
Jay.ManalotoIBM

Search IBM

ShareShareProfiles Profiles Communities Communities Apps Apps

New Page

 TRIRIGA Wiki HomeTRIRIGA Wiki Home

 Facilities Management Facilities Management ……

 Facilities MaintenanceFacilities Maintenance

 Environmental & EnerEnvironmental & Ener……

 Real Estate ManagementReal Estate Management

 Capital Project ManagCapital Project Manag……

 CAD Integrator-PublisCAD Integrator-Publis……

 IBM TRIRIGA ConnectIBM TRIRIGA Connect……

 IBM TRIRIGA AnywhereIBM TRIRIGA Anywhere

 IBM TRIRIGA ApplicatiIBM TRIRIGA Applicati……

 Release NotesRelease Notes

 Media LibraryMedia Library

 Best PracticesBest Practices

 UpgradingUpgrading

 TroubleshootingTroubleshooting

 UX FrameworkUX Framework

 UX ArticlesUX Articles

 UX App BuildingUX App Building

 Introducing UXIntroducing UX

 Implementing UXImplementing UX

 Extending UXExtending UX

▪▪ Implementing UX (……

Extending UX (PolyExtending UX (Poly……

Converting UX to PConverting UX to P……

Bundling UX (PolyBundling UX (Poly……

Commanding UX (Commanding UX (……

 UX Perceptive AppsUX Perceptive Apps

 UX in Foundation ToUX in Foundation To……

 UX App Designer ToolsUX App Designer Tools

 UX Best PracticesUX Best Practices

 UX in Foundation DocsUX in Foundation Docs

 UX Component DocsUX Component Docs

 UX Tips & TricksUX Tips & Tricks

 UX VideosUX Videos

 UX ArchivesUX Archives

You are in: IBM TRIRIGA > UX Framework > UX App Building > Implementing UX (Polymer 3)

Submit

Wikis SearchThis Wiki

IBM TRIRIGA Following Actions Wiki Actions

Index

Members

Trash

Tags

Find a Tag

analysis application
availability_section best_practices
cad change_management
changes compare
compare_revisions
customizations customize
database db2 exchange
find_available_times gantt_chart
gantt_scheduler group
memory_footprint modifications
modify object_label
object_revision
operating_system oracle

performance platform
problem_determination reports
reserve reserve_performance
revision revisioning
single_sign-on snapshot space

sql_server sso support system

system_performance
tags: track_customizations

tririga troubleshoot tuning

upgrade ux version versioning

Cloud List

Implementing UX (Polymer 3)Implementing UX (Polymer 3)
 Like | Updated June 12, 2019 by Jay.Manaloto | Tags: None Add tags

EditEdit Page ActionsPage Actions

See the Polymer website at www.polymer-project.org for more about Polymer 3. See the NPM website at www.npmjs.com for
more about Node.js. See the "Implementing UX" wiki page for previous Polymer 1 versions of this content.

Implementing UX (Polymer 3): Building a simple application in the UX framework

STILL INTERESTED? If you missed my first article, I discussed the key concepts and challenges of the UX framework. Don't
worry, I'll give a brief summary. But if you've read the article, what's next? This time, we'll get a basic idea of how to build a simple
UX application. Sounds good?

What are the key concepts?
What are the key challenges?
What are the new metadata concepts?
Can we dig deeper into the UX model?
Can we dig deeper into the UX view?
Can we build a simple UX application?
Still want more?

What are the key concepts?

To refresh our memories, UX "implements an MVC architecture". Here's a basic diagram of the typical MVC components and
process flows.

What are the key challenges?

But if you remember, our classic framework doesn't fully apply the "separation of responsibilities". Components are too tightly
coupled.

Here are a few examples:

Records are bound to a single specific form.

Form sections and fields are tied to BO sections and fields.

Forms cannot be replaced without breaking workflows.

The Modify Metadata task in the workflow is tied to a single form.

So, if we redraw the basic MVC diagram with this lack of separation, our TRIRIGA framework might look like this. This is where
UX comes in!

http://www.ibm.com/
https://www.ibm.com/community/
javascript:;
javascript:;
javascript:;
https://www.ibm.com/developerworks/community/profiles/
https://www.ibm.com/developerworks/community/groups/
javascript:;
javascript:;
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/TRIRIGA%20Wiki%20Home?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Facilities%20Management%20%26%20Space%20Planning?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Facilities%20Maintenance?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Environmental%20%26%20Energy%20Management?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Real%20Estate%20Management?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Capital%20Project%20Management?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/CAD%20Integrator-Publisher%20and%20BIM?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/IBM%20TRIRIGA%20Connector%20for%20Watson%20Analytics?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/IBM%20TRIRIGA%20Anywhere?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/IBM%20TRIRIGA%20Application%20Platform?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Release%20Notes?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Media%20Library?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Best%20Practices?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Upgrading?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Troubleshooting?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Framework?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Articles?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20App%20Building?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Introducing%20UX?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Implementing%20UX?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Extending%20UX?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Implementing%20UX%20(Polymer%203)?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Extending%20UX%20(Polymer%203)?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Converting%20UX%20to%20Polymer%203?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Bundling%20UX%20(Polymer%203)?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Commanding%20UX%20(Polymer%203)?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Perceptive%20Apps?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20in%20Foundation%20Tools?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20App%20Designer%20Tools?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Best%20Practices?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20in%20Foundation%20Docs?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Component%20Docs?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Tips%20%26%20Tricks?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Videos?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Archives?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Framework?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20App%20Building?lang=en
https://developer.ibm.com/jp/dw-connections-sunset-faq/
https://www.ibm.com/developerworks/community/wikis/home?lang=en
javascript:;
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1?lang=en
javascript:;
javascript:;
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/index?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/members
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/trash?lang=en
javascript:;
javascript:void(0);
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:void(0);
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
http://www.polymer-project.org/
https://www.npmjs.com/

Members

At the same time, let's be clear where UX doesn't come in.

Because there's no automatic or direct path from key classic concepts to new UX concepts, the term "upgrade" doesn't really
apply. In the words of Ryan Koppelman, our (former) manager of TRIRIGA platform development, "certain concepts do not align,
and thus cannot be [directly] upgraded." So instead, we'll take each concept and compare their approaches.

Comparison of Approaches.

Concept Classic UX

Modify Metadata Task
Classic applications typically use workflows
with Modify Metadata tasks to hide and show
form tabs, sections, and fields, or to change
the text or text color of a label.

In UX, there is no concept of a Modify
Metadata task.

Instead, a variety of layout components, field
elements, and action-button elements are
available to render a dynamic view.

State Transition Actions

Classic applications typically use state
transition actions that call workflows with
Modify Metadata tasks to hide and show form
tabs, sections, and fields, based on the state
of a record.

In UX, there is no concept of a Modify
Metadata task.

Again, a variety of layout components, field
elements, and action-button elements are
available to render a dynamic view.

Query Sections
Classic applications typically use query
sections to show a collection of records.

Query sections can also trigger workflows
with Modify Metadata tasks.

In UX, query interactions rely on Query data
sources, which can be pulled into table (grid)
layout components.

Again, there is no concept of a Modify
Metadata task.

Query Actions

Section actions and query sections with Find
actions are found throughout our classic
applications.

Find queries also offer an option to add new
records.

In UX, there is no concept of section actions
or a Find action for query sections.

Instead, action-button elements are available
to render actions as needed.

Also, search interactions rely on Query data
sources, which can be pulled into table (grid)
layout components, list layout components,
or search field elements.

Popup Forms

Popup forms are found throughout our
classic applications.

Popup forms also display different elements
or in different sizes, based on what is
selected in the parent form.

In UX, there is no concept of a popup form,
which is designed for desktop screens not
mobile displays.

Instead, different data sources are pulled into
their respective components or elements
within the same view as needed.

Data Validation
Classic forms rely on Get Temp Record tasks
and Modify Metadata tasks to show Attention
messages.

In UX, validation relies on in-memory
business objects and modal dialogs.

This validation approach is significantly
different from the classic approach.

Mobile Design
Classic applications were designed for a full
desktop experience, not for today's mobile
experience with smaller screens and
simplified interfaces.

In UX, code that leverages built-in features of
Google Polymer elements is “mobile
responsive” out-of-the-box.

This responsive-design approach is
significantly different from the classic
approach.

As you can see, while the UX framework tackles the key challenges in decoupling our classic framework into its separate MVC
components, it also isn't meant to automatically "upgrade" our classic framework.

As observed by Casey Cantwell, our (former) lead QA engineer on the TRIRIGA platform team, we have "a unique opportunity to
develop a framework for next generation applications." This innovative freedom is key. With this in mind, let's dig deeper into the
UX metadata concepts. Are you ready?

What are the new metadata concepts?

Building on a solid foundation, the UX framework introduces two new metadata concepts: (1) the model to retrieve the data and
trigger the business logic, and (2) the view to render the interfaces or forms. The new renders will be "bolt-on" views that can be
quickly added or removed, and will still use our existing application data and workflows.

Once again, if we redraw the basic MVC diagram with our new decoupled metadata approach, our UX framework might look
something like this.

javascript:;
javascript:;

Can we dig deeper into the UX model?

Of course! As I just mentioned, the model is used "to retrieve the data and trigger the business logic". To be clear, this is where
you can define your models in whatever way you see fit to fulfill your business needs. First, you must define your models before
you can develop your views.

Each model can be made up of the following components:

Data Sources.

Child Data Sources.

Related Data Sources.

Data Source Fields.

Data Source Actions.

Before we look at some screenshots, here are some longer descriptions.

Component Descriptions.

Component Description

Data Sources

You can define data sources, child data sources, and related data sources to pull together
all of the data needed for a model. A data source can be one of several types:

Business Object: This type identifies a single record. Traditional scenarios include
persistent Create, Update, and Delete interactions.
Current User: This type identifies a single user. Traditional scenarios include
language, time-zone, and date-time interactions.
In-Memory Business Object: This type stores data in a non-persistent scenario.
List: This type identifies a collection of values. Traditional scenarios include list-value
interactions.
Query: This type identifies a collection of records. Traditional scenarios include table
(grid), list, and search interactions.
Resource Calendar: This type identifies an array of calendar events for resources.
Security Information: This type delivers permission information of the current user to
the UX application.
Smart Section: This type identifies an associated business record. Traditional
scenarios include smart section interactions.
UOM: This type identifies a collection of units of measure. Traditional scenarios
include area, length, and currency interactions.
Work Planner: This type identifies the work availability for a set of people. It uses the
person's calendar to calculate the available hours, while it uses a query to calculate
the planned hours. This is intended for Polymer 3 apps only.

If you have any questions about these data source types, feel free to check out
the Application Building for the IBM TRIRIGA Application Platform 3 user guide.

Child Data Sources

Child data sources are not required, but can also be powerful in shaping the user
experience.

They are identical to other data sources, but they operate as children at a lower level
beneath their parent data source. In fact, you can add several levels to build a hierarchy of
data sources.

To illustrate, let's say that you defined Spaces Query as your first-level data source. Then
you might define Space BO and People Query as second-level child data sources, where
the Space BO would be a related (contextual) data source for People Query. Lastly, you
might also define Person BO as a third-level child data source of People Query.

Level 1 Data Source: Spaces Query with 2 children.

Level 2 Data Source: Space BO.

Level 2 Data Source: People Query with related Space BO and with 1 child.

Level 3 Data Source: Person BO.

With this hierarchy, a user can (1) see a list of spaces, (2) drill into a single space and see
people assigned to that space, and (3) drill into a single person record. In our classic
framework, this scenario could only be achieved by using many workflows to set variables.
In our UX framework, we can achieve this with zero workflows!

Related Data Sources
Related (or contextual) data sources are not required either. But they can be just as powerful
in filtering the results of one data source, based on the context of another data source.
Imagine that!

To illustrate, let's say that you defined Work Task as one data source. Then you might define
Responsible Organization as another data source with the related data source of Work Task.
You might also define Manager of Organization as yet another data source with the related
data source of Responsible Organization.

Data Source: Work Task.

Data Source: Responsible Organization with related Work Task.

https://www.ibm.com/support/knowledgecenter/SSHEB3_3.6.0/com.ibm.tap.doc/pdfs/pdf_tap_appbuild.pdf
xjaym
Text Box
For future use.

Data Source: Manager of Organization with related Responsible Organization.

Data Source Fields
Each data source must define at least one field. Each field corresponds to a field in the data
source type.

To illustrate, let's say that you defined a data source with a Business Object type. Then each
field in your data source references a corresponding field in the business object.

Data Source Actions
With data source actions, you define which business rules or workflow logic can be triggered
by your data source.

For convenience, your actions can also be grouped together into action groups.

Here's a basic diagram of the data source hierarchy and its relationships.

Next, here's an example of a blank model metadata form, where you define your model and add its data sources. In case you're
wondering, while new UX applications will use MVC views, the UX metadata will use traditional forms until our UX framework
matures. So stay tuned!

Model Metadata.

Here's an example of a blank data source metadata form, where you define your data source and add its fields, actions, and child
data sources.

Data Source Metadata.

Can we dig deeper into the UX view?

Sure! As I mentioned earlier, the view is used to "render the interfaces or forms". After your models are in place, this is where you
can design your views in whatever way you require to satisfy your business scenarios. Even better, you're free to design any
number of views for each model.

Each view is made up of one or more JavaScript (JS) files. In turn, each JS file can be made up of the following components:

TRIRIGA components.

Custom components.

Polymer elements.

Traditional elements.

Before we peek at a few screenshots, here are some deeper descriptions.

Component Descriptions.

Component Description

TRIRIGA Components

You can add Polymer-based components provided by TRIRIGA to assemble all of the
necessary data and metadata, or enable field-level interactions or information, in a rendered
view. These TRIRIGA components include a TRIRIGA graphic and TRIRIGA search field.

Example tags include <triplat-ds>, <triplat-graphic>, <triplat-search-input>, and
<triblock-open-page>.

To access the full list of TRIRIGA components and their related documentation, enter the
following URL address: http://[hostname:port][/context_path]/p/web/doc, where
[hostname:port] and [/context_path] are the specific values for your TRIRIGA
environment. For example, just add /p/web/doc: http://localhost:9080/dev/p/web/doc

Custom Components

You can add Polymer-based components customized by yourself to enable field-level
interactions or information in a rendered view. These components might include a custom
search field or custom people card view.

Example tags might include <custom-search-input>, <my-paper-button>, and <jay-ux-
people-card>.

Polymer Elements

Not only can you add components provided by TRIRIGA or customized by yourself, you can
also add elements provided by the Polymer library to provide field-level interactions or
information in a rendered view. These Polymer elements include a check box, data field,
number field, search field, and text field.

Iron Elements: This type represents the core elements that don't express a specific
visual design style or language.

Paper Elements: This type expresses the material design language by Google.
Examples include <paper-material>, <paper-input>, and <paper-button>.

Other Elements: Other types like Neon elements represent animation, and additional
functions.

If you have any questions about Polymer, its concepts, or its elements, feel free to check out
the Polymer website at www.polymer-project.org.

Traditional Elements
You can also add traditional HTML elements such as containers, headings, or paragraphs.
In addition, you can apply CSS styles to these traditional HTML elements as well as
TRIRIGA elements and Polymer elements.

Example tags include <div>, <h1>, and <p>.

http://localhost:9080/dev/p/web/doc
http://www.polymer-project.org/

Next, here's an example of a blank view metadata form, where you define your view and add its JavaScript (JS) files. Later, we'll
learn to add JS files.

Web View Metadata.

Here's an example of a blank model-and-view metadata form, where you tie your view to a model, and define your view type.
More about this later.

Model and View Metadata.

Finally, here's an example of a blank application metadata form, where you define your application, app type, and app (source)
name, such as a model-and-view. Why will UX use an "extra" metadata layer to connect the model-and-view to the
application? Flexibility. This extra layer allows the application to pull data from either a UX or non-UX source if needed.

Application Metadata.

Can we build a simple UX application?

Yes, I think we can! After all, this is what you were waiting for, right? At this point, you should have a better idea of the concepts
and components.

For our example, we'll build a simple 3-field 3-button application by (1) defining a model with a single data source, (2) defining
the view connections to a model-and-view and application, then (3) defining and designing a view with a single main JavaScript
(JS) file. Sounds easy, huh?

Here are the basic steps:

Define your model.

Optional: Add the business object.

1: Add the model.

2: Add the data source.

3: Add a few fields for your data source.

Define your view connections.

4: Add the view.

5: Add the model-and-view.

6: Add the application for your model-and-view.

Define your view.

7: Install the NPM and TRIRIGA tools.

8: Add the main JS file for your view.

9: Access the application.

Design your view.

10: Start the tri-proxy tool.

11: Add a paragraph element to your JS file.

12: Add a few field elements to your JS file.

13: Add a few button elements to your JS file.

Define your model.

Before you begin.

In your web browser's address bar, enter the following URL address: http://[hostname:port][/context_path], where
[hostname:port] and [/context_path] are the specific values for your TRIRIGA environment. For example, if you're building the
app locally: http://localhost:9080/dev
In Step 7, I'll ask you to contact your IBM TRIRIGA representative if you cannot access the download location of the Node.js
Package Manager (NPM) tool. So be prepared for that.

Optional Step: Add the business object.

If you're comfortable with using an existing business object, that's great! You can skip this step. But if you feel safer with a test
BO, that's cool too.

From the navigation bar, select Tools > Builder Tools > Data Modeler. Add your new module and BO with a prefix that's easy to
identify. For our example, we'll add the jayUX module and jayUXBO business object. Add 3 fields to your BO and update the BO
mapping. Then Publish BO.

Data Modeler.

Step 1: Add the model.

From the navigation bar, select Tools > [Tools Portal] > Model Designer. Click Add. Enter the name, exposed name, and ID of
your model. The exposed name should be a browser-friendly string. For our example, we'll type jayUXBOModel and skip the
description. Then click Create.

Model Metadata.

Step 2: Add the data source.

Next, in the Data Sources section of your model, click Add.

Model Metadata > Data Sources.

Enter the name and exposed name of your data source. Since we want to pull data from a record, select BUSINESS_OBJECT
for the data source type. For our example, we'll type jayUXBODataSource and choose the jayUX module and jayUXBO
business object. Then click Create.

Data Source Metadata.

http://localhost:9080/dev
https://www.npmjs.com/get-npm

Step 3: Add a few fields for your data source.

Next, in the Fields section of your data source, click Quick Add.

Data Source Metadata > Fields.

Enter the name, exposed name, and field name of your data source field. Again, the exposed name should be a browser-friendly
string. But the field name should match the field in your data source, like your BO. Be aware that the format of the field name
depends on your data source type.

Repeat this for each field that you defined in your test BO or existing BO. For our example, we'll type triField1TX, triField2TX,
and triField3TX for the first, second, and third field, respectively. Then click Save.

Data Source Metadata > Fields.

Finally, Save & Close your model components -- data source and model. Guess what? We're done with the first part. You've
defined your first model! Ready to move on to the next part?

Define your view connections.

Step 4: Add the view.

From the navigation bar, select Tools > [Tools Portal] > Web View Designer. Click Add. Enter the name, exposed name, and
ID of your view. The exposed name should include a dash (-). For our example, we'll type jayUXBOView for the name and ID,
type jay-uxbo-view for the exposed name, and skip the description. Choose the VIEW component type and V3 version of
Polymer. Click Create. Then Save & Close.

Web View Metadata.

Why do we need a dash in the exposed name? In Polymer, custom element names must always contain a dash (-). This
distinguishes custom elements from regular elements but also ensures forward compatibility when new tags are introduced. So,
later in our example, when you design your JS view, your metadata will already reflect that dash.

Why are we skipping the View Files section? We're saving this part for later! So, for now, let's define the rest of the connections.

Step 5: Add the model-and-view.

From the navigation bar, select Tools > [Tools Portal] > Model and View Designer. Click Add. Enter the name, exposed name,
and ID of your model-and-view. For our example, we'll type jayUXBOModelAndView. Enter the names of the model and the

view that you defined earlier. For the view type, select WEB_VIEW. Click Create. Then Save & Close.

Model and View Metadata.

Step 6: Add the application for your model-and-view.

From the navigation bar, select Tools > [Tools Portal] > Application Designer. Click Add. Enter the name, exposed name, and
ID of your application. For our example, we'll type jayUXBOApp. For the label, type Jay UX BO Application.

For the app type, select WEB_MODEL_AND_VIEW. For the app (source) name, enter the name of the model-and-view that you
defined earlier. For the instance ID, type -1 to generate a new record when the application is opened. Click Create. Then Save &
Close.

Application Metadata.

Guess what? We're done with the second part. You've defined your view connections! Ready to move on to the next part?

Define your view.

Step 7: Install the NPM and TRIRIGA tools.

Contact your IBM TRIRIGA representative or business partner if you cannot access the download location of the Node.js
Package Manager (NPM) tool. This NPM tool is used to install several TRIRIGA tools which allow you to populate the
JavaScript (JS) files in your view metadata, preview your JS changes, and sync (deploy) your JS changes with the JS files in
your TRIRIGA environment. Be aware that these tools are not officially supported at this time.

Download and install the Node/NPM file. For example: node-v8.12.0-x64.msi.
Next, open your command prompt. Run the following NPM commands to install the following TRIRIGA tools.

If you see any NPM-related warnings (optional, unsupported, or deprecated), you can ignore them.

TRIRIGA Tools.

Tool Description

tri-template

npm install @tririga/tri-template -g
This command installs the tri-template tool.

tri-template
This is a simple tool that generates UX view skeletons from available templates. This
tool resembles the WebViewSync addview -s starter view command. If you're
curious, feel free to check out the tri-template options and details.

tri-proxy

npm install @tririga/tri-proxy -g
This command installs the tri-proxy tool.

tri-proxy
This is a simple tool that serves UX views from your local file system and proxies all
other view files and calls to a TRIRIGA server. This tool resembles the WebViewSync
sync -a command, but provides a continuous preview (after each file save) without
permanent changes. If you're curious, feel free to check out the tri-proxy options and
details.

tri-deploy

npm install @tririga/tri-deploy -g
This command installs the tri-deploy tool.

tri-deploy
This is a simple tool that deploys UX views to a TRIRIGA server. It updates the UX
view files on the server with the files from the specified local directory, and deletes
any files on the server that does not exist in the local directory. This tool resembles
the WebViewSync push or sync -a command, but provides a one-time action (not
continuous) with permanent changes. If you're curious, feel free to check out the tri-
deploy options and details.

tri-pull
npm install @tririga/tri-pull -g

This command installs the tri-pull tool.

tri-pull
This is a simple tool that pulls UX views from a TRIRIGA server. It updates the UX
view files in the executed local directory with the files from the server. This tool

https://www.npmjs.com/get-npm
https://www.npmjs.com/package/@tririga/tri-template
https://www.npmjs.com/package/@tririga/tri-proxy
https://www.npmjs.com/package/@tririga/tri-deploy

resembles the WebViewSync pull command. If you're curious, feel free to check out
the tri-pull options and details.

NPM > Install TRIRIGA Tools.

Step 8: Add the main JS file for your view.

After you've installed the tools, it's time to add your main JS view file. If you remember, we skipped the View Files section of your
view metadata. Now we'll auto-populate it.

First, manually create a folder with the same name as your view name. For our example, in the folder C:\tririga-ux\polymer-3\,
we'll create the new folder name jay-uxbo-view. Next, in your command prompt, change directory to this new folder.

To go ahead and add your main JS view file, run the following tri-template command: tri-template -t template-name -e view-
exposed-name where -t applies a starter template, template-name is one of the available starter templates, -e generates your
starter view file, and view-exposed-name is the exposed name of your view (with the dash).

For our example, we'll use the template name starter-v3 and the view name jay-uxbo-view.

NPM > tri-template > Add View.

After your JS file is added, you'll see that the C:\tririga-ux\polymer-3\jay-uxbo-view folder now contains the jay-uxbo-view.js
file that you started.

To deploy (or push) your view file to the server, run the following tri-deploy command: tri-deploy -t http://[hostname:port]
[/context_path] -u username -p password -v view-exposed-name -d directory-path -y 3 where -t targets the server URL, -u
applies your TRIRIGA username, -p applies your TRIRIGA password, -v deploys your view, view-exposed-name is the exposed
name of your view (with the dash), -d applies your local directory, directory-path is the full local directory path of your view, -y
applies the Polymer version, and 3 is Polymer 3.

For our example, we'll use http://beta.tririga-dev.com (no context), the view name jay-uxbo-view, and the full local directory
path C:\tririga-ux\polymer-3\jay-uxbo-view.

Notes:
If your environment implements a firewall, the tri-deploy command must include 2 additional options and their values,
where --basicuser applies the username for basic authentication, and --basicpassword applies the password for
basic authentication. Feel free to check out the tri-deploy options and details.

NPM > tri-deploy > Deploy View.

Next, to verify the view metadata, return to Tools > [Tools Portal] > Web View Designer and the jayUXBOView view. You'll see
that the View Files section is now populated with the jay-uxbo-view.js view file metadata.

Web View Metadata > View Files.

https://www.npmjs.com/package/@tririga/tri-pull
http://beta.tririga-dev.com/
https://www.npmjs.com/package/@tririga/tri-deploy

Step 9: Access the application.

In your web browser's address bar, enter the following URL address: http://[hostname:port][/context_path]/p/web/[yourApp],
where [hostname:port] and [/context_path] are the specific values for your TRIRIGA environment, and [yourApp] is the
exposed name of your application. For example, http://beta.tririga-dev.com/p/web/jayUXBOApp
If you can see the starter view, that's great! You've defined your first view and accessed your first application! Ready to move on
to the best part?

UX App > Starter View.

Design your view.

Step 10: Start the tri-proxy tool.

To start the "listening" process so your local JS changes are previewed continuously (but not deployed or synced permanently)
with your TRIRIGA environment, return to the command prompt in the same folder as before. Run the following tri-proxy
command: tri-proxy -t http://[hostname:port][/context_path]/p/web/[yourApp] -v view-exposed-name -d directory-path
where -v serves your local view, view-exposed-name is the exposed name of your view, -d listens to your local directory for any
file changes (or saves), and directory-path is the full local directory path of your view.

For our example, we'll use http://beta.tririga-dev.com/p/web/jayUXBOApp, the view name jay-uxbo-view, and the full local
directory path C:\tririga-ux\polymer-3\jay-uxbo-view.

Notice that a new browser window opens your preview. In our example, it opens http://localhost:8001/p/web/jayUXBOApp.

When you see the message "Watching files...", it's time to design your view! But be careful not to close the command prompt.

NPM > tri-proxy > Preview View.

Step 11: Add a paragraph element to your JS file.

In the new view folder that contains the new starter file that you added, open the JS file with the HTML/JS editor of your choice.
In our example, we'll open jay-uxbo-view.js. For now, we'll skip the HTML/JS introductions and dive into editing the starter view.

First, add the import line at the top of your JS file to import the TRIRIGA triplat-ds (data source) component: import { TriPlatDs
} from "../triplat-ds/triplat-ds.js";

JS File > Import triplat-ds.

Next, add the <triplat-ds> tag to declare the TRIRIGA triplat-ds component: <triplat-ds name="jayUXBODataSource" data="
{{data}}"></triplat-ds> where name="jayUXBODataSource" points to your defined data source.

Now, it's time to add the traditional <p> tag for the paragraph element. Let's type: <p>Hello World! This is my 1st UX view!</p>

JS File > Declare triplat-ds.

http://beta.tririga-dev.com/p/web/jayUXBOApp
http://beta.tririga-dev.com/p/web/jayUXBOApp
http://localhost:8001/p/web/jayUXBOApp

When you save the file, return to the command prompt. You'll see the message "Reloading Browsers..." indicating that the
changed jay-uxbo-view.js is reloaded into your preview. In other words, each save will reload your preview.

NPM > tri-proxy > Reload View.

Next, to verify the change, return to the UX view. Do you see your change? You've added your first element! Ready for more?

UX App > Preview Starter View.

Step 12: Add a few field elements to your JS file.

This time, we'll add the Polymer <paper-input> tag for a single-line text field based on the material design language by Google.
If you have any questions about Polymer, its concepts, or its elements, feel free to check out the Polymer website at
www.polymer-project.org.

If you remember, we added several fields to your data source. Now we'll use the <paper-input> tag to create a data-binding
relationship to each data source field triField1TX, triField2TX, and triField3TX. Like before, make sure the tri-proxy command
is running in the command prompt. (At any time, you can also run tri-deploy to push your updated view file to the server.)

First, add the import line at the top to import the Polymer element: import "../@polymer/paper-input/paper-input.js";

JS File > Import paper-input.

Next, add the <paper-input> tag to declare the element: <paper-input label="Field 1" floating-label value="
{{data.triField1TX}}"></paper-input>

JS File > Declare paper-input.

Save the file and return to the UX view. Do you see your field? If you do, that's cool! Why not add a couple more <paper-input>
tags on your own?

UX App > Preview Starter View.

http://www.polymer-project.org/

Step 13: Add a few button elements to your JS file.

This time, we'll add the Polymer <paper-button> tag for a button with a ripple effect based on the material design language by
Google. Like before, make sure the tri-proxy command is running in the command prompt. (At any time, you can also run tri-
deploy to push your updated view file to the server.)

First, add the import line at the top to import the Polymer element: import "../@polymer/paper-button/paper-button.js";

JS File > Import paper-button.

Next, add the <paper-button> tag to declare the Polymer element: <paper-button raised>UX rocks!</paper-
button> where raised adds a shadow.

JS File > Declare paper-button.

Save the file and return to the UX view. Do you see your button? If you do, feel free to add a couple more <paper-button> tags
on your own!

UX App > Preview Starter View.

With some creativity, you can try other Polymer <paper-button> attributes.

JS File > Declare paper-button.

Contact Privacy Terms of use Accessibility Report abuse Cookie Preferences

There are no comments.

Add a comment

Feed for this page | Feed for these comments

Guess what? We're done. As planned, we built a simple 3-field 3-button application. Congratulations! You've built your first UX
application! (If you want, you can also run tri-deploy to push your updated view file to the server.)

UX App > Preview Starter View.

Still want more?

If you have any questions about UX that weren't answered in this article, feel free to reach out to your IBM TRIRIGA
representative or business partner. Or if you want, I'll go ask the team.

Next >

Comments (0) Versions (8) Attachments (36) About

https://www.ibm.com/developerworks/secure/feedback
https://www.ibm.com/privacy/us/en/
https://community.ibm.com/community/user/datascience/termsofuse
https://www.ibm.com/accessibility/us/en/
https://www.ibm.com/developerworks/secure/reportc
javascript:;
https://www.ibm.com/developerworks/community/wikis/basic/api/wiki/16665262-0aef-427f-8fa8-dcfcc66a26ff/page/afd377a2-ebc1-4ca4-a00d-813c7671acf3/feed?lang=en
https://www.ibm.com/developerworks/community/wikis/basic/api/wiki/16665262-0aef-427f-8fa8-dcfcc66a26ff/page/afd377a2-ebc1-4ca4-a00d-813c7671acf3/feed?category=version
javascript:;
javascript:;
javascript:;
javascript:;

