servers 6

formatting control blocks
using IPCS 104

G
GENKEY macro

SVC description 10

330 z/OS V1R13 System Programmer's Guide

H
hardware features

IBM Eserver zSeries 800 6
IBM Eserver zSeries 890 5
IBM Eserver zSeries 900 5
IBM Eserver zSeries 990 4

I
IBM Eserver zSeries 800

hardware features 6
IBM Eserver zSeries 890

hardware features 5
IBM Eserver zSeries 900

hardware features 5
IBM Eserver zSeries 990

functions not supported 71
hardware features 4
without PCI X Cryptographic Coprocessor 319

ICSF
dispatching priority 52, 87
V1R2 and 4753-HSP key label considerations 73

ICSF (Integrated Cryptographic Service Facility)
CSFSMF82 mapping macro 283
record type 82 283

ICSF initialization
SMF record type 82 91

ICSF interface changes
callable services 54

ICSF status change
SMF record type 82 91

icsf sysplex group
SMF record type 82 95

initializing ICSF
creating the CKDS 18
creating the PKDS 21
creating the TKDS 25
creation of 18, 21, 25
selecting ICSF startup options

creating the installation options data set 26
creating the startup procedure 28

starting ICSF 31
installation option keyword 38

BEGIN 38
CHECKAUTH 38
CKDSN 39
CKTAUTH 39
COMPAT 39, 173
COMPENC 40
DEFAULTWRAP 40
DOMAIN 40
END 41
EXIT 41
FIPSMODE 45
KEYAUTH 46
MAXLEN 47
PKDSCACHE 47
PKDSN 47
REASONCODES 47
SERVICE 47

installation option keyword (continued)
SSM 48
SYSPLEXCKDS 48
SYSPLEXTKDS 49
TKDSN 50
TRACEENTRY 50
UDX 50
USERPARM 51
WAITLIST 51

installation options
performance considerations 86

installation options data set 13, 26
changing option keywords and values 38
creating 26
example 28
specifying the installation options data set 28

installation steps 13
installation-defined service

access control checking 161
defining 161
description 159
entry and exit code example 160
executing 162
link editing 161
parameter checking 161
writing 159

Integrity 253
internal key token

aes; 217
DES 218
PKA

DSS private 245
RSA private 238, 239, 240, 247, 250, 251

K
key generator utility program exit parameter block 149
key generator utility program installation exit

calling points 147
environment 148
installing 148
processing 148
purpose and use 147
return codes 157
SET statement 157

key labels
differences between ICSF/MVS Version 1 Release 2

and 4753-HSP 73
key part entry

SMF record type 82 92
key store policy 100

SMF record type 82 96
key token

aes; internal 217
DES

external 220
null 222

DES internal 218
PKA 232

DSS private external 244
DSS private internal 245

Index 331

key token (continued)
PKA (continued)

DSS public 243
null 233
RSA 1024-bit modulus-exponent private

external 235
RSA 1024-bit private internal 239, 240
RSA 2048-bit Chinese remainder theorem private

internal 241
RSA 4096-bit Chinese remainder theorem private

external 237
RSA 4096-bit modulus-exponent private

external 236
RSA private external 234
RSA private internal 238, 247, 250, 251
RSA public 233

KEYAUTH installation option 46
keyboard 323

L
link editing

callable services 161

M
mainline installation exit

environment 117
exit parameter block 118
input 118
installing 117
parameters 119, 123
purpose and use 116

mapping macro
CSFSMF82 (ICSF) 284

master key part entry
SMF record type 82 92

MAXLEN installation option 47
message recording 98
migrating from PCF 173
migration

terminology 53
migration considerations

4753-HSP to OS/390 ICSF 72
MODIFY command 78
modifying ICSF 78

N
noncompatibility mode

description 173, 176
Notices 325
null key token

format 222, 233

O
object ion key (OPK) 263
OPK, object protection key 263

override file
defining on a DD statement 185

P
panels

accessing 30
CSF@PRIM — Primary Menu 83
CSFGCMP0 — Coprocessor Management 84

parameter checking
callable services 161

PCF
application 174, 176
macro 173
migration to ICSF 173

PCF conversion program installation exit
environment 137
input 138
installing 137
purpose and use 137

PCI Cryptographic Accelerator
description 2

PCI Cryptographic Coprocessor
description 3

PCI Cryptographic Coprocessor configuration
SMF record type 82 95

PCI Cryptographic Coprocessor timing
SMF record type 82 94

PCI X Cryptographic Coprocessor
description 1

PCI X Cryptographic Coprocessor timing
SMF record type 82 95

performance
problems 52, 87

PKA key part entry
SMF record type 82 93

PKA key token 232
record format

DSS private external 244
DSS private internal 245
DSS public 243
RSA 1024-bit modulus-exponent private

external 235
RSA 1024-bit private internal 239, 240
RSA 2048-bit Chinese remainder theorem private

internal 241
RSA 4096-bit Chinese remainder theorem private

external 237
RSA 4096-bit modulus-exponent private

external 236
RSA private external 234
RSA private internal 238, 247, 250, 251
RSA public 233

PKA master keys 8
PKDS (public key data set) 9

creating 21
description 9
header record format 197
record format 198

PKDSCACHE installation option 47
PKDSN installation option 47

332 z/OS V1R13 System Programmer's Guide

PKSC commands
SMF record type 82 93

private external key token
DSS 244
RSA 234

private internal key token
DSS 245
RSA 238, 239, 240, 247, 250, 251

public key data set 9
improving security and reliability for the PKDS 21

public key data set refresh
SMF record type 82 96

public key token
DSS 243
RSA 233

R
read-write exit parameter block 141
REASONCODES installation option 47
recording events 88
RETKEY macro

SVC description 10
return codes

from PCF macros
migration consideration 174

RKX key-token 220
RMF

header record format 279
RSA 1024-bit private internal key token 239, 240
RSA private external Chinese remainder theorem key

token 237
RSA private external key token 234
RSA private external modulus-exponent key

token 235, 236
RSA private internal Chinese remainder theorem key

token 241
RSA private internal key token 238, 247, 250, 251
RSA public token 233
running ICSF

in coexistence mode 174
in compatibility mode 174
in noncompatibility mode 176

running the conversion program
creating a job to run the conversion program 184
defining conversion program data sets 185

S
scheduling changes for cryptographic keys 100
secondary parameter block 131
section sequence, trusted block 252
security considerations 98
security installation exit

environment 143
input 145
installing 144
purpose and use 143
return codes 146

selecting ICSF startup options
creating the installation options data set 26

selecting ICSF startup options (continued)
creating the startup procedure 28

service installation exit
environment 124
exit parameter block 129
input 128
installing 124
parameters 133
purpose and use 124
return codes 133

SERVICE installation option 47
syntax 161

service stub
description 159
example 167
linking 162
writing 162

SET Certificate Authority 3
shortcut keys 323
single-record, read-write installation exit

conversion program invocation 178
input 141
installing 140
purpose and use 140
return codes 142

SMF record type 82 88
subtype 1 91
subtype 10 93
subtype 11 93
subtype 12 93
subtype 13 93
subtype 14 93
subtype 15 94
subtype 16 94
subtype 17 94
subtype 18 95
subtype 19 95
subtype 20 95
subtype 21 95
subtype 22 96
subtype 23 96
subtype 24 96
subtype 25 96
subtype 26 96
subtype 3 91
subtype 4 91
subtype 5 92
subtype 6 92
subtype 7 92
subtype 8 92
subtype 9 92

SMF recording 88, 157
special secure mode

SMF record type 82 92
specifying the installation options data set 28
SSM installation option 48
START command 31, 77
starting ICSF

creating the startup procedure 28
entering the ICSF START command 31, 76

startup procedure 13, 28

Index 333

steps in installation 13
STOP command 78
stopping ICSF 76
SVC 143 10
SYS1.PARMLIB

customizing 14
description 13

SYS1.PROCLIB
description 13
storing startup procedure 29

SYS1.SAMPLIB
CSFPRM00 28
CSFPRM01 28
description 13

SYSPLEXCKDS installation option 48
SYSPLEXPKDS installation option 49
SYSPLEXTKDS installation option 49

T
testing ICSF 176
TKDS

SMF record type 82 96
TKDS (public key data set)

creating 25
TKDS (token data set)

description 64
format 198

TKDS (token key data set) 10
description 10

TKDSN installation option 50
token data set (TKDS)

description 64
format 198

token key data set 10
improving security and reliability for the TKDS 25

token validation value (TVV) 218
TRACEENTRY installation option 50
triple DES

for data privacy 2
trusted block create

SMF record type 82 96
trusted block key token

trusted block key token
trusted block key token 251

U
udx

access control checking 161
UDX installation option 50
UDX support 73
User Defined Extension 73
USERPARM installation option 51
using different configurations 78
using the conversion program override file 179

V
V1R11 changed information xxi
V1R11 new information xx

V1R12 changed information xx
V1R12 new information xx
V1R13 changed information xix
V1R13 new information xix
virtual storage constraint relief

for the caller of ICSF 87
VSAM data set

creating 18
VTAM

starting before ICSF 76
VTAM session-level encryption

and ICSF 87

W
WAITLIST installation option 51

334 z/OS V1R13 System Programmer's Guide

����

Product Number: 5964-A01

Printed in USA

SA22-7520-16

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	Where to find more information
	Do You Have Problems, Comments, or Suggestions?

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Changes made in z/OS Version 1 Release 13
	Changes made in z/OS Version 1 Release 12
	Changes made in z/OS Version 1 Release 11

	Chapter 1. Introduction to z/OS ICSF
	Hardware Features
	Cryptographic Hardware
	Crypto Express3 Feature (CEX3C or CEX3A)
	Crypto Express2 Feature (CEX2C or CEX2A)
	PCI X Cryptographic Coprocessor (PCIXCC)
	CP Assist for Cryptographic Functions (CPACF)
	PCI Cryptographic Accelerator (PCICA)
	Cryptographic Coprocessor Feature (CCF)
	PCI Cryptographic Coprocessor (PCICC)

	Server Hardware
	IBM zEnterprise 196 (z196)
	IBM System z10 Enterprise Class and IBM System z10 Business Class (z10 BC)
	IBM System z9 Business Class (z9 BC)
	IBM System z9 Enterprise Class (z9 EC)
	IBM Eserver zSeries 990 (z990)
	IBM Eserver zSeries 890 (z890)
	IBM Eserver zSeries 900 (z900) — Feature Code 800
	IBM Eserver zSeries 800 (z800) — Feature Code 800

	z/OS ICSF FMIDs

	ICSF Features
	The Cryptographic Key Data Set (CKDS)
	The Public Key Data Set (PKDS)
	The Token Data Set (TKDS)
	Additional Background Information
	Running PCF applications on z/OS ICSF
	ICSF System SVC 143

	Running 4753-HSP applications on ICSF
	Using RMF and SMF to monitor z/OS ICSF events
	Controlling access to ICSF

	Steps prior to starting installation

	Chapter 2. Installation, Initialization, and Customization
	Steps for installation and initialization
	Steps to customize SYS1.PARMLIB
	Creating the CKDS
	ICSF System Resource Planning for the CKDS
	Steps to create the CKDS

	Creating the PKDS
	ICSF System Resource Planning for the PKDS
	Steps to create the PKDS

	Creating the TKDS
	ICSF System Resource Planning for the TKDS and Session Object Memory Areas
	Steps to create the TKDS

	Steps to create the Installation Options Data Set
	Steps to create the ICSF Startup Procedure
	Steps to provide access to the ICSF panels
	Steps to start ICSF for the first time
	Steps for initializing ICSF

	MK Initialization for SMP/E - CCF Systems Only

	Customizing ICSF after the first start
	Parameters in the installation options data set
	Improving CKDS performance
	Dispatching priority of ICSF
	Creating ICSF exits and generic services

	Chapter 3. Migration
	Terminology
	Migrating from earlier software releases
	Callable Services
	Ensure the expected master key support is available
	Ensure that the CSFPUTIL utility is not used to initialize a PKDS
	Modify ICSF startup procedure to run new startup program
	Ensure PKCS #11 applications call C_Finalize() prior to calling dlclose()
	ICSF Key Data Sets
	CKDS
	PKDS
	TKDS
	Key Tokens

	Changing the RSA master key
	Installation Options Data Set
	Function Restrictions
	CICS Attachment Facility
	Dynamic LPA Load
	Special Secure Mode
	Resource Manager Interface (RMF)
	System Abend Codes
	SMF Records
	TKE Workstation
	TKE Version 3.1 and Access to Callable Services
	TKE Version 4.x and Higher and Access to Callable Services
	TKE Enablement from the Support Element

	Migrating from the IBM Eserver zSeries 900
	Callable Services
	Functions Not Supported
	Setup Considerations
	Programming Considerations

	Migrating from 4753-HSP

	Chapter 4. Operating ICSF
	Starting and stopping ICSF
	Modifying ICSF
	Using different configurations
	Configuring the z890, z990, z9 EC, z9 BC, z10 EC, z10 BC, and z196
	Configuring the IBM Eserver zSeries 900
	Single Image Mode
	Logical Partition (LPAR) Mode

	Adding and Removing Cryptographic Coprocessors
	Adding Cryptographic Coprocessors
	Steps for activating/deactivating cryptographic coprocessors
	Steps to configure on/off cryptographic coprocessors
	Steps for enabling/disabling cryptographic coprocessors (PCICC, PCIXCC, CEX2C, and CEX3C)
	Intrusion Latch on the PCICC, PCIXCC, CEX2C, or CEX3C

	Steps for enabling/disabling cryptographic coprocessors (CCF)

	Performance considerations for using installation options
	Dispatching priority of ICSF
	VTAM session-level encryption
	System SSL encryption
	Access method services cryptographic option
	Remote Key Loading
	Event Recording
	System Management Facilities (SMF) Recording
	ICSF Initialization (Subtype 1)
	ICSF Status Change (Subtype 3)
	Error Handling for Cryptographic Coprocessor Feature (Subtype 4)
	Special Secure Mode Change (Subtype 5)
	Master Key Part Entry (Subtype 6)
	Operational Key Part Entry (Subtype 7)
	CKDS Refresh (Subtype 8)
	Dynamic CKDS Update (Subtype 9)
	PKA Key Part Entry (Subtype 10)
	Clear New Master Key Part Entry (Subtype 11)
	PKSC Commands (Subtype 12)
	Dynamic PKDS Update (Subtype 13)
	Cryptographic Coprocessor Clear Master Key Entry (Subtype 14)
	Cryptographic Coprocessor Retained Key Create or Delete (Subtype 15)
	Cryptographic Coprocessor TKE Command Request or Reply (Subtype 16)
	PCI Cryptographic Coprocessor Timing (Subtype 17)
	Cryptographic Coprocessor Configuration (Subtype 18)
	PCI X Cryptographic Coprocessor Timing (Subtype 19)
	Cryptographic Coprocessor Timing (Subtype 20)
	ICSF Sysplex Group (Subtype 21)
	Trusted Block Create (Subtype 22)
	Token Data Set (TKDS) (Subtype 23)
	Duplicate Key Tokens (Subtype 24)
	Key Store Policy (Subtype 25)
	PKDS Data Space Refresh (Subtype 26)
	PKA Key Management Extensions (Subtype 27)
	High Performance Encrypted Key (Subtype 28)
	TKE Workstation Audit Record (Subtype 29)

	Message Recording

	Security Considerations
	Controlling the program environment
	Controlling access to KGUP
	Controlling access to CSFDUTIL
	Controlling access to the callable services
	Controlling access to cryptographic keys
	Controlling access to secure key tokens
	Scheduling changes for cryptographic keys
	Controlling access to administrative panel functions
	Obtaining RACF SMF log records

	Debugging Aids
	Component Trace
	Examining the Trace Entry Buffer

	Abnormal Endings
	IPCS Formatting Routine
	Detecting ICSF Serialization Contention Conditions

	Chapter 5. Installation Exits
	Types of exits
	Mainline exits
	Exits for the services
	The PCF CKDS conversion program exit
	The Single-record, Read-write exit
	The cryptographic key data set entry retrieval exit
	Security exits
	The KGUP exit

	Entry and return specifications
	Registers at entry
	Registers at return

	Exits environment
	Mainline exits
	service exits
	CKDS entry retrieval exit
	KGUP, Conversion Programs, and Single-record, Read-write exits
	Security exits

	Exit recovery
	Mainline installation exits
	Purpose and use of the exits
	CSFEXIT1
	CSFEXIT2
	CSFEXIT3
	CSFEXIT4
	CSFEXIT5

	Environment of the exits
	Installing the exits
	Input
	The Exit Parameter Block
	Parameters

	Return Codes

	Services installation exits
	Purpose and use of the exits
	Environment of the exits
	Installing the exits
	Input
	Exit parameter block
	Secondary parameter block
	Parameters

	Return Codes

	Cryptographic key data set entry retrieval installation exit
	Purpose and use of the exit
	Environment of the exit
	Installing the exit
	Input
	Return codes

	PCF conversion program installation exit
	Purpose and use of the exit
	Environment of the exit
	Installing the exit
	Input
	Return codes

	Single-record, Read-write installation exit
	Purpose and use of the exit
	Environment of the exit
	Installing the exit
	Input
	Return codes

	Exit points for security installation exits
	Security installation exits
	Purpose and use of the exits
	Security initialization exit
	Security termination exit
	Security service exit
	Security key exit

	Environment of the exits
	Installing the exits
	Input
	Return codes

	Key generator utility program installation exit
	Purpose and use of the exit
	KGUP calling points
	Processing in the exit

	Environment of the exit
	Installing the exit
	Input
	The SET statement
	Return codes

	Chapter 6. Installation-Defined Callable Services
	Writing a callable service
	Contents of Registers
	Security access control checking
	Checking the parameters
	Link-Editing the callable service

	Defining a callable service
	Writing a service stub
	Example of a Service Stub

	Chapter 7. Converting a CKDS from fixed length to variable length record format
	Chapter 8. Migration from PCF to z/OS ICSF
	Running PCF and z/OS ICSF on the same system
	Running in Compatibility Mode
	Running in Coexistence Mode
	Changing the master key in compatibility or coexistence mode
	Running in noncompatibility mode
	Specifying compatibility modes during migration

	Converting a PCF CKDS to ICSF format
	How the PCF conversion program runs
	Calling installation exits during conversion

	Using the conversion program override file
	Bypassing Conversion of Entries
	Including Information in a Key Entry
	Converting Key Types

	Running the Conversion Program
	Example of a Conversion Initial Activity Report
	Example of a Conversion Update Activity Report

	Chapter 9. Compatibility and Coexistence of 4753-HSP and ICSF
	Running 4753-HSP and ICSF on the same z/OS system

	Appendix A. Diagnosis Reference Information
	Cryptographic Key Data Set (CKDS) Formats
	Fixed-Length Cryptographic Key Data Set (CKDS) Record Format
	Format of the Fixed-Length CKDS Header Record
	Format of the Fixed-Length CKDS Record

	Variable-Length Cryptographic Key Data Set (CKDS) Record Format
	Format of the Variable-Length Header Record
	Format of the Variable-Length CKDS Record

	Public Key Data Set (PKDS) Format
	Format of the PKDS Header Record
	Format of the PKDS Record

	Token data set (TKDS) format
	Format of the header record of the token data set
	Format of the token and object records
	Common section of the token and object records
	Format of the token-specific section of the token record
	Format of the object-specific sections of the token object records

	AES Key Token Format
	AES Internal Key Token
	Token Validation Value

	DES Key Token Formats
	DES Internal Key Token
	DES External Key Token
	External RKX DES Key Token
	DES Null Key Token

	Variable-length Symmetric Key Token Formats
	Variable-length Symmetric Key Token
	Variable-length Symmetric Null Key Token

	PKA Key Token Formats
	Internal PKA Tokens
	PKA Null Key Token
	RSA Key Token Formats
	RSA Public Key Token
	RSA Private External Key Token
	RSA Private Internal Key Token

	DSS Key Token Formats
	DSS Public Key Token
	DSS Private External Key Token
	DSS Private Internal Key Token

	ECC Key Token Format
	Associated Data Format for ECC Token
	AESKW Wrapped Payload Format for ECC Private Key Token

	Trusted Block Key Token
	Trusted block sections
	Trusted block integrity
	Number representation in trusted blocks
	Format of trusted block sections

	Data Areas
	The Cryptographic Communication Vector Table (CCVT)
	The Cryptographic Communication Vector Table Extension (CCVE)
	DES Master Key Verification Pattern Block (MKVB)
	Generic Service Table (CSFMGST)

	RMF Measurements Table

	Appendix B. ICSF SMF Records
	Record Type 82 (52) — ICSF Record
	Record Environment
	Record Mapping
	Header/Self-defining Section
	Server User or End User Audit Section

	Subtype 1
	Initialization Section

	Subtype 3
	Status Change Section

	Subtype 4
	Condition Code Three Section

	Subtype 5
	Special Security Mode Section

	Subtype 6
	Master Key Part Section

	Subtype 7
	KEU Key Part Entry Section

	Subtype 8
	Cryptographic Key Data Set Refresh Section

	Subtype 9
	Dynamic CKDS Update

	Subtype 10
	PKA Key Part Entry

	Subtype 11
	Clear New Master Key Part Entry

	Subtype 12
	PKSC Commands

	Subtype 13
	Dynamic PKDS Update

	Subtype 14
	PCI Cryptographic Coprocessor Master Key Entry

	Subtype 15
	PCI Cryptographic Coprocessor Master Key Entry

	Subtype 16
	PCI Cryptographic Coprocessor TKE

	Subtype 17
	PCI Cryptographic Coprocessor Timing

	Subtype 18
	Cryptographic Coprocessor Configuration

	Subtype 19
	PCI X Cryptographic Coprocessor Timing

	Subtype 20
	Cryptographic Coprocessor Processing Times

	Subtype 21
	ICSF Sysplex Group Change Section

	Subtype 22
	Trusted Block Create Callable Services Section

	Subtype 23
	Token Data Set Update

	Subtype 24
	Duplicate Tokens Found

	Subtype 25
	Key Store Policy

	Subtype 26
	Public Key Data Set Refresh

	Subtype 27
	PKA Key Management Extensions

	Subtype 28
	High Performance Encrypted Key

	Subtype 29
	TKE Workstation Audit Record

	Appendix C. CICS-ICSF Attachment Facility
	Installing the CICS-ICSF Attachment Facility
	Steps for installing the CICS-ICSF attachment facility
	Implementing the CICS wait list

	Appendix D. Helpful Hints for ICSF First Time Startup
	Checklist for First-Time Startup of ICSF
	Step 1. Hardware Setup - CCF Systems
	Step 1. Hardware Setup - PCIXCC/CEX2C/CEX3C Systems
	Step 2. LPAR Activation Profiles - CCF Systems
	Step 2. LPAR Activation Profiles - PCIXCC, CEX2C, and CEX3C Systems
	Step 3. ICSF Setup
	Step 4. TKE Setup
	Step 5. ICSF Startup
	Step 6. Loading Master Keys and Initializing the CKDS through ICSF Panels
	Step 7. Customizing TKE and Loading Master Keys
	Step 8. CICS-ICSF Attachment Facility Setup
	Step 9. Complete ICSF initialization

	Commonly Encountered ICSF First Time Setup/initialization Messages

	Appendix E. Using AMS REPRO Encryption
	Steps for setting up ICSF

	Appendix F. z890, z990, z9 EC, z9 BC, z10 EC, z10 BC, or z196 without a PCIXCC, CEX2C, or CEX3C
	Applications and programs
	Callable services
	ICSF Setup and Initialization
	Secure Sockets Layer (SSL)
	TKE workstation

	Appendix G. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface Information
	Trademarks

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

