
Jay.ManalotoIBM

Search IBM

ShareShareProfiles Profiles Communities Communities Apps Apps

New Page

 TRIRIGA Wiki HomeTRIRIGA Wiki Home

 Facilities Management Facilities Management ……

 Facilities MaintenanceFacilities Maintenance

 Environmental & EnerEnvironmental & Ener……

 Real Estate ManagementReal Estate Management

 Capital Project ManagCapital Project Manag……

 CAD Integrator-PublisCAD Integrator-Publis……

 IBM TRIRIGA ConnectIBM TRIRIGA Connect……

 IBM TRIRIGA AnywhereIBM TRIRIGA Anywhere

 IBM TRIRIGA ApplicatiIBM TRIRIGA Applicati……

 Release NotesRelease Notes

 Media LibraryMedia Library

 Best PracticesBest Practices

 UpgradingUpgrading

 TroubleshootingTroubleshooting

 UX FrameworkUX Framework

 UX ArticlesUX Articles

 UX App BuildingUX App Building

▪▪ Introducing UX

Implementing UXImplementing UX

Extending UXExtending UX

Implementing UX (Implementing UX (……

Extending UX (PolyExtending UX (Poly……

Converting UX to PConverting UX to P……

Bundling UX (PolyBundling UX (Poly……

Commanding UX (Commanding UX (……

 UX Perceptive AppsUX Perceptive Apps

 UX in Foundation ToUX in Foundation To……

 UX App Designer ToolsUX App Designer Tools

 UX Best PracticesUX Best Practices

 UX in Foundation DocsUX in Foundation Docs

 UX Component DocsUX Component Docs

 UX Tips & TricksUX Tips & Tricks

 UX VideosUX Videos

 UX ArchivesUX Archives

You are in: IBM TRIRIGA > UX Framework > UX App Building > Introducing UX

Submit

Wikis SearchThis Wiki

IBM TRIRIGA Following Actions Wiki Actions

Index

Members

Trash

Tags

Find a Tag

analysis application
availability_section best_practices
cad change_management
changes compare
compare_revisions
customizations customize
database db2 exchange
find_available_times gantt_chart
gantt_scheduler group
memory_footprint modifications
modify object_label
object_revision
operating_system oracle

performance platform
problem_determination reports
reserve reserve_performance
revision revisioning
single_sign-on snapshot space

sql_server sso support system

system_performance
tags: track_customizations

tririga troubleshoot tuning

upgrade ux version versioning

Cloud List

Introducing UXIntroducing UX
 Like | Updated March 4, 2019 by Jay.Manaloto | Tags: None Add tags

EditEdit Page ActionsPage Actions

See the UX Article 1 "Introducing UX" PDF for previous versions of this content. What is UX? The standard definition of "UX" is
user experience. But for simplicity, I'll refer to the TRIRIGA UX framework as "UX".

Introducing UX: Shifting to a more modern IBM TRIRIGA UX framework

CONGRATULATIONS! So you've heard about the new UX application framework. You've thought about it and you're ready to
dive in. But what exactly is TRIRIGA UX? How do you get started? First, let's introduce a few key concepts. After all, this isn't the
same old TRIRIGA anymore.

What are the key concepts?
What about the existing framework?
What are the key challenges?
What exactly is TRIRIGA UX?
Will you be required to use UX?
What are our future plans?
Still confused or curious?

What are the key concepts?

First of all, in the words of Mike Herbert, our (former) principal architect on the TRIRIGA applications team, the UX
framework "implements an MVC architecture for TRIRIGA applications." This is key. To break this down, UX implements MVC. In
turn, MVC is applied to our applications.

But what is MVC? According to Wikipedia:

Model–view–controller (MVC) is a software architectural pattern for implementing user interfaces. It divides a given
software application into three interconnected parts, so as to separate internal representations of information from the
ways that information is presented to or accepted from the user.

In other words, MVC separates the application into 3 components or layers -- the model, view, and controller. Returning to
Wikipedia:

[T]he model captures the behavior of the application in terms of its problem domain, independent of the user interface. The
model directly manages the data, logic and rules of the application.

[The] view can be any output representation of information, such as a chart or a diagram; multiple views of the same
information are possible, such as a bar chart for management and a tabular view for accountants.

[T]he controller accepts input and converts it to commands for the model or view.

Here's a basic diagram of the typical MVC components and process flows.

By decoupling the form views from the data model and the business logic controls, you can make changes to each piece more
efficiently.

To use a simple wardrobe analogy, let's imagine that instead of being separate, your favorite socks are actually sewn into your
favorite shoes. How often would you clean or replace the combination? Weekly for your socks? Yearly for your shoes? To make it
even more messy, let's imagine that your favorite pants are sewn onto your favorite socks too. How much would it cost to clean
or replace the whole thing? Weekly? Yearly?

So you see, by decoupling the components, you can react to changing business requirements and update components more
quickly and easily. Not to mention, more cleanly and cost-effectively. Aren't your socks glad?

What about the existing framework?

http://www.ibm.com/
https://www.ibm.com/community/
javascript:;
javascript:;
javascript:;
https://www.ibm.com/developerworks/community/profiles/
https://www.ibm.com/developerworks/community/groups/
javascript:;
javascript:;
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/TRIRIGA%20Wiki%20Home?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Facilities%20Management%20%26%20Space%20Planning?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Facilities%20Maintenance?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Environmental%20%26%20Energy%20Management?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Real%20Estate%20Management?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Capital%20Project%20Management?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/CAD%20Integrator-Publisher%20and%20BIM?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/IBM%20TRIRIGA%20Connector%20for%20Watson%20Analytics?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/IBM%20TRIRIGA%20Anywhere?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/IBM%20TRIRIGA%20Application%20Platform?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Release%20Notes?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Media%20Library?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Best%20Practices?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Upgrading?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Troubleshooting?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Framework?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Articles?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20App%20Building?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Introducing%20UX?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Implementing%20UX?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Extending%20UX?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Implementing%20UX%20(Polymer%203)?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Extending%20UX%20(Polymer%203)?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Converting%20UX%20to%20Polymer%203?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Bundling%20UX%20(Polymer%203)?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/Commanding%20UX%20(Polymer%203)?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Perceptive%20Apps?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20in%20Foundation%20Tools?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20App%20Designer%20Tools?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Best%20Practices?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20in%20Foundation%20Docs?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Component%20Docs?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Tips%20%26%20Tricks?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Videos?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Archives?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20Framework?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/page/UX%20App%20Building?lang=en
https://developer.ibm.com/jp/dw-connections-sunset-faq/
https://www.ibm.com/developerworks/community/wikis/home?lang=en
javascript:;
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1?lang=en
javascript:;
javascript:;
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/index?lang=en
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/members
https://www.ibm.com/developerworks/community/wikis/home/wiki/IBM%20TRIRIGA1/trash?lang=en
javascript:;
javascript:void(0);
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:void(0);
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=9e3a5b9d-6a06-4796-a6c1-5137b626e39c#fullpageWidgetId=W89a8af160e64_4167_a047_b5bc553dcaf4&folder=cfbb6a31-8e07-4bd2-8c6e-b22e6ec40857

Members At this point, you might be asking: "How does the existing TRIRIGA framework deal with MVC today?" The short answer is "not
too bad".

For the model, we already cover this MVC component to a certain degree with our business objects in Data Modeler. The
business objects, along with their fields and relationships to other business objects, do a pretty good job of modeling real-world
entities and their relationships. But business objects aren't flexible enough by themselves. Ideally, the model could contain
additional data sources like queries and integration data.

Next, for the view, we cover this component moderately well with our forms and queries. But they aren't so great when we're
dealing with (1) usability, (2) page-rendering performance, and (3) responsive design. So untying these restrictions on visual
interactions or user experience is a key goal. Later, we'll dig deeper into what these restrictions are.

Finally, for the controller, we already cover this component really well with our workflows and state families. To be clear, our
workflows can fit into both the model and controller. Either way, our workflows do a good job of representing the business rules,
while our state families do a nice job of establishing the data lifecycles. So no problems there.

But here's the thing. Although our existing framework applies a partial MVC pattern that's "not too bad", the main problem is in
its separation of responsibilities. Or lack thereof, as we'll see next.

What are the key challenges?

In other words, MVC components are too tightly coupled to each other. We have too many elements in the model (business
objects) and controller (workflows) that directly impact the view (forms) and vice versa.

Here are a few examples:

Records are bound to a single specific form.

Form sections and fields are tied to BO sections and fields.

Forms cannot be replaced without breaking workflows.

The Modify Metadata task in the workflow is tied to a single form.

Now, if we redraw the basic MVC diagram with this lack of separation, our existing TRIRIGA framework might look a little like this.
As you can see, the key challenges lie in decoupling these interconnected pieces into their separate MVC components. This is
where UX comes in!

What exactly is TRIRIGA UX?

Mike describes it in a nutshell: "[TRIRIGA UX] is a new framework to support designing and building user experiences." Adding
his earlier words, the UX framework "implements an MVC architecture for TRIRIGA applications." In turn, MVC decouples many
of our existing pieces. But what exactly does that mean? Will components be rebuilt? Or replaced?

Luckily, despite its partial MVC pattern, the core design of our existing framework is pretty solid. Which means that many of the
elements can be reused without any modification. Or at worst, with minimal modifications.

Building on this foundation, the UX framework introduces two new metadata concepts: (1) the model to retrieve the data and
trigger the business logic, and (2) the view to render the interfaces or forms. The new renders will be "bolt-on" views that can be
quickly added or removed, and will still use our existing application data and workflows.

As the UX framework has matured, we developed a new "model designer" metadata construct to support the model. Similarly, we
developed a new "web view designer" metadata construct to support the view. We didn't need to develop a new metadata
construct for the controller since existing workflows and state families can already serve this function.

To visualize these metadata concepts, here's a high-level illustration that compares our classic builder tools to our maturing UX
designer tools.

javascript:;
javascript:;

Will you be required to use UX?

Not at all! If you've decided that our existing classic framework already satisfies your business needs, then you're good to go.
You don't have to implement UX if you don't want to. But still, aren't you a little curious? Going back to my wardrobe analogy,
wouldn't you want to untangle your favorite socks from your favorite shoes? To see how it feels?

What are our future plans?

While we can't promise any specific dates for any advanced features, I think we have an exciting vision. As outlined by Ryan
Koppelman, our (former) manager of TRIRIGA platform development, here are many of the goals we've set by building a more-
flexible UX framework on top of our solid but less-flexible classic framework. We hope you can join the ride.

Development Goals.

Strategy Classic UX

SaaS
Applications are robust but difficult to
rearrange into digestible chunks, resulting in
an intimidating interface.

Role-based or task-based approach with a
simplified UI makes it easier to create
intuitive applications.

Mobile
Form-UI code is established and reliable but
difficult to adapt to responsive display for
mobile applications.

View-UI code that leverages built-in features
of Google Polymer elements is “mobile
responsive” out-of-the-box.

User Experience
Application and platform components are
diverse but have grown inefficient from years
of adding features.

Outside-in approach gives insights into
streamlining the application design, look-and-
feel, and performance.

Upgradeability Customizations are flexible but difficult to
track, making application upgrades costly.

Built-in capability for simpler customizations
makes it easier to track and upgrade.

Continuous Delivery
Core design is durable but difficult to
enhance, and prone to regression with each
addition or change.

MVC design pattern makes it more agile to
update, easier to add features, and quicker to
build applications.

Still confused or curious?

If you have any questions about UX that weren't answered in this article, feel free to reach out to your IBM TRIRIGA
representative or business partner. In the meantime, here are some more background questions and answers that might help to
fill in the gaps or give you a better idea of what we're trying to do. Or if you want, I'll go ask the team.

Background Q & A.

Question Answer

Why should we
redesign our forms?

Current IBM initiatives emphasize SaaS and mobile, both of which require a simple and
intuitive UX. But in today's market, our existing form UI technology is becoming less nimble,
and is designed for desktop, not mobile interfaces.

A new UX framework can enable you to more easily meet business requirements with an
intuitive UI, compatibility with touch interfaces, and improved performance.

With this goal in mind, MVC is the most widely-used pattern for web development. So we're
adopting the MVC pattern for our TRIRIGA application-building framework.

Why haven’t we made
these improvements
already?

Our existing platform metadata components -- forms, workflows, business objects -- are too
coupled to each other. This makes it very difficult to make changes quickly. For example:

Records are linked to forms.
Form sections and fields are directly linked to BO sections and fields.
Forms cannot be replaced without breaking workflows or application logic.
The Modify Metadata task forces application logic to assume a single form.

Contact Privacy Terms of use Accessibility Report abuse Cookie Preferences

There are no comments.

Add a comment

Feed for this page | Feed for these comments

What is MVC? MVC is a programming pattern that consists of a model, view, and controller. This pattern
allows applications to have multiple views that use the same data and business logic. In
other words:

The model holds the data and information about the data.
The view is what the user sees. To be rendered, the view only interacts with the
model. The view can also make updates to the model.
The controller holds the business logic. The controller creates or manipulates the
model and responds to any changes to the model.
By design, the controller and view never directly interact with one another.

What will the new MVC
model look like?

You might be wondering if it's enough to reuse business objects from Data Modeler as the
model. Unfortunately, business objects are not flexible and would require complex data
models to render a rich view.

Instead, the model could contain many data sources such as business objects, queries, and
even integration data. In addition, the model could also contain "actions" that the user can
perform via the controller. These actions could be imported from business objects and
queries.

What will the new MVC
view look like?

The view could support many types of views such as a form view, mobile form view, and
maybe even an API view and custom view.

The form view could be rendered from a flexible hierarchy of form-layout components that
are sourced by the model. For example, a single field type could be included in several
different components and have several different renderings. More complex components
could include graphics components and custom components.

How do we decouple
the workflow logic from
the view?

Our existing technology uses Modify Metadata tasks that couple our business logic to the
view and make it difficult to make changes to the view without changing the logic.

Instead, to decouple the business logic from the view, we could restrict or remove our
dependence on the Modify Metadata task. In its place, we could develop a variety of layout
components, field elements, and action-button elements to render a dynamic view.

How do we build
applications in the new
MVC framework?

While we can't promise any specific dates, we plan to develop a new "model designer" or
"model builder" metadata construct that supports the model.

Similarly, we plan to develop a new "view designer" or "view builder" metadata construct that
supports the view.

Fortunately, we don't need to develop a new metadata construct for the controller since
existing workflows and state families can already serve this function.

Meanwhile, if we store the new platform metadata as records that can be accessed through
forms, we can more quickly react to business requirements and add features.

How do we simplify the
interface or view?

Our existing technology ties forms to "things" like people and locations. So why not change
the pattern so that views are tied to "actions" like creating and submitting requests?

This change could be accomplished by designing views that are specific to a user role. Then
we could still reuse our existing business objects and workflows to support the new role-
based interfaces.

What happens to our
existing applications?

Our existing applications and forms will continue to work as they did before MVC.

Unlike advanced integrations that require customization, the new renders will be "bolt-on"
views that can be quickly added or removed, and will still use our existing application data
and workflows.

What happens to our
existing user
documentation?

Our existing documentation will continue to support our existing applications as they did
before MVC.

But new MVC-based documentation could be rendered within the same flexible hierarchy of
form-layout components as custom "info components". Unlike HTML topics or PDF files in
our external IBM Knowledge Center, this content could be accessed within the new
framework.

What happens to our
existing customers?

Because the new views will be "bolt-on" interfaces that are "bolted onto" existing
applications, customers who don't choose the new MVC framework won't be affected.

But for customers who choose the new framework, results could vary depending on how
new role-based interfaces are applied and how much the application is customized.

Fortunately, a flexible MVC model would offer customers a more efficient customization and
upgrade strategy. For example, customers could add their own business objects instead of
adding fields to our shipped business objects. This scenario would be easier to track during
upgrade.

Next >

Comments (0) Versions (4) Attachments (3) About

https://www.ibm.com/developerworks/secure/feedback
https://www.ibm.com/privacy/us/en/
https://community.ibm.com/community/user/datascience/termsofuse
https://www.ibm.com/accessibility/us/en/
https://www.ibm.com/developerworks/secure/reportc
javascript:;
https://www.ibm.com/developerworks/community/wikis/basic/api/wiki/16665262-0aef-427f-8fa8-dcfcc66a26ff/page/2403e826-1a38-445f-b47b-3dc4461303ed/feed?lang=en
https://www.ibm.com/developerworks/community/wikis/basic/api/wiki/16665262-0aef-427f-8fa8-dcfcc66a26ff/page/2403e826-1a38-445f-b47b-3dc4461303ed/feed?category=version
javascript:;
javascript:;
javascript:;
javascript:;

