
IBM Agent Builder
6.3.5

User's Guide

IBM

Note

Before you use this information and the product it supports, read the information in “Notices” on page
373.

This edition applies to version 6.3.5 of IBM® Agent Builder and to all subsequent releases and modifications until
otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2010, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... ix

Tables.. xiii

Chapter 1. Overview of Agent Builder...1
Common Agent Builder procedures.. 1
Data sources and data sets..2
Monitoring multiple servers or instances of a server..4
Testing, installing, and configuring an agent...4
Operating system requirements.. 5
Features specific to IBM Tivoli Monitoring.. 6

Chapter 2. Installing and starting Agent Builder... 7
Prerequisites for installing and running Agent Builder... 7

Detailed system requirements for Agent Builder.. 7
Installing Agent Builder... 7

Using the installation wizard to install Agent Builder..7
Silent installation..9

Starting Agent Builder..10
Setting the default browser in Agent Builder..10
Setting the default Time Stamping Authority in Agent Builder.. 10
Uninstalling Agent Builder... 11
Silent uninstallation... 11

Chapter 3. Creating an agent..13
Naming and configuring the agent.. 13
Defining initial data sources.. 15

Selecting key attributes..15

Chapter 4. Using the Agent Editor to modify the agent.. 17
Default operating systems...18
Self-Describing Agent.. 18
Environment variables... 19

List of environment variables...19
Watchdog information... 29
Cognos information..30
Generate Agent wizard link... 30
The Data Source Definition page... 31

Copying data sources by using the Data Source Definition page..31
Runtime Configuration Information page.. 32
Agent XML Editor page...32
Saving your edits and changes.. 32
Committing a version of the agent.. 33
Setting a new version number for your agent... 34
Changing the product code..34

Chapter 5. Editing data source and attribute properties.. 35
Creating, modifying, and deleting attributes.. 36

Creating attributes..37

 iii

Copying attributes.. 37
Editing attributes.. 37
Creating derived attributes.. 37
Editing derived attributes...39
Removing attributes... 39
Fields and options for defining attributes..40
Attribute types..41
Numeric aspects of attributes..42
Specifying an enumeration for an attribute...44
Specifying severity for an attribute used as a status indicator... 44

Filtering attribute groups...45
Formula Editor... 45

Changing the Formula Editor component view... 46
Component types... 46
Formula Editor common options... 48
Formula Editor - Formula errors.. 49

Formula operators and functions.. 50
Specifying operating systems..56
Configuring and Tuning data collection...56

Data types...57

Chapter 6. Defining and testing data sources..63
Monitoring a process..64

Defining connections for process browsing...67
Monitoring a Windows service...67

Defining connections for service browsing..68
Monitoring data from Windows Management Instrumentation (WMI).. 69

Testing WMI attribute groups.. 71
Monitoring a Windows Performance Monitor (Perfmon).. 71

Testing Perfmon attribute groups.. 73
Monitoring data from a Simple Network Management Protocol (SNMP) server......................................73

SNMP MIB errors..76
SNMP MIB Parsing options.. 76
Testing SNMP attribute groups.. 77

Monitoring events from Simple Network Management Protocol event senders..................................... 78
SNMP Event Configuration properties... 80
Testing SNMP event attribute groups.. 82

Monitoring Java Management Extensions (JMX) MBeans..83
JMX configuration...91
JMX notifications.. 93
JMX monitors..93
Specific fields for Java Management Extensions (JMX) MBeans..98
Testing JMX attribute groups...101

Monitoring data from a Common Information Model (CIM)...102
CIM configuration...103
Testing CIM attribute groups... 104

Monitoring a log file... 104
Log file parsing and separators..112
Testing log file attribute groups... 113

Monitoring an AIX Binary Log.. 115
Monitoring a Windows Event Log.. 116

Filtering by event type..117
Filtering by event source..118
Filtering by event identifier.. 118

Monitoring a command return code..118
Editing a command file definition.. 122

Monitor output from a script... 122

iv

Collecting script data from a remote system.. 123
Script parsing and separators..123
Steps for monitoring output from a script... 125

Monitoring data from Java Database Connectivity (JDBC).. 128
JDBC configuration.. 131
Stored procedures..133
Testing JDBC attribute groups... 134

Monitoring system availability by using Ping.. 135
Configuration files.. 136
Testing Ping attribute groups...137

Monitoring HTTP availability and response time.. 137
HTTP tables.. 138
Monitoring a URL.. 142
Monitor https:// URLs..143
Proxy server..143
HTTP configuration.. 143
Testing HTTP attribute groups...145

Monitoring data from a SOAP or other HTTP data source.. 145
XML representation of JSON data... 149
Specific fields for SOAP attributes...150
SOAP configuration.. 152
Testing SOAP attribute groups...153

Monitoring data by using a socket...154
Sending socket information to the agent.. 156
Encoding of socket data...159
Socket errors.. 160
Socket configuration.. 161
Remote socket port connection...162
Sample script for socket.. 162
Testing socket attribute groups... 163

Use the Java API to monitor data... 164
Running the Java application...166
Generated sample Java application.. 167
Java API configuration... 175
Testing Java application attribute groups... 176

Chapter 7. Creating data sets from existing sources..177
Joining two attribute groups... 177
Manipulating attributes in joined attribute groups... 181
Joined attributes..181
Creating a filtered attribute group...182

Chapter 8. Creating a navigator group.. 185

Chapter 9. Using subnodes...187
Creating subnodes...192
Subnode configuration.. 193

Configuring a subnode... 194
Subnode configuration overrides...195
Advanced subnode configuration.. 195
Configuring a subnode from the command line.. 197
Subnode configuration example..197
Subnodes and Windows data sources...203
Subnodes and Script data sources.. 203

Chapter 10. Customizing agent configuration..205
Changing configuration properties by using the Agent Editor..207

 v

Configuring a Windows remote connection.. 207
Creating a user with Windows Management Instrumentation (WMI) permissions...............................208
Configuring a Secure Shell (SSH) remote connection.. 210

Chapter 11. Creating workspaces, Take Action commands, and situations...........213
Creating situations, Take Action commands, and queries... 213
Creating workspaces... 213

Chapter 12. Preparing the agent for Cloud APM.. 219

Chapter 13. Preparing the agent for Cloud Pak for Multicloud Management......... 223
Defining resources...223
Building resource relationships...224

Chapter 14. Data Definition Designer..227

Chapter 15. Testing your agent in Agent Builder..229
Attribute group testing.. 229

Attribute group testing - preferences..231
Attribute group testing - configuration..231

Full agent testing... 232
Test Environment variables... 236

Chapter 16. Installing your agent into a monitoring infrastructure for testing and
use.. 239
Installing an agent... 239

Installing an agent locally.. 239
Creating the agent package... 241
Installing the package in an IBM Tivoli Monitoring environment... 242
Configuring and starting the agent in an IBM Tivoli Monitoring environment..................................243
Installing and using an agent in an IBM Cloud Application Performance Management

environment.. 244
Agent post-generation and installation results.. 246
Uninstalling an agent... 254

Removing a Tivoli Monitoring agent by using the Tivoli Enterprise Portal..255
Removing a Tivoli Monitoring agent without using the Tivoli Enterprise Portal............................... 255
Clearing a Tivoli Monitoring agent from the Tivoli Enterprise Portal.. 255
Uninstalling an IBM Cloud Application Performance Management agent....................................... 256

Chapter 17. Importing application support files..257
Exporting and importing files for Tivoli Enterprise Monitoring Agents.. 257
Exporting and importing files for Tivoli System Monitor Agents.. 258

Chapter 18. Event filtering and summarization... 259
Controlling duplicate events..259
Viewing event filtering and summarization in the Tivoli Enterprise Portal.. 260

Chapter 19. Troubleshooting and support... 267

Appendix A. Sharing project files... 269
Share a Solution Installer Project... 269

Appendix B. Command-line options... 271
Command - generatelocal...272
Command - generatemappingfile..272

vi

Command - generatezip... 273

Appendix C. Attributes reference... 275
Availability node.. 275
Performance Object Status node.. 280
Thread Pool Status attribute group...285
Event log attribute node.. 289
Log File Summary.. 291
AIX Binary Log attribute group..293
Monitor and Notification attribute groups.. 296

Counter Notifications... 297
Gauge Notifications..300
Registered Monitors... 302
String Notifications...304

SNMP Event attribute groups.. 306
JMX Event attribute groups... 307
Ping attribute group...309
HTTP attribute groups... 312
Discovery attribute groups.. 317
Take Action Status attribute group... 318
Log File Status attribute group.. 322
Log File RegEx Statistics attribute group.. 325

Appendix D. Creating application support extensions for existing agents.............331
Creating an Application Support Extension project..331
Adding support files to a project... 331
Generating the Application Support Extension installation image.. 332
Installing your Application Support Extension... 333
Converting a Solution Install Project to an Application Support Extension project............................ 333

Appendix E. Cognos data model generation.. 335
Prerequisites to generating a Cognos data model..335

Tivoli Data Warehouse... 335
Tivoli Common Reporting...338
Framework Manager.. 339

Creating reports... 339
Populating the ManagedSystem Table.. 345
Exporting reports and data models from Tivoli Common Reporting.. 348
Importing reports into Agent Builder.. 349
Installing reports from an agent package into Tivoli Common Reporting..350

Appendix F. ICU regular expressions.. 351

Appendix G. Creating Non-agent file bundles..357
Remote Deploy Bundle Editor .. 357
Adding commands to the bundle.. 358
Adding prerequisites to the bundle...359
Adding files to the bundle..359
Generating the bundle...359
Creating deployable bundles for Tivoli Netcool/OMNIbus probes.. 360

Appendix H. Dynamic file name support... 361

Appendix I. SNMP trap configuration..365

Appendix J. Take Action commands reference.. 369

 vii

SSHEXEC action... 369

Accessibility features.. 371

Notices..373
Trademarks.. 374

viii

Figures

1. Process Monitor page example...66

2. Runtime Configuration page... 81

3. Test Event Settings window that shows collected SNMP event data.. 83

4. Data Collection Status window... 83

5. JMX connection properties... 85

6. Java Management Extensions (JMX) Browser window..87

7. JMX Agent-Wide Options window ..90

8. Add Filter example 1...110

9. Add Filter example 2...111

10. Example attribute value output when Agent parses a simple log file data row....................................113

11. Example attribute value output when Agent parses a complex log file data row.................................113

12. Parse Log window that shows parsed log file attribute values..114

13. Example attribute value output when Agent parses complex script output...124

14. SOAP Browser window... 147

15. SOAP Browser window .. 148

16. SOAP Browser window... 149

17. Sample agent structure.. 167

18. Attribute Group Information pageAttribute Group Information window..180

19. Locating source attribute information..182

20. Subnodes in the Navigator tree.. 188

21. Subnodes monitoring different systems.. 189

22. Subnode types in Navigator tree.. 190

23. Monitoring multiple subnode instances of the same subnode type... 191

 ix

24. Example: data collection in a subnode.. 192

25. SNMP Version 1 Properties expanded... 196

26. Configuration property definitions in the Agent Builder.. 198

27. Top section with agent-level configuration for the Agent Cfg property.. 199

28. Main section with the agent-wide default value for the Overridable Cfg property............................... 200

29. Example Subnode section page with no subnode .. 201

30. Example Subnode section page with two subnode instances defined... 202

31. Setting the sysadmin user ID..214

32. Setting the sysadmin user ID (continued)..215

33. Setting the sysadmin user ID (continued)..216

34. Setting workspace properties...217

35. Setting workspace properties (continued)...218

36. Test Agent section of the Agent Editor, Agent Information page.. 233

37. Agent Test view with example subnode and navigator group highlighted..234

38. Agent Test perspective... 235

39. The Attribute Group Test view that shows more information (Performance Object Status) about
data collections for the Managed_URLs and Managed_Nodes attribute groups...................................236

40. Manage Tivoli Enterprise Monitoring Services window... 250

41. Nodes for attribute groups in the new agent... 251

42. Availability node..252

43. Performance Object Status node... 253

44. Event log node...254

45. Historical view and cache view when event filtering or summarization is not enabled....................... 261

46. Historical view and cache view when Only send summary events is selected.....................................262

47. Historical view and cache view when Send all events is selected.. 263

48. Historical view and cache view when Send first event is selected..264

x

49. Historical view and cache view when Event threshold is selected... 265

50. Selecting agent project file... 341

51. Selecting Publish Packages.. 342

52. Selecting Common Reporting...343

53. Selecting Report Studio.. 344

54. Report Studio.. 345

55. The Content Administration tab... 348

56. The Content Administration tab with agent package listed.. 349

57. Examples of configuration record types 2 and 3... 366

 xi

xii

Tables

1. Quick-reference information for creating agents... 1

2. Quick-reference information for other functions..2

3. Environment variable descriptions including their default values and valid value ranges....................... 20

4. Fields for editing data sources..35

5. Fields and options for defining attributes...40

6. Numeric attribute options...42

7. Valid format parameters for StringToTivoliTimestamp.. 52

8. StringToTivoliTimestamp examples..53

9. Fields on the Process Monitor page..64

10. SNMP Events configuration properties...81

11. Filter options... 130

12. Supported SQL data types for use with a monitoring agent.. 131

13. Network Management configuration properties..137

14. HTML elements searched for objects to monitor ..139

15. HTTP Attribute Information - Managed URLs.. 140

16. HTTP Attribute Information - URL Objects.. 141

17. URLs file entries.. 142

18. URL Monitoring configuration properties... 144

19. Proxy Server configuration properties..144

20. Java configuration properties...144

21. SOAP Attribute Information..150

22. HTTP Server configuration properties..152

23. File types for supplemental files.. 155

 xiii

24. Sample error code...158

25. Characters to encode in attribute values... 159

26. Performance Object Status values... 160

27. Socket configuration property.. 161

28. File types for supplemental files.. 165

29. Java trace level options.. 169

30. The data types of attribute fields and their IBM Tivoli Monitoring attribute type equivalents.............169

31. Internal error codes for the agent.. 173

32. Changes to an agent that require modifications to the Java source... 173

33. Java configuration properties...175

34. source attribute group one (single row)... 178

35. source attribute group 2 (single row)... 178

36. Resulting join...178

37. source attribute group one (single row)... 178

38. source attribute group two (more than one row)...178

39. Resulting join...178

40. source attribute group one (more than 1 row)...179

41. source attribute group 2 (more than 1 row)...179

42. Resulting join (joining on Attribute3 and Attribute7)...179

43. Environment variables.. 236

44. Command quick-reference table..271

45. Required arguments... 346

46. Optional arguments.. 346

47. Regular expression metacharacters...351

48. Regular expression operators...352

xiv

49. Replacement text characters... 354

50. Flag options...355

51. Predefined Variables for Commands..358

52. Categories supported by the SNMP Data Provider.. 366

53. Severities supported by the SNMP Data Provider ...367

54. Statuses supported by the SNMP Data Provider ...367

55. Source IDs supported by the SNMP Data Provider..368

 xv

xvi

Chapter 1. Overview of Agent Builder
You can use IBM Agent Builder to create and modify custom agents that extend the monitoring
capabilities of an IBM Tivoli® Monitoring, IBM Cloud Application Performance Management, IBM Cloud
Pak for Multicloud Management environment. A custom agent uses either of these environments to
monitor any type of in-house or customized software.

Agent Builder is based on Eclipse, an open source integrated development environment.

Agent Builder includes the following features for the Tivoli Monitoring and Cloud APM environments:

Define and modify agents
You can create and modify agents. The agents collect and analyze data about the state and
performance of different resources, such as disks, memory, processor, or applications, and provide
this data to the monitoring environment.

Test and prepare agents for deployment
You can test an agent within Agent Builder, collecting data on the host where Agent Builder runs (in
some cases you can collect information from a different host too). You can package the agent for easy
distribution and deployment.

The following additional features are available for Tivoli Monitoring:

Custom workspaces, situations and Take Action commands
You can use Agent Builder to package additional workspaces, situations and Take Action commands
as application support extensions with a new or existing agent running in the Tivoli Monitoring
environment

Report data models
You can use Agent Builder to generate a Cognos® data model which you can use to build Tivoli
Common Reporting reports. These reports can be packaged as part of your agent image.

Common Agent Builder procedures
The following table lists the main procedures that you can complete with Agent Builder.

You can use Agent Builder to create agents for the IBM Tivoli Monitoring and IBM Cloud Application
Performance Management environments. You can also use it to create application support extensions for
the Tivoli Monitoring environment. Application support extensions are created by creating workspaces
and situations to enhance one or more existing agents.

Before you use Agent Builder, you must install it. For instructions, see Chapter 2, “Installing and starting
Agent Builder,” on page 7.

To create, test, and use an agent, complete the procedures in the following table in the order that they are
listed.

Table 1. Quick-reference information for creating agents

Goal Refer to

Create an agent by using the Agent wizard. • Chapter 3, “Creating an agent,” on page 13

Create data sources and attributes for your agent.

Important: For a Cloud APM environment, a summary
dashboard can display up to approximately five
attributes; one of the attributes must denote overall
agent or subnode status.

• Chapter 5, “Editing data source and attribute
properties,” on page 35

© Copyright IBM Corp. 2010, 2021 1

Table 1. Quick-reference information for creating agents (continued)

Goal Refer to

For the Tivoli Monitoring environment, create
workspaces and situations for your agent.

• Running at least Tivoli Monitoring Version 6.1 Fix
Pack 1

• Setting the Tivoli Universal Agent solution version
back to "00"

• Setting the value for "AppTag"

• Chapter 11, “Creating workspaces, Take Action
commands, and situations,” on page 213

• Chapter 17, “Importing application support files,” on
page 257

For the Cloud APM environment, create resource
definitions and dashboards for your agent.

• Chapter 12, “Preparing the agent for Cloud APM,” on
page 219

For the Tivoli Monitoring environment, create Cognos
data models for reports for your agent.

• Appendix E, “Cognos data model generation,” on
page 335

Test and debug your created agent, ensuring the
availability of monitoring information.

• Chapter 15, “Testing your agent in Agent Builder,” on
page 229

• Appendix B, “Command-line options,” on page 271
• Chapter 4, “Using the Agent Editor to modify the

agent,” on page 17.

Generate an installation package and install the agent
on the monitored host.

• “Installing an agent” on page 239

Remove an agent that you created with the Agent
Builder.

• “Uninstalling an agent” on page 254

You can also use Agent Builder for packaging custom workspaces, situations, and Take Action commands
as application support extensions for existing agents. These functions are available only for the Tivoli
Monitoring environment:

Table 2. Quick-reference information for other functions

Goal Refer to

Create custom workspaces, situations, and Take
Action commands.

• Chapter 11, “Creating workspaces, Take Action
commands, and situations,” on page 213

Package your application support extension. • Appendix D, “Creating application support extensions
for existing agents,” on page 331

Build custom bundles. • Appendix G, “Creating Non-agent file bundles,” on
page 357

Data sources and data sets
An agent can monitor information from one or several data sources. It presents the information to the
monitoring infrastructure as attributes, which are organized into data sets.

When you create an agent, you must define a data source for it. You can add more data sources. The data
source defines how the agent gathers the monitoring information.

2 IBM Agent Builder: IBM Agent Builder User's Guide

You can use Agent Builder to create agents that use data sources monitoring information from the
following data providers:

• Process and service availability
• Network system availability (using ICMP ping)
• Command return codes
• Script output
• The Windows Event Log
• Windows Management Instrumentation (WMI)
• Windows Performance Monitor (Perfmon)
• Simple Network Management Protocol (SNMP)
• SNMP Events
• Hypertext Transfer Protocol (HTTP) availability and response time
• SOAP or other HTTP data source
• Java™ Database Connectivity (JDBC)
• Java application programming interface (API)
• Java Management Extensions (JMX)
• Common Information Model (CIM)
• Log files
• AIX® binary logs
• Socket

You can also use other development tools to create custom monitoring applications that pass information
to the agent through log, script output, and Java API data sources.

When you add a data source, Agent Builder adds the corresponding data set to the agent. The data set
organizes the information that is presented to the monitoring environment. In IBM Tivoli Monitoring, a
data set is known as an attribute group.

A data set can consist of several attributes, which are values that the data source provides. Each time the
monitoring environment queries the agent, it fetches values from data sources and returns then as
attributes in data sets.

Some data sources can return several rows of attribute values in the same query, for example, if the data
source monitors several services at once.

Most data sources present information as one data set. SNMP and JMX data sources can, depending on
the configuration, provide diverse sets of information. When you add an SNMP or JMX data source, Agent
Builder creates multiple data sets to accommodate this information.

You can edit the data sets to filter the data and to create additional derived attributes, that is, attributes
that are calculated from existing attributes using a formula. You can also join data sets, creating a new
data set with information from two or more data sets. In this way, users can view combined information
from different data sources.

In IBM Tivoli Monitoring, you can view all attribute content. You can also create workspaces that present
information from all agent data sets in a customized view. You can use IBM Tivoli Monitoring to create
situations that are triggered when any attribute reaches a certain value. A situation can issue an alert and
to call a system command.

In IBM Cloud Application Performance Management, you must define a summary dashboard for the
agent, selecting up to five attributes that are visible in the dashboard. You can also define a detail
dashboard that displays information from any data sets as tables. You can create thresholds that are
triggered when any attribute reaches a certain value; you are not required to add this attribute to the
dashboard. A threshold can issue alerts.

Chapter 1. Overview of Agent Builder 3

In IBM Cloud Pak for Multicloud Management you define resources for the agent, select attributes to be
displayed, and identify important metrics to chart.

Monitoring multiple servers or instances of a server
An agent can monitor multiple servers, including multiple instances of the same server. There are two
ways of creating such agents: multiple instances of an agent and subnodes within an agent.

Multiple instances are a standard way to monitor application servers that can have a number of similar
instances on the same host. Many standard agents in IBM Tivoli Monitoring and IBM Cloud Application
Performance Management support multiple instances.

With multiple instances, you install an agent on a monitored hosts and then configure one or several
instances, setting a name for every instance. Configure an instance of the agent for each instance of the
server that you want to monitor. Each instance is a separate identical copy of the agent, and it can be
started and stopped separately.

You can also define one or several types of subnode within an agent. Each type must correspond to a
different type of resource that an agent can monitor. A subnode type contains data sources and data sets;
you can also define data sources and data sets at agent level, outside any subnode. When you install the
agent on a host, you can configure the required number of subnodes of each type; for every subnode type,
you can set the number of subnodes independently. For IBM Cloud Application Performance
Management, you can create a dashboard for the agent and a separate dashboard for each subnode.

Subnodes require different configuration steps on the monitored host. Also, to reconfigure, add or remove
a subnode. you must stop and restart the entire agent; an instance can be reconfigured, added, or
removed without affecting other instances. However, subnodes have a number of advantages:

• With subnodes, you can monitor a large amount of server instances while consuming less resources. As
a guideline, the number of agent instances of a specific type supported on a single system is 10. But an
agent can monitor up to 100 local or remote servers using subnodes.

• One agent can include subnode types for a few different kinds of servers. On the monitored system, you
can configure any number of subnodes of each type. You can use this feature to conserve resources
further.

• An agent with subnodes can supply system-wide data on the agent level.

You can define both multiple instances and subnodes for the same agent. In this case, each instance can
include a number of subnodes. You can stop and restart each instance independently of other instances;
all subnodes in an instance are stopped and restarted together.

Testing, installing, and configuring an agent
You can create an installation package for an agent and then install it on any number of monitored hosts.
For some data sources, you need to set configuration values for collecting data.

After defining data sources and attributes for an agent, you can test it by running it within Agent Builder.
You can test a single data set (attribute group) or the full agent.

To test the agent more extensively and to use it, you can create an installation image. This image provides
scripts for installing and configuring the agent on any monitored host.

Tip: Before installing the agent, ensure that the operating system agent for your monitoring environment
(IBM Tivoli Monitoring, IBM Cloud Application Performance Management, or IBM Cloud Pak for Multicloud
Management) is installed on the host.

After installing the agent, you might need to configure it. If the agent supports multiple instances, you
must configure the agent to create at least one instance.

Some data sources require additional configuration values; for example, for the SNMP data source, you
must configure the IP address of the host that you monitor using the SNMP protocol. Use the
configuration script, which is deployed by the installation package, to set these values.

4 IBM Agent Builder: IBM Agent Builder User's Guide

Alternatively, you can set these values in Agent Builder before creating the installation image. In this case,
you do not have to set them again on the monitored hosts.

Tip: The help files for your custom agent might not display in Help Contents after the Cloud APM server is
upgraded. To display the help files, complete these steps:

1. Download the latest version of IBM Agent Builder.
2. Re-create your custom agent. Make sure to assign a higher version number, fix pack, or patch level in

the Agent Information page.
3. Install your custom agent on the monitored host.
4. From the Cloud APM console, click Help > Help Contents from the navigation bar. Your custom agent

help is displayed.

Operating system requirements
Agents that are created by Agent Builder are supported on various operating systems, depending on the
monitoring environment and on the settings you select when creating the agent.

In a Tivoli Monitoring environment, agents that are created by Agent Builder can support the following
operating systems:

• AIX
• HP-UX
• Linux®

• Solaris
• Windows

The agents support the same operating system versions as the OS agents. For details, access the
Software Product Compatibility Reports website. Search for the Tivioli Monitoring product name
and select the OS Agents & TEMA (Tivoli Enterprise Monitoring Agent) component check
box.

In an IBM Cloud Application Performance Management environment, agents that are created by Agent
Builder can support the following operating systems:

• AIX
• Linux
• Windows

The agents support the same versions as the OS agents. For details, use the links in the Component
reports section of System requirements (APM Developer Center).

To run your monitoring agent in an Tivoli Monitoring environment, install the appropriate operating system
agent on every monitored system where your agent runs.

To run your monitoring agent in an IBM Cloud Application Performance Management environment, install
any of the agents shipped with IBM Cloud Application Performance Management on every monitored
system where your agent runs.

Note: Agent Builder browsers operate on the data sources and information accessible from the system on
which the Agent Builder is run. Ensure that you run Agent Builder on either of the following types of
systems:

• A system that runs on the same level as the operating system and monitored applications for which you
are developing the agent

• A system that connects to another system that runs on the same level as the operating system and
monitored applications for which you are developing the agent

Chapter 1. Overview of Agent Builder 5

http://www.ibm.com/software/reports/compatibility/clarity/index.html
http://ibm.biz/wiki-pm-systemreqs

Features specific to IBM Tivoli Monitoring
Agent Builder provides several features that apply only to IBM Tivoli Monitoring.

You can use navigator groups to organize the data that the agent displays in the IBM Tivoli Monitoring
navigator views and workspaces. A navigator group combines the data from several attribute groups (data
sets) into a single view, while hiding the original separate data sets from the user.

You can use Tivoli Enterprise Portal to create workspaces, situations, and Take Action commands for your
agent. You can then use Agent Builder to save the workspaces, situations, and Take Action commands as
application support files and bundle them with the agent. Moreover, Agent Builder can also import
workspaces, situations, and Take Action commands for other agents and create custom application
support files for them.

Agent Builder can generate a Cognos data model for the agent. Use the data model to import agent
information into the Cognos Framework Manager, a part of IBM Tivoli Common Reporting, for report
creation.

6 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 2. Installing and starting Agent Builder
Before you install IBM Agent Builder, ensure that your system meets the prerequisites. Then use the
installation wizard or the silent installation procedure to install Agent Builder.

Tip: For information about installing or modifying an agent, see “Installing an agent” on page 239.

Prerequisites for installing and running Agent Builder
To install and run Agent Builder, your system must meet certain requirements.

To install the Agent Builder, ensure that you have:

• A system with a minimum of 1 GB of free disk space. Agents that you develop will require additional disk
space.

• A supported operating system. Agent Builder can run on the following operating systems:

– Windows

– Linux (x86 64-bit only)

• If you are using the Linux operating system, you must install the libstdc++.so.5 library.
You can install the following packages that provide this library:

– On Red Hat Enterprise Linux, compat-libstdc++-33
– On SUSE Enterprise Linux, libstdc++-33

On a Windows system, you must be able to run Agent Builder as a user with Administrator
permissions. These permissions ensure that Agent Builder has an environment consistent with the agents
that are developed with it.

On a Linux system, you can run Agent Builder as root or as an ordinary user. However, if you run
it as an ordinary user, testing of agents will be limited and in some cases might not be available.

Detailed system requirements for Agent Builder
Use the Software Product Compatibility Reports to view the detailed system requirements for Agent
Builder.

Access the Software Product Compatibility Reports website. Search for the IBM Agent Builder
product name.

Installing Agent Builder
You can use the installation wizard or the silent installation procedure to install Agent Builder.

Tip: Before you install Agent Builder, uninstall any previous versions. For more information about
uninstalling, see (“Uninstalling Agent Builder” on page 11). None of your existing agent information is
lost when you uninstall.

Using the installation wizard to install Agent Builder
You can use the installation wizard to install IBM Agent Builder.

Before you begin
Ensure that your system meets the prerequisites. For information about prerequisites, see “Prerequisites
for installing and running Agent Builder” on page 7

© Copyright IBM Corp. 2010, 2021 7

http://www.ibm.com/software/reports/compatibility/clarity/index.html

Procedure
1. If you are not signed in to IBM Marketplace, sign in with your IBMid and password and go to Products

and services.
The Products and services page is available to active subscribers. If you have any issues, go to the
Cloud Application Performance Management Forum or to Marketplace support.

2. Download the Agent Builder installation archive file:
a) In the Cloud APM subscription box, click Manage > Downloads.
b) Select Multi-Platform as the operating system.
c) Select the IBM Agent Builder package.
d) Click Download and save IBM_Agent_Builder_Install.tar to your system.

3. Extract the installation archive file.
4. Use the following command in the extracted image directory to start the installation:

• setup.bat

• ./setup.sh

Important: Run the installation program with the same user ID that you intend to run the Agent
Builder with.

5. When the IBM Agent Builder window opens, select your language, and click OK.
6. On the Introduction page, click Next.
7. On the Software License Agreement page, click I accept the terms in the license agreement, and

click Next.
8. On the Choose Install Folder page, click one of the following options:

• Next to install Agent Builder to the directory specified in the Where Would You Like to Install?
field.

• Restore Default Folder to install the Agent Builder in a default directory.
• Choose to select a different directory.

Note: The directory name that you choose must not contain the following characters:

!
#
%
;

If it includes any of these characters, Agent Builder might not start.
9. On the Pre-Installation Summary page, click Install.

10. On the Installing IBM Agent Builder page, wait for the Install Complete page to open, then click
Done.

Results
After the Agent Builder is installed, an option is added to the Start menu and an Agent Builder

icon is added to your desktop. The installation log files are in install_dir
\IBM_Agent_Builder_InstallLog.xml.

After the Agent Builder is installed, the Agent Builder executable file is named
Install_Location/agentbuilder. The installation log files are in install_dir/
IBM_Agent_Builder_InstallLog.xml.

8 IBM Agent Builder: IBM Agent Builder User's Guide

http://ibm.co/1SDvOV3
http://ibm.biz/dw-ipmforum
http://www.ibm.com/support/en-us/?lnk=fcw

Silent installation
You can install Agent Builder by using a silent installation method. This method does not require a
graphical environment and can be easily replicated on several hosts.

About this task
The silent installation options file, installer.properties, is included in the installation image at the
root of the installation directory. You must modify this file to meet your needs, and then run the silent
installer. You can copy this file to other hosts and quickly install Agent Builder on all of them.

Procedure
1. If you are not signed in to IBM Marketplace, sign in with your IBMid and password and go to Products

and services.
The Products and services page is available to active subscribers. If you have any issues, go to the
Cloud Application Performance Management Forum or to Marketplace support.

2. Download the Agent Builder installation archive file:
a) In the Cloud APM subscription box, click Manage > Downloads.
b) Select Multi-Platform as the operating system.
c) Select the IBM Agent Builder package.
d) Click Download and save IBM_Agent_Builder_Install.tar to your system.

3. Extract the installation archive file.
4. Create a copy of the installer.properties file, which is located in the installation image directory.
5. Edit the new file to suit your needs. An example of the contents of this file is:

IBM Agent Builder

(C) Copyright IBM Corporation 2009. All rights reserved.

Sample response file for silent install

To use this file, use the following command:
#
Windows:
setup.bat -i silent -f <path>\installer.properties
#
Linux or AIX:
setup.sh -i silent -f <path>/installer.properties
#
Where
<path> is a fully-quailfied path to the installer.properties
file (including the drive letter or UNC path name on Windows).
<path> cannot contain spaces.

This property indicates that the license has been accepted

LICENSE_ACCEPTED=FALSE

This property specifies the install directory
#
On Windows, the default is:
C:\\Program Files (x86)\\IBM\\AgentBuilder
#
On Linux, the default is:
/opt/ibm/AgentBuilder

#USER_INSTALL_DIR=C:\\Program Files (x86)\\IBM\\AgentBuilder
#USER_INSTALL_DIR=/opt/ibm/AgentBuilder

6. Start the silent installation by running the following command in the extracted installation image
directory:

Chapter 2. Installing and starting Agent Builder 9

http://ibm.co/1SDvOV3
http://ibm.biz/dw-ipmforum
http://www.ibm.com/support/en-us/?lnk=fcw

 setup.bat -i silent -f path/installer.properties

 ./setup.sh -i silent -f path/installer.properties

Where path is the fully-qualified path to the installer.properties file (including the drive letter or
UNC path name on Windows). The path cannot contain spaces.

Starting Agent Builder
After installing Agent Builder, you can start it.

Procedure
• Start the Agent Builder by using one of the following methods

• On Windows systems:

- From a command-line type: Install_Location\agentbuilder.exe.
- Select Start > All Programs > IBM > Agent Builder.
- Click the Agent Builder desktop icon.

• On Linux systems, start the following executable file: INSTALL_DIR/agentbuilder

Note: When you run the Agent Builder, it prompts you for the location of your workspace directory. The
files that create your agents are saved in that directory. You can designate any directory as your
workspace.

Setting the default browser in Agent Builder
On Linux systems, you might need to set the Agent Builder default browser so that help panels

are displayed.

Procedure
1. Select Window > Preferences to open the Preferences window.
2. Select and expand the General node.
3. Select Web Browser.
4. Select Use external web browser.
5. Select the browser that you want to use.
6. Optional: To add a web browser, complete the following steps

a) Click New.
b) In the Name field, enter a descriptive name for the browser.
c) In the Location field, enter the full path to the browser executable file .
d) Click OK.

7. Click OK.

Setting the default Time Stamping Authority in Agent Builder
You can set the Time Stamping Authority for JAR files in the Agent Builder Preferences window. If the
default Time Stamping Authority signing certificate expires, by setting a new authority, you can continue
to verify JAR files.

Procedure
1. Select Window > Preferences to open the Preferences window.
2. Select and expand the IBM Agent Builder node.

10 IBM Agent Builder: IBM Agent Builder User's Guide

3. Select Jar Signing.
4. Select Add time stamp to signed JAR files.
5. Enter the URL of the Time Stamping Authority.
6. Click OK.

Uninstalling Agent Builder
Depending on your operating system, you can use different procedures to uninstall Agent Builder.

Procedure
•

On Linux systems, run the following command:
a) INSTALL_DIR/uninstall/uninstaller

where INSTALL_DIR is the name of the directory where Agent Builder is installed.

•
On Windows 7, Windows Server 2008 R2, and later versions of Windows, complete the following steps:
a) Open Windows Programs and Features by selecting Start > Control Panel > Programs > Programs

and Features.
b) Select IBM Agent Builder from the list of installed programs.
c) Click Uninstall/Change.
d) Click Uninstall on the Uninstall IBM Agent Builder page.
e) Click Done on the Uninstall Complete page.

Tip: On Windows 7 and Windows Server 2008 R2, you can also go to the Windows Programs and
Features window by selecting Start > Computer > Uninstall or change a program. Then, continue
from step “2” on page 11.

•
On other Windows systems, complete the following steps:
a) From the Windows Control Panel, select Add/Remove Programs.
b) Click IBM Agent Builder.
c) Click Change/Remove.

• On all operating systems, you can also use the silent uninstallation method. Start the silent
uninstallation by running the following command:

• On Windows systems, INSTALL_DIR/uninstall/uninstaller.exe -i silent

• On Linux systems, INSTALL_DIR/uninstall/uninstaller -i silent

Silent uninstallation
You can use the silent uninstallation method to uninstall.

Procedure
• Start the silent uninstallation by running the following command:

INSTALL_DIR/uninstall/uninstaller[.exe] -i silent

Chapter 2. Installing and starting Agent Builder 11

12 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 3. Creating an agent
To start creating an agent in Agent Builder, use the new agent wizard. With this wizard you can set the
basic agent configuration and create one data source. You can then work on the agent in Agent Builder to
add more data sources and other options, including subnodes and navigator groups.

Naming and configuring the agent
Use the Agent wizard to name your agent, set its version, supported operating systems, and other
configuration settings.

Procedure
1. Use one of the following ways to start the new agent wizard:

a) Click the Create New Agent icon on the toolbar.
b) From the Main menu, select File > New > Agent.
c) From the Main menu, select File > New > Other. In the Select a Wizard page, double-click the

Agent Builder folder, then double-click Agent.
The Agent wizard opens.

2. Click Next.
3. In the New Agent Project page, set the name of the project in the Project name field. Agent Builder

uses this name for the folder that contains the agent files. You can optionally change the following
settings:

• If you want to store the agent files in a different location, clear Use default location and click
Browse to select the new directory in the Location field.

• You can change how the Eclipse Navigator View displays resources by adding them to various
working sets. For more information, see the Eclipse help. To add the agent to Eclipse working sets,
select Add project to working sets and click the Select button to add the sets to the Working sets
field.

4. Click Next.

5. In the General Information page, configure the following settings:

• Type the copyright statement that you want to use for your new agents in the Copyright field. This
statement must meet your legal requirements for copyrights. This copyright statement is inserted
into all files that are generated for the agent; you can edit it later.

• Select the operating systems for which you want your agent to be built.

Important: If you want to run a full test of the agent inside Agent Builder (for instructions, see “Full
agent testing” on page 232), ensure that:

– If you are running Agent Builder on Windows, the 32-bit version of the operating system is
installed.

– If you are running Agent Builder on Linux, the 64-bit version of the operating system is installed.

Important: In some rare cases, you might need to install your agent on a 64-bit system where only
a 32-bit operating system agent is installed. In this case, ensure that the 64-bit version of the
operating system is not selected and the 32-bit version is selected.

Important: 64-bit Windows Server 2003 R2 and earlier Windows systems are not supported by the
agents created using Agent Builder.

6. Click Next.

© Copyright IBM Corp. 2010, 2021 13

7. In the Agent Information page, configure the following settings:

• Set the service name for the agent in the Service name field. The name is displayed in the Manage
Tivoli Monitoring Services window in an IBM Tivoli Monitoring environment and in the Manage
Monitoring Services utility and Threshold editor in an IBM Cloud Application Performance
Management. On Windows systems, it is also the name of the Windows service that runs the agent.
The full service name always starts with Monitoring Agent for. You enter the remaining part of
the name, which normally describes the service that this agent monitors. The name can contain
letters, numbers, spaces, and underscores.

• Set a three-character product code for the agent in the Product code field. A product code is
required for both IBM Tivoli Monitoring and IBM Cloud Application Performance Management. A
range of product codes is reserved for use with the Agent Builder. The permitted values are K00-
K99, K{0-2}{A-Z}, and K{4-9}{A-Z}.

Important: These values are for internal use only and are not intended for agents that are to be
shared or sold outside your organization. If you are creating an agent to be shared with others, you
must send a note to toolkit@us.ibm.com to reserve a product code. The request for a product code
must include a description of the agent to be built. A product code is then assigned, registered, and
returned to you. When you receive the three-letter product code, you are told how to enable the
Agent Builder to use the assigned product code.

• Set a string that uniquely identifies the organization that develops the agent in the Company
identifier field (IBM is reserved). You can take it from the URL of your company; for example, if the
company website is mycompany.com, use the text mycompany.

• Set a string that uniquely identifies the agent in the Agent identifier field. By default, Agent Builder
sets the Agent identifier to be the same as the Product code.

Important: The combined length of the Agent identifier field and the Company identifier field
cannot exceed 11 characters.

• Set the agent version in the Version field. The agent version contains three digits in the format
V.R.R, where:

V = Version
R = Release
R = Release

For displaying in the monitoring environment, the V.R.R value is converted into the following
format: 0V.RR.00.00

Tip: In the agent editor, a patch level field is available. The patch level field can be used when you
release a fix for an agent, without updating the version.

• If you want your agent to support multiple instances, select the Support multiple instances of this
agent check box. You can use multiple instances of an agent to monitor several instances of an
application on the same host, or to use an agent installed on one host to monitor several software
servers on different hosts. When you install an agent that support multiple instances, you can
create and configure as many instances as necessary.

What to do next
Click Next to define an initial data source for your agent. For more information, see “Defining initial data
sources” on page 15

14 IBM Agent Builder: IBM Agent Builder User's Guide

Defining initial data sources
When creating an agent, define the initial data that the agent is to monitor. You can add more data sources
later in the agent editor.

About this task
Define the data sources that your new agent is to monitor by using the Agent Initial Data Source page.
For detailed instructions about creating data sources from various data providers, see Chapter 6,
“Defining and testing data sources,” on page 63.

Procedure
1. On the Agent Initial Data Source page, select one of the Monitoring Data Categories and one of the

Data Sources.
2. Click Next The wizard guides you through the process of defining and configuring any of the data

collection types that you specify.

Tip: You can use this wizard to define a data source or to add a subnode or navigator group for
organizing the agent. For more information about subnodes, see Chapter 9, “Using subnodes,” on page
187. For more information about navigator groups, which are used only for IBM Tivoli Monitoring, see
Chapter 8, “Creating a navigator group,” on page 185.

3. If you defined a new data source that might return more than one data row, you are prompted to select
key attributes. For more information, see (“Selecting key attributes” on page 15).

4. After you define the first data source, the Data Source Definition window displays. To add another
data source, select the agent, or a subnode or navigator group if one is present, and click the Add to
Selected button.

5. To finish defining data sources, click Finish. Aent Builder creates the new agent and opens it in the
agent editor.

Selecting key attributes
When an attribute group returns more than one data row, you must select key attributes.

About this task
When an attribute group can return more than one data row, each row represents an entity that is being
monitored. Each time monitored data is sampled, the monitoring environment matches a row to the entity
that is being monitored and to previous samples for that entity. This matching is done with key attributes.
One or more attributes in the attribute group can be identified as key attributes. These key attributes,
when taken together, distinguish one monitored entity from another. The key attributes do not change
from one sample to the next for the same monitored entity.

Rate and delta attributes are calculated by comparing the current sample to the previous sample.
Identical key attributes ensure that the agent is comparing values for the same monitored entity.
Similarly, the summarization and pruning agent summarizes samples that have identical key attributes. In
addition, any attribute that is set as a key attribute can also be used as a "Display item" in a situation.

You specify the details about your new data source in the Agent Initial Data Source page. If the selected
data source might return multiple data rows, Agent Builder can sometimes detect the key attributes.
Otherwise, it prompts you to select key attributes.

Procedure
• On the Select key attributes page, take one of the following steps:

• Click one or more attributes from the list that are the key attributes for this entity. To select more
than one attribute, hold down the Ctrl key.

Chapter 3. Creating an agent 15

• If this attribute group returns only one row, select Produces a single data row. If this option is
selected, no key attributes are necessary because only one monitored entity is ever reported in this
attribute group.

16 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 4. Using the Agent Editor to modify the agent
Use the Agent Editor to change, save, and commit a version of your agent.

You can create a new agent in Agent Builder; for more information, see Chapter 3, “Creating an agent,” on
page 13. After creating an agent, you can modify it using the Agent Editor.

To open an agent that you created in Agent Builder in the Agent Editor, in the Project Explorer pane, find
the name of the agent and expand it. Under the name of the agent, double-click Agent Definition.
Alternatively, double-click the itm_toolkit_agent.xml filename.

The Agent Editor is a multi-page Eclipse editor that you can use to modify the properties of an existing
agent. Each page in the editor corresponds to a specific function of the agent.

The list of available pages is shown in the Outline view under the Agent Definition node. You can easily
switch to another page by clicking a node in the Outline view. If the Outline view is missing, or hidden
behind another view, you can reset the Agent Definition perspective. Reset the perspective by selecting
Window > Reset Perspective. Alternatively, right-click the Agent Definition tab and select Reset from
the menu.

Note: For detailed information and procedures for creating an agent, see Chapter 3, “Creating an agent,”
on page 13.

The following pages are included in the Agent Editor:

• “Agent Information page” on page 17
• Data Source Definition page
• Runtime Configuration Information page
• Agent XML Editor page (itm_toolkit_agent.xml)

Note: When you view an Editor page, you can also switch to another page by clicking the tab for the page.
Some pages show tabs only when they are selected in the Outline view. You can force a page to have a tab
even when it is not selected. To force a page to have a tab, click the pin icon so that the pin in the icon
points toward the page.

Agent Information page
The Agent Information page is the main page of the Agent Editor.

The Agent Information page contains the following information:

• General agent information, including the agent service name and the product code. You can click
Advanced to set different names for different use, but this setting is normally not needed.

• Agent Content information

– Default Operating Systems link
– Self-Describing Agent link
– Environment Variables link
– Watchdog Information link
– Cognos Information link
– Data sources link
– Runtime Configuration link
– Resources link
– Dashboards link

• Test Agent link
• Generate Agent Wizard link

© Copyright IBM Corp. 2010, 2021 17

• Commit Agent Version link

Configuring the time for transient error messages
Agent Editor wizards sometimes display transient error messages. A message is displayed for a short time
(by default, 3 seconds) in the header of the wizard. You can configure the duration for which these
messages are displayed. To change this setting:

1. Select Window > Preferences from the Agent Builder menu bar. The Preferences window opens.
2. Select Agent Builder.
3. Set the Time (seconds) that transient error message are displayed setting.
4. Click OK.

Default operating systems
Use the Default Operating Systems page to change the operating systems for which your agent is built.

Procedure
• To open the Default Operating Systems page, click Default Operating Systems in the Agent Content

section of the Agent Information page or the Default Operating Systems node in the Outline View.

• In the Default Operating Systems page, select the operating systems that your agent must support.

When you generate an installation package for the agent, Agent Builder adds files for the selected
operating systems to the package. Data sources that you add to your agent that are not specific to the
Windows operating system are available on any of the selected operating systems. The operating
systems on which any specific data source is available can be changed from this default selection. To
change the Operating Systems available for a specific data source, use the Operating Systems pane of
the Data Source Definition page. If default operating systems are not selected, operating systems
must be selected for each specific data source on the Data Source Definition page.

Important: If you want to run a full test of the agent inside Agent Builder (for instructions, see “Full
agent testing” on page 232), ensure that:

– If you are running Agent Builder on Windows, the 32-bit version of the operating system is installed.
– If you are running Agent Builder on Linux, the 64-bit version of the operating system is installed.

Important: In some rare cases, you might need to install your agent on a 64-bit system where only a
32-bit operating system agent is installed. In this case, ensure that the 64-but version of the operating
system is not selected and the 32-bit version is selected.

Self-Describing Agent
For the IBM Tivoli Monitoring environment, use the Self-Describing Agent page to specify whether the
agent's support files are bundled with the agent. For the IBM Cloud Application Performance Management
environment, you must leave Self-Describing Agent enabled.

Procedure
• To open the Self-Describing Agent page, click Self-Describing Agent in the Agent Content section of

the Agent Information page or the Self-Describing Agent node in the Outline View.

Self-description is enabled by default for all new agents that are created with Agent Builder 6.2.3 or
later. If the agent is for the IBM Cloud Application Performance Management environment, self-
description must be enabled.

When self-description is enabled for an agent, application support packages are included in the agent
image. The inclusion enables the agent to seed the support files for the Tivoli Enterprise Monitoring
Server, Tivoli Enterprise Portal Server, the Tivoli Enterprise Portal Browser. For more information about

18 IBM Agent Builder: IBM Agent Builder User's Guide

self-describing agents, see the IBM Tivoli Monitoring Installation and Setup Guide and the IBM Tivoli
Monitoring Administrator's Guide. In an IBM Cloud Application Performance Management environment,
self-description enables the agent to seed support files onto the Cloud APM server; the seeding is a
required step in the environment.

Note: In a IBM Tivoli Monitoring environment, you must have Tivoli Monitoring version 6.2.3 or later
installed for the self-describing agent feature to work, and self-description must be enabled in Tivoli
Monitoring. By default self-description is turned off in Tivoli Monitoring.

Note: Selecting the Enable self-description for this agent check box does not prevent your agent
from working on previous versions of Tivoli Monitoring.

Environment variables
Use the Environment Variables page to view and modify environment variables that are available to your
agent while it is running.

Before you begin
For more information about the Agent Editor and Agent Information page, see Chapter 4, “Using the
Agent Editor to modify the agent,” on page 17.

About this task
The environment variables can be defined by you, for access inside a script, or predefined variables that
cause the agent to behave in a certain way. See “List of environment variables” on page 19 for a list of
predefined variables.

Procedure
1. To open the Environment Variables page, click Environment Variables in the Agent Content section

of the Agent Information page. Alternatively, click Environment Variables node in the Outline view.
2. In the Environment Variables page, click Add to add a new variable. Alternatively, to edit an existing

variable, select it and click Edit.
3. In the Environment Variable Information window, set the following values:

• In the Name field, type a variable name or select a predefined name from the list.
• In the Value field, type a value for the variable if you want to set a variable for the agent. If you do

not enter a value, the agent propagates a value for the existing variable.
• In the Description field, type a description of the variable, or keep the existing description of a

predefined variable.

a) Click OK.
The new variable is listed in the table on the Agent Information page.

List of environment variables
Use environment variables to control the behavior of the agent at run time.

Environment variables can be built into the agent by using the Environment Variables page. On Windows
systems, environment variables are defined in the agent KXXENV file. On UNIX and Linux systems, these
variables can be defined in the agent $CANDLEHOME/config/XX.ini file, where XX is the two-character
product code. The agent must be restarted for the new settings to take effect.

Note: Environment variables are not set correctly on a remote system that runs C Shell. Use a different
shell if you want to use environment variables.

Chapter 4. Using the Agent Editor to modify the agent 19

Table 3. Environment variable descriptions including their default values and valid value ranges

Environment variable Default value Valid values Description

CDP_DP_REFRESH_INTERVAL 60 if subnodes
are defined,
otherwise not
set

Any positive
integer
(such as
3600 for a
1-hour
interval)

The interval, in seconds, at which
attribute groups are updated in the
background. If this variable is not set or
is set to 0, background updates are
disabled.
Use this variable to to tune behavior so
that the data is fresh enough without
causing undue load on the application
from which data is being collected.
If a thread pool is configured (see
variable CDP_DP_THREAD_POOL_SIZE),
then the attribute groups can be
refreshed in parallel. If there is no thread
pool, the updates happen serially, which
can take a long time. Logically equivalent
to a thread pool size of 1.

CDP_ATTRIBUTE_GROUP_
REFRESH_INTERVAL

Not Applicable Any positive
integer
(such as 600
for a 10-
minute
interval

Override the interval, in seconds, at
which a particular attribute group is
updated in the background when the
agent is updating data in the background
because CDP_DP_REFRESH_INTERVAL
was set. This variable works in the same
way as CDP_DP_REFRESH_INTERVAL
except it targets only the specified
attribute group.
The attribute group name in the variable
name must be in uppercase, even if the
actual attribute group name is not.
If the CDP_DP_REFRESH_INTERVAL
environment variable has not been set,
the attribute group override does not
take effect. You can simulate background
collection for a subset of attribute groups
by using a large value for
CDP_DP_REFRESH_INTERVAL, such as
86400 for once a day.

20 IBM Agent Builder: IBM Agent Builder User's Guide

Table 3. Environment variable descriptions including their default values and valid value ranges (continued)

Environment variable Default value Valid values Description

CDP_DP_THREAD_POOL_SIZE 15 if subnodes
are defined,
otherwise not
set

Any non-
negative
integer

The number of threads that are created
to run background data collections at an
interval that is defined by
CDP_DP_REFRESH_INTERVAL. If this
variable is not set or is set to 0, there is
no thread pool.

If CDP_DP_THREAD_POOL_SIZE is set to
a value greater than 1 and
CDP_DP_REFRESH_INTERVAL is set to
0, te value of
CDP_DP_THREAD_POOL_SIZE is ignored
and data collection happens on demand.

The Thread Pool Status attribute group
shows how the thread pool is running.
Use the Thread Pool Status to adjust the
thread pool size and refresh interval for
best results. By default, the query for this
attribute group is not displayed on the
agent Navigator tree. You might not
remember to include the query in a
custom workspace for the agent.
However, you can easily view it by
assigning the Thread Pool Status query to
a base agent level workspace view.

CDP_DP_CACHE_TTL 55 Any integer
greater than
or equal to
1.

Data that is collected for an attribute
group is cached for this number of
seconds. Multiple requests for the same
data in this time interval receive a cached
copy of the data. This value applies to all
attribute groups in the agent.

CDP_ATTRIBUTE_GROUP_CACHE_
TTL

Value of
CDP_DP_CACHE
_TTL

Any integer
greater than
or equal to
1.

Data that is collected for the particular
specified attribute group is cached for
this number of seconds. Multiple
requests for the same data in this time
interval receive a cached copy of the
data. This value overrides
CDP_DP_CACHE_TTL for the specified
group. The attribute group name in the
variable name must be in uppercase,
even if the actual attribute group name is
not.

Chapter 4. Using the Agent Editor to modify the agent 21

Table 3. Environment variable descriptions including their default values and valid value ranges (continued)

Environment variable Default value Valid values Description

CDP_DP_IMPATIENT_
COLLECTOR_TIMEOUT

5 if subnodes
are defined,
otherwise not
set

Any positive
integer

The number of seconds to wait for a data
collection before a timeout and cached
data is returned, even if the cached data
is stale. (Cached data is stale if older than
CDP_DP_CACHE_TTL seconds). If this
variable is not set, the agent waits until
the data collection completes. The wait
at times can make the Tivoli Enterprise
Portal timeout and give up waiting. If no
thread pool is configured, this variable is
ignored and data collection is done
synchronously.

CDP_JDBC_MAX_ROWS 1000 Any positive
integer

The maximum number of rows of data
that the JDBC data provider returns. A
result set that contains more than this
number of rows is processed only up to
this maximum value. Queries can be
developed to prevent too much data from
being returned to IBM Tivoli Monitoring.

CDP_NT_EVENT_LOG_GET_ALL
_ENTRIES_FIRST_TIME

NO YES, NO If set to YES, the agent sends an event
for every event in the Windows event log.
If set to NO, only new events in the
Windows event log are sent.

CDP_NT_EVENT_LOG_CACHE
_TIMEOUT

3600 Any integer
greater than
or equal to
300.

The number of seconds Windows Event
log events are cached by the agent. All
cached events are returned when the
event log attribute group is queried.

Note: This variable is no longer used. Use
the CDP_PURE_EVENT_CACHE_SIZE
variable.

CDP_PURE_EVENT_CACHE_SIZE 100 Any positive
integer
greater than
or equal to
1.

Maximum number of events to cache for
a log file data source that is configured to
process new records, for the Windows
Event Log attribute group. And also for
JMX monitors and notifications. Each
new record in the log causes an event to
be sent. This environment variable
defines how many events are
remembered in a cache by the agent. The
cached values are returned when the
attribute group is queried.

CDP_DP_ACTION_TIMEOUT 20 seconds Any positive
integer
greater than
or equal to
1.

The number of seconds to wait for a Take
Action that is being handled by the agent
to complete.

22 IBM Agent Builder: IBM Agent Builder User's Guide

Table 3. Environment variable descriptions including their default values and valid value ranges (continued)

Environment variable Default value Valid values Description

CDP_DP_SCRIPT_TIMEOUT 30 seconds Any positive
integer
greater than
or equal to
10.

The number of seconds to wait for the
program started by a script-based
attribute group to complete.

CDP_DP_PING_TIMEOUT 30 seconds Any positive
integer
greater than
or equal to
10.

The number of seconds to wait for the
program started by a command return
code to complete.

Note: This variable is not related to the
ICMP ping data provider.

CDP_SNMP_MAX_RETRIES 2 Any positive
integer

The number of times to try sending the
SNMP request again. The total number of
requests that are sent to the SNMP agent
is this value plus one if no responses are
received.

CDP_SNMP_RESPONSE_TIMEOUT 2 seconds Any positive
integer

The number of seconds to wait for each
SNMP request to timeout. Each row in an
attribute group is a separate request.
This timeout value is the number of
seconds to wait for a response before
you try again. The total timeout for a
single row of data is
(CDP_SNMP_MAX_RETRIES + 1) *
CDP_SNMP_RESPONSE_TIMEOUT. The
total default timeout value is (2+1) * 2 =
6 seconds.

CDP_DP_HOSTNAME Name of the
first installed
network
interface

An IP
address or
host name

Sets the preferred host name (network
interface) on a multiple interface system.
Use this environment variable if the agent
binds its listening ports to a non-default
network interface address. Used by the
SNMP data provider.

For Socket data sources, this variable
applies if CDP_DP_ALLOW_REMOTE is
also set.

CDP_SNMP_ALLOW_
DECREASING_OIDS

NO YES, NO If set to YES, the SNMP data providers do
not check whether returned OIDs are
increasing. Set to YES with caution
because the monitored agent might have
problems that this check would normally
catch.

KUMP_DP_COPY_MODE_SAMPLE_I
NTERVAL

60 Wait time in
seconds

For a log file data provider, specifies how
long to wait before it rereads the
contents of a file when the agent is
defined to Process all records when the
file is sampled. The time is specified in
seconds.

Chapter 4. Using the Agent Editor to modify the agent 23

Table 3. Environment variable descriptions including their default values and valid value ranges (continued)

Environment variable Default value Valid values Description

KUMP_MAXPROCESS 100% 5-100% For a log file data provider, specifies the
maximum processor usage to use to
process file data. Values range from 5 to
100 percent. The default is 100 percent.

KUMP_DP_SAMPLE_FACTOR 5 Any non-
negative
integer

For a log file data provider, sets the
sampling factor when you select Process
all records when the file is sampled on
the Agent Builder. This wait time ensures
that patterns that span multiple records
are written before scans are logged for
the pattern.

KUMP_DP_EVENT 5 Any non-
negative
integer

For a log file data provider, sets the
sampling frequency for Event data, in
seconds.

KUMP_DP_FILE_EXIST_WAIT YES YES, NO For a log file data provider, specifies that
the file monitoring thread continues to
run if it detects that the monitored file is
absent or empty. The thread waits for the
file to exist, rechecks every few seconds,
and starts or restarts monitoring when
the file becomes available.

KUMP_DP_FILE_SWITCH_
CHECK_INTERVAL

600 Any non-
negative
integer

The frequency in seconds that the log file
Data Provider searches for a different
monitoring file to switch to when
dynamic file name support is enabled.

KUMP_DP_FILE_ROW_
PAUSE_INCREMENT

None Any non-
negative
integer

For a log file data provider, specifies how
many file records are read before the file
monitoring thread pauses. The pause is
so that previous updates can be
processed. Use this environment variable
only if the monitored file receives high-
volume bursts of new records and you
are concerned that some record updates
might be lost.

CDP_COLLECTION_TIMEOUT 60 seconds Any positive
integer

The number of seconds that the agent
waits for a response from a data collector
that was started in another process. JMX,
JDBC, HTTP, and SOAP data collectors
are examples.

CDP_SSH_TEMP_DIRECTORY . (period) Any valid
path string
on the
remote
system

For an SSH enabled Script data provider,
specifies a location on the remote
system. The script files that are provided
with the agent are to be uploaded to this
location. A relative lo\cation is relative to
the user's home directory. The default
of . (period) denotes the user's home
directory.

24 IBM Agent Builder: IBM Agent Builder User's Guide

Table 3. Environment variable descriptions including their default values and valid value ranges (continued)

Environment variable Default value Valid values Description

CDP_SSH_DEL_COMMAND rm -Rf Any valid
delete
command
string on the
remote
system

For an SSH enabled Script data provider,
specifies the command to start to delete
the uploaded script files that are
provided with the agent.

CDP_SNMP_SEND_DELAY_
FACTOR

0 milliseconds Any positive
integer

The initial SNMP send is delayed from 0
to the number of milliseconds specified.
This variable is only enabled if the thread
pool is also enabled. The delay does not
apply to all sends, only to the first send
made by an attribute group. This variable
is useful if the device that is being
monitored can sometimes fail to respond
correctly if it receives multiple requests
at the same time.

CDP_ICMP_PING_REFRESH_
INTERVAL

60 seconds Any integer
greater than
or equal to 1

The systems in a device list file are
pinged at this interval. If the pings use
too much time, there is always a delay of
at least
CDP_PING_MIN_INTERVAL_DELAY
seconds before the pings begin again.
Data is refreshed no more frequently
than this setting. Data can be refreshed
less frequently based on the number of
entries in the device list file and the time
it takes to receive responses.

CDP_ICMP_PING_MIN_
INTERVAL_DELAY

30 seconds Any integer
greater than
or equal to 1
and less
than the CDP
Ping refresh
interval

After the devices in a device list file are
pinged, the next ping refresh interval
does not begin until at least this number
of seconds elapses.

CDP_ICMP_PING_BURST 10 Any integer
greater than
or equal to 0

The number of pings that are sent before
the agents pauses for the amount of time
that is specified by the
CDP_ICMP_PING_BURST_DELAY
variable. A value of 0 disables this
function.

CDP_ICMP_PING_BURST_DELAY 10 Any integer
greater than
or equal to 0

The amount of time in milliseconds to
wait after a set number of pings are sent
as defined by the
CDP_ICMP_PING_BURST variable. A
value of 0 disables this function.

Chapter 4. Using the Agent Editor to modify the agent 25

Table 3. Environment variable descriptions including their default values and valid value ranges (continued)

Environment variable Default value Valid values Description

CDP_ICMP_PING_TIMEOUT 2000
milliseconds

Any integer
greater than
or equal to 1

The number of milliseconds to wait for a
ping response. This setting applies to
each ping attempt that is made. Ping
attempts are made 3 times for each host.
If no response is received from any of the
3 attempts, the total time waited for a
reply is CDP_ICMP_PING_TIMEOUT
multiplied by 3. By default, this value is
6000 milliseconds. Changing the value
for CDP_ICMP_PING_TIMEOUT causes
the default TIMEOUT enumeration for the
Current Response Time attribute to no
longer apply. Change the TIMEOUT
enumeration to the new value of
CDP_ICMP_PING_TIMEOUT multiplied
by 3.

CDP_JDBC_CONNECTIONLESS false true, false If set to true, JDBC connections are
closed after each data collection
attempt. That is, all attribute groups
attempt to create their own connection
each time data is collected. Connections
are not reused if this variable is enabled.
If set to false, one connection to the
database is made and that connection is
shared among the attribute groups.

CDP_SSH_EXCLUDED_
ENVIRONMENT_VARIABLES

None A comma-
separated
list of
environment
variable
names

For an SSH enabled Script data provider,
specifies the set of local environment
variables that must not be set in the
environment of the remote system.

26 IBM Agent Builder: IBM Agent Builder User's Guide

Table 3. Environment variable descriptions including their default values and valid value ranges (continued)

Environment variable Default value Valid values Description

CDP_DP_EVENT_LOG_MAX_
BACKLOG_TIME

0 seconds 0, 1, or any
integer
greater than
1

If set to 0, and
CDP_DP_EVENT_LOG_MAX_BACKLOG_EV
ENTS is not set to 1 or a greater integer,
does not process events that are
generated while the agent is shut down.
0 is the default.

If set to 1, and
CDP_DP_EVENT_LOG_MAX_BACKLOG_EV
ENTS is not set to an integer greater than
1, processes all events that are
generated while the agent is shut down.

If set greater than 1, and
CDP_DP_EVENT_LOG_MAX_BACKLOG_EV
ENTS is not set greater than 1, processes
events that are generated within that
value in seconds of the current computer
time. For example, if the value is set to
300, at startup, the agent processes all
events that are generated within 300
seconds of the current time.

Where a value greater than 1 is entered
for both
CDP_DP_EVENT_LOG_MAX_BACKLOG
_TIME and CDP_DP_EVENT_LOG_MAX
_BACKLOG_EVENTS variables, either that
time interval of events or that number of
events is processed. Which variable is
chosen depends on which is matched
first.

CDP_DP_EVENT_LOG_
Windows_Event_Log_MAX_BACK
LOG_
TIME

0 seconds (Do
not process
missed events
while the agent
is shut down)

0, 1, or any
integer
greater than
1

If set to

Chapter 4. Using the Agent Editor to modify the agent 27

Table 3. Environment variable descriptions including their default values and valid value ranges (continued)

Environment variable Default value Valid values Description

CDP_DP_EVENT_LOG_
MAX_BACKLOG_EVENTS

0 events 0, 1, or any
integer
greater than
1

If set to 0, and
CDP_DP_EVENT_LOG_MAX_BACKLOG
_TIME variable is not set to 1 or a greater
integer, does not process events that are
generated while the agent is shut down.
0 is the default.

If set to 1, and the
CDP_DP_EVENT_LOG_MAX_BACKLOG
_TIME variable is not set to an integer
greater than 1, processes all events that
are generated while the agent is shut
down.

If set greater than 1, and
CDP_DP_EVENT_LOG_MAX_BACKLOG
_TIME is not set greater than 1,
processes at most that number of events
that are generated while the agent is shut
down. For example, if the value is set to
200, then at startup of the agent the 200
events that generated directly before
startup are processed.

Where a value greater than 1 is entered
for both
CDP_DP_EVENT_LOG_MAX_BACKLOG
_EVENTS and
CDP_DP_EVENT_LOG_MAX_BACKLOG
_TIME, either that number of events or
that time interval of events is processed.
Which variable is chosen depends on
which is matched first.

CDP_DP_EVENT_LOG_
Windows_Event_Log_MAX_BACK
LOG_
EVENTS

0 events (Do not
process missed
events while the
agent is shut
down)

0 or any
integer
greater than
or equal to 1

If set to

CDP_HTTP_READ_TIMEOUT 10 Any positive
integer

The number of seconds to wait for a reply
to the HTTP request.

CDP_JAT_THREAD_POOL_SIZE 15 Any positive
integer

The number of threads that are used by
the Java providers for handling data
collection requests. JMX, JDBC, HTTP,
and SOAP data providers are the
providers that can benefit from this
thread pool.

CDP_HTML_OBJECTS_THREAD_
POOL_SIZE

10 Any positive
integer

The number of threads that are used to
download page objects that are found in
URLs monitored with the HTTP data
provider.

28 IBM Agent Builder: IBM Agent Builder User's Guide

Table 3. Environment variable descriptions including their default values and valid value ranges (continued)

Environment variable Default value Valid values Description

CDP_HTTP_SOAP_MAX_ROWS 500 Any positive
integer

The maximum number of rows that are
returned by the HTTP SOAP data
provider.

CDP_DP_ALLOW_REMOTE NO NO, YES If set to Yes, the agent allows remote
socket connections. If set to No, the
agent allows only socket connections
from the local host. No is the default.

CDP_DP_INITIAL_COLLECTION_
DELAY

varies Any positive
integer

The number of seconds, after the agent
starts, until the thread pool begins its
scheduled data collections.

Watchdog information
Use the Watchdog Information page to specify configuration information for the Agent Watchdog.

About this task
To open the Watchdog Information page, click Watchdog Information in the Agent Content section of
the Agent Information page. You can also select the Watchdog Information node in the Outline View.

You can specify the following configuration information for the Agent Watchdog:

• Monitor this agent by default

Select this check box to put the agent under management by Agent Management Services when the
agent is installed. The agent is monitored for unhealthy behavior or abnormal termination and is
restarted by a watchdog.

• Check frequency (seconds)

How often the watchdog checks the agent process for unhealthy behavior or abnormal termination. The
default is every 180 seconds.

• Maximum number of restarts

Number of times the Watchdog restarts the agent because of unhealthy behavior or abnormal
termination in a 24-hour period before it alerts the administrator of the problem. The period starts at
midnight each day. So, the first period from when the agent is started might be "short."

A restart occurs if the agent goes down for any reason. The Watchdog also stops and restarts the agent
if the agent becomes unresponsive or unhealthy, for example. if the memory threshold is crossed. The
default is four restarts in a 24-hour period, where the period is measured from midnight to 11:59 p.m.
At midnight, the daily restart count for the agent returns to 0 automatically.

• Memory Threshold Information

Size of the agent process (in megabytes) to which the agent can grow before its watchdog deems it
unhealthy. There is a separate value for Windows, Linux, and UNIX. If the agent process grows beyond
the threshold, the watchdog stops the process and restarts it. There are no defaults for these
properties. If no value is specified, the Watchdog does not monitor the process size. The metric uses the
working set size on Windows, and the user memory on UNIX and Linux.

If the Watchdog stops the agent, and the maximum number of restarts is reached, the Watchdog sends an
alert that the agent exceeded its restart count, and stops doing auto-restarts. The Watchdog still reports
whether the agent is up or down assuming it is started in another manner such as through the Tivoli
Enterprise Portal.

You must manually restart the agent by using the AMS Start Agent Take Action command so the restart
count does not get reset.

Chapter 4. Using the Agent Editor to modify the agent 29

The count gets reset in one of the following ways (the Watchdog continues to work and report status, but
does not do auto-restarts):

• The clock strikes midnight.
• The user uses the AMS Start Agent Take Action command, which has an input parameter called

resetRestartCount. If you enter a value of 1 (meaning "true"or "yes"), the daily restart count resets
back to 0.

For more information, see the following sections in the IBM Tivoli Monitoring Administrator's Guide:

• For Tivoli System Monitor Agents

Configuring Agent Management Services on Tivoli System Monitor Agents
• For Tivoli Enterprise Monitoring Agents

Installing and configuring Tivoli Agent Management Services

Cognos information
Use the Cognos Information page to specify the information that is used when a Cognos data model is
generated for your agent. This information is used only for the IBM Tivoli Monitoring environment.

Procedure
1. To open the Cognos Information page, click Cognos Information in the Agent Content section of the

Agent Information page or the Cognos Information node in the Outline View.
2. In the Data Source field, enter the name of the data source that connects Tivoli Common Reporting to

the IBM Tivoli Data Warehouse.
The default value is TDW.

3. In the Schema field, enter the name of the database schema that is used for the Tivoli Data
Warehouse, which is used to fully qualify table names in Cognos reports.
The default value is ITMUSER. This value can be changed in Framework Manager when the generated
Cognos model is loaded into Framework Manager.

The Add this attribute group to a reporting category check box in the Data Source Definition page
determines where in the Cognos model the attribute group is placed. If not selected, the attribute
group is placed in the extended attributes folder in the Cognos model. If selected, the attribute group
is placed in the selected subfolder (availability or performance) in the Key Metrics folder. For more
information about the data source fields, see Table 4 on page 35.

What to do next
You can use the Cognos data model to create Tivoli Common Reporting reports for your agent, see
Appendix E, “Cognos data model generation,” on page 335.

Generate Agent wizard link
When you finish creating or editing the new agent, use the Generate Agent wizard to prepare the
installation.

Procedure
• When you finish creating or editing the new agent, on the Agent Editor Agent Information page, click

the Generate Agent Wizard link.

With the Generate Agent wizard, you can:

– Generate the agent files with a Tivoli Monitoring installation on the local system. For instructions,
see “Installing an agent locally” on page 239.

30 IBM Agent Builder: IBM Agent Builder User's Guide

– Create a package so the agent can be installed on other systems. For instructions, see “Creating the
agent package” on page 241.

The Data Source Definition page
Use the Data Source Definition page to manipulate data sources.

About this task
The Data Source Definition page lists the data sources that are configured for the agent. When you select
a data source or attribute in the tree, the page is updated to display the properties for the selected object.
Use the fields to modify the properties for the data source or attribute selected.

Note: For detailed instructions about creating data sources from various data providers, see Chapter 6,
“Defining and testing data sources,” on page 63.

Procedure
• To open the Data Source Definition page, click Data Sources in the Agent Content section of the

Agent Information page or the Data Sources node in the Outline view.
• You can add more data sources by clicking Add to Selected or right-clicking in the navigation tree and

selecting one of the options.
• You can remove data sources and attributes by right-clicking on them and selecting Remove.
• You can add, modify, and remove attributes. For instructions, see Chapter 5, “Editing data source and

attribute properties,” on page 35

Copying data sources by using the Data Source Definition page
Use the Data Source Definition page to copy data sources.

Before you begin
Go to the Data Source Definition page. For more information, see “The Data Source Definition page” on
page 31

About this task
Data sources that result in attribute groups can be copied to the clipboard and pasted back to this agent
or another agent. Data sources that do not result in attribute groups are Availability and Windows Event
Log data sources.

Procedure
1. Select the attribute groups that you want to copy.
2. Cut or copy the attribute group by using one of the following methods:

• Click Edit > Cut > Edit > Copy from the menu bar.
• Right-click one of the selected items and click Cut or Copy from the menu.
• Use one of the operating system or Eclipse key strokes that calls the cut or copy action. For

example, on Windows systems, pressing Ctrl-C calls the copy action.

To remove data sources from their existing location and place them in the clipboard, use Cut. To leave
data sources in place and copy them to the clipboard, use Copy.

3. Select the parent of an attribute group (the agent, a subnode, or a navigator group) or select an
existing attribute group.

4. Paste the selection by using one of the following choices:

• Select Edit > Paste from the menu bar.

Chapter 4. Using the Agent Editor to modify the agent 31

• Right-click the node where you want to paste the selection in the tree, and click Paste on the menu.
• Use one of the operating system or Eclipse key strokes that calls the paste action. For example, on

Windows systems, pressing Ctrl-V calls the paste action.

Results
The attribute groups from the clipboard are placed in the selected parent. Alternatively, if an attribute
group is selected, the attribute groups are placed in the parent of the selected attribute group.

If there is a name conflict with another attribute group while pasting, the pasted attribute group name is
changed slightly to avoid the conflict.

Runtime Configuration Information page
The Runtime Configuration Information page displays the configurable variables in the agent. You can
set values for the variables when you install the agent on a monitored host.

These values are made available to command return codes and scripts through the environment. To open
the Runtime Configuration Information page, click Runtime Configuration in the Agent Content section
of the Agent Information page or the Runtime Configuration node in the Outline View. The Agent Builder
automatically constructs the name of the environment variable from the product code and the label.

You can add and change the configuration properties and provide default values by using the Runtime
Configuration Information page.

Agent XML Editor page
The Agent XML Editor page displays the XML for the agent definition.

The agent definition XML includes the information that is displayed in all other parts of Agent Builder. If
you change the XML, the information displayed in Agent Builder reflects the change.

Attention: Do not make any changes in the XML. Such changes can cause errors that might
prevent you from generating the agent or negatively affect the functioning of the agent.

Saving your edits and changes
Changes that you make with the editor are not stored until you save them.

Procedure
• Perform a save in one of the following ways:

• Select File > Save, selecting the save (diskette) icon.
• Press Ctrl+S

When you save, a validation occurs to ensure that the information is complete. If problems occur,
information about the error is displayed in the Eclipse Problems view. If this view is not visible, select
Window > Show View > Problems. If you attempt to generate an agent that has errors, an error
message is displayed.

Note: You must correct all errors and save the changes before you can generate and install the agent.

32 IBM Agent Builder: IBM Agent Builder User's Guide

Committing a version of the agent
Commit your agent when you are certain you are finished developing this version of the agent and you are
ready to deliver it.

About this task
IBM Tivoli Monitoring systems require that new versions of an agent include all of the information that is
contained in the previous versions of that agent that were used in the monitoring environment. Including
all information from previous versions is necessary so workspaces, situations, and queries continue to
work if the new agent is installed on some monitored hosts, but the old one remains on the others.

After you complete developing and testing an agent, you must commit the agent as the final version for a
certain version number. Agent Builder ensures that no information is removed after you commit the agent.
Subsequent builds of the agent have a new version number.

There is a limit of 1024 versions.

Remember: If you make changes to an agent that is to be tested and run in an IBM Cloud Application
Performance Management environment, you must change the agent version.

Procedure
1. Open the Agent Editor window, Agent Information page.
2. In the Commit Agent Version area, click commit this level.
3. Back up the committed agent or check it into your version control system.

What to do next
After you commit an agent, any additional changes to the agent are part of a new version. You must enter
the new version number before the additional changes can be saved. Any changes to the new version
must not break compatibility with previous versions of the agent.

After you commit the agent, you cannot complete these actions on objects that existed before the agent
was committed:

• Delete attributes from an attribute group.
• Delete attribute groups.
• Reorder existing attributes in an attribute group.
• Reorganize existing attribute groups (by using Navigator items).
• Move attribute groups or navigator groups into or out of subnodes.
• Rename attribute groups.
• Rename attributes.
• Change data types of existing attributes.
• Change a subnode name or type if it contains an attribute group that existed before the agent was

committed.
• Change a company identifier or agent identifier for the agent.
• Change the product code of the agent. For more information, see (“Changing the product code” on page

34).

You can complete the following actions after you commit the agent:

• Add new attributes to existing attribute groups.
• Add new attribute groups.
• Reorder new attributes.
• Organize new attribute groups by using navigator items.

Chapter 4. Using the Agent Editor to modify the agent 33

• Create new subnode types.
• Add new queries.
• Add new situations.
• Add new workspaces.

Setting a new version number for your agent
To save changes to a committed agent, you must enter a new version number.

Procedure
1. Open the Agent Editor window, Agent Information page.
2. Enter a version, fix path, or patch level that is higher that current level after the Version prompt.
3. Make the edits your agent.

Tip: If you commit an agent and forget to change the agent version, you are prompted for the new
version when you save any of your changes.

Changing the product code
If you change the product code, you have an agent that is incompatible with any previous version of the
agent. Any records of previous commit actions are lost and you are developing a new agent.

Any files, situations, Take Action commands, or workspaces that you exported from IBM Tivoli Monitoring
and imported into the agent are deleted from the agent.

If you try to change the product code of an agent that was committed, Agent Builder displays a warning
and asks if you want to continue.

When you click Yes in the Agent Product Code window you are warned that the contents of the agent
support files are no longer valid. You are also warned that the files will be removed next time the agent is
saved.

34 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 5. Editing data source and attribute
properties

When you add data sources to your agent, Agent Builder creates corresponding data sets. You can edit the
data sets and attributes in them to provide the necessary monitoring information.

Procedure
To edit or remove information from a data set (attribute group):
1. In the Agent Content area of the Agent Information page click Data Sources.

The Data Source Definition page opens.
2. Select the data set (attribute group).

The attribute group information area of the page is updated to display the properties for the selected
data set.

Note: Alternatively, if you are on the last page of the Agent wizard, you can double-click the data
source to open the Attribute Group Information window. This window has the same information as
the attribute group information area of the Data Source Definition page.

(Table 4 on page 35) describes the field information that is applicable to all of the data sources. Use
the fields to modify the properties for the data source or attribute selected.

Table 4. Fields for editing data sources

Field name Description
Acceptable values and
examples

Attribute group name Name of the data source as it is
displayed in the Tivoli Enterprise
Portal or in the IBM Cloud
Application Performance
Management console

Acceptable values: Descriptive
string less than or equal to 32
characters long. It must be
unique within the agent. The
first character must be a letter
and remaining characters can be
letters, numbers, or
underscores. An underscore is
displayed as a space. Do not use
spaces or special characters.

Help text Help text for the data source Acceptable values: String up
256 characters long.

Produces a single data row The data source returns 1 row of
data. Editable in all sampled
data sources.

Example: If you are monitoring
physical system memory,
choose a single row. A system
typically manages all of its
memory in a single pool; so only
one row of data can be returned.

© Copyright IBM Corp. 2010, 2021 35

Table 4. Fields for editing data sources (continued)

Field name Description
Acceptable values and
examples

Can produce more than one
data row

The data source can return any
number of rows of data. Editable
in all sampled data sources.

Example: If you are monitoring
disk drives, choose multiple
rows because there can be more
than one disk in a system. For
keys, choose the attributes that
distinguish a disk from another.
For a disk, the key attribute is
disk number, drive letter,
volume label, or whatever is
appropriate in your
environment.

Produces Events The data source returns event-
based data, 1 row of data per
event.

Example: An SNMP event-based
data source sends notifications
(traps) as performance
thresholds are crossed.

Note: Not all data sources can
produce events.

Add this attribute group to a
reporting category

The category in the generated
Cognos model to which the
attributes in this attribute group
are assigned.

Select the check box to place
the attribute group in the
selected subfolder (Availability
or Performance) in the Key
Metrics folder. If the check box
is not selected, the attribute
group is placed in the Extended
Metrics folder in the Cognos
data model.

Metric Category The category to which the
attributes in this attribute group
are assigned.

Select either Performance or
Availability.

Note:

a. The Produce a single data row and Can produce more than one data row fields do not affect data
for an event data source.

b. For more about sampled and event data types, see (“Data types” on page 57).
c. For information about the fields for a specific data source, see the relevant data provider

information in Chapter 6, “Defining and testing data sources,” on page 63.

Creating, modifying, and deleting attributes
You can create, modify, or delete attributes in a data set (attribute group).

To work with attributes, open the Data Source Definition page. For more information, see “The Data
Source Definition page” on page 31.

36 IBM Agent Builder: IBM Agent Builder User's Guide

Creating attributes
You can add new attributes to a data set.

Procedure
1. Right-click the data source and select Add Attribute on the menu.

The Attribute Information page is displayed.

Note: The page that is displayed depends on the data source for the attribute.
2. Specify your choices for the new attribute on the Attribute Information page.

See “Fields and options for defining attributes” on page 40 for information about the fields and
options.

3. To add more attributes, select Add additional attributes and click Next.
4. When finished adding attributes, click Finish.

Copying attributes
You can copy attributes from the Data Source Definition page.

Procedure
1. In the Agent Editor, Data Source Definition page, right-click the attribute that you want to copy, and

click Copy Attribute.
2. In the Copy Attribute window, type the name of the new attribute in the Name field, and click OK.

Editing attributes
You can edit and change attribute information by using the Data Source Definition page.

Procedure
1. Select the attribute that you want to edit.

The Attribute Information pane of the page is updated to show the properties for the selected
attribute.

2. Specify your choices for the new attribute information.

Note: On the last page of the Agent wizard (the Data Source Definition page), you can double-click
the attribute to open the Attribute Information window. That window contains the same information
as the Attribute Information pane of the Data Source Definition page.

Creating derived attributes
You can create an attribute that derives its value from other attributes instead of directly from the data
source.

About this task
In the derived attribute, you can perform operations on the values of the source attributes. For example,
you can perform basic arithmetic operations on numeric attributes or string concatenation on string
attributes.

The basic expression syntax that is used for derived expressions contains functions. These functions
provide a more complicated manipulation of data that includes short-term aggregation, conversion from
string to integer, and accessing configuration properties and environment variables. In addition, an editor
helps you visualize the expression as it is being built.

Chapter 5. Editing data source and attribute properties 37

Procedure
1. On the Data Source Definition page, right-click the data source and click Add Attribute.
2. On the Attribute Information page, type an Attribute name and Help text.
3. Select Derived from other attribute values.
4. In the Formula field, type the formula text or click Edit to enter the formula with a graphical editor.

See “Formula operators and functions” on page 50 for information about the operators and functions
that can be used in the formula.

Note: When you click Edit, the Formula Editor opens. See “Editing derived attributes” on page 39 for
information about editing derived attributes.

5. Optional: Select or clear the Interval specific calculations check box to determine which two
attribute sample values are used when the function is calculated.
Use this option when your formula uses the rate or delta functions. For more information about
Interval specific calculations, see “Interval specific calculations” on page 38. For more information
about rate and delta functions, see “Formula operators and functions” on page 50.

6. In the Attribute type area, click the type of attribute.
7. Click OK.

The Data Source Definition page is displayed again with the data source listed in it as before.
8. Click Finish.

Important: If you create a derived attribute that references another derived attribute, ensure that the
referenced attribute is listed earlier than the new attribute. If an attribute references another derived
attribute that is located later in the list, the agent is unable to display the value for this attribute. If you
create such an attribute, Agent Builder displays a warning.

Interval specific calculations
You can choose Interval specific calculations when you define a derived attribute that is based on the
rate or delta functions.

You select Interval specific calculations on the Derived Attribute Details tab of the Attribute
Information page. For more information, see “Creating derived attributes” on page 37.

When you use the Interval specific calculations selection, it is important to understand the concept of a
delta or difference between attribute values. The delta is the difference between the most recent value of
the attribute and a previous value of the attribute. The delta is returned directly by the delta function
and is used by the rate function to calculate a result.

The delta or rate function must always have the last function as its only argument. The last function
specifies which values of an attribute are used to determine the delta. If Interval specific calculations is
not selected, the previous value that is used is always the second-most-recent value. If Interval specific
calculations is selected, the previous value that is used is the value whose age (relative to the most
recent value) is equal to the collection interval of the requester.

For example, suppose CDP_DP_REFRESH_INTERVAL is set to 120 seconds and attribute A has the
following sampled values:

Time Sampled value

current 2800

2 minutes (120 seconds) ago 2600

4 minutes (240 seconds) ago 2499

6 minutes (360 seconds) ago 1500

8 minutes (480 seconds) ago 1200

10 minutes (600 seconds) ago 1000

38 IBM Agent Builder: IBM Agent Builder User's Guide

When Interval specific calculations is not selected, the delta function always returns 200, the
difference between the two most recent values, 2800 - 2600. The same value is returned whether the
value is displayed on the Tivoli Enterprise Portal or in the IBM Cloud Application Performance
Management console, used in a situation, or a historical collection.

When Interval specific calculations is selected, the delta function returns a value that depends on the
collection interval of the requester.

If a derived attribute with the delta function is used in a situation with a 4-minute collection interval, the
value that is returned by the delta function is 301, the difference between the most recent value and the
value obtained 4 minutes before that, 2800 - 2499.

If a derived attribute with the rate function is used in a situation with a 10-minute (600-second)
collection interval, the value that is returned by the rate function is 3, the difference between the most
recent value and the value obtained 10 minutes before that, divided by the number of seconds in the
interval (2800 - 1000) / 600.

Note: The Tivoli Enterprise Portal has no inherent collection interval, so delta and rate calculations for
Tivoli Enterprise Portal requests always use the most recent and second most recent attribute values, the
same result whether Interval specific calculations is selected or not.

For delta or rate to work correctly with Interval specific calculations,

• The agent must collect data periodically in the background, and not on demand
(CDP_DP_THREAD_POOL_SIZE must be greater than 0).

• Every situation or historical collection interval in which the attribute is used must be a multiple of the
background refresh interval (CDP_DP_REFRESH_INTERVAL).

• The count (the second argument of the last function) must be large enough to accommodate the largest
collection interval from a situation or historical collection. For example, if the agent must support 10-
minute (600 second) historical collection and CDP_DP_REFRESH_INTERVAL is 120 seconds, the count
must be at least 6, 1+(600 / 120). A count value of 6 ensures that the last function returns the
newest sample and samples up to 600 seconds old.

Note: If these conditions are not met, input values are likely invalid and a result of 0 is returned.

Editing derived attributes
Use the Formula Editor to edit derived attributes.

The Formula Editor is available on the Attribute Information page for a derived attribute, as described in
“Creating derived attributes” on page 37. For more information about the Formula Editor, see “Formula
Editor” on page 45

Removing attributes
You can remove one or several attributes from a data set using the Data Source Definition page.

Procedure
• To remove an attribute or attributes, right-click the attribute or attributes and select Remove from the

menu that is displayed.

Note: You cannot remove an attribute that is used by a derived attribute. You must first remove the
reference by the derived attribute to the attribute you are removing.

Chapter 5. Editing data source and attribute properties 39

Fields and options for defining attributes
Description of the field information and options for the Attribute Information page that are applicable to
all of the data sources

For information about the specific field information for each of the data sources, see the relevant
documentation for each data source.

Table 5. Fields and options for defining attributes

Field names/options Description Acceptable values

Attribute name Name of the attribute as it is
displayed in the Tivoli Enterprise
Portal or in the IBM Cloud
Application Performance
Management console

String with the following
characters:

• A-Z
• _
• a-z
• 0-9

Note: The name must start with
A-Z or a-z.

The attribute name has a limit of
63 characters and the attribute
group name has a limit of 63
characters

Help text Help text for the attribute String

Hidden - can only be used in
derived attribute

If selected, the attribute is not
displayed in the Tivoli Enterprise
Portal or in the IBM Cloud
Application Performance
Management console. See note in
the last row.

Not applicable

Derived from other attribute
values

Attribute value is to be calculated
from values of other attributes

Not applicable

Key Attribute Attribute is a key in the table.
Check whether this attribute
helps to uniquely define the
object that is being reported on.

If the data is warehoused and
summarized, the key attributes
are used to roll up data in the
summary tables.

This option is not available for
Perfmon attributes.

Attribute Information pane The contents of this tab depend on the type of data source to which
this attribute belongs. See information in the chapter for the data
source you want to monitor for more details.

For a derived attribute, In the Formula field, enter a formula to
calculate the value of the attribute that is based on other attributes
or constants. You can type the formula in the Formula field or click
Edit to use the graphical formula editor. See (“Formula Editor” on
page 45).

40 IBM Agent Builder: IBM Agent Builder User's Guide

Table 5. Fields and options for defining attributes (continued)

Field names/options Description Acceptable values

Attribute type Describes how the attribute is
displayed in the Tivoli Enterprise
Portal or in the IBM Cloud
Application Performance
Management console. There are
3 types:

• String
• Numeric
• Time stamp

“Attribute types” on page 41
contains more information about
the attribute types.

Table 6 on page 42 contains
descriptions of the numeric
attribute type values.

Enumerations Can be a numeric with scale zero
or string value.

Add your enumerations to the
table by using the procedure in
(“Specifying an enumeration for
an attribute” on page 44).

The enumeration name is
displayed in the Tivoli Enterprise
Portal or in the IBM Cloud
Application Performance
Management console when the
corresponding Value is received
in the attribute from the agent.

This attribute is used for a set of
specific values with identified
meanings (for example, 1=UP,
2=DOWN).

Note: In cases where the attribute is used in calculations with other attributes, there are reasons not to
display the base value. For instance, a number that represents a byte count wraps so quickly that it is of
little use.

Attribute types
There are three attribute types

The three types of attributes are:

• String
• Numeric
• Time stamp

String attributes

When you select String, use the Maximum size field to specify the maximum length of the string in bytes.
The default size is 64 bytes.

A string value can contain any UTF-8 character. The maximum size is the total length of the buffer that is
allocated to contain the string in bytes. Some non-ASCII UTF-8 characters take more than 1 byte, so you

Chapter 5. Editing data source and attribute properties 41

must account for this space when you select a maximum size. Data aggregation in the warehouse displays
the latest value that is collected during the period.

Numeric

When you specify Numeric, you can set a number of options. See Table 6 on page 42 for information
about these options.

Time stamp

A Time stamp attribute is a string attribute with a format that conforms to the CYYMMDDHHMMSSmmm
format (where C=1 for the 21st century). All 16 characters must be used for scripts or socket clients.
When displayed in the Tivoli Enterprise Portal or in the IBM Cloud Application Performance Management
console, a time stamp attribute type is displayed in the correct format for the locale.

When you use the browse feature for WMI, the Agent Builder automatically marks attributes whose CIM
type is CIM_DATETIME as time stamps. The data provider automatically converts WMI attributes to this
format.

Numeric aspects of attributes
Descriptions of the size, purpose, scale, and range aspects of attributes.

When you specify a numeric attribute, you must specify the size, purpose, scale, and range of the
attribute. For more information, see (Table 6 on page 42).

Table 6. Numeric attribute options

Numeric aspects
Options and
fields Description

Size 32 bits

64 bits

The value of 32-bit numbers can range from -2147483648 to
2147483647 (roughly -2,000,000,000 to 2,000,000,000).

The value of 64-bit numbers can range from
-9223372036854775808 to 9223372036854775807 (roughly
-9x1018 to 9x1018)

42 IBM Agent Builder: IBM Agent Builder User's Guide

Table 6. Numeric attribute options (continued)

Numeric aspects
Options and
fields Description

Purpose Gauge Integer values where the raw values returned are larger or
smaller than previous values. Negative values are supported.
This type is the default type for integers. Data aggregation in the
warehouse produces minimum, maximum, and average values.

Counter A positive integer value that contains raw values that generally
increase over time. Data aggregation in the warehouse displays
the total, high, low, and latest delta values. In the following
example of Delta-based calculations, detailed data values in one
hour are 9, 15, 12, 20, 22, and delta-based processing has the
following rules:

• If the current value is greater than or equal to the previous
value, the output equals the previous value minus the current
value

• If the current value is less than the previous value, the output
equals the current value

• Because 15 is greater than 9, the output equals 6
• Because 12 is less than 15, the output equals 12
• Because 20 is greater than 12, the output equals 8
• Because 22 is greater than 20, the output equals 2
• The TOT_ value is 28, which is the total of outputs
• The LOW_ value is 2, which is the lowest of outputs
• The HI_ value is 12, which is the highest of outputs

Property A property of the object that does not frequently change. Data
aggregation in the warehouse displays the latest value that is
collected during the period.

Delta An integer value that represents the difference between the
current value and the previous value for this attribute. Because
this attribute is represented as a gauge in the warehouse, data
aggregation in the warehouse produces minimum, maximum,
and average values.

Percent change An integer value that represents the percent change between the
current value and the previous value. This type is calculated as:
((new -old)*100)/old. Because this type is represented as
a gauge in the warehouse, data aggregation in the warehouse
produces minimum, maximum, and average values.

Rate of change An integer value that represents the difference between the
current value and the previous value, which is divided by the
number of seconds between the samples. It converts a value
(such as bytes) to the value per second (bytes per second).
Because this type is represented as a gauge in the warehouse,
data aggregation in the warehouse produces minimum,
maximum, and average values.

Chapter 5. Editing data source and attribute properties 43

Table 6. Numeric attribute options (continued)

Numeric aspects
Options and
fields Description

Scale Decimal
adjustment

Scale determines how many decimal places are in the number.
Each decimal place reduces the range that is mentioned earlier
by a factor of 10. For example, a decimal adjustment of 2 shows
two decimal places, and in a 32-bit number the allowable range
becomes -21474836.48 to 21474836.47.

When a non-zero decimal adjustment is specified, the number is
manipulated internally as a floating point number. Therefore, the
precision of large 64-bit numbers might be reduced.

Range Minimum

Maximum

Range gives the expected range of the value. If no minimum or
maximum ranges are given, the maximum values that are
described earlier are used. The range is used to produce a more
useful initial view in some graphical Tivoli Monitoring workspace
views.

Units Unit of measurement for a numeric attribute.

Specifying an enumeration for an attribute
Specify a value enumeration by using the Attribute Information page.

About this task
Specifying an enumeration for an attribute involves a short procedure. When a value is encountered that
has a defined enumeration, the enumeration name is displayed in the Tivoli Enterprise Portal or in the IBM
Cloud Application Performance Management console instead of the value.

Procedure
1. In the Attribute Information page Attribute type area, click Numeric.
2. In the Enumerations area, click an enumeration, and click Add.

The Enumeration Definition window is displayed.
3. Type the name and value of the enumeration in the fields in the window.
4. Click OK.

You can then add more enumerations.

Specifying severity for an attribute used as a status indicator
In an IBM Cloud Application Performance Management environment, a summary dashboard must display
a status. You must use an attribute to provide the status value. For this attribute, you must specify values
that denote specific status severity.

About this task
The attribute that is used for status indication must be numeric. Select this attribute in the Dashboard
Setup wizard; for instructions about using this wizard, see Chapter 12, “Preparing the agent for Cloud
APM,” on page 219.

You can specify values for the attribute that correspond to the Normal, Warning, and Critical severity. Any
other value denotes an "Unknown" severity status; you can also define some values as "Not defined"
explicitly, and the "Unknown" status user interfaces displayed for these values.

44 IBM Agent Builder: IBM Agent Builder User's Guide

Procedure
1. Select the attribute that you want to edit.

The Attribute Information pane of the page is updated to show the properties for the selected
attribute.

2. In the Attribute Information pane, click the Severity tab.
3. Select the necessary severity (Normal, Warning, Critical, and Not defined) and click Edit.
4. Select Range or Single number, enter the range of values or the single numeric value, and click Ok.
5. Optional: If you need to add another value for the same severity, for example; both 2 and 25 denote

warning, click Add, select the severity, enter the value, and click OK.

Filtering attribute groups
You can create a filter to limit the data that is returned from an attribute group that returns sampled data.

Before you begin
If the attribute group exists, open the Data Source Definition page. For more information, see “The Data
Source Definition page” on page 31.

If you want to create an attribute group, follow the steps in “Defining initial data sources” on page 15and
click Advanced in the initial data source information page.

Procedure
1. Use one of the following steps to begin creating the filter:

• If you are creating an attribute group, click Advanced in the initial data source information page.
• If the attribute group exists, select the attribute group in the Data Source Definition page and click

Advanced in the Data Source Definition page.
2. In the Advanced Data Source Properties page, enter a selection formula. The selection formula that

you enter must evaluate to a Boolean result, true, or false.
In the Advanced Data Source Properties page, you can click Edit to enter or modify the formula by
using the Formula Editor. For more information about the Formula Editor, see “Formula Editor” on page
45

3. When you finish entering the filter selection formula, click OK until you return to the Data Source
Definition page.
When the filter is created, the agent uses the filter to evaluate each row of data. When the filter
evaluates to true for a row of data, the data is sent to IBM Tivoli Monitoring or IBM Cloud Application
Performance Management. When the filter evaluates to false, the row of data is not sent and is
discarded.

What to do next
You can validate that the filter is working as intended by using the test function for the attribute group. For
more information about attribute group testing, see “Attribute group testing” on page 229

Formula Editor
Use the Formula Editor to create and change formulas in Agent Builder.

The Formula Editor, which is a graphical tool, is displayed when you do one of the following tasks:

1. Creating or editing derived attributes, see “Creating derived attributes” on page 37 and “Editing
derived attributes” on page 39

2. Creating Filtered Attribute groups, see “Creating a filtered attribute group” on page 182
3. Filtering data from attribute groups, see “Filtering attribute groups” on page 45

Chapter 5. Editing data source and attribute properties 45

Attention:

• When you create derived attributes, the formula that you create must result in a data type that
matches the type of the attribute. For example, if the derived attribute type is a number, the
formula you create must evaluate to a numeric result.

• When you create filtered attribute groups or filter data from attribute groups, the formula that
you create must result in a Boolean value, "true" or "false".

Note: In the following views, the Formula Editor is shown creating formulae for derived attributes. The
views are identical when you use the Formula Editor with filtered attribute groups or to filter data from
attribute groups. The views show the heading Derived Formula Editor or Filter Formula Editor
depending on use.

When the Formula Editor is displayed, the current formula is loaded into the editor. If a formula does not
exist, you can enter one by typing directly into the formula space in the Formula Editor window.
Alternatively you can click Insert to begin entering a formula by using the editor menu options. The editor
contains two views of the formula in the default window, and an option for a third view:
Component view (default)

The components of the edited formula are shown in the operand areas and Operator field. The
operator and its two operands can be edited by using the selection menus.

Formula view (default)
The complete formula is in the formula field in the window. You can edit the formula by typing in this
box.

Formula hierarchy tree view (option)
The formula hierarchy tree is displayed by selecting the Show formula hierarchy check box. The state
of the check box is remembered in subsequent invocations of the Formula Editor.

Changing the Formula Editor component view
Change the component view in the Formula Editor.

About this task
The component that is shown in the component view can be changed in the following ways:

Procedure
• Move the cursor in the formula text.
• Select a different node in the formula hierarchy tree.
• Select Up one Level or one of the Edit buttons.

Component types
You can use the Formula Editor to edit the current component and any operands or function arguments of
that component. Some components can appear differently in the Formula Editor when selected.

Formula Editor Attribute component
Use the attribute component in the Formula Editor to select and manipulate attributes in formulae.

About this task
You can select an attribute from a list of attributes for the attribute group in the component view of the
Formula Editor.

Procedure
1. To work with a specific attribute, select that attribute from the list and click Edit

46 IBM Agent Builder: IBM Agent Builder User's Guide

The Edit the Selected Attribute window is displayed.
2. You can manipulate the selected attribute in the following ways:

• You can replace the attribute with a string or number by selecting String or Number. The attribute
list is replaced by an entry field and the contents are no longer compared to the list of valid
attribute names.

• You can replace the attribute with a function by clicking Function. Parentheses are added after the
name and the list now contains valid function names to choose from.

• You can type an attribute name instead of selecting one. Typing a name is useful if you did not yet
define all of the attributes in this attribute group.

– A warning is displayed if there is no attribute with the name that was entered.
– An error is displayed if characters are entered that cannot be part of an attribute name.
– The OK button is disabled until the warning or error is corrected.

• Attributes are not filtered based on type. If an attribute (or any value) of the wrong type is selected
or entered, a warning message is displayed.

Formula Editor Literal components
Use the string and number components in the Formula Editor to manipulate literals in formulae.

About this task
A literal is any value that is entered directly in the formula that does not come from an attribute value or
from a function. A literal value can be either a string or a number.

Procedure
• You can replace a literal string or number with an attribute by clicking Attribute. A valid attribute name

must be selected or entered without quotation marks.
• You can replace a literal string or number with a function by clicking Function. Parentheses are added

after the name and the selection list contains valid function names to choose from.

– A warning is displayed if a number is entered where a string is expected or vice versa.
– If Number is selected, an error is displayed if the content of the field is not a number. OK is disabled

until the error is corrected.

Formula Editor Operator component
Use the operator component in the Formula Editor manipulate operators in formulae.

About this task
An operator component shows an operator and its operands.

Procedure
• In the Formula Editor component view select the operator from the Operator list, between the two

operands. The (%) operator multiplies the first operand by 100, and then divides by the second
operand.

• Select the operator (+ - * / or %).

– The Left operand section of the page is before the operator.
– The Right operand section is after the operator.
– Simple operands (attributes and literals) can be edited without having to change the selected

component to the operand as described in “Formula Editor Attribute component” on page 46 and
“Formula Editor Literal components” on page 47.

Chapter 5. Editing data source and attribute properties 47

– Complex operands, which consist of other operators or functions, can be edited by clicking Edit.
This action highlights the operand component instead of the entire operator.

Formula Editor Conditional expression component
The conditional expression component shows a condition, a value to return if the condition is true, and a
value to return if the condition is false.

• The expression in the Condition section must evaluate to true or false. Operators (==), (!=), (<),
(<=), (>), (>=), (&&), (||), (!) are available to form expressions that return true or false.

• Simple operands (attributes and literals) can be edited without having to change the selected
component to the operand as described in “Formula Editor Attribute component” on page 46 and
“Formula Editor Literal components” on page 47.

• Complex operands, which consist of other operators or functions, can be edited by clicking Edit. This
action highlights the operand component instead of the entire conditional expression.

• See “Formula Editor common options” on page 48 for information about using the following options:
Insert, Remove, Up one Level, and Edit.

Related concepts
“Formula Editor” on page 45
Use the Formula Editor to create and change formulas in Agent Builder.

Formula Editor Function component
Use the function component in the Formula Editor to select and manipulate function components in
formulae.

About this task
The function component shows the function and its arguments.

Procedure
• To work with the functions Select the Function name from the list in the Formula Editor.

– The description of the selected function is shown after the function.
– Function argument sections are shown after the function name. The appropriate number of

arguments for the selected function are shown. A description specific to the function selected is
shown.

– Simple arguments (attributes and literals) can be edited without having to change the selected
component to the operand as described in “Formula Editor Attribute component” on page 46 and
“Formula Editor Literal components” on page 47.

– Complex arguments, which consist of operators or other functions, can be edited by clicking Edit.
This action highlights the argument component instead of the entire function.

• For functions that take a variable number of arguments, add arguments by clicking Insert or remove
arguments by clicking Remove in addition to the actions described in “Formula Editor common
options” on page 48.

• For the getenv function, a configuration property can be chosen by clicking Insert. If you select the
Configuration property choice, the Configuration Properties window is displayed.

Formula Editor common options
You can use some options in all views in the Formula Editor

The Formula Editor common options are:

• Insert
• Remove

48 IBM Agent Builder: IBM Agent Builder User's Guide

• Up one Level
• Edit

Insert
Insert inserts an operator or a function before the component. The component is demoted to one of the
operator operands or one of the function arguments. For example, if you click Insert before the
sqrt(attr2) function, you are asked what you want to insert and the following choices are displayed:

• An operator with sqrt(attr2) as one of the operator’s operands
• A function with sqrt(attr2) as the function's first argument
• A conditional expression with sqrt(attr2) as the true or false values

If you click Insert before the getenv function, you are asked what you want to insert and the following
choices are displayed:

• Configuration property: use this option to retrieve the value of a configuration property that you have
set up for the agent, or else of any environment variable (for example, JAVA_HOME) on the host running
the agent.

• An operator with attr2 as one of the operator’s operands
• A function with attr2 as the function's first argument
• A conditional expression attr2 as the true or false values

Remove
Remove is available only for operators and functions, and is the inverse of Insert. When you click
Remove, you are asked what is to replace the removed operator or function. For example, Remove before
the sqrt(attr2) function shows the following choices:

• The current argument 1, attr2
• A new string, number, or attribute reference

Select A new string, number, or attribute reference to discard the entire tree after the point that is being
removed and replace it with a new attribute or literal value.

Click The current argument to promote the selected operand or argument to replace the removed
operator or function. You can click subsequent choices if there are more arguments or operands. Any
other operands or arguments are discarded.

Up one Level
Click Up one Level to move up in the tree.

Edit
Click Edit, before a complex operand or argument, to make it the component to be edited.

Click Up One Level after you click Edit to restore the current component to what it was before you clicked
Edit.

Formula Editor - Formula errors
Correcting formula errors in the Formula Editor

The component view is different when there is no formula or the entered formula cannot be parsed. It
does not display a formula tree. Instead, it displays an error message.

You can correct a formula with parsing errors by typing directly in the formula field, or by replacing it with
a new formula by clicking Insert. In this case, Insert presents the following choices:

• An attribute

Chapter 5. Editing data source and attribute properties 49

• A string
• A number
• An operator
• A conditional expression
• A function

Related concepts
“Formula Editor” on page 45
Use the Formula Editor to create and change formulas in Agent Builder.

Formula operators and functions
A reference (including examples) of formula operators and functions that are used in the formula editor.

A derived attribute value is the result of evaluating an expression that is based on constants and other
attribute values in the same data source. The expression grammar is the normal mathematical expression
- operand operator operand with parentheses used for grouping. Numeric attributes can be combined
with other numeric attributes or constants by using the normal mathematical operators: + - * /, and
%, which multiplies the Left operand by 100 and divides by the Right operand. String attributes can be
combined with other string attributes or constants with +. You can also use the following described
functions. Functions are entered in the format: function_name(argument_1, argument_2,
argument_3).

An attribute is represented by its name (the same name you see in the Data Sources Information tree).
Integer constants are specified as numbers. String constants are surrounded by quotation marks.

You can use the following functions in a formula:
abs

Returns the absolute value of a number
atof

Converts a string to a floating point value
atoi

Converts a string to an integer value. It operates in the same way the normal C atoi works: it stops at
the first non-decimal character.

average
Returns a single value that is the average of a set of values. The set of values comes from the
arguments of the function. Several individual values can be given (for example attribute names or
constants), each in a separate argument. Alternatively the last function can be the only argument to
this function (to calculate the average of the most recent values of an attribute).

Examples of this function in use are:

average (Attr_A, AttrB, Attr_C)

average (last (Attr_A, 10))

ceiling
Returns the least integer that is not less than the argument.

For example, where attribute_a = 12.4, ceiling(attribute_a) returns the value 13. And,
where attribute_a = -12.4, ceiling(attribute_a) returns the value -12.

delta
The difference between the most recent value of an attribute and a previously collected value of that
attribute. The single argument to delta must be the last function, which obtains the current and
previous values of an attribute. A normal use might look like:

delta (last(OtherAttribute, 2))

50 IBM Agent Builder: IBM Agent Builder User's Guide

For more information about which attribute values from the last function are used to calculate the
delta, see “Interval specific calculations” on page 38. This function is applicable only for derived
attributes, not for attribute group filters.

floor
Returns the greatest integer that is not greater than the argument.

For example, where attribute_a = 12.4, floor(attribute_a) returns the value 12. And,
where attribute_a = -12.4, floor(attribute_a) returns the value -13.

getenv
Returns the value of the provided environment or "configuration variable".

ipAddressToName
Converts an IP address to a host name. This function requires one argument, an IP address string in
dotted decimal notation. If the address cannot be resolved, then the IP address is returned.

itoa
Converts an integer into a string. This function is most useful when you want to concatenate a numeric
value onto a string. The derived string + function takes only two string arguments.

last
Returns a list of values for use by the min, max, average, stddev, rate and delta functions. It
takes two arguments: the attribute to collect and the number of values to use in the calculation. If the
required attribute is an integral value in a string attribute, the first argument can contain the atoi
function, such as atoi(numericalStringAttribute). The second argument must be a number. It
can either be hardcoded as a constant or it can be the result of an atoi(getenv("ENV_VAR"))
expression. It cannot reference an attribute value.

Examples of this function in use are:

average (last (Attr_A, 10))

last (Attribute_A, ${K01_NUM_COLLECTIONS}))

Restriction: You can use the last function only once in a specific formula.

matches
Returns a Boolean, true, or false, indicating whether a regular expression matches a value. It takes
two arguments, string source and a regular expression whose result the string is compared to. This
function is useful for filtering attribute groups.

max
Returns a single value that is the maximum of a set of values. The set of values comes from the
arguments of the function. Several individual values can be given (for example attribute names or
constants), each in a separate argument. Alternatively the last function can be the only argument to
this function (to calculate the maximum of the most recent values of an attribute).

min
Returns a single value that is the minimum of a set of values. The set of values comes from the
arguments of the function. Several individual values can be given (for example attribute names or
constants), each in a separate argument. Alternatively the last function can be the only argument to
this function (to calculate the minimum of the most recent values of an attribute).

nameToIpAddress
Converts a host name to an IP address. This function requires one argument, a host name string. If the
address cannot be resolved, then the host name is returned.

NetWareTimeToTivoliTimestamp
Converts a Novell NetWare hexadecimal time value to a Tivoli Monitoring time stamp. This function
requires one argument, a special NetWare hexadecimal time value. The attribute type is timestamp.

Chapter 5. Editing data source and attribute properties 51

rate
The rate of change (per second) between the most recent value of an attribute and a previously
collected value of that attribute. The single argument to rate must be the last function, which obtains
the current and previous values of an attribute. A normal use might look like:

rate (last(OtherAttribute, 2))

For more information about which attribute values from the last function are used to calculate the
rate, see “Interval specific calculations” on page 38. This function is applicable only for derived
attributes, not for attribute group filters.

replaceFirst
Replaces the first occurrence of a substring that matches a regular expression with a replacement
string. This function takes three arguments. First: the input string. Second: the regular expression
which is used to match a substring in the input string. Third: the replacement string. See (Appendix F,
“ICU regular expressions,” on page 351) for details on the regular expressions and substitution values
that are allowed in the replacement string.

replaceAll
Replaces all occurrences of substrings that match a regular expression with a replacement string. This
function takes three arguments. First: the input string. Second: the regular expression which is used to
match a substring in the input string. Third: the replacement string. See (Appendix F, “ICU regular
expressions,” on page 351) for details on the regular expressions and substitution values that are
allowed in the replacement string.

round
Mathematically Rounds the number to the nearest whole number.

sqrt
Returns the square-root of a number

stddev
Returns a single value that is the standard deviation of a set of values. The set of values comes from
the arguments of the function. Several individual values can be given (for example attribute names or
constants), each in a separate argument. Alternatively the last function can be the only argument to
this function (to calculate the standard deviation of the most recent values of an attribute).

StringToTivoliTimestamp
Converts a date and time string to a Tivoli Monitoring time stamp. This function requires two
arguments. The first argument is a free-form string representation of the time stamp. The second
argument is a format string that identifies how to parse the free-form string representation of a time
stamp. (Table 7 on page 52) describes the valid format parameters. The attribute type is timestamp.

Table 7. Valid format parameters for StringToTivoliTimestamp

Symbol Meaning Format Example

y Year yy

yyyy

96

1996

M Month

Note: Only English
month strings are
supported.

M or MM

MMM

MMMM

09

Sept

September

d day d

dd

2

02

52 IBM Agent Builder: IBM Agent Builder User's Guide

Table 7. Valid format parameters for StringToTivoliTimestamp (continued)

Symbol Meaning Format Example

E Day of week

Note: Only English day-
of-week strings are
supported.

EE

EEE

EEEE

Sa

Sat

Saturday

h Hour in AM or PM
(1-12)

hh 07

H Hour in day (0-23) HH 00

m Minute in hour mm 04

s Second in minute ss 05

S Millisecond S

SS

SSS

2

24

245

a AM or PM marker a or aa am

Any other ASCII
character

skip this character - (hyphen)

 (space)

/ (forward slash)

: (colon)

* (asterisk)

, (comma)

Table 8 on page 53provides examples of string representations of time stamps and the format
strings that are used to parse them.

Table 8. StringToTivoliTimestamp examples. A table listing and explaining a few examples of string
representations of time stamps.

String representation of the time stamp Format string

96.07.10 at 15:08:56 yy.MM.dd ** HH:mm:ss

Wed, August 10, 2010 12:08 pm EEE, MMMM dd, yyyy hh:mm a

Thu 21/01/2010 14:10:33.17 EEE dd/MM/yyyy HH:mm:ss.SS

sum
Returns a single value that is the sum of a set of values. The set of values comes from the arguments
of the function. Several individual values can be given (for example attribute names or constants),
each in a separate argument. Alternatively the last function can be the only argument to this function
(to calculate the sum of the most recent values of an attribute).

TivoliLogTimeToTivoliTimestamp
Converts a Tivoli log file time stamp to a Tivoli Monitoring time stamp. This function requires one
argument, the string time stamp from a Tivoli log file. The attribute type is timestamp.

Chapter 5. Editing data source and attribute properties 53

tokenize
One token of a tokenized string. This function requires three arguments. The first argument is a string
to be split into tokens. The second argument gives one or more characters in the string that separate
one token from another. Any occurrence of any of the characters from this argument is used to identify
and separate tokens in the first argument. The third argument is the index of the token to return as a
result of this function. The first token is index 0, the second token is index 1, and so on. This argument
can also be the string LAST to return the last token.

UTCtoGMT
Converts Coordinated Universal Time to a GMT Tivoli Monitoring time stamp. This function requires
one argument, the integer time_t value. The attribute type is timestamp.

UTCtoLocalTime
Converts Coordinated Universal Time to a local Tivoli Monitoring time stamp. This function requires
one argument, the integer time_t value. The attribute type is timestamp.

The following functions take no arguments and return a number.
count

Keeps a counter that starts at 1 the first time it is called, and increments by 1 each subsequent time it
is called. If you use it in an expression that also uses last, it matches the number of elements that
are stored by last(), but only until last() reaches its maximum. At that point, last() starts
deleting the oldest value for each new one, thus staying at the same number of total values, while
count() keeps increasing forever.

cumulativeSum
Returns the sum of argument values of duplicate events that are represented by a flow control
summary event. Or returns the argument if it is a single event from a data source. It takes a single
numeric argument. This function applies only to event attribute groups with event filtering and
summarization turned on.

eventThreshold
Returns the threshold value that is configured for the attribute group which generated the event. A
number, with three enumerations:

• SEND_ALL (-3)
• SEND_FIRST (-2)
• SEND_NONE (-1)

The number in parentheses is the raw value. However, the Agent Builder defines the enumerations so
by default the text version is visible on the Tivoli Enterprise Portal or in the IBM Cloud Application
Performance Management console. If you specify an actual numeric threshold and not one of the
three pre-defined choices, that number is returned by this function. The value is an integer > 0. This
function applies only to event attribute groups with event filtering and summarization turned
on.

isSummaryEvent
Returns 0 if it is a single event from a data source, or 1 if the event is a flow control summary event.
The displayed values are Event and Summary Event if you use the default attribute for the function. If
you create the attribute manually, the displayed values are 0 and 1, unless you define the names as
enumerations. This function applies only to event attribute groups with event filtering and
summarization turned on.

occurrenceCount
The number of matching events that are represented by a flow control summary event, or 1 if it is a
single event from a data source. (A flow control summary event includes the first event). This function
applies only to event attribute groups with event filtering and summarization turned on.

summaryInterval
Returns the summary interval that is configured for the attribute group which generated the event, in
seconds. This function applies only to event attribute groups with event filtering and
summarization turned on.

54 IBM Agent Builder: IBM Agent Builder User's Guide

Examples
Examples of the use of formula operators and functions to created derived and filtered attributes

Example 1 - Derived Attributes

If you have a data source that defines the following attribute type:

Name String

xBytes Numeric

yBytes Numeric

Virtual_Size Numeric

You can define:

• An attribute totalBytes to be the sum of xBytes and yBytes. You enter the formula xBytes +
yBytes.

• An attribute yPercent to be a percentage of the total bytes, which is yBytes, can be defined as
yBytes % (xBytes + yBytes) or yBytes % totalBytes.

Example 2 - Derived Attributes

This formula returns the maximum of the recently collected values for the Virtual_Sizeattribute. The
number of samples that are collected is the value of the configuration variable,
K4P_COLLECTIONS_PER_HISTORY_INTERVAL (accessed through getenv), converted to a number
(through atoi):

max(last(Virtual_Size,atoi(getenv("K4P_COLLECTIONS_PER_HISTORY_INTERVAL"))))

Example 3 - Derived Attributes

This formula returns the square-root of the sum of the squares of the xBytes and yBytes attribute
values:

sqrt(xBytes * xBytes + yBtyes * yBytes)

Example 4 - Derived Attributes

This formula returns the average of the xBytes attribute from the 20 most recent samples of the
attribute group. If fewer than 20 samples are collected since the agent was started, it returns the average
of the xBytes attribute from all samples:

average(last(xBytes,20))

Example 5 - Filtered Attributes

You have a data source that returns:

Name Type Size Used Free
Memory MEM 8 4 4
Disk1 DISK 300 200 100
Disk2 DISK 500 100 400

You are only interested in the disk usage. The solution is to create a filter to limit the data that is returned.
To limit the returned data, you create a simple filter that returns a Boolean, true, or false value, as follows

Disk Filter:

Type=="DISK"

Chapter 5. Editing data source and attribute properties 55

Now when the filter Type=="DISK" is true, the attribute group returns only disk usage data, for example:

Name Type Size Used Free
Disk1 DISK 300 200 100
Disk2 DISK 500 100 400

Example 6 - Filtered Attributes

You have a data source that returns:

Name Size Used Free
Memory 8 4 4
Disk1 300 200 100
Disk2 500 100 400

The data that is returned is similar to the previous example, however, there is not a Type attribute present
this time. Here you can use the matches function to find any data rows with a name attribute value that
matches "Disk" followed by a number.

Disk Filter:

matches(Name, "Disk[0-9]*")

Now when the filter matches the string "Disk" followed by a number in attribute Name, only the disk
usage data rows are returned:

Name Size Used Free
Disk1 300 200 100
Disk2 500 100 400

Specifying operating systems
When you define data sources that are not available on all operating systems that the agent supports, you
must specify the operating systems where the data source runs.

About this task
By default, the data source provides data on all of the operating systems that are defined at the agent
level, as desrcibed in “Default operating systems” on page 18. You can change the operating systems for
each data source.

Procedure
1. To open the Operating Systems section, click Operating Systems in the Data Source Information

page when you add a data source.
2. Select the operating systems on which the data source is to operate.

Select individual operating systems, all operating systems, all operating systems of a specific type, or
the agent default operating systems.

Configuring and Tuning data collection
When an Agent Builder agent is created, you can configure and tune its data collection to achieve the best
results.

How you configure and tune your agent can be different for different Agent Builder agents and even
between attribute groups in a single agent. Agent Builder agents can include two types of data and they
support two basic methods of data collection for the most common type of data.

56 IBM Agent Builder: IBM Agent Builder User's Guide

Data types
An agent collects two types of data:

1. Most Tivoli Monitoring attribute groups represent snapshots of data. Someone asks for the data and it
is returned. Agents use this type of data to represent configuration, performance, status, and other
information where a one time collection of a set of data makes sense. This data is called sampled data.

2. Some Tivoli Monitoring data represents events. In this case, an event happens and the agent must
forward data to Tivoli Monitoring. Examples of events are SNMP Traps, Windows Event Log entries, and
new records that are written to a log file. For simplicity, these types of data are grouped and referred to
as event data.

Sampled data
When sampled data is required, a request is sent to the agent for a specific attribute group. The request
might be initiated by clicking a workspace in the Tivoli Enterprise Portal. Other things that might initiate a
request are a situation that is running, a data collection for the Warehouse, or a SOAP request. When the
agent receives the request, the agent returns the current data for that attribute group. Tivoli Enterprise
Portal requests target a specific attribute group in a particular Managed System Name (MSN). Situations
and historical requests are more interesting, especially in an agent which includes subnodes. When a
situation needs data for an attribute group in a subnode, the agent receives one request with a list of the
targeted subnodes. The agent must respond with all the data for the requested attribute group for all of
the subnodes before Tivoli Monitoring can work on the next request.

The most straightforward way for an agent to satisfy a request is to collect data every time it receives a
request from Tivoli Monitoring. Agent Builder agents do not collect data every time. Data is not collected
every time because it often takes time or uses resources to collect data. And in many cases the same data
is requested many times in a short period. For example, a user might define several situations that run at
the same interval on an attribute group and the situations can signal several different conditions. Each of
these situations results in a request to the agent, but you might prefer each of the situations to see the
same data. It is likely that as each situation sees the same data, more consistent results are obtained,
minimizing the demand for system resources by the monitoring agent.

The agent developer can configure agents to optimize data collection by choosing to run the collection in
one of the following two modes:

1. On-demand collection: The agent collects data when it receives a request and returns that data.
2. Scheduled collection: The agent runs data collection in the background on scheduled intervals and

returns the most recently collected data when it receives a request.

The agent uses a short-term cache in both of these modes. If another request for data is received while
the cache is valid, the agent returns data from the cache without collecting new data for each request.
Using data from the cache solves the problem that is caused by multiple concurrent situations (and other
types of) requests. The amount of time the data remains valid, the scheduled collection interval, the
number of threads that are used for collection and whether the agent runs in on demand or scheduled
mode are all defined by environment variables. Using the environment variables, you can tune each agent
for the best operation in its environment.

See the following examples that illustrate how the agent works in both modes:

• Agent 1 (on-demand collection): A simple agent that collects a small amount of data that is normally
accessed only by situations or on an infrequent basis in the Tivoli Enterprise Portal. Data collection is
reasonably fast, but it can use up computing and networking resources. This agent is normally defined
to run on demand. If no situations are running or no one clicks the Tivoli Enterprise Portal, the agent
does nothing. When data is needed, it is collected and returned. The data is placed into the short-term
cache so that further requests at about the same time return the same data. This type of collection is
likely the most efficient way for this agent to run because it collects data only when someone actually
needs it.

• Agent 2 (scheduled collection): A complex agent that includes subnodes and collects data from multiple
copies of the monitored resource. Many copies of the resource can be managed by one agent. It is

Chapter 5. Editing data source and attribute properties 57

normal to run situations on the data on a relatively frequent basis to monitor the status and
performance of the monitored resource. This agent is defined to run a scheduledcollection. One reason
for running a scheduled collection is the way that situations are evaluated by Tivoli Monitoring agents.
Because situations are running on the attribute groups in the subnodes, the agent receives one request
for the data from all of the subnodes simultaneously. The agent cannot respond to other requests until
all of the data is returned for a situation. If the agent collected all of the data when the request arrived,
the agent would freeze when you click one of its workspaces in theTivoli Enterprise Portal. To avoid
freezing the agent, the agent builder automatically defines all subnode agents to run as scheduled
collection. The agent developer tunes the number of threads and refresh interval to collect the data at a
reasonable interval for the data type. For example, the refresh interval can be one time a minute, or one
time every 5 minutes.

Environment variables
An agent determines which mode to use and how the scheduled data collection runs based on the values
of a set of environment variables. These environment variables can be set in the definition of the agent on
the Environment Variables panel. Each environment variable is listed in the menu along with the default
values. The environment variables can also be set or modified for an installed agent by editing the agent's
environment (env) file on Windows or initialization (ini) file on UNIX. The environment variables that
control data collections for sampled attribute groups are:

• CDP_DP_CACHE_TTL=<validity period for the cached data - default value 55
seconds>

• CDP_DP_THREAD_POOL_SIZE=<number of threads to use for concurrent collection -
default value 15 for subnode agents>

• CDP_DP_REFRESH_INTERVAL=<number of seconds between collections - default
value 60 seconds for subnode agents>

• CDP_DP_IMPATIENT_COLLECTOR_TIMEOUT=<amount of time to wait for new data after
validity period expires - default value 5 seconds>

The most important of these variables are CDP_DP_CACHE_TTL, CDP_DP_REFRESH_INTERVAL, and
CDP_DP_THREAD_POOL_SIZE.

If CDP_DP_THREAD_POOL_SIZE has a value greater than or equal to 1 or the agent includes subnodes,
the agent operates in scheduled collection mode. If CDP_DP_THREAD_POOL_SIZE is not set or is 0, the
agent runs in on-demand collection mode.

If the agent is running in scheduled mode, then the agent automatically collects all attribute groups every
CDP_DP_REFRESH_INTERVAL seconds. It uses a set of background threads to do the collection. The
number of threads is set by using CDP_DP_THREAD_POOL_SIZE. The correct value for the
CDP_DP_THREAD_POOL_SIZE varies based on what the agent is doing. For example:

• If the agent is collecting data from remote systems by using SNMP, it is best to have
CDP_DP_THREAD_POOL_SIZE similar to the number of remote systems monitored. By setting the pool
size similar to the number of monitored remote systems, the agent collects data in parallel, but limits
the concurrent load on the remote systems. SNMP daemons tend to throw away requests when they get
busy. Discarding requests forces the agent into a try-again mode and it ends up taking more time and
more resources to collect the data.

• If the agent includes a number of attribute groups that take a long time to collect, use enough threads
so that long data collections can run in parallel. You can probably add a few more for the rest of the
attribute groups. Use threads in this way if the target resource can handle it. Examples of when attribute
groups can take a long time to collect are if the script runs for a long time, or a JDBC query takes a long
time.

Running an agent with a larger thread pool causes the agent to use more memory (primarily for the stack
that is allocated for each thread). It does not however increase the processor usage of the process or
increase the actual working set size of the process noticeably. The agent is more efficient with the correct
thread pool size for the workload. The thread pool size can be tuned to provide the wanted behavior for a
particular agent in a particular environment.

58 IBM Agent Builder: IBM Agent Builder User's Guide

When data is collected, it is placed in the internal cache. This cache is used to satisfy further requests
until new data is collected. The validity period for the cache is controlled by CDP_DP_CACHE_TTL. By
default the validity period is set to 55 seconds. When an agent is running in scheduled mode, it is best to
set the validity period to the same value as CDP_DP_REFRESH_INTERVAL. Set it slightly larger if data
collection can take a long time. When set the validity period in this way, the data is considered valid until
its next scheduled collection.

The final variable is CDP_DP_IMPATIENT_COLLECTOR_TIMEOUT. This variable comes into play only
when CDP_DP_CACHE_TTL expires before new data is collected. When the cache expires before new data
is collected, the agent schedules another collection for the data immediately. It then waits for this
collection to complete up to CDP_DP_IMPATIENT_COLLECTOR_TIMEOUT seconds. If the new collection
completes, the cache is updated and fresh data is returned. If the new collection does not complete, the
existing data is returned. The agent does not clear the cache when CDP_DP_CACHE_TTL completes to
prevent a problem that is seen with the Universal Agent. The Universal Agent always clears its data cache
when the validity period ends. If the Universal Agent clears its data cache before the next collection
completes, it has an empty cache for that attribute group and returns no data until the collection
completes. Returning no data becomes a problem when situations are running. Any situation that runs
after the cache cleared but before the next collection completes sees no data and any of the situations
that fire are cleared. The result is floods of events that fire and clear just because data collection is a little
slow. The Agent Builder agents do not cause this problem. If the 'old' data causes a situation to fire
generally the same data leaves that situation in the same state. After the next collection completes, the
situation gets the new data and it either fires or clears based on valid data.

Attribute groups
Agent Builder agents include two attribute groups that you can use to inspect the operation of data
collection and to tune the agent for your environment. The attribute groups are Performance Object
Status and Thread Pool Status. When these attribute groups are used to tune data collection performance,
the most useful data is:

• Performance Object Status, Average Collection Duration attribute. This attribute shows
you how long each attribute group is taking to collect data. Often a small percentage of the attribute
groups in an agent represents most of the processor usage or time that is used by the agent. You might
be able to optimize the collection for one or more of these attribute groups. Or you can modify the
collection interval for one or more groups, if you do not need some data to be as up-to-date as other
data. For more information, see (“Examples and advanced tuning” on page 60).

• Performance Object Status, Intervals Skipped attribute. This attribute shows you how many
times the agent tried to schedule a new collection for the attribute group and it found that the previous
collection was still on the queue, waiting to be run, or already running. In a normally behaved agent this
attribute value is zero for all attribute groups. If this number starts growing, you tune the data
collection, by adding threads, lengthening the interval between collections, or optimizing the collection.

• Thread Pool Status, Thread Pool Avg Active Threads attribute. You can compare this value
to the Thread Pool Size attribute group to see how well your thread pool is being used. Allocating a
thread pool size of 100 threads when the average number of active threads is 5 is probably just wasting
memory.

• Thread Pool Status, Thread Pool Avg Job wait and Thread Pool Avg Queue Length
attributes. These attributes represent the time an average data collection spends waiting on the
queue to be processed by a thread and the average number of collections on the queue. Because of the
way this data is collected, even an idle system indicates that at least an average of one job is waiting on
the queue. A larger number of waiting jobs or a large average wait time indicates that collections are
being starved. You can consider adding threads, lengthening the interval between collections or
optimizing the collection for one or more attribute groups.

Event data
Agent Builder agents can expose several types of event data. Some behavior is common for all event data.
The agent receives each new event as a separate row of data. When a row of event data is received, it is
sent immediately to Tivoli Monitoring for processing, and added to an internal cache in the agent.

Chapter 5. Editing data source and attribute properties 59

Situations and historical collection are performed by Tivoli Monitoring when each row is sent to Tivoli
Monitoring. The cache is used to satisfy Tivoli Enterprise Portal or SOAP requests for the data. The agent
can use the cache to perform duplicate detection, filtering, and summarization if defined for the attribute
group. The size of the event cache for each attribute group is set by CDP_PURE_EVENT_CACHE_SIZE.
This cache contains the most recent CDP_PURE_EVENT_CACHE_SIZE events with the most recent event
returned first. There are separate caches for each event attribute group. When the cache for an attribute
group fills, the oldest event is dropped from the list.

The Agent Builder agent can expose events for:

• Windows Event Log entries
• SNMP Traps or Informs
• Records added to log files
• JMX MBean notifications
• JMX monitors
• Events from a Java API provider or socket provider.
• Joined attribute groups (where one of the data sources is an event data source)

These events are handled in the most appropriate way for each of the sources. SNMP Traps and Informs,
JMX notifications and events from the Java API and socket providers are received asynchronously and
forwarded to Tivoli Monitoring immediately. There is no requirement tune these collectors. The agent
subscribes to receive Windows Event Log entries from the operating system by using the Windows Event
Log API. If the agent is using the older Event Logging API, it polls the system for new events by using the
thread pool settings. For joined attribute groups where one of the data sources is an event data source,
there is no tuning to apply to the joined attribute group. Though the joined attribute group does benefit
from any tuning applied to the event source group.

File monitoring is more complicated. The agent must monitor the existence of the files and when new
records are added to the files. The agent can be configured to monitor files by using patterns for the file
name or a static name. As the set of files that matches the patterns can change over time, the agent
checks for new or changed files every KUMP_DP_FILE_SWITCH_CHECK_INTERVAL seconds. This global
environment variable governs all file monitoring in an agent instance. When the agent determines the
appropriate files to monitor, it must determine when the files change. On Windows systems, the agent
uses Operating System APIs to listen for these changes. The agent is informed when the files are updated
and processes them immediately. On UNIX systems, the agent checks for file changes every
KUMP_DP_EVENT seconds. This global environment variable governs all file monitoring in an agent
instance. When the agent notices that a file changed, it processes all of the new data in the file and then
waits for the next change.

Examples and advanced tuning

Example
Environment variables that are used for more advanced tuning are defined at the agent level. You set the
following variables one time and they apply to the all of the attribute groups in the agent:

• CDP_DP_CACHE_TTL
• CDP_DP_IMPATIENT_COLLECTOR_TIMEOUT
• KUMP_DP_FILE_SWITCH_CHECK_INTERVAL
• KUMP_DP_EVENT

You can make the following variables apply to individual attribute groups. They still have a global setting
that applies to all other attribute groups in the agent:

• CDP_DP_REFRESH_INTERVAL
• CDP_PURE_EVENT_CACHE_SIZE

If you defined an agent to include the following six attribute groups:

60 IBM Agent Builder: IBM Agent Builder User's Guide

• EventDataOne
• EventDataTwo
• EventDataThree
• SampledDataOne
• SampledDataTwo
• SampledDataThree

You might set the following default variables:

• CDP_DP_CACHE_TTL=55
• CDP_DP_IMPATIENT_COLLECTOR_TIMEOUT=2
• CDP_DP_REFRESH_INTERVAL=60
• CDP_PURE_EVENT_CACHE_SIZE=100

As a result, all of the attribute groups which contain sampled data (SampledDataOne, SampledDataTwo,
and SampledDataThree) would be collected every 60 seconds. Each of the event attribute groups
(EventDataOne, EventDataTwo, and EventDataThree) would store the last 100 events in their cache.

These settings might work perfectly, or there might be reasons that you must control the settings at a
more granular level. For example, what if EventDataOne generally receives 10 times as many events as
EventDataTwo and EventDataThree? To further complicate things, there really is a link between
EventDataOne and EventDataTwo. When one event is received for EventDataTwo, there are always
multiple events for EventDataOne and users want to correlate these events. There is not a single correct
setting for the cache size. It would be nice to be able to have EventDataOne store a larger number of
events and EventDataTwo store a smaller number. You can achieve this storage by setting
CDP_PURE_EVENT_CACHE_SIZE to the size that makes sense for most of the event attribute groups, 100
seems good. Then, you can set CDP_EVENTDATAONE_PURE_EVENT_CACHE_SIZE to 1000. That way all
of the corresponding events are visible in the Tivoli Enterprise Portal.

The same thing can be done with CDP_DP_REFRESH_INTERVAL. Set a default value that works for the
largest number of attribute groups in the agent. Then set CDP_attribute group
name_REFRESH_INTERVAL for the attribute groups which must be collected differently. To optimize
collection, set the default CDP_DP_REFRESH_INTERVAL to match the CDP_DP_CACHE_TTL value.
CDP_DP_CACHE_TTL is a global value so if set to a value less than a refresh interval, unexpected
collections might occur.

Chapter 5. Editing data source and attribute properties 61

62 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 6. Defining and testing data sources
Agent Builder supports a number of data providers. You can create data sources from each data provider.
The procedure for creating and testing data sources is different for each data provider.

For most data providers, when you create a data source, a data set (attribute group) is added to the agent.
The data set contains the information that is gathered by this data source.

A data source with a Process, Windows service, or Program return code data provider uses the special
Availability data set. Only one Availability data set can be created in an agent. It contains the information
that is gathered by all data sources with a Process, Windows Service, or Program Return Code data
provider in this agent.

All Windows log data sources in an agent or subnode place event information into one Event Log data set.

Setting up a data source for IBM Cloud Pak for Multicloud Management
In IBM Cloud Pak for Multicloud Management, you can use data from all data sets in the thresholds that
you create. For data to be visible in the IBM Cloud Pak console, you must model the data as one or more
resources.

These agent resources should group subsets of the data so that each resource represents a logical entity
in the application, system, or network environment. Each resource can contain any subset of the
information contained in any number of data sources. Each resource definition should include one data
source with at least one attribute that can be used to identify the resource. If the data source is single-
row, the agent creates one resource. If the data source is multi-row, the agent creates a resource for each
unique set of values. A resource can include an event data source as additional data. All of the data
selected when the resource is defined is displayed in a table in the IBM Cloud Pak console. You can
choose to plot a subset of the data in a line graph by specifying a units value for the attribute.

For more information, see Chapter 13, “Preparing the agent for Cloud Pak for Multicloud Management,” on
page 223.

Setting up a data source for IBM Cloud Application Performance Management
In Cloud APM, you can use data from all data sets in the Details dashboard and to set up thresholds using
the threshold manager. If you want to use information from a data set in the summary dashboard for the
agent or subnode, including the status indicator, as well as for resource information (service name,
address, and port), the data set must produce only one row.

For most data providers, you can select Produces a single data row in the data set configuration. If the
gathered information would include more than one row, you can click Advanced to set up a filter that
ensures the correct row is produced (for instructions, see “Filtering attribute groups” on page 45). You
can test your data source to ensure that the gathered information produces the row that you need.

For some data providers, the data set must produce multiple rows. Also, the process, Windows service,
and command return code data sources place data into a single Availability data set, which produces
multiple rows. In such cases, you must create a filtered data set that produces one row. For instructions
about creating a filtered data set (attribute group), see “Creating a filtered attribute group” on page 182.

Some other data providers produce event data; a row is included for every new event. Do not use these
data providers for summary or resource information in Cloud APM.

The following data providers must produce a data set with multiple rows:

• Process (uses the Availability data set)
• Windows service (uses the Availability data set)
• Program return code (uses the Availability data set)
• For some data types, SNMP and JMX

© Copyright IBM Corp. 2010, 2021 63

• Depending on the application, Socket and Java API

The following data providers produce event data:

• SNMP event
• Log file
• AIX binary log
• Windows event log
• Depending on the application, Socket and Java API

One of the attributes of the data set must provide a status value. Cloud APM uses this value for the overall
status indicator. If the row does not include an attribute that can be used as a status indicator, you can
create a derived attribute to calculate the status. You must configure the status severity values; for
instructions, see “Specifying severity for an attribute used as a status indicator” on page 44.

Monitoring a process
You can define a data source that monitors a process or several processes which run on a server. The
processes must run on the same host as the agent. For every process, the data source adds a row to the
Availability data set.

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click A process in the

Monitoring Data Categories area.
2. In the Data Sources area, click A process.
3. Click Next.
4. On the Process Monitor page, in the Process information area, provide the display name and process

name. You can type the process name manually or obtain it by clicking Browse. Clicking Browse shows
a list of processes that are currently running on the local system or on a remote system.

You can further discriminate processes by selecting the Use argument match and Match full
command line options. For example, if multiple instances of the same processes are running on the
system, one instance can be distinguished from another by using these options.

Table 9. Fields on the Process Monitor page. A table listing the fields in the Process Monitor page and
their descriptions

Field name Description Acceptable values

Display name Descriptive name for the
component of the application
that is implemented by the
process as it is shown in the
Tivoli Enterprise Portal or in the
IBM Cloud Application
Performance Management
console

Descriptive string

Process name Name of the process that is
being monitored

Valid executable file name

Use argument match Select if you want to match on
the process arguments.

On or Off

64 IBM Agent Builder: IBM Agent Builder User's Guide

Table 9. Fields on the Process Monitor page. A table listing the fields in the Process Monitor page and
their descriptions (continued)

Field name Description Acceptable values

Argument Argument string on which to
match. Argument matching
looks for the provided string as a
substring of the arguments.
Matching is successful if you
provide any part of the
arguments as the input string.

String

Match full command line Specify the entire name of the
executable file that might
include the path

On or Off

Command line Matches the provided string
against the fully qualified
command name that is used to
start the process. Command
arguments are not included.
Fully qualified means the path
to the command must be
included.

String

Operating systems Select the operating systems on
which this process runs

Any selection

5. If you click Browse, the Process Browser window opens. This window initially contains detailed
information about each process on the Agent Builder system. The information includes the ID, the
process name, and the full command line for the process. Select one or more processes or work with
the list in the Process Browser window by using one or more of the following actions:
a) To sort the list of processes, click the column heading.
b) To refresh the information in the window, click the Refresh (lightening bolt) icon.
c) To search for specific processes, click the Search (binoculars) icon.

You can enter a search phrase and select options section to search by process identifier, name, and
command line.

d) To view processes on a different system, select a previously defined system from the Connection
Name list. Or click Add to enter the system information for a new system.
For more information, see “Defining connections for process browsing” on page 67. You can load
processes from more than one system at a time, and switch between connections while processes
are loading for one or more connections.

Note: When you browse remote systems, the command-line details are available only when you
browse through a Tivoli Enterprise Portal Server.

In the following example, after you select svchost.exe, it is shown in the Process name field on the
Process Monitor page (Figure 1 on page 66).

Chapter 6. Defining and testing data sources 65

Figure 1. Process Monitor page example
6. Complete the Process Monitor page by using the information in (Table 9 on page 64).

Note: If the process you described in this monitor is applicable to only some of the operating systems
that your application runs on, you might want to create one or more process monitors with the same
display name to cover the other operating systems. Add the process monitors one at a time. Ensure
that the display name is the same for each monitor, but that the process name can be found on the
operating systems that are selected.

7. Do one of the following steps:

• If you are using the Agent wizard, click Next.
• Click Finish to save the data source and open the Agent Editor.

What to do next
If you want to use the data from this data source in the summary dashboard for IBM Cloud Application
Performance Management, you must create a filtered data set (attribute group) based on the Availability
data set and configure it as providing a single row. Use the NAME field to select the row for your process.

You can use the Status field for status; DOWN means that the process is not running, while UP means it is
running. In the new filtered attribute group, select the Status field and specify the severity values for it.

66 IBM Agent Builder: IBM Agent Builder User's Guide

If several copies of the process are running, several rows with this process name are present in the
Availability data set, and all of then include the UP status. Your filtered data set must be configured to
return one row, so any of these rows might be returned, but the Status value is valid in any case.

For instructions, see:

• “Creating a filtered attribute group” on page 182
• “Specifying severity for an attribute used as a status indicator” on page 44
• Chapter 12, “Preparing the agent for Cloud APM,” on page 219

Defining connections for process browsing
When you define a process data source, you can view and select processes from other systems. However,
when the agent runs, it monitors processes that run on the same system as the agent.

About this task
You must have credentials for the other systems or they must be monitored by a Tivoli Monitoring
operating system agent.

Procedure
1. To define a connection, click Add in the Process Browser window.

You can select either a connection type (Secure Shell (SSH), Windows, or Tivoli Enterprise Portal
Server Managed System) or select an existing connection to use as a template.

To add a Managed System connection, you require a Tivoli Enterprise Server host name, Tivoli
Monitoring user name, and password. You also require the managed system name of the remote
connection. When a managed system is selected, the table lists the process on the remote system.

Note: The OS agent must be running on the system you are attempting to browse. The agent must also
be connected to a running Tivoli Enterprise Monitoring Server and Tivoli Enterprise Portal Server.

To add Secure Shell (SSH) or Windows connections, you require a host name, user name, and
password.

2. When you add a connection, you can select the connection from the Connection Name list in the
Process Browser window.

If all the fields required to make the connection are not saved (for example, the password), the
Connection Properties window for that connection opens. Enter the missing information. For Tivoli
Enterprise Portal Server Managed System connections, you must connect to the Tivoli Enterprise
Portal Server before you can enter a managed system.

3. Enter your user name and password, and then click the Refresh (lightening bolt) icon to connect
before you select the managed system.

What to do next
To delete a connection, select the connection and click Edit to open the Connection Properties window.
Select the Remove this connection check box and click OK.

Monitoring a Windows service
You can define a data source that monitors a service or several services which run on a Windows system.
The services must run on the same host as the agent. For every service, the data source adds a row to the
Availability data set.

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click A process in the

Monitoring Data Categories area.

Chapter 6. Defining and testing data sources 67

2. In the Data Sources area, click A Windows service.
3. Click Next.
4. On the Service Monitor page, in the Display name field, type a description. In the Service name field,

provide the name of the service application. You can type it manually or click Browse to view a list of
services that are currently running on the local system or on a remote system.
If you click Browse, the Service Browser window opens. This window initially contains detailed
information about each service on the Agent Builder system. The information includes the service
name, the display name, the state, and the description for the service.

Note: Local services are not shown when Agent Builder is not running on a Windows system. A remote
Windows system must be defined or selected, see (“Defining connections for service browsing” on
page 68).

Note: The service description is not available when you are browsing through the Tivoli Enterprise
Portal Server or from a UNIX or Linux system.

5. Select one or more services or do one or more of the following steps to work with the list in the Service
Browser window:

• To sort the list of services, click the column heading.
• To refresh the information in the window, click the Refresh (lightening bolt) icon.
• To search for a service, click the Search (binoculars) icon to open the Service Search window. You

can search by the service name, display name, and description.
• To view services on a different system, select a previously defined system from the Connection

Name list or click Add to enter the system information. For more information, see (“Defining
connections for service browsing” on page 68). You can load services from more than one system
at a time, and switch between connections while services are loading for one or more connections.

6. After selecting or entering the name of the service, complete one of the following steps:

• If you are using the Agent wizard, click Next.
• Click Finish to save the data source and open the Agent Editor.

What to do next
If you want to use the data from this data source in the summary dashboard for IBM Cloud Application
Performance Management, you must create a filtered data set (attribute group) based on the Availability
data set and configure it as providing a single row. Use the NAME field to select the row for your process.

In the new filtered attribute group, select the Functionality_Test_Status field and specify the severity
values for it.

For instructions, see:

• “Creating a filtered attribute group” on page 182
• “Specifying severity for an attribute used as a status indicator” on page 44
• Chapter 12, “Preparing the agent for Cloud APM,” on page 219

Defining connections for service browsing
In addition to selecting services from the system where Agent Builder is running, you can select services
from other Windows systems.

About this task
To select services from other Windows systems, you define a connection to the remote system. You must
have credentials for the systems or they must be monitored by a Tivoli Monitoring operating system agent.

68 IBM Agent Builder: IBM Agent Builder User's Guide

Procedure
1. To define a connection, click Add in the Service Browser window.

The Select Connection Type window opens. To add a Managed System connection, you require a Tivoli
Enterprise Server host name, Tivoli Monitoring user name and password, and the managed system
name. When a managed system is selected, the table lists the service on the remote system.

Note: The OS agent must be running on the system you are attempting to browse and also connected
to a running Tivoli Enterprise Monitoring Server and Tivoli Enterprise Portal Server.

You require a host name, user name, and password to add a Windows connection.
2. Select a connection type (Windows, or Tivoli Enterprise Portal Server Managed System) or select an

existing connection to use as a template.
The Connection Properties window opens.

3. Complete the Connection Properties.
4. Click Finish
5. When you add a connection, you can select the connection from the Connection Name list in the

Service Browser window.
If the fields necessary to make the connection are not saved (for example, the password),
theConnection Properties window opens and you can enter the missing information.
a) For Tivoli Enterprise Portal Server Managed System connections, you must connect to the Tivoli

Enterprise Portal Server before you can enter a managed system. Enter your user name and
password, and then click the Refresh (lightening bolt) icon to connect before you select the
managed system.

6. To delete a connection, follow these steps:
a) Select the connection in the Service Browser window.
b) Click Edit to open the Connection Properties window.
c) Select the Remove this connection check box.
d) Click OK.

Monitoring data from Windows Management Instrumentation
(WMI)

You can define a data source to collect data from Windows Management Instrumentation (WMI) on the
system where the agent runs or on a remote system. A data source monitors a single WMI class and
places all values from this class into the data set that it produces. If the class provides several instances,
the data set has multiple rows; you can filter by instance name to ensure the data set has one row.

Before you begin
If your agent collects data from a remote system by using Windows Management Instrumentation (WMI),
it requires permissions to access WMI data on the remote system. The agent can access WMI data on a
remote system when you provide credentials of an account with permissions to access WMI data on the
system. The Administrator account has the required permissions. In the procedure that follows you can
either provide the Administrator credentials or the credentials of another user with the required
permissions. For more information about creating a user account with permissions to browse WMI data,
see “Creating a user with Windows Management Instrumentation (WMI) permissions” on page 208.

To collect metrics through the Windows APIs, the agent must be hosted on a Windows operating system.
Remote registry administration must be enabled on the remote systems.

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Data from a server

in the Monitoring Data Categories area.

Chapter 6. Defining and testing data sources 69

2. In the Data Sources area, click WMI.
3. Click Next.
4. On the Windows Management Instrumentation (WMI) Information page, complete one of the

following steps:

• Type a name for the WMI namespace and a name for the WMI class name in the fields. Then go to
step “9” on page 70

• Click Browse to see all of the WMI classes on the system.

To browse a remote system, select a system from the list (if one is defined). Alternatively click Add
to add the host name of a Windows system. Provide the credentials of a user account with
permissions to access WMI data on the remote system, or provide Administrator credentials for
the remote system. The page is updated with the information for the remote system. Browsing is
available only when the Agent Builder is run on a Windows system, and can browse only Windows
systems.

5. Click the plus sign (+) next to a class to expand the class and show the attributes.
6. From the list, select the class with its associated attributes that you want to specify, and click OK.

Note: You can click the Search (binoculars) icon to find your selection in the list. Type a phrase in the
Search phrase field; specify your preference by clicking either the Search by name, Search by class
description, or Search by class properties fields; and click OK. If you find the item for which you are
searching, select it and click OK.

The WMI Information page of the wizard opens again, showing the selected WMI class information.
7. Optional: You can test this attribute group by clicking Test. For more information about testing, see

“Testing WMI attribute groups” on page 71
8. Optional: You can create a filter to limit the data that is returned by this attribute group by clicking

Advanced. For more information about filtering data from an attribute group, see “Filtering attribute
groups” on page 45

9. Click Next.

Note: If you typed the WMI Namespace and WMI class name manually you are brought to the
Attribute Information page, where you can complete attribute information. On the Attribute
Information page, you can select Add additional attributes if you want to add more attributes. Click
Finish to complete.

10. On the Select key attributes page, select key attributes or indicate that this data source produces
only one data row. For more information, see (“Selecting key attributes” on page 15).

11. Do one of the following steps:

• If you are using the Agent wizard, click Next.
• Click Finish to save the data source and open the Agent Editor.

12. You can add attributes and supply the information for them. For more information, see “Creating
attributes” on page 37.

In addition to fields that are applicable to all data sources (Table 5 on page 40), the Attribute
Information page for the WMI data source has the following field:
Metric name

Property name from the class you want to collect
13. If you want to set global options for the data source, click Global Options.

Select the Include remote Windows configuration properties check box if you want to include this
option, and click OK.

For information about Windows remote connection configuration for Windows data sources, see
(“Configuring a Windows remote connection” on page 207).

70 IBM Agent Builder: IBM Agent Builder User's Guide

Testing WMI attribute groups
If you are running Agent Builder on a Windows system, you can test a WMI attribute group within Agent
Builder.

Procedure
1. You can start the Testing procedure in the following ways:

• During agent creation click Test on the WMI Information page.
• After agent creation, select an attribute group on the Agent Editor Data Source Definition page and

click Test. For more information about the Agent Editor, see Chapter 4, “Using the Agent Editor to
modify the agent,” on page 17.

After you click Test in one of the previous two steps, the WMI Test window is displayed.
2. Optional: Before you start testing, you can set environment variables and configuration properties. For

more information, see “Attribute group testing” on page 229).
3. Click Start Agent.

A window indicates that the Agent is starting.
4. To simulate a monitoring environment request for agent data, click Collect Data.

The agent queries WMI for data. The WMI Test window collects and displays any data in the agent's
cache since it was last started.

5. Optional: Click Check Results if the returned data is not as you expected.
The Data Collection Status window opens and shows you more information about the data. The data
that is collected and displayed by the Data Collection Status window is described in (“Performance
Object Status node” on page 280).

6. Stop the agent by clicking Stop Agent.
7. Click OK or Cancel to exit the WMI Test window. Clicking OK saves any changes that you made.

Related concepts
“Testing your agent in Agent Builder” on page 229
After you use Agent Builder to create an agent, you can test the agent in Agent Builder.

Monitoring a Windows Performance Monitor (Perfmon)
You can define a data source to collect data from Windows Performance Monitor (Perfmon). A data source
monitors a Perfmon object. The counters in the object are placed in attributes in the resulting data set. If
the class provides several instances, the data set has multiple rows; you can filter by instance name to
ensure the data set has one row.

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Data from a server

in the Monitoring Data Categories area.
2. In the Data Sources area, click Perfmon.
3. Click Next.
4. On the Perfmon Information page, complete one of the following steps:

• Type the name of the object in the Object Name field, and click Next to define the first attribute in
the attribute group.

Note: If you type the name for the Windows Performance Monitor object, it must be the English
name.

• Click Browse to view the list of Perfmon objects.

When the Performance Monitor (Perfmon) Object Browser window initially opens, the window
populates with the information from the local system. To browse a remote system, select a system

Chapter 6. Defining and testing data sources 71

from the list (if one is defined), or click Add to add the host name of a Windows system. Provide an
Administrator ID and password. The window updates with the information for the remote system.
Browsing is available only when Agent Builder is running on a Windows system, and can browse
only Windows systems. For example, you cannot add the host name of a Linux or Solaris system to
do a remote browse.

– When you click an object name, the available counters in that object are shown in the window.

- To sort the Windows Performance Monitor objects or counters, click the column heading.
- To refresh the information in the window, click Refresh.
- To search for specific objects or counters click the Search (binoculars) icon to open the

Performance Monitor Search window. You can search object names, counter names, or both.
The search operation does a substring match and is not case-sensitive.

- Select an object and click OK.
- The Perfmon Information page opens with the name of the selected object in the Object

Name field.
• If you want to set global options for the data source, click Global Options

Select the Include remote Windows configuration properties check box if you want to include
this option, and click OK.

For information about Windows remote connection configuration for Windows data sources, see
(“Configuring a Windows remote connection” on page 207).

5. If the Windows Performance Monitor object selected returns multiple instances and you want to filter
the results that are based on the instance name:
a) Select the Filter by Perfmon Instance Name check box on the Perfmon Information page.
b) In the Perfmon Instance Name field, type the name of the instance to be filtered, or click Browse

to list the instances available.
c) To browse a remote system, either select one from the list, or click Add to add the host name of a

Windows system. After you select a host, provide an Administrator ID and password. The table is
updated with the list of instances on the remote system.

Note: You can also filter by attribute group, see step “9” on page 72
6. If the selected Windows Performance Monitor Object is to return multiple instances, and you want

the instance name to be returned, select Return Instance Name on the Perfmon Information page.
Checking this option adds an attribute to the data source that is not shown in the list of attributes.
This attribute contains the instance name.

Note: If you browsed for the selected object, and that object is defined as having multiple instances,
this check box is selected automatically.

7. If you did not check the option to return the instance name, the Select key attributes page opens. On
the Select key attributes page, select key attributes or indicate that this data source produces only
one data row. For more information, see (“Selecting key attributes” on page 15).

8. Optional: You can test this attribute group by clicking Test. For more information about testing, see
“Testing Perfmon attribute groups” on page 73

9. Optional: You can create a filter to limit the data that is returned by this attribute group by clicking
Advanced.
For more information about filtering data from an attribute group, see step “Filtering attribute
groups” on page 45

Note: You can also filter by instance name, see “5” on page 72
10. Do one of the following steps:

• If you are using the New Agent wizard, click Next.
• Click Finish to save the data source and open the Agent Editor.

72 IBM Agent Builder: IBM Agent Builder User's Guide

The Agent Editor Data Source Definition page shows a list that contains the object and
information about the object.

11. You can add attributes and supply the information for them. For more information, see (“Creating
attributes” on page 37).

In addition to the fields applicable to all data sources, the Perfmon Attribute Information page for
the data source has the following field:
Metric name

Name of the counter for the specific object.

What to do next
For information about Windows remote connection configuration for Perfmon data sources, see
“Configuring a Windows remote connection” on page 207.

Testing Perfmon attribute groups
If you are running Agent Builder on a Windows system, you can test the Perfmon attribute group that you
created.

Procedure
1. You can start the Testing procedure in the following ways:

• During agent creation click Test on the Perfmon Information page.
• After agent creation, select an attribute group on the Agent Editor Data Source Definition page and

click Test. For more information about the Agent Editor, see Chapter 4, “Using the Agent Editor to
modify the agent,” on page 17.

After you click Test in one of the previous two steps, the Perfmon Test window is displayed.
2. Optional: Before you start testing, you can set environment variables and configuration properties. For

more information, see “Attribute group testing” on page 229.
3. Click Start Agent. A window indicates that the Agent is starting.
4. To simulate a request from the monitoring environment for agent data, click Collect Data.

The agent queries Performance Monitor for data. The Perfmon Test window collects and shows any
data in the agent's cache since it was last started.

Note: You might not see useful data for all attributes until you click Collect Data a second time. The
reason is that some Performance Monitor attributes return delta values, and a previous value is
required to calculate a delta value.

5. Optional: Click Check Results if the returned data is not as you expected.
The Data Collection Status window opens and shows you more information about the data. The data
that is collected and shown by the Data Collection Status window is described in “Performance
Object Status node” on page 280.

6. Stop the agent by clicking Stop Agent.
7. Click OK or Cancel to exit the Perfmon Test window. Clicking OK saves any changes that you made.

Related concepts
“Testing your agent in Agent Builder” on page 229
After you use Agent Builder to create an agent, you can test the agent in Agent Builder.

Monitoring data from a Simple Network Management Protocol
(SNMP) server

You can define a data source to monitor an SNMP server. A data source monitors all data from a single
SNMP object identifier (OID) and a single host. if you select an element of the OID registration tree under

Chapter 6. Defining and testing data sources 73

which other objects are registered, a data set is created for each distinct set of scalar or table values. If an
object returns scalar data, the data set has a single row. If an object returns tabular data, the data set has
multiple rows.

About this task
Simple Network Management Protocol V1, V2C (note that the version is V2C and not just V2), and V3 are
supported by agents.

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Data from a server

in the Monitoring Data Categories area.
2. In the Data Sources area, click SNMP.
3. Click Next.
4. On the Simple Network Management Protocol (SNMP) Information page, type the display name or

click Browse to see all of the objects on the system.
After you define the data source, you can add an attribute. The OIDs for these attributes can be long
and difficult to type correctly. Using the Browse option is an easy way to input the correct OID.

Note: The browser does not browse the live system, it reads definitions, Management Information
Bases (MIBs).

Note: Clicking the Refresh icon clears the in-memory version of the parsed MIB files and reparses
the files in the workspace cache. The cache is in the following location: workspace_directory
\.metadata\.plugins\ com.ibm.tivoli.monitoring.agentkit\mibs

Where:

workspace_directory
Identifies the workspace directory that you specified when you initially ran the Agent Builder, see
(“Starting Agent Builder” on page 10).

a) If the MIB that defines the wanted object is not loaded, click Manage Custom MIBs to open the
Manage Custom MIBs dialog.

b) Click Add to browse to the MIB file to add. To delete a MIB from the cache, select it and click
Remove.

c) Click OK to update the cache.
If there are any errors when the MIBs are parsed, the Manage Custom MIBs dialog remains open.
This dialog gives you the opportunity to add or remove MIBs to eliminate the errors.

Clicking Cancel returns the MIB cache to the state it was in when the dialog was opened.

Agent Builder includes a set of MIBs:

• hostmib.mib
• rfc1213.mib
• rfc1243.mib
• rfc1253.mib
• rfc1271.mib
• rfc1286.mib
• rfc1289.mib
• rfc1315.mib
• rfc1316.mib
• rfc1381.mib
• rfc1382.mib

74 IBM Agent Builder: IBM Agent Builder User's Guide

• rfc1443.mib
• rfc1461.mib
• rfc1471.mib
• rfc1493.mib
• rfc1512.mib
• rfc1513.mib
• rfc1516.mib
• rfc1525.mib
• rfc1573a.mib
• rfc1595.mib
• rfc1650.mib
• rfc1657.mib
• rfc1659.mib
• rfc1666.mib
• rfc1695.mib
• rfc1747.mib
• rfc1748.mib
• rfc1757.mib
• rfc1903.mib
• rfc1907.mib
• rfc2011.mib
• rfc2021.mib
• rfc2024.mib
• rfc2051.mib
• rfc2127.mib
• rfc2128.mib
• rfc2155.mib
• rfc2206.mib
• rfc2213.mib
• rfc2232.mib
• rfc2233.mib
• rfc2238.mib
• rfc2239.mib
• rfc2320.mib
• rfc3411.mib

All of these MIBs are standard, IETF defined MIBs. The MIBs are included because they represent
common definitions that can be useful in monitoring. Also, many of the MIBs are necessary so that
custom MIBs can resolve the symbols that they import.

d) Select an object from the list.

Click the plus sign (+) next to an object to expand and show the levels.
e) From the list, select the object that you want to specify and click OK.

The new data source is then listed on the Data Source Definition page.

Chapter 6. Defining and testing data sources 75

Note: If you select an object that defines other objects (objects that are nested underneath the
first object), all of these objects are turned into data sources. If you select a high-level object,
many data sources are added.

5. On the Simple Network Management Protocol Information page, select the operating systems.

6. Optional: You can test the data source or sources by clicking Test on the Simple Network
Management Protocol Information page.
For more information about testing, see “Testing SNMP attribute groups” on page 77

7. Optional: You can create a filter to limit the data that is returned by this attribute group by clicking
Advanced. For more information about filtering data from an attribute group, see “Filtering attribute
groups” on page 45

8. Click Next.
9. On the Attribute Information page, specify the information for the attribute.

10. Do one of the following steps:

• If you are using the New Agent wizard, click Next.
• Click Finish to save the data source and open the Agent Editor.

11. For more information about adding attributes and supplying the information for them, see “Creating
attributes” on page 37.

In addition to fields that are applicable to all data sources, the Attribute Information page for the
SNMP data source has the following fields:
Metric name

Arbitrary string
Object identifier

Full OID that is registered to the object, not including index values

What to do next
You can use the runtime configuration of the agent to set the monitored host.

To enable Agent Builder to generate 64-bit data types and to handle the maximum value for 32-bit
unsigned MIB properties, see “SNMP MIB Parsing options” on page 76.

SNMP MIB errors
Dealing with errors in SNMP MIBs.

It is not unusual to find errors when you are adding SNMP MIBs. Click Details>> in the Agent Builder
Error window to see what the MIB error is.

One of the most common errors is missing definitions that are defined in other MIBs. You can import
several MIBs simultaneously to resolve this problem, or you can incrementally add MIBs until all of the
missing definitions are resolved. Agent Builder can use any definitions that are resolved. So you can
choose to ignore an error that affects only that part of the MIB that you do not plan to use. The order of
the MIBs does not matter because they are all loaded, and then the references are resolved.

SNMP MIB Parsing options
Set your preferences for SNMP MIB parsing

Procedure
1. In the Agent Builder, select Window > Preferences to open the Preferences window.
2. In the navigation pane, expand IBM Agent Builder.
3. Click MIB Parsing to open the MIB Parsing window.

76 IBM Agent Builder: IBM Agent Builder User's Guide

The MIB parser that is used by Agent Builder uses the grammar that is defined by ASN.1 to parse the
MIBs. Some MIBs do not follow the grammar correctly. The parser can relax certain rules to
accommodate the most common errors. By relaxing these rules, you can parse non-conforming MIBs.
Allow types to start with lowercase letters

Allows types that people write in MIBs, such as values
Allow numeric named numbers

Allows numbers that start with uppercase letters
Allow underscore in value name

Allows underscore characters
Allow values to begin with uppercase letters

Allows values that start with uppercase letters
Ignore duplicate MIBs

Turns off warning for duplicate MIB modules
4. Optional: Selecting the Create 64-bit attributes for 32 bit unsigned MIB properties check box,

enables the Agent Builder to generate 64-bit data types to handle the maximum value for 32-bit
unsigned MIB properties. Selecting this option does not change any existing agent field definitions. You
must browse to the MIB file to create new data sources for these properties.

5. When you are finished editing the preferences, click OK.

Testing SNMP attribute groups
You can test the SNMP attribute group that you created within Agent Builder.

Procedure
1. You can start the Testing procedure in the following ways:

• During agent creation click Test on the Simple Network Management Protocol Information
page.

Note:

If the SNMP object selected contains more than one attribute group, you are prompted to select
the attribute group to test.

• After agent creation, select an attribute group on the Agent Editor Data Source Definition page
and click Test. For more information about the Agent Editor, see Chapter 4, “Using the Agent
Editor to modify the agent,” on page 17

After you click Test in one of the previous two steps, the SNMP Test settings window opens.
2. Select an existing connection from Connection name or click Add and you are prompted to select a

connection type. Alternatively select an existing connection to use as a template, by using the Create
Connection Wizard

3. After you select a connection type or an existing connection, click Next to complete the SNMP
connection properties. When complete click Finish to return to the SNMP Test settings window.

4. Optional: Before you start testing, you can set environment variables and configuration properties.
For more information, see (“Attribute group testing” on page 229).

5. Click Start Agent. A window indicates that the Agent is starting.
6. To simulate a request from Tivoli Enterprise Portal or SOAP for agent data, click Collect Data. The

agent queries the configured SNMP connection for data.
7. The Test Settings window collects and shows any data in the agent's cache since it was last started.
8. Optional: Click Check Results if the returned data is not as you expected.

The Data Collection Status window opens and shows you more information about the data. The data
that is collected and shown by the Data Collection Status window is described in “Performance
Object Status node” on page 280

9. Stop the agent by clicking Stop Agent.

Chapter 6. Defining and testing data sources 77

10. Click OK or Cancel to exit the Test Settings window. Clicking OK saves any changes that you made.

Related concepts
“Testing your agent in Agent Builder” on page 229
After you use Agent Builder to create an agent, you can test the agent in Agent Builder.

Monitoring events from Simple Network Management Protocol
event senders

You can define a data source to collect data from SNMP Trap and Inform events. You must set the port in
the agent runtime configuration and configure the servers to send event to the agent host on this port. All
the monitored events are placed as rows in a data set.

About this task
Simple Network Management Protocol (SNMP) V1, V2C (note that this version name is V2C and not just
V2), and V3 are supported by agents. SNMP Traps and Informs can be received and processed by the
agent. Data that is received by this provider is passed to the monitoring environment as events.

For more information about the attribute groups for SNMP events, see (“SNMP Event attribute groups” on
page 306).

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Data from a server

in the Monitoring Data Categories area.
2. In the Data Sources area, click SNMP Events.
3. Click Next.
4. In the Simple Network Management Protocol Event Information window, do one of the following

steps:

• Click All Events to create an attribute group that sends an event for any received SNMP event.
• Click Generic Events to create an attribute group that sends an event for any received generic

SNMP event that matches any of the selected generic event types.
• Click Custom Events to create one or more attribute groups that send events for enterprise-

specific SNMP events. Click Browse to choose the events to be monitored.

In the Simple Network Management Protocol (SNMP) Management Information Base (MIB)
Browser window, the events in the selection pane are organized by the MIB module in which they
were defined. Expand an SNMP object to show the events in that MIB module. In the list, click the
object that you want to specify and click OK.

Select the Include attributes that show information defined in the trap configuration file check
box if you have a trap configuration file that contains static data for your traps. For more
information about the SNMP trap configuration file, see (Appendix I, “SNMP trap configuration,” on
page 365).

Select the Include variable binding (VarBind) data attribute check box if you want to include an
attribute with all of the variable binding (VarBind) data that is received in the trap protocol data
unit (PDU). For more information about this attribute, see the attribute definition (“SNMP Event
attribute groups” on page 306).

Note:

a. The browser does not browse the live system; it reads definitions and, Management
Information Bases (MIBs). The list of MIBs included with Agent Builder is defined in
“Monitoring data from a Simple Network Management Protocol (SNMP) server” on page 73.
MIBs loaded by either SNMP data provider are available in both.

78 IBM Agent Builder: IBM Agent Builder User's Guide

b. If you select a MIB module or individual events, all the events in that module are converted to
separate data sources. One attribute is added for each of the variables that are defined in the
event. If you want all the events for the selected modules or traps to arrive in a single event
source, select the Collect events in a single attribute group check box. If you select individual
traps and the Collect events in a single attribute group flag is selected, one attribute is added
for each of the variables that are defined in each of the events (duplicate variables are ignored).
If you select a module, variable attributes are not added.

c. If you want to type your own filter, use the following syntax:

The value of the OID (object identifier) element is used to determine which traps to process for
this attribute group.

– Trap matching: The OID attribute of the global_snmp_event_settings_for_group element
can be a comma-delimited list of tokens. A single token has the following syntax:

[enterpriseOID][-specificType]

– Example: "1.2.3.5.1.4,1.2.3.4.5.6.7.8.9-0" The first token matches any trap with an
enterprise OID of 1.2.3.5.1.4. The second token matches any trap with an enterprise of
1.2.3.4.5.6.7.8.9 and specific of 0. Because the tokens are listed together in one attribute
group, an event received that matches either is processed by that attribute group.

d. Every event that is received is processed only by the first attribute group that matches the
received event. Subnode attribute groups are processed first, and then the base attribute
groups are processed. The agent developer must ensure that the groups are defined in a way
so that events are received in the expected attribute group.

5. In the SNMP Event Information window, select the Subnode Host matching check box to match
events to subnodes. If the SNMP event attribute group is part of a subnode, you can select the
Subnode Host Matching check box to control whether the event must come from the SNMP agent
that is monitored.

For example: You have an agent to monitor routers, where each subnode instance represents a
specific router. You develop an agent to collect data from a router with the SNMP data collector. You
also define an attribute group to receive SNMP events sent by that router. Each router instance
includes the same data that is defined for the event filter. Therefore, you need another way to make
sure that events from your router are shown in the attribute group for that router.

When subnode host-matching is selected, an event that is sent by the router is compared to the host
defined for the SNMP data collector. If the host in use by the SNMP data collector is the same host
that sent the received event, the subnode instance processes the SNMP event. Otherwise, the event
is passed to the next subnode instance. Address-matching applies only to subnodes. No address-
matching is done by the SNMP event attribute groups in the base agent. For the address-matching to
work, the subnode definition must contain at least one SNMP attribute group. The SNMP host that is
used by SNMP for that subnode instance is the host that is used for matching.

If the Subnode Host Matching check box is clear, your subnode instances do not do this extra
comparison. You must allow the user to configure a different OID filter for each subnode in this case.
Otherwise, you do not need to include SNMP event attribute groups in the subnode definition.

6. In the SNMP Event Information window, select the operating systems.
7. Optional: You can click Test in the SNMP Event Information window to start and test your agent.

For more information, see “Testing SNMP event attribute groups” on page 82
8. Optional:

In the SNMP Event Information window, click Advanced to select Event Filtering and
Summarization Options. For more information, see Chapter 18, “Event filtering and summarization,”
on page 259.
a) When you finish selecting Event Filtering and Summarization Options, return to the SNMP Event

Information window. If you previously selected Custom Events in the SNMP Event Information
window, click Next, to select key attributes, otherwise skip the next step.

Chapter 6. Defining and testing data sources 79

b) On the Select key attributes page, click one or more key attributes for the attribute group, or click
Produces a single data row.

9. Click Next, or click Finish if you are using the new agent wizard to save the agent and open the Agent
Editor.

10.

What to do next
For information about adding further attributes, see (“Creating attributes” on page 37).

SNMP Event Configuration properties
Certain configuration properties are automatically created when an SNMP Event attribute group is added
to the agent

After a data source is added, the configuration is displayed on the Runtime Configuration Information
page of the Agent Editor. For example, Figure 2 on page 81 shows the configuration sections and some
configuration properties that are automatically created when an SNMP Event attribute group is added to
the agent.

80 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 2. Runtime Configuration page

The labels, descriptions, and default values of predefined configuration properties can be changed, but
variable names and types cannot be changed. The SNMP Events configuration section contains the
following properties:

Table 10. SNMP Events configuration properties

Name Valid values Required Description

Port Number positive integer Yes Required port number
that is used for listening
to events

Security Level noAuthNoPriv,
authNoPriv, authPriv

No SNMP V3 security level

User Name String No SNMP V3 user name

Chapter 6. Defining and testing data sources 81

Table 10. SNMP Events configuration properties (continued)

Name Valid values Required Description

Auth Protocol MD5 or SHA No SNMP V3 authentication
protocol

Auth Password String No SNMP V3 authentication
password

Priv Password String No SNMP V3 privacy
password

Trap configuration file File name that includes
the path

No Location of the trap
configuration file. If the
file is not located by
using this configuration
property, an attempt is
made to find a
trapcnfg file in the
agent bin directory.

No configuration is required for V1 or V2C events. All V1 or V2C events are processed regardless of the
source or community name specified. The only supported privacy protocol is DES, so there is no option to
specify the privacy protocol. The SNMP V3 configuration options are not required (each can be optionally
specified). If you want to specify them, you must specify the appropriate values for the security level you
select.

Testing SNMP event attribute groups
You can test the SNMP event attribute group that you created, within Agent Builder.

Before you begin
To test the SNMP event attribute group, use a test program, or application to generate SNMP events.

Procedure
1. You can start the Testing procedure in the following ways:

• During agent creation click Test in the SNMP Event Information window.
• After agent creation, select an attribute group on the Agent Editor Data Source Definition page and

click Test. For more information about the Agent Editor, see Chapter 4, “Using the Agent Editor to
modify the agent,” on page 17

After you click Test in one of the previous two steps, the Test Event Setting window opens.
2. Optional: Before you start testing, you can set environment variables and configuration properties. For

more information, see “Attribute group testing” on page 229. For more about SNMP Event
configuration properties, see “SNMP Event Configuration properties” on page 80.

3. Click Start Agent. A window indicates that the Agent is starting.
When the agent starts, it listens for SNMP events according to its configuration.

Note: The agent that starts is a simplified version that includes the one attribute group you are testing.
4. To test your agent's data collection you generate SNMP events that match the agents configuration.

You can do this using an application or an event generator.
When the agent receives SNMP events that match its configuration, it adds the events to its internal
cache.

5. To simulate a request from the monitoring environment for agent data, click Collect Data.

82 IBM Agent Builder: IBM Agent Builder User's Guide

The Test Event Settings window collects and shows any events in the agent's cache since it was last
started. An example data collection is shown in Figure 3 on page 83

Figure 3. Test Event Settings window that shows collected SNMP event data
6. Optional: Click Check Results if the returned data is not as you expected.

The Data Collection Status window opens and shows you more information about the data. An
example is shown in (Figure 4 on page 83). The data that is collected and shown by the Data
Collection Status window is described in “Performance Object Status node” on page 280

Figure 4. Data Collection Status window
7. Stop the agent by clicking Stop Agent.
8. Click OK or Cancel to exit the Test Event Settings window. Clicking OK saves any changes that you

made.

Related concepts
“Testing your agent in Agent Builder” on page 229
After you use Agent Builder to create an agent, you can test the agent in Agent Builder.

Monitoring Java Management Extensions (JMX) MBeans
You can define a data source to collect data from JMX MBeans. Data from every monitored MBean is
placed into a data set. Depending on the MBean, the data set can produce a single row or multiple rows.

About this task
Each JMX data source that you define must identify either a single MBean (single instance) or a certain
type of MBean (multiple instances). You must know the Object Name of the MBean or an Object Name
pattern for a MBean type that contains the data you want to collect. Use an Object Name pattern to
identify only a set of similar MBeans. The set of MBeans that matches the pattern must all provide the

Chapter 6. Defining and testing data sources 83

data that you want to see in the monitoring table. A typical Object Name pattern looks like
:j2eeType=Servlet,. This Object Name Pattern matches all MBeans that have a j2eeType of servlet.
You can expect any MBean matching that pattern to have a similar set of exposed attributes and
operations that can be added to your data source. A data source that uses that pattern collects data from
each MBean matching that pattern. The attributes that you define for this data source must be available
for any MBean matching the Object Name pattern of the data source.

Java Version 5 or later is supported.

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Data from a server

in the Monitoring Data Categories area.
2. In the Data Sources area, click JMX.
3. Click Next.
4. On the JMX Information page , click Browse to see all of the JMX MBeans on the MBean server.

After you define the data source, you can use the browse function to pre-populate your attribute list.
You can then add to, remove from, or modify the attributes that the browser inserted. The names for
these attributes can be long and difficult to type correctly. Using the Browse option is an easy way to
input the correct name.

Note: You can manually create JMX data sources by specifying an Object Name and clicking Next
without using the browser. Manually creating JMX data sources creates two data sources. An event
data source that contains predefined attributes for JMX notifications is created. Also, a collection
data source is defined containing one attribute that you must specify in the wizard.

MBean pattern
Shows the MBean pattern.

Global JMX Options
Shows the level of support.

Support is provided for the following JMX servers:

• Java 5 operating system MBean Server. Connection is made by using the JSR-160 connector.
Notifications and monitors are supported.

• WebSphere® Application Server, version 6 and later. Connectors are provided for both SOAP and
RMI protocols. JMX Monitors are not supported because MBeans cannot be created by a
remote agent.

• WebSphere Community Edition and other Apache Geronimo-based application servers.
Connection is made through standard JSR-160 connectors. JMX notifications and monitors are
supported in versions 1.1 and later.

• JBoss Application Server, version 4.0 and earlier.
• JBoss Application Server, JSR-160 connection.
• WebLogic Server, version 9 and newer. Connector is provided for T3 protocol.

5. The first time that you run the JMX browser, there are no items in the MBean server scroll down
menu. To add connections, click the Add) button.
Use the Edit button to modify or delete the connection that you already defined and selected in the
scroll down menu. The connection definitions are stored in the workspace, so that, when you create a
connection, it is remembered. Complete the following steps to create a connection. If you already
have a connection, skip to the next step.
a) To create a connection to an MBean Server, click Add to add a connection or to edit an existing

connection.
The Java Management Extensions (JMX) Browser window is shown when no connections are
defined.

b) After you click Add to add a connection, the Select Connection Type page opens.

84 IBM Agent Builder: IBM Agent Builder User's Guide

c) Use the MBean Server Connection wizard to connect to an MBean server. The new connections
that are listed on the page are selections that you can make to create connection. You can use the
list of existing connections to create a new connection using an existing connection as a template.
Select one of the new connection types and click Next to begin creating a connection.

d) After you select a connection type, you might be asked to select a more specific type of
connection. Two templates that are based on the Standard JMX Connections (JSR-160)
connection type are shown. Select the template that is most appropriate for your MBean server
and click Next.

Figure 5. JMX connection properties

The Connection Properties page (Figure 5 on page 85) contains the details on how to connect to
an MBean server. You must complete the page with details about your MBean server.

Important: If your data source connects to a remote WebSphere Application Server, ensure that
WebSphere Application Server is also installed on the host that is running Agent Builder and set

Chapter 6. Defining and testing data sources 85

theJava location setting to the Java runtime environment that the local WebSphere Application
Server uses.

e) Select the Save the password in the Agent Builder workspace check box if you want to save the
password for this connection.

f) Optional: Select Set as agent configuration defaults if you want the defaults for JMX to be copied
from these connection properties.
For example, in Figure 5 on page 85 the default JMX base path is C:\jboss-
eap-6.3.01\jboss-eap-6.3, the JMX service URL is service:jmx:remoting-jmx://
localhost:9999 and the Java location is C:\Program Files\IBM\Java70\jre

i) After you specify the properties that are required to connect, click Test Connection to ensure
that the connection can be established. If the connection is not successful, correct the
necessary properties.

ii) When the connection is successful, click Finish to return to the browser that uses the
connection you configured.

The Java class path information in the Connection Properties page contains three fields. These fields
must be completed as necessary to connect to an MBean server that requires Java classes that are
not included in the Java runtime environment. Normally, the MBean server you want to connect to
must be installed on the same system as the Agent Builder. In this case, specify the directory where
the application that contains the MBean server was installed as the JMX base paths field. The JMX
Jar Directories field then lists the directories relative to the Base Paths directory that contain the
JAR files that are required to connect to the MBean server. The JMX class path field can be used to
include specific JAR files. The JAR files that are listed in the JMX JAR Directories field are not
required to be listed separately in the JMX class path field.

Any of the fields can contain more than one reference; separate the entries by a semicolon. These
values are the same values that are required when you configure the agent. For more information, see
(“JMX configuration” on page 91).

6. After you select a connection, the JMX Browser downloads information about the MBeans from the
JMX server. This information is shown in the following four areas of the JMX Browser window (Figure
6 on page 87):

Directions for screens that begin with Java Management Extensions (JMX) Browser window to
Runtime Configuration tab of the Agent Editor: From the JMX Information page, select Browse.
From the browser (JMX Browser with no connection-selected), select Add. From the JMX
Connection Selection page select JBoss, then select Next. From the JMX Connection Properties
page, customize two Connection Properties: JBoss provider URL: jnp://
wapwin3.tivlab.raleigh.ibm.com:1099/ and JBoss Jar Directories: The full path to the
directory that contains the following JAR files: jbossall-client.jar, jboss-jmx.jar, jboss-
jsr77-client.jar, jboss-management.jar. Select Finish. This configuration sets up your
JBoss connection so you can get similar screens as shown here.

86 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 6. Java Management Extensions (JMX) Browser window

• MBean Key Properties area: This area is a collection of every unique Object Name key that is found
from all the MBeans on the server. The [Domain] entry is special because it is not really a key.
However, the [Domain] entry is treated as an implied key for the value of the MBean domain. Select
an item from this list, and the MBeans that contain that key property are found. The list of values of
the key property are shown in the Selected Key Property Values list. When you check a key
property, it is included in the Object Name pattern for the data source.

• Selected Key Property Values area: This area shows the values of the currently selected MBean
Key Property from all MBeans. Selecting one of these values checks the MBean key property. The
selection also updates the Object Name Pattern shown in the message field with the MBean key
property name and value.

• A table lists all MBeans matching the Object Name Pattern: As you select Key Properties and Values
from the MBean Key Properties and Selected Key Property Values lists, you see the Object Name
Pattern update. You also see the list of MBeans in this table change to reflect the list of MBeans that
match the pattern you selected. If you have a pattern that is not matching any MBeans, you can

Chapter 6. Defining and testing data sources 87

clear entries in the MBean Key Properties list. You clear entries by clicking the check box next to a
key that is being used by your pattern and removing the check mark. Also, you can manually edit
the pattern to find the MBeans you are looking for. The pattern *:* selects all MBeans.

You can use this table to browse the MBeans from the server and decide which ones contain the
data you want to monitor. To help browse a potentially large number of MBeans, you can sort by any
key attribute (from the menu or by clicking a column header). You can also show any key attribute in
any column by selecting Show Key Property from the menu. When you see a key property value in
the table that identifies MBeans you want to monitor, right-click on that value and choose Select
only MBeans with Key Property from the menu.

• A table that contains details for a selected MBean: The JMX Browser shows you information about a
single MBean. To see details for an MBean, you select the MBean from the table that shows the list
of MBeans matching the current filter. The key information about the MBean is the list of Attributes,
Operations, and Notifications it defines.

To create a data source from the JMX Browser, use the four panels that were described earlier to
build an Object Name Pattern. Build the Object Name Pattern to match a set of MBeans that each
contains the monitoring data you want to collect. For instance, if you wanted to monitor data from all
of the ThreadPool MBeans, use the following steps:

a) Select type from the MBean Key Properties panel. Selecting type causes the values in the
Selected Key Properties Values to be updated to list all unique values from the type key of any
MBean.

b) Select ThreadPool from the list of values for the type key. After you select ThreadPool, the type
key property name is selected in the MBean Key Properties panel and the Object Name Pattern is
updated to *:type=ThreadPool,*. The list of MBeans is also updated to show only the MBeans that
match this pattern.

c) Select one of the MBeans from the MBean list to see the attributes, operations, and notifications
available for the MBean. If your MBean list contains more MBeans than you want to monitor, you
must continue this procedure of selecting key properties and values. Continue until you have the
Object Name Pattern that identifies the set of MBeans you want to monitor. You can also open a
menu in the MBean list to update the Object Pattern with key property values shown in the table.

7. When the object name pattern is correct, select an MBean from the table.
All attributes of the selected MBean are the initial attributes in the new JMX data source. Some
attributes might not contain data. After the JMX data source is created, review the attributes and
remove any that are not significant. If the selected MBean has no attributes, you are warned that the
data source is created with no attributes. If the selected MBean contains notifications, an Event data
source is also created to receive notifications from the MBeans.

Important: For every MBean attribute, Agent Builder creates an attribute in the new data set. For a
numeric MBean attribute, Agent Builder creates a numeric attribute. For any object types, including
String, Agent Builder creates a string attribute containing a string representation of the value. If an
object from an MBean attribute is of the javax.management.openmbean.CompositeData type,
and the Agent Builder browser can read the object itself, it creates several attributes, one for each
object embedded in the CompositeData object. To include values internal to an object other than a
CompositeData object (fields or method return values), you need to create an attribute that has a
more complex metric name, as described in “Specific fields for Java Management Extensions (JMX)
MBeans” on page 98.

8. Click Finish in the filled on JMX Information page.
Data sources are created based on the MBean that was selected in the previous step. If no MBean
was selected, an attribute group with no attributes is created. A warning is shown, giving you a
chance to select an MBean. The notification data source has the word, Event, at the beginning of the
data source name to distinguish it from the data source that shows attributes.

9. To change other JMX options for the agent, click Global JMX Options. With these options, you can:
a) Choose whether JMX monitors are supported by this agent. If you want JMX monitor attribute

groups and Take Action commands to be created, select Include JMX monitor attribute groups
and take actions

88 IBM Agent Builder: IBM Agent Builder User's Guide

See the next section for a description of JMX monitors.
b) Select the types of MBean servers your agent connects to when it is deployed.

There are several vendor-specific types of servers that are listed, along with a generic JSR-160-
Compliant Server for standards-based servers. You can select as many as needed, but you must
select only server types that support the MBeans that are being monitored. You must select at
least one. If you select more than one, at agent configuration time you are prompted to specify
which type of server you want to connect to.

10. Click OK after you select the wanted option.
11. Optional: You can test this attribute group by clicking Test. For more information about testing, see

(“Testing JMX attribute groups” on page 101)
12. Optional: You can create a filter to limit the data that is returned by this attribute group by clicking

Advanced. For more information about filtering data from an attribute group, see “Filtering attribute
groups” on page 45

13. Click Next.
14. On the Select key attributes page, select key attributes or indicate that this data source produces

only one data row. For more information, see (“Selecting key attributes” on page 15).
15. Click Next.

The JMX Agent-Wide Options window shows the types of application servers that the Agent Builder
supports. If you previously selected Set as agent configuration defaults on the Connection
Properties page, the type of application server that you browsed to is automatically selected.

16. In the JMX Agent-Wide Options window (Figure 7 on page 90), select any other types of
application servers to which you want your agent to be able to connect.

Note: In the example shown, choosing JBoss Application Server JSR-160 connection is the same
as choosing JSR-160-Compliant Server except that different default values are supplied.

Chapter 6. Defining and testing data sources 89

Figure 7. JMX Agent-Wide Options window
17. Do one of the following steps:

• If you are using the New Agent wizard, click Next.
• Click Finish to save the data source and open the Agent Editor.

18. If you want to change the types of application servers to which you can connect after the agent is
created, click Global JMX Options in the JMX Data Source Information area.

19. In the JMX Agent-Wide Options window, change any selections that you want.
20. Click OK.
21. To view the configuration sections and properties that were automatically generated, click the

Runtime Configuration tab of the Agent Editor.

The default value of the JBoss base paths property has the value that was entered in the JMX
browser.

What to do next
For more information about the attribute groups for JMX events, see “JMX Event attribute groups” on
page 307,

90 IBM Agent Builder: IBM Agent Builder User's Guide

JMX configuration
When you define a JMX data source in your agent, some configuration properties are created for you.

JMX runtime configuration is unique because it provides you with some control over how much
configuration is displayed. The JMX client for the agent can connect to several different types of
application servers. However, it is not necessary to support all of those types of application servers in any
one agent. You can determine which types of application servers to support, and unnecessary
configuration sections are not included in the agent.

In most cases, an agent is designed to monitor one JMX application server type. When you create the JMX
data source, you can use the JMX Browser. When you use the JMX Browser, the JMX server configuration
options that are used to browse the MBean server are added to your agent automatically. To change the
types of application servers to which you can connect after the agent is created, click Global JMX Options
in the JMX Information area. In the JMX Agent-Wide Options page, change any selections that you
want.

You can design a generic agent that monitors more than one type of JMX application server. In this case,
more than one JMX server configuration choice can be selected on the JMX Agent-Wide Options page.
When more than one type of JMX connection is supported, the runtime configuration prompts you for the
connection type that are used for that agent instance.

Note: An instance of an agent can connect only to one type of JMX application server. Subnodes can be
used to connect to different JMX application servers of the same type within an agent instance. To
connect to more than one type of JMX application server, you must configure at least one agent instance
for each JMX application server type.

You can view, add, and change the configuration properties by using the Agent Editor. For instructions, see
“Changing configuration properties by using the Agent Editor” on page 207. If a JMX data source is
defined in a subnode, you are also able to specify Subnode Configuration Overrides. For instructions, see
“Subnode configuration” on page 193.

If you define a JMX data source in your agent, the agent must use Java to connect to the JMX application
server. Java configuration properties are added to the agent automatically.

The following Java configuration properties are specific to the agent runtime configuration:
Java Home

Fully qualified path that points to the Java installation directory

Configure the agent to use the same JVM that the application you are monitoring uses, particularly for
the WebLogic Server and WebSphere Application Server.

JVM Arguments
Specifies an optional list of arguments to the Java virtual machine.

Trace Level
Defines the amount of information to write to the Java trace file. The default is to write-only Error data
to the log file.

Note: Agent Builder does not require these properties because it uses its own JVM and logging, which is
configured through the JLog plug-in.

If you define a JMX data source in your agent, the following required, common configuration fields are
added to the agent automatically:
Connection

The type of connection to the MBean server
User ID

User ID that is used to authenticate with the MBean server.
Password

Password for the user ID.

Chapter 6. Defining and testing data sources 91

Base paths
Directories that are searched for JAR files that are named in Class path, or directories that are named
in JAR directories, that are not fully qualified. Directory names are separated by a semi-colon (;) on
Windows, and by a semi-colon (;) or colon (:) on UNIX systems.

Class path
Explicitly named JAR files to be searched by the agent. Any that are not fully qualified are appended to
each of the Base Paths until the JAR file is found.

JAR directories
Directories that are searched for JAR files. Directory names are separated by a semi-colon (;) on
Windows, and by a semi-colon (;) or colon (:) on UNIX systems. The JAR files in these directories
are not required to be explicitly identified; they are found because they are in one of these directories.
Subdirectories of these directories are not searched. Any directory names that are not fully qualified
are appended to each of the Base Paths until the directory is found.

Note: For remote monitoring, the JAR files and all of their dependent JAR files must be installed locally on
the computer where the agent is running. These JAR files are the files that are required to connect to the
application that is being monitored. These JAR files must be configured in JAR directories, and in Base
paths and Class path. In addition, locally install a supported JVM for the application you are monitoring
and specify the path in the Java Home configuration field.

Examples:
• For WebLogic 10, the class path is server/lib/wlclient.jar;server/lib/wljmxclient.jar.

The base path points to the WebLogic application server directory where the server/lib directory is
located.

• For WebSphere, the base path points to the location where the WebSphere Application Server is
installed. Multiple base paths are listed in this example to provide a default for Windows and UNIX. The
class path lists the JAR files relative to the base path. The relative value lib for the JAR directories
field causes all JAR files in this directory under the base path to be loaded.

– Base paths: C:\Program Files\IBM\WebSphere\AppServer;/opt/IBM/WebSphere/
AppServer

– Class path: runtimes/com.ibm.ws.admin.client_6.1.0.jar;plugins/
com.ibm.ws.security.crypto_6.1.0.jar

– JAR directories: lib

Depending on which JMX server types are selected in the JMX Agent-Wide Options page, some or all of
the following configuration properties are added. Default values are provided by the Agent Builder, and
can be modified:
JSR-160 Compliant Server connection-specific configuration properties:

JMX Service URL
JMX Services URL to connect to for monitoring.

WebSphere Application Server version 6.0 and later connection-specific configuration properties:
Host name

Host name of the system where the application server you are monitoring is located. For local
monitoring, the name is the local system name. For remote monitoring, the name is the host name
of the system where the application server is located.

Port
Port number to use on the host name to be monitored.

Connector protocol
Connector protocol to be used by the monitoring connection. RMI and SOAP are supported.

Profile name
Name of the profile to use for configuring the connection.

92 IBM Agent Builder: IBM Agent Builder User's Guide

JBoss Application Server (non JSR-160) connection-specific configuration properties:
JNDI Name

JNDI Name that is used to look up the MBean server.
Provider URL

JMX Services provider URL to connect to for monitoring.
WebLogic Server connection-specific configuration properties:

Service URL
JMX Services provider URL to connect to for monitoring that includes the JNDI name.

Note: If WebSphere administrative security is enabled, you must make sure that client login prompts are
disabled in the appropriate client connection properties files. For RMI connections, to prevent clients from
prompting the user, you must modify the com.ibm.CORBA.loginSource property in the
sas.client.props file in the profile properties directory of your WebSphere Application Server. For a
SOAP connection, you must modify the com.ibm.SOAP.loginSource propertyin the soap.client.props
file in the same directory. In both cases, the loginSource property must be set to not contain a value.

You can view, add, and change the configuration properties by using the Agent Editor. See (“Changing
configuration properties by using the Agent Editor” on page 207). If a Windows data source is defined in a
subnode, you can also specify Subnode Configuration Overrides. See “Subnode configuration” on page
193.

JMX notifications
In addition to providing monitoring data when requested, some MBeans also provide notifications.

A notification is an object that is generated by an MBean that is passed to registered listeners when an
event occurs.

Agents that are built by the Agent Builder can define attribute groups that contain values from
notifications rather than MBeans.

When the agent is started, a notification listener is registered with each MBean that matches the
MBean pattern of the attribute group. The attribute group then displays one row per notification received.
Each column contains one item of data from the notification. The data wanted from the notification is
defined by a column value similar to the way column data is defined for MBeans.

For non-event based attribute groups, data is collected when needed. For event-based attribute groups,
the agent maintains a cache of the last 100 events received. These events are used to respond to
requests from the Tivoli Enterprise Portal. The events are forwarded immediately for analysis by
situations and warehousing.

JMX monitors
In addition to providing monitoring data when requested, some MBeans also provide monitors.

The JMX Provider supports the ability for an agent to create JMX Monitors. A JMX Monitor is an MBean
that the JMX agent creates on the JMX Server. It monitors the value of an attribute of another MBean and
sends a notification when that value meets some criteria. Thresholds are defined that enable the Monitor
to report on specific attribute values.

Not all application servers support the creation of monitors from a JMX client, which is true for current
releases of WebSphere Application Server. JMX Monitors and Take Action commands can be included in
your agent by selecting Include JMX monitor attribute groups and take actions under Global JMX
Options.

Any MBean that reports on an attribute of another MBean can be considered a monitor. In practice, JMX
defines three concrete monitor classes, which are the types of monitors that are created. The following
concrete monitor types are created:

• String monitor – watches a string attribute, reports equality, or inequality of that string.

Chapter 6. Defining and testing data sources 93

• Gauge monitor – watches a variable numeric attribute, reports up or down movement beyond threshold
values.

• Counter monitor – watches an increasing numeric attribute, reports when it reaches a threshold value or
increases by a certain amount.

The following attribute groups might be automatically added to the agent to collect or represent JMX
Monitor notifications:

• Registered Monitors

This attribute group displays all of the JMX Monitors that are added by the user.
• Counter Notifications

This attribute group reports all notifications that are received from Counter Monitors.
• Gauge Notifications

This attribute group reports all notification received from Gauge Monitors.
• String Notifications

This attribute group reports all notifications that are received from String Monitors.

Take Action commands for JMX monitors
A monitor is created by running a Take Action command.

Three Take Action commands are defined, one to create each type of monitor, and a fourth Take Action is
defined to delete an existing monitor. A 256-character limit applies to Take Action commands.

The monitor attribute groups are a part of every JMX agent that is built, including all agents that are built
by the Agent Builder. The four Take Action commands are available to all agents, though they cannot be
used unless it is a JMX agent.

JMX Add String Metric Watcher
Use this Take Action command to create a monitor to watch a string attribute.

Parameters
MBean pattern

All MBeans matching this pattern are monitored by this monitor.
Observed attribute

Name of the MBean string attribute that is being watched.
Notify match

True if a notification is to be sent when the monitored string matches a reference value, false if not
(defaults to false).

Notify differ
True if a notification is to be sent when the monitored string does not match the reference value, false
if not (defaults to true)

Reference value
String to compare with the observed attribute.

A default means that the argument is not specified.

Example: Request a notification when a service is stopped

STRING_METRIC_WATCHER [*:type=Service,*] [StateString] [true] [false] [Stopped]

Where:
:type=Service,

MBean pattern: Monitors any MBean with a key property named type whose value is Service.

94 IBM Agent Builder: IBM Agent Builder User's Guide

StateString
Observed attribute: A string attribute that is common to all MBeans of type=Service.

true
Notify match: You want a notification to be sent to your agent when the StateString attribute
matches your reference value of Stopped.

false
Notify differ: You do not want to be notified when the Service attribute does not match Stopped.

Stopped
Reference value: When the StateString attribute changes to the value Stopped, a notification is
sent.

JMX Add Gauge Metric Watcher
Use this Take Action command to create a monitor to watch a gauge attribute.

Parameters
MBean pattern

All MBeans matching this pattern are monitored by this monitor.
Observed attribute

Name of the MBean string attribute that is being watched.
Difference mode

True if the value monitored is the difference between the actual current and previous values of the
attribute. False if the value monitored is the actual current value of the attribute (defaults to false).

Notify high
True if a notification is to be sent when an increasing monitored value crosses the high threshold, false
if not (defaults to true).

Notify low
True if a notification is to be sent when a decreasing monitored value crosses the low threshold, false
if not (defaults to true).

High threshold
Value that the observed attribute is expected to stay under.

Low threshold
Value that the observed attribute is expected to stay over.

Example: Request a notification when free memory goes under 10 Mb

GAUGE_METRIC_WATCHER [ServerInfo] [FreeMemory] [false] [false] [true] [30000000] [10000000]

Where:
*:type=ServerInfo

MBean pattern: Monitors any MBean whose name has a single key property named type whose value
is ServerInfo.

FreeMemory
Observed attribute: Numeric attribute that fluctuates up or down, this one indicating the amount of
free memory in the application server.

false
Difference mode: Monitors the actual attribute value, not the difference between one observation and
another.

false
Notify high: Notification is not sent when free memory goes up.

true
Notify low: Notification is not sent when the free memory becomes too low.

Chapter 6. Defining and testing data sources 95

30000000
High threshold: Even though you are not concerned with passing a high threshold, you need a
reasonable high threshold value. A second low threshold notification does not occur until the attribute
value hits or passes the high threshold.

10000000
Low threshold: Low threshold value that you want to be notified about.

JMX Add Counter Metric Watcher
Use this Take Action command to create a monitor to watch a counter attribute.

Parameters
MBean pattern

All MBeans matching this pattern are monitored by this monitor.
Observed attribute

Name of the MBean string attribute that is being watched.
Initial threshold

Value that the observed attribute is compared.
Offset

Value added to the threshold after the threshold is exceeded to create a changed threshold.
Modulus

Maximum value of counter after which it rolls over to 0.
Difference mode

True if the value monitored is the difference between the actual current and previous values of the
attribute. False if the value monitored is the actual current value of the attribute (defaults to false).
This mode effectively turns on rate-of-change monitoring.

Granularity period
Frequency with which measurements are taken (defaults to 20 seconds). Most important if difference
mode is true

Example: Request a notification when any server has three or more errors

COUNTER_METRIC_WATCHER [*:j2eeType=Servlet,*] [errorCount] [3] [4] [] [diff] [gran]

Where:
:j2eeType=Servlet,

MBean pattern: Monitors any J2EE servlet MBean whose name has a single key property named type
whose value is ServerInfo

errorCount
Observed attribute: Increasing numeric attribute, this one indicating the number of errors of the
servlet.

3
Initial threshold: You want to be notified when errorCount meets or exceeds 3.

4
Offset: When you get a notification for three errors, 4 is to the previous threshold of 3 to make a new
threshold of 7. A second notification will be sent after errorCount reaches 7; a third at 11; a fourth
at 15, and so on. Zero or none is not valid because it expects the counter to always increase and not
increasing the offset would not make sense for a counter.

Modulus:
errorCount has no architected maximum value, so use an unreasonably high value.

false
Difference mode: You are concerned with absolute error counts. Difference is true if you are interested
in the rate that errorCount was increasing.

96 IBM Agent Builder: IBM Agent Builder User's Guide

Granularity period: Not set, so take the default granularity period of 20 seconds. Granularity period is
available for all monitor types. However, it is shown with a counter monitor so that a meaningful rate
of change (with difference mode=true) can be determined.

JMX Delete Metric Watcher
Use this Take Action to delete a monitor.

Parameter
Number

Monitor number as shown in the REGISTERED_MONITORS table

Example: Delete monitor number 2

DELETE_WATCHER [2]

Where:
2=

Number of monitor to be deleted.

JMX operations
In addition to providing monitoring data when requested, some MBeans also provide operations.

Agents that have JMX data sources include the JMX_INVOKETake Action command that you can use to
run JMX operations against the server you are monitoring.

Take Action command syntax
The action has the following syntax:

JMX_INVOKE [MBean pattern] [Operation name] [Argument 1] [Argument 2]
[Argument 3] [Argument 4]

Where:
MBean pattern

MBean query that selects the MBeans on which the operation runs. If the pattern matches more than
one MBean, the operation runs on each of the matched MBeans.

Operation name
Name of the MBean operation to run.

Argument 1, Argument 2, Argument 3, Argument 4
Optional arguments that can be provided to the MBean operation. Arguments must be a simple data
type such as a string or an integer.

The JMX invoke Take Action command returns success if the operation is successfully run. If the
operation returns a value, that value is written to the JMX data provider log file.

Example: Start an operation to reset a counter
This action runs the resetPeakThreadCount operation on the Threading MBeans:

JMX_INVOKE [*:type=Threading,*] [resetPeakThreadCount][] [] [] []

Where:
:type=Threading,

MBean Pattern: This pattern matches all MBeans that have a type of Threading.
resetPeakThreadCount

Operation name: The operation that is run on every MBean that matches the pattern.

Chapter 6. Defining and testing data sources 97

[] [] [] []
Argument 1, 2, 3, 4: The arguments are not needed for this operation. They are specified only to
comply with the syntax of the action.

Example: Start an action with an argument
This action runs the getThreadCpuTime operation on the Threading MBeans. The result is logged to the
JMX data provider trace file.

JMX_INVOKE [*:type=Threading,*] [getThreadCpuTime] [1] [] [] []

Where:
:type=Threading,

MBean Pattern: This pattern matches all MBeans that have a type of Threading
getThreadCpuTime

Operation name: The operation that is run on every MBean that matches the pattern.
1

Argument 1: The thread id that is being queried.
[] [] []

Argument 2, 3, 4: These arguments are not needed for this operation. They are specified as empty
arguments to comply with the Take Action command syntax.

Running the JMX_INVOKE Take Action command
The agent developer cannot expect the user to run the JMX_INVOKE Take Action command. Instead,
more actions must be developed that run the JMX_INVOKE Take Action. If possible in these actions, hide
the details such as the operation name and the MBean pattern from the user.

Starting and stopping JMX monitors
JMX monitors are persistent across starts and stops of the agent and the JMX server.

If the agent detects that the JMX server was recycled, it reregisters the monitors. If the agent is recycled,
monitors are reregistered. The monitor definitions are stored in a file that is named
default_instanceName.monitors where instanceName is the agent instance name or default if it is a
single instance agent. This file is in the following directory (note that xx denotes the two character product
code):

• Windows systems: TMAITM6/kxx/config
• UNIX and Linux systems: architecture/xx/config (see “New files on your system” on page 246 for

information about determining the architecture value)

If the agent is restarted, it uses the monitor definitions file to restore the monitors.

Specific fields for Java Management Extensions (JMX) MBeans
The syntax of the metric name for a JMX Attribute group must follow certain rules when specified on the
Attribute Information window.

The syntax of the metric name for a JMX Attribute group consists of tokens that are separated by a period.
The tokens form primary values and optionally secondary values:

• Primary value: a value that is obtained directly from the MBean or Notification in a specific row of the
table. Primary values from an MBean are obtained either from an MBean attribute or from the invocation
of an MBean operation (method call). Primary values from a Notification are obtained from a field or
invocation of a method on the Notification object. Primary values can be primitive types, or can be Java
objects.

• Secondary value: a value that is obtained by further processing a primary value or other secondary
value. Secondary values are processed internally to the engine and do not involve calls to the JMX

98 IBM Agent Builder: IBM Agent Builder User's Guide

server. If the primary (or other secondary value) is a Java object, a secondary value is the result of
fetching a public field from that object. A secondary value can also be the result of a method call on that
object. Such secondary values are obtained by using Java introspection of the primary (or other
secondary) Java object. If the primary (or other secondary) value is a Java String in the form of an
MBean name, the secondary value can be the domain. The secondary value can also be any of the
properties that make up the MBean name.

The following syntax describes the format for the Metric name field:

Metric Name = PrimaryValue [.SecondaryValue]
PrimaryValue = Attribute.attributeName |
 Method.methodName |
 Domain |
 Property.propertyName |
 Field.fieldName |
 Name
SecondaryValue = Field.fieldName |
 Method.methodName |
 Domain |
 Property.propertyName |
 Explode |
 ElementCount

propertyName = the name of a key property in an MBean ObjectName
attributeName = the name of an MBean attribute
methodName = a zero-argument operation of an MBean or a zero-argument method
of a Notification or other Java object.
methodName(argument) = A single-argument operation of an MBean or a
single-argument method of a Notification or other Java object. The
argument will be passed to the method as a string.
fieldName = the name of a public instance variable in a Notification or
other Java object
notificationMethod = the name of a public zero-argument method of a
Notification object

By including only a primary value in the metric name definition, the data that is collected can be any of the
following items:

• MBean domain
• MBean string value
• Key property from the MBean name
• Numeric or string attribute value on an MBean attribute (including the full name of another MBean). A

numeric or string return value from an operation of a MBean.
• Value of a numeric or string public instance variable in a Notification object
• Numeric or string return value from an operation of a Notification.

By adding a secondary value to the definition of a metric, you can drill down into the primary value of a
Java object. Also, you can start a public method or fetch a public instance variable.

By adding a secondary value to another secondary value in the definition of the metric, you can drill down
into a secondary value object. You can continue as deeply as objects are nested inside an MBean or a
Notification.

Tokens that make up primary and secondary values are either keywords or names. In most cases, a
keyword token is followed by a name token. The following table shows some examples:

Metric name sample
Attribute group
type Description of the data returned

Domain MBean The domain portion of the MBean (the part
before the colon).

Name MBean The full string representation of the MBean.

Attribute.serverVendor MBean MBean attribute serverVendor.

Chapter 6. Defining and testing data sources 99

Metric name sample
Attribute group
type Description of the data returned

Method.getHeapSize MBean The value that is returned by the
getHeapSize() on the MBean.

Property.j2eeType MBean The value of j2eeType is extracted from the
MBean name.

Field.Message Event
(Notification)

The Message field in a notification.

The keywords Attribute, Method, and Field can return Java objects which contain other data. You can
run operations on those objects by appending secondary value definitions. More examples:

Metric name sample
Attribute group
type Description of the data returned

Attribute.deployedObject.Method.getN
ame

MBean Takes the deployedObject attribute from
the MBean and gets the result of the
getName() method.

Attribute.eventProvider.Method.
getException.Method.getDescription

MBean Goes 3 deep: an attribute named
eventProvider is presumed to be an object
which has a getException() method. This
method returns an object with a
getDescription() method. That method is
called and the return value is put in the
column.

Attribute.HeapMemoryUsage.Method.
get(used)

MBean Takes the HeapMemoryUsage attribute
from the MBean and gets the result of the
get(String value) method. The string that is
used is passed to the method as the
argument. Only 1 argument can be
provided and it must be a literal string
value.

Shows how you can collect data from an
open MBean composite data structure.

Domain and Property can be used as keywords in secondary values if the previous value returned a
String in the format of an MBean name. For example:

Metric name sample
Attribute group
type Description of the data returned

Attribute.jdbcDriver.Property
.name

MBean The attribute jdbcDriver returns an MBean
name, and the key property, name, is
extracted from the MBean name.

Attribute.jdbcDriver.Domain MBean The attribute jdbcDriver returns an MBean
name, and the domain is extracted from the
MBean name.

The ElementCount and Explode keywords run operations on arrays or collections of data.

• ElementCount – returns the number of elements in an array.
• Explode – explodes a row into several rows, one new row for each element of an array.

Examples of each of the keywords:

100 IBM Agent Builder: IBM Agent Builder User's Guide

Metric name sample Attribute group
type

Description of the data returned

Attribute.deployedObjects.ElementCou
nt

MBean The MBean attribute deployedObjects is an
array, and this column contains the number
of elements in the array.

Attribute.deployedObjects.Explode.
MBean.Property.j2eeType

MBean Causes the table to have 1 row for each
element in deployed objects. This column
contains the j2eeType of the deployed
Object.

Attribute.SystemProperties.Method.
values.Explode.Method.get(key)

MBean Causes you to get one new row for each
entry in an open MBean tabular data
structure. Each tabular data structure
contains a composite data structure with an
item named key, which is returned.

Testing JMX attribute groups
You can test the JMX attribute group that you created within Agent Builder.

Procedure
1. You can start the Testing procedure in the following ways:

• During agent creation click Test on the JMX Information page.
• After agent creation, select an attribute group on the Agent Editor Data Source Definition page and

click Test . For more information about the Agent Editor, see Chapter 4, “Using the Agent Editor to
modify the agent,” on page 17.

After you click Test in one of the previous two steps, the JMX Test window is displayed
2. Select a connection from the list available under Connection Name or alternatively click Add to add a

connection and follow the procedure that is detailed under “Monitoring Java Management Extensions
(JMX) MBeans” on page 83.

3. Optional: Before you start testing, you can set environment variables, configuration properties, and
Java information.
For more information, see “Attribute group testing” on page 229. For more about JMX configuration,
see “JMX configuration” on page 91.

4. Click Start Agent.
A window indicates that the Agent is starting.

5. Click Collect Data to simulate a request from Tivoli Enterprise Portal or SOAP for agent data.
The agent monitors the JMX Server for data. The JMX Test window collects and shows any data in the
agent's cache since it was last started.

6. Optional: Click Check Results if the returned data is not as you expected.
The Data Collection Status window opens and shows you more information about the data. The data
that is collected and displayed by the Data collection Status window is described in “Performance
Object Status node” on page 280

7. Stop the agent by clicking Stop Agent.
8. Click OK or Cancel to exit the JMX Test window. Clicking OK saves any changes that you made.

Related concepts
“Testing your agent in Agent Builder” on page 229

Chapter 6. Defining and testing data sources 101

After you use Agent Builder to create an agent, you can test the agent in Agent Builder.

Monitoring data from a Common Information Model (CIM)
You can define a data source to receive data from a Common Information Model (CIM) data source. A data
source monitors a single CIM class and places all values from this class into the data set that it produces.
If the class provides several instances, the data set has multiple rows; you can filter by instance name to
ensure the data set has one row.

About this task
This task describes the steps to configure a Common Information Model (CIM) data source.

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Data from a server

in the Monitoring Data Categories area.
2. In the Data Sources area, click CIM.
3. Click Next.
4. On the Common Information Model (CIM) Information page CIM information area, make one of the

following choices:

• Complete the Namespace and CIM class name fields for the data that you want to collect.
• Click Browse to browse a CIM repository on a specific system.

The Common Information Model (CIM) Class Browser window is displayed. This browser
connects to a CIM server and provides you with information about the classes that exist on that
server.

To browse a remote system, select a system from the Hostname list (if one is defined).
Alternatively click Add to add the host name of the system where the CIM server is located.

The syntax for specifying the host name is http[s]://hostname:port. If you provide the host
name only, the Common Information Model (CIM) Class Browser connects by using a default URL
of http://hostname:5988.

If you provide a protocol without specifying a port, 5988 is used as the default for http or 5989
as the default for https.

If you provide a port without specifying a protocol, http is used with the port provided.

Provide a user ID and password for an account with read permission to the objects in the
namespace that you want to browse. The window is updated with the information for the remote
system.

Agent Builder attempts to discover the namespaces available on the CIM Server. The discovered
namespaces are displayed in the Namespace list. However, the Agent Builder might not be able to
discover all namespaces that are available on the server. If you want to browse a namespace that
is not listed in the Namespace list, click the plus (+) icon next to the Namespace list. Enter the
name of the namespace in the field and click OK. If the namespace is present on the CIM server,
the classes that are defined in the namespace are listed. The namespaces you type are saved and
put into the Namespace list the next time you browse that particular CIM server.

When you select a namespace from the Namespace list, the Agent Builder collects all of the class
information for that particular namespace. Then, the Agent Builder caches this information so you
can switch between namespaces quickly. If you want to force the Agent Builder to recollect the
class information for a particular namespace, select the namespace and click Connect. Clicking
Connect deletes any cached information, and causes the Agent Builder to recollect the class
information.

102 IBM Agent Builder: IBM Agent Builder User's Guide

You can click the Search (binoculars) icon to find your selection in the list. Type a phrase in the
Search phrase field; specify your preference by clicking either the Search by name or Search by
class properties fields; and click OK. If you find the item for which you are searching, select it and
click OK.

5. On the Common Information Model (CIM) Information page, Operating systems area, select the
operating systems on which the collection is to take place.

6. If you typed the Namespace and CIM class name in the CIM information area, do the following steps:
a) Click Next to display the Attribute Information page and define the first attribute in the attribute

group.
b) Specify the information about the Attribute Information page, and click Finish.

7. If you browsed the CIM information, the Select key attributes page is displayed. On the Select key
attributes page, select key attributes or indicate that this data source produces only one data row. For
more information, see (“Selecting key attributes” on page 15).

8. If you browsed to the CIM information, click Finish.
9. Optional: You can test this attribute group by clicking Test. For more information about testing, see

“Testing CIM attribute groups” on page 104
10. Optional: You can create a filter to limit the data that is returned by this attribute group by clicking

Advanced. For more information about filtering data from an attribute group, see “Filtering attribute
groups” on page 45

11. Do one of the following steps:
a) If you are using the Agent wizard, click Next.
b) Click Finish to save the data source and open the Agent Editor.

CIM configuration
Details about CIM configuration properties.

If you define a CIM data source in your agent, CIM configuration properties are added to the agent
automatically. You can view, add, and change the configuration properties by using the Agent Editor. For
instructions, see “Changing configuration properties by using the Agent Editor” on page 207). If a CIM
data source is defined in a subnode, specify Subnode Configuration Overrides. For instructions, see
“Subnode configuration” on page 193.

The following connection-specific configuration properties are on the CIM configuration page:
CIM Local or Remote

Local or remote authentication to the CIM server. Local/Remote Default value is Remote
CIM user ID

The user ID used to access the CIM server
CIM password

The password to access the CIM server
CIM host name

The host name to be accessed for CIM data
CIM over SSL

Use SSL for communication with the CIM server. The options are Yes and No. The default value is No.
CIM port number

The port number that is used for communication that is not secure.
CIM SSL port number

The port number that is used for secure communication. The default value is 5989. (The default value
for Solaris 8 is normally different.)

Chapter 6. Defining and testing data sources 103

Testing CIM attribute groups
You can test the CIM attribute group that you created, within Agent Builder.

Procedure
1. Start the Testing procedure in the following ways:

• During agent creation click Test on the CIM Information page.
• After agent creation, select an attribute group on the Agent Editor Data Source Definition page and

click Test. For more information about the Agent Editor, see Chapter 4, “Using the Agent Editor to
modify the agent,” on page 17

After you click Test in one of the previous two steps, the Test Settings window is displayed
2. Optional: Set environment variables and configuration properties before you start testing.

For more information, see “Attribute group testing” on page 229.
3. Select or add a Host name.

For more about adding a Host name, see “Monitoring data from a Common Information Model (CIM)”
on page 102

4. Click Start Agent.
A window opens indicating that the Agent is starting.

5. To simulate a request from Tivoli Enterprise Portal or SOAP for agent data, click Collect Data.
The agent queries the CIM Server for data. The Test Settings window collects and shows any data in
the agent's cache since it was last started.

6. Optional: Click Check Results if the returned data is not as you expected.
The Data Collection Status window opens and shows you more information about the data. The data
that is collected and displayed by the Data Collection Status window is described in “Performance
Object Status node” on page 280

7. Stop the agent by clicking Stop Agent.
8. Click OK or Cancel to exit the Test Settings window. Clicking OK saves any changes that you made.

Related concepts
“Testing your agent in Agent Builder” on page 229
After you use Agent Builder to create an agent, you can test the agent in Agent Builder.

Monitoring a log file
You can define a data source to receive data from a text log file. The agent periodically parses the lines
that are added the log file, and produces event information based on these lines. You can configure the
way in which the agent parses the log into events. You can also configure the agent to filter and
summarize the data. The resulting events are placed in a data set.

Before you begin
Note: The agent monitors log files that are in the same locale and code page that the agent runs in.

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Logged Data in the

Monitoring Data Categories area.
2. In the Data Sources area, click A Log File.
3. Click Next.
4. On the Log File Information page, type the name of the log file you want to monitor in the Log File

Information area.
The file name must be fully qualified.

104 IBM Agent Builder: IBM Agent Builder User's Guide

a) Optional: Part of the log file name can come from a runtime configuration property. To create a log
file name, click Insert Configuration Property and select a configuration property.

b) Optional: The file can also be a dynamic file name. For more information, see (Appendix H,
“Dynamic file name support,” on page 361).

5. In the Field Identification area, click one of the following options:
Fixed number of characters

When selected, limits the number of characters.

With this option, each attribute is assigned the maximum number of characters it can hold from
the log file. For example, if there are three attributes A, B, and C (in that order), and each attribute
is a String of maximum length 20. Then, the first 20 bytes of the log record go into A, the second
20 into B, and the next 20 into C.

Tab separator
When selected, you can use tab separators.

Space separator
When selected, multiple concurrent spaces can be used as a single separator.

Separator Text
When selected, type in separator text.

Begin and End Text
When selected, type in both Begin and End text.

XML in element
When selected, type the name of the XML element to use as the record, or click Browse to define
the element.

If you clicked Browse, the XML Browser window is displayed. If you use the browse function, the
Agent Builder identifies all possible attributes of the record by looking at the child tags and their
attributes.

Note: Unless you click Advanced and fill out the information in that window, the following
assumptions are made about information that you complete:

• Only one log file at a time is monitored.
• Each line of the log file contains all the fields necessary to fill the attributes to be defined.

For more information about log file parsing and separators, see (“Log file parsing and separators” on
page 112).

6. Optional: Click Advanced on the Log File Information page to do the following by using the
Advanced Data Source Properties page:

• Monitor more than one file, or monitor files with different names on different operating systems or
monitor files with names that match regular expressions.

• Draw a set of fields from more than one line in the log file.
• Choose Event Filtering and Summarization Options.
• Produce output summary information. This summary produces an additional attribute group at

each interval. For more information about this attribute group, see “Log File Summary” on page
291. This function is deprecated by the options available in the Event Information tab.

a) To monitor more than one log file, click Add and type the name.
If more than one file is listed, a unique label must be entered for each file. The label can be
displayed as an attribute to indicate which file generated the record. It must not contain spaces.

b) Optional: To select the operating systems on which each log file is to be monitored, follow these
steps:

i) Click in the Operating systems column for the log file.
ii) Click Edit.

iii) In the Operating Systems window, select the operating systems.

Chapter 6. Defining and testing data sources 105

iv) Click OK to save your changes and return to the Advanced Data Source Properties page.
c) Optional: Select File names match regular expression if the file name you are providing is a

regular expression that is used to find the file instead of being a file name.
For more information, see Appendix F, “ICU regular expressions,” on page 351. If you do not
check this box, the name must be an actual file name. Alternatively it must be a pattern that
follows the rules for file name patterns that are described in “Dynamic file name syntax” on page
361.

d) Optional: Select One directory element matches regular expression to match one subdirectory
of the file name path with a regular expression.
You can select this option only if you also selected File names match regular expression in the
previous step.

If regular expression meta characters are used in the path name, the meta characters can be used
in only one subdirectory of the path. For example, you can specify /var/log/[0-9\.]*/
mylog.* to have meta characters in one subdirectory. The [0-9\.]* results in matching any
subdirectory of /var/log that consists solely of numbers and dots (.). The mylog.* results in
matching any file names in those/var/log subdirectories that begin with mylog and are
followed by zero or more characters.

Because some operating systems use the backslash (\) as a directory separator it can be
confused with a regular expression escape meta character. Because of this confusion forward
slashes must always be used to indicate directories. For example, Windows files that are specified
as C:\temp\mylog.* might mean the \t is a shorthand tab character. Therefore, always use
forward slashes (/) on all operating systems for directory separators. The C:/temp/mylog.*
example represents all files in the C:/temp directory that start with mylog.

e) In the When multiple files match list, select one of the following options:

• The file with the highest numerical value in the file name
• The biggest file
• The most recently-updated file
• The most recently-created file
• All files that match

Note: When you select All files that match, the agent identifies all files in the directory that match
the dynamic file name pattern. The agent monitors updates to all of the files in parallel. Data from
all files is intermingled during the data collection process. Its best to add an attribute by selecting
Log file name in Record Field Information to correlate log messages to the log files that contain
the log messages. Ensure that all files that match the dynamic file name pattern can be split into
attributes in a consistent manner. If the log files selected cannot be coherently parsed, then its
best to select Entire record in Record Field Information to define a single attribute. For more
information about specifying Record Field Information for attributes, see step (“8” on page 108).

f) Choose how the file is processed.
With Process all records when the file is sampled, you can process all records in the entire file
every time the defined sampling interval for the log monitor expires. The default interval is 60
seconds. This interval can be modified by using the KUMP_DP_COPY_MODE_SAMPLE_INTERVAL
environment variable (specifying a value in seconds). The same records are reported every time
unless they are removed from the file. With this selection, event data is not produced when new
records are written to the file. With Process new records appended to the file, you can process
new records that are appended to the file while the agent is running. An event record is produced
for every record added to the file. If the file is replaced (first record changes in any way), the file is
processed and an event is produced for each record in the file.

Note: If appending records to an XML log file, the append records must contain a complete set of
elements that are defined within the XML element you selected as Field Identification.

g) If you chose to process new records that are appended to the file, you can also choose how new
records are detected.

106 IBM Agent Builder: IBM Agent Builder User's Guide

With Detect new records when record count increases, new records can be detected when the
number of records in the file increases, whether the size of the file changes. This feature is useful
when an entire log file is pre-allocated before any records are written to the file. This option can be
selected for files that are not pre-allocated, but it is less efficient than monitoring the size of the
file. With Detect new records when the file size increases, you can determine when a new entry
is appended to a file in the typical way. There might be a brief delay in recognizing that a
monitored file is replaced.

h) If you selected Detect new records when the file size increases, you can also choose how to
process a file that exists when the monitoring agent starts.
Ignore existing records disables event production for any record in the file at the time agent
starts. Process ___ existing records from the file specifies production of an event for a fixed
number of records from the end of the file at the time the agent starts. Process records not
previously processed by the agent: Specifies for restart data to be maintained by the monitoring
agent so the agent knows which records were processed the last time that it ran. Events are
produced for any records that are appended to the file since the last time the agent was running.
This option involves a little extra processing each time a record is added to the file.

i) If you selected Process records not previously processed by the agent, you can choose what to
do when the agent starts and apparently the existing file was replaced.
Process all records if the file has been replaced: If information about the monitored file and the
restart data information do not match, events are produced for all records in the file. Examples of
mismatches include: The file name is different, the file creation-time is different, the file-size
decreased, the file last modification time is earlier than before. Do not process records if the file
has been replaced: If the information about the monitored file and the restart data information do
not match, disables processing of existing records in the file.

j) Click the Record Identification tab to interpret multiple lines in the log file as a single logical
record.

Note: If you select XML in element as the field identification on the Log File Information page,
the Record Identification tab does not display.

• Single line interprets each line as a single logical record.
• Separator line you can enter a sequence of characters that identifies a line that separates one

record from another.

Note: The separator line is not part of the previous or the next record.
• Rule identifies a maximum number of lines that make up a record and optionally a sequence of

characters that indicate the beginning or end of a record. With Rule, you can specify the
following properties:

– Maximum non-blank line defines the maximum number of non-blank lines that can be
processed by a rule.

– Type of rule: Can be one of:

- No text comparison (The Maximum lines per record indicates a single logical record).
- Identify the beginning of record (Marks the start of the single logical record).
- Identify the end of record (Marks the end of the single logical record).

– Offset: Specifies the location within a line where the Comparison String must occur.
– Comparison Test: Can either be Equals, requiring a character sequence match at the specific

offset, or Does not equal, indicating a particular character sequence does not occur at the
specific offset.

– Comparison String defines the character sequence to be compared.
• Regular Expression identify a pattern that is used to indicate the beginning or end of a record.

By using Regular Expression, you can specify the following properties:

– Comparison String defines the character sequence to be matched.

OR

Chapter 6. Defining and testing data sources 107

– Beginning or end of record:

- Identify the beginning of record marks the start of the single logical record.
- Identify the end of record marks the end of the single logical record.

k) If you did select Process all records when the file is sampled earlier, click the Filter Expression
tab. By clicking Filter Expression you can filter the data that is returned as rows based on the
values of one or more attributes, configuration variables or both.
If you selected Process new records appended to the file earlier you cannot create a filter
expression. For more information about filtering data from an attribute group, see (“Filtering
attribute groups” on page 45).

l) If you selected Process new records appended to the file earlier, click the Event Information
tab to select Event Filtering and Summarization Options.
For more information, see (Chapter 18, “Event filtering and summarization,” on page 259).

Note: The Summary tab can be present if the agent was created with an earlier version of Agent
Builder. The summary tab is now deprecated by the Event Information tab

7. Optional: Click Test Log File Settings on the Log File Information page to start and test the data
source. . Click Test Log File Settings after you select the options for the log source. When you test
the log file data source and supply log file content, Agent Builder creates the attributes in the group
automatically, based on the results of parsing the log. For more information about testing, see
“Testing log file attribute groups” on page 113.

8. Use the following steps if you did not use the test function earlier and you typed the log file name in
the Log File Information area of the Log File Information page:
a) Click Next to display the Attribute Information page and define the first attribute in the attribute

group.
b) Specify the information, on the Attribute Information page, and click Finish.

Note: When a log file attribute group is added to an agent at the default minimum Tivoli Monitoring
version (6.2.1) or later, a Log File Status attribute group is included. For more information about
the Log File Status attribute group, see (“Log File Status attribute group” on page 322).

Along with the fields applicable to all data sources, the Attribute Information page for the log file
data source has some additional fields in the Record Field Information area.

The Record Field Information fields are:
Next field

Shows the next field after parsing, by using the delimiters from the attribute group (or special
delimiters for this attribute from the Advanced dialog).

Remainder of record
Shows the rest of the record after previous attributes are parsed. This attribute is the last
attribute, except for possibly the log file name or log file label.

Entire record
Shows the entire record, which can be the only attribute, except for possibly the log file name or
log file label.

Log file name
Shows the name of the log file.

Log file label
Shows the label that is assigned to the file on the advanced panel.

Note: Use the Derived Attribute Details tab only if you want a derived attribute, and not an attribute
directly from the log file.

9. Click Advanced in the Record Field Information area to display the Advanced Log File Attribute
Information page.
a) In the Attribute Filters section, specify the criteria for data to be included or excluded.

108 IBM Agent Builder: IBM Agent Builder User's Guide

Filtering attributes can enhance the performance of your solution by reducing the amount of data
processed. Click one or more of the attribute filters:

• Inclusive indicates that the attribute filter set is an acceptance filter, meaning that if the filter
succeeds, the record passes the filter, and is output.

• Exclusive indicates that the attribute filter set is a rejection filter, meaning that if the attribute
filter succeeds, the record is rejected, and is not output.

• Match all filters indicates that all filters defined to the filter must match the attribute record in
order for the filter to succeed.

• Match any Filter indicates that if any of the filters that are defined to the filter match the
attribute record, the filter succeeds.

b) Use Add, Edit, and Remove to define the individual filters for an attribute filter set.
c) To add a filter, follow these steps:

i) Click Add, and complete the options in the Add Filter window as follows:

a) The Filter criteria section defines the base characteristics of the filter, including the
following properties:

• Starting offset defines the position in the attribute string where the comparison is to
begin.

• Comparison string defines the pattern string against which the attribute is defined.

Type a string, pattern, or regular expression that is used by the agent to filter the data
read from the file. The records that match the filter pattern are eliminated from the
records that are returned to the monitoring environment, or are the only records returned.
The result depends on whether you choose for the filter to be inclusive or exclusive.

• Match entire value checks for an exact occurrence of the comparison string in the
attribute string. Checking starts from the starting offset position.

• Match any part of value checks for the comparison string anywhere in the attribute
string. Checking starts from the starting offset position.

b) The comparison string is a regular expression indicates that the comparison string is a
regular expression pattern that can be applied against the attribute string.

Regular expression-filtering support is provided by using the International Components for
Unicode (ICU) libraries to check whether the attribute value examined matches the
specified pattern.

To effectively use regular expression support, you must be familiar with the specifics of how
ICU implements regular-expressions. This implementation is not identical to how regular
expression support is implemented in Perl, grep, sed, Java regular expressions, and other
implementations. See Appendix F, “ICU regular expressions,” on page 351 for guidance on
creating regular expression filters.

c) Define an override filter indicates that you want to provide a more specific filter
comparison that overrides the base characteristics previously defined. This additional
comparison string is used to reverse the filter result. When the filter is Inclusive, the
override acts as an exclusion qualifier for the filter expression. When the filter is Exclusive,
the override acts as an inclusion qualifier for the filter expression. (For more about
Inclusive and Exclusive, see step “9” on page 108, and the examples that follow). The
override filter has the following properties:

• Starting offset defines the position in the attribute string where the comparison is to
begin.

• Comparison string defines the pattern string against which the attribute is matched.

Type a regular expression that is used by the agent to filter the data read from the file. The
records that match the filter pattern are eliminated from the records that are returned to

Chapter 6. Defining and testing data sources 109

the monitoring environment, or are the only records returned. The result depends on
whether you choose for the filter to be inclusive or exclusive.

d) Replacement value can be used to alter the raw attribute string with a new value. See
Appendix F, “ICU regular expressions,” on page 351 for more details about special
characters that can be used.

e) Replace first occurrence replaces the first occurrence that is matched by the comparison
string with new text.

f) Replace all occurrences replaces all occurrences that are matched by the comparison
string with new text.

ii) Click OK.

Figure 8. Add Filter example 1

If the attribute string is abc is easy as 123, then the replaced string that is displayed in the
Tivoli Enterprise Portal or IBM Cloud Application Performance Management console as 123 is
not as easy as abc.

110 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 9. Add Filter example 2

If the attribute string is Unrecoverable Error reading from disk, and the filter is
Inclusive, then the attribute is displayed in the Tivoli Enterprise Portal or IBM Cloud Application
Performance Management console. If the attribute string is No Errors Found during
weekly backup and the filter is Inclusive, then the attribute is not displayed.

d) In the Field Identification section of the Advanced Log File Attribute Information page, specify
how to override the attribute group field delimiters for this one attribute only. Click one of the
attribute filters, and complete the required fields for the option:

• Number of characters: Enter the limit for the number of characters.
• Tab separator specifies the use of tab separators.
• Separator Text: Enter the separator text that you want to use.
• Begin and End Text Enter both Begin text and End text.

e) In the Summary section of the Advanced Log File Attribute Information page, click the Include
attribute in summary attribute group check box to add the attribute to the summary attribute
group.
This attribute group is produced when a user turns on log attribute summarization.

f) Click OK.

Chapter 6. Defining and testing data sources 111

10. If you used the test function in step (“7” on page 108), the Select key attributes page is displayed.
On the Select key attributes page, select key attributes or indicate that this data source produces
only one data row.
For more information, see (“Selecting key attributes” on page 15).

11. Do one of the following steps:

• If you are using the New Agent wizard, click Next.
• Click Finish to save the data source and open the Agent Editor.

Note: When a log file attribute group is added to an agent with the default minimum Tivoli Monitoring
version (6.2.1) or later, a Log File Status attribute group is included. For more information about
the Log File Status attribute group, see (“Log File Status attribute group” on page 322).

Log file parsing and separators
You can change the default separator that is used to separate one or more attributes in a log file record.

When you create a log file attribute group, a separator is by default assigned. The default separator is a
tab. The separator is used by the agent to parse and delimit the data for each attribute in the data row.
You can change the default attribute separator to be:

• A fixed number of characters
• A space
• A different character or characters
• A specific beginning and end text
• An XML element.

You change the default separator that is used for all attributes in the group in the following ways:

1. When you are creating the attribute group, on the Log File Information page.
2. After you create the attribute group, by opening the Agent Editor > Data Sources tab, selecting the

attribute group and choosing a separator in the Field Identification area.

You can also optionally assign specific separators to one or more individual attributes. You can assign
specific separators for individual attributes to use:

• A fixed number of characters.
• A tab separator
• A space separator
• A different character or characters
• A specific beginning and end text.

You change the separator that is used for individual attributes in the following ways:

1. By selecting Advanced on the Attribute Information page when you are creating an attribute.
2. By opening the Agent Editor > Data Sources tab, selecting the attribute and selecting Advanced on

the Log File Attribute Information tab.

Example 1 - Simple log file output
Some log file records have clear and regular separators, for example:

one,two,three

Here the "," character is a clear and regular separator between the three pieces of data on the row. In
this case, select Separator Text and specify "," as the default separator for the attribute group. There is
no need to change or define other separators.

Defining this separator for a log file that contains the data row that is shown earlier in this example is
shown in the following output:

112 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 10. Example attribute value output when Agent parses a simple log file data row.

Example 2 - Complex log file output
Some log files can contain data rows that have irregular or changing separators, for example:

one,two,three,[four]12:42,five

In this example an assignment of separators to attribute definitions that you can use is:

1. In the previous example you set the default separator to ",". This separator is used for all attributes
unless you over-ride it with a specific separator. In this example the default separator of "," is correct
to use again for the first three attributes in the row.

2. For the fourth attribute, assume the string between the"[" and "]" is a value that you want to extract.
In this case when you define the fourth attribute, you assign a separator type Begin and End Text with
begin and end text values of "[" and "]".

3. For the fifth attribute, assume that you want to extract the values between the "]" and ":"
characters. In this case when you define the fifth attribute, you assign separator type Separator Text
set to ":".

4. For the sixth attribute, your default attribute group separator "," is fine again.
5. For the seventh attribute, you do not need to specify a separator as it is the last attribute.

Defining these separators on a log file that contains the data row that is shown earlier in this example is
shown in the following output:

Figure 11. Example attribute value output when Agent parses a complex log file data row.

The procedure to define the attribute separators is described under step “5” on page 105 of “Monitoring a
log file” on page 104.

Testing log file attribute groups
You can use Agent Builder to test the log file data set (attribute group) that you created. If no attributes
are defined for the group, the testing process defines them automatically.

Before you begin
If any attributes are already defined for this data set and you want to define attribtes automatically during
testing, use the agent editor to remove all the existing attributes from the data set. For instructions, see
“Removing attributes” on page 39.

Chapter 6. Defining and testing data sources 113

Procedure
1. You can start the Testing procedure in the following ways:

• During agent creation click Test Log File Settings on the Log File Information page.
• After agent creation, select an attribute group on the Agent Editor Data Source Definition page and

click Test Log File Settings. For more information about the Agent Editor, see Chapter 4, “Using the
Agent Editor to modify the agent,” on page 17.

After you click Test Log File Settings in one of the previous two steps, the Parse Log window opens.
2. Select the source of the log data for testing:

• Use attribute group settings: use the file name and location specified in the data source. By
default, the data source processes only the information that is added to the log file after the testing
process is started. You can use this option if the log file is being updated in real time.

• Specify a sample file: provide a sample log file. With this setting, the testing procedure parses the
entire contents of the log file. With this option, you can test the data source and create the
attributes for it immediately, based on an existing sample. Specify the path and name of the file in
the Log file name field or use the Browse button to select the file.

3. Optional: Before you start testing, you can set environment variables and configuration properties.
For more information, see (“Attribute group testing” on page 229).

4. Click Start Agent.
A window opens indicating that the Agent is starting. When the agent starts, it monitors the configured
log file for new records

5. To test your agent's data collection, generate new records in the monitored log file.
When new records are added to the log file, the agent parses them according to its configuration and
updates the corresponding attribute values in its cache.

6. To simulate a request from Tivoli Enterprise Portal or SOAP for agent data, click Collect Data.
The Parse Log window collects and shows any new attribute values in the agent's cache since it was
last started. An example data collection is shown in Figure 12 on page 114

Figure 12. Parse Log window that shows parsed log file attribute values
7. Optional: Click Check Results if the returned data is not as you expected.

The Data Collection Status window opens and shows you more information about the data. The data
that is collected and shown by the Data collection Status window is described in “Performance Object
Status node” on page 280

114 IBM Agent Builder: IBM Agent Builder User's Guide

8. The agent can be stopped by clicking Stop Agent.
9. Click OK or Cancel to exit the Parse Log window. Clicking OK saves any changes that you made.

Related concepts
“Testing your agent in Agent Builder” on page 229
After you use Agent Builder to create an agent, you can test the agent in Agent Builder.

Monitoring an AIX Binary Log
You can define a data source to monitor AIX binary error logs through the errpt command. You can also
configure it to filter and summarize the data. The resulting events are placed in a data set.

About this task
Log Monitoring supports the monitoring of AIX binary error logs through the errpt command. The errpt
command generates an error report from entries in an error log. It includes flags for selecting errors that
match specific criteria. This support for the monitoring of AIX binary error logs through the errpt
command is modeled on the support for the same function in the Tivoli Monitoring UNIX Logs Agent
(product code kul or ul).

When you supply the Agent Builder with an errpt command string, it processes the events that result
from running this command. Agent Builder enforces the same constraints on this command that the
Monitoring Agent for UNIX Logs does. In particular, you must use the -c (concurrent mode) option so that
the command runs continuously, and you cannot use the -t option or the following options that result in
detailed output: -a, -A, or -g.

An Agent Builder agent that monitors the AIX errpt command automatically includes the same
information as a Monitoring Agent for UNIX Logs does. For more information about the attribute groups
for AIX binary error logs, see “AIX Binary Log attribute group” on page 293.

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Logged data in the

Monitoring Data Categories area.
2. In the Data Sources area, click AIX Binary Log.
3. Click Next.
4. On the Binary Log Information page, enter an errpt command.

The default value is:

errpt -c -smmddhhmmyy

The agent searches for the 'mmddhhmmyy' string and replaces it with the actual date and time on
startup. Only the first occurrence of the string is replaced.

You can supply your own errpt command but Agent Builder enforces the same constraints on this
command that the Monitoring Agent for UNIX Logs does. In particular, you must use the-c (concurrent
mode) option so that the command runs continuously, and you cannot use the -t option or the
following options that result in detailed output: -a, -A, or -g.

5. (Optional) Click Advanced to select filtering and summarization options for events. For more
information, see “Controlling duplicate events” on page 259.

6. Do one of the following steps:

• If you are using the Agent wizard, click Next.
• Click Finish to save the data source and open the Agent Editor.

Related reference
“AIX Binary Log attribute group” on page 293

Chapter 6. Defining and testing data sources 115

The AIX Binary Log attribute group displays events from the AIX Binary Log as selected by the provided
errpt command string.

Monitoring a Windows Event Log
You can define a data source to collect data from a Windows event log. You can configure it to filter the
data. The resulting events are placed in the Event Log data set.

About this task
You can collect data from the Windows event log by using the type, source, or ID of events. You use these
parameters to filter the log events that the Windows system gathered. The agent compares each new
event in the monitored event log against the specified filter. If the event matches one of the event types,
event sources, and event IDs specified in the filter, it passes.

For example, if the Event log filter is for the Application log, specify Error as the event type. This choice
matches all events that are logged to the Application log with an event type value of error. If you add the
Diskeeper and Symantec AntiVirus event sources, the agent matches all error events from either of
these sources. You can add specific event IDs to refine the filter further. No direct association exists
between the event type, event source, and event ID. If one of the values for each matches an event, the
event matches.

By default, only events that are generated after the agent starts are processed. However, you can enable
the agent when it restarts to process log events that are generated while the agent is shut down. For more
information about enabling the agent to process events generated while the agent is shut down, see step
“6” on page 116.

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Logged Data in the

Monitoring Data Categories area.
2. In the Data Sources area, click Windows Event Log.
3. Click Next.
4. On the Windows Event Log page, select the name from one of the logs in the Windows Event Log

name list, or type a name for the event log.

The list is constructed from the set of logs on the current system, for example:

Application
Security
System

5. In the Windows Event Log page, specify whether you want to filter the results by using one or more
of the following mechanisms:

• “Filtering by event type” on page 117
• “Filtering by event source” on page 118
• “Filtering by event identifier” on page 118

Note: You must select at least one of these filter criteria.
6. To process log events that are generated while the agent is shut down, on an agent restart, click

Offline Event Settings on the Windows Event Log page.
The Windows Event Log Bookmark Settings window opens.

7. Select one of the following bookmarking options:

Note: These options apply to all Windows event logs being monitored.

• Do not collect any offline events: Events that are generated while the agent is shut down are not
processed. This option is the default option.

116 IBM Agent Builder: IBM Agent Builder User's Guide

• Collect all offline objects: All events that are generated while the agent is shut down are
processed.

• Specify custom collection settings: You can enter a value to throttle the processing of old events
that are based on a time value, or number of events, or both. By using this option, you ensure that
the monitoring environment is not overloaded with events when the agent starts.

For example, if 100 is entered in The maximum number of events to collect field and 30 is
entered in the Restrict collection based on a time interval (in seconds) field. The number of
events that are processed is either the last 100 events that are generated before the agent starts,
or any event that is generated within 30 seconds of agent start. Which result depends on the
variable that is matched first.

When you enter a value for the maximum number of events to collect, the
CDP_DP_EVENT_LOG_MAX_ BACKLOG_EVENTS environment variable is added. When you enter a
value to restrict collection that is based on a time interval, the
CDP_DP_EVENT_LOG_MAX_BACKLOG_TIME environment variable is added. When either or both of
these variables are added, the
eventlogname_productcode_instancename_subnodename.rst file is created containing
the last event record that is processed for the event log. This file is in the %CANDLE_HOME%
\tmaitm6\logs directory and is used when the agent is restarted to process old events that are
generated while the agent was shut down.

8. If you want to set global options for the data source, click Global Options on the Windows Event Log
page

The Global Windows Data Source Options window opens.
9. Select the Include remote Windows configuration properties check box if you want to include this

option, and click OK.

For information about Windows remote connection configuration for Windows data sources, see
“Configuring a Windows remote connection” on page 207.

10. After you specify the filter and click OK, on the Windows Event Log page, do one of the following
steps:

• If you are using the Agent wizard, click Next.
• Click Finish to save the data source and open the Agent Editor. The name of the new Windows

Event Log is shown on the Agent Editor Data Source Definition page.

What to do next
For information about Windows remote connection configuration for Windows Event Log data sources, see
“Configuring a Windows remote connection” on page 207.

Filtering by event type
Filter Windows Event Log results by event type

Procedure
1. In the Windows Event Log page, select Filter by event type.
2. Select one or more of the following Event types:

• Information
• Warning
• Error
• Success Audit
• Failure Audit

3. Click Finish to complete.

Chapter 6. Defining and testing data sources 117

Filtering by event source
Filter Windows Event Log results by event source

Procedure
1. Select Filter by event source and click Add in the Event sources area of the Windows Event Log

page.
The Event Source window opens.

2. Make one of the following choices.

• Type the event source name and click OK.
• Click Browse Browse to find and select an event source from a list and click OK.

The name that you selected is shown in the Event Source window.

Note:

a. To sort the list of event sources, click the column heading.
b. To refresh the information in the window, click the Refresh icon.
c. To search for specific event sources, click the Search (binoculars) icon.

3. Click OK to see the new event source filter in the Event sources list in the Windows Event Log window.

Filtering by event identifier
For the Windows Event Log data source, you can filter events by event identifier.

About this task
To filter by event identifier, use the following procedure:

Procedure
1. Select Filter by event identifier and click Add in the Event identifiers area of the Windows Event Log

window.
The Event Identifier window is displayed.

2. If you know that you want to monitor specific events from an application, specify the numbers of the
event as the application defines it. Type an integer as the event identifier and click OK.
The new numeric event identifier filter is displayed in the Event identifiers list in the Windows Event
Log.

Note: Each event identifier must be defined individually.
3. If you want to modify a Windows event log, select it and click Edit.
4. If you want to delete a Windows event log, select it and click Remove.
5. You can add more event logs to the list, or click Finish.

Monitoring a command return code
You can define a data source to monitor an application or system by using a command return code. The
agent runs the command, collects the return code, and adds the result to the Availability data set.

About this task
A user-created script, executable file, query, or system command can return a code. A command return
code is an application-specific mechanism for determining whether the application or monitored system
is available. The agent runs the specified command and determines the state of the application or
monitored system by examining the return code.

118 IBM Agent Builder: IBM Agent Builder User's Guide

The command must present a unique return code for each descriptive state. The command must also
define a message to be used by the agent for each of these return codes. The command can use
environment and configuration variables within the user created script, executable file, query, or system
command. The command must not use environment or configuration variables on the command-line
invocation of the command, with only the following exceptions available: AGENT_BIN_DIR,
AGENT_ETC_DIR, AGENT_LIB_DIR, CANDLE_HOME, and CANDLEHOME.

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, select Command or script

in the Monitoring Data Categories area.
2. In the Data Sources area, click A command return code.
3. Click Next.
4. On the Command Return Code page, Command return code information area, type the display

name.
5. Use the following substeps to define and describe command lines that you want your command return

code to use.

Note: Define a command for each operating system that is supported by the agent. Commands can be
shared, but the total set of operating systems for all of the commands must equal the set of agent
supported operating systems.

a) Click Add in the Commands area of the Command Return Code window to open the Command
Information window.

b) Type a command line and select an operating system from the list in the Operating Systems area of
the Command Information window.

Note:

i) For a Windows command, you must type the full name of the command. For example,
command_to_run.bat and not just command_to_run.

ii) Place quotation marks around the name so that it is not parsed by the command interpreter. For
example, type "this is a test.bat"argument and not this is a test.bat
argument.

iii) You can click a command and click Edit to modify it, or click Remove to delete it.
c) Click Add in the Return Codes area of the Command Information window.
d) Select a return code type from the list that is shown in the Return Code Definition window

You can assign the following states to the test return codes:

• ALREADY_RUNNING
• DEPENDENT_NOT_RUNNING
• GENERAL_ERROR
• NOT_RUNNING
• OK
• PREREQ_NOT_RUNNING
• WARNING

e) Type a numeric value for the return code type that you selected.
The return code value is an integer that specifies a defined return code for the command return
code. For portability between operating systems, use a return code value of 0 - 255. For a
command that runs only on Windows, the return code value can be -2147483648 -
2147483647.

f) Define a message for each return code so that the message and code can be shown together. Click
Browse to set up the message text.

Chapter 6. Defining and testing data sources 119

The message window lists messages that are defined in the agent. The Messages (list) window
opens.

Note:

i) You can select text that was entered previously by selecting it in the list of message texts
instead of clicking Browse. Then, continue to Step 5k.

ii) Until you define messages, the list remains blank. You can use Edit to alter a defined message
and Remove to delete one or more messages that you defined.

g) In the Messages (list) window, click Add
The Message Definition window opens.

Note: The message identifier is automatically generated for you.
h) Enter some text that describes the meaning of the new message in the Message text field.
i) Click OK.

The Messages (list) window opens showing the new message .
j) To verify the message and make it permanent, select it in the list and click OK.

The new return code type, value, and text are shown in the Return Code Definition window.
k) If you want this return code to be available to other commands on other operating systems for this

command return code, select Global return code applies to all commands. If you want this return
code to be available only to this command, leave Local return code applies only to this command
selected.

l) Click OK in the Return Code Definition window.
m) Define at least two return codes before you leave the Command Information window. One return

code to indicate no problems with the availability, another to indicate whether a problem occurred.
If you want to add another return code, return to step c.

n) Optional: In the Command Information window, Command files area, click Add if you want to
select one or more scripts or executable files for the agent to run.
The file or files are copied into the project folder of the agent under scripts/operating
system, where operating system is a variable that depends on what you selected in the Operating
Systems area of the Command Information window. These files are also packaged and distributed
with the agent. To edit the definition of an existing command file, or the original command file since
copied into the project, select the file and click Edit. See (“Editing a command file definition” on
page 122).

o) Click OK in the Command Information window.

Note: The command files table is where you define any external files that you want to include in the
agent package. These files are copied into the project directory and packaged with the agent for
distribution.

6. If you have other return codes that are not already defined, define and describe global return codes
that your command return code can use.
a) Click Add in the Global return codes area of the Command Return Code page.

Note: The return codes that are defined here are global. This means that the return codes are
appropriate for all of the commands that are defined for the command return code. (They are not
shared between command return codes). In addition, you can define return codes when you enter
the command information. The return codes that are defined here can be global or local. Local
return codes are only appropriate for this specific command. This hierarchy is useful if you have a
return code that is the same across all operating systems. (For instance, a return code of 0 means
that everything is functioning correctly. You can define it at the global level, and then all defined
commands interpret 0 in this way.) If none of the other operating systems return a 5, you can define
the return code of 5 only for the Windows command. If you define a return code at the local
command level that is already defined at the global level, the command level is used. You can use
this method to override return codes on specific operating systems. For instance, if on all UNIX
operating systems, a return code of 2 means one thing, but, on Windows, it means something

120 IBM Agent Builder: IBM Agent Builder User's Guide

different. You can define a return code of 2 at the global level as expected by the UNIX operating
systems. Then, in the command for Windows, you can redefine return code 2 for the meaning on
Windows.

b) Select a return code type from the list that is shown in the Return Code Definition window.

You can assign the following states to the test return codes:

• ALREADY_RUNNING
• DEPENDENT_NOT_RUNNING
• GENERAL_ERROR
• NOT_RUNNING
• OK
• PREREQ_NOT_RUNNING
• WARNING

c) Type a numeric value for the return code type that you selected. The return code value is an integer
that specifies a defined return code for the command return code.

d) Click Browse to set up the message text and its associated meaning. You must define a message
for each return code so that the message and code are shown together.

The Messages window lists messages that are defined in the agent.

Note:

i) Until you define messages, the list remains blank. You can use Edit to alter a defined message
and Remove to delete one or more messages you defined.

ii) You can select text that was entered previously by selecting it in the Message text list instead of
clicking Browse. Then, continue to Step 6h.

e) In the Messages (list) window, click Add to see a Message Definition window, where you can type
text that describes the meaning of the new message.

f) Click OK.
g) The Messages (list) window opens with the new message. To verify the message and make it

permanent, select it in the list and click OK.
h) When the new text, type, and value are shown in the Return Code Definition window, click OK.

i) On the Command Return code page, when you finish defining the return codes and commands for
all supported operating systems, do one of the following steps:

• If you are using the New Agent wizard, click Next or click Finish to save the data source and open
the Agent Editor.

• If you are using the New Agent Component wizard, click Finish to return to the Agent Editor.

What to do next
If you want to use the data from this data source in the summary dashboard for IBM Cloud Application
Performance Management, you must create a filtered data set (attribute group) based on the Availability
data set and configure it as providing a single row. Use the NAME field to select the row for your process.

In the new filtered attribute group, select the Status field and specify the severity values for it.

For instructions, see:

• “Creating a filtered attribute group” on page 182
• “Specifying severity for an attribute used as a status indicator” on page 44
• Chapter 12, “Preparing the agent for Cloud APM,” on page 219

Chapter 6. Defining and testing data sources 121

Editing a command file definition
You can change the command file that is imported into the project, or import changes to the existing
command file into the project.

Procedure
1. Select the file in the Command files area of the Command Information window.
2. Click Edit to open the Import Command File window.

From the Import Command File window, you can get the status of the command file. You can also
change the location of the original source file, and recopy the source file into the agent.

3. Choose one of the following steps:

• Click OK to schedule a copy of the file to occur the next time that the agent is saved.
• Click Copy Immediately to copy the file without first saving the agent.

Note: The Copy Immediately option is not available when you access the Import Command File
window from the New Agent wizard.

File Separation & Consolidation
You can use the Separate and Consolidate functions to move files in and out of operating system-specific
folders in the agent.

When a file is first added to the agent, a single copy is added in the scripts/all_windows folder, the
scripts/all_unix folder, or the scripts/common folder. The scripts/common folder is used if the
file is used on both Windows and UNIX.

To place different copies of the file on different operating systems (for example, a binary executable file),
click Edit and click Separate. The file is removed from the common folder and copied into operating
system-specific folders. Then, you can replace individual copies of the file with ones appropriate for
specific operating systems.

Note: Java resource files must remain in the scripts/common folder. You cannot click Separate to make
separate copies of Java resource files for individual operating systems.

If you separated the files into operating-system-folders, you can use Consolidate to move them back into
a common folder. If you created the agent in an Agent Builder version that did not support common
folders, use Consolidate to move them back into a common folder. If any of the copies of the file differ
from one another, you are prompted to select the file to use as the common file. All other copies are
discarded.

Monitor output from a script
You can define a data source to collect data from a script or external program. Use it when application
data is not available through a standard management interface or when you need to provide a summary of
multi-row data in a single row. The agent runs the script and collects its output. Each line in the script
output is parsed into a row of the resulting data set.

Data can be collected from either a local or remote system. The output of the script or program must
contain only values for each attribute within the attribute group. To return multiple rows of data, the data
for each row must be separated by a line break. The attributes in each row of data are separated by the
separators you define. For more information about separators, see “Script parsing and separators” on
page 123

The command can use environment and configuration variables within the user-created script, executable
file, query, or system command. The command cannot use environment or configuration variables on the
command-line invocation of the command, with only the following exceptions available:
AGENT_BIN_DIR, AGENT_ETC_DIR, AGENT_LIB_DIR, CANDLE_HOME, and CANDLEHOME.

122 IBM Agent Builder: IBM Agent Builder User's Guide

The agent monitors script output that is written by using the same locale and code page that the agent
runs in.

Collecting script data from a remote system
To collect script or program data from a remote system, Agent Builder uses a Secure Shell (SSH)

To collect data from a remote system, Agent Builder creates a Secure Shell (SSH) session and starts the
script or external program on the remote system. The agent establishes and logs on to an SSH session.
The agent then uploads the scripts to the remote system, starts the script or external program, and
retrieves the output. The agent can be configured to keep the session open or reestablish the session for
each invocation. If the session is kept open, the script can be reused or uploaded for each invocation. By
default, a single SSH session is used and the scripts are reused for each invocation.

Agent Builder supports use of only SSH Protocol Version 2 with Rivest, Shamir, and Adleman (RSA) or
Digital Signature Algorithm (DSA) keys. The agent is either authenticated by user name and password, or
by public key authentication. The generation and distribution of the public keys is an administrative task
that must be done outside of the agent and Agent Builder.

To run a Take Action command that is written against a Secure Shell (SSH) enabled script data provider on
the remote system, see “SSHEXEC action” on page 369.

Restriction: If your agent was built with an Agent Builder version before 6.3 and it has a script data
provider that uses SSH, the provider fails when run with IBM Tivoli Monitoring version 6.3 or later. To
resolve this issue, rebuild the agent with the current version of Agent Builder.

The restriction is because IBM Tivoli Monitoring version 6.3 uses a newer version of the Global Secure
ToolKit (GSKit) API. You must rebuild the agent with Agent Builder 6.3 or later to run it with IBM Tivoli
Monitoring version 6.3 or later. If you build the agent with Agent Builder 6.3, it can also run with earlier
versions of IBM Tivoli Monitoring.

Script parsing and separators
You can change and assign specific script separators to one or more attributes.

When you create a script attribute group, a single character text separator is by default assigned. The
default separator is ";". The separator is used by the agent to parse and delimit the data for each
attribute in the data row. You can change the default separator to use a different character. You can also
assign specific separators to one or more individual attributes.

You can assign specific separators for individual attributes that:

• Take a fixed number of bytes from the output.
• Separate one attribute from the next with a custom separator, which can be more than one character.
• Delimit an attribute value with a string at the beginning and end of the value.
• Return the rest of the text as the attribute value (whether it contains embedded separators or not).

You can use one or more of these separators to extract attribute values from the data rows.

Example 1 - Simple script output
Some scripts can output data rows with clear and regular separators, for example:

Row One;1;2
Row Two;3;4
Row Three;5;6

Here the ";" character is a clear and regular separator between the three pieces of data on each row. In
this case, the default separator is fine, so there is no need to change or define other separators. It is not

Chapter 6. Defining and testing data sources 123

difficult to imagine a similar script output where the separator is a different character, as in the following
example.

Row One-1-2
Row Two-3-4
Row Three-5-6

In this example the separator is changed from a ";" character to a "-" character. In this case when you
define the attributes, change the default separator to use the "-" character.

Example 2 - Complex script output
Some scripts can output data rows that have irregular or changing separators, for example:

Row One;1;2;[option]Hour:MIN;fourtabby The end;4
Row Two;3;4;[required]12:30;fourvery tabby the tail;5
Row Three;5;6;[out]March:12;fourline up the rest of the story;6

In this example an assignment of separators to attribute definitions that you can use is:

1. Initially the default separator ";" is fine for the first three attributes in each data row. In this case, you
assign the separator type Separator Text set to ";" when you define each attribute, this setting is the
default one.

2. For the fourth attribute, assume the string between the"[" and "]" is a value that you want to extract.
In this case when you define the fourth attribute, you assign a separator type Begin and End Text with
begin and end text values of "[" and "]".

3. For the fifth attribute, assume that you want to extract the values between the "]" and ":"
characters. In this case when you define the fifth attribute, you assign separator type Separator Text
set to ":".

4. For the sixth attribute, the default separator ";" is fine again, accept the default.
5. For the seventh attribute, you would like to extract the string in the next four characters "four". There

is not a clear separator at the end of this string. You can assign a number of characters to define the
separation from the next attribute. You assign a separator type Number of characters, and specify
four characters as the length.

6. For the eighth attribute you would like to extract the strings tabby, very tabby and line up. In this
case, you can assume that all of these strings are followed by a tab character. In this case, you assign a
separator of type Tab separator.

7. For the ninth attribute, you revert again to the default separator type to extract the remaining text to
this attribute.

8. For the 10th attribute, you specify Remainder of record to assign the remainder of the data row to this
attribute

Defining these separators on a script that outputs the data rows that are shown earlier in this example is
shown in the following output:

Figure 13. Example attribute value output when Agent parses complex script output.

The procedure to define the attribute separators is described under step “10” on page 127 of “Steps for
monitoring output from a script” on page 125.

124 IBM Agent Builder: IBM Agent Builder User's Guide

Steps for monitoring output from a script
Configure your agent to receive data from a script data source.

Before you begin
See “Monitor output from a script” on page 122

About this task
Use the following procedure to monitor output from a script:

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, select the option

Command or script in the Monitoring Data Categories area.
2. In the Data Sources area, click Output from a script.
3. Click Next.
4. On the Command List page , click Add to display a Command Information window.

Note: Selecting the Enable data collection using SSH check box enables SSH for this attribute
group. If this check box is not selected, the attribute group runs locally.

Note: If a command exists that can be run on the operating system on which the Agent Builder is
running, the Test option is enabled. You can use Test to test a command that you defined.

5. In the Command Information area in the Command Information window, type a command name
with the necessary arguments in the Command field, and a separator in the Separator field.

Note:

a. Scripts in Windows are frequently started without specifying the .bat or .cmd extension on the
command line. For remote execution, a shell environment must be installed and you must specify
the .bat or .cmd in the script data source command for the script to run. Cygwin is an example
of a shell environment that is available for Windows. Linux, Red Hat, and AIX. To verify that a shell
environment exists, SSH or log on to the remote host and enter the command:

PATH=$PATH:. <command>

If the command runs, then a shell environment exists.
b. Use quotation marks around the name so that it is not parsed by the command interpreter. For

example, this is a test.bat argument becomes:

"this is a test.bat" argument

c. Environment variables and configuration variables can be used in the user-provided script, but
cannot be part of the command line that starts the script. The following variables are exceptions to
this rule:
AGENT_BIN_DIR

The directory where the agent places binary files or scripts
AGENT_ETC_DIR

The directory where the agent places configuration files
AGENT_LIB_DIR

The directory where the agent places shared libraries or dynamic-link libraries
CANDLEHOME

The Linux or UNIX Tivoli Monitoring installation directory
CANDLE_HOME

The Windows Tivoli Monitoring installation directory

Chapter 6. Defining and testing data sources 125

d. If the SSH data collection option is being used, the command line is run relative to the user's
home directory on the remote system. If you are uploading scripts or executables to the remote
system, they are copied to the location specified in the agent's environment variable
CDP_SSH_TEMP_DIRECTORY. The location defaults to the user's home directory on the remote
system. On some systems, you might need to define the command line with a relative path, such
as ./Script.sh.

6. In the Operating Systems area, select one or more operating systems. When you collect data from a
remote system by using SSH, Operating Systems is a property of the system on which the agent is
installed. It is not the Operating System of the remote system. It is advised that you select the All
operating systems check box when you use the SSH data collection features.

7. Optional: If one or more user-defined files are necessary to run the command, click Add in the
Command files area to specify the files from your system.
The files are copied into the project folder of the agent under scripts/operating system, where
operating system is a variable that depends on what you selected in the Command Information
window. These files are also packaged and distributed with the agent. If you want to edit the
definition of a command file you already added, or changed the contents of, select the file and click
Edit. See “Editing a command file definition” on page 122.

8. Click OK. The Command List page is displayed.
9. To test the command, use the following steps:

a) Click Test to open the command information and display the Test Command window. To test the
script on a remote system, select a system from the Connection name list or click Add to add the
host name of a system.

b) Use the Test Command window to change the command, default separator, and attribute
separators, and to view how these changes affect the data that is returned.

i) Type the command and separator in the fields if they are not already entered.

Note: You can specify other separators by using the Attribute Information window at attribute
creation time or by using the Agent Editor to modify an existing attribute. For more information
about the Agent Editor, see Chapter 4, “Using the Agent Editor to modify the agent,” on page 17
and for more information about manipulating data source and attributes, see Chapter 5,
“Editing data source and attribute properties,” on page 35

ii) Before you start testing, you can set environment variables and configuration properties. For
more information, see (“Attribute group testing” on page 229).

iii) Click OK to return to the Test Settings window.
iv) Click Start Agent. A window indicates that the Agent is starting.
v) To simulate a request from Tivoli Enterprise Portal or SOAP for agent data, click Collect Data.

The Agent Builder runs your command. If you specified a remote system, provide a user ID and
password. Even if the return code is not 0, the Agent Builder parses the results of the
command in the same way the agent does.

vi) The Test Settings window collects and displays any data in the agent's cache since it was last
started. The initial names of the attributes are Attribute_1, Attribute_2, and so on; however,
you can modify the properties of the attributes by clicking the appropriate column heading.

vii) Click Check Results to view the return code from the command, the unparsed data, and any
error messages that were returned.

viii) The agent can be stopped by clicking Stop Agent.
ix) Click OK to return to the Command Information window.

If you change the command or the separator, the appropriate command is updated to reflect
those changes.

If this window was opened when you created the script data source, the attributes were added
to the new script data source.

126 IBM Agent Builder: IBM Agent Builder User's Guide

If this window was opened from an existing script data source, then any changes to the
attributes are made to the script data source. Any additional attributes are added, but any extra
attributes are not removed. These options affect only the attributes that are parsed from the
script output. Any derived attributes are not affected. If any of these attributes become invalid
based on the attributes they reference, you can update or remove derived attributes manually.
The derived attribute formula is displayed and not the actual result value.

Note: If the attribute group exists, to start a test, complete the following procedure

a. Select the attribute group on the Agent Editor Data Sources Definition page.
b. Select the script to be tested from the Command List
c. Click Test and follow the procedure at step “9” on page 126

10. If you skipped testing the command in step (“9” on page 126), use the following steps:
a) On the Command List page with the completed command information, click Next.
b) On the Attribute Information page, complete the attribute name and type information by using

(Table 5 on page 40). Select Add additional attributes to add further attributes
c) On the Attribute Information page, use the Script Attribute Information tab to choose a specific

data separator for this attribute.
The standard separator ; is selected by default. You can choose a number of other separators
such as a string, a number of characters, a tab, or a space. You can also choose to use a different
string separator for the beginning and end of the data. Finally, you can also choose Remainder of
record to assign the remainder of the record to the attribute. For more information about script
parsing and separators, see “Script parsing and separators” on page 123.

11. Do one of the following steps:

• If you are using the Agent wizard, click Next.
• Click Finish to save the data source and open the Agent Editor.

12. You can add attributes and supply the information for them. For more information, see “Creating
attributes” on page 37.
In addition to the fields applicable to all data sources (described in “Fields and options for defining
attributes” on page 40), the Data Sources Definition page for the Script data source has the
following options:
Command List

Provides access to the commands and scripts to start during data collection.
Add

Allows the user to add a command to be started by this attribute group.
Edit

Allows the user to edit an existing command entry.
Remove

Allows the user to delete an existing command entry.
Test

Allows the user to access the test environment for this attribute group.
Enable data collection using SSH

Selecting this check box enables SSH for this attribute group. If this check box is not selected, the
attribute group runs locally.

For information about SSH remote connection configuration for script data sources, see “Configuring
a Secure Shell (SSH) remote connection” on page 210.

Chapter 6. Defining and testing data sources 127

Monitoring data from Java Database Connectivity (JDBC)
You can define a data source to receive data from a JDBC database. The agent runs an SQL query to
collect data from the database. Each column that is returned by the query is an attribute in the resulting
data set.

About this task
The JDBC data provider supports the following database servers:

• IBM DB2® 9.x and 8.x
• Microsoft SQL Server 2008, 2005, and 2000
• Oracle database 11g and 10g

Agent Builder does not include the JDBC drivers for these databases. The JDBC drivers are a set of JAR
files that are provided by the vendor that are necessary to establish a JDBC connection to the database.
For convenience, here are links to where those drivers can be downloaded:

• IBM DB2: JDBC drivers are included with the database server installation in a subdirectory named java
located under the main DB2 installation directory.

• Microsoft SQL Server website at www.microsoft.com
• Oracle database: Oracle Database JDBC (http://www.oracle.com/technetwork/database/features/jdbc/

index.html)

Note: An important thing to remember is that the JDBC data provider can remotely monitor your
Database servers. A Java runtime environment and JDBC driver JAR files for the database server you are
connecting to must be on the system where the agent runs.

The following versions of Java are supported:

• Oracle Corporation Java Version 5 or later
• IBM Corporation Java Version 5 or later

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Data from a server

in the Monitoring Data Categories area.
2. In the Data Sources area, click JDBC.
3. Click Next.
4. On the JDBC Information area in the JDBC Information page, click Browse to connect to a database

and build your SQL Query.

Use the JDBC Browser to connect to a database and view its tables so you can build an SQL query
that collects the data you need. When you select a table and columns, a query is generated for you
and attributes are added for each of the columns returned by the query. You can modify and test the
query that is generated to make sure the data that is returned is what you need.

Note: You can also manually create the JDBC data source without clicking Browse. If you want to
manually create the data source, specify the query and click Next. You must define an attribute for
each column returned by the query, in the order that the columns are returned.

With the JDBC data provider, you can run SQL queries and stored procedures against a database to
collect monitoring data. When you specify an SQL query to collect data, you can include a where
clause in your SQL statement to filter the data that is returned. The SQL statement can also join data
from multiple tables. In addition to SQL select statements, the JDBC data provider can run stored
procedures. For information about running stored procedures, see “Stored procedures” on page 133.

5. The first time the Browser opens, the Java Database Connectivity (JDBC) Browser window indicates
that no connections are selected. You must add a connection. Click Add and follow the Steps to add a
connection.

128 IBM Agent Builder: IBM Agent Builder User's Guide

http://www.oracle.com/technetwork/database/features/jdbc/index.html

If you already defined a connection, that connection is used and you can proceed to Step “6” on page
129.

Note: The Status field shows the status of the current connection.

Use the following steps to add a connection:
a) On the JDBC Connections page , click JDBC Connection, and click Next.

b) On the Connection Properties page, complete the fields as follows:
Connection Name

Name of the JDBC connection. Type a unique name for this connection. You use this name to
reference the connection in the browser.

Database Type
Type of database. Select the database product to which you are connecting. For example, to
connect to the IBM DB2 database, select DB2.

User Name
Must be defined with at least read access to the database, but does not have to be the
database administrator

Password
Must be defined with at least read access to the database, but does not have to be the
database administrator

Host name
Host name on which the database server is running. With JDBC, you can monitor remote
databases so you are not restricted to monitoring databases on the local system.

Port
Port on the host name on which the database server is listening.

Database
Name of the database to which to connect.

Jar Directory
Directory containing the JDBC JAR files used to connect to the database. Type the path name,
or click Browse to locate the directory.

c) Optional: Select the Save the password in the Agent Builder workspace check box if you want to
save the password for this connection.

d) Optional: Select the Set as agent configuration defaults check box if you want the defaults for
this application server type to be copied from these properties.
If you are building the agent on a system that is similar to your monitored systems, it is advisable
to check this box. If you do not check this box, the user who configures the agent sees an empty
field. The user must then determine the values for all of the information without default values.

e) Click Test Connection to create a connection to the database that uses the configuration
parameters you specified.
A message on the Connection Properties page indicates whether the connection succeeds.

f) When you have a working connection, click Finish.
6. In the Java Database Connectivity (JDBC) Browser window, a connection is made to the configured

database. The tables that are contained in the database are shown in the Database Tables area.
Select a database table to see the columns that are contained in that table in the Columns in the
selected table area.

Note:

a. Click the binoculars icon to search for a table in the Database Tables list.
b. All tables are shown by default. You can filter the tables that are shown by selecting a different

filter option. The available filter options are shown in Table 11 on page 130.

Chapter 6. Defining and testing data sources 129

Table 11. Filter options

Filter option Description

All Show all tables

User Show only user tables

System Show only system tables

View Show only database views

Note: If you want to retrieve specific columns, select only these columns. If you select the table,
Agent Builder automatically builds a query that gathers all of the columns from the table and creates
attributes for all the columns that are currently in the table.

You can select columns in the following ways:

• Select the table and get the default query for all columns.
• Select columns to get only those columns.

7. Optional: Modify the enumeration values that are set for Error, Missing data, and No value in the
Attribute Information page.
Modify the values to avoid any overlap with legitimate values that might be returned from database
table columns.

8. Optional: Click Test on the Java Database Connectivity (JDBC) Browser window to test and modify
the SQL statement.
The Run the SQL statement window opens.
a) Enter or modify the SQL statement in the SQL statement field.
b) Click Run to run the SQL statement.

The results are displayed in the Results area. Continue to modify and test the statement until you
are satisfied with the data that is returned.

c) Click OK to save the statement, create the correct attributes, and return to the JDBC Information
window.

9. Optional: Click Test on the JDBC Information window to test the attribute group in a more realistic
agent environment. For more information about testing JDBC attribute groups, see “Testing JDBC
attribute groups” on page 134. If you change the JDBC statement during this test, you must also
adjust the attributes so that there is one attribute per column returned by the JDBC statement, in the
correct order.

10. Optional: You can create a filter to limit the data that is returned by this attribute group by clicking
Advanced. For more information about filtering data from an attribute group, see “Filtering attribute
groups” on page 45

11. On the JDBC Information page, Operating Systems section, select the operating systems, and click
Next. See “Specifying operating systems” on page 56 for information about which operating systems
to select.

Note: Click Insert Configuration Property to select a property to insert. For more information, see
(Chapter 10, “Customizing agent configuration,” on page 205).

12. On the Select key attributes page, select key attributes or indicate that this data source produces
only one data row. For more information, see “Selecting key attributes” on page 15.

13. If you want to test a data source that you previously defined, in the Agent Editor window, select the
Data Sources tab and select a JDBC data source. In the JDBC Attribute Group Information area,
click Test. For more information about testing, see “Testing JDBC attribute groups” on page 134.

14. If you want to view the configuration sections that were automatically generated, click the Insert
Configuration Property tab of the Agent Editor.
You can change the labels or default values for these properties to match the defaults that the user
sees when they initially configure the agent.

130 IBM Agent Builder: IBM Agent Builder User's Guide

15. Optional: Complete the Attribute Information page; for details, see “Fields and options for defining
attributes” on page 40. Do this step if you chose to manually create the JDBC data source without
clicking Browse in step “4” on page 128.

The Agent Builder JDBC data source supports collecting data from most SQL types. The information
in Table 12 on page 131 describes the type of attribute that is created by the JDBC Browser when it
detects a column of one of these types. These data types are the supported types for use with a
monitoring agent.

Table 12. Supported SQL data types for use with a monitoring agent

SQL data type IBM Tivoli Monitoring attribute that is created

BIGINT This data type is a 64-bit gauge value in IBM
Tivoli Monitoring. If you select IBM Tivoli
Monitoring V6.2 compatibility, it is a 32-bit
gauge.

DECIMALDOUBLEFLOATNUMERICREAL These SQL Types are created as 64-bit gauge
attributes in IBM Tivoli Monitoring. If the
database metadata contains a scale value, that
value is used; otherwise, the scale is set to 1. If
you select IBM Tivoli Monitoring V6.2
compatibility, the attribute is a 32-bit gauge.

BITINTEGERSMALLINTTINYINT The following SQL types are created as 32-bit
gauge attributes in IBM Tivoli Monitoring.

BOOLEAN This value is a 32-bit gauge in IBM Tivoli
Monitoring with enumerations for TRUE and
FALSE.

TIMESTAMP Data in columns of this type are converted to a
16-byte IBM Tivoli Monitoring time stamp
attribute.

TIMEDATECHARLONGVARCHARVARCHAR These SQL types are all treated as string
attributes by the browser. The column size is
used as the attribute size up to 256, which is the
default string attribute size for the JDBC
browser.

Note: If you collect data from a data type that is not listed, a string attribute is used by default. The
agent also tries to collect the data from the database as a string.

Modify the enumeration values that are set for Error, Missing data, and No value in the Attribute
Information page, if required. Modify the values to avoid any overlap with legitimate values that
might be returned from database table columns.

JDBC configuration
When you define a JDBC data source in your agent, some configuration properties are created for you.

If you define a JDBC data source in your agent, the agent must use Java to connect to the JDBC database
server. Java configuration properties are added to the agent automatically. The following Java
configuration properties are specific to the agent runtime configuration:

• Java Home: A fully qualified path that points to the Java installation directory
• JVM Arguments: Use this parameter to specify an optional list of arguments to the Java virtual machine.
• Trace Level: This parameter defines the amount of information to write to the Java trace log file. The

default is to write only Error data to the log file.

Chapter 6. Defining and testing data sources 131

Note: Agent Builder does not require the Java properties because it uses its own JVM and logging, which
are configured through the JLog plug-in.

If you define a JDBC data source in your agent, the following required, common configuration fields are
added to the agent automatically:

• JDBC database type: Type of database to which you are connecting, IBM DB2, Microsoft SQL Server, or
Oracle Database Server.

• JDBC user name: User name that is used to authenticate with the database server.
• JDBC password: Password that is used to authenticate with the database server.
• Base paths: List of directories that are searched for JAR files that are named in the Class Path field, or

directories that are named in the JAR directories field, that are not fully qualified. Directory names are
separated by a semi-colon (;) on Windows, and by a semi-colon (;) or colon (:) on UNIX systems.

• Class path: Explicitly named JAR files to be searched by the agent. Any files that are not fully qualified
are appended to each of the Base Paths until the JAR file is found.

• JAR directories: List of directories that are searched for JAR files. Directory names are separated by a
semi-colon (;) on Windows, and by a semi-colon (;) or colon (:) on UNIX systems. The JAR files in
these directories do not have to be explicitly identified; they are found because they are in one of these
directories. Subdirectories of these directories are not searched. Any directories that are not fully
qualified are appended to each of the Base Paths until the directory is found.

The runtime configuration also requires that you specify some additional details to connect to the
database. You can choose how to specify the remaining configuration items, either as a JDBC URL or as
basic configuration properties (the default):

• URL configuration option

– JDBC connection URL: Vendor-specific connection URL that provides details on which host the
database is located and the port number to which to connect. The URL format typically looks as
follows:

jdbc:identifier://server:port/database

see the JDBC driver vendor documentation for the different URL formats.
• JDBC Basic Properties option (default)

JDBC server name: Host name that the database server is running on.
JDBC database name: Name of the database on the host where the connection is made.
JDBC port number: Port number on which the database server is listening.

Note: With the JDBC data provider, you can monitor multiple database types in the same agent by using
subnodes. To monitor in this way, you must carefully define the Subnode Configuration Overrides. If you
monitor multiple database types, the following configuration settings are likely to be different:

• JDBC database type
• JDBC user name
• JDBC password

If you are using the basic configuration option, you must also define overrides for the following properties
on the Subnode Configuration Overrides page:

• JDBC server name
• JDBC port number
• JDBC database name

To define the configuration overrides for your subnode, see Chapter 9, “Using subnodes,” on page 187 for
more details about accessing the Subnode Configuration Overrides page. When you configure the agent
at run time, all of these properties must be configured for each new subnode instance that is created.

132 IBM Agent Builder: IBM Agent Builder User's Guide

In addition to configuration overrides, your agent must also point to JDBC drivers for each database type
that you plan to connect to from your subnodes. The JAR directories parameter is the most convenient
way to point to your JDBC drivers. List the directories that contain the JDBC drivers by using a semicolon
to separate each directory. For example, if you are connecting to DB2 and Oracle databases with the
agent, you must specify a JAR directories value similar to this example: C:\Program Files\IBM
\SQLLIB\java;C:\oracle\jdbc.

Stored procedures
Example SQL and DB2 stored procedures that you can use with the JDBC data provider.

The JDBC data provider can process the result sets returned by a stored procedure. String or integer input
parameters can be passed to the stored procedure. The following syntax runs a stored procedure:

call[:index] procedureName [argument] ...

Where:
index

An optional integer that specifies which result set is to be used by the data provider. This parameter is
useful when the stored procedure returns multiple result sets and you want to collect only the values
from one of the result sets. If an index is not specified, data from each result set is collected and
returned.

procedureName
The name of the stored procedure that is to be run by the JDBC data provider.

argument
An input argument to the stored procedure. Multiple arguments must be separated by a space. If the
argument contains a space character, enclose the entire argument in double quotation marks. If the
argument can be parsed as an integer, it is passed to the stored procedure as an integer argument.
Any argument that is enclosed in double quotation marks is passed as a string argument.

SQL Server Samples
call sp_helpdb

Runs the procedure call sp_helpdb which requires no arguments. Data from all returned result sets
are included in the data that is returned by the data provider.

call:2 sp_helpdb master

Runs the procedure sp_helpdb with the master argument. This argument is a string input argument. Only
data from the second result set that is returned by the stored procedure is included in the data that is
returned by the data provider.

When the index is not specified, data from all returned results sets is collected. You must ensure that the
data returned in these cases is compatible with the attributes you define. Agent Builder creates attributes
from the first returned result set, and any further result sets are expected to be compatible with the first
one.

DB2 stored procedure
Here is a sample DB2 function that is written in SQL. This function demonstrates how to return results
that can be processed by the Agent Builder JDBC data provider:

-- Run this script as follows:
-- db2 -td# -vf db2sample.sql

-- Procedure to demonstrate how to return a query from
-- a DB2 stored procedure, which can then be used by
-- an Agent Builder JDBC provider. The stored procedure
-- returns the following columns:
-- Name Description Data Type
-- current_timestamp The current system time timestamp
-- lock_timeout The lock timeout numeric scale 0
-- user The user for the session String 128 characters long

Chapter 6. Defining and testing data sources 133

DROP procedure db2sample#

CREATE PROCEDURE db2sample()
 RESULT SETS 1
 LANGUAGE SQL
BEGIN ATOMIC

 -- Define the SQL for the query
 DECLARE c1 CURSOR WITH HOLD WITH RETURN FOR
 SELECT CURRENT TIMESTAMP as current_timestamp,
CURRENT LOCK TIMEOUT as lock_timeout, CURRENT USER as user
 FROM sysibm.sysdummy1;

 -- Issue the query and return the data
 OPEN c1;
END#

This function can be called from Agent Builder by using the same syntax that is defined for other stored
procedures. In this case, you define call db2sample as your JDBC statement to run this stored
procedure.

Oracle stored procedures

Oracle stored procedures do not return result sets. Instead, you must write a function that returns an
Oracle reference cursor. Here is a sample Oracle function that is written in PL/SQL that demonstrates
how to return results that can be processed by the Agent Builder JDBC data provider:

CREATE OR REPLACE FUNCTION ITMTEST
RETURN SYS_REFCURSOR
IS
 v_rc SYS_REFCURSOR;
BEGIN
 OPEN v_rc FOR SELECT * FROM ALL_CLUSTERS;
 RETURN v_rc;
END;

This function can be called from Agent Builder by using the same syntax that is defined for other stored
procedures. In this case, you define call ITMTEST as your JDBC statement to run this stored procedure.
Because the Oracle function must return a cursor reference, only one result set can be processed by
Oracle functions. This means that the index option is not supported for Oracle because there is no way to
return multiple result sets.

Testing JDBC attribute groups
You can test the JDBC attribute group that you created, within Agent Builder.

Procedure
1. You can start the Testing procedure in the following ways:

• During agent creation click Test on the JDBC Information page.
• After agent creation, select an attribute group on the Agent Editor Data Source Definition page and

click Test. For more information about the Agent Editor, see Chapter 4, “Using the Agent Editor to
modify the agent,” on page 17.

After you click Test in one of the previous two steps, the Test JDBC Statement window is displayed.
2. Optional: Before you start testing, you can set environment variables, configuration properties, and

Java information.
For more information, see “Attribute group testing” on page 229. For more about JDBC configuration
properties, see (“JDBC configuration” on page 131).

3. Click Start Agent.
A window indicates that the Agent is starting.

4. To simulate a request from Tivoli Enterprise Portal or SOAP for agent data, click Collect Data.

134 IBM Agent Builder: IBM Agent Builder User's Guide

The agent queries the database with the specified SQL query. The Test JDBC Statement window
collects and shows any data in the agent's cache since it was last started.

Note: The order of the returned data is significant; for example, the data value in the first returned
column is always assigned to the first attribute. If you change the JDBC statement, you must add,
remove, or reorder the attributes to match the columns returned by the statement.

5. Optional: Click Check Results if the returned data is not as you expected.
The Data Collection Status window opens and shows you more information about the data. The data
that is collected and displayed by the Data collection Status window is described in “Performance
Object Status node” on page 280

6. Stop the agent by clicking Stop Agent.
7. Click OK or Cancel to exit the Test JDBC Statement window. Clicking OK saves any changes that you

made.

Related concepts
“Testing your agent in Agent Builder” on page 229
After you use Agent Builder to create an agent, you can test the agent in Agent Builder.

Monitoring system availability by using Ping
You can define a data source to test a list of network devices by using the Internet Control Message
Protocol (ICMP) echo ping. The host name or IP address of the devices you want to test are listed in one
or more device list files. A separate Ping configuration file specifies the path to each device list file. Then,
the name of the Ping configuration file is set in the agent runtime configuration. The results include the
status of each network device.

Before you begin
Create device list files and a ping configuration file (see “Configuration files” on page 136).

About this task
Part of network management involves the ability to determine whether systems respond to an Internet
Control Message Protocol (ICMP) ping. Use this data source to monitor basic online or offline status for a
set of servers or other critical devices in your environment. Monitoring with ping is simple and low-
overhead. To monitor a list of devices, add the Ping data collector to your agent.

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Network

management data in the Monitoring Data Categories area.
2. In the Data Sources area, click Ping.
3. Click Next.
4. In the Operating Systems area in the Ping Information window, select the operating systems.
5. Optional: You can test this attribute group by clicking Test. For more information about testing, see

“Testing Ping attribute groups” on page 137
6. Optional: You can create a filter to limit the data that is returned by this attribute group by clicking

Advanced. For more information about filtering data from an attribute group, see “Filtering attribute
groups” on page 45

7. Do one of the following steps:
a) If you are using the Agent wizard, click Next.

b) Click Finish to save the data source and open the Agent Editor.
8. For more information about adding attributes, see (“Creating attributes” on page 37).

Chapter 6. Defining and testing data sources 135

Results
For more information about the attribute group for Ping, see “Ping attribute group” on page 309.

Configuration files
You provide the agent with the list of devices to ping by using configuration files.

The agent requires two types of configuration files.
Device list file

Includes a list of devices to ping. If you have many devices, you can divide them across multiple
device list files. The agent starts a separate thread for each device list file and cycles through the files
in parallel. It cycles through each file every 60 seconds or every 30 seconds plus the time it takes to
ping the list, whichever is longer.
The syntax of the device list file is as follows:

LISTNAME=list_name
device_name or host_name
device_name or host_name
device_name or host_name device_name or host_name

Where list_name is a description for the devices in that file. If no list name is defined, the name of the
device list file is used. The list name does not need to be the first entry in the file. However, if the file
has multiple list name definitions, the last definition is used.
There is no limit to the number of devices you can include in a device list file. However, including too
many entries defeats the purpose of having a targeted list of critical devices and increases the overall
workload. It might be more difficult to retrieve the status of each device within the 60-second
monitoring interval.
At the start of each cycle, the agent checks the last modification time of the device list file. If the last
modification time of the file is more recent than the last time the agent read the file, the agent rereads
the file without requiring a restart.

Ping configuration file
Specifies the location of each device list file. Use the fully qualified path or a path relative to the
location of the ping configuration file. The ping configuration file is passed as a runtime configuration
parameter to the agent.

Example
In the following example, devices are divided into two files.
The /data/retailList.txt file contains the following entries:

LISTNAME=Retail
frontend.mycompany.com
productdb.mycompany.com

The /data/manufacturingList.txt file contains the following entries:

LISTNAME=Manufacturing systems
manufloor.mycompany.com
stats.supplier.com

The ping file, /data/pinglists.txt, contains the following entries:

/data/retailList.txt
/data/manufacturingList.txt

Network Management configuration property
After a ping data source is added, the configuration is displayed on the Runtime Configuration
Information page of the Agent Editor.

136 IBM Agent Builder: IBM Agent Builder User's Guide

The Network Management configuration section of the Runtime Configuration Information page
contains the following property:

Table 13. Network Management configuration properties

Name Valid values Required Description

Ping configuration
file

Path to a file No. If this file is not
provided, the KUMSLIST
file is used from the
agent bin directory.

The path to the file that
contains a list of files,
each containing a list of
hosts to monitor by
using ICMP pings.

Testing Ping attribute groups
You can test the Ping attribute group that you created within Agent Builder.

Procedure
1. You can start the Testing procedure in the following ways:

• During agent creation click Test on the Ping Information page.
• After agent creation, select an attribute group on the Agent Editor Data Source Definition page and

click Test. For more information about the Agent Editor, see Chapter 4, “Using the Agent Editor to
modify the agent,” on page 17.

After you click Test in one of the previous two steps, the Test Settings window opens.
2. Optional: Before you start testing, you can set environment variables and configuration properties. For

more information, see “Attribute group testing” on page 229.
3. Click Browse to select a Ping configuration file. For more about Ping configuration files, see

“Configuration files” on page 136
4. Click Start Agent. A window indicates that the Agent is starting.
5. To simulate a request from the monitoring environment for agent data, click Collect Data. The agent

pings the devices that are specified in the device list file, which is referenced from the Ping
configuration file.

6. The Test Settings window collects and shows any data in the agent's cache since it was last started.
7. Optional: Click Check Results if the returned data is not as you expected.

The Data Collection Status window opens and shows you more information about the data. The data
that is collected and shown by the Data collection Status window is described in “Performance Object
Status node” on page 280.

8. Stop the agent by clicking Stop Agent.
9. Click OK or Cancel to exit the Test Settings window. Clicking OK saves any changes that you made.

Related concepts
“Testing your agent in Agent Builder” on page 229
After you use Agent Builder to create an agent, you can test the agent in Agent Builder.

Monitoring HTTP availability and response time
You can configure a data source to monitor the availability and response time of selected URLs. Use a
configuration file to define a list of URLs. Set the name of the file in the agent runtime configuration. In
IBM Tivoli Monitoring, you can also use Take Action commands to add and remove monitored URLs. The
status for each URL is added as a line in the resulting data set.

Chapter 6. Defining and testing data sources 137

About this task
For each URL you monitor, the results provide general information about the HTTP response to the HTTP
request. The results include whether it can be retrieved, how long it takes to retrieve, and the size of the
response. If the response content is HTML, information is also provided about the page objects within the
URL.

You can monitor URLs that use the HTTP, HTTPS, FTP, and file protocols. You specify the URLs to monitor
in the HTTP URLs file, or through Take Action options.

Important: At the time of release, Take Action commands are not available in an IBM Cloud Application
Performance Management environment. They are available only in a Tivoli Monitoring environment.

This data source requires a Java runtime environment. The following versions of Java are supported:

• Oracle Corporation Java Version 5 or later
• IBM Corporation Java Version 5 or later

Use the following procedure to create an attribute group to monitor a list of URLs:

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Data from a server in

the Monitoring Data Categories area.
2. In the Data Sources area, click HTTP.
3. Click Next.
4. On the HTTP Information page , select one or more operating systems in the Operating Systems

area.
5. Optional: Click Test to test this attribute group. For more information about testing, see “Testing HTTP

attribute groups” on page 145
6. Optional: Click Advanced to create a filter to limit the data that is returned by this attribute group. For

more information about filtering data from an attribute group, see “Filtering attribute groups” on page
45

7. Do one of the following steps:
a) If you are using the Agent wizard, click Next.

b) Click Finish to save the data source and open the Agent Editor.

Results
The HTTP data source creates two attribute groups: Managed URLs and URL Objects. You can add, modify,
or delete attributes.
Related tasks
“Creating attributes” on page 37
You can add new attributes to a data set.
Related reference
“HTTP attribute groups” on page 312
The two HTTP attribute groups, Managed URLs and URL Objects, are used to receive information from
URLs and the objects within theses URLs.

HTTP tables
Reference information about the default HTTP attribute groups.

The two attribute groups that are created by the HTTP data source are:
Managed URLs

The Managed URLs table provides availability and response time data about each URL being
monitored.

138 IBM Agent Builder: IBM Agent Builder User's Guide

URL Objects
The URL Objects table contains a separate URL entry for each embedded object. For example,
the .gif and .jpg files that might be used in the website that is listed in the Managed URL report.

For information about the syntax that is used in the Managed URLs and URL Objects tables, see (“Specific
fields for HTTP attributes” on page 139).

When you want to monitor the response time and availability of specific objects within a website, review
the contents of the URL Objects table. The URL Objects table monitors a specific list of objects that are
detected in downloaded HTML files. The following table lists the HTML elements that are searched for
objects to monitor and the attributes within these elements that reference the objects:

Table 14. HTML elements searched for objects to monitor

HTML element Attribute containing object to be monitored

img src

script src

embed src

object codebase or data

body background

input src

In the following example HTML extract, the object that is monitored is the image that is referenced by the
src attribute of the imgelement.

A full URL to the image is calculated based on the URL to the source document.

Note: If you do not want to monitor objects that are found in a web page, in the URL Monitoring
configuration section, set the Page object collection property to No.

Specific fields for HTTP attributes

In the Attribute information page , there are two fields for HTTP attributes that define how data is
collected from the URL. The Attribute Type field can be any value from a list that controls the information
about the URL that is returned. Some attribute types require a value in the Type Value field.

The following table describes all of the attribute types for the Managed URLs attribute group, and the type
value when one is required:

Chapter 6. Defining and testing data sources 139

Table 15. HTTP Attribute Information - Managed URLs

Attribute type Description Type value
Data type that is
returned

Differences with
FTP and file
protocols

XPath Query Runs an XPath
query on the
content that is
returned from a
URL connection.
The query must be
written to return
data useful for an
attribute, not a list
of nodes.

The XPath query to
run against the
content that is
obtained from a
URL connection.

The data that is
returned can be a
string, a numeric,
or a timestamp
value. If the data is
in the XML
DateTime format,
you can specify
timestamp as the
attribute type. The
agent converts the
value to a Candle
Timestamp.

None

Response Time The amount of time
in milliseconds that
it took to download
the content from
the requested URL.

None Integer (number of
milliseconds)

None

Response
Message

The HTTP
response message
that is returned by
the server.

None String The response
message applies
only if the URL
uses the HTTP or
HTTPS protocols.

Response Code The HTTP
response code that
is returned by the
server.

None Integer The response code
applies only if the
URL uses the HTTP
or HTTPS
protocols. It is
always 0 for file or
FTP URLs.

Response
Length

The size of the
content in bytes
that is downloaded
from the requested
URL

None Integer (size in
bytes)

None

Response
Header

The response
header can be used
to retrieve a value
from one of the
URL response
header fields. The
argument specifies
which field is
requested.

The response
header to collect.

String Generally FTP and
file protocols do
not have any
headers that can
be collected.

140 IBM Agent Builder: IBM Agent Builder User's Guide

Table 15. HTTP Attribute Information - Managed URLs (continued)

Attribute type Description Type value
Data type that is
returned

Differences with
FTP and file
protocols

Request URL The connection is
made to this URL.
All of the response
keywords provide
information about
the connection to
this URL. The
XPath Query can
be used to obtain
information that is
obtained from the
content that is
returned by
accessing this URL.

None String None

Page Objects The number of
objects that are
discovered on the
monitored HTML
page that are
monitored by the
URL Objects
attribute group.

None Integer None

Total Object
Size

The total size of
the objects that is
monitored in the
URL Objects
attribute group for
this web page.

None Integer (in bytes) None

Alias The user specified
alias for this URL.

None String None

User The user specified
data for this URL.

None String None

The following table describes the attribute types for the URL Objects attribute group:

Table 16. HTTP Attribute Information - URL Objects

Attribute type Description Type value
Data type that is
returned

Differences with
FTP and file
protocols

URL The URL that is
monitored in the
Managed URLs
table.

None String None

Object Name The URL for the
object that is
monitored within
the HTML page.

None String None

Chapter 6. Defining and testing data sources 141

Table 16. HTTP Attribute Information - URL Objects (continued)

Attribute type Description Type value
Data type that is
returned

Differences with
FTP and file
protocols

Object Size The size in bytes of
the content that is
downloaded from
the Object Name
URL.

None Numeric None

Object
Response Time

The time in
milliseconds it took
to download the
page object.

None Numeric None

Monitoring a URL
You can start monitoring any URL by including it in the URLs file or by using the HTTP URL Add Take Action
option.

URLs file

The URLs file specified in configuration can be in any directory. If this file does not exist or is empty, then
you can start URL monitoring by using Take Actions. For more information, see “Take Action option” on
page 142. If you already have a Tivoli Universal Agent that uses the Tivoli Universal Agent HTTP Data
Provider, you can reuse the KUMPURLS file. When you are configuring the agent, point to your KUMPURLS
file.

The following table provides examples of how URLs are entered in the URLs file, depending on the method
by which they were added.

Table 17. URLs file entries

URLs Added by

www.bbc.co.uk
http://weather.com
www.ibm.com

Manually adding entries to the file. If no protocol is
specified, as in the www.ibm.com example, http is
assumed.

ftp://userid:password@ftpserver/
index.html

Manually added by using File Transfer Protocol
(FTP)

http://www.ibm.com USER=ibm ALIAS=ibm Using the HTTP URL Add Take Action

file:/tmp/samples.html USER=samples \
ALIAS=samples

Using a HTTP URL Add Take Action that uses FTP

http://google.com INTERVAL=60 CACHE=50 \
USER=google ALIAS=search

Example from the Tivoli Universal Agent
KUMPURLS file

When you directly edit the URLs file, your changes are implemented when the agent does its next data
collection.

Take Action option
You can also specify URLs to monitor through a Take Action option that is called HTTP URL Add.

142 IBM Agent Builder: IBM Agent Builder User's Guide

Restriction: This option is not available in the current release of IBM Cloud Application Performance
Management, because you can not start Take Action commands manually.

When this option is selected, a window is displayed where you can specify the following parameters:
URL

A required parameter that represents the URL itself. You can type this parameter with or without the
http://or https://prefix.

Alias
An optional parameter that you can specify to associate a more meaningful name to a URL. No spaces
are allowed in this parameter. If this parameter is not completed, the Alias Name defaults to blank.

User_Data
An optional parameter that you can specify to enter data about the URL. If this parameter is not
completed, the User_Datadefaults to INITCNFG.

After you complete the information and close the window, assign the HTTP URL Add action to the
destination managed system that is associated with the agent. Monitoring begins immediately for the new
URL. The URL is also added to the URLs file so that it continues to be monitored across agent restarts.

A corresponding Take Action option is named HTTP URL Remove. Use the HTTP URL Remove action to
immediately stop monitoring for a particular URL. The removed URL is also deleted from the URLs file. The
HTTP URL Remove window requests only the URL and User_Data values. The URL and User_Data
values must match the values that are seen in the Tivoli Enterprise Portal or the Remove action fails. For
example, if you omitted the http:// from the URL field of the Add action, you must include it in the URL
field of the Remove action. If you did not specify User_Data, you must specify INITCNFG as seen in the
Tivoli Enterprise Portal.

If a URL is added manually to the URLs file, you can delete it with the Take Action. If you delete with the
Take Action, you must specify the values as seen in the Tivoli Enterprise Portal. For example, if you added
www.ibm.com to your URLs file, the Tivoli Enterprise Portal displays http://www.ibm.com as the URL
and INITCNFG as the User_Data. To remove the URL with the Take Action, you must use the values that
are seen in the Tivoli Enterprise Portal.

After you complete the information and close the window, assign the HTTP URL Remove action to the
destination managed system that is associated with the agent.

Monitor https:// URLs
The HTTP data source can monitor only secure https:// URLs that do not require scripted access or
interactive prompting.

If the https:// URL can be retrieved with a standard HTTP Get call, then it can be monitored.

Proxy server
If the system where the agent is running requires a proxy to access the SOAP data provider, you must
specify proxy server configuration properties.

For more information, see “Proxy Server configuration” on page 144.

HTTP configuration
Reference information about HTTP configuration.

After an HTTP data source is added, the configuration is displayed on the Runtime Configuration page of
the Agent Editor. Configuration sections are added for URL Monitoring, for Proxy Server authentication,
and for Java.

URL Monitoring configuration
The URL Monitoring configuration section contains the following properties:

Chapter 6. Defining and testing data sources 143

Table 18. URL Monitoring configuration properties

Name Valid values Required Description

HTTP URLs file Path to a file Yes The path to the file that
contains a list of URLs.

Page Object Collection Yes, No

The default value is Yes.

No Whether to download
objects that are found in
a web page and collect
data from them.

Proxy Server configuration
The Proxy Server configuration section contains the following properties:

Table 19. Proxy Server configuration properties

Name Valid values Required Description

Proxy Hostname String No The proxy host name to
be used for HTTP
connections.

Proxy User Name String No The user name for the
proxy server.

Proxy Port Positive integer

The default value is 80.

No The HTTP port number
of the proxy server.

Proxy Password Password No The password for the
proxy server.

Note: If the Proxy Hostname property is blank, no proxy is used.

Java configuration
If you define an HTTP data source in your agent, the agent must use Java to connect to the HTTP server.
Java configuration properties are added to the agent automatically. The following Java configuration
properties are specific to the agent runtime configuration. The Agent Builder does not require the Java
properties because it uses its own JVM and logging, which are configured through the JLog plug-in):

Table 20. Java configuration properties

Name Valid values Required Description

Java Home Fully qualified path to a
directory

No A fully qualified path
that points to the Java
installation directory.

Trace Level Choice

(The default value is
Error)

Yes Use this property to
specify the trace level
that is used by the Java
providers.

JVM Arguments String No Use this property to
specify an optional list of
arguments to the Java
virtual machine.

144 IBM Agent Builder: IBM Agent Builder User's Guide

Testing HTTP attribute groups
You can test the HTTP attribute group that you created, within Agent Builder.

Procedure
1. Start the Testing procedure in the following ways:

• During agent creation click Test on the HTTP Information page.
• After agent creation, select an attribute group on the Agent Editor Data Source Definition page and

click Test. For more information about the Agent Editor, see Chapter 4, “Using the Agent Editor to
modify the agent,” on page 17

After you click Test in one of the previous two steps, the HTTP Test window is displayed.
2. Click Browse to select the HTTP URLs file. For more information about URLs files, see “URLs file” on

page 142.
3. Optional: Set environment variables, configuration properties, and Java information before you start

testing.
For more information, see “Attribute group testing” on page 229. For more information about HTTP
configuration, see “HTTP configuration” on page 143.

4. Click Start Agent.
A window indicates that the Agent is starting.

5. To simulate a request from Tivoli Enterprise Portal or SOAP for agent data, click Collect Data.
The agent monitors the URLs defined in the HTTP URLs file. The HTTP Test window displays any data
that is returned.

6. Optional: Click Check Results if the returned data is not as you expected.
The Data Collection Status window opens and shows you more information about the data. The data
that is collected and displayed by the Data collection Status window is described in “Performance
Object Status node” on page 280

7. Stop the agent by clicking Stop Agent.
8. Click OK or Cancel to exit the HTTP Test window. Clicking OK saves any changes that you made.

Related concepts
“Testing your agent in Agent Builder” on page 229
After you use Agent Builder to create an agent, you can test the agent in Agent Builder.

Monitoring data from a SOAP or other HTTP data source
You can define a data source to receive data from an HTTP server (for example, using the SOAP protocol).
The data source sends an HTTP request to an URL and parses the response (in XML, HTML, or JSON
formats) into the attributes of the resulting data set. You can select the data that is retrieved from the
request.

About this task
By using the SOAP data source, you can specify an HTTP URL and send a GET, POST, or PUT request. For
POST or PUT requests, you can specify the associated POST data. An XML, HTML, or JSON response is
retrieved and parsed, and the data is exposed to the monitoring environment in attributes. You can define
the attributes as all of the values within a particular element. Or you can define custom XPath values to
specify how to populate individual attributes. You can also combine the two mechanisms.

Use the following procedure to collect and parse XML, HTML, or JSON responses from a URL:

Chapter 6. Defining and testing data sources 145

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Data from a server

in the Monitoring Data Categories area.

2. In the Data Sources area, click SOAP.
3. Click Next.
4. On the SOAP Information page, enter a URL.

The default value is:

http://${KQZ_HTTP_SERVER_NAME}:${KQZ_HTTP_PORT_NUMBER}

Note: You can use a configuration variable or multiple configuration variables that resolve to a URL.
Click Insert Configuration Property to select a property to insert. For more information, see Chapter
10, “Customizing agent configuration,” on page 205.

5. Select a request type. The default request type is Get. For Post and Put requests, enter the data to be
processed.

Note: For Post and Put requests, the Insert Configuration Property is enabled. Click Insert
Configuration Property to include a configuration variable in the data to be processed. For more
information, see (Chapter 10, “Customizing agent configuration,” on page 205).

6. Click Browse

Note: If after you enter a URL and select a request type, you do not want to use the SOAP browser to
build the definition, enter a Row Selection XPath. You enter the Row Selection XPath in the SOAP
Information window. Next, define all of the attributes for the attribute group.

7. In the SOAP Browser window, do the following steps:
a) Enter a URL and select a request type if you did not already do so.
b) Click Configuration to set any configuration properties that are referenced in the URL or other

fields.
c) Click Connect to obtain data from the SOAP provider.

When you connect to the URL, a list of XML elements for this URL is shown in a Document Object
Model (DOM) tree. An HTML or JSON response is converted to XML and displayed as a DOM tree.
For details about conversion of a JSON response to XML, see “XML representation of JSON data”
on page 149. In the WebSphere Application Server example in (Figure 14 on page 147), the
following URL was entered:

http://nc053011.tivlab.raleigh.ibm.com:9080/wasPerfTool/servlet
/perfservlet?module= \threadPoolModule

The PerformanceMonitor XML element is shown. This element is the top-level XML element in
the XML document that is returned by the SOAP provider.

146 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 14. SOAP Browser window
d) In the DOM tree, find and select the XML node that you want to set as the Row Selection XPath.

In the WebSphere Application Server example in (Figure 15 on page 148), the
PerformanceMonitor/Node/Server/Stat/Stat/Stat node is selected. This node
represents a row of data in the attribute group. When you select a node in the DOM tree and click
Add, you get all of the attributes and elements defined on that node of the tree. (You click Add in
the Agent Attributes area).

When a node is selected, the XML Attributes area shows any XML attributes defined for the
selected node. Select an XML attribute and click Add to include this attribute in the list of Agent
Attributes.

Note: If more than one row of data is expected, the XPath must map to a node set. Where the Row
Selection XPath returns a node that is set with only one item, the attribute group contains only one
row.

Chapter 6. Defining and testing data sources 147

Figure 15. SOAP Browser window
e) Click Add in the Agent Attributes area.

The list of agent attributes is shown and the Row Selection XPath field is filled.

The XPath for each agent attribute is used to map XML nodes or elements to agent attributes. In
the WebSphere Application Server example in theFigure 16 on page 149, the first attribute in the
list of agent attributes, Stat, is not of use and would be removed.

You can edit the name and XPath for an agent attribute in the Type Value field. For more
information about using XPaths, see “XPath options” on page 151

148 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 16. SOAP Browser window
f) In the SOAP Browser window, click OK to save your changes and return to the SOAP Information

window.
8. In the SOAP Information window, click Next.
9. If you did not use Browse earlier and you entered the URL and Row Selection XPath in the SOAP

Information window, the Attribute Information page is shown. Specify the information for the first
attribute on the Attribute Information page, and click Finish. You can then specify more attributes
by using the Agent Editor. For more information about creating attributes, see (“Creating attributes”
on page 37).

10. If you used the Browse function in step “6” on page 146, the Select key attributes page is shown.
On the Select key attributes page, select key attributes or indicate that this data source produces
only one data row. For more information, see “Selecting key attributes” on page 15.

11. Optional: You can test this attribute group by clicking Test. For more information about testing, see
“Testing SOAP attribute groups” on page 153

12. Optional: You can create a filter to limit the data that is returned by this attribute group by clicking
Advanced. For more information about filtering data from an attribute group, see “Filtering attribute
groups” on page 45

13. Do one of the following steps:
a) If you are using the Agent wizard, click Next.
b) Click Finish to save the data source and open the Agent Editor.

XML representation of JSON data
If the HTTP request returns JSON data, the data provider converts the data to XML.

The data provider converts the name of a JSON attribute to the element name. For a JSON attribute of a
simple type, it converts the value to text data within the element. Embedded JSON objects are converted
to embedded XML elements. Any subordinate attributes are converted to subordinate elements.

The root XML element is JSON_document.

Chapter 6. Defining and testing data sources 149

If a JSON attribute name contains characters that are invalid in an element name, the data provider
modifies it to produce a valid element name. The data provider also adds a JSON_name attribute to the
element. The value of the attribute is the original JSON attribute name.

For every element of a JSON array, the data provider creates a JSON_xxx_array_element XML
element, where xxx is the name of the array. The value of the array element is converted into text within
the XML element. A JSON_index attribute is added to each XML element; the value of the attribute is the
index of the array element within the array.

The data provider adds the following attributes to every element:

• JSON_level: the level of the node within the JSON file. The root of the tree, represented by the
JSON_document tag, is level 1.

• JSON_type: the type of the JSON node (object, array, string, or number).

Specific fields for SOAP attributes
In the Attribute Information window, there are two fields for SOAP attributes that define how data is
collected from the SOAP response.

The Attribute Type field can be any value from a list that controls the information about the response that
is returned. Some attribute types require a value in the Type Value field. The default attribute type is
XPath Query, which runs an XPath query against the SOAP server response content. The type value is the
XPath query that is run. The following table describes all of the attribute types and the type value when
one is required:

Table 21. SOAP Attribute Information

Attribute type Description Type value
Returned data
type

Differences with
FTP and file
protocols

XPath Query Runs an XPath
query on the
content that is
returned from a
URL connection.
The query must be
written to return
data useful for an
attribute, not a list
of nodes.

The XPath query to
run against the
content that is
obtained from a
URL connection. If
a row selection
query was defined,
this XPath query
must be relative to
the row selection
query.

The data that is
returned can be a
string, a numeric,
or a timestamp
value. The Agent
Builder browser for
SOAP generally
detects the correct
data type for the
attribute from the
data that is being
browsed. If the
data is in XML
DateTime format,
you can specify
timestamp as the
attribute type and
the agent converts
the value to a
Candle Timestamp.

None

Response Time The amount of time
in milliseconds that
it took to download
the content from
the requested URL.

None Integer (number of
milliseconds)

None

150 IBM Agent Builder: IBM Agent Builder User's Guide

Table 21. SOAP Attribute Information (continued)

Attribute type Description Type value
Returned data
type

Differences with
FTP and file
protocols

Response
Message

The HTTP
response message
that is returned by
the server.

None String The response
message applies
only if the URL
uses the HTTP or
HTTPS protocols.

Response Code The HTTP
response code that
is returned by the
server.

None Integer The response code
applies only if the
URL uses the HTTP
or HTTPS
protocols. It is
always 0 for file or
FTP URLs.

Response
Length

The size of the
content in bytes
that was
downloaded from
the requested URL

None Integer (size in
bytes)

None

Response
Header

The response
header can be used
to retrieve a value
from one of the
URL response
header fields. The
argument specifies
which field is
requested.

The response
header field to
collect.

String Generally FTP and
file protocols do
not have any
headers that can
be collected.

Request URL The connection
was made to this
URL. All of the
response keywords
provide
information about
the connection to
this URL. The
XPath Query can
be used to obtain
information that is
obtained from the
content that is
returned by
accessing this URL.

None String None

XPath options
Using XML Path Language, you can select nodes from an XML document. A few of the possible uses of
XPaths for the SOAP data sources include:

Chapter 6. Defining and testing data sources 151

• Using predicates in the XPath to identify the XML elements that correspond to rows of data in the IBM
Tivoli Monitoring attribute group. You can use predicates in the XPath that maps XML elements or
attributes to Tivoli Monitoring attributes, as in the following example:

Stat[@name="URLs"]/CountStatistic[@name="URIRequestCount"]/@count

Where there are multiple location steps in the XPath, each location step can contain one or more
predicates. The predicates can be complex and contain boolean values or formula operators. For
example:

//PerformanceMonitor/Node/Server[@name="server1"]/Stat/Stat/Stat[@name=
"Servlets"]/Stat

• Including node set functions in the XPath, if a row contains multiple XML elements of the same type.
And if the position of an XML element in the node list determines the Tivoli Monitoring attribute the
element maps to. Examples of node set functions are, position(), first(), last(), and count().

• Doing simple data transformation, such as substring. If you specify the following substring:

substring(myXMLElement,1,3)

the XPath returns the first three characters of the XML element, myXMLElement.

You can specify elements outside the context of the Row Selection XPath by using two periods, (.., as in
the following example:

/../OrganizationDescription/OrganizationIdentifier

SOAP configuration
After a SOAP data source is added, the configuration is displayed on the Runtime Configuration page of
the Agent Editor.

Configuration sections are added for HTTP Server, for Proxy Server, and for Java. For information about
Proxy server configuration, see (“Proxy Server configuration” on page 144). For information about Java
configuration, see “Java configuration” on page 144.

HTTP Server
The HTTP Server configuration section contains the following properties:

Table 22. HTTP Server configuration properties

Name Valid values Required Description

HTTP user name String No The HTTP user

HTTP password Password No The HTTP server
password

HTTP server name String

(The default value is
localhost)

No The host or IP address
of the HTTP server

HTTP port number Numeric

(The default value is 80)

No The host or IP address
of the HTTP server

Certificate validation
enabled

True, False

(The default value is
True)

Yes Disabling certificate
validation is potentially
insecure

HTTP trust store file Path to a file No The HTTP trust store file

152 IBM Agent Builder: IBM Agent Builder User's Guide

Table 22. HTTP Server configuration properties (continued)

Name Valid values Required Description

HTTP trust store
password

The HTTP trust store
password

No The HTTP trust store
password

Proxy server
If the system where the agent is running requires a proxy to access the SOAP data provider, you must
specify proxy server configuration properties. For more information, see “Proxy Server configuration” on
page 144.

Testing SOAP attribute groups
You can test the SOAP attribute group that you created, within Agent Builder

Procedure
1. You can start the Testing procedure in the following ways:

• During agent creation click Test on the SOAP Information page.
• After agent creation, select an attribute group on the Agent Editor Data Source Definition page and

click Test. For more information about the Agent Editor, see Chapter 4, “Using the Agent Editor to
modify the agent,” on page 17

After you click Test in one of the previous two steps, the Test SOAP Collection window is displayed.
2. Optional: Before you start testing, you can set environment variables, configuration properties, and

Java information.
For more information, see “Attribute group testing” on page 229. For more information about SOAP
configuration, see “SOAP configuration” on page 152.

3. Change the URL, Row Selection XPath, and request type.
4. Click Start Agent.

A window indicates that the Agent is starting.
5. To simulate a request from Tivoli Enterprise Portal or SOAP for agent data, click Collect Data. This

action populates the Results table and you can preview how the data is parsed and shown in columns
in the Tivoli Enterprise Portal.

In the Results area, you can change the attribute definitions and reload the data to see how your
changes affect the attribute group. You can right-click in a column results area to display options to
edit the attribute. The attribute edit options are:

• Edit Attribute
• Hide Attribute
• Insert Attribute Before
• Insert Attribute After
• Remove
• Remove Subsequent Attributes
• Remove All

6. Optional: Click Check Results if the returned data is not as you expected.
The Data Collection Status window opens and shows you more information about the data. The data
that is collected and shown by the Data Collection Status window is described in “Performance
Object Status node” on page 280.

7. Stop the agent by clicking Stop Agent.

Chapter 6. Defining and testing data sources 153

8. Click OK or Cancel to exit the Test SOAP Collection window. Clicking OK saves any changes that you
made.

Related concepts
“Testing your agent in Agent Builder” on page 229
After you use Agent Builder to create an agent, you can test the agent in Agent Builder.

Monitoring data by using a socket
You can define a data source to collect data from an external application by using a TCP socket. The
application must initiate the TCP connection to the agent and send data in a structured XML format.
Depending on the application, the data source can produce a data set with a single row, multiple rows, or
event data.

About this task
Use the socket data source to provide data to the agent from an external application, running on the same
system as the agent. The external application can send data to the agent anytime it wants to. For
example, you can develop a command-line interface that allows a user to post data to an attribute group
when it is run. Another option is to modify a monitored application to send updates to the agent. The
agent does not start or stop the application that is sending data to the socket; this action is controlled by
the user.

There are some limitations with the socket data source:

• By default only connections to the local host (127.0.0.1) are possible. For more information about
configuring your agent to accept connections from a remote host, see “Remote socket port connection”
on page 162.

• There is no mechanism in the socket API for the client to determine what subnodes are available. The
client can send data for a specific subnode, but it must already know the subnode name.

Use the following procedure to create an attribute group to collect data by using a Transmission Control
Protocol socket (TCP) socket.

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Custom programs in

the Monitoring Data Categories area.
2. In the Data Sources area, click Socket.
3. Click Next.
4. On the Socket Information page, enter an Attribute group name.
5. Enter a help text for the attribute group.
6. Select whether the attribute group Produces a single data row, Can produce more than one data

row, or Produces events. For more information, see “Sending data” on page 156.
7. In the Socket Information section, select a Code page. For more information, see “Character sets” on

page 159.
8. Optional: Click Advanced to modify the advanced properties for the attribute group. The Advanced

option is active when you select that the attribute group Can produce more than one data row, or
Produces events.

9. Click Next.
10. On the Attribute Information page, specify the first attribute for the attribute group. For more

information about creating attributes, see “Creating attributes” on page 37.
11. Click Next.
12. Optional: On the Global Socket Data Source Information page, Error Codes section, you can define

the error codes that the socket client can send when it cannot collect data. For more information, see
(“Sending errors instead of data” on page 157). To define an error code, use the following steps:

154 IBM Agent Builder: IBM Agent Builder User's Guide

a) In the Error Codes section, click Add. An error code has a limit of 256 characters. Only ASCII
letters, digits, and underscores are allowed. No spaces are allowed.

b) In the Socket Error Code Definition window, enter a display value that is shown in the
Performance Object Status attribute group.

c) Enter an internal value. The internal value must be an integer from 1,000 to 2,147,483,647.
d) You must define a message text for each error. You can use message text that was entered

previously by selecting it from the list. Click OK to return to the Global Socket Data Source
Information page. The message text is used in the agent log file.
If no suitable message text is available, click Browse to set up the message text. The Messages
(list) window opens. The message window lists messages that are defined in the agent. Until you
define messages, the list remains blank. You can use Edit to alter a defined message and Remove
to delete one or more messages that you defined.

e) In the Messages (list) window, click Add to see a Message Definition window. In the Message
Definition window type, the text that describes the meaning of the new message and select the
message type.

Note: The message identifier is automatically generated for you.
f) Click OK.
g) The Messages (list) window opens, with the new message. To verify the message and return to the

Global Socket Data Source Information page, click OK.
13. Optional: In the Supplemental Files section of the Global Socket Data Source Information page,

you can add files that are packaged with the agent. These files are copied to the agent system when
the agent is installed.
The File Type column describes how each file is expected to be used. Three possible uses are
described in the following table:

Table 23. File types for supplemental files

File Type Description

Executable Select this option if you want to include an
executable file with the agent. The agent does
not use these files.

Library Select this option if you to include a library with
the agent. The agent does not use these files.

Java resource Select this option to include Java resources with
the agent. The agent does not use these files.

For information about where the Supplemental Files are installed with your agent, see (“New files on
your system” on page 246).

Click Edit to edit the imported file. For more information, see (“Editing a command file definition” on
page 122).

14. Optional: You can test this attribute group by clicking Test. For more information about testing, see
“Testing socket attribute groups” on page 163

15. Optional: If the data source is sampled, you can create a filter to limit the data that is returned by this
attribute group by clicking Advanced. The data source is sampled when you did not select "Produces
events" on the Socket Information page. For more information about filtering data from an attribute
group, see “Filtering attribute groups” on page 45

16. Do one of the following steps:

a) If you are using the Agent wizard, click Next.
b) Click Finish to save the data source and open the Agent Editor.

Chapter 6. Defining and testing data sources 155

Select the operating systems on which the agent listens to data from socket clients in the
Operating Systems section of the Socket Provider Settings page. To open the page, click Socket
Provider Settings in the outline view or click Global Settings in the Agent Editor on any socket
attribute group page.

Note: Error codes and supplemental files can be updated in the Error Codes and Supplemental
Files sections of the Socket Provider Settings page.

Sending socket information to the agent
When your agent contains one or more socket attribute groups, the agent opens a socket and listens for
data from clients.

The application that sends socket data to the agent connects to a port that is defined in the agent. The
port is either the value that is set by an agent configuration property or an ephemeral port that is allocated
automatically by TCP/IP. For more information about socket ports and configuration, see “Socket
configuration” on page 161.

The data that is received must follow a structured XML format. The following XML information flows are
possible by using the socket data source:

• Send one or more rows of data to the agent for a sampled attribute group
• Send a row of data to the agent for an attribute group that Produces events
• Send an error code to the agent instead of data.
• Send a task prefix registration to the agent
• Receive a task request from the agent
• Send a task response to the agent

Sending data
An attribute group is defined to receive sampled data or event data. When you create the attribute group,
you specify an option that indicates whether the data to be received:

• Produces a single data row
• Produce more than one data row
• Produces events

If you select Produces a single data row or Can produce more than one data row, that is a sampled
attribute group. If you select Produces events, then your attribute group sends an event to the monitoring
environment each time that a row is received.

When you view sampled data in the Tivoli Enterprise Portal or IBM Cloud Application Performance
Management console, you see the latest set of collected rows. The data that is displayed for an event
attribute group is the contents of a local cache that is maintained by the agent. For event data, the agent
adds the new entry to the cache until the size is reached when the oldest one is deleted. For sampled
data, the agent replaces the contents of the cache every time you send data.

If you select Produces events or Produces a single data row, you must send only one row of data to the
agent for that attribute group in each message. You can send as many events as you want, send each
event in a separate message.

Normally sampled data is collected by the agent on request, but the socket client provides updated
samples on its own schedule. You can update a sampled attribute group (single row or multiple row) as
often as you require. When the data is requested by Tivoli Monitoring or IBM Cloud Application
Performance Management, the agent provides the latest data.

If there are missing rows of data for the socket attribute group in the Tivoli Enterprise Portal or IBM Cloud
Application Performance Management console, check the errors in the log file. Also, if the data in the
attribute group is not as expected, check the errors in the log file. The socket data source attempts to

156 IBM Agent Builder: IBM Agent Builder User's Guide

process whatever it can from the input. For example, if the client sends three well-formed rows and one
that is not valid (for example, malformed XML), you see:

• Three rows of data in the attribute group
• An error is logged for the malformed row in the agent's log file
• Since valid rows were returned, the Performance Object Status shows a status of NO_ERROR

For both event and sampled data, the data is sent to the agent as a single XML data flow from the socket
client. Data that is sent from a socket client must always be terminated with a newline character: '\n'.
The agent reads data until it sees the newline character and then an attempt is made to process what was
received. Any data received that cannot be processed is discarded. The following is a sample of how you
would send two rows of data to the agent for an attribute group named abc:

<socketData><attrGroup name="abc"><in></in><in> \
</in></attrGroup></socketData>\n

This sample sends two rows of data to the agent where each row contains three attributes. The order of
the attributes is important and must follow the order that is defined in your attribute group. The only
exception to this is that the derived attributes must be skipped, regardless of where they are in your
attribute group.

If the attribute group is defined in a subnode, then the subnode instance ID must be identified when data
is sent to the agent. The subnode instance ID is identified by using the subnode attribute in the
socketData element. A convention must be adopted for configuring subnode instance IDs for use by the
socket client since the client cannot query instance IDs or configuration properties. Data sent to a
subnode which is not configured is ignored.

Here is a sample:

<socketData subnode="app1"><attrGroup name="abc"><in>
</in><in> \</in></attrGroup></socketData>\n

In this sample, the data is sent to the subnode with an instance ID equal to "app1". "app1" is not the
managed system name, but the instance identifier that is specified when the subnode instance is
configured.

The following XML elements make up the socket data:
socketData

The root element. It has one optional attribute that is called subnode that specifies the subnode
instance ID.

attrGroup
This element identifies the attribute group that the socket data is for. The name attribute is required
and is used to specify the attribute group name.

in
This element is required to identify a new row of data. All of the attribute values for a row of data must
be children of the same in element.

a
The a element identifies an attribute value. The v attribute is required and is used to specify the
attribute value.

Sending errors instead of data
Sometimes the application that posts socket data might not be able to collect the data necessary for an
attribute group. In this case, instead of sending data to the agent, an error code can be returned. The error
code gives you a way to tell the monitoring environment about your problem. An example error is:

<socketData><attrGroup name="abc"/><error rc="1000"/></attrGroup></socketData>\n

The error code must be defined in the agent in a list that is common to all of the socket attribute groups.
When the agent receives an error code, the defined error message is logged in the agent log file. In

Chapter 6. Defining and testing data sources 157

addition, the attribute group named Performance Object Status has an Error Code attribute is updated
with the Error Code Type. The Error Code Type is defined for the error code you send.

For the previous example, you must define the Error Code Value of 1000 in the agent. See the following
sample error code definition:

Table 24. Sample error code

Error Code Value Error Code Type Message

1000 APP_NOT_RUNNING The application is not running

When the error code is sent, a message similar to the following is logged in the agent log file:

(4D7FA153.0000-5:customproviderserver.cpp,1799,"processRC") Received error code 1000
 from client. \Message: K1C0001E The application is not running

If you select Performance Object Status query from the Tivoli Enterprise Portal, the Error Code column for
the row abc attribute group shows the value APP_NOT_RUNNING in that table.

Sending an error to a sampled attribute group clears any data that was previously received for that
attribute group. Sending data to the attribute group causes the error code to no longer be displayed in the
Performance Object Status attribute group. You can also send an error code of 0 to clear the error code
from that table.

Sending an error to an attribute group that produces events does not clear the cache of events that were
previously sent.

Handling take action requests
The socket client can register to receive take action requests from the agent when the action
command matches a certain prefix. Any action that does not match is handled by the agent. The prefix
must not conflict with actions that the agent is expected to handle, so use the agent product code as the
prefix. Take actions provided with the Agent Builder are named after the data source that the take
action uses. For example, the JMX_INVOKE take action operates on the JMX data source. Another
example is the SSHEXEC take action which uses the SSH script data provider. Since these actions do
not use the product code, the product code is a safe prefix to use as the take action prefix.

The socket client must be long running and leave the socket open. It must send a registration request for
the prefix and listen for requests from the socket. The agent ensures that a timeout does not occur on the
socket of a long-running client, even if no data is flowing. The following is a sample registration request:

<taskPrefix value="K42"/>\n

In this sample, any take action command that is received by the agent that begins with "K42" is
forwarded to the socket client that initiated the registration. The following shows a sample take action
request that the socket client might receive:

<taskRequest id="1"><task command="K42 refresh" user="sysadmin"/></taskRequest>\n

The id is a unique identifier that the agent uses to track requests that are sent to clients. When the socket
client responds to the task, it must provide this identifier in the id attribute of the taskResponse
element.

The socket client must process the action and send a response. A sample response is:

 <taskResponse id="1" rc="1"/>\n

If the action completes successfully, an rc attribute value of 0 is returned. The value of rc must be an
integer, where any value other than 0 is considered a failure. The task return code value is logged to the
agent log file and shown in the Take Action Status query that is included with the agent. The dialog that is
displayed on the Tivoli Enterprise Portal after an action is run does not show the return code. That dialog

158 IBM Agent Builder: IBM Agent Builder User's Guide

indicates whether the take action command returned success or failure. The agent log or Take Action
Status query must be viewed to determine the actual return code if a failure occurred.

It is the agent developer's responsibility to document, create, and import any actions that are supported
by the socket clients that are used with an agent. If users send unsupported actions to the socket client,
the client must be developed to handle those scenarios in an appropriate manner. If users define more
actions that start with the registered prefix, they are passed to the client. The client must be developed to
handle those scenarios in an appropriate manner.

There is a timeout that controls how long the agent waits for a response from the socket client. The
setting is an environment variable that is defined in the agent that called CDP_DP_ACTION_TIMEOUT and
the default value is 20 seconds.

Note: The error code messages that are defined for socket data source attribute groups are not used for
take actions. You can return the same return code values. However, the agent does not log the
message that is defined or affect the Error Code field in the Performance Object Status attribute group.

Encoding of socket data
The socket client encodes data that is sent to the agent.

It is important to be aware of how your socket client is encoding data that is being sent to the agent.

Special characters
Data sent to the agent must not contain any newline characters except at the end of each event or data
sample. Newline characters that occur inside of attribute values must be replaced with a different
character or encoded as shown in (Table 25 on page 159). You must also be careful not to break the XML
syntax with your attribute values. The following table shows the characters that occur in the attribute
values that you encode:

Table 25. Characters to encode in attribute values

Character Header

& &

< <

> >

“ "

' '

\n

Note: The agent uses the newline character to separate responses received from a client. Unexpected
newline characters prevent data from being parsed correctly.

The agent does not contain a full-featured XML parser so you must not use special encoding for
characters not in (Table 25 on page 159). For example, do not encode ¢ or ¢ in place of a cent
sign ¢.

Character sets
In addition to encoding special characters, the agent must know what code page was used to encode your
data. Define each socket attribute group to indicate whether you are sending the data to the agent as
UTF-8 data or as Local code page. Be aware of how your client is sending data. If you use a client that is
written in Java, specify UTF-8 as the encoding on the writer you use to send data to the agent. Specify
UTF-8 as the Code Page for your attribute group. Local code page means the local code page of the
agent. If the data is sent over a remote socket, it must conform to the local code page of the agent or use
UTF-8.

Chapter 6. Defining and testing data sources 159

Numeric Data
Be aware of how you are formatting your numeric attribute values. The numeric values that you send to
the agent must not contain any special characters. One example is the thousands separator character.
Other examples are currency symbols or characters that describe the units of the value. If the agent
encounters a problem when it is parsing numeric data, it logs an error that indicates the issue. The
Performance Object Status Error Code is not set when an attribute fails to parse. The following is an
example error message from the agent log:

(4D3F1FD6.0021-9:utilities.cpp,205,"parseNumericString") Invalid characters :00:04 \
found getting numeric value from 00:00:04, returning 0.000000

Note: For information about how a time stamp attribute must be formatted, see (“Time stamp” on page
42).

Socket errors
Errors are written to the agent log file for problems that occur with data received from a socket client.

Other errors that are logged are take actions that return a value other than 0. Error values that are
sent by the socket client are logged along with the message associated with the error code.

The Performance Object Status for the attribute group is set when the socket client sends an error return
code to the agent. Some other values can be seen in addition to the ones defined by the agent. The
following table describes other “Error Code” values you are likely to encounter with socket attribute
groups:

Table 26. Performance Object Status values

Error Code Description

NO_ERROR No error occurred. Indicates that there are no
problems with the attribute group. Problems with a
row of sampled data do not cause the state to
change from NO_ERROR. You must validate the
number of rows that are shown and the attribute
values even when you see NO_ERROR as the error
code.

NO_INSTANCES_RETURNED A socket client sent no rows of data for a sampled
attribute group. Not an error. It indicates that there
are no instances of the resources that are being
monitored by this attribute group.

XML_PARSE_ERROR The agent failed to parse data that is received from
the client. See the agent log for more details.

OBJECT_CURRENTLY_UNAVAILABLE The client sent the agent an error code that was
not defined in the global list of error codes.

GENERAL_ERROR A problem occurred collecting data from the client,
usually because the client did not reply to the
request within the timeout interval. See the agent
trace log for more details.

The client can also specify GENERAL_ERROR as an
error code, but it is better if a more detailed error
code is defined.

160 IBM Agent Builder: IBM Agent Builder User's Guide

Socket configuration
After you add a socket data source to your agent, you can configure the agent to accept data from a
specified socket port.

About this task
After you add a Socket data source, the configuration is displayed on the Runtime Configuration page of
the Agent Editor. The Socket configuration section contains the following property:

Table 27. Socket configuration property

Name Valid values Required Description

Port number 0 or any positive integer

The default value is 0

Yes The port that the agent
uses to listen on for data
from socket clients. A
value of 0 indicates that
an ephemeral port is to
be used.

The agent writes the value of the port that is being used to a file. Socket clients that run on the agent
computer can later read this file to determine which port to connect to. The file that the port is written to
is named kxx_instanceName_cps.properties, where: kxx is the three character product code of the
agent and instanceName is the agent instance name for a multiple instance agent. If the agent is not a
multiple instance agent, this part of the name is not included so the file name is kxx_cp.properties.

In Windows, the file is written to the %CANDLE_HOME%\TMAITM6 directory for 32-bit installations or
%CANDLE_HOME%\TMAITM6_x64 for 64-bit installations. In UNIX, the file is written to /tmp.

Procedure
1. Optional: Set the environment variable CDP_DP_HOSTNAME to the host name or IP address of your

network interface, if your system has multiple interfaces:
a) Go to the Agent Editor Agent Information view and select Environment Variables.
b) Click Add and select CDP_DP_HOSTNAME from the list of environment variables by using the Name

field.
c) Set the host name or IP address in the Value field.

2. Start your agent.

When the agent is started, it binds to the interface that is defined by the CDP_DP_HOSTNAME
environment variable. If CDP_DP_HOSTNAME is not set, the agent binds to the default host name.

If you want the agent to bind to a defined port instead of an ephemeral port, you can set the
configuration property Port Number (CP_PORT).

To set the port number configuration property, use the following steps:

a) Go to the Agent Editor Runtime Configuration view.
b) In the Runtime Configuration Information pane select Configuration for Socket > Socket > Port

Number
c) Enter a port number value in Default value.

If you do not enter a value, a value of 0 is used. A value of 0 indicates that an ephemeral port is
used.

Chapter 6. Defining and testing data sources 161

Remote socket port connection
You can configure your agent to accept data from a remote socket port. The agent must run on a system
that has a network interface connection to a remote system.

Procedure
1. Set the value of the environment variable CDP_DP_ALLOW_REMOTE to YES by completing the following

steps.
a) Go to the Agent Editor Agent Information page and select Environment Variables.
b) Click Add and select CDP_DP_ALLOW_REMOTE from the list of environment variables by using the

Name field.
c) Set the Value field to YES.

2. Follow the procedure that is detailed in “Socket configuration” on page 161.

Restriction:

• The data that is sent between the socket application and the agent:

– Must conform to the XML syntax defined for a socket data provider. For more information, see
“ Encoding of socket data” on page 159.

– Must be encoded in UTF-8.
– Is sent in clear text (unencrypted). If the data contains sensitive information, the communication

must be secured through an SSH tunnel or other mechanism outside the agent.
• The agent processes data that is received from any remote hosts, so the environment must be

secured with appropriate firewall or network traffic filters.

Results
You can run code that implements a socket data provider on any system which can connect to the system
where the agent is running.

Sample script for socket
This samples script demonstrates how a socket client might be written.

Perl sample
The following sample Perl script connects to a socket and sends data. This sample was written for an
agent that runs on UNIX, with the product code k00 and an attribute group called SocketData.

#!/usr/bin/perl -w
SocketTest.pl
A simple Agent Builder Socket client using IO:Socket
#------------------------

use strict;
use IO::Socket;

Initialize socket connection to the agent
#-----------------------
my $host = '127.0.0.1';
my $port = 0;
This sample is for an agent with the k00 product code. The product code is
used in the following line to find the file containing the port number to use.
open PORTFILE, "/tmp/k00_cps.properties" || die "Port file not found $!\n";
while (<PORTFILE>) {
 if (/^CP_PORT=([0-9]+)/) {
 $port = $1;
 }
}

if ($port == 0) {
 die "Could not find port to use to connect to agent.\n";

162 IBM Agent Builder: IBM Agent Builder User's Guide

}

my $sock = new IO::Socket::INET(PeerAddr => $host, PeerPort => $port,
Proto => 'tcp'); $sock or die "no socket :$!";

The following call sends 2 rows of data to the agent. Each row contains 1
String attribute and 3 numeric attributes.
syswrite $sock, "<socketData><attrGroup name=\"SocketData\"><in><a v=\"A message
from perl\"/> \</in><in><a v=\"More from
perl\"/> \</in></attrGroup>
</socketData>\n";

close $sock;

Testing socket attribute groups
You can test the socket attribute group that you created, within Agent Builder.

Before you begin
To test the attribute group, you need a socket client to send data. An example socket client that is written
with perl script can be seen at “Sample script for socket” on page 162

Restriction: Unlike most other attribute groups, you cannot test the socket attribute group while it is
being created. You can test the attribute group when you complete its creation.

Procedure
1. Select an attribute group on the Agent Editor Data Source Definition page after agent creation and

click Test. For more information about the Agent Editor, see Chapter 4, “Using the Agent Editor to
modify the agent,” on page 17.

After you click Test in one of the previous two steps, the Test Socket Client window is displayed.
2. Optional: Set environment variables and configuration properties before you start testing.

For more information, see “Attribute group testing” on page 229.
3. Click Start Agent. A window indicates that the Agent is starting.
4. When the agent starts, it listens for socket data according to its configuration.
5. To test your agent 's data collection, you now generate socket data that matches the agents

configuration.
You can generate socket data by using a socket client.
When the agent receives socket data that matches its configuration, it adds the data to its internal
cache.

6. To simulate a request from Tivoli Enterprise Portal for agent data, click Collect Data.
The Test Socket Client window collects and displays any data in the agent's cache since it was last
started.

7. Click Check Results if something does not seem to be working as expected.
The Data Collection Status window opens and shows you more information about the data. The data
that is collected and displayed by the Data collection Status window is described in “Performance
Object Status node” on page 280

8. Stop the agent by clicking Stop Agent.
9. Click OK or Cancel to exit the Test Socket Client window. Clicking OK saves any changes that you

made.

Related concepts
“Testing your agent in Agent Builder” on page 229

Chapter 6. Defining and testing data sources 163

After you use Agent Builder to create an agent, you can test the agent in Agent Builder.

Use the Java API to monitor data
You can define a data source to use the Java API to interact with a long-running application on the Java
platform. The agent starts the application at startup and interacts with it periodically. When you build the
agent, Agent Builder creates the source code for the application. You must customize the code to gather
the correct data. Depending on the code, the data source can produce multiple data set that can contain a
single row, multiple rows, or event data.

About this task
Use the Java API data source and the Java programming language to collect data that cannot be collected
by using other Agent Builder data sources. The agent starts the Java application and sends a shutdown
request when it is time to shutdown. The Java application must exit only when it is requested to do so.

An agent that contains Java API attribute groups interfaces with the Java application process. The Java
application uses the Java Provider Client API to interface with the agent. For information about the API,
see the Javadoc on the Tivoli Monitoring Knowledge Center. Using the Java API you can:

• Connect to the agent process and register for attribute groups that are supported by the Java
application

• Receive and reply to a request for sampled data
• Send data asynchronously for an attribute group that produces events
• Send an error for an attribute group where data collection is failing
• Support attribute groups in subnodes with configured subnode instances
• Receive and reply to a "Take Action" request

Use the following procedure to create an attribute group which collects data in a Java application and
sends it using the Java API. The procedure shows how to create a sample Java application to use as a
starting point for your Java application.

Procedure
1. On the Agent Initial Data Source page or the Data Source Location page, click Custom programs in

the Monitoring Data Categories area.
2. In the Data Sources area, click Java API.
3. Click Next.
4. On the Java API Information page, enter an Attribute group name.
5. Enter a help text for the attribute group.
6. Select whether the attribute group Produces a single data row, Can produce more than one data

row, or Produces events. This choice affects the sample Java application that is created at the end of
the wizard. For more information, see “Sending data” on page 156.

7. Optional: Click Advanced to modify the advanced properties for the attribute group. Advanced is
available when you select that the attribute group Can produce more than one data row, or
Produces events.

8. Click Next.
9. On the Attribute Information page, specify the first attribute for the attribute group. For more

information about creating attributes, see (“Creating attributes” on page 37).
10. Select Add additional attributes and click Next to add other attributes to the agent. References to

the attributes are incorporated into the sample Java application that is created at the end of the
wizard.

11. Click Next.
12. On the Global Java API Data Source Information page, enter a Class name and a JAR file name.

164 IBM Agent Builder: IBM Agent Builder User's Guide

https://ibm.biz/Bds3QY

The class name is a fully qualified class name whose main method is called when Java is started. The
sample Java application is created with the main Java method in this class.

The JAR file is the archive that contains the Java classes that comprise the Java application. The JAR
file is packaged and installed with the agent.

13. Optional: Define the error codes that the Java application can send, on the Global Java API Data
Source Information page, Error Codes section. These error codes are sent by the Java application
when it cannot collect data.

Restriction: An error code has a limit of 256 characters. Only ASCII letters, digits, and underscores
are allowed. No spaces are allowed.

a) Click Add in the Error Codes section.
b) In the Java API Error Code Definition window, enter a display value.
c) Enter an internal value. The internal value must be an integer from 1,000 to 2,147,483,647.
d) Define a message text for each error. You can use message text that was entered previously by

selecting it from the list. Click OK to return to the Global Java API Data Source Information
page.
The message is logged in the agent log file.

e) If no suitable message text is available, click Browse to set up the message text.
The Messages (list) window is displayed. The message window lists messages that are defined in
the agent. Until you define messages, the list remains blank. You can use Edit to alter a defined
message and Remove to delete one or more messages that you defined.

f) In the Messages (list) window, click Add to see a Message Definition window. In the Message
Definition window, you can type the text that describes the meaning of the new message and
select the message type.

Note: The message identifier is automatically generated for you.
g) Click OK.
h) The Messages (list) window is displayed with the new message. To verify the message and return

to the Global Java API Data Source Information page, click OK.
14. Optional: In the Supplemental Files section of the Global Java API Data Source Information page,

you can add files that are packaged with the agent and copied to the agent system on agent
installation. The Java provider client API JAR file is not listed here; it is automatically copied to the
agent system. The File Type column describes how each file is expected to be used. Three possible
uses are described in the following table (Table 28 on page 165). Click Edit to edit the imported file.
For more information, see (“Editing a command file definition” on page 122).

Table 28. File types for supplemental files

File type Description

Executable Select this option if you want to include an
executable file with the agent. The agent does
not use this file, but it is in the path for the Java
application to use.

Library Select this option if you to include a library with
the agent. The agent does not use this file, but it
is in the library path for the Java application to
use.

Java resource Select this option to include Java resources with
the agent. The agent does not use this file, but it
is in the class path for the Java application to
use.

Chapter 6. Defining and testing data sources 165

Note: When a Java resource supplemental file is added to the Agent Builder, the file is automatically
added to the project class path. The Java compiler uses the supplemental file to resolve any
references that your code has, to classes in the resource.

For information about where the Supplemental Files are installed with your agent, see (“New files on
your system” on page 246).

15. Optional: Create a filter to limit the data that is returned by this attribute group, if the data is sampled.
Create a filter by clicking Advanced.

Note: The data is sampled if you did not select Produces events on the Java API Information page.

For more information about filtering data from an attribute group, see “Filtering attribute groups” on
page 45.

16. Optional: Add configuration properties to the subnode.
If you are adding this data source to a subnode, the Subnode Configuration Overrides page is shown
so you can add configuration properties to the subnode. At least one configuration property is needed
under the subnode for the sample Java application to be created. At least one configuration property
is needed because the sample uses a configuration property to distinguish one subnode instance
from another.

17. Do one of the following steps:
a) If you are using the Agent wizard, click Next. Complete the wizard as required.
b) Otherwise, click Finish to save the data source and open the Agent Editor. Then, in the main

menu, select File > Save.
At this point, Agent Builder creates the source code for the monitoring application. The code is
located in the src subdirectory of the project directory. Edit this code to create your monitoring
application.

What to do next
Select the correct operating systems on the Java API Settings page. Make this selection if this attribute
group and the Java application, run on operating systems different from the operating systems that are
defined for the agent. To open the page, click Java API Settings in the outline view or click Global
Settings in the Agent Editor on any Java API attribute group page.

Note: Error codes and supplemental files can be updated later in the Error Codes and Supplemental
Files sections of the Java API Settings page.

Running the Java application
Information about the initialization of the Java application and its dependencies

Initializing the Java application
The agent starts the Java application while the agent is starting and initializing. Configuration settings are
used to control which Java run time is used to start the process. Java virtual machine arguments and the
Java logging level can also be specified in the configuration. For more information about Java API
configuration, see “Java API configuration” on page 175. The Java process inherits the environment
variables that are defined for the agent. Runtime configuration settings are also placed in the environment
and can be queried by using API calls.

The Java application must be a long-running process. It must not terminate unless it receives a shutdown
request from the API. If the Java application does terminate after it is registered with the agent, the agent
will attempt to restart the Java application up to three times. If data collection is successfully resumed,
this restart count is reset. The agent logs an error when a Java application terminates and when a restart
is initiated.

Note: If the Java application terminates before attribute group registration is completed, no restart is
attempted.

166 IBM Agent Builder: IBM Agent Builder User's Guide

Dependencies
A Java application must use a Java runtime environment. The following versions of Java are supported:

• Oracle Corporation Java Version 5 or later
• IBM Corporation Java Version 5 or later

Java must already be installed on the agent system when the agent is configured and started. The JAR file
that contains the API used to communicate with the agent is included with the agent runtime and
included in the classpath of the JVM. Any additional JAR files that are needed by your Java application
must be defined as Supplemental Files to the Java API attribute groups. Any supplemental files that have
a File Type of Java resource are automatically added to the base classpath of the Java application,
along with the Java API JAR file.

Any JAR files that are necessary for the runtime operation of the Java application that are not included
with the agent, must be included in the Classpath for external jars configuration setting.

Generated sample Java application
A reference that describes the code the Agent Builder generates and the code you must add or replace for
the resources you want to monitor.

When you create an agent with one or more Java API data sources, the Agent Builder generates Java
application source code. The code is generated in the agent project and follows the structure of your
agent. You must add your own Java code to the generated application. Your code collects data for
sampled attribute groups, handles events to be posted to event-based attribute groups, reports errors if
problems are encountered, and runs tasks. The generated application supplies the agent with data, but it
is sample data, to be replaced with data obtained from the resources you want to monitor.

A sample agent is assumed that has the following characteristics:

• Product code: K91
• Java API Main class: agent.client.MainClass
• Agent data source structure as shown in (Figure 17 on page 167):

Figure 17. Sample agent structure
• Some subnode configuration property: K91_INSTANCE_KEY

Chapter 6. Defining and testing data sources 167

Class structure
The generated Java application separates, to a great degree, code that interfaces with the agent from
code that interfaces with the resources you are monitoring. It contains files that you modify, and files that
you do not modify.

The following Java classes are created by the Agent Builder:
MainClass (agent.client package)

The class that you specified on the Global Java API Data Source Information page. This class
contains a main method and a method that handles take action requests. This class inherits from the
helper class described next. You must modify this class to interface with resources you want to
monitor and the actions you want to take.

MainClassBase (agent.client package)
A helper class which initializes the connection to the server, registers attribute groups, and waits for
requests from the server. Do not modify this class.

Sampled_Data, Sampled_Subnode, Event_Data, and Event_Subnode classes
(agent.client.attributeGroups package)

There is one class for each Java API attribute group which handles data collection requests for the
attribute group or generates events for the attribute group. These classes each inherit from one of the
helper classes described next. You must modify these classes to gather data from the resources you
want to monitor.

Sampled_DataBase, Sampled_SubnodeBase, Event_DataBase, and Event_SubnodeBase classes
(agent.client.attributeGroups package)

Helper classes, one for each Java API attribute group, which define the structure of the attributes of
the group in an internal class. Do not modify these classes.

ICustomAttributeGroup interface (agent.client.attributeGroups package)
An interface that defines public methods in each attribute group class. Do not modify this interface.

The classes which you can modify are never overwritten by the Agent Builder. The Agent Builder creates
them only if they do not exist.

The helper classes and the interface are overwritten each time the Agent Builder is saved. As you modify
and save the agent, the helper classes are updated to reflect any structural changes to the Java API
attribute groups. The interface and helper classes contain a warning in the header that reminds you not to
modify the file.

Initialization and cleanup
The main method in MainClass is called when the agent is started. It creates a MainClass instance and
then enters the long-running method to receive and handle agent requests.

Most of the initialization and cleanup code must be added to MainClass. In the constructor, add
initialization that is needed to create or access your resources. You might want to open connections to
remote resources, create handles, or initialize data structures.

Before the agent terminates, the stopDataCollection method is called. If you want to close
connections or cleanup before the Java application ends, add that code to the stopDataCollection
method.

If initialization is needed only for a particular attribute group, that initialization can be added to the
constructor of the attribute group class. Similarly, if any cleanup is needed only for a particular attribute
group, that cleanup code can be added to the stopDataCollection method of the attribute group.

Any code in the Java application can use the logger object to write log entries. (The main helper class
creates a protected logger object in its constructor. The attribute group helper objects create a protected
reference to that logger in their constructors). The logger object uses the Java trace log utility. Errors and
detailed trace information can be obtained from the trace log that is created by the logger. The trace
information is important for troubleshooting problems with the provider.

168 IBM Agent Builder: IBM Agent Builder User's Guide

When stopDataCollection is called, if you pass the cleanup work to another thread, wait for that
thread to finish before you return from the stopDataCollection method. Otherwise, the cleanup work
can be abruptly terminated when the process ends because the main thread completed.

One of the agent configuration settings is for the Java trace level. The following table shows the values
that you can set in the JAVA_TRACE_LEVEL configuration property. If the API created the logger for you,
the table shows the Level that is used by the logger.

Table 29. Java trace level options

Configured trace level Java logging trace level Description

Off OFF No logging is done.

Error SEVERE Trace problems that occurred in
the Java application.

Warning WARNING Trace errors and potential errors.

Information INFORMATION Trace important information
about the Java application.

Minimum Debug FINE Trace high-level details
necessary to analyze the
behavior of the Java application.

Medium Debug FINER Trace details about the program
flow of the Java application.

Maximum Debug FINEST Trace all details about the Java
application.

All ALL Trace all messages.

The name of the log file that is created by the Java application in this example is k91_trace0.log. If the
agent is a multiple instance agent, the instance name is included in the log file name.

Note: Do not write messages to standard error or to standard out. On Windows systems, these messages
are lost. On UNIX and Linux systems, this data is written to a file that does not wrap.

Collecting sampled attribute group data
The class for a sampled attribute group (one that collects one or more data rows) contains a
collectData method, for example, Sampled_Data.collectData. This method is called whenever
data is requested by the agent.

The helper class of the attribute group defines an inner class that is called Attributes. This class has one
field for each attribute that is defined in your attribute group. Derived attributes are not included since
they are calculated by the agent. The data types of attribute fields are Java equivalents to the Tivoli
Monitoring attribute types, as shown in (Table 30 on page 169).

Table 30. The data types of attribute fields and their IBM Tivoli Monitoring attribute type equivalents

Tivoli Monitoring type Data type of attribute field

String String

Numeric, 32 bit, no decimal adjustment int

Numeric, 64 bit, no decimal adjustment long

Numeric, non-zero decimal adjustment double

Time stamp Calendar

The collectData method must:

Chapter 6. Defining and testing data sources 169

1. Collect the appropriate data from the resource that is being monitored.
2. Create an Attributes object.
3. Add the data to the fields of the Attributes object.
4. Call the Attributes.setAttributeValues method to copy the data to an internal buffer.
5. Repeat steps 1 - 4 as necessary for each data row. (You can skip steps 1 - 4 altogether and return no

rows. In this case, the Error Code column of the Performance Object Status table has a value of
NO_INSTANCES_RETURNED. For more information about error codes, see (“Error codes” on page
172).

6. Call AgentConnection.sendDatato send the data to the agent, or call sendError to discard data
that is copied from calls to setAttributeValuesand send an error code instead.

You must collect the data from your resource (Step 1), replacing the sample data that is used in the
generated application.

To populate the Attributes object, you can pass the data in using the Attributes constructor (as is done in
the generated application). Alternatively use the zero-argument constructor to create an Attributes object
and then assign the fields of the attributes object to the attribute values you collected. Fields have the
same name as the attributes, though they start with a lowercase letter.

Collecting sampled data for a subnode
If a sampled attribute group is in a subnode, there are presumably multiple resources that you are
monitoring (a different one for each subnode). You must determine which resource to collect data from.
There must be one or more configuration properties that identify which resource is being monitored.

For this example, it is assumed that one configuration property, K91_INSTANCE_KEY, contains a value
that identifies the resource from which data must be collected.

Use the following steps to find the correct resource:

1. Get the instance ID of all configured subnodes by calling
AgentConnection.getConfiguredSubnodeInstanceIDs. Each subnode that is configured has a
unique instance ID.

2. For each instance ID, get the K91_INSTANCE_KEY configuration property by calling
AgentConnection.getSubnodeConfigurationProperty.

3. Find the resource that is represented by the value in K91_INSTANCE_KEY.

These steps might be done in the collectData method before the series of steps that are detailed in
(“Collecting sampled attribute group data” on page 169).

Alternatively, you might want to do these steps in the attribute group class constructor and establish a
direct mapping from instance ID to resource. An example attribute group class constructor is the
Sampled_Subnode constructor. This procedure also gives you the opportunity to create handles or open
connections that might be used through the life of the agent. Creating handles or open connections can
make access to your resources more efficient.

The generated code creates sample resource objects of type MonitoredEntity in the constructor, and
adds them to a configurationLookup map. You must remove the MonitoredEntity inner class, and
replace the MonitoredEntity objects with objects that access your own resources. If you choose to do
the entire lookup procedure in the collectData method, you can remove the configurationLookup
map from the class.

If you choose to use the constructor, to map the subnode instance ID to your resource, the steps in the
collectData method are:

1. Retrieve the instance ID of the subnode from the request parameter, by calling
Request.getSubnodeInstanceID.

2. Retrieve the resource object from the map that is created in the constructor.
3. Perform the series of steps that are detailed in “Collecting sampled attribute group data” on page 169

to send data to the agent.

170 IBM Agent Builder: IBM Agent Builder User's Guide

An arbitrary subnode property is chosen in the Agent Builder example, in this case K91_INSTANCE_KEY.
If not the correct property, or more than one property is needed to identify the correct resource, you must
choose the properties to identify the resource.

Sending events
For attribute groups that generate events, there is no periodic call to a collectDatamethod. Events are
sent by your application as your resource posts them.

As an example of producing events, the generated code for an event-based attribute group creates and
starts a thread which runs from an internal class named SampleEventClass. The event-based attribute
group that is used in the example is the Event_Dataclass. The thread periodically wakes up and sends
an event. If you want to periodically poll your resource for events, you can use the structure of the
Event_Data class as it was generated:

1. From the Event_Data constructor, create and start a thread.
2. In the run method of the thread, loop until the agent terminates.
3. Sleep for a time before you check for events. You might want to change the polling interval of 5000

milliseconds to a number that makes sense for your agent.
4. Determine whether one or more events occurred. The generated application does not check, but

always posts a single event.
5. For each event that must be posted, get the event data to be posted.
6. Create and populate the Attributes object (like the collectData method did for a sampled attribute

group).
7. Call the Attributes.sendEventData method. Events consist of a single row, so only a single event

can be sent at a time.

Alternatively, if you are working with a Java API that reports events from its own thread, you can initialize
that thread in the Event_Data constructor. You can also register your own event-handling object with the
event-handling mechanism of your resource. In your event handler, use the following steps:

1. Get the event data to be posted.
2. Create and populate the Attributes object.
3. Call the Attributes.sendEventData method.

In this case, you do not have to create your own thread in the Event_Data class nor would you need the
SampleEventClass class.

Sending events in a subnode
When an event is detected for a subnode attribute group, the Java application must post the event to the
correct subnode.

For this example, it is assumed that one configuration property, K91_INSTANCE_KEY, contains a value
that identifies an instance of a resource which can produce events. It is also assumed that the value of the
K91_INSTANCE_KEY property is retrieved along with data to be posted in the event. To do retrieve the
property and data, the Java application does the following steps:

1. Gets the event data to be posted, along with the “instance key”.
2. Creates and populates the Attributes object.
3. Gets a list of all configured subnode instance IDs by calling
AgentConnection.getConfiguredSubnodeInstanceIDs.

4. For each subnode instance, fetches the value of K91_INSTANCE_KEY by calling
AgentConnection.getSubnodeConfigurationProperty.

5. When the value of K91_INSTANCE_KEY is found which matches the value that is obtained with the
event data, remembers the corresponding subnode instance ID.

6. Calls Attributes.sendSubnodeEventData, passing the remembered subnode instance ID.

Chapter 6. Defining and testing data sources 171

The generated application does not do the lookup described in steps 4 and 5, but instead posts an event
to the attribute group of every subnode. This behavior is probably not the correct one for a production
agent.

Take action commands
Take action commands are defined either in the Tivoli Enterprise Portal or by using the tacmd
createaction command. The actions can be imported into the agent's Agent Builder project so that
they are created when the agent is installed. For more information about importing take action
commands, see (Chapter 17, “Importing application support files,” on page 257).

The generated Java application registers for any actions that begin with the product code of the agent, for
example, K91Refresh. This registration is done in the main helper class (MainClassBase) from the
registerActionPrefix method. If you want to register other prefixes, or not register for actions at all,
override the registerActionPrefix in (MainClassBase).

When the agent wants to run an action which starts with a prefix that your agent registered, the
MainClass.takeAction method is called. You add code to call Request.getAction(), do the
appropriate action, and then call AgentConnection.sendActionReturnCode to send the return code
from your action. A return code of 0 means the action is successful, any other return code means the
action failed.

Handling exceptions
The collectData and takeAction methods can throw any Java exception, so you can allow your
collection code to throw exceptions without catching them. The handleException method (for
collectData) or handleActionExceptionmethod (for takeAction) is called when the helper class
gets the exception.

For collectData exceptions, you must call AgentConnection.sendError when an exception occurs
or when there is a problem in data collection. The generated application passes an error code of
GENERAL_ERROR. However, you must replace this error code with one defined by your agent that best
describes the problem that was encountered. For more information about adding error codes, see Step
(“13” on page 165).

For takeAction exceptions, you must call AgentConnection.sendActionReturnCode with a non-
zero return code.

Some of the AgentConnection methods throw exceptions that are derived from
com.ibm.tivoli.monitoring.agentFactory.customProvider.CpciException. The
handleException method is not called if a CpciException is thrown during the collecting of data as
the helper class handles the exception.

Note: If you choose to catch your exceptions inside the collectData method rather than using the
handleException method, ensure any CpciException is rethrown. You ensure CpciException is
rethrown so it can be handled by the base class.

Error codes
A typical response to an exception or other resource error is to send an error code to the agent by calling
the AgentConnection.sendError method. An error for an event-based attribute group can be sent at
any time. An error for a sampled attribute group can be sent only in response to a collect data request,
and in place of a sendData call.

If you send an error to the agent, the following happens:

1. An error message is logged in the agent trace log. This error message includes the error code and the
message that is defined for that error code.

2. There is a Performance Object Status query that can be viewed to obtain status information about your
attribute groups. The Error Code column is set to the Error Code type defined for the error you sent.
The error status clears after data is successfully received by the agent for the attribute group. If you

172 IBM Agent Builder: IBM Agent Builder User's Guide

reply to a collect data request with a sendData call but you included no data rows, you get
NO_INSTANCES_RETURNED in the Error Code column.

The following table describes some error codes that are internal to the agent that you can expect to see in
certain situations:

Table 31. Internal error codes for the agent

Error Code Description

NO_ERROR There are no problems with the attribute group
currently.

NO_INSTANCES_RETURNED The Java application responded to a data
collection request but provided no data. Not
providing data is not an error. It generally indicates
that there are no instances of the resource that are
being monitored by the attribute group.

OBJECT_NOT_FOUND The agent tried to collect data for an attribute
group that is not registered through the client API.
This error can mean that the application failed to
start or did not initiate the attribute group
registration when the agent tried to collect data.

OBJECT_CURRENTLY_UNAVAILABLE The application sent the agent an error code that is
not defined in the global list of error codes.

GENERAL_ERROR A problem occurred collecting data from the
application, usually because the application did not
reply to the request within the timeout interval.
See the agent trace log for more details.

The application can also specify GENERAL_ERROR
as an error code, but it is better if a more detailed
error code is defined.

Changes to the agent
Certain changes to the agent require you to make corresponding changes to the Java application. If the
structural changes are complex, you can delete any or all of the Java source files before you save the
agent. You can also delete the files if you want to start over without the customizations you made,

The following table describes required modifications to the Java application source files after certain
changes are made in the Agent Builder when the agent is saved.

Table 32. Changes to an agent that require modifications to the Java source

Agent change What Agent Builder does
Manual changes that are
needed in the Java source

Change of the main class
package name

• Generates all classes in the
new package structure.

• Removes all helper classes
from the old package.

• Port main and attribute group
class content from the classes
in the old package to the
classes in the new package.

• Remove the classes from the
old package after migration is
complete.

Chapter 6. Defining and testing data sources 173

Table 32. Changes to an agent that require modifications to the Java source (continued)

Agent change What Agent Builder does
Manual changes that are
needed in the Java source

Change of the main class name • Creates new main classes.
• Removes old main helper class.

• Port main class content to the
new class.

• Update references to the class
name from the attribute group
classes.

Addition of a Java API attribute
group

• Creates classes for the new
attribute group.

• Adds registration for the new
attribute group in the main
helper class.

Overwrite sample code with
custom logic in the attribute
group class.

Removal of a Java API attribute
group

Removes registration from the
main helper class.

• Remove the attribute group
class or port customized logic
to some other class.

• Remove the attribute group
helper class.

Renaming of a Java API attribute
group

• Creates classes for the new
name of the attribute group.

• Updates registration for the
renamed attribute group in the
main helper class.

• Port customized logic in the
attribute group class with the
old name to the attribute group
class with the new name.

• Remove the attribute group
class with the old name.

• Remove the attribute group
helper class with the old name.

Addition of an attribute to a Java
API attribute group

Updates the Attributes inner
class in the attribute group
helper class.

Collect data for the new attribute
in the attribute group class.

Removal of an attribute from a
Java API attribute group

Updates the Attributes class in
the attribute group helper class.

Remove data collection for the
former attribute in the attribute
group class.

Renaming of an attribute in a
Java API attribute group

Updates the attribute name in
the Attributes class in the
attribute group helper class.

Update any references to the
attribute name in the Attributes
class (often there are no
references because the
Attributes constructor, with
positional arguments, is used).

Reordering of attributes in a Java
API attribute group

Updates the attribute order in the
Attributes class in the attribute
group helper class.

Update the argument order in any
calls to the Attributes
constructor.

Some of the changes that are mentioned in the previous table can be streamlined if you use the Eclipse
Refactor - Rename action. Use this action on all the affected names (including helper class names) before
you save the changed agent.

174 IBM Agent Builder: IBM Agent Builder User's Guide

Use of the Java API
The Java API is used throughout the generated Java application to communicate with the agent. Often
your only direct interaction with the Java API is to modify a parameter of an existing method call. For
example, changing a posted error code from GENERAL_ERROR to an error code defined in your agent.

If you want to do more extensive coding with the Java API, you can view Javadoc from the Eclipse text
editor. You can view Javadoc while you edit the Java code by doing the following steps:

1. Highlight a package, class, or method name from the API.
2. Press F1 to open the Eclipse Help view.
3. Select the Javadoc link.

You can also see a brief description from the Javadoc by hovering over a class or method name. Javadoc
for the API can also be found on the Tivoli Monitoring Knowledge Center, see Javadoc.

The classes for the Java API are in cpci.jar. The cpci.jar file is automatically added to the Java Build
Path of the project when an agent which contains a Java API attribute group is created. The file is also
added when an agent that contains a Java API attribute group is imported. The file is also added when a
Java API attribute group is added to an existing agent. Thecpci.jar is also automatically packaged with
each agent that contains a Java API attribute group and added to the CLASSPATH of the Java application.

Java API configuration
When you define a Java API data source in your agent, some configuration properties are created for you.

If you define a Java API data source in your agent, the agent must use Java to connect to the Java API
server. Java configuration properties are added to the agent automatically. The following Java
configuration properties are specific to the agent runtime configuration:

Table 33. Java configuration properties

Name Valid values Required Description

Java home Fully qualified path to a
directory

No A fully qualified path
that points to the Java
installation directory.

Java trace level Choice Yes Use this property to
specify the trace level
that is used by the Java
providers.

JVM arguments String No Use this property to
specify an optional list of
arguments to the Java
virtual machine.

Class path for external
jars

String No Path containing any JAR
files that are not
included with the agent,
but are necessary for the
runtime client operation.

These configuration variables are available on the Runtime Configuration Information page of the Agent
Editor under Configuration for Java Virtual Machine (JVM), and Configuration for Java API.

Chapter 6. Defining and testing data sources 175

https://ibm.biz/Bds3QY

Testing Java application attribute groups
You can test the Java application attribute group that you created, within Agent Builder.

Before you begin
Restriction: Unlike most other attribute groups, you cannot test the Java application attribute group while
it is being created. You can test the attribute group when it is added to the agent and the agent is saved.
Saving the agent causes the Java code to be generated for the attribute group.

Procedure
1. Select an attribute group on the Agent Editor Data Source Definition page after agent creation and

click Test .

For more information about the Agent Editor, see Chapter 4, “Using the Agent Editor to modify the
agent,” on page 17

After you click Test in one of the previous two steps, the Test Java Client window is displayed.
2. Optional: Set environment variables, configuration properties, and Java information before you start

testing. For more information, see “Attribute group testing” on page 229. For more about default Java
runtime configuration properties, see “Java API configuration” on page 175.

3. Click Start Agent. A window indicates that the Agent is starting.
4. To simulate a request from Tivoli Enterprise Portal or SOAP for agent data, click Collect Data.

The agent monitors the Java Client for data. The Test Java Client window displays any data that is
returned.

5. Optional: Click Check Results if the returned data is not as you expected.
The Data Collection Status window opens and shows you more information about the data. The data
that is collected and displayed by the Data collection Status window is described in “Performance
Object Status node” on page 280

6. Stop the agent by clicking Stop Agent.
7. Click OK or Cancel to exit the Test Java Client window. Clicking OK saves any changes that you made.

Related concepts
“Testing your agent in Agent Builder” on page 229
After you use Agent Builder to create an agent, you can test the agent in Agent Builder.

176 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 7. Creating data sets from existing sources
When at least one data set exists, you can create a new data set using data from an existing data set.

The option to create a new data set is available on the Agent Initial Data Source page and on the Data
Source Location page. You can create a data set by using existing data sources in the following ways:

1. Joining data from two existing data sets (attribute groups). For more information, see “Joining two
attribute groups” on page 177.

2. Filtering data from an existing data set (attribute group). For more information, see “Creating a filtered
attribute group” on page 182.

Tip: The option to join two data sets is available only after two or more data sets are created.

Joining two attribute groups
Create an attribute group from two other attribute groups.

About this task
Joining attribute groups is most useful when the agent collects data from two different types of data
sources. For example, the agent might collect data WMI and PerfMon, or SNMP and script data sources.
Each set of attributes might be more useful when used together in one Tivoli Enterprise Portal view.

For example, assume that your attribute groups are defined as follows:

First_Attribute_Group
 index integer
 trafficRate integer
 errorCount integer

Second_Attribute_Group
 index2 integer
 name string
 traffic string

One definition provides you with counters (like Perfmon) and the other provides you with identification
information. Neither attribute group is useful to you by itself. However, if you can combine both attribute
groups by using the index to match the appropriate rows from each, you have a more useful attribute
group. You can use the combined attribute group to display the name, type, and metrics together.

This same mechanism can be used to add tags to information collected through normal attribute groups.
The information can then be more easily correlated in an event system when a problem is detected. For
example, a company wants to manage all its servers by collecting common data and by using common
situations to monitor the health of the servers. It also wants to be able to identify the servers with more
information that tells it what application is running on a particular server. It wants to have control of the
values that are used on each server, but it does not want to create different agents for each application. It
can accomplish this control by creating an additional attribute group in its single agent as follows:

Application_Information
 application_type integer
 application_name string
 application_group string

This attribute group would be defined as a script attribute group that gathers its values from agent
configuration. You can specify different values for each agent instance and use one agent to manage all of
their systems. This attribute group would then be joined to all the source attribute groups where this
application information might be needed. The information is then available in the Tivoli Enterprise Portal,
situations, events, and warehoused data.

© Copyright IBM Corp. 2010, 2021 177

When you join two attribute groups, a third attribute group is created. This attribute group contains all the
attributes that are contained within the source attribute groups.

The results of a join operation vary depending on the number of rows that each source attribute group
supports. If both attribute groups are defined to return only a single row of data, then the resulting joined
attribute group has one row of data. The single row contains all attributes from both source attribute
groups.

Table 34. source attribute group one (single row)

Attribute1 Attribute2 Attribute3

16 some text 35

Table 35. source attribute group 2 (single row)

Attribute4 Attribute5 Attribute6 Attribute7

5001 more data 56 35

Table 36. Resulting join

Attribute1 Attribute2 Attribute3 Attribute4 Attribute5 Attribute6 Attribute7

16 some text 35 5001 more data 56 35

Suppose that one source attribute group is defined to return only one row (single-row) while the other can
return more than one row (multi-row). The resulting joined attribute group contains the same number of
rows as the multi-row source attribute group. The data from the single-row attribute group is added to
each row of the multi-row attribute group.

Table 37. source attribute group one (single row)

Attribute1 Attribute2 Attribute3

16 some text 35

Table 38. source attribute group two (more than one row)

Attribute4 Attribute5 Attribute6 Attribute7

user1 path1 56 35

user2 path2 27 54

user3 path3 44 32

Table 39. Resulting join

Attribute1 Attribute2 Attribute3 Attribute4 Attribute5 Attribute6 Attribute7

16 some text 35 user1 path1 56 35

16 some text 35 user2 path2 27 54

16 some text 35 user3 path3 44 32

Finally, assume that both source attribute groups are defined to return more than one row. You must
identify an attribute from each of the source attribute groups on which to join. The resulting attribute
group contains data rows where the attribute value in the first attribute group matches the attribute value
from the second attribute group.

178 IBM Agent Builder: IBM Agent Builder User's Guide

Table 40. source attribute group one (more than 1 row)

Attribute1 Attribute2 Attribute3

16 some text 35

27 more text 54

39 another string 66

Table 41. source attribute group 2 (more than 1 row)

Attribute4 Attribute5 Attribute6 Attribute7

user1 path1 56 35

user2 path2 27 54

user3 path3 44 32

Table 42. Resulting join (joining on Attribute3 and Attribute7)

Attribute1 Attribute2 Attribute3 Attribute4 Attribute5 Attribute6 Attribute7

16 some text 35 user1 path1 56 35

27 more text 54 user2 path2 27 54

With Agent Builder, you can also join user-defined attribute groups to the Availability attribute group if
there are any availability filters defined in your agent. For more information about the data that is
contained in the Availability attribute group, see (“Availability node” on page 275).

You can create this type of attribute group by accessing the menu on the data sources tree by right-
clicking and then selecting Join Attribute Groups.

Procedure
1. On the Data Source Definition page, right-click one of the attribute groups you would like to join and

select Join Attribute Groups.
This option is only visible if there are at least two attribute groups defined. Having an availability filter
defined counts as having an attribute group defined.
The Attribute Group Information page is displayed.

Chapter 7. Creating data sets from existing sources 179

Figure 18. Attribute Group Information pageAttribute Group Information window
2. In the Join Information area, select the two attribute groups you would like to join. Select the

attribute groups by choosing from the groups available in the Attribute Group One and Attribute
Group Two lists.
For each attribute group, either Produces a single data row or Can produce more than one data row
is selected for you. This selection is locked and depends on how the source attribute groups were
originally defined.

Note: There are restrictions on which attribute groups can be joined:

• You cannot join an attribute group in one subnode type to an attribute group in another subnode
type.

• You can join only an event attribute group to a single row non-event attribute group.

a) Select the attribute that you want to join on for each attribute group when both attribute groups
show Can produce more than one data row, under Attribute to join on.

The Attribute group name and Help fields are filled for you using information from the chosen
attribute groups. If you want to, you can change these entries.

3. Click OK.

Results
The joined attribute group that you created is added to the Attribute Group Information area of the Data
Source Definition page

180 IBM Agent Builder: IBM Agent Builder User's Guide

Manipulating attributes in joined attribute groups
Using attributes in joined attribute groups can impose rules on how those attributes are manipulated.

Deleting an attribute group
An attribute group cannot be deleted if it is referenced in a joined attribute group unless the joined
attribute group is also being deleted.

Deleting an attribute
An attribute cannot be deleted if its parent attribute group is referenced in a joined attribute group and
one of these statements is true:

• The attribute is defined as a join attribute in the joined attribute group.
• The attribute is used in any derived attribute in the joined attribute group.

Joined attributes cannot be deleted. Only derived attributes, if any are added, can be deleted from the
joined attribute group.

Reordering attributes
The order of the joined attributes is fixed by the order of the source attributes. The joined attribute list
cannot be reordered. Only derived attributes, if any, can be reordered.

When the version of an agent, is committed, source, and derived attributes cannot be reordered or
removed. Attributes added in a new version of the agent, whether source or derived attributes, will come
after all committed attributes. For more information, see “Committing a version of the agent” on page 33.

Adding an attribute
New joined attributes cannot be explicitly added. Only derived attributes can be explicitly created.

Removing availability filters
The last availability filter cannot be removed if the Availability attribute group is referenced in a joined
attribute group.

Joined attributes
Manipulate information that relates to joined attributes

Procedure
• Change the attribute name and help text of the joined attribute can be changed so that they are

different from the source attribute:
a) Select the attribute in the joined attribute group in the Attribute Group Information pane of the

Data Source Definition page.
b) Enter the new name and help text.

• The joined attribute can be shown or not shown on the Tivoli Enterprise Portal by selecting or clearing
the Display attribute in the Tivoli Enterprise Portal check box. The check box is in the Joined
Attribute Information section of the Data Source Definition page. This choice is irrespective of
whether the source attribute is shown on the Tivoli(r) Enterprise Portal.

• Any attribute or combination of attributes (that are shown on the Tivoli Enterprise Portal) can be
marked as key attributes by selecting the Key attribute check box. This choice is independent of
whether the attributes are key attributes in the source attribute groups. The choice is also independent
of whether the source attributes are shown on the Tivoli(r) Enterprise Portal.

Chapter 7. Creating data sets from existing sources 181

• Attribute type information for joined attributes is taken from the source attributes and cannot be
changed in the joined attribute. In the Joined Attribute Group Information section of the agent editor
(Figure 19 on page 182), click Locate source attribute to go to the source attribute.

Figure 19. Locating source attribute information

Any changes to the source attribute groups are reflected in the joined attributes. If the source attribute
groups change, those attributes are automatically updated under the joined attribute group. This
automatic update also occurs if a different attribute group is set as the source attribute group. Changes
to a source attribute type are copied to the joined attribute. Changes to a source attribute name or help
text are copied to the joined attribute. However, such source attribute changes are not copied after you
change the name or help text of a joined attribute.

Creating a filtered attribute group
Create a filtered attribute group (data set) by filtering rows of data from an existing attribute group. If an
existing data set returns multiple rows, you can create a filtered group returning one row for use with IBM
Cloud Application Performance Management.

About this task
A filtered attribute group has the same columns as the source attribute group, but can exclude some of
the rows. It uses a selection formula to determine which rows to include.

To provide status and summary information for Cloud APM, you need to use a data set that returns a
single row. For details, see Chapter 12, “Preparing the agent for Cloud APM,” on page 219. If the source
information is in a data set that returns multiple rows, you can create a filtered attribute group that
returns a single row.

For example, the process, Windows service, and command return code data sources provide information
as rows in the single Availability data set. You can create a filtered attribute group, using the NAME field in
the selection formula. The group includes status for the necessary application. Define it as returning one
row. Then you can use this attribute group as the summary data set for Cloud APM.

A filtered attribute group is also useful when a base data source query returns data that you prefer to
divide into separate groups. Examples of such data sources are Windows Performance Monitor, SNMP and
WMI.

For example, assume that a data source can return the following data:

182 IBM Agent Builder: IBM Agent Builder User's Guide

Name Type Size Used Free
Memory MEM 8 4 4
Disk1 DISK 300 200 100
Disk2 DISK 500 100 400

This is a table that reports on the storage that exists on the system and it includes both memory and disk
space. You might prefer to break down the table into memory and disk as separate tables. You can break
down the table by creating two base attribute groups. Each of these base attribute groups collects the
same data and filters out the rows you do not want. However, that is not the most efficient way to do
things. Instead, you define one base attribute group that returns both the memory and disk usage data
together. Next, define two filtered attribute groups. Each uses the same base table as its source. One
includes a filter where Type=="MEM" and the other includes a filter where Type=="DISK".

In the example, for the filtered attribute group where Type=="MEM", the returned data is:

Name Type Size Used Free
Memory MEM 8 4 4

and where Type=="DISK", the returned data is:

Name Type Size Used Free
Disk1 DISK 300 200 100
Disk2 DISK 500 100 400

Note: Attributes groups whose data is event-based cannot be used to create filtered attribute groups.
Only attribute groups whose data is sampled can be used.

Procedure
1. Click Existing data sources in the Monitoring Data Categories area on the Agent Initial Data Source

page or the Data Source Location page

Note:

• You reach the Agent Initial Data Source page by using the new agent wizard. For more information,
see Chapter 3, “Creating an agent,” on page 13.

• You can reach the Data Source Location page by right-clicking an agent in the Data Source
Definition page of the Agent Editor and selecting Add Data Source.

2. Select Filter an attribute group's data rows in the Data Sources area.
3. Click Next

The Filter Information page is displayed.
4. Select a Source attribute group from the list.
5. Enter a Selection formula to filter the data from the attribute group you selected.

For example, in the Filter Information page that is shown earlier, the selection formula filters data
rows where the Type attribute is equal to "DISK". Data rows whose Type attribute does not match
"DISK" are discarded. The selection formula that you enter must evaluate to a Boolean result, true, or
false.

Note: In the Filter Information page, you can click Edit to enter or modify the formula by using the
Formula Editor. For more information about the Formula Editor, see “Formula Editor” on page 45.

6. Click Next.
7. Select Produces a single data row or Can produce more than one data row.

a) If you selected Can produce more than one data row, select a key attribute or attributes from the
list.

8. Click Finish.

Chapter 7. Creating data sets from existing sources 183

184 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 8. Creating a navigator group
In an IBM Tivoli Monitoring environment, use Navigator groups to group several related data sources
(attribute groups) together so that workspaces can be created that show views that combine the data
sources. You can create a navigator group while you create an agent by using the New Agent wizard at the
base agent level. You can also create a navigator group while you define a subnode by using the New
Agent Component wizard.

About this task
For example, you might be able to collect file system data from more than one data source. It can be
useful to create one workspace that shows views of all file system data from those different data sources.

Navigator groups are also a good way to hide data sources on the Tivoli Enterprise Portal. You might
decide that metrics collected from two data sources are most useful if the data sources are joined to
create a new combined data source. You want to see only the combined data in the Joined data source.
You can create a navigator group that contains all three data sources and create a workspace that
contains views to display only the combined data source. The two original data sources are effectively
hidden from view in the Tivoli Enterprise Portal. See Chapter 7, “Creating data sets from existing sources,”
on page 177 for information about joining data sources.

Note: When you group data sources in a navigator group, Tivoli Monitoring does not associate a query with
the navigator group. It is assumed that you define a default workspace for the navigator group to display
the data sources in a useful format.

A navigator group can be defined in the base agent or in a subnode. A navigator group cannot contain
another Navigator group.

Navigator groups have no effect in an IBM Cloud Application Performance Management environment.

Procedure
1. Take one of the following steps:

• When creating a new agent using the Agent wizard, on the Agent Initial Data Source page, click
Data source groupings in the Monitoring Data Categories area.

• With an existing agent, take the following steps in the Agent Editor:

a. Click the Data Sources tab to open the Data Source Definition page.
b. Select the agent and click Add to selected.
c. On the Data Source Location page, in the Monitoring Data Categories area, click Data source

groupings.
2. In the Data Sources area, click A navigator group.
3. Click Next.
4. On the Navigator Group Information page, type the navigator group name and the text for the Help

you want associated with the name, and click Next.

Note: Agent Builder automatically creates navigator groups in certain situations. The following
navigator group name is reserved:

• Availability

.
5. On the First Navigator Group Data Source page, select the first source of monitoring data for the new

navigator group. Click a category in the Monitoring Data Categories list and a data source in the Data
Sources list. Then, click Next.

© Copyright IBM Corp. 2010, 2021 185

Tip: You can create the data source as usual. Alternatively, click Existing data sources and choose to
move one or more data sources that you already created into the navigator group.

6. If you want to create a data source within a navigator group, on the Data Source Definition page,
select the navigator group, and click Add to Selected.

7. If you want to move existing data sources into the navigator group, on the Data Source Definition
page, select the navigator group, and click Add to Selected and on the Navigator Group Data Source
page, select Existing data sources. In the Currently Defined Data Sources page, select the data
sources.

8. If you want to remove a data source from a navigator group, do one of the following steps on the Data
Source Definition page:

• Select the data source, and drag it to the root of the data sources tree.
• Select the data source, and clicking Remove.

9. If you want to create a navigator group, do one of the following steps on the Data Source Definition
page:

• Click Add to Agent.
• Select a subnode and click Add to Selected.

186 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 9. Using subnodes
You can use subnodes to monitor multiple application components from a single agent instance.

You can build a single agent that accomplishes the following tasks by using subnodes:

• Monitors each instance of a software server that is running on a system instead of having to use
separate instances of the agent, one per software server instance.

• Monitors several different remote systems instead of having to use separate instances of the agent, one
for each remote system.

• Monitors several different types of resources from one agent instead of having to build and deploy
several different agents.

• In IBM Tivoli Monitoring, displays an additional level in the Tivoli Enterprise Portal physical Navigation
tree that allows further grouping and customization. Moreover, you can define Managed System Groups
for another level of granularity with situations.

• In IBM Cloud Application Performance Management, provides several different resources, displaying
different summary and detail dashboards. Subnode resources can be displayed as peers or
subcomponents of the agent resource. You can include these resources in applications independently.

You can create subnode types in Agent Builder. Each type must correspond to a different type of resource
that an agent can monitor. Add data sources and data sets to the subnode type for a particular monitored
resource.

When you deploy the agent on a monitored host and configure it, you can create one or more instances of
each subnode type. Each instance of a subnode must correspond to an instance of a server, a remote
system, or whatever resource the subnode type was designed to monitor. All subnode instances of a
single subnode type have attribute groups and workspaces that have an identical form. However, each
subnode instance has data that comes from the particular resource that is being monitored.

When you configure the agent on the monitored host, you can determine the number of subnode
instances. Some configuration data can apply to the agent as a whole, but other configuration data applies
to a single subnode instance. Configure each subnode instance differently from the other subnode
instances so that they do not monitor the exact same resource and display the exact same data.

In an IBM Tivoli Monitoring environment, a subnode instance is displayed within the agent in the
Navigation Physical view in the Tivoli Enterprise Portal. Workspaces display the data that is produced by a
subnode instance and situations can be distributed to one or more instances of a subnode. A managed
system list is automatically created that contains all instances of the subnode, just like the Managed
System List that is created for an agent.

In an IBM Cloud Application Performance Management environment, you can display both agent and
subnode instances as monitored resources. Each subnode instance becomes a separate resource. For
details, see “Subnodes in IBM Cloud Application Performance Management” on page 192.

Because agents built with Agent Builder create the subnode instances that are based on configuration
values, these subnodes have the same life span as the agent. There is still just one heartbeat that is done
for the agent, not a separate heartbeat for each subnode. Therefore, by using subnodes you can
significantly increase the potential scale of the monitoring environment. The alternative is to use multiple
agent instances, which can limit the potential scale of the IBM Tivoli Monitoring or IBM Cloud Application
Performance Management environment.

Adding or removing a subnode requires reconfiguring the agent. To reconfigure the agent, you need to
stop and restart it, involving all subnodes. You can define the agent as a multi-instance agent; in this case,
you can start and stop a single instance, and leave the other instances running.

Along with data sets in subnodes, an agent can define agent-level data sets that are located outside of a
subnode.

© Copyright IBM Corp. 2010, 2021 187

In the Tivoli Enterprise Portal Navigator tree, a subnode type is displayed under the agent name, and
subnode instances are displayed under a subnode type. Subnodes are identified by a Managed System
Name (MSN) just like agents, for example 94:Hill.cmn.

For example, in the Navigator tree in Figure 20 on page 188, Watching Over Our Friends is an agent with
three resources (Boarders, Common Areas, and Kennel Runs) and two subnode types (Common Area
and Kennel Run). Two of these resources have subnode types that are defined for them (Common Area
and Kennel Run). A subnode is not required for the third resource (Boarder), which is represented by a
single row in a table at the base agent level. The Common Area subnode type has three subnode
instances: 94:Hill:cmn, 94:Meadow:cmn, and 94:Tree:cmn representing three common areas in the
kennel. The Kennel Run subnode type has four subnode instances: 94:system1:run,
94:system2:run, 94:system4:run, and 94:system5:run representing four kennel runs.

Figure 20. Subnodes in the Navigator tree

There are two ways that a single agent can use subnodes:

• The agent can have different subnodes of the same type.
• The agent can have subnodes of different types.

Subnodes for the same data from different sources

You can use subnodes of the same type to represent multiple instances of a monitored resource type.
Each subnode of the same type includes the same attribute groups and the correct values for the specific
monitored resource instance. The number of subnodes varies based on agent configuration. The example
in Figure 21 on page 189 shows the monitoring of different systems.

188 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 21. Subnodes monitoring different systems

Subnodes for multiple types of data

When one agent monitors multiple types of monitored resources, you can create a subnode type for each
of the resource types. Each subnode includes the information that is defined in that subnode type. The
following example shows two subnode types. Each type is monitoring a different type of resource, with
different types of data available for each resource:

• Common Area
• Kennel Run

The agent in Figure 22 on page 190 runs one copy of each subnode type. A particular agent might create
any subset of the defined agents. Subnodes can be used to mimic Tivoli Monitoring V5 profiles.

Chapter 9. Using subnodes 189

Figure 22. Subnode types in Navigator tree

Both ways of using subnodes can be used in the same agent, where each type can have more than one
subnode instance.

Figure 22 on page 190shows two types of subnodes that monitor two types of resources: Common Areas
and Kennel Runs. In addition, there are several subnodes that are defined for each type. There are three
subnodes of type Common Area; these subnodes have the following IDs: Meadow, Hill, and Tree. There
are also four subnodes of type Kennel (each collecting data from a different system that is dedicated to a
Kennel Run); these subnodes have the following IDs: system1, system2, system4, and system5.

Note: The first 24 characters of subnode IDs must be unique for all instances of the subnode type in the
IBM Tivoli Monitoring installation.

Data Providers in subnodes

A subnode can contain any mixture of data from the different data provider types. Most current Agent
Builder data providers can be used in a subnode, including the following data providers:

• WMI
• Perfmon
• Windows Event Log
• SNMP
• SNMP Events
• JMX
• ICMP ping
• Script
• Log
• CIM

190 IBM Agent Builder: IBM Agent Builder User's Guide

• JDBC
• HTTP
• SOAP
• Socket
• Java API

A subnode can also contain a joined attribute group that combines data from two other attribute groups
from the same subnode or from agent-level attribute groups.

Status of subnodes

There are two ways to determine status for a subnode agent. The first way is to look at the data that is
displayed in the Performance Object Status attribute group. This attribute group displays the status for
each of the other attribute groups at the same level in the agent. The Performance Object Status attribute
group at the agent level displays the collection status for the other attribute groups at the agent level. The
Performance Object Status attribute group in each subnode displays the collection status for the attribute
groups in that subnode.

Agent Builder also creates one attribute group for each subnode type, which displays one row for each
configured subnode of that type. In the example in (Figure 23 on page 191), four subnodes are running to
collect data.

Figure 23. Monitoring multiple subnode instances of the same subnode type

In the IBM Tivoli Monitoring environment, the Performance Object Status subnode contains data visible
in the Navigator tree and can have situations that monitor the status of the other data collections.

Chapter 9. Using subnodes 191

In the IBM Cloud Application Performance Management environment, you can create thresholds to
monitor Performance Object Status data.

The example in Figure 24 on page 192 shows a case where the data collection failed (the script shell
command was not found). Typically, any value other than NO_ERROR indicates that there is a problem.
For each of the data collectors that are defined in the subnode, there is one row in the table.

Figure 24. Example: data collection in a subnode

Subnodes in IBM Cloud Application Performance Management
In IBM Cloud Application Performance Management, you can define either the agent instance or a
subnode instance or both as monitored resources, and each resource corresponds to a summary
dashboard.

Subnode dashboards can not display agent-level data. To display agent-level data in this environment,
define a summary dashboard for the agent.

Depending on the settings you select, agent and subnode resources can appear at the same level, with no
hierarchical distinction, or subnode resources can be listed as children to agent resources.

For instuctions about configuring agent and subnode resources, see Chapter 12, “Preparing the agent for
Cloud APM,” on page 219.

Creating subnodes
You can create a subnode when creating or editing an agent.

Procedure
1. Take one of the following steps:

192 IBM Agent Builder: IBM Agent Builder User's Guide

• When creating a new agent using the Agent wizard, on the Agent Initial Data Source page, click
Data source groupings in the Monitoring Data Categories area.

• With an existing agent, take the following steps in the Agent Editor:

a. Click the Data Sources tab to open the Data Source Definition page.
b. Select the agent and click Add to selected.
c. On the Data Source Location page, in the Monitoring Data Categories area, click Data source

groupings.
2. In the Data Sources area, click A Subnode Definition
3. Click Next.
4. Complete the Subnode Information page as follows to define the new subnode:

a) In the Name field, type the name of the subnode you are creating.
b) In the Type field, enter 1-3 characters (by using numbers, letters, or both) to identify the type of

the subnode you are creating.
c) In the Description field, type a description for the subnode you are creating.
d) Click the Show nodes attribute group for this type of subnode check box to hide or display the

availability attribute group. For more details about this attribute group, see “Availability node” on
page 275.

e) Click Next.
5. Complete the Initial Subnode Data Source page to select a data source as the first item in the new

subnode. Click a category in the Monitoring Data Categories list and a data source in the Data
Sources list. Then, click Next.

Tip: You can create the data source as usual. Alternatively, you can move one or more data sources
that you already created into the navigator group. To move data sources, click Existing data sources
and, in the Currently Defined Data Sources page, select the data sources.

Important: You can not include process, Windows service, or command return code data sources in a
subnode. As a workaround, you can write a script that determines the necessary process or service
information and use a script output data source.

6. If your agent contains custom configuration properties or if the selected data source requires
configuration, use the Subnode Configuration Overrides page to choose the configuration properties.
In the Subnode Configuration Overrides page, choose the configuration properties that you want for
the subnode at the agent level. Then, choose the configuration properties that you want to vary for
each subnode.

Use Move, Copy, and Remove to specify the configuration properties as described in “Configuring a
subnode” on page 194.

7. Click Next.
The Data Source Definition page is displayed.

Subnode configuration
When a subnode type is defined, a single configuration section is defined specifically for that subnode.

There are several ways that a subnode configuration section differs from other configuration sections:

• The set of properties in a subnode section can be duplicated, so there are multiple sets of properties.
Each set of properties forms its own section. The layout of all sections is identical, but different values
can be entered in each section.

In contrast, the properties in other sections (which are referred to as agent-level sections) are shown
only one time during runtime configuration. They do not form subsections and cannot be duplicated or
removed.

See “Subnode configuration example” on page 197 for GUI and command-line examples of configuring
subnodes.

Chapter 9. Using subnodes 193

• For each copy of a subnode section that is created at runtime configuration, the agent creates a
separate subnode instance. All of those subnode instances are of the same type.

• The property names in subnode sections can be duplicates of property names in agent-level sections.
When duplicate names occur, the subnode property value overrides the agent-level property value.

• In IBM Tivoli Monitoring V6.2.1 and later, a subnode section can have default property values that apply
to all instances of subnodes of that type. This feature makes it possible to have a three-level lookup of a
single property value as follows:

1. The agent obtains the property value from the subnode instance subsection.
2. If no value is configured at the subnode instance level, the property value is obtained from the

subnode default level.
3. If no value is configured at either of those two levels, then the property value is obtained from an

agent-level section.

See “Subnode configuration example” on page 197 for GUI and command-line examples of configuring
subnodes.

Configuring a subnode
Use the Subnode Configuration Overrides page to configure a subnode data source.

Before you begin
Use the steps in “Creating subnodes” on page 192 to create a subnode.

About this task
When you add a data source to a subnode, the Subnode Configuration Overrides page is presented if the
data source requires configuration. It shows custom configuration properties and any other configuration
properties that are applicable to the subnode type.

Procedure
• In the Subnode Configuration Overrides window, choose the configuration properties that you want

for the subnode at the agent level. Also, choose the configuration properties that you want to vary for
each subnode.

• Use Copy >> to copy configuration properties so that they are both at the agent level and the subnode
level.
The agent looks for a value first at the subnode level, and if it does not find a value, it looks at the agent
level. If a property at both levels is a required property, it is required only at the agent level, it is
optional at the subnode level.

• Use Move >> to move properties from the agent level to the subnode level. Move>> is not available for
properties that are required by an agent-level data source or by a subnode of a different type.

• Use Remove to remove one of the two lists. Properties can be removed only if they are listed at both
the agent-level and the subnode level. This function cannot be used to remove a property completely.

• Use << Copy to copy a property from the subnode level to the agent-level.
• Use << Move to move a property from the subnode to the agent-level.

What to do next
You can change the configuration for an existing subnode by using the Agent Editor.

194 IBM Agent Builder: IBM Agent Builder User's Guide

Subnode configuration overrides
Use Subnode Configuration Overrides to override agent configuration properties with subnode-specific
properties.

The procedure in “Configuring a subnode” on page 194 describes how to manage subnode configuration
for automatically generated properties. Managing custom configuration properties is similar. Any custom
configuration properties that are defined are displayed in the Subnode Configuration Overrides window.

When you copy or move a custom property from the subnode level to the agent-level, you are prompted
for the section to place the property in. You can select an existing custom section, or enter the name of a
new custom section.

Selecting subnode configuration properties

Without subnodes, all instances of a data source type share the configuration parameters. For example,
all SNMP attribute groups connect to the same host by using the same community name. With subnodes,
each instance of a subnode can connect to a different host if the SNMP_HOST property is placed at the
subnode level.

Selecting properties to be overridden at the subnode level is an important consideration when you are
developing an agent. If too many properties are selected, the subnode configuration section becomes
cluttered and difficult to manage. If too few properties are selected, then the agent functions might be
limited when someone wants to vary a property from one subnode to the next.

The following properties cannot be copied to the subnode level. (All attribute groups in all subnodes and
in the base agent must use the same SNMP version and JMX connection type):

• SNMP version
• JMX MBean server connection type
• Java home
• Java trace level
• JVM arguments
• Class path for external JAR files
• Socket data source port number
• JMX or JDBC class path settings

Advanced subnode configuration
Use advanced subnode configuration to override an agent configuration property in a subnode.

About this task
There is an option in IBM Tivoli Monitoring V6.2.1 and later agents that you can enable to override
properties from any agent-level configuration section in a subnode instance. On the Subnode
Configuration Overrides page, there is a check box labeled Allow any configuration property to be
overridden in any subnode. For more information, see (“Subnode configuration overrides” on page 195).
For this option to be enabled, you must select 6.2.1 as the Minimum ITM version when you name your
agent (“Naming and configuring the agent” on page 13). If you choose this option, each subnode instance
can override any property from any agent-level configuration section. But this property can be overridden
only from the GUI and not from the itmcmd command line.

Procedure
The Allow any configuration property to be overridden in any subnode option causes an Advanced
field that contains a list to be displayed on each subnode configuration panel. The initial selection in the
Advanced field provides the brief directions: Select a section to override values.

Chapter 9. Using subnodes 195

• When you click the list, you see a list of all the non-subnode sections that contain configuration
properties.

• Select a section.
The properties from that section are temporarily added to the subnode panel. The value of any
property that you change is added to the set of properties that are defined for the subnode. A data
source in the subnode looks for property values in the subnode before it looks in the agent-level
sections. .

Figure 25. SNMP Version 1 Properties expanded

The following further information applies to overriding properties from agent-level sections:

– Properties that were copied to the subnode section are not shown when the agent-level section is
selected in the Advanced list. For example, in Figure 25 on page 196, SNMP host is not displayed
after the Advanced list because it was copied to the subnode properties and is already displayed.

– Sections that contain no properties to override do not have a selection in the Advanced list.
– Overridden values that you enter for one section are retained even if you select a different section to

display different properties.
– Select Allow any configuration property to be overridden in any subnode to enable this feature in

your agent.

196 IBM Agent Builder: IBM Agent Builder User's Guide

Configuring a subnode from the command line
In the IBM Tivoli Monitoring environment, you can also configure a subnode by using the command line.

Before you begin
For more information about subnode configuration, see “Subnode configuration” on page 193

About this task

Procedure
• To configure a subnode instance from the command line, use the following command:

tacmd configureSystem -m HOSTNAME:00 -p
section_name:subnode_instance_id.property_name=value

Where:
section_name

Same as the subnode type
subnode_instance_id

ID for the subnode that is defined during configuration.
property_name

Name of the configuration property
value

Value for the property

Subnode configuration example
How to configure a sample agent with one defined subnode.

Example:
This example shows how to configure a sample agent that has one subnode named Example Subnode of
type exs and the following three configuration properties:

• Agent Cfg (actual property name is K00_AGENT_CFG) is defined only at the agent level.
• Subnode Cfg (actual property name is K00_SUBNODE_CFG) is defined only in the example subnode.
• Overridable Cfg (actual property name is K00_OVERRIDABLE_CFG) is defined at the agent level

and was copied to the example subnode.

(Figure 26 on page 198) shows these configuration properties on the Runtime Configuration
Information page of the Agent Editor.

Chapter 9. Using subnodes 197

Figure 26. Configuration property definitions in the Agent Builder

When this example agent is configured, the first page that is displayed is the Top section, which contains
the Agent Cfg property as shown in (Figure 27 on page 199). Because this property is an agent-level
property, it is shown one time during agent configuration. Any instance of the Example Subnode can see
this property value, but all instances see the same value.

198 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 27. Top section with agent-level configuration for the Agent Cfg property

If you are configuring from the Tivoli Enterprise Monitoring Server command line, the Agent Cfg property
can be set by using the following command:

tacmd configureSystem -m HOSTNAME:00 -p "TOP.K00_AGENT_CFG=a value"

The next section that is displayed is the Main section as shown in Figure 28 on page 200. It is also an
agent-level section and contains the agent-level Overridable Cfg property. This property differs from the
Agent Cfg property because this property was copied to the Example Subnode in the Agent Builder. This
means that a default value for the property can be entered on the Main page. However, any Example
Subnode instance can override the value that is entered here with a different value.

Chapter 9. Using subnodes 199

Figure 28. Main section with the agent-wide default value for the Overridable Cfg property

If you are configuring from the Tivoli Enterprise Monitoring Server command line, this property can be set
by using the following command:

tacmd configureSystem -m HOSTNAME:00 -p "MAIN.K00_OVERRIDABLE_CFG=default value"

You can place both of these properties in the same agent-level section. You can decide how many custom
agent-level sections to create and how to distribute custom properties among them.

The next section that is displayed is the Example Subnode section as shown in Figure 29 on page 201.
Because this agent is being configured for the first time, there are no defined subnode instances and no
subnode instance subsections are shown. The initial property values subsection is shown, although it is
optional and some subnode types might not show it. Because the initial property values subsection is
shown, default values can be entered for any of the configuration properties. The Overridable Cfg
property already has a default value that was obtained from the agent-level property of the same name.

200 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 29. Example Subnode section page with no subnode

Subnode instances are defined by doing the following actions on the empty Example Subnode section
page (Figure 30 on page 202):

1. In the initial Example Subnode section, in the Subnode Cfg field, type the following default string for
the property: sub-default value.

2. Click New. An Example Subnode subsection is displayed after the initial properties subsection.
3. In the Example Subnode field, type the following subnode instance ID: do.
4. Click New. A second Example Subnode subsection is shown after the first.
5. In the second Example Subnode field, type the following subnode instance ID: re.
6. In the Subnode Cfg field, type the following value for the Subnode Cfg property: sc override.
7. In the Overridable Cfg field, type the following value for the Overridable Cfg property: oc override.

Chapter 9. Using subnodes 201

Figure 30. Example Subnode section page with two subnode instances defined

The two new subsections cause the agent to create two subnode instances when it is started. Because
the properties of the do subnode subsection were not changed, the default property values are used by
that subnode instance. Since different values were entered for the properties in the re subsection, the re
subnode instance uses those values that were typed.

You can set a default value from the Tivoli Enterprise Monitoring Server command line with the following
command:

tacmd configureSystem -m HOSTNAME:00 -p "exs.K00_SUBNODE_CFG=sub-default value"

The format for setting subnode default values is exactly like the format for setting agent-level properties,
except that the section name identifies a subnode section.

You can create the subnode instances from the Tivoli Enterprise Monitoring Server command line with the
following command:

tacmd configureSystem -m HOSTNAME:00 -p "exs:do.K00_OVERRIDABLE_CFG=default value" \
 "exs:re.K00_SUBNODE_CFG=sc override" "exs:re.K00_OVERRIDABLE_CFG=oc override"

The subnode instance ID is inserted between the section name and property name. When you use the
command line to create a subnode instance, at least one property must be specified, even if all the

202 IBM Agent Builder: IBM Agent Builder User's Guide

properties use default values. Otherwise, default values are not required to be specified on the command
line when you define subnode instances.

All of the agent configuration properties can be set in a single command. The following command is
equivalent to all of the preceding individual commands:

tacmd configureSystem -m HOSTNAME:00 -p "TOP.K00_AGENT_CFG=a value" \
 "MAIN.K00_OVERRIDABLE_CFG=default value" \
 "exs.K00_SUBNODE_CFG=sub-default value" \
 "exs:do.K00_OVERRIDABLE_CFG=default value" \
 "exs:re.K00_SUBNODE_CFG=sc override" "exs:re.K00_OVERRIDABLE_CFG=oc override"

Subnodes and Windows data sources
Choose to include Windows Remote Connection properties in the agent or not.

About this task
If an agent has Windows data sources at the agent level and not in subnodes, including Windows Remote
Connection configuration properties in the agent are optional. Windows data sources are Windows Event
Log, Windows Management Instrumentation, Windows Performance Monitor. If configuration properties
are not included, these data sources monitor the local Windows system by default and need no
configuration. By default, no Windows data sources are included in any subnode.

To choose whether to include Windows Remote Connection properties in the agent, do the following
steps:

Procedure
1. On the Windows Management Instrumentation (WMI) Information page, click Global Options when

data source properties are displayed. Select Global Options either while you are creating the data
source or from the Agent Editor Data Sources page.

2. In the Global Windows Data Source Options window, select Include Windows Remote Connection
configuration if you want to include these properties in the agent.

Subnodes and Script data sources
Subnode instance configuration properties are accessed in subnode scripts just as they are in agent-level
scripts.

Scripts have access to all agent-level configuration properties and all subnode instance configuration
properties. If an agent-level property is overridden at the subnode level, the script has access only to the
subnode level property value.

Chapter 9. Using subnodes 203

204 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 10. Customizing agent configuration
Customize the configuration of process, log file, and script data sources.

Before you begin
If you are adding SNMP, JMX, CIM, JDBC, HTTP, and SOAP data sources to your agent, configure these
data sources as described in the following sections:

• “Monitoring data from a Simple Network Management Protocol (SNMP) server” on page 73
• “Monitoring Java Management Extensions (JMX) MBeans” on page 83
• “Monitoring data from a Common Information Model (CIM)” on page 102
• “Monitoring data from Java Database Connectivity (JDBC)” on page 128
• “Monitoring HTTP availability and response time” on page 137
• “Monitoring data from a SOAP or other HTTP data source” on page 145

About this task
Use this task to customize the configuration of process, log file, and script data sources so an agent can
access the application that it is monitoring.

All agents must be configured before they can be started. All agents must have basic configuration
information such as the method of connecting to the Tivoli Enterprise Monitoring Server. Many times, an
agent must have more configuration information so it has access to information specific to the system on
which it is running. For example, if you must know the installation location of a software product, add
configuration properties to prompt for this information. Another example of information you might prompt
for is the user ID and password to access an interface,

Custom configuration is defined by the agent developer. It is not required for all agents, but can be used in
the following areas of data collection:

• Matching an argument in a Process Monitor
• Matching the command line in a Process Monitor
• Forming a log file path or name
• Defining an environment variable in a script

Note: Certain data sources such as JMX and SNMP add this configuration automatically.

Note: When data source specific configuration is added automatically by the Agent Builder, this
configuration is added in English only.

If during data source definition your agent requires system-specific information for an area of data
collection, Insert Property or Insert Configuration Property is shown.

For example, when you create an attribute group that monitors a log file, Insert Configuration Property is
shown.

Procedure
1. Click Insert Configuration Property to display the Configuration Properties window,
2. In the Configuration Properties window, click a property, and click Add.

Note: Initially there are no configuration properties that are defined for the agent.
3. In the Runtime Configuration Property window, complete the following fields:

a) In the Section area, complete the following fields:

© Copyright IBM Corp. 2010, 2021 205

Label
Text that describes the properties

Description
(optional) Description of the properties

b) In the Property area, complete the following fields:
Label

Text that is displayed in the agent configuration panel that identifies the information you must
enter.

Environment variable
The environment variable is displayed in the Environment variable field and is updated as you
type in the label field. The Agent Builder automatically constructs the name of the
environment variable from the product code and the label. If you want to change the
environment variable independently from the label, you can clear Match Label.

Description
(optional) Description of the property that is being defined.

Type
Type of information that is collected, one of the following options:
String

For any alphabetic information that must be collected (for example, installation locations,
user names, and host names).

Password
For any information that must be encrypted when stored. In addition to providing
encryption of the data, the data that is typed into the text box is obscured by asterisks. In
addition, you are required to type this information twice to validate the data.

Numeric
For any numeric information (for example, port numbers).

Choice
For a list of specific values. This option enables the Choices table. You can define specific
values by clicking Add. The values that are entered are displayed in the agent
configuration panel as a group of selections, you can make only one selection from the
group.

Read Only Text
Displays text when you configure the agent, but no information is collected.

Separator
Displays a horizontal separator, but no information is collected.

File Browser
Collects a string, which is a file name. Click Browse to browse the file system for the
wanted file.

Default value
(Optional) Specify the value that is shown in the configuration panel at run time when the
agent is configured for the first time. If you want a default value for UNIX/Linux that is different
from a default value for Windows, click Multiple Values.

In the Configuration Property Default Values window , specify the default values that you
want for Windows systems and for UNIX and Linux systems.

Note: Support for multiple default values is a feature that is only supported in IBM Tivoli
Monitoring V6.2.1 and higher. If your agent is compatible with IBM Tivoli Monitoring V6.2, a
prompt warns you about this requirement and you can cancel or continue with V6.2.1
compatibility enabled.

Required
Check this field if the user must enter a value when the agent is configured. Clear this field if it
is optional for the user to enter a value.

206 IBM Agent Builder: IBM Agent Builder User's Guide

c) To add a choice, click Add
4. In the Configuration Property Value window, complete the Label and Value fields.

The Label is displayed as one of the choices. If this choice is taken, the value becomes the property
value.

5. Click OK.
The new configuration section and property are displayed in the Configuration Properties window
under Custom Configuration.

6. Optional: To add another property to an existing section, select the section or an existing property in
the section and click Add. You make the selection in the runtime configuration tree of the
Configuration Properties window.

7. Complete the fields for the new property. (Complete the same fields as in step “3” on page 205).
8. Click OK. The property that you most recently added is selected.
9. Keep the selection or select the property that you want to insert into the log file name.

10. Click OK. The property is inserted into the log file name.
You can then continue through the wizard to complete defining your log file attribute group.

Note: Even though a configuration property is defined in the context of a log file name, it can be used
in other locations. For instance, another location that accepts a configuration property is a script data
source. This flexibility means that you can access the value for the configuration element File
Information with the script variable $K00_APPLICATION_LOG_FILE if the product code is K00. You
can also use the Windows batch file variable %K00_APPLICATION_LOG_FILE%.

Changing configuration properties by using the Agent Editor
Use the Agent Editor to change configuration properties of your agent.

About this task
This task provides information about viewing, adding, and changing configuration properties by using the
Agent Editor.

Procedure
1. Click the Runtime Configuration tab.
2. Select a configuration section, and click Add.

Add works just like it does in Chapter 10, “Customizing agent configuration,” on page 205. There is no
Edit selection because a configuration section or property is edited when it is selected.

3. Select a configuration property to display the Runtime Configuration Details area.
4. In the Runtime Configuration Details area, edit the fields to configure the property.

Configuring a Windows remote connection
Information about Configuring a Windows remote connection

About this task
Windows Management Instrumentation (WMI), Windows Performance Monitor (Perfmon), and Windows
Event Log data sources can monitor data on the system where the agent is installed. These data sources
can also monitor data on remote Windows systems. These three data source types are known as Windows
data sources. If these Windows data sources are monitoring data remotely, they all share Windows
Remote Connection configuration properties for the agent level where they are defined.

If you define a Windows data source in the base level of your agent, Windows Remote Connection
configuration properties are not added to the agent automatically. They are not added to maintain
compatibility with earlier versions of agents that might use the Windows data provider before remote

Chapter 10. Customizing agent configuration 207

monitoring was enabled. The Windows data source in your agent monitors data on the local Windows
system where the agent is installed.

If you define a Windows data source in a subnode in your agent, Windows Remote Connection
configuration properties are added to the agent automatically. The Windows data source must support
Windows Remote Connection if it is in a subnode. You cannot clear the option until all windows data
sources are removed from all subnodes in the agent. Each instance of a subnode might be configured to
monitor a different remote Windows system. All Windows data sources in the subnode share Windows
Remote Connection configuration properties.

To configure a base agent to remotely monitor a single remote Windows system, use the following
procedure.

Procedure
1. In the Agent Editor Data Source Definition window, click Global Options.

The Global Windows Data Source Options window opens.
2. Select Include Windows Remote Connection configuration.
3. Click OK.

Results
The following connection-specific configuration properties can be accessed from the Agent Editor
Runtime Configuration Information page by selecting Configuration for Windows remote access >
Windows Remote Connection
Remote Windows host

Host name of remote Windows computer
Remote Windows password

Password for remote Windows
Remote Windows DOMAIN\user name

User name for the remote Windows host

What to do next
You can view, add, and change the configuration properties by using the Agent Editor. For instructions, see
“Changing configuration properties by using the Agent Editor” on page 207. If a Windows data source is
defined in a subnode, you can also specify Subnode Configuration Overrides. For instructions, see
“Subnode configuration” on page 193.

Creating a user with Windows Management Instrumentation
(WMI) permissions

You can add and configure a user on a Windows system with permissions to allow WMI browsing.

About this task
If your agent collects data from a remote system by using Windows Management Instrumentation (WMI),
it requires permissions to access WMI data on the remote system. The agent can access WMI data on a
remote system when you provide credentials of an account with permissions to access WMI data on the
system. The procedure applies to Windows 7, Windows 2008 Server and Windows Vista.

Note: Your agent can also access data on a remote Windows system by using Windows Performance
Monitor (Perfmon), and Windows Event Log data sources. However, in the case of Windows Performance
Monitor (Perfmon), and Windows Event Log data sources, you must provide Administrator credentials for
the remote system.

208 IBM Agent Builder: IBM Agent Builder User's Guide

Procedure
1. Create a user account:

a. Go to Windows Start > Administrative Tools > Computer Management. The Computer
Management window opens.

b. Expand Local Users and Groups.
c. Right-click the Users folder and select New User.
d. Complete the user details and click Create and Close.

2. Configure the group membership for the new user account:

a. In the Computer Management window, select the Users folder.
b. Right-click the new user account and select Properties.
c. Click the Member Of tab.
d. Click Add.
e. Click Advanced.
f. Click Find Now.

g. Select the following groups:

• Distributed COM Users
• Performance Log Users
• Remote Desktop Users

Tip: Press Ctrl and click to select multiple groups.
h. Click OK until you return to the Computer Management window.
i. Select File > Exit to exit the Computer Management window.

3. Assign Distributed Component Object Model (DCOM) rights:

a. Go to Windows Start > Administrative Tools > Component Services. The Component Services
window opens.

b. Expand Component Services > Computers > My Computer.
c. Right-click My Computer and select Properties. The My Computer Properties window opens.
d. Click the COM security tab.
e. In the Access Permissions area, click Edit Limits
f. In Distributed COM Users, verify that Local Access and Remote Access are selected.

g. Click OK to save settings.
h. In the My Computer Properties window, Launch and Activation Permissions area, click Edit

Limits
i. In Distributed COM Users, verify that Local Launch, Remote Launch, Local Activation, and

Remote Activation are selected.
j. Click OK to save settings and click OK again to close the My Computer Properties window.

k. Select File > Exit to exit the Component Services window.
4. Configure the WMI namespace security assignments

a. Go to Windows Start > Run....
b. Enter wmimgmt.msc and click OK.
c. Right-click WMI Control (Local) and select Properties.
d. Click the Security tab.
e. Click Security.
f. Click Add.

Chapter 10. Customizing agent configuration 209

g. Click Advanced.
h. Click Find Now.
i. Select the new user account, and click OK until you return to the Security for Root window.
j. Click Advanced and select the newly added user account.

k. Click Edit.
l. From the Apply to: menu selection, select This namespace and subnamespaces.

m. In Execute Methods, verify that Enable Account, Remote Enable, and Read Security are
selected.

n. Click OK until you return to the wmimgmt window.
o. Select File > Exit to exit the wmimgmt window.

What to do next
For more information about collecting WMI data from a remote system, see “Monitoring data from
Windows Management Instrumentation (WMI)” on page 69.

Configuring a Secure Shell (SSH) remote connection
Information about configuring an SSH remote connection

About this task
Script data sources can monitor data on the system where the agent is installed and also on remote
systems. If script data sources are monitoring data remotely, they all share SSH remote connection
configuration properties for the agent level where they are defined. Earlier versions of an agent might use
the script data provider before remote monitoring was enabled. To maintain compatibility with earlier
versions of agents, SSH remote connection configuration properties are not automatically added to the
agent. The script data source in your agent monitors data on the local system where the agent is installed.

If you define a Script data source in a subnode and you select Enable data collection using SSH, you can
configure each subnode instance to monitor a different remote system. All script data sources in the
subnode share SSH remote connection configuration properties.

If you want the agent to remotely monitor a remote system, use the following procedure.

Procedure
In the Agent Editor Data Source Definition window for the script data source, select Enable data
collection using SSH.

Results
The following connection-specific configuration properties can be accessed from the Agent Editor,
Runtime Configuration Information page by selecting Configuration for Secure Shell (SSH) > SSH
Remote Connection
Network address

The IP address or host name of the remote computer.
SSH Port Number

The IP port number on which the SSH server is running. The default value is 22.
Authentication Type

Type of authentication to use when you are logging on to the remote SSH server. You can choose
Password or Public Key.

Disconnect from the remote system after each collection interval
An option to determine whether the script data provider drops the login session to the remote system
after it collects data. By default, the value is No.

210 IBM Agent Builder: IBM Agent Builder User's Guide

Remove script from the remote system after each collection interval
An option to delete the script from the remote system after each data collection interval. By default,
the value is No.

If the Authentication Type is set to Password, the following configuration properties can be accessed from
the Agent Editor, Runtime Configuration Information page by selecting Configuration for Secure Shell
(SSH) > Password:

Username
User name for the remote system

Password
Password for the remote system

If Authentication Type is set to Public Key, the following configuration properties can be accessed from
the Agent Editor, Runtime Configuration Information page by selecting Configuration for Secure Shell
(SSH) > Public Key:

Username
User name that is associated with the public key file

Public Keyfile
Public key file that is associated with the user

Private Keyfile
Private key file that is associated with the user

Password
Password that is used to unlock the private key file

What to do next
You can view, add, and change the configuration properties by using the Agent Editor. For instructions, see
“Changing configuration properties by using the Agent Editor” on page 207. If the SSH Remote
Connection configuration properties are included in a subnode, you can also specify Subnode
Configuration Overrides. For instructions, see “Subnode configuration” on page 193.

Chapter 10. Customizing agent configuration 211

212 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 11. Creating workspaces, Take Action
commands, and situations

After installing an agent in an IBM Tivoli Monitoring environment, you can create workspaces, queries,
Take Action commands, and situations for your monitoring solution.

The situations, workspaces, Take Action commands, and queries that you create can be included in the
installation package. To have one installation image for situations, workspaces, and the agent itself, the
situation, and workspace files must be in the same project as the agent. The Agent Builder provides a
wizard to create the appropriate files in the agent project. For information about importing application
support files, see Chapter 17, “Importing application support files,” on page 257.

Creating situations, Take Action commands, and queries
Find information to help create situations, Take Action commands, and queries.

To create situations, Take Action commands, and queries, use the Tivoli Enterprise Portal and the
embedded Situation editor. For detailed information about how to create situations, see the Tivoli
Enterprise Portal User's Guide. You can also use the help documentation that is installed with your Tivoli
Enterprise Portal Server. An Agent Builder monitoring agent can recognize and perform special processing
for a set of specific Take Action commands. For more information about these special Take Action
commands, see Appendix J, “Take Action commands reference,” on page 369.

Situations for system monitor agents are created differently from the Enterprise situations that are
created with the Tivoli Enterprise Portal Situation editor or the tacmd createSit command. For system
monitor agents, private situations are created in a local private situation configuration XML file for the
agent. For information about creating situations for system monitor agents, see "Private situations" in the
"Agent Autonomy" chapter of the IBM Tivoli Monitoring Administrator's Guide.

Creating workspaces
Place the Tivoli Enterprise Portal in the Administrator mode to create workspaces that you can export and
include in your solution.

About this task
Build the workspaces in the environment from which they are used. When you build workspaces, change
the display settings on your computer to build workspaces at the minimum resolution that is normally
used in your environment. Building workspaces at a greater resolution can create views that are too
cluttered to be used reasonably at lesser resolutions.

To create workspaces that you can export and include in your solution, the Tivoli Enterprise Portal must
be placed in the "Administrator" mode. To place the Tivoli Enterprise Portal in "Administrator" mode, use
the following steps:

Procedure
1. Go to the ITM_INSTALL/CNP directory and open the cnp.bat file.

If you used the default installation, the directory is C:\IBM\ITM\CNP. In the cnp.bat file, you must
update the set _CMD= %_JAVA_CMD% line to include option -Dcnp.candle.mode="$_KCJ_$".

If you want to create extensions on Linux or AIX systems, use the following path:

/opt/IBM/ITM/li263/cj/bin/cnp.sh

Where li263 is the operating system on which the Tivoli Enterprise Portal is running.

© Copyright IBM Corp. 2010, 2021 213

https://ibm.biz/BdHmkw
https://ibm.biz/BdHmkw

The updated set _CMD= %_JAVA_CMD% looks similar to the following example:

set _CMD= %_JAVA_CMD% -Dcnp.candle.mode="$_KCJ_$" -Xms64m -Xmx256m -showversion -noverify
 -classpath %CPATH% -Dkjr.trace.mode=LOCAL -Dkjr.trace.file=C:\IBM\ITM\CNP\LOGS\kcjras1.log
-Dkjr.trace.params=ERROR -DORBtcpNoDelay=true -Dibm.stream.nio=true
-Dice.net.maxPersistentConnections=16 -Dice.net.persistentConnectionTimeout=1
-Dcnp.http.url.host=SKINANE -Dvbroker.agent.enableLocator=false -Dnv_inst_flag=%NV_INST_FLAG
%
-Dnvwc.cwd=%NVWC_WORKING_DIR% -Dnvwc.java=%NVWC_JAVA% candle.fw.pres.CMWApplet

Note: The command is shown here on multiple lines for formatting reasons only.
2. Open a new Tivoli Enterprise Portal Client, and log in with the sysadmin user ID.
3. Set the "sysadmin" user ID in "Administrator" mode. In the Tivoli Enterprise Portal, select Edit >

Administer Users. Select sysadmin and then under the Permissions tab, select Workspace
Administration. Select the Workspace Administration Mode check box.
If you make the selection correctly, *ADMIN MODE* is displayed in the desktop title bar.

Figure 31. Setting the sysadmin user ID

214 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 32. Setting the sysadmin user ID (continued)

Chapter 11. Creating workspaces, Take Action commands, and situations 215

Figure 33. Setting the sysadmin user ID (continued)

What to do next
After you are in "Administrator" mode as depicted in (Figure 33 on page 216), you are now ready to create
workspaces for your application. For information about how to customize and create workspaces, see the
Tivoli Enterprise Portal User's Guide. Alternatively, use the help documentation that is installed with your
Tivoli Enterprise Portal component.

If you want your workspaces to be "read-only" and to not be deleted by a customer, set the "not-editable"
and "non-deletable" properties for each workspace. In the workspace properties, you must select the
following properties:

• Do not allow modifications
• Product-provided by IBM (mark as non-deletable)

You can go to the properties by either viewing a workspace or clicking the icon with the controls on it. You
can also go to one of the view property pages and then going to the workspace level in the properties tree.
If you have more than one workspace for each navigator item, remember to set the properties for each
workspace. As indicated in the following example screen capture:

216 IBM Agent Builder: IBM Agent Builder User's Guide

https://ibm.biz/BdHmkw

Figure 34. Setting workspace properties

Chapter 11. Creating workspaces, Take Action commands, and situations 217

Figure 35. Setting workspace properties (continued)

218 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 12. Preparing the agent for Cloud APM
If you want to use your agent with IBM Cloud Application Performance Management, you need to prepare
it using the Dashboard Setup wizard. This wizard configures the information that you can see in the
summary and detail dashboards in Cloud APM. It also sets the resource information that Cloud APM
requires for the agent.

Before you begin
In order to prepare the agent for Cloud APM successfully, you need to ensure that the agent provides the
following data:

• One or more data sets (attribute groups) that produce one row of data. You can use the attributes from
these data sets to populate the summary dashboard.

Important: To include any information in the summary dashboard, you need to provide it in a data set
that produces a single row of data. Some data sources create data sets that produce multiple rows of
data; for example, the process, Windows service, and command return code data sources place data
into the single Availability data set, which produces multiple rows. In such cases, you need to create a
filtered data set producing one row in order to include the data in a summary dashboard. For
instructions, see “Creating a filtered attribute group” on page 182.

• A numeric attribute within one of these data sets that indicates the status of the monitored service
(normal, warning, critical, or other similar status values). You must define status severity values for this
attribute. For instructions about defining status severity values, see “Specifying severity for an attribute
used as a status indicator” on page 44.

• If the port number on which the monitored application provides service is fixed, you must know the
port. If the port might change between different deployments, one of the data sets that produce one
row of data must contain a numeric field that indicates the port.

• If the agent can be installed on a host to monitor a server that is running on a different host, a string
attribute within one of these data sets that indicates the server IP address. If the agent always monitors
the host where it is running, such an attribute is not required.

Tip: If an attribute that provides the host name is available, you can create a derived attribute for the IP
address by using the nameToIpAddress function. For information about creating a derived attribute,
see “Creating derived attributes” on page 37. For information about the function, see
“ipAddressToName” on page 51.

If the agent has subnodes, these requirements apply to each subnode for which you want to create a
dashboard.

About this task
Cloud APM monitors resources. A resource corresponds to instance of the agent, or sometimes a subnode.
To define a resource, you need to supply a resource type name, server name, IP address, and port number
that apply to the monitored service.

Cloud APM displays a summary dashboard for every monitored resource. The summary dashboard
includes a status indicator; with this indicator (usually green, yellow, or red for normal, warning, or critical
status) the user can see the status of the resource at a glance. The same dashboard can contain a few
other high-level health metrics.

On the summary dashboard, data is displayed as single items. Therefore, the data set with this data must
produce only one row.

Optionally, a detail dashboard can be available for the agent. The user can click the summary dashboard
to view the detail dashboard. The detail dashboard can display tables, so data from any data set can be
used on this dashboard.

© Copyright IBM Corp. 2010, 2021 219

You must select the attributes that are displayed on the summary dashboard (including the status
indicator) and on the detail dashboard.

Important: The data in the attributes that you select is automatically passed from the agent to the Cloud
APM server every minute. Specifying too much data can lead to overloading of the network, the server, or
the monitored host. Select the required attributes only. For example, if a joined data set or a derived
attribute must be displayed, do not specify the source attributes as well.

Important: No data other than these attributes is passed to Cloud APM. You cannot view or use other
data in Cloud APM, except for thresholds, which are monitored at the agent level. If you use other data in
thresholds, you might not be able to view the threshold status in the Cloud APM console.

Procedure
1. From the Agent Information view, click the Dashboards link.
2. Under Dashboard Components, select Show agent components in the dashboard.

Tip: Alternatively, if you are creating an agent for use exclusively with IBM Tivoli Monitoring, you can
select No dashboard presence for this agent. In this case, do not complete the subsequent steps of
this procedure. You can not install such an agent in a Cloud APM environment.

3. Click the Dashboard Setup Wizard link.
4. If the agent has subnodes, define the arrangements of agent and subnode resources in Cloud APM:

• Select Base agent instances to display the base agent (data outside of subnodes) as a resource.
• For every subnode, select Subnode "name" instances to display this subnode as a resource.
• Optionally, for any of the selected subnodes, select Show as child of agent. In this case, the

subnode resource is displayed as a child under the agent resource in lists in the Cloud APM
console.

Cloud APM displays a summary and detail dashboard for each of the components you selected.

Important: If you run the wizard again and unselect an agent or subnode, the resources for the agent
or subnode are not removed automatically. To remove the resources, expand Resources in the
Outline view, select the resources to be deleted, and press the Delete key on the keyboard.

5. In the Attribute Selection - Status page, select the attribute that indicates the status of the
monitored service. Numeric attributes from groups that return a single data row are available.

Tip: Alternatively, if you do not want to display status in the dashboard, unselect Provide status for
this agent.

6. In the same page, you can select whether you want to display additional data in the summary and
detail dashboards:

• To display additional high-level health metrics in the summary dashboard, ensure the Select
additional attributes to display in this agent's summary information box is selected. Otherwise,
clear the box.

• To display additional data in the detail dashboard, ensure the Select additional attributes to
display in this agent's detail information box is selected. Otherwise, clear the box. (Typically,
select this box, as a detail dashboard is required to display enough data to make a monitoring
agent meaningful).

Click Next.
7. If you selected Select additional attributes to display in this agent's summary information, in the

Attribute Selection - Summary page, select up to four additional attributes to include in the
summary dashboard. Attributes from groups that return a single data row are available. Click Next.

8. If you selected Select additional attributes to display in this agent's detail information, in the
Attribute Selection - Details page, select the attributes to include in the detail dashboard. All
attributes in the agent are available; to avoid performance issues, include as few attributes as
possible. Click Next.

220 IBM Agent Builder: IBM Agent Builder User's Guide

9. In the Resource Type page, enter the server type that you are monitoring, for example, Email
server or SampleCo Database Server. Click Next.

10. In the Attribute Selection - Software Server Name page, enter a fixed software server name in the
Fixed Name field or select an attribute from your agent that gives the software server name. This
name is displayed to the user for this particular monitored instance, for example, the name of the
JBoss application server instance. Click Next.

Important: Do not run two or more monitoring agents, agent instances, or subnodes with the same
software server name on the same monitored host. If your agent has instances or subnodes, ensure
that a unique software server name is generated for every instance or subnode. If two different
agents produce the same software server name, do not install them on the same monitored host.

11. In the Attribute Selection - IP address page, select an attribute from your agent that specifies the IP
address (not host name) of the primary interface connection that the monitored server or application
uses. For example, the HTTP connection for an HTTP server or the database client connection for a
database server. Alternatively, select Use the agent's IP address to use the address of the host
where the agent runs. Click Next.

12. In the Attribute Selection - Port page, enter the port on which the monitored application provides
service or select a numeric attribute from your agent that specifies this port. Click Finish.

13. If you selected both an agent and a subnode or more than one subnode as resources, click Next to
enter dashboard and resource information for the next component (agent or subnode). If the Next
button is disabled, you entered the information for all necessary components; click Finish to
complete the wizard.

Results
When you install the agent on a monitored host, you can view the summary and detail dashboards in the
Status Overview tab.

Important: There can be a delay of up to 30 minutes between installation of the agent and availability of
the dashboards, especially if this is the first time that this agent type and version is installed in your
environment.

Click the summary dashboard for the agent to view the detail dashboard. By default, all information in the
detail dashboard is displayed as tables.

You can use the Attribute Details tab to configure custom display of this information as tables and charts.

Chapter 12. Preparing the agent for Cloud APM 221

222 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 13. Preparing the agent for Cloud Pak for
Multicloud Management

If you want to use your agent with IBM Cloud Pak for Multicloud Management, you need to prepare it
using the Resource wizard. The Resource wizard creates a resource definition. You can also establish
relationships between defined resources using the Relationship wizard.

Defining resources
Use the Resource wizard to create or modify resource definitions for your agent so that you can see their
monitoring data in the Resources dashboard on the Cloud Pak console.

Before you begin
The resource definition process reads the agent definition and allows you to build resources. But if you
then edit the agent definition to add an attribute, rename an attribute, add an attribute group, or delete
either one, these changes are not automatically reflected in the resource definition. For this reason,
ensure that you have the correct data before you run the Resource wizard.

About this task
Resources are defined by resource types, and when the agent runs it will create resource instances that
are displayed in the console. Resource types define a set of properties and metrics that provide the
identity and metrics related to a managed resource.

Use the Resource wizard to create or edit a resource definition for the agent. The resource definition then
automatically generates the widgets for the Resources dashboard. In the Resource wizard, you define an
attribute group; this attribute group provides the data for the basic widgets in the Resources dashboard.
Optionally, you can also add components; components are extra tables of data that appears in the
Resources dashboard below the Events timeline widget. You can add as many component tables as you
need.

When you run the Resource wizard, the following widgets are created and displayed in the IBM Cloud Pak
for Multicloud Management Resources dashboard:

• Events timeline
• Line graphs that display data for the "important" metrics (see step “5” on page 224 for a description)
• Tabular display of the metrics in the main resource attribute group
• Optional (s) for each component created
• Related resources widget

In addition, if you have a status attribute in the attribute group that defines a resource, a threshold is
automatically created in the Cloud Pak console.

Procedure
Complete these steps to define or edit a resource for the agent:
1. Select Agent Definition>Resources, the Introduction window is displayed, click Next.
2. In the Resource Information window, select Add new Resource, click Next.
3. In the Attribute Group Selection window, select an attribute grouping. At a minimum, the attribute

grouping needs to identify the resource.
4. In the Resource Information window, enter a name and description for the resource. The name that

you enter corresponds to the name you see in the Resources types list in the Resources dashboard.

© Copyright IBM Corp. 2010, 2021 223

The description also appears in the resource list in the Resource tab. You can use any characters for
name or description.

5. In the Attributes window, you can assign different characteristics to your attributes.

• Not Available: Use this to eliminate the attribute completely from both the Resources dashboard
and the Threshold manager.

• Not uploaded to the server, available for threshold calculation: Use this to indicate that the
attribute data isn't uploaded by default. Use this if you don't want this attribute to be displayed in the
Resources dashboard, but you do want to be able to create thresholds against it in the Threshold
manager.

• Metric describes the state of the resource instance at a given time. Use this to assign a string as a
metric. Usually all strings are properties and all numbers are metrics (unless you earlier explicitly
specified otherwise in the Attribute editor, for more information, search for 'purpose' in table 1 in the
“Numeric aspects of attributes” on page 42 topic.

• Property describes the resource instance: Use this to assign a numeric as a property. By default all
the strings are properties and all the numbers are metrics.

• Display Name: By default the display name and key property is the node name. This is indicated
with "D" in the Opt column. When node name is the display name, you see the origin node name
from IBM Tivoli Monitoring displayed in the selection lists in the Resources dashboard. If there is an
attribute that is more suited to being the display name, select Display name for that attribute.

• Important: This indicates that a metric is represented in a line chart in the Resources dashboard.
The label and grouping for the line chart is based on the unit that you specified when you defined the
attribute. For more information, see “Numeric aspects of attributes” on page 42. It is recommended
indicating 1 - 4 metrics as important.

6. If you want more tables to present extra data in the resource, add a component, you add one
component for each table you want to add to a resource. In the Component selection window, select
Add a new component. Click Next.

7. In the Component Information window, enter a name and description for the component. The name
that you enter corresponds to the name that is given to the table in the Resources dashboard. You can
use any characters for name or description. Click Next.

8. Repeat step “3” on page 223 and “5” on page 224. Click Finish.

Results
You can now view the Resource dashboard in the Cloud Pak console. Representations of your resource
definition are presented in these Resource dashboard widgets:

• Events timeline
• Line graphs that display data for the "important" metrics (see step “5” on page 224 for a description)
• Tabular display of the metrics in the main resource attribute group
• Optional (s) for each component created
• Related resources widget

.

Building resource relationships
After you have created your resource definitions, you can create a relationship between two resources
using the Relationship wizard.

About this task
The Relationship wizard guides you through setting up a resource relationship for enriching the interaction
and display of data in the Resource dashboard between two resources. For example, you can set up a
relationship for an application resource that runs on the Operating system (the target resource). You can

224 IBM Agent Builder: IBM Agent Builder User's Guide

then see the linkage in the Resource dashboard when the operating system is slow or fails, and how it
affects the application.

Procedure
Complete these steps to create or edit a resource relationship:
1. Select Agent Definition > Relationship to open the Introduction window, and then click Next.
2. In the Relationship Selection window that displays, choose to add or modify a relationship:

• To define a new relationship, click Add a new relationship, and click Next.
• To edit an existing relationship, select it from the list, click Modify selected relationship, and click

Next.
3. Create or edit the resource relationship definition:

a) For Source resource, select the main resource.
b) For Relationship type, select the option that describes the relationship: is a federation of, runs on

(and depends on), is a member of, defines, has been assigned to, manages, or uses.
c) For Target resource, select the target resource.
d) If you selected a source resource or target resource that is a single-instance resource (does not

specify keys), click Finish.
e) If you selected a source and target that are both multi-instance resources, click Next, and select

which resource properties to use to match the related resources.
You can add multiple properties if you want multiple key attributes that match.

Note: To define a relationship to an operating system, select by selecting the check box for
Relationship is with the operating system the agent is running on.

Results
You can observe the relationship in the Resource dashboard for your agent in the Cloud Pak console.

Chapter 13. Preparing the agent for Cloud Pak for Multicloud Management 225

226 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 14. Data Definition Designer
For information about the Data Definition Designer, see The Data Definition Designer guide.

© Copyright IBM Corp. 2010, 2021 227

228 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 15. Testing your agent in Agent Builder
After you use Agent Builder to create an agent, you can test the agent in Agent Builder.

Test the agent to ensure that the monitoring data you are expecting is the data that is being displayed. By
testing your agent, you can learn to modify or tweak settings in the agent to ensure that the data
displayed is beneficial and accurate.

You can test your agent in Agent Builder by using the following methods:

1. Begin by using the attribute group test function of Agent Builder to test individual attribute groups one
at a time. For more information, see “Attribute group testing” on page 229.

2. After you complete attribute group testing, you can use the agent test function of Agent Builder to test
all attribute groups in your agent together. For more information, see “Full agent testing” on page 232.

Important: When testing your agent in Agent Builder, you can see the following special values for numeric
attributes:

• -1: a general error
• -2: missing data
• -3: no value (for example, NULL was returned by a database)

Attribute group testing
You can use attribute group testing to test the attributes groups of the agent you created with Agent
Builder, one attribute group at a time. You can test many attribute groups before you complete the
attribute group definition. For example, you can initiate testing from the IBM Tivoli Monitoring Agent
Wizard when you are defining the attribute groups of a new agent. You can also initiate testing from the
IBM Tivoli Monitoring Agent Component Wizard when you are adding attribute groups to an existing
agent.

Before you begin
Before you start testing an attribute group, you can optionally:

• Set attribute group testing preferences. For more information, see “Attribute group testing -
preferences” on page 231.

• Set environment variables, configuration properties, and where applicable Java information. For more
information, see “Attribute group testing - configuration” on page 231.

About this task
Agent Builder supports an attribute group test function for most data sources

Procedure
• Start the Testing procedure in the following ways:

1. During agent or attribute group creation click Test on the relevant data source Information page.
2. After agent creation, select an attribute group on the Agent Editor Data Source Definition page and

click Test . For more information about the Agent Editor, see Chapter 4, “Using the Agent Editor to
modify the agent,” on page 17.

After you click Test in one of the previous two steps, the Attribute group Test window is displayed. This
window is different for different data sources,

Agent Builder supports an attribute group test function for most data sources.

© Copyright IBM Corp. 2010, 2021 229

For more information about the test procedures for specific attribute groups, see the following Testing
sections:

– Windows Management Instrumentation (WMI), for more about the WMI test procedure, see “Testing
WMI attribute groups” on page 71

– Windows Performance Monitor (Perfmon), for more about the Perfmon test procedure, see “Testing
Perfmon attribute groups” on page 73

– Simple Network Management Protocol (SNMP), for more about the SNMP testing, see “Testing
SNMP attribute groups” on page 77

– Simple Network Management Protocol (SNMP) event sender, for more about the SNMP event test
procedure, see “Testing SNMP event attribute groups” on page 82

– Java Management Extensions (JMX), for more about the JMX test procedure, see “Testing JMX
attribute groups” on page 101

– Common Information Model (CIM), for more about the CIM test procedure, see “Testing CIM
attribute groups” on page 104

– Log file, for more about the log file test procedure, see “Testing log file attribute groups” on page
113

– Script, for more about the script test procedure, see “Steps for monitoring output from a script” on
page 125

– Java Database Connectivity (JDBC), for more about the JDBC test procedure, see “Testing JDBC
attribute groups” on page 134

– Internet Control Message Protocol (ICMP) ping, for more about the ICMP test procedure, see
“Testing Ping attribute groups” on page 137

– Hypertext Transfer Protocol (HTTP) Availability, for more about the HTTP test procedure, see
“Testing HTTP attribute groups” on page 145

– SOAP, for more about the SOAP test procedure, see “Testing SOAP attribute groups” on page 153
– Transmission Control Protocol socket (TCP) socket, for more about the socket test procedure, see

“Testing socket attribute groups” on page 163
– Java application programming interface (API), for more about the Java API test procedure, see

“Testing Java application attribute groups” on page 176

Some data sources do not have an attribute group test function, for example:

– When you can use the Agent Builder browser to view live data on a system. For example, you can
view the processes that are currently running on the system (processes). Other examples are when
you can view the services that are installed on the system (windows services) and the Windows
Event Logs that are present.

– There is little or no customization that you can do in the agent (AIX Binary Log, command return
code).

– Joined and Filtered attribute groups cannot be tested by using the attribute group test function
because these groups are based on multiple attribute groups.

Note:

1. Use the full agent test to test data sources that cannot be tested by using the attribute group test
function. For more information about the full agent test, see “Full agent testing” on page 232.

2. When you test data sources, after you click Collect Data, data might not be displayed at all or might
not be current after the first click. In such cases, click Collect Data a second time to display current
data.

• Debugging:

Each data source that is tested has a test directory that is created for it by Agent Builder. This directory
is used for the test runtime environment of the data source. Log files that relate to tests run on the
data source are stored under this directory. The log files can be useful to help debug issues that are
found during testing.

230 IBM Agent Builder: IBM Agent Builder User's Guide

Note:

1. The location of the test log file is shown as a status message in the Test window after you click
Start Agent and also after you click Stop Agent.

2. All test data source directories are deleted when the Agent Builder is shut down.

Attribute group testing - preferences
Set preferences before you test an attribute group.

About this task
Before you start testing an attribute group, you can optionally set some preferences that determine how
attributes are treated during testing.

Procedure
1. Select Window > Preferences from the Agent Builder menu bar.

The Preferences window opens.
2. Select Agent Builder.

The preferences that are associated with testing attribute groups are shown:

Show data types changed dialog when testing
When selected, Agent Builder suggests changes to the data type of an attribute. Agent Builder
suggests changes when the data type of an attribute does not match the data that is returned by a
test for that attribute. For example, if the string length defined for an attribute is too short to hold a
value that is returned by a test. In this example, Agent builder suggests redefining the attribute to
have a longer string length. When this option is cleared, Agent Builder does not check or suggest
data types during testing. This option is selected by default.

Maximum script or log attributes created
The value that is entered in this field determines the maximum number of attributes that Agent
Builder parses during the initial test of a log file or script attribute group. The default value is 25.

3. When you are finished setting your preferences, click OK to save your settings and close the
Preferences window.
If you want to restore the default settings, click Restore Defaults before you click OK

Attribute group testing - configuration
Set environment variables, configuration properties, and Java information before you test an attribute
group.

About this task
Before you start testing an attribute group, you can optionally set environment variables, configuration
properties, and where applicable Java information from the data source Test window. The Java
information is a subset of the configuration data. Some environment variables have special values that are
set by default for attribute group testing. For more information about environment variables with special
values for attribute group testing, see “Test Environment variables” on page 236.

Procedure
1. Optional: Click Set Environment from the data source Test window.

The Environment Variables window opens. When populated, the Environment Variables window lists
all of the environment variables that are used during the running of the test. The initial view of the
Environment variable window contains any existing environment variables that are defined in your
agent. It also contains any environment variables that you added from previous tests of this agent.
a) Click Add or Edit to add or edit individual variables.

Chapter 15. Testing your agent in Agent Builder 231

b) Click Remove to remove individual variables, or Restore Default to restore default variables and
remove all others.

c) Click OK to save your changes and return to the Test window.
2. Optional: Click Configuration from the data source Test window. The Runtime Configuration window

opens.
a) Click Edit Agent Configuration to add a configuration property or to edit existing agent

configuration properties by using the Configuration Properties window.
b) Select a configuration property and click Edit to edit an existing configuration property that relates

to the attribute group you are testing.
c) Select a configuration property and click Restore Default to restore a configuration property to its

default value.

Important: If a JMX data source connects to a remote WebSphere Application Server, ensure that a
local WebSphere Application Server is installed and that the Java location is set to the JRE that this
server uses. For details about setting up the connection, see “Monitoring Java Management Extensions
(JMX) MBeans” on page 83.

3. Click OK to save your changes and return to the Test window.
4. Note: You can set Java information for following types of attribute groups:

• Java Management Extensions (JMX)
• Java Database Connectivity (JDBC)
• Hypertext Transfer Protocol (HTTP) Availability
• SOAP
• Java application programming interface (API)

The Java information is a subset of the configuration data described in step “2” on page 232

Optional: Click Java Information from the data source Test window.
The Java Information window opens.
a) Enter Java Information.

For example, Browse to or type the location of the Java Runtime Environment (JRE), select a Java
trace level, or enter JVM arguments

b) Click OK to save your changes and return to the Test window.

Full agent testing
Use full agent testing to test all attribute groups of your agent together. You can also use full agent testing
to test data sources that cannot be tested by using the attribute group test function.

About this task
You can use full agent testing to run the agent in the same way it runs in IBM Tivoli Monitoring without
needing an IBM Tivoli Monitoring installation.

Important: On Windows systems, If you want to run a full test of the agent inside Agent Builder (see “Full
agent testing” on page 232), ensure that the 32-bit version of the operating system on which you are
running the Agent Builder, that is, 32-bit Windows, is selected in the Agent Information window. On Linux
systems, the 64-bit version must be selected.

Procedure
1. Open the Agent Test perspective:

a) In the agent editor, open the Agent Information tab.
b) Click Test the agent.

232 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 36. Test Agent section of the Agent Editor, Agent Information page.

Alternatively, from the Agent Builder menu select Window > Open Perspective > Other, select
Agent Test and click OK

The Agent Test perspective opens (Figure 38 on page 235). The Agent Test view shows agents that
you have opened in the agent editor; you can test any of these agents. An Attribute Group Test view
is also displayed; this view is initially empty. The Attribute Group Test view shows data that is
collected from a selected attribute group when the agent is running.

Tip: If no agents are being edited, the Agent Test perspective is empty. To populate the view, go to
the IBM Tivoli Monitoring perspective and open an agent in the Agent Editor. When an agent is
opened in the Agent Editor return to the Agent Test perspective to test the agent.

2. Optional: Configure environment variables and configuration properties before you start the test.
You can access the Environment Variables and Runtime Configuration windows in two ways from
the Agent Test view:

• Right-click the agent in the Agent Test view to open a selection menu. You can select Set
Environment from the menu to open the Environment Variables window. You can select
Configuration from the menu to open the Runtime Configuration window.

• Click the view menu icon on the Agent Test view toolbar to access the Set Environment and
Configuration menu items as in the previous choice.

For more information about using the Environment Variables and Runtime Configuration windows,
see “Attribute group testing” on page 229.

Important:

a. The agent is populated automatically with the last set of configuration that relates to each tested
attribute group.

b. Some environment variables can have different default values for attribute group testing and for
full agent testing. For more information about environment variables with special values for
attribute group testing, see (“Test Environment variables” on page 236).

c. If a JMX data source connects to a remote WebSphere Application Server, ensure that a local
WebSphere Application Server is installed and that the Java location is set to the JRE that this
server uses. For details about setting up the connection, see “Monitoring Java Management
Extensions (JMX) MBeans” on page 83.

d. In a Java API, JDBC, JMX, HTTP, or SOAP data source, you can use the Java > JVM arguments
setting to control agent trace logging. Set the following value:

-DJAVA_TRACE_MAX_FILES=files -DJAVA_TRACE_MAX_FILE_SIZE=size

where files is the maximum amount of trace log files that are kept (the default value is 4) and size
is the maximum log file size in kilobytes (the default value is 5000). For example, you can set the
following value:

-DJAVA_TRACE_MAX_FILES=7 -DJAVA_TRACE_MAX_FILE_SIZE=100

In this case, the agent writes 100 kilobytes into the first log file, then switches to the second log
file, and so on. After writing seven log files of 100 kilobytes each, it overwrites the first log file.

e. If your agent has subnodes, in an installed version you can set different configuration values for
different subnodes and separately for the base agent attribute groups. However, in full agent
testing configuration you can only set every configuration value once; the setting applies to the
base agent and any subnodes. You can only test one instance of every subnode.

Chapter 15. Testing your agent in Agent Builder 233

3. In the Agent Test view, select the agent that you want to test and click the Start Agent icon.

A window indicates that the agent is starting. When the agent starts, its attributes groups are shown
as children of the agent in the Agent Test view. The attribute groups are indicated by the attribute

group icon .

The status attribute groups that give information about the agent (Performance Object Status,
Thread Pool Status and Take Action Status) are also shown as children of the agent in the Agent
Test view. The status attribute groups are indicated by the information icon.

You can start and run more than one agent at the same time.

The Stop Agent icon becomes available when the agent is started.

If your agent has subnodes or navigator groups, they are shown as nodes in the Agent Test view.
Subnode definitions are shown under the agent. A subnode instance node is shown under the
subnode definition node. Attribute groups and navigator groups are shown under the subnode
instance node. For example:

Figure 37. Agent Test view with example subnode and navigator group highlighted.

You can right-click on any of the nodes in the Agent Test view to access menu selections like Edit and
Stop Agent. Edit opens the Data Source Definition for the selected node in the Agent Editor.

Note: Changes that you make with the Agent Editor are not visible in the running agent until you stop
and restart the agent.

4. In the Agent Test view, select the first attribute group that you want to test.

When you select an attribute group, a data collection begins for the selected attribute group. If the
collection takes some time, a window indicates that the data collection is in progress. When the data
collection is complete the collected data is displayed in the Attribute Group Test view, for example:

234 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 38. Agent Test perspective

If no data is displayed, a message 0 data rows returned is shown in the Attribute Group Test
view. There are several reasons why the agent might not return data. These reasons include:

• There is no data
• Incorrect definition
• Incorrect configuration

You can check the reason why no data is returned by looking at the value of the Error_Code in the
Performance Object Status attribute group. For more information about viewing the Performance
Object Status attribute group, see step “9” on page 236

To collect data for another attribute group in the running agent, select the required attribute group.

When you select an attribute group in the Agent Test view, the corresponding attribute group is
displayed in the Agent Editor view.

5. Optional: Run a second data collection, after the initial data collection, for certain attribute group
types, to get useful data values.

To run a data collection, click the collect data icon in the Attribute Group Test view.

If the collection takes some time, a window indicates that a data collection is in progress. When the
data collection is complete, the newly collected data is displayed in the Attribute Group Test view.

6. Optional: Click an attribute column heading in the Attribute Group Test view to open the Attribute
Information in the Agent Editor Data Source Definition tab. You can also access the same Attribute
Information by right-clicking on any data cell in the table and choosing Edit from the menu.
You can edit properties of the attribute in the normal way. Changes that you make are not visible in
the running agent until you stop and restart the agent.

7. Optional: Open multiple Attribute Group Test views at the same time.

To open an additional Attribute Group Test view, click the view menu icon on the Attribute
Group Test view toolbar and then select Open view for attribute group.

Note: When an additional Attribute Group Test view is opened, it displays the same attribute
information as the original Attribute Group Test view. You can then select another attribute group in
the Agent Test view to display different attribute group information in the original Attribute Group
Test view. The first time another Attribute Group Test view is opened, it opens in the same location

Chapter 15. Testing your agent in Agent Builder 235

as the original view but with its own tab. If you want to see the two views simultaneously, you can
drag the tab to another location in the workspace.

8. Optional: Select the subnode instance information attribute group, if your agent has subnodes, to see
how the subnodes are listed in your agent (Figure 37 on page 234). Selecting the subnode instance
information attribute group shows subnode instance information in the Attribute Group Test view
(for all online subnodes of the selected type).

9. Optional: To see more information about the operation of the agent, you can select the Performance
Object Status and Thread Pool Status attribute groups in the Agent Test view. These status
attribute groups are indicated by the information icon . Select these groups to see status
information about earlier data collections for your attribute groups.

For example:

Figure 39. The Attribute Group Test view that shows more information (Performance Object Status)
about data collections for the Managed_URLs and Managed_Nodes attribute groups

10. When you are finished testing your agent, click the stop agent icon

Test Environment variables
Use these environment variables to control the behavior of the agent during testing.

Environment variables are dynamic named values that determine how the agent runs. For attribute group
test, some agent environment variables are set to special values. The special values are used so that the
agent responds in a way that suits the testing of a single attribute group. For full agent test special values
are not used and instead the default values are used. The default values mean that the agent behaves as
it normally would, which is more appropriate to full agent testing.

The environment variables that have special values for attribute group testing are summarized in the
following table. For more information about all agent environment variables, see (“List of environment
variables” on page 19). For more information about setting environment variables, see (“Environment
variables” on page 19).

Table 43. Environment variables

Environment variable

Default
value (full
agent test)

Attribute
group test
value

Reason for changed value for attribute
group test

CDP_DP_INITIAL_COLLECTI
ON_
DELAY

varies 1 This value applies to an agent with a thread
pool. This value is the time in seconds that
the thread pool waits before the initial data
collection request is sent to a data provider.

Note: If
CDP_DP_INITIAL_COLLECTION_DELAY is
not set, the thread pool waits for a time that is
specified by CDP_DP_REFRESH_INTERVAL or
CDP_ATTRIBUTE_GROUP_REFRESH_INTERV
AL. This wait time is the same time the thread
pool waits between data collections, and
might be too long to wait for the first data
collection.

236 IBM Agent Builder: IBM Agent Builder User's Guide

Table 43. Environment variables (continued)

Environment variable

Default
value (full
agent test)

Attribute
group test
value

Reason for changed value for attribute
group test

CDP_DP_CACHE_TTL 55 1 When set to 1 a Collect Data request is much
more likely to cause the data provider to
collect data immediately. Otherwise it might
return cached data that is up to 60 seconds
old.

Chapter 15. Testing your agent in Agent Builder 237

238 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 16. Installing your agent into a monitoring
infrastructure for testing and use

After you test your agent in Agent Builder, you can install the agent into an existing IBM Tivoli Monitoring,
IBM Cloud Application Performance Management or IBM Cloud Pak for Multicloud Management
environment for further testing and for use.

Installing and testing your agent in a monitoring infrastructure has the following benefits:

• You can configure and test multiple instances of an agent that run simultaneously.
• You can configure and test multiple instances of subnodes that run simultaneously.
• In a Tivoli Monitoring environment, you can build workspaces, situations, actions, and queries in the

Tivoli Enterprise Portal.

Important: Deploy initial versions of your agent into a test version of the monitoring infrastructure. On
Tivoli Monitoring, use a separate monitoring server and portal server. On Cloud APM, use a test cloud
account or a separate test deployment of the on-premises monitoring server. Deploy the final version of
your agent on a production infrastructure.

If you deploy a version of the agent on the production monitoring infrastructure and then change any data
sets in the agent, the new version might conflict with the older version on the server. In this case it might
be impossible to use any version of the agent.

Installing an agent
There are two methods for installing the agents that you create with Agent Builder.

1. To test your agent with a monitoring infrastructure that is running on the same system as the Agent
Builder, you can install the agent into the local Tivoli Monitoring or Cloud APM installation.

2. To test or use the agent with a Tivoli Monitoring or Cloud APM system that is not running on the same
system as the Agent Builder, you can generate a compressed file (agent package) that you can transfer
to the other systems and deploy.

Note:

1. With Tivoli Monitoring, after you install an agent, you can see performance metrics in the Tivoli
Enterprise Portal tables. For support of situations or workspaces, see Chapter 17, “Importing
application support files,” on page 257.

2. With Tivoli Monitoring, after you install the agent, you can use the Tivoli Enterprise Portal to verify the
data from the agent. For more information, see “Changes in the Tivoli Enterprise Portal” on page 250.
If after you view the data in the Tivoli Enterprise Portal, you want to modify the agent, see Chapter 4,
“Using the Agent Editor to modify the agent,” on page 17.

3. For an agent that supports Linux or UNIX, generate the installer image on a Linux or UNIX system
because a Linux or UNIX system creates the files with the appropriate permissions.

Installing an agent locally
Install the agent into a monitoring environment on the local system where Agent Builder is running.

About this task
Complete the following steps to install your agent into a monitoring environment on the local system:

1. Click the itm_toolkit_agent.xml file from the Project Explorer navigation tree of Agent Builder by
using one of the following methods:

a. Right-click the itm_toolkit_agent.xml file and select IBM > Generate Agent.

© Copyright IBM Corp. 2010, 2021 239

b. Select the itm_toolkit_agent.xml file and select the Generate Agent icon on the toolbar.
c. Double-click the itm_toolkit_agent.xml file and select Agent Editor > Generate Agent.

2. In the Generate Agent Wizard window, in the Install the Agent Locally section, enter the installation
directory for the monitoring infrastructure. The Agent Builder completes the value that is found in the
CANDLE_HOME environment variable. If this variable is not set, the default value for Windows, C:\IBM
\ITM, is displayed.

The check boxes are enabled as follows:
Install the agent

Enabled if the Agent Builder detects an appropriate Tivoli Enterprise Monitoring Agent or a IBM
Cloud APM agent in the specified location. An appropriate agent is one that supports the local
operating system and is the correct minimum version.

Install the TEMS support
Enabled in a Tivoli Monitoring environment if the Agent Builder detects a Tivoli Enterprise
Monitoring Server in the specified location.

Install the TEPS support
Enabled in a Tivoli Monitoring environment if the Agent Builder detects a Tivoli Enterprise Portal
Server in the specified location.

3. Select the components to install (agent, Tivoli Enterprise Monitoring Server support, Tivoli Enterprise
Portal Server support).

4. In a Tivoli Monitoring environment, if the Tivoli Enterprise Monitoring Server or Tivoli Enterprise Portal
Server is installed on the local computer and you are installing the support files for these servers, you
can choose whether to restart the servers.

In this case, the Restart TEMS without credentials and Restart TEPS check boxes are active in the
Install the Agent Locally section of the Generate Agent wizard. You can clear the check boxes to
install the support without recycling the servers.

When you clear the Restart TEMS without credentials check box, you are prompted for the Tivoli
Enterprise Monitoring Server user ID and password. Enter these details and click Logon. If you are
running Tivoli Monitoring with security off, enter "sysadmin" for the user ID, leave the password blank,
and click Logon.

Alternatively, to continue without entering credentials, click Logon without specifying a user ID and
password or click Cancel. If you complete these steps, the Tivoli Enterprise Monitoring Server is
recycled.

Important: To install support files without recycling the Tivoli Enterprise Monitoring Server, ensure
that the Tivoli Enterprise Monitoring Server is running.

5. Select the agent components to generate. You can select Base Agent, Cognos Reporting, or both.
6. In a IBM Cloud APM environment, you can provide security signing for self-describing agents. Click

Edit all jar signing preferences. You can add a time stamp to signed JAR files and specify the time
stamping authority. Specify details about your Java Keystore File.

Note: You must create the Java Keystore File by using Java tools. For example, to generate a private
key and certificate with a corresponding public key in a Java Keystore File, you can run this command:

• ab_install_path/jre/bin/keytool -genkeypair -keystore keystore_file_path -
storepass key_store_password -alias key_store_alias -dname "CN=common_name,
OU=organizational_unit, L=city_or_locality, ST=state_or_province,
C=country" -keypass key_password

Where:

• ab_install_path is the location where Agent Builder is installed
• keystore_file_path is the path where an existing JKS keystore is located, or where one is created
• key_store_password is the password that is needed to access any items in this keystore
• key_store_alias is a name that identifies this key within the keystore (defaults to "mykey")

240 IBM Agent Builder: IBM Agent Builder User's Guide

• key_password the password that is needed to access this particular key (defaults to
key_store_password)

The certificate must be included in the keystore for the server.
7. When you complete the JAR Signing details, click OK.
8. Click Finish.
9. Configure and start the agent. For more information, see “Configuring and starting the agent in an IBM

Tivoli Monitoring environment” on page 243 or “Configuring the agent” on page 245 and “Starting and
stopping the agent” on page 246 in a IBM Cloud APM environment.

For Tivoli Monitoring v6.2 FP1 or later, you can install the Tivoli Enterprise Monitoring Server and Tivoli
Enterprise Portal Server support without restarting the servers. In this case, the Restart TEMS
without credentials and Restart TEPS check boxes are active in the Install the Agent Locally section
of the Generate Agent wizard. You can clear the check boxes to install the support without recycling
the servers. When you clear the Restart TEMS without credentials check box, you are prompted for
the Tivoli Enterprise Monitoring Server user ID and password. Enter the Tivoli Enterprise Monitoring
Server user ID and password and click Logon. If you are running Tivoli Monitoring with security off,
enter "sysadmin" for the user ID, leave the password blank, and click Logon. You can also continue
without entering credentials (click Logon without specifying a user ID and password or click Cancel.
Doing so causes the Tivoli Enterprise Monitoring Server to be recycled).

Note: The Tivoli Enterprise Monitoring Server must be running to install support files without recycling
the Tivoli Enterprise Monitoring Server.

Creating the agent package
You can use Agent Builder to create a compressed agent installation package.

About this task
An agent package contains all the fines necessary to run the agent, as well as the installation and
configuration scripts. The package also includes support files for the monitoring environment.

You can use an agent package to install the agent into the IBM Tivoli Monitoring and IBM Cloud
Application Performance Management environments.

Procedure
1. Click the itm_toolkit_agent.xml file from the Project Explorer navigation tree of Agent Builder by

using one of the following methods:

• Right-click the itm_toolkit_agent.xml file and select IBM > Generate Agent.

• Select the itm_toolkit_agent.xml file and select the Generate Agent icon on the toolbar.
• Double-click the itm_toolkit_agent.xml file and select Agent Editor > Generate Agent.

2. Enter the name of the directory where you want to place the output (a compressed package or
expanded files) in the Generate Agent Image section.

3. Select the Keep intermediate files check box to keep the generated expanded files separate from the
zip or tar file.

4. Select the Create a ZIP file check box to create a compressed file in the specified directory. The
compressed zip file is named smai-agent_name-version.zip for Windows systems by default.

5. Select the Create a TAR file check box to create a tar file in the specified directory. The compressed
tar file is named smai-agent_name-version.tgz for UNIX and Linux systems by default.

6. Select the agent components to generate. You can select Base Agent, Cognos Reporting, or both.

Important: For the IBM Cloud Application Performance Management environment, do not select
Cognos Reporting, because the reports are currently not supported and including the reports
increases the size of the package.

Chapter 16. Installing your agent into a monitoring infrastructure for testing and use 241

7. You can optionally provide security signing for agent application files. If you want to provide security
signing, select Sign self-describing support JAR. Click Edit all jar signing preferences. You can add a
timestamp to signed jar files and specify the time stamping authority. Specify details about your Java
Keystore File.

Important: You can create the Java Keystore File by using Java tools. For example, to generate a
private key and certificate with a corresponding public key in a Java Keystore File, you can run this
command:

• ab_install_path/jre/bin/keytool -genkeypair -keystore keystore_file_path -
storepass key_store_password -alias key_store_alias -dname "CN=common_name,
OU=organizational_unit, L=city_or_locality, ST=state_or_province,
C=country" -keypass key_password

Where:

• ab_install_path is the location where Agent Builder is installed
• keystore_file_path is the path where an existing JKS key store resides, or where one will be created
• key_store_password is the password needed to access any items in this key store
• key_store_alias is a name identifying this key within the key store (defaults to "mykey")
• key_password is the password needed to access this particular key (defaults to
key_store_password)

Include this certificate in the server key store.
8. Click Finish.

Installing the package in an IBM Tivoli Monitoring environment
To test or use the agent in the IBM Tivoli Monitoring environment, use the generated package to install the
agent on the monitored systems, hub Monitoring Server systems, and Portal Server system.

Before you begin
Before installing the agent on a monitored system, ensure that the Tivoli Monitoring operating system
agent is present and working. For information about installing Tivoli Monitoring agents, see Installing
monitoring agents in the Tivoli Monitoring Knowledge Center.

Important: To display agent information in the Tivoli Enterprise Portal, you must install the following
components:

• The agent on all monitored systems
• Tivoli Enterprise Monitoring Server support files on the hub Tivoli Enterprise Monitoring Servers
• Tivoli Enterprise Portal Server support files on the Tivoli Enterprise Portal Server
• Tivoli Enterprise Portal support files on the Tivoli Enterprise Portal Server and, if applicable, any Tivoli

Enterprise Portal desktop clients

Procedure
1. Copy the compressed file, which is named product_code.zip for Windows systems or
product_code.tgz for UNIX and Linux systems by default, onto the system where you want to
install the agent.

2. Extract the file to a temporary location.

Note: For UNIX and Linux systems, this temporary location must not be /tmp/
product_code, where the product code is lowercase.

You can install the agent remotely by using the compressed file.

242 IBM Agent Builder: IBM Agent Builder User's Guide

http://www.ibm.com/support/knowledgecenter/SSTFXA_6.3.0.2/com.ibm.itm.doc_6.3fp2/install/ma_install.htm
http://www.ibm.com/support/knowledgecenter/SSTFXA_6.3.0.2/com.ibm.itm.doc_6.3fp2/install/ma_install.htm

• On a Linux system, use the following command to extract your .tgz file:

tar -xvzf filename

• On an AIX system, use the following command to extract your .tgz file:

gunzip filename
tar -xvf filename

3. Run the appropriate installation script.

• To install the agent, Tivoli Enterprise Monitoring Server, Tivoli Enterprise Portal Server, and Tivoli
Enterprise Portal support all at the same time:

InstallIra.bat/.sh itm_install_location [[-h Hub_TEMS_hostname] -u
HUB_TEMS_username -p Hub_TEMS_password]

• To install the agent without installing support files:

installIraAgent.bat/.sh itm_install_location

• To install the Tivoli Enterprise Monitoring Server support:

installIraAgentTEMS.bat/.sh itm_install_location [[-h Hub_TEMS_hostname] -u
HUB_TEMS_username -p Hub_TEMS_password]

• To install the Tivoli Enterprise Portal Server and Tivoli Enterprise Portal support:

installIraAgentTEPS.bat/.sh itm_install_location

The installation location, itm_install_locationm must be the first argument and is mandatory on all
scripts: installIra.bat/.sh, installIraAgent.bat/.sh, installIraAgentTEMS.bat/.sh,
and installIraAgentTEPS.bat/.sh. This is the location where Tivoli Monitoring components are
installed on this system.

Other arguments are optional.

If you install Monitoring Server support files and do not provide a user ID is not provided, the Tivoli
Enterprise Monitoring Server is recycled.

4. Configure and start the agent, see “Configuring and starting the agent in an IBM Tivoli Monitoring
environment” on page 243.

What to do next
If you changed the layout of your agent in a way that causes navigator items to be moved or removed,
restart the Tivoli Enterprise Portal Server and Tivoli Enterprise Portal. The restart ensures that your
changes are correctly recognized.

Configuring and starting the agent in an IBM Tivoli Monitoring environment
After installing an agent on a monitored system in the IBM Tivoli Monitoring, configure and start the agent.

Procedure
1. Open the Manage Tivoli Monitoring Service.

The new entry Monitoring Agent for agent_name is displayed.
2. Right-click the entry and select Configure Using Defaults. Click OK to accept the defaults if you are

prompted.

Important:

a. On UNIX systems, the option to select is Configure.
b. For multi-instance agents, when you are configuring, you are prompted for an instance name.

Chapter 16. Installing your agent into a monitoring infrastructure for testing and use 243

Tip: If your agent uses a JMX data source to connect to a remote WebSphere Application Server,
ensure that WebSphere Application Server is also installed on the host that is running the agent and
set the Java home setting to the Java runtime environment that the local WebSphere Application
Server uses.

Tip: For a Java API, JDBC, JMX, HTTP, or SOAP data source, you can use the Java > JVM arguments
setting to control agent trace logging. Set the following value in this setting:

-DJAVA_TRACE_MAX_FILES=files -DJAVA_TRACE_MAX_FILE_SIZE=size

where files is the maximum number of trace log files that are kept (the default value is 4) and size is
the maximum log file size in kilobytes (the default value is 5000). For example, you can set the
following value:

-DJAVA_TRACE_MAX_FILES=7 -DJAVA_TRACE_MAX_FILE_SIZE=100

In this case, the agent writes 100 kilobytes into the first log file, then switches to the second log file,
and so on. After writing seven log files of 100 kilobytes each, it overwrites the first log file.

If you added runtime configuration elements to your agent, or if you selected a data source, then you
are presented with configuration panels. You use these panels to collect the required information for
your agent.

3. Right-click the agent entry and select Start
4. Open the Tivoli Enterprise Portal and go to the new agent.

Installing and using an agent in an IBM Cloud Application Performance
Management environment

To test or use the agent in the IBM Cloud Application Performance Management environment, use the
generated package to install the agent on all monitored systems. In some cases, you need to configure
the agent before it can be started. You can start and stop the agent as necessary.

Installing the agent
Use the installation package prepared by Agent Builder to install the agent on all monitored systems.

Before you begin
Ensure that an agent for IBM Cloud Application Performance Management, usually the operating system
agent, is already present on the monitored system and working.

On Windows systems, use an Administrator command line shell to install and configure agents.
To start an Administrator shell, select Command Prompt from the Windows Programs menu, right-click,
and click Run as Administrator.

Procedure
1. Extract the package to a temporary directory and change to this directory.
2. Install the agent by using the following command, depending on your operating system:

• On Windows systems, installIraAgent.bat agent_install_location

• On Linux and UNIX systems, ./installIraAgent.sh
agent_install_location

Where agent_install_location is the installation location of the existing agent. The default location is:

• On Windows systems, C:\IBM\APM

• On Linux systems, /opt/ibm/apm/agent
• On AIX systems, /opt/ibm/apm/agent

244 IBM Agent Builder: IBM Agent Builder User's Guide

Important: If you have added any custom configuration properties in the Runtime Configuration
window of the Agent Editor, if the agent supports multiple instances, or if the agent uses any
predefined data source that needs configuration (for example, a user ID and password), you must
configure the agent before it can start. If an agent does not require configuration, it starts
automatically after installation.

Configuring the agent
If you have added any custom configuration properties in the Runtime Configuration window of the Agent
Editor, if the agent supports multiple instances, or if the agent uses any predefined data source that needs
configuration (for example, a user ID and password), you must configure the agent before it can start.

Before you begin
On Windows systems, use an Administrator command line shell to install and configure agents.

To start an Administrator shell, select Command Prompt from the Windows Programs menu, right-click,
and click Run as Administrator.

About this task
In the configuration process, you can:

• Set the instance name to create or change an instance, if the agent supports multiple instances.
• Set any configuration properties that are available for the agent.
• Create and configure subnodes, if the agent supports subnodes.

On Windows systems, to set any configuration properties or create any subnodes, you must use
the silent configuration procedure. A sample silent configuration response file is located in the
install_dir\samples directory and is named agentname_silent_config.txt. Create a copy of
this file and set the configuration variables as necessary.

On Linux and UNIX systems, you can optionally use the silent configuration
procedure. Alternatively, you can use the interactive procedure. If you start the configuration command
without a response file name, the configuration utility prompts you for the configuration values.

Procedure
1. Change to the install_dir/bin directory.
2. Run the following command to configure the agent:

• If the agent does not support multiple instances:

– On Windows systems, name-agent.bat config [response_file]

– On Linux and UNIX systems, ./name-agent.sh config
[response_file]

• If the agent supports multiple instances:

– On Windows systems, name-agent.bat config instance_name
[response_file]

– On Linux and UNIX systems, ./name-agent.sh config
instance_name [response_file]

Where:

• instance_name is the name of the instance. If an instance with this name does not exist, the instance
is created. If the instance already exists, it is reconfigured. You must create at least one instance to
use the agent.

• response_file is the name of the silent configuration response file.

Chapter 16. Installing your agent into a monitoring infrastructure for testing and use 245

Tip: If your agent uses a JMX data source to connect to a remote WebSphere Application Server,
ensure that WebSphere Application Server is also installed on the host that is running the agent and
set the Java home setting to the Java runtime environment that the local WebSphere Application
Server uses.

Tip: For a Java API, JDBC, JMX, HTTP, or SOAP data source, you can use the Java > JVM arguments
setting to control agent trace logging. Set the following value in this setting:

-DJAVA_TRACE_MAX_FILES=files -DJAVA_TRACE_MAX_FILE_SIZE=size

where files is the maximum number of trace log files that are kept (the default value is 4) and size is
the maximum log file size in kilobytes (the default value is 5000). For example, you can set the
following value:

-DJAVA_TRACE_MAX_FILES=7 -DJAVA_TRACE_MAX_FILE_SIZE=100

In this case, the agent writes 100 kilobytes into the first log file, then switches to the second log file,
and so on. After writing seven log files of 100 kilobytes each, it overwrites the first log file.

Starting and stopping the agent
To monitor a system, ensure that the agent is started on the system. You can start and stop the agent at
any time. If the agent supports multiple instances, you can start and stop every instance independently.

Procedure
1. Change to the install_dir/bin directory.
2. Run the following command to start the agent:

• If the agent does not support multiple instances:

– On Windows systems, name-agent.bat start

– On Linux and UNIX systems, ./name-agent.sh start
• If the agent supports multiple instances:

– On Windows systems, name-agent.bat start instance_name

– On Linux and UNIX systems, ./name-agent.sh start instance_name
3. Run the following command to stop the agent:

• If the agent does not support multiple instances:

– On Windows systems, name-agent.bat stop

– On Linux and UNIX systems, ./name-agent.sh stop
• If the agent supports multiple instances:

– On Windows systems, name-agent.bat stop instance_name

– On Linux and UNIX systems, ./name-agent.sh stop instance_name

Agent post-generation and installation results
Installation of an Agent Builder agent creates and changes certain files on your system. In an IBM Tivoli
Monitoring environment, you can also see changes in the Tivoli Enterprise Portal.

New files on your system

After you generate and install the agent that you created with Agent Builder, you can see the following
new files on your agent system:

246 IBM Agent Builder: IBM Agent Builder User's Guide

Note: xx denotes the two character product code.

Windows systems:
TMAITM6\kxxagent.exe

Agent binary
TMAITM6\KxxENV

Environment variable settings
TMAITM6\Kxx.ref

Agent provider configuration
TMAITM6\SQLLIB\kxx.his

SQL description of agent attribute information
TMAITM6\SQLLIB\kxx.atr

Agent attribute information
TMAITM6\xx_dd_version.xmll

Product description
TMAITM6\xx_dd.properties

Product name
TMAITM6\kxxcma.ini

Agent service definition file
TMAITM6\your files

Supplemental files included from the Java API or Socket data sources with a file type of executable or
library. Scripts included from the Script or Command return code data sources.

UNIX/Linux systems:
registry/xxarchitecture.ver

Internal versions and prerequisites file
architecture/xx/bin/xx_dd_version.xml

Product description
architecture/xx/bin/kxxagent

Agent binary
architecture/xx/bin/xx_dd.properties

Product name
architecture/xx/work/kxx.ref

Agent provider configuration
architecture/xx/tables/ATTRLIB/kxx.atr

Agent attribute information
architecture/xx/hist/kxx.his

SQL description of agent attribute information
architecture/xx/bin/your files

Supplemental files included from the Java API or Socket data sources with a file type of executable.
Scripts included from the Script or Command return code data sources.

architecture/xx/lib/your files
Supplemental files included from the Java API or Socket data sources with a file type of Library.

config/.xx.rc
Internal setup file

config/xx.environment
Environment settings

config/xx_dd_version.xml
Product description

Chapter 16. Installing your agent into a monitoring infrastructure for testing and use 247

config/xx_dd.properties
Product name

config/.ConfigData/kxxenv
Environment variable settings

Note: Run the following command to find out the architecture of the system:

cinfo -pxx

where xx is the two-character product code.

For example, for a Solaris 8 64-bit system that is running an agent with product code 19, here is the
output:

/opt/ibm/apm/agent/bin/cinfo -p 19

*********** Fri Aug 17 11:23:58 EDT 2007 ******************
User : root Group: other
Host name : guadalajara Installer Lvl:06.20.00.00
CandleHome: /opt/IBM/ITM

Platform codes:
sol286 : Current machine
sol286 : Product (19)
tmaitm6/sol286 : CT Framework (ax)

The line in bold is the relevant one. The string before the colon, sol286, indicates the architecture in use
for this agent. This string is different for different combinations of operating system and computer
hardware type. The agent must be previously installed for this feature to work.

The following files are for Java-based data sources. These files are created only if the agent contains JMX,
JDBC, HTTP, or SOAP data sources:

• cpci.jar
• jlog.jar
• common/jatlib-1.0.jar

The following files are for JMX runtime support. These files are created only if the agent contains JMX
data sources:

• common/jmx-1.0.jar
• common/connectors/jboss/connJboss-1.0.jar
• common/connectors/jsr160/connJSR160-1.0.jar
• common/connectors/was/connWas-1.0.jar
• common/connectors/weblogic/connWeblogic-1.0.jar

The following file is for JDBC runtime support. These files are created only if the agent contains JDBC data
sources:

• common/jdbc-1.0.jar

The following file is for HTTP or SOAP runtime support. These files are created only if the agent contains
HTTP or SOAP data sources:

• http-1.0.jar

The following files are for the Java API runtime support. These files are created only if the agent contains
a Java API data source:

• cpci.jar
• custom/your JAR file The name of this JAR file is specified in the Global settings of a Java API

data source.
• custom/your JAR file Supplemental files with a file type of Java resource.

248 IBM Agent Builder: IBM Agent Builder User's Guide

The same files exist on Windows, UNIX, and Linux systems for Java-based data sources, but they are in
different directories:

• Windows path: TMAITM6\kxx\jars

• UNIX/Linux path: architecture/xx/jars

The following files are for log file monitoring runtime support. These files are created only if the agent
contains log file data sources:

• On Windows systems: TMAITM6\kxxudp.dll

• On Solaris/Linux systems: architecture/xx/lib/libkxxudp.so
• On HP-UX systems: architecture/xx/lib/libkxxudp.sl
• On AIX systems: architecture/xx/lib/libkxxudp.a

The following files are for SSH script monitoring runtime support. These files are created only if the agent
contains a script data source that is enabled for SSH collection:

• On Windows systems: TMAITM6\kxxssh.dll

• On Solaris/Linux systems: architecture/xx/lib/libkxxssh.so
• On HP-UX systems: architecture/xx/lib/libkxxssh.sl
• On AIX systems: architecture/xx/lib/libkxxssh.a

Changes in the Manage Tivoli Enterprise Monitoring Services window
After installing an agent in a IBM Tivoli Monitoring environment, you can see an entry for the agent in the
Manage Tivoli Enterprise Monitoring Services window. The entry name is Monitoring Agent for
agent_name.

Important: Manage Tivoli Enterprise Monitoring Services is not supported in the IBM Cloud Application
Performance Management environment.

On Windows systems, this entry contains a Task/Subsystem column that identifies whether
your agent supports multiple instances:

• A single instance agent displays a new application in the Manage Tivoli Enterprise Monitoring Services
window. The name of the application is Monitoring Agent for agent_name. A service is created for the
agent (Figure 40 on page 250). The Task/Subsystem column contains the value Primary.

• A multiple instance agent displays a new application template in the Manage Tivoli Enterprise
Monitoring Services window. The name of the template is Monitoring Agent for agent_name. A service
is not created for the agent until you create an instance of the agent from this template. The Task/
Subsystem column contains the value Template to indicate that this entry is a template that is used to
create instances of the agent.

On Linux and UNIX systems, the entry for the agent is the same whether your agent
supports multiple instances or not.

Note: The following screens are for a Windows system. UNIX and Linux systems have similar screens.

Chapter 16. Installing your agent into a monitoring infrastructure for testing and use 249

Figure 40. Manage Tivoli Enterprise Monitoring Services window

Changes in the Tivoli Enterprise Portal
In an IBM Tivoli Monitoring environment, after you install and start the agent, click the green Refresh icon
in Tivoli Enterprise Portal. Then you can view the new agent. You can see the following changes in the
portal:

• A new subnode for the agent in the Tivoli Enterprise Portal physical view.
• Nodes for every navigator group and data source that you defined by using the Agent Builder (Figure 41

on page 251).

Note: For each navigator item, you must define a default query.

250 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 41. Nodes for attribute groups in the new agent.
• If your agent contains subnodes, an expandable node is present for each subnode that is defined in your

agent. The following nodes are shown under the expandable node:

– xxx performance object status, where xxx is the three-letter subnode type
– Nodes for every Navigator group and data source that you defined in the subnode
– xxx event log node if you have event logs
– xxx JMX monitors node if you have JMX and you included JMX monitors

• The following automatic node:

– An availability node if your agent contains an availability data source (Figure 42 on page 252)

Note: This node behaves differently depending on the contents of the agent. If the agent monitors
only availability, the availability node represents the availability data source. If the agent monitors
availability and performance, the availability node becomes the navigator item that represents the
availability and performance object status data sources.

Chapter 16. Installing your agent into a monitoring infrastructure for testing and use 251

Figure 42. Availability node
– Performance Object Status, if the agent includes performance monitoring (not availability) data

sources (Figure 43 on page 253)

252 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 43. Performance Object Status node
– Event log, if the agent contains data sources producing log data (Figure 44 on page 254)

Chapter 16. Installing your agent into a monitoring infrastructure for testing and use 253

Figure 44. Event log node

See Appendix C, “Attributes reference,” on page 275 for descriptions of the attribute groups and
attributes for Agent Builder.

Uninstalling an agent
You can remove an agent that the Agent Builder generated from a monitored host.

About this task
The uninstallation process uninstalls only the agent from the agent system. This process does not
uninstall any other agent or any monitoring infrastructure.

In an IBM Tivoli Monitoring environment, you can use one of the following procedures to remove an agent
that the Agent Builder generated:

• “Removing a Tivoli Monitoring agent by using the Tivoli Enterprise Portal” on page 255
• “Removing a Tivoli Monitoring agent without using the Tivoli Enterprise Portal” on page 255

After removing the agent using any of these procedures, clear it from the Tivoli Enterprise Portal using the
following procedure: “Clearing a Tivoli Monitoring agent from the Tivoli Enterprise Portal” on page 255.

In an IBM Cloud Application Performance Management environment, use the following procedure:
“Uninstalling an IBM Cloud Application Performance Management agent” on page 256.

254 IBM Agent Builder: IBM Agent Builder User's Guide

Removing a Tivoli Monitoring agent by using the Tivoli Enterprise Portal
In an IBM Tivoli Monitoring environment, you can use the Tivoli Enterprise Portal to remove an agent.

Before you begin
Your operating system agent must be running in order to remove your created agent.

Procedure
To use the Tivoli Enterprise Portal to remove an agent, complete the following step:
• In the Tivoli Enterprise Portal navigation tree, right-click the agent and select Remove.

Removing a Tivoli Monitoring agent without using the Tivoli Enterprise Portal
If a Tivoli Enterprise Portal is not available in your IBM Tivoli Monitoring environment, you can use
operating system scripts and commands to remove an agent.

Procedure
To remove an agent that the Agent Builder generated from the target system without using a Tivoli
Enterprise Portal, you can complete any of the following steps:

•
On Windows systems, use the commands:

cd ITM_INSTALL/TMAITM6
kxx_uninstall.vbs ITM_INSTALL

where xx is the product code for the agent

•
Alternatively. on Windows systems, you can use the cscript.exe command to run the uninstallation
script. This command is the command-line interface parser for vbs scripts and does not display a
window; instead, a message is displayed on the console:

cd ITM_INSTALL/TMAITM6
cscript.exe kxx_uninstall.vbs ITM_INSTALL

•
On Linux or UNIX systems. use the uninstall.sh file that is found in ITM_INSTALL/bin:

uninstall.sh [-f] [-i] [-h ITM_INSTALL] [product platformCode]

Clearing a Tivoli Monitoring agent from the Tivoli Enterprise Portal
In an IBM Tivoli Monitoring environment, after you remove the agent, empty fields for information from
the agent can remain in the Tivoli Enterprise Portal. To remove the fields, clear the agent from the Tivoli
Enterprise Portal.

Procedure
1. Ensure that your Tivoli Enterprise Monitoring Server and Tivoli Enterprise Portal Server are up and

running.
2. Log on to your Tivoli Enterprise Portal client.
3. From the Tivoli Enterprise Portal client Physical Navigator view, right-click Enterprise and select

Workspace > Managed System Status.
The Managed System Status workspace is displayed.

Chapter 16. Installing your agent into a monitoring infrastructure for testing and use 255

4. Select all of the IBM Tivoli Managed Systems for your agent.
5. Right-click and select Clear off-line entry, which clears all of the entries from that table.

Uninstalling an IBM Cloud Application Performance Management agent
You can uninstall your agent from any monitored system in an IBM Cloud Application Performance
Management environment.

Procedure
1. On the system where the agent is installed, start a command line and change to the
install_dir/bin directory, where install_dir the installation directory of the monitoring agents.

2. To uninstall a specific monitoring agent, enter the agent script name and the uninstall option where
name is the agent script name:

• On Windows systems, name-agent.bat uninstall
• On Linux or AIX systems, ./name-agent.sh uninstall

256 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 17. Importing application support files
If an agent is to be used in an IBM Tivoli Monitoring environment, custom situations, workspaces, Take
Action commands, and queries can be included in the installation package.

About this task
To have a single installation image for situations, workspaces, and the agent, the situation, and workspace
files must be in the same project as the agent. The Agent Builder provides a wizard to create the
appropriate files in the agent project.

Definitions that are associated with an agent can also be included in the installation package. The content
of these definitions is different for an agent that is used in an enterprise monitoring environment and in a
system monitor environment. An enterprise monitoring agent image can include custom situations,
workspaces, Take Action commands and queries. A system monitor agent image can include private
situations, trap definitions, and agent configuration information.

To have a single installation package that includes the appropriate definitions and the agent itself, the
files must be in the same project as the agent. The Agent Builder provides a wizard to create the
appropriate files for an enterprise monitoring installation. The files for a system monitor agent
environment are created by using the process that is described in the Agent Autonomy chapter in the IBM
Tivoli Monitoring Administrator's Guide. The resulting files are copied into the root of the Eclipse project
for the agent.

Exporting and importing files for Tivoli Enterprise Monitoring
Agents

About this task
After you create situations, workspaces, queries, and Take Action commands in the Tivoli Enterprise
Portal, you can export and import them into another Tivoli Monitoring Version 6.2 environment. For more
information about creating situations and workspaces, see (Chapter 11, “Creating workspaces, Take
Action commands, and situations,” on page 213). Use the following steps to extract the situations,
workspaces, Take Action commands, and queries:

Procedure
1. From the Project Explorer tab, right-click the agent project folder.
2. Select IBM Corporation > Import Application Support Files.
3. Enter the host name of the Tivoli Enterprise Portal Server.
4. Enter the user name and password for the Tivoli Monitoring environment you are connecting to and

click Finish.
5. If you defined situations for your agent, a dialog box is presented that lists the situations that are

defined for the agent.
6. Select the situations that you want to export from the list and click << to add them to the selected

situations table and click OK.

The import might take a few moments. When the task completes, you see the SQL files in the
appropriate folders in the agent project.

7. If you defined Take Action commands for your agent, a dialog presents the Take Action commands
defined. Choose the Take Action commands that you want to export from the list and click >> to add
them to the Selected Take Actions table and click OK.

The import might take a few moments. When the task completes, you see the SQL files in the
appropriate folders in the agent project.

© Copyright IBM Corp. 2010, 2021 257

8. If you defined custom queries for your agent, a dialog presents the Queries defined. Select the queries
that you want to export from the list and click << to add them to the Selected Queries table and click
OK.

The import might take a few moments. When the task completes, you see the SQL files in the
appropriate folders in the agent project. Workspaces are imported automatically.

What to do next
Re-create your custom agent, install your agent on the monitored host, and install the Tivoli Enterprise
Portal support.

Exporting and importing files for Tivoli System Monitor Agents

About this task
The system monitor agent definitions are contained in three types of files:

• Private situations are defined in a file named xx_situations.xml, where xx is the two-character
product code

• Trap configuration information is defined in a file named xx_trapcnfg.xml, where xx is the two-
character product code

• For agents that require configuration, the configuration is defined in one file for each instance of the
agent. When the agent is a single instance agent, the file is named xx.cfg. When the agent is a multi-
instance agent, there is a file is present for each instance. The file names are xx_instance
name.cfg, where xx is the two-character product code and instance name is the name of the agent
instance.

Procedure
• Create the files by using the process that is described in the Agent Autonomy chapter in the IBM Tivoli

Monitoring Administrator's Guide. Copy the files into the root of the project directory manually, or use
the Eclipse import function to select the files to be imported: File > Import > General > File System.
These files are included in the agent image and installed by the installer.

When the agent is installed the installation:

– Copies the included files into the appropriate locations.
– Any private situations that are defined in the pc_situations.xml file that is run on the agent.
– The trap definitions that are defined in the pc_trapcnfg.xml are used to forward traps that are

based on the situations.
– The agent is automatically configured and started if:

- The agent is a single instance agent with no configuration defined as part of the agent.
- The agent is a single instance agent with configuration defined as part of the agent and the image

includes a pc.cfgfile.
- The agent is a multi-instance agent (all multi-instance agents require configuration): the installer

starts one instance of the agent for each pc_inst.cfg file.

258 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 18. Event filtering and summarization

An attribute group is defined to be pure event or sampled. Pure event attribute groups contain data rows
that occur asynchronously. As each new row of data arrives, it is processed immediately by Tivoli
Monitoring. Sampled attribute groups collect the current set of data rows each time the data is requested.
The following attribute groups illustrate the difference:

• An SNMPEvent attribute group is created that represents all of the SNMP Traps and informs that are
sent to the agent. Traps or informs arrive asynchronously as they are sent by the monitored systems. As
each event arrives, it is passed to Tivoli Monitoring.

• A Disk attribute group is created to represent information about all of the disks on a system. The disk
information is collected periodically. Each time disk information is collected, the agent returns a number
of rows of data, one for each disk.

The difference between pure event and sampled attribute groups affects various aspects of Tivoli
Monitoring. These aspects include: situations, warehouse data, and Tivoli Enterprise Portal views.

Each situation is assigned (or distributed) to one or more managed systems to be monitored for a specific
condition of a set of conditions. When the determination of the event must be made based on
observations that are made at specific intervals, the event is known as a sampled event. When the event is
based on a spontaneous occurrence, the event is known as a pure event. Therefore, situations for sampled
events have an interval that is associated with them, while situations for pure events do not. Another
characteristic of sampled events is that the condition that caused the event can change, thus causing it to
be no longer true. Pure events cannot change. Therefore, alerts that are raised for sampled events can
change from true to false, while a pure event stays true when it occurs.

An example of a sampled event is number of processes > 100. An event becomes true when the
number of processes exceeds 100 and later becomes false again when this count drops to 100 or less. A
situation that monitors for invalid logon attempt by user is a pure event; the event occurs when
an invalid logon attempt is detected, and does not become a False event. While you can create situations
that are evaluated on a specific interval for sampled attribute groups, such evaluations are not possible
for pure event attribute groups.

Similarly, for historical data, you can configure how frequently sampled data is collected. However, when
you turn collection on for pure event data, you get each row as it happens.

The data that is displayed in the Tivoli Enterprise Portal for sampled data is the latest set of collected
rows. The data that is displayed for pure event attribute groups is the contents of a local cache that is
maintained by the agent. It does not necessarily match the data that is passed to Tivoli Monitoring for
situation evaluation and historical collection.

Controlling duplicate events
Use the event filtering and summarization options to control how duplicate events are sent to Tivoli
Monitoring.

Before you begin
For more information about event filtering and summarization, see Chapter 18, “Event filtering and
summarization,” on page 259.

About this task
The Agent Builder defines attribute groups that represent event data as pure event in Tivoli Monitoring.
These attribute groups include log file, AIX Binary Log, SNMP events, and JMX notifications. These
attribute groups can produce multiple duplicate events. You can control how these duplicate events are
sent to Tivoli Monitoring. You can activate these controls for log file, SNMP events, and JMX notifications

© Copyright IBM Corp. 2010, 2021 259

attribute groups in the Event Information tab under Advanced Data Source Properties in the Advanced
window.

Whether an event is treated as a duplicate of other events is determined by the key attributes, you define
in the attribute group. A duplicate event occurs when the values for all key attributes in the event match
the values for the same key attributes in an existing event. When event filtering and summarization is
enabled, the attributes for the isSummary, occurrenceCount, summaryInterval, and
eventThreshold functions are added automatically.

Procedure
• In the Event Filtering and Summarization Options area, select one of the following options:

• No event filtering or summarization: Sends all events without any event filtering or
summarization. This option is the default option.

• Filter and summarize events: Creates a summary record for each event with duplicates and each
unique event that is based on the key attributes. Select also to choose the event filtering option. In
the Summarization Options area, enter the summary interval. You can enter either a value in
seconds or insert a configuration property.

The event filtering options are:

- Only send summary events: Sends only the summary records for the specified interval.
- Send all events: Sends all events and summary records.
- Send first event: For each event, sends only the first event that is received in the summary

interval that is specified and no duplicate events. This option also sends the summary records.
- Event threshold: Sends an event to Tivoli Monitoring when the number of duplicate events that

are received in the interval is evenly divisible by the threshold. For example, if you set the event
threshold to 5 and you receive less than five duplicates (including the first event) in the interval,
no event is sent to Tivoli Monitoring. If you receive 5, 6, 7, 8, or 9 duplicates, one event is sent. If
you receive 10 duplicates, 2 events are sent. In the Event threshold field, you can enter a
number or insert a configuration property. This option also sends the summary records.

Viewing event filtering and summarization in the Tivoli Enterprise
Portal

Examples of how data is treated depending on your event filtering and summarization choices.

The agent maintains a cache of the last events received. By default, this cache is 100 in size. If you enable
agent event filtering and summarization, differences can occur between the number of events in the
cache and the number sent to IBM Tivoli Monitoring. Additional events in the cache might not reach the
designated threshold for sending. Or you might have fewer events in the cache if you selected the Send
all events option. If the Send all events option is set, an event is sent each time a duplicate occurs.
However, only one copy of the event is kept in the cache, and the occurrence count is incremented each
time that the event occurs. To view the events that are sent to IBM Tivoli Monitoring, create a historical
view. For information about creating historical views, see Historical Reporting in the Tivoli Enterprise
Portal User's Guide. You can compare this view with the real-time cache view in the Tivoli Enterprise
Portal. You can also use situations to make the same comparison.

The following examples indicate how the same log data is treated depending on your choice, if any, of
event filtering and summarization. The example agent was created to illustrate different behaviors. Each
attribute group was defined to monitor the same log file. In each example, a historical view and a real-
time (cache) view is shown. The names of the nodes in the Tivoli Enterprise Portal reflect the settings
selected. By default, the historical view displays the newest events last. The default real-time view of the
cache displays the newest events first. In these examples, the historical view shows the last 1 hour.

As new events arrive, you can see them in the cache view. As duplicates of an event arrive, the data is
updated in the existing row. When a summary interval elapses, the existing events are converted to
summary events and sent. New rows are then added for the next summary interval.

260 IBM Agent Builder: IBM Agent Builder User's Guide

https://ibm.biz/BdHmkw
https://ibm.biz/BdHmkw

(Figure 45 on page 261) shows the historical view and cache view if you did not enable event filtering or
summarization. Both views display the same data, but in reverse order. To display the corresponding
events, the historical view is scrolled down and the real time (cache) view is scrolled up.

Figure 45. Historical view and cache view when event filtering or summarization is not enabled

(Figure 46 on page 262) shows the historical view and cache view if you selected the Only send summary
events option in the Event Information tab. The summary events are displayed in both views, but the
new events are only displayed in the real-time (cache) view.

Chapter 18. Event filtering and summarization 261

Figure 46. Historical view and cache view when Only send summary events is selected

(Figure 47 on page 263) shows the historical view and cache view if you selected the Send all events
option in the Event Information tab. All of the events are shown in both views, but you also see the
summary events that are created at the end of each interval. The real-time view changes when the
interval elapses. The existing events are converted into summary records and then the new events are
added. The addition of the other two available event attributes that are used to display the summary
interval (120 seconds in this example) and the SEND ALL threshold.

262 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 47. Historical view and cache view when Send all events is selected

(Figure 48 on page 264) shows the historical view and cache view if you selected the Send first event
option in the Event Information tab. The summary events are displayed in both views, but all the new
events are only displayed in the real-time (cache) view. For each event, the historical view displays only
the first event that is received in the interval and no duplicate events.

Chapter 18. Event filtering and summarization 263

Figure 48. Historical view and cache view when Send first event is selected

(Figure 49 on page 265) shows the historical view and cache view if you selected the Event threshold
option and entered a value of 5. The summary events are displayed in both views, but all the new events
are only displayed in the real-time (cache) view. In this example, a threshold of 5 is specified. The
historical view displays an event only when five duplicates of an event (including the first event) are
received in the interval. If less than 5 are received, no event is displayed. If 6, 7, 8, or 9 duplicates are
received in the interval, one event is displayed. If 10 duplicates are received, 2 events are displayed.

264 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 49. Historical view and cache view when Event threshold is selected

Related concepts
“Event filtering and summarization” on page 259

Chapter 18. Event filtering and summarization 265

266 IBM Agent Builder: IBM Agent Builder User's Guide

Chapter 19. Troubleshooting and support
Review the troubleshooting information for problems that you might experience with installing,
configuring, or using IBM Agent Builder.

For help with troubleshooting issues while developing, installing, or using custom agents in the IBM Cloud
Application Performance Management environment, see the IBM Cloud Application Performance
Management Troubleshooting Guide.

For logging and message reference information and for help with troubleshooting issues related to the
IBM Tivoli Monitoring environment, see the IBM Agent Builder Version 6.3.1 Troubleshooting Guide.

© Copyright IBM Corp. 2010, 2021 267

https://community.ibm.com/community/user/imwuc/viewdocument/httpscommunityibmcomcommunity?CommunityKey=b382f2ab-42f1-4932-aa8b-8786ca722d55
https://community.ibm.com/community/user/imwuc/viewdocument/httpscommunityibmcomcommunity?CommunityKey=b382f2ab-42f1-4932-aa8b-8786ca722d55

268 IBM Agent Builder: IBM Agent Builder User's Guide

Appendix A. Sharing project files
Share an IBM Tivoli Monitoring agent project with someone.

Procedure
1. Obtain their files. You need the entire contents of the directory with the same name as the project in

your workspace directory.
For example, if your workspace directory is c:\Documents and Settings\User1\workspace and
you want to share your project named TestProject. You must make the directory c:\Documents
and Settings\User1\workspace\TestProject and all of its contents accessible to your system.

2. Select File > Import.
3. Open IBM Tivoli Monitoring.
4. Select IBM Tivoli Monitoring Agent and click Next.
5. Type the full path to the agent xml file or click Browse to browse to the file.
6. Click Finish.

Results
When the wizard completes, you see the new IBM Tivoli Monitoring agent project in your workspace.

Share a Solution Installer Project
Share a Solution Installer Project with someone

Procedure
1. Obtain their files. You must have the entire contents of the directory with the same name as the

Solution Installer project in your workspace directory.
For example, if your workspace directory is c:\Documents and Settings\User1\workspace and
you want to share your Solution Installer project named TestProject Installer. You must make
the directory c:\Documents and Settings\User1\workspace\TestProject Installer and
all of its contents accessible to your system.

2. Click File > Import.
3. Open General.
4. Select Existing Projects into Workspace, and click Next.
5. Type the full path to the root directory of the Solution Installer project, or click Browse to browse to

the root directory of the Solution Installer project. (In this example the TestProject Installer
directory.) The Project in that directory is displayed in the Projects list and is selected by default.

6. Optional: Click Copy projects into workspace.
7. Click Finish.

© Copyright IBM Corp. 2010, 2021 269

270 IBM Agent Builder: IBM Agent Builder User's Guide

Appendix B. Command-line options
Commands available from the Agent Builder command-line interface (CLI).

The Tivoli Monitoring Agent Builder contains a command-line interface (CLI) that you can use to generate
the Tivoli Monitoring Agent without starting the Eclipse graphical user interface (GUI). You can generate
the agent as part of a build, for example:

On Windows systems, you can use a batch file in the following directory to access the CLI:

install_location\agenttoolkit.bat

On UNIX and Linux systems, you can use a script in the following directory to access the CLI:

install_location/agenttoolkit.sh

The commands that are described in this documentation are formatted for Windows systems, which use a
backslash (\) for directory paths.

For UNIX® or Linux® systems, use the same commands as for Windows systems, but with the following
changes:

• Use a forward slash (/) for directory paths instead of a backslash (\).
• Use the agenttoolkit.sh script instead of the agenttoolkit.bat script.

Commands
Table 44 on page 271 lists the name and purpose statement for each command option for the text
command:

Table 44. Command quick-reference table

Command Purpose

generatelocal Loads and validates the itm_toolkit_agent.xml file and
generates the files that run the Tivoli Monitoring Agent. The
installation is into a local Tivoli Monitoring environment.

generatemappingfile Creates the mapping file for porting custom IBM Tivoli Monitoring v5.x
resource models to IBM Tivoli Monitoring v6 agents.

generatezip Generates a compressed file named productcode.zip or
productcode.tgz.

The command descriptions that are referenced from the table describes how to run the commands by
covering the following information:
Purpose

Lists the purpose of the command.
Format

Specifies the syntax that you type on the command line. The syntax contains the command name and
a list of the parameters for the command. A definition of each parameter follows the command name.

Examples
The example for the command contains a brief description of the example and an example of the
syntax.

Usage
Provides an explanation of the command and its purpose.

© Copyright IBM Corp. 2010, 2021 271

Comments
Provides commands or text that can give you more information.

Command - generatelocal
Use this command to load and validate XML and to generate files to run the Tivoli Monitoring Agent.

Purpose
Loads and validates the itm_toolkit_agent.xml file and generates the files for running the Tivoli
Monitoring Agent. The installation is into a local Tivoli Monitoring environment.

Format
For Windows systems:

install_location\agenttoolkit.bat project_dir -generatelocal itm_install_dir

where:
install_location

Directory where the Agent Builder is installed
project_dir

Name of the directory that contains the itm_toolkit_agent.xml file
itm_install_dir

Location where Tivoli Monitoring is installed (for example c:\IBM\ITM)

Examples

In the following example for Windows, the agent definition in C:\ABCAgent is validated and the files that
are required to run ABCAgent are generated in C:\IBM\ITM:

install_location\agenttoolkit.bat C:\ABCAgent -generatelocal C:\IBM\ITM

Command - generatemappingfile
Use this command to migrate custom IBM Tivoli Monitoring v5.x resource models to IBM Tivoli Monitoring
v6 agents.

Purpose
This command creates the mapping file for migrating custom IBM Tivoli Monitoring v5.x resource models
to IBM Tivoli Monitoring v6 agents.

Format
For Windows systems:

install_location\agenttoolkit.bat project_dir -generatemappingfile output_dir
 itm5_interp_list

Where:
install_location

Directory where the Agent Builder is installed
project_dir

Name of the directory that contains itm_toolkit_agent.xml

272 IBM Agent Builder: IBM Agent Builder User's Guide

output_dir
Name of the directory where the mapping file is written

itm5_interp_list
Comma-separated list of the ITM 5x operating systems on which the custom resource model ran. The
following values are allowed:

• aix4-r1
• hpux10
• linux-ix86
• linux-ppc
• linux-s390
• os2-ix86
• os400
• solaris2
• solaris2-ix86
• w32-ix86

Examples

For Windows systems

install_location\agenttoolkit.bat c:\ABCAgent -generatemappingfile c:\output
 linux-ix86,linux-ppc,linux-s390

Command - generatezip
Use this command to load and validate XML and to generate a compressed file that can be used to install
the agent on another system.

Purpose
Loads and validates the itm_toolkit_agent.xml file and generates a compressed file named
productcode.zip or productcode.tgz. The generated compressed file can be used to install the
agent on another system. Depending on your environment, both file types can be generated.

Format
For Windows systems:

install_location\agenttoolkit.bat project_dir -generatezip output_dir

Where:
project_dir

Name of a directory that contains the itm_toolkit_agent.xml file
output_dir

Name of a directory where the compressed file is written

Examples

In the following example for Windows, the agent definition in C:\ABCAgent is validated and a
compressed file that contains the required files for running ABCAgent is generated in C:\Output:

install_location\agenttoolkit.bat\ C:\ABCAgent -generatezip C:\Output

Appendix B. Command-line options 273

274 IBM Agent Builder: IBM Agent Builder User's Guide

Appendix C. Attributes reference
Contains descriptions of the attributes for each attribute generated group included in the Agent Builder.

Availability node
The Availability attribute group contains availability data for the application.

The table provides a common format for representing application availability, which includes relevant
information for three aspects of an application: services (Windows only), processes, and command return
codes.

The following list contains information about each attribute in the Availability attribute group:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Timestamp attribute

Description
The local time at the agent when the data was collected

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP
Application Component attribute - This attribute is a key attribute

Description
The descriptive name of a part of the application

Type
String

Names
Attribute name

Application_Component
Column name

COMPONENT
Name attribute

© Copyright IBM Corp. 2010, 2021 275

Description
The name of the process, service, or functional test. This name matches the executable name of
the process, the service short name, or the name of the process that is used to test the
application.

Type
String

Names
Attribute name

Name
Column name

NAME
Status attribute

Description
The status of the application component.

• For processes, the values are UP, DOWN, WARNING, or PROCESS_DATA_NOT_AVAILABLE.
PROCESS_DATA_NOT_AVAILABLE is displayed for a process when the matching process is
running but the resource use information cannot be collected for that process.

• For services, the values are UP, DOWN, or UNKNOWN. UNKNOWN is displayed when the service is not
installed.

• For command return codes, the values are PASSED or FAILED.

Type
String

Names
Attribute name

Status
Column name

STATUS
Full Name attribute

Description
The full name of the process which includes information that is process-dependent. The name
might include the full path if the process was started that way. The name can also include a partial
path or even a path that is changed by the process.

Type
String

Names
Attribute name

Full_Name
Column name

FULLNAME
Type attribute

Description
Identifies the type of the application component. Components are processes, services, or
command return codes.

Type
Integer (gauge)

276 IBM Agent Builder: IBM Agent Builder User's Guide

Names
Attribute name

Type
Column name

TYPE
Virtual Size attribute

Description
The virtual size (in MB) of the process

Type
Integer (gauge)

Names
Attribute name

Virtual_Size
Column name

VIRTSIZE
Page Faults Per Sec attribute

Description
The rate of page faults for the process that is measured in faults per second. This value contains
only valid data for processes.

Type
Integer (gauge)

Names
Attribute name

Page_Faults_Per_Sec
Column name

PAGEFAULTS
Working Set Size attribute

Description
The working set size of the process in MB. This value contains only valid data for processes.

Type
Integer (gauge)

Names
Attribute name

Working_Set_Size
Column name

WORKSET
Thread Count attribute

Description
The number of threads that are currently allocated by this process. This value contains only valid
data for processes.

Type
Integer (gauge)

Appendix C. Attributes reference 277

Names
Attribute name

Thread_Count
Column name

THREADS
PID attribute

Description
The process id that is associated with the process. This value contains only valid data for
processes.

Type
Integer (gauge)

Names
Attribute name

PID
Column name

PID
Percent Privileged Time attribute

Description
The percentage of the available processor time that is being used by this process for privileged
operation

Type
Integer (gauge)

Names
Attribute name

Percent_Privileged_Time
Column name

PERCPRIV
Percent User Mode Time attribute

Description
The percentage of the available processor time that is being used by this process for user mode
operation

Type
Integer (gauge)

Names
Attribute name

Percent_User_Mode_Time
Column name

PERCUSER
Percent Processor Time attribute

Description
The percentage of the elapsed time that this process used the processor to run instructions

Type
Integer (gauge)

278 IBM Agent Builder: IBM Agent Builder User's Guide

Names
Attribute name

Percent_Processor_Time
Column name

PERCPROC
Command Line attribute

Description
The program name and any arguments that are specified on the command line when the process
was started. This attribute has the value N/A if you are running a Service or Functionality test.

Type
String

Names
Attribute name

Command_Line
Column name

CMDLINE
Functionality Test Status attribute

Description
The return code of the functionality test. When the monitored application is running correctly,
SUCCESS is returned. NOT_RUNNING is returned when the application is not running correctly. N/A
is returned when the row does not represent a functionality test.

Type
Integer with enumerated values. The strings are displayed in the Tivoli Enterprise Portal, the
warehouse, and queries return the numbers. The defined values are: N/A(1), SUCCESS (0),
GENERAL_ERROR (2), WARNING (3), NOT_RUNNING (4), DEPENDENT_NOT_RUNNING (5),
ALREADY_RUNNING (6), PREREQ_NOT_RUNNING (7), TIMED_OUT (8), DOESNT_EXIST (9),
UNKNOWN (10), DEPENDENT_STILL_RUNNING (11), or INSUFFICIENT_USER_AUTHORITY
(12). Any other values display the numeric value in the Tivoli Enterprise Portal.

Names
Attribute name

Functionality_Test_Status
Column name

FUNCSTATUS
Functionality Test Message attribute

Description
The text message that corresponds to the Functionality Test Status. This attribute is valid only for
command return codes.

Type
String

Names
Attribute name

Functionality_Test_Message
Column name

FUNCMSG

Appendix C. Attributes reference 279

Performance Object Status node
Use the Performance Object Status attribute group to see the status of all of the attribute groups that
make up the agent. Each of the attribute groups is represented by a row in this table or other type of view.
The status of an attribute group reflects the result of the last data collection attempt, or data reception
event, for the attribute group. When you check the status information, you can see whether the agent is
operating correctly. When your agent does not collect data, but receives it (event data), attributes that
relate to sampled data do not contain useful data. Only the first seven attributes that are listed are
relevant for event data.

Historical group
This attribute group is eligible for use with Tivoli Data Warehouse.

Attribute descriptions
The following list contains information about each attribute in the Performance Object Status attribute
group:
Node attribute: This attribute is a key attribute.

Description
The managed system name of the agent.

Type
String

Warehouse name
NODE

Timestamp attribute

Description
The local time at the agent when the data was collected.

Type
String

Warehouse name
TIMESTAMP

Query Name attribute: This attribute is a key attribute.

Description
The name of the attribute group.

Type
String

Warehouse name
QUERY_NAME or ATTRGRP

Object Name attribute

Description
The name of the performance object.

Type
String

Warehouse name
OBJECT_NAME or OBJNAME

Object Type attribute

Description
The type of the performance object.

280 IBM Agent Builder: IBM Agent Builder User's Guide

Type
Integer with enumerated values. The strings are displayed in the Tivoli Enterprise Portal. The
warehouse and queries return the values that are shown in parentheses. The following values
are defined:

• WMI (0)
• PERFMON (1)
• WMI ASSOCIATION GROUP (2)
• JMX (3)
• SNMP (4)
• SHELL COMMAND (5)
• JOINED GROUPS (6)
• CIMOM (7)
• CUSTOM (8)
• ROLLUP DATA (9)
• WMI REMOTE DATA (10)
• LOG FILE (11)
• JDBC (12)
• CONFIG DISCOVERY (13)
• NT EVENT LOG (14)
• FILTER (15)
• SNMP EVENT (16)
• PING (17)
• DIRECTOR DATA (18)
• DIRECTOR EVENT (19)
• SSH REMOTE SHELL COMMAND (20)

Any other value is the value that is returned by the agent in the Tivoli Enterprise Portal.
Warehouse name

OBJECT_TYPE or OBJTYPE
Object Status attribute

Description
The status of the performance object.

Type
Integer with enumerated values. The strings are displayed in the Tivoli Enterprise Portal. The
warehouse and queries return the values that are shown in parentheses. The following values
are defined:

• ACTIVE (0)
• INACTIVE (1)

Any other value is the value that is returned by the agent in the Tivoli Enterprise Portal.
Warehouse name

OBJECT_STATUS or OBJSTTS
Error Code attribute

Description
The error code that is associated with the query.

Appendix C. Attributes reference 281

Type
Integer with enumerated values. The strings are displayed in the Tivoli Enterprise Portal. The
warehouse and queries return the values that are shown in parentheses. The following values
are defined:

• NO ERROR (0)
• GENERAL ERROR (1)
• OBJECT NOT FOUND (2)
• COUNTER NOT FOUND (3)
• NAMESPACE ERROR (4)
• OBJECT CURRENTLY UNAVAILABLE (5)
• COM LIBRARY INIT FAILURE (6)
• SECURITY INIT FAILURE (7)
• PROXY SECURITY FAILURE (9)
• NO INSTANCES RETURNED (10)
• ASSOCIATOR QUERY FAILED (11)
• REFERENCE QUERY FAILED (12)
• NO RESPONSE RECEIVED (13)
• CANNOT FIND JOINED QUERY (14)
• CANNOT FIND JOIN ATTRIBUTE IN QUERY 1 RESULTS (15)
• CANNOT FIND JOIN ATTRIBUTE IN QUERY 2 RESULTS (16)
• QUERY 1 NOT A SINGLETON (17)
• QUERY 2 NOT A SINGLETON (18)
• NO INSTANCES RETURNED IN QUERY 1 (19)
• NO INSTANCES RETURNED IN QUERY 2 (20)
• CANNOT FIND ROLLUP QUERY (21)
• CANNOT FIND ROLLUP ATTRIBUTE (22)
• FILE OFFLINE (23)
• NO HOSTNAME (24)
• MISSING LIBRARY (25)
• ATTRIBUTE COUNT MISMATCH (26)
• ATTRIBUTE NAME MISMATCH (27)
• COMMON DATA PROVIDER NOT STARTED (28)
• CALLBACK REGISTRATION ERROR (29)
• MDL LOAD ERROR (30)
• AUTHENTICATION FAILED (31)
• CANNOT RESOLVE HOST NAME (32)
• SUBNODE UNAVAILABLE (33)
• SUBNODE NOT FOUND IN CONFIG (34)
• ATTRIBUTE ERROR (35)
• CLASSPATH ERROR (36)
• CONNECTION FAILURE (37)
• FILTER SYNTAX ERROR (38)
• FILE NAME MISSING (39)
• SQL QUERY ERROR (40)

282 IBM Agent Builder: IBM Agent Builder User's Guide

• SQL FILTER QUERY ERROR (41)
• SQL DB QUERY ERROR (42)
• SQL DB FILTER QUERY ERROR (43)
• PORT OPEN FAILED (44)
• ACCESS DENIED (45)
• TIMEOUT (46)
• NOT IMPLEMENTED (47)
• REQUESTED A BAD VALUE (48)
• RESPONSE TOO BIG (49)
• GENERAL RESPONSE ERROR (50)
• SCRIPT NONZERO RETURN (51)
• SCRIPT NOT FOUND (52)
• SCRIPT LAUNCH ERROR (53)
• CONF FILE DOES NOT EXIST (54)
• CONF FILE ACCESS DENIED (55)
• INVALID CONF FILE (56)
• EIF INITIALIZATION FAILED (57)
• CANNOT OPEN FORMAT FILE (58)
• FORMAT FILE SYNTAX ERROR (59)
• REMOTE HOST UNAVAILABLE (60)
• EVENT LOG DOES NOT EXIST (61)
• PING FILE DOES NOT EXIST (62)
• NO PING DEVICE FILES (63)
• PING DEVICE LIST FILE MISSING (64)
• SNMP MISSING PASSWORD (65)
• DISABLED (66)
• URLS FILE NOT FOUND (67)
• XML PARSE ERROR (68)
• NOT INITIALIZED (69)
• ICMP SOCKETS FAILED (70)

Any other value is the value that is returned by the agent in the Tivoli Enterprise Portal.
Warehouse name

ERROR_CODE or ERRCODE
Last Collection Start attribute

Description
The most recent time a data collection of this group started.

Type
Time stamp with enumerated values. The strings are displayed in the Tivoli Enterprise Portal.
The warehouse and queries return the values that are shown in parentheses. The following
values are defined:

• NOT COLLECTED (0691231190000000)
• NOT COLLECTED (0000000000000001)

Any other value is the value that is returned by the agent in the Tivoli Enterprise Portal.

Appendix C. Attributes reference 283

Warehouse name
LAST_COLLECTION_START or COLSTRT

Last Collection Finished attribute

Description
The most recent time a data collection of this group finished.

Type
Time stamp with enumerated values. The strings are displayed in the Tivoli Enterprise Portal.
The warehouse and queries return the values that are shown in parentheses. The following
values are defined:

• NOT COLLECTED (0691231190000000)
• NOT COLLECTED (0000000000000001)

Any other value is the value that is returned by the agent in the Tivoli Enterprise Portal.
Warehouse name

LAST_COLLECTION_FINISHED or COLFINI
Last Collection Duration attribute

Description
The duration of the most recently completed data collection of this group in seconds.

Type
Real number (32-bit counter) with two decimal places of precision

Warehouse name
LAST_COLLECTION_DURATION or COLDURA

Average Collection Duration attribute

Description
The average duration of all data collections of this group in seconds.

Type
Real number (32-bit counter) with two decimal places of precision with enumerated values.
The strings are displayed in the Tivoli Enterprise Portal. The warehouse and queries return the
values that are shown in parentheses. The following values are defined:

• NO DATA (-100)

Any other value is the value that is returned by the agent in the Tivoli Enterprise Portal.
Warehouse name

AVERAGE_COLLECTION_DURATION or COLAVGD
Refresh Interval attribute

Description
The interval at which this group is refreshed in seconds.

Type
Integer (32-bit counter)

Warehouse name
REFRESH_INTERVAL or REFRINT

Number of Collections attribute

Description
The number of times this group is collected since agent start.

284 IBM Agent Builder: IBM Agent Builder User's Guide

Type
Integer (32-bit counter)

Warehouse name
NUMBER_OF_COLLECTIONS or NUMCOLL

Cache Hits attribute

Description
The number of times an external data request for this group is satisfied from the cache.

Type
Integer (32-bit counter)

Warehouse name
CACHE_HITS or CACHEHT

Cache Misses attribute

Description
The number of times an external data request for this group was not available in the cache.

Type
Integer (32-bit counter)

Warehouse name
CACHE_MISSES or CACHEMS

Cache Hit Percent attribute

Description
The percentage of external data requests for this group that are satisfied from the cache.

Type
Real number (32-bit counter) with two decimal places of precision

Warehouse name
CACHE_HIT_PERCENT or CACHPCT

Intervals Skipped attribute

Description
The number of times a background data collection was skipped because the previous
collection was still running when the next one was due to start.

Type
Integer (32-bit counter)

Warehouse name
INTERVALS_SKIPPED or INTSKIP

Thread Pool Status attribute group
The Thread Pool Status attribute group contains information that reflects the status of the internal thread
pool that is used to collect data asynchronously.

The following comprises a list of the attributes for this attribute group. The name in bold text shows how
the attribute is displayed in the Tivoli Enterprise Portal.

The following list contains information about each attribute in the Thread Pool Status attribute group:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent

Appendix C. Attributes reference 285

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Timestamp attribute

Description
The time that is collected from the agent system when the data row was built and sent from the
agent to the Tivoli Enterprise Monitoring Server. Or stored for historical purposes. It represents the
local time zone of the agent system.

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP
Thread Pool Size attribute

Description
The number of threads currently existing in the thread pool.

Type
Integer

Names
Attribute name

Thread_Pool_Size
Column name

THPSIZE
Thread Pool Max Size attribute

Description
The maximum number of threads that are allowed to exist in the thread pool.

Type
Integer

Names
Attribute name

Thread_Pool_Max_Size
Column name

TPMAXSZ
Thread Pool Active Threads attribute

Description
The number of threads in the thread pool currently active doing work.

Type
Integer

286 IBM Agent Builder: IBM Agent Builder User's Guide

Names
Attribute name

Thread_Pool_Active_Threads
Column name

TPACTTH
Thread Pool Avg Active Threads attribute

Description
The average number of threads in the thread pool simultaneously active doing work.

Type
Integer

Names
Attribute name

Thread_Pool_Avg_Active_Threads
Column name

TPAVGAT
Thread Pool Min Active Threads attribute

Description
The minimum number of threads in the thread pool simultaneously active doing work.

Type
Integer

Names
Attribute name

Thread_Pool_Min_Active_Threads
Column name

TPMINAT
Thread Pool Max Active Threads attribute

Description
The peak number of threads in the thread pool simultaneously active doing work.

Type
Integer

Names
Attribute name

Thread_Pool_Max_Active_Threads
Column name

TPMAXAT
Thread Pool Queue Length attribute

Description
The number of jobs currently waiting in the thread pool queue.

Type
Integer

Names
Attribute name

Thread_Pool_Queue_Length

Appendix C. Attributes reference 287

Column name
TPQLGTH

Thread Pool Avg Queue Length attribute

Description
The average length of the thread pool queue during this run.

Type
Integer

Names
Attribute name

Thread_Pool_Avg_Queue_Length
Column name

TPAVGQL
Thread Pool Min Queue Length attribute

Description
The minimum length the thread pool queue reached.

Type
Integer

Names
Attribute name

Thread_Pool_Min_Queue_Length
Column name

TPMINQL
Thread Pool Max Queue Length attribute

Description
The peak length the thread pool queue reached.

Type
Integer

Names
Attribute name

Thread_Pool_Max_Queue_Length
Column name

TPMAXQL
Thread Pool Avg Job Wait attribute

Description
The average time a job spends waiting on the thread pool queue.

Type
Integer

Names
Attribute name

Thread_Pool_Avg_Job_Wait
Column name

TPAVJBW
Thread Pool Total Jobs attribute

288 IBM Agent Builder: IBM Agent Builder User's Guide

Description
The number of jobs that are completed by all threads in the pool since agent start.

Type
Integer

Names
Attribute name

Thread_Pool_Total_Jobs
Column name

TPTJOBS

Event log attribute node
The Event log attribute group contains any recent event log entries that pertain to the application.

By default, the agent displays only events that occur after the agent is started. Events are removed from
the Event Log view 1 hour after they occur.

The following list contains information about each attribute in the Event Log attribute group:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Log Name attribute

Description
The event log - Application, System, Security, or an application-specific log

Type
String

Names
Attribute name

Log_Name
Column name

LOGNAME
Event Source attribute

Description
The event source that is defined by the application

Type
String

Names
Attribute name

Event_Source

Appendix C. Attributes reference 289

Column name
EVTSOURCE

Event Type attribute

Description
Event Type - Error(0), Warning(1), Informational(2), Audit_Success(3), Audit_Failure(4),
Unknown(5)

Type
Integer

Names
Attribute name

Event_Type
Column name

EVTTYPE
Event ID attribute

Description
The ID of the event

Type
Integer

Names
Attribute name

Event_ID
Column name

EVTID
Event Category attribute

Description
The category of the event

Type
String

Names
Attribute name

Event_Category
Column name

EVTCATEG
Message attribute

Description
The event message

Type
String

Names
Attribute name

Message
Column name

MESSAGE

290 IBM Agent Builder: IBM Agent Builder User's Guide

Time Generated attribute

Description
The time the event was generated

Type
Time

Names
Attribute name

Time_Generated
Column name

TIMESTAMP

Log File Summary
The attributes of this attribute group are included in summary attribute groups when that option is
selected in the advanced properties of the data source.

A Summary node is created for each Log File data source when Include attribute in summary attribute
group is selected in the advanced properties of the data source. The name of the summary node is the
name of the data source with Summary added to the end.

The following list contains information about each of the default attributes in the Log File Summary
attribute group. These attributes are always included in summary attribute groups. If you select Include
attribute in summary attribute group, see step “9” on page 108 in (“Monitoring a log file” on page 104),
then the summary attribute group for that log attribute group also contains each of the attributes you
selected. The values are a copy of the corresponding attribute in the log file attribute group.

All of the added attributes together become a key and the summary table includes one row per unique set
of keys. The row indicates how many log records are received during the interval where all of the provided
keys matched the value reported in the corresponding attributes.

Node attribute - This attribute is a key attribute

Description
The managed system name of the agent

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Timestamp attribute

Description
The local time at the agent when the data was collected

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP

Appendix C. Attributes reference 291

Interval Unit attribute

Description
The number of seconds between summary attribute generation

Type
Integer (gauge)

Names
Attribute name

_Interval_Unit
Column name

IU
Interval attribute

Description
Offset of the current interval within the next larger unit of time (for example, minutes within an
hour)

Type
Integer (gauge)

Names
Attribute name

_Interval
Column name

INV
Occurrences attribute

Description
The number of occurrences that are recorded during the interval

Type
Integer (gauge)

Names
Attribute name

_Occurrences
Column name

OCC
LocalTimeStamp attribute

Description
The time that the summary data was generated

Type
Timestamp

Names
Attribute name

_LocalTimeStamp
Column name

LTS
DateTime attribute

292 IBM Agent Builder: IBM Agent Builder User's Guide

Description
The time that the summary data was generated

Type
String

Names
Attribute name

_Date_Time
Column name

DT
Interval Unit Name attribute

Description
The word description of the interval unit

Type
String

Names
Attribute name

_Interval_Unit_Name
Column name

IUN

AIX Binary Log attribute group
The AIX Binary Log attribute group displays events from the AIX Binary Log as selected by the provided
errpt command string.

The following list contains information about each attribute in the AIX Binary Log Attribute Group:

Note: The Agent Builder prevents removing, reordering, or changing the size of the Identifier,
ErrptTimestamp, Type, Class, ResourceName, and Description attributes. The agent parses the
data that comes back from an errpt command that is based on columns within the line of text. These
columns are defined by the order and size of the Identifier, ErrptTimestamp, Type, Class,
ResourceName, and Description attributes. Removing, reordering, or changing the size of these
attributes, changes the attribute that the various columns go into. The resulting row as seen in Tivoli
Monitoring is then incorrect.

You can, however, rename these attributes.

Node attribute - This attribute is a key attribute

Description
The managed system name of the agent

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Identifier attribute - This attribute is a key attribute

Description
The event identifier reported by errpt

Appendix C. Attributes reference 293

Type
String

Names
Attribute name

Identifier
Column name

IDENTIFIER
ErrptTimestamp attribute

Description
The time the event is recorded as reported by errpt.

Note: This attribute is hidden at run time. This attribute contains a raw value. Other attributes that
are derived from this attribute display the value in a more usable form. This attribute is available
from within Agent Builder for that purpose, but by default it is not visible in the Tivoli Monitoring
environment at run time. If you want to make it visible, select the attribute in the Data Source
Definition page in the Agent Editor and select Display attribute in the Tivoli Enterprise Portal.

Type
String

Names
Attribute name

ErrptTimestamp
Column name

ERRPTTIMES
Type

Description
The single character event type reported by errpt, one of I(NFO), P(END/ERF/ERM), T(EMP),
and U(NKN)

Type
String

Names
Attribute name

Type
Column name

TYPE
Class attribute - This attribute is a key attribute

Description
The event class reported by errpt, one of Hardware, Software, Operator, and
Undertermined. These values are enumerated. The raw values for use with situations are H, S, O,
and U.

Type
String

Names
Attribute name

Class
Column name

CLASS

294 IBM Agent Builder: IBM Agent Builder User's Guide

ResourceName

Description
The resource name reported by errpt, identifies the origin of the error record

Type
String

Names
Attribute name

ResourceName
Column name

RESOURCENA
Description attribute

Description
The description reported by errpt, typically a short text message that describes the nature of the
error

Type
String

Names
Attribute name

Description
Column name

DESCRIPTIO
LogFile attribute

Description
The full name of the binary errpt log including the path.

Note: This attribute is hidden at run time. This attribute contains a raw value. Other attributes that
are derived from this attribute display the value in a more useable form. This attribute is available
from within Agent Builder for that purpose, but by default it is not visible in the Tivoli Monitoring
environment at run time. If you want to make it visible, select the attribute in the Data Source
Definition page in the Agent Editor and select Display attribute in the Tivoli Enterprise Portal.

Type
String

Names
Attribute name

LogFile
Column name

LOGFILE
System attribute

Description
The host name of the system where the error was collected

Type
String

Names
Attribute name

System

Appendix C. Attributes reference 295

Column name
SYSTEM

LogName attribute

Description
The base name of the binary errpt log from which the record was collected

Type
String

Names
Attribute name

LogName
Column name

LOGNAME
LogPath attribute

Description
The directory name that contains the binary errpt log from which the record was collected

Type
String

Names
Attribute name

LogPath
Column name

LOGPATH
EntryTime attribute

Description
The time the event is recorded as reported by errpt in Tivoli Timestamp format. This time is not
necessarily identical to the time when the agent received the event, as recorded in the
Timestamp field.

Type
Time stamp

Names
Attribute name

EntryTime
Column name

ENTRYTIME

Monitor and Notification attribute groups
Definitions for the Monitor and Notification attribute groups.

The first 4 are specific to monitors and the last is for notifications (all are related to JMX).

Each one is listed with an indication whether it is event-based or not. For non-event based attribute
groups, data is collected when needed. For event-based attribute groups, the agent maintains a cache of
the last 100 events received. These events are used to respond to requests from the Tivoli Enterprise
Portal. The events are forwarded immediately for analysis by situations and warehousing.

296 IBM Agent Builder: IBM Agent Builder User's Guide

Counter Notifications
The Counter Notifications attribute group is a non-event based attribute group that sends events that are
received by all counter monitors.

The following list contains information about each attribute in the Counter Notifications attribute group:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Timestamp attribute

Description
The local time at the agent when the data was collected

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP
Notification Type attribute

Description
The type of notification received. Describes how the observed attribute of the MBean triggered the
notification.

Type
String

Names
Attribute name

Notification_Type
Column name

NOTIFICATI
Monitor ID attribute

Description
Monitor ID of the monitor who generated this notification

Type
Integer

Names
Attribute name

Monitor_ID

Appendix C. Attributes reference 297

Column name
MONITOR_ID

Observed MBean attribute

Description
The MBean whose attribute is being monitored

Type
String

Names
Attribute name

Observed_MBean
Column name

OBSERVED_M
Observed Attribute attribute

Description
Name of the attribute that is monitored in the Observed MBean

Type
String

Names
Attribute name

Observed_Attribute
Column name

OBSERVED_A
Threshold attribute

Description
The current threshold of the monitor

Type
String

Names
Attribute name

Threshold
Column name

THRESHOLD
Offset attribute

Description
The value added to the threshold each time the attribute exceeds the threshold. This value forms
a new threshold.

Type
String

Names
Attribute name

Offset
Column name

OFFSET

298 IBM Agent Builder: IBM Agent Builder User's Guide

Modulus attribute

Description
The maximum value of the attribute. When it reaches this value, it rolls over and begins counting
again from zero.

Type
Integer

Names
Attribute name

Modulus
Column name

MODULUS
Counter Value attribute

Description
Value of the counter that triggered the notification

Type
Integer

Names
Attribute name

Counter_Value
Column name

COUNTER_VA
Notification Time Stamp attribute

Description
Time that the notification was triggered

Type
Time

Names
Attribute name

Notification_Time_Stamp
Column name

NOTIFICAT0
Notification Message attribute

Description
The message in the notification

Type
String

Names
Attribute name

Notification_Message
Column name

NOTIFICAT1

Appendix C. Attributes reference 299

Gauge Notifications
The Gauge Notifications attribute group is a non-event based attribute group that sends events that are
received by all gauge monitors.

The following list contains information about each attribute in the Gauge Notifications attribute group:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Timestamp attribute

Description
The local time at the agent when the data was collected

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP
Notification Type attribute

Description
The type of notification received. Describes how the observed attribute of the MBean triggered the
notification.

Type
String

Names
Attribute name

Notification_Type
Column name

NOTIFICATI
Monitor ID attribute

Description
Monitor ID of the monitor who generated this notification

Type
Integer

Names
Attribute name

Monitor_ID

300 IBM Agent Builder: IBM Agent Builder User's Guide

Column name
MONITOR_ID

Observed MBean attribute

Description
The MBean whose attribute is being monitored

Type
String

Names
Attribute name

Observed_MBean
Column name

OBSERVED_M
Observed Attribute attribute

Description
Name of the attribute that is monitored in the Observed MBean

Type
String

Names
Attribute name

Observed_Attribute
Column name

OBSERVED_A
Low Threshold attribute

Description
The threshold that the monitor is watching for the observed attribute to cross

Type
String

Names
Attribute name

Low_Threshold
Column name

LOW_THRESH
High Threshold attribute

Description
The threshold that the monitor is watching for the observed attribute to cross

Type
String

Names
Attribute name

High_Threshold
Column name

HIGH_THRES
Gauge Value attribute

Appendix C. Attributes reference 301

Description
Value of the gauge that triggered the notification

Type
String

Names
Attribute name

Gauge_Value
Column name

MODULUSGAUGE_VALU
Notification Time Stamp attribute

Description
Time that the notification was triggered

Type
Time

Names
Attribute name

Notification_Time_Stamp
Column name

NOTIFICAT0
Notification Message attribute

Description
The message in the notification

Type
String

Names
Attribute name

Notification_Message
Column name

NOTIFICAT1

Registered Monitors
The Registered Monitors attribute group is an event-based attribute group that shows a list of all JMX
Monitors that are created by the agent.

The following list contains information about each attribute in the Registered Monitors attribute group:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE

302 IBM Agent Builder: IBM Agent Builder User's Guide

Timestamp attribute

Description
The local time at the agent when the data was collected

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP
Monitor ID attribute - This attribute is a key attribute

Description
The unique integer identifier for a monitor

Type
Integer

Names
Attribute name

Monitor_ID
Column name

MONITOR_ID
Monitor Parameters attribute

Description
The parameters that are used to create the monitor

Type
String

Names
Attribute name

Monitor_Parameters
Column name

MONITOR_PA
Monitor Name attribute

Description
The JMX Object Name of the monitor MBean

Type
String

Names
Attribute name

Monitor_Name
Column name

MONITOR_NA

Appendix C. Attributes reference 303

String Notifications
The String Notifications attribute group is a non-event based attribute group that sends events that are
received by all string monitors.

The following list contains information about each attribute in the String Notifications attribute group:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Timestamp attribute

Description
The local time at the agent when the data was collected

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP
Notification Type attribute

Description
The type of notification received. Describes how the observed attribute of the MBean triggered the
notification.

Type
String

Names
Attribute name

Notification_Type
Column name

NOTIFICATI
Monitor ID attribute - This attribute is a key attribute

Description
The unique integer identifier for a monitor

Type
Integer

Names
Attribute name

Monitor_ID

304 IBM Agent Builder: IBM Agent Builder User's Guide

Column name
MONITOR_ID

Observed MBean attribute

Description
The MBean whose attribute is being monitored

Type
String

Names
Attribute name

Observed_MBean
Column name

OBSERVED_M
Observed Attribute attribute

Description
Name of the attribute that is monitored in the Observed MBean

Type
String

Names
Attribute name

Observed_Attribute
Column name

OBSERVED_A
Compare String attribute

Description
The string that is used in the comparison operation

Type
String

Names
Attribute name

Compare_String
Column name

COMPARE_ST
String Value attribute

Description
Value of the attribute that triggered the notification

Type
String

Names
Attribute name

String_Value
Column name

STRING_VAL
Notification Time Stamp attribute

Appendix C. Attributes reference 305

Description
Time that the notification was triggered

Type
Time

Names
Attribute name

Notification_Time_Stamp
Column name

NOTIFICAT0
Notification Message attribute

Description
The message in the notification

Type
String

Names
Attribute name

Notification_Message
Column name

NOTIFICAT1

SNMP Event attribute groups
SNMP event attribute groups are used to receive traps and informs. These attribute groups are event-
based attribute groups

The following list contains information about each attribute in the SNMP Event Attribute Groups:

Note: You can change the default display name of these attributes. These display names are distinct from
the internal ID for each attribute.

Enterprise_OID
The enterprise OID that generated the trap.

Source_Address
Host name or IP address of the SNMP agent that sent the trap.

Generic_Trap
Generic trap number that is extracted from the received trap. Possible values:

0 ColdStart
1 WarmStart
2 LinkDown
3 LinkUp
4 Authentication Failure
5 EGPNeighborLoss

Specific_Trap
Enterprise-specific trap number that is extracted from the received trap. Applies only when
Generic_Trap = 6.

Alert_Name
Trap name as specified in the definition in the trap configuration file.

Category
Trap category as specified in the definition in the trap configuration file.

306 IBM Agent Builder: IBM Agent Builder User's Guide

Description
Trap description as specified in the definition in the trap configuration file. The maximum description
length is 256 characters.

Enterprise_Name
Trap Enterprise name as specified in the trap configuration file and determined through the trap
object identifier.

Source_Status
Status of the agent that originated the trap after the trap is sent as specified in the trap definition in
the trap configuration file.

Source_Type
Type of the agent that originated the trap as specified in the trap definition in the trap configuration
file.

Event_Variables
Variable binding (VarBind) data that is received in the trap protocol data unit (PDU). The string is
constructed as:

{OID[type]=value}{OID[type]=value}{oid[type]=value}...

Where:
oid

MIB variable object identifier
type

SMI data type
value

Variable value
{}

Each triplet is surrounded by braces ({}).

Note: The attributes Alert Name, Category, Description, Enterprise_Name, Source_Status, and
Source_Type provide more information. In the SNMP MIB Browser window, select the Include attributes
that show information defined in the trap configuration file check box to include these attributes.

JMX Event attribute groups
JMX event attribute groups are used to receive notifications from an MBean server.

These attribute groups are non-event based attribute groups and are generated with the following
attributes that can be edited by the agent developer.

The following list contains information about each attribute in the JMX Event Attribute Groups:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Timestamp attribute

Appendix C. Attributes reference 307

Description
The local time at the agent when the data was collected

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP
Type attribute

Description
The notification type

Type
String

Names
Attribute name

Type
Column name

TYPE
Source attribute

Description
The MBean that caused the notification to be sent

Type
String

Names
Attribute name

Source
Column name

SOURCE
Sequence Number attribute

Description
The sequence number from the notification object

Type
String

Names
Attribute name

Sequence_Number
Column name

SEQUENCE_N
Message attribute

Description
The notification message

Type
String

308 IBM Agent Builder: IBM Agent Builder User's Guide

Names
Attribute name

Message
Column name

MESSAGE
User Data attribute

Description
The user data object from the notification

Type
String

Names
Attribute name

User_Data
Column name

USER_DATA

Ping attribute group
The Ping attribute group contains the results of ICMP pings that are sent to lists of devices.

The following list contains information about each attribute in the Ping Attribute Group:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent.

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Timestamp attribute

Description
The time that is collected from the agent system when the data row was built and sent from the
agent to the Tivoli Enterprise Monitoring Server. Or stored for historical purposes. It represents the
local time zone of the agent system.

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP
Address attribute - This attribute is a key attribute

Description
The IP address of the host that is monitored.

Appendix C. Attributes reference 309

Type
String with enumerated value. The value UNKNOWN_ADDRESS is displayed if the IP address is
unknown. The warehouse and queries return 0.0.0.0 for this enumeration. Any other IP address
values are displayed as is.

Names
Attribute name

Address
Column name

PNGADDR
Device Entry attribute - This attribute is a key attribute

Description
The entry in the device list file for this node.

Type
String

Names
Attribute name

Device_Entry
Column name

PINGDEVC
Current Response Time attribute

Description
The current network response time for ICMP requests for the managed node in milliseconds.

Type
Integer with enumerated values. The strings are displayed in the Tivoli Enterprise Portal. The
warehouse and queries return the numbers. The defined values are TIMEOUT(-1) and
SEND_FAILURE(-2). Any other values show the numeric value.

Names
Attribute name

Current_Response_Time
Column name

PINGRSTM
Name attribute

Description
The host name of the managed node. If the node address cannot be resolved through DNS, then
the dotted decimal IP address is shown.

Type
String with enumerated value. The value UNKNOWN_HOSTNAME is displayed if the host name is
unknown. The warehouse and queries return 0.0.0.0 for this enumeration. Any other host name
values are displayed as is.

Names
Attribute name

Name
Column name

PNGNAME
Node Description attribute

310 IBM Agent Builder: IBM Agent Builder User's Guide

Description
The description of the managed node.

Type
String

Names
Attribute name

Node_Description
Column name

PNGDESC
Node Status attribute

Description
The current operating status of the managed node.

Type
Integer with enumerated values. The strings are displayed in the Tivoli Enterprise Portal. The
warehouse and queries return the numbers. The defined values are INVALID(-2),
UNKNOWN(-1), INACTIVE(0), and ACTIVE(1).

Names
Attribute name

Node_Status
Column name

PNGSTAT
Node Type attribute

Description
The type of the managed node. If the node is online, it is an IP Node. If it is offline, the type is
Unknown.

Type
Integer with enumerated values. The strings are displayed in the Tivoli Enterprise Portal. The
warehouse and queries return the numbers. The defined values are UNKNOWN(0) and IP
NODE(1).

Names
Attribute name

Node_Type
Column name

PNGTYPE
Status Timestamp

Description
The date and time the node was last checked.

Type
Time

Names
Attribute name

Status_Timestamp
Column name

PNGTMSP

Appendix C. Attributes reference 311

HTTP attribute groups
The two HTTP attribute groups, Managed URLs and URL Objects, are used to receive information from
URLs and the objects within theses URLs.

For information about the syntax that is used in the Managed URLs and URL Objects tables, see (“Specific
fields for HTTP attributes” on page 139).

Managed URLs
The following list contains information about each attribute in the Managed URL Attribute Group:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Timestamp attribute

Description
The local time at the agent when the data was collected

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP
URL attribute - This attribute is a key attribute

Description
The URL that is being monitored.

Type
String

Names
Attribute name

URL
Column name

HTTPURL
Response Time attribute

Description
The amount of time it took to download the response in milliseconds.

312 IBM Agent Builder: IBM Agent Builder User's Guide

Type
Integer with enumerated value. The string is displayed in the Tivoli Enterprise Portal, the
warehouse, and queries return the number. The defined value is TIMEOUT (-1).

Names
Attribute name

Response_Time
Column name

HTTPURL
Page Size attribute

Description
The size of the page that is returned by the HTTP request.

Type
Integer with enumerated value. The string is displayed in the Tivoli Enterprise Portal, the
warehouse, and queries return the number. The defined value is NO_RESPONSE_RECEIVED(-1).

Names
Attribute name

Page_Size
Column name

PAGESZ
Page Objects attribute

Description
The total number of objects that are associated with the monitored page.

Type
Integer with enumerated value. The string is displayed in the Tivoli Enterprise Portal, the
warehouse, and queries return the number. The defined value is NOT_COLLECTED(-1).

Names
Attribute name

Page_Objects
Column name

PGOBJS
Total Object Size attribute

Description
The size of the page that is returned by the HTTP request.

Type
Integer with enumerated value. The string is displayed in the Tivoli Enterprise Portal, the
warehouse, and queries return the number. The defined value is NOT_COLLECTED(-1).

Names
Attribute name

Total_Object_Size
Column name

TOTOSZ
Page Title attribute

Description
The page title of the received URL page.

Appendix C. Attributes reference 313

Type
String

Names
Attribute name

Page_Title
Column name

PAGETTL
Server Type attribute

Description
The type of server that is used at the target URL website.

Type
String

Names
Attribute name

Server_Type
Column name

SRVTYP
Response Code attribute

Description
The response code of the HTTP request.

Type
Integer with enumerated value. The string is displayed in the Tivoli Enterprise Portal, the
warehouse, and queries return the number. The defined value is NO_RESPONSE_RECEIVED(-1).

Names
Attribute name

Response_Code
Column name

CODE
Status attribute

Description
The current managed URL status (OK or status description).

Type
String

Names
Attribute name

Status
Column name

STATUS
URL Alias attribute

Description
The user-specified alias for the URL.

Type
String

314 IBM Agent Builder: IBM Agent Builder User's Guide

Names
Attribute name

URL_Alias
Column name

ALIAS
User Data attribute

Description
The user data that is specified with the URL.

Type
String

Names
Attribute name

User_Data
Column name

USER

URL Objects
The following list contains information about each attribute in the URL Objects Attribute Group:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Timestamp attribute

Description
The local time at the agent when the data was collected

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP
URL attribute - This attribute is a key attribute

Description
The URL that is being monitored.

Type
String

Appendix C. Attributes reference 315

Names
Attribute name

URL
Column name

HTTPURL
Object Name attribute

Description
The name of the page object within the target URL.

Type
String

Names
Attribute name

Object_Name
Column name

ONAME
Object Size attribute

Description
The size (bytes) of the page object within the target URL.

Type
Integer with enumerated values. The strings are displayed in the Tivoli Enterprise Portal. The
warehouse and queries return the numbers. The defined values are NOT_COLLECTED (-1),
OBJECT_NOT_FOUND (-2). Any other values show the numeric value.

Names
Attribute name

Object_Size
Column name

SIZE
Object Response Time attribute

Description
The amount of time it took to download the object in milliseconds.

Type
Integer with enumerated values. The strings are displayed in the Tivoli Enterprise Portal. The
warehouse and queries return the numbers. The defined values are NOT_COLLECTED (-1),
NO_RESPONSE_RECEIVED (-2), STATUS_CODE_ERROR (-3). Any other values show the
numeric value.

Names
Attribute name

Object_Response_Time
Column name

ORTIME

316 IBM Agent Builder: IBM Agent Builder User's Guide

Discovery attribute groups
An attribute group that represents the set of subnode instances that are defined for a subnode type

When you create a subnode type, an attribute group is created that represents the set of subnode
instances that are defined for that subnode type. Each of these attribute groups includes the same set of
attributes.

The following list contains information about each attribute in a Discovery attribute group. The name in
bold text shows how the attribute is displayed in the Tivoli Enterprise Portal:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Timestamp attribute

Description
The time from the agent system when the data row was built and sent to the Tivoli Enterprise
Monitoring Server (or stored for historical purposes). It represents the local time zone of the agent
system.

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP
Subnode MSN attribute

Description
The Managed System Name of the subnode agent.

Type
String

Names
Attribute name

Subnode_MSN
Column name

SN_MSN
Subnode Affinity attribute

Description
The affinity for the subnode agent.

Appendix C. Attributes reference 317

Type
String

Names
Attribute name

Subnode_Affinity
Column name

SN_AFFIN
Subnode Type attribute

Description
The node type of this subnode.

Type
String

Names
Attribute name

Subnode_Type
Column name

SN_TYPE
Subnode Resource Name attribute

Description
The resource name of the subnode agent.

Type
String

Names
Attribute name

Subnode_Resource_Name
Column name

SN_RES
Subnode Version attribute

Description
The version of the subnode agent.

Type
Names

Attribute name
Subnode_Version

Column name
SN_VER

Take Action Status attribute group
The Take Action Status attribute group contains the status of actions that the agent processed.

This attribute group is event-based and contains information about each attribute in the Take Action
Status attribute group:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent.

318 IBM Agent Builder: IBM Agent Builder User's Guide

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Timestamp attribute

Description
The time that is collected from the agent system, when the data row was built and sent from the
agent to the Tivoli Enterprise Monitoring Server. Or stored for historical purposes. It represents the
local time zone of the agent system.

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP
Action Name attribute

Description
The name of the action that was run

Type
String

Names
Attribute name

Action_Name
Column name

TSKNAME
Action Status attribute

Description
The status of the action.

Type
Integer with enumerated values. The values are: OK (0), NOT_APPLICABLE (1), GENERAL_ERROR
(2), WARNING (3), NOT_RUNNING (4), DEPENDENT_NOT_RUNNING (5), ALREADY_RUNNING (6),
PREREQ_NOT_RUNNING (7), TIMED_OUT (8), DOESNT_EXIST (9), UNKNOWN (10),
DEPENDENT_STILL_RUNNING (11), INSUFFICIENT_USER_AUTHORITY (12)

Names
Attribute name

Action_Status
Column name

TSKSTAT
Action Application Return Code attribute

Description
The return code of the application the action started.

Type
Integer

Appendix C. Attributes reference 319

Names
Attribute name

Action_App_Return_Code
Column name

TSKAPRC
Action Message attribute

Description
The message that is associated with the return code of the action.

Type
String

Names
Attribute name

Action_Message
Column name

TSKMSGE
Action Instance attribute

Description
The instance that is associated with the output produced by running the action. If the action is a
system command, the instance is the line number of the output of the command.

Type
String

Names
Attribute name

Action_Instance
Column name

TSKINST
Action Results attribute

Description
The output that is produced by running the action.

Type
String

Names
Attribute name

Action_Results
Column name

TSKOUTP
Action Command attribute

Description
The command that was run by the action.

Type
String

Names
Attribute name

Action_Command
Column name

TSKCMND

320 IBM Agent Builder: IBM Agent Builder User's Guide

Action Node attribute
Description

The node where the action ran.
Type

String
Names

Attribute name
Action_Node

Column name
TSKORGN

Action Subnode attribute
Description

The subnode where the action ran.
Type

String
Names

Attribute name
Action_Subnode

Column name
TSKSBND

Action ID attribute
Description

The ID of the action.
Type

Integer
Names

Attribute name
Action_ID

Column name
TSKID

Action Type attribute
Description

The type of the action.
Type

Integer with enumerated values. The strings are displayed in the Tivoli Enterprise Portal, the
warehouse, and queries return the numbers. The defined values are: UNKNOWN (0),
AUTOMATION (1).

Names
Attribute name

Action_Type
Column name

TSKTYPE
Action Owner attribute

Description
The name of the situation or user that initiated the action.

Type
String

Appendix C. Attributes reference 321

Names
Attribute name

Action_Owner
Column name

TSKOWNR

Log File Status attribute group
The Log File Status attribute group contains information that reflects the status of log files this agent is
monitoring.

The Log File Status attribute group is included if you have a log attribute group and the agent is at the
default minimum Tivoli Monitoring version of 6.2.1 or later. The Log File Status attribute group includes
two attributes that are defined as 64-bit numbers so that they can handle large files. 64-bit numeric
attribute support is provided by Tivoli Monitoring version 6.2.1 or later.

The following list contains information about each attribute in the Log File Status attribute group:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent.

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Timestamp attribute

Description
The value is the time that is collected from the agent system, when the data row was built and
sent from the agent to the Tivoli Enterprise Monitoring Server. Or stored for historical purposes. It
represents the local time zone of the agent system.

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP
Table Name attribute - This attribute is a key attribute

Description
The name of the table in which this log is being monitored

Type
String

Names
Attribute name

Table_Name
Column name

TBLNAME

322 IBM Agent Builder: IBM Agent Builder User's Guide

File Name attribute - This attribute is a key attribute
Description

The name of the file that is being monitored
Type

String
Names

Attribute name
File_Name

Column name
FILNAME

RegEx Pattern attribute - This attribute is a key attribute
Description

The regular expression pattern (if any) that caused this file to be monitored
Type

String
Names

Attribute name
RegEx_Pattern

Column name
REPATRN

File Type attribute
Description

The type of this file (regular file or pipe)
Type

Integer with enumerated values. The strings are displayed in the Tivoli Enterprise Portal. The
defined values are UNKNOWN(0), REGULAR FILE(1), PIPE(2)

Names
Attribute name

File_Type
Column name

FILTYPE
File Status attribute

Description
The status of the file that is being monitored

Type
Integer with enumerated values. The strings are displayed in the Tivoli Enterprise Portal. The
defined values are: OK(0), PERMISSION DENIED(1), FILE DOES NOT EXIST(2), INTERRUPTED
SYSTEM CALL(4), I/O ERROR(5), NO SUCH DEVICE(6), BAD FILE NUMBER(9), OUT OF
MEMORY(12), ACCESS DENIED(13), RESOURCE BUSY(16), NOT A DIRECTORY(20), IS A
DIRECTORY(21), INVALID ARGUMENT(22), FILE TABLE OVERFLOW(23), TOO MANY OPEN
FILES(24), TEXT FILE BUSY(26), FILE TOO LARGE(27), NO SPACE LEFT ON DEVICE(28), ILLEGAL
SEEK ON PIPE(29), READ-ONLY FILE SYSTEM(30), TOO MANY LINKS(31), BROKEN PIPE(32)

Names
Attribute name

File_Status
Column name

FILSTAT

Appendix C. Attributes reference 323

Num Records Matched attribute
Description

The number of processed records from this log which matched one of the specified patterns
Type

Integer
Names

Attribute name
Num_Records_Matched

Column name
RECMTCH

Num Records Not Matched attribute
Description

The number of processed records sent to the UnmatchLog; did not match any patterns
Type

Integer
Names

Attribute name
Num_Records_Not_Matched

Column name
RECUNMT

Num Records Processed attribute
Description

The number of records that are processed from this log since agent start (including ones that are
not matches/events)

Type
Integer

Names
Attribute name

Num_Records_Processed
Column name

RECPROC
Current File Position attribute

Description
The current position in bytes into the monitored file. Data up to this position is processed, data
after this position is not processed. Not applicable to pipes.

Type
Integer

Names
Attribute name

Current_File_Position
Column name

OFFSET
Current® File Size attribute

Description
The current size of the monitored file. Not applicable to pipes.

Type
Integer

324 IBM Agent Builder: IBM Agent Builder User's Guide

Names
Attribute name

Current_File_Size
Column name

FILESIZE
Last Modification Time attribute

Description
The time when the monitored file was last written to. Not applicable to pipes.

Type
Timestamp

Names
Attribute name

Last_Modification_Time
Column name

LASTMOD
Codepage attribute

Description
The language codepage of the monitored file

Type
String

Names
Attribute name

Codepage
Column name

CODEPG

Log File RegEx Statistics attribute group
The Log File RegEx Statistics attribute group contains information that shows the statistics of the log file
regular expression search expressions.

Regular expressions can be used to filter records or to define records. This attribute group shows
information about both types. When the Result Type attribute contains either INCLUDE or EXCLUDE, the
filter is use to filter records. If the Result Type attribute contains BEGIN or END, the filter is used to define
records. The CPU measurements are approximations that are based on the granularity of the data that is
exposed by the operating system. These measurements can result in values of 0.00 when a regular
expression takes a small time to evaluate. Use the CPU times to determine the relative cost of regular
expressions and to optimize the behavior of specific regular expressions.

The Log File RegEx Statistics attribute group is included if you have a log attribute group and the agent is
at Tivoli Monitoring version of 6.2.1 or later. The minimum Tivoli Monitoring Version is selected on the
Agent Information page. For more information, see (“Naming and configuring the agent” on page 13).
The Log File RegEx Statistics attribute group includes attributes that are defined as 64-bit numbers so
that they can handle long durations. Support for 64-bit numeric attributes is provided by Tivoli Monitoring
version 6.2.1 or later.

The following list contains information about each attribute in the Log File RegEx Statistics attribute
group:
Node attribute - This attribute is a key attribute

Description
The managed system name of the agent.

Appendix C. Attributes reference 325

Type
String

Names
Attribute name

Node
Column name

ORIGINNODE
Timestamp attribute

Description
The local time at the agent when the data was collected.

Type
Time

Names
Attribute name

Timestamp
Column name

TIMESTAMP
Table Name attribute - This attribute is a key attribute

Description
The name of the log file attribute group.

Type
String

Names
Attribute name

Table_Name
Column name

TBLNAME
Attribute Name attribute - This attribute is a key attribute

Description
The name of the attribute to which this filter is applied.

Type
String

Names
Attribute name

Attribute_Name
Column name

ATRNAME
Filter Number

Description
The sequence number, starting at zero, of the filter that is being used for the attribute.

Type
Integer (Numeric Property)

Names
Attribute name

Filter_Number
Column name

FLTRNUM

326 IBM Agent Builder: IBM Agent Builder User's Guide

Result Type attribute
Description

The result type can be INCLUDE or EXCLUDE to accept or reject the attribute if the filter matches.
The result type can be BEGIN or END to specify the start or end of a record for multi-line records.

Type
Integer with enumerated values. The strings are displayed in the Tivoli Enterprise Portal. If the
filter is used to filter records, the defined values are INCLUDE(1) or EXCLUDE(2). If the filter is
used to define records, the defined values are BEGIN(3) or END(4).

Names
Attribute name

Result_Type
Column name

RSTTYPE
Average Processor Time attribute

Description
The average number of processor seconds used to process the filter for this attribute. The average
processor time is the total processor seconds divided by the filter count.

Type
Integer (Gauge)

Names
Attribute name

Average_Processor_Time
Column name

CPUTAVG
Processor Time attribute

Description
The total number of processor seconds used to process the filter for this attribute. The processor
time is cumulative and is truncated, not rounded. Similar to the Linux /proc/<pid>/task/
thread/stat file.

Type
Integer (Counter)

Names
Attribute name

Processor_Time
Column name

CPUTIME
Max Processor Time attribute

Description
The maximum number of processor seconds used for a single filter processing. It is possible that
the maximum is zero if the filter was never used or if each of the filter processing took less than
0.01 seconds.

Type
Integer (Gauge)

Names
Attribute name

Max_Processor_Time
Column name

CPUTMAX

Appendix C. Attributes reference 327

Min Processor Time attribute
Description

The minimum number of processor seconds used for a single filter processing. It is possible that
the minimum is zero if a filter processing took less than 0.01 seconds.

Type
Integer (Gauge)

Names
Attribute name

Min_Processor_Time
Column name

CPUTMIN
Filter Count attribute

Description
The number of times the filter is run. Used with the total processor time to compute the average
processor time.

Type
Integer (Counter)

Names
Attribute name

Filter_Count
Column name

COUNT
Filter Count Matched attribute

Description
The number of times the filter is run and the attribute matched.

Type
Integer (Counter)

Names
Attribute name

Filter_Count_Matched
Column name

COUNTMA
Filter Count Unmatched attribute

Description
The number of times the filter is run and the attribute did not match.

Type
Integer (Counter)

Names
Attribute name

Filter_Count_Unmatched
Column name

COUNTUN
RegEx Pattern attribute - This attribute is a key attribute

Description
The regular expression that is used for the match.

Type
String

328 IBM Agent Builder: IBM Agent Builder User's Guide

Names
Attribute name

RegEx_Pattern
Column name

REGXPAT
Last Matched Time attribute

Description
The last time the filter was used and the result matched.

Type
Time

Names
Attribute name

Last_Matched_Time
Column name

LASTMAT
Last Unmatched Time attribute

Description
The last time the filter was used and the result was unmatched.

Type
Time

Names
Attribute name

Last_Unmatched_Time
Column name

LASTUMA

Appendix C. Attributes reference 329

330 IBM Agent Builder: IBM Agent Builder User's Guide

Appendix D. Creating application support extensions
for existing agents

For the IBM Tivoli Monitoring environment, you can build an installable package to distribute custom
workspaces, situations, queries, and Take Action commands that you created, as an application support
extension for an existing agent.

Before you begin
For more information about how to create custom situations, workspaces, Take Action commands, and
queries, see (Chapter 11, “Creating workspaces, Take Action commands, and situations,” on page 213).

About this task
Important: This task is not how you add application support to an agent that you are building. To add
application support to an agent that you are building see (Chapter 17, “Importing application support
files,” on page 257).

Procedure
1. From the Agent Builder, select File > New > Other.
2. Select Agent Builder Application Support Extension under Agent Builder.
3. Click Next to get to the welcome page for the IBM Tivoli Monitoring Application Support Extension

wizard.
4. Click Next on the welcome page.
5. Enter a name for the project and click Finish

Creating an Application Support Extension project
Create an Application Support Extension project by using Agent builder.

Procedure
1. From the Agent Builder, select File > New > Other.
2. Select Agent Builder Application Support Extension under Agent Builder.
3. Click Next to get to the welcome page for the IBM Tivoli Monitoring Application Support Extension

Wizard.
4. Click Next on the welcome page.
5. Enter a name for the project and click Finish

Adding support files to a project
Add your support files to an Application Support Extension project

Before you begin
Create an Application Support Extension project. For more information, see “Creating an Application
Support Extension project” on page 331.

Procedure
1. Right-click an Application Support Extension project and select IBM Tivoli > Import Application

Support Extensions

© Copyright IBM Corp. 2010, 2021 331

2. In the Import Information window, select the name of the host where the Tivoli Enterprise Portal
Server is located or click Add to add one.

3. In the Application field, enter the agent product code.
4. Enter the affinity of the agent for which you are creating custom application support.

The agent affinity is a Tivoli Monitoring internal identifier that associates workspaces, queries, and
other items, with the agent. It must be unique in the Tivoli Monitoring installation. Click Browse to
open the Node Types window and select this information from a list rather than typing it.

5. When you are satisfied with the import information, click Finish.
6. In the Situations window, select the situations that you want to import from the Available Situations

list.
Click << to add them to the Selected Situations list and click OK. A new folder is created under the
project, and it contains the necessary files to install the workspaces, situations, and queries.

7. In the Queries window, select the queries that you want to import from the Available Queries list.
Click << to add them to the Selected Queries list and click OK.

8. In the Take Actions window, Choose the Take Action commands that you want to import from the
Available Take Actions list.
Click << to add them to the Selected Take Actions list and click OK. The support files for the agent are
put in the project under the appropriate folder.

What to do next
You can repeat this process for as many different agents as you want. The Agent Builder creates a single
installation image from all of the support files in the Application Support Extension project.

Generating the Application Support Extension installation image
Generate an Application Support Extension installation image.

Procedure
1. Right-click on the Application Support Extension project and select IBM Tivoli > Create Application

Support Extension Install Image.
2. In the Application Support Extension Information window, enter the directory where the image is to

be placed.
3. Your Application Support Extension must have its own product code. Enter the registered product code

for your new agent. You can use one of the product codes that are reserved for use with the Agent
Builder. The allowed values are K00-K99, K{0-2}{A-Z}, and K{4-9}{A-Z}.

Note: These values are for internal use only and are not intended for agents that are to be shared or
sold. If you are creating an agent to be shared with others, you must send a note to
toolkit@us.ibm.com to reserve a product code. The request for a product code must include a
description of the agent to be built. A product code is then assigned, registered, and returned to you.
When you receive the three-letter product code, you are told how to enable the Agent Builder to use
the assigned product code.

4. Enter the name of the Application Support Extension.
5. Enter a description of the Application Support Extension.
6. Enter a version for the Application Support Extension in the VVRRMMFF format where vv = version

number; rr = release number; mm = modification number (fix pack number); and ff = interim fix
number.

7. Click Finish.

332 IBM Agent Builder: IBM Agent Builder User's Guide

Installing your Application Support Extension
Install your Application Support Extension

Procedure
1. Transfer your image to your Tivoli Enterprise Monitoring Server and Tivoli Enterprise Portal Server

servers.
2. To install the Tivoli Enterprise Monitoring Server support, run one of the following commands:

• On Windows: installKXXTEMSSupport.bat
• On UNIX: installKXXTEMSSupport.sh

The format for the command is as follows:

installKXXTEMSSupport[.bat | .sh] <ITM Install Directory> [-s tems_host]
 [-u tems_user] \[-p tems_password]

3. To install the Tivoli Enterprise Portal Server support, run one of the following commands:

• On Windows: installKXXTEPSSupport.bat
• On UNIX: installKXXTEPSSupport.sh

The format for the command is as follows:

 installKXXTEPSSupport[.bat | .sh] <ITM Install Directory> [-r]

where -r indicates that the Tivoli Enterprise Portal Server must be restarted after installation

Converting a Solution Install Project to an Application Support
Extension project

Convert an existing Solution Install Project to an Application Support Extension project

About this task
If you have an existing Solution Install Project that you want to convert to an Application Support
Extension project, complete the following steps:

Note: In the Solution Install Project only Support files are migrated.

Procedure
1. Right-click on the Solution Install project and select IBM Tivoli > Convert Solution Install Project.
2. Enter the name of a new Application Support Extension project or select an existing one from the list
3. Click Finish.

Appendix D. Creating application support extensions for existing agents 333

334 IBM Agent Builder: IBM Agent Builder User's Guide

Appendix E. Cognos data model generation
Agent Builder can generate a Cognos data model for each agent. Use the data model to import agent
information into the Cognos Framework Manager for report creation.

This Cognos data model can be opened and viewed in the Framework Manager, which builds a model
package to be published into Tivoli Common Reporting. The data model can also be customized or
modified within the Framework Manager before publication.

When a report is created, Agent Builder also allows for a final report package to be imported into the
Agent Builder project. This feature enables future agent projects to be generated with the reports that are
already part of the agent package. The reports that are packaged as part of the agent installation image
can be imported into Tivoli Common Reporting in your production environment.

Note: In this documentation, note the following convention:

• Kxx or kxx refers to the product code given to the agent, for example, k99.
• dbType refers to the database that is being used by the Tivoli Data Warehouse, for example, DB2.

Prerequisites to generating a Cognos data model
Complete these tasks before you generate a Cognos data model

About this task
Note:

• These steps must be completed only one time, as all future data models generated with Agent Builder
will use this environment.

• It is advisable to create an isolated development environment for agent testing and report creation.

Procedure
1. Install and configure a (“Tivoli Data Warehouse” on page 335).
2. Create tables and Procedures in the Tivoli Data Warehouse.

a) “Create tables and Procedures in the Tivoli Data Warehouse” on page 335.
b) “Populating the Tivoli Data Warehouse with the Tivoli Reporting and Analytics Model” on page 338.

3. Install and configure (“Tivoli Common Reporting” on page 338).
4. Install and configure the (“Framework Manager” on page 339).

Tivoli Data Warehouse
About Tivoli Data Warehouse.

To create reports, you need a Tivoli Data Warehouse, a Warehouse Proxy agent, and a Summarization and
Pruning agent, to be installed and configured in your environment. For more information, see the IBM
Tivoli Monitoring Installation and Setup Guide.

Create tables and Procedures in the Tivoli Data Warehouse
Create or alter the ManagedSystem Table and Stored Procedure in the Tivoli Data Warehouse

About this task
The generated Cognos data model includes a ManagedSystem table which is used to define a
ManagedSystem dimension. The ManagedSystem dimension allows reports to be created that can

© Copyright IBM Corp. 2010, 2021 335

correlate managed systems. For example, if the agent is a subnode agent, the dimension can be used to
determine the subnodes that exist for a specific agent instance.

The ManagedSystem table is not created by the Tivoli Data Warehouse. Therefore, when an agent is
generated in Agent Builder, SQL scripts are generated for each database platform that will:

• Create the ManagedSystem table. Use this script if the table does not exist in the Tivoli Data
Warehouse.

• Edit the ManagedSystem table. Use this script if the table exists in the Tivoli Data Warehouse. Other
reporting products can create the ManagedSystem table, but they do not create it with all of the
required columns.

• Create a stored procedure that populates the ManagedSystem table from tables in the Tivoli Data
Warehouse.

Run these scripts one time only.

Running DB2 Scripts to Create tables and Procedures in the Tivoli Data Warehouse
For a DB2 database, use these scripts to create tables in the Tivoli Data Warehouse

Before you begin
The scripts for DB2 are in the following directory:

reports/db2/Kxx/reports/cognos_reports/itmkxx/db_scripts

Procedure
1. The generated scripts (create_table.sql, alter_table.sql, and create_procedure.sql) all

use itmuser as the Tivoli Data Warehouse user ID. If itmuser is not the Tivoli Data Warehouse user
ID in your environment, change all occurrences of itmuser to the correct user ID.

2. Connect to the Tivoli Data Warehouse as the Tivoli Data Warehouse User:

db2 connect to <Tivoli Data Warehouse alias name> user
<Tivoli Data Warehouse user id> using <password>

3. Determine whether the ManagedSystem table exists:

db2 "select count(*) from sysibm.systables where name = 'MANAGEDSYSTEM'
and creator=upper ('<Tivoli Data Warehouse user id>')"

4. Create or alter the table.

• If the query returns 1, the table exists. Run the alter script:

db2 -tvf alter_table.sql

• If the query returns 0, the table does not exist. Run the create script:

db2 -tvf create_table.sql

5. Run the script to create the stored procedure:

db2 -td@ -f create_procedure.sql

Running Oracle Scripts to Create tables and Procedures in the Tivoli Data Warehouse
For an Oracle database, use these scripts to create tables in the Tivoli Data Warehouse

Before you begin
The scripts for Oracle are in the following directory:

336 IBM Agent Builder: IBM Agent Builder User's Guide

reports/oracle/Kxx/reports/cognos_reports/itmkxx/db_scripts

Procedure
1. The generated scripts (create_table.sql, alter_table.sql, and create_procedure.sql) all

use itmuser as the Tivoli Data Warehouse user ID. If itmuser is not the Tivoli Data Warehouse user
ID in your environment, change all occurrences of itmuser to the correct user ID.

2. Start sqlplus:

sqlplus <IBM Tivoli Monitoring user ID>/<password>@
<Tivoli Data Warehouse SID>

3. Determine whether the ManagedSystem table exists:

select count(*) from user_tables where table_name = 'MANAGEDSYSTEM';

4. Create or alter the table.

• If the query returns 1, the table exists. Run the alter script:

@<path to alter_table.sql>;

• If the query returns 0, the table does not exist. Run the create script:

@<path to create_table.sql>;

5. Run the script to create the stored procedure:

@<path to create_procedure.sql>;

Running SQL Server 2005 and 2008 Scripts to Create tables and Procedures in the
Tivoli Data Warehouse

Before you begin
The scripts for SQL Server are in the following directory:

reports/mssql/Kxx/reports/cognos_reports/itmkxx/db_scripts

Procedure
1. The generated scripts (create_table.sql, alter_table.sql, and create_procedure.sql) all

use itmuser as the Tivoli Data Warehouse user ID. If itmuser is not the Tivoli Data Warehouse user
ID in your environment, change all occurrences of itmuser to the correct user ID.

2. Determine whether the ManagedSystem table exists:

osql -S <Server> -U <Tivoli Data Warehouse user ID> -P <password> -d
<Tivoli Data Warehouse database name> -Q "Select count(*)
from INFORMATION_SCHEMA.TABLES where table_name = 'ManagedSystem'"

3. Create or alter the table.

• If the query returns 1, the table exists. Run the alter script:

osql -S <Server> -U <Tivoli Data Warehouse user ID> -P <password> -d
<Tivoli Data Warehouse database name> -I -n -i <path to alter_table.sql>

• If the query returns 0, the table does not exist. Run the create script:

osql -S <Server> -U <Tivoli Data Warehouse user ID> -P <password> -d
<Tivoli Data Warehouse database name> -I -n -i <path to create_table.sql>

4. Run the script to create the stored procedure:

Appendix E. Cognos data model generation 337

osql -S <Server> -U <Tivoli Data Warehouse user ID> -P
<password> -d <Tivoli Data Warehouse database name>
-I -n -i <path to create_procedure.sql>

Populating the Tivoli Data Warehouse with the Tivoli Reporting and Analytics
Model
Use provided database scripts to populate the Tivoli Data Warehouse

About this task
Tivoli Reporting and Analytics Model (TRAM) contains the base-set of knowledge that is common to all
reporting packages. TRAM is installed by a set of scripts unique to each database. The necessary scripts
for populating each supported database are included in the agent installation image, within the reports
directory. Use the following procedure to create Tivoli Reporting and Analytics Model Common
Dimensions in Tivoli Data Warehouse.

Procedure
1. Browse to the Tivoli Reporting and Analytics Model database scripts.
2. Extract the agent package.

• On Windows systems, agent package is kxx.zip.
• On Linux and UNIX systems, agent package is kxx.tgz.

3. Go to the appropriate database scripts.

• DB2 scripts are in the Agent package at:

reports/db2/Kxx/reports/cognos_reports/itmkxx/db_scripts

• Oracle scripts are in the Agent package at:

reports/oracle/Kxx/reports/cognos_reports/itmkxx/db_scripts

• Microsoft SQL Server scripts are in the Agent package at:

reports/mssql/Kxx/reports/cognos_reports/itmkxx/db_scripts

4. Run the database scripts to generate the common dimensions within the Tivoli Data Warehouse. Each
script set provides a readme file for usage instructions.

5. Verify that the scripts added the following tables to the Tivoli Data Warehouse:

"Computer System", WEEKDAY_LOOKUP, MONTH_LOOKUP, TIMEZONE_DIMENSION, TIME_DIMENSION

Tivoli Common Reporting
Tivoli Common Reporting contains the Cognos Business Intelligence engine, which contains elements to
assist with the creation of agent reports.

Tivoli Common Reporting must be installed and configured with a data source that connects to the Tivoli
Data Warehouse.

Installing Tivoli Common Reporting
You must install Tivoli Common Reporting. Versions 1.3, 2.1, 2.1.1 or later are supported. For information
about installing Tivoli Common Reporting, see Installing Tivoli Common Reporting.

338 IBM Agent Builder: IBM Agent Builder User's Guide

https://ibm.biz/Bds33B

Configuring Tivoli Common Reporting
You must configure Tivoli Common Reporting. For information about configuring Tivoli Common
Reporting, see Configuring IBM Tivoli Common Reporting.

Create a data source between the Tivoli Data Warehouse and Tivoli Common Reporting. For more
information, see Configuring database connection. Click the appropriate database type. Note the name
that is given to the data source. The default is TDW.

Note: The data source name must match the name in the Data source field of the Cognos Information
page. For more information about the Cognos Information page, see “Cognos information” on page 30.

Framework Manager
Framework Manager is an application that ships with the Tivoli Common Reporting application, but must
be installed and configured separately.

Framework Manager is used to view and modify data models and to publish data models to Tivoli
Common Reporting

Installing Framework Manager
You must install Framework Manager. Versions 8.4, 8.4.1 or later are supported.

The Framework Manager ships with Tivoli Common Reporting, but must be manually installed. Tivoli
Common Reporting 1.3 ships with Framework Manager 8.4. Tivoli Common Reporting 2.1 and 2.1.1 ships
with Framework Manager 8.4.1. For information about installing Framework Manager, see Installing
Framework Manager in the Tivoli Common Reporting User's Guide.

Configuring Framework Manager
You must configure Framework Manager. For information about configuring Framework Manager, see
Configuring Framework Manager in the Tivoli Common Reporting User's Guide.

Creating reports
Use the Framework Manager to publish the agent model, and Report Studio to begin creating reports.

Before you begin
When the agent is completed, it must be installed into the Tivoli Monitoring environment. In addition,
historical collection for the agent must be configured and the agent be run for at least one warehouse
upload interval. Summarization must be configured, and the summarization setting choices that are made
in Tivoli Monitoring must be identical to the summarization choices made in the Agent Builder. The
Summarization and Pruning agent must run at least one time after the agent's data is uploaded to the
warehouse.

1. Install, configure, and start your agent.
2. Create and distribute to the agent a historical collection for each attribute group you want to create a

report for.

Note: The warehouse upload interval defaults to daily. However, you might want to shorten this
interval.

For information about configuring historical collection, see Managing historical data in the IBM Tivoli
Monitoring Administrator's Guide.

3. In Tivoli Monitoring, configure summarization for all of the attribute groups you created historical
collections for in Step 2.

Note: When you configure historical collection and summarization, you must wait enough time for data
to end up in the summary tables.

Appendix E. Cognos data model generation 339

https://ibm.biz/Bds33F
https://ibm.biz/Bds33D
https://ibm.biz/Bds3Qp
https://ibm.biz/Bds3Qp
https://ibm.biz/Bds3Qg
http://www.ibm.com/support/knowledgecenter/SSTFXA_6.2.2.2/com.ibm.itm.doc_6.2.2fp2/history_manage_intro.htm

Note: By default, the Summarization and Pruning agent is configured to run one time a day at 2 a.m.
You might want to change this setting. For example, you can configure it to run hourly. For information
about configuring the Tivoli Data Warehouse, see Setting up data warehousing in the IBM Tivoli
Monitoring Installation and Setup Guide.

About this task
Generating an agent in Agent Builder creates an entire Framework Manager project, which includes the
data model and the Framework Manager project file. Framework Manager can open the project file
directly, which opens the data model for modification, customization, or publication.

Procedure
Note: The generated data model for the agent contains all of the summary time dimensions for each
attribute group: hourly, daily, weekly, monthly, quarterly, and yearly. The dimensions exist only in the
Tivoli Data Warehouse for the agent if summarization and pruning is configured for the agent. And also if
the dimensions are selected, and if the Summarization and Pruning agent, created, and populated the
tables. Reports can be defined and published into Tivoli Common Reporting that use dimensions that do
not exist. Such reports do not function until the summary tables are created by the Summarization and
Pruning agent.
1. Open the Agent Data Model in Framework Manager:

a) Open the Framework Manager.
b) From the Welcome page, click Open a project.

Tip: If you are in Framework Manager, click Open from the File menu.
c) Browse to the Agent data model.

• For DB2:

reports/db2/Kxx/model/

• For Oracle:

reports/oracle/Kxx/model/

• For Microsoft SQL Server:

reports/mssql/Kxx/model/

d) Select the agent project file, Kxx.cpf.

340 IBM Agent Builder: IBM Agent Builder User's Guide

http://www.ibm.com/support/knowledgecenter/SSTFXA_6.2.2.2/com.ibm.itm.doc_6.2.2fp2/historical_data_storage.htm

Figure 50. Selecting agent project file

Note: When an agent project is opened in Framework Manager, the agent name is listed under the
Recent Projects.

2. Populate the Managed System Table. For more information, see “Populating the ManagedSystem
Table” on page 345

3. Use the Framework Manager to publish the Agent Model to Tivoli Common Reporting
a) Open the Framework Manager.
b) Open the Agent project.
c) Expand Packages in the navigation tree.
d) Right-click the agent package and select Publish Packages.

Appendix E. Cognos data model generation 341

Figure 51. Selecting Publish Packages
4. Use Report Studio to create new reports or templates.

a) Log on to Tivoli Common Reporting.
b) Browse to Public Folders, expand Reporting in the navigation panel, and select Common

Reporting.

342 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 52. Selecting Common Reporting
c) Select your Tivoli Monitoring agent from the list provided.
d) Open the report creation tool, by clicking the Launch menu and selecting Report Studio or Query

Studio.

Appendix E. Cognos data model generation 343

Figure 53. Selecting Report Studio

What to do next
You can use the Report Studio to create new reports or templates, or you can modify an existing report or
template.

344 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 54. Report Studio

For more information, see the Tivoli Common Reporting topic collection on IBM Knowledge Center.

Populating the ManagedSystem Table
The ManagedSystem table is populated by using the kqz_populate_msn stored procedure.

For more information, see “Running the DB2 stored procedure” on page 347. This procedure must be run
periodically so that the ManagedSystem table contains the current list of managed system names.

The stored procedure reads the following historical tables in the Tivoli Data Warehouse if they exist:

• The agent's Performance Object status table
• The agent's availability table. Agents that monitor processes or services have an availability table.
• The agent's discovery tables. Subnode agents create discovery tables.

Historical collection must be started on a particular set of attribute groups. A set of scripts is generated
that creates and starts historical collection for these attribute groups. If you do not want to use the
scripts, the list of attribute groups is listed in the comment header block of the script.

Sample scripts are created that show which tables must have historical collection enabled:

• reports/configuretdw.sh
• reports/configuretdw.bat

The following table describes the required arguments:

Note: You must specify either -n or -m, but not both.

Appendix E. Cognos data model generation 345

http://www.ibm.com/support/knowledgecenter/SSH2DF

Table 45. Required arguments

Argument Description

-h candle_home The Tivoli Monitoring installation path.

-u teps_user The Tivoli Enterprise Portal Server user to log in as
when you create the historical collections.

-n tems_name The Tivoli Enterprise Monitoring Server where the
collections must be started. More than one Tivoli
Enterprise Monitoring Server can be specified by
using a space separated list. If you specify more
than one Tivoli Enterprise Monitoring Server, put
the list in quotation marks. For example, -n
“tems1 tems2”

-m
managed_system_group_or_managed_system

The managed system group or managed system
name against which the collection must be started.
More than one managed system group or managed
system can be specified by using a space
separated list. If you specify more than one
managed system group or managed system, put
the list in quotation marks. For example, -m
“msg1 msg2”

The following table describes the optional arguments:

Table 46. Optional arguments

Argument Description

-s teps_host The host name or IP address of the Tivoli
Enterprise Portal Server. If not specified, the
default is localhost.

-p teps_password The password for the Tivoli Enterprise Portal
Server user that is specified with the -u option. If
not specified, the script prompts for the password

-c historical_collection_interval The historical collection interval to use when you
start the historical collections. If not specified, the
default is 1h (1 hour). The valid values are: 15m,
30m, 1h, 12hor 1d, where m is minutes, h is hours
and d is days.

-r pruning_interval The pruning interval to use for the historical data.
The historical data must be pruned so that the
tables do not continue to grow in size. If not
specified, the default is 2d(2 days). Use d for days,
m for months, y for years.

After historical collection is started, the kqz_populate_msn stored procedure must be run periodically.
The stored procedure is run periodically so that the ManagedSystem table contains the most current list
of managed systems in the Tivoli Monitoring environment.

346 IBM Agent Builder: IBM Agent Builder User's Guide

Running the DB2 stored procedure
Run a stored procedure on DB2.

About this task
Perform the following steps to run the stored procedure on DB2:

Procedure
1. Connect to the Tivoli Data Warehouse database as the warehouse user:

connect to <Tivoli Data Warehouse database alias> user
<Tivoli Data Warehouse user id> using <password>

2. Run the stored procedure:

db2 "call <Tivoli Data Warehouse schema>.kqz_populate_msn
('<three letter product code for the agent>')"

Running the Oracle stored procedure
Run a stored procedure on Oracle.

About this task
Perform the following steps to run the stored procedure on Oracle:

Procedure
1. Start sqlplus:

sqlplus <Tivoli Data Warehouse user id>/<password>@
<Oracle SID>

2. Run the stored procedure:

execute kqz_populate_msn('<three letter product code for the agent>');

Running the stored procedure on SQL Server 2005 and 2008
Run a stored procedure on SQL Server.

About this task
Perform the following steps to run the stored procedure on SQL Server 2005 and 2008:

Procedure
Run the stored procedure:

osql -S <server> -U <Tivoli Data Warehouse id> -P
<Tivoli Data Warehouse password> -d
<Tivoli Data Warehouse database name> -Q "EXEC
[<Tivoli Data Warehouse schema>].[kqz_populate_msn]
@pv_productcode = N'<three letter product code>'"

Appendix E. Cognos data model generation 347

Exporting reports and data models from Tivoli Common Reporting
Export reports and data models from Tivoli Common Reporting.

Procedure
1. Log in to the Tivoli Common Reporting.
2. Go to Public Folders, and under Reporting in the navigation panel select Common Reporting.
3. In the Work with reports section, click the Launch menu and select IBM Cognos Administration.
4. Click the Configuration tab.
5. Click Content Administration.

Figure 55. The Content Administration tab
6. Click the New Export icon to export a new package.
7. Name the package. Optionally, you can add a screen tip and description.
8. Select Select public folders and directory content .
9. In the Public Folders dialog, click the Add link.

10. Move your agent package to Selected entries.
11. On the last page of the wizard, select Save Only. When the wizard completes, the report package is

listed on the Content Administration tab.
12. On the Content Administration tab, click the green arrow (Run) to create the compressed .zip file.

348 IBM Agent Builder: IBM Agent Builder User's Guide

Figure 56. The Content Administration tab with agent package listed

Results
The compressed .zip file that is created by the export process is placed in the deployment directory.

• The directory path for Tivoli Common Reporting version 1.3 is:

C:\IBM\tivoli\tip\products\tcr\Cognos\c8\deployment

• The directory path for Tivoli Common Reporting version 2.1 or later is:

C:\IBM\tivoli\tipv2Components\TCRComponent\cognos\deployment

What to do next
For more information about exporting reports, see Exporting Cognos report packages in the Tivoli
Common Reporting User's Guide.

Importing reports into Agent Builder
When the report package is exported from Tivoli Common Reporting, it can be imported into the Agent
Builder project. The report package can then be included in the agent installation image.

Procedure
1. Right-click on the agent project in the Agent Builder.
2. Select IBM > Import Report Package.
3. In the Import Report Package window, select the Database Type on which the report package was

created.
4. Enter the fully qualified path to the report package, or click Browse to select it.

Appendix E. Cognos data model generation 349

https://ibm.biz/Bds3Qe

5. Click OK.
6. The report package is now shown in the agent project under the reports/dbtype directory.

Note: If you create report packages that are database-specific you must import each package into the
Agent Builder.

Installing reports from an agent package into Tivoli Common Reporting
Import a report package from your agent to Tivoli Common Reporting

Procedure
1. Follow the steps in the wizard to import a new package from your agent image.

In the agent image, the reports are found in: reports/dbType/Kxx/reports/cognos_reports/
itmkxx/packages

2. Copy the reports compressed zip file into the Tivoli Common Reporting deployment directory.

• The directory path for Tivoli Common Reporting version 1.3 is: C:\IBM\tivoli\tip\products
\tcr\Cognos\c8\deployment

• The directory path for Tivoli Common Reporting version 2.1 or later is: C:\IBM\tivoli
\tipv2Components\TCRComponent\cognos\deployment

3. Log in to the Tivoli Common Reporting.
4. Go to Public Folders, and under Reporting in the navigation panel select Common Reporting.
5. In the Work with reports section, click the Launch menu and select IBM Cognos Administration.
6. Go to the Configuration tab, and open the Content Administration section.
7. Click New Import to create a package import.
8. Select the agent's reports package.
9. Select the public folders that you want to import.

10. Select save.
11. Click the green (run) arrow to import.

Results
For more information, see Logging in to the reporting interface in the Tivoli Common Reporting User's
Guide.

350 IBM Agent Builder: IBM Agent Builder User's Guide

https://ibm.biz/Bds3Q9

Appendix F. ICU regular expressions
A description of the specifics of the ICU regular expression implementation.

This reference content is extracted from the ICU User Guide. The content describes the specifics of the
ICU regular expression implementation. This information is essential if you are using the Agent Builder
regular expression feature because different programming languages implement regular expressions in
slightly different ways.

Table 47. Regular expression metacharacters

Character Description

\a Match a BELL, \u0007

\A Match at the beginning of the input. Differs from ^
in that \A does not match after a new line within
the input.

\b, outside of a [Set] Match if the current position is a word boundary.
Boundaries occur at the transitions between word
(\w) and non-word (\W) characters, with combining
marks ignored. For more information about word
boundaries, see ICU Boundary Analysis.

\b, within a [Set] Match a BACKSPACE, \u0008.

\B Match if the current position is not a word
boundary.

\cX Match a Ctrl-X character.

\d Match any character with the Unicode General
Category of Nd (Number, Decimal Digit.)

\D Match any character that is not a decimal digit.

\e Match an ESCAPE, \u001B.

\E Terminates a \Q ... \E quoted sequence.

\f Match a FORM FEED, \u000C.

\G Match if the current position is at the end of the
previous match.

\n Match a LINE FEED, \u000A.

\N{UNICODE CHARACTER NAME} Match the named character.

\p{UNICODE PROPERTY NAME} Match any character with the specified Unicode
Property.

\P{UNICODE PROPERTY NAME} Match any character not having the specified
Unicode Property.

\Q Place quotation marks around all following
characters until \E.

\r Match a CARRIAGE RETURN, \u000D.

\s Match a white space character. White space is
defined as [\t\n\f\r\p{Z}].

© Copyright IBM Corp. 2010, 2021 351

Table 47. Regular expression metacharacters (continued)

Character Description

\S Match a non-white space character.

\t Match a HORIZONTAL TABULATION, \u0009.

\uhhhh Match the character with the hex value hhhh.

\Uhhhhhhhh Match the character with the hex value hhhhhhhh.
Exactly eight hex digits must be provided, even
though the largest Unicode code point is
\U0010ffff.

\w Match a word character. Word characters are
[\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}].

\W Match a non-word character.

\x{hhhh} Match the character with hex value hhhh. From
one to 6 hex digits can be supplied.

\xhh Match the character with 2 digit hex value hh.

\X Match a Grapheme Cluster.

\Z\ Match if the current position is at the end of input,
but before the final line terminator, if one exists.

\z Match if the current position is at the end of input.

\n Back Reference. Match whatever the nth capturing
group matched. n must be a number > 1 and <
total number of capture groups in the pattern.

Note: Octal escapes, such as \012, are not
supported in ICU regular expressions.

[pattern] Match any 1 character from the set. See
UnicodeSet for a full description of what can
appear in the pattern

. Match any character.

^ Match at the beginning of a line.

$ Match at the end of a line.

\ Place quotation marks around the following
character. Characters that must have surrounding
quotation marks to be treated as literals are * ? +
[() { } ^ $ | \ . /

Table 48. Regular expression operators

Operator Description

| Alternation. A|B matches either A or B.

* Match 0 or more times. Match as many times as
possible.

+ Match 1 or more times. Match as many times as
possible.

352 IBM Agent Builder: IBM Agent Builder User's Guide

Table 48. Regular expression operators (continued)

Operator Description

? Match zero or 1 time. Prefer one.

{n} Match exactly n times

{n,} Match at least n times. Match as many times as
possible.

{n,m} Match between n and m times. Match as many
times as possible, but not more than m.

*? Match 0 or more times. Match as few times as
possible.

+? Match 1 or more times. Match as few times as
possible.

?? Match zero or 1 time. Prefer zero.

{n}? Match exactly n times

{n,}? Match at least n times, but no more than required
for an overall pattern match

{n,m}? Match between n and m times. Match as few times
as possible, but not less than n.

*+ Match 0 or more times. Match as many times as
possible when first encountered, do not retry with
fewer even if overall match fails (Possessive Match)

++ Match 1 or more times. Possessive match.

?+ Match zero or 1 time. Possessive match.

{n}+ Match exactly n times

{n,}+ Match at least n times. Possessive Match.

{n,m}+ Match between n and m times. Possessive Match.

(...) Capturing parentheses. Range of input that
matched the parenthesized subexpression is
available after the match.

(?: ...) Non-capturing parentheses. Groups the included
pattern, but does not provide capturing of
matching text. More efficient than capturing
parentheses.

(?> ...) Atomic-match parentheses. First match of the
parenthesized subexpression is the only one tried.
If it does not lead to an overall pattern match, back
up the search for a match to a position before the
"(?>".

(?# ...) Free-format comment (?# comment).

(?= ...) Look-ahead assertion. True if the parenthesized
pattern matches at the current input position, but
does not advance the input position.

Appendix F. ICU regular expressions 353

Table 48. Regular expression operators (continued)

Operator Description

(?! ...) Negative look-ahead assertion. True if the
parenthesized pattern does not match at the
current input position. Does not advance the input
position.

(?<= ...) Look-behind assertion. True if the parenthesized
pattern matches text that precedes the current
input position. The last character of the match is
the input character just before the current position.
Does not alter the input position. The length of
possible strings that is matched by the look-behind
pattern must not be unbounded (no * or +
operators.)

(?<!...) Negative Look-behind assertion. True if the
parenthesized pattern does not match text that
precedes preceding the current input position. The
last character of the match is the input character
just before the current position. Does not alter the
input position. The length of possible strings that is
matched by the look-behind pattern must not be
unbounded (no * or + operators.)

(?ismx-ismx: ...) Flag settings. Evaluate the parenthesized
expression with the specified flags enabled or
disabled.

(?ismx-ismx) Flag settings. Change the flag settings. Changes
apply to the portion of the pattern that follows the
setting. For example, (?i) changes to a not case-
sensitive match.

Replacement text
The replacement text for find-and-replace operations can contain references to capture-group text from
the find. References are of the form $n, where n is the number of the capture group.

Table 49. Replacement text characters

Character Description

$n The text of the positional capture group n is
substituted for $n. n must be >= 0, and not
greater than the number of capture groups. A $ not
followed by a digit has no special meaning, and is
displayed in the substitution text as itself, a $.

\ Treat this character as a literal, suppressing any
special meaning. Backslash escaping in
substitution text is required only for '$' and '\',
but can be used on any other character without
adverse effects.

354 IBM Agent Builder: IBM Agent Builder User's Guide

Table 49. Replacement text characters (continued)

Character Description

$@n The text of capture group n is substituted for the
regular expression that matched capture group n. n
must be >= 0, and not greater than the number of
capture groups. A $@ not followed by a digit has no
special meaning, and is displayed in the
substitution text as itself, a $@.

$#n The text of the matched capture group n is
substituted for $#n. n must be >= 0, and not
greater than the number of matched capture
groups. A $# not followed by a digit has no special
meaning, and is displayed in the substitution text
as itself, a $#.

Flag options

The following flags control various aspects of regular expression matching. The flag values can be
specified at the time that an expression is compiled into a RegexPattern object. Or, they can be specified
within the pattern itself using the (?ismx-ismx) pattern options.

Table 50. Flag options

Flag (pattern) Flag (API constant) Description

i UREGEX_CASE_INSENSITIVE If set, matching take place in a
case-insensitive manner.

x UREGEX_COMMENTS If set, white space and
#comments can be used within
patterns.

s UREGEX_DOTALL If set, a "." in a pattern matches
a line terminator in the input text.
By default, it does not. A
carriage-return / line-feed pair in
text behaves as a single-line
terminator, and matches a single
"." in a RE pattern

m UREGEX_MULTILINE Control the behavior of "^" and
"$" in a pattern. By default these
patterns match only at the start
and end, respectively, of the
input text. If this flag is set, "^"
and "$" also match at the start
and end of each line within the
input text.

Appendix F. ICU regular expressions 355

356 IBM Agent Builder: IBM Agent Builder User's Guide

Appendix G. Creating Non-agent file bundles
You can create file bundles that can be placed in the Tivoli Monitoring depot. These file bundles can then
be deployed to target systems in your environment.

About this task
With this function, you can remotely configure products for which there is no remote configuration option.
To use this function, you place pre-populated configuration files into the depot and send them out to the
wanted systems.

Procedure
1. From the Agent Builder, select File > New > Other.
2. Under Agent Builder, select Non-Agent Remote Deploy Bundle.
3. Click Next.
4. In the Project name field, enter a name for your project.

5. Click Next.
6. Complete the information in the Remote Deploy Bundle Information window:

a) In the Bundle identifier field, type an identifier that is a unique alphanumeric string of 3 - 31
characters. This string can contain a hyphen. The string must start with a letter, but it cannot start
with a K or a hyphen.

b) In the Bundle description field, type a description of the bundle.
c) In the Version field, type a version for the bundle in the VVRRMMFFF format. Where vv= version

number; rr= release number; mm= modification number (fix pack number); and fff = interim fix
number.

7. In the Operating Systems area, select the operating systems to which the bundle can be deployed.
8. Click Finish to create a project in the workspace and open the Remote Deploy Bundle Editor.

Remote Deploy Bundle Editor
The Remote Deploy Bundle Editor is used to generate commands to help deploy your file bundle.

The Remote Deploy Bundle Editor provides information about the bundle for a project.

The Bundle Identification Information section contains the following information:
Bundle identifier

Unique ID for the bundle
Bundle description

Description for the bundle
Bundle version

Version of the bundle
Build

Build identifier for the bundle. Enter a build number here. If no build number is specified, a number is
generated from the date and time when the bundle is generated.

Create copy commands for the files in the bundle check box
Click the check box to generate a set of default copy commands that run when the bundle is deployed.
The files are copied to the location specified in the Copy location text box. The default location is
INSTALLDIR. Specify this remote deployment variable from the command-line deployment by setting
KDY.INSTALLDIR=...

The Operating Systems section shows the operating systems to which the bundle can be deployed.

© Copyright IBM Corp. 2010, 2021 357

The Commands section shows the commands to run when the bundle is deployed.

Prerequisite Bundles section shows the bundles that must be present for this bundle to work.

Use the Remote Deploy Bundle Editor to opt for a set of default copy commands that copy the files in your
bundle to a set location. If this option is selected, then a copy command is generated for each file in your
bundle project. The default copy location is INSTALLDIR. A special remote deployment variable that, if
not set on the deployment command line, defaults to CANDLEHOME. To change the location that is
specified by INSTALLDIR, specify the KDY.INSTALLDIR property when you run the addSystem
command.

The same directory structure that is specified in your bundle project is replicated in INSTALLDIR. For
example, if there is a folder named config in your bundle project with a file named myprod.config,
then the generated copy command copies the file to INSTALLDIR/config/myprod.configwhen the
bundle is deployed.

Adding commands to the bundle
You can specify more commands to run during the deployment.

About this task
You can specify more commands to run during the deployment by using the Remote Deploy Bundle
Editor.

Procedure
1. To specify more commands to run during the deployment, click Add in the Commands section of the

Remote Deploy Bundle Editor.
2. In the Command window, select the type of command Preinstall, Install, Post-Install, or

Uninstalland then specify the command to run.
You must specify the fully qualified path to the command you want to run. For convenience, remote
deployment provides a set of predefined variables. To reference the variable for a command, surround
the variable with vertical bars, for example, |DEPLOYDIR|. For more information about predefined
variables for commands, see (Table 51 on page 358).

Table 51. Predefined Variables for Commands

Variable Description

DEPLOYDIR The temporary directory on the endpoint where
the bundle is stored during the deployment. For
instance, if you want to run myscript.sh, a
script that is included in your bundle, you specify
the following command: |DEPLOYDIR|/
myscript.sh

INSTALLDIR Either CANDLEHOME or the value of
KDY.INSTALLDIR if specified on the addSystem
command.

CANDLEHOME The Tivoli Monitoring installation directory.

3. Finally, select the Operating Systems on which the command is to run.

358 IBM Agent Builder: IBM Agent Builder User's Guide

Adding prerequisites to the bundle
Use the Remote Deploy Bundle Editor to specify prerequisites for the bundle.

Procedure
1. To add a prerequisite, click Add in the Prerequisite Bundles section of the Remote Deploy Bundle

Editor, Bundle Information page.
2. In the New Prerequisite window, enter the bundle identifier on which this bundle depends and the

minimum version required.

3. Select the operating systems for which this prerequisite is required.
4. Click OK to complete and exit.

Adding files to the bundle
Add files to a file bundle by using the Remote Deploy Bundle Editor.

Procedure
1. To add files to the remote deployment bundle, do one of the following procedures:

• In the Bundle Editor, click Add files to the bundle.
• Right-click the project in the Navigator tree, then click IBM Tivoli Monitoring Remote Deploy >

Add Files to Bundle

Both of these actions display the Import Bundle Files window:
2. Specify individual files or directories that contain files in File Information area.
3. Click Finish.

The files or directories that are specified are copied into the project directory. The directory structure
in the project is maintained when you build the remote deployment bundle. If you want Agent Builder
to generate default copy commands, ensure that the files are in the correct directory structure for
deployment.

Generating the bundle
Use Agent Builder to generate a bundle for remote deployment of an agent.

Procedure
1. To generate the remote deployment bundle, use one of the following procedures to display the

Generate Final Remote Deploy Bundle window

• In the Remote Deploy Bundle Editor, click generate the final Remote deploy bundle.
• Right-click the project in the Navigator tree, then click IBM Tivoli Monitoring Remote Deploy >

Generate Remote Deploy Bundle

2. You can now generate the bundle in two ways:

• If there is a Tivoli Enterprise Monitoring Server on the system where you are running the Agent
Builder, click Install the Remote Deploy bundle into a local TEMS depot.

The Agent Builder attempts to determine the Tivoli Monitoring installation location and enter it into
the Directory field. If CANDLE_HOME is not set, the default location of C:\IBM\ITM
or /opt/IBM/ITM is used. Ensure that the installation location is correct before you continue.

You must provide Tivoli Enterprise Monitoring Server login information to install the bundle.
• To generate the bundle to a directory on your system, click Generate the Remote Deploy bundle in

a local directory

Appendix G. Creating Non-agent file bundles 359

After the process is complete, you must transfer this directory to a Tivoli Enterprise Monitoring
Server system and use the tacmd addbundles command to add the bundle to the depot.

What to do next
When you deploy the bundle, you must use the tacmd addSystem command. For example:

tacmd addsystem -t MONITORINGCOLLECTION -n Primary:ITMAGT:NT

Where -t (type) is the Product Code as returned by the tacmd viewDepot command:

>tacmd viewDepot
Product Code : MONITORINGCOLLECTION
Version : 010000003
Description : MonitoringCollectionScripts
Host Type : WINNT
Host Version : WINNT
Prerequisites:

Note: You cannot deploy remotely from the Tivoli Enterprise Portal Desktop or Browser. Deploy remotely
from the Tivoli Enterprise Portal Desktop or Browser results in the KFWITM219E message.

See the Tivoli Monitoring documentation for more details.

Creating deployable bundles for Tivoli Netcool/OMNIbus probes
You can use the Agent Builder to create package and configuration bundles that can be used to deploy
Tivoli Netcool/OMNIbus probes to remote computers.

About this task
To support the remote deployment of probes, you can also create Tivoli Netcool/OMNIbus bundles that
can be deployed to the remote computers before you deploy the probes.

Procedure
1. From the Agent Builder, select File > New > Other.
2. Under IBM Tivoli OMNIbus Wizards, select Package Bundle.
3. Click Next.

What to do next
Next, use the OMNIbus Install Bundle wizard to create the bundles. For information about using this
wizard, see the Tivoli Netcool/OMNIbus documentation.

360 IBM Agent Builder: IBM Agent Builder User's Guide

https://ibm.biz/Bds33Y

Appendix H. Dynamic file name support
Use dynamic file name support to specify a file name pattern instead of an actual file name.

Some application programs create an output file name that is subject to change. The name changes based
on specific criteria such as the current day, month, year, or a file name that includes an incrementing
sequence number. In these cases, you can specify the file name pattern instead of the actual file name.
There are two pattern formats that are recognized when you specify the file name pattern:

• Regular Expressions (preferred).
• IBM Tivoli Universal Agent dynamic file name syntax (deprecated).

Regular expression file name patterns
To specify file name patterns, you can use regular expressions according to the International Components
for Unicode (ICU) syntax that is documented in (Appendix F, “ICU regular expressions,” on page 351). To
use this capability, you must select the File names match regular expression check box on the
Advanced Log File Attribute Group Information page. When you specify regular expression patterns,
you must also select an option from the When Multiple Files Match list on the Advanced Log File
Attribute Group Informationpage to specify the guidelines for selecting the most current matching file.

Note: Regular expressions is the preferred method to specify file name patterns.

For more information about how to configure advanced log file attribute group properties, see
(“Monitoring a log file” on page 104), Step (“6” on page 105). For example, if you specified a file name
pattern:

d:\program files\logs\tivoli.*

This pattern searches for file names that start with tivoli in the d:\program files\logs directory.
Regular expressions can be specified only for the file name portion, and not the path name.

Dynamic file name syntax
With the dynamic file name syntax, only one file at a time can be monitored. The File Data Provider
inspects all files in the designated path location, seeking files that match the defined pattern. The File
Data Provider always monitors the most current matching file that is based on whichever matching file
name has the highest number or date-time value. The appropriate file to monitor is determined by file
name, instead of by file creation or other criteria.

Patterns can be specified for file names with any number of parts. For example, Log{###} matches on
one-part file names such as Log010 or Log456. In multi-part file names, pattern characters can be
specified in any part of the file name or in multiple parts. For example, aaa.bbb{???}.ccc is a valid
pattern, and aaa.bbb{???}.ccc{###} is also valid.

Note: Regular expressions rather than dynamic file name syntax is the preferred method to specify file
name patterns, for more about regular expressions, see “Regular expression file name patterns” on page
361

The following examples illustrate file name pattern specification:

{########}.abc
Matches numeric file names of length 8 and the file extension .abc, such as 10252006.abc or
10262006.abc. File 10262006.abc is monitored because 10262006 is greater than 10252006.

{########}.*
Matches numeric file names of length 8 and ignores the file extension. Examples include
20061025.log, 20061101.log, and 10252006.abc. File 20061101.log is monitored because
20061101 is the largest number.

© Copyright IBM Corp. 2010, 2021 361

{######??}.abc
Matches numeric file names of length 8 and file extension .abc, and ignores the last two positions in
the name portion. Examples include 02110199.abc, 02110200.abc, and 021101AZ.abc. File
02110200.abc is monitored because 021102 is the largest number.

Console.{######}
Matches file names that contain Console in the name portion and a six-digit number in the extension
portion. Examples include Console.000133, Console.000201, and Console.000134. File
Console.000201is monitored.

IN{######}.log
Matches file names that start with IN followed by six numerals and the file extension .log. Examples
include IN021001.log, IN021002.log, and IN021004.log. File IN021004.log is monitored.

PS{###}FTP.txt
Matches file names that start with PS followed by three numerals, followed by FTP, and the
extension .txt. Examples include PS001FTP.txt, PS005FTP.txt, and PS010FTP.txt. File
PS010FTP.txtis monitored.

Follow these guidelines to establish file name patterns:

• Use braces {} to enclose pattern characters in a file name. The presence of pattern characters inside
braces indicates that a file name pattern is being used.

• Use an asterisk (*) as a wildcard to ignore file extensions or any trailing characters in the file name. For
example, Myapp{###}.log* specifies that any file name that starts with Myapp, followed by three
digits, and followed by .log, is a match, regardless of what comes after.

The asterisk must be specified after the curly braces ({ }) and cannot be used at the beginning of a
file name. When you use the asterisk in a file name extension, the asterisk must be used by itself.

Examples of correct wildcard (*)usage:
err{??}.*
error{$}.*
Examples of incorrect wildcard (*) usage:
error.20*

No curly braces precede the asterisk (*).
error*.{###}

The asterisk is not used at the end of the file name.
error.*

No curly braces precede the asterisk (*).
• If a specific file extension is defined, then only files with the same extension are considered.
• Use a number sign to indicate each numeric element of a file name.
• Use a question mark to exclude each element of the naming convention that does not serve as search

criteria in determining the appropriate file name.
• Use a dollar sign ($) to represent either any character or no character. For example, if you want to

match on two files named Log and LogA, specify Log{$}. The dollar sign has several usage restrictions.
When you use one or more dollar signs to prefix a file name as in {$$$$$$}_abc.log, the number of
dollar signs must exactly match the number of characters in that position in the file name. Also, you
cannot specify dollar signs in multiple locations in a file name pattern, for example, {$$$}b{$$$}.log
does not match abc.log. Given these dollar sign restrictions, use regular expression file name patterns
if there are an indeterminate number of characters in the file names.

• The total number of number signs and question marks that are enclosed in braces is significant. It must
match the portion of file name exactly. For example, the pattern AA{####} instructs the File Data
Provider to look for files such as AA0001. File names, such as AA001 or AA00001, are not considered.

• The exact file name pattern, the constant, and the numeric parts, must match the file name exactly. For
example, the pattern AA{###} instructs the File Data Provider to check file AA101. File names, such as
XAA101, AA222X and AA55555, are not considered.

362 IBM Agent Builder: IBM Agent Builder User's Guide

• Use the reserved pattern string {TIVOLILOGTIME}to substitute for the hex timestamp and file
sequence number in a Tivoli Monitoring agent or server log file. This pattern string is useful when you do
self-monitoring of Tivoli Monitoring components. For example, if you want to monitor the latest
monitoring server log in the /opt/IBM/ITM/logsdirectory, can specify a file name pattern:

/opt/IBM/ITM/logs/Host1_ms_{TIVOLILOGTIME}.log

If Host1_ms_452053c0-01.log, Host1_ms_451f11f4-01.log, Host1_ms_45205946-01.log,
and Host1_ms_451f11f4-02.log are present in the /logsdirectory, the
Host1_ms_45205946-01.log file is selected for monitoring.

To precisely specify a file name that consists of date components (year, month, and day), use the capital
letters Y, M, and D. These letters must be specified within braces; otherwise they are treated as literal
characters in the file name.

See the following examples:

{YYYYMMDD}.log
Specifies file names such as 20060930.log or 20061015.log.

{MMDDYY}.log
Specifies file names such as 101106.log or 110106.log.

{DDMMYYYY}.log
Specifies file names such as 01092006.log or 15082006.log.

{DDMMMYY}.log
Specifies file names such as 24Jan07 or 13Sep06.

{MM-DD-YY}.log
Specifies file names such as 11-02-06 or 04-29-07. The (-)separator character is ignored in the date
field and does not require a question mark pattern character to skip over it.

MY{YYDDD}.log
Specifies file names such as MY06202.log, MY06010.log, or MY04350.log.

Complex cases exist, where a date field is embedded within a longer file name, and the date patterns in
the previous examples are not sufficient. For complex cases, create patterns that mix number signs and
question marks and still perform numeric comparisons that select the most current file for monitoring. For
example, the pattern ABC{?####?##?##?##?##?##?}XYZ.TXT can be used for file names such as ABC
2006-04-20 11_22_33 XYZ.TXT. In this example, you are interested in only the #- marked digits and
question marks serve as placeholders that ignore other characters in the file name.

The File Data Provider periodically checks for new files that match the defined file pattern in the target
path location. When a newer file that matches the pattern is detected, the File Data Provider
automatically switches application monitoring to the new file. The File Data Provider searches for the best
matching file when:

• The File Data Provider first starts.
• The currently monitored file no longer exists because of possible renaming or deleting.
• The existing file contents, changed because of possible rewriting.
• The check interval expired. The default interval is 10 minutes. You can change the interval to a longer or

shorter interval value by specifying the environment variable

KUMP_DP_FILE_SWITCH_CHECK_INTERVAL=number-of-seconds

Appendix H. Dynamic file name support 363

364 IBM Agent Builder: IBM Agent Builder User's Guide

Appendix I. SNMP trap configuration
Description of the configuration file that is used by the SNMP Data Provider to render trap information in a
more easily readable form. The file is also used to assign categories, severities, status, and source IDs to
traps.

Also contains instructions for modifying the default file or substituting your own configuration file.

SNMP trap configuration file, trapcnfg
At startup, the SNMP Data Provider reads a configuration file named trapcnfg. One purpose of this file is
to translate SNMP trap information into a more readable form. Another is to assign categories, severities,
status, and source IDs to specific traps, since these categories are not defined by SNMP.

You can modify the trapcnfg file to suit your site-specific needs by adding new trap or enterprise
definitions or changing the existing ones. You can also use your own configuration file.

Use the HP OpenView trapd.conf file
The trapcnfg file is similar in format, but not identical, to the HP OpenView Network Node Manager trap
configuration file trapd.conf. You can copy the OpenView file and reuse many of the definition
statements if necessary.

Types of records
trapcnfg contains three types of records or record blocks:
comments

Comment records begin with a number sign (#).
enterprise definitions

Enterprise definitions consist of two blank-delimited tokens, where the first token is a name and the
second is an object identifier (OID) surrounded by curly brackets ({ }).

trap definitions
Trap definitions consist of eight blank-delimited tokens. Trap definitions are block records because
each definition might consist of multiple records.

The first type is self-explanatory. (Figure 57 on page 366) shows examples of the second and third types.

The first example in Figure 57 on page 366 shows an enterprise definition record which defines enterprise
OID 1.3.6.1.4.1.311.1.1.3.1.1 as being Microsoft Windows NT.

The second example shows a trap definition record that defines trapName MSNTCOLD as being
associated with enterprise OID 1.3.6.1.4.1.311.1.1.3.1.1, generic trap number 0, and specific
trap number 0. Notice that the severity is in decimal form whereas the category is in textual form.
Severities are translated into their textual form before they are displayed. The next record in the type 3
record block is the short description, which the Agent Builder does not use. The Agent Builder uses the
long description that is enclosed within the delimiters SDESC and EDESC.

© Copyright IBM Corp. 2010, 2021 365

Figure 57. Examples of configuration record types 2 and 3

Defaults for the trapcnfg file
Tables that list the defaults that are supported by the SNMP Data Provider.

Supported categories
(Table 52 on page 366) shows the categories that are supported by the Agent Builder.

Table 52. Categories supported by the SNMP Data Provider

Category Textual representation

0 Threshold Events

1 Network Topology Events

366 IBM Agent Builder: IBM Agent Builder User's Guide

Table 52. Categories supported by the SNMP Data Provider (continued)

Category Textual representation

2 Error Events

3 Status Events

4 Node Configuration Events

5 Application Alert Events

6 All Category Events

7 Log Only Events

8 Map Events

9 Ignore Events

(Table 53 on page 367) lists the severities that are supported by the Agent Builder.

Table 53. Severities supported by the SNMP Data Provider

Severity Textual representation

0 Clear

1 Indeterminate

2 Warning

3 Minor Error

4 Critical

5 Major Error

Supported statuses
(Table 54 on page 367) shows the statuses that are defined in the Agent Builder configuration file.

Table 54. Statuses supported by the SNMP Data Provider

Status Textual representation

0 Unchanged

1 Unknown

2 Up

3 Marginal

4 Down

5 Unmanaged

6 Acknowledge

7 User1

8 User2

Supported source IDs
(Table 55 on page 368) lists the source IDs supported by trapcnfg.

Appendix I. SNMP trap configuration 367

Table 55. Source IDs supported by the SNMP Data Provider

Source ID Description

a Application

A Agent

C Xnmcollect

d Demo

D Data Collector

E Nvevents

I Ipmap

L LoadMIB

m Shpmon

M IP topology

n netmon related

N netmon-generated traps

O OSI SA

P Non-IP traps

r Tralertd

s Spappld

S Security Agent

t Xnmtrap

T Trapd

V Vendor related

? Unknown

368 IBM Agent Builder: IBM Agent Builder User's Guide

Appendix J. Take Action commands reference
An overview of Take Action commands, references about Take Action commands, and descriptions of
special Take Action commands.

About Take Action commands
Take Action commands can be included in an Agent Builder monitoring agent. Take Action commands can
be run from the portal client or included in a situation or a policy. When included in a situation, the
command runs when the situation becomes true. A Take Action command in a situation is also known as
reflex automation. When you enable a Take Action command in a situation, you automate a response to
system conditions. For example, you can use a Take Action command to send a command to restart a
process on the managed system. You can also use a Take Action command to send a text message to a
cell phone.

Advanced automation uses policies to run actions, schedule work, and automate manual tasks. A policy
comprises a series of automated steps that are called activities that are connected to create a workflow.
After an activity is completed, the Tivoli Enterprise Portal receives return code feedback, and advanced
automation logic responds with subsequent activities prescribed by the feedback.

A basic Take Action command displays the return code of the operation in a message box or a log file that
is displayed after action completion. After you close this window, no further information is available for
this action.

More information about Take Action commands
For more information about working with Take Action commands, see the Tivoli Enterprise Portal User's
Guide.

For a list and description of the Take Action commands for this monitoring agent, see (“Special Take
Action commands” on page 369). See also the information in that section for each individual command.

Special Take Action commands
An Agent Builder monitoring agent can recognize and do special processing for a set of Take Action
commands:

• SSHEXEC

For more information about creating these commands and including them in an Agent Builder monitoring
agent project, see (Chapter 11, “Creating workspaces, Take Action commands, and situations,” on page
213).

SSHEXEC action

Before you begin
For more information about Take Action commands, see (Appendix J, “Take Action commands reference,”
on page 369).

About this task
The SSHEXEC action is recognized for a monitored application that has at least one SSH Script attribute
group. It indicates that the command that follows the SSHEXEC keyword is remotely started on the SSH
target system. The command is started with the credentials and privileges of the user that is configured to
monitor the SSH target system. The command is run on the remote system that is represented by the
Managed System Name.

© Copyright IBM Corp. 2010, 2021 369

Procedure
To include the Take Action command in a situation or workflow policy, use the following syntax for the
system command:

SSHEXEC [Command]

For example:

SSHEXEC [ls &path]

Note: You can customize the command or portions of the command during invocation of the Take Action
by using the Take Action arguments option with the Command.

Note: If the Command includes multiple arguments, then consider including the bracket parenthesis to
enable invocation of the Take Action command with the tacmd command-line interface.

370 IBM Agent Builder: IBM Agent Builder User's Guide

Accessibility features

Accessibility features assist users who have a disability, such as restricted mobility or limited vision, to
use information technology content successfully.

Accessibility features
The web-based interface of IBM Cloud Application Performance Management is the Cloud APM console.
The console includes the following major accessibility features:

• Enables users to use assistive technologies, such as screen-reader software and digital speech
synthesizer, to hear what is displayed on the screen. Consult the product documentation of the assistive
technology for details on using those technologies with this product.

• Enables users to operate specific or equivalent features using only the keyboard.
• Communicates all information independently of color.1

The Cloud APM console uses the latest W3C Standard, WAI-ARIA 1.0 (http://www.w3.org/TR/wai-aria/),
to ensure compliance with US Section 508 (http://www.access-board.gov/guidelines-and-standards/
communications-and-it/about-the-section-508-standards/section-508-standards), and Web Content
Accessibility Guidelines (WCAG) 2.0 . To take advantage of accessibility features, use the latest release of
your screen reader in combination with the latest web browser that is supported by this product.

The Cloud APM console online product documentation in IBM Knowledge Center is enabled for
accessibility. The accessibility features of IBM Knowledge Center are described at IBM Knowledge Center
release notes .

Keyboard navigation
This product uses standard navigation keys.

Interface information
The Cloud APM console web user interface does not rely on cascading style sheets to render content
properly and to provide a usable experience. However, the product documentation does rely on cascading
style sheets. IBM Knowledge Center provides an equivalent way for low-vision users to use their custom
display settings, including high-contrast mode. You can control font size by using the device or browser
settings.

The Cloud APM console web user interface includes WAI-ARIA navigational landmarks that you can use to
quickly navigate to functional areas in the application.

The Cloud APM console user interface does not have content that flashes 2 - 55 times per second.

Related accessibility information
In addition to standard IBM help desk and support websites, IBM has established a TTY telephone
service for use by deaf or hard of hearing customers to access sales and support services:

TTY service 800-IBM-3383 (800-426-3383) (within North America)

IBM and accessibility
For more information about the commitment that IBM has to accessibility, see IBM Accessibility
(www.ibm.com/able).

1 Exceptions include some Agent Configuration pages of the Performance Management console.

© Copyright IBM Corp. 2010, 2021 371

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/WCAG20/
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html?view=kc#accessibility
http://www.ibm.com/support/knowledgecenter/en/about/releasenotes.html?view=kc#accessibility
http://www.ibm.com/able
http://www.ibm.com/able

372 IBM Agent Builder: IBM Agent Builder User's Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

© Copyright IBM Corp. 2010, 2021 373

Such information may be available, subject to appropriate terms and conditions, including in some cases
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurement may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM‘s application programming interfaces.

If you are viewing this information in softcopy form, the photographs and color illustrations might not
display.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at http://
www.ibm.com/legal/us/en/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

374 IBM Agent Builder: IBM Agent Builder User's Guide

http://www.ibm.com/legal/us/en/copytrade.shtml
http://www.ibm.com/legal/us/en/copytrade.shtml

Other company, product, and service names may be trademarks or service marks of others.

Notices 375

376 IBM Agent Builder: IBM Agent Builder User's Guide

IBM®

	Contents
	Figures
	Tables
	Chapter 1. Overview of Agent Builder
	Common Agent Builder procedures
	Data sources and data sets
	Monitoring multiple servers or instances of a server
	Testing, installing, and configuring an agent
	Operating system requirements
	Features specific to IBM Tivoli Monitoring

	Chapter 2. Installing and starting Agent Builder
	Prerequisites for installing and running Agent Builder
	Detailed system requirements for Agent Builder

	Installing Agent Builder
	Using the installation wizard to install Agent Builder
	Silent installation

	Starting Agent Builder
	Setting the default browser in Agent Builder
	Setting the default Time Stamping Authority in Agent Builder
	Uninstalling Agent Builder
	Silent uninstallation

	Chapter 3. Creating an agent
	Naming and configuring the agent
	Defining initial data sources
	Selecting key attributes

	Chapter 4. Using the Agent Editor to modify the agent
	Default operating systems
	Self-Describing Agent
	Environment variables
	List of environment variables

	Watchdog information
	Cognos information
	Generate Agent wizard link
	The Data Source Definition page
	Copying data sources by using the Data Source Definition page

	Runtime Configuration Information page
	Agent XML Editor page
	Saving your edits and changes
	Committing a version of the agent
	Setting a new version number for your agent
	Changing the product code

	Chapter 5. Editing data source and attribute properties
	Creating, modifying, and deleting attributes
	Creating attributes
	Copying attributes
	Editing attributes
	Creating derived attributes
	Interval specific calculations

	Editing derived attributes
	Removing attributes
	Fields and options for defining attributes
	Attribute types
	Numeric aspects of attributes
	Specifying an enumeration for an attribute
	Specifying severity for an attribute used as a status indicator

	Filtering attribute groups
	Formula Editor
	Changing the Formula Editor component view
	Component types
	Formula Editor Attribute component
	Formula Editor Literal components
	Formula Editor Operator component
	Formula Editor Conditional expression component
	Formula Editor Function component

	Formula Editor common options
	Formula Editor - Formula errors

	Formula operators and functions
	Specifying operating systems
	Configuring and Tuning data collection
	Data types
	Sampled data
	Environment variables
	Attribute groups

	Event data
	Examples and advanced tuning

	Chapter 6. Defining and testing data sources
	Monitoring a process
	Defining connections for process browsing

	Monitoring a Windows service
	Defining connections for service browsing

	Monitoring data from Windows Management Instrumentation (WMI)
	Testing WMI attribute groups

	Monitoring a Windows Performance Monitor (Perfmon)
	Testing Perfmon attribute groups

	Monitoring data from a Simple Network Management Protocol (SNMP) server
	SNMP MIB errors
	SNMP MIB Parsing options
	Testing SNMP attribute groups

	Monitoring events from Simple Network Management Protocol event senders
	SNMP Event Configuration properties
	Testing SNMP event attribute groups

	Monitoring Java Management Extensions (JMX) MBeans
	JMX configuration
	JMX notifications
	JMX monitors
	Take Action commands for JMX monitors
	JMX Add String Metric Watcher
	JMX Add Gauge Metric Watcher
	JMX Add Counter Metric Watcher
	JMX Delete Metric Watcher

	JMX operations
	Starting and stopping JMX monitors

	Specific fields for Java Management Extensions (JMX) MBeans
	Testing JMX attribute groups

	Monitoring data from a Common Information Model (CIM)
	CIM configuration
	Testing CIM attribute groups

	Monitoring a log file
	Log file parsing and separators
	Testing log file attribute groups

	Monitoring an AIX Binary Log
	Monitoring a Windows Event Log
	Filtering by event type
	Filtering by event source
	Filtering by event identifier

	Monitoring a command return code
	Editing a command file definition
	File Separation & Consolidation

	Monitor output from a script
	Collecting script data from a remote system
	Script parsing and separators
	Steps for monitoring output from a script

	Monitoring data from Java Database Connectivity (JDBC)
	JDBC configuration
	Stored procedures
	Testing JDBC attribute groups

	Monitoring system availability by using Ping
	Configuration files
	Testing Ping attribute groups

	Monitoring HTTP availability and response time
	HTTP tables
	Monitoring a URL
	Monitor https:// URLs
	Proxy server
	HTTP configuration
	Testing HTTP attribute groups

	Monitoring data from a SOAP or other HTTP data source
	XML representation of JSON data
	Specific fields for SOAP attributes
	SOAP configuration
	Testing SOAP attribute groups

	Monitoring data by using a socket
	Sending socket information to the agent
	Encoding of socket data
	Socket errors
	Socket configuration
	Remote socket port connection
	Sample script for socket
	Testing socket attribute groups

	Use the Java API to monitor data
	Running the Java application
	Generated sample Java application
	Java API configuration
	Testing Java application attribute groups

	Chapter 7. Creating data sets from existing sources
	Joining two attribute groups
	Manipulating attributes in joined attribute groups
	Joined attributes
	Creating a filtered attribute group

	Chapter 8. Creating a navigator group
	Chapter 9. Using subnodes
	Creating subnodes
	Subnode configuration
	Configuring a subnode
	Subnode configuration overrides
	Advanced subnode configuration
	Configuring a subnode from the command line
	Subnode configuration example
	Subnodes and Windows data sources
	Subnodes and Script data sources

	Chapter 10. Customizing agent configuration
	Changing configuration properties by using the Agent Editor
	Configuring a Windows remote connection
	Creating a user with Windows Management Instrumentation (WMI) permissions
	Configuring a Secure Shell (SSH) remote connection

	Chapter 11. Creating workspaces, Take Action commands, and situations
	Creating situations, Take Action commands, and queries
	Creating workspaces

	Chapter 12. Preparing the agent for Cloud APM
	Chapter 13. Preparing the agent for Cloud Pak for Multicloud Management
	Defining resources
	Building resource relationships

	Chapter 14. Data Definition Designer
	Chapter 15. Testing your agent in Agent Builder
	Attribute group testing
	Attribute group testing - preferences
	Attribute group testing - configuration

	Full agent testing
	Test Environment variables

	Chapter 16. Installing your agent into a monitoring infrastructure for testing and use
	Installing an agent
	Installing an agent locally
	Creating the agent package
	Installing the package in an IBM Tivoli Monitoring environment
	Configuring and starting the agent in an IBM Tivoli Monitoring environment
	Installing and using an agent in an IBM Cloud Application Performance Management environment
	Installing the agent
	Configuring the agent
	Starting and stopping the agent

	Agent post-generation and installation results
	Uninstalling an agent
	Removing a Tivoli Monitoring agent by using the Tivoli Enterprise Portal
	Removing a Tivoli Monitoring agent without using the Tivoli Enterprise Portal
	Clearing a Tivoli Monitoring agent from the Tivoli Enterprise Portal
	Uninstalling an IBM Cloud Application Performance Management agent

	Chapter 17. Importing application support files
	Exporting and importing files for Tivoli Enterprise Monitoring Agents
	Exporting and importing files for Tivoli System Monitor Agents

	Chapter 18. Event filtering and summarization
	Controlling duplicate events
	Viewing event filtering and summarization in the Tivoli Enterprise Portal

	Chapter 19. Troubleshooting and support
	Appendix A. Sharing project files
	Share a Solution Installer Project

	Appendix B. Command-line options
	Command - generatelocal
	Command - generatemappingfile
	Command - generatezip

	Appendix C. Attributes reference
	Availability node
	Performance Object Status node
	Thread Pool Status attribute group
	Event log attribute node
	Log File Summary
	AIX Binary Log attribute group
	Monitor and Notification attribute groups
	Counter Notifications
	Gauge Notifications
	Registered Monitors
	String Notifications

	SNMP Event attribute groups
	JMX Event attribute groups
	Ping attribute group
	HTTP attribute groups
	Discovery attribute groups
	Take Action Status attribute group
	Log File Status attribute group
	Log File RegEx Statistics attribute group

	Appendix D. Creating application support extensions for existing agents
	Creating an Application Support Extension project
	Adding support files to a project
	Generating the Application Support Extension installation image
	Installing your Application Support Extension
	Converting a Solution Install Project to an Application Support Extension project

	Appendix E. Cognos data model generation
	Prerequisites to generating a Cognos data model
	Tivoli Data Warehouse
	Create tables and Procedures in the Tivoli Data Warehouse
	Running DB2 Scripts to Create tables and Procedures in the Tivoli Data Warehouse
	Running Oracle Scripts to Create tables and Procedures in the Tivoli Data Warehouse
	Running SQL Server 2005 and 2008 Scripts to Create tables and Procedures in the Tivoli Data Warehouse

	Populating the Tivoli Data Warehouse with the Tivoli Reporting and Analytics Model

	Tivoli Common Reporting
	Framework Manager

	Creating reports
	Populating the ManagedSystem Table
	Running the DB2 stored procedure
	Running the Oracle stored procedure
	Running the stored procedure on SQL Server 2005 and 2008

	Exporting reports and data models from Tivoli Common Reporting
	Importing reports into Agent Builder
	Installing reports from an agent package into Tivoli Common Reporting

	Appendix F. ICU regular expressions
	Appendix G. Creating Non-agent file bundles
	Remote Deploy Bundle Editor
	Adding commands to the bundle
	Adding prerequisites to the bundle
	Adding files to the bundle
	Generating the bundle
	Creating deployable bundles for Tivoli Netcool/OMNIbus probes

	Appendix H. Dynamic file name support
	Appendix I. SNMP trap configuration
	Appendix J. Take Action commands reference
	SSHEXEC action

	Accessibility features
	Notices
	Trademarks

