
z/OS

Open Cryptographic Services Facility
Application Programming
Version 2 Release 1

SC14-7513-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 295.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xi

Preface xiii
OCSF Architecture xiii
Who should use this information xiv
Requirements. xv
Conventions used in this information xv
Where to Find More Information xv

Internet Sources xv

How to send your comments to IBM xvii
If you have a technical problem xvii

z/OS Version 2 Release 1 summary of
changes xix

Chapter 1. Configuring and Getting
Started 1
Setting Up the Necessary Security Authorizations . . 1

Security Administration. 1
RACF FACILITY Class Profiles Required by OCSF 2
Program Control 2
APF Authorization 3
OSCF User Identities and Permissions 3
Granting Permission to Use OCSF Service . . . 4
Using Groups 4
Refreshing z/OS Security Server Data 4

Running the Installation Script 5
Running the Installation Verification Procedure . . . 5
Common Problems 6

Chapter 2. Open Cryptographic Services
Facility Framework 9
Module Management 9

Installing and Uninstalling Service Provider
Modules 10
Listing Service Provider Modules and Services . 11
Attaching and Detaching Service Provider
Modules 11
Managing Calls Between Service Provider
Modules 12

Memory Management 13
Security Context Management 13
OCSF Security Context Changes 15
Integrity Verification Services 16

Chapter 3. OCSF Policy Modules . . . 17
Usage of OCSF Policy Modules. 17

OCSF Behavior When Only the OCSF Base is
Installed 17

OCSF Behavior When the OCSF Security Level 3
Feature is Installed 17

Implementation of OCSF Policy Modules 18

Chapter 4. Cryptographic Module
Manager 19
Supporting Legacy CSPs 19
Cryptography Services API 20
Dependencies with the Policy Modules 21

Chapter 5. Trust Policy Module
Manager 23
Trust Policy API 24

Chapter 6. Certificate Library Module
Manager 25
Certificate Library Services API. 26

Chapter 7. Data Storage Library Module
Manager 27
Data Storage Library Services API 27

Chapter 8. Service Provider Modules 29
Cryptographic Service Provider Modules 29
Trust Policy Modules 30
Certificate Library Modules 30
Data Storage Library Module 30
OCSF Service Provider Modules 31
IBM Software Cryptographic Service Provider,
Version 1.0. 32
IBM Weak Software Cryptographic Service Provider,
Version 1.0. 36
IBM Software Cryptographic Service Provider 2,
Version 1.0. 36
IBM Weak Software Cryptographic Service Provider
2, Version 1.0 40
IBM CCA Cryptographic Module Version 1.0 . . . 41
IBM Standard Trust Policy Library, Version 1.0 . . 46
IBM Extended Trust Policy Library, Version 1.0 . . 47
IBM Certificate Library, Version 1.0 49
IBM Data Library, Version 1.0 53
IBM LDAP Data Library, Version 1.0 56

Chapter 9. Developing Security
Applications 61
Writing OCSF Applications 61

CSSM_Init 61
Memory Management 61
Finding and Listing Service Providers 61
Getting Service Provider Information 62
Attaching a Service Provider 62
Using Service Provider Functions 62
Service Context Management 62

© Copyright IBM Corp. 1999, 2013 iii

Multi-threaded Applications 64
Error Management 64

Building OCSF Applications 64
Include Files for OCSF Services. 65
OCSF Libraries 65

Running OCSF Applications 65
File_encrypt Sample Application 65
OCSF API Calls 66
Diffie-Hellman Key Exchange Scenario 67
File_encrypt Structure 68
File_encrypt Source Code. 71

FILE_ENCRYPT.H 72
MAIN.C 73
INITIALIZE.C 74
ATTACH.C 75
ENCRYPT.C 78
MAKEFILE.OS390 82

Chapter 10. Core Services API 83
Module Management Services 83
Memory Management Support 84
Security Context Management 85
Integrity Verification Services 85
Data Structures for Core Services 85

Basic Data Types 85
CSSM_ALL_SUBSERVICES 85
CSSM_API_MEMORY_FUNCS_PTR 85
CSSM_BOOL 86
CSSM_COUNTRY_ORIGIN 86
CSSM_CRYPTO_TYPE. 86
CSSM_CSP_MANIFEST 86
CSSM_CSSMINFO 86
CSSM_DATA 86
CSSM_EVENT_TYPE 87
CSSM_GUID 87
CSSM_HANDLE 87
CSSM_INFO_LEVEL 87
CSSM_LIST 88
CSSM_LIST_ITEM 88
CSSM_MODULE_FLAGS 88
CSSM_MODULE_HANDLE 88
CSSM_MODULE_INFO 88
CSSM_NOTIFY_CALLBACK 89
CSSM_RETURN 89
CSSM_SERVICE_FLAGS 90
CSSM_SERVICE_INFO 90
CSSM_SERVICE_MASK 91
CSSM_USER_AUTHENTICATION 91
CSSM_USER_AUTHENTICATION_MECHANISM 92
CSSM_VERSION 92

APIs for Core Services 92
CSSM_FreeInfo 92
CSSM_GetInfo 93
CSSM_Init 93

Module Management Functions 94
CSSM_FreeModuleInfo 94
CSSM_GetCSSMRegistryPath 94
CSSM_GetGUIDUsage. 94
CSSM_GetHandleUsage 95
CSSM_GetModuleGUIDFromHandle 95
CSSM_GetModuleInfo 96

CSSM_GetModuleLocation 97
CSSM_ListModules 97
CSSM_ModuleAttach 98
CSSM_ModuleDetach 99

Utility Functions 100
CSSM_FreeList 100
CSSM_GetAPIMemoryFunctions 100

Chapter 11. OCSF Privilege
Mechanism 103
Data Structures 103

CSSM_EXEMPTION_MASK 103
Operations 104

CSSM_CheckCssmExemption 104
CSSM_QueryModulePrivilege 104
CSSM_RequestCssmExemption 105

Chapter 12. Cryptographic Services
API 107
Data Structures 109

CSSM_CALLBACK 109
CSSM_CC_HANDLE 109
CSSM_CONTEXT 109
CSSM_CONTEXT_ATTRIBUTE 114
CSSM_CONTEXT_INFO. 116
CSSM_CRYPTO_DATA 116
CSSM_CSP_CAPABILITY 116
CSSM_CSP_FLAGS 116
CSSM_CSP_HANDLE 116
CSSM_CSP_SESSION_TYPE 117
CSSM_CSPSUBSERVICE. 117
CSSM_CSPTYPE 118
CSSM_CSP_WRAPPEDPRODUCTINFO . . . 118
CSSM_DATA 119
CSSM_DATE 119
CSSM_HARDWARERECSPSUBSERVICEINFO 119
CSSM_HEADERVISION. 122
CSSM_KEY 122
CSSM_KEYHEADER 123
CSSM_KEY_SIZE 126
CSSM_KEY_TYPE 126
CSSM_NOTIFY_CALLBACK 126
CSSM_PADDING 127
CSSM_QUERY_SIZE_DATA 127
CSSM_RANGE 127
CSSM_SOFTWARECSPSUBSERVICEINFO. . . 127

Cryptographic Context Operations 128
CSSM_CSP_CreateAsymmetricContext 128
CSSM_CSP_CreateDeriveKeyContext 130
CSSM_CSP_CreateDigestContext 131
CSSM_CSP_CreateKeyGenContext 132
CSSM_CSP_CreateMacContext 133
CSSM_CSP_CreatePassThroughContext. . . . 134
CSSM_CSP_CreateRandomGenContext 135
CSSM_CSP_CreateSignatureContext 136
CSSM_CSP_CreateSymmetricContext 137
CSSM_DeleteContext 138
CSSM_FreeContext 139
CSSM_GetContext 139
CSSM_GetContextAttribute. 140

iv z/OS OCSF Application Programming

CSSM_UpdateContextAttribute 141
Cryptographic Sessions and Login 141

CSSM_CSP_ChangeLoginPassword 141
CSSM_CSP_Login 142
CSSM_CSP_Logout 143

Cryptrographic Operations 143
CSSM_DecryptData 143
CSSM_DecryptDataFinal 144
CSSM_DecryptDataInit 145
CSSM_DecryptDataUpdate 146
CSSM_DeriveKey 147
CSSM_DigestData 148
CSSM_DigestDataClone 149
CSSM_DigestDataFinal 150
CSSM_DigestDataInit. 150
CSSM_DigestDataUpdate 151
CSSM_EncryptData 151
CSSM_EncryptDataFinal. 153
CSSM_EncryptDataInit 153
CSSM_EncryptDataUpdate 154
CSSM_GenerateAlgorithmParams 155
CSSM_GenerateKey 156
CSSM_GenerateKeyPair 157
CSSM_GenerateMac 158
CSSM_GenerateMacFinal 159
CSSM_GenerateMacInit 160
CSSM_GenerateMacUpdate. 160
CSSM_GenerateRandom. 161
CSSM_QueryKeySizeInBits 162
CSSM_QuerySize 162
CSSM_SignData 163
CSSM_SignDataFinal 164
CSSM_SignDataInit 165
CSSM_SignDataUpdate 165
CSSM_UnwrapKey 166
CSSM_VerifyData 167
CSSM_VerifyDataFinal 168
CSSM_VerifyDataInit 168
CSSM_VerifyDataUpdate 169
CSSM_VerifyMac 169
CSSM_VerifyMacFinal 170
CSSM_VerifyMacInit 171
CSSM_VerifyMacUpdate. 171
CSSM_WrapKey 172

Extensibility Functions 173
CSSM_CSP_PassThrough 173

Chapter 13. Key Recovery Services
API 175
Data Structures 175

CSSM_CERTGROUP 175
CSSM_CONTEXT_ATTRIBUTE Extensions . . 175
CSSM_KR_LIST_ITEM 176
CSSM_KR_NAME 176
CSSM_KR_PROFILE 176
CSSM_KRSP_HANDLE 177
CSSM_KRSPSUBSERVICE 177
CSSM_KR_WRAPPEDPRODUCTINFO 177
CSSM_POLICY_INFO 177

Key Recovery Module Management Operations 177
CSSM_KR_SetEnterpriseRecoveryPolicy . . . 178

Key Recovery Context Operations 179
CSSM_KR_CreateRecoveryEnablementContext 179
CSSM_KR_CreateRecoveryRegistrationContext 179
CSSM_KR_CreateRecoveryRequestContext . . 180
CSSM_KR_GetPolicyInfo 180

Key Recovery Registration Operations 181
CSSM_KR_RegistrationRequest 181
CSSM_KR_RegistrationRetrieve 182

Key Recovery Enablement Operations 183
CSSM_KR_GenerateRecoveryFields 183
CSSM_KR_ProcessRecoveryFields 184

Key Recovery Request Operations 185
CSSM_KR_GetRecoveredObject 185
CSSM_KR_RecoveryRequest 186
CSSM_KR_RecoveryRequestAbort 187
CSSM_KR_RecoveryRetrieve 187
CSSM_KR_QueryPolicyInfo 188

Chapter 14. Trust Policy Services API 191
Data Structures 193

CSSM_REVOKE_REASON 193
CSSM_TP_ACTION 193
CSSM_TP_HANDLE 193
CSSM_TP_STOP_ON 193
CSSM_TPSUBSERVICE 193
CSSM_TP_WRAPPEDPRODUCTINFO 194

Trust Policy Operations 194
CSSM_TP_ApplyCrlToDb 195
CSSM_TP_CertRevoke 196
CSSM_TP_CertSign 197
CSSM_TP_CrlSign 198
CSSM_TP_CrlVerify 199

Group Functions 200
CSSM_TP_CertGoupConstruct. 200
CSSM_TP_CertGroupPrune. 201
CSSM_TP_CertGroupVerify. 202

Extensibility Functions 205
CSSM_TP_PassThrough 205

Chapter 15. Certificate Library
Services API 207
Data Structures 207

CSSM_CA_SERVICES 208
CSSM_CERT_ENCODING 208
CSSM_CERTGROUP 208
CSSM_CERT_TYPE 208
CSSM_CL_CA_CERT_CLASSINFO 210
CSSM_CL_CA_PRODUCTINFO 210
CSSM_CL_ENCODER_PRODUCTINFO . . . 211
CSSM_CL_HANDLE 211
CSSM_CLSUBSERVICE 211
CSSM_CL_WRAPPEDPRODUCTINFO 213
CSSM_FIELD 213
CSSM_OID 213

Certificate Operations 214
CSSM_CL_CertAbortQuery. 214
CSSM_CL_CertCreateTemplate 214
CSSM_CL_CertDescribeFormat 215
CSSM_CL_CertExport 216
CSSM_CL_CertGetAllFields 216

Contents v

CSSM_CL_CertGetFirstFieldValue 217
CSSM_CL_CertGetKeyInfo 218
CSSM_CL_CertGetNextFieldValue 218
CSSM_CL_CertImport 219
CSSM_CL_CertSign 220
CSSM_CL_CertVerify 220

Certificate Revocation List Operations 221
CSSM_CL_CRLAbortQuery 221
CSSM_CL_CrlAddCert 222
CSSM_CL_CrlCreateTemplate 223
CSSM_CL_CrlDescribeFormat 224
CSSM_CL_CrlGetFirstFieldValue 224
CSSM_CL_CrlGetNextFieldValue 225
CSSM_CL_CrlRemoveCert 226
CSSM_CL_CrlSetFields 226
CSSM_CL_CrlSign. 227
CSSM_CL_CrlVerify 228
CSSM_CL_IsCertInCrl 229

Extensibility Functions 229
CSSM_CL_PassThrough 229

Chapter 16. Data Storage Library
Services API 231
Data Structures 231

CSSM_DB_ACCESS_TYPE 231
CSSM_DB_ATTRIBUTE_DATA 233
CSSM_DB_ATTRIBUTE_INFO. 233
CSSM_DB_ATTRIBUTE_NAME_FORMAT. . . 233
CSSM_DB_CERTRECORD_SEMANTICS . . . 234
CSSM_DB_CONJUNCTIVE. 234
CSSM_DB_HANDLE 234
CSSM_DB_INDEXED_DATA_LOCATION . . . 234
CSSM_DB_INDEX_INFO 234
CSSM_DB_INDEX_TYPE 235
CSSM_DBINFO 235
CSSM_DB_OPERATOR 236
CSSM_DB_PARSING_MODULE_INFO 236
CSSM_DB_RECORD_ATTRIBUTE_DATA . . . 236
CSSM_DB_RECORD_ATTRIBUTE_INFO . . . 237
CSSM_DB_RECORD_INDEX_INFO 237
CSSM_DB_RECORD_PARSING_FNTABLE . . 237
CSSM_DB_RECORDTYPE 238
CSSM_DB_UNIQUE_RECORD 238
CSSM_DL_DB_HANDLE 239
CSSM_DL_DB_LIST 239
CSSM_CUSTOM_ATTRIBUTES 239
CSSM_DL_FFS_ATTRIBUTES 239
CSSM_DL_HANDLE 239
CSSM_DL_LDAP_ATTRIBUTES 239
CSSM_DL_ODBC_ATTRIBUTES 240
CSSM_DL_PKCS11_ATTRIBUTES 240
CSSM_DLSUBSERVICE 240
CSSM_DLTYPE. 242
CSSM_DL_WRAPPEDPRODUCTINFO 242
CSSM_NAME_LIST 243
CSSM_QUERY 243
CSSM_QUERY_LIMITS 243
CSSM_SELECTION_PREDICATE. 244

Data Storage Functions 244
CSSM_DL_Authenticate 244
CSSM_DL_DbClose 245

CSSM_DL_DbCreate 245
CSSM_DL_DbDelete 246
CSSM_DL_DbExport 247
CSSM_DL_DbGetRecordParsingFunctions . . . 248
CSSM_DL_DbImport 249
CSSM_DL_DbOpen 250
CSSM_DL_DbSetRecordParsingFunctions . . . 251
CSSM_DL_GetDbNameFromHandle. 252

Data Record Operations 252
CSSM_DL_AbortQuery 252
CSSM_DL_DataDelete 253
CSSM_DL_DataGetFirst 254
CSSM_DL_DataGetNext 255
CSSM_DL_DataInsert. 256
CSSM_DL_FreeUniqueRecord 257

Extensibility Functions 257
CSSM_DL_PassThrough 258

Chapter 17. OCSF Error Handling. . . 259
Data Structures 261

CSSM_BOOL 261
CSSM_ERROR 261
CSSM_RETURN 261

Error Handling Functions 261
CSSM_ClearError 262
CSSM_CompareGuids 262
CSSM_GetError 263
CSSM_SetError 263

Chapter 18. Application Memory
Functions 265
CSSM_MEMORY_FUNCS and
CSSM_API_MEMORY_FUNCS 265

Initialization of Memory Structure 266
CSSM_Memory_FUNCS Example 266

Appendix A. OCSF Errors 267
Cryptographic Service Provider Module Errors . . 267
Mapping OCSF Error Codes to ICSF Error Codes 274
IBM Software CSP and IBM Weak Software CSP
Errors 278
Certificate Library Module Errors 279
Data Storage Library Module Errors 281
LDAP Data Library Module Errors 283
Trust Policy Module Errors 285
Key Recovery Module Errors 286
OCSF Framework Errors 287

Appendix B. Accessibility 291
Accessibility features 291
Using assistive technologies 291
Keyboard navigation of the user interface 291
Dotted decimal syntax diagrams 291

Notices 295
Policy for unsupported hardware. 296
Minimum supported hardware 297
Trademarks 297

vi z/OS OCSF Application Programming

Glossary 299

Index 303

Contents vii

viii z/OS OCSF Application Programming

Figures

1. Open Cryptographic Services Facility
Architecture. xiv

2. Dual_Provider Cryptographic Services and
Persistent Storage Services 12

3. OCSF Framework Directs Calls to Selected
Service Provider Modules 13

4. Indirect Creation of a Security Context . . . 15
5. Dual_Provider Cryptographic Services and

Persistent Storage Services 84

© Copyright IBM Corp. 1999, 2013 ix

x z/OS OCSF Application Programming

Tables

1. IBM Software Cryptographic Service Provider
OCSF Functions 33

2. Algorithms/Modes Supported for
CSSM_Encrypt and CSM_Decrypt Functions . 34

3. IBM Software Cryptographic Service Provider
2 OCSF Functions 37

4. Algorithms/Modes Supported for
CSSM_Encrypt and CSM_Decrypt Functions . 39

5. IBM CCA Cryptographic Module OCSF
Functions 42

6. CSSM_Key Function 46
7. IBM Standard Trust Policy Library OCSF

Functions 46
8. CSSM_TP_CertGroupVerify Error Codes 47
9. IBM Extended Trust Policy Library OCSF

Functions 48
10. IBM Certificate Library OCSF Functions 50
11. CSSM_CL_CertCreateTemplate Error Codes 51
12. CSSM_CL_CertGetAllFields Error Codes 52
13. CSSM_CL_CertSign Error Codes 52
14. CSSM_CL_CertVerify Error Codes 52
15. CSSM_CL_CertGetFirstFieldValue Error Codes 52
16. CSSM_CL_CertGetKeyInfo Error Codes 53
17. IBM Data Library OCSF Functions 53
18. IBM LDAP Data Library OCSF Functions 57
19. Client Application OCSF API Calls 66
20. Sever Application OCSF API Calls 67
21. Client Application OCSF API Calls 67
22. Server Application OCSF API Calls 67
23. Context Types 109
24. Algorithms for a Session Context 110
25. Modes of Algorithms 112
26. Attribute Types 114
27. Session Types 117
28. CSP Flags 117
29. CSP Informtation Type Identifiers and

Associated Structure Types 118
30. PKCS#11 CSP Reader Flags 120
31. PKCS#11 CSP Token Flags 121
32. Keyblob Type Identifiers 123
33. Keyblob Format Identifiers 123
34. Key Class Identifiers 124
35. Key Attribute Flags 124
36. Key Usage Flags 125
37. Reasons 127

38. Specifiable Stopping Conditions 204
39. OCSF Framework and Module Error

Numbers 259
40. General CSP Messages and Errors 267
41. CSP Memory Errors 267
42. Invalid CSP Parameters 267
43. File I/O Errors 268
44. CSP Cryptographic Errors 268
45. Missing or Invalid CSP Parameters 269
46. Password Errors 270
47. Key Management Messages and Errors 270
48. Random Generation (RNG) Messages and

Errors 270
49. Key Generation Messages and Errors 271
50. Unique ID Generation Messages and Errors 271
51. Encryption/Decryption Messages 271
52. Sign/Verify Messages and Errors 271
53. Digest Function Errors 272
54. Message Authentication Code (MAC)

Function Errors 272
55. Key Exchange Errors 272
56. PassThrough Custom Errors 272
57. Wrap/Unwrap Errors 273
58. Hardware CSP Errors 273
59. Query Size Errors 273
60. Mapping the OCSF Error Codes to ICSF Error

Codes 274
61. OCSF Software Service Provider Errors 278
62. Certificate Library 279
63. Data Storage Errors 281
64. LDAP Data Library Errors 283
65. Trust Policy Errors 285
66. Key Recovery Errors 286
67. Memory Allocation Errors 287
68. File I/O Errors 287
69. Miscellaneous Errors 287
70. Dynamic Library Error 287
71. Registry Errors 287
72. Mutex/Synchronization Errors 288
73. Shared Memory File Errors 288
74. Key Formats 288
75. General Errors 288
76. OCSF API Errors 288
77. OCSF Privilege Mechanism Errors 290

© Copyright IBM Corp. 1999, 2013 xi

xii z/OS OCSF Application Programming

Preface

The Open Cryptographic Services Facility (OCSF) is a derivative of the IBM
Keyworks technology which is an implementation of the Common Data Security
Architecture (CDSA) for applications running in the UNIX Services environment.

Recently cryptography has come into widespread use in meeting multiple security
needs, such as confidentiality, integrity, authentication, and non-repudiation. In
order to address these requirements in the emerging Internet, Intranet, and
Extranet application domains, the CDSA was developed. The OCSF is a
comprehensive set of layered security services. The OCSF focuses on security in
peer-to-peer, store-and-forward, and archival applications. It is designed to be
compliant with industry standards such as OpenGroup, and is applicable to a
broad range of hardware and operating system platforms. OCSF is intended to
include full life cycle key management and portable credentials. The definition of
such a set of layered security services and an open architecture protects the
investment made in implementation of security applications by facilitating the
reuse of core components of the architecture for different products.

The security services available in the OCSF are defined by the categories of service
provider modules that the architecture accommodates. These service providers are:
v Cryptographic Services1

v Trust Policy Libraries
v Certificate Libraries
v Data Storage Libraries.

OCSF Architecture
The OCSF Architecture consists of a set of layered security services and associated
programming interfaces designed to furnish an integrated set of information and
communication security capabilities. Each layer builds on the more fundamental
services of the layer directly below it.

These layers start with fundamental components such as cryptographic algorithms,
random numbers, and unique identification information in the lower layers, and
build up to digital certificates, key management and recovery mechanisms, and
secure transaction protocols in higher layers. The OCSF Architecture is intended to
be the multiplatform security architecture that is both horizontally broad and
vertically robust.

Figure 1 on page xiv shows a simplified view of the layered architecture of an
OCSF-based system. There are four major layers in the OCSF Architecture:
Application Domains, System Security Services, OCSF Framework, and Service
Providers.

The Application Domains layer implements the application domain services, such
as Secure Electronic Transaction (SET) and E-Wallet, E-mail services, or file archival
services. The System Security Services layer is between the Application Domains
layer and the OCSF Framework layer. It implements security protocols that are

1. If you want to provide a Cryptographic Service Provider, you need to contact IBM. For more information, see the z/OS Open
Cryptographic Services Facility Service Provider Module Developer's Guide and Reference.

© Copyright IBM Corp. 1999, 2013 xiii

used by the Application Domains layer. Software at this layer may implement
cryptographic system security services such as Secure Sockets Layer (SSL), Internet
Protocol Security (IPSEC), Secure/Multipurpose Internet Mail Extensions
(S/MIME) and Electronic Data Interchange (EDI). The System Security Services
layer also includes tools and utilities for installing, configuring, and maintaining
the OCSF Framework and service provider modules.

Applications

OCSF Security API

CSP
Manager

TP Module
Manager

CL Module
Manager

DL Module
Manager

SPI

Cryptographic
Service
Provider

Trust
Policy
Library

Certificate
Library

Data StoreData
Storage
Library

TPI CLI DLI

Application
Domains

System
Security
Services

OCSF
Framework

Service
Providers

SSL S/MIME IPSEC

The OCSF Framework is the central component of this extensible architecture that
provides mechanisms to dynamically manage service provider modules. The OCSF
Framework defines a common security application programming interface (API)
that must be used to access services of service provider modules. Applications
request security services through the OCSF security API or through system security
services implemented over the OCSF API. The service provider modules actually
perform the requested security services. IBM provides a number of service
provider modules. Additional service provider modules may be available from
other Independent Software Vendors (ISVs) and hardware vendors. Applications
may direct their requests to modules from specific vendors or to any module that
performs the required services.

Who should use this information
This information provides an overview of the OCSF for ISVs who develop their
own operating systems or other security products either as complete applications
or as service providers to extensible platforms. This information is intended for use
by:
v Security application programmers
v Security provider module developers that need to use the services of other

service providers
v Experienced software designers
v Security architects who work in high end cryptography
v Sophisticated integrators familiar with numerous forms of network computing
v Vendors of customizable service providers for cryptographic, trust, and database

services.

Figure 1. Open Cryptographic Services Facility Architecture.

xiv z/OS OCSF Application Programming

This audience understands the requirements for a ubiquitous security
infrastructure upon which they can build security-aware application products.

Requirements
The software required to develop applications using the OCSF include the z/OS
C/C++ Compiler and runtime library. You need to have the z/OS SecureWay
Security Server's RACF (or equivalent security product). See Chapter 1,
“Configuring and Getting Started,” on page 1 for the RACF settings that you need.

Conventions used in this information
This information uses these typographic conventions:

Bold Bold words or characters represent system elements that you must enter
into the system literally, such as commands.

Italic Italicized words or characters represent values for variables that you must
supply.

Example Font
Examples and information displayed by the system are printed using an
example font that is a constant width typeface.

Where to Find More Information
Where necessary, this information references information in other books. For
complete titles and order numbers for all elements of z/OS, see the z/OS
Information Roadmap.

This information provides an overview of the OCSF. It explains how to integrate
OCSF into applications and contains a sample OCSF application. It also defines the
interfaces that application developers employ to access security services provided
by the OCSF framework and service provider modules. Specific information about
the individual service providers is also provided.

The z/OS Open Cryptographic Services Facility Service Provider Module Developer's
Guide and Reference describes the features common to all OCSF service provider
modules. It defines the interfaces for certificate, trust, and data library service
providers. Service provider developers must conform to these interfaces in order
for the individual service provider modules to be accessible through the OCSF
framework.

Internet Sources
The softcopy z/OS publications are also available for web-browsing and for
viewing or printing PDFs using the following URL:
http://www.ibm.com/systems/z/os/zos/bkserv/

Preface xv

http://www.ibm.com/systems/z/os/zos/bkserv/

xvi z/OS OCSF Application Programming

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS OCSF Application Programming
SC14-7513-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1999, 2013 xvii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xviii z/OS OCSF Application Programming

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1999, 2013 xix

xx z/OS OCSF Application Programming

Chapter 1. Configuring and Getting Started

Note: You must reinstall and run the configuration scripts with every new release
of z/OS.

Chapter 1, “Configuring and Getting Started” describes the procedures that you
perform after you have completed code installation. The three additional steps
include:
1. Setting up the necessary security authorizations

This step provides the information needed to set up the RACF® Facility Class
profiles needed by the Open Cryptographic Services Facility (OCSF). These
classes must be set up and z/OS user identities defined to that class before
applications using CDSA can be run by those z/OS users. See “Setting Up the
Necessary Security Authorizations.”

2. Running the installation script

This step installs the individual service providers to OCSF. See “Running the
Installation Script” on page 5.

3. Running the Installation Verification Procedure

After you have completed the previous steps, run the Installation Verification
Procedure to verify that you have installed and configured your system
correctly. See “Running the Installation Verification Procedure” on page 5.

Setting Up the Necessary Security Authorizations
The OCSF implementation of the Common Data Security Architecture (CDSA) for
z/OS uses the z/OS SecureWay Security Server's RACF (or an equivalent security
product) to authorize the use of its services. The OCSF services are intended to be
used by z/OS UNIX System Services based application servers or daemons.

Security Administration
In order to use OCSF services this administration must be done:
v OCSF-related RACF facility class profiles need to be defined and the FACILITY

class made active if it is not already active.
v All of the programs, modules and DLLs loaded into the OCSF daemon

application address space must be defined as program controlled. Programs or
modules loaded from the traditional z/OS search order (that is, STEPLIB,
LINKLIST, and so forth) need to reside in program-controlled libraries. Programs
loaded from the UNIX file system must have the program-controlled extended
attribute.

v OCSF application (daemon) user IDs must be defined to RACF and permitted to
the OCSF facility class profiles. Depending on whether your system is operating
with z/OS UNIX security or UNIX security, these user IDs will also need to be
permitted to the BPX.SERVER facility class profile (when z/OS UNIX security is
in effect), or the OCSF daemon application must run with an effective UID of 0
(when UNIX security is in effect). Refer to z/OS UNIX System Services Planning
for definitions of z/OS UNIX security and UNIX security.

See “RACF FACILITY Class Profiles Required by OCSF” on page 2 for details on
performing these administrative steps.

© Copyright IBM Corp. 1999, 2013 1

RACF FACILITY Class Profiles Required by OCSF
The use of OCSF services is controlled by the RACF facility class profiles:
v CDS.CSSM - Authorizes the daemon to call OCSF services RDEFINE FACILITY

CDS.CSSM UACC (NONE)

v CDS.CSSM.CRYPTO - Authorizes the daemon to call a Cryptographic Service
Provider (CSP) RDEFINE FACILITY CDS.CSSM.CRYPTO UACC (NONE)

v CDS.CSSM.DATALIB - Authorizes the daemon to call a Data Library (DL)
Service Provider RDEFINE FACILITY CDS.CSSM.DATALIB UACC (NONE)

You need to define these profiles, using the RDEFINE command as shown, before
running any OCSF application, or before running the OCSF installation script
described in “Running the Installation Script” on page 5. If these facility class
profiles are not defined, OCSF services are unavailable.

An OCSF application, and the OCSF installation script described in “Running the
Installation Script” on page 5, must execute under the security context of a user
identity that has been granted READ access to the OCSF facility class profiles.

Program Control
Program control is the concept of having "trusted" applications. Installations can
define libraries to RACF where these trusted applications will reside. When
program control is active on a system, processes will be marked "dirty" (by means
of the SETROPTS WHEN(PROGRAM) command) if they attempt to load
programs from libraries that are not trusted. z/OS UNIX System Services also has
the concept of trusted applications. In the UNIX file system, executable files may
be tagged with the program-controlled extended attribute. If a user issues a shell
command, or runs a program that does not have the program-controlled extended
attribute, the process becomes dirty. In either case the process is never "cleaned".
The dirty bit remains on, causing certain services to fail as a result. Refer to the
z/OS Security Server RACF Security Administrator's Guide for more information on
Program Control.

Program Control in RACF
The purpose of protecting load modules is to provide installations with the ability
to control who can execute what programs and to treat those programs as assets.
You protect individual load modules (programs) by creating a profile for the
program in the PROGRAM general resource class. A program protected by a
profile in the PROGRAM class is called a controlled program. OCSF services utilize
other elements of z/OS. If RACF Program Control is activated, these program
libraries must also be program controlled:
v C/C++ Runtime Libraries
v Language Environment libraries
v ICSF libraries (if ICSF is used)
v System SSL.

For example, if you have a load library called MYLOADLIB residing in SYS1.XYZ you
would have to issue this RACF command to make it program controlled:

REDEFINE PROGRAM MYLOADLIB ADDMEM(’SYS1.XYZ’)

If a discrete profile for the dataset already exists but program control is not
enabled in this profile then this command should be issued:

ralt program * addmem(’dataset.name’) uacc(read)

2 z/OS OCSF Application Programming

Then you can activate that profile by issuing this RACF command:

SETROPTS WHEN(PROGRAM) REFRESH

Refer to the z/OS Security Server RACF Security Administrator's Guide, SC28-1915, for
more information on Program Control.

HFS Program Control
You can mark programs and dynamically-loaded libraries (DLLs) in the UNIX file
system as controlled (trusted) by turning on the program-controlled extended
attribute for the HFS file containing the program or DLL. To turn this extended
attribute on, issue:

extattr +p filename

You can check if a file has the program-controlled extended attribute by using the
UNIX shell ls command with the -E option. This example shows using ls -E to
verify that the program-controlled attribute is set for one of the OCSF DLLs:
$ cd /usr/lpp/ocsf/lib
$ ls -E cssm32.dll
-rwxr-xr-x aps 2 ROOT SYS1 737280 Nov 3 22:07 cssm32.dll

The "p" flag in the second column of the ls command output indicates that this file
does have the program-controlled extended attribute.

APF Authorization
The SMP/E installation of OCSF now turns on the APF-authorized extended
attribute for the OCSF libraries in the /usr/lpp/ocsf/lib and /usr/lpp/ocsf/addins
directories. You can verify this by issuing the UNIX shell ls command with the -E
option as shown in the example:
$ cd /usr/lpp/ocsf/lib
$ ls -E cssm32.dll
-rwxr-xr-x aps 2 ROOT SYS1 737280 Nov 3 22:07 cssm32.dll

The "a" flag in the second column of the ls command output indicates that this file
does have the APF-authorized extended attribute.

Note: OCSF can only be accessed from program state (key 8).

Refer to z/OS UNIX System Services Planning for more details.

OSCF User Identities and Permissions
In order to use the services offered by OCSF for z/OS, an OCSF application, as
well as the OCSF installation script described on “Running the Installation Script”
on page 5, must execute under a z/OS user identity that has been granted READ
access to the OCSF CDS.* facility class profiles described (see “RACF FACILITY
Class Profiles Required by OCSF” on page 2). These RACF profiles control which
user IDs are authorized to use OCSF services.

In addition, OCSF applications, as well as the OCSF installation script on “Running
the Installation Script” on page 5, require an additional permission or authority, the
nature of which depends on whether your system is operating with z/OS UNIX
security, or UNIX security:
v If either the BPX.SERVER or the BPX.DAEMON facility class profile has been

defined, then your system is operating with z/OS UNIX security. In this case,
the user identity associated with an OCSF application must be granted READ

Chapter 1. Configuring and Getting Started 3

access to the BPX.SERVER facility class profile. This profile controls the use of
the z/OS services used by OCSF to determine access authority. If this profile has
not been previously defined on your system, use the RDEFINE command to
define it.

v If neither the BPX.SERVER nor the BPX.DAEMON facility class profiles have
been defined, then your system is operating with UNIX security. In this case, an
OCSF application must be run with an effective UID of 0 (super user).

Refer to z/OS UNIX System Services Planning for more information comparing z/OS
UNIX security and UNIX security.

It is recommended that unique z/OS and UNIX identities (UIDs) be assigned to
daemon applications that are authorized to use OCSF services to maintain
individual accountability of which applications are cryptographic services on z/OS.

For example, assume that a daemon application needs to use OCSF services on
z/OS. The daemon application is assigned the unique UID of 25, and has been
associated with the daemon process with a RACF identity of G123456. This
daemon's home directory is /u/apps/g123456. This daemon runs under the z/OS
shell, and the application is started by the daemon's .profile.

Create a RACF user profile, with an OMVS segment using the RACF ADDUSER
command:
ADDUSER G123456 OMVS(UID(25) HOME(’/u/apps/g123456’) program(’/bin/sh’))

Refer to the and to the z/OS Security Server RACF Security Administrator's Guide for
more information.

Granting Permission to Use OCSF Service
These authorizations need to be made for the daemon to use CDSA services.
v Authorize the daemon to the required class profiles in the RACF FACILITY

CLASS by issuing the RACF PERMIT commands:
PERMIT CDS.CSSM CLASS(FACILITY) ID(G123456) ACC(READ)
PERMIT CDS.CSSM.CRYPTO CLASS(FACILITY) ID(G123456) ACC(READ)
PERMIT CDS.CSSM.DATALIB CLASS(FACILITY) ID(G123456) ACC(READ)

v Assuming that the system operates with z/OS UNIX security, authorize the
daemon to the class profile BPX.SERVER in the RACF FACILITY CLASS by
issuing the RACF PERMIT commands:
PERMIT BPX.SERVER CLASS(FACILITY) ID(G123456) ACC(READ)

You may need to authorize the daemon user ID to other profiles depending on the
other requirements of the application.

Using Groups
It is recommended, for ease of administration, that the user IDs used by the
daemons be connected to a group and that group be given the appropriate
permissions to the RACF profiles. Refer to the z/OS Security Server RACF Security
Administrator's Guide for more information on group profiles.

Refreshing z/OS Security Server Data
After all z/OS SecureWay Security Server RACF definitions have been made, the
FACILITY class must be refreshed if it is RACLISTED. Issue this command to
perform this action:
SETROPTS RACLIST(FACILITY) REFRESH

4 z/OS OCSF Application Programming

If the FACILITY class is not active you may activate it with this command:
SETROPTS CLASSACT(FACILITY)

If members were added to PROGRAM Class profiles, program control for those
members will not be in effect until this command is issued:
SETROPTS WHEN(PROGRAM) REFRESH

For more information, refer to the z/OS Security Server RACF Security
Administrator's Guide.

Running the Installation Script
The installation script is run from a z/OS shell session. IBM recommends that the
script be run from a user ID with a UID of 0 (super user). In addition:
v The user ID running the script must be given authorization to use OCSF services

by being granted READ access to the CDS.* OCSF facility class profiles.
v If your system is operating with z/OS UNIX security in effect, the user ID

running the script must be permitted to the BPX.SERVER facility class profile.
(This requirement applies even if you are running the script from a UID 0 user
ID.)

Perform these steps:
1. Go to the correct directory, for example:

cd /usr/lpp/ocsf/bin

2. Run this script: ocsf_install_crypto

You receive this output:
Installing CSSM...
CSSM Framework successfully installed
Installing IBMTP...
Addin successfully installed.
Installing IBMTP2...
Addin successfully installed.
Installing IBMCL...
Addin successfully installed.
Installing IBMCL2...
Addin successfully installed.
Installing IBMDL2...
Addin successfully installed.
Installing LDAPDL.
Addin successfully installed.
Installing IBMWKCSP...
Addin successfully installed.
Installing IBMCCA...
Addin successfully installed
Installing IBMSWCSP
Addin successfully installed

3. When this runs correctly, go to “Running the Installation Verification
Procedure.”

Running the Installation Verification Procedure
Once you have completed the previous steps, run the Install Verification Procedure
(IVP). This verifies that you have installed and configured correctly. To correctly
test your configuration, it is suggested that you run the IVP under a few different
z/OS user identities that have been authorized to issue OCSF applications. This
tests out the configuration done in “Setting Up the Necessary Security
Authorizations” on page 1.
v Perform these steps:

1. Go to the correct directory, for example:
cd /us/Lapp/itself/ivp

Chapter 1. Configuring and Getting Started 5

2. Read the README.ivp and follow the instructions for running the
Installation Verification Procedure.

3. Run this script: ocsf_baseivp

You will receive this output:
Starting OCSF base addins ivp
Initializing CSSM
CSSM Initialized
Attaching ibmwkcsp
Attach successful, detaching ibmwkcsp
Detach of ibmwkcsp successful
Attaching ibmswcsp
Attach successful, detaching ibmswcsp
Detach of ibmswcsp successful
Attaching ibmcca
Attach successful, detaching ibmcca
Detach of ibmcca successful
Attaching ibmcl
Attach successful, detaching ibmcl
Detach of ibmcl successful
Attaching ibmcl2
Attach successful, detaching ibmcl2
Detach of ibmcl2 successful
Attaching ibmdl2
Attach successful, detaching ibmdl2
Detach of ibmdl2 successful
Attaching ldapdl
Attach successful, detaching ldapdl
Detach of ldapdl successful
Attaching ibmtp
Attach successful, detaching ibmtp
Detach of ibmtp successful
Attaching ibmtp2
Attach successful, detaching ibmtp2
Detach of ibmtp2 successful
Completed OCSF base addins ivp

4. When this runs correctly, your installation is complete.
When you have the Security Level 3 Feature installed, you should perform
the additional step of verifying that the correct policy table files are being
used. The files /usr/lpp/ocsf/lib/cssmmanp.dll and /usr/lpp/ocsf/lib/
cssmusep.dll are actually links. When only the OCSF base is installed, these
links should point to cssmmanp_sl2.dll and cssmusep_sl2.dll. When the
Security Level 3 Feature is installed, they should point to cssmmanp_sl3.dll
and cssmusep_sl3.dll.

Common Problems
The most common problems that may occur now during installation, or in the
future when running applications that use Open Cryptographic Services Facility,
are unauthorized code or unauthorized users. These kinds of problems can result
in return code 9 errors when running the OCSF installation script, or can result in
the application returning an error condition that the user or code is unauthorized.

If you encounter these types of errors, here are some things to check:
v Verify that the user ID running the OCSF application or OCSF install script has

been permitted to the CDS.* facility class profiles.
v If your system is operating with z/OS UNIX security in effect (either

BPX.SERVER or BPX.DAEMON are defined) verify that the user ID running the
OCSF application or OCSF install script has been permitted to the BPX.SERVER
facility class profile.
If your system is operating with UNIX security in effect (neither BPX.SERVER
nor BPX.DAEMON are defined), verify that the user ID running the OCSF
application or OCSF install script has an effective UID of 0.

v Verify that all of the programs, modules, and dynamically loaded libraries
(DLLs) being used by the OCSF application have been defined as program

6 z/OS OCSF Application Programming

controlled. This includes the modules supplied by OCSF itself, the C/C++ run
time library modules, the modules associated with the OCSF application and
any other libraries used by the application.
You can use the UNIX shell ls command with the -E option to verify the
program-controlled extended attribute of programs and DLLs resident in the
UNIX file system. Refer to z/OS UNIX System Services Planning for procedures to
follow for verifying that modules loaded from load libraries are defined as
program controlled.
If you have problems in determining which program is not program controlled,
go to the z/OS Operator’s Console and look for message number BPXP015I.
This should tell you the name of the program that needs to be program
controlled.

v If the problems occur while running in the UNIX shell, they may be due to a
dirty address space caused by utilities or applications that were run earlier in
the shell session for which _BPX_SHAREAS is YES. Try setting the
_BPX_SHAREAS environment variable to NO before running the OCSF
installation script or any OCSF application. Setting this environment variable to
NO forces new commands or processes to be run in a new address space rather
than sharing the current (possibly dirty) one.

v If the problems occur during running of the OCSF installation script, verify that
the user ID running the script has write access to the /var/ocsf directory.

v Verify that all dates are prior to the year 2038. OCSF does not support the
concept of time past the year 2038.

Chapter 1. Configuring and Getting Started 7

8 z/OS OCSF Application Programming

Chapter 2. Open Cryptographic Services Facility Framework

The OCSF Framework layer is the central component in the OCSF architecture; it
integrates and manages all the security services. OCSF enables tight integration of
individual services, while allowing those services to be provided by interoperable
service provider modules. The OCSF Framework has a rich application
programming interface (API) to support the development of secure applications
and system services, and a service provider interface (SPI) that supports service
provider modules that implement building blocks for secure operations.

The primary function of the OCSF Framework layer is to maintain a state
regarding the connections between the application layer code and the service
providers underneath. Additionally, the OCSF mediates all interactions between
applications and the service provider modules and implements and enforces the
applicable cryptographic policy. Finally, the OCSF Framework allows the seamless
integration of other security functions provided by independent service provider
modules.

The OCSF Framework does not prescribe or implement any security services.
Application-specific security services are defined and implemented by service
provider modules and layered services. The OCSF Framework defines a common
API for accessing the services provided by service provider modules. OCSF
redirects application API calls to the selected service provider module that will
perform the request.

The OCSF API calls can be categorized as service operations or core services.
Service operations are functions that invoke a service provider module security
operation, such as encrypting data, adding a certificate to a Certificate Revocation
List (CRL), or verifying that a certificate is trusted/authorized to perform some
action. OCSF module managers are responsible for carrying out service operations.
Core services include functions that perform:
v Module management
v Memory management
v Security context management
v Integrity verification.

Chapter 2, “Open Cryptographic Services Facility Framework” discusses the OCSF
Framework core services. The individual OCSF module managers are discussed in
Chapter 3, “OCSF Policy Modules,” on page 17 through Chapter 7, “Data Storage
Library Module Manager,” on page 27. See Chapter 8, “Service Provider Modules,”
on page 29, for information on the IBM service provider modules and the functions
supported by the individual service providers.

Module Management
The OCSF Framework defines a set of API calls that allow application developers
to access and use service provider modules. These module management functions
support the installation of service provider modules, the dynamic selection and
loading of modules, and the querying of module features and status. System
administration utilities use install and uninstall functions to maintain service
provider modules on a local system.

© Copyright IBM Corp. 1999, 2013 9

Installing and Uninstalling Service Provider Modules
OCSF manages a registry that records the logical name of each service provider
module that is installed on the system, the information required to locate and
dynamically initiate the service provider, and some minimal meta-data describing
the algorithms implemented by the service provider.

A service provider must be installed to the OCSF by recording its services with the
OCSF Framework using CSSM_ModuleInstall before an application or another
service provider module can use its services.

10 z/OS OCSF Application Programming

When a service provider is loaded at run-time it registers a set of OCSF callback
functions with the OCSF Framework. There is one callback function for each
OCSF-defined SPI call. The service provider may or may not implement all SPI
calls defined by OCSF. Unimplemented functions must be registered as null. The
service provider may implement additional functions outside of the OCSF-defined
SPI calls. The service provider may register a single callback function, and instruct
application and module developers (through documentation) to activate these
functions through the message-based, OCSF passthrough function. There is one
passthrough function defined in each SPI. For example, the passthrough function
defined for the cryptographic SPI is CSP_PassThrough.

Service provider modules may also be uninstalled from the OCSF by using the
CSSM_ModuleUninstall function. This function removes the service provider name
and its associated attributes from the OCSF Framework's service provider registry.
Uninstalled must be performed before a new version of the same service provider
module is installed in the OCSF Framework registry. It is the responsibility of the
service provider to provide the install and uninstall functions.

Listing Service Provider Modules and Services
Before attaching a service module, an application can query the OCSF Framework
registry using the CSSM_ListModules function to obtain information on the:
v Modules installed on the system
v Capabilities (and functions) implemented by those modules
v Globally Unique ID (GUID) associated with a given module.

Applications use this information to dynamically select a module for use. A
multiservice module has multiple capability descriptions associated with it, at least
one per functional area supported by the module. Some areas (such as
Cryptographic Service Provider (CSP) and Trust Policy (TP)) may have multiple
independent capability descriptions for a single functional area. There is one OCSF
Framework registry entry for a multiservice module, which records all service
types for the module. OCSF returns all information about a module's capabilities
when queried by the application. Each set of capabilities includes a type identifier
to distinguish CSPinfo from CLinfo, etc.

Applications can query about the OCSF Framework itself. One function,
CSSM_GetInfo, returns version information about the running OCSF Framework.
Another function, CSSM_Init, verifies whether the OCSF Framework version the
application expects is compatible with the currently running OCSF Framework
version. The general function to query service provider module information also
returns the module's version information.

Attaching and Detaching Service Provider Modules
Applications select the particular security services they will use by selectively
attaching service provider modules. Each module has an assigned GUID and a set
of descriptive attributes to assist applications in selecting appropriate modules for
their use. A module can implement a range of services across the OCSF APIs (e.g.,
cryptographic functions, data storage functions) or a module can restrict its
services to a single OCSF category of service (e.g., Certificate Library (CL) services
only). Modules that span service categories are called multiservice modules.

Applications use a module's GUID to specify the module to be attached. The attach
function, CSSM_ModuleAttach, returns a handle representing a unique pairing
between the caller and the attached module. This handle must be provided as an
input parameter when requesting services from the attached module. OCSF uses

Chapter 2. Open Cryptographic Services Facility Framework 11

the handle to match the caller with the appropriate service module. The calling
application uses the handle to obtain all types of services implemented by the
attached module. Figure 2 shows how the handle for an attached Dual Provider
service provider is used to perform cryptographic operations and persistent storage
of certificates. The single handle value can be used as the CSPHandle in
cryptographic operations and as the DLHandle in data storage operations.

Application:

Hdl=CSSM_ModuleAttach(dual_provider_guid,...)

CSSM_Encrypt(Hdl, ...)

CSSM_DL_DataGetFirst(Hdl, ...)

OCSF Security API

CSP
Manager

TPM
Manager

CLM
Manager

DLM
Manager

SPITPI

Dual_Provider Service Provider

CSPTP
Lib

DL
CL

DLI CLI

Multiple calls to attach are viewed as independent requests. Each attach request
returns separate, independent handles that do not share execution state. Service
provider modules may be detached using the CSSM_ModuleDetach function.
However, an application should not invoke this operation unless all requests to the
target service provider have been completed.

Managing Calls Between Service Provider Modules
Applications directly or indirectly select the modules that will be used to provide
security services to the application. Service provider modules may (and often will)
invoke other service provider modules to perform necessary operations. OCSF
forwards all calls uniformly regardless of their origin. Figure 3 illustrates the
process by which the OCSF Framework manages calls between modules.

In Figure 3 on page 13, the application invokes func1 in the cryptographic module
identified by the handle CSP1. OCSF forwards the function call to func1 in the
CSP1 module. The application also invokes func7 in the TP module identified by
the handle TP2. Again, OCSF forwards the function call to func7 in the TP2
module. The implementation of func7 in the TP2 module uses functions
implemented by a CL module. The TP2 module must invoke the CL functions
through the OCSF Framework. To accomplish this, the TP2 module attaches the CL

Figure 2. Dual_Provider Cryptographic Services and Persistent Storage Services

12 z/OS OCSF Application Programming

module, obtaining the handle CL1, and invokes func13 in the CL identified by the
handle CL1. OCSF forwards the function call to func13 in the CL1 module.
Modules must be attached before they can receive function calls from the OCSF
Framework. An error condition occurs if the selected module does not implement
the invoked function.

func1 (CSP 1)

func7 (TP 2)

func13 (CL 1)

func 1
func 2

func 1func 1

func 7
func 8

func 1

func 12
func 13

Application

OCSF API

CSP 1 TP 2 CL 1 DL 1

Memory Management
The OCSF memory management functions are a class of routines for reclaiming
memory allocated by OCSF on behalf of an application from the OCSF memory
heap. When OCSF allocates objects from its own heap and returns them to an
application, the application must inform OCSF when it no longer requires the use
of that object. Applications use specific APIs to free OCSF-allocated memory. When
an application invokes an API free function, OCSF can choose to retain or free the
indicated object depending on other conditions known only to OCSF. In this way,
OCSF and applications work together to manage these objects in the OCSF
memory heap.

Security Context Management
Security context management provides secured run-time caching of user-specific
state information and secrets. Multistep cryptographic operations, such as staged
hashing, require multiple calls to a CSP and the intermediate operation states must
be managed. These intermediate states are stored in run-time data structures
known as security contexts. The OCSF API provides a number of context functions
that applications can use to create, initialize, and cache security contexts.

Security contexts provide mechanisms that:
v Allow an application to use multiple CSPs concurrently.
v Allow an application to concurrently use different parameters for a single CSP

algorithm.
v Support layered implementations in their transparent use of multiple CSPs or

different algorithm parameters for the same CSP.
v Enable development of reentrant CSPs, layered services, and applications.

Figure 3. OCSF Framework Directs Calls to Selected Service Provider Modules

Chapter 2. Open Cryptographic Services Facility Framework 13

Applications retain handles to each security context used during execution. The
context handle is a required input parameter to many security service functions.
Most applications instantiate and use multiple security contexts. Only one context
may be passed to a function, but the application is free to switch among contexts
at will, or as required (even per function call).

14 z/OS OCSF Application Programming

An application may create multiple contexts directly or indirectly. Indirect creation
may occur when invoking layered services, system utilities, TP modules, CL
modules, or DL modules that create and use their own appropriate security context
as part of the service they provide to the invoking application. Figure 4 shows an
example of a hidden security context. An application creates a context specifying
the use of sec_context1. The application invokes func1 in the CL using sec_context1
as a parameter. The CL performs two calls to the CSP. For the call to func5, the
hidden security context is used. For the call to func6, the application's security
context, sec_context2, is passed as a parameter to the CSP.

Application

CL 1 CSP 1

OCSF API

sec_context2

sec_context2

func 1 func 1

func 5
func 6

func1 (CSP 1, sec_context1)

func5 (CSP 1, sec_context2)

func6 (CSP 1, sec_context1)

These transparent contexts do not concern the application developer, as they are
managed entirely by the layered service or service provider module that created
them. Each process or thread that creates a security context is responsible for
explicitly terminating that context.

OCSF provides a number of API functions to create security contexts. The function
used and type of context created depends on the cryptographic operation being
performed. For example, the CSSM_CSP_CreateSymmetricContext is used in
cryptographic operations involving a symmetric key; the
CSSM_CSP_CreateAsymmetricContext is used in operations involving an
asymmetric key.

The CSSM_DeleteContext function is paired up with the create context functions.
These functions are designed to be used by applications and force notify events to
be sent to a service provider module. In contrast, the CSSM_GetContext and
CSSM_FreeContext functions are designed to be used by service provider modules
since they do not generate events.

OCSF Security Context Changes
In OS/390® OCSF Version 2 Release 9 (V2R9), a change was made in the way
OCSF security contexts are manipulated. Before V2R9, a CSSM_Get... Context call
caused a new copy of the OCSF security context, created by a
CSSM_CSP_Create...Context call, to be created. That copy had to be freed by a

Figure 4. Indirect Creation of a Security Context

Chapter 2. Open Cryptographic Services Facility Framework 15

CSSM_FreeContext call. In V2R9, however, a copy of the security context is created
during the CSSM_CSP_Create...Context call. When any CSSM_GetContext call is
made, a pointer to the copy is returned. Although CSSM_FreeContext should still
be issued for compatibility, the security context copy is freed when
CSSM_DeleteContext is called. Developers must be careful that in their
applications no CSSM_UpdateContextAttribute calls are made while any thread is
using a context, either explicitly or implicitly during a CSSM_CSP... call. Also,
applications must complete all uses of the CSSM security context before the
CSSM_DeleteContext call is made.

Integrity Verification Services
As a security frame work, OCSF provides each application with checking of the
integrity of the OCSF environment in which the application is running. OCSF
requires all code including OCSF binaries and the invoking application to be
program controlled. Non-program controlled binaries causes the environment to
become "dirty" and the result will be failure of attaching OCSF Service Providers.
In addition, Cryptographic Service Providers and Policy Modules have additional
checks to verify their validity.

16 z/OS OCSF Application Programming

Chapter 3. OCSF Policy Modules

Policy modules are provided with OCSF that represent the cryptographic
algorithms and their associated strengths that can be used when performing data
encryption or decryption. Mandated policies are typically derived from
jurisdiction-based regulations on the use of cryptographic products for data
confidentiality. The jurisdictions for policies can coincide with the political
boundaries of countries in order to enforce the law enforcement needs of these
political jurisdictions. Political jurisdictions may define policies based on export,
import or use controls. Policies specify the exact cryptographic protocol suites
(algorithms, modes, key lengths, etc.) allowed. Chapter 3, “OCSF Policy Modules”
describes how policies are used in the OCSF.

Usage of OCSF Policy Modules
There are two policy modules within the OCSF. These modules dictate the policies
enforced by the OCSF framework when an application requests symmetric or
asymmetric encryption or decryption. One of the policy modules represents the
cryptographic algorithms and their strengths allowed by the US government. This
is sometimes referred to as the policy module for the country of manufacture. The
second policy module represents the cryptographic algorithms and their strengths
allowed where OCSF is being used. This is sometimes referred to as the policy
module for the country of use. The values in these modules are dependent upon
whether only the OCSF base or the OCSF Security Level 3 feature is applied.

OCSF Behavior When Only the OCSF Base is Installed
The use and behavior of policy modules by the OCSF framework when only the
OCSF base is installed are as follows:
v For symmetric encryption, a check is made to disallow nested encryptions of a

data buffer. If the input buffer to be encrypted is identical to a buffer of cipher
text produced in the recent past, the framework considers this an attempt to
perform nested encryption of a data buffer and disallows it.

v When a symmetric context is created or updated a check is made to see if the
strength of the cryptography requested is stronger than allowed by the policy
modules or if the algorithm requested is not defined by the policy modules. If
so, the cryptographic context is flagged. An encryption or decryption request
made with that context will be denied.

v When an asymmetric context is created or updated a check is made to see if the
strength of the cryptography requested is stronger than allowed by the policy
modules or if the algorithm requested is not defined by the policy modules. If
so, the cryptographic context is flagged. An encryption, decryption, key wrap or
key unwrap request made with that context will be denied.

OCSF Behavior When the OCSF Security Level 3 Feature is
Installed

When the OCSF Security Level 3 feature is installed there are no restrictions on
cryptographic strengths or algorithms used. Policy checking and enforcement is
waived.

© Copyright IBM Corp. 1999, 2013 17

Implementation of OCSF Policy Modules
The OCSF Policy modules are implemented in two separate DLLs:
v cssmmanp.dll - corresponding to the policies for country of manufacture
v cssmusep.dll - corresponding to the policies for the country of use.

These DLLs are loaded automatically when the application issues the required
CSSM_Init API that is used to instantiate the Framework.

18 z/OS OCSF Application Programming

Chapter 4. Cryptographic Module Manager

The Cryptographic Module Manager administers the Cryptographic Service
Providers (CSPs) modules that may be installed on the local system, and defines a
common application programming interface (API) for accessing CSP modules. All
cryptography functions are implemented by the CSPs. This localizes all
cryptography into exchangeable modules. OCSF administers a queryable registry
of local CSPs. The registry lists the locally accessible CSPs and their cryptographic
services (and algorithms).

The nature of the cryptographic functions contained in any particular CSP depends
on the task the CSP was designed to perform. For example, a VISA smart card
would be able to digitally sign credit card transactions on behalf of the card's
owner. A digital employee badge would be able to authenticate a user for physical
or electronic access.

The Cryptographic Module Manager does not assume any particular form for a
CSP. CSPs can be implemented in hardware, software, or both; operationally, the
distinction must be transparent. The two visible distinctions between hardware and
software implementations are the degree of trust the application receives by using
a given CSP, and the cost of developing that CSP. A hardware implementation
should be more tamper-resistant than a software implementation. Hence a higher
level of trust is achieved by the application. All CSPs that can be loaded by the
OCSF must contain a verification check2.

Multiple CSPs may be loaded and active within the OCSF at any time, and a single
application may use multiple CSPs concurrently. Interpreting the resulting level of
trust and security is the responsibility of the application or the TP module used by
the application. The Cryptographic Module Manager defines a high-level,
certificate-based API for cryptographic services to support application
development. This API is in Chapter 12, “Cryptographic Services API,” on page
107. A CSP may or may not support multithreaded applications. For information
on interface support by cryptographic service providers, refer to the z/OS Open
Cryptographic Services Facility Service Provider Module Developer's Guide and Reference.
For specifics on the cryptographic service proviers available with OCSF, refer to
Chapter 8, “Service Provider Modules,” on page 29.

Supporting Legacy CSPs
CSPs existed prior to the definition of the OCSF Cryptographic API. These legacy
CSPs have defined their own APIs for cryptographic services. These interfaces are
CSP-specific, nonstandard, and (in general) low-level key-based interfaces. They
present a considerable development effort to the application developer attempting
to secure an application by using those services.

Acknowledging legacy CSPs, the OCSF defines an optional adaptation layer
between the Cryptographic Module Manager and a CSP. The adaptation layer
allows the CSP vendor to implement a shim to map the OCSF SPI to the CSP's
existing API, and to implement any additional management functions that are

2. If you want to provide a Cryptographic Service Provider, you need to contact IBM. For more information, see the z/OS Open
Cryptographic Services Facility Service Provider Module Developer's Guide and Reference.

© Copyright IBM Corp. 1999, 2013 19

required for the CSP to function as a service provider module in the extensible
OCSF. New CSPs may support the OCSF SPI directly (without the aid of an
adaptation layer).

Cryptography Services API
The security services API defined by the Cryptographic Module Manager are
certificate-based. This contrasts with the approach taken by many CSPs, where
low-level concepts such as key type, key size, hash functions, and byte ordering
are the standard granularity of interface options. The Cryptographic Module
Manager hides these behind high-level operations such as:
v SignData
v VerifyData
v DigestData
v EncryptData
v DecryptData
v GenerateKeyPair.

Security-conscious applications use these high-level concepts to provide
authentication, data integrity, data and communication privacy, and
non-repudiation of messages to the end-users. A CSP may implement any
algorithm. For example, CSPs may provide one or more of the algorithms, in one
or more modes:
v Bulk encryption algorithm: DES, Triple DES, IDEA, RC2, RC4, RC5, Blowfish,

CAST
v Digital signature algorithm: RSA, DSS
v Key negotiation algorithm: Diffie-Hellman
v Cryptographic hash algorithm: MD4, MD5, SHA
v Unique identification number: hardcoded or random generated
v Random number generator: attended and unattended
v Encrypted storage: symmetric-keys, private-keys.

The application's associated security context defines parameter values for the
low-level variables that control the details of cryptographic operations. Setting
input parameters to cryptographic algorithms is not a policy decision of the OCSF
Framework. Applications use CSPs that provide the services and features required
by the application. For example, an application issuing a request to EncryptData
may reference a security context that defines these parameters:
v Algorithm to be used (such as RC5)
v Algorithm-specific parameters (such as key length)
v Cryptographic variables (such as the key).

Most applications will use default OCSF contexts that are available through API
function calls such as CSSM_CSP_CreateSignatureContext. Typically, a distinct
context will be used for encrypting, hashing, and signing. For a given application,
once initialized, these contexts will change little (if at all) during the application's
execution or between executions. This allows the application developer to
implement security by manipulating certificates, using previously defined security
contexts, and maintaining a high-level view of security operations.

Application developers who demand fine-grained control of cryptographic
operations can achieve this by directly and repeatedly updating the security
context to direct the CSP for each operation, and by using the Cryptographic
Module Manager API passthrough feature.

20 z/OS OCSF Application Programming

Dependencies with the Policy Modules
The Cryptographic Module Manager of the OCSF is responsible for handling the
cryptographic functions of OCSF and the enforcement of the cryptographic
algorithms and strengths allowed by the policy module. The Cryptographic
Module Manager and cryptographic functions in the OCSF framework:
v Invoke policy enforcement functions for cryptographic context create and update

operations.
v Set the cryptographic context unusable if the cryptographic strength is too strong

or an algorithm requested is not allowed as per the policy modules.
v Check the cryptographic context before allowing encryption/decryption

operations to occur.

Whenever a cryptographic context is created or updated using the OCSF API
functions, the Cryptographic Module Manager invokes a policy enforcement
function; the latter checks the policies to determine whether the cryptographic
context defines an operation or strength outside of the allowable bounds as
defined by the policy modules. If so, the cryptographic context is set to signal that
the context is unusable. If the cryptographic context is updated so that the request
is included in the bounds of the policy module, then the context is set to be usable
again.

When the encryption/decryption operations of the OCSF are invoked, the
Cryptographic Module Manager checks the cryptographic context to determine
whether the context is usable for encryption/decryption operations. If the context
is flagged as unusable, the encryption/decryption API function returns an error
and the encryption/decryption operation will not take place.

Chapter 4. Cryptographic Module Manager 21

22 z/OS OCSF Application Programming

Chapter 5. Trust Policy Module Manager

The Trust Policy (TP) Module Manager administers the TP modules that may be
installed on the local system and defines a common application programming
interface (API) for these libraries. The TP API allows applications to request
security services that require policy review and approval as the first step in
performing the operation. Operations defined in the TP API include verifying trust
in:
v A certificate for signing or revoking another certificate
v A user or user-agent to perform an application-specific action
v The issuer of a Certificate Revocation List (CRL).

A digital certificate binds an identification in a particular domain to a public key.
When a certificate is issued (created and signed) by a Certificate Authority (CA),
the binding between key and identity is attested by the digital signature on the
certificate. The issuing authority also associates a level of trust with the certificate.
The actions of the user, whose identity is bound to the certificate, are constrained
by the TP governing the certificate's usage domain. A digital certificate is intended
to be an unforgettable credential in cyberspace.

The use of digital certificates is the basis on which the OCSF is designed. The
OCSF assumes the concept of digital certificates in its broadest sense; that is, an
identity bound to a public key. Certificates are often used for identification,
authentication, and authorization. The way in which applications interpret and
manipulate the contents of certificates to achieve these ends is defined by the real
world trust model the application has chosen as its model for trust and security.

The primary purpose of a TP service provider is to answer the question "Is this
certificate trusted for this action?" The OCSF TP API defines the generic operations
that should be defined for certificate-based trust in every application domain. The
specific semantics of each operation is defined by the:
v Application domain
v Trust model
v Policy statement for a domain
v Certificate type.

The trust model is expressed as an executable policy that is used/invoked by all
applications that ascribe to that policy and the trust model it represents.

As an infrastructure, OCSF is policy neutral; it does not incorporate any single
policy. For example, the verification procedure for a credit card certificate should
be defined and implemented by the credit company issuing the certificate.
Employee access to a lab housing a critical project should be defined by the
company whose intellectual property is at risk. Rather than defining policies, OCSF
provides the infrastructure for installing and managing policy-specific modules.
This ensures extensibility of certificate-based trust on every platform hosting OCSF.

Different TPs define different actions that may be requested by an application.
There are also a few basic actions that should be common to every TP. These
actions are operations on the basic objects used by all trust models. The basic
objects common to all trust models are certificates and CRLs. The basic operations
on these objects are sign, verify, and revoke.

© Copyright IBM Corp. 1999, 2013 23

Application developers and trust domain authorities benefit from the ability to
define and implement policy-based modules. Application developers are freed
from the burden of implementing a policy description and certifying that their
implementation conforms. Instead, the application only needs to build in a list of
the authorities and certificate issuers it uses.

Domain authorities also benefit from an infrastructure that supports TP modules.
Authorities are sure that applications using their modules will adhere to the
policies of the domain. In addition, dynamic download of trust modules (possibly
from remote systems) ensures timely and accurate propagation of policy changes.
Individual functions within the module may combine local and remote processing.
This flexibility allows the module developer to implement policies based on the
ability to communicate with a remote authority system. This also allows the policy
implementation to be decomposed in any convenient distributed manner.

Implementing a TP module may or may not be tightly coupled with one or more
CL modules and one or more DL modules. The TP embodies the semantics of the
domain. The CL and the DL embody the syntax of a certificate format and
operations on that format. A TP can be completely independent of certificate
format, or it may be defined to operate with a small number of certificate formats.
A TP implementation may invoke a CL module and/or a DL module to
manipulate certificates.

Trust Policy API
OCSF provides TP operations on certificates and CRL lists. These operations
include:
v TP operations, such as signing, verifying, or revoking, on individual certificates

and CRLs.
v TP operations on groups of certificates such as constructing an ordered group,

verifying the signatures on a group, and removing certificates from a group.
v Passthrough operations for unique certificate and CRL operations.
v For detailed information on each of these functions, see Chapter 14, “Trust Policy

Services API,” on page 191.

24 z/OS OCSF Application Programming

Chapter 6. Certificate Library Module Manager

The Certificate Library Module Manager administers the Certificate Libraries (CLs)
that may be installed on the local system. It defines a common application
programming interface (API) for these libraries.

The API allows applications to manipulate memory-resident certificates and
Certificate Revocation Lists (CRLs).

Operations defined in the API include create, sign, verify, and extract field values.
The CL modules implement all certificate operations. Application-invoked calls are
dispatched to the appropriate library module. Each library incorporates knowledge
of certificate data formats and how to manipulate that format. The OCSF
Certificate Module Manager administers a queryable registry of local libraries. The
registry enumerates the locally accessible libraries and attributes of those libraries,
such as the certificate type manipulated by each registered library.

The primary purpose of a CL module is to perform memory-based, syntactic
manipulations on the basic objects of trust: certificates and CRLs. The data format
of a certificate will influence (if not determine) the data format of CRLs used to
track revoked certificates. For this reason, these objects should be manipulated by a
single, cohesive library. CL modules incorporate detailed knowledge of data
formats. The Certificate Library Module Manager defines API calls to perform
security operations (such as signing, verifying, revoking, viewing, etc.) on
memory-resident certificates and CRLs. The mechanics of performing these
operations is tightly bound to the data format of a given certificate. One or more
modules may support the same certificate format, such as X.509
ASN/DER-encoded certificates or Simple Distributed Security Infrastructure (SDSI)
certificates.

As new standard formats are defined and accepted by the industry, CL modules
will be defined and implemented by industry members and used directly and
indirectly by many applications. CL modules encapsulate certificate and CRL data
formats from the semantics of TPs, which are implemented in TP modules.

Since CL modules manipulate memory-based objects only, the persistence of
certificates and CRLs is an independent property of these objects. It is the
responsibility of the application and/or the TP module to use data storage
modules to make these objects persistent (if appropriate). It must be possible for
the storage mechanism used by a data storage module to be independent of the
other modules. It must also be possible to design a CL module that depends on the
storage mechanism of a DL module.

Application developers and TP module developers both benefit from the
extensibility of CL modules. Applications are free to use multiple certificate types
without requiring the application developer to write format-specific code to
manipulate certificates and CRLs. Without increased development complexity,
multiple certificate formats can be used on one system, within one application
domain, or by one application. Certificate Authorities (CAs) who issue certificates
also benefit. Dynamically downloading CLs ensures timely and accurate
propagation of data-format changes.

© Copyright IBM Corp. 1999, 2013 25

Certificate Library Services API
The Certificate Library Services API defines numerous operations on
memory-resident certificates and CRLs as required by every certificate type. These
operations include:
v Creating new certificates and new CRLs
v Signing existing certificates and existing CRLs
v Viewing certificates
v Verifying certificates and CRLs
v Extracting values (e.g., public keys) from certificates
v Importing and exporting certificates of other data formats
v Revoking certificates
v Reinstating revoked certificates
v Searching CRLs
v Providing passthrough for unique, format-specific certificate and CRL

operations.

For detailed information on the Certificate Library API functions, see Chapter 15,
“Certificate Library Services API,” on page 207.

26 z/OS OCSF Application Programming

Chapter 7. Data Storage Library Module Manager

The Data Storage Library Module Manager defines an application programming
interface (API) for secure, persistent storage of certificates and Certificate
Revocation Lists (CRLs). The API allows applications to search and select
certificates and CRLs, and to query meta-data about each data store (such as its
name, date of last modification, size of the data store, etc.). Data Storage Library
(DL) modules implement data store operations. These modules may be drivers or
gateways to traditional, full-featured Database Management Systems (DBMS), to
customized services layered over a file system, or provide access to other forms of
stable storage. A data storage module may execute and store its data locally or
remotely.

The primary purpose of a DL module is to provide secure, persistent storage,
retrieval, and recovery of certificates and CRLs. The persistence of these generic
trust objects is independent of the memory-based manipulations performed by
Certificate Library (CL) modules. DL modules may be invoked by applications, TP
modules, or CL modules that make decisions about the persistence of these trust
objects.

A single DL module may be tightly tied to a CL module or may be independent of
all CL modules. A data DL that is tightly tied to a CL module implements a
persistent storage mechanism that is dependent on the data format of the
certificate. An independent DL implements a storage mechanism that stores
certificates and CRLs without regard for their specific format. A single, physical
data store managed by such DL modules may even contain individual certificates
of different formats.

Each DL module can manage any number of independent, physical data stores.
Each data store must have a logical name used by callers to refer to the persistent
data store. Implementation of the DL module may use local file system facilities,
commercial database management products, and custom-stable storage devices.

A DL module is responsible for the integrity of the records it stores. If the DL
module uses an underlying commercial DBMS, it may choose to further secure the
data store by leveraging integrity services provided by the DBMS. DL modules that
choose to implement persistence using the local file system or a custom- stable
storage device, must decide which (if any) integrity mechanisms to provide.

Data Storage Library Services API
The Data Storage Library Services API defines two categories of operations, which
include:
v Data store management functions. The data store management functions operate

on a data store as a single unit. These operations include opening and closing
data stores, creating and deleting data stores, and importing and exporting data
stores. A data store may contain certificates only, CRLs only, or both. It is
unusual for a DL module to manage a data store containing both certificates and
CRLs, but there is nothing in the OCSF or the DL module API that prevents a
DL module from implementing persistence in this manner. Typically, separate
physical data stores are used to store certificates and CRLs.

© Copyright IBM Corp. 1999, 2013 27

v Persistence operations on certificates and CRLs. The persistence operations on
data stores include:
– Adding new certificates and new CRLs
– Updating existing certificates
– Deleting certificates and CRLs
– Retrieving certificates and CRLs
– Passthrough for unique, module-specific operations.

For detailed information on the Data Storage Library API functions, see Chapter 16,
“Data Storage Library Services API,” on page 231.

28 z/OS OCSF Application Programming

Chapter 8. Service Provider Modules

All cryptographic and key recovery functions, as well as the Trust Policies (TPs),
certificates, and data store functions are performed by service provider modules.
The OCSF Framework itself only manages the interactions between service
provider modules and applications that use them. The OCSF Architecture supports
these types of service providers.
v Cryptographic Service Providers
v Trust Policy Modules
v Certificate Library Modules
v Data Storage Library Modules.

Chapter 8, “Service Provider Modules” presents a brief overview of each type of
service provider module. For a detailed discussion of the OCSF interface the
service providers must support refer to the z/OS Open Cryptographic Services Facility
Service Provider Module Developer's Guide and Reference. Independent Software
Vendors (ISVs) who develop modules for use with OCSF must support the
interface specifications described. The modules may implement all or a subset of
these application programming interfaces (APIs). A single module may also
provide services in multiple categories of service. These are called multiservice
modules. Several service provider modules are provided with the OCSF. These
modules are described in “OCSF Service Provider Modules” on page 31.

Cryptographic Service Provider Modules
Cryptographic Service Providers (CSPs) are modules equipped to perform
cryptographic operations and to securely store private keys. A CSP may implement
one or more of these cryptographic functions:
v Bulk encryption algorithm
v Digital signature algorithm
v Cryptographic hash algorithm
v Unique identification number
v Random number generator
v Secure key storage
v Custom facilities unique to the CSP.

A CSP may be implemented in software, hardware, or both. Typically, CSPs
provide encrypted storage for private keys and variables. CSPs must also deliver
key management services, including key escrow, if it is supported. As a minimum,
CSPs do not reveal key material unless it has been wrapped, but they must
support importing, exporting, and generating keys. The key generation module of
a CSP should be made tamper-resistant.

CSPs typically provide secured storage of private keys and variables. Applications
may query the CSP to retrieve private keys stored within the CSP. The CSP is
responsible for controlling access to the private keys it secures. A callback function
implemented by the requester is invoked by the CSP (or the CSP's adaptation
layer) to obtain the identity and authorization of the user or process requesting the
private key. Most CSPs are capable of importing private keys created by other
CSPs and providing secured storage for such keys.

© Copyright IBM Corp. 1999, 2013 29

Trust Policy Modules
Trust Policy (TP) modules implement policies defined by Certificate Authorities
(CAs) and institutions. Policies define the level of trust required before certain
actions can be performed. Three basic categories or actions exist for all
certificate-based trust domains:
v Actions on certificates
v Actions on Certificate Revocation Lists (CRLs)
v Domain-specific actions (such as issuing a check or writing to a file).

The generic operations defined in the z/OS Open Cryptographic Services Facility
Service Provider Module Developer's Guide and Reference should be supported by
every TP module. Each module may choose to implement the subset of these
operations that are required for its policy. When a TP function has determined the
trustworthiness of performing an action, the TP function may invoke functions in
the Certificate Library (CL) and Data Storage Library (DL) modules to carry out
the mechanics of the approved action.

Certificate Library Modules
Certificate Library (CL) modules implement syntactic manipulation of
memory-resident certificates and CRLs. The OCSF Certificate API defines the
generic operations that should be supported by every CL module. Each module
may choose to implement only those operations required to manipulate a specific
certificate data format.

The implementation of the CL operations should be free of certificate semantics.
Semantic interpretation of certificate values should be implemented in TP modules,
layered services, and applications. The OCSF makes manipulation of certificates
and CRLs orthogonal to persistence of those objects. Hence, it is not recommended
that CL modules invoke the services of DL modules. TP modules, layered security
services, and applications should make decisions regarding the persistence of
certificates.

Data Storage Library Module
A Data Storage Library (DL) module provides stable storage for certificates and
CRLs. Stable storage could be provided by the:
v Commercially available Database Management System (DBMS) product
v Native file system
v Custom hardware-based storage devices.

Each DL module may choose to implement only those operations required to
provide persistent storage for certificates and CRLs under its selected model of
service.

Semantic interpretation of certificate values and CRL values is usually assumed to
be implemented in TP modules. A pass-through function, DL_PassThrough, is
defined in the DL API that allows each DL service provider to provide additional
functions to store and retrieve certificates and CRLs, such as performance
enhancing retrieval functions.

30 z/OS OCSF Application Programming

OCSF Service Provider Modules
A number of service provider modules may be provided with the OCSF. These
modules can be incorporated into applications to perform cryptographic security
operations. The modules include:
v Cryptographic Service Provider Module - There are five cryptographic modules

that may be provided with OCSF.
– IBM Software Cryptographic Service Provider, Version 1.0

Note: This provider differs in the maximum key strength allowed for various
symmetric and asymmetric encryption algorithms.

– IBM Weak Software Cryptographic Service Provider, Version 1.0

Note: This provider differs in the maximum key strength allowed for various
symmetric and asymmetric encryption algorithms.

– IBM Software Cryptographic Service Provider 2, Version 1.0

Note: This provider may be used in place of or in addition to IBM
Cryptographic Service Provider, Version 1.0.

– IBM Weak Software Cryptographic Service Provider 2, Version 1.0

Note: This provider may be used in place of or in addition to IBM WEAK
Software Cryptographic Service Provider, Version 1.0.

– IBM CCA Cryptographic Module, Version 1.0.
v Trust Policy Module - There are two trust policy modules that may be provided

with OCSF.
– IBM Standard Trust Policy Library, Version 1.0
– IBM Extended Trust Policy Library, Version 1.0.

v Certificate Library Module - There is one supported certificate library module
that is provided with OCSF.
– IBM Certificate Library, Version 1.0

Note: There is an additional certificate library module that is internal, it is the
IBM Internal Certificate Library, Version 1.0

v Data Store Library Module - There is two data store library modules that may be
provided with OCSF.
– IBM Data Library, Version 1.0
– IBM LDAP Data Library, Version 1.0

The OCSF API functions supported by each service of the provider modules are
outlined in the Data Store Library Module. For detailed information on the
behavior of the individual APIs, refer to the z/OS Open Cryptographic Services
Facility Service Provider Module Developer's Guide and Reference.

Chapter 8. Service Provider Modules 31

IBM Software Cryptographic Service Provider, Version 1.0

The files required for the IBM Software Cryptographic Service Provider, Version 1.0
are:
v ibmswcsp.so
v ibmswcsp.h

The IBM Software Cryptographic Service Provider module provides cryptographic
functionality. Table 1 on page 33 lists the OCSF API functions supported by this
module.

All functions that require input/output buffers support only one buffer at a time
and not a vector of buffers. If an application provides a buffer to the CSP module,
it must also specify the buffer length. On return from an OCSF API function, the
length field of an output buffer will be set to the length of returned data. If an
output buffer's length is set to zero and its data pointer is set to NULL, the CSP
will allocate the needed memory on the application behalf. It is the responsibility
of the application to free this memory when done.

For encryption/decryption operations, there are two operative contexts:
v Symmetric or asymmetric
v Key generation.

Regarding Use of the IBM Software Cryptographic Service Provider

Portions of the IBM Software Cryptographic Service Provider contained in the Open
Cryptographic Services Facility base of OS/390 contain software code provided by RSA
Data Security, Inc.

Prior to utilizing the OS/390 Open Cryptographic Services APIs of the IBM Software
Cryptographic Service Provider functionality contained in the OCSF base for purposes of
development and test only, you must provide your company name, company contact
name, address and telephone number to RSA Data Security, Inc. (RSA), by sending this
information to:

Email: sales@rsa.com <mailto:sales@rsa.com> or

RSA Data Security, Inc.
2955 Campus Drive, Suite 400
San Mateo, CA 94403-2507
Attention: SALES or

FAX: 650-295-7770
Attention: SALES.

Prior to using (except for test or development purposes), marketing, selling, or
distributing applications developed by you that directly utilize the Open Cryptographic
Services Facility Cryptographic Services APIs of the IBM Software Cryptographic Service
Provider functionality (i.e., utilizing the Open Cryptographic Services Facility
Cryptographic Services APIs of the IBM Software Cryptographic Service Provider
contained in the OCSF base), you must first obtain (if you have not already done so) a
license from RSA for that application.

32 z/OS OCSF Application Programming

The effective bits attribute for RC2, or the rounds attribute for RC5, must be set in
the symmetric context, not the key generation context. The value of either
parameter is passed as the Params input to CSSM_CSP_CreateSymmetricContext
or to CSSM_UpdateContextAttributes.

Table 1. IBM Software Cryptographic Service Provider OCSF Functions

Function Suppported Comments

CSSM_QuerySize No

CSSM_SignData CSSM_SignDataInit
CSSM_SignDataUpdate
CSSM_SignDataFinal

Yes Algorithms Supported:
CSSM_ALGID_MD2WithRSA
CSSM_ALGID_MD5WithRSA
CSSM_ALGID_SHA1WithRSA
CSSM_ALGID_SHA1WithDSA

CSSM_VerifyData CSSM_VerifyDataInit
CSSM_VerifyDataUpdate
CSSM_VerifyDataFinal

Yes Algorithms Supported:
CSSM_ALGID_MD2WithRSA
CSSM_ALGID_MD5WithRSA
CSSM_ALGID_SHA1WithRSA
CSSM_ALGID_SHA1WithDSA

CSSM_DigestData CSSM_DigestDataInit
CSSM_DigestDataUpdate
CSSM_DigestDataFinal

Yes Algorithms Supported:
CSSM_ALGID_MD2
CSSM_ALGID_MD5
CSSM_ALGID_SHA1

CSSM_DigestDataClone No

CSSM_GenerateMac No

CSSM_GenerateMacInit No

CSSM_GenerateMacUpdate No

CSSM_GenerateMacFinal No

CSSM_VerifyMac No

CSSM_VerifyMacInit No

CSSM_VerifyMacUpdate No

CSSM_VerifyMacFinal No

CSSM_EncryptData1 (See Note)
CSSM_EncryptDataInit
CSSM_EncryptDataUpdate
CSSM_EncryptDataFinal

Yes Algorithms/modes supported: See
Table 2 on page 34

CSSM_DecryptData (See Note)
CSSM_DecryptDataInit
CSSM_DecryptDataUpdate
CSSM_DecryptDataFinal

Yes Algorithms/modes supported: See
Table 2 on page 34

CSSM_QueryKeySizeInBits Yes

CSSM_GenerateKey Yes Algorithms/Modes Supported:
CSSM_ALGID_DES
CSSM_ALGID_3DES_3KEY
CSSM_ALGID_RC2
CSSM_ALGID_RC4
CSSM_ALGID_RC5

CSSM_GenerateKeyPair Yes Algorithms Supported: (see Note 1
on page 35) CSSM_ALGID_RSA
CSSM_ALGID_DSA
CSSM_ALGID_DSA_BSAFE
CSSM_ALGID_DH

Chapter 8. Service Provider Modules 33

Table 1. IBM Software Cryptographic Service Provider OCSF Functions (continued)

Function Suppported Comments

CSSM_GenerateRandom Yes Algorithms Supported:
CSSM_ALGID_MD2Random
CSSM_ALGID_MD5Random

CSSM_GenerateAlgorithmParams Yes Algorithm Supported: (see Note 2
on page 35) CSSM_ALGID_DH

CSSM_WrapKey No

CSSM_UnwrapKey No

CSSM_DeriveKey Yes Algorithm Supported: (see Note 3
on page 35) CSSM_ALGID_DH

CSSM_CSP_PassThrough No

CSSM_CSP_Login No

CSSM_CSP_Logout No

CSSM_CSP_ChangeLoginPassword No

Note: The Cryptographic strength allowed is dependent on the policy module that
you have the OCSF feature that you have installed.

Table 2. Algorithms/Modes Supported for CSSM_Encrypt and CSM_Decrypt Functions

Algorithm Mode

CSSM_ALGID_RSA (See Note 1) ----

CSSM_ALGID_RSA_PKCS (See Note 2) ----

CSSM_ALGID_DES CSSM_ALGMODE_CBCPadIV8
CSSM_ALGMODE_CBC_IV8
CSSM_ALGMODE_CBC

CSSM_ALGID_3DES_3KEY CSSM_ALGMODE_CBCPadIV8
CSSM_ALGMODE_CBC_IV8
CSSM_ALGMODE_CBC

CSSM_ALGID_RC2 CSSM_ALGMODE_CBCPadIV8
CSSM_ALGMODE_CBC_IV8
CSSM_ALGMODE_CBC

CSSM_ALGID_RC4 CSSM_ALGMODE_NONE

CSSM_ALGID_RC5 CSSM_ALGMODE_CBCPadIV8
CSSM_ALGMODE_CBC_IV8
CSSM_ALGMODE_CBC

Note:

1. The input value must be less than the key size.

2. The total input must be no more than k-11 bytes long; where k is the key size length in
bytes.

Note:

34 z/OS OCSF Application Programming

1. CSSM_GenerateKeyPair - For CSSM_ALGID_RSA, the key attribute specified
on the CSSM_GenerateKeyPair invocation determines the format of the key. If
CSSM_KEYATTR_PERMANENT is specified then the key pair that is generated
is in typical IBM software CSP key format. If CSSM_KEYATTR_SENSITIVE is
specified then the key pair that is generated is in an ICSF (token) readable
format. This format allows RSA key pairs to be generated by the software CSP
which can be utilized by the IBM (hardware) CCA module.
For CSSM_ALGID_DH, the public key contains the public part to be exchanged
with the other side. The private key contains a temporary handle that is valid
only during the attach session. The private key and the other side's public key
will be input to the CSSM_DeriveKey to derive the agreed upon symmetric key.
Invoke CSSM_CSP_CreateKeyGenContext in the IBM Software Cryptographic
Service Provider with values in the KeyHeader set as follows:
v KeyAttr for both private and public keys set to CSSM_KEYATTR_SENSITIVE
v KeyUsage and KeySizeInBits set to the appropriate value.

Intended Use of Key Key Usage KeySizeInBits

OAEP SET Block Compose
OAEP SET Block DeCompose

CSSM_KEYUSE_SIGN 1024

Wrap key CSSM_KEYUSE_WRAP
CSSM_KEYUSE_ANY

256-1024

Unwrap key CSSM_KEYUSE_UNWRAP
CSSM_KEYUSE_ANY

256-1024

Signature Generate CSSM_KEYUSE_SIGN
CSSM_KEYUSE_ANY

256-1024

Signature Verify CSSM_KEYUSE_VERIFY
CSSM_KEYUSE_ANY

256-1024

2. CSSM_GenerateAlgorithmParams - This function must be called with a
KEYGEN context with the Params input of the
CSSM_CSP_CreateKeyGenContext set to NULL. The output Params of this
functions is then passed to another CSSM_CSP_CreateKeyGenContext to
generate the Diffie-Hellman key pair.
Generating a key pair for Diffie-Hellman requires an additional input called
key generation parameters. These are usually supplied from an external source,
but if they are not, you need to generate them by:
a. Invoking CSSM_CSP_CreateKeyGenContext with Params set to NULL.
b. Invoking CSSM_GenerateAlgorithParams. The output Params from this

function contains the key generation parameters.
c. Deleting the KeyGenContext built in step a; you will need a new

KeyGenContext to generate the Diffie-Hellman key pair itself.
A similar requirement exists for DSA, where the extra parameters are
sometimes called network values. If you don't already have the key generation
parameters, you need to perform the same three steps as for Diffie-Hellman.

3. CSSM_DeriveKey - The BaseKey parameter should be set to the private key
returned from the CSSM_GenerateKeyPair function. Param should be set to the
public key received from the other side of the key exchange operation.

Chapter 8. Service Provider Modules 35

IBM Weak Software Cryptographic Service Provider, Version 1.0

The files required for the IBM Weak Software Cryptographic Service Provider,
Version 1.0 are:
v ibmwkcsp.so
v Ibmwkcsp.h

The Weak Software Cryptographic Provider offers the same OCSF API functions as
the Software Cryptographic Service Provider (see Table 1 on page 33), except for
DES and 3DES_3KEY.

The maximum cryptographic strengths allowed are 40 bit for RC2, RC4, and RC5.
The maximum cryptographic strengths allowed are 512 bits for RSA and DSA
requests.

IBM Software Cryptographic Service Provider 2, Version 1.0
The files required for the IBM Software Cryptographic Service Provider 2 , Version
1.0 are:
v ibmswcsp2.so
v ibmswcsp2.h

The IBM Software Cryptographic Service Provider 2 module provides
cryptographic functionality. Table 3 on page 37 lists the OCSF API functions
supported by this module.

Regarding Use of the IBM Weak Software Cryptographic Service Provider

Portions of the IBM Weak Software Cryptographic Service Provider contained in the
Open Cryptographic Services Facility base of OS/390 contain software code provided by
RSA Data Security, Inc.

Prior to utilizing the OS/390 Open Cryptographic Services APIs of the IBM Weak
Software Cryptographic Service Provider functionality contained in the OCSF base for
purposes of development and test only, you must provide your company name,
company contact name, address and telephone number to RSA Data Security, Inc. (RSA),
by sending this information to:

Email: sales@rsa.com <mailto:sales@rsa.com> or

RSA Data Security, Inc.
2955 Campus Drive, Suite 400
San Mateo, CA 94403-2507
Attention: SALES or

FAX: 650-295-7770
Attention: SALES.

Prior to using (except for test or development purposes), marketing, selling or
distributing applications developed by you that directly utilize the Open Cryptographic
Services Facility Cryptographic Services APIs of the IBM Weak Software Cryptographic
Service Provider functionality (i.e., utilizing the Open Cryptographic Services Facility
Cryptographic Services APIs of the IBM Weak Software Cryptographic Service Provider
contained in the OCSF base), you must first obtain (if you have not already done so) a
license from RSA for that application.

36 z/OS OCSF Application Programming

All functions that require input/output buffers support only one buffer at a time
and not a vector of buffers. If an application provides a buffer to the CSP module,
it must also specify the buffer length. On return from an OCSF API function, the
length field of an output buffer will be set to the length of returned data. If an
output buffer's length is set to zero and its data pointer is set to NULL, the CSP
will allocate the needed memory on the application behalf. It is the responsibility
of the application to free this memory when done. Encryption/Decryption in place
is not supported. That is, the same buffer may not be supplied as both input and
output to the Encryption and Decryption functions.

For encryption/decryption operations, there are two operative contexts:
v Symmetric or asymmetric
v Key generation.

The effective bits attribute for RC2 must be set in the symmetric context, not the
key generation context. The value of either parameter is passed as the Params
input to CSSM_CSP_CreateSymmetricContext or to
CSSM_UpdateContextAttributes.

Table 3. IBM Software Cryptographic Service Provider 2 OCSF Functions

Function Suppported Comments

CSSM_QuerySize No

CSSM_SignData CSSM_SignDataInit
CSSM_SignDataUpdate
CSSM_SignDataFinal

Yes Algorithms Supported:
CSSM_ALGID_MD2WithRSA
CSSM_ALGID_MD5WithRSA
CSSM_ALGID_SHA1WithRSA
CSSM_ALGID_SHA1WithDSA

CSSM_VerifyData CSSM_VerifyDataInit
CSSM_VerifyDataUpdate
CSSM_VerifyDataFinal

Yes Algorithms Supported:
CSSM_ALGID_MD2WithRSA
CSSM_ALGID_MD5WithRSA
CSSM_ALGID_SHA1WithRSA
CSSM_ALGID_SHA1WithDSA

CSSM_DigestData CSSM_DigestDataInit
CSSM_DigestDataUpdate
CSSM_DigestDataFinal

Yes Algorithms Supported:
CSSM_ALGID_MD2
CSSM_ALGID_MD5
CSSM_ALGID_SHA1

CSSM_DigestDataClone No

CSSM_GenerateMac No

CSSM_GenerateMacInit No

CSSM_GenerateMacUpdate No

CSSM_GenerateMacFinal No

CSSM_VerifyMac No

CSSM_VerifyMacInit No

CSSM_VerifyMacUpdate No

CSSM_VerifyMacFinal No

Chapter 8. Service Provider Modules 37

Table 3. IBM Software Cryptographic Service Provider 2 OCSF Functions (continued)

Function Suppported Comments

CSSM_EncryptData1 (See Note)
CSSM_EncryptDataInit
CSSM_EncryptDataUpdate
CSSM_EncryptDataFinal

Yes Algorithms/modes supported:
See Table 4 on page 39.

For algorithm
CSSM_ALGID_RSA, repeated
calls to
CSSM_EncryptDataUpdate
accumulate cleartext data, but
do not perform any encryption
until CSSM_EncryptDataFinal
is called.

CSSM_DecryptData (See Note)
CSSM_DecryptDataInit
CSSM_DecryptDataUpdate
CSSM_DecryptDataFinal

Yes Algorithms/modes supported:
See Table 4 on page 39

CSSM_QueryKeySizeInBits Yes

CSSM_GenerateKey Yes Algorithms/Modes Supported:
CSSM_ALGID_DES
CSSM_ALGID_3DES_3KEY
CSSM_ALGID_RC2
CSSM_ALGID_RC4

CSSM_GenerateKeyPair Yes Algorithms Supported: (see
Note 1 on page 40)

CSSM_ALGID_RSA (Key
length 362-2048, even numbers
only)

CSSM_ALGID_DSA (Key
length 512, 1024,
2048)CSSM_ALGID_DH

CSSM_GenerateRandom Yes Algorithms Supported:
CSSM_ALGID_SHARandom is
the only algorithm used to
generate a random number.
However, to maintain
compatibility with SWCSP,
CSSM_ALGID_MD2Random
and
CSSM_ALGID_MD5Random
are accepted without error. The
number generated will use
CSSM_ALGID_SHARandom,
regardless.

CSSM_GenerateAlgorithmParams Yes Algorithm Supported: (see
Note 2 on page 40)
CSSM_ALGID_DH

CSSM_WrapKey No

CSSM_UnwrapKey No

CSSM_DeriveKey Yes Algorithm Supported: (see
Note 3 on page 40)
CSSM_ALGID_DH

CSSM_CSP_PassThrough No

38 z/OS OCSF Application Programming

Table 3. IBM Software Cryptographic Service Provider 2 OCSF Functions (continued)

Function Suppported Comments

CSSM_CSP_Login No

CSSM_CSP_Logout No

CSSM_CSP_ChangeLoginPassword No

Note: The Cryptographic strength allowed is dependent on the policy module that
you have the OCSF feature that you have installed.

Table 4. Algorithms/Modes Supported for CSSM_Encrypt and CSM_Decrypt Functions

Algorithm Mode

CSSM_ALGID_RSA (See Note 1 on page 40) ----

CSSM_ALGID_RSA_PKCS (See Note 1 on
page 40)

Same as CSSM_ALGID_RSA.

CSSM_ALGID_DES CSSM_ALGMODE_CBCPadIV8
CSSM_ALGMODE_CBC_IV8

CSSM_ALGID_3DES_3KEY CSSM_ALGMODE_CBCPadIV8
CSSM_ALGMODE_CBC_IV8
CSSM_ALGMODE_CBC

CSSM_ALGID_RC2 CSSM_ALGMODE_CBCPadIV8
CSSM_ALGMODE_CBC_IV8

The key size in bits must be larger than the
'effective key size' specified on the call to
CSSM_CSP_CreateSymmetricContext().
Otherwise, encrypt/decrypt operations will
fail with CSSM_INVALID_KEY_LENGTH
error.

CSSM_ALGID_RC4 CSSM_ALGMODE_NONE

Note:

1. The total input must be no more than k-11 bytes long; where k is the key size length in
bytes. Supports encryption with public key and decryption with private key only. Does
not support encryption with private key or decryption with public key.

Note:

Chapter 8. Service Provider Modules 39

1. CSSM_GenerateKeyPair - For CSSM_ALGID_RSA, the key attribute specified
on the CSSM_GenerateKeyPair invocation determines the format of the key. If
CSSM_KEYATTR_PERMANENT is specified then the key pair that is generated
is in typical IBM software CSP key format. If CSSM_KEYATTR_SENSITIVE is
specified then the key pair that is generated is in an ICSF (token) readable
format. This format allows RSA key pairs to be generated by the software CSP
which can be utilized by the IBM (hardware) CCA module.
For CSSM_ALGID_DH, the public key contains the public part to be exchanged
with the other side. The private key contains a temporary handle that is valid
only during the attach session. The private key and the other side's public key
will be input to the CSSM_DeriveKey to derive the agreed upon symmetric key.
Invoke CSSM_CSP_CreateKeyGenContext in the IBM Software Cryptographic
Service Provider with values in the KeyHeader set as follows:
v KeyAttr for both private and public keys set to CSSM_KEYATTR_SENSITIVE
v KeyUsage and KeySizeInBits set to the appropriate value.

Intended Use of Key Key Usage KeySizeInBits

OAEP SET Block Compose
OAEP SET Block DeCompose

CSSM_KEYUSE_SIGN 1024

Wrap key CSSM_KEYUSE_WRAP
CSSM_KEYUSE_ANY

256-1024

Unwrap key CSSM_KEYUSE_UNWRAP
CSSM_KEYUSE_ANY

256-1024

Signature Generate CSSM_KEYUSE_SIGN
CSSM_KEYUSE_ANY

256-1024

Signature Verify CSSM_KEYUSE_VERIFY
CSSM_KEYUSE_ANY

256-1024

2. CSSM_GenerateAlgorithmParams - Generating a key pair for Diffie-Hellman
requires an additional input called key generation parameters.
These are usually supplied from an external source, but if they are not, you
need to generate them by:
a. Invoking CSSM_CSP_CreateKeyGenContext with Params set to NULL.
b. Invoking CSSM_GenerateAlgorithParams. The output Params from this

function contains the key generation parameters.
c. Deleting the KeyGenContext built in step a; you will need a new

KeyGenContext to generate the Diffie-Hellman key pair itself.
3. CSSM_DeriveKey - The BaseKey parameter should be set to the private key

returned from the CSSM_GenerateKeyPair function. Param should be set to the
public key received from the other side of the key exchange operation. The
DeriveKeyLength parameter in CSSM_CSP_CreateDeriveKeyContext is ignored.
The derived key length is equal to the length of the private key supplied in the
BaseKey parameter.

IBM Weak Software Cryptographic Service Provider 2, Version 1.0
The files required for the IBM Weak Software Cryptographic Service Provider 2,
Version 1.0 are:
v ibmwkcsp2.so
v ibmwkcsp2.h

40 z/OS OCSF Application Programming

The Weak Software Cryptographic Provider 2 offers the same OCSF API functions
as the Software Cryptographic Service Provider 2 (see Table 3 on page 37), except
for DES and 3DES_3KEY.

The maximum cryptographic strengths allowed are 40 bit for RC2 and RC4. The
maximum cryptographic strengths allowed are 512 bits for RSA and DSA requests.

IBM CCA Cryptographic Module Version 1.0

Note: The IBM CCA Cryptographic Module, Version 1.0, is always installed when
the OCSF Installation Script is run (see “Running the Installation Script” on page 5
). However, the function provided by the IBM CCA Cryptographic Module Version
1.0 is available to your application only if the Cryptographic Hardware feature is
installed on your processor. Additionally, the z/OS Integrated Cryptographic
Service Facility (ICSF) must be installed, configured to run with the Cryptographic
Hardware feature, and must be active. Refer to the z/OS Cryptographic Services ICSF
Administrator's Guide, SA22-7521, for more information. For ICSF error codes not
related to OCSF activities and for more detailed information on ICSF data and
functions, refer to the z/OS Cryptographic Services ICSF Application Programmer's
Guide, SA22-7522.

The files required by the IBM CCA Cryptographic Module, Version 1.0 are:
v ibmcca.so
v ibmcca.h

The IBM Common Cryptographic Architecture (CCA) Cryptographic Module
provides cryptographic capabilities to OCSF applications running in a UNIX
System Services environment. Table 3 lists the OCSF API functions that this
module supports. The IBM CCA Cryptographic Module relies on the Integrated
Cryptographic Services Facility (ICSF) and its underlying cryptographic hardware
to provide its services. It currently supports these capabilities:
v Data digesting using MD5 and SHA-1 hashing algorithms (CSSM_ALGID_MD5

and CSSM_ALGID_SHA1)
v Generation of random numbers
v DES encryption/decryption algorithm (CSSM_ALGID_DES). These

encryption/decryption modes (one of which must be explicitly included into the
correspondent cryptographic context) are supported:
– CSSM_ALGMODE_CBC
– CSSM_ALGMODE_CBC_IV8
– CSSM_ALGMODE_CBCPadIV8
If CSSM_ALGMODE_CBC or CSSM_ALGMODE_CBC_IV8 is used during
encryption, the length of the data must be an integral multiple of 8 bytes.

v Capability of wrapping single or double or triple-length DES keys algorithms
v RSA key pairs up to 1024 bits long for these operations:

– Signature/verification
– DES key exchange
These RSA family algorithms are supported:
– CSSM_ALGID_RSA_PKCS
– CSSM_ALGID_RSA_ISO9796

v Data encryption/decryption using RSA Optimal Asymmetric Encryption
Padding (OAEP) algorithm (part of Secure Electronic Transaction (SET) protocol)
– CSSM_ALGID_WrapSET_OAEP. The optional encryption hashing mode

Chapter 8. Service Provider Modules 41

supported for this algorithm is CSSM_ALGMODE_OAEP_HASH. If the mode is
not specified, encryption using default (non-hashing) mode is performed.
Multiple buffers are not supported during encryption and decryption operations.
Although encryption/decryption using the RSA OAEP algorithm makes use of
two buffers, these buffers have a different significance than described in this
information. (See the description of the CSSM_EncryptData() and
CSSM_DecryptData() functions.)
If a function expects a CSSM_DATA structure as a parameter describing the
output, and the Length element is zero and Data element is NULL, then the
necessary memory will be allocated by the function. If the user specifies a
CSSM_DATA structure then it is the user's responsibility to ensure that the
Length element specified matches the length of the Data block allocated. Failure
to do will produce PROTECTION EXCEPTIONs.

Table 5. IBM CCA Cryptographic Module OCSF Functions

Cryptographic Library Functions

Function Name Supported Comments

CSSM_QuerySize Yes See Note 1 on page 43.

CSSM_SignData Yes See Note 2 on page 43.

CSSM_SignDataInit Yes

CSSM_SignDataUpdate Yes

CSSM_SignDataFinal Yes

CSSM_VerifyData Yes See Note 3 on page 44.

CSSM_VerifyDataInit Yes See Note 3 on page 44.

CSSM_VerifyDataUpdate Yes

CSSM_VerifyDataFinal Yes

CSSM_DigestData
CSSM_DigestDataInit
CSSM_DigestDataUpdate
CSSM_DigestDataFinal

Yes Algorithms Supported:
CSSM_ALGID_MD5
CSSM_ALGID_SHA1

CSSM_DigestDataClone Yes

CSSM_GenerateMac
CSSM_GenerateMacInit
CSSM_GenerateMacUpdate
CSSM_GenerateMacFinal

Yes Algorithms Supported:
CSSM_ALGID_DES

CSSM_VerifyMac CSSM_VerifyMacInit
CSSM_VerifyMacUpdate
CSSM_VerifyMacFinal

Yes Algorithms Supported:
CSSM_ALGID_DES

CSSM_EncryptData
CSSM_EncryptDataInit
CSSM_EncryptDataUpdate
CSSM_EncryptDataFinal

Yes See Note 4 on page 44.

CSSM_DecryptData Yes See Note 5 on page 44.

CSSM_DecryptDataInit
CSSM_DecryptDataUpdate
CSSM_DecryptDataFinal

Yes See Note 6 on page 45.

CSSM_QueryKeySizeInBits Yes

42 z/OS OCSF Application Programming

Table 5. IBM CCA Cryptographic Module OCSF Functions (continued)

Cryptographic Library Functions

Function Name Supported Comments

CSSM_GenerateKey Yes No DES wrap support
(import/export). For DES, Encrypt,
Decrypt support only. See Note 7 on
page 45.

CSSM_GenerateKeyPair Yes See Note 8 on page 45.

CSSM_GenerateRandom Yes

CSSM_GenerateAlgorithmParams No

CSSM_WrapKey CSSM_UnwrapKey Yes See Note 9 on page 46. See Note 10
on page 46.

CSSM_DeriveKey No

CSSM_CSP_PassThrough No

CSSM_CSP_Login No Does not apply. ICSF is a started
task, you do not log into or out of it.

CSSM_CSP_Logout No

CSSM_CSP_ChangeLoginPassword No

Note:

1. CSSM_QuerySize - In addition to the conventional usage, this function may
be used in order to find out the sizes of the necessary output buffers for the
RSA OAEP encryption/decryption. In order to do this, an application must set
the ContextType field of the Context parameter to
CSSM_ALGCLASS_ASYMMETRIC. The function will expect these input
parameters:
v DataBlock should be an array of two CSSM_QUERY_SIZE_DATA structures.
These values are expected in these structures on input and stored there on
output.
if Encrypt parameter equals CSSM_TRUE:

Input Output

Block 1 Size of plain text data Size of encrypted data

Block 2 Size of XDATA Size of OAEP block

if Encrypt parameter equals CSSM_FALSE:

Input Output

Block 1 Size of encrypted data Size of decrypted data

Block 2 Size of OAEP block Size of XDATA

2. CSSM_SignData - The SignData and VerifyData services allow you to sign or
verify using a digest. To sign or verify using a digest, the Context algorithm
must be specified as CSSM_ALGID_RSA. (The algorithm CSSM_ALGID_RSA
applies only to CSSM_SignData and CSSM_VerifyData. It does not apply to
DataInit, DataUpdate, or DataFinal functions for Sign or Verify.) Using the
CSSM_ALGID_RSA algorithm, SignData assumes the data passed is a digest.
It encrypts the data with the RSA private key using PKCS 1.1 formatting.

Chapter 8. Service Provider Modules 43

3. CSSM_VerifyData, CSSM_VerifyDataInit - In addition to standard
verification, verification of a RSA signature using a clear RSA key is
supported. The RSA key has to have been inserted into the encryption context
as the CSSM_ATTRIBUTE_KEY attribute. The BlobType element of the key
header needs to be set to CSSM_KEYBLOB_RAW.
v The SignData and VerifyData services allow you to sign or verify using a

digest. To sign or verify using a digest, the Context algorithm must be
specified as CSSM_ALGID_RSA. (The algorithm CSSM_ALGID_RSA applies
only to CSSM_SignData and CSSM_VerifyData. It does not apply to
DataInit, DataUpdate, or DataFinal functions for Sign or Verify.) The
VerifyData function decrypts the algorithm using the RSA public key. It
recovers the digest from the PKCS 1.1 formatting and compares it to the
digest (data) provided. When generating key pairs for signing, it is
necessary to specify KeyUsage CSSM_KEYUSE_SIGN. If the key is used for
other operations (such as, encryption) they must also be specified.

4. CSSM_EncryptData - Mulitiple input and output buffers are not supported.
v Asymmetric encryption using RSA OAEP algorithm is supported. The

significance of the parameters in this case is as follows. (See the Secure
Electronic Transaction specification for additional information.)
– The ClearBufCount and CipherBufCount parameters should both equal 2.
– The first (index 0) ClearBuf buffer should contain BC byte at the offset 0,

and XDATA starting at the offset of 1.
– The second (index 1) ClearBuf buffer should contain the data to be

encrypted.
– The OAEP block will be stored in the first (index 0) CipherBuf.
– The encrypted data will be stored in the second (index 1) CipherBuf.
(See also the CSSM_DecryptData() function description in Note 5.)

v In addition to standard encryption, symmetric encryption using clear single
length (8 bytes) DES key is supported. The DES key has to have been
inserted into the encryption context as the CSSM_ATTRIBUTE_KEY
attribute. The BlobType element of the key header needs to be set to
CSSM_KEYBLOB_RAW.

v Support is provided for data encryption using an RSA key. The data in the
ClearBuf is encrypted using the RSA key in the Context. The length of the
data cannot exceed the size of the RSA key (modulus length). The CiphBuf
must be at least the size of the RSA key. The data must be formatted using
the PKCS-1.2 algorithm. These Context quantities must be specified for data
encryption using an RSA key:

AlgorithmType = CSSM_ALGID_RSA_PKCS or CSSM_ALGID_RSA
Key AlgorithmId = CSSM_ALGID_RSA_PKCS

CSSM_EncryptDataInit - In addition to standard encryption, symmetric
encryption using clear single length (8 bytes) DES key is supported. The DES
key has to have been inserted into the encryption context as the
CSSM_ATTRIBUTE_KEY attribute. The BlobType element of the key header
needs to be set to CSSM_KEYBLOB_RAW.
CSSM_EncryptDataUpdate, CSSM_EncryptDataFinal - Multiple input and
output buffers are not supported.

5. CSSM_DecryptData - Mulitple input/output buffers are not supported.
v Asymmetric decryption using RSA OAEP algorithm is supported. The

significance of the parameters in this case is as follows (see the Secure
Electronic Transaction specification for additional information):
– The ClearBufCount and CipherBufCount parameters should both equal 2.

44 z/OS OCSF Application Programming

– The first (index 0) CipherBuf contains the OAEP block.
– The second (index 1) CipherBuf contains the encrypted data. The Output

CipherBuf buffers from CSSM_EncryptData() my be supplied without
any modifications as parameters for CSSM_DecryptData()).

– After decryption, BC byte will be stored at the offset 0 of the first (index
0) ClearBuf buffer, and XDATA will be stored in the same buffer starting
at the offset of 1 byte.

– The decrypted data will be stored in the second (index 1) ClearBuf
buffer.

Because of the specifics of the SET implementation, the length returned for
the first (index 0) ClearBuf is always going to be 95 regardless of the actual
size of the XDATA supplied during the encryption. It is therefore
recommended that an application initialize this buffer with zeros before
comparing it with the XDATA supplied as input for CSSM_EncryptData().
(See also the CSSM_EncryptData() function description.)

v In addition to standard decryption, symmetric decryption using clear single
length (8 bytes) DES key is supported. The DES key has to have been
inserted into the decryption context as the CSSM_ATTRIBUTE_KEY
attribute. The BlobType element of the key header needs to be set to
CSSM_KEYBLOB_RAW.

v Support is provided for data decryption using an RSA key. The data in the
CiphBuf is decrypted using the RSA key in the Context. The length of the
ciphered text cannot exceed the size of the RSA key. The data must be
formatted using the PKCS-1.2 algorithm. These Context quantities must be
specified for data decryption using an RSA key:

AlgorithmType = CSSM_ALGID_RSA_PKCS or CSSM_ALGID_RSA
Key AlgorithmId = CSSM_ALGID_RSA_PKCS

6. CSSM_DecryptDataInit - Symmetric decryption using clear single length (8
bytes) DES key is supported. The DES key has to have been inserted into the
decryption context as the CSSM_ATTRIBUTE_KEY attribute. The BlobType
element of the key header needs to be set to CSSM_KEYBLOB_RAW.
CSSM_DecryptDataUpdate, CSSM_DecryptDataFinal - Multiple input and
output buffers are not supported.

7. CSSM_GenerateKey - For use in generating regular DES keys (keys with
CSSM_KEYUSE_ENCRYPT and CSSM_KEYUSE_DECRYPT key usage
properties), this function can not be used for wrapping or unwrapping keys.

8. CSSM_GenerateKeyPair - RSA key generation can also be accomplished by
the IBM software CSP service provider by specifying the
CSSM_KEYATTR_SENSITIVE key attribute on the CSSM_GenerateKeyPair
invocation. See “CSSM_GenerateKeyPair” on page 157.
The key pair generated is an RSA Internal Private key in Modulus Exponent
form. This key can be used in all of the cryptographic services allowed in
Table 5 on page 42. It cannot be used in the Certificate Library calls. The IBM
software CSP service provider should be used to generate keys for use in CL
calls.
When generating key pairs, the fields for Public Key Usage and Private Key
Usage must be specified.

Intended Use of Key Key Usage KeySizeInBits

OAEP SET Block Compose OAEP SET
Block DeCompose

CSSM_KEYUSE_SIGN 512-1024

Wrap key CSSM_KEYUSE_WRAP 512-1024

Chapter 8. Service Provider Modules 45

Intended Use of Key Key Usage KeySizeInBits

Unwrap key CSSM_KEYUSE_UNWRAP 512-1024

Signature Generate CSSM_KEYUSE_SIGN 512-1024

Signature Verify CSSM_KEYUSE_VERIFY 512-1024

9. CSSM_WrapKey - If the key to be wrapped is an RSA public key, it is
exported "in the clear" to facilitate RSA public key exchange between
cryptographic nodes. (See also the CSSM_UnwrapKey() function description.)
If the key to be wrapped is a DES key the clear key value is recovered from
the DES key internal format and encrypted under the RSA key provided.

10. CSSM_UnwrapKey - In addition to standard semantics, if the key to be
unwrapped is a previously wrapped RSA public key (see the
CSSM_WrapKey() function), it is imported into the module's internal format to
facilitate RSA public key exchange between cryptographic nodes.
An application imports a DES key into the modules internal format and
imports an RSA public key as an RSA public key value. An appropriate
CSSM_KEY structure must be supplied as a wrapped key parameter. The
BlobType element of the key header needs to be set to CSSM_KEYBLOB_RAW
for both DES and RSA clear keys. Additionally, for clear RSA public keys the
Format element of the key header has to be as shown in Table 6.

Table 6. CSSM_Key Function

Keyblob Format KeyData.Data Points To

CSSM_KEYBLOB_RAW_FORMAT_CDSA CSSM_RSA_PUBLIC structure

CSSM_KEYBLOB_RAW_FORMAT_CCA Structure containing an RSA public key
stored in CCA internal format

IBM Standard Trust Policy Library, Version 1.0
The files required for the IBM Standard Trust Policy Library, Version 1.0 are:
v ibmtp.so
v ibmtp.h

The IBM Standard Trust Policy Library provides a simple generic service for
verifying chains of X.509 certificates. The current version does not support
operations that require DL operations. This module expects X.509 Version 3 signed
certificates in ASN/DER-encoded format. In order to verify a given certificate, the
application should supply the complete chain (see Table 7). This is to be used in
conjunction with the IBM Certificate Library, Version 1.0 service provider and the
IBM Software Service Cryptographic Provider, Version 1.0.

Table 7. IBM Standard Trust Policy Library OCSF Functions

Functions Supported Comments

CSSM_TP_CertSign No

CSSM_TP_CertRevoke No

CSSM_TP_CrlSign No

CSSM_TP_CrlVerify No

CSSM_TP_ApplyCrlToDb No

CSSM_TP_CertGroupConstruct No

CSSM_TP_CertGroupPrune No

46 z/OS OCSF Application Programming

Table 7. IBM Standard Trust Policy Library OCSF Functions (continued)

Functions Supported Comments

CSSM_TP_CertGroupVerify Yes See Note 1

CSSM_TP_PassThrough No

Note:

1. CSSM_TP_CertGroupVerify - The application should supply one anchor
certificate and an ordered chain of certificates in the CertToBeVerified argument.
These function arguments are ignored: Evidence, EvidenceSize, Action,
policyIdentifers, NumberOfPolicyIdentifiers, VerificationAbortOn, VerifyScope,
ScopeSize, DBList, Data.
This function returns these error codes as shown in Table 8.

Table 8. CSSM_TP_CertGroupVerify Error Codes

Error Code Description

CSSM_TP_INVALID_TP_HANDLE TPHandle argument is NULL or invalid.

CSSM_TP_INVALID_CL_HANDLE CLHandle argument is NULL or invalid.

CSSM_TP_INVALID_CSP_HANDLE CSPHandle argument is NULL or invalid.

CSSM_TP_INVALID_DATA_POINTER CertToBeVerified argument is NULL or
invalid. This argument is invalid if the
length is set to 0 or the pointer to data is
NULL.

CSSM_TP_INVALID_CC_HANDLE This error occurs if TP is unable to create a
cryptographic context using the supplied
CSPHandle and the certificates.

CSSM_TP_ANCHOR_NOT_SELF_SIGNED The supplied anchor certificate is not
self-signed.

CSSM_TP_ANCHOR_NOT_FOUND The supplied anchor certificate is not the
anchor for any of the certificates in the
supplied chain.

CSSM_TP_CERT_VERIFY_FAIL The supplied certificate chain cannot be
verified.

IBM Extended Trust Policy Library, Version 1.0
The files required for the IBM Extended Trust Policy Library, Version 1.0 are:
v ibmtp2.so
v ibmtp2.h

The previous files also need to be used in conjunction with these files:
v ibmcl2.so
v ibmcl2.h

Some additional requirements include:
v Lightweight Directory Access Protocol (LDAP) product
v An IBM Software Cryptographic Service Provider CSP and IBM DL modules
v An IBM Software Cryptographic Service Provider 2 CSP and IBM DL modules

The Extended Trust Policy Library validates X.509 Version 3 certificates and CRLs
using two types of trust policies: Entrust and X.509. The module can accept the

Chapter 8. Service Provider Modules 47

complete certificate chain or an incomplete certificate chain. If the module receives
an incomplete chain, it attempts to fill in the missing certificates by searching the
associated data store. Table 9 lists the OCSF API functions that this module
supports.

This module ignores these arguments in all TP API:

const CSSM_FIELD_PTR Scope,
uint32 ScopeSize

Trust Policy (ibmtp2) can query an LDAP server when verifying certain certificates.
LDAP is used to find issuers of Entrust certificates when the issuers are not
otherwise found from input or Data Library (DL). LDAP is necessary to find
certificate revocation lists (CRLs) for certificates with CRL extensions. It is the
responsibility of the application to log into the appropriate LDAP server before
invoking TP services, and to log out afterwards.

Table 9. IBM Extended Trust Policy Library OCSF Functions

Function Name Supported Comments

CSSM_TP_CertSign Yes The argument pair (SignScope, ScopeSize)
is ignored. This function takes the input
CertToBeSigned as an unsigned X509
certificate and signs it entirely.

CSSM_TP_CertRevoke Yes The Reason argument is ignored.

CSSM_TP_CrlSign Yes The argument pair (SignScope, ScopeSize)
is ignored. This function takes the input
CrlToBeSigned as an unsigned CRL and
signs it entirely. A NULL pointer must
be passed as the value to the CLHandle
argument.

CSSM_TP_CrlVerify Yes

CSSM_TP_ApplyCrlToDb Yes

CSSM_TP_CertGroupConstruct No

CSSM_TP_CertGroupPrune No

CSSM_TP_CertGroupVerify Yes The parameter values passed to this
function must be set as follows:

v The argument PolicyIdentifiers should
be given as one of the four policies
specified in ibmtp.h or queried from
IBMTP_GUID by
CSSM_GetModuleInfo. If zero, or
more than one policy is given, the
default policy (X.509 certificate
verification policy) is followed.

v The argument VerificationAbortOn is
ignored.

v The argument Action is left for the
caller to perform. This function
verifies only the certificates.

CSSM_TP_PassThrough No

48 z/OS OCSF Application Programming

IBM Certificate Library, Version 1.0
The files required for the IBM Certificate Library, Version 1.0 are:
v ibmcl.so
v ibmcl.h

This module is used in conjunction with one of the IBM Software Service
Cryptographic Providers. This module performs X.509 Version 3 certificate
operations. It provides a library of functions needed for creating, signing, verifying,
and querying a certificate. The current version does not support X.509 Version 3
extensions. The IBM CL expects X.509 Version 3 signed certificates in
ASN/DER-encoded format. It uses a set of object identifiers (OIDs) to exchange
certificate information with the application. The list of supported OIDs is defined
in the file, ibmcl.h, which should be included in every application that uses the
services of IBM CL.

This example demonstrates the purpose and use of OIDs. If an application asks for
the version of a given certificate, the CL builds the version object that is returned
to the application as follows:
CSSM_FIELD_PTR p_version;

/* p_version is a pointer to a generic structure containing FieldOid and
FieldValue. FieldOid contains a number that indicates the type of the field,
e.g. version, serial number, etc. FieldValue contains the actual data.
*/

/* allocate memory for p_version for the sizeof(CSSM_FIELD)...*/

/* allocate memory for p_version->FieldOid for the sizeof(CSSM_OID)...*/
P_version->FieldOid.Length=sizeof(unit32);

* allocate memory for p_version->FieldOid.Data for the sizeof(unit32)...*/
*(unit32 *)p_version->FieldOid.Data=IBMCL_OID_VERSION;

/* allocate memory for p_version->FieldValue for the sizeof(CSSM_DATA)...*/
P_version->FieldValue.Length=Version.length;

/* allocate memory for p_version->FieldValue.Data for the sizeof(Version.Data)...*/
Copy(Version.value, p_version->FieldValue.Data);

All fields are returned as unsigned character arrays, which in turn need to be cast
to the appropriate type. The OID indicates the type of the field and the structure it
should be cast to. This example shows an instance where OID is used to build the
relevant data structure:
CSSM_FIELD_PTR p_field;
X500Name *p_name;

/* call a CL function to obtain some field in the Cert */

switch (*p_field->FieldOid.Data) {
case IBMCL_OID_VERSION:
break;

case IBMCL_OID_ISSUER_NAME:
/* cast to the correct structure */
p_name = (X500Name *) p_field->FieldValue.Data;
break;

default:
break;

}

The IBM CL functions in Table 10 on page 50 comply with the information in
Chapter 15, “Certificate Library Services API,” on page 207. Most of the functions
return error codes that are specific to this implementation and not defined in the
OCSF API. These error codes are defined in ibmcl.h and described as part of
supported API functions. Also note that function arguments Scope and ScopeSize are

Chapter 8. Service Provider Modules 49

ignored. Moreover, in order to construct an X.500, the name-only country name
(C), organization name (O), organization name unit (OU), and common name (CN)
are supported.

Table 10. IBM Certificate Library OCSF Functions

Function Supported Comments

CSSM_CL_CertSign Yes See Table 13 on page 52 for the error
codes.

CSSM_CL_CertVerify Yes See Table 14 on page 52 for the error
codes.

CSSM_CL_CertCreateTemplate Yes See Note 1.

CSSM_CL_CertGetFirstFieldValue Yes The ResultHandle will always be set
to NULL and the
NumberOfMatchedFields will be set
to 1 if any field is found, regardless of
how many. See Table 15 on page 52
for the error codes.

CSSM_CL_CertGetNextFieldValue No

CSSM_CL_CertAbortQuery No

CSSM_CL_CertGetKeyInfo Yes This function returns the
DER-encoded subject public key. The
encoding contains the public key,
algorithm ID, and parameters, if
applicable (see Table 16 on page 53).

CSSM_CL_CertGetAllFields Yes See Note 2 on page 51.

CSSM_CL_CertImport No

CSSM_CL_CertExport No

CSSM_CL_CertDescribeFormat No

CSSM_CL_CrlCreateTemplate No

CSSM_CL_CrlSetFields No

CSSM_CL_CrlAddCert No

CSSM_CL_CrlRemoveCert No

CSSM_CL_CrlSign No

CSSM_CL_CrlVerify No

CSSM_CL_IsCertInCrl No

CSSM_CL_CrlGetFirstFieldValue No

CSSM_CL_CrlGetNextFieldValue No

CSSM_CL_CrlAbortQuery No

Note:

1. CSSM_CL_CertCreateTemplate - This function accepts the public key field in
two formats:
v If the key algorithm requires any parameters, they can be put in the template

with a separate OID. Thus, the application can pass in three OIDs and the
respective values:
– IBMCL_OID_SUBJECT_PUB_KEY: The value is passed in as a string. The

key should not be DER-encoded.

50 z/OS OCSF Application Programming

– IBMCL_OID_PUB_KEY_PARAMETERS: Data should point to the DER
encoding of the parameters.

– IBMCL_OID_PUB_KEY_ALGID: Data indicates what algorithm ID is used
for generating the key, e.g., CSSM_ALGID_RSA.

v The algorithm ID, parameters, and the key can be DER-encoded and passed
in with OID IBMCL_OID_SUBJECT_PUB_KEY. There is no need to supply
the other two OIDs.
The template requires these fields in one of the two formats: signature
algorithm ID, validity, subject name, issuer name, and subject public key.
Validity is specified as an array of two CSSM_DATE elements. Index 0
should contain the start date and index 1 the end date of certificate validity.
This function returns error codes as shown in Table 11.

Table 11. CSSM_CL_CertCreateTemplate Error Codes

Error Code Description

CSSM_CL_INVALID_CL_HANDLE CLHandle argument passed in is
invalid.

CSSM_CL_INVALID_INPUT_PTR CertTemplate argument passed in is
NULL.

CSSM_CL_INVALID_DATA NumberOfFields argument passed in is
0.

CSSM_CL_SIGN_ALGID_NOT_SUPPORTED The supplied signature algorithm ID in
the template is not supported by IBM
CL.

CSSM_CL_INVALID_TEMPLATE The given template is missing or
contains an invalid pointer to one of
these mandatory items: serial number,
signature algorithm ID, validity, subject
name, or subject public key. Also, if an
extension or unique ID is present in the
template, but the pointers are invalid,
this error is returned.

CSSM_CL_ INVALID_ CERT_ISSUER_NAME The supplied issuer name is invalid.

CSSM_CL_ MISSING_CERT_ISSUER_NAME The field for issuer name is not present
in the template. This field is required for
creating a valid certificate.

CSSM_CL_KEY_ALGID_NOT_SUPPORTED The supplied algorithm ID for the
subject public key is not supported.

CSSM_CL_KEY_FORMAT_UNKNOWN The supplied subject public key is not in
the correct format.

CSSM_CL_CERT_CREATE_FAIL Failed to DER encode the certificate.
This error could be caused by invalid
data in the template or memory
problem.

2. CSSM_CL_CertGetAllFields - This function returns DER encoding of the
unsigned part of the certificate; signature algorithm ID; parameters, if
applicable; and the signature (length in bytes). To view the specific fields in the
certificate, such as version or validity, use CSSM_CL_GetFirstFieldValue with
the appropriate OID. If the signature algorithm ID is not recognized by IBM
CL, it is set to CSSM_ALGID_NONE. The other fields, however, are still
returned to the application. This function returns error codes as shown in
Table 12 on page 52.

Chapter 8. Service Provider Modules 51

Table 12. CSSM_CL_CertGetAllFields Error Codes

Error Code Description

CSSM_CL_INVALID_CL_HANDLE CLHandle argument passed in is invalid.

CSSM_CL_INVALID_CERT_POINTER Cert argument passed in is NULL.

CSSM_CL_CERT_GET_FIELD_VALUE_FAIL Unable to decode the certificate correctly.

CSSM_MALLOC_FAILED Failed to allocate memory in the
application space.

Table 13. CSSM_CL_CertSign Error Codes

Error Code Description

CSSM_CL_INVALID_CL_HANDLE CLHandle argument passed in is invalid.

CSSM_CL_INVALID_CC_HANDLE CCHandle argument passed in is invalid.

CSSM_CL_INVALID_CERT_POINTER CertToBeSigned or SignerCert arguments
are invalid.

CSSM_CL_INVALID_CONTEXT Unable to obtain a valid context using the
CCHandle passed in.

CSSM_CL_GET_KEY_ATTRIBUTE_FAIL Unable to obtain a valid key attribute
using the CCHandle passed in.

CSSM_CL_KEY_ALGID_NOT_SUPPORTED The specified algorithm ID in the signature
context is not supported.

CSSM_CL_CERT_SIGN_FAIL The signature operation failed. This could
be caused by invalid attributes in the
signature context.

CSSM_CL_CERT_ENCODE_FAIL Failed to DER encode the signed certificate.
This error could be caused by memory
problems or invalid context attributes.

Table 14. CSSM_CL_CertVerify Error Codes

Error Code Description

CSSM_CL_INVALID_CL_HANDLE CLHandle argument passed in is invalid.

CSSM_CL_INVALID_CC_HANDLE CCHandle argument passed in is invalid.

CSSM_CL_INVALID_CERT_POINTER Either CertToBeVerified or SignerCert
argument is NULL.

CSSM_CL_CERT_VERIFY_FAIL Failed to verify the signature on the
certificate.

CSSM_CL_CERT_GET_FIELD_VALUE_FAIL Failed to decode the CertToBeVerified
correctly.

CSSM_MALLOC_FAILED Failed to allocate memory.

Table 15. CSSM_CL_CertGetFirstFieldValue Error Codes

Error Code Description

CSSM_CL_INVALID_CL_HANDLE CLHandle argument passed in is invalid.

CSSM_CL_INVALID_CERT_POINTER Cert argument passed in is NULL.

CSSM_CL_INVALID_INPUT_PTR CertField or CertField->Data argument
passed in is NULL.

CSSM_MALLOC_FAILED Unable to allocate memory in the
application space.

52 z/OS OCSF Application Programming

Table 15. CSSM_CL_CertGetFirstFieldValue Error Codes (continued)

Error Code Description

CSSM_CL_FIELD_NOT_PRESENT The requested field is not in the certificate.

CSSM_CL_KEY_ALGID_NOT_SUPPORTED If the key field is requested, the algorithm
ID is not supported.

Table 16. CSSM_CL_CertGetKeyInfo Error Codes

Error Code Description

CSSM_CL_INVALID_CL_HANDLE CLHandle argument passed in is invalid.

CSSM_CL_INVALID_CERT_POINTER Cert argument passed in is NULL.

CSSM_CL_CERT_GET_KEY_INFO_FAIL Failed to decode the cert and obtain the
public key.

CSSM_MALLOC_FAILED Failed to allocate memory in the
application memory space.

CSSM_CL_KEY_ALGID_NOT_SUPPORTED The algorithm id of the subject public key
is not supported.

IBM Data Library, Version 1.0
The files required for the IBM Data Library, Version 1.0 are:
v ibmdl2.so
v ibmdl2.h

The IBM Data Library provides support for the persistence and retrieval of
security-related objects to and from a flat-file database maintained in the local file
system. This module is semantic-free and allows the application developer to
define the database record structure and index. Table 15 lists the OCSF API
functions that this module supports.

All errors returned by this module are reported as CSSM_DL_PRIVATE_ERROR. If
an error occurs within this module, it is possible to determine the exact cause of
the error by enabling exception logging. The environment variable
IBMFILEDL_LOG may be set to a file in which all exceptions will be logged by
this module. If an error occurs, it is possible to look in the specified file to get an
object dump of the exception, which will indicate the file and line number where
the error occurred thus allowing the module developer to determine the exact
cause of the failure.

Table 17. IBM Data Library OCSF Functions

Function Name Supported Comments

CSSM_DL_Authenticate Yes See Note 1 on page 54.

CSSM_DL_DbOpen Yes See Note 2 on page 55.

CSSM_DL_DbClose Yes The DLHandle parameter must
not be NULL. The DBHandle
parameter must reference an
opened data store.

CSSM_DL_DbCreate Yes See Note 3 on page 55.

CSSM_DL_DbDelete Yes See Note 4 on page 55.

CSSM_DL_DbImport No

Chapter 8. Service Provider Modules 53

Table 17. IBM Data Library OCSF Functions (continued)

Function Name Supported Comments

CSSM_DL_DbExport No

CSSM_DL_DbSetRecordParsingFunctions Yes See Note 5 on page 55.

CSSM_DL_DbGetRecordParsingFunctions Yes The DLHandle parameter must
not be NULL. The DbName
specifies the absolute or relative
path name to the file data store
containing the record parsing
functions. This parameter must
not be NULL.

CSSM_DL_GetDbNameFromHandle Yes DLHandle parameter must not be
NULL. DBHandle parameter
must reference an opened data
store.

CSSM_DL_DataInsert Yes The DLHandle, Attributes, and
Data parameters must not be
NULL. The DBHandle parameter
must reference an opened data
store. The write access
permissions flag must be true.

CSSM_DL_DataDelete Yes The DLHandle parameter must
not be NULL. DBHandle must
reference an opened data store.
UniqueRecordIdentifier must not
be NULL. The write access
permissions flag must be true.

CSSM_DL_DataGetFirst Yes See Note 6 on page 56.

CSSM_DL_DataGetNext Yes See Note 7 on page 56.

CSSM_DL_FreeUniqueRecord Yes The DLHandle parameter must
not be NULL. The DBHandle
parameter is ignored.

CSSM_DL_AbortQuery Yes The DLHandle parameter must
not be NULL. DBHandle must
reference an opened data store.
ResultsHandle must reference a
valid query. The read access
permissions flag must be true.

CSSM_DL_PassThrough No

Note:

1. CSSM_DL_Authenticate - The parameter values passed to this function must
be set as follows:
v DLHandle must not be NULL.
v DBHandle must reference an opened data store.
v AccessRequest must not be NULL.
v UserAuthentication must not be NULL.
v UserAuthentication->Credential must not be NULL.
v UserAuthentication->Credential->Length must not be NULL.
v UserAuthentication->Credential->Data must not be NULL.
v The password will be passed in the Credential portion of the user

authentication, and will be applied to the opened data store only if the
password has changed.

54 z/OS OCSF Application Programming

v The access request flags are applied to the opened data store. Note that only
read/write access flags are used in this module.

2. CSSM_DL_DbOpen - The parameter values passed to this function must be set
as follows:
v DbHandle must not be NULL.
v DbName must not be NULL.
v AccessRequest must not be NULL.
v UserAuthentication must not be NULL.
v UserAuthentication->Credential must not be NULL.
v UserAuthentication->Credential->Length must not be NULL.
v UserAuthentication->Credential->Data must not be NULL.
v UserAuthentication->MoreAuthenticationData is ignored.
v OpenParameters is ignored.
v The DbName specifies the absolute or relative
v The password is to be passed in the Credential portion of the user

authentication.
3. CSSM_DL_DbCreate - The parameter values passed to this function must be

set as follows:
v DLHandle must not be NULL.
v DbName must not be NULL.
v DBInfo must not be NULL.In addition this DL does not support the

transparent integrity option. Record Signing Implemented must be set to
false and Signing Certificate and Signing CSP fields must be set to zero.

v AccessRequest must not be NULL.
v UserAuthentication must not be NULL.
v UserAuthentication->Credential must not be NULL.
v UserAuthentication->Credential->Length must not be NULL.
v UserAuthentication->Credential->Data must not be NULL.
v UserAuthentication->MoreAuthenticationData is ignored.
v OpenParameters is ignored.
v The DbName specifies the absolute or relative path name to the file data

store to be created.
v The password is to be passed in the Credential portion of the user

authentication.
4. CSSM_DL_DbDelete - The parameter values passed to this function must be

set as follows:
v DLHandle must not be NULL.
v DbName must not be NULL.
v UserAuthentication must not be NULL.
v UserAuthentication->Credential must not be NULL.
v UserAuthentication->Credential->Length must not be NULL.
v UserAuthentication->Credential->Data must not be NULL.
v UserAuthentication->MoreAuthenticationData is ignored.
v The DbName specifies the absolute or relative path name to the file data

store to be deleted.
v The password is to be passed in the Credential portion of the user

authentication.
5. CSSM_DL_DbSetRecord ParsingFunctions - The parameter values passed to

this function must be set as follows:
v DLHandle must not be NULL.
v DbName must not be NULL.
v FunctionTable must not be NULL.
v FunctionTable->RecordGetFirstFieldValue must not be NULL.
v FunctionTable->RecordGetNextFieldValue must not be NULL.
v FunctionTable->RecordAbortQuery must not be NULL.

Chapter 8. Service Provider Modules 55

v The DbName specifies the absolute or relative path name to the file data
store to be have the record parsing functions manipulated.

6. CSSM_DL_DataGetFirst - The parameter values passed to this function must
be set as follows:
v DLHandle must not be NULL.
v DBHandle must reference an opened data store.
v Query must not be NULL.
v Query->Conjunctive must equal CSSM_DB_NONE.
v Query->NumSelectionPredicates must be 0 or 1.
v Query->SelectionPredicate must not be NULL if Query-

>NumSelectionPredicates is 1.
v ResultsHandle must be an allocated pointer.
v EndOfDataStore must be an allocated pointer.
v Attributes must be an allocated pointer.
v Data must be an allocated pointer.
v The read access permissions flag must be true.
v Query->NumSelectionPredicates equals 1 denotes an indexed query for a

given record type.
v Query->NumSelectionPredicates equals 0 denotes a sequential query for a

given record type.
7. CSSM_DL_DataGetNext - The parameter values passed to this function must

be set as follows:
v DLHandle must not be NULL.
v DBHandle must reference an opened data store.
v ResultsHandle must reference a valid query.
v EndOfDataStore must be an allocated pointer.
v Attributes must be an allocated pointer.
v Data must be an allocated pointer.
v The read access permissions flag must be true.

IBM LDAP Data Library, Version 1.0
The files required for the LDAP Data Library, Version 1.0 are:
v ldapdl.so
v ldapdl.h

The IBM LDAP Data Library provides access to generic and security-related objects
(for example, certificates, certificate revocation lists) stored in LDAP-compliant
directory servers. This module is semantic-free and allows the application
developer to specify any attribute types specified in the schema of the destination
LDAP server. Table 16 lists the OCSF LDAP Data Library API functions that this
module supports.

All errors returned by this module are in ldapdl.h. If an error occurs within this
module, it is possible to determine the exact cause of the error by enabling
exception logging. The environment variable LDAPDL_LOG may be set to a file in
which all exceptions will be logged by this module. If an error occurs, it is possible
to look in the specified file to get an object dump of the exception, which will
indicate the file and line number where the error occurred, therefore allowing the
module developer to determine the exact cause of the failure. The use of the
LDAP_DL log can supplement the information provided by CSSM since in some
instances LDAP_DL can throw an exception without that necessarily resulting in a
call to "CSSM_SetError".

56 z/OS OCSF Application Programming

Table 18. IBM LDAP Data Library OCSF Functions

Function Name Supported Comments

CSSM_DL_Authenticate Yes See Note 1

CSSM_DL_DbOpen Yes See Note 2 on page 58.

CSSM_DL_DbClose Yes The DLHandle parameter must not
be NULL. The DBHandle
parameter must reference an
opened LDAP session.

CSSM_DL_DbCreate No

CSSM_DL_DbDelete No

CSSM_DL_DbImport No

CSSM_DL_DbExport Yes See Note 3 on page 58.

CSSM_DL_DbSetRecordParsingFunctions No

CSSM_DL_DbGetRecordParsingFunctions No

CSSM_DL_GetDbNameFromHandle Yes DLHandle parameter must not be
NULL. DBHandle parameter must
reference an opened LDAP
session.

CSSM_DL_DataInsert Yes The DLHandle, Attributes, and Data
parameters must not be NULL.
DBHandle parameter must
reference an opened LDAP
session.

CSSM_DL_DataDelete Yes The DLHandle parameter must not
be NULL. DBHandle must
reference an opened LDAP
session. UniqueRecordIdentifier
must not be NULL.

CSSM_DL_DataGetFirst Yes See Note 4 on page 58.

CSSM_DL_DataGetNext Yes See Note 5 on page 59.

CSSM_DL_FreeUniqueRecord Yes The DLHandle parameter must not
be NULL. The DBHandle
parameter is ignored.

CSSM_DL_AbortQuery Yes The DLHandle parameter must not
be NULL. DBHandle must
reference an opened LDAP
session. ResultsHandle must
reference a valid query.

CSSM_DL_PassThrough Yes See Note 6 on page 59.

Note:

1. CSSM_DL_Authenticate - The parameter values passed to this function must
be set as follows:
v DLHandle must not be NULL.
v DBHandle must reference an LDAP session for which authentication is being

performed.
v AccessRequest must not be used and can be set to NULL.
v UserAuthentication must not be NULL.
v UserAuthentication->Credential must not be NULL.
v UserAuthentication->Credential->Length must not be NULL.

Chapter 8. Service Provider Modules 57

v UserAuthentication->Credential->Data must not be NULL. The data portion
of UserAuthentication must also have been typecast from a pointer to
BindParms, which contains the dn of the entry to bind as the authentication
mechanism and the credentials.

The LDAP access control model is based on the identity of the client requesting
access to the directory. The format and capabilities of access control
information, however, is highly dependent on the server's implementation,
which varies from system to system. It is therefore the responsibility of the
caller to know in advance which access rights are associated with a given entry.

2. CSSM_DL_DbOpen - The parameter values passed to this function must be set
as follows:
v DbHandle must not be NULL.
v DbName must not be NULL. It must be a null-terminated string containing

either:
a. A host name or dotted string representing the IP address of the target

LDAP server, with optional port number separated by a colon, or
b. An LDAP URL specifying the host/port of the LDAP server to connect

and the dn of the entry to server as the default starting point for search
operations.

v AccessRequest is not used. It can be set to NULL.
v UserAuthentication can be set to NULL if no credentials are required for the

specified LDAP server. The data portion of UserAuthentication must have
been typecast from a pointer to BindParms, which contains the dn of the entry
to bind as the authentication mechanism and the credentials.

v OpenParameters is ignored.
3. CSSM_DL_DbExport - The parameter values passed to this function must be

set as follows:
v DbHandle must not be NULL.
v DbSourceName must be a null-terminated string containing either:

a. A host name or dotted string representing the IP address of the target
LDAP server, with optional port number separated by a colon, or

b. An LDAP URL specifying the host/port of the LDAP server to connect
and the dn identifying the rest of the subtree to be exported.

v DbDestinationName must be the full path of the file which will contain a
snapshot of the requested information subtree written in LDAP Data
Interchange Format (LDIF).

v InfoOnly is ignored.
v UserAuthentication represents the caller's credential as required for

authorization to list a subtree. If access control of the portion of the directory
tree to be exported requires no additional credentials to perform this
operation, then user authentication can be NULL.

4. CSSM_DL_DataGetFirst - The parameter values passed to this function must
be set as follows:
v DLHandle must not be NULL.
v DBHandle must reference an opened LDAP session.
v Query must not be NULL.
v Query->Conjunctive can be CSSM_DB_NONE, CSSM_DB_AND,

CSSM_DB_OR.
v Query->SelectionPredicate must not be NULL if Query-

>NumselectionPredicates is 1 or more.
v ResultsHandle must be an allocated pointer.
v EndofDataStore must be an allocated pointer.
v Attributes must be an allocated pointer.
v Data must be an allocated pointer.

58 z/OS OCSF Application Programming

The query structure specifying the selection predicates are used to query the
data store. The structure contains meta-information about the search fields and
the relational and conjunctive operators forming the selection predicate. The
comparison values to be used in the search are specified in the Attributes and
Data parameters.
Special Attribute Names:

URL - This attribute name, if specified, must be the only one. The attribute
value will be taken to be an LDAP URL conforming to RFC XXXX. All other
predicates will be ignored.
DL SEARCH SCOPE - This is a psuedo attribute indicating to DL the scope of
the search. The attribute value is one of "BASE", "ONE", or "SUB",
corresponding to base object search, one-level search and subtree search,
respectively.
DL_SEARCH_BASE - This is a psuedo attribute indicating to the DL the
starting point of the search. The attribute value should be the string
representation of a DN.

5. CSSM_DL_DataGetNext - The parameter values passed to this function must
be set as follows:
v DLHandle must not be NULL.
v DBHandle must reference an opened LDAP session.
v ResultsHandle must reference a valid query.
v EndOfDataStore must be an allocated pointer.
v Attributes must be an allocated pointer.
v Data must be an allocated pointer.

6. CSSM_DL_PassThrough - The parameter values passed to this function must
be set as follows:
v DLHandle must not be NULL.
v DBHandle must reference an opened LDAP session.

Chapter 8. Service Provider Modules 59

60 z/OS OCSF Application Programming

Chapter 9. Developing Security Applications

Chapter 9, “Developing Security Applications” presents a high-level overview of
the steps involved in creating an OCSF application to incorporate the encryption
provided by the IBM OCSF.

Writing OCSF Applications
“Writing OCSF Applications” describes the structure of a typical OCSF application.

CSSM_Init
Applications must call CSSM_Init to initialize the OCSF framework. This must be
done prior to calling any framework functions. CSSM_Init will determine if the
active framework version is compatible with the one the application was built
with. It will also define the memory functions that will be used for allocating and
freeing storage for the application.

Memory Management
The OCSF memory management functions are a class of routines for reclaiming
memory allocated by OCSF on behalf of an application from the OCSF memory
heap. When OCSF allocates objects from its own heap and returns them to an
application, the application must inform OCSF when it no longer requires the use
of that object. Applications use specific APIs to free OCSF-allocated memory. When
an application invokes an API free function, OCSF can choose to retain or free the
indicated object depending on other conditions known only to OCSF. In this way,
OCSF and applications work together to manage these objects in the OCSF
memory heap.

Finding and Listing Service Providers
Before attaching a service module, an application can query the OCSF Framework
registry using the CSSM_ListModules function to obtain information on the:
v Modules installed on the system
v Capabilities (and functions) implemented by those modules
v Globally Unique ID (GUID) associated with a given module.

Applications use this information to dynamically select a module for use. A
multiservice module has multiple capability descriptions associated with it, at least
one per functional area supported by the module. Some areas (such as
Cryptographic Service Provider (CSP) and Trust Policy (TP)) may have multiple
independent capability descriptions for a single functional area. There is one OCSF
Framework registry entry for a multiservice module, which records all service

Export

Any application you create and export or reexport from the U.S. utilizing the Open
Cryptographic Services Facility Cryptographic Services may be subject to special export
licensing requirements by the Bureau of Export Administration of the U.S. Department of
Commerce.

© Copyright IBM Corp. 1999, 2013 61

types for the module. OCSF returns all information about a module's capabilities
when queried by the application. Each set of capabilities includes a type identifier
to distinguish CSPinfo from CLinfo, etc.

Applications can query about the OCSF Framework itself. One function,
CSSM_GetInfo, returns version information about the running OCSF Framework.
Another function, CSSM_Init, verifies whether the OCSF Framework version the
application expects is compatible with the currently running OCSF Framework
version. The general function to query service provider module information also
returns the module's version information.

Getting Service Provider Information
CSSM_GetModuleInfo can be used to determine if a specific service provider
(represented by a GUID) provides the services required by the application.
CSSM_ListModules can be used to get a list of installed GUIDs.

Attaching a Service Provider
Applications select the particular security services they will use by selectively
attaching service provider modules. Each module has an assigned GUID and a set
of descriptive attributes to assist applications in selecting appropriate modules for
their use. A module can implement a range of services across the OCSF APIs (e.g.,
cryptographic functions, data storage functions) or a module can restrict its
services to a single OCSF category of service (e.g., Certificate Library (CL) services
only). Modules that span service categories are called multiservice modules.

Applications use a module's GUID to specify the module to be attached. The attach
function, CSSM_ModuleAttach, returns a handle representing a unique pairing
between the caller and the attached module. This handle must be provided as an
input parameter when requesting services from the attached module. OCSF uses
the handle to match the caller with the appropriate service module.

The calling application uses the handle to obtain all types of services implemented
by the attached module. Figure 2 on page 12 shows how the handle for an attached
Dual Provider service provider is used to perform cryptographic operations and
persistent storage of certificates. The single handle value can be used as the
CSPHandle in cryptographic operations and as the DLHandle in data storage
operations.

Multiple calls to attach are viewed as independent requests. Each attach request
returns separate, independent handles that do not share execution state. Service
provider modules may be detached using the CSSM_ModuleDetach function.
However, an application should not invoke this operation unless all requests to the
target service provider have been completed.

Using Service Provider Functions
After attaching a service provider and obtaining a handle, the application may use
APIs supported by the service provider, using the service provider's handle to
direct the call to the proper provider.

Service Context Management
Security context management provides secured run-time caching of user-specific
state information and secrets. Multistep cryptographic operations, such as staged
hashing, require multiple calls to a CSP and the intermediate operation states must
be managed. These intermediate states are stored in run-time data structures

62 z/OS OCSF Application Programming

known as security contexts. The OCSF API provides a number of context functions
that applications can use to create, initialize, and cache security contexts.

Security contexts provide mechanisms that:
v Allow an application to use multiple CSPs concurrently.
v Allow an application to concurrently use different parameters for a single CSP

algorithm.
v Support layered implementations in their transparent use of multiple CSPs or

different algorithm parameters for the same CSP.
v Enable development of reentrant CSPs, layered services, and applications.

Applications retain handles to each security context used during execution. The
context handle is a required input parameter to many security service functions.
Most applications instantiate and use multiple security contexts. Only one context
may be passed to a function, but the application is free to switch among contexts
at will, or as required (even per function call).

Chapter 9. Developing Security Applications 63

An application may create multiple contexts directly or indirectly. Indirect creation
may occur when invoking layered services, system utilities, TP modules, CL
modules, or DL modules that create and use their own appropriate security context
as part of the service they provide to the invoking application. Figure 4 on page 15
shows an example of a hidden security context. An application creates a context
specifying the use of sec_context1. The application invokes func1 in the CL using
sec_context1 as a parameter. The CL performs two calls to the CSP. For the call to
func5, the hidden security context is used. For the call to func6, the application's
security context, sec_context2, is passed as a parameter to the CSP.

These transparent contexts do not concern the application developer, as they are
managed entirely by the layered service or service provider module that created
them. Each process or thread that creates a security context is responsible for
explicitly terminating that context.

OCSF provides a number of API functions to create security contexts. The function
used and type of context created depends on the cryptographic operation being
performed. For example, the CSSM_CSP_CreateSymmetricContext is used in
cryptographic operations involving a symmetric key; the
CSSM_CSP_CreateAsymmetricContext is used in operations involving an
asymmetric key.

The CSSM_DeleteContext function is paired up with the create context functions.
These functions are designed to be used by applications and force notify events to
be sent to a service provider module.

In contrast, the CSSM_GetContext and CSSM_FreeContext functions are designed
to be used by service provider modules since they do not generate events.

Multi-threaded Applications
The OCSF framework supports multi-threaded applications. Framework
initialization creates mutexes that are used to protect critical sections. Service
providers specify whether or not they are threadsafe and if one is not, the
framework creates a mutex that is locked prior to passing control to that provider.
Applications do not need to be aware that these mutexes exist. The framework
locks and unlocks these as necessary.

Error Management
OCSF provides error management through the functions CSSM_InitError,
CSSM_SetError, CSSM_GetError and CSSM_ClearError. When an application
receives an API return code of CSSM_FAIL, it should call CSSM_GetError to
determine the error code. CSSM_ClearError should be used to remove the current
error code after processing the error. CSSM_InitError may be used to initialize the
error structure and CSSM_SetError may also be used by an application if
appropriate.

There is an error code for each application thread. The error APIs only affect the
error code for the calling thread.

Building OCSF Applications
“Building OCSF Applications” describes building OCSF applications.

64 z/OS OCSF Application Programming

Include Files for OCSF Services
The necessary header files are in /usr/include and also in /usr/lpp/ocsf/include.
Applications must include cssm.h and any header files for the service providers
used by the application.

OCSF Libraries
The OCSF framework library is implemented as cssm32.dll, which resides in
/usr/lpp/ocsf/lib and has a symbolic link in /usr/lib. The linkage to the dll is the
cssm32.x exports file, which is located in /usr/lpp/ocsf/lib. The compiler's -L
option specifies additional directories to be searched for libraries. The z/OS -L
option does not find exports files, and so they must be explicitly linked with the
application, in the same manner that object files (.o) are linked.

Service provider libraries are loaded dynamically during CSSM_ModuleAttach and
are not specified during application build.

The sample makefile /usr/lpp/ocsf/samples/ocsf_baseivp/Makefile.os390
provides an example. Note that the sample specifies the compiler flags dll and
sscom. The dll flag allows an application to refer to symbols exported by a dll
through the exports file. The sscom flag (slash-slash-comments) allows C programs
to use C++ "//" comments. Certain OCSF header files use "//" for comments. Both
of these flags are required.

Running OCSF Applications
When running applications, the LIBPATH environment variable must be set
correctly in order to access the OCSF framework and supporting libraries. For
example:
LIBPATH=$LIBPATH:/usr/lib

File_encrypt Sample Application
The file_encrypt application is a sample program that shows how the OCSF API
can be used to encrypt a clear file. The file_encrypt application demonstrates the
details involved in encrypting files and illustrates the steps necessary to create any
OCSF-based application. These steps include:
1. Initialize the OCSF framework.
2. Attach the necessary service provider modules.
3. Perform the desired security operations.
4. Detach the modules when they are no longer needed.

The source code for the file_encrypt application is shown in “FILE_ENCRYPT.H”
on page 72. The file_encrypt application is written in C language and can be built
and run in the z/OS UNIX System Services environment.

To run this application you must have installed on your system a Cryptographic
Service Provider (CSP) module that supports Data Encryption Standard (DES). If
you have not already done so, you can install the Cryptographic modules by
running the setup programs for the OCSF. You also must have access to the z/OS
C/C++ compiler and run-time library. Once you have compiled the application,
you can run it from the command line by typing this statement:
/home/G123456 file_encrypt <filename>

Chapter 9. Developing Security Applications 65

where filename is a file that is 4096 bytes in size or less. The file_encrypt
application will encrypt the input file and generate one output file, the encrypted
file (filename.enc).

The sample demonstrates the client's process of performing strong encryption,
followed by the decryption of the message. The OCSF API calls for both the client
and server are listed in pseudocode, without proper arguments or other details.
They are meant to give a general overview of the changes needed rather than
show sample code.

The sample assumes that the session key has been generated outside of the OCSF
Framework, and the key exchange has already been performed. For the case in
which the session key needs to be distributed by using the OCSF Framework, a
sample of Diffie-Hellman key exchange is provided in “Diffie-Hellman Key
Exchange Scenario” on page 67.

OCSF API Calls
“OCSF API Calls” provides the OCSF API calls that may be used by an application
in order to enable it for&tab; encryption. The file_encrypt application is assumed
to use a client/server architecture and use an OCSF Cryptographic Service
Provider. The OCSF and the selected OCSF feature must be installed and
configured on your system prior to use.

Table 19. Client Application OCSF API Calls

OCSF API Function Description

Application Startup:

CSSM_Init Initializes the framework and passes pointers to
memory functions.

CSSM_ListModules(CSP) Lists all installed Cryptographic Service
Providers (CSPs).

CSSM_GetModuleInfo For each installed CSP, get information about the
services it provides.

CSSM_ModuleAttach(CSP) Actually loads the CSP module.

Encryption:

CSSM_CSP_CreateSymmetricContext Specifies all information relevant to performing
symmetric encryption, including algorithm,
mode, key, and initialization vector.

CSSM_EncryptData Encrypts the message to the server using the
parameters specified in the symmetric context. If
the application has requested an encryption
strength greater than the policy allows, the
request will be denied.

Transmission Send: (Not performed
through framework)

Sends the ciphertext. Could be socket
transmission or any other protocol. This need
not change from the way the application
previously transmitted data.

Clean Up: CSSM_ModuleDetach(CSP) Unloads the crypto.

66 z/OS OCSF Application Programming

Table 20. Sever Application OCSF API Calls

OCSF API Function Description

Application Startup: Performs the same startup steps as the client
program.

Transmission Receive:

(Not performed through framework) Receives the ciphertext from the client
application.

Strong Decryption:

CSSM_CSP_CreateSymmetricContext Specifies all information for symmetric
decryption.

CSSM_DecryptData Decrypts the message from the client.

Clean Up: Performs the usual OCSF cleanup.

Diffie-Hellman Key Exchange Scenario
“Diffie-Hellman Key Exchange Scenario” outlines the procedure for performing
Diffie-Hellman key exchange on both the client and the server machine. These
steps are in addition to those described in “OCSF API Calls” on page 66.

Table 21. Client Application OCSF API Calls

OCSF API Application Description

Application Startup: Client performs normal startup procedure.

Key Exchange:
CSSM_GenerateAlgorithmParameters

Specifies that you are generating
Diffie-Hellman key exchange parameters.

CSSM_CSP_CreateAsymmetricContext Creates a context for key pair generation
using the parameters generated.

CSSM_GenerateKeyPair Creates a Diffie-Hellman asymmetric key
pair.

Transmission Send: (Not performed by
framework)

Sends the public key to the server.

CSSM_CSP_CreateDeriveKeyContext Specifies the information required to derive a
session key from the Diffie-Hellman key pair.

CSSM_DeriveKey Derives the session key.

Encryption: Client performs encryption and cleanup
operations previously described.

Table 22. Server Application OCSF API Calls

OCSF API Application Description

Application Startup: Server performs normal startup procedure.

Transmission Receive: (Not performed by
framework)

Receives the Diffie-Hellman public key from
the client.

CSSM_CSP_CreateDeriveKeyContext Specifies the information required to derive a
session key from the Diffie-Hellman key sent
by the client.

CSSM_DeriveKey Derives the session key.

Decryption: Server performs decryption and cleanup
operations previously described.

Chapter 9. Developing Security Applications 67

File_encrypt Structure
“File_encrypt Structure” presents an overview of the file_encrypt structure.
Program execution begins in main.c, which calls subroutines that are discussed in:
v ProcessArguments
v Initialize
v AttachCSPByAlgorithm
v GenerateContextAndEncrypt.

ProcessArguments:

Located in file: main.c

This routine simply checks the input entered by the end user. If too many or too
few parameters were entered, ProcessArguments displays a message informing the
user of the correct command format and exits. Otherwise, the pointer
ClearFilename is set to the input character array and returned to main.

Initialize:

Located in file: initialize.c

This function demonstrates how to initialize the OCSF framework. First, the
initialize function sets the Version data structure to the current version level.
(CSSM_MAJOR and CSSM_MINOR are defined in cssmtype.h.) Next, the
MemoryFuncs data structure is initialized to the memory management function
wrappers declared at the beginning of the initialize.c file. Since applications may
have their own procedures for creating, managing, and freeing memory, the
MemoryFuncs table is the way these functions can be made available to OCSF and
the service provider modules. Applications register memory functions with OCSF
using CSSM_Init. They register memory functions with the service provider
modules using CSSM_ModuleAttach.

Both the Version and the MemoryFuncs data structures are passed to the
CSSM_INIT function in this statement:

CSSM_Init(&Version, &MemoryFuncs, NULL)

OCSF ensures the version information matches and stores a pointer to the
MemoryFuncs table within the framework memory heap. This function should be
called only once in any application.

AttachCSPByAlgorithm:

Located in file: attach.c

There are various levels of detail that applications can use when attaching to
modules using the OCSF API. In the simplest case, an application can hardcode a
particular module ID, a Globally Unique ID (GUID), so that it only works when a
particular module is installed. A more flexible application can be designed to look
into the installed list of modules and choose one based on some attribute it has
such as capability, vendor name, hardware/software, etc.

In AttachCSPByAlgorithm, the list of installed software CSPs is searched to find
one that supports the required algorithm. The function accepts two input
parameters: a pointer to the CSP handle and an unsigned integer indicating the

68 z/OS OCSF Application Programming

type of cryptographic algorithm desired; in this case, CSSM_ALGID_DES. (The
header file, cssmtype.h, defines the supported algorithms.)

The function first determines which cryptographic modules are currently installed
by calling CSSM_ListModules in this statement:

pModuleList = CSSM_ListModules(CSSM_SERVICE_CSP, CSSM_TRUE)

This function generates a data structure of type CSSM_LIST and returns a pointer
to that structure called pModuleList. The CSSM_LIST data structure contains a
GUID/name pair for each of the currently installed modules that match the service
mask for cryptographic modules CSSM_SERVICE_CSP. If there are no CSP
modules installed, the CSSM_LIST.NumberOfItems element contains a zero.

When a module is installed on a system, it must provide certain information about
itself. This information is stored in a series of data structures in the operating
system registry facility. Module information is made available to OCSF applications
through the CSSM_GetModuleInfo function call using this statement:
pModuleInfo = CSSM_GetModuleInfo(&(pModuleList->Items[i].GUID),

CSSM_SERVICE_CSP,
0,
CSSM_INFO_LEVEL_ALL_ATTR);

CSSM_GetModuleInfo returns a pointer, pModuleInfo, to a data structure
containing the module information. In the code that follows the
CSSM_GetModuleInfo call, the system searches the module information retrieved
for each module (using its GUID) for a match on CSSM_ALGID_DES. Once the
appropriate module is found, CSSM_ModuleAttach is called, which returns a
handle to that module. This statement is used:
*hCSP = CSSM_ModuleAttach(&(pModuleList->Items[i-1].GUID), /*module GUID*/

&pModuleInfo->Version, /*version info*/
&MemoryFuncs, /*MemoryFuncs table*/
0,
0,
0,
NULL,
NULL);

OCSF uses module handles to match a calling application with the appropriate
service module. Handles represent a one-to-one pairing between an application
and a module. Multiple calls to CSSM_ModuleAttach are viewed as independent
requests. Each attach request returns separate, independent handles that do not
share execution state.

GenerateContextAndEncrypt:

Located in file: encrypt.c

GenerateContextAndEncrypt performs several operations. It generates a symmetric
key for use in encrypting the input file, and also generates a context for use in the
encryption process. Finally, the input file is encrypted and the encrypted file is
written to a separate file. These operations are performed in these subroutines:
v GenerateKey
v GenerateSymmetricContext
v WriteOutputFile.

GenerateKey:

Chapter 9. Developing Security Applications 69

GenerateKey function creates a symmetric key. It does this by creating a security
context, generating a symmetric key using information in the context, and
destroying the context. Security contexts perform two functions: to provide security
for user-specific information and to package information for easy exchange
between functions. Rather than declare, pass, and delete multiple parameters,
contexts allow this information to be assembled into one temporary data structure.
The type of context to be created depends upon the type of operation to be
performed. Since the application requires a symmetric key, it must create a key
generation context. However, later in the program the execution of a symmetric
context will be in order to encrypt this data.

GenerateKey first calls CSSM_CSP_CreateKeyGenContext and passes it the
parameters to be used when creating the key and specifies, among other things, a
key size of 64 bits and the desired encryption algorithm – DES. This statement is
used:
hKeyGenContext = CSSM_CSP_CreateKeyGenContext(hCSP,

CSSM_ALGID_DES,
NULL,
64,
NULL,NULL,NULL,NULL,NULL);

GenerateKey next initializes the Key data structure, of type CSSM_KEY, to zero
using this statement:
memset (Key, 0, sizeof(CSSM_KEY));

By setting the Key.KeyData.Data and Key.KeyData.Length fields to zero, the user
requests OCSF to allocate the memory necessary to represent the key when
CSSM_GenerateKey is called using this statement:
CSSM_GenerateKey(hKeyGenContext, CSSM_KEYUSE_ENCRYPT | CSSM_KEYUSE_DECRYPT,

CSSM_KEYATTR_MODIFIABLE, NULL, Key)

CSSM_GenerateKey generates the key and updates the Key data structure
accordingly. Once the key has been generated, it is up to the application to delete
the security context now that it is no longer needed. It does this by calling
CSSM_DeleteContext using this statement:
CSSM_DeleteContext(hKeyGenContext)

GenerateSymmetricContext:

The GenerateSymmetricContext function creates and returns a cryptographic
context handle by calling CSSM_CSP_CreateSymmetricContext. The resulting
context is used for the file encryption operations that use a symmetric key. The
function parameters specify the CSP module handle, the desired algorithm ID
(DES) and algorithm mode (cipher block chain mode), the key data, an
initialization vector for the encryption, the type of padding (none), and the number
of encryption rounds, in this case 0. This statement is used.
*hCryptoContext = CSSM_CSP_CreateSymmetricContext(hCSP,

CSSM_ALGID_DES,
CSSM_ALGMODE_CBCPadIV8,
Key,
&DESIVData,
CSSM_PADDING_NONE,
0);

Note that if the encryption were being performed using an asymmetric key, the
application would call CSSM_CSP_CreateAsymmetricContext instead.

WriteOutputFile:

70 z/OS OCSF Application Programming

This function is called to write the encrypted file. The actual file encryption is
performed in GenerateContextAndEncrypt using the CSSM_EncryptData function.
This statement is used:
CSSM_EncryptData(hCryptoContext,

&ClearData, /*pointer to the input buffer*/
1, /*number of input buffers*/
&EncryptedData, /*pointer to output buffer*/
1, /*number of output buffers*/
&BytesEncrypted, /*size of the encrypted data*/
&RemData); /*buffer for padding encrypted data*/

File_encrypt Source Code
“File_encrypt Source Code” contains the source code for the file_encrypt program.
The program consists of these files:

file_encrypt.h
This files contains the prototypes of public functions.

main.c
This file is the main program and command line parser.

initialize.c
This file shows how to initialize the OCSF for use.

attach.c
This file attaches to one service provider module, a key recovery module, and
a Cryptographic module.

encrypt.c
This file performs actual encryption. It generates one output file containing the
encrypted data.

makefile.os390
This file contains directives used by the program /bin/make for building
applications. &tab;To build the file_encrypt application type in '/bin/make -f
makefile.os390'. This will compile all of the C programs to object format and
link-edit them in the directory &tab;where you have created all of the code.
You must have write access to this directory and your system programmer
must have installed the OCSF code.

Chapter 9. Developing Security Applications 71

FILE_ENCRYPT.H
//---
//
// COMPONENT_NAME: file_encrypt
//
// (C) COPYRIGHT International Business Machines Corp. 1999
// All Rights Reserved
// Licensed Materials - Property of IBM
//
//---
//
// FILE: file_encrypt.h
//
// This file contains functions to take a clear file and produce its
// associated encrypted file. Although
// the symmetric encryption algorithm being used here is DES, others
// could be easily substituted with minimal change.
//
//---

void Initialize(
void);

void AttachCSPByAlgorithm(
CSSM_CSP_HANDLE *hCSP,
uint32 AlgorithmRequired);

void GenerateContextAndEncrypt(
CSSM_CSP_HANDLE hCSP,
char *InputFilename);

extern CSSM_API_MEMORY_FUNCS MemoryFuncs;

72 z/OS OCSF Application Programming

MAIN.C
//---
//
// COMPONENT_NAME: file_encrypt
//
// (C) COPYRIGHT International Business Machines Corp. 1999
// All Rights Reserved
// Licensed Materials - Property of IBM
//
//---
//
// FILE: main.c
//
// This file contains the main program of the file_encrypt program.
// The command line arguments are processed here and other functions
// are called to perform subtasks such as initializing the CSSM,
// attaching the required service providers.
//
//---

#include <stdio.h>
#include <stdlib.h>

#include "cssm.h"
#include "file_encrypt.h"

//---
//
// Function: ProcessArguments
//
// This function checks the command line arguments and provides syntax.
//
//---
static void ProcessArguments(int argc, char *argv[], char **ClearFilename)
{

// Check the number of arguments
if (argc != 2) {

printf("\n");
printf("Usage: file_encrypt <file to encrypt>\n");
printf("\n");
printf(" This utility encrypts the given file and \n");
printf(" the and creates the encrypted file. This is the file\n");
printf(" generated:\n");
printf("\n");
printf(" <filename>.enc - the encrypted file\n");
printf("\n");
exit(1);

}

// Get the name of the clear file
*ClearFilename = argv[1];

}

//---
//
// Function: main
//
//---
int main(int argc, char *argv[])
{

// Handle to the cryptographic service provider
CSSM_CSP_HANDLE hCSP;
char *ClearFilename;

ProcessArguments(argc, argv, &ClearFilename);

Initialize();

// Set up cryptographic service provider
AttachCSPByAlgorithm(&hCSP, CSSM_ALGID_DES);

// Generate required key recovery fields and then encrypt
GenerateContextAndEncrypt(hCSP, ClearFilename);

return 0;
}

Chapter 9. Developing Security Applications 73

INITIALIZE.C
//---
//
// COMPONENT_NAME: file_encrypt
//
// (C) COPYRIGHT International Business Machines Corp. 1999
// All Rights Reserved
// Licensed Materials - Property of IBM
//
//---
//
// FILE: initialize.c
//
// This file encapsulates how an application initializes the CSSM. Memory
// management function tables are passed and versions are checked.
//
//---

#include <stdlib.h>
#include <stdio.h>

#include "cssm.h"
#include "file_encrypt.h"

//
// Memory management function table. See below.
//

CSSM_API_MEMORY_FUNCS MemoryFuncs;

//
// This set of memory management function wrappers are required by CSSM
// to manage memory on behalf of the calling application. Note: since the
// calling application is linked separately, it may have its own distinct
// implementation of memory management functions.
//

void *app_malloc(uint32 size, void *ref) { return(malloc(size)); }
void app_free(void * ptr, void *ref) { free(ptr); }
void *app_calloc(uint32 n, uint32 size, void *ref) { return(calloc(n, size)); }
void *app_realloc(void *p, uint32 size, void *ref) { return(realloc(p, size)); }

//---
//
// Function: Initialize
//
// This function sets up memory management functions and calls CSSM_Init.
//
//---
void Initialize(void)
{

CSSM_ERROR_PTR pError;
// This is the version of the CSSM itself.
CSSM_VERSION Version = { CSSM_MAJOR, CSSM_MINOR };

//
// Initialize the application’s memory management function table
//

MemoryFuncs.malloc_func = app_malloc;
MemoryFuncs.free_func = app_free;
MemoryFuncs.realloc_func = app_realloc;
MemoryFuncs.calloc_func = app_calloc;

//
// The CSSM_Init function must be called before performing any other
// CSSM API calls. The expected CSSM major/minor version numbers
// and the memory management function table are passed down.
//

if (CSSM_Init(&Version, &MemoryFuncs, NULL) != CSSM_OK)
{

printf("Error: could not intialize CSSM\n");
pError = CSSM_GetError();
printf("CSSM_Init error code = %d\n", pError->error);
exit(1);

}
}

74 z/OS OCSF Application Programming

ATTACH.C
//---
//
// COMPONENT_NAME: file_encrypt
//
// (C) COPYRIGHT International Business Machines Corp. 1999
// All Rights Reserved
// Licensed Materials - Property of IBM
//
//---
//
// FILE: attach.c
//
// There are various levels of detail that applications can use when
// attaching to modules using the CSSM API. In the simplest case, an
// application can hardcode a particular GUID so that it only works when
// a particular module is installed. On the other hand, a more flexible
// application can be designed to look into the installed list of modules
// and choose one based on some attribute it has (capability, vendor
// name, hardware/software, etc.).
//
// This file shows two methods (among many) that can be used to attach a
// module. In AttachCSPByAlgorithm(), the installed list of software
// cryptographic service providers is searched to find one that supports
// the required algorithm.
//
//---

#include <stdio.h>
#include <stdlib.h>

#include <cssm.h>
#include <file_encrypt.h>

//---
//
// Function: AttachCSPByAlgorithm
//
// This function searches the list of all installed modules for a
// CSP that supports the required algorithm.
//
//---
void AttachCSPByAlgorithm(

CSSM_CSP_HANDLE *hCSP,
uint32 AlgorithmRequired)

{
CSSM_ERROR_PTR pError; // error information
CSSM_LIST_PTR pModuleList; // list of modules
CSSM_MODULE_INFO_PTR pModuleInfo; // module info
CSSM_CSPSUBSERVICE_PTR pCspInfo; // CSP module info
CSSM_SOFTWARE_CSPSUBSERVICE_INFO_PTR pInfo; // software CSP module info
CSSM_CSP_CAPABILITY_PTR pCap; // capabilities list
uint32 Total; // miscellaneous
CSSM_BOOL Found; // boolean for search
uint32 i; // index
uint32 j; // index
uint32 k; // index
uint32 l; // index

//
// Retrieve the total list of CSPs installed on the system at this time.
//

if ((pModuleList = CSSM_ListModules(CSSM_SERVICE_CSP, CSSM_TRUE)) == NULL)
{

pError = CSSM_GetError();
printf("Error: could not list installed modules\n");
printf("CSSM_ListModules error code = %d\n", pError->error);
exit(1);

}

if (pModuleList->NumberItems == 0)
{

printf("Error: no CSPs installed.\n");
exit(1);

}

//
// Search through installed software CSPs for one that supports the

Chapter 9. Developing Security Applications 75

// encryption algorithm required
//

Found = CSSM_FALSE;

for (i = 0; !Found && i < (int)pModuleList->NumberItems; i++)
{

pModuleInfo = CSSM_GetModuleInfo(&(pModuleList->Items[i].GUID),
CSSM_SERVICE_CSP,
0,
CSSM_INFO_LEVEL_ALL_ATTR);

for (j = 0; !Found && j < (int) pModuleInfo->NumberOfServices; j++)
{

#ifdef OS390
pCspInfo = pModuleInfo>ServiceList[j].SubserviceList.CspSubServiceList;

#else
pCspInfo = pModuleInfo->ServiceList[j].CspSubServiceList;

#endif

for (k = 0; !Found && k < pModuleInfo->ServiceList[j].NumberOfSubServices; k++)
{

//
// Note: to extend the search to hardware CSPs, a case
// could be added to this switch construct.
//
switch (pCspInfo->CspType)
{

case CSSM_CSP_SOFTWARE:
#ifdef OS390

pInfo = &(pCspInfo->SubServiceInfo.SoftwareCspSubService);
#else

pInfo = &(pCspInfo->SoftwareCspSubService);
#endif

Total = pInfo->NumberOfCapabilities;
for (l = 0; l < Total; l++)
{

pCap = &(pInfo->CapabilityList[l]);
if (pCap->AlgorithmType == AlgorithmRequired)
{

Found = CSSM_TRUE;
}

}
break;

default:
break;

} // switch
} // for each subservice

} // for each usage type
} // for each module

if (!Found)
{

//
// There were CSPs, but none of them matched
//
printf("Error: there are no suitable cryptographic service providers installed\n");
exit(1);

}
else
{

*hCSP = CSSM_ModuleAttach(&(pModuleList->Items[i-1].GUID),
&pModuleInfo->Version,
&MemoryFuncs,
0,
0,
0,
NULL,
NULL);

if (*hCSP == 0)
{

pError = CSSM_GetError();
printf("Error: could not attach to suitable cryptographic service provider\n");
printf("CSSM_ModuleAttach error code = %d\n", pError->error);
exit(1);

}

76 z/OS OCSF Application Programming

}

// Successfully attached to desired CSP
}

Chapter 9. Developing Security Applications 77

ENCRYPT.C
//---
//
// COMPONENT_NAME: file_encrypt
//
// (C) COPYRIGHT International Business Machines Corp. 1999
// All Rights Reserved
// Licensed Materials - Property of IBM
//
//---
//
// FILE: encrypt.c
//
// This file contains functions to take a clear file and produce its
// associated encrypted file. Although
// the symmetric encryption algorithm being used here is DES, others
// could be easily substituted with minimal change.
//
//---

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>

#include "cssm.h"
#include "file_encrypt.h"

//
// Suffixes used for the name of the generated file
//

#define ENCRYPTED_FILE_SUFFIX ".enc"

//
// File maximums
//
#define MAX_CLEAR_FILE_SIZE 4096 // for simplification
#define PATH_MAX 256 // for simplification
//
// DES algorithm parameters
//

#define DES_PAD_LEN 8
#define DES_IV_LEN 8

static unsigned char
DESIVBuffer[DES_IV_LEN] = { 0x03, 0xC4, 0x98, 0x1E, 0x71, 0xFF, 0xA2, 0x23 };

static CSSM_DATA
DESIVData = { sizeof DESIVBuffer, DESIVBuffer };

//---
//
// Function: GenerateKey
//
// This function generates a key using the given CSP.
//
//---
static void GenerateKey(

CSSM_CSP_HANDLE hCSP,
CSSM_KEY_PTR Key)

{
CSSM_CC_HANDLE hKeyGenContext; // key generation context
CSSM_ERROR_PTR pError; // error info

//
// Create a key generation context which basically packages all
// parameters into a "handle" for later reference
//

hKeyGenContext =
CSSM_CSP_CreateKeyGenContext(hCSP,

CSSM_ALGID_DES,
NULL,
64,
NULL,NULL,NULL,NULL,NULL);

78 z/OS OCSF Application Programming

if (hKeyGenContext == 0)
{

printf("Error: could not perform key generation setup.\n");
pError = CSSM_GetError();
printf("CSSM_CSP_CreateKeyGenContext error code = %d\n", pError->error);
exit(1);

}

//
// Generate a key
//

memset(Key, 0, sizeof(CSSM_KEY));

if (CSSM_GenerateKey(hKeyGenContext, CSSM_KEYUSE_ENCRYPT | CSSM_KEYUSE_DECRYPT,
CSSM_KEYATTR_MODIFIABLE, NULL, Key) != CSSM_OK)

{
printf("Error: could not generate a key.\n");
pError = CSSM_GetError();
printf("CSSM_CSP_GenerateKey error code = %d\n", pError->error);
exit(1);

}

//
// Delete the unneeded key generation context
//

if (CSSM_DeleteContext(hKeyGenContext) != CSSM_OK)
{

printf("Error: could not delete key generation context\n");
pError = CSSM_GetError();
printf("CSSM_DeleteContext error code = %d\n", pError->error);
exit(1);

}
}
//---
//
// Function: GenerateSymmetricContext
//
// This function sets the encryption algorithm parameters including the key
// itself, the algorithm mode, etc.
//---
static void GenerateSymmetricContext(

CSSM_CSP_HANDLE hCSP,
CSSM_KEY *Key,
CSSM_CC_HANDLE *hCryptoContext)

{
CSSM_ERROR_PTR pError; // error info

//
// Create a symmetric encryption context to package encryption parameters
//

*hCryptoContext =
CSSM_CSP_CreateSymmetricContext(hCSP,

CSSM_ALGID_DES,
CSSM_ALGMODE_CBCPadIV8,
Key,
&DESIVData,
CSSM_PADDING_NONE,
0);

if (hCryptoContext == 0)
{

printf("Error: could not perform symmetric encryption setup\n");
pError = CSSM_GetError();
printf("CSSM_CSP_CreateSymmetricContext error code = %d\n", pError->error);
exit(1);

}
}

//---
//
// Function: WriteOutputFile
//
// This function takes a data buffer represented by a CSSM_DATA type and
// writes it out to new file. The new file’s name is composed of the base
// and suffix strings provided. This function is used to write out the
// encrypted data.

Chapter 9. Developing Security Applications 79

//
//---
static void WriteOutputFile(

CSSM_DATA DataToWrite,
char *FilenameBase,
char *FilenameSuffix)

{
char OutputFilename[PATH_MAX];
FILE *OutputFile;
int BytesLeft;
char *LastByte;
int CurrentWritten;
int CurrentSize;
char *pCurrent;

//
// Compose name and open output file
//

strcpy(OutputFilename, FilenameBase);
strcat(OutputFilename, FilenameSuffix);

if ((OutputFile = fopen(OutputFilename, "wb")) == NULL)
{

printf("Error: could not open %s\n", OutputFilename);
perror("fopen");
exit(1);

}

//
// Write data
//

LastByte = DataToWrite.Data + DataToWrite.Length - 1;
BytesLeft = DataToWrite.Length;

pCurrent = DataToWrite.Data;

while (BytesLeft > 0)
{

if (pCurrent + BUFSIZ > LastByte)
CurrentSize = LastByte - pCurrent;

else
CurrentSize = BUFSIZ;

CurrentWritten = fwrite(pCurrent, 1, CurrentSize, OutputFile);

if (ferror(OutputFile))
{

printf("Error: failed to write to file %s\n", OutputFilename);
perror("fwrite");
exit(1);

}

BytesLeft -= CurrentWritten;
}

fclose(OutputFile);

}

//---
//
// Function: GenerateContextAndEncrypt
//
// This function encrypts a file using strong encryption. It performs all
// the necessary prerequisites such as generation of a key (could be
// replaced by string to key derivation) for the encryption.
//
//---
void GenerateContextAndEncrypt(

CSSM_CSP_HANDLE hCSP,
char *InputFilename)

{
FILE *ClearFile; // clear file’s handle
CSSM_CC_HANDLE hCryptoContext; // context handle for encryption
CSSM_KEY Key; // the symmetric key for encryption
int BytesRead; // byte reading counter
uint32 BytesEncrypted; // byte encrypting counter
unsigned char ClearBuf[MAX_CLEAR_FILE_SIZE]; // buffer for cleartext

80 z/OS OCSF Application Programming

CSSM_DATA ClearData; // buffer for cleartext
CSSM_DATA EncryptedData; // buffer for ciphertext
unsigned char RemBuf[DES_PAD_LEN];// buffer for padding
CSSM_DATA RemData; // buffer for padding
CSSM_RETURN RC; // return code

//
// Normally one would prompt the user for a string and convert it to
// a clear key, but here is an example of the key generation APIs
//

GenerateKey(hCSP, &Key);

GenerateSymmetricContext(hCSP, &Key, &hCryptoContext);

//
// Read the clear file in one buffer for simplification
//

if ((ClearFile = fopen(InputFilename, "rb")) == NULL)
{

printf("Error: could not open %s\n", InputFilename);
perror("fopen");
exit(1);

}

BytesRead = fread(ClearBuf, 1, MAX_CLEAR_FILE_SIZE, ClearFile);
ClearData.Length = BytesRead;
ClearData.Data = ClearBuf;

if (BytesRead == 0)
{

printf("Error: did not read any bytes from file\n");
exit(1);

}

if (!feof(ClearFile))
{

printf("Error: exceeded currently supported maximum clear file size\n");
exit(1);

}

fclose(ClearFile);

//
// Encrypt the buffer
//

// Initialize the buffer that will hold the final block of the encryption
memset(RemBuf, 0, sizeof(RemBuf));
RemData.Length = sizeof(RemBuf);
RemData.Data = RemBuf;

// setup CipherBuf with the same length as ClearBuf
EncryptedData.Data = (uint8 *) malloc (ClearData.Length);
EncryptedData.Length = ClearData.Length;

RC = CSSM_EncryptData(hCryptoContext,
&ClearData,
1,
&EncryptedData,
1,
&BytesEncrypted,
&RemData);

// Move the final block of data to the end of the EncryptedBuf
memcpy(EncryptedData.Data + BytesEncrypted, RemData.Data, RemData.Length);
EncryptedData.Length =BytesEncrypted + RemData.Length;

//
// Write the encrypted file
//

WriteOutputFile(EncryptedData, InputFilename, ENCRYPTED_FILE_SUFFIX);
}

Chapter 9. Developing Security Applications 81

MAKEFILE.OS390
#***/
#* */
#* This file contains sample code. IBM PROVIDES THIS CODE ON AN */
#* ’AS IS’ BASIS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR */
#* IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES */
#* OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. */
#* */
#***/

INSTALL_DIR = /usr/lpp/ocsf
LIB_DIR = $(INSTALL_DIR)/lib

CFLAGS = -c -I$(INSTALL_DIR)/inc \
-I. -DOS390 \
-I/proj/cdsa/sboxes/theZIN/sb_base/7b/src/inc \
-Wc,dll,sscom

LFLAGS = -I$(INSTALL_DIR)/inc \
-I. \
-I/proj/cdsa/sboxes/theZIN/sb_base/7b/src/inc \
-Wc,dll,sscom

CC = /bin/c89

all: file_encrypt

file_encrypt: encrypt.o attach.o initialize.o main.o
$(CC) $(LFLAGS) -o file_encrypt encrypt.o attach.o initialize.o main.o

$(LIB_DIR)/cssm32.x

encrypt.o: encrypt.c file_encrypt.h
$(CC) $(CFLAGS) encrypt.c

attach.o: attach.c file_encrypt.h
$(CC) $(CFLAGS) attach.c

initialize.o: initialize.c file_encrypt.h
$(CC) $(CFLAGS) initialize.c

main.o: main.c file_encrypt.h
$(CC) $(CFLAGS) main.c

clean:
rm -f *.o
rm -f encrypt

82 z/OS OCSF Application Programming

Chapter 10. Core Services API

The OCSF provides this set of services:
v Module Management
v Memory Management Support
v Security Context Management
v Integrity Verification Services

These Application Programming Interfaces (APIs) are implemented by the OCSF,
not by service provider modules. For information on the service provider modules,
refer to the z/OS Open Cryptographic Services Facility Service Provider Module
Developer's Guide and Reference.

Module Management Services
The OCSF module management functions support module installation, dynamic
selection and loading of modules, and querying of module features and status.
System administration utilities use OCSF install and uninstall functions to maintain
service provider modules on a local system.

Applications select the particular security services they will use by selectively
attaching service provider modules. These modules are provided by Independent
Software Vendors (ISVs). Each module has an assigned Globally Unique ID (GUID)
and a set of descriptive attributes to assist applications in selecting appropriate
modules for their use. A module can implement a range of services across the
OCSF APIs (e.g., cryptographic functions, data storage functions) or a module can
restrict its services to a single OCSF category of service (e.g., Certificate Library
(CL) services only). Modules that span service categories are called multiservice
modules.

Applications use a module's GUID to specify the module to be attached. The
CSSM_ModuleAttach function returns a handle representing a unique pairing
between the caller and the attached module. Applications must provide this handle
as an input parameter when requesting services from the attached module. OCSF
uses the handle to match the caller with the appropriate service module.

The calling application uses the handle to obtain all types of services implemented
by the attached module. Figure 5 on page 84 shows how the handle for an attached
Dual_Provider service provider is used to perform cryptographic operations and
persistent storage of certificates. The single handle value can be used as the
CSPHandle in cryptographic operations and as the DLHandle in data storage
operations.

Multiple calls to attach are viewed as independent requests. Each attach request
returns separate, independent handles that do not share execution state.

Before attaching a service module, an application can query the OCSF registry to
obtain information on:
v Modules installed on the system
v Capabilities (and functions) implemented by those modules
v GUID associated with a given module.

© Copyright IBM Corp. 1999, 2013 83

Applications use this information to select a module for use. A multiservice
module has multiple capability descriptions associated with it. Some areas, such as
Cryptographic Service Provider (CSP) and Trust Policy (TP), may have multiple
independent capability descriptions for a single functional area. There is one OCSF
registry entry for a multiservice module. That entry records all service types for the
module. OCSF returns all information about a module's capabilities when queried
by the application.

Application:

Hdl=CSSM_ModuleAttach(dual_provider_guid,...)

CSSM_Encrypt(Hdl, ...)

CSSM_DL_DataGetFirst(Hdl, ...)

OCSF Security API

CSP
Manager

TPM
Manager

CLM
Manager

DLM
Manager

SPITPI

Dual_Provider Service Provider

CSPTP
Lib

DL
CL

DLI CLI

Applications can query about OCSF themselves. OCSF provides several functions
to assist applications in ensuring that the current OCSF version meets the
application's needs. CSSM_GetInfo returns version information about OCSF.
CSSM_Init verifies whether the application's expected OCSF version is compatible
with the currently running OCSF version. (The general function to query service
provider module information also returns the module's version information.)

Memory Management Support
The OCSF memory management functions are a class of routines for reclaiming
memory allocated by OCSF on behalf of an application from the OCSF memory
heap. When OCSF allocates objects from its own heap and returns them to an
application, the application must inform OCSF when it no longer requires the use
of that object. Applications use specific APIs to free OCSF-allocated memory. When
an application invokes a free function, OCSF can choose to retain or free the
indicated object depending on other conditions known only to OCSF. In this way,
OCSF and applications work together to manage these objects in the OCSF
memory heap.

Figure 5. Dual_Provider Cryptographic Services and Persistent Storage Services

84 z/OS OCSF Application Programming

Security Context Management
The OCSF framework is responsible for maintaining data that may be required to
perform cryptographic and security operations. The internal context structure
maintains information pertaining to the parameters of the cryptographic operation,
such as the type of algorithm to be performed, and maintains a list of attributes to
customize the information stored in the context. These attributes can be of different
types, including keys, dates, and raw data buffers. When the application creates a
context, it supplies a set of parameters based on what type of context it is, and the
framework returns a handle to that context. The application can then use that
handle to add additional attributes to the framework, and update the contents of
the existing attributes. The context handle is passed to the functions that perform
the actual cryptographic operations. The data and attributes are retrieved from the
context management system for use by the addin performing the operations. When
the application is done with a context, it should pass the handle to the
CSSM_DeleteContext function in order to free up the memory used by that context.

Integrity Verification Services
As a security framework, OCSF provides each application with checking of the
integrity of the OCSF environment in which the application is running. OCSF
requires all code including OCSF binaries and the invoking application to be
program controlled. Non-program controlled binaries causes the environment to
become "dirty" and the result will be failure of attaching OCSF Service Providers.
In addition, Cryptographic Service Providers and Policy Modules have additional
checks to verify their validity.

Data Structures for Core Services
“Data Structures for Core Services” discusses the data structures for the core
services.

Note: Some application interfaces use data structures defined by other OCSF
services. Those data structures are defined with those particular OCSF services.

Basic Data Types
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef short sint16;
typedef unsigned int uint32;
typedef int sint32;

#define CSSM_MODULE_STRING_SIZE 64
typedef char CSSM_STRING [CSSM_MODULE_STRING_SIZE + 4];

CSSM_ALL_SUBSERVICES
This data type is used to identify that information on all of the subservices is being
requested or returned.
#define CSSM_ALL_SUBSERVICES (-1)

CSSM_API_MEMORY_FUNCS_PTR
This is data structure is used by an application to pass in its own memory
management routines ot OCSF. It is defined by this set of declarations:
/* structure for passing a memory function table to cssm */
typedef struct cssm_memory_funcs {

void *(*malloc_func) (uint32 Size, void *AllocRef);
void (*free_func) (void *MemPtr, void *AllocRef);

Chapter 10. Core Services API 85

void *(*realloc_func) (void *MemPtr, uint32 Size, void *AllocRef);
void *(*calloc_func) (uint32 Num, uint32 Size, void *AllocRef);
void *AllocRef;

} CSSM_MEMORY_FUNCS, *CSSM_MEMORY_FUNCS_PTR;

typedef CSSM_MEMORY_FUNCS CSSM_API_MEMORY_FUNCS;
typedef CSSM_API_MEMORY_FUNCS *CSSM_API_MEMORY_FUNCS_PTR;

CSSM_BOOL
This data type is used to indicate a true or false condition.
typedef uint32 CSSM_BOOL;

#define CSSM_TRUE 1
#define CSSM_FALSE 0

Definitions:

CSSM_TRUE
Indicates a true result or a true value.

CSSM_FALSE
Indicates a false result or a false value.

CSSM_COUNTRY_ORIGIN
typedef enum cssm_country_origin {

CSSM_COUNTRY_US = 1,
CSSM_COUNTRY_NONUS = 2

} CSSM_COUNTRY_ORIGIN;

CSSM_CRYPTO_TYPE
typedef enum cssm_crypto_type {

CSP_TYPE_NONE = 0,
CSP_TYPE_EXPORT = 1,
CSP_TYPE_SSL = 2,
CSP_TYPE_FINANCIAL = 3,
CSP_TYPE_EXPORTVERIFY = 4,
CSP_TYPE_AUTHENTICATE = 5

} CSSM_CRYPTO_TYPE;

CSSM_CSP_MANIFEST
typedef struct cssm_csp_manifest {

char *Vendor;
CSSM_COUNTRY_ORIGIN CountryOrigin;
CSSM_CRYPTO_TYPE CryptoType;
uint32 NumberCapabilities;
CSSM_CSP_CAPABILITY_PTR Capabilities;

} CSSM_CSP_MANIFEST, * CSSM_CSP_MANIFEST_PTR;

CSSM_CSSMINFO
This data structure represents the information associated with an installation of
OCSF.
typedef struct cssm_cssminfo {

CSSM_VERSION Version;
char *Description
char *Vendor
CSSM_BOOL ThreadSafe;
char *Location;
CSSM_GUID GUID;

}CSSM_CSSMINFO, *CSSM_CSSMINFO_PTR

CSSM_DATA
The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary
block of contiguous memory. This memory must be allocated and freed using the
memory management routines provided by the calling application through OCSF.

86 z/OS OCSF Application Programming

TP modules and CLs use this structure to hold certificates and Certificate
Revocation Lists (CRLs). Other service modules, such as CSPs, use this same
structure to hold general data buffers. DL modules use this structure to hold
persistent security-related objects.
typedef struct cssm_data{

uint32 Length;/* in bytes */
uint8 *Data;

} CSSM_DATA, *CSSM_DATA_PTR

Definitions:
Length Length of the data buffer in bytes.
Data Points to the start of an arbitrary length data buffer.

CSSM_EVENT_TYPE
typedef uint32 CSSM_EVENT_TYPE, *CSSM_EVENT_TYPE_PTR;

#define CSSM_EVENT_ATTACH (0)
#define CSSM_EVENT_DETACH (1)
#define CSSM_EVENT_INFOATTACH &tab;(2)
#define CSSM_EVENT_INFODETACH &tab;(3)
#define CSSM_EVENT_CREATE_CONTEXT (4)
#define CSSM_EVENT_DELETE_CONTEXT (5)

CSSM_GUID
This structure designates a Globally Unique ID (GUID) that distinguishes one
service provider module from another. All GUID values should be
computer-generated to guarantee uniqueness. (The GUID generator in Microsoft
Developer Studio, the RPC UUIDGEN/uuid_gen program can be used on a
number of UNIX-based platforms, and the UUIDEN of the DCE on z/OS can be
used to generate a GUID.)
typedef struct cssm_guid{

uint32 Data1;
uint16 Data2;
uint16 Data3;
uint8Data4[8];

} CSSM_GUID, *CSSM_GUID_PTR

Definitions:

Data1 Specifies the first 8 hexadecimal digits of the GUID.

Data2 Specifies the first group of 4 hexadecimal digits of the GUID.

Data3 Specifies the second group of 4 hexadecimal digits of the GUID.

Data4 Specifies an array of 8 elements that contains the third and final group of 8
hexadecimal digits of the GUID in elements 0 and 1, and the final 12
hexadecimal digits of the GUID in elements 2 through 7.

CSSM_HANDLE
This structure is an opaque handle used to refer to data or state retained by one
OCSF API call for use by subsequent API calls.
typedef uint32 CSSM_HANDLE, *CSSM_HANDLE_PTR;

CSSM_INFO_LEVEL
This enumerated list defines the levels of information detail that can be retrieved
about the services and capabilities implemented by a particular module. Modules
can implement multiple OCSF service types. Modules can also present their
services as subservices. Modules can also be dynamic with respect to the services
and features they provide.

Chapter 10. Core Services API 87

typedef enum cssm_info_level {
CSSM_INFO_LEVEL_MODULE = 0,

/* values from XXinfo struct */
CSSM_INFO_LEVEL_SUBSERVICE = 1,

/* values from XXinfo and XXsubservice struct */
CSSM_INFO_LEVEL_STATIC_ATTR = 2,

/* values from XXinfo and XXsubservice and all
static-valued attributes of a subservice */

CSSM_INFO_LEVEL_ALL_ATTR = 3,
/* values from XXinfo and XXsubservice and all attributes,
static and dynamic, of a subservice */

} CSSM_INFO_LEVEL;

CSSM_LIST
This structure is used to encapsulate an array of CSSM_LIST_ITEMs, where the
array length is given by the Length variable.
typedef struct cssm_list{

uint32 NumberItems;
CSSM_LIST_ITEM_PTR Items;

} CSSM_LIST, *CSSM_LIST_PTR

Definitions:
NumberItems

The number of items in the list.
Items An array of pointers to the item structures.

CSSM_LIST_ITEM
This structure is used to encapsulate the name and GUID of a service provider
module.
typedef struct cssm_list_item{

CSSM_GUID GUID;
char *Name;

} CSSM_LIST_ITEM, *CSSM_LIST_ITEM_PTR

Definitions:
GUID The global unique identifier of the module.
Name The name of the module.

CSSM_MODULE_FLAGS
typedef uint32 CSSM_MODULE_FLAGS;

#define CSSM_MODULE_THREADSAFE 0x1
#define CSSM_MODULE_EXPORTABLE&tab;0x2

CSSM_MODULE_HANDLE
This structure is a unique identifier for an attached service provider module.
typedef uint32 CSSM_MODULE_HANDLE

CSSM_MODULE_INFO
This structure aggregates all service descriptions about all service types of a
module implementation.
typedef struct cssm_module_info {

CSSM_VERSION Version; /* Module version */
CSSM_VERSION CompatibleCSSMVersion;/* Module written for CSSM version */
CSSM_STRING Description; /* Module description */
CSSM_STRING Vendor; /* Vendor name, etc */
CSSM_MODULE_FLAGS Flags; /* Flags to describe and control module use */
CSSM_SERVICE_MASK ServiceMask; /* Bit mask of supported services */
uint32 NumberOfServices; /* Num of services in ServiceList */
CSSM_SERVICE_INFO_PTR ServiceList;/* Pointer to list of service infos */
void* Reserved;

} CSSM_MODULE_INFO, *CSSM_MODULE_INFO_PTR;

88 z/OS OCSF Application Programming

Definitions:

Version
The major and minor version numbers of this service provider module.

CompatibleCSSMVersion
The version of OCSF that this module was written to.

Description
A text description of this module and its functionality.

Vendor The name and description of the module vendor.

Flags Characteristics of this module, such as whether or not it is threadsafe.

ServiceMask
&tab;A bit-mask identifying the types of services available in this module.

NumberOfServices
The number of services for which information is provided. Multiple
descriptions &tab;(as subservices) can be provided for a single service
category.

ServiceList
An array of pointers to the service information structures. This array
contains NumberOfServices entries.

Reserved
This field is reserved for future use. It should always be set to NULL.

CSSM_NOTIFY_CALLBACK
The CSSM_NOTIFY_CALLBACK is used by the application to provide a function
pointer to a callback routine. It is typically supplied in the CSSM_ModuleAttach
API when the application developer wishes something to be called in response to a
particular event happening. It is defined as follows:
typedef CSSM_RETURN (CSSMAPI *CSSM_NOTIFY_CALLBACK) (CSSM_MODULE_HANDLE

uint32 Application,ModuleHandle,
uint32 Reason,
void * Param);

Definitions:
ModuleHandle

The handle of the attached service provider module.
Application

Input data to identify the callback.
Reason The reason for the notification.
Param Any additional information about the event

Reason Description

CSSM_NOTIFY_SURRENDER The service provider module is temporarily
surrendering control of the process.

CSSM_NOTIFY_COMPLETE An asynchronous operation has completed.

CSSM_NOTIFY_DEVICE_REMOVED A device, such as a token, has been removed.

CSSM_NOTIFY_DEVICE_INSERTED A device, such as a token, has been inserted.

CSSM_RETURN
This data type is used to indicate whether a function was successful.

Chapter 10. Core Services API 89

typedef enum cssm_return {
CSSM_OK = 0,
CSSM_FAIL = -1

} CSSM_RETURN

Definitions:
CSSM_OK

Indicates operation was successful.
CSSM_FAIL

Indicates operation was unsuccessful.

CSSM_SERVICE_FLAGS
This defines a bit-mask that categorizes the type of service provided by a service
provider module. It can contain any combination of CSSM_SERVICE_MASK
values.
typedef uint32 CSSM_SERVICE_FLAGS;

#define CSSM_SERVICE_ISWRAPPEDPRODUCT 0x1
/* On = Contains one or more embedded products

Off = Contains no embedded products */

CSSM_SERVICE_INFO
This structure holds a description of a module service. The service described is of
the OCSF service type specified by the module type.
typedef struct cssm_serviceinfo {

CSSM_STRING Description; /* Service description */
CSSM_SERVICE_TYPE Type; /* Service type */
CSSM_SERVICE_FLAGS Flags;/* Service flags */

uint32 NumberOfSubServices;/*Number of sub services in SubServiceList */
union { /* List of sub services */

void *SubServiceList;
CSSM_CSPSUBSERVICE_PTR CspSubServiceList;
CSSM_DLSUBSERVICE_PTR DlSubServiceList;
CSSM_CLSUBSERVICE_PTR ClSubServiceList;
CSSM_TPSUBSERVICE_PTR TpSubServiceList;

#ifdef KEY_RECOVERY
CSSM_KRSPSUBSERVICE_PTR KrSubServiceList;

#endif
#ifndef_MVS_

};
#else

/* Use the CDSA Version 2.0 definition instead of the anonymous union of
The Version 1.x spec which unforturnately is not ANSI-C compatible. */

} SubserviceList;
#endif

void* Reserved;
} CSSM_SERVICE_INFO, *CSSM_SERVICE_INFO_PTR;

Definitions:

Description
A text description of the service.

Type Specifies exactly one type of service structure, such as
CSSM_SERVICE_CSP, CSSM_SERVICE_CL, etc.

Flags Characteristics of this service, such as whether it contains any embedded
products.

NumberOfSubServices
The number of elements in the module SubServiceList.

90 z/OS OCSF Application Programming

SubServiceList
A list of descriptions of the encapsulated subservices (not of the basic
service types).

CspSubServiceList
A list of descriptions of the encapsulated CSP subservices.

DlSubServiceList
A list of descriptions of the encapsulated DL subservices.

ClSubServiceList
A list of descriptions of the encapsulated CL subservices.

TpSubServiceList
A list of descriptions of the encapsulated TP subservices.

KrSubServiceList3

A list of descriptions of the encapsulated key recovery subservices.

Reserved
This field is reserved for future use. It should always be set to NULL.

Note: _MVS_ is a z/OS compiler definition (by default) therefore on our platform
the union will take on the name SubserviceList given in the declaration.

CSSM_SERVICE_MASK
This defines a bit-mask of the possible categories of OCSF services that may be
implemented by a single service provider module.
typedef uint32 CSSM_SERVICE_MASK;

#define CSSM_SERVICE_CSSM 0x1
#define CSSM_SERVICE_CSP 0x2
#define CSSM_SERVICE_DL 0x4
#define CSSM_SERVICE_CL 0x8
#define CSSM_SERVICE_TP 0x10
#define CSSM_SERVICE_KR 0x20
#define CSSM_SERVICE_LAST CSSM_SERVICE_TP

CSSM_USER_AUTHENTICATION
This structure holds the user's credentials for authenticating to the data storage
library module. The type of credentials required is defined by the DL module and
specified as a CSSM_USER_AUTHENTICATION_MECHANISM.
typedef struct cssm_user_authentication {

CSSM_DATA_PTR Credential;
CSSM_CRYPTO_DATA_PTR MoreAuthenticationData;

} CSSM_USER_AUTHENTICATION, *CSSM_USER_AUTHENTICATION_PTR;

Definitions:

Credential
A certificate, a shared secret, a token, or whatever the service provider
module requires for user authentication. The required credential type is
specified as a CSSM_USER_AUTHENTICATION_MECHANISM.

MoreAuthenticationData
A passphrase or other data that can be provided as immediate data within
this structure or via a callback function to the user/caller.

3. This is not supported in z/OS.

Chapter 10. Core Services API 91

CSSM_USER_AUTHENTICATION_MECHANISM
This enumerated list defines different methods a service provider module can
require when authenticating a caller. The module specifies which mechanism the
caller must use for each subservice type provided by the module. For example, the
DL modules may require password-based authentication, may require a login
sequence, or may accept a certificate and passphrase.
typedef enum cssm_user_authentication_mechanism {

CSSM_AUTHENTICATION_NONE = 0,
CSSM_AUTHENTICATION_CUSTOM = 1,
CSSM_AUTHENTICATION_PASSWORD = 2,
CSSM_AUTHENTICATION_USERID_AND_PASSWORD = 3,
CSSM_AUTHENTICATION_CERTIFICATE_AND_PASSPHRASE = 4,
CSSM_AUTHENTICATION_LOGIN_AND_WRAP = 5,

} CSSM_USER_AUTHENTICATION_MECHANISM;

CSSM_VERSION
This structure is used to represent the version of OCSF components.
typedef struct cssm_version {

uint32 Major;
uint32 Minor;

} CSSM_VERSION, *CSSM_VERSION_PTR

Definitions:
Major The major version number of the component.
Minor The minor version number of the component.

APIs for Core Services
“APIs for Core Services” describes the Application Programming Interfaces (APIs)
for Core Services.

CSSM_FreeInfo
Purpose

This function frees the memory allocated for the CSSM_CSSMINFO structure by
the CSSM_GetInfo function.

Format
CSSM_RETURN CSSMAPI CSSM_FreeInfo (CSSM_CSSMINFO_PTR CssmInfo)

Parameters

Input/Output

CssmInfo
A pointer to the CSSM_CSSMINFO structure to be freed.

Return Value

A CSSM_OK return value signifies the memory has been freed. When CSSM_FAIL
is returned, an error occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_GetInfo

92 z/OS OCSF Application Programming

CSSM_GetInfo
Purpose

This function returns the version information of the OCSF Framework.

Format
CSSM_CSSMINFO_PTR CSSMAPI CSSM_GetInfo (void)

Parameters

None.

Return Value

A pointer to a CSSM_CSSMINFO structure. If the pointer is NULL, an error
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_FreeInfo

CSSM_Init
Purpose

This function initializes OCSF and verifies that the version of OCSF expected by
the application is compatible with the version of OCSF on the system. This
function should be called only once by each application.

Format
CSSM_RETURN CSSMAPI CSSM_Init

(const CSSM_VERSION_PTR Version,
const CSSM_API_MEMORY_FUNCS_PTR MemoryFuncs,
const void * Reserved)

Parameters

Input

Version
The major and minor version number of the OCSF release the application is
compatible with.

MemoryFuncs
Memory functions for OCSF to use when allocating data structures for the
application.

Reserved
A reserved input.

Return Value

A CSSM_OK return value signifies the initialization operation was successful.
When CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to
obtain the error code.

Chapter 10. Core Services API 93

Module Management Functions
“Module Management Functions” describes the module management functions for
core services.

CSSM_FreeModuleInfo
Purpose

This function frees the memory allocated by CSSM_GetModuleInfo to hold the
module info structures. All substructures within the information structure are freed
by this function.

Format
CSSM_RETURN CSSMAPI CSSM_FreeModuleInfo (CSSM_MODULE_INFO_PTR ModuleInfo)

Parameters

Input

ModuleInfo
A pointer to the CSSM_MODULE_INFO structure to be freed.

Return Value

This function returns CSSM_OK if successful, and returns CSSM_FAIL if an error
has occurred. Use CSSM_GetError to determine the exact error.

Related Information

CSSM_GetModuleInfo
CSSM_SetModuleInfo

CSSM_GetCSSMRegistryPath
Purpose

This function gets the directory path of the OCSF registry.

Format
CSSM_DATA_PTR CSSMAPI CSSM_GetCSSMRegistryPath (void)

Parameters

None

Return Value

A pointer to a CSSM_DATA structure containing the registry path information or a
NULL, if an error occurred in getting the information. Use CSSM_GetError to
determine the exact error.

CSSM_GetGUIDUsage
Purpose

Returns a bit-mask describing the OCSF function categories of service provided by
the module identified by GUID.

94 z/OS OCSF Application Programming

Format
CSSM_SERVICE_MASK CSSMAPI CSSM_GetGUIDUsage (const CSSM_GUID_PTR ModuleGUID)

Parameters

Input

ModuleGUID
Pointer to a Globally Unique Identifier for the module of interest.

Return Value

A CSSM_SERVICE_MASK from the info structure describing the services provided
by the module referenced by the GUID.

Related Information

CSSM_GetHandleUsage

CSSM_GetHandleUsage
Purpose

Returns a bit-mask describing the OCSF function categories of service provided by
the module, which is identified by the specified handle for an attached module.

Format
CSSM_SERVICE_MASK CSSMAPI CSSM_GetHandleUsage (CSSM_HANDLE ModuleHandle)

Parameters

Input

ModuleHandle
Handle of the module for which information should be returned.

Return Value

A CSSM_SERVICE_MASK from the info structure describing the services provided
by the module referenced by the handle.

Related Information

CSSM_GetGUIDUsage

CSSM_GetModuleGUIDFromHandle
Purpose

This function determines the GUID associated with a specific module handle.

Format
CSSM_GUID_PTR CSSMAPI CSSM_GetModuleGUIDFromHandle (CSSM_HANDLE ModuleHandle)

Parameters

Input

Chapter 10. Core Services API 95

ModuleHandle
The handle that describes the service provider module.

Return Value

A CSSM_GUID_PTR to a data structure containing the GUID associated with
ModuleHandle. If the pointer is NULL, an error has occurred. Use CSSM_GetError
to obtain the error code.

CSSM_GetModuleInfo
Purpose

This function returns descriptive information about the module identified by the
ModuleGUID. The information returned can include: all of the capability
information, information for each subservice, or information for each of the service
types implemented by the selected module. The request for information can be
limited to a particular set of services, as specified by the ServiceMask bit-mask. The
request may be further limited to one or all of the subservices implemented in one
or all of the service categories. Finally, the detail level of the information returned
can be controlled by the InfoLevel input parameter. This is particularly important
for a module with dynamic capabilities. InfoLevel can be used to request static
attribute values only or dynamic values.

Format
CSSM_MODULE_INFO_PTR CSSMAPI CSSM_GetModuleInfo

(const CSSM_GUID_PTR ModuleGUID
CSSM_SERVICE_MASK ServiceMask
uint32 SubserviceID
CSSM_INFO_LEVEL InfoLevel)

Parameters

Input

ModuleGUID
A pointer to the CSSM_GUID structure containing the GUID for the service
provider module.

ServiceMask
A bit-mask specifying the module service types used to restrict the capabilities
information returned by this function. An input value of zero specifies all
services for the specified module.

SubserviceID
A single subservice ID or the value CSSM_ALL_SUBSERVICES must be
provided. If a subservice ID is provided, the get operation is limited to the
specified subservice. Note that a service mask may already limit the operation.
If so, the subservice ID applies to all service categories selected by the service
mask. If CSSM_ALL_SUBSERVICES is specified, information for all subservices
(as limited by the service mask) is returned by this function.

InfoLevel
Indicates the level of detail returned by this function. Information retrieval can
be restricted as follows. Note that not all service provider modules support all
of these values.
v CSSM_INFO_LEVEL_MODULE - Returns only the information contained

in the cssm_moduleinfo structure.

96 z/OS OCSF Application Programming

v CSSM_INFO_LEVEL_SUBSERVICE - Returns the information returned by
CSSM_INFO_LEVEL_MODULE and the information contained in the
cssm_XXsubservice structure, where XX corresponds to the module type,
such as cssm_tpsubservice.

v CSSM_INFO_LEVEL_STATIC_ATTR - Returns the information returned by
CSSM_INFO_LEVEL_SUBSERVICE and the attribute and capability values
that are statically defined for the module.

v CSSM_INFO_LEVEL_ALL_ATTR - Returns the information returned by
CSSM_INFO_LEVEL_SUBSERVICE and the attribute and capability values
that are statically or dynamically defined for the module. Dynamic modules,
whose capabilities change over time, support a query function used by
OCSF to interrogate the module's current capability status.

Return Value

A CSSM_MODULE_INFO_PTR to an array of one or more info structures. Each
structure contains type information identifying the capability description as
representing CL capabilities, DL capabilities, etc. The capability descriptions can
also be subclassed into subservices.

Related Information

CSSM_FreeModuleInfo

CSSM_GetModuleLocation
Purpose

This function returns the directory path of the service provider module specified
by the GUID input parameter.

Format
CSSM_DATA_PTR CSSMAPI CSSM_GetModuleLocation (const CSSM_GUID_PTR GUID)

Parameters

Input

GUID
A pointer to the CSSM_GUID structure containing the GUID for the service
provider module.

Return Value

A pointer to a CSSM_DATA data structure containing the directory path of the
module associated with GUID. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

CSSM_ListModules
Purpose

This function returns a list containing the GUID/name pair for each of the
currently installed service provider modules that provide services in any of the
OCSF functional categories selected in the service mask.

Chapter 10. Core Services API 97

Format
CSSM_LIST_PTR CSSMAPI CSSM_ListModules (CSSM_SERVICE_MASK ServiceMask, CSSM_BOOL MatchAll)

Parameters

Input

ServiceMask
&tab;A bit-mask selecting the OCSF functional categories. This information can
be used to select information about potential service provider modules.

MatchAll
A Boolean value defining how the multiple bits in the service mask are
interpreted. CSSM_TRUE means the service modules selected must match all
service areas specified by the service mask. CSSM_FALSE means the service
module selected must specify one or more of the service areas specified by the
service mask.

Return Value

A pointer to the CSSM_LIST structure containing the GUID/name pair for each of
the modules. If the pointer is NULL, an error has occurred. Use CSSM_GetError to
obtain the error code.

Related Information

CSSM_GetModuleInfo
CSSM_FreeModuleInfo

CSSM_ModuleAttach
Purpose

This function attaches the service provider module and verifies that the version of
the module expected by the application is compatible with the version on the
system. The module can implement subservices (as described in the service
provider's information). The caller can specify a specific subservice provided by the
module. Subservice flags may be required to set parameters for the service.

Format
CSSM_MODULE_HANDLE CSSMAPI CSSM_ModuleAttach

(const CSSM_GUID * GUID,
const CSSM_VERSION_PTR Version,
const CSSM_API_MEMORY_FUNCS_PTR MemoryFuncs,
uint32 SubserviceID,
uint32 SubserviceFlags,
uint32 Application,
const CSSM_NOTIFY_CALLBACK Notification,
const void * Reserved)

Parameters

Input

GUID
A pointer to the CSSM_GUID structure containing the GUID for the service
provider module.

Version
The major and minor version number of the service provider module with
which the application is compatible.

98 z/OS OCSF Application Programming

MemoryFuncs
Memory functions for OCSF to use when allocating data structures for the
application.

SubserviceID
The number of a subservice provided by the module. This value should always
be taken from the CSSM_MODULE_INFO structure to insure that a compatible
identifier is used. (Service provider modules that implement only one service
can use zero as the subservice identifier.)

SubserviceFlags
Bit-mask of service options defined by a particular subservice of the module.
Valid values are described in module-specific information. A default set of flags
is specified in the CSSM_MODULE_INFO structure for use by the caller.

Reserved
A reserved input.

Input/optional

Application
This is passed to the application when its callback is invoked allowing the
application to determine the proper context of operation.

Notification
Callback provided by the application that is called by the service provider
module when one of these occurs: a parallel operation completes, a token
running in serial mode surrenders control to the application, or the token is
removed (hardware-specific).

Return Value

A module handle for the attached service provider module is returned. If the
handle is NULL, an error has occurred. Use CSSM_GetError to obtain the error
code.

Related Information

CSSM_ModuleDetach

CSSM_ModuleDetach
Purpose

This function detaches the application from the service provider module.

Format
CSSM_RETURN CSSMAPI CSSM_ModuleDetach (CSSM_MODULE_HANDLE ModuleHandle)

Parameters

Input

ModuleHandle
The handle that describes the service provider module.

Chapter 10. Core Services API 99

Return Value

A CSSM_OK return value signifies that the application has been detached from the
service provider module. If CSSM_FAIL is returned, an error has occurred. Use
CSSM_GetError to obtain the error code.

Related Information

CSSM_ModuleAttach

Utility Functions
“Utility Functions” describes the utility functions for the core services.

CSSM_FreeList
Purpose

This function frees the memory allocated to hold a list of strings.

Format
CSSM_RETURN CSSMAPI CSSM_FreeList (CSSM_LIST_PTR List)

Parameters

Input

List
&tab;A pointer to the CSSM_LIST structure containing the GUID/name pair of
service provider modules.

Return Value

A CSSM_OK return value signifies that the allocated memory has been freed. If
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the
error code.

CSSM_GetAPIMemoryFunctions
Purpose

This function retrieves the memory function table associated with the service
provider module.

Format
CSSM_API_MEMORY_FUNCS_PTR CSSMAPI CSSM_GetAPIMemoryFunctions(CSSM_HANDLE AddInHandle)

Parameters

Input

AddInHandle
The handle to the service provider module whose memory function table is
being requested.

100 z/OS OCSF Application Programming

Return Value

A pointer to the CSSM_API_MEMORY_FUNCS table associated with the service
provider module. If an error condition occurred, the function returns NULL. Use
CSSM_GetError to obtain the error code.

Chapter 10. Core Services API 101

102 z/OS OCSF Application Programming

Chapter 11. OCSF Privilege Mechanism

The OCSF does not support the Privilege Mechanism as defined by the Keyworks
derivative implementation. The OCSF does provide Privilege Mechanism toleration
support as follows:
v All Privilege APIs can be invoked. There are no privileges tied to the

application. For compatability purposes, where required by the Privilege API, an
application pathname and application file name still must be specified, but will
not be checked. The privileges returned will be based on the policy modules on
the system.

v When the OCSF Security Level 3 feature is installed, all privileges are returned.
v When only the OCSF base is installed, no privileges are returned.

Data Structures
“Data Structures”describes the data structure for the OCSF Privilege Mechanism.

Note: Some application interfaces use data structures defined by other OCSF
services. Those data structures are defined with those particular OCSF services.

CSSM_EXEMPTION_MASK
This data type defines a bit-mask of exemptions or privileges pertaining to the
OCSF framework. Exemptions are defined to correspond to built-in checks
performed by OCSF framework and the module managers. The caller must possess
the necessary credentials to be granted the exemptions. At this time, the
CSSM_EXEMPTION_MASK can hold a maximum of 32 distinct privileges. The
mask data type may be changed in the future to allow expansion to support larger
sets of privileges.
typedef uint32 CSSM_EXEMPTION_MASK;

#define CSSM_EXEMPT_NONE 0x00 &tab;/* no privileges*/

#define CSSM_EXEMPT_MULTI_ENCRYPT_CHECK&tab; 0x01 /* privilege that allows the */
/* caller to perform repeated nested */
/* encryption of a data buffer */

#define CSSM_STRONG_CRYPTO_WITH_KR 0x02 /* privilege that allows the caller*/
/* to obtain any strength cryptography as*/
/* long as key recovery operations are*/
/* performed based on key recovery policy*/
/* tables */

#define CSSM_EXEMPT_LE_KR 0x04&tab; /* privilege that allows the caller*/
/* to obtain any strength cryptography*/
/* without the need to perform law*/
/* enforcement key recovery operations.*/

#define CSSM_EXEMPT_ENT_KR 0x08 /* privilege that allows the caller*/
/* to obtain any strength cryptography*/
/* without the need to perform enterprise*/
/* key recovery operations.*/

#define CSSM_EXEMPT_ALL 0xff /* privilege that allows the caller*/
/* to obtain the services corresponding to*/
/* the combination of all the privileges*/
/* defined.*/

© Copyright IBM Corp. 1999, 2013 103

Operations
This describes the operations APIs for the OSCF Privilege Mechanism.

CSSM_CheckCssmExemption
Purpose

This describes the operations APIs for the OSCF Privilege Mechanism.This function
returns the exemptions possessed by the current thread. For OCSF, if the
exemption returned is non-zero, it implies that the CSSM_RequestCssmExemption
API had been called to request the specific set of exemptions and the application is
running with the OCSF Security Level 3 feature installed.

Format
CSSM_CheckCssmExemptionCSSM_RETURN CSSMAPICSSM_CheckCssm ExemptionCSSM_EXEMPTION_MASK *Exemptions)

Parameters

Output

Exemptions
A bit-mask of all exemptions possessed by the calling thread.

Return Value

A CSSM_OK return value signifies the operation was successful and that the
exemption returned is valid. When CSSM_FAIL is returned, an error has occurred.
Use CSSM_GetError to obtain the error code.

Related Information

CSSM_RequestCssmExemption

CSSM_QueryModulePrivilege
Purpose

The function returns the privileges available to the application. On z/OS, the
privileges available depend upon whether only the OCSF base is installed or if the
OCSF Security Level 3 feature is installed. When the OCSF Security Level 3 feature
is installed, all privileges are available. When only the OCSF base is installed, no
privileges are available. The application file name and application path name must
be specified for compatability with other implementations of the interface, but are
not used.

An application may invoke this function to determine privileges available to the
application.

Format
CSSM_RETURN CSSM_QueryModulePrivilege (const char *AppFileName,

const char *AppPathName,
CSSM_EXEMPTION_MASK *PrivilegeSet)

Parameters

Input

104 z/OS OCSF Application Programming

AppFileName
The module file name for the application.

AppPathName
The path to the file that implements the module.

Output

PrivilegeSet
A bitmask specifying all the privileges that the module has.

Return Value

This function returns CSSM_OK if credential verification was successful and a
privilege set was retrieved. On error CSSM_FAIL is returned. Use CSSM_GetError
to obtain the error code.

CSSM_RequestCssmExemption
Purpose

Privileges/Exemptions are only tolerated on the OCSF and therefore behave
differently than on other implementations. When the OCSF Security Level 3 feature
is installed, the requested exemptions are granted automatically. In this case, the
AppFileName and AppPathName parameters may be left as NULL. When only the
OSCF base is installed, no exemptions are available. For compatability the
AppFileName and AppPathName must be specified but they will not be used.

The exemption mask defines the requested exemptions. Applications may invoke
this function multiple times. Each successful verification replaces the previously
granted exemptions. If the ExemptionRequest parameter is zero, all privileges are
dropped for that thread.

It may be noted that the AppFileName and AppPathName parameters may be left as
NULL if it is known for sure that the requested exemptions are a subset of the
currently possessed exemptions.

Format
CSSM_RETURN CSSMAPI CSSM_RequestCssmExemption(CSSM_EXEMPTION_MASK ExemptionRequest,

const char *AppFileName,
const char *AppPathName,
const void * Reserved)

Parameters

Input

ExemptionRequest
A bit-mask of all exemptions being requested by the caller. If the value is
CSSM_EXEMPT_ALL, the caller is requesting all possible privileges that may
be granted according to the credentials that are presented and checked.

AppFileName
The name of the file that implements the application. This file is not used by
OCSF but is required for compatibility.

AppPathName
The path to the file that implements the application. This file is not used by
OCSF but is required for compatibility.

Chapter 11. OCSF Privilege Mechanism 105

Input/optional

Reserved
A reserved input.

Return Value

A CSSM_OK return value signifies the verification operation was successful and
the exemption has been granted. When CSSM_FAIL is returned, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_CheckCssmExemption

106 z/OS OCSF Application Programming

Chapter 12. Cryptographic Services API

Cryptographic Service Providers (CSPs) are service provider modules which
perform cryptographic operations including encryption, decryption, digital
signaturing, key and key pair generation, random number generation (RNG),
message digest, key wrapping, key unwrapping, and key exchange. Cryptographic
services can be implemented by a hardware-software combination, by software
only, or by hardware only. Besides the traditional cryptographic functions, CSPs
may provide other vendor-specific services. The set of services provided can be
dynamic even after a caller has attached the CSP for service. This means the
capabilities registered when the CSP was installed can change during execution
based on changes internal or external to the system.

The CSP is always responsible for the secure storage of private keys. Optionally,
the CSP may assume responsibility for the secure storage of other object types,
such as symmetric keys and certificates. The implementation of secured persistent
storage for keys can use the services of a Data Storage Library (DL) module within
the OCSF Framework or some approach internal to the CSP. Accessing persistent
objects managed by the CSP, other than keys, is performed using OCSF's DL
application programming interfaces (APIs).

CSPs optionally support a password-based login sequence. When login is
supported, the caller is allowed to change passwords as deemed necessary. This is
part of a standard user-initiated maintenance procedure. Some CSPs support
operations for privileged CSP administrators. The model for CSP administration
varies widely among CSP implementations. For this reason, OCSF does not define
APIs for vendor-specific CSP administration operations. CSP vendors can makes
these services available to CSP administration tools using the
CSSM_CSP_Passthrough function.

The range and types of cryptographic services a CSP supports are at the discretion
of the vendor. A registry and query mechanism is available through the OCSF for
CSPs to disclose the services and details about the services. As an example, a CSP
may register this with the OCSF: Encryption is supported, algorithms present are
Data Encryption Standard (DES) with cipher block chaining for key sizes 40 and 56
bits, and triple DES with three keys for key-size 168 bits.

All cryptographic services requested by applications will be channeled to one of
the CSPs through OCSF. CSP vendors only need target their modules to OCSF for
all security-conscious applications to have access to their product.

Calls made to a CSP to perform cryptographic operations occur within a
framework called a session, which is established and terminated by the application.
Applications must create a session context (simply referred to as the context) prior to
starting CSP operations and delete it as soon as possible upon completion of the
operation. Context information is not persistent; it is not saved permanently in a
file or database.

Before an application calls a CSP to perform a cryptographic operation, the
application uses the query services function to determine what CSPs are installed
and what services they provide. Based on this information, the application then
can determine which CSP to use for subsequent operations; the application creates
a session with this CSP and performs the operation.

© Copyright IBM Corp. 1999, 2013 107

Depending on the class of cryptographic operations, individualized attributes are
available for the cryptographic context. Besides specifying an algorithm when
creating the context, the application may also initialize a session key, pass an
initialization vector and/or pass padding information to complete the description
of the session. A successful return value from the create function indicates the
desired CSP is available. Functions are also provided to manage the created
context. When a context is no longer required, the application calls
CSSM_DeleteContext. Resources that were allocated for that context can be
reclaimed by the operating system.

108 z/OS OCSF Application Programming

There are two basic types of cryptographic operations – a single call to perform an
operation and a staged method of performing the operation. For the single call
method, only one call is needed to obtain the result. For the staged method, there
is an initialization call followed by one or more update calls, and ending with a
completion (final) call. The result is available after the final function completes its
execution for most cryptographic operations – staged encryption/decryption are an
exception in that each update call generates a portion of the result.

Data Structures
This describes the data structures for the CSP.

CSSM_CALLBACK
typedef CSSM_DATA_PTR (CSSMAPI *CSSM_CALLBACK) (void *allocRef, uint32 ID);

Definitions:
allocRef

Memory heap reference specifying which heap to use for memory allocation.
ID Input data to identify the callback

CSSM_CC_HANDLE
typedef uint32 CSSM_CC_HANDLE/* Cryptographic Context Handle */

CSSM_CONTEXT
typedef struct cssm_context {

uint32 ContextType;
uint32 AlgorithmType;
uint32 Reserve;
uint32 NumberOfAttributes;
CSSM_CONTEXT_ATTRIBUTE_PTR ContextAttributes;
CSSM_BOOL Privileged;
uint32 EncryptionProhibited;
uint32 WorkFactor;

} CSSM_CONTEXT, *CSSM_CONTEXT_PTR

Definitions:
ContextType

An identifier describing the type of services for this context, as shown in
Table 23.

AlgorithmType
An ID number describing the algorithm to be used (see Table 24 on page 110).

Table 23. Context Types

Value Description

CSSM_ALGCLASS_NONE Null Context type

CSSM_ALGCLASS_CUSTOM Custom algorithms

CSSM_ALGCLASS_KEYXCH Key Exchange algorithms

CSSM_ALGCLASS_SIGNATURE Signature algorithms

CSSM_ALGCLASS_SYMMETRIC Symmetric Encryption
algorithms

CSSM_ALGCLASS_DIGEST Message Digest algorithms

CSSM_ALGCLASS_RANDOMGEN Random Number Generation
algorithms

CSSM_ALGCLASS_UNIQUEGEN Unique ID Generation
algorithms

Chapter 12. Cryptographic Services API 109

Table 23. Context Types (continued)

Value Description

CSSM_ALGCLASS_MAC Message Authentication Code
(MAC) algorithms

CSSM_ALGCLASS_ASYMMETRIC Asymmetric Encryption
algorithms

CSSM_ALGCLASS_KEYGEN Key Generation algorithms

CSSM_ALGCLASS_DERIVEKEY Key Derivation algorithms

CSSM_ALGCLASS_KEY_RECOVERY_ENABLEMENT Key Recovery Enablement
algorithms

CSSM_ALGCLASS_KEY_RECOVERY_REGISTRATION Key Recovery Registration
algorithms

CSSM_ALGCLASS_KEY_RECOVERY_REQUEST Key Recovery Request
algorithms

Table 24. Algorithms for a Session Context

Value Description

CSSM_ALGID_NONE Null algorithm

CSSM_ALGID_CUSTOM Custom algorithm

CSSM_ALGID_DH Diffie-Hellman key exchange algorithm

CSSM_ALGID_PH Pohlig-Hellman key exchange algorithm

CSSM_ALGID_KEA Key Exchange algorithm

CSSM_ALGID_MD2 MD2hash algorithm

CSSM_ALGID_MD4 MD4hash algorithm

CSSM_ALGID_MD5 MD5hash algorithm

CSSM_ALGID_SHA1 Secure Hash algorithm

CSSM_ALGID_NHASH N-Hash algorithm

CSSM_ALGID_HAVAL HAVAL hash algorithm (MD5 variant)

CSSM_ALGID_RIPEMD RIPE-MD hash algorithm (MD4 variant -
developed for the European Community's
RIPE project)

CSSM_ALGID_IBCHASH IBC-Hash (keyed hash algorithm or MAC)

CSSM_ALGID_RIPEMAC RIPE-MAC

CSSM_ALGID_DES Data Encryption Standard block cipher

CSSM_ALGID_DESX DESX block cipher (DES variant from RSA)

CSSM_ALGID_RDES RDES block cipher (DES variant)

CSSM_ALGID_3DES_3KEY Triple-DES block cipher (with 3 keys)

CSSM_ALGID_3DES_2KEY Triple-DES block cipher (with 2 keys)

CSSM_ALGID_3DES_1KEY Triple-DES block cipher (with 1 key) Lucifer
block cipher

CSSM_ALGID_IDEA International Data Encryption Algorithm
(IDEA) block cipher

CSSM_ALGID_RC2 RC2 block cipher

CSSM_ALGID_RC5 RC5 block cipher

CSSM_ALGID_RC4 RC4 stream cipher

110 z/OS OCSF Application Programming

Table 24. Algorithms for a Session Context (continued)

Value Description

CSSM_ALGID_SEAL SEAL stream cipher

CSSM_ALGID_CAST CAST block cipher

CSSM_ALGID_BLOWFISH BLOWFISH block cipher

CSSM_ALGID_SKIPJACK Skipjack block cipher

CSSM_ALGID_LUCIFER Lucifer block cipher

CSSM_ALGID_MADRYGA Madryga block cipher

CSSM_ALGID_FEAL FEAL block cipher

CSSM_ALGID_REDOC REDOC 2 block cipher

CSSM_ALGID_REDOC3 REDOC 3 block cipher

CSSM_ALGID_LOKI LOKI block cipher

CSSM_ALGID_KHUFU KHUFU block cipher

CSSM_ALGID_KHAFRE KHAFRE block cipher

CSSM_ALGID_MMB MMB block cipher (IDEA variant)

CSSM_ALGID_GOST GOST block cipher

CSSM_ALGID_SAFER SAFER K-40, K-64, K-128 block cipher

CSSM_ALGID_CRAB CRAB block cipher

CSSM_ALGID_RSA RSA public key cipher

CSSM_ALGID_DSA Digital Signature algorithm

CSSM_ALGID_MD5WithRSA MD5/RSA signature algorithm

CSSM_ALGID_MD2WithRSA MD2/RSA signature algorithm

CSSM_ALGID_ElGamal ElGamal signature algorithm

CSSM_ALGID_MD2Random MD2-based random numbers

CSSM_ALGID_MD5Random MD5-based random numbers

CSSM_ALGID_SHARandom SHA-based random numbers

CSSM_ALGID_DESRandom DES-based random numbers

CSSM_ALGID_SHA1WithRSA SHA-1/RSA signature algorithm

CSSM_ALGID_RSA_PKCS RSA as specified in PKCS#1

CSSM_ALGID_RSA_ISO9796 RSA as specified in International
Organization for Standardization (ISO) 9796

CSSM_ALGID_RSA_RAW Raw RSA as assumed in X.509

CSSM_ALGID_CDMF CDMF block cipher

CSSM_ALGID_CAST3 Entrust's CAST3 block cipher

CSSM_ALGID_CAST5 Entrust's CAST5 block cipher

CSSM_ALGID_GenericSecret Generic secret operations

CSSM_ALGID_ConcatBaseAndKey Concatenate two keys, base key first

CSSM_ALGID_ConcatKeyAndBase Concatenate two keys, base key last

CSSM_ALGID_ConcatBaseAndData Concatenate base key and random data, key
first

CSSM_ALGID_ConcatDataAndBase Concatenate base key and data, data first

CSSM_ALGID_XORBaseAndData XOR a byte string with the base key

Chapter 12. Cryptographic Services API 111

Table 24. Algorithms for a Session Context (continued)

Value Description

CSSM_ALGID_ExtractFromKey Extract a key from base key, starting at
arbitrary bit position

CSSM_ALGID_SSL3PreMasterGen Generate a 48-byte SSL 3 premaster key

CSSM_ALGID_SSL3MasterDerive Derive an SSL 3 key from a premaster key

CSSM_ALGID_SSL3KeyAndMacDerive Derive the keys and MACing keys for the
SSL cipher suite

CSSM_ALGID_SSL3MD5_MAC Performs SSL 3 MD5 MACing

CSSM_ALGID_SSL3SHA1_MAC Performs SSL 3 SHA-1 MACing

CSSM_ALGID_MD5Derive Generate key by MD5 hashing a base key

CSSM_ALGID_MD2Derive Generate key by MD2 hashing a base key

CSSM_ALGID_SHA1Derive Generate key by SHA-1 hashing a base key

CSSM_ALGID_WrapLynks Spyrus LYNKS DES based wrapping scheme
w/checksum

CSSM_ALGID_WrapSET_OAEP SET key wrapping

CSSM_ALGID_BATON Fortezza BATON cipher

CSSM_ALGID_ECDSA Elliptic Curve DSA

CSSM_ALGID_MAYFLY Fortezza MAYFLY cipher

CSSM_ALGID_JUNIPER Fortezza JUNIPER cipher

CSSM_ALGID_FASTHASH Fortezza FASTHASH

CSSM_ALGID_3DES Generic 3DES

CSSM_ALGID_SSL3MD5 SSL3MD5

CSSM_ALGID_SSL3SHA1 SSL3SHA1

CSSM_ALGID_FortezzaTimestamp FortezzaTimestamp

CSSM_ALGID_SHA1WithDSA SHA1WithDSA

CSSM_ALGID_SHA1WithECDSA SHA1WithECDSA

CSSM_ALGID_DSA_BSAFE BSAFE Key format

Some of the algorithms in Table 24 on page 110 operate in a variety of modes. The
desired mode is specified using an attribute of type CSSM_ATTRIBUTE_MODE.
The valid values for the mode attribute are as follows in Table 25.

Table 25. Modes of Algorithms

Value Description

CSSM_ALGMODE_NONE Null algorithm mode

CSSM_ALGMODE_CUSTOM Custom mode

CSSM_ALGMODE_ECB Electronic Code Book

CSSM_ALGMODE_ECBPad ECB with padding

CSSM_ALGMODE_CBC Cipher Block Chaining

CSSM_ALGMODE_CBC_IV8 CBC with Initialization Vector of 8 bytes

CSSM_ALGMODE_CBCPadIV8 CBC with padding and Initialization Vector
of 8 bytes

CSSM_ALGMODE_CFB Cipher FeedBack

112 z/OS OCSF Application Programming

Table 25. Modes of Algorithms (continued)

Value Description

CSSM_ALGMODE_CFB_IV8 CFB with Initialization Vector of 8 bytes

CSSM_ALGMODE_CFBPad_IV8 CFB with Initialization Vector of 8 bytes and
padding

CSSM_ALGMODE_OFB Output FeedBack

CSSM_ALGMODE_OFB_IV8 OFB with Initialization Vector of 8 bytes

CSSM_ALGMODE_OFBPadIV8 OFB with Initialization Vector of 8 bytes and
padding

CSSM_ALGMODE_COUNTER Counter

CSSM_ALGMODE_BC Block Chaining

CSSM_ALGMODE_PCBC Propagating CBC

CSSM_ALGMODE_CBCC CBC with Checksum

CSSM_ALGMODE_OFBNLF OFB with Nonlinear Function

CSSM_ALGMODE_PBC Plaintext Block Chaining

CSSM_ALGMODE_PFB Plaintext FeedBack

CSSM_ALGMODE_CBCPD CBC of Plaintext Difference

CSSM_ALGMODE_PUBLIC_KEY Use the public key

CSSM_ALGMODE_PRIVATE_KEY Use the private key

CSSM_ALGMODE_SHUFFLE Fortezza shuffle mode

CSSM_ALGMODE_ECB64 Electronic Code Book (64 bits)

CSSM_ALGMODE_CBC64 Cipher Block Chaining (64 bits)

CSSM_ALGMODE_OFB64 Output FeedBack (64 bits)

CSSM_ALGMODE_CFB64 Cipher FeedBack (64 bits)

CSSM_ALGMODE_CFB32 Cipher FeedBack (32 bits)

CSSM_ALGMODE_CFB16 Cipher FeedBack (16 bits)

CSSM_ALGMODE_CFB8 Cipher FeedBack (8 bits)

CSSM_ALGMODE_WRAP SKIPJACK Wrap mechanism

CSSM_ALGMODE_PRIVATE_WRAP SKIPJACK Private Wrap mechanism

CSSM_ALGMODE_RELAYX SKIPJACK RELAYX mechanism

CSSM_ALGMODE_ECB128 Electronic Code Book (128 bits)

CSSM_ALGMODE_ECB96 Electronic Code Book (96 bits)

CSSM_ALGMODE_CBC128 Cipher Block Chaining (128 bits)

CSSM_ALGMODE_OAEP_HASH Optimal Asymmetric Encryption Padding
(OAEP) for RSA

Definitions:

NumberOfAttributes
Number of attributes associated with this service.

ContextAttributes
Pointer to data that describes the attributes. To retrieve the next attribute,
advance the attribute pointer.

Chapter 12. Cryptographic Services API 113

Privileged
When this flag is CSSM_TRUE, the context can perform cryptographic
operations without being forced to follow the key recovery policy.

EncryptionProhibited
An integer indicating whether encryption is allowed. If encryption is allowed,
this field is zero. Otherwise, the flags indicate which policy disallowed
encryption.

WorkFactor
WorkFactor is the maximum number of bits that can be left out of Key
Recovery Fields (KRFs) when they are generated. The recovery of the key must
then search this number of bits to recover the key.

CSSM_CONTEXT_ATTRIBUTE
typedef struct cssm_context_attribute{

uint32 AttributeType;
uint32 AttributeLength;
union {

char *String;
uint32 Uint32;
CSSM_CRYPTO_DATA_PTR Crypto;
CSSM_KEY_PTR Key;
CSSM_DATA_PTR Data;
CSSM_DATE_PTR Date;
CSSM_RANGE_PTR Range;
CSSM_VERSION_PTR Version;
CSSM_KR_PROFILE_PTR KRProfile;

} Attribute;
} CSSM_CONTEXT_ATTRIBUTE, *CSSM_CONTEXT_ATTRIBUTE_PTR;

Definitions:

AttributeType
An identifier describing the type of attribute. Valid attribute types are as
follows in Table 26.

Table 26. Attribute Types

Value Description Data Type

CSSM_ATTRIBUTE_NONE No attribute None

CSSM_ATTRIBUTE_CUSTOM Custom data Opaque pointer

CSSM_ATTRIBUTE_DESCRIPTION Description of
attribute

String

CSSM_ATTRIBUTE_KEY Key Data CSSM_KEY

CSSM_ATTRIBUTE_INIT_VECTOR Initialization
vector

CSSM_DATA

CSSM_ATTRIBUTE_SALT Salt CSSM_DATA

CSSM_ATTRIBUTE_PADDING Padding
information

uint32

CSSM_ATTRIBUTE_RANDOM Random data CSSM_DATA

CSSM_ATTRIBUTE_SEED Seed CSSM_CRYPTO_DATA

CSSM_ATTRIBUTE_PASSPHRASE Passphrase CSSM_CRYPTO_DATA

CSSM_ATTRIBUTE_KEY_LENGTH Key length
specified in
bits

uint32

114 z/OS OCSF Application Programming

Table 26. Attribute Types (continued)

Value Description Data Type

CSSM_ATTRIBUTE_KEY_LENGTH_RANGE Key length
range
specified in
bits

CSSM_RANGE

CSSM_ATTRIBUTE_BLOCK_SIZE Block size uint32

CSSM_ATTRIBUTE_OUTPUT_SIZE Output size uint32

CSSM_ATTRIBUTE_ROUNDS Number of
runs or
rounds

uint32

CSSM_ATTRIBUTE_IV_SIZE Size of
initialization
vector

uint32

CSSM_ATTRIBUTE_ALG_PARAMS Algorithm
parameters

CSSM_DATA

CSSM_ATTRIBUTE_LABEL Label placed
on an object
when it is
created

CSSM_DATA

CSSM_ATTRIBUTE_KEY_TYPE Type of key to
generate or
derive

uint32

CSSM_ATTRIBUTE_MODE Algorithm
mode to use
for encryption

uint32

CSSM_ATTRIBUTE_EFFECTIVE_BITS Number of
effective bits
used in the
RC2 cipher

uint32

CSSM_ATTRIBUTE_START_DATE Starting date
for an object's
validity

CSSM_DATE

CSSM_ATTRIBUTE_END_DATE Ending date
for an object's
validity

CSSM_DATE

CSSM_ATTRIBUTE_KEYUSAGE Key usage uint32

CSSM_ATTRIBUTE_KEYATTR Key attributes uint32

CSSM_ATTRIBUTE_VERSION Object version CSSM_VERSION

CSSM_ATTRIBUTE_ALG_ID Algorithm ID uint32

CSSM_ATTRIBUTE_ITERATION_COUNT Number of
iterations

uint32

CSSM_ATTRIBUTE_ROUNDS_RANGE Minimum and
maximum
number of
rounds

CSSM_RANGE

CSSM_ATTRIBUTE_KRPROFILE_LOCAL Key Recovery
Profile for the
local user

CSSM_KR_PROFILE

Chapter 12. Cryptographic Services API 115

Table 26. Attribute Types (continued)

Value Description Data Type

CSSM_ATTRIBUTE_KRPROFILE_REMOTE Key Recovery
Profile for the
remote user

CSSM_KR_PROFILE

The data referenced by a CSSM_ATTRIBUTE_CUSTOM attribute must be a single
continuous memory block. This allows the OCSF to appropriately release all
dynamically allocated memory resources.

Definitions:

AttributeLength
Length of the attribute data.

Attribute
Union representing the attribute data. The union member used is named after
&tab;the type of data contained in the attribute. See Table 26 on page 114 for
the data types associated with each attribute type.

CSSM_CONTEXT_INFO
typedef CSSM_CONTEXT CSSM_CONTEXT_INFO

CSSM_CRYPTO_DATA
typedef struct cssm_crypto_data {

CSSM_DATA_PTR Param;
CSSM_CALLBACK Callback;
uint32 CallbackID;

}CSSM_CRYPTO_DATA, *CSSM_CRYPTO_DATA_PTR

Definitions:
Param

A pointer to the parameter data and its size in bytes.
Callback

An optional callback routine for the service provider modules to obtain the
parameter.

ID A tag that identifies the callback.

CSSM_CSP_CAPABILITY
typedef CSSM_CONTEXT CSSM_CSP_CAPABILITY, *CSSM_CSP_CAPABILITY_PTR;

CSSM_CSP_FLAGS
typedef uint32 CSSM_CSP_FLAGS;

CSSM_CSP_HANDLE
The CSSM_CSP_HANDLE is used to identify the association between an
application thread and an instance of a CSP module. It is assigned when an
application causes OCSF to attach to a CSP. It is freed when an application causes
OCSF to detach from a CSP. The application uses the CSSM_CSP_HANDLE with
every CSP function call to identify the targeted CSP. The CSP uses the
CSSM_CSP_HANDLE to identify the appropriate application's memory
management routines when allocating memory on the application's behalf.
typedef uint32 CSSM_CSP_HANDLE/* Cryptographic Service Provider Handle */

116 z/OS OCSF Application Programming

CSSM_CSP_SESSION_TYPE
The CSSM_CSP_SESSION_TYPE is provided in Table 27.

Table 27. Session Types

Value Descriptions

CSSM_CSP_SESSION_EXCLUSIVE 0 x 0001 Single user CSP.

CSSM_CSP_SESSION_READWRITE 0 x 0002 Caller can read and write objects such
as keys in the CSP.

CSSM_CSP_SESSION_SERIAL 0 x 0004 Multiuser, reentrant CSP that requires
serial access.

CSSM_CSPSUBSERVICE
Three structures are used to contain all of the static information that describes a
CSP module: cssm_moduleinfo, cssm_serviceinfo, and cssm_cspsubservice. This
descriptive information is securely stored in the OCSF registry when the CSP
module is installed with CSSM. A CSP module may implement multiple types of
services and organize them as subservices.

The descriptive information stored in these structures can be queried using the
function CSSM_GetModuleInfo and specifying the CSP module Globally Unique
ID (GUID).
typedef struct cssm_cspsubservice {

uint32 SubServiceId;
CSSM_STRING Description;
CSSM_CSP_FLAGS CspFlags; /* General flags defined by CSSM for CSPs */
uint32 CspCustomFlags; /* Flags defined by individual CSP */
uint32 AccessFlags; /* Access Flags used by CSP */
CSSM_CSPTYPE CspType; /* CSP type number for dereferencing CspInfo */
union { /* info struct of type defined by CspType */

CSSM_SOFTWARE_CSPSUBSERVICE_INFO SoftwareCspSubService;
CSSM_HARDWARE_CSPSUBSERVICE_INFO HardwareCspSubService;

#ifndef _MVS_
};

#else
/* Use the CDSA Version 2.0 definition instead of the anonymous union of

the Version 1.x spec which unfortunately is not ANSI-C compatible. */

}SubServiceInfo;
#endif
CSSM_CSP_WRAPPEDPRODUCT_INFO WrappedProduct;

}CSSM_CSPSUBSERVICE, *CSSM_CSPSUBSERVICE_PTR;

Definitions:

SubServiceId
The subservice ID required for an attach call to connect a CSP to an individual
subservice within a CSP.

Description
A NULL-terminated character string containing a text description of the
subservice.

CspFlags
A bit-mask containing general flags defined by OCSF for CSPs. The mask may
contain one or a combination of these in Table 28.

Table 28. CSP Flags

CSSM_CSP_FLAGS Values Description

CSSM_CSP_STORES_PRIVATE_KEYS CSP can store private keys.

Chapter 12. Cryptographic Services API 117

Table 28. CSP Flags (continued)

CSSM_CSP_FLAGS Values Description

CSSM_CSP_STORES_PUBLIC_KEYS CSP can store public keys.

CSSM_CSP_STORES_SESSION_KEYS CSP can store session/secret keys.

CspCustomFlags
Flags defined by the vendor. Consult the individual CSP User's Guide for the
list of valid flags.

AccessFlags
Flags that are required to be provided by the application during an attach call
when specifying the subservice ID given in SubServiceId.

CspType
Identifier that determines the type of CSP information structure referenced by
CspInfo. The values and their corresponding CSP information structures are
currently defined in Table 29.

Table 29. CSP Informtation Type Identifiers and Associated Structure Types

CSP Information Structure Identifier Structure Type

CSSM_CSP_TYPE_SOFTWARE CSSM_CSP_TYPE_SOFTWARE_INFO

CSSM_CSP_TYPE_PKCS11 CSSM_CSP_TYPE_PKCS11_INFO

SoftwareCspSubService/HardwareCspSubService
A CSP information structure of the type specified by CspType.

WrappedProduct
Pointer to a CSSM_CSP_WRAPPEDPRODUCTINFO structure describing a
product that is wrapped by the CSP.

CSSM_CSPTYPE
typedef uint32 CSSM_CSPTYPE;
#define CSSM_CSP_SOFTWARE 1
#define CSSM_CSP_HARDWARE 2

CSSM_CSP_WRAPPEDPRODUCTINFO
typedef struct cssm_csp_wrappedproductinfo {

CSSM_VERSION StandardVersion;
CSSM_STRING StandardDescription;
CSSM_VERSION ProductVersion;
CSSM_STRING ProductDescription;
CSSM_STRING ProductVendor;
uint32 ProductFlags;

} CSSM_CSP_WRAPPEDPRODUCTINFO,*CSSM_CSP_WRAPPEDPRODUCTINFO_PTR;

Definitions:

StandardVersion
Version of the standard to which the wrapped product complies.

StandardDescription
A NULL-terminated character string containing a text description of the
standard to which the wrapped product complies.

ProductVersion
Version of the product wrapped by the CSP.

118 z/OS OCSF Application Programming

ProductDescription
A NULL-terminated character string containing a text description of the
product wrapped by the CSP.

ProductVendor
A NULL-terminated character string containing the name of the wrapped
product's vendor.

ProductFlags
This version of OCSF has no flags defined. This field must be set to zero.

CSSM_DATA
The CSSM_DATA structure is used to associate a length, in bytes, with an arbitrary
block of contiguous memory. This memory must be allocated and freed using the
memory management routines provided by the calling application via OCSF.
typedef struct cssm_data{

uint32 Length;/* in bytes */
uint8 *Data;

} CSSM_DATA, *CSSM_DATA_PTR

Definitions:
Length

Length of the data buffer in bytes.
Data

Points to the start of an arbitrary length data buffer.

CSSM_DATE
typedef struct cssm_date {

uint8 Year[4];
uint8 Month[2];
uint8 Day[2];

} CSSM_DATE, *CSSM_DATE_PTR

Definitions:
Year

Four-digit integer array representation of the year.
Month

Two-digit representation of the month.
Day

Two-digit representation of the day.

CSSM_HARDWARERECSPSUBSERVICEINFO
typedef struct cssm_hardwarecspsubserviceinfo {

uint32 NumberOfCapabilities;
CSSM_CSP_CAPABILITY_PTR CapabilityList;
void * Reserved;

/* Reader/Slot Info */
CSSM_STRING ReaderDescription;
CSSM_STRING ReaderVendor;
CSSM_STRING ReaderSerialNumber;
CSSM_VERSION ReaderHardwareVersion;
CSSM_VERSION ReaderFirmwareVersion;
uint32 ReaderFlags;
uint32 ReaderCustomFlags;

CSSM_STRING TokenDescription;
CSSM_STRING TokenVendor;
CSSM_STRING TokenSerialNumber;
CSSM_VERSION TokenHardwareVersion;
CSSM_VERSION TokenFirmwareVersion;

uint32 TokenFlags;
uint32 TokenCustomFlags;

Chapter 12. Cryptographic Services API 119

uint32 TokenMaxSessionCount;
uint32 TokenOpenedSessionCount;
uint32 TokenMaxRWSessionCount;
uint32 TokenOpenedRWSessionCount;
uint32 TokenTotalPublicMem;
uint32 TokenFreePublicMem;
uint32 TokenTotalPrivateMem;
uint32 TokenFreePrivateMem;
uint32 TokenMaxPinLen;
uint32 TokenMinPinLen;
char TokenUTCTime[16];

char *UserLabel;
CSSM_DATA UserCACertificate;

} CSSM_HARDWARE_CSPSUBSERVICE_INFO,*CSSM_HARDWARE_CSPSUBSERVICE_INFO_PTR;

Definitions:

NumberOfCapabilities
Number of capabilities in list.

CapabilityList
A context list that specifies the capabilities of the CSP.

Reserved
This field is reserved for future use and must always be set to NULL.

ReaderDescription
A NULL-terminated character string containing a description of the device
reader.

ReaderVendor
A NULL-terminated string that contains the name of the reader vendor.

ReaderSerialNumber
A NULL-terminated string that contains the serial number of the reader.

ReaderHardwareVersion
Hardware version of the reader.

ReaderFirmwareVersion
Firmware version of the reader.

ReaderFlags
Bit-mask containing information about the reader. The flags specified in the
mask are as follows in Table 30.

Table 30. PKCS#11 CSP Reader Flags

Reader Flag Description

CSSM_CSP_RDR_TOKENPRESENT Token is present in the reader.

CSSM_CSP_RDR_REMOVABLE Reader supports removable tokens.

CSSM_CSP_RDR_HW Reader is a hardware device.

ReaderCustomsFlags
Flags defined by the vendor. Consult the individual CSP User's Guide for the
list of valid flags.

The fields may not be valid if the CSSM_CSP_RDR_TOKENPRESENT flag is not
set in the ReaderFlags field. Unknown string and CSSM_DATA fields will be set to
NULL, integer and date fields will be set to zero and, flag fields will have all flags
set to false.

120 z/OS OCSF Application Programming

TokenDescription
A NULL-terminated character string that contains a text description of the
token. This value may be NULL or equal to ReaderDescription if the token is not
removable.

TokenVendor
A NULL-terminated string that contains the name of the token vendor. This
value may be NULL or equal to ReaderVendor if the token is not removable.

TokenSerialNumber
A NULL-terminated string that contains the serial number of the token. This
value may be NULL or equal to ReaderSerialNumber if the token is not
removable.

TokenHardwareVersion
Hardware version of the token.

TokenFirmwareVersion
Firmware version of the token.

TokenFlags
Bit-mask containing information about the token. The flags specified in the
mask are provided in Table 31.

Table 31. PKCS#11 CSP Token Flags

Token Flags Description

CSSM_CSP_TOK_RNG Token has random number generator.

CSSM_CSP_TOK_WRITE_PROTECTED Token is write-protected.

CSSM_CSP_TOK_LOGIN_REQUIRED User must login to access private
objects.

CSSM_CSP_TOK_USER_PIN_INITIALIZED User's PIN has been initialized.

CSSM_CSP_TOK_EXCLUSIVE_SESSION An exclusive session currently exists.

CSSM_CSP_TOK_CLOCK_EXISTS Token has built-in clock.

CSSM_CSP_TOK_ASYNC_SESSION Token supports asynchronous
operations.

CSSM_CSP_TOK_PROT_AUTHENTICATION Token has protected authentication
path.

CSSM_CSP_TOK_DUAL_CRYPTO_OPS Token supports dual cryptographic
operations.

TokenCustomFlags
Flags defined by the vendor. Consult the individual CSP user's guide for the
list of valid flags.

TokenMaxSessionCount
Maximum number of CSP handles referencing the token that may exist
simultaneously.

TokenOpenedSessionCount
Number of CSP handles referencing the token that currently exist.

TokenTotalPublicMem
Amount of public storage space in the CSP. This value will be set to
CSSM_VALUE_NOT_AVAILABLE if the CSP does not want to expose this
information.

Chapter 12. Cryptographic Services API 121

TokenFreePublicMem
Amount of public storage space available for use in the CSP. This value will be
set to CSSM_VALUE_NOT_AVAILABLE (-1) if the CSP does not want to
expose this information.

TokenTotalPrivateMem
Amount of private storage space in the CSP. This value will be set to
CSSM_VALUE_NOT_AVAILABLE (-1) if the CSP does not want to expose this
information.

TokenFreePrivateMem
Amount of private storage space available for use in the CSP. This value will
be set to CSSM_VALUE_NOT_AVAILABLE if the CSP does not want to expose
this information.

TokenMaxPinLen
Maximum length of passwords that can be used for authentication to the CSP.

TokenMinPinLen
Minimum length of passwords that can be used for authentication to the CSP.

TokenUTCTime
Character array containing the current Coordinated Universal Time (UTC)
value in the CSP. The value is valid if the CSSM_CSP_TOK_CLOCK_EXISTS
flag is true. The time is represented in the format YYYYMMDDhhmmssxx (4
characters for the year; 2 characters each for month, day, hour, minute, and
second; and 2 additional reserved '0' characters).

UserLabel
A NULL-terminated string containing the label of the token.

UserCACertificate
Certificate of the Certificate Authority (CA).

CSSM_HEADERVISION
This data structure represents the version number of a key header structure. This
version number is an integer that increments with each format revision of
CSSM_KEYHEADER. The current revision number is represented by
CSSM_KEYHEADER_VERSION, which equals 2 in this release of OCSF.
typedef uint32 CSSM_HEADERVERSION

#define CSSM_KEYHEADER_VERSION (2)

CSSM_KEY
This structure is used to represent keys in OCSF.
typedef struct cssm_key{

CSSM_KEYHEADER KeyHeader;
CSSM_DATA KeyData;

} CSSM_KEY, *CSSM_KEY_PTR;

typedef CSSM_KEY CSSM_WRAP_KEY, *CSSM_WRAP_KEY_PTR;

Definitions:
KeyHeader

Header describing the key, fixed length.
KeyData

Data representation of the key, variable length.

122 z/OS OCSF Application Programming

CSSM_KEYHEADER
The key header contains meta-data about a key. It contains information used by a
CSP or application when using the associated key data. The service provider
module is responsible for setting the appropriate values.
typedef struct cssm_keyheader {

CSSM_HEADERVERSION HeaderVersion;
CSSM_GUID CspId;
uint32 BlobType;
uint32 Format;
uint32 AlgorithmId;
uint32 KeyClass;
uint32 KeySizeInBits;
uint32 KeyAttr;
uint32 KeyUsage;
CSSM_DATE StartDate;
CSSM_DATE EndDate;
uint32 WrapAlgorithmId;
uint32 WrapMode;
uint32 Reserved;

} CSSM_KEYHEADER, *CSSM_KEYHEADER_PTR;

Definitions:

HeaderVersion
This is the version of the key header structure.

CspId
If known, the GUID of the CSP that generated the key. This value will not be
known if a key is received from a third party, or extracted from a certificate.

BlobType
Describes the basic format of the key data. It can be any one of the values in
Table 32.

Table 32. Keyblob Type Identifiers

Identifier Description

CSSM_KEYBLOB_RAW The blob is a clear, raw key.

CSSM_KEYBLOB_RAW_BERDER The blob is a clear key, DER-encoded.

CSSM_KEYBLOB_REFERENCE The blob is a reference to a key.

CSSM_KEYBLOB_WRAPPED The blob is a wrapped RAW key.

CSSM_KEYBLOB_WRAPPED_BERDER The blob is a wrapped DER-encoded key.

CSSM_KEYBLOB_OTHER Other keyblob type.

Format
Describes the detailed format of the key data based on the value of the
BlobType field. If the blob type has a non-reference basic type, then a
CSSM_KEYBLOB_RAW_FORMAT identifier must be used, otherwise a
CSSM_KEYBLOB_REF_FORMAT identifier is used. Any of the values are valid
as format identifiers in Table 33.

Table 33. Keyblob Format Identifiers

Keyblob Format Identifier Description

CSSM_KEYBLOB_RAW_FORMAT_NONE No further conversion needs to be done.

CSSM_KEYBLOB_RAW_FORMAT_PKCS1 RSA PKCS1 V1.5

CSSM_KEYBLOB_RAW_FORMAT_PKCS3 RSA PKCS3 V1.5

CSSM_KEYBLOB_RAW_FORMAT_MSCAPI Microsoft CAPI V2.0

CSSM_KEYBLOB_RAW_FORMAT_PGP PGP

Chapter 12. Cryptographic Services API 123

Table 33. Keyblob Format Identifiers (continued)

Keyblob Format Identifier Description

CSSM_KEYBLOB_RAW_FORMAT_FIPS186 U.S. Gov. FIPS 186 - DSS V

CSSM_KEYBLOB_RAW_FORMAT_BSAFE RSA BSAFE V3.0

CSSM_KEYBLOB_RAW_FORMAT_PKCS11 RSA PKCS11 V2.0

CSSM_KEYBLOB_RAW_FORMAT_CDSA Intel CDSA

CSSM_KEYBLOB_RAW_FORMAT_OTHER Other, CSP defined.

CSSM_KEYBLOB_REF_FORMAT_INTEGER Reference is a number or handle.

CSSM_KEYBLOB_REF_FORMAT_STRING Reference is a string or name.

CSSM_KEYBLOB_REF_FORMAT_OTHER Other, CSP defined.

AlgorithmId
The algorithm for which the key was generated. This value does not change
when the key is wrapped. Any of the defined OCSF algorithm IDs may be
used.

KeyClass
Class of key contained in the keyblob. Valid key classes are as follows in
Table 34.

Table 34. Key Class Identifiers

Key Class Identifiers Description

CSSM_KEYCLASS_PUBLIC_KEY Key is a public key.

CSSM_KEYCLASS_PRIVATE_KEY Key is a private key.

CSSM_KEYCLASS_SESSION_KEY Key is a session or symmetric key.

CSSM_KEYCLASS_SECRET_PART Key is part of secret key.

CSSM_KEYCLASS_OTHER Other

KeySizeInBits
This is the logical size of the key in bits. The logical size is the value referred
to when describing the length of the key. For instance, an RSA key would be
described by the size of its modulus and a DSA key would be represented by
the size of its prime. Symmetric key sizes describe the actual number of bits in
the key. For example, DES keys would be 64 bits and an RC4 key could range
from 1 to 128 bits.

KeyAttr
Attributes of the key represented by the data. These attributes are used by
CSPs to convey information about stored or referenced keys. The attributes are
represented as a bit-mask (see Table 35).

KeyUsage
A bit-mask representing the valid uses of the key. Any of the values are valid
in Table 36 on page 125.

Table 35. Key Attribute Flags

Attribute Description

CSSM_KEYATTR_PERMANENT Key is stored persistently in the CSP, e.g.,
PKCS#11 token object.

CSSM_KEYATTR_PRIVATE Key is a private object and protected by
either a user login, a password, or both.

124 z/OS OCSF Application Programming

Table 35. Key Attribute Flags (continued)

Attribute Description

CSSM_KEYATTR_MODIFIABLE The key or its attributes can be modified.

CSSM_KEYATTR_SENSITIVE Key is sensitive. It may only be extracted
from the CSP in a wrapped state. It will
always be false for raw keys.

CSSM_KEYATTR_ALWAYS_SENSITIVE Key has always been sensitive. It will always
be false for raw keys.

CSSM_KEYATTR_EXTRACTABLE Key is extractable from the CSP. If this bit is
not set, the key is either not stored in the
CSP or cannot be extracted from the CSP
under any circumstances. It will always be
false for raw keys.

CSSM_KEYATTR_NEVER_EXTRACTABLE Key has never been extractable. It will
always be false for raw keys.

Table 36. Key Usage Flags

Usage Mask Description

CSSM_KEYUSE_ANY Key may be used for any purpose supported by
the algorithm.

CSSM_KEYUSE_ENCRYPT Key may be used for encryption.

CSSM_KEYUSE_DECRYPT Key may be used for decryption.

CSSM_KEYUSE_SIGN Key can be used to generate signatures. For
symmetric keys this represents the ability to
generate MACs.

CSSM_KEYUSE_VERIFY Key can be used to verify signatures. For
symmetric keys this represents the ability to verify
MACs.

CSSM_KEYUSE_SIGN_RECOVER Key can be used to perform signatures with
message recovery. This form of a signature is
generated using the CSSM_EncryptData API with
the algorithm mode set to
CSSM_ALGMODE_PRIVATE_KEY. This attribute is
only valid for asymmetric algorithms.

CSSM_KEYUSE_VERIFY_RECOVER Key can be used to verify signatures with message
recovery. This form of a signature is verified using
the CSSM_DecryptData API with the algorithm
mode set to CSSM_ALGMODE_PRIVATE_KEY.
This attribute is only valid for asymmetric
algorithms.

CSSM_KEYUSE_WRAP Key can be used to wrap another key.

CSSM_KEYUSE_UNWRAP Key can be used to unwrap a key.

CSSM_KEYUSE_DERIVE Key can be used as the source for deriving other
keys.

StartDate
Date from which the corresponding key is valid. All fields of the CSSM_DATA
structure will be set to zero if the date is unspecified or unknown. This date is
not enforced by the CSP.

EndDate
Data that the key expires and can no longer be used. All fields of the

Chapter 12. Cryptographic Services API 125

CSSM_DATA structure will be set to zero is the date if unspecified or
unknown. This date is not enforced by the CSP.

WrapAlgorithmId
If the key data contains a wrapped key, this field contains the algorithm used
to create the wrapped blob. This field will be set to CSSM_ALGID_NONE if
the key is not wrapped.

WrapMode
If the wrapping algorithm supports multiple wrapping modes, this field
contains the mode used to wrap the key. This field is ignored if the
WrapAlgorithmId is CSSM_ALGID_NONE.

Reserved
This field is reserved for future use. It should always be set to zero.

CSSM_KEY_SIZE
This structure holds the physical key size and the effective key size for a given key.
The metric used is bits. The number of effective bits is the number of key bits that
can be used in a cryptographic operation compared with the number of bits that
may be present in the key. When the number of effective bits is less than the
number of actual bits, this is known as "dumbing down."
typedef struct cssm_key_size {

uint32 KeySizeInBits;/* Key size in bits */
uint32 EffectiveKeySizeInBits; /* Effective key size in bits */

} CSSM_KEYSIZE, *CSSM_KEYSIZE_PTR

Definitions:
KeySizeInBits

The actual number of bits in a key.
EffectiveKeySizeInBits

The number of key bits that can be used for cryptographic operations.

CSSM_KEY_TYPE
typedef uint32 CSSM_KEY_TYPE, *CSSM_KEY_TYPE_PTR;

CSSM_NOTIFY_CALLBACK
This data structure defines a pointer to a function that applications can use to
invoke an application-supplied function.
typedef CSSM_RETURN (CSSMAPI *CSSM_NOTIFY_CALLBACK)

(CSSM_MODULE_HANDLE ModuleHandle,
uint32 Application,
uint32 Reason,
void * Param)

Definitions:

ModuleHandle
Handle of the module to which the notification applies.

Application
Application-specific context indicator. This value is specified when a service
provider module is attached.

Reason
One of the values is specified in Table 37 on page 127.

Param
Used by the module that triggers the notification to pass relevant information
about the notification to the application.

126 z/OS OCSF Application Programming

Table 37. Reasons

Reason Value

CSSM_NOTIFY_SURRENDER 0

CSSM_NOTIFY_COMPLETE 1

CSSM_NOTIFY_DEVICE_REMOVED 2

CSSM_NOTIFY_DEVICE_INSERTED 3

CSSM_PADDING
typedef enum cssm_padding {

CSSM_PADDING_NONE = 0,
CSSM_PADDING_CUSTOM = CSSM_PADDING_NONE+1,
CSSM_PADDING_ZERO = CSSM_PADDING_NONE+2,
CSSM_PADDING_ONE = CSSM_PADDING_NONE+3,
CSSM_PADDING_ALTERNATE = CSSM_PADDING_NONE+4,
CSSM_PADDING_FF = CSSM_PADDING_NONE+5,
CSSM_PADDING_PKCS5 = CSSM_PADDING_NONE+6,
CSSM_PADDING_PKCS7 = CSSM_PADDING_NONE+7,
CSSM_PADDING_CipherStealing = CSSM_PADDING_NONE+8,
CSSM_PADDING_RANDOM = CSSM_PADDING_NONE+9

} CSSM_PADDING;

CSSM_QUERY_SIZE_DATA
typedef struct cssm_query_size_data {

uint32 SizeInputBlock;
uint32 SizeOutputBlock;

} CSSM_QUERY_SIZE_DATA, *CSSM_QUERY_SIZE_DATA_PTR

Definitions:
SizeInputBlock

The size of the input block in bytes.
SizeOutputBlock

The size of the output block in bytes.

CSSM_RANGE
typedef struct cssm_range {
uint32 Min;/* inclusive minimium value */
uint32 Max;/* inclusive maximium value */
} CSSM_RANGE, *CSSM_RANGE_PTR

Definitions:
Min

Minimum value in the range.
Max

Maximum value in the range.

CSSM_SOFTWARECSPSUBSERVICEINFO
typedef struct cssm_softwarecspsubserviceinfo {

uint32 NumberOfCapabilities;
CSSM_CSP_CAPABILITY_PTR CapabilityList;
void* Reserved;

} CSSM_SOFTWARE_CSPSUBSERVICE_INFO, *CSSM_SOFTWARE_CSPSUBSERVICE_INFO_PTR;

Definitions:

NumberOfCapabilities
Number of capabilities availabilities available from the CSP.

Chapter 12. Cryptographic Services API 127

CapabilityList
Pointer to an array of CSSM_CSP_CAPABILITY structures that represent the
capabilities available from the CSP.

Reserved
Reserved for future use.

Cryptographic Context Operations
This describes the interfaces for the cryptographic context operations.

CSSM_CSP_CreateAsymmetricContext
On z/OS, when any CSSM_CSP_CreateAsymmetricContext operation is invoked, a
copy of the context is created. The pointer to the copy is returned on all
CSSM_GetContext calls.

Purpose

This function creates an asymmetric encryption cryptographic context and returns
the cryptographic context handle. The handle can be used to call asymmetric
encryption functions and cryptographic wrap/unwrap functions.

Format
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateAsymmetricContext

(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmID,
const CSSM_CRYPTO_DATA_PTR PassPhrase,
const CSSM_KEY_PTR Key,
uint32 Padding)

Parameters

Input

CSPHandle
The handle that describes the CSP module used to perform this function. If a
NULL handle is specified, OCSF returns an error.

AlgorithmID
The algorithm identification number for the algorithm used for asymmetric
encryption.

PassPhrase
The passphrase is required to unlock the private key. The passphrase structure
accepts an immediate value for the passphrase or the caller can specify a
callback function the CSP can use to obtain the passphrase. The passphrase is
needed only for signature operations, not verify operations. When the context
is used for a wrap or unwrap operation, the passphrase can be used to
generate a symmetric key for wrapping or unwrapping.

Key
The key used for asymmetric encryption. The caller passes a pointer to a
CSSM_KEY structure containing the key. When the context is used for a sign
operation, the public key and passphrase are required to access the private key
used for signing. When the context is used for a verify operation, the public
key is used to verify the signature. When the context is used for a wrapkey
operation, the public key can be used as the wrapping key. When the context is
used for an unwrap operation, the public key and the passphrase can be used
to access the private key used to perform the unwrapping.

128 z/OS OCSF Application Programming

Input/optional

Padding
The method for padding. Typically specified for ciphers that pad.

Return Value

Returns a cryptographic context handle. If the handle is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Chapter 12. Cryptographic Services API 129

Related Information

CSSM_EncryptData
CSSM_QuerySize
CSSM_EncryptDataInit
CSSM_EncryptDataUpdate
CSSM_EncryptDataFinal
CSSM_DecryptData
CSSM_DecryptDataInit
CSSM_DecryptDataUpdate
CSSM_DecryptDataFinal
CSSM_GetContext
CSSM_SetContext
CSSM_DeleteContext
CSSM_GetContextAttribute
CSSM_UpdateContextAttributes

CSSM_CSP_CreateDeriveKeyContext
Purpose

On z/OS, when any CSSM_CSP_CreateDeriveKeyContext operation is invoked, a
copy of the context is created. The pointer to the copy is returned on all
CSSM_GetContext calls.

This function creates a cryptographic context to derive either a symmetric key or
an asymmetric key, and returns a handle to the context. The cryptographic context
handle can be used for calling the cryptographic derive key function.

Format
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateDeriveKeyContext

(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmID,
CSSM_KEY_TYPE DeriveKeyType,
uint32 DeriveKeyLength,
uint32 IterationCount,
const CSSM_DATA_PTR Salt,
const CSSM_CRYPTO_DATA_PTR Seed,
const CSSM_CRYPTO_DATA_PTR PassPhrase)

Parameters

Input

CSPHandle
The handle that describes the CSP module used to perform this function. If a
NULL handle is specified, OCSF returns an error.

AlgorithmID
The algorithm identification number for a derived key algorithm.

DeriveKeyType
The type of key to derive.

DeriveKeyLength
The length of key to derive.

Input/optional

130 z/OS OCSF Application Programming

IterationCount
The number of iterations to be performed during the derivation process. Used
heavily by password-based derivation methods.

Salt
A salt used to generate the key.

Seed
A seed used to generate a random number. The caller can both pass a seed and
seed length in bytes or pass in a callback function. If NULL is passed, the CSP
will use its default seed handling mechanism.

PassPhrase
The passphrase is required to unlock the private key. The passphrase structure
accepts an immediate value for the passphrase or the caller can specify a
callback function the CSP can use to obtain the passphrase. The passphrase is
needed only for signature operations, not verify operations.

Return Value

Returns a cryptographic context handle. If the handle is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_DeriveKey

CSSM_CSP_CreateDigestContext
Purpose

On z/OS, when any CSSM_CSP_CreateDigestContext operation is invoked, a copy
of the context is created. The pointer to the copy is returned on all
CSSM_GetContext calls.

This function creates a digest cryptographic context, given a handle of a CSP and
an algorithm identification number. The cryptographic context handle is returned.
The cryptographic context handle can be used to call digest cryptographic
functions.

Format
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateDigestContext (CSSM_CSP_HANDLE CSPHandle, uint32 AlgorithmID)

Parameters

Input

CSPHandle
The handle that describes the CSP module used to perform this function. If a
NULL handle is specified, OCSF returns an error.

AlgorithmID
The algorithm identification number for message digests.

Return Value

Returns a cryptographic context handle. If the handle is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Chapter 12. Cryptographic Services API 131

Related Information

CSSM_DigestData
CSSM_DigestDataInit
CSSM_DigestDataUpdate
CSSM_DigestDataFinal
CSSM_GetContext
CSSM_SetContext
CSSM_DeleteContext
CSSM_GetContextAttributes
CSSM_UpdateContextAttributes

CSSM_CSP_CreateKeyGenContext
Purpose

On z/OS, when any CSSM_CSP_CreateKeyGenContext operation is invoked, a
copy of the context is created. The pointer to the copy is returned on all
CSSM_GetContext calls.

This function creates a key generation cryptographic context and returns a handle
to the context. The cryptographic context handle can be used to call key/keypair
generation functions.

Format
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateKeyGenContext

(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmID,
const CSSM_CRYPTO_DATA_PTR PassPhrase,
uint32 KeySizeInBits,
const CSSM_CRYPTO_DATA_PTR Seed,
const CSSM_DATA_PTR Salt,
const CSSM_DATE_PTR StartDate,
const CSSM_DATE_PTR EndDate,
const CSSM_DATA_PTR Params)

Parameters

Input

CSPHandle
The handle that describes the CSP module used to perform this function. If a
NULL handle is specified, OCSF returns an error.

AlgorithmID
The algorithm identification number of the algorithm used for key generation.

PassPhrase
The passphrase is required to unlock the private key. The passphrase structure
accepts an immediate value for the passphrase or the caller can specify a
callback function the CSP can use to obtain the passphrase. The passphrase is
needed only for signature operations, not verify operations. Once the new key
is created, the passphrase or nickname must be provided in all future
references to access the private or symmetric key.

KeySizeInBits
The logical size of the key (specified in bits). This refers to either the actual key
size (for symmetric key generation) or the modulus size (for asymmetric key
pair generation). This is the effective key size.

Input/optional

132 z/OS OCSF Application Programming

Seed
A seed used to generate the key. The caller can either pass a seed or seed
length in bytes or pass in a callback function. If NULL is passed, the CSP will
use its default seed handling mechanism.

Salt
A Salt used to generate the key.

StartDate
Date from which the corresponding key is valid. All fields of the CSSM_DATE
structure will be set to zero if the date is unspecified or unknown. The CSP
module does not enforce this date.

EndDate
Data that the key expires and can no longer be used. All fields of the
CSSM_DATE structure will be set to zero if the date is unspecified or
unknown. The CSP module does not enforce this date.

Params
A data buffer containing parameters required to generate a key pair for a
specific algorithm.

Return Value

Returns a cryptographic context handle. If the handle is NULL, an error has
occurred and OCSF was unable to create the context. Use CSSM_GetError to obtain
the error code.

Related Information

CSSM_GenerateKey
CSSM_GenerateKeyPair
CSSM_GetContext
CSSM_SetContext
CSSM_DeleteContext
CSSM_GetContextAttribute
CSSM_UpdateContextAttributes

CSSM_CSP_CreateMacContext
Purpose

On z/OS, when any CSSM_CSP_CreateMacContext operation is invoked, a copy of
the context is created. The pointer to the copy is returned on all CSSM_GetContext
calls.

This function creates a Message Authentication Code (MAC) cryptographic context
and returns a handle to the context. The cryptographic context handle can be used
to call MAC functions. Note that MAC contexts that use RC2 require an effective
key size in bits attribute. To add this attribute, use
CSSM_UpdateContextAttributes.

Format
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateMacContext(CSSM_CSP_HANDLE CSPHandle,

uint32 AlgorithmID,
const CSSM_KEY_PTR Key)

Chapter 12. Cryptographic Services API 133

Parameters

Input

CSPHandle
The handle that describes the CSP module used to perform this function. If a
NULL handle is specified, OCSF returns an error.

AlgorithmID
The algorithm identification number for the MAC algorithm.

Key
The key used to generate a MAC. The caller passes in a pointer to a
CSSM_KEY structure containing the key.

Return Value

Returns a cryptographic context handle. If the handle is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_GenerateMac
CSSM_GenerateMacInit
CSSM_GenerateMacUpdate
CSSM_GenerateMacFinal
CSSM_VerifyMAC
CSSM_VerifyMacInit
CSSM_VerifyMACUpdate
CSSM_VerifyMACFinal
CSSM_GetContext
CSSM_SetContext
CSSM_DeleteContext
CSSM_GetContextAttribute
CSSM_UpdateContextAttributes

CSSM_CSP_CreatePassThroughContext
Purpose

On z/OS, when any CSSM_CSP_CreatePassThroughContext operation is invoked,
a copy of the context is created. The pointer to the copy is returned on all
CSSM_GetContext calls.

This function creates a custom cryptographic context and returns a handle to the
context. The cryptographic context handle can be used to call the
CSSM_CSP_PassThrough function for the CSP.

Format
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreatePassThroughContext

(CSSM_CSP_HANDLE CSPHandle,
const CSSM_KEY_PTR Key,
const CSSM_DATA_PTR ParamBufs,
uint32 ParamBufCount)

Parameters

Input

134 z/OS OCSF Application Programming

CSPHandle
The handle that describes the CSP module used to perform this function. If a
NULL handle is specified, OCSF returns an error.

Key
The key to be used for the context. The caller passes in a pointer to a
CSSM_KEY structure containing the key.

ParamBufs
Array of input buffers to the passthrough call.

ParamBufCount
The number of input buffers pointed to by ParamBufs.

Return Value

Returns a cryptographic context handle. If the handle is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Notes

A CSP can create its own set of custom functions. The context information can be
passed through its own data structure. The CSSM_CSP_PassThrough function
should be used along with the function ID to call the desired custom function.

Related Information

CSSM_CSP_PassThrough
CSSM_GetContext
CSSM_SetContext
CSSM_DeleteContext
CSSM_GetContextAttribute
CSSM_UpdateContextAttributes

CSSM_CSP_CreateRandomGenContext
Purpose

On z/OS, when any CSSM_CSP_CreateRandomGenContext operation is invoked, a
copy of the context is created. The pointer to the copy is returned on all
CSSM_GetContext calls.

This function creates a random number generation cryptographic context, given a
handle of a CSP, an algorithm identification number, a seed, and the length of the
random number in bytes. The cryptographic context handle is returned and can be
used for the random number generation function

Format
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateRandomGenContext

(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmID,
const CSSM_CRYPTO_DATA_PTR Seed,
uint32 Length))

Parameters

Input

Chapter 12. Cryptographic Services API 135

CSPHandle
The handle that describes the CSP module used to perform this function. If a
NULL handle is specified, OCSF returns an error.

AlgorithmID
The algorithm identification number for random number generation.

Length
The length of the random number to be generated.

Input/optional

Seed
A seed used to generate a random number. The caller can either pass a seed or
seed length in bytes or pass in a callback function. If NULL is passed, the CSP
will use its default seed handling mechanism.

Return Value

Returns a cryptographic context handle. If the handle is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_GenerateRandom
CSSM_GetContext
CSSM_SetContext
CSSM_DeleteContext
CSSM_GetContextAttribute
CSSM_UpdateContextAttributes

CSSM_CSP_CreateSignatureContext
Purpose

On z/OS, when any CSSM_CSP_CreateSignatureContext operation is invoked, a
copy of the context is created. The pointer to the copy is returned on all
CSSM_GetContext calls.

This function creates a signature cryptographic context for sign and verify
operations given a handle of a CSP, an algorithm identification number, a
passphrase structure, and a key. The passphrase will be used to unlock the private
key when this context is used to perform a signing operation. The cryptographic
context handle is returned. The cryptographic context handle can be used to call
sign and verify cryptographic functions.

Format
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateSignatureContext

(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmID,
const CSSM_CRYPTO_DATA_PTR PassPhrase,
const CSSM_KEY_PTR Key)

Parameters

Input

CSPHandle
The handle that describes the CSP module used to perform this function. If a
NULL handle is specified, OCSF returns an error.

136 z/OS OCSF Application Programming

AlgorithmID
The algorithm identification number for a signature/verification algorithm.

PassPhrase
The passphrase is required to unlock the private key. The passphrase structure
accepts an immediate value for the passphrase or the caller can specify a
callback function the CSP can use to obtain the passphrase. The passphrase is
needed only for signature operations, not verify operations.

Key
The key used to sign. The caller passes in a pointer to a CSSM_KEY structure
containing the key and the key length.

Return Value

Returns a cryptographic context handle. If the handle is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_SignData
CSSM_SignDataInit
CSSM_SignDataUpdate
CSSM_SignDataFinal
CSSM_VerifyData
CSSM_VerifyDataInit
CSSM_VerifyDataUpdate
CSSM_VerifyDataFinal
CSSM_GetContext
CSSM_SetContext
CSSM_DeleteContext
CSSM_GetContextAttribute
CSSM_UpdateContextAttributes

CSSM_CSP_CreateSymmetricContext
Purpose

On z/OS, when any CSSM_CSP_CreateSymmetricContext operation is invoked, a
copy of the context is created. The pointer to the copy is returned on all
CSSM_GetContext calls.

This function creates a symmetric encryption cryptographic context and returns a
handle to the context. The cryptographic context handle can be used to call
symmetric encryption functions and the cryptographic wrap/unwrap functions.

Format
CSSM_CC_HANDLE CSSMAPI CSSM_CSP_CreateSymmetricContext

(CSSM_CSP_HANDLE CSPHandle,
uint32 AlgorithmID,
uint32 Mode,
const CSSM_KEY_PTR Key,
const CSSM_DATA_PTR InitVector,
uint32 Padding,
uint32 Params)

Parameters

Input

Chapter 12. Cryptographic Services API 137

CSPHandle
The handle that describes the CSP module used to perform this function. If a
NULL handle is specified, OCSF returns an error.

AlgorithmID
The algorithm identification number for symmetric encryption.

Mode
The mode of the specified algorithm ID.

Key
The key used for symmetric encryption. The caller passes in a pointer to a
CSSM_KEY structure containing the key. This key can be used directly for
wrap and unwrap operations.

Input/optional

InitVector
The initial vector for symmetric encryption; typically specified for block
ciphers.

Padding
The method for padding; typically specified for ciphers that pad.

Params
Specifies the number of rounds of encryption; used for ciphers with variable
number of rounds, such as RC5. For ciphers such as RC2, this parameter
specifies the effective key size in bits.

Return Value

Returns a cryptographic context handle. If the handle is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_EncryptData
CSSM_QuerySize
CSSM_EncryptDataInit
CSSM_EncryptDataUpdate
CSSM_EncryptDataFinal
CSSM_DecryptData
CSSM_DecryptDataInit
CSSM_DecryptDataUpdate
CSSM_DecryptDataFinal
CSSM_GetContext
CSSM_SetContext
CSSM_DeleteContext
CSSM_GetContextAttribute
CSSM_UpdateContextAttributes

CSSM_DeleteContext
Purpose

This function frees the context structure allocated by any of the create context
functions. On z/OS, this also deletes the context copy that is returned by a
CSSM_GetContext call.

138 z/OS OCSF Application Programming

Format
CSSM_RETURN CSSMAPI CSSM_DeleteContext (CSSM_CC_HANDLE CCHandle)

Parameters

Input

CCHandle
The handle associated with the context to be deleted.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_CSP_CreateKeyGenContext
CSSM_CSP_CreateDigestContext
CSSM_CSP_CreateSymmetricContext
CSSM_CSP_CreateAsymmetricContext
CSSM_CSP_CreateSignatureContext

CSSM_FreeContext
Purpose

On z/OS this API should be issued, but no processing is done. On z/OS, a copy of
the context is created during CSSM_Create...Context calls. The memory for the
context copy is freed during CSSM_DeleteContext.

Format
CSSM_RETURN CSSMAPI CSSM_FreeContext (CSSM_CONTEXT_PTR Context)

Parameters

Input

Context
The pointer to the memory that describes the context structure.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_GetContext

CSSM_GetContext
Purpose

This function retrieves the context information when provided with a context
handle. A pointer to the context copy, created during one of the
CSSM_CSP_Create...Context calls, is returned on all calls.

Chapter 12. Cryptographic Services API 139

Format
CSSM_CONTEXT_PTR CSSMAPI CSSM_GetContext (CSSM_CC_HANDLE CCHandle)

Parameters

Input

CCHandle
The handle to the context information.

Return Value

The pointer to the CSSM_CONTEXT structure that describes the context associated
with the handle CCHandle. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code. Call CSSM_FreeContext to free the
memory allocated by OCSF.

Related Information

CSSM_SetContext
CSSM_FreeContext

CSSM_GetContextAttribute
Purpose

This function retrieves the context attributes information for the given context and
attribute type. Note that not all context attributes can be queried using this
function. For example, key size cannot be queried. To determine the key size,
query the key. The key size data is contained in the header of the key. These
attribute types can be retrieved using CSSM_GetContextAttribute:

Format
CSSM_CONTEXT_ATTRIBUTE_PTR CSSMAPI CSSM_GetContextAttribute (const CSSM_CONTEXT_PTR Context,

uint32 AttributeType)

v custom v key v output size v &tab;start
date&tab;

v padding

v CSP handle v key
length&tab;

v seed v end date v random

v passphrase v keytype v rounds v remote KR
profile

v mode

v effective bits v key
attributes

v salt v local KR
profile

v &tab;algorithm
parameters

v initialization
vector

Parameters

Input

Context
A pointer to the context.

AttributeType
The attribute type of the specified context.

140 z/OS OCSF Application Programming

Return Value

The pointer to the CSSM_ATTRIBUTE structure that describes the context
attributes associated with the context and the attribute type. If the pointer is
NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_GetContext

CSSM_UpdateContextAttribute
Purpose

This function updates the security context. When an attribute is already present in
the context, this update operation replaces the previously defined attribute with
the current attribute. On z/OS, this call can be made only when no other thread is
using the original context or the copy returned by CSSM_GetContext.

Format
CSSM_RETURN CSSMAPI CSSM_UpdateContextAttributes

(CSSM_CC_HANDLE CCHandle,
uint32 NumberAttributes,
const CSSM_CONTEXT_ATTRIBUTE_PTR ContextAttributes)

Parameters

Input

CCHandle
The handle to the context.

NumberAttributes
The number of CSSM_CONTEXT_ATTRIBUTE &tab;structures to allocate.

ContextAttributes
Pointer to data that describes the attributes to be associated with this context.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_GetContextAttribute

Cryptographic Sessions and Login
The interfaces discussed here support a password based login sequence.

CSSM_CSP_ChangeLoginPassword
Purpose

Changes the login password of the current login session from the old password to
the new password. The requesting user must have a login session in process.

Chapter 12. Cryptographic Services API 141

Format
CSSM_RETURN CSSMAPI CSSM_CSP_ChangeLoginPassword

(CSSM_CSP_HANDLE CSPHandle,
const CSSM_CRYPTO_DATA_PTR OldPassword,
const CSSM_CRYPTO_DATA_PTR NewPassword)

Parameters

CSPHandle
Handle of the CSP supporting the current login session.

OldPassword
Current password used to log into the token.

NewPassword
New password to be used for future logins by this user to this token.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_CSP_Login
CSSM_CSP_Logout

CSSM_CSP_Login
Purpose

Logs the user into the CSP, allowing for multiple login types and parallel operation
notification.

Format
CSSM_RETURN CSSMAPI CSSM_CSP_Login

(CSSM_CSP_HANDLE CSPHandle,
const CSSM_CRYPTO_DATA_PTR Password,
const CSSM_DATA_PTR pReserved)

Parameters

Input

CSPHandle
Handle of the CSP to log into.

Password
Password used to log into the token.

pReserved
This field is reserved for future use. The value NULL should always be given.

Return Value

CSSM_OK if login is successful, CSSM_FAIL is login fails. Use CSSM_GetError to
determine the exact error.

142 z/OS OCSF Application Programming

Related Information

CSSM_CSP_ChangeLoginPassword
CSSM_CSP_Logout

CSSM_CSP_Logout
Purpose

Terminates the login session associated with the specified CSP Handle.

Format
CSSM_RETURN CSSMAPI CSSM_CSP_Logout (CSSM_CSP_HANDLE CSPHandle)

Parameters

Input

CSPHandle
Handle for the target CSP.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_CSP_Login
CSSM_CSP_ChangeLoginPassword

Cryptrographic Operations
The interfaces discussed here provide for cryptographic operations including
encryption, decryption, digital signaturing, key and key pair generation, random
number generation, message digest, key wrapping, key unwrapping, and key
exchange.

CSSM_DecryptData
Purpose

This function decrypts the supplied encrypted data. The CSSM_QuerySize function
can be used to estimate the output buffer size required. When working with U.S.
exportable versions of the OCSF, the caller may be required to possess specific
exemptions or privileges in order to allow this call to complete successfully.

Format
CSSM_RETURN CSSMAPI CSSM_DecryptData

(const CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
uint32 *bytesDecrypted,
CSSM_DATA_PTR RemData)

Chapter 12. Cryptographic Services API 143

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

CipherBufs
A pointer to a vector of CSSM_DATA structures that contain the data to be
operated on.

CipherBufCount
The number of CipherBufs.

ClearBufCount
The number of ClearBufs.

Output

ClearBufs
A pointer to a vector of CSSM_DATA structures that contain the decrypted
data resulting from the decryption operation.

BytesDecrypted
The size of the decrypted data in bytes.

RemData
A pointer to the CSSM_DATA structure for the last decrypted block.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The output can be obtained either by filling the caller-supplied buffer or using the
application's memory allocation functions to allocate space; the application has to
free the memory in this case. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned. In-place decryption can be
done by supplying the same input and output buffer.

Related Information

CSSM_QuerySize
CSSM_EncryptData
CSSM_DecryptDataInit
CSSM_DecryptDataUpdate
CSSM_DecryptDataFinal
CSSM_RequestCssmExemption
CSSM_DecryptDataFinal

CSSM_DecryptDataFinal
Purpose

This function finalizes the staged decrypt function. When working with U.S.
exportable versions of the OCSF, the caller may be required to possess specific
exemptions or privileges in order to allow this call to complete successfully.

144 z/OS OCSF Application Programming

Format
CSSM_RETURN CSSMAPI CSSM_DecryptDataFinal (CSSM_CC_HANDLE CCHandle, CSSM_DATA_PTR RemData)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Output

RemData
A pointer to the CSSM_DATA structure for the last decrypted block.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The output can be obtained either by filling the caller-supplied buffer or using the
application's memory allocation functions to allocate space, which the application
must later free . If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned. In-place decryption can be
done by supplying the same input and output buffers.

Related Information

CSSM_DecryptData
CSSM_DecryptDataInit
CSSM_DecryptDataUpdate
CSSM_Request_CssmExemption

CSSM_DecryptDataInit
Purpose

This function initializes the staged decrypt function. When working with U.S.
exportable versions of the OCSF, the caller may be required to possess specific
exemptions or privileges in order to allow this call to complete successfully.

Format
CSSM_RETURN CSSMAPI CSSM_DecryptDataInit (CSSM_CC_HANDLE CCHandle)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Chapter 12. Cryptographic Services API 145

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_DecryptData
CSSM_DecryptDataUpdate
CSSM_DecryptDataFinal
CSSM_RequestCssmExemption

CSSM_DecryptDataUpdate
Purpose

This function updates the staged decrypt function. The CSSM_QuerySize function
can be used to estimate the output buffer size required for each update call. There
may be algorithm-specific and token-specific rules restricting the lengths of data in
CSSM_DecryptDataUpdate calls. When working with U.S. exportable versions of
the OCSF, the caller may be required to possess specific exemptions or privileges in
order to allow this call to complete successfully.

Format
CSSM_RETURN CSSMAPI CSSM_DecryptDataUpdate

(CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
uint32 *bytesDecrypted)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

CipherBufs
A pointer to a vector of CSSM_DATA structures that contain the data to be
operated on.

CipherBufCount
The number of CipherBufs.

ClearBufCount
The number of ClearBufs.

Output

bytesDecrypted
A pointer to uint32 for the size of the decrypted data in bytes.

ClearBufs
A pointer to a vector of CSSM_DATA structures that contain the decrypted
data resulting from the decryption operation.

146 z/OS OCSF Application Programming

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The output can be obtained either by filling the caller-supplied buffer or using the
application's memory allocation functions to allocate space, which the application
must later free. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned. In-place decryption can be
done by supplying the same input and output buffers.

Related Information

CSSM_DecryptData
CSSM_DecryptDataInit
CSSM_DecryptDataFinal
CSSM_QuerySize
CSSM_RequestCssmExemption

CSSM_DeriveKey
Purpose

This function derives a new asymmetric key using the context and information
from the base key.

Format
CSSM_RETURN CSSMAPI CSSM_DeriveKey

(CSSM_CC_HANDLE CCHandle,
const CSSM_KEY_PTR BaseKey,
void *Param,
uint32 KeyUsage,
uint32 KeyAttr,
const CSSM_DATA_PTR KeyLabel,
CSSM_KEY_PTR DerivedKey)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation.

BaseKey
The base key used to derive the new key. The base key may be a public key, a
private key, or an asymmetric key.

KeyUsage
A bit-mask representing the valid uses of the key. See Table 36 on page 125 for
a list of valid values.

KeyAttr
&tab;A bit-mask representing the attributes of the key represented by the data.
These attributes are used by CSP service providers to convey information
about stored or referenced keys.

Output

Chapter 12. Cryptographic Services API 147

DerivedKey
A pointer to a CSSM_KEY structure that returns the derived key.

Input/optional

KeyLabel
Pointer to a byte string that will be used as the label for the derived key.

Input/Output

Param
The use of this parameter varies depending on the derivation algorithms.
Specific algorithms use Params to pass custom data to algorithms.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The KeyData field of the CSSM_KEY structure is not required to be allocated. In
this case, the memory required to represent the key is allocated by the CSP. The
application is required to free this memory. The CSP will only allocate memory if
the Data field of KeyData is NULL and the Length field is zero.

Related Information

CSSM_CSP_CreateDeriveKeyContext

CSSM_DigestData
Purpose

This function computes a message digest for the supplied data.

Format
CSSM_RETURN CSSMAPI CSSM_DigestData

(CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Digest)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

DataBufs
A pointer to a vector of CSSM_DATA structures that contain the data to be
operated on.

DataBufCount
The number of DataBufs.

Output

148 z/OS OCSF Application Programming

Digest
A pointer to the CSSM_DATA structure for the message digest.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The output can be obtained either by filling the caller-supplied buffer or using the
application's memory allocation functions to allocate space, which the application
must later free. If the output buffer pointer this is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

Related Information

CSSM_DigestDataInit
CSSM_DigestDataUpdate
CSSM_DigestDataFinal

CSSM_DigestDataClone
Purpose

This function clones a given staged message digest context with its cryptographic
attributes and intermediate result.

Format
CSSM_CC_HANDLE CSSMAPI CSSM_DigestDataClone (CSSM_CC_HANDLE CCHandle)

Parameters

Input

CCHandle
The handle that describes the context of a staged message digest operation.

Return Value

The handle of cloned context. If the handle is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Notes

When a digest context is cloned, a new context is created with data associated with
the parent context. Changes made to the parent context after calling this function
will not be reflected in the cloned context. The cloned context could be used with
the CSSM_DigestDataUpdate and CSSM_DigestDataFinal functions.

Related Information

CSSM_DigestData
CSSM_DigestDataInit
CSSM_DigestDataUpdate
CSSM_DigestDataFinal

Chapter 12. Cryptographic Services API 149

CSSM_DigestDataFinal
Purpose

This function finalizes the staged message digest function.

Format
CSSM_RETURN CSSMAPI CSSM_DigestDataFinal (CSSM_CC_HANDLE CCHandle, CSSM_DATA_PTR Digest)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Output

Digest
A pointer to the CSSM_DATA structure for the message digest.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The output can be obtained either by filling the caller-supplied buffer or using the
application's memory allocation functions to allocate space, which the application
must later free. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

Related Information

CSSM_DigestData
CSSM_DigestDataInit
CSSM_DigestDataUpdate
CSSM_DigestDataClone

CSSM_DigestDataInit
Purpose

This function initializes the staged message digest operation.

Format
CSSM_RETURN CSSMAPI CSSM_DigestDataInit (CSSM_CC_HANDLE CCHandle)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

150 z/OS OCSF Application Programming

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_DigestData
CSSM_DigestDataUpdate
CSSM_DigestDataClone
CSSM_DigestDataFinal

CSSM_DigestDataUpdate
Purpose

This function updates the staged message digest operation.

Format
CSSM_RETURN CSSMAPI CSSM_DigestDataUpdate (CSSM_CC_HANDLE CCHandle,const CSSM_DATA_PTR DataBufs,

uint32 DataBufCount)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

DataBufs
A pointer to a vector of CSSM_DATA structures that contain the data to be
operated on.

DataBufCount
The number of DataBufs.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_DigestData
CSSM_DigestDataInit
CSSM_DigestDataClone
CSSM_DigestDataFinal

CSSM_EncryptData
Purpose

This function encrypts the supplied data using information in the context. The
CSSM_QuerySize function can be used to estimate the output buffer size required.
When working with U.S. exportable versions of the OCSF, the caller may be
required to possess specific exemptions or privileges in order to allow this call to
complete successfully.

Chapter 12. Cryptographic Services API 151

Format
CSSM_RETURN CSSMAPI CSSM_EncryptData

(CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
uint32 *bytesEncrypted,
CSSM_DATA_PTR RemData)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

ClearBufs
A pointer to a vector of CSSM_DATA structures that contain the data to be
operated on.

ClearBufCount
The number of ClearBufs.

CipherBufCount
The number of CipherBufs.

Output

CipherBufs
A pointer to a vector of CSSM_DATA structures that contain the results of the
operation on the data.

bytesEncrypted
The size of the encrypted data in bytes.

RemData
A pointer to the CSSM_DATA structure for the last encrypted block containing
padded data.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The output can be obtained either by filling the caller-supplied buffer or using the
application's memory allocation functions to allocate space, which the application
must later free. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned. In-place encryption can be
done by supplying the same input and output buffers.

Related Information

CSSM_QuerySize
CSSM_DecryptData
CSSM_EncryptDataInit

152 z/OS OCSF Application Programming

CSSM_EncryptDataUpdate
CSSM_EncryptDataFinal
CSSM_RequestCssmExemption

CSSM_EncryptDataFinal
Purpose

This function finalizes the staged encrypt operation. When working with U.S.
exportable versions of the OCSF, the caller may be required to possess specific
exemptions or privileges in order to allow this call to complete successfully.

Format
CSSM_RETURN CSSMAPI CSSM_EncryptDataFinal(CSSM_CC_HANDLE CCHandle, CSSM_DATA_PTR RemData)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Output

RemData
A pointer to the CSSM_DATA structure for the last encrypted block containing
padded data.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The output can be obtained either by filling the caller-supplied buffer or using the
application's memory allocation functions to allocate space, which the application
must later free. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned. In-place encryption can be
done by supplying the same input and output buffers.

Related Information

CSSM_EncryptData
CSSM_EncryptDataInit
CSSM_EncryptDataUpdate
CSSM_RequestCssmExemption

CSSM_EncryptDataInit
Purpose

This function initializes the staged encrypt operation. There may be
algorithm-specific and token-specific rules restricting the lengths of data in the
CSSM_EncryptDataUpdate calls that make use of these parameters. When working
with U.S. exportable versions of the OCSF, the caller may be required to possess

Chapter 12. Cryptographic Services API 153

specific exemptions or privileges in order to allow this call to complete
successfully.

Format
CSSM_RETURN CSSMAPI CSSM_EncryptDataInit (CSSM_CC_HANDLE CCHandle)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_EncryptData
CSSM_EncryptDataUpdate
CSSM_EncryptDataFinal
CSSM_RequestCssmExemption

CSSM_EncryptDataUpdate
Purpose

This function updates the staged encrypt operation. The CSSM_QuerySize function
can be used to estimate the output buffer size required for each update call. There
may be algorithm-specific and token-specific rules restricting the lengths of data in
CSSM_EncryptDataUpdate calls. When working with U.S. exportable versions of
the OCSF, the caller may be required to possess specific exemptions or privileges in
order to allow this call to complete successfully.

Format
CSSM_RETURN CSSMAPI CSSM_EncryptDataUpdate

(CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR ClearBufs,
uint32 ClearBufCount,
CSSM_DATA_PTR CipherBufs,
uint32 CipherBufCount,
uint32 *bytesEncrypted)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

ClearBufs
A pointer to a vector of CSSM_DATA structures that contain the data to be
operated on.

ClearBufCount
The number of ClearBufs.

154 z/OS OCSF Application Programming

CipherBufCount
The number of CipherBufs.

Output

CipherBufs
A pointer to a vector of CSSM_DATA structures that contain the encrypted
data resulting from the encryption operation.

bytesEncrypted
The size of the encrypted data in bytes.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The output can be obtained either by filling the caller-supplied buffer or using the
application's memory allocation functions to allocate space, which the application
must later free. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned. In-place encryption can be
done by supplying the same input and output buffers.

Related Information

CSSM_EncryptData
CSSM_EncryptDataInit
CSSM_EncryptDataFinal
CSSM_QuerySize
CSSMRequestCssmExemption

CSSM_GenerateAlgorithmParams
Purpose

This function generates algorithm parameters for the specified context. These
parameters include Diffie-Hellman key agreement parameters and DSA key
generation parameters.

Format
CSSM_RETURN CSSMAPI CSSM_GenerateAlgorithmParams

(CSSM_CC_HANDLE CCHandle,
uint32 ParamBits,
CSSM_DATA_PTR Param)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

ParamBits
Used to generate parameters for the algorithm (for example, Diffie-Hellman).

Output

Chapter 12. Cryptographic Services API 155

Param
Pointer to CSSM_DATA structure used to obtain the key exchange parameter
and the size of the key exchange parameter in bytes.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The output can be obtained either by filling the caller-supplied buffer or using the
application's memory allocation functions to allocate space, which the application
must later free. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

CSSM_GenerateKey
Purpose

This function generates a symmetric key.

Format
CSSM_RETURN CSSMAPI CSSM_GenerateKey

(CSSM_CC_HANDLE CCHandle,
uint32 KeyUsage,
uint32 KeyAttr,
const CSSM_DATA_PTR KeyLabel,
CSSM_KEY_PTR Key)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

KeyUsage
A bit-mask representing the valid uses of the key. See Table 36 on page 125 for
a list of valid values.

KeyAttr
&tab;A bit-mask representing the attributes of the key represented by the data.
These attributes are used by CSP service providers to convey information
about stored or referenced keys.

Output

Key
Pointer to CSSM_KEY structure containing the key.

Input/optional

KeyLabel
Pointer to a byte string that will be used as a label/identifier for the derived
key. If a key label is not used, this field should be set to NULL.

156 z/OS OCSF Application Programming

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The KeyData field of the CSSM_KEY structure is not required to be allocated. In
this case, the memory required to represent the key is allocated by the CSP. The
application is required to free this memory. The CSP will only allocate memory if
the Data field of KeyData is NULL and the Length field is zero.

Related Information

CSSM_GenerateRandom
CSSM_GenerateKeyPair

CSSM_GenerateKeyPair
Purpose

This function generates an asymmetric key pair.

Format
CSSM_RETURN CSSMAPI CSSM_GenerateKeyPair

(CSSM_CC_HANDLE CCHandle,
uint32 PublicKeyUsage
uint32 PublicKeyAttr,
const CSSM_DATA_PTR PublicKeyLabel,
CSSM_KEY_PTR PublicKey,
uint32 PrivateKeyUsage,
uint32 PrivateKeyAttr,
const CSSM_DATA_PTR PrivateKeyLabel,
CSSM_KEY_PTR PrivateKey)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Output

PublicKey
Pointer to CSSM_KEY structure used to obtain the public key.

PrivateKey
Pointer to CSSM_KEY structure used to obtain the private key.

Input/optional

PublicKeyUsage
A bit-mask representing the valid uses of the public key. This field may be
required by some CSP modules. Refer to the information provided with the
CSP for more information. See Table 36 on page 125 for a list of valid key
usage values.

PublicKeyAttr
A bit-mask representing the attributes of the public key represented by the
data. These attributes are used by CSP service providers to convey information

Chapter 12. Cryptographic Services API 157

about stored or referenced keys. This field may be required by some CSP
modules. Refer to the information provided with the CSP for more
information.

PublicKeyLabel
Pointer to a byte string that will be used as a label/identifier for the derived
public key. If a key label is not used, this field should be set to NULL.

PrivateKeyUsage
A bit-mask representing the valid uses of the private key. This field may be
required by some CSP modules. For more information, see the information
provided with the CSP from the module vendor. See Table 36 on page 125 for a
list of valid key usage values.

PrivateKeyAttr
A bit-mask representing the attributes of the private key represented by the
data. These attributes are used by CSP service providers to convey information
about stored or referenced keys. This field may be required by some CSP
modules. Refer to the information provided with the CSP for more
information.

PrivateKeyLabel
Pointer to a byte string that will be used as a label/identifier for the derived
private key. If a key label is not used, this field should be set to NULL.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The KeyData field of the CSSM_KEY structures are not required to be allocated. In
this case, the memory required to represent the key is allocated by the CSP. The
application is required to free this memory. The CSP will only allocate memory if
the Data field of KeyData is NULL and the Length field is zero.

Related Information

CSSM_GenerateRandom

CSSM_GenerateMac
Purpose

This function generates a message authentication code for the supplied data.

Format
CSSM_RETURN CSSMAPI CSSM_GenerateMac (CSSM_CC_HANDLE CCHandle,

const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Mac)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

158 z/OS OCSF Application Programming

DataBufs
A pointer to a vector of CSSM_DATA structures that contain the data to be
operated on.

DataBufCount
The number of DataBufs.

Output

Mac
A pointer to the CSSM_DATA structure containing the message authentication
code.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The output can be obtained either by filling the caller-supplied buffer or using the
application's memory allocation functions to allocate space, which the application
must later free. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

Related Information

CSSM_GenerateMacInit
CSSM_GenerateMacUpdate
CSSM_Generate MacFinal

CSSM_GenerateMacFinal
Purpose

This function finalizes the staged message authentication code operation.

Format
CSSM_RETURN CSSMAPI CSSM_GenerateMacFinal (CSSM_CC_HANDLE CCHandle, CSSM_DATA_PTR Mac)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Mac
A pointer to the CSSM_DATA structure containing the message authentication
code.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Chapter 12. Cryptographic Services API 159

Notes

The output can be obtained either by filling the caller-supplied buffer or using the
application's memory allocation functions to allocate space, which the application
must later free. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

Related Information

CSSM_GenerateMac
CSSM_GenerateMacInit
CSSM_GenerateMacUpdate

CSSM_GenerateMacInit
Purpose

This function initializes the staged message authentication code operation.

Format
CSSM_RETURN CSSMAPI CSSM_GenerateMacInit (CSSM_CC_HANDLE CCHandle)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_GenerateMac
CSSM_GenerateMacUpdate
CSSM_GenerateMacFinal

CSSM_GenerateMacUpdate
Purpose

This function updates the staged message authentication code operation.

Format
CSSM_RETURN CSSMAPI CSSM_GenerateMacUpdate (CSSM_CC_HANDLE CCHandle,

const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount)

Parameters

Input

160 z/OS OCSF Application Programming

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

DataBufs
A pointer to a vector of CSSM_DATA structures that contain the data to be
operated on.

DataBufCount
The number of DataBufs.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_GenerateMac
CSSM_GenerateMacInit
CSSM_GenerateMacFinal

CSSM_GenerateRandom
Purpose

This function generates random data.

Format
CSSM_RETURN CSSMAPI CSSM_GenerateRandom (CSSM_CC_HANDLE CCHandle,CSSM_DATA_PTR RandomNumber)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Output

RandomNumber
Pointer to CSSM_DATA structure used to obtain the random number and the
size of the random number in bytes.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The output can be obtained either by filling the caller-supplied buffer or using the
application's memory allocation functions to allocate space, which the application
must later free. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

Chapter 12. Cryptographic Services API 161

CSSM_QueryKeySizeInBits
Purpose

This function queries a CSP for the effective and real size of a key in bits.

Format
CSSM_RETURN CSSMAPI CSSM_QueryKeySizeInBits

(CSSM_CSP_HANDLE CSPHandle,
CSSM_CC_HANDLE CCHandle,
CSSM_KEY_SIZE_PTR KeySize)

Parameters

Input

CSPHandle
The handle that describes the CSP module used to perform this function.

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Output

KeySize
Pointer to a CSSM_KEY_SIZE data structure returns the actual size and the
effective size of the key in bits.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_GenerateRandom
CSSM_GenerateKeyPair

CSSM_QuerySize
Purpose

This function queries for the size of the output data for Signature, Message Digest,
and Message Authentication Code context types and queries for the algorithm
block size, or the size of the output data for encryption and decryption context
types. This function also can be used to query the output size requirements for the
intermediate steps of a staged cryptographic operation (for example,
CSSM_EncryptDataUpdate and CSSM_DecryptDataUpdate). There may be
algorithm-specific and token-specific rules restricting the lengths of data in these
data update calls.

Format
CSSM_RETURN CSSMAPI CSSM_QuerySize

(CSSM_CC_HANDLE CCHandle,
CSSM_BOOL Encrypt,
uint32 QuerySizeCount,
CSSM_QUERY_SIZE_DATA_PTR DataBlock)

162 z/OS OCSF Application Programming

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Encrypt
When asymmetric and symmetric contexts are being used, Encrypt indicates
whether an encryption (CSSM_TRUE) or a decryption (CSSM_FALSE)
operation will be performed. For all other operations and context types,
Encrypt should be set to CSSM_FALSE.

QuerySizeCount
An integer that indicates the number of data blocks that are in DataBlock.

Input/Output

DataBlock
&tab;A pointer to a CSSM_QUERY_SIZE_DATA structure that contains the size
of the input and the output data blocks, in bytes.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_EncryptData
CSSM_EncryptDataUpdate
CSSM_DecryptData
CSSM_DecryptDataUpdate
CSSM_SignData
CSSM_VerifyData
CSSM_DigestData
CSSM_GenerateMac

CSSM_SignData
Purpose

This function signs data using the private key associated with the public key
specified in the context.

Format
CSSM_RETURN CSSMAPI CSSM_SignData

(CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Signature)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Chapter 12. Cryptographic Services API 163

DataBufs
A pointer to a vector of CSSM_DATA structures that contain the data to be
operated on.

DataBufCount
The number of DataBufs to be signed.

Output

Signature
A pointer to the CSSM_DATA structure containing the signature.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The output can be obtained either by filling the caller-supplied buffer or using the
application's memory allocation functions to allocate space, which the application
must later free. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

Related Information

CSSM_VerifyData
CSSM_SignDataInit
CSSM_SignDataUpdate
CSSM_SignDataFinal

CSSM_SignDataFinal
Purpose

This function completes the final stage of the sign data operation.

Format
CSSM_RETURN CSSMAPI CSSM_SignDataFinal (CSSM_CC_HANDLE CCHandle, CSSM_DATA_PTR Signature)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Output

Signature
A pointer to the CSSM_DATA structure for the signature.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

164 z/OS OCSF Application Programming

Notes

The output can be obtained either by filling the caller-supplied buffer or using the
application's memory allocation functions to allocate space, which the application
must later free. If the output buffer pointer is NULL, an error code
CSSM_CSP_INVALID_DATA_POINTER is returned.

Related Information

CSSM_SignData
CSSM_SignDataInit
CSSM_SignDataUpdate

CSSM_SignDataInit
Purpose

This function initializes the staged sign data operation.

Format
CSSM_RETURN CSSMAPI CSSM_SignDataInit (CSSM_CC_HANDLE CCHandle)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_SignData
CSSM_SignDataUpdate
CSSM_SignDataFinal

CSSM_SignDataUpdate
Purpose

This function updates the data for the staged sign data operation.

Format
CSSM_RETURN CSSMAPI CSSM_SignDataUpdate

(CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount)

Parameters

Input

Chapter 12. Cryptographic Services API 165

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

DataBufs
A pointer to a vector of CSSM_DATA structures that contain the data to be
operated on.

DataBufCount
The number of DataBufs to be signed.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_SignData
CSSM_SignDataInit
CSSM_SignDataFinal

CSSM_UnwrapKey
Purpose

This function unwraps the data using the context. When working with U.S.
exportable versions of the OCSF, the caller may be required to possess specific
exemptions or privileges in order to allow this call to complete successfully.

Format
CSSM_RETURN CSSMAPI CSSM_UnwrapKey

(CSSM_CC_HANDLE CCHandle,
const CSSM_CRYPTO_DATA_PTR NewPassPhrase,
const CSSM_WRAP_KEY_PTR WrappedKey,
uint32 KeyAttr,
const CSSM_DATA_PTR KeyLabel,
CSSM_KEY_PTR UnwrappedKey)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation.

NewPassPhrase
The passphrase or a callback function to be used to obtain the passphrase. If
the unwrapped key is a private key and the persistent object mode is true,
then the private key is unwrapped and securely stored by the CSP. The
NewPassPhrase is used to secure the private key after it is unwrapped. It is
assumed that a known public key is associated with the private key.

WrappedKey
A pointer to the wrapped key. The wrapped key may be a symmetric key or
the private key of a public/private key pair. The unwrapping method is
specified as meta-data within the wrapped key and is not specified outside of
the wrapped key.

KeyAttr
Attribute the unwrapped key will assume.

166 z/OS OCSF Application Programming

Output

UnwrappedKey
A pointer to a CSSM_KEY structure that returns the unwrapped key.

Input/optional

KeyLabel
Pointer to a byte string that will be used as the label for the unwrapped key.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Notes

The KeyData field of the CSSM_KEY structure is not required to be allocated. In
this case, the memory required to represent the key is allocated by the CSP. The
application is required to free this memory. The CSP will only allocate memory if
the Data field of KeyData is NULL and the Length field is zero.

Related Information

CSSM_WrapKey
CSSM_RequestCssmExemption

CSSM_VerifyData
Purpose

This function verifies the input data against the provided signature.

Format
CSSM_BOOL CSSMAPI CSSM_VerifyData

(CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
const CSSM_DATA_PTR Signature)

Parameters

Input

CCHandle
&tab;The handle that describes the context of this cryptographic operation
used to link to the CSP-managed information.

DataBufs
A pointer to a vector of CSSM_DATA structures that contain the data to be
operated on.

DataBufCount
The number of DataBufs to be verified.

Signature
A pointer to a CSSM_DATA structure which contains the signature and the size
of the signature.

Chapter 12. Cryptographic Services API 167

Return Value

A CSSM_TRUE return value signifies the signature was successfully verified. When
CSSM_FALSE is returned, either the signature was not successfully verified or an
error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_SignData
CSSM_VerifyDataInit
CSSM_VerifyDataUpdate
CSSM_VerifyDataFinal

CSSM_VerifyDataFinal
Purpose

This function finalizes the staged verify data function.

Format
CSSM_BOOL CSSMAPI CSSM_VerifyDataFinal (CSSM_CC_HANDLE CCHandle,const CSSM_DATA_PTR Signature)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Signature
A pointer to a CSSM_DATA structure that contains the starting address for the
signature to verify against and the length of the signature in bytes.

Return Value

A CSSM_TRUE return value signifies the signature was successfully verified. When
CSSM_FALSE is returned, either the signature was not successfully verified or an
error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_VerifyData
CSSM_VerifyDataInit
CSSM_VerifyDataUpdate

CSSM_VerifyDataInit
Purpose

This function initializes the staged verify data operation.

Format
CSSM_RETURN CSSMAPI CSSM_VerifyDataInit (CSSM_CC_HANDLE CCHandle)

Parameters

Input

168 z/OS OCSF Application Programming

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_VerifyDataUpdate
CSSM_VerifyDataFinal
CSSM_VerifyData

CSSM_VerifyDataUpdate
Purpose

This function updates the data to the staged verify data operation.

Format
CSSM_RETURN CSSMAPI CSSM_VerifyDataUpdate

(CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

DataBufs
A pointer to a vector of CSSM_DATA structures that contain the data to be
operated on.

DataBufCount
The number of DataBufs to be verified.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_VerifyData
CSSM_VerifyDataInit
CSSM_VerifyDataFinal

CSSM_VerifyMac
Purpose

This function verifies a message authentication code for the supplied data.

Chapter 12. Cryptographic Services API 169

Format
CSSM_RETURN CSSMAPI CSSM_VerifyMac

(CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount,
CSSM_DATA_PTR Mac)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

DataBufs
A pointer to a vector of CSSM_DATA structures that contain the data to be
operated on.

DataBufCount
The number of DataBufs.

Mac
A pointer to the CSSM_DATA structure containing the MAC to verify.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_VerifyMacInit
CSSM_VerifyMacUpdate
CSSM_VerifyMacFinal

CSSM_VerifyMacFinal
Purpose

This function finalizes the staged message authentication code verification
operation.

Format
CSSM_RETURN CSSMAPI CSSM_VerifyMacFinal (CSSM_CC_HANDLE CCHandle, CSSM_DATA_PTR Mac)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Mac
A pointer to the CSSM_DATA structure containing the MAC to verify.

Return Value

CSSM_OK if the MAC verifies correctly, CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

170 z/OS OCSF Application Programming

Related Information

CSSM_VerifyMac
CSSM_VerifyMacInit
CSSM_VerifyMacUpdate

CSSM_VerifyMacInit
Purpose

This function initializes the staged message authentication code verification
operation.

Format
CSSM_RETURN CSSMAPI CSSM_VerifyMacInit (CSSM_CC_HANDLE CCHandle)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_VerifyMac
CSSM_VerifyMacUpdate
CSSM_VerifyMacFinal

CSSM_VerifyMacUpdate
Purpose

This function updates the staged message authentication code verification
operation.

Format
CSSM_RETURN CSSMAPI CSSM_VerifyMacUpdate

(CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR DataBufs,
uint32 DataBufCount)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation used to
link to the CSP-managed information.

DataBufs
A pointer to a vector of CSSM_DATA structures that contain the data to be
operated on.

Chapter 12. Cryptographic Services API 171

DataBufCount
The number of DataBufs.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

Related Information

CSSM_VerifyMac
CSSM_VerifyMacInit
CSSM_VerifyMacFinal

CSSM_WrapKey
Purpose

This function wraps the supplied key using the context. The key may be a
symmetric key or the public key of a public/private key pair. If a symmetric key is
specified, it is wrapped. If a public key is specified, the passphrase is used to
unlock the corresponding private key, which is then wrapped. When working with
U.S. exportable versions of the OCSF, the caller may be required to possess specific
exemptions or privileges in order to allow this call to complete successfully.

Format
CSSM_RETURN CSSMAPI CSSM_WrapKey

(CSSM_CC_HANDLE CCHandle,
const CSSM_CRYPTO_DATA_PTR PassPhrase,
const CSSM_KEY_PTR Key,
CSSM_WRAP_KEY_PTR WrappedKey)

Parameters

Input

CCHandle
The handle to the context that describes this cryptographic operation.

PassPhrase
The passphrase or a callback function to be used to obtain the passphrase that
can be used by the CSP to unlock the private key before it is wrapped. This
input is ignored when wrapping a symmetric, secret key.

Key
A pointer to the target key to be wrapped. If a private key is to be wrapped,
the target key is the public key associated with the private key. If a symmetric
key is to be wrapped, the target key is that symmetric key.

Output

WrappedKey
A pointer to a CSSM_WRAP_KEY_PTR structure that returns the wrapped key.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error occurred. Use
CSSM_GetError to determine the exact error.

172 z/OS OCSF Application Programming

Related Information

CSSM_UnwrapKey
CSSM_RequestCssmExemption

Extensibility Functions
The CSSM_CSP_PassThrough function allows CSP developers to extend the
cryptographic functionality of the OCSF API. Because it is only exposed to OCSF
as a function pointer, its name internal to the CSP can be assigned at the discretion
of the CSP module developer. However, its parameter list and return value must
match what is shown in this function.

CSSM_CSP_PassThrough
Format
void * CSSMAPI CSSM_CSP_PassThrough

(CSSM_CC_HANDLE CCHandle,
uint32 PassThroughId,
const void *InData)

Parameters

Input

CCHandle
The handle that describes the context of this cryptographic operation.

PassThroughId
An identifier specifying the custom function to be performed.

InData
A pointer to a module-specific structure containing the input data.

Return Value

A pointer to a module-specific structure containing the output data. If successful,
this function returns a non-NULL value. A NULL value indicates that an error has
occurred. Use CSSM_GetError to obtain a specific error code.

Chapter 12. Cryptographic Services API 173

174 z/OS OCSF Application Programming

Chapter 13. Key Recovery Services API

The Key Recovery interfaces are not supported in the OCSF, with the exception of
the CSSM_KR_QueryPolicyInfo. The interfaces can be compiled into an application
for compatibility purposes with other implementations. However, the functions are
not available. Key Recovery contexts can be created, but are of no use.

Data Structures
This discusses the Key Recovery data structures.

Note: Some application interfaces use data structures defined by other OCSF
services. Those data structures are defined with those particular OCSF services.

CSSM_CERTGROUP
This structure contains a set of certificates. It is assumed that the certificates are
related based on cosignaturing. The certificate group is a syntactic representation of
a trust model. All certificates in the group must be of the same type. Typically, the
certificates are related in some manner, but this is not required.
typedef struct cssm_certgroup {

uint32 NumCerts;
CSSM_DATA_PTR CertList;
void *reserved;

} CSSM_CERTGROUP, *CSSM_CERTGROUP_PTR;

Definitions:
NumCerts

Number of certificates in the group.
CertList

List of certificates.
Reserved

Reserved for future use.

CSSM_CONTEXT_ATTRIBUTE Extensions
The key recovery, context creation operations return key recovery context handles
that are represented as cryptographic context handles. The CSSM_CONTEXT data
structure has been extended to include the new types of attributes, as shown in the
example:
typedef struct cssm_context_attribute {

uint32 AttributeType;/* one of the defined CSSM_ATTRIBUTE_TYPEs */
uint32 AttributeLength;/* length of attribute */
union {

uint8 *Description; uint32 *Length;
void *Pointer;
CSSM_CRYPTO_DATA_PTR SeedPassPhrase;
CSSM_KEY_PTR Key;
CSSM_DATA_PTR Data;
CSSM_KR_PROFILE_PTR KRProfile;/*new attribute to hold KR profile*/

} Attribute; /* data that describes attribute */
} CSSM_CONTEXT_ATTRIBUTE, *CSSM_CONTEXT_ATTRIBUTE_PTR;

Several new attribute types were defined to support the key recovery context
attributes. The CSSM_ATTRIBUTE_TYPE enum is extended as follows:
CSSM_ATTRIBUTE_KRPROFILE_LOCAL = CSSM_ATTRIBUTE_LAST + 1,
CSSM_ATTRIBUTE_KRPROFILE_REMOTE= CSSM_ATTRIBUTE_LAST + 2

© Copyright IBM Corp. 1999, 2013 175

CSSM_KR_LIST_ITEM
The data structure contains the context of one of the entries in a policy module.
typedef struct kr_policy_list_item {

struct kr_policy_list_item *next;
uint32 AlgorithmId;
uint32 Mode;
uint32 MaxKeyLength;
uint32 MaxRounds;
uint8 WorkFactor;
uint8 PolicyFlags; /* to indicate which jurisdiction

required the policy */
uint32 AlgClass; /* SYMMETRIC versus ASYMMETRIC */

} CSSM_KR_POLICY_LIST_ITEM;

CSSM_KR_NAME
This data structure contains a typed name. The namespace type specifies what
kind of name is contained in the third parameter.
typedef struct cssm_kr_name {

uint8 Type; /* namespace type */
uint8 Length; /* name string length */
char *Name; /* name string */

} CSSM_KR_NAME, *CSSM_KR_NAME_PTR;

CSSM_KR_PROFILE
This data structure encapsulates the key recovery profile for a given user and a
given key recovery mechanism.
typedef struct cssm_kr_profile {

CSSM_KR_NAME UserName;
CSSM_DATA_PTR UserCertificate;
CSSM_CERTGROUP_PTR KRSCertChain;
uint8 LE_KRANum;
CSSM_CERTGROUP_PTR LE_KRACertChainList;
uint8 ENT_KRANum;
CSSM_CERTGROUP_PTR ENT_KRACertChainList;
uint8 INDIV_KRANum;
CSSM_CERTGROUP_PTR INDIV_KRACertChainList;
CSSM_DATA_PTR INDIV_AuthenticationInfo;
uint32KRSPFlags;
CSSM_DATA_PTR KRSPExtensions;

} CSSM_KR_PROFILE, *CSSM_KR_PROFILE_PTR;

Definitions:
UserName

Name of user this profile profiles.
UserCertificate

PK certificate of user.
KRSCertChain

Reserved for future use.
LE_KRANum

&tab;Number of law enforcement cert chains in LE_KRACertChainList.
LE_KRACertChainList

List of certificate chains for law enforcement.
ENT_KRANum

Number of enterprise cert chain in ENT_KRACertChainList.
ENT_KRACertChainList

List of certificate chains for enterprise.
INDIV_KRANum

Number of individual cert chains in INDIV_KRACertChainList.
INDIV_KRACertChainList

List of certificate chains for individual key recovery.
INDIV_AuthenticationInfo

Authentication Information (AI) for user key recovery.

176 z/OS OCSF Application Programming

KRSPFlags
Flag values interpreted by Key Recovery Service Provider (KRSP).

KRSPExtensions
Reserved for extensions specific to a key recovery module

CSSM_KRSP_HANDLE
typedef uint32 CSSM_KRSP_HANDLE /* Key Recovery Service Provider Handle */

CSSM_KRSPSUBSERVICE
Three structures are used to contain all of the static information that describes a
KRSP module: cssm_moduleinfo, cssm_serviceinfo, and cssm_krspsubservice. This
descriptive information is securely stored in the OCSF registry when the key
recovery module is installed with OCSF. A KRSP module may implement multiple
types of services and organize them as subservices.

The descriptive information stored in these structures can be queried using the
function CSSM_GetModuleInfo and specifying the KRSP module Globally Unique
ID (GUID).
typedef struct cssm_krspsubservice {

uint32 SubServiceId;
CSSM_STRING Description;/* Description of this sub service */
CSSM_STRING Jurisdiction;

} CSSM_KRSPSUBSERVICE, *CSSM_KRSPSUBSERVICE_PTR;

CSSM_KR_WRAPPEDPRODUCTINFO
typedef struct cssm_kr_wrappedproductinfo {

CSSM_VERSION StandardVersion;
CSSM_STRING StandardDescription;
CSSM_VERSION ProductVersion;
CSSM_STRING ProductDescription;
CSSM_STRING ProductVendor;
uint32 ProductFlags;

} CSSM_KR_WRAPPEDPRODUCT_INFO, *CSSM_KR_WRAPPEDPRODUCT_INFO_PTR;

Definitions:
StandardVersion

Version of standard to which this product conforms.
StandardDescription

Description of standard to which this product conforms.
ProductVersion

Version of wrapped product/library.
ProductDescription

Description of wrapped product/library
ProductVendor

Vendor of wrapped product/library.
ProductFlags

Specifies product flags.

CSSM_POLICY_INFO
This data structure encapsulates policy module information.
typedef struct policy_info {
CSSM_BOOL krbNotAllowed;
uint32 numberOfEntries;
CSSM_KR_POLICY_LIST_ITEM *policyEntry;
} CSSM_POLICY_INFO, *CSSM_POLICY_INFO_PTR;

Key Recovery Module Management Operations
This describes the interfaces for the key recovery module management operations.

Chapter 13. Key Recovery Services API 177

CSSM_KR_SetEnterpriseRecoveryPolicy
Purpose

This call establishes the identity of the file that contains the enterprise key recovery
policy function. It allows the use of a passphrase for access control to the update of
the enterprise policy module. The first time this function is invoked, the old
passphrase should be "default" in the Param field of the
CSSM_CRYPTO_DATA_PTR. A passphrase can be established at this time for
subsequent access control to this function by entering it in the NewPassphrase
parameter. If the passphrase is to be changed, both the old and new passphrases
have to be supplied.

The policy function module is operating system platform-specific (for Win95 and
NT, it may be a Dynamic Link Library (DLL); for UNIX-based platforms, it may be
a separate executable that gets launched by the OCSF). It is expected that the
policy function file will be protected using the available protection mechanisms of
the operating system platform. The policy function is expected to conform to this
interface:
CSSM_BOOL EnterpriseRecoveryPolicy (CSSM_CONTEXT_PTR CryptoContext);

The CSSM_BOOL return value of this policy function will determine whether
enterprise-based key recovery is mandated for the given cryptographic operation.
CSSM_TRUE means that key recovery enablement is required for the given
Context, and CSSM_FALSE means it is not.

Format
CSSM_RETURN CSSMAPI CSSM_KR_SetEnterpriseRecoveryPolicy

(char * RecoveryPolicyFileName,
const CSSM_CRYPTO_DATA_PTR OldPassPhrase,
const CSSSM_CRYPTO_DATA_PTR NewPassphrase)

Parameters

Input

RecoveryPolicyFileName
A pointer to a character string that specifies the filename of the module that
contains the enterprise key recovery policy function. The filename may be a
fully qualified pathname or a partial pathname.

OldPassPhrase
The passphrase used to control access to this operation. This should be
"default" when this function is invoked for the first time.

NewPassPhrase
The value of the passphrase to be established for subsequent access to this
function. It should be identical to the OldPassPhrase if the passphrase does not
need to be updated.

Return Value

A CSSM return value. This function returns CSSM_OK if successful, and returns
CSSM_FAIL if an error has occurred. Use CSSM_GetError to determine the error
code.

178 z/OS OCSF Application Programming

Key Recovery Context Operations
Key recovery contexts are essentially cryptographic contexts. These API functions
deal with the creation of these special types of cryptographic contexts. Once these
contexts are created, the regular OCSF context API functions may be used to
manipulate these key recovery contexts.

CSSM_KR_CreateRecoveryEnablementContext
Purpose

This call creates a key recovery enablement context based on a KRSP handle
(which determines the key recovery mechanism that is in use) and key recovery
profiles for the local and remote parties involved in a cryptographic exchange. It is
expected that the LocalProfile will contain sufficient information to perform law
enforcement, enterprise, and individual key recovery enablement, whereas, the
RemoteProfile will contain information to perform law enforcement and enterprise
key recovery enablement only. However, any and all of the fields within the
profiles may be set to NULL–in this case, default values for these fields are to be
used when performing the recovery enablement operations.

Format
CSSM_CC_HANDLE CSSMAPI CSSM_KR_CreateRecoveryEnablementContext

(CSSM_KRSP_HANDLE KRSPHandle,
const CSSM_KR_PROFILE LocalProfile,
const CSSM_KR_PROFILE RemoteProfile)

Parameters

Input

KRSPHandle
The handle to the KRSP that will be used.

LocalProfile
The key recovery profile for the local client.

RemoteProfile
The key recovery profile for the remote client.

Return Value

A handle to the key recovery enablement context is returned. If the handle is
NULL, that signifies that an error has occurred.

CSSM_KR_CreateRecoveryRegistrationContext
Purpose

This call creates a key recovery registration context based on a KRSP handle
(which determines the key recovery mechanism that is in use). This context may be
used for performing registration with Key Recovery Servers (KRSs) and/or Key
Recovery Agents (KRAs).

Format
CSSM_CC_HANDLE CSSMAPI CSSM_KR_CreateRecoveryRegistrationContext (CSSM_KRSP_HANDLE KRSPHandle)

Chapter 13. Key Recovery Services API 179

Parameters

Input

KRSPHandle
The handle to the KRSP that is used.

Return Value

A handle to the key recovery registration context is returned. If the handle is
NULL, that signifies that an error has occurred.

CSSM_KR_CreateRecoveryRequestContext
Purpose

This call creates a key recovery request context based on a KRSP handle (which
determines the key recovery mechanism that is in use). The profile for the local
party and flag values to signify what kind of key recovery is desired. A handle to
the key recovery request context is returned.

Format
CSSM_CC_HANDLE CSSMAPI CSSM_KR_CreateRecoveryRequestContext

(CSSM_KRSP_HANDLE KRSPHandle,
const CSSM_KR_PROFILE_PTR LocalProfile)

Parameters

Input

KRSPHandle
The handle to the KRSP that is used.

LocalProfile
The key recovery profile for the local client. This parameter is relevant only
when KRFlags is set to KR_INDIV.

Return Value

A handle to the key recovery context is returned. If the handle is NULL, that
signifies that an error has occurred.

CSSM_KR_GetPolicyInfo
Purpose

This call is supported in the OCSF. This call should be used to determine the
strength and type of cryptographic algorithm allowed.

Format
CSSM_RETURN CSSM_KR_GetPolicyInfo

(CSSM_CC_HANDLE CCHandle,
uint32 EncryptionProhibited,
uint32 *WorkFactor)

Parameters

Input

180 z/OS OCSF Application Programming

CCHandle
The handle to the cryptographic context that will be used.

EncryptionProhibited
The usability field for law enforcement policy. Possible value is:
v KR_LE -Signifies that either the strength or algorithm specified in the

cryptographic context is outside the allowable values after a policy
enforcement check was done.

Output

Workfactor
The maximum permissible workfactor value that may be used for law
enforcement key recovery.

Return Value

CSSM_OK if successful, CSSM_FAIL if an error occurred. Use CSSM_GetError to
determine the exact error.

Key Recovery Registration Operations
This describes the interfaces for the key recovery registration operations.

CSSM_KR_RegistrationRequest
Purpose

This function performs a key recovery registration operation. The KRInData
parameter contains known input parameters for the recovery registration
operation. A UserCallback function may be supplied to allow the registration
operation to interact with the user interface, if necessary. When this operation is
successful, a ReferenceHandle and an EstimatedTime parameter are returned; the
ReferenceHandle will be used to invoke the CSSM_KR_RegistrationRetrieve
function, after the EstimatedTime in seconds.

Format
CSSM_RETURN CSSMAPI CSSM_KR_RegistrationRequest

(CSSM_CC_HANDLE RecoveryRegistrationContext,
CSSM_DATA_PTR KRInData,
CSSM_CRYPTO_DATA_PTR UserCallback,
uint8 KRFlags,
unit32 *EstimatedTime,
CSSM_HANDLE_PTR ReferenceHandle)

Parameters

Input

RecoveryRegistrationContext
The handle to the key recovery registration context.

KRInData
Input data for key recovery registration.

UserCallBack
A callback function that may be used to collect further information from the
user interface.

KRFlags
Flag values for recovery registration. Defined values are:

Chapter 13. Key Recovery Services API 181

v KR_INDIVIDUAL - signifies that the registration is for the IND scenario
v KR_ENT - signifies that the registration is for the ENT scenario
v KR_LE - signifies that the registration is for the LE scenario

Output

EstimatedTime
The estimated time after which the CSSM_KR_RegistrationRetrieve call should
be invoked to obtain registration results.

ReferenceHandle
The handle to use to invoke the CSSM_KR_RegistrationRetrieve function.

Return Value

CSSM_OK if successful, CSSM_FAIL if an error occurred. Use CSSM_GetError to
determine the exact error.

CSSM_KR_RegistrationRetrieve
Purpose

This function completes a key recovery registration operation. The results of a
successful registration operation are returned through the KRProfile parameter,
which may be used with the profile management API functions.

If the results are not available when this function is invoked, the KRProfile
parameter is set to NULL, and the EstimatedTime parameter indicates when this
operation should be repeated with the same ReferenceHandle.

Format
CSSM_RETURN CSSMAPI CSSM_KR_RegistrationRetrieve

(CSSM_KRSP_HANDLE hKRSP,
CSSM_HANDLE ReferenceHandle,
unit32 *EstimatedTime,
CSSM_KR_PROFILE_PTR KRProfile)

Parameters

Input

hKRSP
The handle to the KRSP that will be used.

ReferenceHandle
The handle to the key recovery registration request that will be completed.

Output

EstimatedTime
The estimated time after which this call should be repeated to obtain
registration results. This is set to a non-zero value only when the KRProfile
parameter is NULL.

Input/Output

KRProfile
Key recovery profile that is filled in by the registration operation.

182 z/OS OCSF Application Programming

Return Value

CSSM_OK if successful, CSSM_FAIL if an error occurred. Use CSSM_GetError to
determine the exact error.

Key Recovery Enablement Operations
This describes the interfaces for the key recovery enablement operations.

CSSM_KR_GenerateRecoveryFields
Purpose

This function generates the Key Recovery Fields (KRFs) for a cryptographic
association given the key recovery context, the session specific key recovery
attributes, and the handle to the cryptographic context containing the key that will
be made recoverable. The session attributes and the flags are not interpreted at the
OCSF layer. If this call returns successfully, and the caller possesses the
CSSM_STRONG_CRYPTO_WITH_KR privilege, the EncryptionProhibited flags
within the CryptoContext may be modified, allowing the CryptoContext handle to
be used for the OCSF encrypt APIs. The generated KRFs are returned as an output
parameter. The KRFlags parameter may be used to fine tune the contents of the
KRFields produced by this operation.

Format
CSSM_KR_GenerateRecoveryFields CSSM_RETURN CSSMAPI

(CSSM_CC_HANDLE hKRContext,
CSSM_CC_HANDLE CryptoContext,
CSSM_DATA_PTR KRSPOptions,
uint32 KRFlags,
CSSM_DATA_PTR KRFields)

Parameters

Input

hKRContext
The handle to the key recovery context for the cryptographic association.

CryptoContext
The cryptographic context handle that points to the session key.

KRSPOptions
The Key Recovery Service Provider (KRSP) specific options. These options are
uninterpreted by the OCSF Framework, but passed on to the KRSP.

KRFlags
Flag values for KRFs generation. Defined values are:
v KR_INDL - Signifies that only the individual KRFs should be generated.
v KR_ENT - Signifies that only the enterprise KRFs should be generated.
v KR_LE - Signifies that only the law enforcement KRFs should be generated.
v KR_ALL - Signifies that law enforcement, enterprise, and individual KRFs

should be generated.
v KR_OPTIMIZE - Signifies that performance optimization options are to be

adopted by a KRSP while implementing this operation.
v KR_DROP_WORKFACTOR - Signifies that the law enforcement portion of

the KRFs should be generated without using the key size workfactor.

Chapter 13. Key Recovery Services API 183

Output

KRFields
The KRFs in the form of an uninterpreted data blob.

Return Value

CSSM_OK if successful, CSSM_FAIL if an error occurred. Use CSSM_GetError to
determine the exact error.

Related Information

CSSM_RequestCssmExemption

CSSM_KR_ProcessRecoveryFields
Purpose

This function processes a set of KRFs given the key recovery context and the
cryptographic context for the decryption operation. If the call is successful, and the
caller possesses the CSSM_STRONG_CRYPTO_WITH_KR privilege, the
EncryptionProhibited flags within the CryptoContextmay be modified, allowing
the CryptoContext handle to be used for the OCSF decrypt API calls.

Format
CSSM_RETURN CSSMAPI CSSM_KR_ProcessRecoveryFields

(CSSM_CC_HANDLE KeyRecoveryContext,
CSSM_CC_HANDLE CryptoContext,
CSSM_DATA_PTR KRSPOptions,
uint32 KRFlags,
CSSM_DATA_PTR KRFields)

Parameters

Input

KeyRecoveryContext
The handle to the key recovery context.

CryptoContext
A handle to the cryptographic context for which the KRFs are to be processed.

KRSPOptions
The KRSP specific options. These options are uninterpreted by the OCSF
Framework, but passed on to the KRSP.

KRFlags
Flag values for KRFs processing. Defined values are:
v KR_ENT - Signifies that only the enterprise KRFs should be processed.
v KR_LE - Signifies that only the law enforcement KRFs should be processed.
v KR_ALL - Signifies that only the enterprise KRFs should be processed.
v KR_OPTIMIZE - Signifies that performance optimization options will be

adopted by a KRSP while implementing this operation.

KRFields
The KRFs to be processed.

184 z/OS OCSF Application Programming

Return Value

CSSM_OK if successful, CSSM_FAIL if an error occurred. Use CSSM_GetError to
determine the exact error.

Related Information

CSSM_RequestCssmExemption

Key Recovery Request Operations
This describes the interfaces for the key recovery request operations.

CSSM_KR_GetRecoveredObject
Purpose

This function is used to step through the results of a recovery request operation in
order to retrieve a single recovered key at a time along with its associated
meta-information. The cache handle returned from a successful
CSSM_KR_RecoveryRetrieve operation is used. When multiple keys are recovered
by a single recovery request operation, the IndexInResults parameter indicates
which item to retrieve through this function.

The RecoveredKey parameter serves as an input template for the key to be returned.
If a private key is to be returned by this operation, the PassPhrase parameter is
used to inject the private key into the CSP indicated by the RecoveredKey template;
the corresponding public key is returned in the RecoveredKey parameter.
Subsequently, the PassPhrase and the public key may be used to reference the
private key when operations using the private key are required. The OtherInfo
parameter may be used to return other meta-data associated with the recovered
key.

Format
CSSM_RETURN CSSMAPI CSSM_KR_GetRecoveredObject

(CSSM_KRSP_HANDLE KRSPHandle,
CSSM_HANDLE_PTR CacheHandle,
unit32 IndexInResults,
CSSM_CSP_HANDLE CSPHandle,
const CSSM_CRYPTO_DATA_PTR PassPhrase,
CSSM_KEY_PTR RecoveredKey,
unit32 Flags,
CSSM_DATA_PTR OtherInfo)

Parameters

Input

KRSPHandle
The handle to the KRSP that is to be used.

CacheHandle
Pointer to the handle returned from a successful CSSM_KR_RecoveryRequest
operation.

IndexInResults
The index into the results that are referenced by the ResultsHandle parameter.

Chapter 13. Key Recovery Services API 185

PassPhrase
This parameter is only relevant if the recovered key is a private key. It is used
to protect the private key when it is inserted into the CSP specified by the
RecoveredKey template.

Flags
Flag values relevant for recovery of a key. Possible values are:
v CERT_RETRIEVE - If the recovered key is a private key, return the

corresponding public key certificate in the OtherInfo parameter.

Output

RecoveredKey
This parameter returns the recovered key.

OtherInfo
This parameter is used if there are additional information associated with the
recovered key (such as the public key certificate when recovering a private
key) that will be returned.

Input/optional

CSPHandle
This parameter identifies the CSP that the recovered key should be injected
into. It may be set to NULL if the key is to be returned in raw form to the
caller.

Return Value

CSSM_OK if successful, CSSM_FAIL if an error occurred. Use CSSM_GetError to
determine the exact error.

CSSM_KR_RecoveryRequest
Purpose

This function performs a key recovery request operation. The KRInData contains
known input parameters for the recovery request operation. A UserCallback
function may be supplied to allow the recovery operation to interact with the user
interface, if necessary. If the recovery request operation is successful, a
ReferenceHandle and an EstimatedTime parameter are returned; the ReferenceHandle
will be used to invoke the CSSM_KR_RecoveryRetrieve function, after the
EstimatedTime in seconds.

Format
CSSM_RETURN CSSMAPI CSSM_KR_RecoveryRequest

(CSSM_CC_HANDLE RecoveryRequestContext,
const CSSM_DATA_PTR KRInData,
const CSSM_CRYPTO_DATA_PTR UserCallback,
unit32 *EstimatedTime,
const CSSM_HANDLE_PTR ReferenceHandle)

Parameters

Input

RecoveryRequestContext
The handle to the key recovery request context.

186 z/OS OCSF Application Programming

KRInData
Input data for key recovery requests. For encapsulation schemes, the KRFs are
included in this parameter.

UserCallBack
A callback function that may be used to collect further information from the
user interface.

Output

ReferenceHandle
Handle returned when recovery request is successful. This handle may be used
to invoke the CSSM_KR_RecoveryRetrieve function.

EstimatedTime
The estimated time after which the CSSM_KR_RecoveryRetrieve call should be
invoked to obtain recovery results.

Return Value

CSSM_OK if successful, CSSM_FAIL if an error occurred. Use CSSM_GetError to
determine the exact error.

CSSM_KR_RecoveryRequestAbort
Purpose

This function terminates a recovery request operation and releases any state
information related to the recovery request.

Format
CSSM_RETURN CSSMAPI CSSM_KR_RecoveryRequestAbort (CSSM_KR_HANDLE KRSPHandle,CSSM_HANDLE CacheHandle)

Parameters

Input

KRSPHandle
The handle to the KRSP that is to be used.

CacheHandle
The handle returned from a successful CSSM_KR_RecoveryRequest operation.

Return Value

CSSM_OK if successful, CSSM_FAIL if an error occurred. Use CSSM_GetError to
determine the exact error.

CSSM_KR_RecoveryRetrieve
Purpose

This function completes a key recovery request operation. The ReferenceHandle
parameter indicates which outstanding recovery request is to be completed. The
results of a successful recovery operation are referenced by the ResultsHandle
parameter, which may be used with the CSSM_KR_GetRecoveredObject function to
retrieve the recovered keys.

Chapter 13. Key Recovery Services API 187

If the results are not available at the time this function is invoked, the CacheHandle
is NULL, and the EstimatedTime parameter indicates when this operation should be
repeated with the same ReferenceHandle.

Format
CSSM_RETURN CSSMAPI CSSM_KR_RecoveryRetrieve

(CSSM_KRSP_HANDLE KRSPHandle,
CSSM_HANDLE_PTR ReferenceHandle,
unit32 *EstimatedTime,
CSSM_HANDLE_PTR CacheHandle,
unit32 *NumberOfRecoveredKeys)

Parameters

Input

KRSPHandle
The handle to the KRSP that is to be used.

ReferenceHandle
Handle that indicates which key recovery request operation is to be completed.

Output

EstimatedTime
The estimated time after which this call should be repeated to obtain recovery
results. This is set to a non-zero value only when the ResultsHandle parameter
is NULL.

CacheHandle
Handle returned when recovery operation is successful. This handle may be
used to get individual keys using the CSSM_KR_GetRecoveredObject function.
This handle is NULL if the EstimatedTime parameter is not zero.

NumberOfRecoveredKeys
The number of recovered key objects that may be obtained using the
ResultsHandle.

Return Value

CSSM_OK if successful, CSSM_FAIL if an error occurred. Use CSSM_GetError to
determine the exact error.

CSSM_KR_QueryPolicyInfo
Purpose

This function queries the law enforcement CSSM policy in effect and returns
relevant information for application use. No privilege is required to invoke this
function.

The policy information reports the maximum key length that can be generated, per
cipher algorithm type and mode, without a need to generate key recovery blocks.
It also specifies whether it is the jurisdiction of manufacturing or the jurisdiction of
use to enforce the given policy. For special situations where the jurisdiction of use
prohibits generation of key recovery fields, that information will also be provided.

Applications can request policy information relative to a specific algorithm, by
providing the CSSM algorithm identifier in the first parameter to the call. If a
CSSM_ALGID_NONE is provided in this field, the PolicyInfoData will contain

188 z/OS OCSF Application Programming

information pertaining to the entire set of algorithms controlled for the law
enforcement jurisdiction. The mode parameter can be specified exactly, or set to
CSSM_ALGMODE_NONE. In the latter case, all matching algorithm ids regardless
of the actual mode are returned. The class parameter should be set correctly to
symmetric or asymmetric, otherwise the results will not be accurate.

If the API cannot find a matching entry in the configured policies, the
numberOfEntries field in PolicyInfoData is set to 0, and the return code is set to
CSSM_OK. If the return code is set to CSSM_FAIL, there was an internal error that
can be retrieved using CSSM_GetError API function.

Applications have the responsibility to free the memory associated with the policy
information data when no longer needed.

Format
CSSM_RETURN CSSMAPI CSSM_KR_QueryPolicyInfo

(const uint32 AlgorithmID,
const uint32 Mode,
const uint32 Class,
CSSM_POLICY_INFO_PTR *PolicyInfoData)

Parameters

Input

Class
The class of the desired algorithm. The allowed values are
CSSM_ALGCLASS_ASYMMETRIC and CSSM_ALGCLASS_SYMMETRIC.

Mode
The desired algorithm mode. This parameter can be set to
CSSM_ALGMODE_NONE to get all applicable modes.

AlgorithmID
CSSM defined algorithm identifier for which policy information is requested.
This Parameter must be CSSM_ALGID_NONE if global policy information is
desired.

Input/Output

PolicyInfoData
Pointer to a CSSM policy information data structure to receive the query
results.

Return Value

This function returns CSSM_OK if a privilege set was successfully retrieved. On
error CSSM_FAIL is returned. Use CSSM_GetError to obtain the error code.

Chapter 13. Key Recovery Services API 189

190 z/OS OCSF Application Programming

Chapter 14. Trust Policy Services API

The primary purpose of a Trust Policy (TP) module is to answer the question, "Is
this certificate authorized for this action in this trust domain?" Applications are
executed within some trust domain. For example, executing an installation
program at the office takes place within the corporate information technology trust
domain. Executing an installation program on a system at home takes place within
the user's personal system trust domain. The TP that allows or blocks the
installation action is different for the two domains. The corporate domain may
require extensive credentials and accept only credentials signed by selected parties.
The personal system domain may require only a credential that establishes the
bearer as a known user on the local system.

The general OCSF trust model defines a set of basic trust objects that most (if not
all) TPs use to model their trust domain and the policies over that domain. These
basic trust objects include:
v Policies
v Certificates
v Defined sources of trust
v Certificate Revocation Lists
v Application-specific actions
v Evidence.

Policies define the credentials required for authorization to perform an action on
another object. For example, a system administrator policy controls creating new
user accounts on a computer system. Certificates are the basic credentials
representing a trust relationship among a set of two or more parties. When an
organization issues certificates, it defines its issuing procedure in a Certification
Practice Statement (CPS). The statement identifies existing policies with which it is
consistent. The statement also can be the source of new policy definitions if the
action and target object domains are not covered by an existing, published policy.
An application domain can recognize multiple policies. A given policy can be
recognized by multiple application domains.

Evaluation of trust depends on relationships among certificates. For example,
certificate chains represent hierarchical trust, where a root authority is the source of
trust. Entities attain a level of trust based on their relationship to the root authority.
Certificate graphs represent an introducer model of trust, where the number and
strength of endorsers (i.e., immediate links in the graph) increases the level of trust
attained by an entity. In both models, the trust domain can define accepted sources
of trust. These may be mandated by fiat or can be computed by some other means.
In contrast to the sources of trust, Certificate Revocation Lists (CRLs) represent
sources of distrust. TPs may consult these lists during the verification process.

Trust evaluation can be performed with respect to a specific action the bearer
wishes to perform, with respect to a policy, or with respect to the application
domain in general. In the latter case, the action is understood to be either one
specific action, or all actions in the domain.

When verifying trust, a TP module processes a group of certificates. The result of
verification is a list of evidence, which forms an audit trail of the process. The
evidence may be a list of verified attribute values that were contained in the
certificates, or the entire set of verified certificates, or some other information that

© Copyright IBM Corp. 1999, 2013 191

serves as evidence of the verification. In the end, the trust and authorizations
asserted are based on the authority implied by a set of assumed or otherwise
specified public keys.

Many applications know a priori the TP modules it must use. The OCSF registry
and query mechanism provides applications access to TP module descriptions. This
information is provided by the TP module during installation and can assist the
application in selecting the appropriate TP module for a given application domain.

192 z/OS OCSF Application Programming

Data Structures
This describes the Trust Policy data structures.

Note: Some application interfaces use data structures defined by other OCSF
services. Those data structures are defined with those particular OCSF services.

CSSM_REVOKE_REASON
This data structure represents the reason a certificate is being revoked.
typedef enum cssm_revoke_reason {

CSSM_REVOKE_CUSTOM = 0,
CSSM_REVOKE_UNSPECIFIC = 1,
CSSM_REVOKE_KEYCOMPROMISE = 2,
CSSM_REVOKE_CACOMPROMISE = 3,
CSSM_REVOKE_AFFILIATIONCHANGED = 4,
CSSM_REVOKE_SUPERCEDED = 5,
CSSM_REVOKE_CESSATIONOFOPERATION = 6,
CSSM_REVOKE_CERTIFICATEHOLD = 7,
CSSM_REVOKE_CERTIFICATEHOLDRELEASE = 8,
CSSM_REVOKE_REMOVEFROMCRL = 9

} CSSM_REVOKE_REASON;

CSSM_TP_ACTION
This data structure represents a descriptive value defined by the TP module. A TP
can define application-specific actions for the application domains over which the
TP applies. Given a set of credentials, the TP module verifies authorizations to
perform these actions.
typedef uint32 CSSM_TP_ACTION

CSSM_TP_HANDLE
This data structure represents the TP module handle. The handle value is a unique
pairing between a TP module and an application that has attached that module. TP
handles can be returned to an application as a result of the CSSM_ModuleAttach
function.
typedef uint32 CSSM_TP_HANDLE/* Trust Policy Handle */

CSSM_TP_STOP_ON
This enumerated list defines the conditions controlling termination of the
verification process by the TP module when a set of policies/conditions must be
tested.
typedef enum cssm_tp_stop_on {

CSSM_TP_STOP_ON_POLICY = 0,&tab;/* use the pre-defined stopping criteria */
CSSM_TP_STOP_ON_NONE = 1,&tab;/* evaluate all condition whether T or F */
CSSM_TP_STOP_ON_FIRST_PASS = 2, /* stop evaluation at first TRUE */
CSSM_TP_STOP_ON_FIRST_FAIL = 3/* stop evaluation at first FALSE */

} CSSM_TP_STOP_ON;

CSSM_TPSUBSERVICE
Three structures are used to contain all of the static information that describes a TP
module: cssm_moduleinfo, cssm_serviceinfo, and cssm_tpsubservice. This
descriptive information is securely stored in the OCSF registry when the TP
module is installed with OCSF. A TP module may implement multiple types of
services and organize them as subservices. For example, a TP module supporting
electronic transaction applications may organize its implementation into three
subservices: one for micro-cash payments from an electronic wallet, a second for
payments by credit card, and a third for payments by bank debit card. Most TP
modules will implement exactly one subservice.

Chapter 14. Trust Policy Services API 193

The descriptive information stored in these structures can be queried using the
function CSSM_GetModuleInfo and specifying the trust policy module GUID.
typedef struct cssm_tpsubservice {

uint32 SubServiceId;
CSSM_STRING Description;
CSSM_CERT_TYPE CertType;
CSSM_USER_AUTHENTICATION_MECHANISM AuthenticationMechanism;
uint32 NumberOfPolicyIdentifiers;
CSSM_FIELD_PTR PolicyIdentifiers;
CSSM_TP_WRAPPEDPRODUCT_INFO WrappedProduct;

} CSSM_TPSUBSERVICE, *CSSM_TPSUBSERVICE_PTR;

Definitions:

SubServiceId
A unique, identifying number for the subservice described in this structure.

Description
A string containing a descriptive name or title for this subservice.

CertType
Type of certificate accepted by the TP module.

AuthenticationMechanism
An enumerated value defining the credential format accepted by the TP
module. An authentication credential is required for some TP functions.
Presented credentials must be of the required format.

NumberOfPolicyIdentifiers
The number of policies supported by this TP module.

PolicyIdentifiers
&tab;A list of the policies (represented by their identifiers) supported by
this TP module. There must be NumberOfPolicyIdentifiers entries in this
list.

WrappedProduct
Pointer to wrapped product information.

CSSM_TP_WRAPPEDPRODUCTINFO
typedef struct cssm_tp_wrappedproductinfo {

CSSM_VERSION StandardVersion;
CSSM_STRING StandardDescription;
CSSM_STRING ProductVendor;
uint32 ProductFlags;

} CSSM_TP_WRAPPEDPRODUCT_INFO, *CSSM_TP_WRAPPEDPRODUCT_INFO_PTR;

Definitions:
StandardVersion

Version of standard to which this product conforms.
StandardDescription

Description of standard to which this product conforms.
ProductVendor

Vendor of wrapped product/library.
ProductFlags

ProductFlags.

Trust Policy Operations
This describes the interfaces for the trust policy operations.

194 z/OS OCSF Application Programming

CSSM_TP_ApplyCrlToDb
Purpose

This function updates persistent storage to reflect entries in the CRL. The TP
module determines whether the memory-resident CRL is trusted, and if it should
be applied to one or more of the persistent databases. Side effects of this function
can include saving a persistent copy of the CRL in a data store or removing
certificate records from a data store.

Format
CSSM_RETURN CSSMAPI CSSM_TP_ApplyCrlToDb

(CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CSP_HANDLE CSPHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR Crl)

Parameters

Input

TPHandle
The handle that describes the TP module used to perform this function.

Crl
A pointer to the CSSM_DATA structure containing a CRL to be applied to the
data store.

Input/optional

CLHandle
The handle that describes the Certificate Library (CL) module that can be used
to manipulate the CRL as it is applied to the data store and to manipulate the
certificates affected by the CRL, if required. If no CL module is specified, the
TP module uses an assumed CL module, if required.

CSPHandle
The handle referencing a Cryptographic Service Provider (CSP) to be used to
verify signatures on the CRL determining whether to trust the CRL and apply
it to the data store. The TP module is responsible for creating the
cryptographic context structures required to perform the verification operation.
If no CSP is specified, the TP module uses an assumed CSP to perform these
operations.

DBList
A list of handle pairs specifying a Data Storage Library (DL) module and a
data store managed by that module. These data stores can contain certificates
that might be affected by the CRL, they may contain CRLs, or both. If no DL
and database (DB) handle pairs are specified, the TP module must use an
assumed DL module and an assumed data store for this operation.

Return Value

A CSSM_OK return value signifies that the revocations contained in the CRL have
been appropriately applied to the specified database. When CSSM_FAIL is
returned, an error has occurred. Use CSSM_GetError to obtain the error code.

Chapter 14. Trust Policy Services API 195

Related Information

CSSM_CL_CrlGetFirstItem
CSSM_CL_CrlGetNextItem
CSSM_DL_CertRevoke

CSSM_TP_CertRevoke
Purpose

This function updates a CRL. The TP module determines whether the revoking
certificate can revoke the target certificates. If authorized, a CRL record is added to
the CRL and returned to the caller.

Format
CSSM_DATA_PTR CSSMAPI CSSM_TP_CertRevoke

(CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR OldCrl,
const CSSM_CERTGROUP_PTR CertGroupToBeRevoked,
const CSSM_CERTGROUP_PTR RevokerCertGroup,
CSSM_REVOKE_REASON Reason)

Parameters

Input

TPHandle
The handle that describes the TP module used to perform this function.

CCHandle
The handle that describes the context for a cryptographic operation. The
cryptographic context specifies the handle of the CSP that must be used to
perform the operation.

CertGroupToBeRevoked
A pointer to the CSSM_CERTGROUP structure containing one or more related
certificates to be revoked.

RevokerCertGroup
A pointer to the CSSM_CERTGROUP structure containing the certificate used
to revoke the target certificates.

Reason
The reason for revoking the target certificates.

Input/optional

CLHandle
The handle that describes the CL module that can be used to manipulate the
certificates targeted for revocation and the revoker's certificates. If no CL
module is specified, the TP module uses an assumed CL module, if required.

DBList
A list of handle pairs specifying a DL module and a data store managed by
that module. These data stores can be used to store or retrieve objects (such as
certificate and CRLs) related to the subject certificate and revoker's certificate.
If no DL and DB handle pairs are specified, the TP module can use an
assumed DL module and an assumed data store, if required.

196 z/OS OCSF Application Programming

OldCrl
A pointer to the CSSM_DATA structure containing an existing CRL. If this
input is NULL, a new list is created.

Return Value

A pointer to the CSSM_DATA structure containing the updated CRL. If the pointer
is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

CSSM_TP_CertSign
Purpose

This function signs a certificate and enforces a specific signing policy, such as
X.509, or another standard that the TP module supports.

Format
CSSM_DATA_PTR CSSMAPI CSSM_TP_CertSign

(CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR CertToBeSigned,
const CSSM_CERTGROUP_PTR SignerCertGroup,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

Parameters

Input

TPHandle
The handle that describes the TP module used to perform this function.

CCHandle
The handle that describes the context for a cryptographic operation. The
cryptographic context specifies the handle of the CSP that must be used to
perform the operation.

CertToBeSigned
A pointer to the CSSM_DATA structure containing a certificate to be signed.

SignerCertGroup
A pointer to the CSSM_CERTGROUP structure containing one or more related
certificates used to sign the certificate.

ScopeSize
The number of entries in the sign scope list. If the signing scope is not
specified, the input parameter value for scope size must be zero.

Input/optional

CLHandle
The handle that describes the CL module that can be used to manipulate the
certificate to be signed. If no CL module is specified, the TP module uses an
assumed CL module, if required.

DBList
&tab;A list of handle pairs specifying a DL module and a data store managed
by that module. These data stores can be used to store, retrieve objects (such as
certificate and CRLs) related to the signer's certificate, or a data store for

Chapter 14. Trust Policy Services API 197

storing a resulting signed CRL. If no DL and DB handle pairs are specified, the
TP module can use an assumed DL module and an assumed data store, if
required.

SignScope
A pointer to the CSSM_FIELD array containing the tags of the certificate fields
to be included in the signing process. If the signing scope is null, the TP
Module must assume a default scope (portions of the certificate to be hashed)
when performing the signing process.

Return Value

A pointer to a CSSM_DATA structure containing the signed certificate. If the
pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error
code.

CSSM_TP_CrlSign
Purpose

This function signs a CRL. The TP module determines whether the signer's
certificate is trusted to sign the CRL. If trust is satisfied, then the TP module has
the option to carry out the service or to return a permission status without
performing the service. This allows the library to support external as well as
internal CRL service models. In either model, once a CRL is signed, revocation
records can no longer be added to that CRL. To do so, would break the integrity of
the signature resulting in a non-verifiable, rejected CRL.

Format
CSSM_DATA_PTR CSSMAPI CSSM_TP_CrlSign

(CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR CrlToBeSigned,
const CSSM_CERTGROUP_PTR SignerCertGroup,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

Parameters

Input

TPHandle
The handle that describes the TP module used to perform this function.

CCHandle
The handle that describes the context for a cryptographic operation. The
cryptographic context specifies the handle of the CSP and other cryptographic
parameters that must be used to perform the operation.

CrlToBeSigned
A pointer to the CSSM_DATA structure containing a CRL to be signed.

SignerCertGroup
A pointer to the CSSM_CERTGROUP structure containing one or more related
certificates used to sign the CRL.

ScopeSize
The number of entries in the sign scope list. If the signing scope is not
specified, the input parameter value for scope size must be zero.

198 z/OS OCSF Application Programming

Input/optional

CLHandle
The handle that describes the CL module that can be used to manipulate the
certificates to be signed. If no CL module is specified, the TP module uses an
assumed CL module, if required.

DBList
A list of handle pairs specifying a DL module and a data store managed by
that module. These data stores can be used to store and retrieve objects (such
as certificate and CRLs) related to the signer's certificate, or be a data store for
storing a resulting signed CRL. If no DL and DB handle pairs are specified, the
TP module can use an assumed DL module and an assumed data store, if
required.

SignScope
A pointer to the CSSM_FIELD array containing the tags of the CRL fields to be
included in the signing process. If the signing scope is null, the TP Module
must assume a default scope (portions of the CRL to be hashed) when
performing the signing process.

Return Value

A pointer to the CSSM_DATA structure containing the signed CRL. If the pointer is
NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

CSSM_TP_CrlVerify
Purpose

This function determines whether the CRL is trusted. The conditions for trust are
part of the TP module. It can include conditions such as validity of the signer's
certificate, verification of the signature on the CRL, the identity of the signer, the
identity of the sender of the CRL, the date the CRL was issued, the effective dates
on the CRL, etc.

Format
CSSM_BOOL CSSMAPI CSSM_TP_CrlVerify

(CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CSP_HANDLE CSPHandle,
const CSSM_DL_DB_LIST_PTR DBList,
const CSSM_DATA_PTR CrlToBeVerified,
const CSSM_CERTGROUP_PTR SignerCertGroup,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

Parameters

Input

TPHandle
The handle that describes the TP module used to perform this function.

CrlToBeVerified
A pointer to the CSSM_DATA structure containing a signed CRL to be verified.

SignerCertGroup
A pointer to the CSSM_CERTGROUP structure containing one or more related
certificates used to sign the CRL.

Chapter 14. Trust Policy Services API 199

ScopeSize
The number of entries in the verify scope list. If the verification scope is not
specified, the input parameter value for scope size must be zero.

Input/optional

CLHandle
The handle that describes the CL module that can be used to manipulate the
certificates to be verified. If no CL module is specified, the TP module uses an
assumed CL module, if required.

CSPHandle
The handle referencing a CSP to be used to verify signatures on the signer's
certificate and on the CRL. The TP module is responsible for creating the
cryptographic context structure required to perform the verification operation.
If no CSP is specified, the TP module uses an assumed CSP to perform the
operations.

DBList
&tab;A list of handle pairs specifying a DL module and a data store managed
by that module. These data stores can be used to store or retrieve objects (such
as certificate and CRLs) related to the signer's certificate. If no DL and DB
handle pairs are specified, the TP module can use an assumed DL module and
an assumed data store, if required.

VerifyScope
A pointer to the CSSM_FIELD array indicating the CRL fields to be included in
the CRL signature verification process. A null input verifies the signature
assuming the module's default sets of fields were used in the signing process
(this can include all fields in the CRL).

Return Value

A CSSM_TRUE return value signifies that the CRL can be trusted. When
CSSM_FALSE is returned, an error has occurred. Use CSSM_GetError to obtain the
error code.

Group Functions
This describes the interfaces for the group functions.

CSSM_TP_CertGoupConstruct
Purpose

This function constructs an ordered certificate group using the certificates in
CertGroupFrag as a starting point. There is no implied ordering for the certificates
in CertGroupFrag except that the certificate in position 0 of the certificate group is
assumed to the starting point for constructing the remaining certificate group. An
ordering relationship may be defined and recorded in the certificates themselves or
assumed by the TP model.

The certificate group is augmented by adding semantically related certificates
obtained by searching the certificate data stores specified in DBList. For example, if
the certificate model is a hierarchical model of certificate chains, the leaf certificate
in the chain is a CertGroup fragment and the complete certificate chain, including
the root certificate, is the anticipated result of the construction operation.

200 z/OS OCSF Application Programming

Format
CSSM_CERTGROUP_PTR CSSMAPI CSSM_TP_CertGroupConstruct

(CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CSP_HANDLE CSPHandle,
CSSM_CERTGROUP_PTR CertGroupFrag,
CSSM_DL_DB_LIST_PTR DBList)

Parameters

Input

TPHandle
The handle to the TP module to perform this operation.

CSPHandle
The handle to the CSP that can be used for verification of certificate chains
while constructing the certificate group.

CertGroupFrag
A list of certificates that form a possibly incomplete set of certificates. This set
is used as the base set for constructing a complete certificate group.

DBList
A list of handle pairs specifying a DL module and a data store managed by
that module. These data stores should contain certificates (and possibly other
security objects). The data stores should be searched to complete construction
of a semantically related certificate group.

Input/optional

CLHandle
The handle to the CL module that can be used to manipulate and parse values
stored in the certgroup certificates. If no CL module is specified, the TP
module uses an assumed CL module.

Return Value

A list of certificates that form a complete certificate group based on the original
subset of certificates and the certificate data stores. A NULL list indicates an error.

Related Information

CSSM_TP_CertGroupPrune
CSSM_TP_CertGroupVerify

CSSM_TP_CertGroupPrune
Purpose

This function removes certificates from a certificate group. The prune operation can
remove those certificates that have been signed by any local certificate authority, as
it is possible that these certificates will not be meaningful on other systems.

This operation also can remove additional certificates that can be added to the
certificate group again using the CSSM_CertGroupConstruct function. The pruned
certificate group should be suitable for transmission to external hosts, which can in
turn reconstruct and verify the certificate group.

Chapter 14. Trust Policy Services API 201

The DBList parameter specifies a set of data stores containing certificates that
should be pruned from the group.

Format
CSSM_CERTGROUP_PTRCSSMAPI CSSM_TP_CertGroupPrune

(CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_CERTGROUP_PTR OrderedCertGroup,
CSSM_DL_DB_LIST_PTR DBList)

Parameters

Input

TPHandle
The handle to the TP module to perform this operation.

OrderedCertGroup
The initial, complete set of certificates from which certificates will be
selectively removed.

DBList
A list of handle pairs specifying a DL module and a data store managed by
that module. These data stores should contain certificates (and possibly other
security objects also). The data stores are searched for certificates semantically
related to those in the certificate group to determine whether they should be
removed from the certificate group.

Input/optional

CLHandle
The handle to the CL module that can be used to manipulate and parse the
certgroup certificates and the certificates in the specified data stores. If no CL
module is specified, the TP module uses an assumed CL module.

Return Value

Returns a certificate group containing those certificates which are verifiable
credentials outside of the local system. If the list is NULL, an error has occurred.

Related Information

CSSM_TP_CertGroupConstruct
CSSM_TP_CertGroupVerify

CSSM_TP_CertGroupVerify
Purpose

This function verifies the signatures on each certificate in the group. Each
certificate in the group has an associated signing certificate that was used to sign
the subject certificate. Determination of the associated signing certificate is implied
by the certificate model. For example, when verifying an X.509 certificate chain, the
signing certificate for a certificate C is known to be the certificate of the issuers of
certificate C. In a multisignature, web of trust model, the signing certificates can be
any certificates in the CertGroup or unknown certificates.

Signature verification is performed on the VerifyScope fields for all certificates in the
CertGroup. Additional validation tests can be performed on the certificates in the
group depending on the certificate model supported by the TP. For example,

202 z/OS OCSF Application Programming

certificate expiration dates can be checked and appropriate CRLs can be searched
as part of the verification process.

Format
CSSM_BOOL CSSMAPI CSSM_TP_CertGroupVerify

(CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_DB_LIST_PTR DBList,
CSSM_CSP_HANDLE CSPHandle,
const CSSM_FIELD_PTR PolicyIdentifiers,
uint32 NumberofPolicyIdentifiers,
CSSM_TP_STOP_ON VerificationAbortOn,
const CSSM_CERTGROUP_PTR CertToBeVerified,
const CSSM_DATA_PTR AnchorCerts,
uint32 NumberofAnchorCerts,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize,
CSSM_TP_ACTION Action,
const CSSM_DATA_PTR Data,
CSSM_DATA_PTR *Evidence,
uint32 *EvidenceSize)

Parameters

Input

TPHandle
The handle to the TP module to perform this operation.

NumberofPolicyIdentifiers
The number of policy identifiers provided in the PolicyIdentifiers parameter.

NumberofAnchorCerts
The number of anchor certificates provided in the AnchorCerts parameter.

CertToBeVerified
A pointer to the CSSM_CERTGROUP structure containing a certificate
containing at least one signature for verification. An unsigned certificate
template cannot be verified.

ScopeSize
The number of entries in the verify scope list. If the verification scope is not
specified, the input scope size must be zero.

Output

EvidenceSize
The number of entries in the Evidence list. The returned value is zero if no
evidence is produced. Evidence may be produced even when verification fails.
This evidence can describe why and how the operation failed to verify the
subject certificate.

Chapter 14. Trust Policy Services API 203

Input/optional

CLHandle
The handle to the CL module that can be used to manipulate and parse the
certgroup certificates and the certificates in the specified data stores. If no CL
module is specified, the TP module uses an assumed CL module.

DBList
A list of handle pairs specifying a DL module and a data store managed by
that module. These data stores should contain zero or more trusted certificates.
If no data stores are specified, the TP module can assume a default data store,
if required.

CSPHandle
The handle of a CSP that can be used for verification of the certificate chain.

PolicyIdentifiers
The policy identifier is an object identifier (OID)/value pair. The CSSM_OID
structure contains the name of the policy and the value is an optional
caller-specified input value for the TP module to use when applying the policy.

VerificationAbortOn
When a TP module verifies multiple conditions or multiple policies, the TP
module can allow the caller to specify when to abort the verification process. If
supported by the TP module, this selection can effect the evidence returned by
the TP module to the caller. The default stopping condition is to stop
evaluation according to the policy defined in the TP Module. The specifiable
stopping conditions and their meaning are defined in Table 38.

Table 38. Specifiable Stopping Conditions

CSSM_TP_STOP_ON Definitions

CSSM_STOP_ON_POLICY Stop verification whenever the policy dictates it.

CSSM_STOP_ON_NONE Stop verification only after all conditions have been
tested (ignoring the pass-fail status of each condition).

CSSM_STOP_ON_FIRST_PASS Stop verification on the first condition that passes.

CSSM_STOP_ON_FIRST_FAL Stop verification on the first condition that fails.

The TP module may ignore the caller's specified stopping condition and revert
to the default of stopping according to the policy embedded in the module.

AnchorCerts
A pointer to the CSSM_DATA structure containing one or more certificates to
be used in order to validate the subject certificate. These certificates can be root
certificates, cross-certified certificates, and certificates belonging to locally
designated sources of trust.

VerifyScope
A pointer to the CSSM_FIELD array containing the OID indicators specifying
the certificate fields to be used in the verification process. If VerifyScope is not
specified, the TP Module must assume a default scope (portions of each
certificate) when performing the verification process.

Action
An application-specific and application-defined action to be performed under
the authority of the input certificate. If no action is specified, the TP module
defines a default action and performs verification assuming that action is being
requested. Note that it is possible that a TP module verifies certificates for only
one action.

204 z/OS OCSF Application Programming

Data
&tab;A pointer to the CSSM_DATA structure containing the application-specific
data or a reference to the application-specific data upon which the requested
action should be performed. If no data is specified, the TP module defines one
or more default data objects upon which the action or default action would be
performed.

Evidence
A pointer to a list of CSSM_DATA objects containing an audit trail of evidence
constructed by the TP module during the verification process. Typically, this is
a list of certificates and CRLs that were used to establish the validity of the
CertToBeVerified, but other objects may be appropriate for other types of TPs.

Return Value

CSSM_TRUE if the certificate group verified. CSSM_FALSE if the certificate did not
verify or an error condition occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_TP_CertGroupConstruct
CSSM_TP_CertGroupPrune

Extensibility Functions
This describes the trust policy extensibility functions.

CSSM_TP_PassThrough
Purpose

This function allows applications to call TP module-specific operations that have
been exported. Such operations may include queries or services specific to the
domain represented by the TP module.

Format
void * CSSMAPI CSSM_TP_PassThrough

(CSSM_TP_HANDLE TPHandle,
CSSM_CL_HANDLE CLHandle,
CSSM_DL_HANDLE DLHandle,
CSSM_DB_HANDLE DBHandle,
CSSM_CC_HANDLE CCHandle,
uint32 PassThroughId,
const void *InputParams)

Parameters

Input

TPHandle
The handle that describes the TP module used to perform this function.

PassThroughId
An identifier assigned by the TP module to indicate the exported function to
perform.

Output

Chapter 14. Trust Policy Services API 205

InputParms
A pointer to a module, implementation-specific structure containing parameters
to be interpreted in a function-specific manner by the requested TP module.

Input/optional

CLHandle
The handle that describes the DL module that can be used to store or retrieve
objects (such as certificate and CRLs) related to the subject certificate and
anchor certificates. If no DL module is specified, the TP module uses an
assumed DL module, if required.

DLHandle
The handle that describes the DL module that can be used to store or retrieve
objects (such as certificate and CRLs) related to the subject certificate and
anchor certificates. If no DL module is specified, the TP module uses an
assumed DL module, if required.

DBHandle
The handle that describes the data store that can be accessed to store or
retrieve objects (such as certificate and CRLs) related to the subject certificate
and anchor certificates. If no data store is specified, the TP module uses an
assumed data store, if required.

CCHandle
The handle that describes the context for a cryptographic operation. The
cryptographic context specifies the handle of the CSP that must be used to
perform the operation. If no cryptographic context is specified, the TP module
uses an assumed context, if required.

Return Value

A pointer to a module, implementation-specific structure containing the output
from the passthrough function. The output data must be interpreted by the calling
application based on externally available information. If the pointer is NULL, an
error has occurred.

206 z/OS OCSF Application Programming

Chapter 15. Certificate Library Services API

The primary purpose of a Certificate Library (CL) module is to perform syntactic
operations on a specific certificate format and its associated Certificate Revocation
List (CRL) format. This encapsulation allows applications and TP modules to focus
on the usage of certificates rather than the mechanics of format manipulation.

The syntactic operations on certificates include field management operations and
cryptographic operations. Field management operations allow an application to
input fields into a certificate and retrieve fields from a certificate without
knowledge of the certificate's content organization or encoding format.
Cryptographic operations on certificates encode the proper fields of a certificate in
the proper order prior to executing certificate signing and verification.

The syntactic operations on CRLs mirror the operations on their corresponding
certificate format. CRL field management operations allow the insertion and
retrieval of CRL fields, including addition and removal of certificates from the
revocation list. The CL module manages the translation from the certificate to be
revoked to its representation in the CRL. The CL module also properly encodes the
necessary fields of a CRL prior to signing and verification.

Each CL module may implement some or all of these functions on certificates and
CRLs. The available functions are registered with OCSF when the module is
attached. Each CL module should be accompanied with information specifying
supported functions, nonsupported functions, and module-specific passthrough
functions. It is the responsibility of the application developer to obtain and use this
information when developing applications using a selected CL module.

A CL module's functionality may be partitioned, as appropriate, between the local
client and a remote server. For example, a CL module may redirect the
CSSM_CL_CertSign function to a Certificate Authority (CA) server application, but
perform the CSSM_CL_CertGetKeyInfo function as a local operation.

CL modules manipulate memory-based objects only. The persistence of certificates,
CRLs, and other security-related objects is an independent property of these
objects. It is the responsibility of the application and/or the TP module to use data
storage modules to make objects persistent (if appropriate).

Data Structures
This describes the data structures that may be passed to or returned from a CL
function. They will be used by applications to prepare data to be passed as input
parameters into OCSF API function calls that will be passed without modification
to the appropriate CL module. The CL module is then responsible for interpreting
them and returning the appropriate data structure to the calling application via
OCSF. These data structures are defined in the header file, cssmtype.h, which is
distributed with OCSF.

Note: Some application interfaces use data structures defined by other OCSF
services. Those data structures are defined with those particular OCSF services.

© Copyright IBM Corp. 1999, 2013 207

CSSM_CA_SERVICES
This bit-mask defines the additional certificate-creation-related services that an
issuing CA can offer. Such services include (but are not limited to) archiving the
certificate and keypair, publishing the certificate to one or more certificate directory
services, and sending automatic, out-of-band notifications of the need to renew a
certificate. A CA may offer any subset of these services. Additional services can be
defined over time.
typedef uint32 CSSM_CA_SERVICES;

#define CSSM_CA_KEY_ARCHIVE 0x0001&tab; /* archive cert & keys */
#define CSSM_CA_CERT_PUBLISH 0x0002&tab; /* cert in directory service */
#define CSSM_CA_CERT_NOTIFY_RENEW&tab; 0x0004 /* notify at renewal time */
#define CSSM_CA_CRL_DISTRIBUTE 0x0008&tab; /* push CRL to everyone */

CSSM_CERT_ENCODING
This variable specifies the certificate-encoding format supported by a CL.
typedef enum cssm_cert_encoding {

CSSM_CERT_ENCODING_UNKNOWN = 0x00,
CSSM_CERT_ENCODING_CUSTOM = 0x01,
CSSM_CERT_ENCODING_BER = 0x02,
CSSM_CERT_ENCODING_DER = 0x03,
CSSM_CERT_ENCODING_NDR = 0x04,

} CSSM_CERT_ENCODING, *CSSM_CERT_ENCODING_PTR;

CSSM_CERTGROUP
This structure contains a set of certificates. It is assumed that the certificates are
related based on cosigning. The certificate group is a syntactic representation of a
trust model. All certificates in the group must be of the same type. Typically, the
certificates are related in some manner, but this is not required.
typedef struct cssm_certgroup {

uint32 NumCerts;
CSSM_DATA_PTR CertList;
void *reserved;

} CSSM_CERTGROUP, *CSSM_CERTGROUP_PTR;

Definitions:
NumCerts

Number of certificates in the group.
CertList

List of certificates.
Reserved

Reserved for future use.

CSSM_CERT_TYPE
This variable specifies the type of certificate format supported by a CL and the
types of certificates understood for import and export. They are expected to define
such well-known certificate formats as X.509 Version 3 and Simple Distributed
Security Infrastructure (SDSI) as well as custom certificate formats. The list of
enumerated values can be extended for new types by defining a label with an
associated value greater than CSSM_CL_CUSTOM_CERT_TYPE.
typedef uint32 CSSM_CERT_TYPE,*CSSM_CERT_TYPE_PTR;
/* bit masks for supported cert types */
#define CSSM_CERT_UNKNOWN 0x00000000
#define CSSM_CERT_X_509v1 0x00000001
#define CSSM_CERT_X_509v2 0x00000002
#define CSSM_CERT_X_509v3&tab; 0x00000004
#define CSSM_CERT_Fortezza&tab; 0x00000008
#define CSSM_CERT_PGP 0x00000010
#define CSSM_CERT_SPKI 0x00000020
#define CSSM_CERT_SDSIv1 0x00000040
#define CSSM_CERT_Intel 0x00000080

208 z/OS OCSF Application Programming

#define CSSM_CERT_ATTRIBUTE_BER 0x00000100
#define CSSM_CERT_X509_CRL 0x00000200
#define CSSM_CERT_LAST 0x00007fff

/* Applications wishing to define their own custom certificate
* type should create a random uint32 whose value is greater than
* the CSSM_CL_CUSTOM_CERT_TYPE */
#define CSSM_CL_CUSTOM_CERT_TYPE 0x08000

Chapter 15. Certificate Library Services API 209

CSSM_CL_CA_CERT_CLASSINFO
typedef struct cssm_cl_ca_cert_classinfo {

CSSM_STRING CertClassName;
CSSM_DATA CACert;

} CSSM_CL_CA_CERT_CLASSINFO, *CSSM_CL_CA_CERT_CLASSINFO_PTR;

Definitions:
CertClassName

Name of a certificate class issued by this certificate authority.
CACert

CA certificate for this cert class.

CSSM_CL_CA_PRODUCTINFO
This structure holds product information about a backend CA that is accessible to
the CL module. The CL module vendor is not required to provide this information,
but may choose to do so. For example, a CL module that implements upstream
protocols to a particular type of commercial CA can record information about that
CA service in this structure.
typedef struct cssm_cl_ca_productinfo {

CSSM_VERSION StandardVersion;
CSSM_STRING StandardDescription;
CSSM_VERSION ProductVersion;
CSSM_STRING ProductDescription;
CSSM_STRING ProductVendor;
CSSM_CERT_TYPE CertType;
CSSM_CA_SERVICES AdditionalServiceFlags;
uint32 NumberOfCertClasses;
CSSM_CL_CA_CERT_CLASSINFO_PTR CertClasses;

} CSSM_CL_CA_PRODUCTINFO, *CSSM_CL_CA_PRODUCTINFO_PTR;

Definitions:

StandardVersion
If this product conforms to an industry standard, this is the version
number of that standard.

StandardDescription
If this product conforms to an industry standard, this is a description of
that standard.

ProductVersion
Version number information for the actual product version used in this
version of the CL module.

ProductDescription
A string describing the product.

ProductVendor
The name of the product vendor.

CertType
An enumerated value specifying the certificate and CRL type that the CA
manages.

AdditionalServiceFlags
A bit-mask indicating the additional services a caller can request from a
CA (as side effects and in conjunction with other service requests).

NumberOfCertClasses
The number of classes or levels of certificates managed by this CA.

CertClasses
Names of the certificate classes issued by this CA

210 z/OS OCSF Application Programming

CSSM_CL_ENCODER_PRODUCTINFO
This structure holds product information about embedded products that a CL
module uses to provide its services. The CL module vendor is not required to
provide this information, but may choose to do so. For example, a CL module that
manipulates X.509 certificates may embed a third-party tool that parses, encodes,
and decodes those certificates. The CL module vendor can describe such embedded
products using this structure.
typedef struct cssm_cl_encoder_productinfo {

CSSM_VERSION StandardVersion;
CSSM_STRING StandardDescription;
CSSM_VERSION ProductVersion;
CSSM_STRING ProductDescription;
CSSM_STRING ProductVendor;
CSSM_CERT_TYPE CertType;
uint32 ProductFlags;

} CSSM_CL_ENCODER_PRODUCTINFO, *CSSM_CL_ENCODER_PRODUCTINFO_PTR;

Definitions:

StandardVersion
If this product conforms to an industry standard, this is the version
number of that standard.

StandardDescription
If this product conforms to an industry standard, this is a description of
that standard.

ProductVersion
Version number information for the actual product version used in this
version of the CL module.

ProductDescription
A string describing the product.

ProductVendor
The name of the product vendor.

CertType
An enumerated value specifying the certificate and CRL type that the CA
manages.

ProductFlags
A bit-mask indicating any selectable features of the embedded product that
the CL module selected for use.

CSSM_CL_HANDLE
The CSSM_CL_HANDLE is used to identify the association between an application
thread and an instance of a CL module. It is assigned when an application causes
OCSF to attach to a CL. It is freed when an application causes OCSF to detach
from a CL. The application uses the CSSM_CL_HANDLE with every CL function
call to identify the targeted CL. The CL module uses the CSSM_CL_HANDLE to
identify the appropriate application's memory management routines when
allocating memory on the application's behalf.
typedef uint32 CSSM_CL_HANDLE

CSSM_CLSUBSERVICE
Three structures are used to contain all of the static information that describes a CL
module: cssm_moduleinfo, cssm_serviceinfo, and cssm_clsubservice. This
descriptive information is securely stored in the OCSF registry when the CL
module is installed with OCSF. A CL module may implement multiple types of

Chapter 15. Certificate Library Services API 211

services and organize them as subservices. For example, a CL module supporting
X.509 encoded certificates may organize its implementation into three subservices:
one for X.509 Version 1, a second for X.509 Version 2, and a third for X.509 Version
3. Most CL modules will implement exactly one subservice.

The descriptive information stored in these structures can be queried using the
function CSSM_GetModuleInfo and specifying the CL module Globally Unique ID
(GUID).
typedef struct cssm_clsubservice {

uint32 SubServiceId;
CSSM_STRING Description;
CSSM_CERT_TYPE CertType;
CSSM_CERT_ENCODING CertEncoding;
CSSM_USER_AUTHENTICATION_MECHANISM AuthenticationMechanism;
uint32 NumberOfTemplateFields;
CSSM_OID_PTR CertTemplates;
uint32 NumberOfTranslationTypes;
CSSM_CERT_TYPE_PTR CertTranslationTypes;
CSSM_CL_WRAPPEDPRODUCT_INFO WrappedProduct;

} CSSM_CLSUBSERVICE, *CSSM_CLSUBSERVICE_PTR;

Definitions:

SubServiceId
A unique, identifying number for the subservice described in this structure.

Description
A string containing a description name or title for this subservice.

CertType
An identifier for the type of certificate. This parameter is also used to
determine the certificate data format.

CertEncoding
An identifier for the certificate encoding format.

AuthenticationMechanism
An enumerated value defining the credential format accepted by the CL
module. Authentication credential may be required when requesting
certificate creation or other CL functions. Presented credentials must be of
the required format.

NumberOfTemplateFields
The number of certificate fields. This number also indicates the length of
the CertTemplate array.

CertTemplates
A pointer to an array of tag/value pairs which identify the field values of
a certificate.

NumberOfTranslationTypes
The number of certificate types that this CL module can import and export.
This number also indicates the length of the CertTranslationTypes array.

CertTranslationTypes
&tab;A pointer to an array of certificate types. This array indicates the
certificate types that can be imported into and exported from this CL
module's native certificate type.

WrappedProduct
A data structure describing the embedded products and CA service used
by the CL module.

212 z/OS OCSF Application Programming

CSSM_CL_WRAPPEDPRODUCTINFO
This structure lists the set of embedded products and the CA service used by the
CL module to implement its services. The CL module is not required to provide
any of this information, but may choose to do so.
typedef struct cssm_cl_wrappedproductinfo {

CSSM_CL_ENCODER_PRODUCTINFO_PTR EmbeddedEncoderProducts;
uint32 NumberOfEncoderProducts;
CSSM_CL_CA_PRODUCTINFO_PTR AccessibleCAProducts;
uint32 NumberOfCAProducts;

} CSSM_CL_WRAPPEDPRODUCTINFO, *CSSM_CL_WRAPPEDPRODUCTINFO_PTR;

Definitions:

EmbeddedEncoderProducts
An array of structures that describe each embedded encoder product used
in this CL module implementation.

NumberOfEncoderProducts
A count of the number of distinct embedded certificate encoder products
used in the CL module implementation.

AccessibleCAProducts
An array of structures that describe each type of CA accessible through this
CL module implementation.

NumberOfCAProducts
A count of the number of distinct CA products described in the array
AccessibleCAProducts.

CSSM_FIELD
This structure contains the object identifier (OID)/value pair for any item that can
be identified by an OID. A CL module uses this structure to hold an OID/value
pair for a field in a certificate or CRL.
typedef struct cssm_field {

CSSM_OID FieldOid;
CSSM_DATA FieldValue;

}CSSM_FIELD, *CSSM_FIELD_PTR

Definitions:

FieldOid
The OID that identifies the certificate or CRL data type or data structure.

FieldValue
A CSSM_DATA type which contains the value of the specified OID in a
contiguous block of memory.

CSSM_OID
The OID is used to hold an identifier for the data types and data structures that
comprise the fields of a certificate or CRL. The underlying representation and
meaning of the identifier is defined by the CL module. For example, a CL module
can choose to represent its identifiers in any of these forms:
v A character string in a character set native to the platform
v A DER-encoded X.509 OID that must be parsed
v An S-expression that must be evaluated
v An enumerated value that is defined in header files supplied by the CL module.
typedef CSSM_DATA CSSM_OID, *CSSM_OID_PTR

Chapter 15. Certificate Library Services API 213

Certificate Operations
This describes the certificate operations interfaces for CL.

CSSM_CL_CertAbortQuery
Purpose

This function terminates the get operation initiated by
CSSM_CL_CertGetFirstFieldValue or CSSM_CL_GetNextFieldValue, and allows the
CL to release all intermediate state information associated with the query. This
function should be called even if all values retrieved by the call to
CSSM_CL_CertGetFirstFieldValue are obtained by repeated calls to
CSSM_CL_CertGetNextFieldValue.

Format
CSSM_RETURN CSSMAPI CSSM_CL_CertAbortQuery (CSSM_CL_HANDLE CLHandle,CSSM_HANDLE ResultsHandle)

Parameters

Input

ResultsHandle
The handle that identifies the results of a get field value request.

CLHandle
The handle that describes the CL module used to perform this function.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_CL_CertGetFirstFieldValue
CSSM_CL_CertGetNextFieldValue

CSSM_CL_CertCreateTemplate
Purpose

This function allocates and initializes memory for a certificate based on the input
OID/value pairs specified in the CertTemplate. The initialization process includes
encoding all certificate field values according to the format required by the
certificate representation. The function returns the initialized template containing
encoded values. The memory is allocated using the calling application's memory
management routines.

Format
CSSM_DATA_PTR CSSMAPI CSSM_CL_CertCreateTemplate

(CSSM_CL_HANDLE CLHandle,
const CSSM_FIELD_PTR CertTemplate,
uint32 NumberOfFields)

Parameters

Input

214 z/OS OCSF Application Programming

CLHandle
The handle that describes the CL module used to perform this function.

CertTemplate
A pointer to an array of OID/value pairs that identify the field values to
initialize a new certificate.

NumberOfFields
The number of certificate field values specified in the CertTemplate.

Return Value

A pointer to the CSSM_DATA structure containing the unsigned certificate
template. If the return pointer is NULL, an error has occurred. Use CSSM_GetError
to obtain the error code.

Related Information

CSSM_CL_CertRequest
CSSM_CL_CertGetFirstFieldValue

CSSM_CL_CertDescribeFormat
Purpose

This function returns a list of the object identifiers used to describe the certificate
format supported by the specified CL.

Format
CSSM_OID_PTR CSSMAPI CSSM_CL_CertDescribeFormat (CSSM_CL_HANDLE CLHandle, uint32 *NumberOfFields)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

Output

NumberOfFields
The length of the returned array of OIDs.

Return Value

A pointer to the array of CSSM_OIDs that represent the supported certificate
format. If the pointer is NULL, an error has occurred. Use CSSM_GetError to
obtain the error code.

Related Information

CSSM_CL_CertGetAllFields
CSSM_CL_CertGetFirstFieldValue
CSSM_CL_CertGetNextFieldValue
CSSM_CL_CertAbortQuery
CSSM_CL_CertGetKeyInfo

Chapter 15. Certificate Library Services API 215

CSSM_CL_CertExport
Purpose

This function exports a certificate from the native format of the specified CL into
the specified target certificate format. The set of TargetCertTypes supported for
export varies with the CL module. See the information provided by the module
vendor for a list of target certificate formats.

Format
CSSM_DATA_PTR CSSMAPI CSSM_CL_CertExport

(CSSM_CL_HANDLE CLHandle,
CSSM_CERT_TYPE TargetCertType,
const CSSM_DATA_PTR NativeCert)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

TargetCertType
A unique value which identifies the target type of the certificate being
exported.

NativeCert
A pointer to the CSSM_DATA structure containing the certificate to be
exported.

Return Value

A pointer to the CSSM_DATA structure containing the target-type certificate
exported from the native certificate. If the pointer is NULL, an error has occurred.
Use CSSM_GetError to obtain the error code.

Related Information

CSSM_CL_CertImport

CSSM_CL_CertGetAllFields
Purpose

This function returns a list of the values stored in the input certificate.

Format
CSSM_FIELD_PTR CSSMAPI CSSM_CL_CertGetAllFields

(CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
uint32 *NumberOfFields)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

216 z/OS OCSF Application Programming

Cert
A pointer to the CSSM_DATA structure containing the certificate whose fields
will be returned.

Output

NumberOfFields
The length of the returned array of fields.

Return Value

A pointer to an array of CSSM_FIELD structures that contain the values of all of
the fields of the input certificate. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Related Information

CSSM_CL_CertGetFirstFieldValue
CSSM_CL_CertDescribeFormat
CSSM_CL_CertView

CSSM_CL_CertGetFirstFieldValue
Purpose

This function returns the value of the designated certificate field. If more than one
field matches the CertField OID, the first matching field will be returned. The
number of matching fields is an output parameter, as is the ResultsHandle to be
used to retrieve the remaining matching fields.

Format
CSSM_DATA_PTR CSSMAPI CSSM_CL_CertGetFirstFieldValue

(CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
const CSSM_OID_PTR CertField,
CSSM_HANDLE_PTR ResultsHandle,
uint32 *NumberOfMatchedFields)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

Cert
A pointer to the CSSM_DATA structure containing the certificate.

CertField
A pointer to an OID that identifies the field value to be extracted from the
Cert.

Output

ResultsHandle
A pointer to the CSSM_HANDLE that should be used to obtain any additional
matching fields.

NumberOfMatchedFields
The number of fields that match the CertField OID.

Chapter 15. Certificate Library Services API 217

Return Value

A pointer to the CSSM_DATA structure containing the value of the requested field.
If the pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the
error code.

Related Information

CSSM_CL_CertGetNextFieldValue
CSSM_CL_CertAbortQuery
CSSM_CL_CertGetAllFields

CSSM_CL_CertGetKeyInfo
Purpose

This function returns the public key and integral information about the key from
the specified certificate. The key structure returned is a compound object. It can be
used in any function requiring a key, such as creating a cryptographic context.

Format
CSSM_KEY_PTR CSSMAPI CSSM_CL_CertGetKeyInfo (CSSM_CL_HANDLE CLHandle,const CSSM_DATA_PTR Cert)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

Cert
A pointer to the CSSM_DATA structure containing the certificate from which to
extract the public key information.

Return Value

A pointer to the CSSM_KEY structure containing the public key and possibly other
key information. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Related Information

CSSM_CL_CertGetFirstFieldValue

CSSM_CL_CertGetNextFieldValue
Purpose

This function returns the value of a certificate field, when that field occurs multiple
times in a certificate. Certificates with repeated fields (such as multiple signatures)
have multiple field values corresponding to a single OID. A call to the function
CSSM_CL_CertGetFirstFieldValue initiates the process and returns a results handle
identifying the certificate from which values are being obtained and the OID
corresponding to those values. The CSSM_CL_CertGetNextFieldValue function can
be called repeatedly to obtain these values one at a time.

Format
CSSM_DATA_PTR CSSMAPI CSSM_CL_CertGetNextFieldValue (CSSM_CL_HANDLE CLHandle, CSSM_HANDLE ResultsHandle)

218 z/OS OCSF Application Programming

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

ResultsHandle
The handle that identifies the results of a certificate query.

Return Value

A pointer to the CSSM_DATA structure containing the value of the requested field.
If the pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the
error code.

Related Information

CSSM_CL_CertGetFirstFieldValue
CSSM_CL_CertAbortQuery

CSSM_CL_CertImport
Purpose

This function imports a certificate from the specified foreign format into the native
format of the specified CL. The set of ForeignCertTypes supported for import
varies with the CL module. See the information provided by the module vendor
for a list of supported foreign certificate formats.

Format
CSSM_DATA_PTR CSSMAPI CSSM_CL_CertImport

(CSSM_CL_HANDLE CLHandle,
CSSM_CERT_TYPE ForeignCertType,
const CSSM_DATA_PTR ForeignCert)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

ForeignCertType
A unique value that identifies the type of the certificate being imported.

ForeignCert
A pointer to the CSSM_DATA structure containing the certificate to be
imported into the CL modules native certificate type.

Return Value

A pointer to the CSSM_DATA structure containing the native-type certificate
imported from the foreign certificate. If the pointer is NULL, an error has occurred.
Use CSSM_GetError to obtain the error code.

Related Information

CSSM_CL_CertExport

Chapter 15. Certificate Library Services API 219

CSSM_CL_CertSign
Purpose

This function creates a signed certificate by signing the fields of the input
certificate as indicated by the SignScope array.

Format
CSSM_DATA_PTR CSSMAPI CSSM_CL_CertSign

(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR CertToBeSigned,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

CCHandle
The handle that describes the context of this cryptographic operation.

CertToBeSigned
The DER-encoded certificate to be signed.

SignerCert
A pointer to the CSSM_DATA structure containing the certificate to be used to
sign the subject certificate.

SignScope
A pointer to the CSSM_FIELD array containing the tag/value pairs of the
fields to be signed. A null input signs all the fields in the certificate.

ScopeSize
The number of entries in the sign scope list.

Return Value

A pointer to the CSSM_DATA structure containing the signed certificate. If the
pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error
code.

Related Information

CSSM_CL_CertVerify

CSSM_CL_CertVerify
Purpose

This function verifies that the signed certificate has not been altered since it was
signed by the designated signer. Only one signature is verified by this function. If
the certificate to be verified includes multiple signatures, this function must be
applied once for each signature to be verified. This function verifies a digital
signature over the certificate fields specified by VerifyScope. If the verification scope
fields are not specified, the function performs verification using a preselected set of
fields in the certificate.

220 z/OS OCSF Application Programming

Format
CSSM_BOOL CSSMAPI CSSM_CL_CertVerify

(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR CertToBeVerified,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

CCHandle
The handle that describes the context of this cryptographic operation.

CertToBeVerified
A pointer to the CSSM_DATA structure containing a certificate containing at
least one signature for verification. An unsigned certificate template cannot be
verified.

SignerSize
A pointer to the CSSM_DATA structure containing the certificate used to sign
the subject certificate.

ScopeSize
The number of entries in the verify scope list. If the verification scope is not
specified, the input value for scope size must be zero.

Input/optional

VerifyScope
A pointer to the CSSM_FIELD array containing the tag/value pairs of the
fields to be used in verifying the signature (i.e., the fields that were used to
calculate the signature). If the verify scope is null, the CL module assumes that
its default set of certificate fields were used to calculate the signature and those
same fields are used in the verification process.

Return Value

CSSM_TRUE if the certificate signature verified. CSSM_FALSE if the certificate
signature did not verify or an error condition occurred. Use CSSM_GetError to
obtain the error code.

Related Information

CSSM_CL_CertSign

Certificate Revocation List Operations
This describes the certification revocation list operation interfaces for CL.

CSSM_CL_CRLAbortQuery
Purpose

This function terminates the query initiated by CSSM_CL_CrlGetFirstFieldValue or
CSSM_CL_CrlGetNextFieldValue and allows the CL to release all intermediate state

Chapter 15. Certificate Library Services API 221

information associated with the get operation.

Format
CSSM_RETURN CSSMAPI CSSM_CL_CrlAbortQuery (CSSM_CL_HANDLE CLHandle, CSSM_HANDLE ResultsHandle)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

ResultsHandle
The handle that identifies the results of a CRL query.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_CL_CrlGetFirstFieldValue
CSSM_CL_CrlGetNextFieldValue

CSSM_CL_CrlAddCert
Purpose

This function revokes the input certificate by adding a record representing the
certificate to the CRL. The values for the new entry in the CRL are specified by the
list of OID/value input pairs. The reason for revocation is a typical value specified
in the list. The revoker's certificate is used to sign the new CRL entry. The
operation is valid only if the CRL has not been closed by the process of signing the
CRL (i.e., execution of the function CSSM_CL_CrlSign). Once the CRL has been
signed, entries can not be added or removed.

Format
CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlAddCert

(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR RevokerCert,
const CSSM_FIELD_PTR CrlEntryFields,
uint32 NumberOfFields,
const CSSM_DATA_PTR OldCrl)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

CCHandle
The handle that describes the context of this cryptographic operation.

Cert
A pointer to the CSSM_DATA structure containing the certificate to be revoked.

222 z/OS OCSF Application Programming

RevokerCert
&tab;A pointer to the CSSM_DATA structure containing the revoker's
certificate.

CrlEntryFields
An array of OID/value pairs specifying the initial values for descriptive data
fields of the new CRL entry.

NumberOfFields
The number of OID/value pairs specified in the CrlEntryFields input
parameter.

OldCrl
&tab;A pointer to the CSSM_DATA structure containing the CRL to which the
newly revoked certificate will be added.

Return Value

A pointer to the CSSM_DATA structure containing the updated CRL. If the pointer
is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_CL_CrlRemoveCert

CSSM_CL_CrlCreateTemplate
Purpose

This function creates an unsigned, memory-resident CRL. Fields in the CRL are
initialized with the descriptive data specified by the OID/value input pairs. The
specified OID/value pairs can initialize all or a subset of the general attribute
fields in the new CRL. Subsequent values may be set using the
CSSM_CL_CrlSetFieldValues operation. The new CRL contains no revocation
records.

Format
CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlCreateTemplate

(CSSM_CL_HANDLE CLHandle,
const CSSM_FIELD_PTR CrlTemplate,
uint32 NumberOfFields)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

CrlTemplate
An array of OID/value pairs specifying the initial values for descriptive data
fields of the new CRL.

NumberOfFields
The number of OID/value pairs specified in the CrlTemplate input parameter.

Return Value

A pointer to the CSSM_DATA structure containing the new CRL. If the pointer is
NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

Chapter 15. Certificate Library Services API 223

CSSM_CL_CrlDescribeFormat
Purpose

This function returns a list of the object identifiers used to describe the CRL format
supported by the specified CL.

Format
CSSM_OID_PTR CSSMAPI CSSM_CL_CrlDescribeFormat (CSSM_CL_HANDLE CLHandle,uint32 *NumberOfFields)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

Output

NumberOfFields
The length of the returned array of OIDs.

Return Value

A pointer to the array of CSSM_OIDs which represent the supported CRL format.
If the pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the
error code.

CSSM_CL_CrlGetFirstFieldValue
Purpose

This function returns the value of the designated CRL field. If more than one field
matches the CrlField OID, the first matching field will be returned. The number of
matching fields, NumberOfMatchedFields, is an output parameter, as is the
ResultsHandle to be used to retrieve the remaining matching fields.

Format
CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlGetFirstFieldValue

(CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Crl,
const CSSM_OID_PTR CrlField,
CSSM_HANDLE_PTR ResultsHandle,
uint32 *NumberOfMatchedFields)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

Crl
&tab;A pointer to the CSSM_DATA structure which contains the CRL from
which the first revocation record is to be retrieved.

CrlField
An OID that identifies the field value to be extracted from the Crl.

Output

224 z/OS OCSF Application Programming

ResultsHandle
A pointer to the CSSM_HANDLE that should be used to obtain any additional
matching fields.

NumberOfMatchedFields
The number of fields that match the CrlField OID.

Return Value

Returns a pointer to a CSSM_DATA structure containing the first field that
matched the CrlField. If the pointer is NULL, an error has occurred. Use
CSSM_GetError to obtain the error code.

Related Information

CSSM_CL_CrlGetNextFieldValue
CSSM_CL_CrlAbortQuery

CSSM_CL_CrlGetNextFieldValue
Purpose

This function returns the value of a CRL field, when that field occurs multiple
times in a CRL. A CRL with repeated fields has multiple field values
corresponding to a single OID. A call to the function
CSSM_CL_CrlGetFirstFieldValue initiates the process and returns a results handle
identifying the CRL from which values are being obtained and the OID
corresponding to those values. The CSSM_CL_CrlGetNextFieldValue function can
be called repeatedly to obtain these values one at a time.

Format
CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlGetNextFieldValue (CSSM_CL_HANDLE CLHandle, CSSM_HANDLE ResultsHandle)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

ResultsHandle
The handle that identifies the results of a CRL query.

Return Value

Returns a pointer to a CSSM_DATA structure containing the next field in the CRL
that matched the CrlField specified in the CL_CrlGetFirstFieldValue function. If the
pointer is NULL, an error has occurred. Use CSSM_GetError to obtain the error
code.

Related Information

CSSM_CL_CrlGetFirstFieldValue
CSSM_CL_CrlAbortQuery

Chapter 15. Certificate Library Services API 225

CSSM_CL_CrlRemoveCert
Purpose

This function reinstates a certificate by removing it from the specified CRL. The
operation is valid only if the CRL has not been closed by the process of signing the
CRL using the function CSSM_CL_CrlSign. Once the CRL has been signed, entries
can not be added or removed.

Format
CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlRemoveCert

(CSSM_CL_HANDLE CLHandle,
const CSSM_DATA_PTR Cert,
const CSSM_DATA_PTR OldCrl)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

Cert
A pointer to the CSSM_DATA structure containing the certificate to be
reinstated.

OldCrl
A pointer to the CSSM_DATA structure containing the CRL from which the
certificate is to be removed.

Return Value

A pointer to the CSSM_DATA structure containing the updated CRL. If the pointer
is NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_CL_CrlAddCert

CSSM_CL_CrlSetFields
Purpose

This function will set the fields of the input CRL to the new values, specified by
the input OID/value pairs. If there is more than one possible instance of an OID
(e.g., as in an extension or CRL record), then a NEW field with the specified value
is added to the CRL.

Format
CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlSetFields

(CSSM_CL_HANDLE CLHandle,
const CSSM_FIELD_PTR CrlTemplate,
uint32 NumberOfFields,
const CSSM_DATA_PTR OldCrl)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

226 z/OS OCSF Application Programming

CrlHandle
Any array of field OID/value pairs containing the values to initialize the CRL
attribute fields.

NumberOfFields
The number of OID/value pairs specified in the CrlTemplate input parameter.

OldCrl
The CRL to be updated with the new attribute values. The CRL must be
unsigned and available for update.

Return Value

A pointer to the modified, unsigned CRL. If the pointer is NULL, an error has
occurred. Use CSSM_GetError to obtain the error code.

CSSM_CL_CrlSign
Purpose

This function signs the fields of the CRL indicated in the SignScope parameter, in
accordance with the specified cryptographic context. Once the CRL has been
signed it may not be modified. This means that entries cannot be added or
removed from the CRL through application of the CSSM_CL_CrlAddCert or
CSSM_CL_CrlRemoveCert operations. A signed CRL can be verified, applied to a
data store, and searched for values.

Format
CSSM_DATA_PTR CSSMAPI CSSM_CL_CrlSign

(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR UnsignedCrl,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR SignScope,
uint32 ScopeSize)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

CCHandle
The handle that describes the context of this cryptographic operation.

UnsignedCrl
A pointer to the CSSM_DATA structure containing the CRL to be signed.

SignerCert
A pointer to the CSSM_DATA structure containing the certificate to be used to
sign the CRL.

ScopeSize
The number of entries in the sign scope list. If the signing scope is not
specified, the input scope size must be zero.

Input/optional

SignScope
A pointer to the CSSM_FIELD array containing the tag/value pairs of the

Chapter 15. Certificate Library Services API 227

fields to be signed. If the signing scope is NULL, the CL module includes a
default set of CRL fields in the signing process.

Return Value

A pointer to the CSSM_DATA structure containing the signed CRL. If the pointer is
NULL, an error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_CL_CrlVerify

CSSM_CL_CrlVerify
Purpose

This function verifies that the signed CRL has not been altered since it was signed
by the designated signer. It does this by verifying the digital signature over the
fields specified by the VerifyScope parameter.

Format
CSSM_BOOL CSSMAPI CSSM_CL_CrlVerify

(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
const CSSM_DATA_PTR CrlToBeVerified,
const CSSM_DATA_PTR SignerCert,
const CSSM_FIELD_PTR VerifyScope,
uint32 ScopeSize)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

CCHandle
The handle that describes the context of this cryptographic operation.

CrlToBeVerified
A pointer to the CSSM_DATA structure containing the CRL to be verified.

SignerCert
A pointer to the CSSM_DATA structure containing the certificate used to sign
the CRL.

ScopeSize
The number of entries in the verify scope list. If the verification scope is not
specified, the input value for scope size must be zero.

Input/optional

VerifyScope
A pointer to the CSSM_FIELD array containing the tag/value pairs of the
fields to be verified. If the verification scope is NULL, the CL module assumes
that a default set of fields were used in the signing process, and those same
fields are used in the verification process.

228 z/OS OCSF Application Programming

Return Value

A CSSM_TRUE return value signifies that the CRL verifies successfully. When
CSSM_FALSE is returned, either the CRL verified unsuccessfully or an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_CL_CrlSign

CSSM_CL_IsCertInCrl
Purpose

This function searches the CRL for a record corresponding to the certificate. The
CRL itself may be signed or unsigned. Each entry within the CRL is signed by the
revoker's certificate, hence an unsigned list can be validly searched for individually
signed CRL entries.

Format
CSSM_BOOL CSSMAPI CSSM_CL_IsCertInCrl (CSSM_CL_HANDLE CLHandle,const CSSM_DATA_PTR Cert,

const CSSM_DATA_PTR Crl)

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

Cert
A pointer to the CSSM_DATA structure containing the certificate to be located.

Crl
A pointer to the CSSM_DATA structure containing the CRL to be searched.

Return Value

A CSSM_TRUE return value signifies that the certificate is in the CRL. When
CSSM_FALSE is returned, either the certificate is not in the CRL or an error has
occurred. Use CSSM_GetError to obtain the error code.

Extensibility Functions
This describes the extensibility function interface for CL.

CSSM_CL_PassThrough
Purpose

This function allows applications to call CL module-specific operations. Such
operations may include queries or services that are specific to the domain
represented by the CL module.

Format
void * CSSMAPI CSSM_CL_PassThrough

(CSSM_CL_HANDLE CLHandle,
CSSM_CC_HANDLE CCHandle,
uint32 PassThroughId,
const void *InputParams)

Chapter 15. Certificate Library Services API 229

Parameters

Input

CLHandle
The handle that describes the CL module used to perform this function.

PassThroughId
An identifier assigned by the CL module to indicate the exported function to
perform.

InputParams
A pointer to a module, implementation-specific structures containing
parameters to be interpreted in a function-specific manner by the requested CL
module. This parameter can be used as a pointer to an array of CSSM_DATA
structures.

Input/optional

CCHandle
The handle that describes the context of the cryptographic operation. If the
module-specific operation does not perform any cryptographic operations a
cryptographic context is not required.

Return Value

A pointer to a module, implementation-specific structure containing the output
from the passthrough function. The output data must be interpreted by the calling
application based on externally available information. If the pointer is NULL, an
error has occurred. Use CSSM_GetError to obtain the error code.

230 z/OS OCSF Application Programming

Chapter 16. Data Storage Library Services API

The primary purpose of a Data Storage Library (DL) module is to provide
persistent storage of security-related objects including certificates, Certificate
Revocation Lists (CRLs), keys, and policy objects. A DL module is responsible for
the creation and accessibility of one or more data stores. A single DL module can
be tightly tied to a Certificate Library (CL) and/or Trust Policy (TP) module, or
can be independent of all other module types. A single data store can contain a
single object type in one format, a single object type in multiple formats, or
multiple object types. The persistent repository can be local or remote; for example,
a DL can provide client access to a remote directory/storage service.

OCSF stores and manages meta-information about a DL in the OCSF registry. This
information describes the storage and retrieval capabilities of a DL. Applications
can query the OCSF registry to obtain information about the available DLs and
attach to a DL that provides the needed services. Some DL services can acquire
and store meta-information about each of the data stores it manages. When this
information is available it is stored in the OCSF registry. Not all DL service
providers can supply this information.

The DL APIs define a data storage model that can be implemented using a custom
storage device, a traditional local or remote file system service, a Database
Management System (DBMS) package, or a complete (local or remote) information
management system. The abstract data model defined by the DL APIs partitions all
values stored in a data record into two categories: one or more mutable attributes
and one opaque data object. The attribute values can be directly manipulated by
the application and the DL module. Values stored within the opaque data object
must be accessed using parsing functions. For example, a DL that stores certificates
cannot interpret the format of those certificates. A set of parsing functions such as
those defined in a CL module can be used to parse the opaque certificate object.
The DL module defines a default set of parsing functions. An application can
define a OCSF module to be used for parsing or can define its own set of parsing
functions to be used during a data storage session.

Data Structures
This describes the DL data structures.

Note: Some application interfaces use data structures defined by other OCSF
services. Those data structures are defined with those particular OCSF services.

CSSM_DB_ACCESS_TYPE
This structure indicates a user's desired level of access to a data store.
typedef struct cssm_db_access_type {

CSSM_BOOL ReadAccess;
CSSM_BOOL WriteAccess;
CSSM_BOOL PrivilegedMode; /* versus user mode */
CSSM_BOOL Asynchronous; /* versus synchronous */

} CSSM_DB_ACCESS_TYPE, *CSSM_DB_ACCESS_TYPE_PTR;

Definitions:
ReadAccess

A Boolean indicating that the user requests read access.

© Copyright IBM Corp. 1999, 2013 231

WriteAccess
A Boolean indicating that the user requests write access.

PrivilegedMode
A Boolean indicating that the user requests privileged operations.

Asynchronous
A Boolean indicating that the user requests asynchronous access.

232 z/OS OCSF Application Programming

CSSM_DB_ATTRIBUTE_DATA
This data structure holds an attribute value that can be stored in an attribute field
of a persistent record. The structure contains a value for the data item and a
reference to the meta-information (typing information and schema information)
associated with the attribute.
typedef struct cssm_db_attribute_data {

CSSM_DB_ATTRIBUTE_INFO Info;
CSSM_DATA Value;

} CSSM_DB_ATTRIBUTE_DATA, *CSSM_DB_ATTRIBUTE_DATA_PTR;

Definitions:

Info A reference to the meta-information/schema describing this attribute in
relationship to the data store at large.

Value The data-present value assigned to the attribute.

CSSM_DB_ATTRIBUTE_INFO
This data structure describes an attribute of a persistent record. The description is
part of the schema information describing the structure of records in a data store.
The description includes the format of the attribute name and the attribute name
itself. The attribute name implies the underlying data type of a value that may be
assigned to that attribute.
typedef struct cssm_db_attribute_info {

CSSM_DB_ATTRIBUTE_NAME_FORMAT AttributeNameFormat;
union {

char * AttributeName; /* eg. "record label" */
CSSM_OID AttributeID; /* eg. CSSMOID_RECORDLABEL */
uint32 AttributeNumber;

#ifndef _MVS_
};

#else
/* Use the CDSA Version 2.0 definition instead of the anonymous union of

the Version 1.x spec which unfortunately is not ANSI-C compatible. */

} Label;
#endif
} CSSM_DB_ATTRIBUTE_INFO, *CSSM_DB_ATTRIBUTE_INFO_PTR;

Definitions:
AttributeNameFormat

Indicates which of the three formats was selected to represent the attribute
name.

AttributeName
A character string representation of the attribute name.

AttributeID
A DER-encoded Object Identifier (OID) representation of the attribute
name.

AttributeNumber
A numeric representation of the attribute name.

CSSM_DB_ATTRIBUTE_NAME_FORMAT
This enumerated list defines three formats used to represent an attribute name. The
name can be represented by a character string in the native string encoding of the
platform, by a number, or the name can be represented by an opaque OID
structure that is interpreted by the DL module.
typedef enum cssm_db_attribute_name_format {

CSSM_DB_ATTRIBUTE_NAME_AS_STRING = 0,
CSSM_DB_ATTRIBUTE_NAME_AS_OID = 1,
CSSM_DB_ATTRIBUTE_NAME_AS_NUMBER = 2

} CSSM_DB_ATTRIBUTE_NAME_FORMAT,*CSSM_DB_ATTRIBUTE_NAME_FORMAT_PTR;

Chapter 16. Data Storage Library Services API 233

CSSM_DB_CERTRECORD_SEMANTICS
These bit-masks define a list of usage semantics for how certificates may be used.
It is anticipated that additional sets of bit-masks will be defined listing the usage
semantics of how other record types can be used, such as CRL record semantics,
key record semantics, policy record semantics, etc.
#define CSSM_DB_CERT_USE_ROOT 0x00000001 /* a self-signed root cert */
#define CSSM_DB_CERT_USE_TRUSTED 0x00000002 /* re-issued locally */
#define CSSM_DB_CERT_USE_SYSTEM 0x00000004 /* contains CSSM system cert */
#define CSSM_DB_CERT_USE_OWNER 0x00000008 /* private key is owned by the
system’s user */
#define CSSM_DB_CERT_USE_REVOKED 0x00000010 /* revoked cert - used w\ CRL APIs */
#define CSSM_DB_CERT_SIGNING 0x00000011 /* use cert for signing only */
#define CSSM_DB_CERT_PRIVACY 0x00000012 /* use cert for encryption only */

CSSM_DB_CONJUNCTIVE
These are the conjunctive operations that can be used when specifying a selection
criterion.
typedef enum cssm_db_conjunctive{

CSSM_DB_NONE = 0,
CSSM_DB_AND = 1,
CSSM_DB_OR = 2

} CSSM_DB_CONJUNCTIVE, *CSSM_DB_CONJUNCTIVE_PTR;

CSSM_DB_HANDLE
A unique identifier for an open data store.
typedef uint32 CSSM_DB_HANDLE/* Data Store Handle */

CSSM_DB_INDEXED_DATA_LOCATION
This enumerated list defines where within a record the indexed data values reside.
Indexes can be constructed on attributes or on fields within the opaque object in
the record. CSSM_DB_INDEX_ON_UNKNOWN indicates that the logical location
of the index value between these two categories is unknown.
typedef enum cssm_db_indexed_data_location {

CSSM_DB_INDEX_ON_UNKNOWN = 0,
CSSM_DB_INDEX_ON_ATTRIBUTE = 1,
CSSM_DB_INDEX_ON_RECORD = 2

} CSSM_DB_INDEXED_DATA_LOCATION;

CSSM_DB_INDEX_INFO
This structure contains the meta-information or schema description of an index
defined on an attribute. The description includes the type of index (e.g., unique
key or nonunique key), the logical location of the indexed attribute in the OCSF
record (e.g., an attribute, a field within the opaque object in the record, or
unknown), and the meta-information on the attribute itself.
typedef struct cssm_db_index_info {

CSSM_DB_INDEX_TYPE IndexType;
CSSM_DB_INDEXED_DATA_LOCATION IndexedDataLocation;
CSSM_DB_ATTRIBUTE_INFO Info;

} CSSM_DB_INDEX_INFO, *CSSM_DB_INDEX_INFO_PTR;

Definitions:
IndexType

A CSSM_DB_INDEX_TYPE.
IndexedDataLocation

A CSSM_DB_INDEXED_DATA_LOCATION.
Info The meta-information description of the attribute being indexed.

234 z/OS OCSF Application Programming

CSSM_DB_INDEX_TYPE
This enumerated list defines two types of indexes: indexes with unique values (i.e.,
primary database keys) and indexes with nonunique values. These values are used
when creating a new data store and defining the schema for that data store.
typedef enum cssm_db_index_type {

CSSM_DB_INDEX_UNIQUE = 0,
CSSM_DB_INDEX_NONUNIQUE = 1

} CSSM_DB_INDEX_TYPE;

CSSM_DBINFO
This structure contains the meta-information about an entire data store. The
description includes the types of records stored in the data store, the attribute
schema for each record type, the index schema for all indexes over records in the
data store, the type of authentication mechanism used to gain access to the data
store, and other miscellaneous information used by the DL module to manage the
data store in a secure manner.
typedef struct cssm_dbInfo {

uint32 NumberOfRecordTypes;
CSSM_DB_PARSING_MODULE_INFO_PTR DefaultParsingModules;
CSSM_DB_RECORD_ATTRIBUTE_INFO_PTR RecordAttributeNames;
CSSM_DB_RECORD_INDEX_INFO_PTR RecordIndexes;

/* access restrictions for opening this data store */
CSSM_USER_AUTHENTICATION_MECHANISM AuthenticationMechanism;

/* transparent integrity checking options for this data store */
CSSM_BOOL RecordSigningImplemented;
CSSM_DATA SigningCertificate;
CSSM_GUID SigningCsp;
/* additional information */
CSSM_BOOL IsLocal;
char *AccessPath; /* URL, dir path, etc */
void *Reserved;

} CSSM_DBINFO, *CSSM_DBINFO_PTR;

Definitions:

NumberOfRecordTypes
The number of distinct record types stored in this data store.

DefaultParsingModules
A pointer to a list of (record-type, Globally Unique ID (GUID)) pairs which
define the default parsing module for each record type.

RecordAttributeNames
The meta-information (schema) about the attributes associated with each
record type that can be stored in this data store.

RecordIndexes
The meta-information (schema) about the indexes that are defined over
each of the record types that can be stored in this data store.

AuthenticationMechanism
Defines the authentication mechanism required when accessing this data
store.

RecordSigningImplemented
A flag indicating whether or not the DL module provides record integrity
service based on digital signaturing of the data store records.

SigningCertificate
The certificate used to sign data store records when the transparent record
integrity option is in effect.

Chapter 16. Data Storage Library Services API 235

SigningCsp
The GUID for the Cryptographic Service Provider (CSP) to be used to sign
data store records when the transparent record integrity option is in effect.

IsLocal Indicates whether the physical data store is local.

AccessPath
A character string describing the access path to the data store, such as a
Uniform Resource Locator (URL), a file system pathname, a remote
directory service name, etc.

Reserved
Reserved for future use.

CSSM_DB_OPERATOR
These are the logical operators that can be used when specifying a selection
predicate.
typedef enum cssm_db_operator {

CSSM_DB_EQUAL = 0,
CSSM_DB_NOT_EQUAL = 1,
CSSM_DB_APPROX_EQUAL = 2,
CSSM_DB_LESS_THAN = 3,
CSSM_DB_GREATER_THAN = 4,
CSSM_DB_EQUALS_INITIAL_SUBSTRING = 5,
CSSM_DB_EQUALS_ANY_SUBSTRING = 6,
CSSM_DB_EQUALS_FINAL_SUBSTRING = 7,
CSSM_DB_EXISTS = 8

} CSSM_DB_OPERATOR, *CSSM_DB_OPERATOR_PTR;

CSSM_DB_PARSING_MODULE_INFO
This structure aggregates the GUID of a default parsing module with the record
type that it parses. A parsing module can parse multiple record types. The same
GUID would be repeated with each record type parsed by the module.
typedef struct cssm_db_parsing_module_info {

CSSM_DB_RECORDTYPERecordType;
CSSM_GUIDModule;

} CSSM_DB_PARSING_MODULE_INFO, *CSSM_DB_PARSING_MODULE_INFO_PTR;

Definitions:
RecordType

The type of record parsed by the module specified by GUID.
Module

A GUID identifying the default parsing module for the specified record
type.

CSSM_DB_RECORD_ATTRIBUTE_DATA
This structure aggregates the actual data values for all of the attributes in a single
record.
typedef struct cssm_db_record_attribute_data {

CSSM_DB_RECORDTYPE DataRecordType;
uint32 SemanticInformation;
uint32 NumberOfAttributes;
CSSM_DB_ATTRIBUTE_DATA_PTR AttributeData;

} CSSM_DB_RECORD_ATTRIBUTE_DATA, *CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR;

Definitions:

DataRecordType
A CSSM_DB_RECORDTYPE.

SemanticInformation
A bit-mask of type CSSM_XXXRECORD_SEMANTICS defining how the

236 z/OS OCSF Application Programming

record can be used. Currently, these bit-masks are defined only for
certificate records (CSSM_CERTRECORD_SEMANTICS). For all other
record types, a bit-mask of zero must be used or a set of semantically
meaningful masks must be defined.

NumberOfAttributes
The number of attributes in the record of the specified type.

AttributeData
A list of attribute name/value pairs.

CSSM_DB_RECORD_ATTRIBUTE_INFO
This structure contains the meta-information or schema information about all of
the attributes in a particular record type. The description specifies the record type,
the number of attributes in the record type, and a type information for each
attribute.
typedef struct cssm_db_record_attribute_info {

CSSM_DB_RECORDTYPE DataRecordType;
uint32 NumberOfAttributes;
CSSM_DB_ATTRIBUTE_INFO_PTR AttributeInfo;

} CSSM_DB_RECORD_ATTRIBUTE_INFO, *CSSM_DB_RECORD_ATTRIBUTE_INFO_PTR;

Definitions:
DataRecordType

A CSSM_DB_RECORDTYPE.
NumberOfAttributes

The number of attributes in a record of the specified type.
AttributeInfo

A list of pointers to the type (schema) information for each of the
attributes.

CSSM_DB_RECORD_INDEX_INFO
This structure contains the meta-information or schema description of the set of
indexes defined on a single record type. The description includes the type of the
record, the number of indexes, and the meta-information describing each index.
typedef struct cssm_db_record_index_info {

CSSM_DB_RECORDTYPE DataRecordType;
uint32 NumberOfIndexes;
CSSM_DB_INDEX_INFO_PTR IndexInfo;

} CSSM_DB_RECORD_INDEX_INFO, *CSSM_DB_RECORD_INDEX_INFO_PTR;

Definitions:

DataRecordType
A CSSM_DB_RECORDTYPE.

NumberOfIndexes
The number of indexes defined on the records of the given type.

IndexInfo
An array of pointers to the meta-description of each index defined over the
specified record type.

CSSM_DB_RECORD_PARSING_FNTABLE
This structure defines the three prototypes for functions that can parse the opaque
data object stored in a record. It is used in the
CSSM_DbSetRecordParsingFunctions function to override the default parsing
module for a given record type. The DL module developer designates the default
parsing module for each record type stored in the data store.

Chapter 16. Data Storage Library Services API 237

typedef struct cssm_db_record_parsing_fntable {
CSSM_DATA_PTR (CSSMAPI *RecordGetFirstFieldValue)

(CSSM_HANDLE Handle,
CSSM_DB_RECORDTYPE RecordType,
const CSSM_DATA_PTR Data,
const CSSM_OID_PTR DataField,
CSSM_HANDLE_PTR ResultsHandle,
uint32 *NumberOfMatchedFields);

CSSM_DATA_PTR (CSSMAPI *RecordGetNextFieldValue)
(CSSM_HANDLE Handle,
CSSM_HANDLE ResultsHandle);

CSSM_RETURN (CSSMAPI *RecordAbortQuery)
(CSSM_HANDLE Handle,
CSSM_HANDLE ResultsHandle);

} CSSM_DB_RECORD_PARSING_FNTABLE, *CSSM_DB_RECORD_PARSING_FNTABLE_PTR;

Definitions:

*RecordGetFirstFieldValue
&tab;A function to retrieve the value of a field in the opaque object. The
field is specified by attribute name. The results handle holds the state
information required to retrieve subsequent values having the same
attribute name.

*RecordGetNextFieldValue
&tab;A function to retrieve subsequent values having the same attribute
name from a record parsed by the first function in this table.

*RecordAbortQuery
Stop subsequent retrieval of values having the same attribute name from
within the opaque object.

CSSM_DB_RECORDTYPE
This enumerated list defines the categories of persistent security-related objects that
can be managed by a DL module. These categories are in one-to-one
correspondence with types of records that can be managed by a DL module.
typedef enum cssm_db_recordtype {

CSSM_DL_DB_RECORD_GENERIC = 0,
CSSM_DL_DB_RECORD_CERT = 1,
CSSM_DL_DB_RECORD_CRL = 2,
CSSM_DL_DB_RECORD_PUBLIC_KEY = 3,
CSSM_DL_DB_RECORD_PRIVATE_KEY = 4,

CSSM_DL_DB_RECORD_SYMMETRIC_KEY = 5,
CSSM_DL_DB_RECORD_POLICY = 6,
CSSM_DS_DB_PKICA = 7,
CSSM_DL_DB_PKIUSER = 8,
CSSM_DL_DB_X_CERT_PAIR = 9,
CSSM_DL_DB_CRL_DISTRIBUTION_POINT = 10,
CSSM_DL_DB_AUTHORITY_REVOCATION_LIST = 11,
CSSM_DL_DB_DELTA_REVOCATION_LIST = 12

} CSSM_DB_RECORDTYPE;

CSSM_DB_UNIQUE_RECORD
This structure contains an index descriptor and a module-defined value. The index
descriptor may be used by the module to enhance the performance when locating
the record. The module-defined value must uniquely identify the record. For a
DBMS, this may be the record data. For a Public-Key Cryptographic Standard DL,
this may be an object handle. Alternately, the DL may have a module-specific
scheme for identifying data that has been inserted or retrieved.
typedef struct cssm_db_unique_record {

CSSM_DB_INDEX_INFO RecordLocator;
CSSM_DATA RecordIdentifier;

} CSSM_DB_UNIQUE_RECORD, *CSSM_DB_UNIQUE_RECORD_PTR;

Definitions:

238 z/OS OCSF Application Programming

RecordLocator
The information describing how to locate the record efficiently.

RecordIdentifier
A module-specific identifier which will allow the DL to locate this record.

CSSM_DL_DB_HANDLE
This data structure holds a pair of handles, one for a DL, and another for a data
store that is opened and being managed by the DL.
typedef struct cssm_dl_db_handle {

CSSM_DL_HANDLE DLHandle;
CSSM_DB_HANDLE DBHandle;

} CSSM_DL_DB_HANDLE, *CSSM_DL_DB_HANDLE_PTR;

Definitions:

DLHandle
Handle of an attached module that provides DL services.

DBHandle
Handle of an open data store that is currently under the management of
the DL module specified by the DLHandle.

CSSM_DL_DB_LIST
This data structure defines a list of handle pairs of (DL handle, data store handle).
typedef struct cssm_dl_db_list {

uint32 NumHandles;
CSSM_DL_DB_HANDLE_PTR DLDBHandle;

} CSSM_DL_DB_LIST, *CSSM_DL_DB_LIST_PTR;

Definitions:
NumHandles

Number of (DL handle, data store handle) pairs in the list.
DLDBHandle

List of (DL handle, data store handle) pairs.

CSSM_CUSTOM_ATTRIBUTES
This structure can be used by DL module developers to define a set of attributes
for a custom data store format.
typedef void *CSSM_DL_CUSTOM_ATTRIBUTES;

CSSM_DL_FFS_ATTRIBUTES
This structure can be used by DL module developers to define a set of attributes
for a flat file system data store format.
typedef void *CSSM_DL_FFS_ATTRIBUTES;

CSSM_DL_HANDLE
A unique identifier for an attached module that provides DL services.
typedef uint32 CSSM_DL_HANDLE/* Data Storage Library Handle */

CSSM_DL_LDAP_ATTRIBUTES
This structure can be used by DL module developers to define a set of attributes
for a Lightweight Directory Access Protocol (LDAP) data store format.
typedef void *CSSM_DL_LDAP_ATTRIBUTES;

Chapter 16. Data Storage Library Services API 239

CSSM_DL_ODBC_ATTRIBUTES
This structure can be used by DL module developers to define a set of attributes
for an Open Database Connectivity (ODBC) data store format.
typedef void *CSSM_DL_ODBC_ATTRIBUTES;

CSSM_DL_PKCS11_ATTRIBUTES
Each type of DL module can define its own set of type-specific attributes. This
structure contains the attributes that are specific to a data storage device.
typedef struct cssm_dl_pkcs11_attributes {

uint32 DeviceAccessFlags;
} *CSSM_DL_PKCS11_ATTRIBUTES;

Definitions:

DeviceAccessFlags
Specifies the access modes applicable for accessing persistent objects in a
data store.

CSSM_DLSUBSERVICE
Three structures are used to contain all of the static information that describes a
DL module: cssm_moduleinfo, cssm_serviceinfo, and cssm_dlsubservice. This
descriptive information is securely stored in the OCSF registry when the DL
module is installed with OCSF. A DL module may implement multiple types of
services and organize them as subservices. For example, a DL module supporting
two types of remote directory services may organize its implementation into two
subservices: one for an X.509 certificate directory and a second for custom
enterprise policy data store. Most DL modules will implement exactly one
subservice.

Not all DL modules can maintain a summary of managed data stores. In this case,
the DL module reports its number of data stores as
CSSM_DB_DATASTORES_UNKNOWN. Data stores can (and probably do) exist,
but the DL module cannot provide a list of them.
#define CSSM_DB_DATASTORES_UNKNOWN (-1)

The descriptive information stored in these structures can be queried using the
function CSSM_GetModuleInfo and specifying the DL module GUID.
typedef struct cssm_dlsubservice {

uint32 SubServiceId;
CSSM_STRING Description;
CSSM_DLTYPE Type;
union {

CSSM_DL_CUSTOM_ATTRIBUTES CustomAttributes;
CSSM_DL_LDAP_ATTRIBUTES LdapAttributes;
CSSM_DL_ODBC_ATTRIBUTES OdbcAttributes;
CSSM_DL_PKCS11_ATTRIBUTES Pkcs11Attributes;
CSSM_DL_FFS_ATTRIBUTES FfsAttributes;

} Attributes;

CSSM_DL_WRAPPEDPRODUCT_INFO WrappedProduct;
CSSM_USER_AUTHENTICATION_MECHANISM AuthenticationMechanism;

/* meta-information about the query support provided by the module */
uint32 NumberOfRelOperatorTypes;
CSSM_DB_OPERATOR_PTR RelOperatorTypes;
uint32 NumberOfConjOperatorTypes;
CSSM_DB_CONJUNCTIVE_PTR ConjOperatorTypes;
CSSM_BOOL QueryLimitsSupported;
/* meta-information about the encapsulated data stores (if known) */
uint32 NumberOfDataStores;
CSSM_NAME_LIST_PTR DataStoreNames;
CSSM_DBINFO_PTR DataStoreInfo;

240 z/OS OCSF Application Programming

/* additional information */
void *Reserved;

} CSSM_DLSUBSERVICE, *CSSM_DLSUBSERVICE_PTR;

Definitions:

SubServiceId
A unique, identifying number for the subservice described in this structure.

Description
A string containing a descriptive name or title for this subservice.

Type An identifier for the type of underlying data store the DL module uses to
provide persistent storage.

Attributes
A structure containing attributes that define additional parameter values
specific to the DL module type.

WrappedProduct
Pointer to a CSSM_DL_WRAPPEDPRODUCT_INFO structure describing a
product that is wrapped by the DL module.

AuthenticationMechanism
Defines the authentication mechanism required when using this DL
module. This authentication mechanism is distinct from the authentication
mechanism (specified in a cssm_dbInfo structure) required to access a
specific data store.

NumberOfRelOperatorTypes
The number of distinct relational operators the DL module accepts in
selection queries for retrieving records from its managed data stores.

RelOperatorTypes
The list of specific relational operators that can be used to formulate
selection predicates for queries on a data store. The list contains
NumberOfRelOperatorTypes operators.

NumberOfConjOperatorTypes
The number of distinct conjunctive operators the DL module accepts in
selection queries for retrieving records from its managed data stores.

ConjOperatorTypes
A list of specific conjunctive operators that can be used to formulate
selection predicates for queries on a data store. The list contains
NumberOfConjOperatorTypes operators.

QueryLimitsSupported
A Boolean indicating whether query limits are effective when the DL
module executes a query.

NumberOfDataStores
The number of data stores managed by the DL module. This information
may not be known by the DL module, in which case this value will equal
CSSM_DB_DATASTORES_UNKNOWN.

DataStoreNames
A list of names of the data stores managed by the DL module. This
information may not be known by the DL module and hence may not be
available. The list contains NumberOfDataStores entries.

DataStoreInfo
A list of pointers to the meta-information (schema) for each data store

Chapter 16. Data Storage Library Services API 241

managed by the DL module. This information may not be known in
advance by the DL module and hence may not be available through this
structure. The list contains NumberOfDataStores entries.

Reserved
Reserved for future use.

CSSM_DLTYPE
This enumerated list defines the types of underlying DBMSs that can be used by
the DL module to provide services. It is the option of the DL module to disclose
this information.
typedef enum cssm_dltype {

CSSM_DL_UNKNOWN = 0,
CSSM_DL_CUSTOM = 1,
CSSM_DL_LDAP = 2,
CSSM_DL_ODBC = 3,
CSSM_DL_PKCS11 = 4,
CSSM_DL_FFS = 5,/* flat file system or fast file system */
CSSM_DL_MEMORY = 6,
CSSM_DL_REMOTEDIR = 7

} CSSM_DLTYPE, *CSSM_DLTYPE_PTR;

CSSM_DL_WRAPPEDPRODUCTINFO
This structure lists the set of data store services used by the DL module to
implement its services. The DL module vendor is not required to provide this
information, but may choose to do so. For example, a DL module that uses a
commercial DBMS can record information about that product in this structure.
Another example is a DL module that supports certificate storage through an X.500
certificate directory server. The DL module can describe the X.500 directory service
in this structure.
typedef struct cssm_dl_wrappedproductinfo {

CSSM_VERSION StandardVersion;
CSSM_STRING StandardDescription;
CSSM_VERSION ProductVersion;
CSSM_STRING ProductDescription;
CSSM_STRING ProductVendor;
uint32 ProductFlags;

} CSSM_DL_WRAPPEDPRODUCT_INFO, *CSSM_DL_WRAPPEDPRODUCT_INFO_PTR;

Definitions:

StandardVersion
If this product conforms to an industry standard, this is the version
number of that standard.

StandardDescription
If this product conforms to an industry standard, this is a description of
that standard.

ProductVersion
Version number information for the actual product version used in this
version of the DL module.

ProductDescription
A string describing the product.

ProductVendor
The name of the product vendor.

ProductFlags
A bit-mask enumerating selectable features of the database service that the
DL module uses in its implementation.

242 z/OS OCSF Application Programming

CSSM_NAME_LIST
typedef struct cssm_name_list {

uint32 NumStrings;
char** String;

} CSSM_NAME_LIST, *CSSM_NAME_LIST_PTR;

CSSM_QUERY
This structure holds a complete specification of a query to select records from a
data store.
typedef struct cssm_query {

CSSM_DB_RECORDTYPE RecordType;
CSSM_DB_CONJUNCTIVE Conjunctive;
uint32 NumSelectionPredicates;
CSSM_SELECTION_PREDICATE_PTR SelectionPredicate;
CSSM_QUERY_LIMITS QueryLimits;
CSSM_QUERY_FLAGS QueryFlags;

} CSSM_QUERY, *CSSM_QUERY_PTR;

Definitions:

RecordType
Specifies the type of record to be retrieved from the data store.

Conjunctive
The conjunctive operator to be used in constructing the selection predicate
for the query.

NumSelectionPredicates
The number of selection predicates to be connected by the specified
conjunctive operator to form the query.

SelectionPredicate
The list of selection predicates to be combined by the conjunctive operator
to form the data store query.

QueryLimits
Defines the time and space limits for processing the selection query. The
constant values CSSM_QUERY_TIMELIMIT_NONE and
CSM_QUERY_SIZELIMIT_NONE should be used to specify no limit on the
resources used in processing the query.

QueryFlags
An integer that indicates the return format of the key data. This integer is
represented by CSSM_QUERY_RETURN_DATA. When
CSSM_QUERY_RETURN_DATA is 1, the key record is returned in
Common Data Security Architecture (CDSA) format. When
CSSM_QUERY_RETURN_DATA is 0, the information is returned in raw
format (a format native to the individual CSP, such as BSAFE or PKCS#11).

CSSM_QUERY_LIMITS
This structure defines the time and space limits a caller can set to control early
termination of the execution of a data store query. The constant values
CSSM_QUERY_TIMELIMIT_NONE and CSM_QUERY_SIZELIMIT_NONE should
be used to specify no limit on the resources used in processing the query. These
limits are advisory. Not all DL modules recognize and act upon the query limits set
by a caller.
#define CSSM_QUERY_TIMELIMIT_NONE 0
#define CSSM_QUERY_SIZELIMIT_NONE 0

Chapter 16. Data Storage Library Services API 243

typedef struct cssm_query_limits {
uint32 TimeLimit;
uint32 SizeLimit;

} CSSM_QUERY_LIMITS, *CSSM_QUERY_LIMITS_PTR;

Definitions:

TimeLimit
Defines the maximum number of seconds of resource time that should be
expended performing a query operation. The constant value
CSSM_QUERY_TIMELIMIT_NONE means no time limit is specified.

SizeLimit
Defines the maximum number of records that should be retrieved in
response to a single query. The constant value
CSSM_QUERY_SIZELIMIT_NONE means no space limit is specified.

CSSM_SELECTION_PREDICATE
This structure defines the selection predicate to be used for database queries.
typedef struct cssm_selection_predicate {

CSSM_DB_OPERATOR DbOperator;
CSSM_DB_ATTRIBUTE_DATA Attribute;

} CSSM_SELECTION_PREDICATE, *CSSM_SELECTION_PREDICATE_PTR;

Definitions:

DbOperator
The relational operator to be used when comparing a value to the values
stored in the specified attribute in the data store.

Attribute
The meta-information about the attribute to be searched and the attribute
value to be used for comparison with values in the data store.

Data Storage Functions
This describes the interfaces for the data storage functions.

CSSM_DL_Authenticate
Purpose

This function allows the caller to provide authentication credentials to the DL
module at a time other than data store creation, deletion, open, import, and export.
AccessRequest defines the type of access to be associated with the caller. If the
authentication credentials apply to access and use of a DL module in general, then
the data store handle specified in the DLDBHandle must be NULL. When the
authorization credentials are applied to a specific data store, the handle for that
data store must be specified in the DLDBHandle pair.

Format
CSSM_RETURN CSSMAPI CSSM_DL_Authenticate

(CSSM_DL_DB_HANDLE DLDBHandle,
const CSSM_DB_ACCESS_TYPE_PTR AccessRequest,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication)

Parameters

Input

244 z/OS OCSF Application Programming

DLDBHandle
The handle pair that describes the DL module used to perform this function
and the data store to which access is being requested. If the form of
authentication being requested is authentication to the DL module in general,
then the data store handle must be NULL.

AccessRequest
An indicator of the requested access mode for the data store or DL module in
general.

UserAuthentication
The caller's credential as required for obtaining authorized access to the data
store or to the DL module in general.

Return Value

A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the
error code.

CSSM_DL_DbClose
Purpose

This function closes an open data store.

Format
CSSM_RETURN CSSMAPI CSSM_DL_DbClose (CSSM_DL_DB_HANDLE DLDBHandle)

Parameters

Input

DLDBHandle
A handle structure containing the DL handle for the attached DL module and
the DB handle for an open data store managed by the DL. This specifies the
open data store to be closed.

Return Value

A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the
error code.

Related Information

CSSM_DL_DbOpen

CSSM_DL_DbCreate
Purpose

This function creates and opens a new data store. The name of the new data store
is specified by the input parameter DbName. The record schema for the data store
is specified in the DBInfo structure. The newly created data store is opened under
the specified access mode. If user authentication credentials are required, they must
be provided. Also, additional open parameters may be required and are supplied
in the OpenParameters.

Chapter 16. Data Storage Library Services API 245

Format
CSSM_DB_HANDLE CSSMAPI CSSM_DL_DbCreate

(CSSM_DL_HANDLE DLHandle,
const char *DbName,
const CSSM_DBINFO_PTR DBInfo,
const CSSM_DB_ACCESS_TYPE_PTR AccessRequest,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication,
const void *OpenParameters)

Parameters

Input

DLHandle
The handle that describes the DL module used to perform this function.

DbName
The general, external name for the new data store.

DBInfo
A pointer to a structure describing the format/schema of each record type that
will be stored in the new data store.

AccessRequest
An indicator of the requested access mode for the data store, such as read-only
or read/write.

Input/optional

UserAuthentication
&tab;The caller's credential as required for obtaining access to the data store. If
no credentials are required for the specified data store, then user authentication
must be NULL.

OpenParameters
A pointer to a module-specific set of parameters required to open the data
store.

Return Value

The handle the newly created and open data store. When NULL is returned, an
error has occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_DL_DbOpen
CSSM_DL_DbClose
CSSM_DL_DbDelete

CSSM_DL_DbDelete
Purpose

This function deletes all records from the specified data store and removes all state
information associated with that data store.

Format
CSSM_RETURN CSSMAPI CSSM_DL_DbDelete

(CSSM_DL_HANDLE DLHandle,
const char *DbName,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication)

246 z/OS OCSF Application Programming

Parameters

Input

DLHandle
The handle that describes the DL module to be used to perform this function.

DbName
A pointer to the string containing the logical name of the data store.

Input/optional

UserAuthentication
The caller's credentials as required for obtaining access (and consequently
deletion capability) to the data store. If no credentials are required for the
specified data store, then user authentication must be NULL.

Return Value

A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the
error code.

Related Information

CSSM_DL_DbCreate
CSSM_DL_DbOpen
CSSM_DL_DbClose

CSSM_DL_DbExport
Purpose

This function exports a copy of the data store records from the source data store to
a data container that can be used as the input data source for the
CSSM_DL_DbImport function. The DL module may require additional user
authentication to determine whether the user is authorized to create a copy of an
existing data store.

Format
CSSM_RETURN CSSMAPI CSSM_DL_DbExport

(CSSM_DL_HANDLE DLHandle,
const char *DbDestinationName,
const char *DbSourceName,
CSSM_BOOL InfoOnly,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication)

Parameters

Input

DLHandle
The handle that describes the DL module to be used to perform this function.

DbSourceName
The name of the data store from which the records are to be exported.

DbDestinationName
The name of the destination data container that will contain a copy of the
source data store's records.

Chapter 16. Data Storage Library Services API 247

InfoOnly
A Boolean value indicating what to export. If CSSM_TRUE, export only the
DBInfo, which describes the data store. If CSSM_FALSE, export both the
DBInfo and all of the records in the specified data store.

Input/optional

UserAuthentication
The caller's credentials as required for authorization to copy a data store. If the
DL module requires no additional credentials to perform this operation, then
user authentication can be NULL.

Return Value

A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the
error code.

Related Information

CSSM_DL_DbImport

CSSM_DL_DbGetRecordParsingFunctions
Purpose

This function gets the records parsing function table, which operates on records of
the specified type from the specified data store. Three record parsing functions can
be returned in the table. The functions can be implemented to parse multiple
record types. However, in order to parse multiple record types, multiple calls to
CSSM_DL_DbGetRecordParsingFunctions must be made, once for each record type
whose parsing functions are required by the caller. The DL module uses these
functions to parse the opaque data object stored in a data store record. If no
parsing function table has been set for a given record type, then a NULL value is
returned.

Format
CSSM_DB_RECORD_PARSING_FNTABLE_PTR CSSMAPI CSSM_DL_DbGetRecordParsingFunction

(CSSM_DL_HANDLE DLHandle,
const char* DbName,
CSSM_DB_RECORDTYPE RecordType)

Parameters

Input

DLHandle
The handle that describes the DL module to be used to perform this function.

DbName
The name of the data store with which the parsing functions are associated.

RecordType
The record type whose parsing functions are requested by the caller.

Return Value

A pointer to a function table for the parsing function appropriate to the specified
record type. When NULL is returned, either no function table has been set for the

248 z/OS OCSF Application Programming

specified record type or an error has occurred. Use CSSM_GetError to obtain the
error code and determine the reason for the NULL result.

Related Information

CSSM_DL_SetRecordParsingFunctions

CSSM_DL_DbImport
Purpose

This function creates a new data store, or adds to an existing data store, by
importing records from the specified data source. It is assumed that the data
source contains records exported from a data store using the function
CSSM_DL_DbExport.

The DbDestinationName parameter specifies the name of a new or existing data
store. If a new data store is being created, the DBInfo structure provides the
meta-information (schema) for the new data store. This structure describes the
record attributes and the index schema for the new data store. If the data store
already exists, then the existing meta-information (schema) is used. (Dynamic
schema evolution is not supported.)

Typically, user authentication is required to create a new data store or to write to
an existing data store. An authentication credential is presented to the DL module
in the form required by the module. (See the information provided with the DL
module for information on the required form.) The resulting data store is not
opened as a result of this operation.

Format
CSSM_RETURN CSSMAPI CSSM_DL_DbImport

(CSSM_DL_HANDLE DLHandle,
const char *DbDestinationName,
const char *DbSourceName,
const CSSM_DBINFO_PTR DBInfo,
CSSM_BOOL InfoOnly,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication)

Parameters

Input

DLHandle
The handle that describes the DL module to be used to perform this function.

DbDestinationName
The name of the destination data store into which the records will be inserted.

DbSourceName
The name of the data source from which to obtain the records that are added
to the data store.

InfoOnly
A Boolean value indicating what to import. If CSSM_TRUE, import only the
DBInfo, which describes the data store. If CSSM_FALSE, import both the
DBInfo and all of the records exported from a data store.

Input/optional

DBInfo
A data structure containing a detailed description of the meta-information

Chapter 16. Data Storage Library Services API 249

(schema) for the new data store. If a new data store is being created, then the
caller must specify the meta-information (schema), or the data source must
include the meta-information required for proper import of the records. If
meta-information is supplied by the caller and specified in the data source,
then the meta-information provided by the caller overrides the
meta-information recorded in the data source.

If the data store exists and records are being added, then this pointer must be
NULL. The existing meta-information will be used and the schema cannot be
evolved.

UserAuthentication
The caller's credential as required for authorization to create a data store. If the
DL module requires no additional credentials to create a new data store, then
user authentication can be NULL.

Return Value

A CSSM_OK return value signifies that the function completed successfully and
the new data store was created. When CSSM_FAIL is returned, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_DL_DbExport

CSSM_DL_DbOpen
Purpose

This function opens the data store with the specified logical name under the
specified access mode. If user authentication credentials are required, they must be
provided. Also, additional open parameters may be required to open a given data
store and are supplied in the OpenParameters.

Format
CSSM_DB_HANDLE CSSMAPI CSSM_DL_DbOpen

(CSSM_DL_HANDLE DLHandle,
const char *DbName,
const CSSM_DB_ACCESS_TYPE_PTR AccessRequest,
const CSSM_USER_AUTHENTICATION_PTR UserAuthentication,
const void *OpenParameters)

Parameters

Input

DLHandle
The handle that describes the DL module to be used to perform this function.

DbName
A pointer to the string containing the logical name of the data store.

AccessRequest
An indicator of the requested access mode for the data store, such as read-only
or read/write.

Input/optional

250 z/OS OCSF Application Programming

UserAuthentication
The caller's credentials as required for obtaining access to the data store. If no
credentials are required for the specified data store, then user authentication
must be NULL.

OpenParameters
A pointer to a module-specific set of parameters required to open the data
store.

Return Value

The handle to the opened data store. If the handle is NULL, an error has occurred.
Use CSSM_GetError to obtain the error code.

Related Information

CSSM_DL_DbClose

CSSM_DL_DbSetRecordParsingFunctions
Purpose

This function sets the record parsing function table, overriding the default parsing
module, for records of the specified type in the specified data store. Three record
parsing functions can be specified in the table. The functions can be implemented
to parse multiple record types. In this case, multiple calls to
CSSM_DL_DbSetRecordParsingFunctions must be made, once for each record type
that should be parsed using these functions. The DL module uses these functions
to parse the opaque data object stored in a data store record. If no parsing function
table has been set for a given record type, then the default parsing module is
invoked for that record type.

Format
CSSM_RETURN CSSMAPI CSSM_DL_DbSetRecordParsingFunctions

(CSSM_DL_HANDLE DLHandle,
const char* DbName,
CSSM_DB_RECORDTYPE RecordType,
const CSSM_DB_RECORD_PARSING_FNTABLE_PTR FunctionTable)

Parameters

Input

DLHandle
The handle that describes the DL module to be used to perform this function.

DbName
The name of the data store with which to associate the parsing functions.

RecordType
One of the record types parsed by the functions specified in the function table.

FunctionTable
The function table referencing the three parsing functions to be used with the
data store specified by DbName.

Chapter 16. Data Storage Library Services API 251

Return Value

A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the
error code.

Related Information

CSSM_DL_GetRecordParsingFunctions

CSSM_DL_GetDbNameFromHandle
Purpose

This function retrieves the data source name corresponding to an opened database
handle. A DL module is responsible for allocating the memory required for the list.

Format
char * CSSMAPI CSSM_DL_GetDbNameFromHandle (CSSM_DL_DB_HANDLE DLDBHandle)

Parameters

Input

DLDBHandle
The handle pair that describes the DL module used to perform this function
and the data store to which access is being requested. If the form of
authentication being requested is authentication to the DL module in general,
the data store handle must be NULL.

Return Value

Returns a string that contains a data store name. If the pointer is NULL, an error
has occurred. Use CSSM_GetError to obtain the error code.

Data Record Operations
This describes the interfaces for the data record operations.

CSSM_DL_AbortQuery
Purpose

This function terminates the query initiated by CSSM_DL_DataGetFirst or
CSSM_DL_DataGetNext, and allows a DL to release all intermediate state
information associated with the query.

Format
CSSM_RETURN CSSMAPI CSSM_DL_DataAbortQuery (CSSM_DL_DB_HANDLE DLDBHandle,CSSM_HANDLE ResultsHandle)

Parameters

Input

DLDBHandle
The handle pair that describes the DL module to be used to perform this
function and the open data store from which records were selected by the
initiating query.

252 z/OS OCSF Application Programming

ResultsHandle
The selection handle returned from the initial query function.

Return Value

CSSM_OK if the function was successful. CSSM_FAIL if an error condition
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_DL_DataGetFirst
CSSM_DL_DataGetNext

CSSM_DL_DataDelete
Purpose

This function removes from the specified data store, the data record specified by
UniqueRecordIdentifier.

Format
CSSM_RETURN CSSMAPI CSSM_DL_DataDelete

(CSSM_DL__DB_HANDLE DLDBHandle,
CSSM_DB_RECORDTYPE RecordType,
const CSSM_DB_UNIQUE_RECORD_PTR UniqueRecordIdentifier)

Parameters

Input

DLDBHandle
The handle pair that describes the DL module to be used to perform this
function and the open data store from which to delete the specified data
record.

UniqueRecordIdentifier
A pointer to a CSSM_DB_UNIQUE_RECORD identifier containing unique
identification of the data record to be deleted from the data store. The
identifier may be unique only among records of a given type. Once the
associated record has been deleted, this unique record identifier can not be
used in future references.

Input/optional

RecordType
An indicator of the type of record to be deleted from the data store. The
UniqueRecordIdentifier may be unique only among records of the same type. If
the data store contains only one record type, or the unique identifiers managed
are globally unique, then the record type need not be specified.

Return Value

A CSSM_OK return value signifies that the function completed successfully. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the
error code.

Related Information

CSSM_DL_DataInsert

Chapter 16. Data Storage Library Services API 253

CSSM_DL_DataGetFirst
Purpose

This function retrieves the first data record in the data store that matches the
selection criteria. The selection criteria (including selection predicate and
comparison values) is specified in the Query structure. The DL module can use
internally managed indexing structures to enhance the performance of the retrieval
operation. This function returns the first record that satisfies the query in the list of
Attributes and the opaque Data object. This function also returns a flag indicating
whether additional records also satisfied the query and a results handle to be used
when retrieving subsequent records. Finally, this function returns a unique record
identifier associated with the retrieved record. This structure can be used in future
references to the retrieved data record.

Format
CSSM_DB_UNIQUE_RECORD_PTR CSSMAPI CSSM_DL_DataGetFirst

(CSSM_DL_DB_HANDLE DLDBHandle,
const CSSM_QUERY_PTR Query,
CSSM_HANDLE_PTR ResultsHandle,
CSSM_BOOL*EndOfDataStore,
CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
CSSM_DATA_PTR Data)

Parameters

Input

DLDBHandle
The handle pair that describes the DL module to be used to perform this
function and the open data store to search for records satisfying the query.

Output

ResultsHandle
This handle should be used to retrieve subsequent records that satisfied this
query.

EndOfDataStore
A flag indicating whether a record satisfying this query was available to be
retrieved in the current operation. If CSSM_FALSE, then a record was available
and was retrieved unless an error condition occurred. If CSSM_TRUE, then all
records satisfying the query have been previously retrieved and no record has
been returned by this operation.

Attributes
&tab;A list of attributes values (and corresponding meta-information) from the
retrieved record.

Data
The opaque object stored in the retrieved record.

Input/optional

Query
The query structure specifying the selection predicates used to query the data
store. The structure contains meta-information about the search fields and the
relational and conjunctive operators forming the selection predicate. The
comparison values to be used in the search are specified in the Attributes and
Data parameter. If no query is specified, the DL module can return the first
record in the data store (i.e.,perform sequential retrieval) or return an error).

254 z/OS OCSF Application Programming

Return Value

If successful and EndOfDataStore is CSSM_FALSE, this function returns a pointer to
a CSSM_UNIQUE_RECORD structure containing a unique record locator and the
record. If the pointer is NULL and EndOfDataStore is CSSM_TRUE, then a normal
termination condition has occurred. If the pointer is NULL and EndOfDataStore is
CSSM_FALSE, then an error has occurred. Use CSSM_GetError to obtain the error
code.

Related Information

CSSM_DL_DataGetNext
CSSM_DL_DataAbortQuery

CSSM_DL_DataGetNext
Purpose

This function returns the next data record referenced by the ResultsHandle. The
ResultsHandle references a set of records selected by an invocation of the
CSSM_DL_DataGetFirst function.

The record values are returned in the Attributes and Data parameters. A flag
indicates whether additional records satisfying the original query remain to be
retrieved. The function also returns a unique record identifier for the return record.

Format
CSSM_DB_UNIQUE_RECORD_PTR CSSMAPI CSSM_DL_DataGetNext

(CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_HANDLE ResultsHandle,
CSSM_BOOL *EndOfDataStore,
CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
CSSM_DATA_PTR Data)

Parameters

Input

DLDBHandle
The handle pair that describes the DL module to be used to perform this
function and the open data store from which records were selected by the
initiating query.

Output

ResultsHandle
The handle identifying a set of records retrieved by a query executed by the
CSSM_DL_DataGetFirst function.

EndOfDataStore
A flag indicating whether a record satisfying this query was available to be
retrieved in the current operation. If CSSM_FALSE, then a record was available
and was retrieved unless an error condition occurred. If CSSM_TRUE, then all
records satisfying the query have been previously retrieved and no record has
been returned by this operation.

Attributes
A list of attributes values (and corresponding meta-information) from the
retrieved record.

Chapter 16. Data Storage Library Services API 255

Data
The opaque object stored in the retrieved record.

Return Value

If successful and EndOfDataStore is CSSM_FALSE, this function returns a pointer to
a CSSM_UNIQUE_RECORD structure containing a unique record locator and the
record. If the pointer is NULL and EndOfDataStore is CSSM_TRUE, then a normal
termination condition has occurred. If the pointer is NULL and EndOfDataStore is
CSSM_FALSE, then an error has occurred. Use CSSM_GetError to obtain the error
code.

Related Information

CSSM_DL_DataGetFirst
CSSM_DL_DataAbortQuery

CSSM_DL_DataInsert
Purpose

This function creates a new persistent data record of the specified type by inserting
it into the specified data store. The values contained in the new data record are
specified by the Attributes and the Data fields. The attribute value list contains zero
or more attribute values. The DL modules can assume default values for
unspecified attribute values or can return an error condition when required
attributes values are not specified by the caller. The Data is an opaque object to be
stored in the new data record.

Format
CSSM_DB_UNIQUE_RECORD_PTR CSSMAPI CSSM_DL_DataInsert

(CSSM_DL_DB_HANDLE DLDBHandle,
CSSM_DB_RECORDTYPE RecordType,
const CSSM_DB_RECORD_ATTRIBUTE_DATA_PTR Attributes,
const CSSM_DATA_PTR Data)

Parameters

Input

DLDBHandle
The handle pair that describes the DL module to be used to perform this
function and the open data store in which to insert the new data record.

RecordType
Indicates the type of data record being added to the data store.

Input/optional

Attributes
A list of structures containing the attribute values to be stored in that attribute
and the meta-information (schema) describing those attributes. The list
contains at most one entry per attribute in the specified record type. The DL
module can assume default values for those attributes that are not assigned
values by the caller or may return an error. If the specified record type does
not contain any attributes, this parameter must be NULL.

Data
A pointer to the CSSM_DATA structure that contains the opaque data object to

256 z/OS OCSF Application Programming

be stored in the new data record. If the specified record type does not contain
an opaque data object, this parameter must be NULL.

Return Value

A pointer to a CSSM_DB_UNIQUE_RECORD_POINTER containing a unique
identifier associated with the new record. This unique identifier structure can be
used in future references to this record. When NULL is returned, an error has
occurred. Use CSSM_GetError to obtain the error code.

Related Information

CSSM_DL_DataDelete

CSSM_DL_FreeUniqueRecord
Purpose

Frees the pointer to a CSSM_DB_UNIQUE_RECORD data structure. The record
itself and the data it contains is unchanged. To delete the record, call
CSSM_DL_DataDelete before invoking CSSM_DL_FreeUniqueRecord.

Format
CSSM_RETURN CSSMAPI CSSM_DL_FreeUniqueRecord(CSSM_DL_DB_HANDLEDLDBHandle,

CSSM_DB_UNIQUE_RECORD_PTR UniqueRecord)

Parameters

Input

DLDBHandle
The handle pair that describes the DL module to be used to perform this
&tab;function and the open data store in which to insert the new data record.

UniqueRecord
Pointer to a unique record.

Return Value

A CSSM_OK return value signifies that the unique record pointer was freed. When
CSSM_FAIL is returned, an error has occurred. Use CSSM_GetError to obtain the
error code.

Related Information

CSSM_DL_DataDelete
CSSM_DL_DataInsert
CSSM_DL_DataGetFirst
CSSM_DL_DataGetNext

Extensibility Functions
This describes the extensibility function for the data storage library.

Chapter 16. Data Storage Library Services API 257

CSSM_DL_PassThrough
Purpose

This function allows applications to call data storage library module-specific
operations that have been exported. Such operations may include queries or
services that are specific to the domain represented by a DL module.

Format
void * CSSMAPI CSSM_DL_PassThrough (CSSM_DL_DB_HANDLE DLDBHandle,uint32 PassThroughId,

const void *InputParams)

Parameters

Input

DLDBHandle
The handle pair that describes the data storage library module to be used to
perform this function and the open data store upon which the function is to be
performed.

PassThroughId
An identifier assigned by a DL module to indicate the exported function to be
performed.

InputParams
A pointer to a module, implementation-specific structure containing parameters
to be interpreted in a function-specific manner by the requested DL module.
This parameter can be used as a pointer to an array of CSSM_DATA_PTRs.

Return Value

A pointer to a module, implementation-specific structure containing the output
from the passthrough function. The output data must be interpreted by the calling
application based on externally-available information. If the pointer is NULL, an
error has occurred. Use CSSM_GetError to obtain the error code.

258 z/OS OCSF Application Programming

Chapter 17. OCSF Error Handling

This describes the error handling features in OCSF that provide a consistent
mechanism across all layers of OCSF for returning errors to the caller. All OCSF
API functions return one of these:
v CSSM_RETURN - An enumerated type consisting of CSSM_OK and

CSSM_FAIL. If it is CSSM_FAIL, an error code indicating the reason for failure
can be obtained by calling CSSM_GetError.

v CSSM_BOOL - OCSF functions returning this data type return either
CSSM_TRUE or CSSM_FALSE. If the function returns CSSM_FALSE, an error
code may be available (but not always) by calling CSSM_GetError.

v A pointer to a data structure, a handle, a file size, or whatever is logical for the
function to return. An error code may be available (but not always) by calling
CSSM_GetError.

The information returned from CSSM_GetError includes both the error number
and a Globally Unique ID (GUID) that associates the error with the module that
set it. The GUID of each module can be obtained by calling CSSM_ListModules.
CSSM_CompareGuids can then be called to determine from which module an error
came.

Each module must have a mechanism for reporting their errors to the calling
application. In general, there are two types of errors a module can return:

Errors defined by OCSF that are common to a particular type of service provider
module Errors reserved for use by individual service provider modules

Since some errors are predefined by OCSF, those errors have a set of predefined
numeric values that are reserved by OCSF and cannot be redefined by modules.
For errors that are particular to a module, a different set of predefined values has
been reserved for their use. Table 39 lists the range of error numbers defined for
OCSF and service provider modules. Appendix A, “OCSF Errors,” on page 267 lists
the errors defined by OCSF.

Table 39. OCSF Framework and Module Error Numbers

Error Number Range OCSF Component

1000 – 1999 CSP errors defined by OCSF

2000 - 2999 CSP errors reserved for individual CSP modules

3000 – 3999 CL errors defined by OCSF

4000 – 4999 CL errors reserved for individual CL modules

5000 – 5999 DL errors defined by OCSF

6000 – 6999 DL errors reserved for individual DL modules

7000 – 7999 TP errors defined by OCSF

8000 – 8999 TP errors reserved for individual TP modules

9000 – 9499 KR errors defined by OCSF

9500 – 9999 KR errors reserved for individual KR modules

10000 – 19999 OCSF Framework errors

© Copyright IBM Corp. 1999, 2013 259

The calling application must determine how to handle the error returned by
CSSM_GetError. Detailed descriptions of the error values will be available in the
corresponding specification, the cssmerr.h header file, and the information for
specific modules. If a routine does not know how to handle the error, it may
choose to pass the error to its caller.

260 z/OS OCSF Application Programming

Error values returned by a function should not be overwritten, if at all possible.
For example, if a CSP call returns an error indicating that it could not encrypt the
data, the caller should not overwrite it with an error simply indicating that the
CSP failed, as it destroys valuable error handling and debugging information.
However, after processing an error, the application should reset the error to zero
using CSSM_ClearError, in order to prevent the error from being handled again
later.

Errors are kept on a thread basis, and each error API affects only the current
thread's error information.

Data Structures
This describes the data structures for OCSF error handling.

CSSM_BOOL
This data type is used to indicate a true or false condition.
typedef uint32 CSSM_BOOL;

#define CSSM_TRUE 1
#define CSSM_FALSE 0

Definitions:
CSSM_TRUE

Indicates a true result or a true value.
CSSM_FALSE

Indicates a false result or a false value.

CSSM_ERROR
typedef struct cssm_error {

uint32 error;
CSSM_GUID guid;

} CSSM_ERROR, *CSSM_ERROR_PTR

CSSM_RETURN
This data type is used to indicate whether a function was successful.
typedef enum cssm_return {

CSSM_OK = 0,
CSSM_FAIL = -1

} CSSM_RETURN

Definitions:
CSSM_OK

Indicates operation was successful.
CSSM_FAIL

Indicates operation was not successful.

Error Handling Functions
This describes the interfaces for OCSF error handling.

Chapter 17. OCSF Error Handling 261

CSSM_ClearError
Purpose

This function sets the current error value for the current thread to CSSM_OK. This
can be called if the current error value has been handled and therefore is no longer
a valid error.

Format
void CSSMAPI CSSM_ClearError (void)

Parameters

None

Related Information

CSSM_SetError
CSSM_GetError

CSSM_CompareGuids
Purpose

This function determines if two GUIDs are equal.

Format
CSSM_BOOL CSSMAPI CSSM_CompareGuids (CSSM_GUID GUID1,CSSM_GUID GUID2)

Parameters

Input

GUID1
A GUID.

GUID2
A GUID.

Return Value

CSSM_TRUE if the two GUIDs are equal, CSSM_FALSE if they are not equal.

Notes

GUIDs are returned in the error information of CSSM_GetError. Once you know
which type of error is returned (i.e., CSP, CL, TP, DL), you can call
CSSM_ListModules to get a list of all the modules that are registered and their
GUIDs in order to determine which module set the error. This can be useful for
debugging purposes if there is more than one type of module for each type
installed on the system.

Related Information

CSSM_GetError
CSSM_ListModules

262 z/OS OCSF Application Programming

CSSM_GetError
Purpose

This function returns the error information for the current thread.

Format
CSSM_ERROR_PTR CSSMAPI CSSM_GetError (void)

Parameters

None

Return Value

Returns the current error information. If a NULL pointer is returned, the error
information for the current thread has not been initialized. CSSM_GetError
attempts to initialize the information if it does not exist, but if that fails, a NULL
pointer is returned. If the pointer is not NULL and the error code is CSSM_OK,
then there is no current error.

Related Information

CSSM_InitError
CSSM_DestroyError
CSSM_ClearError
CSSM_SetError
CSSM_IsCSSMError
CSSM_IsCLError
CSSM_IsTPError
CSSM_Is_DLError
CSSM_IsCSPError

CSSM_SetError
Purpose

This function sets the current error information for the current thread to error and
GUID.

Format
CSSM_RETURN CSSMAPI CSSM_SetError (CSSM_GUID_PTR GUID, uint32 error)

Parameters

Input

GUID
Pointer to the GUID of the module.

error
An error number. It should fall within one of the valid CSSM, CL, TP, DL,
KRSP, or CSP error ranges.

Chapter 17. OCSF Error Handling 263

Return Value

CSSM_OK if error was successfully set. A return value of CSSM_FAIL indicates
that the error number passed is not within a valid range, the GUID passed is
invalid. No error information is available.

Related Information

CSSM_InitError
CSSM_DestroyError
CSSM_ClearError
CSSM_GetError

264 z/OS OCSF Application Programming

Chapter 18. Application Memory Functions

When OCSF or modules return memory structures to applications, that memory is
maintained by the application. Instead of using a model where the application
passes memory blocks to the modules to work on, the OCSF model requires the
application to supply memory functions. This has the advantage that applications
are not required to know the size of memory blocks they supply to OCSF and the
add-ins. The memory that the application receives is in its process space, and this
prevents the application from walking through the memory of the OCSF or the
modules. An application that has access to secure memory could supply functions
to the Cryptographic Service Provider (CSP) for managing that memory. All data
returned from the CSP will be through that secure memory. When the application
no longer requires the memory, it is responsible for freeing it.

Applications register their memory functions with the service provider modules
during attach time (CSSM_ModuleAttach), and with OCSF during initialization
(CSSM_Init).

CSSM_MEMORY_FUNCS and CSSM_API_MEMORY_FUNCS
This structure is used by applications to supply memory functions for OCSF and
the service provider modules. The functions are used when memory needs to be
allocated by OCSF or service provider modules for returning data structures to the
applications.
typedef struct cssm_memory_funcs {

void * (*malloc_func) (uint32 Size, void *AllocRef);
void (*free_func) (void *MemPtr, void *AllocRef);
void * (*realloc_func) (void *MemPtr, uint32 Size, void *AllocRef);
void * (*calloc_func) (uint32 Num, uint32 Size, void *AllocRef);
void *AllocRef;

} CSSM_ MEMORY_FUNCS, *CSSM_ MEMORY_FUNCS_PTR;

typedef CSSM_MEMORY_FUNCS CSSM_API_MEMORY_FUNCS;
typedef CSSM_API_MEMORY_FUNCS *CSSM_API_MEMORY_FUNCS_PTR;

Definitions:

Malloc_func
Pointer to function that returns a void pointer to the allocated memory
block of at least size bytes from heap AllocRef.

Free_func
Pointer to function that deallocates a previously-allocated memory block
(memblock) from heap AllocRef.

realloc_func
Pointer to function that returns a void pointer to the reallocated memory
block (memblock) of at least size bytes from heap AllocRef.

calloc_func
Pointer to function that returns a void pointer to an array of num elements
of length size initialized to zero from heap AllocRef.

AllocRef
Pointer that can be used at the discretion of the application developer to
implement additional memory management features such as usage
counters.

© Copyright IBM Corp. 1999, 2013 265

Initialization of Memory Structure
The memory structure CSSM_MEMORY_FUNCS requires pointers to functions that
implement the memory routines. The example is an application supplying the C
run-time utilities malloc, realloc and free to the memory structure. The memory
structure is then used by the CSSM_Init call.

/* Allocating the structure */
MemoryFuncs = (CSSM_MEMORY_FUNCS_PTR) malloc (sizeof (CSSM_MEMORY_FUNCS));

/* Initialize the memory function structure */
MemoryFuncs->malloc_func = HeapMalloc;
MemoryFuncs->realloc_func = HeapRealloc;
MemoryFuncs->free_func = HeapFree;
MemoryFuncs->calloc_func = HeapCalloc;
MemoryFuncs->AllocRef = HeapID;

/* Initialize the CSSM */
CSSM_Init (Version, MemoryFuncs, NULL);

CSSM_Memory_FUNCS Example
These two examples are application-defined memory functions. The first example,
app_malloc, allocates memory using the system malloc, call and increments a
counter palloc_ref, each time the function is called. The memory pointer value
returned by malloc is returned to the caller. The second example, app_free, frees
memory and decrements the counter palloc_ref.
/***/
void * app_malloc (uint32 size, void *palloc_ref)
{

if (palloc_ref != NULL)
*(uint32 *) palloc_ref += 1;

else
printf("\tpalloc_ref NULL value passed to allocation function\n");

return(malloc(size));
}
/***/
/***/
void app_free(void * ptr, void *palloc_ref)
{

if (palloc_ref != NULL)
* (uint32 *) palloc_ref -= 1;

else
printf("\tpallocref NULL value passed to free function\n");

free(ptr);
return;

}
/***/

266 z/OS OCSF Application Programming

Appendix A. OCSF Errors

Appendix A, “OCSF Errors” lists all the errors used by the Open Cryptographic
Services Facility.

Cryptographic Service Provider Module Errors
This table provides Cryptographic Service Provider (CSP) module errors.

Table 40. General CSP Messages and Errors

Error Code Error Name

1001 CSSM_CSP_UNKNOWN_ERROR

1002 CSSM_CSP_REGISTER_ERROR

1003 CSSM_CSP_VERSION_ERROR

1004 CSSM_CSP_CONVERSION_ERROR

1005 CSSM_CSP_NO_TOKENINFO

1006 CSSM_CSP_INTERNAL_ERROR

1007 CSSM_CSP_SERIAL_REQUIRED

1008 CSSM_CSP_NOT_IMPLEMENTED

Table 41. CSP Memory Errors

Error Code Error Name

1010 CSSM_CSP_MEMORY_ERROR

1011 CSSM_CSP_NOT_ENOUGH_BUFFER

1012 CSSM_CSP_ERR_OUTBUF_LENGTH

1013 CSSM_CSP_NO_OUTBUF

1014 CSSM_CSP_ERR_INBUF_LENGTH

1015 CSSM_CSP_ERR_KEYBUF_LENGTH

1016 CSSM_CSP_NO_SLOT

Table 42. Invalid CSP Parameters

Error Code Error Name

1020 CSSM_CSP_INVALID_CSP_HANDLE

1021 CSSM_CSP_INVALID_POINTER

1022 CSSM_CSP_INVALID_CERTIFICATE

1023 CSSM_CSP_INVALID_ALGORITHM

1024 CSSM_CSP_INVALID_WINDOW_HANDLE

1025 CSSM_CSP_INVALID_CALLBACK

1026 CSSM_CSP_INVALID_CONTEXT

1027 CSSM_CSP_INVALID_CONTEXT_HANDLE

1028 CSSM_CSP_INVALID_CONTEXT_POINTER

1029 CSSM_CSP_INVALID_DATA_POINTER

© Copyright IBM Corp. 1999, 2013 267

Table 42. Invalid CSP Parameters (continued)

Error Code Error Name

1030 CSSM_CSP_INVALID_DATA_COUNT

1031 CSSM_CSP_INVALID_KEY_LENGTH

1032 CSSM_CSP_INVALID_KEY

1033 CSSM_CSP_INVALID_KEY_POINTER

1034 CSSM_CSP_INVALID_ALGORITHM_MODE

1035 CSSM_CSP_INVALID_PADDING

1036 CSSM_CSP_INVALID_KEY_ATTRIBUTE

1037 CSSM_CSP_INVALID_PARAM_LENGTH

1038 CSSM_CSP_INVALID_IV_SIZE

1039 CSSM_CSP_INVALID_SIGNATURE

1040 CSSM_CSP_INVALID_DEVICE_ID

1041 CSSM_CSP_INVALID_KEYCLASS

1042 CSSM_CSP_INVALID_MODULE_HANDLE

1043 CSSM_CSP_INVALID_KEY_TYPE

1044 CSSM_CSP_INVALID_ITERATION_COUNT

Table 43. File I/O Errors

Error Code Error Name

1050 CSSM_CSP_FILE_NOT_EXISTS

1051 CSSM_CSP_FILE_NOT_OPEN

1052 CSSM_CSP_FILE_OPEN_FAILED

1053 CSSM_CSP_FILE_CREATE_FAILED

1054 CSSM_CSP_FILE_READ_FAILED

1055 CSSM_CSP_FILE_WRITE_FAILED

1056 CSSM_CSP_FILE_CLOSE_FAILED

1057 CSSM_CSP_FILE_COPY_FAILED

1058 CSSM_CSP_FILE_DELETE_FAILED

1059 CSSM_CSP_FILE_FORMAT_ERROR

Table 44. CSP Cryptographic Errors

Error Code Error Name

1065 CSSM_CSP_PUBKEY_GET_ERROR

1066 CSSM_CSP_QUERY_SIZE_FAILED

1067 CSSM_CSP_UNKNOWN_ALGORITHM

1068 CSSM_CSP_OPERATION_UNSUPPORTED

1069 CSSM_CSP_VECTOROFBUFS_UNSUPPORTED

1070 CSSM_CSP_STAGED_OPERATION_UNSUPPORTED

1071 CSSM_CSP_KEY_MODULUS_UNSUPPORTED

1072 CSSM_CSP_KEY_LENGTH_UNSUPPORTED

1073 CSSM_CSP_PADDING_UNSUPPORTED

268 z/OS OCSF Application Programming

Table 44. CSP Cryptographic Errors (continued)

Error Code Error Name

1074 CSSM_CSP_IV_SIZE_UNSUPPORTED

1075 CSSM_CSP_GET_APIMEMFUNC_ERROR

1076 CSSM_CSP_INPUT_LENGTH_OVERSIZE

1077 CSSM_CSP_INPUT_LENGTH_ERROR

1078 CSSM_CSP_INPUT_DATA_ERROR

1079 CSSM_CSP_UNSUPPORTED_STORAGE_MASK

1080 CSSM_CSP_OPERATION_IN_PROGRESS

1081 CSSM_CSP_NO_WRITE_PERMISSIONS

1082 CSSM_CSP_EXCLUSIVE_UNAVAILABLE

1083 CSSM_CSP_UPDATE_WITHOUT_INIT

1084 CSSM_CSP_LOGIN_FAILED

1085 CSSM_CSP_ALREADY_LOGGED_IN

1086 CSSM_CSP_NOT_LOGGED_IN

1087 CSSM_CSP_KEY_PROTECTED

1088 CSSM_CSP_CALLBACK_FAILED

1089 CSSM_CSP_ROUNDS_UNSUPPORTED

1090 CSSM_CSP_EFFECTIVE_BITS_UNSUPPORTED

1091 CSSM_CSP_INCOMPATIBLE_VERSION

1092 CSSM_CSP_INCOMPATIBLE_KEY_VERSION

1093 CSSM_CSP_ALGORITHM_UNSUPPORTED

1094 CSSM_CSP_OPERATION_FAILED

Table 45. Missing or Invalid CSP Parameters

Error Code Error Name

1100 CSSM_CSP_PARAM_NO_PARAM

1101 CSSM_CSP_PARAM_NO_PASSWORD

1102 CSSM_CSP_PARAM_NO_SEED

1103 CSSM_CSP_PARAM_NO_KEY

1104 CSSM_CSP_PARAM_NO_SALT

1105 CSSM_CSP_PARAM_NO_MODULUS

1106 CSSM_CSP_PARAM_NO_OUTPUT_SIZE

1108 CSSM_CSP_PARAM_NO_KEY_LENGTH

1109 CSSM_CSP_PARAM_NO_MODE

1110 CSSM_CSP_PARAM_NO_DATA

1111 CSSM_CSP_PARAM_NO_INIT_VECTOR

1112 CSSM_CSP_PARAM_NO_PADDING

1113 CSSM_CSP_PARAM_NO_ROUNDS

1114 CSSM_CSP_PARAM_NO_RANDOM

1115 CSSM_CSP_PARAM_NO_REMAINDATA

1116 CSSM_CSP_PARAM_NO_ALG_PARAMS

Appendix A. OCSF Errors 269

Table 45. Missing or Invalid CSP Parameters (continued)

Error Code Error Name

1117 CSSM_CSP_PARAM_INVALID_VALUE

1118 CSSM_CSP_PARAM_NO_EFFECTIVE_BITS

1119 CSSM_CSP_PARAM_NO_PRIME

1120 CSSM_CSP_PARAM_NO_BASE

1121 CSSM_CSP_PARAM_NO_SUBPRIME

1122 CSSM_CSP_PARAM_NO_ALG_ID

1123 CSSM_CSP_PARAM_NO_KEY_TYPE

1124 CSSM_CSP_PARAM_NO_ITERATION_COUNT

Table 46. Password Errors

Error Code Error Name

1130 CSSM_CSP_PASSWORD_INCORRECT

1131 CSSM_CSP_PASSWORD_SAME

1132 CSSM_CSP_PASSWORD_LENGTH_ERROR

1133 CSSM_CSP_PASSWORD_INVALID

Table 47. Key Management Messages and Errors

Error Code Error Name

1140 CSSM_CSP_PRIKEY_LOAD_ERROR

1141 CSSM_CSP_PRIKEY_NOT_FOUND

1142 CSSM_CSP_PRIKEY_ALREADY_EXIST

1143 CSSM_CSP_PRIKEY_GET_ERROR

1144 CSSM_CSP_PRIKEY_PUBKEY_INCONSISTENT

1150 CSSM_CSP_KEY_DUPLICATE

1151 CSSM_CSP_KEY_BAD_KEY

1152 CSSM_CSP_KEY_BAD_LENGTH

1153 CSSM_CSP_KEY_NO_PARAM

1154 CSSM_CSP_KEY_ALGID_NOTMATCH

1155 CSSM_CSP_KEY_BLOBTYPE_INCORRECT

1156 CSSM_CSP_KEY_CLASS_INCORRECT

1157 CSSM_CSP_KEY_DELETE_FAILED

1158 CSSM_CSP_KEY_USAGE_INCORRECT

1159 CSSM_CSP_KEY_NOT_PROTECTED

1160 CSSM_CSP_KEY_FORMAT_INCORRECT

Table 48. Random Generation (RNG) Messages and Errors

Error Code Error Name

1200 CSSM_CSP_RNG_FAILED

1201 CSSM_CSP_RNG_UNKNOWN_ALGORITHM

1202 CSSM_CSP_RNG_NO_METHOD

270 z/OS OCSF Application Programming

Table 49. Key Generation Messages and Errors

Error Code Error Name

1210 CSSM_CSP_KEYGEN_FAILED

1211 CSSM_CSP_KEYGEN_UNKNOWN_ALGORITHM

1212 CSSM_CSP_KEYGEN_NO_METHOD

Table 50. Unique ID Generation Messages and Errors

Error Code Error Name

1220 CSSM_CSP_UIDG_FAILED

1221 CSSM_CSP_UIDG_UNKNOWN_ALGORITHM

1222 CSSM_CSP_UIDG_NO_METHOD

Table 51. Encryption/Decryption Messages

Error Code Error Name

1230 CSSM_CSP_ENC_UNKNOWN_ALGORITHM

1231 CSSM_CSP_ENC_NO_METHOD

1232 CSSM_CSP_ENC_FAILED

1233 CSSM_CSP_ENC_INIT_FAILED

1234 CSSM_CSP_ENC_UPDATE_FAILED

1235 CSSM_CSP_ENC_FINAL_FAILED

1236 CSSM_CSP_ENC_BAD_IV_LENGTH

1237 CSSM_CSP_ENC_IV_ERROR

1238 CSSM_CSP_ENC_BAD_KEY_LENGTH

1239 CSSM_CSP_ENC_UNKNOWN_MODE

1250 CSSM_CSP_DEC_UNKNOWN_ALGORITHM

1251 CSSM_CSP_DEC_NO_METHOD

1253 CSSM_CSP_DEC_FAILED

1254 CSSM_CSP_DEC_INIT_FAILED

1255 CSSM_CSP_DEC_UPDATE_FAILED

1256 CSSM_CSP_DEC_FINAL_FAILED

1257 CSSM_CSP_DEC_BAD_IV_LENGTH

1258 CSSM_CSP_DEC_IV_ERROR

1259 CSSM_CSP_DEC_BAD_KEY_LENGTH

1260 CSSM_CSP_DEC_UNKNOWN_MODE

Table 52. Sign/Verify Messages and Errors

Error Code Error Name

1350 CSSM_CSP_SIGN_UNKNOWN_ALGORITHM

1351 CSSM_CSP_SIGN_NO_METHOD

1352 CSSM_CSP_SIGN_FAILED

1353 CSSM_CSP_SIGN_INIT_FAILED

1354 CSSM_CSP_SIGN_UPDATE_FAILED

Appendix A. OCSF Errors 271

Table 52. Sign/Verify Messages and Errors (continued)

Error Code Error Name

1355 CSSM_CSP_SIGN_FINAL_FAILED

1360 CSSM_CSP_VERIFY_FAILED

1361 CSSM_CSP_VERIFY_INIT_FAILED

1362 CSSM_CSP_VERIFY_UPDATE_FAILED

1363 CSSM_CSP_VERIFY_FINAL_FAILED

1365 CSSM_CSP_VERIFY_UNKNOWN_ALGORITHM

1366 CSSM_CSP_VERIFY_NO_METHOD

Table 53. Digest Function Errors

Error Code Error Name

1380 CSSM_CSP_DIGEST_UNKNOWN_ALGORITHM

1382 CSSM_CSP_DIGEST_NO_METHOD

1383 CSSM_CSP_DIGEST_FAILED

1384 CSSM_CSP_DIGEST_INIT_FAILED

1385 CSSM_CSP_DIGEST_UPDATE_FAILED

1386 CSSM_CSP_DIGEST_CLONE_FAILED

1387 CSSM_CSP_DIGEST_FINAL_FAILED

Table 54. Message Authentication Code (MAC) Function Errors

Error Code Error Name

1390 CSSM_CSP_MAC_UNKNOWN_ALGORITHM

1392 CSSM_CSP_MAC_NO_METHOD

1393 CSSM_CSP_MAC_FAILED

1394 CSSM_CSP_MAC_INIT_FAILED

1395 CSSM_CSP_MAC_UPDATE_FAILED

1396 CSSM_CSP_MAC_CLONE_FAILED

1397 CSSM_CSP_MAC_FINAL_FAILED

Table 55. Key Exchange Errors

Error Code Error Name

1410 CSSM_CSP_KEYEXCH_GENPARAM_FAILED

1411 CSSM_CSP_KEYEXCH_PHASE1_FAILED

1412 CSSM_CSP_KEYEXCH_PHASE2_FAILED

1413 CSSM_CSP_KEYEXCH_UNKNOWN_ALGORITHM

1414 CSSM_CSP_KEYEXCH_NO_METHOD

Table 56. PassThrough Custom Errors

Error Code Error Name

1420 CSSM_CSP_INVALID_PASSTHROUGH_ID

1421 CSSM_CSP_INVALID_PASSTHROUGH_PARAMS

272 z/OS OCSF Application Programming

Table 57. Wrap/Unwrap Errors

Error Code Error Name

1450 CSSM_CSP_WRAP_UNKNOWN_ALGORITHM

1451 CSSM_CSP_WRAP_NO_METHOD

1452 CSSM_CSP_WRAP_FAILED

1456 CSSM_CSP_UNWRAP_UNKNOWN_ALGORITHM

1457 CSSM_CSP_UNWRAP_NO_METHOD

1458 CSSM_CSP_UNWRAP_FAILED

Table 58. Hardware CSP Errors

Error Code Error Name

1470 CSSM_CSP_DEVICE_ERROR

1471 CSSM_CSP_DEVICE_MEMORY_ERROR

1472 CSSM_CSP_DEVICE_REMOVED

1473 CSSM_CSP_DEVICE_NOT_PRESENT

1474 CSSM_CSP_DEVICE_UNKNOWN

1490 CSSM_CSP_PERMISSIONS_READ_ONLY

1491 CSSM_CSP_PERMISSIONS_WRITE_PROTECT

1492 CSSM_CSP_PERMISSIONS_NOT_EXCLUSIVE

Table 59. Query Size Errors

Error Code Error Name

1500 CSSM_CSP_QUERY_SIZE_UNKNOWN

1501 CSSM_CSP_QUERY_KEYSIZEINBITS_UNKNOWN

Appendix A. OCSF Errors 273

Mapping OCSF Error Codes to ICSF Error Codes
This table is a translation mapping between the OCSF error codes and the ICSF
error codes. If you do not find the OCSF error code in this table refer to the z/OS
Cryptographic Services ICSF Application Programmer's Guide, SA22-7522.

Table 60. Mapping the OCSF Error Codes to ICSF Error Codes

CDSA Description Hexidecimal Decimal

2001 RS_0_OK 0X00000000L /* 00 / 0 */

2002 RS_0_PARITY 0X00000004L /* 00 / 4 */

2003 RS_0_CKDS_NULL_RECORD 0X00000008L /* 00 / 8 */

2004 RS_0_INOUT_KEYID_IGNORE 0X0000000CL /* 00 / 12 */

2005 RS_0_KEYID_REENCIPH 0X00002710L /* 00 / 10000 */

2006 RS_4_KEYID_REENCIPH 0X00042710L /* 04 / 10000 */

2007 RS_4_CHARCONV_ODD_LENGTH 0X000407D0L /* 04 / 2000 */

2008 RS_4_PIN_DIDNT_VERIFY 0X00040BD4L /* 04 / 3028 */

2009 RS_4_RFOMK_AND_PIN_DIDNT_VERIFY 0X00040BD8L /* 04 / 3032 */

2010 RS_4_CVV_DIDNT_VERIFY 0X00040FA0L /* 04 / 4000 */

2011 RS_4_MAC_DIDNT_VERIFY 0X00041F40L /* 04 / 8000 */

2012 RS_4_RFOMK_AND_MAC_DIDNT_VERIFY 0X00041F44L /* 04 / 8004 */

2013 RS_4_KEYTEST_DIDNT_VERIFY 0X00042328L /* 04 / 9000 */

2014 RS_4_RFOMK_AND_KEYTEST_DIDNT_VER 0X0004232CL /* 04 / 9004 */

2015 RS_4_LATCH_CONTENTION 0X00042330L /* 04 / 9008 */

2016 RS_4_DIG_SIG_DIDNT_VERIFY 0X00042AF8L /* 04 / 11000 */

2017 RS_4_GIVEN_AP_MISMATCH 0X000436B4L /* 04 / 14004 */

2018 RS_4_AUTH_CODE_MISMATCH 0X000436B8L /* 04 / 14008 */

2019 RS_8_IV_LENGTH 0X000807D4L /* 08 / 2004 */

2020 RS_8_OVERLAP 0X000807D8L /* 08 / 2008 */

2021 RS_8_IV_RA_COUNT 0X000807DCL /* 08 / 2012 */

2022 RS_8_IV_RA_CONTENT 0X000807E0L /* 08 / 2016 */

2023 RS_8_IV_FORM_CONTENT 0X000807E2L /* 08 / 2018 */

2024 RS_8_FIELD_NOT_ZERO 0X000807E8L /* 08 / 2024 */

2025 RS_8_IV_PAD_COUNT 0X000807ECL /* 08 / 2028 */

2026 RS_8_IV_WHAT_KEY 0X000807F0L /* 08 / 2032 */

2027 RS_8_IV_CV 0X000807F4L /* 08 / 2036 */

2028 RS_8_IV_KEY_ID 0X000807F8L /* 08 / 2040 */

2029 RS_8_IV_FORM_ID 0X000807FCL /* 08 / 2044 */

2030 RS_8_FORM_KEY_TYPE_MISMATCH 0X00080800L /* 08 / 2048 */

2031 RS_8_IV_CLEAR_KEY 0X00080804L /* 08 / 2052 */

2032 RS_8_IV_KEY_FORM 0X00080808L /* 08 / 2056 */

2033 RS_8_BAD_KEY_LENGTH 0X0008080CL /* 08 / 2060 */

2034 RS_8_BAD_LENGTH_COMBO 0X00080810L /* 08 / 2064 */

2035 RS_8_CALLER_NOT_AUTH 0X00080814L /* 08 / 2068 */

2036 RS_8_KGN_IMEX_BAD_KEK_1 0X00080818L /* 08 / 2072 */

274 z/OS OCSF Application Programming

Table 60. Mapping the OCSF Error Codes to ICSF Error Codes (continued)

CDSA Description Hexidecimal Decimal

2037 RS_8_KIM_CHK_RIGHT_KEY 0X0008081CL /* 08 / 2076 */

2038 RS_8_CANNOT_WIMP_KEY 0X00080824L /* 08 / 2084 */

2039 RS_8_INVALID_ASCII_INPUT 0X00080828L /* 08 / 2088 */

2040 RS_8_KEY_VALUES_NOT_ASCII 0X0008082CL /* 08 / 2092 */

2041 RS_8_INVALID_ASCII_DECIMAL 0X00080830L /* 08 / 2096 */

2042 RS_8_TSS_COMPAT_ERROR 0X00080834L /* 08 / 2100 */

2043 RS_8_TEXT_NOTIN_CODETAB 0X00080838L /* 08 / 2104 */

2044 RS_8_UNUSED_FIELD 0X0008083CL /* 08 / 2108 */

2045 RS_8_WRONG_KEY_LENGTH_FOR_TYPE 0X00080840L /* 08 / 2112 */

2046 RS_8_IV_PARAMETER_VALUE 0X00080844L /* 08 / 2116 */

2047 RS_8_IV_PIN_RULE 0X00080BB8L /* 08 / 3000 */

2048 RS_8_IV_PIN_LENGTH 0X00080BBCL /* 08 / 3004 */

2049 RS_8_IV_PIN_CHECK_LENGTH 0X00080BC0L /* 08 / 3008 */

2050 RS_8_IV_TSP 0X00080BC4L /* 08 / 3012 */

2051 RS_8_IV_PIN_BLOCK_FORMAT 0X00080BC8L /* 08 / 3016 */

2052 RS_8_IV_FORMAT_CONTROL 0X00080BD0L /* 08 / 3024 */

2053 RS_8_IV_IGBP_OFFS_PIN_DIGIT 0X00080BD4L /* 08 / 3028 */

2054 RS_8_IV_SEQUENCE_NUMBER 0X00080BDCL /* 08 / 3036 */

2055 RS_8_NON_NUMERIC_DATA 0X00080BE0L /* 08 / 3040 */

2056 RS_8_NOT_MULTI8 0X00080FA0L /* 08 / 4000 */

2057 RS_8_TGT_CRYPT_NOT_AVAIL 0X00081388L /* 08 / 5000 */

2058 RS_8_IV_CAMQ_MESSAGE_TYPE 0X0008138CL /* 08 / 5004 */

2059 RS_8_IV_CAMQ_MESSAGE_LEN 0X00081390L /* 08 / 5008 */

2060 RS_8_KEYID_DIDNT_CHECK 0X00082710L /* 08 / 10000 */

2061 RS_8_RECREATE_KEY 0X00082714L /* 08 / 10004 */

2062 RS_8_KEY_NOT_FOUND 0X0008271CL /* 08 / 10012 */

2063 RS_8_IV_TYPE_KEY 0X00082720L /* 08 / 10016 */

2064 RS_8_TOKEN_AND_BAD_CV 0X00082724L /* 08 / 10020 */

2065 RS_8_IV_CV_LEFT 0X0008272CL /* 08 / 10028 */

2066 RS_8_IV_CV_RIGHT 0X00082730L /* 08 / 10032 */

2067 RS_8_IV_CVS 0X00082734L /* 08 / 10036 */

2068 RS_8_IV_KI_VERSION 0X00082738L /* 08 / 10040 */

2069 RS_8_KI_TYPE_AND_CV_MISMATCH 0X0008273CL /* 08 / 10044 */

2070 RS_8_IV_KEY_TYPE 0X00082740L /* 08 / 10048 */

2071 RS_8_NULL_KEY_ID_AND_TOKEN 0X00082744L /* 08 / 10052 */

2072 RS_8_TWIST_AND_TOKEN 0X00082748L /* 08 / 10056 */

2073 RS_8_LABEL_KEY_ID_AND_TOKEN 0X0008274CL /* 08 / 10060 */

2074 RS_8_FLAG_MKVP_NOT_ON 0X00082754L /* 08 / 10068 */

2075 RS_8_FLAG_ENC_KEY_NOT_ON 0X00082758L /* 08 / 10072 */

2076 RS_8_FLAG_CV_NOT_ON 0X0008275CL /* 08 / 10076 */

Appendix A. OCSF Errors 275

Table 60. Mapping the OCSF Error Codes to ICSF Error Codes (continued)

CDSA Description Hexidecimal Decimal

2077 RS_8_PHIL_YEH_FLAG_ON 0X00082760L /* 08 / 10080 */

2078 RS_8_CANT_REENCIPHER_EXPORTER 0X00082764L /* 08 / 10084 */

2079 RS_8_IV_KEY_TYPE_FOR_SERVICE 0X00082768L /* 08 / 10088 */

2080 RS_8_ANSI_PARITY_ENFORCED 0X0008276CL /* 08 / 10092 */

2081 RS_8_ANSI_SINGLE_AKEK 0X00082770L /* 08 / 10096 */

2082 RS_8_NOTARZ_NOT_ALLOWED 0X00082774L /* 08 / 10100 */

2083 RS_8_INAKEK_PART_NOTARZD 0X00082778L /* 08 / 10104 */

2084 RS_8_INVALID_KEYID_KPI 0X0008277CL /* 08 / 10108 */

2085 RS_8_INVALID_CPLTNOT 0X00082780L /* 08 / 10112 */

2086 RS_8_IV_KPI_RA_FOR_TOKEN 0X00082784L /* 08 / 10116 */

2087 RS_8_IV_TOKEN_KEYTYPE_FOR_SERV 0X00082788L /* 08 / 10120 */

2088 RS_8_NO_EXPORT_FOR_KID 0X0008278CL /* 08 / 10124 */

2089 RS_8_RULE_ARRAY_KEYWORD_MISMATCH 0X00082790L /* 08 / 10128 */

2090 RS_8_IV_FIELD_LENGTH 0X00082AF8L /* 08 / 11000 */

2091 RS_8_PKA_IV_AUTH_VALUE 0X00082AFCL /* 08 / 11004 */

2092 RS_8_PKA_IV_KEY_VALUES 0X00082B0CL /* 08 / 11020 */

2096 RS_8_PKA_TOKEN_INCOMP 0X00082B10L /* 08 / 11024 */

2097 RS_8_MSG_TOOLONG_FOR_SIG 0X00082B14L /* 08 / 11028 */

2098 RS_8_PKA_KMMGMT_NOT_ALLOWED 0X00082B18L /* 08 / 11032 */

2099 RS_8_INVALID_TEXT 0X00082B1CL /* 08 / 11036 */

2100 RS_8_IV_RESULT_RSA_ENCDEC 0X00082B20L /* 08 / 11040 */

2101 RS_8_IV_FIRST_SECTION_KEY_ID 0X00082B24L /* 08 / 11044 */

2102 RS_8_IV_EYECATCHER 0X00082B28L /* 08 / 11048 */

2103 RS_8_PKA_PRIVATE_REQ 0X00082B2CL /* 08 / 11052 */

2104 RS_8_IV_PKA_INTERNAL_TOKLEN 0X00082B30L /* 08 / 11056 */

2105 RS_8_IV_RSAOAEP_BT 0X00082B38L /* 08 / 11064 */

2106 RS_8_IV_RSAOAEP_V 0X00082B3CL /* 08 / 11068 */

2107 RS_8_IV_RSAOAEP_I 0X00082B40L /* 08 / 11072 */

2108 RS_8_IV_MODULUS_LENGTH 0X00082B48L /* 08 / 11080 */

2109 RS_8_PKA_PUBLIC_REQ 0X00082B4CL /* 08 / 11084 */

2110 RS_8_PKA_SIGNONLY_REQ 0X00082B50L /* 08 / 11088 */

2111 RS_8_FAILED_RACF_SERVICE 0X00083E80L /* 08 / 16000 */

2112 RS_8_FAILED_RACF 0X00083E84L /* 08 / 16004 */

2113 RS_8_NOT_SUPVR_STATE 0X00083E8CL /* 08 / 16012 */

2114 RS_8_INOUT_KEYID_INVALID 0X00083E90L /* 08 / 16016 */

2115 RS_8_SYSTEM_KEY_FUNC_NOTALLOW 0X00083E94L /* 08 / 16020 */

2116 RS_8_INVALID_KEY_TOKEN 0X00083E98L /* 08 / 16024 */

2117 RS_8_SYNTAX_ERROR_IN_KEY_LABEL 0X00083EA0L /* 08 / 16032 */

2118 RS_8_DUPLICATE_KEY_LABEL 0X00083EA4L /* 08 / 16036 */

2119 RS_8_LABEL_CHECK_FAILED 0X00083EA8L /* 08 / 16040 */

276 z/OS OCSF Application Programming

Table 60. Mapping the OCSF Error Codes to ICSF Error Codes (continued)

CDSA Description Hexidecimal Decimal

2120 RS_12_NOT_ACTIVE 0X000C0000L /* 12 / 0 */

2121 RS_12_DYN_SERV_NOTAVAIL 0X000C0004L /* 12 / 4 */

2122 RS_12_SERV_NOTAVAIL 0X000C0008L /* 12 / 8 */

2123 RS_12_FAILED_EXIT 0X000C000CL /* 12 / 12 */

2124 RS_12_INST_SERVICE_NOT_FOUND 0X000C0010L /* 12 / 16 */

2125 RS_12_INTERNAL_SERVICE_CC3 0X000C0014L /* 12 / 20 */

2126 RS_12_INTERNAL_ANSI_PARMERR 0X000C0018L /* 12 / 24 */

2127 RS_12_CAMQ_ERROR 0X000C001CL /* 12 / 28 */

2128 RS_12_CAMQ_INCOMPLETE_RESPONSE 0X000C0020L /* 12 / 32 */

2129 RS_12_CAMQ_RETRY 0X000C0024L /* 12 / 36 */

2130 RS_12_KEY_FAILED_MAC 0X000C2724L /* 12 / 10020 */

2131 RS_12_INST_EXIT_REJECT 0X000C2728L /* 12 / 10024 */

2132 RS_12_NOT_ACTIVE_SKI 0X000C272CL /* 12 / 10028 */

2133 RS_12_LABEL_NOT_UNIQUE 0X000C2734L /* 12 / 10036 */

2134 RS_12_CKDS_DYNALLOC_FAILED 0X000C1790L /* 12 / 6032 */

2135 RS_12_CKDS_UNALLOC_FAILED 0X000C1794L /* 12 / 6036 */

2136 RS_12_CKDS_OPEN_FAILED 0X000C273CL /* 12 / 10044 */

2137 RS_12_CKDS_IOERROR 0X000C2740L /* 12 / 10048 */

2138 RS_12_NO_SPACE_CKT 0X000C2744L /* 12 / 10052 */

2139 RS_12_ESTAE_FAILED_IN_DYNIO 0X000C178CL /* 12 / 6028 */

2140 RS_12_NO_IO_SUBTASK 0X000C274CL /* 12 / 10060 */

2141 RS_12_NOT_ACTIVE_INIT 0X000C2EDCL /* 12 / 11996 */

2142 RS_12_NOT_ACTIVE_PIN 0X000C2EE0L /* 12 / 12000 */

2143 RS_12_LATCH_ERROR 0X000C2EE4L /* 12 / 12004 */

2144 RS_12_INVALID_CKDS 0X000C8CB4L /* 12 / 36020 */

2145 RS_12_PKA_FUNCTION_UNAVAIL_CCC 0X000C2B00L /* 12 / 11008 */

2146 RS_12_PKA_FUNCTION_UNAVAIL_ECM 0X000C2B04L /* 12 / 11012 */

2147 RS_12_PKA_MK_INVALID 0X000C2B08L /* 12 / 11016 */

2148 RS_12_KEY_SIZE_INVALID 0X000C2B0CL /* 12 / 11020 */

2149 RS_12_PKA_SERV_NOTAVAIL 0X000C2B10L /* 12 / 11024 */

2150 RS_12_ESYS_KEYS_NOT_FOUND 0X000C2B14L /* 12 / 11028 */

2151 RS_12_CAMQ_NOT_VALID_FOR_PKA 0X000C2B18L /* 12 / 11032 */

2152 RS_12_PKDS_NOT_AVAILABLE 0X000C2B1CL /* 12 / 11036 */

2153 RS_12_PKDS_CONTROL_RECORD_HASH_E 0X000C2B20L /* 12 / 11040 */

2154 RS_12_SERIALIZATION_ON_PKDS_FAIL 0X000C2B24L /* 12 / 11044 */

2155 RS_16_BIG_ERROR 0X00100004L /* 16 / 4 */

2156 RS_12_CCP_ERROR 0X000C2B28L /* 12 / 11048 */

2157 RS_8_INVALID_KEY_BYTE 0X000800B5L /* 08 / 00181 */

Appendix A. OCSF Errors 277

IBM Software CSP and IBM Weak Software CSP Errors
This table shows the return codes from the OCSF Software Service providers.

Table 61. OCSF Software Service Provider Errors

Error Code Error Name

2515 IBMSWCSP_ALGORITHM_NOT_SET

2516 IBMSWCSP_ALGORITHM_OBJ

2517 IBMSWCSP_ALG_OPERATION_UNKNOWN

2518 IBMSWCSP_ALLOC

2519 IBMSWCSP_CANCEL

2520 IBMSWCSP_DATA

2521 IBMSWCSP_EXPONENT_EVEN

2522 IBMSWCSP_EXPONENT_LEN

2523 IBMSWCSP_HARDWARE

2524 IBMSWCSP_INPUT_DATA

2525 IBMSWCSP_INPUT_LEN

2526 IBMSWCSP_KEY_ALREADY_SET

2527 IBMSWCSP_KEY_INFO

2528 IBMSWCSP_KEY_LEN

2529 IBMSWCSP_KEY_NOT_SET

2530 IBMSWCSP_KEY_OBJ

2531 IBMSWCSP_KEY_OPERATION_UNKNOWN

2532 IBMSWCSP_MEMORY_OBJ

2533 IBMSWCSP_MODULUS_LEN

2534 IBMSWCSP_NOT_INITIALIZED

2535 IBMSWCSP_NOT_SUPPORTED

2536 IBMSWCSP_OUTPUT_LEN

2537 IBMSWCSP_OVER_32K

2538 IBMSWCSP_RANDOM_NOT_INITIALIZED

2539 IBMSWCSP_RANDOM_OBJ

2540 IBMSWCSP_SIGNATURE

2541 IBMSWCSP_WRONG_ALGORITHM_INFO

2542 IBMSWCSP_WRONG_KEY_INFO

2543 IBMSWCSP_INPUT_COUNT

2544 IBMSWCSP_OUTPUT_COUNT

2545 IBMSWCSP_METHOD_NOT_IN_CHOOSER

2546 IBMSWCSP_KEY_WEAK

278 z/OS OCSF Application Programming

Certificate Library Module Errors
This table provides the Certificate Library (CL) module errors.

Table 62. Certificate Library

Error Code Error Name

3001 CSSM_CL_UNKNOWN_FORMAT

3002 CSSM_CL_UNKNOWN_TAG

3003 CSSM_CL_INVALID_CONTEXT

3004 CSSM_CL_INVALID_CL_HANDLE

3005 CSSM_CL_INVALID_CC_HANDLE

3006 CSSM_CL_INVALID_CERT_POINTER

3007 CSSM_CL_INVALID_FIELD_POINTER

3008 CSSM_CL_INVALID_TEMPLATE

3009 CSSM_CL_INVALID_DATA_POINTER

3010 CSSM_CL_INVALID_SCOPE

3012 CSSM_CL_CERT_CREATE_FAIL

3013 CSSM_CL_CERT_VIEW_FAIL

3014 CSSM_CL_CERT_GET_FIELD_VALUE_FAIL

3015 CSSM_CL_CERT_GET_KEY_INFO_FAIL

3016 CSSM_CL_CERT_IMPORT_FAIL

3017 CSSM_CL_CERT_EXPORT_FAIL

3018 CSSM_CL_PASS_THROUGH_FAIL

3019 CSSM_CL_CERT_DESCRIBE_FORMAT_FAIL

3020 CSSM_CL_UNSUPPORTED_OPERATION

3021 CSSM_CL_MEMORY_ERROR

3022 CSSM_CL_CERT_SIGN_FAIL

3023 CSSM_CL_CERT_UNSIGN_FAIL

3024 CSSM_CL_CERT_VERIFY_FAIL

3025 CSSM_CL_RESULTS_HANDLE

3026 CSSM_CL_INVALID_SIGNER_CERTIFICATE

3027 CSSM_CL_NO_FIELD_VALUES

3028 CSSM_CL_INVALID_CRL_PTR

3029 CSSM_CL_CERT_ABORT_QUERY_FAIL

3030 CSSM_CL_CRL_CREATE_FAIL

3031 CSSM_CL_CRL_SET_FAIL

3032 CSSM_CL_CRL_ADD_CERT_FAIL

3033 CSSM_CL_CRL_REMOVE_CERT_FAIL

3034 CSSM_CL_CRL_SIGN_FAIL

3035 CSSM_CL_CRL_VERIFY_FAIL

3036 CSSM_CL_IS_CERT_IN_CRL_FAIL

3037 CSSM_CL_CRL_GET_FIELD_VALUE_FAIL

3038 CSSM_CL_CRL_ABORT_QUERY_FAIL

Appendix A. OCSF Errors 279

Table 62. Certificate Library (continued)

Error Code Error Name

3039 CSSM_CL_CRL_DESCRIBE_FORMAT_FAIL

3040 CSSM_CL_INVALID_POINTER

3041 CSSM_CL_INVALID_DATA

3042 CSSM_CL_INITIALIZE_FAIL

3100 CSSM_CL_SIG_NOT_IN_CERT

3101 CSSM_CL_INVALID_REVOKER_CERT_PTR

3102 CSSM_CL_NO_REVOKED_CERTS_IN_CRL

3103 CSSM_CL_CERT_NOT_FOUND_IN_CRL

3104 CSSM_CL_CRL_SIGNSCOPE_NOT_SUPPORTED

3105 CSSM_CL_CRL_VERIFYSCOPE_NOT_SUPPORTED

3106 CSSM_CL_CRL_NOT_SIGNEDBY_SIGNER

3107 CSSM_CL_CRL_NO_FIELD_OID

3108 CSSM_CL_INVALID_REVOKED_CERT_PTR

3109 CSSM_CL_INVALID_INPUT_PTR

3110 CSSM_CL_KEY_ALGID_NOT_SUPPORTED

3111 CSSM_CL_GET_KEY_ATTRIBUTE_FAIL

3112 CSSM_CL_CERT_ENCODE_FAIL

3113 CSSM_CL_CERT_DECODE_FAIL

3114 CSSM_CL_SIGNATURE_ALGID_NOT_SUPPORTED

3115 CSSM_CL_KEY_FORMAT_UNKNOWN

3116 CSSM_CL_INVALID_CERT_ISSUER_NAME

3117 CSSM_CL_INVALID_CERT_SUBJECT_NAME

3118 CSSM_CL_MISSING_CERT_SUBJECT_NAME

3119 CSSM_CL_MISSING_CERT_ISSUER_NAME

3120 CSSM_CL_MISSING_CERT_VALIDITY

3121 CSSM_CL_MISSING_SUBJECT_PUB_KEY

3122 CSSM_CL_FIELD_NOT_PRESENT

3123 CSSM_CL_SIGNER_CERT_EXPIRED

3124 CSSM_CL_SUBJECT_CERT_EXPIRED

3125 CSSM_CL_INCOMPATIBLE_CSP

3126 CSSM_CL_GET_CSP_HANDLE_ATTRIBUTE_FAIL

3127 CSSM_CL_GET_GUID_FROM_HANDLE_FAIL

3128 CSSM_CL_FAILED_ TO_GET_TIME

280 z/OS OCSF Application Programming

Data Storage Library Module Errors
This table provides the Data Storage Library (DL) module errors.

Table 63. Data Storage Errors

Error Code Error Name

5001 CSSM_DL_NOT_LOADED

5002 CSSM_DL_INVALID_DL_HANDLE

5003 CSSM_DL_DATASTORE_NOT_EXISTS

5004 CSSM_DL_MEMORY_ERROR

5005 CSSM_DL_DB_OPEN_FAIL

5006 CSSM_DL_INVALID_DB_HANDLE

5007 CSSM_DL_DB_CLOSE_FAIL

5008 CSSM_DL_DB_CREATE_FAIL

5009 CSSM_DL_DB_DELETE_FAIL

5010 CSSM_DL_INVALID_PTR

5011 CSSM_DL_DB_IMPORT_FAIL

5012 CSSM_DL_DB_EXPORT_FAIL

5013 CSSM_DL_INVALID_CERTIFICATE_PTR

5014 CSSM_DL_CERT_INSERT_FAIL

5015 CSSM_DL_CERTIFICATE_NOT_IN_DB

5016 CSSM_DL_CERT_DELETE_FAIL

5017 CSSM_DL_CERT_REVOKE_FAIL

5018 CSSM_DL_INVALID_SELECTION_PTR

5019 CSSM_DL_NO_CERTIFICATE_FOUND

5020 CSSM_DL_CERT_GETFIRST_FAIL

5021 CSSM_DL_NO_MORE_CERTS

5022 CSSM_DL_CERT_GET_NEXT_FAIL

5023 CSSM_DL_CERT_ABORT_QUERY_FAIL

5024 CSSM_DL_INVALID_CRL_PTR

5025 CSSM_DL_CRL_INSERT_FAIL

5026 CSSM_DL_CRL_NOT_IN_DB

5027 CSSM_DL_CRL_DELETE_FAIL

5028 CSSM_DL_NO_CRL_FOUND

5029 CSSM_DL_CRL_GET_FIRST_FAIL

5030 CSSM_DL_NO_MORE_CRLS

5031 CSSM_DL_CRL_GET_NEXT_FAIL

5032 CSSM_DL_CRL_ABORT_QUERY_FAIL

5033 CSSM_DL_GET_DB_NAMES_FAIL

5034 CSSM_DL_INVALID_PASSTHROUGH_ID

5035 CSSM_DL_PASS_THROUGH_FAIL

5036 CSSM_DL_INVALID_POINTER

5037 CSSM_DL_NO_DATASOURCES

Appendix A. OCSF Errors 281

Table 63. Data Storage Errors (continued)

Error Code Error Name

5038 CSSM_DL_INCOMPATIBLE_VERSION

5039 CSSM_DL_INVALID_FIELD_INFO

5040 CSSM_DL_INVALID_ATTRIBUTE_NAME_FORMAT

5041 CSSM_DL_CONJUNCTIVE_NOT_SUPPORTED

5042 CSSM_DL_OPERATOR_NOT_SUPPORTED

5043 CSSM_DL_NO_MORE_OBJECT

5044 CSSM_DL_INVALID_RESULTS_HANDLE

5045 CSSM_DL_INVALID_ATTRIBUTE_NAME

5046 CSSM_DL_INVALID_ATTRIBUTE

5047 CSSM_DL_UNKNOWN_KEY_TYPE

5048 CSSM_DL_BUFFER_TOO_SMALL

5100 CSSM_DL_INVALID_DATA_POINTER

5101 CSSM_DL_INVALID_DLINFO_POINTER

5102 CSSM_DL_INSTALL_FAIL

5103 CSSM_DL_INVALID_GUID

5104 CSSM_DL_UNINSTALL_FAIL

5105 CSSM_DL_LIST_MODULES_FAIL

5107 CSSM_DL_ATTACH_FAIL

5108 CSSM_DL_DETACH_FAIL

5109 CSSM_DL_GET_INFO_FAIL

5110 CSSM_DL_FREE_INFO_FAIL

5111 CSSM_DL_INVALID_DLINFO_PTR

5112 CSSM_DL_INVALID_CL_HANDLE

5113 CSSM_DL_INVALID_CERTIFICATE_PTR

5114 CSSM_DL_INVALID_CRL

5115 CSSM_DL_INVALID_CRL_POINTER

5116 CSSM_DL_INVALID_RECORD_TYPE

5117 CSSM_DL_DATA_INSERT_FAIL

5118 CSSM_DL_DATA_GETFIRST_FAIL

5119 CSSM_DL_DATA_GETNEXT_FAIL

5120 CSSM_DL_NO_DATA_FOUND

5121 CSSM_DL_INVALID_AUTHENTICATION

5122 CSSM_DL_DATA_ABORT_QUERY_FAIL

5123 CSSM_DL_DATA_DELETE_FAIL

282 z/OS OCSF Application Programming

LDAP Data Library Module Errors
This table provides the LDAP Data Library module errors.

Table 64. LDAP Data Library Errors

Error Code Error Name

6001 LDAPDL_OPERATIONS_ERROR

6002 LDAPDP_PROTOCOL_ERROR

6003 LDAPDL_TIMELIMIT_EXCEEDED

6004 LDAPDL_SIZELIMIT_EXCEEDED

6007 LDAPDL_STRONG_AUTH_NOT_SUPPORTED

6008 LDAPDL_STONG_AUTH_REQUIRED

6009 LDAPDL_PARTIAL_RESULTS

6010 LDAPDL_REFERRAL_NOT_FOLLOWED

6011 LDAPDL_ADMIN_LIMIT_EXCEEDED

6012 LDAPDL_UNAVAILABLE_CRITICAL_EXTENSION

6013 LDAPDL_CONFIDENTIALITY_REQUIRED

6014 LDAPDL_SASLBIND_IN_PROGRESS

6020 LDAPDL_NO_SUCH_ATTRIBUTE

6021 LDAPDL_UNDEFINED_TYPE

6022 LDAPDL_INAPPROPIRATE_MATCHING

6023 LDAPDL_CONSTRAINT_VIOLATION

6024 LDAPDL_TYPE_OR_VALUE_EXISTS

6025 LDAPDL_INVALID_SYNTAX

6032 LDAPDL_NO_SUCH_OBJECT

6033 LDAPDL_ALIAS_PROBLEM

6034 LDAPDL_INVALID_DN_SYNTAX

6035 LDAPDL_IS_LEAF

6036 LDAPDL_ALIAS_DEREF_PROBLEM

6048 LDAPDL_INAPPROPRIATE_AUTH

6049 LDAPDL_INVALID_CREDENTIALS

6050 LDAPDL_INSUFFICIENT_ACCESS

6051 LDAPDL_BUSY

6052 LDAPDL_UNAVAILABLE

6053 LDAPDL_UNWILLING_TO_PERFORM

6054 LDAPDL_LOOP_DETECT

6064 LDAPDL_NAMING_VIOLATION

6065 LDAPDL_OBJECT_CLASS_VIOLATION

6066 LDAPDL_NOT_ALLOWED_ON_NONLEAF

6067 LDAPDL_NOT_ALLOWED_ON_RDN

6068 LDAPDL_ALREADY_EXISTS

6069 LDAPDL_NO_OBJECT_CLASS_MODS

6070 LDAPDL_RESULTS_TOO_LARGE

Appendix A. OCSF Errors 283

Table 64. LDAP Data Library Errors (continued)

Error Code Error Name

6071 LDAPDL_AFFECTS_MULTIPLE_DSAS

6080 LDAPDL_OTHER

6081 LDAPDL_SERVER_DOWN

6082 LDAPDL_LOCAL_ERROR

6083 LDAPDL_ENCODING_ERROR

6084 LDAPDL_DECODING_ERROR

6085 LDAPDL_TIMEOUT

6086 LDAPDL_AUTH_UNKNOWN

6087 LDAPDL_FILTER_ERROR

6088 LDAPDL_USER_CANCELLED

6089 LDAPDL_PARAM_ERROR

6090 LDAPDL_NO_MEMORY

6091 LDAPDL_CONNECT_ERROR

6092 LDAPDL_NOT_SUPPORTED

6093 LDAPDL_CONTROL_NOT_FOUND

6094 LDAPDL_NO_RESULTS_RETURNED

6095 LDAPDL_MORE_RESULTS_TO_RETURN

6096 LDAPDL_URL_ERR_NOTLDAPDL

6097 LDAPDL_URL_ERR_NODN

6098 LDAPDL_URL_ERR_BADSCOPE

6099 LDAPDL_URL_ERR_MEM

6100 LDAPDL_CLIENT_LOOP

6101 LDAPDL_REFERRAL_LIMIT_EXCEEDED

6112 LDAPDL_SSL_ALREADY_INITIALIZED

6113 LDAPDL_SSL_INITIALIZE_FAILED

6114 LDAPDL_SSL_CLIENT_INIT_NOT_CALLED

6115 LDAPDL_SSL_PARAM_ERROR

6116 LDAPDL_SSL_HANDSHAKE_FAILED

6117 LDAPDL_SSL_GET_CIPHER_FAILED

6128 LDAPDL_NO_EXPLICIT_OWNER

284 z/OS OCSF Application Programming

Trust Policy Module Errors
This table provides the Trust Policy (TP) module errors.

Table 65. Trust Policy Errors

Error Code Error Name

7001 CSSM_TP_NOT_LOADED

7002 CSSM_TP_INVALID_TP_HANDLE

7003 CSSM_TP_INVALID_CL_HANDLE

7004 CSSM_TP_INVALID_DL_HANDLE

7005 CSSM_TP_INVALID_DB_HANDLE

7006 CSSM_TP_INVALID_CC_HANDLE

7007 CSSM_TP_INVALID_CERTIFICATE

7008 CSSM_TP_NOT_SIGNER

7009 CSSM_TP_NOT_TRUSTED

7010 CSSM_TP_CERT_VERIFY_FAIL

7011 CSSM_TP_CERTIFICATE_CANT_OPERATE

7012 CSSM_TP_MEMORY_ERROR

7013 CSSM_TP_CERT_SIGN_FAIL

7014 CSSM_TP_INVALID_CRL

7015 CSSM_TP_CERT_REVOKE_FAIL

7016 CSSM_TP_CRL_VERIFY_FAIL

7017 CSSM_TP_CRL_SIGN_FAIL

7018 CSSM_TP_APPLY_CRL_TO_DB_FAIL

7019 CSSM_TP_INVALID_GUID

7020 CSSM_TP_UNISTALL_FAIL

7021 CSSM_TP_INCOMPATIBLE_VERSION

7022 CSSM_TP_INVALID_ACTION

7023 CSSM_TP_VERIFY_ACTION_FAIL

7024 CSSM_TP_INVALID_DATA_POINTER

7025 CSSM_TP_INVALID_ID

7026 CSSM_TP_PASS_THROUGH_FAIL

7027 CSSM_TP_INVALID_CSP_HANDLE

7028 CSSM_TP_ANCHOR_NOT_SELF_SIGNED

7029 CSSM_TP_ANCHOR_NOT_FOUND

Appendix A. OCSF Errors 285

Key Recovery Module Errors
This table provides the Key Recovery (KR) module errors.

Table 66. Key Recovery Errors

Error Code Error Name

9001 CSSM_KRSP_AUTHINFO_BUFFER_TOO_SMALL

9002 CSSM_KRSP_COULD_NOT_GET_HOSTINGO

9003 CSSM_KRSP_COULD_NOT_GET_USERID

9004 CSSM_KRSP_CRYPTO_CONTEXT_KEY_NOT_FOUND

9005 CSSM_KRSP_MEMORY_ERROR

9006 CSSM_KRSP_INTEGRITY_CHECK_FAILED

9007 CSSM_KRSP_INTEGRITY_TYPE_NOT_SUPPORTED

9008 CSSM_KRSP_INVALID_AUTHINFO_BUFFER

9009 CSSM_KRSP_INVALID_CRYPTO_CONTEXT

9010 CSSM_KRSP_INVALID_CRYPTO_CONTEXT_KEY

9011 CSSM_KRSP_INVALID_JURIS_PROFILE

9012 CSSM_KRSP_INVALID_KRCONTEXT

9013 CSSM_KRSP_INVALID_KRSP_CONFIG

9014 CSSM_KRSP_INVALID_KRTYPE

9015 CSSM_KRSP_INVALID_LOCAL_KRPROFILE

9016 CSSM_KRSP_KRPROFILE_ATTRIBUTE_NOT_FOUND

9017 CSSM_KRSP_LEMAN_GEN_REQUIRED

9018 CSSM_KRSP_LEUSE_GEN_REQUIRED

9019 CSSM_KRSP_ENT_GEN_REQUIRED

286 z/OS OCSF Application Programming

OCSF Framework Errors
These tables provide the OSCF framework errors.

Table 67. Memory Allocation Errors

Error Code Error Name

10001 CSSM_MALLOC_FAILED

10002 CSSM_CALLOC_FAILED

10003 CSSM_REALLOC_FAILED

Table 68. File I/O Errors

Error Code Error Name

10010 CSSM_FWRITE_FAILED

10011 CSSM_FREAD_FAILED

10012 CSSM_CANT_FSEEK

10013 CSSM_INVALID_FILE_PTR

10014 CSSM_END_OF_FILE

Table 69. Miscellaneous Errors

Error Code Error Name

10020 CSSM_CANT_GET_USER_NAME

10021 CSSM_GETCWD_FAILED

10022 CSSM_ENV_VAR_NOT_FOUND

10023 CSSM_BAD_HASH_CONTEXT_INDEX

10024 CSSM_SET_ERROR_FAILED

10025 CSSM_RNG_INIT_FAILED

10026 CSSM_RNG_LOOP_LIMIT_EXCEEDED

Table 70. Dynamic Library Error

Error Code Error Name

10030 CSSM_FREE_LIBRARY_FAILED

10031 CSSM_LOAD_LIBRARY_FAILED

10032 CSSM_CANT_GET_PROC_ADDR

10033 CSSM_CANT_GET_MODULE_HANDLE

10034 CSSM_CANT_GET_MODULE_FILE_NAME

10035 CSSM_INVALID_LIB_HANDLE

10036 CSSM_BAD_MODULE_HANDLE

Table 71. Registry Errors

Error Code Error Name

10040 CSSM_CANT_CREATE_KEY

10041 CSSM_CANT_SET_VALUE

10042 CSSM_CANT_GET_VALUE

10043 CSSM_CANT_DELETE_SECTION

Appendix A. OCSF Errors 287

Table 71. Registry Errors (continued)

Error Code Error Name

10044 CSSM_CANT_DELETE_KEY

10045 CSSM_CANT_ENUM_KEY

10046 CSSM_CANT_OPEN_KEY

10047 CSSM_CANT_QUERY_KEY

10048 CSSM_CANT_CREATE_REGISTRY

10049 CSSM_CANT_OPEN_REGISTRY

Table 72. Mutex/Synchronization Errors

Error Code Error Name

10050 CSSM_CANT_CREATE_MUTEX

10051 CSSM_LOCK_MUTEX_FAILED

10052 CSSM_TRYLOCK_MUTEX_FAILED

10053 CSSM_UNLOCK_MUTEX_FAILED

10054 CSSM_CANT_CLOSE_MUTEX

10055 CSSM_INVALID_MUTEX_PTR

Table 73. Shared Memory File Errors

Error Code Error Name

10060 CSSM_CANT_CREATE_SHARED_MEMORY_FILE

10061 CSSM_CANT_OPEN_SHARED_MEMORY_FILE

10062 CSSM_CANT_MAP_SHARED_MEMORY_FILE

10063 CSSM_CANT_UNMAP_SHARED_MEMORY_FILE

10064 CSSM_CANT_FLUSH_SHARED_MEMORY_FILE

10065 CSSM_CANT_CLOSE_SHARED_MEMORY_FILE

10066 CSSM_INVALID_PERMS

10067 CSSM_BAD_FILE_HANDLE

10068 CSSM_BAD_FILE_ADDR

Table 74. Key Formats

Error Code Error Name

10080 CSSM_KEY_FORMAT_NOT-SUPPORTED

Table 75. General Errors

Error Code Error Name

10100 CSSM_BAD_PTR_PASSED

Table 76. OCSF API Errors

Error Code Error Name

10301 CSSM_INVALID_POINTER

10302 CSSM_EXPIRED

10303 CSSM_MEMORY_ERROR

288 z/OS OCSF Application Programming

Table 76. OCSF API Errors (continued)

Error Code Error Name

10304 CSSM_INVALID_ATTRIBUTE

10305 CSSM_NOT_INITIALIZE

10306 CSSM_INSTALL_FAIL

10307 CSSM_REGISTRY_ERROR

10308 CSSM_INVALID_CONTEXT_HANDLE

10309 CSSM_INVALID_CSP_HANDLE

10310 CSSM_INVALID_TP_HANDLE

10311 CSSM_INVALID_CL_HANDLE

10312 CSSM_INVALID_DL_HANDLE

10313 CSSM_INCOMPATIBLE_VERSION

10314 CSSM_ATTACH_FAIL

10315 CSSM_NO_ADDIN

10316 CSSM_FUNCTION_NOT_IMPLEMENTED

10317 CSSM_INVALID_CONTEXT_POINTER

10318 CSSM_INVALID_MANIFEST_ATTRIB_POINTER

10319 CSSM_MODE_UNSUPPORTED

10320 CSSM_KEY_LENGTH_UNSUPPORTED

10321 CSSM_IV_SIZE_UNSUPPORTED

10322 CSSM_PADDING_UNSUPPORTED

10323 CSSM_KEY_MODULUS_UNSUPPORTED

10324 CSSM_PARAM_NO_KEY

10325 CSSM_INVALID_KRSP_HANDLE

10326 CSSM_KR_FIELDS_NOT_GENERATED

10327 CSSM_ENT_KR_POLICY_MODULE_NOT_FOUND

10328 CSSM_ENT_KR_POLICY_FUNC_NOT_FOUND

10329 CSSM_LE_POLICY_MODULE_CORRUPT

10330 CSSM_ENT_POLICY_MODULE_CORRUPT

10331 CSSM_LE_KR_NOT_ALLOWED

10340 CSSM_INVALID_SERVICE_MASK

10341 CSSM_INVALID_SUBSERVICEID

10342 CSSM_INVALID_INFO_LEVEL

10343 CSSM_MULTIPLE_ENCRYPT_ATTEMPT

10344 CSSM_ADDIN_AUTHENTICATION_FAILED

10345 CSSM_EISL_PKCS7_INVALID

10346 CSSM_EISL_SIGROOT_INVALID

10347 CSSM_EISL_MANIFEST_SECTION_NOT_FOUND

10348 CSSM_EISL_MODULE_VERIFICATION_FAILED

10349 CSSM_EISL_MODULE_LOAD_FAILED

10350 CSSM_EISL_CERTIFICATE_EXPIRED

Appendix A. OCSF Errors 289

Table 77. OCSF Privilege Mechanism Errors

Error Code Error Name

10360 CSSM_INVALID_CREDENTIALS

10361 CSSM_NOT_AUTHORIZED

10362 CSSM_STRONG_CRYPTO_NOT_ALLOWED

10363 CSSM_CANT_GET_THREAD_ID

10364 CSSM_THREAD_EXEMPTION_ERROR

10365 CSSM_CANT_CREATE_CLEANUP_THREAD

10366 CSSM_PRIV_NOT_INITIALIZED

10367 CSSM_INVALID_NAME

10368 CSSM_INVALID_ATTRIBUTE_COUNT

10500 CSSM_INVALID_ADDIN_HANDLE

10501 CSSM_INVALID_GUID

10502 CSSM_MEM_FUNCS_NOT_MATCHING

10503 CSSM_VALUE_TOO_LARGE

10504 CSSM_VALUE_TOO_SMALL

10505 CSSM_RACF_PROFILE_READ_FAILURE

290 z/OS OCSF Application Programming

Appendix B. Accessibility

Accessible publications for this product are offered through the z/OS® Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM® Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1999, 2013 291

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

292 z/OS OCSF Application Programming

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix B. Accessibility 293

294 z/OS OCSF Application Programming

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1999, 2013 295

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS™, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

296 z/OS OCSF Application Programming

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).

Notices 297

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

298 z/OS OCSF Application Programming

Glossary

This glossary defines technical terms and
abbreviations used in Open Cryptographic
Services Facility information. If you do not find
the term you are looking for, refer to the index of
the appropriate OCSF manual or view IBM
Glossary of Computing Terms, located at:

http://www.ibm.com/ibm/terminology

Asymmetric algorithms
Cryptographic algorithms, where one key
is used to encrypt and a second key is
used to decrypt. They are often called
public-key algorithms. One key is called
the public key, and the other is called the
private key or secret key. RSA
(Rivest-Shamir-Adelman) is the most
commonly used public-key algorithm. It
can be used for encryption and for
signing.

certificate
See Digital certificate.

certificate authority
An entity that guarantees or sponsors a
certificate. For example, a credit card
company signs a cardholder's certificate to
assure that the cardholder is who he or
she claims to be. The credit card company
is a Certificate Authority (CA). CAs issue,
verify, and revoke certificates.

certificate chain
The hierarchical chain of all the other
certificates used to sign the current
certificate. This includes the CA who
signs the certificate, the CA who signed
that CA's certificate, and so on. There is
no limit to the depth of the certificate
chain.

certificate signing
The CA can sign certificates it issues or
co-sign certificates issued by another CA.
In a general signing model, an object
signs an arbitrary set of one or more
objects. Hence, any number of signers can
attest to an arbitrary set of objects. The

arbitrary objects could be, for example,
pieces of information for libraries of
executable code.

certificate validity date
A start date and a stop date for the
validity of the certificate. If a certificate
expires, the CA may issue a new
certificate.

cryptographic algorithm
A method or defined mathematical
process for implementing a cryptography
operation. A cryptographic algorithm may
specify the procedure for encrypting and
decrypting a byte stream, digitally signing
an object, computing the hash of an
object, generating a random number, etc.
OCSF accommodates Data Encryption
Standard (DES), RC2, RC4, International
Data Encryption Algorithm (IDEA), and
other encryption algorithms.

cryptographic service provier
Cryptographic Service Providers (CSPs)
are modules that provide secure key
storage and cryptographic functions. The
modules may be software only or
hardware with software drivers. The
cryptographic functions provided may
include:
v Bulk encryption and decryption
v Digital signing
v Cryptographic hash
v Random number generation
v Key exchange

cryptography
The science for keeping data secure.
Cryptography provides the ability to store
information or to communicate between
parties in such a way that prevents other
non-involved parties from understanding
the stored information or accessing and
understanding the communication. The
encryption process takes understandable
text and transforms it into an
unintelligible piece of data (called
ciphertext); the decryption process
restores the understandable text from the
unintelligible data. Both involve a
mathematical formula or algorithm and a
secret sequence of data called a key.

© Copyright IBM Corp. 1999, 2013 299

http://www.ibm.com/software/globalization/terminology/

Cryptographic services provide
confidentiality (keeping data secret),
integrity (preventing data from being
modified), authentication (proving the
identity of a resource or a user), and
non-repudiation (providing proof that a
message or transaction was send and/or
received). There are two types of
cryptography:

In shared/secret key (symmetric)
cryptography there is only one key that is
a shared secret between the two
communicating parties. The same key is
used for encryption and decryption.

In public key (asymmetric) cryptography
different keys are used for encryption and
decryption. A party has two keys: a
public key and a private key. The two
keys are mathematically related, but it is
virtually impossible to derive the private
key from the public key. A message that is
encrypted with someone's public key
(obtained from some public directory) can
only be decrypted with the associated
private key. Alternately, the private key
can be used to "sign" the information; the
public key can be used as verification of
the source of the information.

cryptoki
Short for cryptographic token interface.
See Token.

data encryption standard
In computer security, the National
Institute of Standards and Technology
(NIST) Data Encryption Standard (DES),
adopted by the U.S. Government as
Federal Information Processing Standard
(FIPS) Publication 46, which allows only
hardware implementations of the data
encryption algorithm.

digital certificate
The binding of some identification to a
public key in a particular domain, as
attested to directly or indirectly by the
digital signature of the owner of that
domain. A digital certificate is an
unforgettable credential in cyberspace.
The certificate is issued by a trusted
authority, covered by that party's digital
signature. The certificate may attest to the
certificate holder's identity, or may
authorize certain actions by the certificate

holder. A certificate may include multiple
signatures and may attest to multiple
objects or multiple actions.

digital signature
A data block that was created by applying
a cryptographic signing algorithm to
some other data using a secret key. Digital
signatures may be used to:
v Authenticate the source of a message,

data, or information
v Verify that the contents of a message

has not been modified since it was
signed by the sender

v Verify that a public key belongs to a
particular person

Typical digital signing algorithms include
MD5 with RSA encryption, and DSS, the
proposed Digital Signature Standard
defined as part of the U.S. Government
Capstone project.

hash algorithm
A cryptographic algorithm used to hash a
variable-size input stream into a unique,
fixed-sized output value. Hashing is
typically used in digital signing
algorithms. Example hash algorithms
include MD and MD2 from RSA Data
Security. MD5, also from RSA Data
Security, hashes a variable-size input
stream into a 128-bit output value. SHA, a
Secure Hash Algorithm published by the
U.S. Government, produces a 160-bit hash
value from a variable-size input stream.

leaf certificate
The certificate in a certificate chain that
has not been used to sign another
certificate in that chain. The leaf certificate
is signed directly or transitively by all
other certificates in the chain.

message digest
The digital fingerprint of an input stream.
A cryptographic hash function is applied
to an input message arbitrary length and
returns a fixed-size output, which is
called the digest value.

300 z/OS OCSF Application Programming

Open Cryptographic Services Facility (OCSF)
Framework

Open Cryptographic Services Facility
(OCSF) Framework. The Open
Cryptographic Services Facility (OCSF)
framework defines four key service
components:
v Cryptographic Module Manager
v Trust Policy Module Manager
v Certificate Library Module Manager
v Data Storage Library Module Manager

The OCSF binds together all the security
services required by applications. In
particular, it facilitates linking digital
certificates to cryptographic actions and
trust protocols.

owned certificate
A certificate whose associated secret or
private key resides in a local
Cryptographic Service Provider (CSP).
Digital-signing algorithms require using
owned certificates when signing data for
purposes of authentication and
non-repudiation. A system may use
certificates it does not own for purposes
other than signing.

private key
The cryptographic key is used to decipher
messages in public-key cryptography. This
key is kept secret by its owner.

public key
The cryptographic key is used to encrypt
messages in public-key cryptography. The
public key is available to multiple users
(i.e., the public).

random number generator
A function that generates
cryptographically strong random numbers
that cannot be easily guessed by an
attacker. Random numbers are often used
to generate session keys.

root certificate
The prime certificate, such as the official
certificate of a corporation or government
entity. The root certificate is positioned at
the top of the certificate hierarchy in its
domain, and it guarantees the other
certificates in its certificate chain. Each
Certificate Authority (CA) has a
self-signed root certificate. The root

certificate's public key is the foundation
of signature verification in its domain.

S/MIME
Secure/Multipurpose Internet Mail
Extensions (S/MIME) is a protocol that
adds digital signatures and encryption to
Internet MIME messages. MIME is the
official proposed standard format for
extended Internet electronic mail. Internet
e-mail messages consist of two parts, the
header and the body. The header forms a
collection of field/value pairs structured
to provide information essential for the
transmission of the message. The body is
normally unstructured unless the e-mail is
in MIME format. MIME defines how the
body of an e-mail message is structured.
The MIME format permits e-mail to
include enhanced text, graphics, audio,
and more in a standardized manner via
MIME-compliant mail systems. However,
MIME itself does not provide any security
services.

The purpose of S/MIME is to define such
services, following the syntax given in
PKCS #7 for digital signatures and
encryption. The MIME body carries a
PKCS #7 message, which itself is the
result of cryptographic processing on
other MIME body parts.

secure electronic transaction
A mechanism for securely and
automatically routing payment
information among users, merchants, and
their banks. Secure Electronic Transaction
(SET) is a protocol for securing bankcard
transactions on the Internet or other open
networks using cryptographic services.
SET is a specification designed to utilize
technology for authenticating parties
involved in payment card purchases on
any type of on-line network, including the
Internet. SET was developed by Visa and
MasterCard, with participation from
leading technology companies, including
Microsoft, IBM, Netscape, SAIC, GTE,
RSA, Terisa Systems, and VeriSign. By
using sophisticated cryptographic
techniques, SET will make cyberspace a
safer place for conducting business and is
expected to boost consumer confidence in
electronic commerce. SET focuses on
maintaining confidentiality of

Glossary 301

information, ensuring message integrity,
and authenticating the parties involved in
a transaction.

security context
A control structure that retains state
information shared between a CSP and
the application agent requesting service
from the CSP. Only one context can be
active for an application at any given
time, but the application is free to switch
among contexts at will, or as required. A
security context specifies CSP and
application-specific values, such as
required key length and desired hash
functions.

security-relevant event
An event where a CSP-provided function
is performed, a security module is loaded,
or a breach of system security is detected.

session key
A cryptographic key used to encrypt and
decrypt data. The key is shared by two or
more communicating parties, who use the
key to ensure privacy of the exchanged
data.

signature
See Digital signature.

signature chain
The hierarchical chain of signers, from the
root certificate to the leaf certificate, in a
certificate chain.

symmetric algorithm
Cryptographic algorithms that use a
single secret key for encryption and
decryption. Both the sender and receiver
must know the secret key. Well-known
symmetric functions include Data
Encryption Standard (DES) and
International Data Encryption Algorithm
(IDEA). The U.S. Government endorsed
DES as a standard in 1977. It is an
encryption block cipher that operates on
64-bit blocks with a 56-bit key. It is
designed to be implemented in hardware,
and works well for bulk encryption.
IDEA, one of the best known public
algorithms, uses a 128-bit key.

token The logical view of a cryptographic
device, as defined by a CSP's interface. A
token can be hardware, a physical object,
or software. A token contains information

about its owner in digital form, and about
the services it provides for
electronic-commerce and other
communication applications. A token is a
secure device. It may provide a limited or
a broad range of cryptographic functions.
Examples of hardware tokens are smart
cards and Personal Computer Memory
Card International Association (PCMCIA)
cards.

verification
The process of comparing two message
digests. One message digest is generated
by the message sender and included in
the message. The message recipient
computes the digest again. If the message
digests are exactly the same, it shows or
proves there was no tampering of the
message contents by a third party
(between the sender and the receiver).

web of trust
A trust network among people who know
and communicate with each other. Digital
certificates are used to represent entities
in the web of trust. Any pair of entities
can determine the extent of trust between
the two, based on their relationship in the
web. Based on the trust level, secret keys
may be shared and used to encrypt and
decrypt all messages exchanged between
the two parties. Encrypted exchanges are
private, trusted communications.

302 z/OS OCSF Application Programming

Index

A
about this book xiii
accessibility 291

contact IBM 291
features 291

APF authorization 3
API

core services 83
cryptographic services 19
data storage library services 27, 231
trust policy 24
trust policy services 191

API (certificate library)
CSSM_CL_CertAbortQuery 214
CSSM_CL_CertCreateTemplate 214
CSSM_CL_CertDescribeFormat 215
CSSM_CL_CertExport 216
CSSM_CL_CertGetAllFields 216
CSSM_CL_CertGetFirstFieldValue 217
CSSM_CL_CertGetKeyInfo 218
CSSM_CL_CertGetNextFieldValue 218
CSSM_CL_CertImport 219
CSSM_CL_CertSign 220
CSSM_CL_CertVerify 220
CSSM_CL_CRLAbortQuery 221
CSSM_CL_CrlAddCert 222
CSSM_CL_CrlCreateTemplate 223
CSSM_CL_CrlDescribeFormat 224
CSSM_CL_CrlGetFirstFieldValue 224
CSSM_CL_CrlGetNextFieldValue 225
CSSM_CL_CrlRemoveCert 226
CSSM_CL_CrlSetFields 226
CSSM_CL_CrlSign 227
CSSM_CL_CrlVerify 228
CSSM_CL_IsCertInCrl 229
CSSM_CL_PassThrough 229

API (CSP)
CSSM_CSP_ChangeLoginPassword 141
CSSM_CSP_CreateAsymmetricContext 128
CSSM_CSP_CreateDeriveKeyContext 130
CSSM_CSP_CreateDigestContext 131
CSSM_CSP_CreateKeyGenContext 132
CSSM_CSP_CreateMacContext 133
CSSM_CSP_CreatePassThroughContext 134
CSSM_CSP_CreateRandomGenContext 135
CSSM_CSP_CreateSignatureContext 136
CSSM_CSP_CreateSymmetricContext 137
CSSM_CSP_Login 142
CSSM_CSP_Logout 143
CSSM_CSP_PassThrough 173
CSSM_DecryptData 143
CSSM_DecryptDataFinal 144
CSSM_DecryptDataInit 145
CSSM_DecryptDataUpdate 146
CSSM_DeleteContext 138
CSSM_DeriveKey 147
CSSM_DigestData 148
CSSM_DigestDataClone 149
CSSM_DigestDataFinal 150
CSSM_DigestDataInit 150
CSSM_DigestDataUpdate 151

API (CSP) (continued)
CSSM_EncryptData 151
CSSM_EncryptDataFinal 153
CSSM_EncryptDataInit 153
CSSM_EncryptDataUpdate 154
CSSM_FreeContext 139
CSSM_GenerateAlgorithmParams 155
CSSM_GenerateKey 156
CSSM_GenerateKeyPair 157
CSSM_GenerateMac 158
CSSM_GenerateMacFinal 159
CSSM_GenerateMacInit 160
CSSM_GenerateMacUpdate 160
CSSM_GenerateRandom 161
CSSM_GetContext 139
CSSM_GetContextAttribute 140
CSSM_QueryKeySizeInBits 162
CSSM_QuerySize 162
CSSM_SignData 163
CSSM_SignDataFinal 164
CSSM_SignDataInit 165
CSSM_SignDataUpdate 165
CSSM_UnwrapKey 166
CSSM_UpdateContextAttribute 141
CSSM_VerifyData 167
CSSM_VerifyDataFinal 168
CSSM_VerifyDataInit 168
CSSM_VerifyDataUpdate 169
CSSM_VerifyMac 169
CSSM_VerifyMacFinal 170
CSSM_VerifyMacInit 171
CSSM_VerifyMacUpdate 171
CSSM_WrapKey 172

API (data storage library)
CSSM_DL_AbortQuery 252
CSSM_DL_Authenticate 244
CSSM_DL_DataDelete 253
CSSM_DL_DataGetFirst 254
CSSM_DL_DataGetNext 255
CSSM_DL_DataInsert 256
CSSM_DL_DbClose 245
CSSM_DL_DbCreate 245
CSSM_DL_DbDelete 246
CSSM_DL_DbExport 247
CSSM_DL_DbGetRecordParsingFunctions 248
CSSM_DL_DbImport 249
CSSM_DL_DbOpen 250
CSSM_DL_DbSetRecordParsingFunctions 251
CSSM_DL_FreeUniqueRecord 257
CSSM_DL_GetDbNameFromHandle 252
CSSM_DL_PassThrough 258

API (error handling)
CSSM_ClearError 262
CSSM_CompareGuids 262
CSSM_GetError 263
CSSM_SetError 263

API (privilege mechanism)
CSSM_CheckCssmExemption 104
CSSM_QueryModulePrivilege 104
CSSM_RequestCssmExemption 105

© Copyright IBM Corp. 1999, 2013 303

APIs for core services
CSSM_FreeInfo 92
CSSM_GetInfo 93
CSSM_Init 93

application memory
functions 265

applications
building OCSF 64
CSSM_Init 61
developing security 61
file_encrypt sample 65
memory management 61
multi-threaded 64
running OCSF 65
writing OCSF 61

assistive technologies 291
attach.c file 75
attaching

service provider 62
service provider modules 11

authorization
APF 3

B
building OCSF applications 64

C
calls

OCSF API 66
CCA cryptographic module 41
CDS.CSSM 2
CDS.CSSM.CRYPTO 2
CDS.CSSM.DATALIB 2
CDSA (Common Data Security Architecture) xiii
certificate library 49, 207
certificate library modules 30
certificate library services

description 207
extensibility functions 229
operations 214
revocation list operations 221

certificate operations 214
certificate revocation list operations 221
CL

errors 279
CL (certificate library) 207
CL data structures 207
command

permit 4
Common Data Security Architecture (CDSA) xiii
configuring

installation script 1
installation verification procedure (IVP) 1
security authorizations 1

context operations
key recovery 179

conventions xv
core services

API 83
data structures 85

cryptographic context operations 128
cryptographic module manager 19
cryptographic operations 143
cryptographic service providers (CSPs) 29, 107

cryptographic services
API 19

cryptographic sessions and login 141
CSP

extensibility functions 173
CSP (cryptographic service providers) 107
CSSM_ALL_SUBSERVICES 85
CSSM_API_MEMORY_FUNCS 265
CSSM_API_MEMORY_FUNCS_PTR 85
CSSM_BOOL 86, 261
CSSM_CA_SERVICES 208
CSSM_CALLBACK 109
CSSM_CC_HANDLE 109
CSSM_CERT_ENCODING 208
CSSM_CERT_TYPE 208
CSSM_CERTGROUP 175, 208
CSSM_CheckCssmExemption 104
CSSM_CL_CA_CERT_CLASSINFO 210
CSSM_CL_CA_PRODUCTINFO 210
CSSM_CL_CertAbortQuery 214
CSSM_CL_CertCreateTemplate 214
CSSM_CL_CertDescribeFormat 215
CSSM_CL_CertExport 216
CSSM_CL_CertGetAllFields 216
CSSM_CL_CertGetFirstFieldValue 217
CSSM_CL_CertGetKeyInfo 218
CSSM_CL_CertGetNextFieldValue 218
CSSM_CL_CertImport 219
CSSM_CL_CertSign 220
CSSM_CL_CertVerify 220
CSSM_CL_CRLAbortQuery 221
CSSM_CL_CrlAddCert 222
CSSM_CL_CrlCreateTemplate 223
CSSM_CL_CrlDescribeFormat 224
CSSM_CL_CrlGetFirstFieldValue 224
CSSM_CL_CrlGetNextFieldValue 225
CSSM_CL_CrlRemoveCert 226
CSSM_CL_CrlSetFields 226
CSSM_CL_CrlSign 227
CSSM_CL_CrlVerify 228
CSSM_CL_ENCODER_PRODUCTINFO 211
CSSM_CL_HANDLE 211
CSSM_CL_IsCertInCrl 229
CSSM_CL_PassThrough 229
CSSM_CL_WRAPPEDPRODUCTINFO 213
CSSM_ClearError 262
CSSM_CLSUBSERVICE 211
CSSM_CompareGuids 262
CSSM_CONTEXT 109
CSSM_CONTEXT_ATTRIBUTE 114, 175
CSSM_CONTEXT_INFO 116
CSSM_COUNTRY_ORIGIN 86
CSSM_CRYPTO_DATA 116
CSSM_CRYPTO_TYPE 86
CSSM_CSP_CAPABILITY 116
CSSM_CSP_ChangeLoginPassword 141
CSSM_CSP_CreateAsymmetricContext 128
CSSM_CSP_CreateDeriveKeyContext 130
CSSM_CSP_CreateDigestContext 131
CSSM_CSP_CreateKeyGenContext 132
CSSM_CSP_CreateMacContext 133
CSSM_CSP_CreatePassThroughContext 134
CSSM_CSP_CreateRandomGenContext 135
CSSM_CSP_CreateSignatureContext 136
CSSM_CSP_CreateSymmetricContext 137
CSSM_CSP_FLAGS 116
CSSM_CSP_HANDLE 116

304 z/OS OCSF Application Programming

CSSM_CSP_Login 142
CSSM_CSP_Logout 143
CSSM_CSP_MANIFEST 86
CSSM_CSP_PassThrough 173
CSSM_CSP_SESSION_TYPE 117
CSSM_CSP_WRAPPEDPRODUCTINFO 118
CSSM_CSPSUBSERVICE 117
CSSM_CSPTYPE 118
CSSM_CSSMINFO 86
CSSM_DATA 86, 119
CSSM_DATE 119
CSSM_DB_ACCESS_TYPE 231
CSSM_DB_ATTRIBUTE_DATA 233
CSSM_DB_ATTRIBUTE_INFO 233
CSSM_DB_ATTRIBUTE_NAME_FORMAT 233
CSSM_DB_CERTRECORD_SEMANTICS 234
CSSM_DB_CONJUNCTIVE 234
CSSM_DB_HANDLE 234
CSSM_DB_INDEX_INFO 234
CSSM_DB_INDEX_TYPE 235
CSSM_DB_INDEXED_DATA_LOCATION 234
CSSM_DB_OPERATOR 236
CSSM_DB_PARSING_MODULE_INFO 236
CSSM_DB_RECORD_ATTRIBUTE_DATA 236
CSSM_DB_RECORD_ATTRIBUTE_INFO 237
CSSM_DB_RECORD_INDEX_INFO 237
CSSM_DB_RECORD_PARSING_FNTABLE 237
CSSM_DB_RECORDTYPE 238
CSSM_DB_UNIQUE_RECORD 238
CSSM_DBINFO 235
CSSM_DecryptData 143
CSSM_DecryptDataFinal 144
CSSM_DecryptDataInit 145
CSSM_DecryptDataUpdate 146
CSSM_DeleteContext 138
CSSM_DeriveKey 147
CSSM_DigestData 148
CSSM_DigestDataClone 149
CSSM_DigestDataFinal 150
CSSM_DigestDataInit 150
CSSM_DigestDataUpdate 151
CSSM_DL_AbortQuery 252
CSSM_DL_Authenticate 244
CSSM_DL_CUSTOM_ATTRIBUTES 239
CSSM_DL_DataDelete 253
CSSM_DL_DataGetFirst 254
CSSM_DL_DataGetNext 255
CSSM_DL_DataInsert 256
CSSM_DL_DB_HANDLE 239
CSSM_DL_DB_LIST 239
CSSM_DL_DbClose 245
CSSM_DL_DbCreate 245
CSSM_DL_DbDelete 246
CSSM_DL_DbExport 247
CSSM_DL_DbGetRecordParsingFunctions 248
CSSM_DL_DbImport 249
CSSM_DL_DbOpen 250
CSSM_DL_DbSetRecordParsingFunctions 251
CSSM_DL_FFS_ATTRIBUTES 239
CSSM_DL_FreeUniqueRecord 257
CSSM_DL_GetDbNameFromHandle 252
CSSM_DL_HANDLE 239
CSSM_DL_LDAP_ATTRIBUTES 239
CSSM_DL_ODBC_ATTRIBUTES 240
CSSM_DL_PassThrough 258
CSSM_DL_PKCS11_ATTRIBUTES 240
CSSM_DL_WRAPPEDPRODUCTINFO 242

CSSM_DLSUBSERVICE 240
CSSM_DLTYPE 242
CSSM_EncryptData 151
CSSM_EncryptDataFinal 153
CSSM_EncryptDataInit 153
CSSM_EncryptDataUpdate 154
CSSM_ERROR 261
CSSM_EVENT_TYPE 87
CSSM_EXEMPTION_MASK 103
CSSM_FIELD 213
CSSM_FreeContext 139
CSSM_FreeInfo 92
CSSM_FreeList 100
CSSM_FreeModuleInfo 94
CSSM_GenerateAlgorithmParams 155
CSSM_GenerateKey 156
CSSM_GenerateKeyPair 157
CSSM_GenerateMac 158
CSSM_GenerateMacFinal 159
CSSM_GenerateMacInit 160
CSSM_GenerateMacUpdate 160
CSSM_GenerateRandom 161
CSSM_GetAPIMemoryFunctions 100
CSSM_GetContext 139
CSSM_GetContextAttribute 140
CSSM_GetCSSMRegistryPath 94
CSSM_GetError 263
CSSM_GetGUIDUsage 94
CSSM_GetHandleUsage 95
CSSM_GetInfo 93
CSSM_GetModuleGUIDFromHandle 95
CSSM_GetModuleInfo 96
CSSM_GetModuleLocation 97
CSSM_GUID 87
CSSM_HANDLE 87
CSSM_HARDWARERECSPSUBSERVICEINFO 119
CSSM_HEADERVISION 122
CSSM_INFO_LEVEL 87
CSSM_Init 61, 93
CSSM_KEY 122
CSSM_KEY_SIZE 126
CSSM_KEY_TYPE 126
CSSM_KEYHEADER 123
CSSM_KR_CreateRecoveryEnablementContext 179
CSSM_KR_CreateRecoveryRegistrationContext 179
CSSM_KR_CreateRecoveryRequestContext 180
CSSM_KR_GenerateRecoveryFields 183
CSSM_KR_GetPolicyInfo 180
CSSM_KR_GetRecoveredObject 185
CSSM_KR_LIST_ITEM 176
CSSM_KR_NAME 176
CSSM_KR_ProcessRecoveryFields 184
CSSM_KR_PROFILE 176
CSSM_KR_QueryPolicyInfo 188
CSSM_KR_RecoveryRequest 186
CSSM_KR_RecoveryRequestAbort 187
CSSM_KR_RecoveryRetrieve 187
CSSM_KR_RegistrationRequest 181
CSSM_KR_RegistrationRetrieve 182
CSSM_KR_SetEnterpriseRecoveryPolicy 178
CSSM_KR_WRAPPEDPRODUCTINFO 177
CSSM_KRSP_HANDLE 177
CSSM_KRSPSUBSERVICE 177
CSSM_LIST 88
CSSM_LIST_ITEM 88
CSSM_ListModules 97
CSSM_MEMORY_FUNCS 265

Index 305

CSSM_MEMORY_FUNCS (continued)
example 266

CSSM_MODULE_FLAGS 88
CSSM_MODULE_HANDLE 88
CSSM_MODULE_INFO 88
CSSM_ModuleAttach 98
CSSM_ModuleDetach 99
CSSM_NAME_LIST 243
CSSM_NOTIFY_CALLBACK 89, 126
CSSM_OID 213
CSSM_PADDING 127
CSSM_POLICY_INFO 177
CSSM_QUERY 243
CSSM_QUERY_LIMITS 243
CSSM_QUERY_SIZE_DATA 127
CSSM_QueryKeySizeInBits 162
CSSM_QueryModulePrivilege 104
CSSM_QuerySize 162
CSSM_RANGE 127
CSSM_RequestCssmExemption 105
CSSM_RETURN 89, 261
CSSM_REVOKE_REASON 193
CSSM_SELECTION_PREDICATE 244
CSSM_SERVICE_FLAGS 90
CSSM_SERVICE_INFO 90
CSSM_SERVICE_MASK 91
CSSM_SetError 263
CSSM_SignData 163
CSSM_SignDataFinal 164
CSSM_SignDataInit 165
CSSM_SignDataUpdate 165
CSSM_SOFTWARECSPSUBSERVICEINFO 127
CSSM_TP_ACTION 193
CSSM_TP_ApplyCrlToDb 195
CSSM_TP_CertGoupConstruct 200
CSSM_TP_CertGroupPrune 201
CSSM_TP_CertGroupVerify 202
CSSM_TP_CertRevoke 196
CSSM_TP_CertSign 197
CSSM_TP_CrlSign 198
CSSM_TP_CrlVerify 199
CSSM_TP_HANDLE 193
CSSM_TP_PassThrough 205
CSSM_TP_STOP_ON 193
CSSM_TP_WRAPPEDPRODUCTINFO 194
CSSM_TPSUBSERVICE 193
CSSM_UnwrapKey 166
CSSM_UpdateContextAttribute 141
CSSM_USER_AUTHENTICATION 91
CSSM_USER_AUTHENTICATION_MECHANISM 92
CSSM_VerifyData 167
CSSM_VerifyDataFinal 168
CSSM_VerifyDataInit 168
CSSM_VerifyDataUpdate 169
CSSM_VerifyMac 169
CSSM_VerifyMacFinal 170
CSSM_VerifyMacInit 171
CSSM_VerifyMacUpdate 171
CSSM_VERSION 92
CSSM_WrapKey 172

D
daemon 4
data library 53
data record operations 252

data storage library
data record operations 252
data storage functions 244
data structures 231
extensibility functions 257
services API 27, 231

data storage library (DL) 231
data storage library (DL) module 30
data storage library module manager 27
data structure

OCSF privilege mechanism 103
data structures

core services 85
CSP 109

data structures (CL) 207
CSSM_CA_SERVICES 208
CSSM_CERT_ENCODING 208
CSSM_CERT_TYPE 208
CSSM_CERTGROUP 208
CSSM_CL_CA_CERT_CLASSINFO 210
CSSM_CL_CA_PRODUCTINFO 210
CSSM_CL_ENCODER_PRODUCTINFO 211
CSSM_CL_HANDLE 211
CSSM_CL_WRAPPEDPRODUCTINFO 213
CSSM_CLSUBSERVICE 211
CSSM_FIELD 213
CSSM_OID 213

data structures (CSP)
CSSM_CALLBACK 109
CSSM_CC_HANDLE 109
CSSM_CONTEXT 109
CSSM_CONTEXT_ATTRIBUTE 114
CSSM_CONTEXT_INFO 116
CSSM_CRYPTO_DATA 116
CSSM_CSP_CAPABILITY 116
CSSM_CSP_FLAGS 116
CSSM_CSP_HANDLE 116
CSSM_CSP_SESSION_TYPE 117
CSSM_CSP_WRAPPEDPRODUCTINFO 118
CSSM_CSPSUBSERVICE 117
CSSM_CSPTYPE 118
CSSM_DATA 119
CSSM_DATE 119
CSSM_HARDWARERECSPSUBSERVICEINFO 119
CSSM_KEY 122
CSSM_KEY_SIZE 126
CSSM_KEY_TYPE 126
CSSM_KEYHEADER 123
CSSM_NOTIFY_CALLBACK 126
CSSM_PADDING 127
CSSM_QUERY_SIZE_DATA 127
CSSM_RANGE 127
CSSM_SOFTWARECSPSUBSERVICEINFO 127

data structures (data storage library)
CSSM_DB_ACCESS_TYPE 231
CSSM_DB_ATTRIBUTE_DATA 233
CSSM_DB_ATTRIBUTE_INFO 233
CSSM_DB_ATTRIBUTE_NAME_FORMAT 233
CSSM_DB_CERTRECORD_SEMANTICS 234
CSSM_DB_CONJUNCTIVE 234
CSSM_DB_HANDLE 234
CSSM_DB_INDEX_INFO 234
CSSM_DB_INDEX_TYPE 235
CSSM_DB_INDEXED_DATA_LOCATION 234
CSSM_DB_OPERATOR 236
CSSM_DB_PARSING_MODULE_INFO 236
CSSM_DB_RECORD_ATTRIBUTE_DATA 236

306 z/OS OCSF Application Programming

data structures (data storage library) (continued)
CSSM_DB_RECORD_ATTRIBUTE_INFO 237
CSSM_DB_RECORD_INDEX_INFO 237
CSSM_DB_RECORD_PARSING_FNTABLE 237
CSSM_DB_RECORDTYPE 238
CSSM_DB_UNIQUE_RECORD 238
CSSM_DBINFO 235
CSSM_DL_CUSTOM_ATTRIBUTES 239
CSSM_DL_DB_HANDLE 239
CSSM_DL_DB_LIST 239
CSSM_DL_FFS_ATTRIBUTES 239
CSSM_DL_HANDLE 239
CSSM_DL_LDAP_ATTRIBUTES 239
CSSM_DL_ODBC_ATTRIBUTES 240
CSSM_DL_PKCS11_ATTRIBUTES 240
CSSM_DL_WRAPPEDPRODUCTINFO 242
CSSM_DLSUBSERVICE 240
CSSM_DLTYPE 242
CSSM_NAME_LIST 243
CSSM_QUERY 243
CSSM_QUERY_LIMITS 243
CSSM_SELECTION_PREDICATE 244

data structures (error handling)
CSSM_BOOL 261
CSSM_ERROR 261
CSSM_RETURN 261

data structures (key recovery)
CSSM_CERTGROUP 175
CSSM_CONTEXT_ATTRIBUTE 175
CSSM_KR_LIST_ITEM 176
CSSM_KR_NAME 176
CSSM_KR_PROFILE 176
CSSM_KR_WRAPPEDPRODUCTINFO 177
CSSM_KRSP_HANDLE 177
CSSM_KRSPSUBSERVICE 177
CSSM_POLICY_INFO 177

data structures (trust policy)
CSSM_REVOKE_REASON 193
CSSM_TP_ACTION 193
CSSM_TP_HANDLE 193
CSSM_TP_STOP_ON 193
CSSM_TP_WRAPPEDPRODUCTINFO 194
CSSM_TPSUBSERVICE 193

data structures CSP)
CSSM_HEADERVISION 122

data structures for core services
CSSM_ALL_SUBSERVICES 85
CSSM_API_MEMORY_FUNCS_PTR 85
CSSM_BOOL 86
CSSM_COUNTRY_ORIGIN 86
CSSM_CRYPTO_TYPE 86
CSSM_CSP_MANIFEST 86
CSSM_CSSMINFO 86
CSSM_DATA 86
CSSM_EVENT_TYPE 87
CSSM_GUID 87
CSSM_HANDLE 87
CSSM_INFO_LEVEL 87
CSSM_LIST 88
CSSM_LIST_ITEM 88
CSSM_MODULE_FLAGS 88
CSSM_MODULE_HANDLE 88
CSSM_MODULE_INFO 88
CSSM_NOTIFY_CALLBACK 89
CSSM_RETURN 89
CSSM_SERVICE_FLAGS 90
CSSM_SERVICE_INFO 90

data structures for core services (continued)
CSSM_SERVICE_MASK 91
CSSM_USER_AUTHENTICATION 91
CSSM_USER_AUTHENTICATION_MECHANISM 92
CSSM_VERSION 92

data structures trust policy 193
database management system (DBMS) 231
dependencies

policy modules 21
description

certificate library services API 207
detaching

service provider modules 11
developing security

applications 61
Diffie-Hellman key exchange scenario 67
DL (data storage library) 231

errors 281

E
enablement operations

key recovery 183
encrypt.c file 78
error codes

software CSP 278
weak software CSP 278

error handling
data structures 261
functions 261
OCSF 259

error management 64
errors

CL 279
CSP 267
DL 281
KR 286
LDAP DL 283
OCSF 267
OCSF framework 287
TP 285

examples
APF authorization 3
CSSM_Memory_FUNCS 266
file_encrypt 65

extended trust policy library 47
extensibility functions

data storage library 257
trust policy 205

extensibility functions (CL) 229
extensibility functions (CSP) 173

F
file

encrypt.c 78
makefile.os390 82

file_encrypt
source code 71
structure 68

file_encrypt sample application 65
file_encrypt.h file 72
files

attach.c 75
file_encrypt 72
initialize.c 74

Index 307

files (continued)
main.c 73

finding
service providers 61

functions
application memory 265
error handling 261

G
getting

service provider information 62
glossary 299
granting

permission 4
group functions

trust policy 200
groups

using 4

H
HFS program control 3

I
implementation

OCSF policy modules 18
initialization

memory structure 266
initialize

main.c 74
initialize.c file 74
installation

problems 6
installation script

configuring 1
running 5

installation verification procedure
running 5

installation verification procedure (IVP)
configuring 1

installing
service provider modules 10

integrity verification 16
services 85

K
key recovery

context operations 179
enablement operations 183
module management operatons 177
registration operations 181
request operations 185

key recovery (API)
CSSM_KR_CreateRecoveryEnablementContext 179
CSSM_KR_CreateRecoveryRegistrationContext 179
CSSM_KR_CreateRecoveryRequestContext 180
CSSM_KR_GenerateRecoveryFields 183
CSSM_KR_GetPolicyInfo 180
CSSM_KR_GetRecoveredObject 185
CSSM_KR_ProcessRecoveryFields 184
CSSM_KR_QueryPolicyInfo 188
CSSM_KR_RecoveryRequest 186

key recovery (API) (continued)
CSSM_KR_RecoveryRequestAbort 187
CSSM_KR_RecoveryRetrieve 187
CSSM_KR_RegistrationRequest 181
CSSM_KR_RegistrationRetrieve 182

key recovery (data structures) 175
key recovery services 175
keyboard

navigation 291
PF keys 291
shortcut keys 291

KR
errors 286

L
LDAP data library 56
libraries

OCSF 65
listing

service providers 61

M
main.c

files 73
makefile.os390 file 82
management

error 64
managing calls between

service provider modules 12
mapping error codes

OCSF to ICSF 274
memory management 13, 61
memory management support 84
memory structure

initialization 266
module management 9

services 83
module management functions

CSSM_GetHandleUsage 95
module management operations

key recovery 177
module managment functions

CSSM_FreeModuleInfo 94
CSSM_GetGUIDUsage 94
CSSM_GetModuleGUIDFromHandle 95
CSSM_GetModuleInfo 96
CSSM_GetModuleLocation 97
CSSM_GetRegistryPath 94
CSSM_ListModules 97
CSSM_ModuleAttach 98
CSSM_ModuleDetach 99

multi-threaded applications 64

N
navigation

keyboard 291
Notices 295

O
OCSF xiii

API calls 66

308 z/OS OCSF Application Programming

OCSF (continued)
error handling 259
errors 267
libraries 65
policy modules 17
privilege mechanism 17, 103

OCSF architecture xiii
OCSF framework 9
OCSF framework errors 287
OCSF service provider modules 31
OCSF user identities 3
Open Cryptographic Services Facility xiii

API xiii
SPI xiii

Open Cryptographic Services Facility (OCSF) 9
operations

certificate library services 214
trust policy 194

P
permission

granting 4
permit command 4
policy modules

dependencies 21
OCSF 17

privilege mechanism
OCSF 17, 103

problems
installation 6

program control
HFS 3
RACF 2

R
RACF facility

CDS.CSSM 2
CDS.CSSM.DATALIB 2

RACF facility class profiles 2
RACF program control 2
refreshing

security server data 4
registration operations

key recovery 181
request operations

key recovery 185
revocation list operations

certificate library services 221
running

installation script 5
installation verification procedure 5
OCSF applications 65

running installation verification procedure steps 5

S
security

developing applications 61
security administration 1
security authorizations

configuring 1
setting up 1

security context management 13, 62, 85

security server data
refreshing 4

security services
certificate libraries xiii
cryptographic services xiii
data storage libraries xiii
trust policy libraries xiii

sending comments to IBM xvii
service provider

attaching 62
functions 62

service provider information 62
service provider module

data storage (DL) 29
OCSF service provider 29
trust policy 29

service provider modules
attaching 11
certificate library (CL) 29
cryptographic service provider (CSP) 29
detaching 11
installing 10
managing calls between 12
uninstalling 10

service providers
finding 61
listing 61

services
integrity verification 85
module management 83

setting up
security authorizations 1

shortcut keys 291
software cryptographic service provider 32, 36
software CSP

error codes 278
source code

file_encrypt 71
standard trust policy library 46
steps

running installation script 5
running installation verification procedure 5

structure
file_encrypt 68

Summary of changes xix
support

memory management 84
supporting

legacy CSP 19
memory management 84

T
TP

errors 285
trademarks 297
trust policy 191

API 24
data structures 193
extensibility functions 205
group functions 200
operations 194

trust policy (TP) modules 30
trust policy module manager 23
trust policy services (API) 191

CSSM_TP_ApplyCrlToDb 195
CSSM_TP_CertGoupConstruct 200

Index 309

trust policy services (API) (continued)
CSSM_TP_CertGroupPrune 201
CSSM_TP_CertGroupVerify 202
CSSM_TP_CertRevoke 196
CSSM_TP_CertSign 197
CSSM_TP_CrlSign 198
CSSM_TP_CrlVerify 199
CSSM_TP_PassThrough 205

trust policy services(API)
CSSM_TP_STOP_ON 193
CSSM_TPSUBSERVICE 193

U
uninstalling

service provider modules 10
user identities

OSCF 3
user interface

ISPF 291
TSO/E 291

using
groups 4
OCSF policy modules 17
service provider functions 62

utility functions
CSSM_FreeList 100
CSSM_GetAPIMemoryFunctions 100

W
weak software cryptographic service provider 36, 40
weak software CSP

error codes 278
writing OCSF

applications 61

310 z/OS OCSF Application Programming

����

Product Number: 5650-ZOS

Printed in USA

SC14-7513-00

	Contents
	Figures
	Tables
	Preface
	OCSF Architecture
	Who should use this information
	Requirements
	Conventions used in this information
	Where to Find More Information
	Internet Sources

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Configuring and Getting Started
	Setting Up the Necessary Security Authorizations
	Security Administration
	RACF FACILITY Class Profiles Required by OCSF
	Program Control
	Program Control in RACF
	HFS Program Control

	APF Authorization
	OSCF User Identities and Permissions
	Granting Permission to Use OCSF Service
	Using Groups
	Refreshing z/OS Security Server Data

	Running the Installation Script
	Running the Installation Verification Procedure
	Common Problems

	Chapter 2. Open Cryptographic Services Facility Framework
	Module Management
	Installing and Uninstalling Service Provider Modules
	Listing Service Provider Modules and Services
	Attaching and Detaching Service Provider Modules
	Managing Calls Between Service Provider Modules

	Memory Management
	Security Context Management
	OCSF Security Context Changes
	Integrity Verification Services

	Chapter 3. OCSF Policy Modules
	Usage of OCSF Policy Modules
	OCSF Behavior When Only the OCSF Base is Installed
	OCSF Behavior When the OCSF Security Level 3 Feature is Installed

	Implementation of OCSF Policy Modules

	Chapter 4. Cryptographic Module Manager
	Supporting Legacy CSPs
	Cryptography Services API
	Dependencies with the Policy Modules

	Chapter 5. Trust Policy Module Manager
	Trust Policy API

	Chapter 6. Certificate Library Module Manager
	Certificate Library Services API

	Chapter 7. Data Storage Library Module Manager
	Data Storage Library Services API

	Chapter 8. Service Provider Modules
	Cryptographic Service Provider Modules
	Trust Policy Modules
	Certificate Library Modules
	Data Storage Library Module
	OCSF Service Provider Modules
	IBM Software Cryptographic Service Provider, Version 1.0
	IBM Weak Software Cryptographic Service Provider, Version 1.0
	IBM Software Cryptographic Service Provider 2, Version 1.0
	IBM Weak Software Cryptographic Service Provider 2, Version 1.0
	IBM CCA Cryptographic Module Version 1.0
	IBM Standard Trust Policy Library, Version 1.0
	IBM Extended Trust Policy Library, Version 1.0
	IBM Certificate Library, Version 1.0
	IBM Data Library, Version 1.0
	IBM LDAP Data Library, Version 1.0

	Chapter 9. Developing Security Applications
	Writing OCSF Applications
	CSSM_Init
	Memory Management
	Finding and Listing Service Providers
	Getting Service Provider Information
	Attaching a Service Provider
	Using Service Provider Functions
	Service Context Management
	Multi-threaded Applications
	Error Management

	Building OCSF Applications
	Include Files for OCSF Services
	OCSF Libraries

	Running OCSF Applications
	File_encrypt Sample Application
	OCSF API Calls
	Diffie-Hellman Key Exchange Scenario
	File_encrypt Structure
	File_encrypt Source Code
	FILE_ENCRYPT.H
	MAIN.C
	INITIALIZE.C
	ATTACH.C
	ENCRYPT.C
	MAKEFILE.OS390

	Chapter 10. Core Services API
	Module Management Services
	Memory Management Support
	Security Context Management
	Integrity Verification Services
	Data Structures for Core Services
	Basic Data Types
	CSSM_ALL_SUBSERVICES
	CSSM_API_MEMORY_FUNCS_PTR
	CSSM_BOOL
	CSSM_COUNTRY_ORIGIN
	CSSM_CRYPTO_TYPE
	CSSM_CSP_MANIFEST
	CSSM_CSSMINFO
	CSSM_DATA
	CSSM_EVENT_TYPE
	CSSM_GUID
	CSSM_HANDLE
	CSSM_INFO_LEVEL
	CSSM_LIST
	CSSM_LIST_ITEM
	CSSM_MODULE_FLAGS
	CSSM_MODULE_HANDLE
	CSSM_MODULE_INFO
	CSSM_NOTIFY_CALLBACK
	CSSM_RETURN
	CSSM_SERVICE_FLAGS
	CSSM_SERVICE_INFO
	CSSM_SERVICE_MASK
	CSSM_USER_AUTHENTICATION
	CSSM_USER_AUTHENTICATION_MECHANISM
	CSSM_VERSION

	APIs for Core Services
	CSSM_FreeInfo
	CSSM_GetInfo
	CSSM_Init

	Module Management Functions
	CSSM_FreeModuleInfo
	CSSM_GetCSSMRegistryPath
	CSSM_GetGUIDUsage
	CSSM_GetHandleUsage
	CSSM_GetModuleGUIDFromHandle
	CSSM_GetModuleInfo
	CSSM_GetModuleLocation
	CSSM_ListModules
	CSSM_ModuleAttach
	CSSM_ModuleDetach

	Utility Functions
	CSSM_FreeList
	CSSM_GetAPIMemoryFunctions

	Chapter 11. OCSF Privilege Mechanism
	Data Structures
	CSSM_EXEMPTION_MASK

	Operations
	CSSM_CheckCssmExemption
	CSSM_QueryModulePrivilege
	CSSM_RequestCssmExemption

	Chapter 12. Cryptographic Services API
	Data Structures
	CSSM_CALLBACK
	CSSM_CC_HANDLE
	CSSM_CONTEXT
	CSSM_CONTEXT_ATTRIBUTE
	CSSM_CONTEXT_INFO
	CSSM_CRYPTO_DATA
	CSSM_CSP_CAPABILITY
	CSSM_CSP_FLAGS
	CSSM_CSP_HANDLE
	CSSM_CSP_SESSION_TYPE
	CSSM_CSPSUBSERVICE
	CSSM_CSPTYPE
	CSSM_CSP_WRAPPEDPRODUCTINFO
	CSSM_DATA
	CSSM_DATE
	CSSM_HARDWARERECSPSUBSERVICEINFO
	CSSM_HEADERVISION
	CSSM_KEY
	CSSM_KEYHEADER
	CSSM_KEY_SIZE
	CSSM_KEY_TYPE
	CSSM_NOTIFY_CALLBACK
	CSSM_PADDING
	CSSM_QUERY_SIZE_DATA
	CSSM_RANGE
	CSSM_SOFTWARECSPSUBSERVICEINFO

	Cryptographic Context Operations
	CSSM_CSP_CreateAsymmetricContext
	CSSM_CSP_CreateDeriveKeyContext
	CSSM_CSP_CreateDigestContext
	CSSM_CSP_CreateKeyGenContext
	CSSM_CSP_CreateMacContext
	CSSM_CSP_CreatePassThroughContext
	CSSM_CSP_CreateRandomGenContext
	CSSM_CSP_CreateSignatureContext
	CSSM_CSP_CreateSymmetricContext
	CSSM_DeleteContext
	CSSM_FreeContext
	CSSM_GetContext
	CSSM_GetContextAttribute
	CSSM_UpdateContextAttribute

	Cryptographic Sessions and Login
	CSSM_CSP_ChangeLoginPassword
	CSSM_CSP_Login
	CSSM_CSP_Logout

	Cryptrographic Operations
	CSSM_DecryptData
	CSSM_DecryptDataFinal
	CSSM_DecryptDataInit
	CSSM_DecryptDataUpdate
	CSSM_DeriveKey
	CSSM_DigestData
	CSSM_DigestDataClone
	CSSM_DigestDataFinal
	CSSM_DigestDataInit
	CSSM_DigestDataUpdate
	CSSM_EncryptData
	CSSM_EncryptDataFinal
	CSSM_EncryptDataInit
	CSSM_EncryptDataUpdate
	CSSM_GenerateAlgorithmParams
	CSSM_GenerateKey
	CSSM_GenerateKeyPair
	CSSM_GenerateMac
	CSSM_GenerateMacFinal
	CSSM_GenerateMacInit
	CSSM_GenerateMacUpdate
	CSSM_GenerateRandom
	CSSM_QueryKeySizeInBits
	CSSM_QuerySize
	CSSM_SignData
	CSSM_SignDataFinal
	CSSM_SignDataInit
	CSSM_SignDataUpdate
	CSSM_UnwrapKey
	CSSM_VerifyData
	CSSM_VerifyDataFinal
	CSSM_VerifyDataInit
	CSSM_VerifyDataUpdate
	CSSM_VerifyMac
	CSSM_VerifyMacFinal
	CSSM_VerifyMacInit
	CSSM_VerifyMacUpdate
	CSSM_WrapKey

	Extensibility Functions
	CSSM_CSP_PassThrough

	Chapter 13. Key Recovery Services API
	Data Structures
	CSSM_CERTGROUP
	CSSM_CONTEXT_ATTRIBUTE Extensions
	CSSM_KR_LIST_ITEM
	CSSM_KR_NAME
	CSSM_KR_PROFILE
	CSSM_KRSP_HANDLE
	CSSM_KRSPSUBSERVICE
	CSSM_KR_WRAPPEDPRODUCTINFO
	CSSM_POLICY_INFO

	Key Recovery Module Management Operations
	CSSM_KR_SetEnterpriseRecoveryPolicy

	Key Recovery Context Operations
	CSSM_KR_CreateRecoveryEnablementContext
	CSSM_KR_CreateRecoveryRegistrationContext
	CSSM_KR_CreateRecoveryRequestContext
	CSSM_KR_GetPolicyInfo

	Key Recovery Registration Operations
	CSSM_KR_RegistrationRequest
	CSSM_KR_RegistrationRetrieve

	Key Recovery Enablement Operations
	CSSM_KR_GenerateRecoveryFields
	CSSM_KR_ProcessRecoveryFields

	Key Recovery Request Operations
	CSSM_KR_GetRecoveredObject
	CSSM_KR_RecoveryRequest
	CSSM_KR_RecoveryRequestAbort
	CSSM_KR_RecoveryRetrieve
	CSSM_KR_QueryPolicyInfo

	Chapter 14. Trust Policy Services API
	Data Structures
	CSSM_REVOKE_REASON
	CSSM_TP_ACTION
	CSSM_TP_HANDLE
	CSSM_TP_STOP_ON
	CSSM_TPSUBSERVICE
	CSSM_TP_WRAPPEDPRODUCTINFO

	Trust Policy Operations
	CSSM_TP_ApplyCrlToDb
	CSSM_TP_CertRevoke
	CSSM_TP_CertSign
	CSSM_TP_CrlSign
	CSSM_TP_CrlVerify

	Group Functions
	CSSM_TP_CertGoupConstruct
	CSSM_TP_CertGroupPrune
	CSSM_TP_CertGroupVerify

	Extensibility Functions
	CSSM_TP_PassThrough

	Chapter 15. Certificate Library Services API
	Data Structures
	CSSM_CA_SERVICES
	CSSM_CERT_ENCODING
	CSSM_CERTGROUP
	CSSM_CERT_TYPE
	CSSM_CL_CA_CERT_CLASSINFO
	CSSM_CL_CA_PRODUCTINFO
	CSSM_CL_ENCODER_PRODUCTINFO
	CSSM_CL_HANDLE
	CSSM_CLSUBSERVICE
	CSSM_CL_WRAPPEDPRODUCTINFO
	CSSM_FIELD
	CSSM_OID

	Certificate Operations
	CSSM_CL_CertAbortQuery
	CSSM_CL_CertCreateTemplate
	CSSM_CL_CertDescribeFormat
	CSSM_CL_CertExport
	CSSM_CL_CertGetAllFields
	CSSM_CL_CertGetFirstFieldValue
	CSSM_CL_CertGetKeyInfo
	CSSM_CL_CertGetNextFieldValue
	CSSM_CL_CertImport
	CSSM_CL_CertSign
	CSSM_CL_CertVerify

	Certificate Revocation List Operations
	CSSM_CL_CRLAbortQuery
	CSSM_CL_CrlAddCert
	CSSM_CL_CrlCreateTemplate
	CSSM_CL_CrlDescribeFormat
	CSSM_CL_CrlGetFirstFieldValue
	CSSM_CL_CrlGetNextFieldValue
	CSSM_CL_CrlRemoveCert
	CSSM_CL_CrlSetFields
	CSSM_CL_CrlSign
	CSSM_CL_CrlVerify
	CSSM_CL_IsCertInCrl

	Extensibility Functions
	CSSM_CL_PassThrough

	Chapter 16. Data Storage Library Services API
	Data Structures
	CSSM_DB_ACCESS_TYPE
	CSSM_DB_ATTRIBUTE_DATA
	CSSM_DB_ATTRIBUTE_INFO
	CSSM_DB_ATTRIBUTE_NAME_FORMAT
	CSSM_DB_CERTRECORD_SEMANTICS
	CSSM_DB_CONJUNCTIVE
	CSSM_DB_HANDLE
	CSSM_DB_INDEXED_DATA_LOCATION
	CSSM_DB_INDEX_INFO
	CSSM_DB_INDEX_TYPE
	CSSM_DBINFO
	CSSM_DB_OPERATOR
	CSSM_DB_PARSING_MODULE_INFO
	CSSM_DB_RECORD_ATTRIBUTE_DATA
	CSSM_DB_RECORD_ATTRIBUTE_INFO
	CSSM_DB_RECORD_INDEX_INFO
	CSSM_DB_RECORD_PARSING_FNTABLE
	CSSM_DB_RECORDTYPE
	CSSM_DB_UNIQUE_RECORD
	CSSM_DL_DB_HANDLE
	CSSM_DL_DB_LIST
	CSSM_CUSTOM_ATTRIBUTES
	CSSM_DL_FFS_ATTRIBUTES
	CSSM_DL_HANDLE
	CSSM_DL_LDAP_ATTRIBUTES
	CSSM_DL_ODBC_ATTRIBUTES
	CSSM_DL_PKCS11_ATTRIBUTES
	CSSM_DLSUBSERVICE
	CSSM_DLTYPE
	CSSM_DL_WRAPPEDPRODUCTINFO
	CSSM_NAME_LIST
	CSSM_QUERY
	CSSM_QUERY_LIMITS
	CSSM_SELECTION_PREDICATE

	Data Storage Functions
	CSSM_DL_Authenticate
	CSSM_DL_DbClose
	CSSM_DL_DbCreate
	CSSM_DL_DbDelete
	CSSM_DL_DbExport
	CSSM_DL_DbGetRecordParsingFunctions
	CSSM_DL_DbImport
	CSSM_DL_DbOpen
	CSSM_DL_DbSetRecordParsingFunctions
	CSSM_DL_GetDbNameFromHandle

	Data Record Operations
	CSSM_DL_AbortQuery
	CSSM_DL_DataDelete
	CSSM_DL_DataGetFirst
	CSSM_DL_DataGetNext
	CSSM_DL_DataInsert
	CSSM_DL_FreeUniqueRecord

	Extensibility Functions
	CSSM_DL_PassThrough

	Chapter 17. OCSF Error Handling
	Data Structures
	CSSM_BOOL
	CSSM_ERROR
	CSSM_RETURN

	Error Handling Functions
	CSSM_ClearError
	CSSM_CompareGuids
	CSSM_GetError
	CSSM_SetError

	Chapter 18. Application Memory Functions
	CSSM_MEMORY_FUNCS and CSSM_API_MEMORY_FUNCS
	Initialization of Memory Structure

	CSSM_Memory_FUNCS Example

	Appendix A. OCSF Errors
	Cryptographic Service Provider Module Errors
	Mapping OCSF Error Codes to ICSF Error Codes
	IBM Software CSP and IBM Weak Software CSP Errors
	Certificate Library Module Errors
	Data Storage Library Module Errors
	LDAP Data Library Module Errors
	Trust Policy Module Errors
	Key Recovery Module Errors
	OCSF Framework Errors

	Appendix B. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

