

IBM TRIRIGA Application Platform

Version 3 Release 7

Application Building for the IBM TRIRIGA
Application Platform 3:
Calculations

Note

Before using this information and the product it supports, read the information in “Notices” on page

96.

This edition applies to version 3, release 7 of IBM® TRIRIGA® Application Platform and to all subsequent releases

and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2011, 2020. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

© Copyright IBM Corporation 2011, 2020.

Contents

ABOUT THIS GUIDE ... 1

Conventions .. 1

Intended Audience ... 1

Prerequisites... 1

Support ... 2

1. EXTENDED FORMULAS .. 3

Basic Features ... 4

Query ... 9

Supported Relationships ... 9

Same Business Object ... 10

Single-Hop Query ... 10

Single-Hop Association .. 10

Multi-Hop Query .. 11

Multi-Business Object Query .. 12

Multi-Hop Association.. 12

Query Field Filters ... 13

Not Supported .. 13

Formulas Predefined by the Platform .. 13

If Expressions .. 30

Predefining Your Own Formulas ... 32

© Copyright IBM Corporation 2011, 2020.

When Extended Formulas Are Evaluated ... 34

Extended Formula Agent .. 34

Glossary ... 35

Extended Formula Components .. 35

Loading Formula Relationships ... 35

Populating the Queue ... 37

Processing the Queue .. 37

Examples .. 38

Extended Formula Logging .. 40

FAQs .. 43

2. FINANCIAL TRANSACTIONS AND ROLLUPS ... 44

Rolling Up Through a Hierarchy .. 44

Classification Rollup Fields ... 45

Cost, Quantity .. 49

Rollup Actions .. 50

Storage Precision ... 52

Hierarchy Rollup Example .. 53

Financial Transactions ... 62

What is a Financial Transaction? ... 62

Transaction Types .. 66

Cost Codes .. 67

Creating and Posting Financial Transactions ... 69

Database Transaction Tables ... 73

Financial Rollup ... 81

Financial Rollup Fields .. 81

© Copyright IBM Corporation 2011, 2020.

Financial Tokens ... 88

Updating Totals in Financial Rollups .. 90

Comparison of Rollup Methods ... 91

INDEX .. 93

Privacy Policy Considerations .. 98

Trademarks .. 99

© Copyright IBM Corporation 2011, 2020. 1

About This Guide

This document is part of the Application Building for the IBM TRIRIGA Application

Platform 3 collection of user guides. The collection is intended to provide you with an

understanding of the basic tools to build or customize applications running on the IBM

TRIRIGA Application Platform.

Conventions

This document uses the following conventions to ensure that it is as easy to read and

understand as possible:

The phrase Application Building is used as an abbreviation for Application Building for

the IBM TRIRIGA Application Platform 3.

 Note – A Note provides important information that you should know in addition to the

standard details. Often, notes are used to make you aware of the results of actions.

 Tip – A Tip adds insightful information that may help you use the system better.

 Attention – An Attention notice indicates the possibility of damage to a program, device,

system, or data.

Intended Audience

This book is intended for those who are building or customizing an application that

runs on the IBM TRIRIGA Application Platform. This document assumes familiarity with

and competence in the information in the Application Building for the IBM TRIRIGA

Application Platform 3 collection of user guides.

Prerequisites

This document assumes the reader has a basic understanding of Web-based

applications.

© Copyright IBM Corporation 2011, 2020. 2

Support

IBM Software Support provides assistance with product defects, answering FAQs, and

performing rediscovery. View the IBM Software Support site at

www.ibm.com/support.

http://www.ibm.com/support

© Copyright IBM Corporation 2011, 2020. 3

1. Extended Formulas

Extended formulas are a more flexible and powerful mechanism for computing values

than the formula mechanism used to make simple computations based on fields in the

same record that is presented in the “Data Types” chapter of Application Building.

Extended formulas can rely on data that is external to the record’s own business

object and can perform more advanced operations than just add, subtract, multiply,

and divide. The system supports the following extended formula types:

▪ Single-Hop Query: The query token refers to a query with a $$RECORDID$$

association filter.

▪ Single-Hop Association Token: The association token refers to a field on an
associated business object.

▪ Multi-Hop Query: The query token refers to a query with an association filter
referencing another query. This can reference queries n-levels deep until
reaching a query with a $$RECORDID$$ association filter.

▪ Multi-Business Object Query: The query token refers to a multiple business
objects where a $$RECORDID$$ field filter is against one of the query’s

associated (non-primary) business objects.

▪ Multi-Hop Association Token: The association token refers to a field that is in a
business object associated n-levels away from the business object in which the
extended formula resides.

Extended formulas are available in the Data Modeler for fields. They also are

available in the Workflow Builder for object maps and as part of Workflow Condition

Builder criteria. At workflow runtime, a workflow field map does not map a value

from the source record to the destination record when the target field has a formula

defined in its Business Object Field definition. The target field value is calculated and

derived from its Data Modeler formula mapping. If a formula field is grayed out on the

Object Mapping form, it means that the formula map defined in the Data Modeler is

used as the source value for this field. Note that a total field that adds up a sum field

in a smart section is also considered a formula field for the purposes of this behavior.

To have mapping executed instead of the mapping defined in the Data Modeler, you

must remove the formula mapping defined for this field from the Data Modeler; then

workflow mapping is applied to the field.

In the Workflow Builder, extended formulas can access fields in the source record of

the object map. More information on object mapping can be found in the “Creating

Workflows” chapter of Application Building. Extended formulas are available for

fields of any data type.

© Copyright IBM Corporation 2011, 2020. 4

Extended formulas can be used in the Workflow Condition Builder as criteria for

conditions specifying when a workflow needs to decide which path to take, for

example in Start conditions, Switch tasks, and Break tasks. More information on the

Workflow Condition Builder can be found in the “Workflow Tasks” section of the

“Creating Workflows” chapter of Application Building.

An extended formula is always calculated for a particular record. The system

determines the active project for the extended formula calculation as follows:

▪ If the record that the formula is being calculated for is a capital project, the
active project for that extended formula calculation is that record itself.

▪ If the formula is being calculated in a capital project record, the active project
for that extended formula calculation is that record itself.

▪ Whether or not the active project is used in the extended formula calculation
is dictated by the data scope on the query definition of the extended formula’s
individual query tokens. If the data scope of the query definition is Active
Project, the records returned by the query for the calculation will be restricted
to the active project as defined above. If the data scope of the query definition
is not Active Project, the active project as defined above is of no consequence.

At runtime, if all parameters in an extended formula are not defined, the system

continues processing as though the extended formula did not exist and puts an entry

in the log.

An extended formula with a query association filter can follow the association or the

reverse association path.

The rest of this chapter focuses on how to create extended formulas from within the

Data Modeler.

In the Data Modeler, extended formulas can access fields in any record, so long as

there is a sequence of associations that connect the record that contains the

formula’s field to the record that the formula accesses. Extended formulas are

available for fields with data type of Number, Date, or any other data type with a

Formula check box in its properties.

Basic Features

The inputs to an extended formula can be fields or queries. This section begins by

describing the properties of an extended formula using a field as an input. For

additional features available when using a query as an input, see the Query section.

© Copyright IBM Corporation 2011, 2020. 5

The IBM TRIRIGA Application Platform does not allow supplying an extended formula

for a field until after the field is saved for the first time. In the Data Modeler, after a

field has been saved for the first time, you can edit the field’s properties to add an

extended formula. Make sure that the Formula check box is checked and then select

the Extended radio button for the Formula Type.

The examples in this section use a Number field for illustration. The same process

applies to other field types that contain a Formula check box.

At this point the Field Properties form should look like the following, with an Enter

link below the Extended radio button in the Formula Type property.

(a) Field Properties

▪ Section: General

▪ Field Type: Number

▪ Name: cstPerimeterNU

▪ Label: Perimeter

▪ Description: _____

▪ Purpose: _____

▪ Required:

▪ Do not Auto Populate:

▪ Result Column:

▪ Mobile Field:

▪ Staging Table Field:

▪ Staging Table Key:

▪ Read Only:

▪ Default Value: _____

▪ UOM List: Area

▪ Default UOM: square-feet

▪ Validation: Accept Decimal

▪ Use Custom UOM Precision and Mask:

▪ UOM Source Attribute

▪ Threshold Source Attribute

▪ Formula:

▪ Sum this Field:

© Copyright IBM Corporation 2011, 2020. 6

▪ Formula Type: Extended [Enter]

To create or edit an extended formula, click the Enter link in the Formula Type

property. Clicking the Enter link causes a form for specifying the details of an

extended formula to appear in the Data Modeler’s List panel.

The Extended Formula form is divided into three sections.

▪ The Inputs section specifies the fields or queries from which the formula will
get values.

▪ The Outputs section identifies where the formula’s result will go.

▪ The Formula section contains the text of the actual formula.

We will explain how to create formulas using fields as inputs by working through some

examples. The first example will be an extended formula to compute the perimeter

of a rectangle.

The formula has two inputs, which are the value of fields named Height and Width.

Starting from a blank Extended Formula form, to add an input, click the Add action

on the Inputs section bar. This adds a blank input to the Inputs section.

The Inputs section has a blank input containing the following:

▪ A radio button to select to if you want to delete the input.

▪ An empty text field. This is discussed in detail below.

▪ A drop-down list that has the default value Field. The input in this example

comes from a field, so do not change the value.

▪ A Select hyperlink. This is used to select the field that will be the source of the
input value, as discussed below.

Click the Select hyperlink. The Pick Element form pops up that allows selecting a field.

The Pick Element form shows a tree for choosing a field. The elements in the tree are

ordered alphabetically. Sections on this field’s business object appear first, followed

by sections in other business objects associated to this field’s business object. The

tree can be dragged and resized within the Extended Formula form. Click the icon

to expand the view. Click the icon to close the view. A icon indicates a field.

Use the formula tree to select the Height field (e.g., cstHeightNU under the

RecordInformation parent) as the first input by clicking its name in the formula

tree. After you select the Height field, the Pick Element form disappears. The

Extended Formula form now shows a hyperlink in the input.

© Copyright IBM Corporation 2011, 2020. 7

The hyperlink in the input shows the section and name of the field selected (e.g.,

RecordInformation:cstHeightNU).

If you had selected a field in a different business object, the hyperlink’s text would

have included the names of all associations used to get to the other business object.

The hyperlink’s text tells how to find the field selected. It can be long, awkward, and

error prone to enter manually. For this reason, the hyperlink’s text is not used to

identify the field in the formula. Instead, the Inputs text box supplies a shorter name.

Type the name h into the text field. This allows us to use the name for this input in

the formula section.

Repeat these steps to add the Width field as a second input with the name w. The

Extended Formula form now shows the following:

▪ Input h for RecordInformation:cstHeightNU

▪ Input w for RecordInformation:cstWidthNU

The Outputs section identifies the field that will receive the value of the extended

formula. The format is data section:field name. In this example, the Outputs

section (e.g., Record Information:Perimeter) does not need to be changed.

This is normal.

The extended formula is created with the field it belongs to as one of its outputs.

Usually, a formula has no other outputs. If you want the result of the formula to be

put in more than one field, you can specify this by adding the other fields that should

receive the formula’s result to the extended formula’s Outputs section. If you add any

outputs to an extended formula, you will be allowed to delete the outputs later on.

However, you cannot delete the original field that the extended formula belongs to

from its Outputs section.

Since no other inputs are needed by the example formula, we are ready to put the

formula to be calculated in the Extended Formula form’s Formula section. Enter the

formula as h*w*2.

The Extended Formula form now shows the following:

▪ Input h and Input Type Field for RecordInformation:cstHeightNU

▪ Input w and Input Type Field for RecordInformation:cstWidthNU

▪ Output of Record Information:Perimeter

▪ Formula of (h+w)*2

© Copyright IBM Corporation 2011, 2020. 8

You have finished specifying the extended formula, so click the Ok action at the top

of the form. It is important to click the Ok action. If you do not, the extended

formula is not saved and you lose it. You also need to click Save Field on the section

bar at the top of the Data Modeler.

An extended formula can have any number of inputs. The following example shows an

extended formula with four inputs.

▪ Input h and Input Type Field for RecordInformation:cstHeightNU

▪ Input w and Input Type Field for RecordInformation:cstWidthNU

▪ Input l and Input Type Field for RecordInformation:cstLengthNU

▪ Input t and Input Type Field for RecordInformation:cstThicknessNU

▪ Output of Record Information:SampleCalc1

▪ Formula of (h-t-2)*(w-t-2)*(l-t-2)

The Formula in an extended formula can contain the four arithmetic operators:

▪ + - Addition

▪ - - Subtraction

▪ * - Multiplication

▪ / - Division

The Formula of an extended formula also can contain parentheses to control the order

in which the operations are performed. Multiplication and division are normally

performed before addition and subtraction. This means that the value of 1+2*4 is 9.

The multiplication is done first; 2*4 is 8. The addition is done next; 1+8 is 9.

If you want the addition to be done first, use parentheses. The value of (1+2)*4 is

12. Because of the parentheses, the addition is done first; 1+2 is 3. The

multiplication is done next; 3*4 is 12.

In addition to the arithmetic operators, there are other operations available as

predefined formulas that you can use in the Formula text box. The example below

shows an extended formula that uses a predefined formula named sqrt.

▪ Input w and Input Type Field for RecordInformation:cstWidthNU

▪ Input l and Input Type Field for RecordInformation:cstLengthNU

▪ Output of Record Information:SampleCalc1

▪ Formula of sqrt(w*w+l*l)

© Copyright IBM Corporation 2011, 2020. 9

There are other predefined formulas provided by the IBM TRIRIGA Application

Platform. To see a list of available predefined formulas, click the icon to the right

of the Formula text box. This causes a form containing a list of the available

predefined formulas to pop up.

Some predefined formulas have inputs that are string or text values. The text values

can come from fields of records or be the value in the formula. To put a string value

directly in a formula, enclose it in double or single quotes like "THIS" or 'THAT'.

If you need a text value that contains a single quote, enclose it in double quotes like

this: "O'Clock"

If you need a text value that contains a double quote, enclose it in single quotes like

this: 'He said, "Boo."'

You cannot directly put a text value that contains both single and double quotes in a

formula. However, you can concatenate to combine two or more text values into a

single text value. To put the value It is at "four o'clock" in a formula you

could write it as '"four ' + "o'clock" + '"'

The list of predefined formulas has two sections. The upper section shows a list of the

formulas that have been predefined by people. The lower section shows formulas that

have been predefined by the platform. Formulas predefined by people are described

in Predefining Your Own Formulas. Formulas predefined by the platform are described

in Formulas Predefined by the Platform.

Query

When the value of an input is to be the result of a query, first define the query in the

Report Manager. The process for doing so is described in the IBM TRIRIGA Application

Platform 3 Reporting User Guide. Once the query exists, it can be used in an

extended formula. To do so, in the Inputs section select Query from the Input Type

drop-down box and click the Select hyperlink to identify the query.

Supported Relationships

The definition of an extended formula can be simple or complex. This section

describes which relationships the extended formula functionality supports. When a

relationship is supported it means that if an extended formula exists and one of the

events listed below occurs, the system recalculates the extended formula.

Relationships not described in this section are not supported.

© Copyright IBM Corporation 2011, 2020. 10

The following relationships are supported:

▪ Same Business Object

▪ Single-Hop Query

▪ Single-Hop Association

▪ Multi-Hop Query

▪ Multi-Business Object Query

▪ Multi-Hop Association

▪ Query Field Filters

Same Business Object

Formulas using fields or queries within its field’s business object are supported.

Single-Hop Query

Formulas that rely on the result of a query that has a $$RECORDID$$ association

filter are supported. The association filter can be either a particular association type

or the ALL association type.

For example:

▪ Section = General

▪ Field Type = Number

▪ Name = triGrossAreaNU

▪ Label = Gross Area

▪ Input A and Input Type Query for Location---triFloor---triFloor – Formula –
triBuilding – Total Gross Area---RecordInformation:triGrossAreaNumNU

▪ Output of Record Information:Gross Area

▪ Formula of A

Single-Hop Association

Formulas that rely on a field’s values in associated records are supported.

For example:

▪ Section = General

▪ Field Type = Number

▪ Name = triHeadcountNU

© Copyright IBM Corporation 2011, 2020. 11

▪ Label = Headcount

▪ Input a and Input Type Field for Parent For:Location:triSpace---
RecordInformation:triHeadcountNU

▪ Output of Record Information:Headcount

▪ Formula of a

Multi-Hop Query

Formulas that rely on a query that references another query in its association filter

are supported. This can reference queries n-levels deep. The hopping continues until

a referenced query has a $$RECORDID$$ association filter.

The particular associations used in a multi-hop query are dictated by the query

definitions. The association filters can be either a particular association type or the

ALL association type.

For example:

(a) Building formula referencing a Space query:

▪ Input A and Input Type Query for Location---triSpace---
cstQuerySpaceForFloorsForBuilding---RecordInformation:triHeadcountNU

▪ Output of Record Information:Space Headcount

▪ Formula of A

(b) Association filter for the referenced Space query:

▪ Association Type = ALL

▪ Module = Location

▪ Business Object = triFloor

▪ Filter Type = Query

▪ Record = cstQueryFloorsForBuilding

(c) Referenced sub-query that is a “hop” away from the Building formula:

▪ Association Type = ALL

▪ Module = -Any-

▪ Business Object = All

▪ Filter Type = Record

▪ Record = $$RECORDID$$

© Copyright IBM Corporation 2011, 2020. 12

Multi-Business Object Query

Formulas that rely on a multi-business object query where a $$RECORDID$$ field

filter is against one of the query’s associated (non-primary) business objects are

supported.

For example:

(a) Query Data Source Setup:

▪ Module = Location | BO = Space | Association Type = -

▪ Module = Location | BO = Floor (triFloor) | Association Type = ALL

▪ Module = Location | BO = Building (triBuilding) | Association Type =
ALL

(b) Query Field Filter Setup (e.g., System Filter Columns):

▪ Field = System Record ID (triRecordIdSY) where BO = triBuilding

▪ Report Label = System Record ID

▪ Filter Operator = Equals

▪ Value = $$RECORDID$$

Multi-Hop Association

Formulas that rely on a field’s value that is in a business object associated n-levels

away from the business object that the extended formula resides within are

supported.

For example:

(a) Pick Element:

▪ cstBuilding

▪ General

▪ About---triPeople---triPeople

▪ Contains---Location---cstFloor

▪ General

▪ Contains---Location---cstSpace

▪ General

▪ triHeadcountNU

© Copyright IBM Corporation 2011, 2020. 13

▪ triGrossAreaNU

Query Field Filters

A query referenced by an extended formula typically has field filters. If a record

changes and the change is such that the results of a query could be affected, the

extended formula system recalculates the extended formula.

Relationships between objects can be specified by a query field filter through

$$RECORDID$$ filters and $$PARENT::[Section Name]$$ filters.

There are limitations to what the queuing and queue processing in the system acts

upon:

▪ Extended formulas are recalculated when a change to a record affects a filter
applied to a field in the query’s primary business object. If the affected filter
is applied to a field in an associated business object, extended formulas are
not recalculated.

▪ For multi-hop queries, extended formulas are recalculated when a change to a
record affects a filter on the query directly referenced by the field formula.
Extended formulas are not recalculated when a change to a record affects a
filter referenced in any of the query’s related reports.

Not Supported

The following list of formula building relationships that are not supported is not

exhaustive and by its nature cannot include every instance. If a formula building

relationship is not explicitly listed earlier in this “Relationships the Extended Formula

Supports” section as supported, it is not supported.

The list of non-supported formula building relationships includes:

▪ Related reports that do not have association filters.

▪ Query field filters on a non-primary business object.

▪ In a multi-hop query, filters on queries that are not directly referenced by the
formula.

Formulas Predefined by the Platform

A number of formulas are predefined by the platform. They are System Formulas.

 Note – Data Modeler extended formulas can be used only with Number and Date fields.

The system formulas with strings do not apply.

© Copyright IBM Corporation 2011, 2020. 14

Note – All Date, Date and Time, and Time fields are stored in the system in milliseconds.

When a formula declaration calls for time in milliseconds, you can use a Date, a Date and

Time, or a Time field as input.

 Attention – Keywords and variables are case sensitive.

Predefined Formula Description

abs(number) Returns the absolute value of the number specified.

AddDay(timeInMillis,days) Adds the number of days specified to the date, date and time, or time

specified and returns the result in milliseconds.

The system is leap year aware. If you add 365 days to a leap year you

will get a different result than if you add 365 days to a non-leap year.

AddMonth(timeInMillis,month

s)

Adds the number of months specified to the date, date and time, or

time specified and returns the result in milliseconds.

AddYear(timeInMillis,years) Adds the number of years specified to the date, date and time, or time

specified and returns the result in milliseconds.

applyRruleToEventUi(rRule,e

ventUiRecordid)

Applies a certain rule to a UI event for the specified record ID.

createQueryEndDateFromEve

nt(eventRecordId)

Creates a query to extract the end date from an event related to a

certain record ID.

createQueryStartDateFromEv

ent(eventRecordId)

Creates a query to extract the start date from an event related to a

certain record ID.

createRecurrenceExDate(con

textRecordId,associationNam

e,dateTimeFieldName)

Creates a query to determine the recurring execution date given the

original date and time field, the context record ID and the association

name.

createRelativeDateTime(inpu

tDateTime,inputTimeZoneNa

me)

Creates a query to determine the relative date and time given the

original date and time and the specified time zone.

CurrentTime() Returns the current time of the Application Server as the number of

milliseconds since midnight, January 1, 1970 UTC.

© Copyright IBM Corporation 2011, 2020. 15

Predefined Formula Description

DateFromDateTime(timeInMil

lis)

Truncates a date, date and time, or time field to the date and returns

the result in milliseconds. A time field always returns zero.

DateFromDateTimeTZ(date,ti

mezone)

Converts a Date Time value to a Date value based on the given time

zone.

Example: DateFromDateTimeTZ(10/10/2012 12:00 AM EST,(GMT -5)

Eastern Time (US, Canada) [US/Eastern]) returns 10/10/2012 Server

Time Zone

datestring(date,format) Returns a string from the date, date and time, or time specified in the

format specified. The following replacements are made:

▪ yyyy = year

▪ M = month (1-12)

▪ MM = month (01-12)

▪ MMM = English 3 character abbreviation of month (Jan-Dec)

▪ MMMM = English full spelling of month (January-December)

▪ dd = day of month (01-31)

▪ h = hour (1-12)

▪ hh = hour (01-12)

▪ HH = hour of day (00-23)

▪ mm = minute (00-59)

▪ ss = second (00-59)

▪ SSS = millisecond (000-999)

▪ zzz = English 3 character abbreviation of time zone (e.g., GMT,
PST)

▪ a = AM or PM

DateTimeFromDateTZ(date,ti

mezone)

Converts a Date value to a DateTime value with respect to a time zone.

When this function is applied to a date, it returns a date time value

that has the time value zeroed to 12 midnight.

Example: DateFromDateTimeTZ(10/8/2012,UTC-8) returns 10/8/2012

12:00 AM UTC-8

datetimestring(date,format,t

imezone)

Returns a string from the date, date and time, or time specified in the

format and time zone specified.

© Copyright IBM Corporation 2011, 2020. 16

Predefined Formula Description

DayOfMonth(timeInMillis) Returns the numeric value of the day of the month (1-31) from the

date, date and time, or time specified. A time field always returns

zero.

DayOfWeek(timeInMillis) Returns the numeric value of the day of the week (1-7) from the date,

date and time, or time specified. 1=Sunday, 2=Monday, …, 7=Saturday.

A time field always returns zero.

DigitCount(string) Returns the number of numeric digit characters in string.

div(a,b) Returns the quotient of the number specified as a divided by the

number specified as b. Any fractional part is discarded.

e() Returns the mathematical constant e.

endsWith(string,endString) Both inputs should be text values. Returns TRUE if the first string

specified ends with the text specified in endString, otherwise returns

FALSE.

 excelMod(a,b) Returns the module (rest) of the number specified as a divided by the

number specified as b. Any fractional part is discarded.

getBoNameForRecord(recordI

d)

Returns the business object name of the record ID specified.

GetDays(startDate,endDate) Returns the number of days between the two date, date and time, or

time values specified.

getEventsForResource(resour

ceId,availabilityStart,availabi

lityEnd,calendarSetName)

Returns the number of events between the availability start date and

end date, for the record ID and calendar specified.

getFirstDateTimeMatchingRr

ule(startDateTime,rRule,rRul

eTimeZone)

Returns the first date and time that match the rule specified. Values

for rRuleTimeZone must match values in the Time Zone Classification.

getModuleNameForRecord(re

cordId)

Returns the name of the module for the record ID specified.

getNextEventForResource(res

ourceId,searchFromDate,cale

ndarSetName)

Returns the next event, counting from a certain date

(searchFromDate), for the resource ID and calendar specified.

 getRecordFromId(recordId) Returns the record content for the record ID specified.

© Copyright IBM Corporation 2011, 2020. 17

Predefined Formula Description

 getRecordsFromId(recordIds) Returns more than one record contents for the record IDs specified.

getRuleFromEventUi(eventUi

RecordId)

Returns the rule applied to a certain UI event for the record ID

specified.

getUomType(recordId,fieldN

ame)

Returns the type of unit of measurement (UoM) for the record ID and

field name specified.

getUserFormattedDateTime(

myProfileRecordId,dateTime

Value)

Returns the user’s date format.

HasValue(field) Used in workflow conditions to test if a value has been entered in a

field. Supported field types are Number, Date, DateTime, Financial

Rollup, and Classification Rollup. The function is true if a value has

been entered and false if no value exists. This is not the same as a

blank string value, HasValue tests if the value for the field has ever

been set.

Hour(timeInMillis) Returns the numeric value of the hour (0-11) from the date, date and

time, or time specified.

HourOfDay(timeInMillis) Returns the numeric value of the hour (0-23) from the date, date and

time, or time specified.

if/If/IF/iF(condition,

trueClauseExp,

falseClauseExp)

Returns the result of the trueClauseExp expression if the

condition expression evaluates to true; otherwise returns the result

of the falseClauseExp expression. For more information, see If

Expressions below.

indexof(string,substring) Both inputs should be text values. Returns the number of characters in

the first value that precede the first occurrence of the second value in

the first value. If the second value does not occur in the first value,

returns -1.

© Copyright IBM Corporation 2011, 2020. 18

Predefined Formula Description

IPMT(rate,period,numberOfP

eriods,presentValue,futureVa

lue,dueType)

IPMT or Interest Payment formula calculates the interest payment for

a given period of an investment based on periodic, constant payments

and a constant interest rate.

The first input is the interest rate per period, which must be in a

fraction form (already divided by 100). The second input is the period

for which you want to find the interest and must be in the range 1 to

numberOfPeriods. The next input is the total number of payment

periods in an annuity. The fourth input is the present value, or the

lump-sum amount that a series of future payments is worth right now.

Then you have the future value, or the cash balance one wants to

attain after the last payment is made. Enter 0 for the default future

value which means that annuity based on present value is attained or

paid off after the last payment is made.

The due type indicates when payments are due. A warning is logged if

the type is not supported and, in this case, the platform defaults to 0:

▪ 0 if payments are due at the end of the period

▪ 1 if payments are due at the beginning of the period

For the presentValue and futureValue parameters, the cash you pay

out (such as deposits to savings) is represented by negative numbers;

the cash you receive (such as loan) is represented by positive numbers.

IPMTX(rate,period,numberOf

Periods,presentValue,payme

nt,dueType)

This is a slight variation of the IPMT formula, where payment is

specified instead of the future value. This enhanced formula allows to

pre-calculate periodic payment (PMT) before calculating IPMT inside an

iteration of periods.

Using this formula instead of the regular IPMT yields better

performance as it does not have to re-calculate the payment for every

iteration.

When pre-calculating PMT, make sure to specify the same rate,

numberOfPeriods, presentValue, futureValue and dueType parameter

values as you would specify for the regular IPMT formula to achieve the

correct interest payment result.

© Copyright IBM Corporation 2011, 2020. 19

Predefined Formula Description

IRR(periods,payment,initial,

hint)

Calculates the Rate of Return (IRR). IRR is related to Net Present Value

(NPV). The value of IRR is the rate that will cause the NPV to result in

zero. All parameters are Number field type. The hint parameter is a

guess at the correct IRR. With a good hint the calculation can be

performed much faster. If a hint is not available, 0 can be passed in

and the function calculates a reasonable starting point.

For example: Given an initial investment of $100,000 and a return of

$175,000 for 3 periods, the IRR would be approximately 166%.

In the IRR function you would get that using one of the following 2

calls:

▪ (using a hint) irr = IRR(3, 175000.00, 100000.00, 1.60)

▪ (without a hint) irr = IRR(3, 175000.00, 100000.00, 0)

When checking results remember that calculating an IRR gives an

approximate answer so it is possible that the result from IBM TRIRIGA’s

IRR function and from Excel might be slightly different. However, given

a good hint they should be within a fraction of a percent (+- 0.001).

IRRX(initial,payments,hint) This enhanced formula supports an array of payment values to the IRR

calculation. The IRRX function requires 3 parameters and returns an

approximate IRR value that is accurate to 12 decimal places.

The parameters required are as follows:

An initial payment - This is a positive number representing the

undiscounted cost of an investment.

An array of payments - This is an array of positive numbers representing

payments that will be received by the investor against the initial

investment.

Rate hint - This is a number (positive or negative) that is a best guess

or an approximation of the actual IRR. If a good hint is supplied it will

make the calculation faster. If no hint is known use the value 0 and a

hint will be calculated internally.

IsAMPM(timeInMillis) Returns 0 to indicate the date, date and time, or time specified is A.M.

and returns 1 to indicate P.M.

isResourceAvailable(resource

Id,availabilityStart,availabilit

yEnd,calendarSetName)

Returns 0 to indicate the resource ID, within the specified availability

start and end, and for a certain calendar, is not available and returns 1

to indicate it is available.

© Copyright IBM Corporation 2011, 2020. 20

Predefined Formula Description

isResourceAvailableForEvent

Change(resourceId,eventId,a

vailabilityStart,availabilityEn

d,calendarSetName)

Returns 0 to indicate the resource ID, within the specified availability

start and end, and for a certain calendar, is not available for a certain

event change and returns 1 to indicate it is available.

ln(number) The input should be a positive number. Returns the natural (Napierian)

logarithm of the number specified.

log(number) The input should be a positive number. Returns the logarithm (base 10)

of the number specified.

logn(number,base) Both inputs should be positive numbers. Returns the logarithm of the

number specified in the base specified.

LowercaseCount(string) Returns the number of lowercase characters in string.

MilliSecondOfSecond(timeInM

illis)

Returns the numeric value of the millisecond of the second (0-999)

from the date, date and time, or time specified.

MilliSecondsFromDuration(du

ration)

Returns the milliseconds for the given duration. For example,

IF(DURATION>0, MilliSecondsFromDuration(DURATION)/3600000, 0)

MinuteOfHour(timeInMillis) Returns the numeric value of the minute of the hour (0-59) from the

date, date and time, or time specified.

mod(a,b) Returns the remainder of the number specified as a divided by the

number specified as b. The sign of the returned value is the same as

the sign of b.

Month(timeInMillis) Returns the numeric value of the month (1-12) from date, date and

time, or time specified. 1=January, 2=February, …, 12=December.

normsinv(probability) Returns the inverse normal cumulative distribution of the number

specified.

NPV(periods,payment,rate,in

itial)

All inputs should be numbers. Returns the net present value. The first

input is the number of periods you expect to hold the investment. The

second is the projected net cash flow per period. The third is the

discount rate, which must be in a fraction form (already divided by

100). The fourth is the capital outlay to initiate the investment.

© Copyright IBM Corporation 2011, 2020. 21

Predefined Formula Description

NPVX(payments,rate,initial) This enhanced formula supports an array of payment values to the NPV

calculation. The period will then be determined by the number of

payment values passed to the NPVX formula and the order of those

values will be followed. All inputs should be numbers. The first input is

the result of a query token, which is an array of number values. The

second is the rate of discount over the length of one period. The third

is the initial cost of investment which is to be deducted from the NPV

result.

The enhanced query token can be set to Total or Values:

▪ Values – assigns all the number values returned by the query as
an array of numbers. The query token passed to the NPVX
formula should have the type set to Values so that the formula
can understand the array of number values.

▪ Total – assigns the total of all the number values returned by
the query.

pi() Returns the mathematical constant pi.

PMT(rate,numberOfPeriods,p

resentValue,futureValue,due

Type)

The PMT or Payment formula calculates the periodic payment of an

annuity based on constant payments and a constant interest rate. It

contains the principal payment and interest of an annuity. The function

can be used in IPMTX and PPMTX formulas to improve the performance

when calculating these formulas inside an iteration of periods.

The first input is the interest rate per period, which must be in a

fraction form (already divided by 100). The second input is the total

number of payment periods in an annuity. The third input is the

present value, or the lump-sum amount that a series of future

payments is worth right now.

Then you have the future value, or the cash balance one wants to

attain after the last payment is made. Enter 0 for the default future

value which means that annuity based on present value is attained or

paid off after the last payment is made.

The due type indicates when payments are due. A warning is logged if

the type is not supported and, in this case, the platform defaults to 0:

▪ 0 if payments are due at the end of the period

▪ 1 if payments are due at the beginning of the period

For the presentValue and futureValue parameters, the cash you pay

out (such as deposits to savings) is represented by negative numbers;

the cash you receive (such as loan) is represented by positive numbers.

© Copyright IBM Corporation 2011, 2020. 22

Predefined Formula Description

power(number,exponent) Exponent should be either a non-negative real number or a negative

numeric value. Returns the result of the number specified raised to the

exponent specified.

PPMT(rate,period,numberOfP

eriods,presentValue,futureVa

lue,dueType)

The PPMT or Principal Payment formula calculates the principal

payment for a given period of an investment based on periodic,

constant payments and a constant interest rate.

The first input is the interest rate per period, which must be in a

fraction form (already divided by 100). The second input is the period

for which you want to find the principal payment and must be in the

range 1 to numberOfPeriods. The next input is the total number of

payment periods in an annuity. The fourth input is the present value,

or the lump-sum amount that a series of future payments is worth right

now.

Then you have the future value, or the cash balance one wants to

attain after the last payment is made. Enter 0 for the default future

value which means that annuity based on present value is attained or

paid off after the last payment is made.

The due type indicates when payments are due. A warning is logged if

the type is not supported and, in this case, the platform defaults to 0:

▪ 0 if payments are due at the end of the period

▪ 1 if payments are due at the beginning of the period

For the presentValue and futureValue parameters, the cash you pay

out (such as deposits to savings) is represented by negative numbers;

the cash you receive (such as loan) is represented by positive numbers.

PPMTX(rate,period,numberOf

Periods,presentValue,payme

nt,dueType)

This is a slight variation of the PPMT formula, where payment is

specified instead of the future value. This formula allows to pre-

calculate periodic payment (PMT) before calculating the PPMT inside

an iteration of periods.

Using this formula instead of the regular PPMT yields better

performance as it does not have to re-calculate the payment in every

iteration.

RandomNumber() Returns a pseudo random number greater than or equal to 0 and less

than 1. This function does not take any arguments.

© Copyright IBM Corporation 2011, 2020. 23

Predefined Formula Description

RandomString(minLen,maxLe

n,style)

Generates a random string value that is at least minLen characters

long and no longer than maxLen. The string is generated using English

characters (a-Z) and digits (0-9) based on rules defined by the style

parameter.

minLen and maxLen

Define the minimum and maximum length of the generated string. The

generated string will be at least minLen characters long and will be no

longer than maxLen characters long. If minLen is less than 1 it will

default to 1. If maxLen is less than minLen the minimum length will be

used.

style

RandomString(minLen,maxLe

n,style)

[continued]

The style parameter is a string that is used to control certain aspects

of the format of the generated string. Except for the special characters

‘0’, ‘1’, ‘i’, ‘I’, ‘l’, ‘L’, ‘o’, and ‘O’ (see below) the characters used in

the style parameter do not matter.

▪ Allow ‘0’: If style contains a ‘0’ (zero) the string can contain
the digit ‘0’; otherwise ‘0’ is not used.

▪ Allow ‘1’: If style contains a ‘1’ (one) the string can contain the
digit ‘1’; otherwise ‘1’ is not used.

▪ Allow ‘i’/’I’: If style contains an ‘i’ (case does not matter for
this rule) the string can contain ‘i’/’I’ characters; otherwise
‘i’/’I’ is not used.

▪ Allow ‘l’/’L’: If style contains an ‘l’ (case does not matter for
this rule) the string can contain ‘l’/’L’ characters; otherwise
‘l’/’L’ is not used.

▪ Allow ‘o’/’O’: If style contains an ‘o’ (case does not matter for
this rule) the string can contain ‘o’/’O’ characters; otherwise
‘o’/’O’ is not used.

▪ Uppercase only: If style contains only uppercase characters the
string will be completely uppercase.

▪ Lowercase only: If style contains only lowercase characters the
string will be completely lowercase.

▪ Digits only: If style contains only digit characters the string will
be completely digits.

▪ Uppercase and Digits: If style contains only uppercase
characters and digits the string will contain only uppercase
characters and digits.

© Copyright IBM Corporation 2011, 2020. 24

Predefined Formula Description

RandomString(minLen,maxLe

n,style)

[continued]

▪ Lowercase and Digits: If style contains only lowercase
characters and digits the string will contain only lowercase
characters and digits.

▪ Mixed case: If the style contains uppercase and lowercase
characters the string will be mixed case.

▪ Mixed case and Digits: If the style contains uppercase,
lowercase, and digit characters the string will be mixed case
with digits.

▪ Start with uppercase: If the style starts with two uppercase
characters the string will start with an uppercase character.

▪ Start with lowercase: If the style starts with two lowercase
characters the string will start with a lowercase character.

▪ Start with digit: If the style starts with two digit characters the
string will start with a digit.

If the length of the generated string does not allow all the rules to be

satisfied, the rules that specify the starting type take priority. For

instance, if the generated string is two characters long and the rules

specify to start with a digit and have mixed case; the string will start

with a digit but will not have both uppercase and lowercase characters.

Style Examples:

▪ “aA” – Generate a mixed case string without digits or the
special characters ‘I’/’I’,’L’/’l’,’O’/’o’.

▪ “aO” – Generate a mixed case string without digits allowing ‘o’
and ‘O’ to be used.

▪ “a2” – Generate a string with lowercase and digit characters
without allowing the special characters.

▪ “AAa2” – Generate a mixed case string that includes digits that
starts with an uppercase character.

▪ “01Aa” – Generate a mixed case string that includes digits,
starts with a digit, and can contain the special characters ‘0’
and ‘1’.

▪ “A” – Generate a string with uppercase characters only.

replace(string,oldstring,news

tring)

All inputs should be text values. Returns the first string with all

occurrences of the second string replaced with the third string.

© Copyright IBM Corporation 2011, 2020. 25

Predefined Formula Description

replaceCRLF(string,

replaceString)

All inputs should be text values. Returns the first string with all

occurrences of the carriage return line break (CRLF) replaced with the

second string.

Example:

▪ replaceCRLF(A, “
”)

Round(value,precision) Rounds the fractional portion of value to the number of decimal

places given by precision. The operation looks at the fractional

digits to the right of the digit given by precision to determine the

value of the fractional digit at precision and returns the converted

value. If the digit to the right is 5 or greater, the digit at precision is

rounded up. If the digit to the right is 4 or less, the digit at precision

is rounded down. This operation is sometimes referred to as ‘Round

Half Up’. The value of precision should be greater than or equal to

zero. If precision is less than zero it is treated as zero.

Examples:

▪ Round(1.2345, 2) = 1.23

▪ Round(1.235, 2) = 1.24

▪ Round(1.2347, 3) = 1.235

▪ Round(-1.12164, 3) = -1.122

RoundDown(value,precision) Rounds the fractional portion of a value to the number of decimal

places given by precision. The operation effectively truncates the

value at the number of decimal places given by precision, discarding

any fractional value to the right of the digit at precision.

Examples:

▪ RoundDown(1.2345, 2) = 1.23

▪ RoundDown(1.328, 2) = 1.32

▪ RoundDown(-2.125, 2) = -2.12

© Copyright IBM Corporation 2011, 2020. 26

Predefined Formula Description

RoundUp(value,precision) Rounds the fractional portion of a value to the number of decimal

places given by precision. The operation increases the value of the

digit at precision if there are any digits to the right of the digit at

precision.

Examples:

▪ RoundUp(1.2365, 2) = 1.24

▪ RoundUp(1.2325, 2) = 1.24

▪ RoundUp(1.23, 2) = 1.23

RoundX(value,precision,

mode)

RoundX provides control of the rounding function via the mode

parameter. There are seven modes.

▪ ROUND_CEILING (3)
Round the fractional digit at precision so the value moves
toward positive infinity.

▪ ROUND_UP (2)
Same operation as RoundUp(value, precision).

▪ ROUND_HALF_UP (1)
Same operation as Round(value, precision).

▪ ROUND_HALF_EVEN (0)
If the fractional digit at precision needs to be rounded, round
the value up or down as needed to make it even. This is
sometimes referred to as a ‘Banker’s Round’.

▪ ROUND_HALF_DOWN (-1)
If the fractional digit at precision needs to be rounded, use the
digit to its right to determine the direction of the round. If the
value is 6 or greater round up, if it is 5 or less round down.

▪ ROUND_DOWN (-2)
Same operation as RoundDown(value, precision).

▪ ROUND_FLOOR (-3)
If the fractional digit at precision needs to be rounded, round
the fractional digit at precision so the value moves toward
negative infinity.

Examples:

▪ ROUND_CEILING

RoundX(1.234, 2, 3) = 1.24

RoundX(1.12, 2, 3) = 1.13

RoundX(-1.234, 2, 3) = -1.23

© Copyright IBM Corporation 2011, 2020. 27

Predefined Formula Description

RoundX(value,precision,

mode)

[continued]

▪ ROUND_UP

RoundX(1.234, 2, 2) = 1.24

RoundX(1.23, 2, 2) = 1.23

RoundX(-1.234, 2, 2) = -1.24

▪ ROUND_HALF_UP

RoundX(1.234, 2, 1) = 1.23

RoundX(1.236, 2, 1) = 1.24

RoundX(1.235, 2, 1) = 1.24

RoundX(1.23, 2, 1) = 1.23

▪ ROUND_HALF_EVEN

RoundX(1.234, 2, 0) = 1.23

RoundX(1.236, 2, 0) = 1.24

RoundX(1.235, 2, 0) = 1.24

RoundX(1.245, 2, 0) = 1.24

RoundX(1.23, 2, 0) = 1.23

▪ ROUND_HALF_DOWN

RoundX(1.234, 2, -1) = 1.23

RoundX(1.236, 2, -1) = 1.24

RoundX(1.235, 2, -1) = 1.23

RoundX(1.23, 2, -1) = 1.23

▪ ROUND_DOWN

RoundX(1.234, 2, -2) = 1.23

RoundX(1.236, 2, -2) = 1.23

RoundX(1.235, 2, -2) = 1.23

RoundX(1.23, 2, -2) = 1.23

▪ ROUND_FLOOR

RoundX(1.234, 2, -3) = 1.23

RoundX(1.236, 2, -3) = 1.23

RoundX(1.235, 2, -3) = 1.23

RoundX(-1.234, 2, -3) = -1.24

SecondOfMinute(timeInMillis) Returns the numeric value of the second of the minute (0-59) from the

date, date and time, or time specified.

sqrt(number) The input should be a non-negative number. Returns the square root of

the number specified.

© Copyright IBM Corporation 2011, 2020. 28

Predefined Formula Description

startsWith(string,endString) Both inputs should be text values. Returns TRUE if the first string starts

with the second string; otherwise returns FALSE.

stringlength(string) Returns the number of characters in the string specified. The first

position is zero.

Note:

▪ stringlength(“”) = 0

▪ stringlength(null) = 0

substring(string,start,end) Returns the portion of the string specified that starts and ends at the

indexes specified.

Examples:

▪ substring(“abcdefgh”,3,5) => cde

▪ substring(“weight”,2,6) => eight

© Copyright IBM Corporation 2011, 2020. 29

Predefined Formula Description

toDate(dateString) Returns the date and time that corresponds to the date and time in the

string specified. It recognizes a variety of formats in the text, which

follow a predefined sequence:

▪ Numeric date in milliseconds since January 1, 1970

▪ MM/dd/yyyy hh:mm AM/PM

▪ dd/MM/yyyy hh:mm AM/PM

▪ dd-Month-yyyy HH:mm (Month name, Apr or April, and 24 hour
time)

▪ dd/MM/yyyy hh:mm AM/PM zone (EST, PST, GMT-08:00, and so
on)

▪ MM/dd/yyyy HH:mm:ss (24 hour time)

▪ dd/MM/yyyy HH:mm:ss (24 hour time)

▪ Month dd,yyyy hh:mm AM/PM zone (Month name and zone, for
example, EST, PST, GMT-08:00, and so on)

▪ MM/dd/yyyy

▪ dd-Month-yyyy (Month name)

▪ dd/MM/yyyy

▪ Month dd/yyyy

▪ Month dd yyyy h:mmAM/PM

Note that the input “10/11/2011” is recognized as October 11th since

that will match the MM/dd/yyyy format. There is no way for this to be

interpreted as the 10th of November.

Where the formulas above say “Month”, the month abbreviation (Apr)

or the full month name (April) can be used.

tolower(string) Returns the string specified with all upper case letters replaced with

lower case letters.

toupper(string) Returns the string specified with all lower case letters replaced with

upper case letters.

trim(string) Returns the string specified with all leading and trailing spaces or

control characters removed.

Note:

▪ trim(“”) = empty string

▪ trim(null) = null

© Copyright IBM Corporation 2011, 2020. 30

Predefined Formula Description

UppercaseCount(string) Returns the number of uppercase characters in string.

WeekDayDate

(timeInMillis,day)

Returns a date value which falls in the week specified in the first input.

The second input is the day (1-7), where 1=Sunday, 2=Monday, …,

7=Saturday.

Year(timeInMillis) Returns the numeric value of the year from date, date and time, or

time specified.

If Expressions

There is something that looks like a predefined formula that you can use if you need

to include a decision in your formula. For example, suppose that the value of a field

represents a 10% surcharge on amounts greater than $100. For amounts less than

$100, the surcharge is zero. Write this as

If(amount>100,amount*0.10,0)

The first input for if is something that is either true or false. If the first input is true,

the value of the if’s second input is the value of the if. If the first input is false, the

value of the if’s third input is the value of the if.

© Copyright IBM Corporation 2011, 2020. 31

There are a few things about if that make it different. The first argument is that if

the if expression can contain the four arithmetic operators, it can also contain other

operators, like comparison operators.

The following list contains all of the operators that you can use with both extended

formulas and workflow expressions:

(

)

-

+

/

*

==

!=

<

<=

>

>=

&&

||

open parenthesis

close parenthesis

subtraction

addition

division

multiplication

is equal to

is not equal to

is less than

is less than or equal to

is greater than

is greater than or equal to

and

or

Another thing different about if is when the values of its inputs are computed. For

regular predefined formulas, the values of all their inputs are computed and then the

value of the predefined formula is computed.

For an if, the value of its first input is computed first. If the value of the first input

is true, the value of the second input is computed; if the value of the first input is

false, the value of the third input is computed. This means that depending on the

value of the first input, the value of either the second or third input is not computed.

Each time the value of an if is computed, the value of either its second or third input

is not computed. For most formulas, this fact is not important. However, there are

some formulas for which this is crucial.

According to the rules for arithmetic, you are not allowed to divide by zero. Because

of this rule, if a division operator in a formula tries to divide zero, it is not possible to

compute a value for the formula. There are input values that can prevent the IBM

TRIRIGA Application Platform from computing the result of a predefined formula. If

the result of a formula cannot be computed, the IBM TRIRIGA Application Platform

just uses zero as its result. If you need a value other than zero, the way that the

inputs of an if are computed becomes important.

© Copyright IBM Corporation 2011, 2020. 32

Here is an example of a formula that can be made to work only by taking advantage

of the fact that the value of one of an if’s inputs is not computed: Suppose that you

need to compute a value for a field named Aspect Ratio. The value of Aspect

Ratio is Height/Width unless the value of width is zero. If the value of Width is

zero, the result of Aspect Ratio is to be 999999999.

The only way to write a formula that does this computation is to use if. Taking

advantage of the fact that if does not compute the value of one of its inputs avoids a

division by zero. The formula must avoid division by zero, otherwise its result is

forced to be zero rather than 999999999. Write the formula for Aspect Ratio as

if(width#0,Height/Width,999999999). You can read this as If width not

equal to zero then Height divided by Width else 999999999.

Predefining Your Own Formulas

You can create your own predefined formulas with the System page. To access the

System page, select the Tools menu. Then click the System Setup menu item. When

the third-level mega-menu appears, click More. On the result page, click System link.

Then click Formula on the System page. The Formula result page displays a list of

formulas with the following columns:

▪ Formula Name

▪ Formula Desc (Description)

▪ Formula Declaration

▪ Formula Expression

To add a new predefined formula, click the Add action on the Formula section bar.

This causes a form to pop up like the following:

(a) General

▪ Formula Name

▪ Formula Desc

▪ Formula Expression

(b) Formula Parameters (with section actions: Existing Formulas | Quick Add |

Delete)

▪ Parameter Position | Parameter Name

To see how to fill in this form, we will work through an example. The example that

we will work through will be a formula named diagonal that computes the length of

a rectangle’s diagonal, given the rectangle’s width and height.

© Copyright IBM Corporation 2011, 2020. 33

Having the diagonal of a rectangle as a formula allows computing the diagonal length

of a room without having to store the result in a field. We will be able to use it in

extended formulas by writing something similar to diagonal(width,length).

If you do not actually need to store a value that is simple to compute, it is usually

better to compute the value.

To define the predefined formula diagonal, fill in the form as shown below:

(a) General

▪ Formula Name: diagonal

▪ Formula Desc: Compute the length of a rectangle’s diagonal.

▪ Formula Expression: sqrt(width*width+height*height)

(b) Formula Parameters (with section actions: Existing Formulas | Quick Add |

Delete)

▪ Parameter Position | Parameter Name

▪ 1 | width

▪ 2 | height

In the General section, type the name of the formula into the Formula Name field.

Type the description of the formula into the Formula Desc field. Type the text of the

formula into the Formula Expression field. There are two things to notice about the

formula text in this example:

▪ The formula uses sqrt, which is a system formula. Predefined formulas also

can use other predefined formulas. To see a list of available predefined
formulas, click the Existing Formulas action on the Formula Parameters
section bar.

▪ The formula uses the names width and height. These are not inputs. They are

something else called formal parameters. A formal parameter is a name of a
value that is used within a predefined formula. Formal parameters are not
directly associated with values. What they are directly associated with are
input positions.

The Formula Parameters section associates the formal parameter width with the

position 1. It also associates the formal parameter height with the position 2. This

means that if in an extended formula someone writes diagonal(7,9), the

predefined formula diagonal will be computed with width equal to 7 and height

equal to 9. This is because width gets the value in position 1 and height gets the

value in position 2.

© Copyright IBM Corporation 2011, 2020. 34

When Extended Formulas Are Evaluated

Extended formulas can be extremely useful. However, to use them properly it is

important to understand when the value of an extended formula is computed.

The value of an extended formula is computed when a change is made to a record.

When a change is made to a record, if it contains any fields with a value that is

determined by an extended formula, the value of each extended formula is

recomputed and used to update the value of its field. When a user is editing a record

using a form, the record is not modified until the user clicks an action that causes the

changes to be stored in the record.

The timing is important. When a user changes any values in a record, only formulas of

fields in that same record are recomputed immediately. If the value of a field is

determined by a formula that refers to a field in another record, changes to the field

in the other record only cause formulas in the other record to be recomputed. The

value of the field with a formula that refers to the changed field in another record is

updated through a queue, so it may not be reflected immediately.

When fields referenced by query filters change, the extended formula system checks

potentially affected formulas and recalculates as needed. This recalculation only

occurs for changes to fields in the query’s primary business object and, for multi-hop

queries, only for changes to filters on the query directly referenced by the field

formula. The system will not detect and recalculate for fields in an associated

business object or in a string of rs.

Extended Formula Agent

The purpose of the Extended Formula Agent is to maintain the results of complex

formulas. Complex formulas are those that contain query and/or association tokens.

They receive special processing because the source and target metadata of the

formula reside in different business objects and therefore the source and target

instance data of the formula reside in different records.

The Extended Formula Agent is managed in the Agent Manager panel of the

Administrator Console, as described in the IBM TRIRIGA Application Platform 3

Administrator Console User Guide.

The Extended Formula Agent is a background thread that processes the Extended

Formula Queue. The Extended Formula Queue is a table in the database containing

information about data changes. The Extended Formula Agent reads this queue to

© Copyright IBM Corporation 2011, 2020. 35

determine which formulas in the system need to be recalculated as a result of data

change.

Glossary

Term Definition

Complex Formulas Formulas that contain query and/or association tokens.

Extended Formula Cache The cache of target fields and association relationships defined by

the complex formula metadata on a system. Note that this is purely

metadata so when comments refer to looking in the Extended

Formula Cache, this means this is a metadata consideration only.

Extended Formula Components

There are three main components to managing complex Extended Formulas:

Component Description

Loading Formula

Relationships

At server startup, all complex extended formula metadata are

evaluated and the relationships are loaded in to a cache. This cache

is used at runtime to determine when instance data changes occur

whether there are other records that could be affected by this

change.

Populating the Queue Putting records into the Extended Formula Queue (EF_QUEUE). This

is done at the point that record and association changes occur.

Processing the Queue The Extended Formula Agent reads the EF_QUEUE, determines what,

if any, records may be affected, and recalculates the formulas on

those affected records.

Loading Formula Relationships

The metadata relationships to describe complex formulas are stored in the Extended

Formula Cache in the IBM TRIRIGA database. When an application server starts, it

does not have to gather the business object relationships needed to do the extended

formula queuing and queue processing. It just reads the Extended Formula Cache.

This cache is essentially a map of important relationships with the purpose of

facilitating the identification of field/association changes that could have a formula

impact on other records in the system. Each token is either a query token or an

association token.

▪ Association Tokens

© Copyright IBM Corporation 2011, 2020. 36

Association tokens are parsed and put in to the cache.

An example of an association token: [FIELD][{BO}{Parent

For}{Location}{triSpace}][{BO}{Primary Location

For}{triPeople}{triPeople}][{SECTION}{Detail}{triOneNU}]

The key components to cache are the field, triPeople.triOneNU, and the

association, triSpace.Primary Location For.triPeople. If the

Extended Formula Activity log is enabled, such an event will be logged with a

com.tririga.architecture.cache.FormulaQueue.STARTUP entry,

which will indicate for example: AssociationToken on BO,

triProperty, relies on BO,triSpace, Field, triHeadcountNU,

via association, Parent For.

▪ Query Tokens

Query tokens are parsed to acquire the different components. The query

definition is then loaded and query's $$RECORDID$$ association filter is

evaluated for its association string.

An example of a query token: [QUERY][{Location}{triSpace}{triSpace

- Formula - triFloor - Total Gross Area - Merchandizable

Sales Area}][{RecordInformation}{triAreaNU}]

Key components acquired through this process are the field

triSpace.triAreaNU and the association on the query's $$RECORDID$$

association filter, triFloor.Is Parent Of. triSpace.

If the record the calculation being done for is in a project, the project context

comes from that record, but it is only used if the query definition specifies a

Data Scope of Active Project.

The following events trigger an update to the Extended Formula Cache:

▪ A business object is published, either initiated by a user in the Data Modeler or
by an Object Migration Import.

▪ A query is created, modified, or imported.

▪ A user clears the Extended Formula Cache from the Administrator Console.

© Copyright IBM Corporation 2011, 2020. 37

Populating the Queue

The Extended Formula Queue is represented in the database as EF_QUEUE. There are

three events that could cause an entry to go in to the Extended Formula Queue:

▪ When a record-field has changed values and that field has the potential to
affect a complex formula value, the record is put in the Extended Formula
Queue.

▪ When an association has been created and that association has the potential to
affect a complex formula value, the association is put in the Extended Formula
Queue.

▪ When an association has been deleted and that association has the potential to
affect a complex formula value, the association is put in to the Extended
Formula Queue.

If the Extended Formula Activity log is enabled, such an event will be logged with a

com.tririga.ExtFormulaAgent.ACTIVITY entry prefixed by Change put in

queue.

The system reviews entries before they go into the queue and does not add an entry if

it already exists in the queue.

Processing the Queue

The Extended Formula Agent is responsible for processing the Extended Formula

Queue. It processes the queue in first in / first out order so that calculations are done

in the order of the data changes that necessitated the calculations occur. This ensures

there is a priority to the calculations done and that changes made by User 1 are given

priority over changes made by User 2 if User 1 made changes before User 2.

The Extended Formula Agent sleeps for 5 seconds between queries of the Extended

Formula Queue.

The steps it goes through to process the queue are as follows:

▪ Pick up at most 100 records from the EF_QUEUE table and tag them in the

database with an agent id. The EF_QUEUE.AGENT_ID column before being

tagged is -1.

▪ Bring those tagged records into memory. If the Extended Formula Activity log is
enabled, such an event will be logged with a
com.tririga.ExtFormulaAgent.ACTIVITY entry prefixed by Handling

queued change.

© Copyright IBM Corporation 2011, 2020. 38

▪ For each queue record, determine which records' formulas need to be
recalculated:

o If the record is an association, determine whether the associated record,
EF_QUEUE.ASS_SPEC_ID, needs to have its formulas recalculated. If the

Extended Formula Activity log is enabled, such an event will be logged with
a com.tririga.ExtFormulaAgent.ACTIVITY entry prefixed by Queued

change necessitates save.

o Most records are not associations and, for those, it retrieves the associated
records. The association type used is based on the extended formula
relationships that the system loaded at startup.

The query looks something like the following: select spec_id from

ibs_spec_assignments where ass_spec_id = ? and

spec_template_id = ? and spec_class_type = ? and ass_type

= ?.

The extended formula agent determines whether any record(s) returned

need to have their formulas recalculated. If the Extended Formula Activity

log is enabled, such an event will be logged with a

com.tririga.ExtFormulaAgent.ACTIVITY entry prefixed by Queued

change necessitates save.

▪ Iterate through the records with formulas that need to be recalculated and
recalculate the complex formulas on those records. If the Extended Formula
Activity log is enabled, such an event will be logged with a
com.tririga.ExtFormulaAgent.ACTIVITY entry prefixed by Record

saved by agent.

When the same query is used across multiple extended formula parameters in

the same business object, that query is executed once and the result is reused

in the other extended formulas. This does not cause data integrity issues

because at the point the query is run, the record save has not yet put its data

into the database.

▪ When all the records that need to be recalculated have been recalculated,
delete the EF_QUEUE entries that were tagged.

Examples

Association Token

Example: [FIELD][{BO}{Parent

For}{Location}{triSpace}][{BO}{Primary Location

For}{triPeople}{triPeople}][{SECTION}{Detail}{triOneNU}]

© Copyright IBM Corporation 2011, 2020. 39

1. A change is made to field value triPeople.triOneNU on a triPeople record.

Given the cached token above, it will put the changed triPeople record in the

Extended Formula Queue. When the record is picked up by the Extended Formula
Agent, it will look in the Extended Formula Cache and see that triSpace records

related to the triPeople record via a Primary Location For association may

be affected by the change to triPeople.triOneNU. It will then search for any

such related triSpace records. If any triSpace records are found, the complex

formulas on those records are recalculated.

2. A Primary Location For association is created between triSpace record and

a triPeople record. Given the cached token above, it will put the association in the
Extended Formula Queue. When the record is picked up by the Extended Formula
Agent, it will look in the Extended Formula Cache and see that triSpace records

related to the triPeople record via a Primary Location For association may

be affected by association just created. It will then search for any such related
triSpace records. If any triSpace records are found, the complex formulas on

those records are recalculated.

Query Token

Example: [QUERY][{Location}{triSpace}{triSpace - Formula -

triFloor - Total Gross Area - Merchandizable Sales

Area}][{RecordInformation}{triAreaNU}]

In this example, the query has a $$RECORDID$$ association of type Is Parent Of.

1. A change is made to field value triSpace.triAreaNU on a triSpace record.

Given the cached token above, it will put the triSpace record in the Extended

Formula Queue. When the record is picked up by the Extended Formula Agent, it
will look in the Extended Formula Cache and see that triFloor records related

to the triSpace record via an Is Parent Of association may be affected by

the change to triSpace.triAreaNU. It will then search for any such related

triFloor records. If any triFloor records are found, the complex formulas on

those records are recalculated.

2. An Is Parent Of association is created between triFloor record and a

triSpace record. Given the cached token above, it will put the association in the

Extended Formula Queue. When the record is picked up by the Extended Formula
Agent, it will look in the Extended Formula Cache and see that triFloor records

related to the triSpace record via an Is Parent Of association may be

affected by association just created. It will then search for any such related
triFloor records. If any triFloor records are found, the complex formulas on

those records are recalculated.

© Copyright IBM Corporation 2011, 2020. 40

Extended Formula Logging

Logging adds information about what the Extended Formula Agent is doing. Logging

can be enabled on-the-fly with the Platform Logging managed object in the

Administrator Console, as described in the IBM TRIRIGA Application Platform 3

Administrator Console User Guide.

This includes the capability to:

1. Log the relationships considered by the Extended Formula Agent, enabled by
setting the com.tririga.architecture.cache.FormulaQueue.STARTUP

category to DEBUG-level. This is a one-time logging activity when the system starts

up and should have no ongoing effect on system performance.

Note – If you enable the Extended Formula Startup option after the system is already

started, you can cause the system to reload and log the STARTUP information. Select

the Cache Manager managed object in the Administrator Console and click Extended

Formula Cache, which refreshes that cache.

2. Log the Extended Formula Agent activity on a system, enabled by setting the
com.tririga.ExtFormulaAgent.ACTIVITY category to DEBUG-level. This is a

runtime log that logs frequently, will grow the log file at a rapid rate, and could
affect system performance. This should only be used for short periods of time to
troubleshoot Extended Formula Agent behavior.

Both write to a log file named extFormulaActivity.log; however, log4j.xml

can be configured to do it differently.

A variety of events are logged:

[...FormulaQueue.STARTUP] AssociationToken...: When an association

token is cached at system startup

[...FormulaQueue.STARTUP] QueryToken...: When a query token is cached at

system startup

[...ExtFormulaAgent.ACTIVITY] Change put in queue...: When a record

is put in the Extended Formula Queue

[...ExtFormulaAgent.ACTIVITY] Handling queued change...: When the

Extended Formula Agent picks up a record from the Extended Formula Queue

© Copyright IBM Corporation 2011, 2020. 41

[...ExtFormulaAgent.ACTIVITY] Queued change necessitates save.

Data to save...: When it is determined that a record needs to be saved due to a

record having been queued. This will always be nested within a Handling queued

change entry.

[...ExtFormulaAgent.ACTIVITY] Record saved by agent...: After it is

determined that an entry needs to be saved, this entry will be logged when the record

actually is being saved. Saved in this case implies that the complex formula(s) on the

record are recalculated.

An entry put in the queue is given a Change ID. This is seen in the logged entry when

an item is added to the Extended Formula Queue and is seen in the logged entry when

the item is picked up from the queue. This provides a means of correlating queuing

activity with agent activity.

This log entry example shows the online thread logging a change with a

particular changeId:

Change put in queue: [Record:

[ID.Type.Name=10370588.cstSpace.1] Fields: [cstHeadcount]]

changeId=[4]

This log entry example shows the agent thread logging with the changeId when

that same entry was picked up:

Handling queued change (0 changes left): [Record:

[ID.Type.Name=10370588.cstSpace.1] Fields: [cstHeadcount]]

changeId=[4]

Entries show how many items are left to process in the current batch so that

monitoring the log provides information about how much work is left to do. These

sample log entries illustrate that as entries are picked up from the queue, the log

entries display how many changes are left to process:

Handling queued change (2 changes left): [Record:

[ID.Type.Name=10370588.cstSpace.3] Fields: [cstHeadcount]]

changeId=[4]

Handling queued change (1 change left): [Record:

[ID.Type.Name=10370588.cstSpace.2] Fields: [cstHeadcount]]

changeId=[4]

© Copyright IBM Corporation 2011, 2020. 42

Handling queued change (0 changes left): [Record:

[ID.Type.Name=10370588.cstSpace.1] Fields: [cstHeadcount]]

changeId=[4]

Logging shows how data is being traversed to find the affected data for a multi-hop

scenario. In this example, the log entry shows that a change to

cstSpace.cstHeadcount traversed through floor data to ultimately find the

cstBuilding.cstSpaceHeadcount that was affected by the change.

Handling queued change (0 changes left): [Record:

[ID.Type.Name=10370588.cstSpace.1] Fields: [cstHeadcount]]

changeId=[4]

Affected intermediate record:

[ID.Type.Name=10370463.cstFloor.1] Caused by formula on

field:

[Module.BO.Field=cstLocation.cstBuilding.cstSpaceHeadcount]

Affected field

[Module.BO.Field=cstLocation.cstBuilding.cstSpaceHeadcount]

on record: [ID.Type.Name=10370448.cstBuilding.1] Caused by

formula on field: [Module.BO.Field=

cstLocation.cstBuilding.cstSpaceHeadcount]

The system attempts to recalculate only those fields affected by a particular change.

Activity logging shows when a record save only recalculates specific fields. In this

example, the log entry shows that only the cstBuilding.cstSpaceHeadcount

was recalculated when the cstSpace.cstHeadcount was changed.

Queued change necessitates save. Data to save: [Record:

[ID.Type.Name=10370448.cstBuilding.1] Field:

[cstSpaceHeadcount]] Caused by formula on field:

[Module.BO.Field=cstLocation.cstBuilding.cstSpaceHeadcount]

Note that if no field(s) are shown in the ‘Data to save’ log entry, the system

recalculated all complex formulas on the record.

© Copyright IBM Corporation 2011, 2020. 43

FAQs

1. Can Extended Formula Agents be run on multiple servers?

No. The Extended Formula Agent is designed to run on a single server. Running on

multiple servers could cause undesired behavior such as database deadlocks, and is

not allowed by the Agent Manager in the Administrator Console.

2. What are the differences in the behaviors on IBM TRIRIGA Application Platform 2.5
vs. 2.6 vs. 2.7 vs. 3.0?

There should be no functional differences. There were many functionality and

performance improvements in 2.7, none of which affect behavior of existing

extended formulas. Internally in 2.6, the Extended Formula Agent uses the record-

runtime (smart object) code for its record saves, taking advantage of efficiencies

that improve the performance of processing the Extended Formula Queue vs. 2.5.

3. What happens if a query token has a query that does not have a $$RECORDID$$

association filter but actually has another query referenced in its association
query? Is this relationship maintained by the Extended Formula Agent?

Yes. This is what is called a double-hop query. See the discussion of multi-hop

queries above.

© Copyright IBM Corporation 2011, 2020. 44

2. Financial Transactions and Rollups

This chapter discusses two distinct but related features of the IBM TRIRIGA

Application Platform. One feature is the ability to roll up numbers from records that

contain the most detailed information through a hierarchy into one or more levels of

records that contain summary information. The other feature is the ability to report

financial and other numeric transactions that occur in applications to users and to

external applications.

The IBM TRIRIGA Application Platform supports two different mechanisms for rolling

up numbers. One is a relatively simple mechanism for rolling up numbers directly

through a hierarchy. The other is a more flexible and feature-rich mechanism that

uses a hierarchy indirectly to roll up numbers that are part of a transaction.

The first section of this chapter describes the mechanism for rolling numbers up

through a hierarchy. This is followed by a description of financial transactions and

how they can be used to roll up totals into records that are not organized into a

hierarchy. After describing hierarchical rollups and financial transactions, the chapter

compares the two different methods of rolling up numbers.

Rolling Up Through a Hierarchy

The “Hierarchies” chapter of Application Building describes the IBM TRIRIGA

Application Platform’s support for organizing records into a hierarchy. The platform

has a feature that allows numbers to be rolled up through a hierarchy. Each record in

a hierarchy can contain totals of numbers that come from records that are its

immediate children in the hierarchy.

To illustrate, look at a simple example. Assume we want to write an application to

manage a collection of soda containers. The different kinds of containers are

organized into a hierarchy that looks like the following:

© Copyright IBM Corporation 2011, 2020. 45

Soda Containers

Soda Can

12 oz. Dr. Pepper

Spiderman 2 Ad

Soda Bottles

Glass Soda Bottle

8 oz. Coca-Cola

1996 Olympic Design

Glass Soda Bottle

8 oz. Coca-Cola

1998 Christmas Design

Plastic Soda Bottle

2 Liter Diet Coke

Spiderman Ad

Soda Can

12 oz. Coca-Cola

Spiderman 2 Ad

Hierarchy of Soda Containers

All records at the bottom of the hierarchy contain the number of pieces (e.g., cans,

bottles) of the type they describe. We want records that have children to contain the

total number of pieces under them. The Soda Bottles record should contain the total

number of bottles in the collection. The Soda Containers record should contain a total

of the number of cans and bottles in the collection.

The platform provides a mechanism to roll these totals up a hierarchy of records. The

mechanism is based on a type of field called Classification Rollup. Numbers are rolled

up into Classification Rollup fields. Numbers also may be rolled up from Classification

Rollup fields.

Classification Rollup Fields

A field of type Classification Rollup can be configured either to allow a number to be

directly entered into it or to contain the total of numbers from fields in child records.

Classification Rollup fields are associated with a classification. The classification

determines how data rolls up into or out of the field. The classification associated

with a Classification Rollup field is set when the field is defined.

Classification Rollup fields should be used only in business objects that are in a

hierarchy module.

The form showing the properties of a Classification Rollup field looks like the

following:

▪ Section: General

▪ Field Type: Classification Rollup

© Copyright IBM Corporation 2011, 2020. 46

▪ Name: _____

▪ Label: _____

▪ Description: _____

▪ Purpose: _____

▪ Required:

▪ Do not Auto Populate:

▪ Result Column:

▪ Mobile Field:

▪ Read Only:

▪ Rollup Source: Roll Up

▪ Display Mask: #.####

▪ Storage Precision: 12

▪ Rounding Rule: Half Up

▪ Root Classification

▪ Formula:

▪ Threshold Source Attribute

Most of the properties in a Classification Rollup field are the same as other kinds of

fields and are described in detail in the “Data Types” chapter of Application Building.

Four properties visible when a Classification Rollup field is first added are specific to

Classification Rollup fields. They are as follows:

▪ The value of the Root Classification property determines the classification
associated with the field. Click the Search icon to identify the classification.

▪ The value of the Rollup Source property determines how data gets into the
field. The four choices in the drop-down list are as follows:

Value of Rollup

Source Property Description

Roll Up If the value of the Rollup Source property is Roll Up, the number in

the field will be the total of numbers in Classification Rollup fields

with the same field name in child records.

Numbers roll up from Classification Rollup fields in child records into

Classification Rollup fields in a parent record with the Rollup Source

property set to Roll Up and with the Root Classification property

the same as the properties in the child record.

© Copyright IBM Corporation 2011, 2020. 47

Value of Rollup

Source Property Description

Classification If the value of the Rollup Source property is Classification, the

number in the field will be a total computed from child records

filtered using the value of their Classification field(s). Only child

records that have a Classification field with a value that is the same

as or under the classification associated with the parent

Classification Rollup field are included in the total.

The system ignores child records that contain any Classification

Rollup fields.

Where in the child records the number to be totaled comes from is

determined by a property named Rollup Type. The Rollup Type

property is visible only if the value of the Rollup Source field is

Classification.

The Rollup Type property shows three radio buttons labeled Cost,

Quantity, and Field. Use these radio buttons to specify where in

child records the number to total will come from. The Cost and

Quantity values are discussed later in this chapter in “Cost,

Quantity”.

When the Rollup Type is Field, it means that the numbers to total

come from a Number field in the child records. Selecting Field

causes the Rollup Field property to appear in the Classification

Rollup field’s properties. The value in Rollup Field identifies the

source of the number in the child records. The Rollup Field property

is visible only when the Rollup Type is Field.

The field names in the Rollup Field’s drop-down list are the names of

Number fields in the same business object. For this to work, the

child records must have fields with the selected name. If having the

names match is a problem, select Cost or Quantity for Rollup

Type instead of Field.

Both The value of the Rollup Source property should not be set to Both.

This value exists to support an obsolete feature and will be removed

from the IBM TRIRIGA Application Platform.

© Copyright IBM Corporation 2011, 2020. 48

Value of Rollup

Source Property Description

Data Entry If the value of the Rollup Source property is Data Entry, it means

that a number will not be rolled up into the field. Instead, the value

of the field is set by data entry, a default value, a formula, or other

means.

The number that is the value of the field may roll up into a

Classification Rollup field in a parent record that has the Rollup

Source property set to Roll Up. Which, if any, Classification Rollup

fields in the parent record the field’s value rolls up into is

determined by the classification specified in the Root Classification

property.

These values for Rollup Source allow two different ways to roll totals up

through a hierarchy. The Data Entry andRoll Up values for Rollup Source allow

data to be rolled up in a predetermined path, using classifications specified in

the Data Modeler to determine which Classification Rollup fields will roll up into a

given Classification Rollup field. When Rollup Source is Classification, data is

filtered and rolled up in a path that is determined by the value of records’

Classification fields at the time of the rollup.

▪ When there is a value in the Threshold Source Attribute property, this
Classification Rollup field is a scored Classification Rollup field, meaning it will
be scored (as described in “Comparison” in Application Building). The score is
displayed as a red, yellow, or green image to the left of the Classification
Rollup field’s value.

The value of the Threshold Source Attribute property must be a locator field

that references the Threshold business object. This locator field must be in

either a General section or a one-to-one smart section. For a Classification

Rollup field that is in a smart section, the linked locator field must reside on

the referenced business object. The Threshold record defines the threshold

ranges and contains a UOM value that is used to convert the scored value.

Select the linked locator field in the Threshold Source Attribute drop-down list.

The list only shows locator fields in the same business object that references

the Threshold business object.

A scored Classification Rollup field can be used in a form section, non-table

smart section, table smart section, or a vertical table section.

The score for the field is calculated during the rendering of the field and is not

stored. The platform compares the UOM of the Classification Rollup field with

© Copyright IBM Corporation 2011, 2020. 49

that of the Threshold record. If a conversion is needed, the platform converts

the Classification Rollup value before comparing it with the threshold value to

calculate the score.

During runtime, the system uses the threshold record that is currently selected

by the linked locator fields. If the locator field does not have a value, the

Classification Rollup field displays without a score.

The score is updated when the tab is reloaded. This means that if the value of

the Classification Rollup field, or the threshold record, or the locator field that

links to the threshold record, is changed, the score will not update (if needed)

until the tab is reloaded.

When designing a hierarchy for rolling up data, there is an important restriction to be

aware of. Classification Rollup fields with Rollup Source set to Classification ignore

child records that contain Classification Rollup fields. This means that a record can be

a child for one kind of rollup or the other, but not both.

Classification Rollup fields have no unit of measure. This means that it is crucial for

all numbers rolled up into a Classification Rollup field to have the same unit of

measure. Because Classification Rollup fields have no unit of measure, no conversions

are done to resolve inconsistencies between different fields being rolled up.

Cost, Quantity

Sometimes you want numbers to be rolled up from a field in child records into a

parent record’s Classification Rollup field that has the Rollup Source property set to

Classification. This is straightforward if all the child records are the same kind of

record. You just need to specify the name of the field you want the numbers to come

from.

If there is more than one kind of child record, it is still straightforward to specify

which field the numbers will come from if the field that the number comes from in

each kind of child record has the same name. If there is more than one kind of child

record and for each kind of child record numbers should come from fields with

different names, things are more complex. The IBM TRIRIGA Application Platform

allows you to handle this by indirectly specifying from which field the numbers should

come.

The indirect specification of field names is done in the mapping properties of the

business object used to create each kind of child record. First designate a number

field as the quantity or cost of records created from the business object. Then

© Copyright IBM Corporation 2011, 2020. 50

configure the Classification Rollup field to get its values from the quantity or cost of

the child records.

To access a business object’s mapping properties, select the business object in the

Data Modeler and select BO Mapping from the Data Modeler’s Tools menu. You can

read more about the Data Modeler, mapping properties, and BO Mapping in

Application Building. The following shows what the form for editing a business

object’s mapping properties looks like:

(a) Mapping Properties:

▪ Name: [Find]

▪ Cost: [Find][+][Find][+][Find][+][Find]

▪ Quantity: [Find]

▪ Image

▪ Conversion Group

▪ Exchange Date

▪ Control Number: Based on Prefix

▪ Prefix: [Find][Add][Delete]

▪ Suffix: [Find][Add][Delete]

▪ Start With: 1

▪ Delimiter

Although the first two properties after Name are labeled Cost and Quantity, they do

not have to be used for those purposes.

The value for Quantity is the value of whatever field is selected. The value for Cost is

a simple formula that can refer to more than one field.

You can configure a Classification Rollup field to roll up the values specified as Cost or

Quantity by specifying Classification as the value of its Rollup Source property and

selecting Cost or Quantity as its Rollup Type.

Rollup Actions

Unlike a spreadsheet that updates totals as details are added or changed, the totals in

a hierarchy are not updated automatically. A record’s Classification Rollup fields are

updated from values in child records only when requested.

© Copyright IBM Corporation 2011, 2020. 51

There are two ways to ask for values to be rolled up from a record’s children:

▪ A user can manually cause a rollup to be done on a record. When using a form to interactively
edit a record created from a business object that is in a hierarchy module, the form will have a

Roll Up action in its menu bar. Clicking the Roll Up action causes values from
the record’s children to be rolled up into its Classification Rollup fields.

▪ A workflow can cause a rollup to be done on a record by performing a Rollup action on the
record.

Whichever of these mechanisms is used to cause a rollup, values are rolled up only

from a record’s immediate children. If there is a lower level to the hierarchy and the

values in a record’s immediate children do not reflect changes to the lower level, it is

these stale values that will be rolled up.

To use this one-level-at-a-time rollup to make all rolled up totals consistent after a

detail has changed, do a rollup into the immediate parent of the record that changed,

then do a rollup into its parent until you have rolled up the new totals to the

hierarchy’s root.

If you interactively edit a record that is part of a hierarchy and contains rolled up

totals, it is important to do a roll up after you change a number that should be rolled

up into the parent record. It is also important to remember that the rollup has to be

done to the parent record, not the child record that was modified. The easiest way to

ensure that these are not forgotten is to have a workflow associated with the record’s

Save and Save & Close actions do the rollup on the parent. Expecting users to

remember to edit a record’s parent to roll up changes made in a child record is not a

good idea, because it is too easy to forget.

Consider the soda containers hierarchy shown earlier. After a change is made to

numbers in the record named “Glass Soda Bottle 8 oz. Coca-Cola 1998 Christmas

Design” you may want to roll up the new numbers in the total to the records above it

in the hierarchy. To do this, first perform a rollup on the record labeled Soda Bottles.

Then finish by doing a rollup on the record named Soda Containers.

This piecemeal way of rolling up data makes the most sense when changes are

infrequent and the shape of the hierarchy is wide and shallow. In this situation,

having workflows perform rollups on just the affected records may be faster than a

method that would involve recomputing and rolling up all the totals in the hierarchy.

There are situations when recomputing and rolling up all the totals in the hierarchy

all at once makes more sense. For example, if changes to the data in the hierarchy

are frequent but the rolled up totals are seldom used, it may make more sense to

recompute and roll up all the totals in the hierarchy just before they are needed.

© Copyright IBM Corporation 2011, 2020. 52

A workflow can cause all the totals in the hierarchy to be recomputed and rolled up

all at once. If a workflow performs a Rollup All action on a record, it causes data from

all of the record’s children to be rolled up, not just the immediate children. If a

workflow performs a Rollup All action on the root of a hierarchy, it causes all the

totals in the hierarchy to be recomputed and rolled up.

Storage Precision

Classification Rollup fields use values from many records in a hierarchy to compute

values. The platform handles the computation involved in rolling up these values

based on the value of the Storage Precision and Rounding Rule properties. Storage

Precision specifies the maximum number of decimal places to use when the field is

stored in the database and when performing computations. Rounding Rule identifies

how the platform will round raw data to the precision in Storage Precision.

When the platform performs classification rollup computations, it uses intermediate

values as part of the computation. No intermediate rounding is explicitly done;

however, some rounding may have occurred already based on the Storage Precision

and Rounding Rule specified in the records being rolled up. The system uses Storage

Precision of 12 and Rounding Rule of ROUND_HALF_UP for intermediate calculations.

Only the final calculation to that produces the result is rounded based on the Storage

Precision and Rounding Rule in the Classification Rollup field.

© Copyright IBM Corporation 2011, 2020. 53

For example, the diagram below shows an example rollup hierarchy.

rollupTotal

A B

DC E

Storage Precision Example

In this example, rollupTotal=A+B+C+D+E. Assume the storage precisions for A, B, C, D,

and E are 4, 6, 3, 7, 8 respectively, and the storage precision for rollupTotal is 2. A,

B, C, D and E will be added to an intermediate value with a precision of 12. Then,

that value is stored as rollupTotal using the storage precision of 2 (defined on the

business object for rollupTotal) and the appropriate rounding rule.

Hierarchy Rollup Example

This section uses the soda containers hierarchy shown earlier to demonstrate a

hierarchy rollup. This hierarchy keeps information about a collection of soda cans and

bottles. Assume the purpose of this hierarchy is to keep track of how many cans and

bottles are in the collection. This can be accomplished using Classification Rollup

fields with their Rollup Source property set to Roll Up or Data Entry. This kind of

rollup is called a straight rollup.

For a straight rollup, a hierarchy contains two kinds of records: those containing

detail data and those containing rolled up totals. Both kinds of records use a

© Copyright IBM Corporation 2011, 2020. 54

Classification Rollup field to contain their data. In records that contain detail data,

the Rollup Source property of their Classification Rollup field is Data Entry. In

records that contain rolled up totals, the Rollup Source is Roll Up.

In the soda containers hierarchy example, records that describe soda cans contain

detail data and records that describe glass and plastic soda bottles also contain detail

data. The record in the hierarchy that is the parent for all kinds of soda bottles

contains a rolled up total, the total number of bottles in the collection. The record in

the hierarchy that is the parent for all kinds of soda containers also contains a rolled

up total that contains the total number of cans and bottles in the collection.

The example below shows the fields in Glass Soda Bottle records. The fields for Plastic

Soda Bottle and Soda Can records are similar. The field involved in the straight rollup

is the Classification Rollup field named RollupQuantity (cstRollupQuantityCR).

(a) Field List

▪ Field Name | Field Label | Field Type

▪ cstBrandCL | Brand | Classification

▪ cstDescriptionTX | Description | Text

▪ cstHasTwistOffTopBL | Has Twist-Off Top | Boolean

▪ cstNameTX | Name | Text

▪ cstRollupQuantityCR | Quantity | Classification Rollup

The RollupQuantity field is shown below:

(b) Field Properties

▪ Section: General

▪ Field Type: Classification Rollup

▪ Name: cstRollupQuantityCR

▪ Label: Quantity

▪ Description: _____

▪ Purpose: _____

▪ Required:

▪ Do not Auto Populate:

▪ Result Column:

▪ Mobile Field:

© Copyright IBM Corporation 2011, 2020. 55

▪ Read Only:

▪ Rollup Source: Data Entry

▪ Display Mask: #.####

▪ Storage Precision: 12

▪ Rounding Rule: Half Up

▪ Root Classification: each

▪ Formula:

▪ Threshold Source Attribute

The Rollup Source property is set to Data Entry. This setting allows a user to enter

numbers into the field.

The Root Classification field is set to each. For straight rollups, there are just two

considerations for choosing a classification:

▪ The classification in the child field must be the same as the classification in the parent field.

Only child fields that are supposed to rollup into a particular field in the parent should have
the same Root Classification setting as the field in the parent.

▪ The platform does not care which classification is used for the Root Classification setting.
To help document the rollup’s purpose, choose a classification that suggests
something about its nature.

In our example, the full path of the chosen classification is Classifications/Unit

Type/Quantity/each. This is a classification, not a unit of measure. However, its

name suggests that the rollup has something to do with quantities measured in each,

which is exactly what it is. The following shows the fields in the Soda Bottles record.

(a) Field List

▪ Field Name | Field Label | Field Type

▪ cstDescriptionTX | Description | Text

▪ cstNameTX | Name | Text

▪ cstRollupQuantityCR | Quantity | Classification Rollup

The fields in the Soda Containers record are similar. The field involved in the straight

roll up is also named RollupQuantity. This field is shown below:

(b) Field Properties

▪ Section: General

▪ Field Type: Classification Rollup

© Copyright IBM Corporation 2011, 2020. 56

▪ Name: cstRollupQuantityCR

▪ Label: Quantity

▪ Description: _____

▪ Purpose: _____

▪ Required:

▪ Do not Auto Populate:

▪ Result Column:

▪ Mobile Field:

▪ Read Only:

▪ Rollup Source: Data Entry

▪ Display Mask: #.####

▪ Storage Precision: 12

▪ Rounding Rule: Half Up

▪ Root Classification: each

▪ Formula:

▪ Threshold Source Attribute

Now suppose that many of the cans and bottles in the collection are brands such as

A&W and Diet Coke that are owned by The Coca-Cola Company. In addition to

knowing the total number of cans and bottles, we also want to know how many of the

cans or bottles are brands that are owned by The Coca-Cola Company.

We have already taken the first step towards doing this. Records created from the

Glass Soda Bottle, Plastic Soda Bottle, or the Soda Can business objects have a field

named Brand. The Brand field is a Classification field with the root classification of

Brands.

Since we already have a way to know the brand of each can and bottle, we just need

a way to tell if a particular brand belongs to The Coca-Cola Company. One way is to

organize the brands so that those that belong to The Coca-Cola Company have a

common parent in the Classification hierarchy, as shown below:

(a) Hierarchy of The Coca-Cola Company Brands

▪ Coca-Cola (Brands)

▪ A&W (Brands)

▪ Barq’s (Brands)

© Copyright IBM Corporation 2011, 2020. 57

▪ Caffeine-free Barq’s (Brands)

▪ Caffeine-free Coca-Cola (Brands)

▪ Caffeine-free Diet Coke (Brands)

▪ Cherry Coke (Brands)

▪ Coca-Cola (Brands)

▪ Coke II (Brands)

▪ Diet A&W (Brands)

▪ Diet Barq’s (Brands)

▪ Diet Cherry Coke (Brands)

▪ Diet Coke (Brands)

The next steps are as follows:

▪ Have a field in the Soda Bottles record that contains the total number of bottles in
the collection. And another field in the Soda Bottles record that contains the
number of bottles in the collection that are a brand owned by The Coca-Cola
Company.

▪ Have a field in the Soda Containers record that contains the total number bottles
in the collection. And another field in the Soda Containers record that contains
the number of bottles in the collection that are a brand owned by The Coca-
Cola Company.

To have a field that contains a total of just cans or bottles that are Coca-Cola brands,

we need a Classification Rollup field with the Rollup Source property set to

Classification. Because a child record can participate in a straight rollup or a

classification rollup but not both, we also need a Classification Rollup field with the

Rollup Source property set to Classification for the totals that reflect all brands.

If a Classification Rollup field’s Rollup Source is Classification, it ignores any

child records that contain Classification Rollup fields. We need to remove the

Classification Rollup field from the Glass Soda Bottle and the Soda Can business

objects, and replace the Classification Rollup field named Rollup Quantity with a

Number field named Quantity. The example below lists the fields in the Glass Soda

Bottle business object after we have done this.

(b) Field List

▪ Field Name | Field Label | Field Type

▪ cstBrandCL | Brand | Classification

▪ cstDescriptionTX | Description | Text

© Copyright IBM Corporation 2011, 2020. 58

▪ cstHasTwistOffTopBL | Has Twist-Off Top | Boolean

▪ cstNameTX | Name | Text

▪ cstRollupQuantityCR | Quantity | Classification Rollup

We may avoid unnecessary work by having the Classification Rollup fields roll up

numbers from the child record’s Quantity rather than getting it directly from a field.

This is because in the future we might want to add a different kind of record to the

hierarchy that does not have the same fields as the records we are using now. By

rolling the numbers up as the child’s Quantity, we can add additional records later

that have different fields and not have to spend time changing anything but the new

child records.

To make the numbers roll up through the Quantity property of Glass Soda Bottle

records, set it up in the business object’s mapping properties, as shown below:

(c) Mapping Properties

▪ Name: Name [Add][Delete]

▪ Cost: [Find][+][Find][+][Find][+][Find]

▪ Quantity: Quantity

▪ Image

▪ Conversion Group

▪ Exchange Date

▪ Control Number: Based on Prefix

▪ Prefix: [Find][Add][Delete]

▪ Suffix: [Find][Add][Delete]

▪ Start With: 1

▪ Delimiter

To roll up the total number of bottles and the number of Coca-Cola bottles to the

Soda Bottles record, the Soda Bottles business object needs two Classification Rollup

fields. The following shows the fields in the Soda Bottles business object.

(d) Field List

▪ Field Name | Field Label | Field Type

▪ cstCocaColaQuantityCR | Coca-Cola Quantity | Classification Rollup

▪ cstNameTX | Name | Text

▪ cstRollupQuantityCR | Quantity | Classification Rollup

© Copyright IBM Corporation 2011, 2020. 59

The two Classification Rollup fields are named RollupQuantity and CocaColaQuantity.

The details of the CocaColaQuantity field are shown below:

(e) Field Properties

▪ Section: General

▪ Field Type: Classification Rollup

▪ Name: cstCocaColaQuantityCR

▪ Label: Coca-Cola Quantity

▪ Description: _____

▪ Purpose: _____

▪ Required:

▪ Do not Auto Populate:

▪ Result Column:

▪ Mobile Field:

▪ Read Only:

▪ Rollup Source: Classification

▪ Rollup Type: Quantity

▪ Display Mask: #.####

▪ Storage Precision: 12

▪ Rounding Rule: Half Up

▪ Root Classification: Coca-Cola

▪ Formula:

▪ Threshold Source Attribute

The details of the Coca-Cola Quantity field most relevant to the rollup are that its

Rollup Source property is Classification, its Rollup Type property is Quantity,

and its Root Classification is Coca-Cola. When a rollup happens, it will compute the

total of the Quantity of all child records that have a value of or under Coca-Cola in a

Classification field. Since the Glass Soda Bottle business object only has the

Classification field named Brand, only bottles of a brand owned by The Coca-Cola

Company will be included in the total.

© Copyright IBM Corporation 2011, 2020. 60

The details of the RollupQuantity field are shown below:

(f) Field Properties

▪ Section: General

▪ Field Type: Classification Rollup

▪ Name: cstRollupQuantityCR

▪ Label: Quantity

▪ Description: _____

▪ Purpose: _____

▪ Required:

▪ Do not Auto Populate:

▪ Result Column:

▪ Mobile Field:

▪ Read Only:

▪ Rollup Source: Classification

▪ Rollup Type: Quantity

▪ Display Mask: #.####

▪ Storage Precision: 12

▪ Rounding Rule: Half Up

▪ Root Classification: Brands

▪ Formula:

▪ Threshold Source Attribute

The important difference between the Rollup Quantity field and the Coca-Cola

Quantity field is that Root Classification is set to Brands. Since this is the root

classification for all brands, the Quantity from all child records will be totaled into

this field.

The last part of the hierarchy to examine is the Soda Containers record. We want to

roll up two sets of numbers into this record: The all-brands total and the Coca-Cola

total for soda cans. We also want to roll up similar totals for soda bottles.

Use classification to roll up these totals for cans into the Soda Containers record. This

is almost the same thing we did to roll up totals for glass bottles into the Soda Bottles

record.

© Copyright IBM Corporation 2011, 2020. 61

We cannot use classification to roll up the totals for bottles from the Soda Bottles

record to the Soda Containers record because in their totaled form the numbers are

not connected to a classification. However, we can use a straight rollup to roll up

bottle totals from the Soda Bottles record to the Soda Containers record. The only

thing to do differently is make the Root Classification of the appropriate Classification

Rollup fields in the Soda Containers record be the same as the Root Classification of

the corresponding fields in the Soda Bottles record, as shown below:

(g) Field List

▪ Field Name | Field Label | Field Type

▪ cstCanCocaColaQuantityCR | Can Coca-Cola Quantity | Classification Rollup

▪ cstCocaColaQuantityCR | Coca-Cola Quantity | Classification Rollup

▪ cstNameTX | Name | Text

▪ cstRollupQuantityCR | Quantity | Classification Rollup

The Can Coca-Cola Quantity field and the Can Quantity field are used to roll up totals

for cans. The Coca-Cola Quantity and the Rollup Quantity fields are used to roll up

bottle totals from the Soda Bottles record. Below are the details of the Coca-Cola

Quantity field:

(h) Field Properties

▪ Section: General

▪ Field Type: Classification Rollup

▪ Name: cstCocaColaQuantityCR

▪ Label: Coca-Cola Quantity

▪ Description: _____

▪ Purpose: _____

▪ Required:

▪ Do not Auto Populate:

▪ Result Column:

▪ Mobile Field:

▪ Read Only:

▪ Rollup Source: Roll Up

▪ Display Mask: #.####

▪ Storage Precision: 12

© Copyright IBM Corporation 2011, 2020. 62

▪ Rounding Rule: Half Up

▪ Root Classification: Coca-Cola

▪ Formula:

▪ Threshold Source Attribute

Notice that the Coca-Cola Quantity field is a straight rollup with its Root Classification

set to Coca-Cola. The Root Classification is set to Coca-Cola so that it will match

the Coca-Cola Quantity field in the Soda Bottles record. Similarly, the Rollup Quantity

field has its Root Classification set to Brands so that it will match the Rollup

Quantity field in the Soda Bottles record.

Financial Transactions

In IBM TRIRIGA, a financial transaction is a way of saving numbers that are the result

of an action or a sequence of actions. Because of their level of complexity, this

chapter begins by explaining what financial transactions are at a conceptual level.

After describing the IBM TRIRIGA Application Platform’s concept of a financial

transaction, this chapter explains how to create financial transactions and use them

to save numbers. This is followed by a discussion of the two uses for the numbers

saved by a financial transaction:

▪ The results of a financial transaction can be rolled up into records that are not
part of a hierarchy.

▪ The results of a financial transaction are relatively easy to share with
accounting programs, inventory management programs, and other programs
that measure the cumulative effect of actions over time.

What is a Financial Transaction?

The words “financial transaction” sound meaningful. They may suggest a way of

modeling what accountants call a financial transaction. However, a financial

transaction in IBM TRIRIGA is not quite what it sounds like. A financial transaction in

IBM TRIRIGA saves one or more numbers. These numbers may be the total of other

numbers. A financial transaction may correspond to just part of what accountants call

a financial transaction.

The number saved by a financial transaction is usually associated with a financial

entity or accounting code. For example, it may be associated with the total of the

line items on an invoice or with a cost code. These are not mutually exclusive. Even

though it is called a financial transaction, the number saved by a financial transaction

does not have to be associated with anything that is financial in nature. For example,

© Copyright IBM Corporation 2011, 2020. 63

it may correspond to the total weight of items placed in a shipping container. The

number saved by a financial transaction does not necessarily represent an entire

transaction nor is it necessarily financial in nature.

A financial transaction saves a number or a set of numbers. Every number saved by a

financial transaction is kept in a collection of numbers that includes every number

ever saved by a financial transaction. When a number is saved in this collection, it is

saved along with information about the transaction, including when the transaction

happened and what kind of transaction it was. Because the numbers are saved with

this transaction information, it is possible to select a set of numbers in this collection

that were saved by transactions that fit certain criteria, for example, numbers that

were saved by a particular kind of transaction during a particular range of time.

This ability to select numbers based on their transaction information is used in two

ways:

▪ It is possible to use the total of a selected set of numbers as the value of a
field. This is a kind of rollup that can be used with records that are not
organized into a hierarchy. The details of how this works are discussed in
Financial Rollup.

▪ It is possible to use the transaction information to select numbers to be
imported by external programs that run outside IBM TRIRIGA, such as
accounting programs and inventory management programs.

To save a number with a financial transaction:

▪ Create a financial transaction record from the Financial Transaction business
object in the System module. This is usually done by a workflow.

▪ Specify information about the transaction by setting the values of the financial
transaction record’s fields and by associating the financial transaction record
with other records related to the transaction.

▪ Perform a Post Transaction action on the financial transaction record, causing
the number and other transaction details specified in the financial transaction
record to be saved.

A financial transaction stores the following properties with the number it saves:

Property Name Description

System Date The date and time that the Post Transaction action was performed

on the financial transaction record.

© Copyright IBM Corporation 2011, 2020. 64

Property Name Description

Transaction Date The real world time and date when the transaction is considered to

have happened. Unless transactions are immediately posted when

they actually happen, this is distinct from the system date. This

information comes from a field in the financial transaction record.

Conversion Group If the number being saved has a unit of measure that is Currency,

you can arrange for the number to be converted to other currencies

when it is saved.

If a conversion group is specified, it means that conversion to other

currencies should be done. The name of a conversion group identifies

the currencies the number should be converted to and the

conversion rates to do the conversion. If a currency conversion rate

does not exist for the posting date and time of the transaction, the

most recent currency conversion rate is used.

The use and management of currency conversion rates is discussed in

Multiple Currencies.

Transaction Type This is a string, normally chosen from a list, that identifies the type

of transaction. Transaction types are in the list named Cost

Transaction Types. It is common to add additional transaction types

to the list to support an application. Examples of transaction types

are: Budget Transfers, Inventory Adjustment, and Manifest Weight.

Primary Object Most financial transactions contain total amounts or measurements

for a real world entity that is represented by a record. For example,

the purpose of a financial transaction could be to contain the value

of a sales order or to contain the total weight of goods listed on a

shipping manifest.

The record that represents the real world entity for which a financial

transaction contains a total or measurement is called the financial

transaction record’s Primary Object.

There is no requirement that a financial transaction have a primary

object. However, it is unusual for a financial transaction not to have

a primary object.

© Copyright IBM Corporation 2011, 2020. 65

Property Name Description

Reference Object Some financial transactions that have a primary object also need to

be associated with another object. For example, suppose your

business uses purchase orders that have a different delivery date for

each line item. Following the rules of accounting, each line item

must be entered in your company’s books when it is delivered.

To make this happen, create financial transaction records that

correspond to individual line items. Since each of these financial

transaction records contribute to the value of a line item, the record

that represents the line item is the financial transaction record’s

primary object.

To be able to easily retrieve all financial transaction amounts that

are for the same purchase order, associate the financial transactions

with the record that represents the purchase order. The object with

which a financial transaction record is associated is called its

Reference Object.

Reverse Transaction Flag If a transaction is reversed, it means that the number it posted

should be ignored when computing totals.

If the Reverse Transaction Flag is true, it means that this transaction

reverses other transaction(s). If the Reverse Transaction Flag is set,

the financial transaction’s primary object should be specified

because a financial transaction with its reverse flag set is matched

up with the transactions it reverses by their primary object.

A financial transaction that has its reverse flag set reverses every

previous financial transaction that has the same primary object. This

is most convenient if the real world entity represented by the

primary object is being cancelled or replaced. This mechanism is not

helpful for selectively reversing previous financial transactions with

the same primary object.

If a reverse financial transaction is being posted because the entity

represented by the primary object is being cancelled, there is no

need to associate any number(s) with the reverse transaction. When

the transaction is posted, it will mark all previously posted financial

transactions that have the same primary object as having been

reversed.

© Copyright IBM Corporation 2011, 2020. 66

Transaction Types

The numbers that a financial transaction saves become associated with a financial

transaction indirectly by putting them in records that appear in a financial transaction

record’s CostTransactionCodes multiple record section. The records in this

multiple record section contain the numbers that are added up to get the number

that is recorded when the financial transaction is posted.

A financial transaction’s transaction type does not come directly from the financial

transaction record. Instead, a transaction type is stored in each of the multiple record

section’s records, along with the numbers to be added.

If all of the records in the multiple record section have the same transaction type,

that is the transaction type recorded for the financial transaction when it is posted. In

this case, the number recorded for the financial transaction is the total of the

numbers in all records in the multiple record section. For example, suppose that a

financial transaction record’s multiple record section contains records that

correspond to items put in a shipping container. Also suppose that the transaction

type in all records in the multiple record section is Manifest Weight. When the

financial transaction is posted, the number recorded will be the total weight of the

items in the shipping container. The posted transaction’s type will be Manifest

Weight.

If a Financial Transaction record’s multiple record section contains records that do

not have the same transaction type, the records in the multiple record section are

organized by their transaction type. A total is computed for each transaction type.

Each total is recorded as if it came from a separate financial transaction. Each

recorded transaction has a different transaction type and amount; all other

information in the recorded transactions is the same. For example, consider a

financial transaction that reflects a simple retail sales order. Ignoring sales taxes and

other complications, the records in the financial transaction record’s multiple record

section would probably contain two different transaction types. The multiple record

section would contain records that correspond to the items being purchased. The

transaction type for these records might be Inventory Depletion. The multiple record

section would also contain records that correspond to the payment received with the

sales order. The transaction type for these records might be Payments Received.

When this financial transaction is posted, it will be posted as if it were two financial

transactions. One has the transaction type Inventory Depletion and the other has the

transaction type Payments Received. The two transactions share the same primary

object and other information.

© Copyright IBM Corporation 2011, 2020. 67

The reasons for packing what appear to be multiple financial transactions into one

financial transaction record include:

▪ It is convenient. Only one financial transaction record needs to be created.
Only one Post Transaction action needs to be performed.

▪ When multiple financial transactions are recorded from a single financial transaction
record, the IBM TRIRIGA Application Platform guarantees that either all of the
transactions are recorded or none of the transactions are recorded. This is
important.

This all-or-nothing outcome of posting a financial transaction is very important

because it ensures that numbers recorded from financial transactions will never

be inconsistent with reality because of a computer failure. This all-or-nothing

property ensures that the financial transaction for the sales order example

above is never only half posted. The total for the goods sold will never be

posted without also posting the amount of the payment that was received for

the goods.

When a Post Transaction action is performed on a financial transaction record with a

multiple record section containing multiple transaction types, either a transaction is

recorded for each transaction type or no transactions are recorded at all. This all-or-

nothing property of a Post Transaction action has a special name. When the outcome

of an action will either be fully recorded or not recorded at all, the action is atomic.

Cost Codes

It is often the case that you want to associate the number recorded by a financial

transaction with an accounting code. Records created from business objects in the

Cost Code module are used to describe accounting codes.

To associate numbers with a financial transaction record, put the records that contain

the numbers in the financial transaction record’s multiple record section. The records

that go in the multiple record section are created from a business object defined in

the Cost Code module. This means that every number recorded by posting a financial

transaction is associated with an accounting code.

Many kinds of accounting codes are organized into a hierarchy. Consider the

hypothetical hierarchy of cost codes below:

▪ Material Charge

▪ Service Charge

▪ Labor Charge

© Copyright IBM Corporation 2011, 2020. 68

▪ Technician 1

▪ Technician 2

▪ Technician 3

▪ Supplies Charge

▪ Surcharges

▪ After Hours Charge

▪ Rush Charge

Because the cost codes are in a hierarchy, if a number is associated with the cost

code Technician 2, it also is associated with Labor Charge and Service Charge. It is

associated with these cost codes because they are above Technician 2 in the

hierarchy. A total of all charges that apply to Service Charge or to Labor Charge

includes all charges associated with the Technician 2 cost code.

When a financial transaction is posted, its details are recorded with a method

intended to minimize the need to interpret the data using information that may

change over time. The organization of accounting codes can change over time. It

would not be good to assume that between the time a transaction was posted and a

report is generated, the structure of the accounting codes has not changed.

To avoid the need for this sort of assumption, posted financial transactions are

recorded with their associated accounting code and with every accounting code that

occupies a higher position in the hierarchy of accounting codes. For example, if a

financial transaction is posted that is associated with the Technician 2 cost code, the

recorded financial transaction will include the Technician 2, Labor Charge, and

Service Charge cost codes.

For the purposes of this discussion, we will call an accounting code that is directly

associated with a financial transaction before it is posted a detail accounting code.

Accounting codes that are recorded with the posted financial transaction because

they occupy a position in the hierarchy above the detail accounting code we will call

summary accounting codes.

When a financial transaction is posted, only one detail accounting code is recorded

for a transaction. If the numbers in a financial transaction record’s multiple record

section are associated with different accounting codes, when the financial transaction

is posted, it is posted as if there were multiple financial transactions, each containing

only one of the accounting codes as the detail accounting code.

© Copyright IBM Corporation 2011, 2020. 69

This is similar to what happens when different transaction types are associated with

the numbers in a financial transaction record’s multiple record section. If the

numbers in a financial transaction record’s multiple record section are associated

with different transaction types, when the financial transaction is posted, it is posted

as if there were multiple financial transactions, each containing only one of the

transaction types.

Neither of these statements tells the complete story. Actually, if the numbers in a

financial transaction record’s multiple record section are associated with different

combinations of transaction type and accounting code, when the financial transaction

is posted, it is posted as if there were multiple financial transactions, each containing

only one combination of transaction type and accounting code.

Creating and Posting Financial Transactions

This section discusses the details of how to create a financial transaction and then

post it. The first step is to create a new financial transaction record. Once the

financial transaction record is created, the next step is to set the values of its fields.

The fields of a Financial Transaction record are as follows:

Field Name Description

BusinessObjectID The value of this field is set when a Post Transaction action is

performed on a financial transaction record. The value is a number

that identifies the record that is the financial transaction’s primary

object.

CompanyID The value of this field is set when a Post Transaction action is

performed on a financial transaction record. The value is a number

that identifies the platform environment in which the record that is

the financial transaction’s primary object was created.

ID This is a control number that is generated when a financial

transaction record is created. It serves as the name of the record.

ConversionGroup The value of this field is from the list named Conversion Group. The

Currency Conversions tool associates a name from this list with every

currency conversion rate. When the financial transaction is posted, if

the unit of measure is a currency and a value is specified for

ConversionGroup, converted amounts are saved with the financial

transaction. If a currency conversion rate does not exist for the

posting date and time of the transaction, the most recent currency

conversion rate is used.

This is discussed in more detail in Multiple Currencies.

© Copyright IBM Corporation 2011, 2020. 70

Field Name Description

CostTransactionCodes

Amount Total

This is a total of all the amounts in the cost codes. This field is read-

only. Its value is computed automatically by the IBM TRIRIGA

Application Platform.

Description This field contains a description of the transaction.

ReverseTransactions If this is true, it means that the transaction reverses another

transaction.

TransactionDate The time and date in this field are recorded as the transaction date.

If no value is specified, the system date is used as the transaction

date when the transaction is posted.

TransactionID This field is not used for anything.

UserId The IBM TRIRIGA Application Platform sets the value of this field

when a PostTransaction action is performed on a financial

transaction record. It is a number that identifies the MyProfile record

of the user that initiated the Post Transaction action.

To establish the record that will be used as a financial transaction’s primary object,

create an association from the financial transaction record to the record that will be

the primary object. The name of the association must be Financial Primary

Object. Remember that the platform will not allow you to create an association

unless there is a corresponding association definition.

To establish the record that will be used as a financial transaction’s reference object,

create an association from the financial transaction record to the record that will be

the reference object. The name of the association must be Financial Reference

Object.

costTransactionCodes

A financial transaction record contains a multiple record section named

costTransactionCodes. This costTransactionCodes multiple record section

contains the details of the financial transaction. Each record in the

costTransactionCodes multiple record section is created from a business object

named Cost Code Container that is part of the Cost Code module. The Cost Code

Container business object is a link business object.

© Copyright IBM Corporation 2011, 2020. 71

The costTransactionCodes multiple record section has its Live Link property set

to false. This multiple record section that contains link records and has its Live Link

property set to false results in a multiple record section that is used as follows:

▪ You can add any record to the costTransactionCodes multiple record section

that is in the Cost Code module’s hierarchy. The record you choose from the
hierarchy should be the one that represents the detail accounting code that
you want to associate with a number in the financial transaction.

▪ When you add a record to the costTransactionCodes multiple record section, its

connection with the multiple record section is indirect. A new Cost Code
Container record is automatically created by the multiple record section. The
Cost Code Container record is linked to the record being added to the multiple
record section. The Cost Code Container record is actually what is then added
to the multiple record section.

▪ Initially, the newly-added Cost Code Container record has the same values in its
fields as the underlying record it is linked to.

▪ Because the multiple record section has its Live Link property set to false, any changes
made to the records in the multiple record section will not affect their
underlying linked records.

Before you create a financial transaction, the Cost Code module’s hierarchy should

contain records that correspond to all accounting codes that the financial transaction

will use. If no business object exists in the Cost Code module that is suitable for

representing a particular accounting code, add a suitable business object to the Cost

Code module. Any new business object added to the Cost Code module should be a

stand-alone business object that includes all fields in the Cost Code business object.

After adding a record to the costTransactionCodes multiple record section, set

its Amount field to the correct detail amount and its CostTransactionType field to

the correct transaction type.

These modifications to records in the financial transaction record’s multiple record

section affect only the link records in the multiple record section. The underlying

Cost Code records are unaffected; you can use them in the multiple record section of

other financial transaction records.

There should only be one currency or other unit of measure used in a financial

transaction record’s multiple record section. The total for a financial transaction is

recorded with one unit of measure or primary currency. If the records in the multiple

record section contain different units of measure or currencies, the IBM TRIRIGA

Application Platform will select one of the units of measure or currencies arbitrarily.

© Copyright IBM Corporation 2011, 2020. 72

It will attempt to convert the other units of measure or currencies to the unit of

measure or currency it selected.

Financial Transaction State Transition Family

The actions that can be performed on a financial transaction record are governed by

the state transition family named Financial Transaction. After a Create action has

been performed on a financial transaction record, it enters a state named New. While

in the New state, in addition to OK and Apply, there are two other actions that can be

performed on a financial transaction record:

Action Name Description

PostTransaction This action causes the data contained in a financial transaction

record to be posted. The details of what happens when a financial

transaction is posted are discussed in various parts of this chapter.

Retrieve Data This action is defined to support an obsolete feature for old

applications. It should not be used for any new applications.

There is special processing logic within the IBM TRIRIGA Application Platform

associated with the Post Transaction action. This special logic is what posts the

financial transaction. After posting the financial transaction, the special logic sets the

state of the financial transaction record to a state named Posted.

Multiple Currencies

If a financial transaction’s unit of measure is a currency and a conversion group is

specified in the financial transaction record, all applicable conversion rates in the

specified conversion group are used to convert from the primary currency to other

currencies.

The purpose for this is similar to the purpose of recording summary accounting codes

with a posted financial transaction. After the transaction is recorded, you do not want

to guess what currency conversion rates were in effect at the time of the transaction.

By storing all relevant converted amounts with the transaction, there is no need to do

any currency conversions on the transaction after it is posted.

The IBM TRIRIGA Application Platform maintains a collection of currency conversion

rates for converting between different currencies. There are two mechanisms for

managing currency conversion rates:

▪ Manually by using the Currency Conversions tool. The Currency Conversions tool is described in

the “Data Types” chapter of Application Building under the heading “Money”.

© Copyright IBM Corporation 2011, 2020. 73

▪ By an external application. This is done via IBM TRIRIGA Connector for Business Applications.

The details are discussed in the IBM TRIRIGA Connector for Business Applications 3 Technical

Specification book.

There are properties that the IBM TRIRIGA Application Platform associates with each

currency conversion rate. If the unit of measure for the primary number being posted

for a financial transaction is a currency, the platform uses these properties to decide

which conversion rates should be applied to the financial transaction’s primary value.

The properties of a currency conversion rate are as follows:

Property Name Description

From currency The currency that the conversion rate is intended to convert from.

To currency The currency that the conversion rate is intended to convert to.

Start date and time The first date and time that the currency conversion rate applies to.

End date and time The last date and time that the currency conversion rate applies to.

Conversion Group The name of a group of conversion rates that will be applied to the

same financial transactions. If you want to apply the same

conversion rate to financial transactions that specify different

conversion groups, you need to store two conversion rates that are

identical except for having different conversion groups.

Whichever mechanism you use to manage currency conversion rates, make sure the

start and end dates and times for each currency are the same for every currency

conversion rate. This practice can avoid a variety of confusing situations.

Database Transaction Tables

When a financial transaction is posted, its details are recorded by inserting them in

rows of relational database tables. After the details of a financial transaction are

stored in the database, you can:

▪ Import data from the database to external applications that use numbers accumulated from
financial transactions to measure some aspect of your business or organization. For example,
you may import the numbers into an accounting program or an inventory management program.

▪ Use fields of type Financial Rollup to accumulate or summarize transaction results
for applications that run within the IBM TRIRIGA Application Platform.

If you are planning to import transaction data into external applications, you or

somebody you work with will need to understand how to use relational databases in

general and also understand the details in this part of this chapter. If you are planning

© Copyright IBM Corporation 2011, 2020. 74

to use recorded transaction data only with Financial Rollup fields, it is not necessary

for you to understand how to use relational databases. However, you should skim this

section to understand the organization of the data recorded from posted financial

transactions.

Financial Rollup fields are discussed in detail in Financial Rollup.

When the data for a financial transaction is stored in a relational database, the data

is stored in tables that are part of a schema named TRIDATA. The person who

administers the IBM TRIRIGA Application Platform for your organization should be able

to provide you with the details of accessing the database and the TRIDATA schema.

The IBM TRIRIGA Application Platform uses the following tables in the database to

contain data from posted financial transactions:

▪ BUDGET_TRANSACTION

▪ BUDGET_CODES

▪ BUDGET_CURRENCIES

When a Post Transaction action is performed on a financial transaction record,

financial transaction data is recorded for each combination of transaction type and

accounting code that appears in the multiple record section of the financial

transaction record. The transaction type is the value in the field named

CostTransactionType. The accounting code is the name of the record specified in

the Publish tab of the record’s business object.

When a Post Transaction action is performed on a financial transaction record, for

each combination of transaction type and accounting code, a row is added to the

BUDGET_TRANSACTION table. The columns of the BUDGET_TRANSACTION table are

as follows:

© Copyright IBM Corporation 2011, 2020. 75

Column Name Column

Type

Description

TRANSACTION_ID NUMBER Uniquely identifies this transaction within this table. This is

the table’s primary key.

TRANSACTION_TYPE VARCHAR The transaction type for this transaction.

DESCRIPTION VARCHAR A description of the transaction.

TRANSACTION_DATE DATE/TIME The date and time when the transaction is considered to

have happened. The value in this column comes from the

TransactionDate field of the financial transaction record

that was posted to create this row, unless no value was

specified for the TransactionDate field.

If no value was specified for the TransactionDate field,

this column is set to the same value as the SYSTEM_DATE.

SYSTEM_DATE DATE/TIME The date and time when this transaction was posted.

COMPANY_ID NUMBER Uniquely identifies the IBM TRIRIGA Application Platform

environment from which this transaction was posted.

PROGRAM_ID NUMBER Reserved.

PROJECT_ID NUMBER Uniquely identifies the project internally associated with the

financial transaction record from which this transaction was

posted.

BO_ID NUMBER Uniquely identifies the business object used to create the

record that is this financial transaction’s primary object.

If this financial transaction does not have a primary object,

the value is 0.

OBJECT_ID NUMBER Uniquely identifies the record that is this financial

transaction’s primary object.

If this financial transaction does not have a primary object,

the value is 0.

OBJECT_VERSION NUMBER Reserved.

© Copyright IBM Corporation 2011, 2020. 76

Column Name Column

Type

Description

MODULE_ID NUMBER Uniquely identifies the module that contains the business

object used to create the record that is this financial

transaction’s primary object.

If this financial transaction does not have a primary object,

the value is 0.

ORGANIZATION_ID NUMBER The financial transaction record that was used to post this

transaction has a field named OrgName. If OrgName referred

to an Organization record when the transaction was posted,

this column contains the number that uniquely identifies the

Organization record.

If OrgName did not refer to an Organization record when the

transaction was posted, this column contains 0.

GEOGRAPHY_ID NUMBER The financial transaction record that was used to post this

transaction has a field named GeographyName. If

GeographyName referred to a Geography record when the

transaction was posted, this column contains the number

that uniquely identifies the Geography record.

If GeographyName did not refer to a Geography record

when the transaction was posted, this column contains 0.

USER_ID NUMBER Uniquely identifies the My Profile record associated with the

user that initiated the Post Transaction action that posted

this transaction.

REF_OBJECT_ID NUMBER Uniquely identifies the record that is this financial

transaction’s reference object.

If this financial transaction does not have a reference object,

the value is 0.

REF_OBJECT_VERSION NUMBER Reserved.

REVERSE_FLAG NUMBER The value in this column is normally 0. If this transaction has

been reversed by another transaction, the value in this

column is 1.

REF_MODULE_ID NUMBER Uniquely identifies the module that contains the business

object used to create the record that is this financial

transaction’s reference object.

If this financial transaction does not have a reference object,

the value is 0.

© Copyright IBM Corporation 2011, 2020. 77

Column Name Column

Type

Description

REF_BO_ID NUMBER Uniquely identifies the business object used to create the

record that is this financial transaction’s reference object.

REVERSE_DATE DATE/TIME When a row is inserted, the value in its REVERSE_FLAG

column is 0 and this column’s value is the same as the

SYSTEM_DATE column.

If the financial transaction represented by this row is

reversed, the value in the REVERSE_FLAGcolumn is changed

to 1 and the value of this column becomes the date and time

when the transaction was reversed.

LOCATION_ID NUMBER The financial transaction record used to post this transaction

has a field named LocationName. If LocationName

referred to a Location record when the transaction was

posted, this column contains the number that uniquely

identifies the Location record.

If LocationNamefield did not refer to a Location record

when the transaction was posted, this column contains 0.

When the data for a financial transaction is posted, the recorded data includes the

detail accounting code and all summary accounting codes above it in the hierarchy.

Since a financial transaction has a one-to-many relationship with its accounting codes,

the accounting codes are stored in a separate table named BUDGET_CODES. The

BUDGET_CODES table is as follows:

Column Name Column

Type

Description

TRANSACTION_ID NUMBER Identifies the financial transaction this row is part of. This is

the same number that appears in the TRANSACTION_ID

column of the row in the BUDGET_TRANSACTION table that

represents this financial transaction.

© Copyright IBM Corporation 2011, 2020. 78

Column Name Column

Type

Description

CODE_TYPE VARCHAR The rows in this table correspond to two different kinds of

records:

▪ The first kind of record is a record in the Cost Code
module’s hierarchy that represents an accounting
code.

▪ The second kind of record is a record that has an
association named Rollup Associated Object

with the first kind of record.

To distinguish between the two kinds of rows, this column

can have these values:

▪ If the row corresponds to the first kind of record,
this column’s value will be the highest level summary
accounting code in the hierarchy that is associated
with the financial transaction.

▪ If the row corresponds to the second kind of record,
this column’s value will be Associated Object.

You can tell which row represents the associated first kind of

record because it will have the same values in its

TRANSACTION_ID and CODE_SEQ columns as this row.

CODE_SEQ NUMBER Rows in this table correspond to a record created from a

business object in the CostCode module. The record either

represents the accounting code directly associated with the

financial transaction identified in the TRANSACTION_ID

column or it is a record above the accounting code in the

Cost Code module’s hierarchy.

The number in this column indicates what level in the Cost

Code module’s hierarchy the corresponding record occupies.

Records directly under the root of the Cost Code module’s

hierarchy are at level 0 (zero). The records under that are at

level 1 (one), and so on. For a given value in the

TRANSACTION_ID column, rows in this table with the

highest value correspond to the record that represents the

detail accounting code associated with the financial

transaction.

CODE_REF_ID NUMBER Uniquely identifies the record that this row corresponds to.

CODE_STRING VARCHAR The name of the record this row corresponds to.

© Copyright IBM Corporation 2011, 2020. 79

Column Name Column

Type

Description

MAPPED_BUDGET_

CODE

VARCHAR This column is obsolete and is no longer used.

STATUS VARCHAR Reserved.

SYSTEM_DATE DATE/TIME The same date and time as in the SYSTEM_DATE column of

the row in the BUDGET_TRANSACTION table that represents

this financial transaction.

USER_ID NUMBER The same number as in the USER_ID column of the row in

the BUDGET_TRANSACTION table that represents this

financial transaction.

If the unit of measure for a financial transaction is a currency, when it is posted the

recorded data includes the amount in the primary currency and in any number of

other currencies. Since there is a one-to-many relationship between a financial

transaction and its amounts, the amounts are stored in a separate table named

BUDGET_CURRENCIES. The BUDGET_CURRENCIES table is as follows:

Column Name Column

Type

Description

TRANSACTION_ID NUMBER Identifies the financial transaction this row is part of. This is

the same number that appears in the TRANSACTION_ID

column of the row in the BUDGET_TRANSACTION table that

represents this financial transaction.

CURRENCY_CODE VARCHAR The name of the unit of measure or currency for the number

in the AMOUNT column.

© Copyright IBM Corporation 2011, 2020. 80

Column Name Column

Type

Description

CONVERSION_RATE NUMBER If the unit of measure named in the CURRENCY_CODE column

is a currency, this column contains the conversion rate

between the financial transaction’s primary currency and the

currency specified in the CURRENCY_CODE column of this

row.

The primary currency for a financial transaction is reflected

in a row that has the financial transaction’s

TRANSACTION_ID and the value 1 in the

CONVERSION_RATE column.

The number in the CONVERSION_RATE column is the number

that was multiplied by the AMOUNT denominated in the

primary currency to calculate the AMOUNT in this row.

AMOUNT NUMBER Contains the number saved by this financial transaction in

the unit of measure named in the CURRENCY_CODE column.

SYSTEM_DATE DATE/TIME The same date and time as in the SYSTEM_DATE column of

the row in the BUDGET_TRANSACTION table that represents

this financial transaction.

USER_ID NUMBER The same number as in the USER_ID column of the row in

the BUDGET_TRANSACTION table that represents this

financial transaction.

If you will be importing data to other applications, it is possible that you will need to

access data that is not in the transaction data. If this is the case, these are the ways

to access the additional data:

▪ Use Eclipse Business Intelligence Reporting Tools (BIRT), which is described in
the IBM TRIRIGA Application Platform 3 Reporting User Guide book.

▪ Use IBM TRIRIGA Connector for Business Applications to run a query and not
directly access the relational database.

▪ Use the relational database that the IBM TRIRIGA Application Platform uses to
store data in your environment.

You can run a query through IBM TRIRIGA Connector for Business Applications. IBM

TRIRIGA Connector for Business Applications is described in the IBM TRIRIGA

Connector for Business Applications 3 Technical Specification document. This tool

gives a great deal of flexibility in how data for import is presented to the importing

program. The flexibility comes from the fact that using IBM TRIRIGA Connector for

© Copyright IBM Corporation 2011, 2020. 81

Business Applications usually involves writing a custom program. A custom program is

usually able to present data in whatever form is desired.

Another option is to fetch the data directly from the database. Look through

descriptions of columns in the BUDGET_TRANSACTION and BUDGET_CODES tables.

You will notice columns that contain a number that identifies a record, business

object, or module. You can use these numbers to find data in the appropriate

database tables.

Financial Rollup

A field of type Financial Rollup contains a number that is the total of amounts

recorded in posted transactions that fit specified criteria. The uses for Financial

Rollup fields include:

▪ Keeping a total of the transactions posted with a particular purchase order or
line item as the primary object.

▪ Keeping a total of the transactions posted with a particular accounting code.

▪ Keeping a total of transactions posted as part of a particular project.

For the amount in a posted financial transaction to be included in a total in a

Financial Rollup field, the field must be in a record referenced by the financial

transaction. When a financial transaction is posted, its amount is added to the total in

Financial Rollup fields if the field is in a record referenced by the financial

transaction and the transaction meets the criteria specified for the field.

A financial transaction can reference a record in several ways:

▪ A record can be referenced as a financial transaction’s primary object.

▪ A record can be referenced as a financial transaction’s reference object.

▪ A Capital Project record can be referenced by a financial transaction as its
project.

▪ A record in the Cost Code module’s hierarchy can be referenced as a financial
transaction’s detail or summary accounting code.

Financial Rollup Fields

This section describes how to specify criteria for deciding which financial transactions

are included in a Financial Rollup field’s total.

When editing the properties of a Financial Rollup field, the Data Modeler’s Property

panel looks like the following:

© Copyright IBM Corporation 2011, 2020. 82

(a) Field Properties

▪ Section: General

▪ Field Type: Financial Rollup

▪ Name: triBudgetCurrentRollupFR

▪ Label: Budget Current

▪ Description: _____

▪ Purpose: _____

▪ Required:

▪ Do not Auto Populate:

▪ Result Column:

▪ Mobile Field:

▪ Read Only:

▪ Use Custom UOM Precision and Mask:

▪ Token: [Set Token]

▪ Hierarchy Object

▪ UOM Source Attribute

▪ Start Date Source

▪ End Date Source

▪ Threshold Source Attribute

Most of the properties in a Financial Rollup field are the same as when editing other

kinds of fields and are described in detail in the “Data Types” chapter of Application

Building. Seven properties appear that are specific to Financial Rollup fields. They are

as follows:

Property Name Description

Use Custom UOM Precision

and Mask

This property specifies whether or not this field will use the

properties for Storage Precision and Display Mask as they are defined

on the UOM. If it is not checked, the platform will refer to the UOM’s

Storage Precision and Display Mask. If it is checked, the Storage

Precision and Display Mask can be overridden.

© Copyright IBM Corporation 2011, 2020. 83

Property Name Description

Token Use the Token property to specify a set of criteria for which financial

transactions will be included in the field’s total. This set of criteria

is called a financial token. A financial token can be shared by

multiple Financial Rollup fields.

One way to specify the token is to click the List icon and select an

existing financial token to be used by the field. If you change your

mind and want to create a new financial token, click the Clear icon

 to clear the previous selection.

The other way to specify the token uses the hyperlink next to the

icons. If the text of the hyperlink is Set Token, clicking the

hyperlink causes a Token form to pop up for creating a new financial

token. If the text of the hyperlink is something else, it is the name of

an existing token. In this case, clicking the hyperlink causes that

token’s form to pop up. The Token form is described in “Financial

Tokens”.

When editing an existing financial token be especially careful if the

financial token is shared with other field definitions. Any changes

you make to the financial token affects all field definitions that

share the financial token.

Financial tokens are the main tool for selecting which financial

transactions are included in a Financial Rollup field’s total. Financial

tokens are explained in greater detail in “Financial Tokens”.

© Copyright IBM Corporation 2011, 2020. 84

Property Name Description

Hierarchy Object Use the Hierarchy Object property to place an additional condition

on which financial transactions are included in a Financial Rollup

field’s total. The Hierarchy Object property restricts the financial

transactions included in a Financial Rollup field’s total to only those

associated with a particular accounting code.

The value for the Hierarchy Object property is chosen from a drop-

down list. The drop-down list always includes the choices None and

Self. For Financial Rollup fields that are part of a business object in

a hierarchy module, always choose Self. For Financial Rollup fields

that are part of a business object that is not in a hierarchy module,

the usual value is None.

If the value for the Hierarchy Object is None, the system rolls up all

financial transactions where the primary object or reference object

is the same as the current record.

If the value for the Hierarchy Object is defined (not None), the

system rolls up all financial transactions association to that hierarchy

and ignores any current content. If the Hierarchy Object is defined

but there is no value at runtime, the system returns no result.

You can restrict a Financial Rollup field to include only financial

transactions associated with a particular accounting code if the field

is part of a business object not in a hierarchy module. To do this,

there must be a locator field in the same business object as the

Financial Rollup field. The locator field must reference a record in

the Cost Code module’s hierarchy.

If there are any locator fields in the same business object as a

Financial Rollup field, the drop-down list in the field’s Hierarchy

Object property includes the names of the locator fields. Choose as

the value of the Hierarchy Object property the name of the locator

field that references a record in the Cost Code module’s hierarchy.

The total in the Financial Rollup field will only include financial

transactions associated with the accounting code represented by the

record referenced by the locator field.

© Copyright IBM Corporation 2011, 2020. 85

Property Name Description

UOM Source Attribute A user can be given the option of setting the currency UOM of the

Financial Rollup fields they see in a form. There are several steps to

making this work for the user, one of which is specifying the UOM

Source Attribute property in the Financial Rollup field. The following

must be accomplished:

▪ The business object must include a UOM field named
Currency.

▪ In each Financial Rollup field, specify Currency in the UOM

Source Attribute. Choose the value for the UOM Source
Attribute from the drop-down list. The drop-down list
includes the choice of blank or Currency. Selecting

Currency allows the token to use any currency UOM field

that is part of the same business object. Do this for each
Financial Rollup field in the business object that the user
sees in a form.

▪ Update each form to display the currency field in the
General section (so the user can select a currency UOM) and
to display the UOM for each Financial Rollup field (check the
Show UOM check box).

▪ Have active Currency Conversion rates for each currency
UOM available to the user. If a currency conversion rate does
not exist for the posting date and time of the transaction,
the most recent currency conversion rate is used.

Then the user can override the currency UOM defined in the token,

indicate a different currency UOM, and see the Financial Rollup

fields in the selected currency UOM.

The UOM Source Attribute specified must be part of the same

business object as the Financial Rollup field and only applies to

currency UOM fields. The UOM Source Attribute only affects the

currency UOM displayed at runtime; currency values are still

calculated and saved when the financial transaction is posted.

If the UOM Source Attribute for a Financial Rollup field is blank, the

currency users see is the currency UOM set in the Financial Rollup

field’s token at design time.

© Copyright IBM Corporation 2011, 2020. 86

Property Name Description

Start Date Source

End Date Source

The Start Date Source and End Date Source properties can be used to

make the start and end dates used in a financial rollup be based on

fields in the record. This makes the date range dynamic.

To set a dynamic date range, select the Start Date Source and End

Date Source from the drop-down lists. The values in the lists are

Date or Date and Time fields in the Financial Rollup field’s business

object.

An example of how the Start Date Source and End Date Source

properties are used in the system is capturing financial cost

transactions within the context of a fiscal period located in the

parent/reference record.

If these properties are blank, the system uses the dates in the fields’

financial token.

© Copyright IBM Corporation 2011, 2020. 87

Property Name Description

Threshold Source Attribute When there is a value in the Threshold Source Attribute property,

this Financial Rollup field is a scored Financial Rollup field, meaning

it will be scored (as described in “Comparison” in Application

Building). The score is displayed as a red, yellow, or green image to

the left of the Financial Rollup field’s value.

The value of the Threshold Source Attribute property must be a

locator field that references the Threshold business object. This

locator field must be in either a General section or a one-to-one

smart section. For a Financial Rollup field that is in a smart section,

the linked locator field must reside on the referenced business

object. The Threshold record defines the threshold ranges and

contains a UOM value that is used to convert the scored value.

Select the linked locator field in the Threshold Source Attribute

drop-down list. The list only shows locator fields in the same

business object that references the Threshold business object.

A scored Financial Rollup field can be used in a form section, non-

table smart section, table smart section, or a vertical table section.

The score for the field is calculated during the rendering of the field

and is not stored. The platform compares the UOM of the Financial

Rollup field with that of the Threshold record. If a conversion is

needed, the platform converts the Financial Rollup value before

comparing it with the threshold value to calculate the score.

During runtime, the system uses the threshold record that is

currently selected by the linked locator fields. If the locator field

does not have a value, the Financial Rollup field displays without a

score.

The score is updated when the tab is reloaded. This means that if

the value of the Financial Rollup field, or the threshold record, or

the locator field that links to the threshold record, is changed, the

score will not update (if needed) until the tab is reloaded.

© Copyright IBM Corporation 2011, 2020. 88

Financial Tokens

In a Financial Rollup field, clicking Set Token or the hyperlinked token name causes

the system to display a financial token form. It looks like the following:

(a) Financial Token Form

▪ Group: Group 1

▪ Token Name: _____

▪ Date Type: Transaction Date

▪ Start Date: _____

▪ End Date: _____

▪ UOM Type: --Any—

▪ UOM: --Any--

▪ Transaction Type: --Any--

The first two fields in the form are used to determine the name of the financial

token. The first part of a financial token’s name comes from the list in the Group

field. The second part of a financial token’s name comes from what is entered in the

Token Name field.

Type whatever name you like in the Token Name field. To help avoid naming conflicts

between applications, the first part of the name is chosen from the list in the Group

field.

If you are writing a new application, you may want to add a new name to the Group

field’s list. Clicking the New hyperlink to the right of the Group field causes a form to

pop up in which you can add a new name to the Group field’s list. This form looks like

the following:

(b) Add a New Group

▪ Group Name: _____

After you have specified the name of a financial token, use the financial token in one

of the following ways to restrict which financial transactions will be included in

Financial Rollup field:

▪ You can restrict a Financial Rollup field to financial transactions from a specified
range of time. This restriction can be based on either the financial
transactions’ transaction date or system date, depending on which radio button

© Copyright IBM Corporation 2011, 2020. 89

is selected.

If you do not specify a date in the Start Date field or the End Date field, there
is no date-based restriction in the financial transaction unless specified in Start
Date Source and End Date Source. If you specify a date in the Start Date field,
only financial transactions with a date on or after the specified date will be
included. If you specify a date in the End Date field, only financial transactions
with a date on or before the specified date will be included. If you specify a
date in both the Start Date field and the End Date field, only financial
transactions with a date on or between those dates will be included.

▪ You can restrict a Financial Rollup field to financial transactions that have a

number recorded with a particular unit of measure or currency. Use the

UOM Type and UOM fields to do this.

When the UOM Type is set to Currency, you can choose SYSTEM_BASE in

the UOM field to specify that the UOM of the financial token is the system's

base currency, which is the currency that is specified in the BaseCurrency

property in the TRIRIGAWEB.properties file.

Always specify a unit of measure or currency in every financial token.

Financial Rollup fields do not have a unit of measure associated with them,

so no conversion is performed if transactions with different units of measure

are added into the same Financial Rollup field.

By specifying a unit of measure in the financial token, you ensure that all

numbers totaled in a Financial Rollup field have a consistent unit of

measure or currency. If you have defined a source UOM field for the

Financial Rollup field, the source UOM would take precedence over any UOM

defined on the Financial Token.

▪ You can restrict a Financial Rollup field to financial transactions that have a

specified transaction type with the Transaction Type field.

Always specify a transaction type in every financial token to avoid mixing

numbers from different transaction types in the same Financial Rollup field.

At the bottom of the financial token form are two buttons labeled Update and Insert.

At any given time, one is enabled and the other is grayed out. If the Update button is

enabled, clicking it updates the existing financial token. If the Insert button is

enabled, clicking it creates a new financial token.

© Copyright IBM Corporation 2011, 2020. 90

Updating Totals in Financial Rollups

When a financial transaction is posted, all Financial Rollup fields affected by the

posted financial transaction are updated to include the number from the newly-

posted financial transaction. The only time a Financial Rollup field is automatically

updated is when a financial transaction is posted.

Normally, updating the totals in a Financial Rollup field only when a financial

transaction is posted is sufficient to keep the totals in Financial Rollup fields correct.

This is not sufficient if the criteria for including financial transactions in a Financial

Rollup field change. There is no automatic mechanism to recalculate the total in a

Financial Rollup field after a change in its criteria for including financial transactions

in its total.

The circumstances in which the total in a Financial Rollup field can become incorrect

include the following:

▪ If a Financial Rollup field’s financial token changes, the field’s total may be
incorrect.

▪ If the value in the Hierarchy Object property of a Financial Rollup field’s
definition changes, the field’s total may be incorrect.

▪ If the value in the Hierarchy Object property of a Financial Rollup field’s
definition is the name of a locator field and the accounting code the locator
field refers to changes, the field’s total may be incorrect.

If you anticipate that any of these will happen to a Financial Rollup field, provide for

your application to explicitly force recalculation of totals in Financial Rollup fields.

The IBM TRIRIGA Application Platform gives you a way to create a mechanism that will

explicitly recalculate the totals in all Financial Rollup fields in a record. To create

such a mechanism, configure a state transition to run some special logic that is

intended for this purpose.

To configure a state transition to force the recalculation of a Financial Rollup field’s

total, follow these steps:

▪ Navigate to the Data Modeler (described in the “Data Modeling” chapter of
Application Building).

▪ Select the business object with the state transaction family that contains the
state transition you want to configure.

▪ Click Tools and select BO State Transition. This causes a form to pop up that
allows you to edit the state transition family.

© Copyright IBM Corporation 2011, 2020. 91

▪ In the right panel, click the state transition you want associated with the
special recalculation logic. This causes the color of the transition to change
from gray to cyan. The fields that contain the state transition’s properties
appear in the left panel. Type and apply the following:

(a) Transition Properties

▪ Action: cstRecalculate

▪ Label: Recalculate

▪ Class or Ejb Name: com.tririga.architecture.budget.ejb.BudgetHome

▪ Method Name: refreshAllTokens

▪ Apply the properties.

The next time a record goes through the configured state transition, the totals in all

of its Financial Rollup fields will be recalculated.

Comparison of Rollup Methods

Since the IBM TRIRIGA Application Platform provides two different methods to roll up

totals, you will have to choose which one to use when you build an application that

rolls up totals. The chart below discusses the differences between the two methods.

Topic Classification Rollup Method Financial Rollup Method

Flexibility Classification Rollup fields can only

roll numbers up through records

organized in a hierarchy.

Financial Rollup fields roll up numbers

independent of the organization of

records.

Complexity The Classification Rollup mechanism is

the simpler of the two. This makes it

easier to be correct.

The Financial Rollup mechanism is a two

step process, using financial transactions

and Financial Rollup fields. Because

more details and steps are involved,

there are more opportunities to

introduce bugs.

User

Interface

The IBM TRIRIGA Application Platform

has special support for viewing

records in a hierarchy. This makes it

easier for users to explore rolled up

numbers.

There is no particular feature in the IBM

TRIRIGA Application Platform that helps

users see numbers rolled up using

Financial Rollup fields.

© Copyright IBM Corporation 2011, 2020. 92

Topic Classification Rollup Method Financial Rollup Method

Performance If detail numbers change frequently

and rolled up totals must always be

kept up-to-date, the Classification

Rollup mechanism will have a lot of

overhead and perform slowly.

Rolling up changed numbers one level

of a hierarchy at a time is time

consuming. Recomputing all rolled up

numbers in a hierarchy is also time

consuming.

If detail numbers change frequently

but rolled up numbers need be up-to-

date only occasionally, the

Classification Rollup mechanism may

have better performance. In a case

like this, roll up totals only when they

need to be correct. No rollups are

done when numbers change, so no

overhead is associated with changes.

If rolled up numbers must always be up-

to-date, using Financial Rollup fields is

usually the best performing option. With

a single operation, the posting of a

financial transaction, only the fields that

need to be updated are updated.

If rolled up numbers only need to be up-

to-date occasionally and changes to the

detail data are frequent, the

performance of Financial Rollup fields is

less attractive.

Financial Rollup fields are updated every

time a financial transaction is posted. If

the rolled up values seldom need to be

updated and changes to the detail are

frequent, a lot of time can be wasted

keeping rolled up values up-to-date.

UOM and

Currency

No unit of measure or currency is

associated with Classification Rollup

fields.

No unit of measure or currency is

associated with a Financial Rollup field.

However, a financial token can restrict

the numbers that it totals so they all

have the same currency or unit of

measure.

History Rolling numbers up through a

hierarchy does not leave any record of

how the rolled up values came to be

what they are. The only clues are the

current detail values.

The posted transactions recorded in the

database can be used as an historical

record of how every Financial Rollup

field came to have its current value.

Data Sharing Rolled up values can be shared with

external applications using the same

mechanisms available to share any

other kind of data in the IBM TRIRIGA

Application Platform.

In addition to the usual mechanisms for

sharing data with external applications,

data in posted transactions can be

accessed directly through the underlying

database without interacting with the

IBM TRIRIGA Application Platform.

© Copyright IBM Corporation 2011, 2020.

INDEX

abs, 14

AddDay, 14

AddMonth, 14

AddYear, 14

Administrator Console, 34, 36, 40

Agent Manager, 34

All-or-Nothing, 67

applyRruleToEventUi, 14

Associated Token, 35

Association Token, 38

Atomic, 67

Banker’s Round, 26

Budget Codes Table, 77

Budget Currencies Table, 79

Budget Transaction Table, 74

Change ID, 41

Changes Left, 41

Classification, 47

Classification Rollup, 45

Complex Formula, 35

Conversion Group, 64, 69

Cost, 50

costTransactionCodes, 70

createQueryEndDateFromEvent, 14

createQueryStartDateFromEvent, 14

createRecurrenceExDate, 14

createRelativeDateTime, 14

Currency Conversion Manager, 69, 72

CurrentTime, 14

Data Entry, 48

Data Modeler, 3

Data to Save, 42

DateFromDateTime, 15

DateFromDateTimeTZ, 15

datestring, 15

DateTimeFromDateTZ, 15

datetimestring, 15

DayOfMonth, 16

DayOfWeek, 16

Detail Accounting Code, 68

DigitCount, 16

div, 16

e (constant), 16

EF_QUEUE, 35

End Date Source, 86

endsWith, 16

Enter, 6

excelMod, 16

Existing Formulas, 33

Extended Formula Activity Log, 37

Extended Formula Agent, 34

Extended Formula Cache, 35

Extended Formula Queue, 34, 35

Extended Formulas, 3

Field, 47

Financial Primary Object, 70

Financial Reference Object, 70

Financial Rollup, 73, 81

Financial Rollup Field, 81

Financial Token, 83

Financial Transaction, 62

Financial Transaction State Family, 72

Formal Parameter, 33

Formula, 6

Formula Type, 5

getBoNameForRecord, 16

GetDays, 16

getEventsForResource, 16

getFirstDateTimeMatchingRrule, 16

getModuleNameForRecord, 16

getNextEventForResource, 16

getRecordFromId, 16

getRecordsFromId, 17

getRuleFromEventUi, 17

getUomType, 17

getUserFormattedDateTime, 17

HasValue, 17

Hierarchy Object, 84

Hour, 17

HourOfDay, 17

IBM TRIRIGA Connector for Business

Applications, 73

if (condition), 17, 30

indexof, 17

Inputs, 6

IPMT, 18

IPMTX, 18

IRR, 19

IsAMPM, 19

isResourceAvailable, 19

isResourceAvailableForEventChange, 20

Link, 71

Live Link, 71

ln (natural logarithm), 20

© Copyright IBM Corporation 2011, 2020. 94

log, 20

logn, 20

LowercaseCount, 20

Mapping Properties, 49

MilliSecondOfSecond, 20

MilliSecondsFromDuration, 20

MinuteOfHour, 20

mod, 20

Month, 20

Multi-Business Object Query, 3

Multi-Hop Association Token, 3

Multi-Hop Query, 3

Multiple Currencies, 72

normsinv, 20

Not Supported, 13

NPV, 20

NPVX, 21

Object Map, 3

Ok, 8

Outputs, 6

Parameter, 33

pi (constant), 21

Pick Element, 6

PMT, 21

Post Transaction, 69, 70, 72, 74

power, 22

PPMT, 22

PPMTX, 22

Primary Object, 64

Quantity, 50

Query, 9

Query Token, 36, 39

RandomNumber, 22

RandomString, 23, 24

Reference Object, 65

replace, 24

Report Manager, 9

Retrieve Data, 72

Reverse Transaction Flag, 65

Roll Up, 46

Rollup All, 52

Rollup Field, 47

Rollup Source, 46

Rollup Type, 47

Root Classification, 46

Round, 25

Round Half Up, 25

ROUND_CEILING, 26

ROUND_DOWN, 26

ROUND_FLOOR, 26

ROUND_HALF_DOWN, 26

ROUND_HALF_EVEN, 26

ROUND_HALF_UP, 26

ROUND_UP, 26

RoundDown, 25

Rounding Rule, 52

RoundUp, 26

RoundX, 26, 27

Save Field, 8

SecondOfMinute, 27

Select, 6, 9

Set Token, 83, 88

Single-Hop Association Token, 3

Single-Hop Query, 3

sqrt, 27

Start Date Source, 86

startsWith, 28

State Transition Family, 72

Storage Precision, 52

Straight Rollup, 53

stringlength, 28

substring, 28

Summary Accounting Code, 68

System Date, 63

System Formulas, 13

System Manager, 32

SYSTEM_BASE, 89

Threshold Business Object, 48, 87

Threshold Source Attribute, 48, 87

toDate, 29

Token, 83

tolower, 29

toupper, 29

Transaction Date, 64

Transaction Type, 64, 66

trim, 29

UOM Source Attribute, 85

UppercaseCount, 30

Use Custom UOM Precision and Mask, 82

WeekDayDate, 30

Workflow Builder, 3

Workflow Condition Builder, 4

Year, 30

© Copyright IBM Corporation 2011, 2020. 95

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the products

and services currently available in your area. Any reference to an IBM product,

program, or service is not intended to state or imply that only that IBM product,

program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead.

However, it is the user's responsibility to evaluate and verify the operation of any

non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact

the IBM Intellectual Property Department in your country or send inquiries, in writing,

to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan, Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS

IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow

disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes

are periodically made to the information herein; these changes will be incorporated in

new editions of the publication. IBM may make improvements and/or changes in the

product(s) and/or the program(s) described in this publication at any time without

notice.

Any references in this information to non-IBM Web sites are provided for convenience

only and do not in any manner serve as an endorsement of those Web sites. The

materials at those Web sites are not part of the materials for this IBM product and use

of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

2Z4A/101

11400 Burnet Road

Austin, TX 78758

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available

for it are provided by IBM under terms of the IBM Customer Agreement, IBM

International Program License Agreement or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM has

not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM's future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

Privacy Policy Considerations

IBM Software products, including software as service solutions, (“Software Offerings”)

may use cookies or other technologies to collect product usage information, to help

improve the end user experience, to tailor interactions with the end user or for other

purposes. In many cases no personally identifiable information is collected by the

Software Offerings. Some of our Software Offerings can help enable you to collect

personally identifiable information. If this Software Offering uses cookies to collect

personally identifiable information, specific information about this offering’s use of

cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally

identifiable information.

If the configurations deployed for this Software Offering provide you as customer the

ability to collect personally identifiable information from end users via cookies and

other technologies, you should seek your own legal advice about any laws applicable

to such data collection, including any requirements for notice and consent.

For more information about the use of various technologies, including cookies, for

these purposes, see IBM’s Privacy Policy at www.ibm.com/privacy and IBM's Online

Privacy Statement at www.ibm.com/privacy/details in the section entitled “Cookies,

Web Beacons and Other Technologies” and the "IBM Software Products and Software-

as-a-Service Privacy Statement" at www.ibm.com/software/info/product-privacy/.

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy/

Trademarks

IBM, the IBM logo, ibm.com, and TRIRIGA are trademarks or registered trademarks of

International Business Machines Corp., registered in many jurisdictions worldwide.

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle and/or its affiliates.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft

Corporation in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Other product and service names might be trademarks of IBM or other companies. A

current list of IBM trademarks is available on the Web at “Copyright and trademark

information” at www.ibm.com/legal/copytrade.shtml.

http://www.ibm.com/legal/copytrade.shtml

