Building UX Web Applications

Starting in IBM TRIRIGA Application Platform 3.8.0, the UX Framework was further enhanced to support any standard
Web Application. With these enhancements, new UX Web Applications can be developed by using any available web
framework. For example, React)S, VuelS, Angular, and Vanilla HTML with JS and CSS.

Contents

I. Introduction to UX Web Applications

¢ |l. Changes to UX Designers

¢ lll. Enabling CORS on the Application Server

e IV. TRIRIGA React Components Library

e V. Globalization of UX Web Applications

e VI. Deploying and Pulling the UX Web Application

e VII. Accessing the URL for the UX Web Application

e VIIL. Building the UX Web Application (Tutorial)

I. Introduction to UX Web Applications

The IBM TRIRIGA UX Framework was originally designed to support only UX apps that were implemented by using
Google Polymer. When the UX Framework and the first UX apps were originally released, only Polymer Version 1 was

available. Later, the UX Framework was enhanced to support Polymer Version 3 as well.

The UX Framework adopted a simplified architecture for developing web applications. All of the web components are
provided by the TRIRIGA platform, so the developer only needs to implement web components. The developer does

not need to worry about creating an index.html file or bootstrapping an application from scratch.
Although this approach simplified development, it also introduced some limitations:
e It supports the development of applications that use Polymer only.
e It does not support the addition of third-party dependencies that use standard package managers like npm.
e It does not support module bundlers such as Webpack, Rollup or Parcel.
e lIts use of IBM Carbon components does not fully support Polymer.

To overcome these limitations, the UX Framework was further enhanced to support any standard Web Application. UX
Web Applications are supported by TRIRIGA Platform 3.8.0 and later.

The main features of a TRIRIGA UX Web Application are:

e It is a standard web application that can be developed by using any available web framework. For example,
React)S, VuelS, Angular, Vanilla HTML with JS and CSS, etc.

e lIts application architecture is under full control by the developer. Any third-party dependency can be added

by using the package manager of choice.

e It interacts with the TRIRIGA server by using the REST APIs. There is also a tririga-react-components library
that the app can use to interact with TRIRIGA APIs.

Moving forward, new TRIRIGA-provided Perceptive Apps will be based on UX Web Applications that are developed
with ReactJS and IBM Carbon components. However, TRIRIGA clients and partners are free to develop their own UX

Web Applications with any technology of their choice.

© Copyright IBM Corporation 2011, 2021.

Il. Changes to UX Designers

The UX Web Application is a change to the Web View part of the UX Framework. All of the other UX Framework

concepts like the Model, Data Source, Model-and-View, and Application remain the same.
To support UX Web Applications, the following changes were made to the Web View Designer:
e Added the WEB_APP value to the View Type field: This defines the view as a Web Application.

e Added the Root Folder field: The name of the folder that contains the build files of the Web Application. The

files requested from the browser are served from this folder.

e Added the Messages Folder field: The name of the folder that contains all of the message-related JSON files
of the Web Application. When exporting the dictionary from the Globalization Manager, TRIRIGA will look for
dictionary labels in the JSON files that are inside this folder.

e Added the Index filename field: The name of the file that is served when the Web Application is opened. It is
also used to support the HTML5 History API fallback, where the server returns the index file whenever an

application requests a file path that does not exist.

= General
Name My First App % ID My First App
Exposed Name my-first-app View Type WEB_APP v
Description

= Custom App Configuration

Root Folder 'build Index filename |index.html

Messages Folder | /src/utils/messages

lll. Enabling CORS on the Application Server

When you run a UX Web Application locally, it will make requests to the APIs on the TRIRIGA server (e.g., fetch data
from a data source or to get a floor plan). By default, the application server (Liberty or WAS) restricts calling the TRIRIGA
server from a domain outside the domain from which the first resource was served. This means that an application

running on the localhost domain will not be allowed to call an API on the TRIRIGA server.

Fortunately, a mechanism that is named Cross-Origin Resource Sharing (CORS) allows restricted resources to be
requested from another domain. You must enable CORS on the application server that runs your development TRIRIGA

server, before you can run a UX Web Application locally.

To enable CORS on a Liberty server, edit the server.xml file and add the following line:

<cors allowCredentials="true" allowedHeaders="*"
allowedMethods="GET, POST, PUT, DELETE, HEAD" allowedOrigins="*"

domain="/" exposeHeaders="triWebContextId"/>

For more information about how to configure CORS on WebSphere Application Server, see:

https://www.ibm.com/support/pages/node/6348518

© Copyright IBM Corporation 2011, 2021.

https://www.ibm.com/support/pages/node/6348518

IV. TRIRIGA React Components Library

The tririga-react-components library is a collection of React components and JavaScript code to help with the
development of TRIRIGA UX Web Applications.

This library is intended for TRIRIGA UX Web Applications that are developed with ReactJS. It is automatically installed
when you create your application by using the @tririga/cra-template. To manually install it into your project, run the

following command in your terminal:

npm install -S @tririga/tririga-react-components

For more information about the tririga-react-components library, including documentation of all components, classes,

and objects, see: https://tririga.github.io/tririga-react-components

V. Globalization of UX Web Applications

1. Exporting the Dictionary Labels

The Globalization Manager exports labels from both UX Polymer and UX Web Applications. The Globalization Manager
does this by exporting the dictionary as XLIFF files of unique translatable text. If a specific label appears in multiple

views and UX Web Applications, only one unique entry will appear in the dictionary.
The difference between UX Polymer and UX Web Applications in exporting labels is:

e UX Polymer Applications: The TRIRIGA platform parses all HTML and JS files from UX Polymer views by looking

for static translatable labels. Conditions for translatable text can be found in the “UX in Globalization Tool”

document.

e UX Web Applications: The TRIRIGA platform looks for all JSON files inside the Messages Folder of your UX
Web Applications The path of the Messages Folder is defined in the Web View Metadata record of your UX
Web Applications. Each JSON file contains a list of key-and-value entries. The key is used by the application to

reference the label. The value is the label to be translated. Only the value part of each entry is exported to the

XLIFF files.
= General
Name My First App # ID My First App
Exposed Name my-first-app View Type ' WEB_APP v
Description

= Custom App Configuration

Root Folder ' build Index filename index.html

Messages Folder | /src/utils/messages

For example, in the messages.json file below, the following labels will be exported by the Globalization Manager:
e Welcome to the UX Web Application Home Page
e Current user details
e You do not have permission to access this page.

e Due to either a session timeout or unauthorized access, you do not have permission to access this page.

© Copyright IBM Corporation 2011, 2021.

https://tririga.github.io/tririga-react-components
https://www.ibm.com/support/knowledgecenter/SSHEB3_3.8/pdfs_wiki/UX_in_Globalization_tool.pdf

src > utils > messages > {} messages.json > ...

{
"HOME_HEADER" :
"'CURRENT_HEADER" :

"UNAUTHORIZED_TITLE":
"UNAUTHORIZED_DESCRIPTION":

2. Getting the Translated Labels

The difference between UX Polymer and UX Web Applications in getting translated labels is:

UX Polymer Applications: The TRIRIGA Platform detects the language that is defined for the user. Then it
automatically translates all static translatable labels that are defined inside the HTML and JS files that are
requested by the browser. It does this by using the translations that are imported into the Globalization

Manager dictionary. So, the browser receives the file with the labels already translated.

UX Web Applications: The application calls the dictionary API to get the translated labels. The tririga-react-
components library exports the getTranslatedMessages method to help the application to interact with the
dictionary API. For more information about the getTranslatedMessages method, including an example, see:

https://tririga.github.io/tririga-react-components/?path=/story/javascript-library-tridictionary-

gettranslatedmessages--page

VI. Deploying and Pulling the UX Web Application

1. Deploying the UX Web Application

Before you deploy the UX Web Application, you must first build it by using the following command:

npm run build

To deploy the UX Web Application to a TRIRIGA server, use the tri-deploy tool:

Installation: npm install Qtririga/tri-deploy -g

Usage: tri-deploy -t http://tririga.dev:8001/dev -u myUserName -p myPassword -v my-
first-app -d /my-first-app -w

Documentation: https://www.npmjs.com/package/@tririga/tri-deploy

2. Pulling the UX Web Application

To pull the UX Web Application from a TRIRIGA server, use the tri-pull tool:

Installation: npm install Qtririga/tri-pull -g

Usage: tri-pull -t http://tririga.dev:8001/dev -u myUserName -p myPassword -v my-first-
app -w

Documentation: https://www.npmjs.com/package/@tririga/tri-pull

© Copyright IBM Corporation 2011, 2021.

https://tririga.github.io/tririga-react-components/?path=/story/javascript-library-tridictionary-gettranslatedmessages--page
https://tririga.github.io/tririga-react-components/?path=/story/javascript-library-tridictionary-gettranslatedmessages--page
https://www.npmjs.com/package/@tririga/tri-deploy
https://www.npmjs.com/package/@tririga/tri-pull

VII. Accessing the URL for the UX Web Application

The difference between UX Polymer and UX Web Applications in accessing the application URL is:
e UX Polymer Applications: https://[hostname:port][/context_path]/p/web/[yourApp]
e UX Web Applications: https://[hostname:port][/context_path]/app/[yourApp]

e Where [hostname:port] and [/context_path] are the specific values for your IBM TRIRIGA Application Platform

environment, and [yourApp] is the exposed name of your application.

VIII. Building the UX Web Application (Tutorial)

In this tutorial, we will guide you in building a UX Web Application with ReactJS and IBM Carbon components.

Before You Begin

In your web browser's address bar, enter the following URL address: http://[hostname:port][/context_path], where
[hostname:port] and [/context_path] are the specific values for your TRIRIGA environment. For example, if you're
building the app locally: http://localhost:9080/dev

If you do not have Node.js or npm installed on your computer, then access https://nodejs.org to download and install

Node.js (npm is installed as part of the Node,js installation).

To check if you have Node.js installed, run this command in your terminal:

node -v

To confirm that you have npm installed, you can run this command in your terminal:

Step 1. Add the Model

From the side navigation menu, select Tools. In the portal, select Model Designer. Click Add. Enter the name, exposed
name, and ID of your model. The exposed name should be a browser-friendly string. For our example, we'll enter the

following information:
e Name: My First App Model
e Exposed Name: myFirstApp
e ID: My First App Model

Then click Create.

= General

Name My First App Model % ID My First App Model
Exposed Name myFirstApp

Description

© Copyright IBM Corporation 2011, 2021.

http://localhost:9080/dev
https://nodejs.org/

Step 2. Add the Data Source and Fields for “Current User”

Next, in the Data Sources section of your model, click Add. Enter the following information:

e Name: Current User
e Exposed Name: currentUser

o Data Source Type: CURRENT_USER

Next, in the Fields section of your data source, click Quick Add for two fields. Enter the following information:

e Name: (1) triFirstNameTX, (2) triLastNameTX

e Exposed Name: (1) firstName, (2) lastName

e Field Name: (1) triFirstNameTX, (2) triLastNameTX
o Data Type: (1) STRING, (2) STRING

Then click Create. Finally, Save & Close your model.

= General

Model My First App Model
+ Name Current User

Exposed Name currentUser

Description

Multiple Records]

List Type Name

Use Session (Uncheck for Stateless)

Read Only?

Section Name

Query Name
Create Workflow Name

Related Data Source Q (%]

Record Pre Populate O

Data Source Type CURRENT_USER v

Module v

Legacy Form v

ID Current user

Business Object
UOM Type Name

Enable Context Security U

Related Association Name

= Fields
S Export 2totalfound ApplyFilters Clear Filters
"] Name _ Field Name Data Type
' Contains | | contains || contains | | contains
() O3 | wiFirstNameTX | firsiName | triFirstNameTx || STRING | v
] [J triLasiNameTX | lastName | | triLastNameTX [STRING | %

© Copyright IBM Corporation 2011, 2021.

Step 3. Add the View

From the side navigation menu, select Tools. In the portal, select Web View Designer. Click Add. Enter the name,

exposed name, and ID of your view. For our example, we'll enter the following information:
e Name: My First App
e Exposed Name: my-first-app
e ID: My First App
e View Type: WEB_APP
e Root Folder: build
e Messages Folder: /src/utils/messages
¢ Index filename: index.html

Click Create. Then Save & Close.

= General
Name My First App # ID My First App
Exposed Name my-first-app View Type 'WEB_APP v
Description
= Custom App Configuration
Root Folder build Index filename index.html
Messages Folder | /src/utils/messages

Step 4. Add the Model-and-View

From the side navigation menu, select Tools. In the portal, select Model and View Designer. Click Add. Enter the

name, exposed name, and ID of your model-and-view. For our example, we'll enter the following information:
e Name: My First App Model and View
e Exposed Name: myFirstApp
e ID: My First App Model and View
e Model Name: Select "My First App Model” that you created earlier.
e View Name: Select "My First App” that you created earlier.
e View Type: Select WEB_VIEW.

Click Create. Then Save & Close.

= General

Name My First App Model and View # ID My First App Model and View
Exposed Name myFirstApp

Description

Model Name My First App Model Q. & ViewName My First App
View Type 'WEB_VIEW v

© Copyright IBM Corporation 2011, 2021.

Step 5. Add the Application

From the side navigation menu, select Tools. In the portal, select Application Designer. Click Add. Enter the name,

exposed name, and ID of your application. For our example, we'll enter the following information:
e Name: My First App
e Exposed Name: myFirstApp
e ID: My First App
e Label: My first app
e App Type: Select WEB_MODEL_AND_VIEW.
e App Name: Select "My First App Model and View" that you created earlier.
e Instance ID: -1

Click Create. Then Save & Close.

= General

Name My First App # ID My First App
Exposed Name myFirstApp
Label My first app

Description

App Type WEB_MODEL_AND_VIEW |V AppName My First App Model and View

Instance ID -1

Step 6. Create the Skeleton Application from a Template

A TRIRIGA template can be used with the NPM-based create-react-app tool to build a “skeleton” UX Web Application.
This is the best way to start building a UX Web Application with React)JS and IBM Carbon components.

To create a new UX Web Application from this template, run this command in your terminal:

npx create-react—-app my-first-app --template Qtririga/cra-template --use-npm

© Copyright IBM Corporation 2011, 2021.

Step 7. Run the Application Locally

Now let's run the UX Web Application that you created. In the my-first-app folder that was created, make a copy of
the .env.development.local.template file and rename the copied file to .env.development.local. Open the

.env.development.local file and set the values for the following variables:
e REACT_APP_INSTANCE_ID: Instance ID from the application metadata
e REACT_APP_TRIRIGA_URL: URL of the TRIRIGA server
e REACT_APP_CONTEXT_PATH: TRIRIGA context path
e REACT_APP_MODEL_AND_VIEW: Exposed name of the model-and-view
e REACT_APP_BASE_PATH: Context path when running the app on the local development server
e REACT_APP_EXPOSED_NAME: Exposed name of the application
e REACT_APP_SSO: If SSO is enabled on the server, then true; otherwise, false

For our example, we'll enter the following information, where REACT_APP_TRIRIGA_URL and
REACT_APP_CONTEXT_PATH are the specific values for your TRIRIGA environment:

REACT APP INSTANCE ID=-1

REACT APP TRIRIGA URL=https://www.tririga-dev.com/dev
REACT APP CONTEXT PATH=/dev

REACT APP MODEL AND VIEW=myFirstApp

REACT APP BASE PATH=/
REACT_APP_EXPOSED_NAME:myFirstApp
REACT APP SSO=false

After you've entered the information, run this command in your terminal:

cd my-first-app

npm start

This command automatically opens your app home page in a new tab of your default browser. By default, the URL of

an app that runs locally is: https://localhost:3000. To check if your app displays some information about your user, click

the Current User button.

Congratulations! You've built your first TRIRIGA UX Web Application with React)S components. Now, let's create a new

page to display all of the buildings.

& > C @ localhost:2000 & > C © localhost:3000/user

Welcome to the UX Web Application Home Page Current user details:

— First Name: Thiago
— Last Name: Soares
- Language: US English
— Timezone: Brazil/East

© Copyright IBM Corporation 2011, 2021.

https://localhost:3000/

Step 8. Add the Data Source and Fields for “All Buildings”
First, let's add a data source to query all of the buildings in TRIRIGA.
From the side navigation menu, select Tools. In the portal, select Model Designer. Select the My First App Model.
Next, in the Data Sources section of your model, click Add. Enter the following information:
e Name: All Buildings
e Exposed Name: allBuildings
e Data Source Type: QUERY
e Multiple Records: Yes
e Module: Location
e Business Object: Building (triBuilding)
e Query Name: triBuilding - Building Details
Next, in the Fields section of your data source, click Quick Add for two fields. Enter the following information:
e Name: (1) Building, (2) Parent Property
e Exposed Name: (1) building, (2) parentProperty
e Field Name: (1) Building, (2) Parent Property
o Data Type: (1) STRING, (2) STRING

Then click Create. Finally, Save & Close your model.

= General

Model My First App Model

% Name All Buildings iD (|

Exposed Name allBuildings

Description

Data Source Type QUERY v
Multiple Records
Module Location v Business Object | Building (triBuilding)

List Type Mame UOM Type Name

Use Session (Uncheck for Stateless) Enable Context Security |:‘

Read Only?
Section Name
Legacy Form v
Query Name triBuilding - Building Details
Create Workflow Name

Related Data Source Q @ Related Association Name

Record Pre Populate O

= Fields
3 Export 2totalfound ApplyFilters Clear Filters
(] Name Exposed Name Field Name Data Type
| Contains ‘ ‘ Contains | | Contains ‘ ‘ Contains
] 3 [Buiding | | building | | Building || STRING | v
\:I (A |Parent Property ‘ ‘parentF’ropeny | |Parent Property ‘ ‘STRING | v

© Copyright IBM Corporation 2011, 2021.

Step 9. Add the Method to Interact with the Data Source

Open the my-first-app folder by using the integrated development environment (IDE) of your choice. For our example,
the following screenshots are taken from Microsoft® Visual Studio Code. The code that interacts with the data sources

are placed under: /src/model/datasources. Under that folder, create a new file that is named BuildingsDS.js.

 MY-FIRST-APP

> public

vV src

> app

> components

v model

Vv datasources
Js BuildingsDS.js
JS CurrentUserDS.js
J5 AppModel.js

J5 index,s

> pages

Open the BuildingsDS.js file and add the following code:

const response = await getAppModel () .getRecord (
DatasourceNames.BUILDINGS DS NAME

urn response.data;

Basically, this code gets the model object and then calls the getRecord method to get the data from the
BUILDINGS_DS_NAME data source.

Next, let's create the BUILDINGS_DS_NAME constant and set its value to allBuildings, the exposed name of the “All
Buildings” data source. Under the /src/utils/constants folder, open the DatasourceNames.js file and add the new const

(constant) as follows:

const CURRENT USER DS NAME = "currentUser";
"t const BUILDINGS DS NAME = "allBuildings";

Now, let's export the BuildingsDS from the model index.js file. Under the /src/model folder, open the index.js file and

add the export of the BuildingsDS as follows:

createAppModel, getAppModel } from "./
as CurrentUserDS from "./date
as BuildingsDS from "./datasc

createAppModel, getAppModel, CurrentUserDS, BuildingsDS };

© Copyright IBM Corporation 2011, 2021.

Step 10. Add the Service to Get “All Buildings”

A service encapsulates the logic to run the application actions. These actions are usually triggered by a user or event.
The services are placed under: /src/services. Under that folder, create a new file that is named BuildingsServices.js.

 MY-FIRST-APP

> public

vV src
> app
> components
> model
> pages
V' services
Js BuildingsServices.js
JS CurrentUserServices.js
J5 index,s

J5 LoadingServices.js

J5 MessageServices.js

Open the BuildingsServices.js file and add the following code:

LoadingServices } from ".";
BuildingsDS } from "../model";

export a ¢ function getAllBuildings () {
let buildings = [];
try {
LoadingServices.setLoading ("getAl1RBuildings", true);
buildings = await BuildingsDS.getAllBuildings () ;
finally {
LoadingServices.setLoading ("getAllBuildings", fa

}
return buildings;

This code is a simple action that toggles the loading while calling the BuildingsDS to get all buildings.
Now, let's export the BuildingsServices from the services index.js file. Under the /src/services folder, open the index.js

file and add the export of the BuildingsServices as follows:

LoadingServices from "./LoadingServices";
CurrentUserServices from "./CurrentUserServices";

MessageServices from "./MessageServices";
BuildingsServices from "./BuildingsServices";

© Copyright IBM Corporation 2011, 2021.

Step 11. Add the Page to Display “All Buildings”

Next, let's create a new page where we will use an IBM Carbon component that is named DataTable to display all

buildings. For more information about the DataTable component, including an example, see:

https://react.carbondesignsystem.com/?path=/story/datatable--usage

The pages are placed under: /src/pages. Under that folder, create a new folder that is named AllBuildingsPage. Under

this new AllBuildingsPage folder, create two new files as follows:
e _AlIBuildingsPage.scss: Partial Sass file that contains the styles that are used by the page

e AlIBuildingsPage.js: JavaScript file that contains the component that renders the page

Vv MY-FIRST-APP
> node_modules

> public

V' Src

> app
> components

> model
v pages
v AllBuildingsPage
& _AllIBuildingsPage.scss
Js AllBuildingsPage.js
> CurrentUserPage
> HomePage
> UnauthorizedPage

_Pages.scss

J5 index,s

Open the _AllBuildingsPage.scss file and add the following code:

.allBuildingsPage {
@include page;

& content {
display: flex;
flex-direction: column;

.#{Sprefix}--data-table-container {
height: 10

display: flex;

flex-direction: column;

"o n

import React from "re
import {

DataTable,

TableContainer,

Table,

TableHead,

TableRow,

TableHeader,

TableBody,

TableCell,
} from "carbon-components-react";
import { Routes, AppMsg } from "../
import { FooterButtons } from "../
import { BuildingsServices } from

"

~onst

© Copyright IBM Corporation 2011, 2021.

https://react.carbondesignsystem.com/?path=/story/datatable--usage

export default class AllBuildingsPage extends React.PureComponent {
state = {
buildings: [],
i

async loadBuildings () {
const buildings = await BuildingsServices.getAllBuildings() ;
this.setState ({ buildings });

}

componentDidMount () {
this.loadBuildings () ;
}

render () {
const { buildings } = this.state;
buildings.forEach ((item) => {
item.id = item. id;

st headers = [

key: "building",
header: AppMsg.getMessage (AppMsg.MESSAGES.NAME) ,

key: "parentProperty",
header: AppMsg.getMessage (AppMsg.MESSAGES.PARENT PROPERTY),
}I
17
return (
div className={cssBase}
<div className={ ${cssBase} content }>
DataTable rows={buildings} headers={headers}
{ ({
rows,
headers,
getHeaderProps,
getRowProps,
getTableProps,
getTableContainerProps,
Po=>
TableContainer
title={AppMsg.getMessage (AppMsg.MESSAGES .BUILDINGS) }
description={AppMsg.getMessage (
AppMsg.ALL BUILDINGS DESCRIPTION
)}
{...getTableContainerProps() }

<Table {...getTableProps ()} isSortable>
TableHead
<TableRow>
{headers.map ((header) => (
<TableHeader

key={header.key}
{...getHeaderProps ({ header })}
isSortable

{header.header}
TableHeader>
)) !
TableRow>
TableHead>
<TableBody>
{rows.map ((row) => (
TableRow key={row.id} {...getRowProps ({ row })}
{row.cells.map((cell) => (
TableCell key={cell.id}>{cell.value}</TableCell
)) !
TableRow
)) !
TableBody>
Table>
TableContainer
)}
DataTable>
div>
<FooterButtons
secondaryLabel={AppMsg.getMessage (AppMsg.BUTTONS .HOME) }
secondaryRoute={Routes.HOME }

© Copyright IBM Corporation 2011, 2021.

Basically, this code loads all buildings by calling the BuildingsServices.getAllBuildings method when the component
is mounted, and then saves the list of buildings to the component state. The render method uses the IBM Carbon
DataTable component to render a table with all buildings. Meanwhile, all of the labels that are displayed by the page
are retrieved by using the AppMsg.getMessage method.

Now, let's import the _AllBuildingsPage.scss file into the _Pages.scss file. Under the /src/pages folder, open the

_Pages.scss file and add the import of the _AllBuildingsPage.scss file as follows:

. /HomePage/HomePage";
./CurrentUserPage/CurrentUserPage";

./UnauthorizedPage/AuthorizedPage";
./All1BuildingsPage/AllBuildingsPage"; // add this line

Next, let's export the AllBuildingsPage from the pages index.js file. Under the /src/pages folder, open the index.js file
and add the export of the AllBuildingsPage as follows:

HomePage from "./HomePage/HomePage";
import CurrentUserPage from "./CurrentUserPage/CurrentUserPage";
import UnauthorizedPage from "./UnauthorizedPage/UnauthorizedPage";
import AllBuildingsPage from "./AllBuildingsPage/AllBuildingsPage";

export { HomePage, CurrentUserPage, UnauthorizedPage, AllBuildingsPage };

When you use an IBM Carbon component, you must also import the styles that are used by the component. Under
the /src folder, open the index.scss file and add the import of the data-table.scss file as follows:

//Carbon components styles
@import "carbon-component ‘components/ -table/data-table";
@import "carbon-component . components/list/list";

@import "carbon-component mponents/loading/loading";
@import "carbon-components/scs: mponents/modal/modal™;
@import "carbon-components/ /components/notification/toast-notification";

© Copyright IBM Corporation 2011, 2021.

Step 12. Add the Labels for the Page

All of the labels that are used by the application are defined in the JSON files that are inside the Messages Folder.

Under the /src/utils/messages folder, open the messages.json file and add the following labels:
e BUILDINGS: Buildings
e ALL BUILDINGS_DESCRIPTION: A list of all buildings in TRIRIGA
¢ NAME: Name

e PARENT_PROPERTY: Parent Property

"HOME HEADER": "Welcome

"CURRENT HEADER": (- user details",
"UNAUTHORIZED TITLE": do not have perm)
"UNAUTHORIZED DESCRIPTION": " to either a 510 ut or

do not h oern n to ac 5 this page.

"BUILDINGS": "Buildings",

"ALL BUILDINGS DESCRIPTION": "A list of all buildings in TRIRIGA",
"NAME": "Name",

"PARENT PROPERTY": "Parent Property"

Next, let's create the label constants. Under the /src/utils/messages folder, open the ApplicationMessages.js file and

add the following label constants:
e BUILDINGS
e ALL BUILDINGS_DESCRIPTION
e NAME

e PARENT_PROPERTY

export const MESSAGES =
HOME HEADER: "HOME HEADER",
CURRENT HEADER: "CURRENT HEADER",
UNAUTHORIZED TITLE: "UNAUTHORIZED TITLE",
UNAUTHORIZED DESCRIPTION: "UNAUTHORIZED DESCRIPTION",

BUILDINGS: "BUILDI

ALL BUILDINGS DESCRIPTION: "ALL BUILDIN DESCRIPTION",
NAME: "NAME",

PARENT PROPERTY: "PARENT PROPER

© Copyright IBM Corporation 2011, 2021.

Step 13. Add the Route to the Page
Now, let's add a route to the new page that we created. Under the /src/utils/constants folder, open the Routes.js file

and add the path to the BUILDINGS route as follows:

HOME = "/";

CURRENT USER =

t BUILDINGS

Next, add the AllBuildingsPage to the main application component. Under the /src/app folder, open the
TririgaUXWebApp.js file, add the import of the AllBuildingsPage, and declare the AllBuildingsPage component inside

a Route element as follows:

{ HomePage, CurrentUserPage, AllBuildingsPage } from ".. s"; // update this line

ng, m ge

className={cssBase}
it

e path={Routes.BUILDIN
11Buildinc >

ute

te path={Routes.HOME}

clearMessage={this.clearMessage}
ding} withOverlay , document.body) }

Next, we must add a new Buildings button on the home page that allows the user to navigate to the AllBuildingsPage.

Under the /src/pages/HomePage folder, open the HomePage.js file and configure the primary button of the

FooterButtons component as follows:

rt default c HomePage extends React.PureComponent {
render () {
return (
className={c:
div className={ S{cssBase}
{AppMsg.getMessage (AppMsg.M

className={"
FooterButtons

secondaryLabel={AppMsg.getMessage (AppMsg.BUTTONS.CURRENT USER) }
secondaryRoute={Routes.CURRENT USER}
primaryLabel={AppMsg.getMessage (AppMsg.MESSAGES.BUILDINGS) }
primaryRoute={Routes.BUILDINGS}

add this 1lin
add this 1lin

© Copyright IBM Corporation 2011, 2021.

Finally, return to your browser to check the new page that you created.

e If you closed the browser tab with your page, open a new tab with your local URL: http://localhost:3000.

e If your application is not running, verify that your local server is running (Step 7).
e If necessary, check your browser console for errors.

Congratulations! You've built your first TRIRIGA UX Web Application with ReactJS and IBM Carbon components.

Welcome to the UX Web Application .
Buildings
Home Page
Parent
Name e T
BBFC Denver - Corporate Denver Property
BBFC Denver - Shipping Denver Property
-) Headquarters
Las Vegas - Building Eight Campus
Las Vegas - Building Eleven Headquarters
Campus
Las Vegas - Building Headquarters
Fifteen Campus
Las Vegas - Building Five Headquarters
Campus
Las Vegas - Building Four Headquarters
Campus
Las Vegas - Building Headquarters
Fourteen Campus

© Copyright IBM Corporation 2011, 2021.

http://localhost:3000/

