
Jay.ManalotoIBM

Search IBM

ShareShareProfiles Profiles Communities Communities Apps Apps

New Page

 TRIRIGA Wiki HomeTRIRIGA Wiki Home

 Facilities Management Facilities Management ……

 Facilities MaintenanceFacilities Maintenance

 Environmental & EnerEnvironmental & Ener……

 Real Estate ManagementReal Estate Management

 Capital Project ManagCapital Project Manag……

 CAD Integrator-PublisCAD Integrator-Publis……

 IBM TRIRIGA ConnectIBM TRIRIGA Connect……

 IBM TRIRIGA AnywhereIBM TRIRIGA Anywhere

 IBM TRIRIGA ApplicatiIBM TRIRIGA Applicati……

 Release NotesRelease Notes

 Media LibraryMedia Library

 Best PracticesBest Practices

 UpgradingUpgrading

 TroubleshootingTroubleshooting

 UX FrameworkUX Framework

 UX ArticlesUX Articles

 UX App BuildingUX App Building

 Introducing UXIntroducing UX

▪▪ Implementing UX

Extending UXExtending UX

Implementing UX (Implementing UX (……

Extending UX (PolyExtending UX (Poly……

Converting UX to PConverting UX to P……

Bundling UX (PolyBundling UX (Poly……

Commanding UX (Commanding UX (……

 UX Perceptive AppsUX Perceptive Apps

 UX in Foundation ToUX in Foundation To……

 UX App Designer ToolsUX App Designer Tools

 UX Best PracticesUX Best Practices

 UX in Foundation DocsUX in Foundation Docs

 UX Component DocsUX Component Docs

 UX Tips & TricksUX Tips & Tricks

 UX VideosUX Videos

 UX ArchivesUX Archives

You are in: IBM TRIRIGA > UX Framework > UX App Building > Implementing UX

Submit

Wikis SearchThis Wiki

IBM TRIRIGA Following Actions Wiki Actions

Index

Members

Trash

Tags

Find a Tag

analysis application
availability_section best_practices
cad change_management
changes compare
compare_revisions
customizations customize
database db2 exchange
find_available_times gantt_chart
gantt_scheduler group
memory_footprint modifications
modify object_label
object_revision
operating_system oracle

performance platform
problem_determination reports
reserve reserve_performance
revision revisioning
single_sign-on snapshot space

sql_server sso support system

system_performance
tags: track_customizations

tririga troubleshoot tuning

upgrade ux version versioning

Cloud List

Implementing UXImplementing UX
 Like | Updated October 10, 2018 by Jay.Manaloto | Tags: None Add tags

EditEdit Page ActionsPage Actions

See the UX Article 2 "Implementing UX" PDF for previous versions of this content. What is UX? The standard definition of "UX" is
user experience. But for simplicity, I'll refer to the TRIRIGA UX framework as "UX".

Implementing UX: Building a simple application in the IBM TRIRIGA UX framework

STILL INTERESTED? If you missed my first article, I discussed the key concepts and challenges of the UX framework. Don't
worry, I'll give a brief summary. But if you've read the article, what's next? This time, we'll get a basic idea of how to build a simple
UX application. Sounds good?

What are the key concepts?
What are the key challenges?
What are the new metadata concepts?
Can we dig deeper into the UX model?
Can we dig deeper into the UX view?
Can we build a simple UX application?
Still want more?

What are the key concepts?

To refresh our memories, UX "implements an MVC architecture". Here's a basic diagram of the typical MVC components and
process flows.

What are the key challenges?

But if you remember, our classic framework doesn't fully apply the "separation of responsibilities". Components are too tightly
coupled.

Here are a few examples:

Records are bound to a single specific form.

Form sections and fields are tied to BO sections and fields.

Forms cannot be replaced without breaking workflows.

The Modify Metadata task in the workflow is tied to a single form.

So, if we redraw the basic MVC diagram with this lack of separation, our TRIRIGA framework might look like this. This is where
UX comes in!

http://www.ibm.com/
https://www.ibm.com/community/
javascript:;
javascript:;
javascript:;
https://www.ibm.com/developerworks/community/profiles/
https://www.ibm.com/developerworks/community/groups/
javascript:;
javascript:;
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/TRIRIGA%20Wiki%20Home?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Facilities%20Management%20%26%20Space%20Planning?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Facilities%20Maintenance?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Environmental%20%26%20Energy%20Management?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Real%20Estate%20Management?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Capital%20Project%20Management?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/CAD%20Integrator-Publisher%20and%20BIM?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/IBM%20TRIRIGA%20Connector%20for%20Watson%20Analytics?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/IBM%20TRIRIGA%20Anywhere?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/IBM%20TRIRIGA%20Application%20Platform?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Release%20Notes?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Media%20Library?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Best%20Practices?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Upgrading?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Troubleshooting?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Framework?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Articles?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20App%20Building?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Introducing%20UX?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Implementing%20UX?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Extending%20UX?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Implementing%20UX%20(Polymer%203)?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Extending%20UX%20(Polymer%203)?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Converting%20UX%20to%20Polymer%203?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Bundling%20UX%20(Polymer%203)?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Commanding%20UX%20(Polymer%203)?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Perceptive%20Apps?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20in%20Foundation%20Tools?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20App%20Designer%20Tools?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Best%20Practices?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20in%20Foundation%20Docs?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Component%20Docs?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Tips%20%26%20Tricks?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Videos?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Archives?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Framework?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20App%20Building?lang=en
https://developer.ibm.com/jp/dw-connections-sunset-faq/
https://www.ibm.com/developerworks/community/wikis/home?lang=en
javascript:;
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1?lang=en
javascript:;
javascript:;
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/index?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/members
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/trash?lang=en
javascript:;
javascript:void(0);
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:void(0);
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=9e3a5b9d-6a06-4796-a6c1-5137b626e39c#fullpageWidgetId=W89a8af160e64_4167_a047_b5bc553dcaf4&folder=cfbb6a31-8e07-4bd2-8c6e-b22e6ec40857
https://www.ibm.com/support/knowledgecenter/SSHEB3_3.8/pdfs_wiki/Implementing_UX.pdf

Members

At the same time, let's be clear where UX doesn't come in.

Because there's no automatic or direct path from key classic concepts to new UX concepts, the term "upgrade" doesn't really
apply. In the words of Ryan Koppelman, our (former) manager of TRIRIGA platform development, "certain concepts do not align,
and thus cannot be [directly] upgraded." So instead, we'll take each concept and compare their approaches.

Comparison of Approaches.

Concept Classic UX

Modify Metadata Task
Classic applications typically use workflows
with Modify Metadata tasks to hide and show
form tabs, sections, and fields, or to change
the text or text color of a label.

In UX, there is no concept of a Modify
Metadata task.

Instead, a variety of layout components, field
elements, and action-button elements are
available to render a dynamic view.

State Transition Actions

Classic applications typically use state
transition actions that call workflows with
Modify Metadata tasks to hide and show form
tabs, sections, and fields, based on the state
of a record.

In UX, there is no concept of a Modify
Metadata task.

Again, a variety of layout components, field
elements, and action-button elements are
available to render a dynamic view.

Query Sections
Classic applications typically use query
sections to show a collection of records.

Query sections can also trigger workflows
with Modify Metadata tasks.

In UX, query interactions rely on Query data
sources, which can be pulled into table (grid)
layout components.

Again, there is no concept of a Modify
Metadata task.

Query Actions

Section actions and query sections with Find
actions are found throughout our classic
applications.

Find queries also offer an option to add new
records.

In UX, there is no concept of section actions
or a Find action for query sections.

Instead, action-button elements are available
to render actions as needed.

Also, search interactions rely on Query data
sources, which can be pulled into table (grid)
layout components, list layout components,
or search field elements.

Popup Forms

Popup forms are found throughout our
classic applications.

Popup forms also display different elements
or in different sizes, based on what is
selected in the parent form.

In UX, there is no concept of a popup form,
which is designed for desktop screens not
mobile displays.

Instead, different data sources are pulled into
their respective components or elements
within the same view as needed.

Data Validation
Classic forms rely on Get Temp Record tasks
and Modify Metadata tasks to show Attention
messages.

In UX, validation relies on in-memory
business objects and modal dialogs.

This validation approach is significantly
different from the classic approach.

Mobile Design
Classic applications were designed for a full
desktop experience, not for today's mobile
experience with smaller screens and
simplified interfaces.

In UX, code that leverages built-in features of
Google Polymer elements is “mobile
responsive” out-of-the-box.

This responsive-design approach is
significantly different from the classic
approach.

As you can see, while the UX framework tackles the key challenges in decoupling our classic framework into its separate MVC
components, it also isn't meant to automatically "upgrade" our classic framework.

As observed by Casey Cantwell, our (former) lead QA engineer on the TRIRIGA platform team, we have "a unique opportunity to
develop a framework for next generation applications." This innovative freedom is key. With this in mind, let's dig deeper into the
UX metadata concepts. Are you ready?

What are the new metadata concepts?

Building on a solid foundation, the UX framework introduces two new metadata concepts: (1) the model to retrieve the data and
trigger the business logic, and (2) the view to render the interfaces or forms. The new renders will be "bolt-on" views that can be
quickly added or removed, and will still use our existing application data and workflows.

Once again, if we redraw the basic MVC diagram with our new decoupled metadata approach, our UX framework might look
something like this.

javascript:;
javascript:;

Can we dig deeper into the UX model?

Of course! As I just mentioned, the model is used "to retrieve the data and trigger the business logic". To be clear, this is where
you can define your models in whatever way you see fit to fulfill your business needs. First, you must define your models before
you can develop your views.

Each model can be made up of the following components:

Data Sources.

Child Data Sources.

Related Data Sources.

Data Source Fields.

Data Source Actions.

Before we look at some screenshots, here are some longer descriptions.

Component Descriptions.

Component Description

Data Sources

You can define data sources, child data sources, and related data sources to pull together
all of the data needed for a model. A data source can be one of several types:

Business Object: This type identifies a single record. Traditional scenarios include
persistent Create, Update, and Delete interactions.
Current User: This type identifies a single user. Traditional scenarios include
language, time-zone, and date-time interactions.
In-Memory Business Object: This type stores data in a non-persistent scenario.
List: This type identifies a collection of values. Traditional scenarios include list-value
interactions.
Query: This type identifies a collection of records. Traditional scenarios include table
(grid), list, and search interactions.
Resource Calendar: This type identifies an array of calendar events for resources.
Security Information: This type delivers permission information of the current user to
the UX application.
Smart Section: This type identifies an associated business record. Traditional
scenarios include smart section interactions.
UOM: This type identifies a collection of units of measure. Traditional scenarios
include area, length, and currency interactions.

If you have any questions about these data source types, feel free to check out the
Application Building for the IBM TRIRIGA Application Platform 3 user guide.

Child Data Sources

Child data sources are not required, but can also be powerful in shaping the user
experience.

They are identical to other data sources, but they operate as children at a lower level
beneath their parent data source. In fact, you can add several levels to build a hierarchy of
data sources.

To illustrate, let's say that you defined Spaces Query as your first-level data source. Then
you might define Space BO and People Query as second-level child data sources, where
the Space BO would be a related (contextual) data source for People Query. Lastly, you
might also define Person BO as a third-level child data source of People Query.

Level 1 Data Source: Spaces Query with 2 children.

Level 2 Data Source: Space BO.

Level 2 Data Source: People Query with related Space BO and with 1 child.

Level 3 Data Source: Person BO.

With this hierarchy, a user can (1) see a list of spaces, (2) drill into a single space and see
people assigned to that space, and (3) drill into a single person record. In our classic
framework, this scenario could only be achieved by using many workflows to set variables.
In our UX framework, we can achieve this with zero workflows!

Related Data Sources

Related (or contextual) data sources are not required either. But they can be just as powerful
in filtering the results of one data source, based on the context of another data source.
Imagine that!

To illustrate, let's say that you defined Work Task as one data source. Then you might define
Responsible Organization as another data source with the related data source of Work Task.
You might also define Manager of Organization as yet another data source with the related
data source of Responsible Organization.

Data Source: Work Task.

Data Source: Responsible Organization with related Work Task.

Data Source: Manager of Organization with related Responsible Organization.

Each data source must define at least one field. Each field corresponds to a field in the data

https://www.ibm.com/support/knowledgecenter/SSHEB3_3.6.0/com.ibm.tap.doc/pdfs/pdf_tap_appbuild.pdf
xjaym
Text Box
For future use.

Data Source Fields source type.

To illustrate, let's say that you defined a data source with a Business Object type. Then each
field in your data source references a corresponding field in the business object.

Data Source Actions
With data source actions, you define which business rules or workflow logic can be triggered
by your data source.

For convenience, your actions can also be grouped together into action groups.

Here's a basic diagram of the data source hierarchy and its relationships.

Next, here's an example of a blank model metadata form, where you define your model and add its data sources. In case you're
wondering, while new UX applications will use MVC views, the UX metadata will use traditional forms until our UX framework
matures. So stay tuned!

Model Metadata.

Here's an example of a blank data source metadata form, where you define your data source and add its fields, actions, and child
data sources.

Data Source Metadata.

Can we dig deeper into the UX view?

Sure! As I mentioned earlier, the view is used to "render the interfaces or forms". After your models are in place, this is where you
can design your views in whatever way you require to satisfy your business scenarios. Even better, you're free to design any
number of views for each model.

Each view is made up of one or more HTML files. In turn, each HTML file can be made up of the following components:

TRIRIGA components.

Custom components.

Polymer elements.

Traditional elements.

Before we peek at a few screenshots, here are some deeper descriptions.

Component Descriptions.

Component Description

TRIRIGA Components

You can add Polymer-based components provided by TRIRIGA to assemble all of the
necessary data and metadata, or enable field-level interactions or information, in a rendered
view. These TRIRIGA components include a TRIRIGA graphic and TRIRIGA search field.

Example tags include <triplat-ds>, <triplat-graphic>, <triplat-search-input>, and
<triblock-open-page>.

To access the full list of TRIRIGA components and their related documentation, enter the
following URL address: http://[hostname:port][/context_path]/p/web/doc, where
[hostname:port] and [/context_path] are the specific values for your TRIRIGA
environment. For example, just add /p/web/doc: http://localhost:9080/dev/p/web/doc

Custom Components

You can add Polymer-based components customized by yourself to enable field-level
interactions or information in a rendered view. These components might include a custom
search field or custom people card view.

Example tags might include <custom-search-input>, <my-paper-button>, and <jay-ux-
people-card>.

Polymer Elements

Not only can you add components provided by TRIRIGA or customized by yourself, you can
also add elements provided by the Polymer library to provide field-level interactions or
information in a rendered view. These Polymer elements include a check box, data field,
number field, search field, and text field.

Iron Elements: This type represents the core elements that don't express a specific
visual design style or language.

Paper Elements: This type expresses the material design language by Google.
Examples include <paper-material>, <paper-input>, and <paper-button>.

Other Elements: Other types like Gold, Neon, and Platinum elements represent
ecommerce, animation, offline, push, and additional functions.

If you have any questions about Polymer, its concepts, or its elements, feel free to check out
the Polymer website at www.polymer-project.org.

Traditional Elements
You can also add traditional HTML elements such as containers, headings, or paragraphs.
In addition, you can apply CSS styles to these traditional HTML elements as well as
TRIRIGA elements and Polymer elements.

Example tags include <div>, <h1>, and <p>.

http://localhost:9080/dev/p/web/doc
http://www.polymer-project.org/

Next, here's an example of a blank view metadata form, where you define your view and add its HTML files. Later, we'll learn to
add HTML files.

Web View Metadata.

Here's an example of a blank model-and-view metadata form, where you tie your view to a model, and define your view type.
More about this later.

Model and View Metadata.

Finally, here's an example of a blank application metadata form, where you define your application, app type, and app (source)
name, such as a model-and-view. Why will UX use an "extra" metadata layer to connect the model-and-view to the application?
Flexibility. This extra layer allows the application to pull data from either a UX or non-UX source if needed.

Application Metadata.

Can we build a simple UX application?

Yes, I think we can! After all, this is what you were waiting for, right? At this point, you should have a better idea of the concepts
and components.

For our example, we'll build a simple 3-field 3-button application by (1) defining a model with a single data source, (2) defining
the view connections to a model-and-view and application, and (3) defining and designing a view with a single HTML file.
Sounds easy, huh?

Here are the basic steps:

Define your model.

Optional: Add the business object.

1: Add the model.

2: Add the data source.

3: Add a few fields for your data source.

Define your view connections.

4: Add the view.

5: Add the model-and-view.

6: Add the application for your model-and-view.

Define your view.

7: Set up the view sync.

8: Add the HTML file for your view.

9: Access the application.

Design your view.

10: Start the view sync.

11: Add a paragraph element to your HTML file.

12: Add a few field elements to your HTML file.

13: Add a few button elements to your HTML file.

Define your model.

Before you begin.

In your web browser's address bar, enter the following URL address: http://[hostname:port][/context_path], where
[hostname:port] and [/context_path] are the specific values for your TRIRIGA environment. For example, if you're building the
app locally: http://localhost:9080/dev
In Step 7, I'll ask you to contact your IBM TRIRIGA representative for the download location of the WebViewSync tool. So be
prepared for that.

Optional Step: Add the business object.

If you're comfortable with using an existing business object, that's great! You can skip this step. But if you feel safer with a test
BO, that's cool too.

From the navigation bar, select Tools > Builder Tools > Data Modeler. Add your new module and BO with a prefix that's easy to
identify. For our example, we'll add the jayUX module and jayUXBO business object. Add 3 fields to your BO and update the BO
mapping. Then Publish BO.

Data Modeler.

Step 1: Add the model.

From the navigation bar, select Tools > [Tools Portal] > Model Designer. Click Add. Enter the name, exposed name, and ID of
your model. The exposed name should be a browser-friendly string. For our example, we'll type jayUXBOModel and skip the
description. Then click Create.

Model Metadata.

Step 2: Add the data source.

Next, in the Data Sources section of your model, click Add.

Model Metadata > Data Sources.

Enter the name and exposed name of your data source. Since we want to pull data from a record, select BUSINESS_OBJECT
for the data source type. For our example, we'll type jayUXBODataSource and choose the jayUX module and jayUXBO
business object. Then click Create.

Data Source Metadata.

http://localhost:9080/dev
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=9e3a5b9d-6a06-4796-a6c1-5137b626e39c#fullpageWidgetId=W89a8af160e64_4167_a047_b5bc553dcaf4&folder=705ed044-fa9c-4d87-8353-3017fcd6f863

Step 3: Add a few fields for your data source.

Next, in the Fields section of your data source, click Quick Add.

Data Source Metadata > Fields.

Enter the name, exposed name, and field name of your data source field. Again, the exposed name should be a browser-friendly
string. But the field name should match the field in your data source, like your BO. Be aware that the format of the field name
depends on your data source type.

Repeat this for each field that you defined in your test BO or existing BO. For our example, we'll type triField1TX, triField2TX,
and triField3TX for the first, second, and third field, respectively. Then click Save.

Data Source Metadata > Fields.

Finally, Save & Close your model components -- data source and model. Guess what? We're done with the first part. You've
defined your first model! Ready to move on to the next part?

Define your view connections.

Step 4: Add the view.

From the navigation bar, select Tools > [Tools Portal] > Web View Designer. Click Add. Enter the name, exposed name, and
ID of your view. The exposed name should include a dash (-). For our example, we'll type jayUXBOView for the name and ID,
type jay-uxbo-view for the exposed name, and skip the description. Click Create. Then Save & Close.

Web View Metadata.

Why do we need a dash in the exposed name? In Polymer, custom element names must always contain a dash (-). This
distinguishes custom elements from regular elements but also ensures forward compatibility when new tags are added to HTML.
So, later in our example, when you design your HTML view, your metadata will already reflect that dash.

Why are we skipping the View Files section? We're saving this part for later! So, for now, let's define the rest of the connections.

Step 5: Add the model-and-view.

From the navigation bar, select Tools > [Tools Portal] > Model and View Designer. Click Add. Enter the name, exposed name,
and ID of your model-and-view. For our example, we'll type jayUXBOModelAndView. Enter the names of the model and the
view that you defined earlier. For the view type, select WEB_VIEW. Click Create. Then Save & Close.

Model and View Metadata.

Step 6: Add the application for your model-and-view.

From the navigation bar, select Tools > [Tools Portal] > Application Designer. Click Add. Enter the name, exposed name, and
ID of your application. For our example, we'll type jayUXBOApp. For the label, type Jay UX BO Application.

For the app type, select WEB_MODEL_AND_VIEW. For the app (source) name, enter the name of the model-and-view that you
defined earlier. For the instance ID, type -1 to generate a new record when the application is opened. Click Create. Then Save &
Close.

Application Metadata.

Guess what? We're done with the second part. You've defined your view connections! Ready to move on to the next part?

Define your view.

Step 7: Set up the view sync.

Contact your IBM TRIRIGA representative or business partner for the download location of the WebViewSync tool. This tool is
used to populate the HTML files in your view metadata, and to automatically sync your HTML changes with the HTML files in
your TRIRIGA environment.

Download the file: WebViewSync_[v].jar, where [v] is the specific version of your TRIRIGA platform. For example,
WebViewSync_3.5.2.jar. Make sure to identify your version in the command prompt. But for simplicity in our examples, I'll refer
to the file as WebViewSync.jar.
Then save the file in a new or existing folder that's easy to identify. For our example, we'll save the file in this folder:
C:\tririga_ux\ux_server.
Next, open the command prompt in the folder that you've selected. Run the following init command: java -jar WebViewSync.jar
init and enter the URL, user name, and password for your TRIRIGA environment.

Your URL should include a valid FQDN or valid IP address. Be aware that typing your password will be hidden, so your cursor
won't move. You need to run init only once, unless you change your environment details.

WebViewSync > Init.

Step 8: Add the HTML file for your view.

Next, it's time to add your HTML view file. If you remember, we skipped the View Files section of your view metadata. Now we'll
auto-populate it.

To go ahead and add your HTML view file, run the following addview command: java -jar WebViewSync.jar addview -v view-
exposed-name -s where -s generates the starter view file and view-exposed-name is the exposed name of your view (with the
dash). We'll use jay-uxbo-view.

WebViewSync > Add View.

https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=9e3a5b9d-6a06-4796-a6c1-5137b626e39c#fullpageWidgetId=W89a8af160e64_4167_a047_b5bc553dcaf4&folder=705ed044-fa9c-4d87-8353-3017fcd6f863

After the HTML file is added, you'll see that a new folder is created in the same folder where you saved the WebViewSync.jar
file. In our example, the C:\tririga_ux\ux_server folder now contains the jay-uxbo-view folder, which now contains the jay-
uxbo-view.html starter file that you added.

Next, to verify the view metadata, return to Tools > [Tools Portal] > Web View Designer and the jayUXBOView view. You'll see
that the View Files section is now populated with the jay-uxbo-view.html view file metadata.

Web View Metadata > View Files.

Step 9: Access the application.

In your web browser's address bar, enter the following URL address: http://[hostname:port][/context_path]/p/web/[yourApp],
where [hostname:port] and [/context_path] are the specific values for your TRIRIGA environment, and [yourApp] is the
exposed name of your application. For example, http://localhost:9080/dev/p/web/jayUXBOApp
If you can see the starter view, that's great! You've defined your first view and accessed your first application! Ready to move on
to the best part?

UX App > Starter View.

Design your view.

Step 10: Start the view sync.

To start the "listening" process so your HTML changes are pushed automatically into your TRIRIGA environment, return to the
command prompt in the same folder as before. Run the following sync command: java -jar WebViewSync.jar sync -a where -a
listens to all views.

When you see the message "Waiting for changes to sync...", it's time to design your view! But be careful not to close the
command prompt.

WebViewSync > Sync.

Step 11: Add a paragraph element to your HTML file.

In the new view folder that contains the new starter file that you added, open the HTML file with the HTML editor of your choice.
In our example, we'll open jay-uxbo-view.html. For now, we'll skip the HTML introductions and dive into editing the default
starter view.

First, add the <link> tag at the top to import the TRIRIGA triplat-ds (data source) component: <link rel="import"
href="../triplat-ds/triplat-ds.html">

HTML File > Import triplat-ds.

http://localhost:9080/dev/p/web/jayUXBOApp

Next, add the <triplat-ds> tag to declare the TRIRIGA triplat-ds (data source) component: <triplat-ds id="model"
name="jayUXBODataSource" data="{{data}}"></triplat-ds> where name="jayUXBODataSource" points to your defined data
source.

Now, it's time to add the traditional <p> tag for the paragraph element. Let's type: <p>Hello World! This is my 1st UX view!</p>

HTML File > Declare triplat-ds.

When you save the file, return to the command prompt. You'll see that the changed jay-uxbo-view.html is "pushed" into your
environment.

WebViewSync > Push.

Next, to verify the change, refresh the UX view. Do you see your change? You've added your first element! Ready for more?

UX App > Refresh Starter View.

Step 12: Add a few field elements to your HTML file.

This time, we'll add the Polymer <paper-input> tag for a single-line text field based on the material design language by Google.
If you have any questions about Polymer, its concepts, or its elements, feel free to check out the Polymer website at
www.polymer-project.org.

If you remember, we added several fields to your data source. Now we'll use the <paper-input> tag to create a data-binding
relationship to each data source field triField1TX, triField2TX, and triField3TX. Like before, make sure the sync command is
running in the command prompt.

First, add the <link> tag at the top to import the Polymer element: <link rel="import" href="../paper-input/paper-input.html">

HTML File > Import paper-input.

Next, add the <paper-input> tag to declare the element: <paper-input label="Field 1" floating-label value="
{{data.triField1TX}}"></paper-input>

HTML File > Declare paper-input.

http://www.polymer-project.org/

Save the file and refresh the UX view. Do you see your field? If you do, that's cool! Why not add a couple more <paper-input>
tags on your own?

UX App > Refresh Starter View.

Step 13: Add a few button elements to your HTML file.

This time, we'll add the Polymer <paper-button> tag for a button with a ripple effect based on the material design language by
Google. Like before, make sure the sync command is running in the command prompt.

First, add the <link> tag at the top to import the Polymer element: <link rel="import" href="../paper-button/paper-
button.html">

HTML File > Import paper-button.

Next, add the <paper-button> tag to declare the Polymer element: <paper-button raised>UX rocks!</paper-button> where
raised adds a shadow.

HTML File > Declare paper-button.

Save the file and refresh the UX view. Do you see your button? If you do, feel free to add a couple more <paper-button> tags on
your own!

UX App > Refresh Starter View.

With some creativity, you can try other Polymer <paper-button> attributes.

HTML File > Declare paper-button.

Guess what? We're done. As planned, we built a simple 3-field 3-button application. Congratulations! You've built your first UX
application!

UX App > Refresh Starter View.

Still want more?

If you have any questions about UX that weren't answered in this article, feel free to reach out to your IBM TRIRIGA
representative or business partner. In the meantime, here are some more background questions and answers from my previous
article that might help to fill in the gaps or give you a better idea of what we're trying to do. In any case, stay tuned!

Background Q & A.

Question Answer

What will the new MVC
model look like?

You might be wondering if it's enough to reuse business objects from Data Modeler as the
model. Unfortunately, business objects are not flexible and would require complex data
models to render a rich view.

Instead, the model could contain many data sources such as business objects, queries, and
even integration data. In addition, the model could also contain "actions" that the user can
perform via the controller. These actions could be imported from business objects and
queries.

What will the new MVC
view look like?

The view could support many types of views such as a form view, mobile form view, and
maybe even an API view and custom view.

The form view could be rendered from a flexible hierarchy of form-layout components that
are sourced by the model. For example, a single field type could be included in several

Contact Privacy Terms of use Accessibility Report abuse Cookie Preferences

There are no comments.

Add a comment

Feed for this page | Feed for these comments

different components and have several different renderings. More complex components
could include graphics components and custom components.

How do we build
applications in the new
MVC framework?

While we can't promise any specific dates, we plan to develop a new "model designer" or
"model builder" metadata construct that supports the model.

Similarly, we plan to develop a new "view designer" or "view builder" metadata construct that
supports the view.

Fortunately, we don't need to develop a new metadata construct for the controller since
existing workflows and state families can already serve this function.

Meanwhile, if we store the new platform metadata as records that can be accessed through
forms, we can more quickly react to business requirements and add features.

How do we simplify the
interface or view?

Our existing technology ties forms to "things" like people and locations. So why not change
the pattern so that views are tied to "actions" like creating and submitting requests?

This change could be accomplished by designing views that are specific to a user role. Then
we could still reuse our existing business objects and workflows to support the new role-
based interfaces.

What happens to our
existing customers?

Because the new views will be "bolt-on" interfaces that are "bolted onto" existing
applications, customers who don't choose the new MVC framework won't be affected.

But for customers who choose the new framework, results could vary depending on how
new role-based interfaces are applied and how much the application is customized.

Fortunately, a flexible MVC model would offer customers a more efficient customization and
upgrade strategy. For example, customers could add their own business objects instead of
adding fields to our shipped business objects. This scenario would be easier to track during
upgrade.

Next >

Comments (0) Versions (19) Attachments (35) About

https://www.ibm.com/developerworks/secure/feedback
https://www.ibm.com/privacy/us/en/
https://community.ibm.com/community/user/datascience/termsofuse
https://www.ibm.com/accessibility/us/en/
https://www.ibm.com/developerworks/secure/reportc
javascript:;
https://www.ibm.com/developerworks/community/wikis/basic/api/wiki/16665262-0aef-427f-8fa8-dcfcc66a26ff/page/c3094c67-0d24-44ac-8703-8109849cc285/feed?lang=en
https://www.ibm.com/developerworks/community/wikis/basic/api/wiki/16665262-0aef-427f-8fa8-dcfcc66a26ff/page/c3094c67-0d24-44ac-8703-8109849cc285/feed?category=version
javascript:;
javascript:;
javascript:;
javascript:;

